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Preface

Software and systems development based on modeling recognizes abstraction
and automation as key principles to deal with the complexity of modern soft-
ware. Model-based development approaches have the proven capability to deliver
complex, dependable software efficiently and effectively.

The MODELS conference series brings together educators, practitioners, and
researchers to solidify and extend the benefits of modeling for the development
of current and future software and systems by providing the premier venue for
the dissemination and discussion of high-quality work in the area of software
and systems modeling. The scope of the conference series is broad, encompassing
modeling languages, methods, tools, and applications considered from theoretical
and practical angles and in academic and industrial settings.

For MODELS 2014, authors were invited to submit papers to a Founda-
tions track and a Model-Driven Engineering in Practice track. The Foundations
track provides a forum for new ideas, results, and insights that can advance
the state-of-the-art and contains four paper categories: Technical papers present
novel, scientifically rigorous solutions to significant model-based development
problems. Exploratory papers describe new, unconventional research positions
and approaches. Empirical evaluation papers assess existing problem cases or
validate proposed solutions scientifically through, e.g., empirical studies, exper-
iments, case studies, or simulations. Modeling pearls are polished, elegant, and
insightful applications of modeling. For the first time, authors could submit sup-
porting artifacts via the Repository for Model Driven Development (ReMoDD).
For modeling pearls this was required and for empirical evaluation papers this
was encouraged.

The MDE in Practice track challenges researchers and practitioners to discuss
innovations and solutions to concrete software modeling problems and experi-
ences related to the industrial adoption of modeling techniques. Authors were
invited to submit original experience reports and case studies, both with clear
take-away value by describing the context of a problem of practical, industrial
importance and application and its solution.

Overall, 126 full papers were submitted to the Foundations track and 35 to
the MDE in Practice track. Paper authors came from 33 different countries with
Germany, USA, Norway, and France being the most frequent.

The MODELS 2014 review process was designed to ensure high-quality feed-
back to the authors and a high-quality program. As in the two previous years, a
Program Board (PB) was used to assist the Program Committee (PC) chairs in
the monitoring of the reviews and the online PC discussion period. After every
submission had been reviewed by three PC members, authors had a chance to
correct factual mistakes in the reviews in a response period. Papers, reviews,
and author responses were discussed in detail by the PC and PB during a



VI Preface

two-week online discussion period. On May 29, 2014, the PB meeting was held
in Potsdam, Germany, with all PB members in attendance to discuss the papers
for which the online discussion period had not resulted in a clear decision. At
that meeting, 30 of 126 submissions to the Foundations track were accepted and
three more were invited to resubmit after the correction of specific deficiencies;
for the MDE in Practice Track, eight of 35 submissions were accepted and one
was invited to resubmit. After review of the resubmissions by the PB, all of them
were accepted, resulting in an acceptance rate of 26% for both the Foundations
track and the MDE in Practice track.

The resulting program is broad and inclusive covering, e.g., the theory, prac-
tice, and pragmatics of modeling languages; model transformation; survey and
vision papers; and experience reports and descriptions of the application of
model-based development. Papers report on the use of modeling in a wide range
of contexts ranging from domains in which modeling and model-based develop-
ment have already become part of the recognized best practices (e.g., embedded
devices, distributed systems, signal processing, mechatronic systems, and control
systems), to domains in which the use of modeling is a growing trend (e.g., web
and mobile applications, and cloud computing), to domains in which software
modeling techniques traditionally have not been used (e.g., tax law and grant
proposal writing). This diversity provides evidence for the increasing maturity
and adoption of modeling.

The paper presentations in the Foundations and MDE in Practice tracks were
complemented by three keynotes and two panels.

The keynotes nicely echoed the diversity and quality of the MODELS 2014
program: The benefits of formal, foundational work in modeling languages were
explored by Jose Meseguer, Professor of Computer Science at the University of
Illinois at Urbana-Champaign (UIUC), in his keynote on“Why Formal Modeling
Language Semantics Matters”. In his keynote on“Modeling: a Practical Perspec-
tive”, Wolfgang Grieskamp, staff engineer at Google, reported on current uses
and opportunities for modeling in industrial software engineering. In the third
keynote, Nuria Oliver, Scientific Director and founder of the User, Data and Me-
dia Intelligence research areas at Telefonica Research in Barcelona, Spain, shared
her thoughts on the use of models for improving the products and services of
a large telecommunications company in her presentation “Towards Data-Driven
Models of Human Behavior”. We welcome these international leaders and experts
to the MODELS community and thank them for enriching the conference with
their keynotes.

The first panel on “Modeling Outside the Box” sought to break new ground
in the use of modeling and encourage the audience to develop innovative, vi-
sionary ideas about new areas of application and uses. The second panel “What
Practioners and Industry Really Want” reached out to industry and attempted
to identify industrial needs and challenges. We thank all panel participants for
sharing their time, expertise, and ideas with the community so generously.

MODELS 2014 would have been impossible without the hard work of many
people. It starts with the authors who submitted papers to MODELS. We thank
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them for sharing their work with us and giving us the material of which high-
quality conference programs are made. We are grateful to the PB, PC, and the
additional reviewers for ensuring that MODELS remains a venue worth attenting
and submitting to. Their efforts constitute a vital contribution to the research
community which, unfortunately, often do not receive the recognition they de-
serve. On the more technical side, a big thank-you must go to Richard van de
Stadt. His CyberChairPRO system and the prompt, reliable support Richard
provided significantly facilitated many aspects of our work. Robert France pro-
vided help with the use of ReMoDD for artifact submission which we gratefully
acknowledge. We thank Holger Giese and his staff for helping with the organi-
zation of the PB meeting in Potsdam and the subsequent MDE workshop at the
Hasso-Plattner-Institute which featured a wide range of talks and provided a
stimulating overview of the trends, challenges, and open problems in MDE. We
also thank the members of the Steering and Organizing Committees for their
support and efforts to make MODELS 2014 a success. Lastly, we gratefully ac-
knowledge the assistance of our sponsors and supporting organizations including
the Universitat Politècnica de València (UPV), which provided the venue and
facilities for the conference and satellite events, the Escola Técnica Superior de
Ingenieria Informática (ETSINF-UPV), and our society sponsors IEEE, IEEE
Computer Society, ACM, and ACM SIGSoft.

August 2014 Juergen Dingel
Wolfram Schulte

Isidro Ramos
Silvia Abrahão
Emilio Insfran
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Silvia Abrahão Universitat Politècnica de València, Spain
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João Araújo Universidade Nova de Lisboa, Portugal
Mira Balaban Ben-Gurion University, Israel
Benoit Baudry Inria, France
Nelly Bencomo Aston University, UK
Xavier Blanc University of Bordeaux, France
Ruth Breu University of Innsbruck, Austria
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Jan Olaf Blech
Benjamin Braatz
Hakan Burden
Javier Canovas
Everton Cavalcante
Hyun Cho
Benoit Combemale
Jonathan Corley
Raphael de Aquino Gomes
Julien DeAntoni
Alessio Di Sandro
Aleksandar Dimovski
Johannes Dyck
Robert Eikermann
Romina Eramo
Ramin Etemadi

Michalis Famelis
Matthias Farwick
Michael Felderer
Asbjørn Følstad
Helena Galhardas
Nadia Gamez
Achraf Ghabi
Hamid Gholizadeh
Holger Giese
Erik Gøsta Nilsson
László Gönczy
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Keynote Abstracts



Why Formal Modeling Language

Semantics Matters

José Meseguer

University of Illinois at Urbana-Champaign, USA

Abstract. The point of modeling languages is not just modeling, but
modeling as a powerful means of making software development much
more reliable, reusable, automated, and cost effective. For all these pur-
poses, model transformations, as a disciplined technique to systematically
relate models within a modeling language and across languages, play a
crucial role. In particular, automatic code generation from models is one
of its great advantages.

As in the case of programming languages and compilers for such lan-
guages — which can be seen as a specific, special case of modeling lan-
guages and model transformations — there are two ways of going about
all this: (i) the usual, engineering way of building and using practical
tools, like parsers, compilers, and debuggers and, likewise, modeling tools
and model transformations, where the semantics is implicit in the tools
themselves and informal; and (ii) a formal semantics based approach,
where the different languages involved are given a formal semantics and
correctness issues, such as the correctness of programs and models, and
of compilers and model transformers, can be addressed head-on with
powerful methods. It seems fair to say that, both for programming and
for modeling languages, the usual engineering approach is at present the
prevailing one. But this should not blind us to the existence of intrinsi-
cally superior technological possibilities for the future. Furthermore, the
reasons for taking formal semantics seriously are even more compelling
for modeling languages than for programming languages. Specifically, the
following crucial advantages can be gained:

1. Formal Analysis of Model-Based Designs to uncover costly design
errors much earlier in the development cycle.

2. Correct-by-Construction Model Transformations based on formal pat-
terns, that can be amortized across many instances.

3. Modeling-Language-Generic Formal Analysis tools that are seman-
tics-based and can likewise be amortized across many languages.

4. Correct-by-Construction Code Generators, a burning issue for cyber-
physical systems, and a must for high-quality, highly reliable imple-
mentations.

Although the full potential for enjoying all these advantages has yet
to be exploited and much work remains ahead, none of this is some
pie-in-the-sky day dreaming. There is already a substantial body of re-
search, tools, and case studies demonstrating that a formal semantics
based approach to modeling languages is a real possibility. For example,
formal approaches to modeling language semantics based on: (i) type
theory, (ii) graph transformations, and (iii) rewriting logic, all converge
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in giving strong evidence for the many practical advantages that can be
gained.

Besides discussing in more detail the issues involved, the talk will give
a report from the trenches based on my own personal involvement in ad-
vancing semantics-based approached to modeling and programming lan-
guages. In particular, I will discuss relevant advances within the rewriting
logic semantics project, which explicitly aims at basing both program-
ming and modeling languages on a formal executable semantics; and at
developing language-generic, semantics-based formal analysis tool and
methods.



Modeling: A Practical Perspective

Wolfgang Grieskamp

Google Inc, USA

Abstract. My talk will explore some of the basic ideas of the modeling
approach as they apply to software engineering. I will use the domain of
model-based testing, and discuss its foundations and adoption successes
and pitfalls. A major focus will be on the bells and whistles which may
help with getting modeling into mainstream. I will also discuss opportu-
nities and challenges for model-based software development which arise
from the cloud computing environment found in most of today’s industry.



Towards Data-Driven Models

of Human Behavior

Nuria Oliver

Telefonica Research, Spain

Abstract. We live in a world of data, of big data, a big part of which
has been generated by humans through their interactions with both the
physical and digital world. A key element in the exponential growth of
human behavioral data is the mobile phone. There are almost as many
mobile phones in the world as humans. The mobile phone is the piece
of technology with the highest levels of adoption in human history. We
carry them with us all through the day (and night, in many cases), leaving
digital traces of our physical interactions. Mobile phones have become
sensors of human activity in the large scale and also the most personal
devices.

In my talk, I will present some of the work that we are doing at Tele-
fonica Research in the area of modeling humans from large-scale human
behavioral data, such as inferring personality, socio-economic status, at-
tentiveness to messages or taste. I will highlight opportunities and chal-
lenges associated with building data-driven models of human behavior.
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Abstract. Rapidly increasing numbers of applications and users make
the development of mobile applications to one of the most promising
fields in software engineering. Due to short time-to-market, differing plat-
forms and fast emerging technologies, mobile application development
faces typical challenges where model-driven development can help. We
present a modeling language and an infrastructure for the model-driven
development (MDD) of Android apps supporting the specification of dif-
ferent app variants according to user roles. For example, providing users
may continuously configure and modify custom content with one app
variant whereas end users are supposed to use provided content in their
variant. Our approach allows a flexible app development on different ab-
straction levels: compact modeling of standard app elements, detailed
modeling of individual elements, and separate provider models for spe-
cific custom needs. We demonstrate our MDD-approach at two apps: a
phone book manager and a conference guide being configured by confer-
ence organizers for participants.

Keywords: model-driven development, mobile application, Android.

1 Introduction

An infrastructure for model-driven development has a high potential for ac-
celerating the development of software applications. While just modeling the
application-specific data structures, processes and layouts, runnable software
systems can be generated. Hence, MDD does not concentrate on technical de-
tails but lifts software development to a higher abstraction level. Moreover, the
amount of standardization in code as well as in user interfaces is increased. A
high quality MDD infrastructure can considerably reduce the time to market in
consequence.
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Mobile application development faces several specific challenges that come
on top of commonplace software production problems. Popular platforms differ
widely in hardware and software architectural aspects and typically show short
life and innovation cycles with considerable changes. Moreover, the market does
not allow a strategy that restricts app supply to a single platform. Therefore
multi-platform app development is a very time and cost-intensive necessity. It
demands that apps have to be built more or less from scratch for each and every
noteworthy target platform. Available solutions try to circumvent this problem
by using web-based approaches, often struggling with restricted access to the
technical equipment of the phone and making less efficient use of the device
compared to native apps. Furthermore, web-based solutions require an app to
stay on-line more or less permanently which may cause considerable costs and
restricted usability.

Although there are already some approaches to model-driven development of
mobile apps, our contribution differs considerably in design and purpose of the
language. It allows a very flexible app design along the credo: “Model as abstract
as possible and as concrete as needed.” Data, behavior and user interfaces can
be modeled on adequate abstraction levels meaning that behavior and UI design
are modeled in more detail only if standard solutions are not used. Separating
the model into an app model and one or several provider models, we achieve
the possibility of a two stage generation and deployment process. While the app
model defines the basic data structures, behavior and layout, these basic ele-
ments may be used in provider models to define specific custom needs. Hence,
a provider model is an instance of the app model which in turn is an instance
of the meta-model defining the overall modeling language. This approach suits
very well to the kind of apps we consider here: While app models are developed
by software developers, provider models are usually constructed by customers
generally not being software experts. A typical example for such an app is a
museum guide. Here, the app model contains information about objects, cat-
egories, events, and tours in museums in general. It specifies possible behavior
like searching for museum objects, reading detailed information about them, and
following tours. General page styles are also provided by that model. Customers
may add one or more provider models containing information about objects be-
ing currently presented and additional categories to group objects semantically.
Specific functionality also be added such as reading upcoming events of the next
four weeks, reading details about a top object, and special page styles like one
for the next exhibition. Changing a provider model does not lead to deploying
the app anew. It only requires to make the modified instance model available. It
integrates into the app model providing a refreshed application with up-to-date
data and adapted functionality. Generated apps can work off-line without major
restrictions.

The paper is structured as follows: In the next section, the kind of apps consid-
ered is presented. In particular, we explain the kind of mobile apps we consider.
In Section 3, we present our language design and discuss it along typical design
guidelines. Section 4 presents the developed MDD-infrastructure consisting of
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several model editors and a code generator for the Android operating system.
Section 5 reports on a case example. Finally, Sections 6 and 7 discuss related
work and conclude this paper.

2 The Mobile Applications Domain

Mobile apps are developed for very diverse purposes ranging from mere enter-
tainment to serious business applications. We are heading towards a kind of busi-
ness app where basic generic building blocks are provided for a selected domain.
These building blocks can be used and refined by domain experts to customize
them according to their specific needs. The fully customized app is then ready
to be used by end users. Let’s consider concrete scenarios as they occur in our
collaboration with advenco, the industry partner of our project: key2guide is a
multimedia guide that can be configured without programming. Its typical ap-
plication lies in the context of tourism where visitors are guided through places
of interest, e.g. a museum, an exhibition, a town or a region. Objects of interest
(e.g. paintings, crafts and sculptures presented in a museum) are listed and ex-
plained by enriched information. Furthermore objects may be categorized and
ordered in additional structures, i.e. tours that guide visitors through an exhibi-
tion. As the reader might expect, such an app is pretty data-oriented. This data
usually changes frequently over time. In consequence, a typical requirement is to
offer a possibility that domain experts (e.g. museum administrators or tourism
managers) can refresh data regularly. Moreover, moving around in a region might
lead to restricted Internet connections. Hence, web apps would not be preferred
solutions. In contrast, apps shall typically run off-line but can download new
provider information from time to time.

A second product by advenco, called key2operate, allows to define manual
business processes with mobile device support to be integrated into a holistic
production process. E.g. in order to inspect machines of a production plant, the
worker gets a list of inspection requests that has to be executed sequentially.
Such an execution might include the collection of critical data (e.g. pressure
or temperature). Machines can be identified by scanning bar codes or reading
RFID chips. Control values might be entered manually by the worker. Moreover
start and end times of the execution may be taken. After finishing an inspection
request, the app shall display the next request to be executed and direct the
worker to the corresponding machine in line. Again, an app is required that may
be configured by users being production managers here defining their intended
business processes. As production processes have become very flexible nowadays,
manual processes with mobile device support also have to be continuously adapt-
able. key2operate allows such process adaptations without newly deploying it.
However, process definitions are pretty simple since they support simple data
structures only. Both apps work with a web-based backend content management
system to maintain configurations that are available for end users.

To summarize: We are heading towards model-driven development of mobile
business apps that support the configuration of user-specific variants. In this
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scenario, there are typically several kinds of users, e.g. providers who provide
custom content, and end users consuming a configured app with all provided
information. Of course, the groups of providers and end users may be structured
more elaborately such that different roles are defined. For example, a tourist
guide for a town may cover sights in the town as well as several museums and
exhibitions. The guiding information is typically given by several providers with
different roles. Tourism managers of the town are allowed to edit information
about sights in the category town only, while e.g. administrators of the history
museum may edit all the information about objects in their museum. Role-
specific app variants shall be developed.

Throughout our project work, the mobile apps described above (key2guide
and key2operate) were used as reference applications for the development of an
MDD infrastructure. In the beginning, we analyzed and optimized these apps in
order to approximate a best practice solution in prototypical re-implementations.
Thereafter, we used them to test the developed infrastructure by modeling them
and comparing the generated apps with the original ones. Due to space limi-
tations, we have chosen a smaller example to be used as demonstration object
throughout this paper. This example shows a number of important features of
our approach:

Example (A simple phone book app). One of the core apps for smart phones
are phone books where contacts can be managed. In the following, we show a
simple phone book app for adding, editing, and searching contact information
about persons. Moreover, phone numbers are connected to the phone app such
that selecting a phone number starts dialing it. Figure 1 shows selected screen
shots of the phone app, already generated by our infrastructure. Little arrows
indicate the order of views shown. In the following section, we discuss selected
parts of the underlying model.

3 Language Design

The core of an infrastructure for model-driven development is the modeling
language. In the following, we first present the main design decisions that guided
us to our modeling language for mobile applications. Thereafter, we present the
defining meta-model including all main well-formedness rules restricting allowed
model structures. To illustrate the language, we show selected parts of a simple
phone book app model. Finally, the presented modeling language is discussed
along design guidelines for domain-specific languages.

3.1 Design Decisions

Due to our domain analysis, we want to support the generation of mobile apps
that can be flexibly configured by providing users. This main requirement is
reflected in our modeling approach by distinguishing two kinds of models: app
models specifying all potential facilities of apps, and provider models defining
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(a) Main Menu with Manage Persons Process (CRUD functionality)

(b) Persons Location Process (c) Call Person Process

Fig. 1. Screen shots of phone book app

the actual apps. In Figure 2, this general modeling approach is illustrated. While
app models are used to generate Android projects (1) being deployed afterwards
(2), provider models are interpreted by generated Android apps (3), i.e., can
be used without redeploying an app. Instance models can be carried out in two
ways: usually this will be done at runtime, because the instance model does not
exist at build time, alternatively it can be done at build time, by adding the
instance model to the resources of the generated android projects.

The general approach to the modeling language is component-based: An app
model consists of a data model defining the underlying class structure, a GUI
model containing the definition of pages and style settings for the graphical user
interface, and a process model which defines the behavior facilities of an app
in form of processes and tasks. Data and GUI models are independent of each
other, but the process model depends on them. A provider model contains an
object model defining an object structure as instance of the class structure in
the data model, a style model defining explicit styles and pages for individual
graphical user interfaces, and a process instance model selecting interesting pro-
cesses and providing them with actual arguments to specify the actual behavior
of the intended app. Similarly to the app model, object and style models are
independent of each other but used by the process instance model.
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Fig. 2. Modeling approach

For the design of the modeling language, we follow the credo: “As abstract
as possible and as concrete as needed.” This means that standard design and
behavior of an app can be modeled pretty abstractly. The more individual the
design and behavior of the intended app shall be, the more details have to be
given in the app model. Especially, all special styles, pages and processes that
may be used in the intended app, have to be defined in the app model. Since
the provider model shall be defined by app experts, they are already completely
domain-specific and follow the pre-defined app model. Provider models support
the development of software product lines in the sense that a set of common
features are shared and some role-based variability is supported. Differences of
considered apps are modeled separately by different provider models.

As far as possible, we reuse existing modeling languages which applies to the
definition of data structures. Data modeling has become mature and is well sup-
ported by the Eclipse Modeling Framework (EMF)[22]. Hence, it is also used here
to define the data model of an app. Specific information to the code generator
(which is little up to now) is given by annotations.

The GUI model specifies views along their purposes as e.g. viewing and edit-
ing an object, searching objects from a list and showing them, doing a login
and choosing a use case from a set. A GUI model is usually not intended to
specify the inherent hierarchical structure of UI components as done in rich lay-
out editors like the Interface Builder [20], Android Common XML Editor [12]
and Android Studio [25]. However, the model can be gradually refined to obtain
more specificity in the generated app. Style settings are specified independently
of views and follow the same design idea, i.e. the more default look-and-feel is
used, the more abstract the model can be.

Activities and services are modeled similarly along their purposes, i.e. different
kinds of processes are available covering usual purposes such as CRUD function-
ality (create an object, read all objects, update or edit an object, delete an
object) including searching, choosing processes as well as invoking GUI compo-
nents, operations and processes. More specific purposes may be covered by the
well-known concept of libraries, i.e. a basic language is extended by language
components for different purposes as done for LabView [10].
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To support the security and permission concepts of mobile platforms, the
process model includes platform-independent permission levels. The permission
concept is fine granular (i.e. on the level of single tasks), nevertheless some
platforms like Android support only coarse granular permissions (i.e. on the level
of applications). Another security-related feature is the user-specific instantiation
of processes. Potentially, features of an application can be disabled by a restricted
process instance model.

3.2 Language Definition

After having presented the main design decisions for our modeling language, we
focus on its meta-model now. It is defined on the basis of EMF and consists of
three separated Ecore models bundled in one resource set. While the data model
is defined by the original Ecore model, two new Ecore models have been defined
to model behavior and user interfaces of mobile apps.

Given a data model with Ecore, it is equipped with domain-specific semantics.
Data models are not only used to generate the underlying object access but
influence also the presentation of data at the user interface. For example, sub-
objects lead to a tabbed presentation of objects, attribute names are shown
as labels (if not overwritten) and attribute types define the appropriate kind
of edit element being text fields, check boxes, spinners, etc. Furthermore, data
models determine the behavior of pre-defined CRUD processes in the obvious
way. Attribute names are not always well-suited to be viewed in the final app. For
example, an attribute name has to be string without blanks and other separators
while labels in app view may consist of several words, e.g. “Mobile number”. In
such a case, an attribute may be annotated by the intended label.

The meta-model for user interface models is shown in Figure 3. Different
views in user interfaces of mobile apps are modeled by different kinds of pages
(View Page, Edit Page,...) each having a pre-defined structure of UI components
and following a purpose. Only custom pages allow an individual structure of
UI components (not further detailed here). The indicated ones are considered
basic and may be accomplished with special-purpose ones in the future. The
look-and-feel of a user interface is specified in style settings.

Figure 4 shows the meta-model for behavior models of mobile apps. This meta-
model is influenced by the language design of BPMN [6] and (WS)-BPEL [5].
The main ingredients of a behavior model are processes which may be defined in
a compositional way. Especially the composition of existing processes promises
a scalable effort for process modeling. Each process has a name and a number
of variables that may also function as parameters. A parameter is modeled as
a variable with a global scope, contrary to locally scoped variables. The body
of a process defines the actual behavior consisting of a set of tasks ordered by
typical control structures and potentially equipped with permissions. There is
a number of pre-defined tasks covering basic CRUD functionality on objects,
control structures, the invocation of an external operation or an already defined
process as well as the view of a page. While task CrudGui covers the whole
CRUD functionality with corresponding views, Create, Read and Delete just
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PageContainer
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red : EInt

Menu

StyleSetting

PageStyleSettings
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Fig. 3. Ecore model for defining graphical user interfaces of mobile apps
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Fig. 4. Ecore model for defining mobile app behavior

cover single internal CRUD functionalities. When invoking a process, the kind
of invocation - synchronous or asynchronous - has to be specified.
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Since all three meta-model parts are Ecore models, each model element can be
annotated to cover additional generator-relevant information or just comments.

To get consistent app models, we need a number of well-formedness rules in
addition. Especially the consistency between model components has to be taken
into account. The main ones are listed below formulated in natural language.
The complete list of rules formalized as OCL constraints can be found at [4].

1. There is exactly one process with name Main. This process is the first one
to be executed.

2. There is at least one task of type ProcessSelector in the Main process.
3. A Process being registered in a ProcessSelector, contains - potentially tran-

sitively - at least one task of type InvokeGUI or CrudGui.
4. Considering task InvokeGUI, number, ordering and types of input and out-

put data as well as output actions has to be consistent with the type of page
invoked. E.g. a MapPage gets two Double values as output data, a Login-
Page gets two strings as input to show the user name and password and a
Boolean value as output data representing the result of a login trial.

Example (App model of simple phone book app). In the following, we present
an instance model of the presented meta-model being the app model of the simple
phone book app introduced in Section 2. We concentrate on selected model parts;
the whole app model is presented at [4].

The simple data model is an Ecore model depicted in Figure 5. The structuring
of contact data in a Person and Address seems to have advantages, since not too
much information will be presented in one view. PhoneBook is just a container
for Persons and not intended to be viewed.

Person
Forename : EString
Surname : EString
MobileNumber : EString
OfficeNumber : EString
callMobileNumber
toString

Address
City : EString
ZIP : EString
Street : EString
Number : EString

PhoneBook

address

0..1

allPersons

0..*

Fig. 5. Data model of simple phone book app

Next, the user interface of our phone book app is modeled. This part of the app
model is pretty simple, it just contains a default style setting, a default menu,
and four pages, namely a ProcessSelectorPage, an EditPage, a ViewPageand a
SelectableListPage for Person objects and a MapPage for Address objects. Note
that we just add these pages to the model but do not specify their structures (see
Figure 6).

The behavior of the phone book app is modeled by a process selector as main
process that contains processes for all use cases provided. Figures 7(a) and 7(b)
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VIEWPAGE

Karte Favoriten Impressum

PROCESSSELECTORPAGE EDITPAGE

ProcessesOverview ViewPersonEditPerson

MENU Menu

COLOR FRONTCOLOR (0,0,0)
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StylePageSettings

StyleListSettings

StyleMenuSettings

StyleSelectionSettings

StyleSetting

Karte Favoriten Impressum Karte Favoriten Impressum

SELECTABLELISTPAGE

SelectPerson

MAPPAGE

ShowAddress

Fig. 6. User interface model of simple phone book app

show processes Main being a process selector and CRUDPerson covering the
whole CRUD functionality for contacts. Figure 7(c) shows the definition of a
search process where first a search pattern is created that may be edited in an
EditPage, then it is passed to a ReadProcess resulting in a list of persons being
viewed in a SelectableListPage. If a person is selected from that list, its details
are shown in a ViewPage. Figure 7(d) shows how to connect to the phone app
to call a person. After searching for a person, operation callMobileNumber is
invoked on the selected Person object. Just a few lines of code are needed to start
the corresponding Android activity. I.e. the operation is implemented manually.
At [4], process NearToMe is shown defining situation-dependent behavior in the
sense that all persons of my phone book with an address near to my current
position are displayed.

An initial provider model just contains an empty phone book as object model
and the main process as process instance model. The object model changes when-
ever the list of contacts is modified by the user.

3.3 Discussion

After having presented the main features of our modeling language for mobile
applications, we now discuss it along the design guidelines for domain-specific
languages stated in [17]. The main purpose of our language is code generation.
It shall be used mainly by software developers, perhaps together with domain
experts and content providing users. The language is designed to be platform-
independent, i.e. independent of Android or other mobile platforms.

A decision whether to use a textual or graphical concrete syntax does not
have to be taken since we design the language with EMF and therefore, have the
possibility to add a textual syntax with e.g. Xtext [9] or a graphical one with
e.g. the Graphical Modeling Framework (GMF) [13,21]. Currently, a graphical
editor is provided as presented in the next section. The development of a textual
one is less work and shall be added in the near future. We decided to reuse EMF
for data modeling since it is very mature. Since we define our language with
EMF, the Ecore meta-model can also be reused, together with its type system.

Next, we discuss the choice of language elements. Since all generated mobile
apps shall share the same architecture design (being detailed in the next section),



Model-Driven Development of Mobile Applications 11

Main

MainProcesses

ProcessesOverview : ProcessSelectorPage
CRUDPerson , SearchPerson , CallPerson , ShowPersonAddressOnMap , NearToMe

(a) Main Process

CRUDPerson

CRUDPerson

ALL
Person

(b) CRUD Process

SearchPerson
PersonSearchPattern PersonResultList SelectedPerson

CreatePersonSearchPattern

Person
PersonSearchPattern : Person

SearchCriteriaPerson

PersonSearchPattern : Person
EditPerson
PersonSearchPattern : Person

ReadAllPersons

PersonSearchPattern : Person
PersonResultList : Person

ChoosePersonFromResultList

PersonResultList : Person
SelectPerson
SelectedPerson : Person

ViewSearchedPerson

SelectedPerson : Person
ViewPerson

(c) Search Person

CallPerson
PersonSearchPattern PersonResultList SelectedPerson

CreatePersonSearchPattern

Person
PersonSearchPattern : Person

ReadAllPersons

PersonSearchPattern : Person
PersonResultList : Person

ChoosePersonFromResultList

PersonResultList : Person
SelectPerson
SelectedPerson : Person

CallPerson
CALL

callMobileNumber
SelectedPerson : Person

(d) Call Person

Fig. 7. Process model of simple phone book app

the modeling language does not need to reflect the architecture. However, data
structures, behavior and user interface design are covered. Since we want to raise
the abstraction level of the modeling language as high as possible, we have dis-
cussed each specific feature of mobile apps carefully to decide if it can be set au-
tomatically by the generator or if the modeler should care about it. For example,
asynchronous execution of an operation is decided indirectly if the operation is
classified as long-lasting but can also be set directly. Permissions are completely
in the hand of the modeler since they depend on the operations executed. The au-
thors of [17] emphasize the simplicity of a language to be useful. Our language fol-
lows this guideline by avoiding unnecessary elements and conceptual redundancy,
having a very limited number of elements in the core language and avoiding ele-
ments that lead to inefficient code.

The concrete syntax has to be well chosen: For data modeling, we adopt
the usual notion of class diagrams since it has proven to be very useful. Pro-
cess models adopt the activity modeling style to define control structures on
tasks since well-structured activity diagrams map usual control structures very
well. Notations for pages and tasks use typical forms and icons to increase their
descriptiveness and make them easily distinguishable. Models are organized in
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three separate sub-models wrt. different system aspects, i.e. data model, process
model and GUI model. Moreover, data structures can be organized in packages
and processes can be structured hierarchically. However, processes and pages
cannot be packaged yet. Not many usage conventions have been fixed up to now
(except of some naming conventions) but will be considered in the future.

There is especially one part where the abstract and the concrete syntax of our
language diverge, the definition of control structures for task execution. While
the concrete syntax follows the notion of activity diagrams, the abstract syntax
contains binary or ternary operations such as if clauses and while loops. This
allows an easier handling of operations for code generation, however, they are
unhandy during the modeling process. There are no places where the chosen
layout has any affect on the translation to abstract syntax. Our language pro-
vides the usual modularity and interface concepts known from other languages:
Packages and interface classes in data models as well as processes and process
invocations in behavior models.

4 MDD-Infrastructure for Mobile Applications

Infrastructures for model-driven software development mainly consist of editors
and code generators. In the following, we present an MDD-infrastructure for
mobile applications as a prototypical implementation of the presented modeling
language, together with a multi-view graphical editor and a code generator to
Android. Another code generator to iOS will come soon. While the language
itself is based on EMF, the graphical editor is based on GMF [13]. Both code
generators are written in Xtend [9]. The editor and the code generator are de-
signed as separate Eclipse plug-ins. They use the common implementation of the
abstract language syntax including model validation, captured again in plug-ins.

Graphical editor for app models. The graphical editor for app models is designed
as a graphical editor consisting of three different views for data modeling, pro-
cess modeling and GUI modeling. The existing Ecore diagram editor has been
integrated for data modeling. Figures 6 and 7 show screen shots of depicted pro-
cesses and pages. As expected, changes in one view are immediately propagated
to the other ones accordingly.

While the concrete syntax of control structures for task execution follows
the notion of activity diagrams, the abstract syntax contains binary or ternary
operations such as if clauses and while loops instead. This diversion between the
abstract and the concrete syntax of our language cannot be covered directly by
mapping concrete model elements to abstract ones. Therefore, a slight extension
of the modeling language has been defined and is handled by the editor, i.e.
concrete models are mapped to extended abstract models that are translated
to non-extended ones by a simple model transformation. By application of the
well-known generation gap pattern [23, p.85-101], the standard presentation of
GMF-based editors has been adapted to special needs such as special labels and
icons.
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Code generation to Android. Having edited an app model, it has to be validated
before code generation since the code generator is designed for correct models
only. The code generator produces two projects: an Android project containing
all the modeled activities, and an Android library project. Mobile apps shall be
generated that can be flexibly configured by content providing users, of course
without redeploying these apps. To realize this requirement, an Android library
project is generated being based on EMF. This library project is able to interpret
configurations written by providers. It is used by the main Android project. (See
Figure 8.) The main Android project follows the usual model-view-controller ar-
chitecture of Android apps. Packages model and crud form the data access
layer with the usual CRUD functionality, while package gui contains controllers
in form of activities, fragments, adapters, and services. Additionally, view com-
ponents are generated as app resources.

Fig. 8. Architecture of generated apps

All these projects are usually immediately compiled and then, ready to start.
By default, the SD card of the mobile device contains an initial provider model
consisting of an empty object model, i.e., without any data, and an initial process
instance model containing the main process with all those processes assigned to
the main process by the app model. This provider model can be extended during
run time. After regeneration, it might become partly invalid, dependent on the
kind of app model changes. If, e.g., the process model has changed but the data
model has not, the object model is still readable, but the process instance model
is not. It is up to future work, to support automated migration of provider
models.
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5 Case Study

Our major case study is a guide app for conferences being configured to guide
participants through conferences like Models 2014. Depending on the user’s role,
i.e. provider or consumer, two different provider models are used leading to
two different app variants: one for conference organizers with the full range of
CRUD processes and one for participants with read and search processes only.
Participants use the app as a conference guide with the look-and-feel of a native
app. Besides searching for information, they may select sessions and add them
to a list of favorites. These sessions may be transferred to the selected Android
calendar so that reminders can be set. At [4], the interested reader can find
additional information about how the guide app is modeled and how data can
be entered. It shows a typical application of our two stage app development
by showing how to generate an app and how to specialize it to variants for
different custom needs. For a conference, quite some data has to be provided
which is usually tedious using a mobile device. Using an Android HDMI stick,
the app can be presented on an external screen and input can be given via
an external keyboard which leads to a very convenient way of editing provider
models directly by an app, suitable for providing larger amounts of data. The
models of this guide app as well as of the phone book app (used as running
example) are pretty small (less than 100 model elements) while the generated
code is comprehensive (thousands of code lines). Hence, one can see that the
abstraction level of development is raised considerably.

6 Related Work

The model-driven development of mobile applications is an innovative subject
which has not been tackled much in the literature. Nevertheless, there are already
some approaches which we compare to ours in the following.

MD2 [14] is an approach to cross-platform model-driven development [7] of
mobile applications. As in our approach, purely native apps for Android and
iOS shall be generated. However, the domain of data-driven business apps, dif-
fers from ours: While MD2-generated apps are based on a kind of app model
only, our approach offers provider models in addition. Moreover, the underlying
modeling languages differ in various aspects: The view specification by MD2 is
structure-oriented and pretty detailed, i.e. views are specified on an abstraction
layer similar to UI editors. In contrast, the gcore language of our approach is
purpose-oriented and thus, lifted to a higher abstraction level. MD2-controller
specifications show some similarities and some differences to our process speci-
fication. Similarly to our approach, action types for CRUD operations are pro-
vided. But it is not clear how additional operations (different from CRUD func-
tionality) can be invoked, as e.g. starting a phone call by selecting a phone
number. The generated Android apps follow the MVC-architecture pattern as
well. While the data model is translated to plain (old) Java objects (POJOs)
in MD2 with serialization facilities for server communication as well as a JEE
application to be run on a server, our approach also supports off-line execution.
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Two further MDD approaches focusing on data-centric apps are applause [8,2]
and ModAgile [3]. Both support cross-platform development for mainly Android
and iOS. In contrast to our approach, behavior is nearly not modeled and user
interfaces are modeled rather fine-grained.

Another kind of development tools for Android apps are event-driven ap-
proaches such as App Inventor [1] providing a kind of graphical programming
language based on building blocks and Arctis [18] being based on activity dia-
grams. Both approaches focus on rather fine-grained behavior and/or UI speci-
fication and largely neglect the modeling of data structures.

Besides the generation of native apps, there are several approaches to the
model-driven development of mobile Web apps being originated in the genera-
tion of Web applications. Although Web apps show platform independence by
running in a Web environment, they have to face some limitations wrt. device-
specific features, due to the use of HTML5 [19,24]. There are several approaches
to MDD of Web apps, such as mobl [16,15] and a WebML-based solution by We-
bRatio [11]. Since we are heading towards apps being most of the time off-line
as demanded by the domain considered, Web apps are not well-suited.

Our approach supports the model-driven development of native apps by high-
level modeling of data structures, behavior and user interfaces. In addition, the
role-based configuration of app variants is supported.

7 Conclusion

Model-driven development of mobile apps is a promising approach to face fast
emerging technology development for several mobile platforms as well as short
time-to-market with support for several if not all existing platforms. In this
paper, a modeling language for mobile applications is presented that allows to
model mobile apps as abstract as possible and as concrete as needed. Different
user roles are not combined in one app but lead to several app variants that
may be configured after code generation, i.e. by content providing users, for end
users. The considered domain are business apps being data or event-driven such
as tourist and conference guides as well as manual sub-processes in production
processes. A selection of example apps being developed with our MDD-tool en-
vironment, can be found at [4]. Future work shall cover further platforms, a
code generator to iOS is currently under development, and language extensions
towards flexible sensor handling and augmented reality. Moreover, generated
apps shall be evaluated wrt. software quality criteria, especially usability, data
management, energy efficiency and security.
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Abstract. Cloud computing offers a flexible approach to elastically allocate 
computing resources for web applications without significant upfront hardware 
acquisition costs. Although a diverse collection of cloud resources is available, 
choosing the most optimized and cost-effective set of cloud resources to meet 
the QoS requirements is not a straightforward task. Manual load testing, 
monitoring of resource utilization, followed by bottleneck analysis is time 
consuming and complex due to limitations of the abstractions of load testing 
tools, challenges characterizing resource utilization, significant manual test 
orchestration effort, and complexity of selecting resource configurations to test. 
This paper introduces a model-based approach to simplify, optimize, and 
automate cloud resource allocation decisions to meet QoS goals for web 
applications. Given a high-level application description and QoS requirements, 
the model-based approach automatically tests the application under a variety of 
load and resources to derive the most cost-effective resource configuration to 
meet the QoS goals.  

Keywords: Cloud Computing, Resource Allocation, Resource Optimization, 
Model-Based System, Domain-Specific Language. 

1 Introduction 

Cloud computing shifts computing from local dedicated resources to distributed, 
virtual, elastic, multi-tenant resources. This paradigm provides end-users with on-
demand access to computing, storage, and software services [1]. Amazon Web 
Services (AWS) [2] is a successful cloud computing platform that supports 
customized applications with high availability and scalability. Users can allocate, 
execute, and terminate the instances (i.e., cloud servers) as needed, and pay for the 
cost of time and storage that the active instances use based on a utility cost model [3].  

In order to satisfy the various quality of service (QoS) requirements, such as 
response time and throughput, of a wide variety of application types, cloud providers 
offer a menu of server types with different configurations of CPU capacity, memory, 
network capacity, disk I/O performance, and disk storage size. Table 1 shows a subset 
of the server configurations provided by AWS as of 2014. For example, the m1.small 
server with 1 CPU and 1.7 GB memory costs $0.06/hour, while the more powerful  
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Table 1. A Subset of AWS EC2 Instance Types and Pricing [4] 

Type ECU Memory (GB) Storage (DB) Price 

t1.micro < 1 (variable) 0.615 40 $0.02 / hour 

m1.small 1 1.7 160 $0.06 / hour 

m1.medium 2 3.75 410 $0.12 / hour 

m1.large 4 7.5 840 $0.24 / hour 

m2.2xlarge 13 34.2 850 $0.82 / hour 

m2.4xlarge 26 68.4 1680 $1.64 / hour 

 

m2.4xlarge server costs $1.6/hour. A key goal of cloud computing users is to 
determine the appropriate subset of these resource configurations that will run an 
application and meet its QoS goals. 

A common use case of the cloud is to offer existing software products, particularly 
web-based applications, through a software as a service (SaaS) model. In a SaaS 
model, the application provider runs the web application in the cloud and customers 
remotely access the software platform, while the provider manages and maintains the 
software. SaaS providers typically provide service level agreements (SLAs) to their 
clients dictating the number of users they will support, the availability of the service, 
the response time, and other parameters. For example, a provider of a SaaS electronic 
medical records system will guarantee that a certain number of employees in a 
hospital can simultaneously access the system and that it will provide response times 
under 1 second.  

An important consideration of SaaS providers is minimizing their operational costs 
while guaranteeing that the QoS requirements specified in their SLAs are met. For 
example, for the medical records system, the SaaS provider would like to minimize 
the cloud resources allocated to it, in order to reduce operational cost, while 
guaranteeing that the chosen cloud resources can support the number of simultaneous 
clients and response times agreed to in the client SLAs. Moreover, as new clients are 
added and the QoS requirements grown, particularly in terms of the number of 
supported clients, the SaaS provider would like to know how adding resources on-
demand, which is called auto-scaling, will affect the application. Blindly allocating 
resources to the application to meet increasing load is not cost effective and needs to 
be guided by a firm understanding of how resource allocations impact QoS goals.   

Problem. While cloud providers allow for simple and relatively quick resource 
allocation for applications, it is not an easy or straightforward task to decide the most 
optimized and cost-effective resource configuration to run a specific application based 
on its QoS requirements. For instance, if a custom web application is expected to 
support 1000 simultaneous users with a throughput of 1000 requests/minute, it is 
challenging to decide the type and minimum number of servers needed by simply 
looking at the hardware configurations. Complex experimentation and load testing 
with the application on a wide variety of resource configurations is needed. The most 
common practice is to deploy the application and perform a load stress test on each 
type of resource configuration, followed by analysis of the test results and selection of 
a resource configuration [5]. A number of load testing tools (e.g., jMeter [6][7], 
ApacheBench [8], and HP LoadRunner [9]) are available to automatically trigger a 
large amount of test requests and collect the performance data.  
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Despite the importance of selecting a cost optimized resource allocation to meet 
QoS goals, many organizations do not have the time, resources, or experience to 
derive and perform a myriad of load testing experiments on a wide variety of resource 
types. Instead, developers typically employ a trial and error approach where they 
guess at the appropriate resource allocation, load test the application, and then accept 
it if the performance is at or above QoS goals. Optimization is usually only performed 
months or years into the application’s life in the cloud, when insight into the affect of 
resource allocations on QoS goals is better understood. Even then, the optimization is 
often not systematic. 

The primary challenges that prevent early resource allocation optimization stem 
from the limitations of the load testing tools and a number of manual procedures 
required in the cloud resource optimization process. It is often difficult to specify the 
customized load tests and correlate load test configuration with the expected QoS 
goals. Besides, manually performing the load test with different cloud resources and 
deriving the optimized resource configuration are tedious and error-prone. Even when 
an optimized resource configuration is finally obtained, executing the allocation and 
deployment of all the resources requires extra manual operations as well. Although 
research works have been done to attack some of challenges separately (e.g., 
modeling realistic user test behavior to produce customized load test [25], monitoring 
target test server performance metrics for capacity planning [19]), a complete and 
fully automated approach designed specific to resource allocation and optimization in 
cloud is not available. 

Solution Approach  Model-based Resource Optimization, Allocation and 
Recommendation System (ROAR). To address these challenges, this paper presents 
a model-based system - ROAR that raises the level of abstraction when performing 
load testing and automates cloud resource optimization and allocation in order to 
transparently converting users application-specific QoS goals to a set of optimized 
resources running in the cloud. A textual DSL is defined to specify the high-level and 
customizable load testing plan and QoS requirements without low-level configuration 
details, such as the number of threads to use, the concurrent clients, and the duration 
of keeping opened connections. The model built from the DSL can generate a test 
specification that is compatible with jMeter, which is a powerful and extensible load 
testing tool based on multithreading framework for measuring the performance of 
web applications. A plugin has been built for jMeter to include the performance 
metrics of the target server and automatically align the metrics with the test data in 
order to correlate the QoS with the cloud resource configuration, which is the key 
limitation of jMeter that presents it from analyzing and optimizing cloud resources. 
ROAR includes a resource optimization engine that is capable of deriving the 
appropriate cloud resource configurations to test and automatically orchestrating the 
tests against each resource allocation before using the results to recommend a cost-
optimized resource allocation to meet the QoS goals.  

2 Motiving Example: Cloud-Based Computer Vision 

The example used in this paper is based on a web service built to support the  
Hybrid 4-Dimensional Augmented Reality (HD4AR) mobile/web platform [13][14]. 
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HD4AR is a high-precision mobile augmented reality technology that allows users to 
snap photos of real world objects, such as a car engine, upload the photograph to a 
cloud-based server, and receive an augmented image back that visualizes relevant 
cyber-information on top of it. The project was commercialized as a startup company, 
called PAR Works with venture capital funding, and it exposes the core augmented 
reality functions through a HTTP-based web service and SDKs for mobile developers. 
PAR Works has won awards for this technology at the 2013 Consumer Electronics 
Show (CES) and the 2013 South by SouthWest (SXSW) conference. 

The original HD4AR application was built as a stand-alone web application to be 
deployed in-house by organizations. However, based on customer requests, the 
platform was migrated to a SaaS model. A key requirement, therefore, was 
determining how to appropriately provision resources to meet the QoS requirements 
of the application. Determining how to provision cloud resources for HD4AR was 
non-trivial since it included complex structure-from-motion computer vision 
algorithms that were difficult to model and characterize with existing analysis-based 
approaches. 

The initial SaaS platform was released in November 2012 and started to attract a 
large number of developers. With increased usage of the platform and the usage data 
collected, a new web service called HD4ARWebDataService was built to 1) provide 
runtime configurations for mobile apps to optimize their performance (e.g., the list of 
server endpoints to use, the HTTP dispatch rules for submitting augmentation 
requests, and the interval of refreshing the configuration), 2) provide a list of trending 
objects to augment (i.e., the most popular objects that were being photographed) that 
was based on usage data over the past 8 hours. The key APIs provided by this service 
are listed in Table 2. 

Table 2. HTTP APIs from HD4ARWebDataService 

API  
Purpose 

HTTP   
Method 

HTTP 
URI 

Call Frequency 
Per Client 

Throughput 
(2000 clients) 

Get trending sites GET /v1/ar/site/trending 1 / 5 mins 400 / min 
Update trending sites POST /v1/ar/site/trending 1 / 8 hours 1 / 8 hours 
Get app configuration  GET /v1/ar/app/config 1 / min 2000 / min 
Update app configuration POST /v1/ar/app/config 1 / 5 hours 1 / 5 hours 

 

By the time when HD4ARWebDataService was built, the platform needed to 
support roughly 2,000 active users per minute on Android and iOS. Based on the 
frequency of calling each API from the client, it was possible to predict the minimum 
throughput needed to support the clients, as shown in Table 2. The key goal from a 
SaaS deployment perspective was to derive a cost-effective cloud resource allocation 
to meet the target QoS throughput requirements. 

3 Cloud Resource Optimization Challenges 

Determining the most cost-effective set of resources to meet a web application’s QoS 
requirements without over-provisioning resources is a common problem in 
transitioning web applications to a SaaS model. This section presents some of the key 
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challenges to deriving cost-optimized cloud resource configurations for web 
applications. 

Challenge 1 – Translating high-level QoS goals into low-level load generator 
configuration abstractions. In order to produce the huge amount of test traffic 
needed for QoS metrics, most tools use a multi-threaded architecture for load testing. 
The load test modeling abstractions from these tools are focused on the low-level 
threading details of the tooling rather than higher-level QoS performance 
specifications. For instance, jMeter, one of the most popular load testing tools, 
requires the specification of Thread Groups including the number of threads, the 
ramp-up period, and loop count. Wrk [10] takes command-line parameters to control 
the number of connections to keep open, the number of threads, and the duration of 
the test. All of these OS-level details on threads create an additional level of 
complexity for end-users to convert the expected throughput to test into the right 
threading configurations that can generate the appropriate load profile. Additionally, 
increasing the number of threads does not always increase the throughput linearly 
[11], which makes the translation of high-level QoS goals into low-level load testing 
tool configuration abstractions even more challenging. Developers have to manually 
analyze their needs in order to derive the appropriate threading and ramp up 
configurations, which is non-trivial in many cases. 

Challenge 2 – Highly customized test flows are either not supported by load 
testing tools or difficult to verify. Most command-line based testing tools such as 
Wrk and ApacheBench only support testing on a single HTTP API each time. 
Customized testing scenarios with a sequence of HTTP APIs (e.g., first get data 
through an HTTP GET, then update the data through an HTTP POST, and finally 
GET the data again) cannot be handled by these tools. Some other tools like jMeter 
supports using logic controllers to enable the customized tests. However, the 
controllers provide low-level programmatic APIs with configuration elements such as 
for-each, loops, if statements, and switch statements, etc. It is often very challenging 
for developers to verify if the customized test flow they programmed is correct or not. 

Challenge 3 – Resource bottleneck analysis is challenging because current 
tools do not collect or correlate this information with QoS metrics from tests. It is 
essential to understand resource utilization of allocated cloud resources in order to 
identify bottlenecks and make appropriate resource allocation decisions. Moreover, 
temporal correlation of these resource utilizations with QoS performance metrics 
throughout the tests is essential for: 1) when required QoS goals are not met, 
identifying the resource bottlenecks in order to adjust resource allocations (e.g., add 
more memory or switch to a more powerful CPU); 2)  even if the required QoS goals 
are satisfied, deriving resource utilization in order to estimate and ensure resource 
slack to handle load fluctuation (e.g., ensure 20% spare CPU cycles); and 3) when 
QoS goals are satisfied, ensuring that there is not substantial excess capacity (e.g., 
CPU utilization is at 70% or less). The goal is to find the exact resource configuration 
where the QoS goals are met, there is sufficient resource slack for absorbing load 
fluctuations, there is not too much excess capacity, and there is no more efficient 
resource configuration that better fits the QoS and cost goals. Manual monitoring, 
collection, and temporal correlation of QoS metrics with resource utilization data is 
tedious and inaccurate. 
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Challenge 4 – Lack of model analysis to derive an appropriate resource 
configuration sampling strategy and termination criteria for tests. The resource 
configuration design space for an application has a huge number of permutations. A 
key task in optimizing resource allocations is selecting the appropriate points in the 
design space to sample and test in order to make resource allocation decisions. 
Moreover, developers must decide when enough data has been collected to stop 
sampling the configuration space and make a resource allocation recommendation. In 
order to find the most optimized set of cloud resources for running the application 
with the desired QoS, the same load test has to be run multiple times against the 
different samples of cloud resources. By comparing the different test data and 
performance metrics, the final decision on the required cloud resources can be made. 
Based on the different profiles (e.g., most cost-effective, fastest response), the 
decision may vary.  

Challenge 5 – Lack of end-to-end test orchestration of resource allocation, 
load generation, resource utilization metric collection, and QoS metric tracking. 
Current load testing tools only focus on the generation of loads and the tracking of a 
few QoS metrics. However, other key aspects of a test, such as the automated 
allocation of different resource configurations sampled from the resource 
configuration space or the collection of resource utilization data from the allocated 
resources, are not managed by the tools. Allocating cloud resources for complex web 
applications such as multi-tier web architecture requires a number of system-level 
configurations (e.g., security groups, load balancers, DNS names, databases) that 
current tools force developers to manually manage. Although most cloud providers 
offer tools to automate the allocation and deployment of cloud resources, they mostly 
contain many low-level details to configure. For example, Cloud Formation, [12] 
provided by Amazon AWS, is an effective tool to automatically deploy an entire 
server stack with the cloud resources specified. However, it is a JSON-based 
specification that includes the configuration of over 50 resource types and hundreds 
of parameters, and is completely disconnected from current load testing tools. 
Moreover, once the resource allocations are made and tests launched, the resource 
utilizations on each cloud server need to be carefully remotely tracked, collected, and 
temporally correlated with QoS metrics tracked in the load testing tool. 

4 Solution Approach  Model-Based Resource Optimization, 
Allocation and Recommendation System (ROAR) 

To overcome the challenges presented in Section 3, we developed ROAR, an 
approach that combines modeling, model analysis, test automation, code generation, 
and optimization techniques to simplify and optimize the derivation of cloud resource 
sets that will meet a web application’s QoS goals. A key component of the solution is 
the use of a high-level textual DSL to capture key resource configuration space and 
QoS goal information that is not currently captured in existing load generation tools. 
Moreover, the approach uses model analysis to automatically identify the correlation 
between the QoS performance and different resource configurations. The approach 
also uses code generation to automate the allocation and testing of resource 
configurations. 
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contains three major sections. The app section describes the basic information about 
the application to test, with three attributes: 1) name is the identification of the 
application to test, which does not need to be unique; 2) containerId is a concept from 
Docker [16], specifying the ID of the target deployable and runnable web application 
stored in Docker repository, which our test engine will use to locate and load the 
applications in the cloud server. In order to automate the application deployment to 
different target servers for testing, we used a containerization approach, based on the 
Docker container mechanism, to ease the process. More details about Docker and our 
automated deployment process will be discussed in Section 4.4; 3) port is the port 
number that will be used by the web application.   

The second section tests configures the details on what HTTP APIs to test and how 
to test them. The tests section contains a list of samplers. Each sampler represents a 
specific type of HTTP request that we want to include in the QoS specification. The 
typical HTTP request configurations, such as HTTP Method (e.g., GET, POST, 
DELETE), HTTP URI, HTTP Headers/Parameters (not shown in this example), 
HTTP Request Body can be provided for each sampler. The percentage attribute in 
each sampler controls the frequency of each sample in the overall test plan. For 
instance, the percentage 83.2 means that the test sampler will send 83.2% of all 
requests in the load test to this path. This attribute is the key to simplify the usage of 
traditional jMeter logic controllers. By default, all the samplers will be executed in 
random order with the given percentage. However, if the ordered attribute in tests is 
set to true, each sampler will be executed in the order as specified in the tests section. 

The third section, performance, specifies the expected QoS goals we want to 
support. Currently, only throughput is supported. The example in Figure 2 shows a 
throughput requirement for 2402 requests/minute. GROWL has been implemented 
using xText [17]. An XML-based specification is generated (step (1) in Figure 1) 
from a GROWL model instance as the input to the cloud resource optimization engine 
through xTend [18]. 

 

Fig. 2. The Test Configuration Sample in GROWL 

app { 
    name : test; 
    containerId : parworks/webdataservice; 
    port : 8080; 
} 
tests { 
    ordered : false; 
    sampler { 
        method : GET; 
        path : "/v1/ar/app/config"; 
        percentage : 83.2; 
    } 
    sampler { 
        method : POST; 
        path : "/v1/ar/app/config"; 
        percentage : 0.01; 
        requestBody : "{\"interval\":60, \"endpoint\":\"http://us-east-1.ar.service.com\"]}"; 
    } 
    ... ... 
} 
performance { 
    throughput : 2402; 
    timeunit : MINUTE; 
} 
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One part of the generated test specification, based on the tests section, is the XML-
based jMeter test plan, which uses a series of jMeter logic controllers to construct a 
test that loads the various web application paths according to the percentages or 
ordering specified in GROWL. For instance, the two update APIs are not called very 
often, so the generated jMeter test plan uses an OnceOnlyController to send only one 
request for the entire test period. The two get APIs are put inside of a 
ThroughputController provided by jMeter to accurately control the execution 
frequency of their samplers. Finally, all four controllers are nested inside an 
InterleaveController that indicates to jMeter to alternate between each of the 
controllers in each loop iteration. Clearly, there is a significant amount of logic and 
associated abstractions that are specific to jMeter and disconnected from the domain 
of specifying desired web application QoS. 

The standard jMeter test plan only allows developers to specify the number of 
concurrent threads to use and provides no guarantee that the test will sufficiently load 
the web application to assess if the QoS goal is met. If the number of threads 
configured is not sufficient, jMeter will not be able to test the full capacity of the 
target server; but if the number configured is too large and they ramp up too quickly, 
it will cause the server to run out of CPU or memory before exposing the actual 
throughput and server resource utilization under load. Developers must, therefore, 
rely on trial and error specification of these parameters to test each target throughput. 

To overcome this issue, we developed a model analysis to determine the 
appropriate test strategy to assess the target throughput goal. In order to produce test 
loads with the desired throughput accurately, we developed a customized jMeter 
plugin [19] and  throughput shaper that analyzes and operates on the GROWL model. 
The shaper is capable of dynamically controlling the number of threads being used in 
order to ensure that the test meets the GROWL goals. Based on the needed 
throughput, it automatically increases or decreases the number of threads to reach the 
throughput accurately, while simultaneously watching the resource utilization of the 
target server to ensure that it isn’t overloaded too quickly. The shaper supports 
gradual throughput increments. A throughput stepping plan is automatically derived 
from the specified throughput QoS goals in GROWL. For instance, the generated test 
plan increases the throughput from 1 to 500 within the first 5 seconds and then keeps 
running at 500 for another 20 seconds before jumping to the next level at 1000. The 
test plan specification will be loaded to the extended jMeter engine to trigger the load 
test (Step (2) in Figure 1). 

4.2 Addressing Challenge 3: Automated Temporal Correlation of Resource 
Utilization and QoS Metrics and Injection into the Test State Model 

A key component of ROAR is a mechanism to collect and correlate server resource 
utilization with QoS goals. The throughput shaper discretizes the test epoch into a 
series of discrete time units with known QoS values. The QoS values at each discrete 
time unit are correlated with server resource utilization during the same time unit. To 
record the actual throughput in each moment, we modified the native jMeter 
SimpleReporter listener to be capable of automatically reporting the throughput every 
single second (the native SimpleReporter only reports the current aggregated 
throughput). To record the target server performance metrics, another customized 
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jMeter plugin [19] is applied, which runs a web-based performance monitor agent in 
the target server. HTTP calls can be made from jMeter to retrieve the performance 
metrics at runtime and assign them to the appropriate time unit for correlation with 
QoS values. A list of detailed resource utilization metrics are supported, but we only 
record CPU, memory, network I/O and disk I/O, since we have found these to be the 
primary resource utilization metrics for making resource allocation decisions. The 
extensions we made to the plugin include 1) using a global clock that is consistent 
with the time used by the throughput records; 2) enabling the collection process in 
non-GUI jMeter mode; and 3) distributed resource utilization collection using the 
global clock. 

Based on the global clock, the collected resource utilization and QoS metrics are 
aligned and stored in a test state model (Step (4) in Figure 1). The test state model is 
the input to the bottleneck analysis and resource optimization algorithms run later and 
can also be loaded in the performance viewer to display the results visually. As shown 
in Figure 3, based on the global clock, the correlation of QoS (throughput and 
latency) and resource utilization (CPU/memory/network/disk utilization) can be 
clearly seen. 

4.3 Addressing Challenge 4: Model Analysis to Sample and Optimize the 
Resource Configuration with Smart Termination Strategies 

The test state model containing the global clock-aligned QoS values and resource 
utilizations allows us to analyze resource bottlenecks and derive the best cloud 
resource configurations to meet the modeled QoS goals. One issue that has to be dealt 
with before resource configuration derivation is potential points of instability in the 
data, which show an inconsistent correlation between the QoS and the resource 
utilization with the values recorded during the rest of the test epoch. These periods of 
instability are due to jMeter’s creation and termination of a larger number of threads 
in the beginning and end of the tests. A filtering step is used to eliminate any unstable 
data points (Step (5) in Figure 1). The resource allocation analysis can be performed 
with a variety of models and optimization goals [20][21][22]. ROAR uses an 
optimization engine to select the minimum number of servers N needed to run the 
web application in order to reach the expected throughput. Let  be the expected 
throughput specified in GROWL,  be the actual peak throughput we can get from 
a single server, then: 

N =  /  

The key problem here is to find a reasonable  from all the data points in the test 
state model. Generally, when the peak throughput is reached, one or more resource 
utilizations will also approach 100% utilization (e.g., CPU or memory utilization goes 
to 100%, or network usage goes to 100%), and at the same time, the average latency 
of responses increases dramatically. We use these two conditions to determine . 
Figure 3 shows a typical dataset collected during a test. The throughput shaper 
produces an increasing number of requests as indicated by the expected throughput 
(yellow line in Figure 3a), but the actual throughput fails to meet the QoS goal after 
about 30 seconds (blue line in Figure 3a). The throughput reaches its limit because the 
average latency (yellow line in Figure 3b) increases at the same time. Checking the 
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performance metrics of the target server, it can be found that although CPU and 
memory have not been fully utilized (Figure 3c), the network bandwidth has reached 
capacity (Figure 3d), and therefore the peak throughput using this server is about 
1500 requests/sec. 

The same process needs to be repeated for each type of resource to get the different 
values for N. In Amazon EC2, resources can only be allocated in fixed configurations 
of memory, CPU, and network capacity – not in arbitrary configurations.  There are 
over 20 different instance types, which are virtual machines with fixed resource 
configurations, provided by AWS, so it is challenging to manually sample the 
performance of all instance types. The optimization engine is capable of automating 
all the tests sequentially (Step (6) in Figure 1). In addition, as the test samples 
increasingly larger resource configurations, if the target QoS is met, the test can 
terminate after the next resource configuration is tested. The reason that the test can 
terminate is that any larger resource configurations will only have additional slack 
resources that are not needed to meet the desired QoS goals. 

 

 
a) Expected/Actual/Error Throughput 

 
b) Average Latency

 
c) CPU/Memory Utilization 

 
d) Network/Disk Usage  

Fig. 3. An Excerpt of a Sample Test Data and Performance Metrics 
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The final resource configuration is decided by comparing and analyzing the results 
(Step (7) in Figure 1). The most cost-effective solution is derived by finding the 
minimum total cost of using each type of server to reach the desired throughput. If Pi 
represents the cost of the server type i, the total cost is Ci = Pi * Ni, and the most cost-
effective solution is min . 

Besides finding the most cost-effective solution, knowing the solution that supports 
the fastest response time (i.e., the lowest response latency) is also essential for general 
web applications in practice. The fastest response time configuration is decided by the 
average latency measured for each type of server. We have not included latency as 
part of the QoS goals in GROWL with the current version, because the latency varies 
based on the testing environment (e.g., running the load test inside AWS would have 
a much lower latency than running the test outside of AWS). However, the 
comparison of the average latencies for different server types could produce a good 
indicator of the performance with which two different servers can handle the same 
request load. Thus, we choose the server type with the lowest average latency as the 
fastest response time configuration. 

4.4 Addressing Challenge 5: End-to-End Test Orchestration 

Using ROAR, developers only need to create the GROWL model - the rest of the 
testing and resource derivation process is automated for them. As shown in Figure 1, 
the basic workflow of the automated end-to-end test process is to first run the web 
application in the most resource constrained configuration, followed by using jMeter 
to trigger the load test based on the generated XML test plan specification. Once the 
test state model is generated, the optimization controller uses the test output data to 
choose the next resource configuration and then switches to a bigger type of server 
with more powerful hardware configuration if the resource bottlenecks were found. 
The entire testing process is repeated to derive a model of the QoS and resource 
utilization on the new resource configuration. This process is repeated until the most 
cost-effective and fastest response time configuration solution is found. A prototype 
of a web-based service has been implemented to take the GROWL as the input and 
generate the final cloud resource configurations ready for deployment. 

Although allocating resources is easy, deploying different web applications can 
require setting up different software libraries and environment configurations, which 
makes it difficult to build a generic automated deployment engine. In order to solve 
this problem, we applied the container-based deployment tool - Docker. Docker is a 
tool that can package an application and its dependencies in a virtual process-based 
container that can run on any Linux server. Users only need to package their 
application in a Docker container and push the application to the Docker repository. 
The testing server will pull the container based on the ID specified in GROWL and 
run it automatically (Step (3) in Figure 1). With the flexibility and portability of 
GROWL containers, we can deploy a web application in any type of the target cloud 
server at anytime. 

Another important capability of Docker is the ability to version containers in Git. 
Each change to a container can be tracked. GROWL models and the generated test 
state models can also be versioned along with Docker containers in order to understand 
how the performance and resource allocations change as the application evolves. 
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Once the cloud resource allocation needed to meet the QoS goals is derived, 
ROAR can then automatically allocate the resources and deploy the web application. 
Manually allocating resources with a fleet of servers in a cloud environment is not an 
easy task, particularly when optimized service architecture patterns and best practices 
are needed. For instance, in AWS, the best practice of deploying multiple servers to 
support the same web application is to use an Elastic Load Balancer (ELB) [23] as the 
entry point, which is capable of handling any amount of requests from users and 
balancing dispatching of the requests to each server behind it. A number of 
configuration parameters for security group, private keys, availability zones, server 
launch user data, and DNS names also have to be specified correctly.  

In order to ease the resource allocation process, we use a generative approach to 
produce the configuration artifacts needed for each cloud provider. Currently, ROAR 
only supports artifact generation for AWS, but support for OpenStack is planned. The 
AWS artifact generator is built on top of the AWS Cloud Formation service, which 
provides an engine for automating the deployment of multi-server architectures via 
templates defined in JSON [12]. Based on the N and server type generated from the 
resource optimization engine, we fill the template with the appropriate configuration 
steps, resource types, and other parameters needed to launch the application. The 
generated template can be uploaded to the AWS Cloud Formation console, allowing 
developers to deploy the web application in the derived configuration with a single 
click (Step (8) in Figure 1). 

5 Experiments 

In this section, we present a case study based on the motivating example in Section 2. 
The actual required throughput of the application described in Section 2 is 2402 
requests/min (40 requests/sec). In order to better illustrate the optimization process 
and different solutions generated using our model-driven framework, we present the 
model and analyses used to derive cloud resource configurations for target 
throughputs of 2400 requests/sec and 5000 requests/sec. 

Table 3 shows the QoS values derived for the case study application when running 
on different cloud resource configurations. It can be seen that different peak 
throughputs were reached using different types of servers. The last 3 types in Table 3 
can all satisfy the target throughput goal of 2400 requests/sec. Of course, their 
resource utilizations were different at the moment of peak throughput (e.g., the CPU 
utilization of m2.2xlarge was only 20% at the peak throughput point, while CPU 
utilization reached almost 80% in the m1.medium server). Based on the peak 
throughput, the engine calculated the minimum number of servers needed to reach the 
expected throughput, and the total cost of running the server fleet in AWS. Therefore, 
using 1 m1.medium or 2 m1.small servers is the most cost-effective solution. 
However, when it comes to the average latency, m1.medium obviously has a better 
performance, so the 1 m1.medium is the preferred most cost-effective solution in this 
case. Different solutions can be derived based on the criteria. If users would like to 
choose the fastest response solution, using a single m1.large would be the ideal 
choice. 
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Table 3. Resource Optimization Result based on Expected Throughput of 2400/sec 

Instance 
Type 

Peak Throughput 
(requests/sec) 

Average 
Latency (ms) 

Total Servers 
Required 

Total Cost 
Per Hour 

t1.micro 450 44  7  $0.14 / hour 
m1.small 1560 20 2 $0.12 / hour 
m1.medium 2400 7 1 $0.12 / hour 
m1.large 2400 3 1 $0.24 / hour 
m2.2xlarge 2400 3 1 $0.82 / hour 

 

In the second experiment, we tested the same application with a larger QoS 
throughput goal of 5000 requests/sec. As shown in Table 4, m1.medium also reached 
its throughput limit at 3300 requests/sec. For m1.large and m2.2xlarge, they are both 
still powerful enough to support the expected top throughput. Thus, the most cost-
effective solution in this case is to just use a single m1.large server instance. The 
other two solutions at the rate of $0.24/hours consist of 4 m1.small or 2 m1.medium 
servers. If the user selection criterion is the solution with the highest availability (i.e., 
the highest degree of redundancy in the servers), a user could use a multi-server 
solution rather than a single server. Moreover, they could precisely calculate the 
added cost of their solution and the impact of losing one or more servers on QoS 
properties. 

Table 4. Resource Allocation Result based on Expected Throughput of 5000/sec 

Instance 
Type 

Peak Throughput 
(requests/sec) 

Average 
Latency (ms) 

Total Servers 
Required 

Total Cost 
Per Hour 

t1.micro 400  45 13 $0.26 / hour 
m1.small 1500  20 4 $0.24 / hour 
m1.medium 3300  8 2 $0.24 / hour 
m1.large 5000  3 1 $0.24 / hour 
m2.2xlarge 5000 3 1 $0.82 / hour 

6 Related Works 

Ferry et al. [32] summarized the state-of-the-art on cloud optimization and pointed out 
the need for model-driven engineering techniques and methods to aid provisioning, 
deployment, monitoring, and adaptation of multi-cloud systems. Revel8or [24] is a 
model-driven capacity planning toolsuite to solve the problems related to complex 
multi-tier applications with strict performance requirements. They use UML 2.0 to 
model and annotate design diagrams, and derive performance analysis models. 
However, Revel8or only supports applications developed in a model-driven approach 
from platform-independent model to platform-specific model to the final code, while 
our approach targets all web applications, including hand-written and legacy 
applications. Another DSL – TOSCA [31] was proposed by Binz et al. to specify the 
topology and orchestration configuration for cloud applications in order to ease the 
cloud management tasks.  
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A number of research projects have focused on model-based load testing. Draheim 
et al. [25] used a modeling approach to produce realistic load testing scripts for web 
applications. Their approach simplifies the creation of realistic usage models of 
individual user behavior based on stochastic models. However, they do not analyze 
the minimum required cloud resources. Wang et al. [26] present a Load Testing 
Automation Framework (LTAF), which offers usage models to simulate users’ 
behavior in load testing and workflow models to generate the realistic testing load. 
Similar to the previous work, LTAF also focused on simplified creation of realistic 
load testing configurations for web applications, with detailed performance reports. 
Neither of these two frameworks takes the target server resource consumption into 
consideration since resource optimization is not their goal. 

Cloud resource allocation and optimization has become one research area, but there 
is no related work being done from the single web application load testing 
perspective. Wei etl al. [27] applied game theory to solve cloud-based resources 
allocation problems using abstract resource and application mathematics models. 
Based on a specification of the application’s QoS constraints, Binary Integer Mining 
and evolutionary algorithms are used to drive the optimization solution. This work 
differs from ours in that: 1) it focuses on resource allocation for multiple applications 
scheduling in large cloud environments and 2) it emphasizes abstract analysis rather 
than empirical testing of real applications. Li et al. [28] present a method for resource 
optimization in clouds by using performance models in the deployment and 
operations of the applications running in the cloud. An optimization algorithm is 
implemented to accommodate different goals, scopes and timescales of optimization 
actions, in order to minimize cost while meeting SLAs across a large variety of 
workloads. A recent work done by Chalsiri et al. [29] focused on the cloud resource 
optimization problem from a different perspective. They looked at provisioning 
algorithms to better utilize market-based resources that fluctuate in cost based on 
demand to reduce total cost. In order to handle the resource optimization for multiple 
applications, Frey et al. presented a search-based genetic algorithm to find the near-
optimal solution that optimizes response times, costs, and number of SLA violations 
[30]. Their approach is based on the simulation tool – CDOSim to improve the search 
process, while our approach focuses on performing actual benchmarking to obtain the 
accurate data. Instead of using genetic algorithm, Catan et al. [33] enabled the 
specification of application dependencies and criteria, and applied external constraint 
solvers to reach the optimization configuration.  

7 Conclusions and Future Work 

In this paper, we present a model-based approach, called ROAR, to automate the 
testing and derivation of optimized cloud resource allocations for web applications. A 
textual DSL is used to hide the low-level configuration and analysis details of load 
testing. An optimization engine, guided by resource utilization data from the servers 
under tests, automates the load testing process and the sampling of resource 
configurations to test. Finally, an optimized resource configuration to meet the web 
application’s QoS goals is produced and a deployment and configuration template is 
generated for the target cloud provider.  
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One of the major research directions in the future is to continue to enrich GROWL 
and expose more best practices in load testing and resource optimization as simple 
DSL language constructs, such as supporting complex test behaviors that are driven 
by the input parameters (e.g., generate random or variable parameters as test inputs), 
or time-based tests (e.g., send request r1 during the period of t1, and request r2 only 
during the period of t2). Furthermore, QoS goals are currently based on the 
aggregated throughput for the whole test plan only. Enabling other types of QoS goals 
to be expressed in GROWL, such as percentile latency, would be very practical as 
well. Supporting resource optimization for multi-tier web applications is our next key 
goal. The motivating example shown in this paper is a real web service used as a SaaS 
solution. However, the testing and optimization process currently focuses on each tier 
individually, which requires developers to derive the expected QoS values of each tier 
separately. Being capable of automatically testing and deriving resource 
configurations for an entire multi-tier web application, without specifying QoS 
requirements for each individual tier, would simplify the testing and resource 
optimization process for multi-tiered web applications. 
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Abstract. Society increasingly depends on web applications for business and
pleasure. As the use of web applications continues to increase, the number of fail-
ures, some minor and some major, continues to grow. A significant problem is that
we still have relatively weak abilities to test web applications. Traditional testing
techniques do not adequately model or test these novel technologies. The atomic
section model (ASM), models web applications to support design, analysis, and
testing. This paper presents an empirical study to evaluate the effectiveness of the
ASM. The model was implemented into a tool, WASP, which extracts the ASM
from the implementation and supports various test criteria. We studied ten web
applications, totaling 156 components and 11,829 lines of code. Using WASP, we
generated 207 tests, which revealed 31 faults. Seventeen of those faults exposed
internal information about the application and server.

Keywords: Web applications, Test criteria, Model based testing, Atomic section
modeling.

1 Introduction

A web application is a program that is deployed on a server and accessible through the
Internet. Web applications form an important part of our daily lives as we use them
for business, e-commerce, and even paying bills. Most businesses use web applications
to interact with customers and business partners. A major benefit of web applications
is that they can be accessed anytime from anywhere. A previous paper explained why
large web applications need to be reliable, secure, maintainable, usable, and available
[1]. A 2013 comScore study reported that consumers spent $42.3 billion dollars online
in 2012 during the holidays [2].

Unfortunately, web applications continue to have many failures. The London
Olympics website in 2011 crashed due to the sudden increase in customers after it
announced 2.3 million tickets were available for purchase [3]. According to a Forbes
report in 2013, Amazon.com lost $66,240 per minute of downtime [4]. The US health
care web application in 2013 had numerous failures that led to significant costs, both
monetary and political [5]. Target also suffered a massive credit card breach in 2013.
All of these examples highlight the fact that we still do not always build reliable and
secure web applications.

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 35–49, 2014.
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Web applications use many different technologies, including interpretive languages
(Perl), scripted page modules (JSPs and ASPs), compiled module languages (servlets
and ASPs), programming language extensions (JavaBeans and EJBs), general-purpose
programming languages (Java and C#), sequential databases (SQL), and data represen-
tation languages (XML). As will be described in section 2, web application software
uses new forms of control couplings, including forward, redirect, and user-controlled
buttons on browsers. They also use new state handling and variable scoping mecha-
nisms, including objects stored in a session and in a context.

As described in detail in a previous paper [6], traditional models and analysis tech-
niques are not sufficient to capture all of the nuances of web applications. This causes
model-based testing techniques that rely on traditional models such as statecharts and
collaboration diagrams to be inadequate to test web apps. The same paper introduced
the atomic section model (ASM), which has explicit mechanisms to model the novel
control connections and data handling mechanisms in web applications.

ASM addresses the following issues in web applications:

1. Distributed integration
2. Dynamic creation of HTML forms
3. Ability of users to directly control the potential flow of execution

This paper presents an empirical evaluation of using the ASM to test existing web
applications. Tests were designed from the requirements as a traditional testing method,
and compared with tests designed from the ASM.

The rest of the paper is organized as follows. Section 5 presents prior research related
to this paper. Section 2 summarizes the atomic section model, and section 3 describes
a tool that we developed to partially automate test generation using the ASM. Section
4 then presents an empirical evaluation of using the ASM to generate tests on ten web
applications, and finally section 6 concludes the paper.

2 Modeling Web Applications

This study is based on prior work by Offutt and Wu [6]. Web applications are deployed
on a server and users run them across the internet through a browser. Thus, web appli-
cation UIs are in HTML, using static links and form inputs. For conciseness, we often
shorten “web application” to simply web app.

Web apps are composed from independent, and often distributed, components built
with diverse technologies such as Java servlets, JSPs, ASPs, and many others. Thus, key
to a web app are the interactions among the software components. Users run web apps
through browsers, which generate HTTP requests to web servers, which then activate
the requested software components, which in turn interact with other components, and
eventually return responses to the users.

Deploying software across the web brings two essential new design challenges. One
is remembering who the user is across multiple requests to the same server, and another
is keeping data persistent across those multiple requests. HTTP is a stateless protocol,
so each request is independent and run as a separate execution thread. To solve the first
challenge, web apps define a session to be a sequence of related HTTP requests from
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the same user. Session states are maintained in special state variables on the server that
are indexed by cookies that are stored on the users’ computers and submitted to the
server with requests.

For the second challenge, web app technologies use new forms of data scoping. Web
software components cannot share global variables or objects. But since components
run as threads within a process, the server creates a special object called the “session
object” to store persistent data. Session data are commonly scoped to be available to
(1) the same software component on different requests, (2) different software compo-
nents on the same request, (3) all requests from the same session, or (4) all applications
running within the same web server1.

These powerful new technologies are, in a sense, new language features. Although
they are built on top of traditional languages (such as Java and C#), programmers use
them as if they are basic parts of the language. Not surprisingly, traditional modeling
languages do not fully model all aspects of these technologies. The remainder of this
section summarizes the atomic section model from Offutt and Wu [6], and discusses
how the model is used to design tests.

2.1 The Atomic Section Model

An atomic section (ATS) is a section of HTML that has the property that if part of a sec-
tion is sent to a client, then the entire section is (the “all-or-nothing property”). Atomic
sections are combined to form regular expressions called component expressions (CE).
Let c be a component consisting of n atomic sections p1, p2, ..., pn. CEs combine ATSs
in one of four ways:

1. Sequence: (CE → pi • pj): The component expression is pi followed by pj.
2. Selection (CE → pi | pj): The component expression is either pi or pj, but not

both. A typical example could be a code block that is sent from an if-else construct.
Only the HTML section in the block that gets executed is sent to the client.

3. Iteration (CE → p∗
i ): The component expression contains zero or more occur-

rences of pi in sequence, usually because the HTML is in a loop.
4. Aggregation (CE → pi{pj}): pj is included as part of pi when pi is sent to the

client. These come from function calls in pi and from file include commands.

A complete component expression models all possible web pages that the component can
generate, much as a control flow graph models all possible execution paths in a method.

Transitions. Web apps are inherently component-based, and connect the components in
novel ways. The ASM identifies five kinds of transitions. In the following definitions, p
and q are component expressions and c is a component that generates HTML. The arrows
are used in pictorial representations to distinguish the different types of transitions.

1. Simple Link Transition (p −→ c): The anchor tag 〈a〉 causes a link transition from
the client to a component c on the server. Note that p may have more than one
simple link transition, and so more than one possible destination. Anchor tags are
the only source for simple link transitions.

1 This terminology is from the J2EE framework. Other frameworks use slightly different termi-
nology and some have slightly different scopes.
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2. Form Link Transition (p —–� c): Submitting forms in p causes a transition to com-
ponent c on the server.

3. Component Expression Transition (c —–◦ p): A component c executes and causes
a component expression p to be returned to the client. The same component can
produce more than one component expression.

4. Operational Transition (p � q): The user can create new transitions out of the soft-
ware’s control by pressing the refresh button, the back button, the forward button,
accessing the history menu, or directly modifying the URL in the browser (URL
rewriting). This amounts to random control flow jumps in the software, which is
not possible in traditional and desktop software

5. Redirect Transition (p −→+ q): A redirect transition is a server-side software transi-
tion that is not under control of the tester. Redirection sometimes goes through the
browser, and sometimes remains on the server, but is normally not visible to the
user. Form data from the request is usually sent to the new component, but there is
no return (hence this differs from a traditional method call).

Component Interaction Model. A component expression describes all web pages that
can be produced by a web software component. Component expressions are composed
with transitions to model an entire web app. A Component Interaction Model (CIM)
defines the start page of a web application, a set of atomic sections, component expres-
sions, and a set of transitions to model the possible flows of control through a web app.
When taken together with the set of variables that define the state of a web app, the CIM
is called a web application transition graph (ATG).

ASM currently does not model data flow. An interesting future study would be to
investigate whether adding data flow criteria to the ASM could help detect more faults.

2.2 Test Criteria

Abstract model-based tests are designed from the ATG using three coverage criteria.
Using coverage criteria to design tests has several advantages, including fewer tests that
reveal more faults, traceability, and direct guidance for when to stop testing.

1. Prime path coverage: A simple path is a path in a graph such that no nodes except
the first and the last appear more than once. A prime path is a simple path that does
not appear as a proper sub-path of any other simple path [7]. Prime path coverage
requires all prime paths in the graph to be executed.

2. Invalid Access Coverage: Each non-start node in an ATG is accessed directly, as if
a tester jumps into the middle of a program. Users might do this accidentally, may
save a URL to a page purposefully to avoid going through the lengthy application
logic, or as a malicious attack. Note that this is not possible in traditional software.

3. Invalid Path Coverage: Invalid paths are created by first traversing a prime path,
then adding an operational transition (IP1). Each invalid path is then extended,
when possible, by adding transitions to all nodes accessible from the end of the
invalid path (IP2).
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The original ASM paper by Offutt and Wu [6] used one experiment subject and very
little automation. This paper presents a significantly stronger empirical evaluation using
ten experiment subjects and a complete tool that constructs ASMs automatically from
the source code.

Fig. 1. Web Atomic Section Project Tool

3 The Web Atomic Section Project (WASP)

We developed the Web Atomic Section Project (WASP) to automate creation of the
atomic section model. WASP was built as a web app. Users start by uploading source
files. WASP then calculates the atomic sections and builds the web application graph.
A screenshot of WASP is shown in figure 1.

Figure 1 shows the atomic section calculation for a simple JSP, for1.jsp. The expres-
sion shows sequence by concatenating the components rather than using the • symbol.
p2 is the HTML produced within the for loop body (“〈br〉The counter value is: 〈%
count %〉”).

Figure 2 shows a sample web application graph constructed by WASP. Login is the
start component, and has a form link transition to gradeServlet and a simple link transi-
tion to syllabus. The servlet gradeServlet has a form link transition to itself and a simple
link transition to sendMail.

The major components of WASP are the atomic section calculator and the applica-
tion transition graph constructor. The atomic section calculator was built using ANTLR
(ANother Tool for Language Recognition) [8]. ANTLR is used to construct compilers,
recognizers, etc. It uses an input grammar for a language and develops the output source
code based on semantic actions written by the user. Since servlets are special-purpose
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Fig. 2. Application Graph Construction

Java classes, they can be translated by ANTLR with the Java grammar. JSPs consist of
HTML mixed with Java code and so are required to be pre-processed. A JSP is pre-
processed by converting into its corresponding servlet by using the Jasper library of
Tomcat.

The second major component, the application transition graph constructor parses
Java servlets, JSPs and HTML files (for simple links, form links, forward transitions,
redirect transitions) and uses the open source tool Graphviz [9] to construct the web
application transition graph. WASP has some limitations. First, it is a static analysis
tool, so dynamic references in the source code cannot be processed. Second, JSPs con-
taining tag libraries are not processed. WASP extracts atomic sections and creates the
application transition graph, but does not directly generate test values.

4 Empirical Evaluation

For this study, we used WASP to generate atomic sections and web application graphs
for ten web applications. Our goal was to evaluate the usefulness of the ASM for testing.
Specific research questions were:

1. RQ1: Can the ASM be computed with sufficient speed and usability to be effec-
tively used by engineers?

2. RQ2: Can the ASM help find faults in web applications?
3. RQ3: What kinds of faults does ASM help identify?
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4.1 Experimental Design

For experimental subjects, we used ten web applications that were built with the J2EE
framework (servlets and JSPs) by graduate students in a graduate component-based
software engineering course.

Two web apps (subjects one and two) were developed by the first author; the first
web app is used to help students find internships, and the second allows customers to
buy books online. Four web apps (subjects three, four, five and six) let users fill out
surveys after visiting a campus and also see survey results from other visitors. Two web
apps (subjects seven and eight) let users create events, create other users, assign them
to a group, and make events available to everybody in a group. Two web apps (subjects
nine and ten) store information about employees and provide access to employers.

All the web apps had been tested lightly by the developers. The programmers had
considerable freedom in their designs, thus the programs written to the same require-
ments were quite different. This was intentional–we wanted to investigate the ability to
find naturally occurring faults, but not trivial faults.

We generated test sets according to four different criteria. First, as a control, we gen-
erated requirements-based tests to represent the kinds of tests that are typically used
in industry. We gave the requirements documents to a professional software tester with
eight years of experience system testing, who generated tests for each subject. The pro-
fessional tester was free to make any assumptions based on the requirements document.
The tests were based purely on the requirements document and the tester allocated eight
hours to design the tests. The requirements document did not mention things such as
URL manipulation and browser controls, so the tester did not design tests for such ac-
tions. Then the first author ran the tests and recorded failures by hand.

Next we generated tests for the three test criteria in section 2. We used WASP to
generate the CEs and ATGs, then the graph coverage web application [7] associated
with Ammann and Offutt’s book to generate the prime paths and test paths [10]. The
graph coverage web app generated 73 prime path test requirements. The remaining 205
tests (41 invalid access and 164 invalid path) were generated by hand based on the ATG
generated by WASP. We then created values by hand to satisfy all the 278 test paths. No
tool is available to automatically generate test inputs to tour test paths. The manual work
involved in setting up the system environment and database, deploying the executable
web archive files, generating test case inputs, running tests, evaluating test outputs, and
calculating coverage took around 60 hours over a period of ten days.

4.2 Experimental Results

The subject programs and experimental results are summarized in table 1. The second,
third, and fourth columns summarize statistics about the web apps–the number of soft-
ware components, the number of lines of code2, and the number of atomic sections
created by WASP. The software components were Java servlets, JSPs, and plain Java
classes. The final eight columns give data from the tests. For each of our four test sets,
the table gives the number of tests and the number of tests that failed. Recall that the

2 Counted by loc-calculator (https://code.google.com/p/loc-calculator/)

https://code.google.com/p/loc-calculator/
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Table 1. Experimental results of applying four test sets to ten web applications

Sub- Comp- LOC Atomic Tests
ject onents Sections Requirements Prime Path Invalid Access Invalid Path

Tests Failures Tests Failures Tests Failures Tests Failures

1 15 825 22 20 1 9 0 4 1 24 3
2 14 927 12 20 0 4 0 6 2 12 2
3 14 1485 8 20 1 9 1 5 2 20 1
4 18 1327 15 20 0 9 0 5 2 25 2
5 14 986 9 19 1 10 1 2 1 7 1
6 20 1473 19 12 0 3 0 2 0 7 1
7 9 782 7 13 1 2 0 2 0 7 1
8 9 688 8 9 0 2 0 2 0 11 1
9 19 1758 30 20 1 16 0 7 2 30 1

10 24 1578 45 16 0 9 0 6 3 21 3
Total 156 11,829 175 169 5 73 2 41 13 164 16

invalid path tests are extended versions of the prime path tests. The bottom row gives
the sum of each column.

The requirements-based tests found a total of five failures with 169 tests. Thus,
around 3% of the tests detected failures. The failures produced by the requirements-
based tests are documented in table 2.

Table 2. Summary of failures found by requirements-based tests

Failure Failure Description Number found
Type of this type

1 Did not display expected messages for invalid input 3
2 Allowed user to check out when total was $0 1
3 List of events not displayed, threw exception 1

Total 5

We generated a total of 278 tests from the ASM (prime paths, invalid access, and
invalid path). The prime path tests found two failures, the invalid access tests found 13,
and the invalid path tests found 16.

Four of the five failures the requirements-based tests found were also found by the
invalid access and invalid path tests. The failure not found by ASM in table 2 is of
failure type 3. This exception occurs only when a file that needs to be updated is locked
by another process (for example, when the file is open in an editor).

Thus, around 16% of the ASM tests found faults, a number that most testers would
consider to indicate very efficient testing. These 31 failures are summarized in table 3.

Finally, we analyzed each failure to determine the underlying fault. Each failure was
found to represent a distinct fault. The faults are summarized in table 4.

4.3 Atomic Section Coverage

Atomic section coverage requires each atomic section to be covered at least once [6].
After the above study was complete, we measured the ATS coverage of the tests.
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Table 3. Types of failures found by ASM tests

Failure Failure Description Number of failures
Type found by ASM tests

1 Duplicate records added 2
2 Unhandled software exception 7
3 Irrelevant error message 4
4 Runtime exception 11
5 Empty student record displayed due to URL rewriting 1
6 Displayed incorrect information 3
7 Displayed blank page 1
8 Allowed to check out when total was $0 1
9 Doubled the number of items in cart when page refreshed 1

Total 31

Table 4. Types of faults found by ASM tests

Fault Fault Description Number of faults
Type found by ASM tests

1 Allowing double submit form action 2
2 Not checking for null object 11
3 Resource URL not mapped correctly 3
4 Did not check for invalid input values such as empty or incorrect

syntax
8

5 Did not have code to check for error scenario 2
6 Did not check if value being inserted is already present in the

DB (duplicate item)
2

7 Did not check if value is greater than zero for enabling submit
button

1

8 doGet() method not implemented 1
9 Search function for when only one parameter was given was

incorrect
1

Total 31

The ASM tests (prime paths, invalid access, and invalid path) covered 170 of the 175
atomic sections (ATS). We hand-designed tests to cover two of the remaining ATSs,
but the other three were in unreachable code. The additional two tests reached atomic
sections that handled unexpected behavior and abnormal database conditions, and each
resulted in an additional failure. The first of the three unreachable ATSs was in a JSP
component. One JSP checks for a null value, and if the value is not null, passes control
to another JSP. The second JSP also checks for a null value. Redundant checks such
as this are usually considered to be sound engineering practice. The other two were in
code that printed messages if a variable had a particular value. However, that variable
was not given a value in the back-end code. These probably represent faults in the
program–either the message is not needed, or the back-end code should set a value for
the variable.
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This is additional evidence of the strength of the atomic section model. Simply cov-
ering atomic sections helped reveal faults that were not revealed by previous tests.

4.4 Discussion

It is telling to note that the requirements-based tests found only five faults, and four of
those were also found by the ASM tests. Four sets of tests were derived from the ASM.
The prime path criterion is the most traditional, and is defined on arbitrary graphs, yet
it only found two faults. Most of the faults were found by tests that were only generated
as a result of the atomic section model, and would be unlikely to be generated if the
ASM were not used.

Of the 31 failures found by the ASM tests, 17 revealed information about the compo-
nents or server where the web app was deployed. These failures are not only distressing
to users, but also potential security vulnerabilities.

IP coverage of ASM requires an operational transition (back button, forward button,
refresh button or URL rewriting) to be added to each prime path. We classified the fail-
ures found by ASM into failures that could potentially be discovered by a user using
normal interaction sequences (such using the back button, the forward button, the re-
fresh button, or by entering invalid data in forms) versus failures produced using IA or
IP-URL rewriting. Of the 31 failures, 13 could have been found by users using normal
interaction sequences, and 18 could only be found using IA or IP-URL rewriting.

Our study started with three research questions. We were able to successfully use
WASP to generate CEs and ATGs, and then successfully design and create tests. The
CEs and ATGs were calculated by WASP for each experiment subject in less than a
minute, and the users were easily able to turn those into tests. Thus, the answer to RQ1
is clearly yes. Among the failures found using this study, the majority of the failures
were found with the ASM tests, but not the requirements-based test. Thus, we conclude
the answer to RQ2 is also yes. We explore RQ3, the kinds of faults identified, in the
following subsection.

4.5 Example Failures

We already mentioned several failures that could be security vulnerabilities. Another
common problem we found was web apps that assumed all requests would be HTTP
POST requests. The invalid access tests called components directly with GET requests,
and some components that did not expect to be called directly had runtime exceptions.

Several invalid path tests caused session variables to be accessed incorrectly, thus
causing inconsistencies in the program state. This is a common problem in commercial
web apps that we see regularly, so the ability to identify such flaws during pre-release
testing can be quite helpful.

We also found several instances of the “double submit form problem,” where if a
user clicks on a back or refresh button after a form is submitted, the form is submitted
again. This sometimes can lead to two orders being placed. The many commercial web
apps that warn users to “not click the back button” indicate that this kind of fault is
common, often known, but seldom corrected.
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These faults are usually found after the software is completed, and not corrected
because changing the design would be too difficult. They might be easier to correct if
found earlier during testing.

One fault in the bookstore application was revealed by an invalid access test, causing
a blank page to be returned to the user. When given an invalid ID through URL rewrit-
ing, the bookstore application also crashed with a generic “application error” message,
as opposed to correctly telling the user that the ID was invalid. This was a case where the
programmer assumed the component would only be accessed through normal channels,
and the ID would always be valid.

One of the additional tests added to cover the remaining ATS discovered an interest-
ing fault. The code was:

RequestDispatcher dispatcher = getServletContext().getRequestDispatcher (”/banner”);
if (dispatcher != null)

dispatcher.include (request, response);

The atomic section model places HTML generated by the statement inside the if
block into one atomic section. The if -block does not have an else clause, but a blank
atomic section is created in the component expression as a selection. Thus, a test was
created to take the (null) else clause by making the banner servlet unavailable. This test
resulted in an HTTP 505 internal server error, revealing a flaw in the program.

An invalid access test for the internship app revealed a null pointer exception because
a session variable was accessed without being set. Another resulted in the message “You
are applying for internship id: null.” Again, the id variable had not been given a value
prior to being used.

4.6 Statistical Analysis of Experiment Results

Hypothesis Testing: The null hypothesis for this experiment states that the ASM is not
effective in revealing faults (number of faults that can be found is zero). The alternate
hypothesis states that ASM is effective in finding faults (number of faults that can be
found is greater than zero).

H0: μ ≤ 0;
HA: μ > 0 (research hypothesis);
Sample size N = 10
Sample mean X = 3.1
Standard deviation S = 1.66
DF = 9

Referring to the experiment results found in table 5, the test will be conducted at 0.05
level of significance (α = 0.05). Assuming a normal distribution of faults found using
ASM over all programs, we use a T distribution with nine degrees of freedom. Based
on our null and alternate hypothesis, this will be a one tailed test.
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Table 5. Number of faults found by ASM tests in each test subject

Experiment Subject 1 2 3 4 5 6 7 8 9 10 Total
No. of faults 4 4 4 4 3 1 1 1 3 6 31

The critical value for α of 0.05 and 9 degrees of freedom is (tα) 1.83. The test statistic
t = X - μ ÷ [ S ÷ √

N ]
The test statistic is 5.96, which is greater than 1.83 (tα), and so we reject the null

hypothesis. Thus, our alternate hypothesis that ASM is effective in finding faults holds.

Confidence Interval Analysis: Our experiment used ten experiment subjects. The
number of faults found in each test subject is shown in table 5. Given the small random
sample size of 10 experiment subjects, assuming a normal distribution of the average
number of faults found using ASM over all the programs, we use a T distribution with
nine Degrees of Freedom (DF).

CI = X ± T0.05 × S ÷ √
N

CI = 3.1 ± 1.83 × 1.66 ÷ √
10

CI = 3.1 ± 0.96
CI = [2.14, 4.06]

Assuming a 90% confidence interval, the estimate of the average mean is in the range
between 2.14 and 4.06. We are 90% confident that the average number of faults found
by using ASM can be between 2 and 4 (by rounding to the nearest whole number).

4.7 Threats to Validity

Although the results strongly indicate that the ASM is an effective way to design tests,
the study has some limitations. As usual with most software engineering studies, there
is no way to show that the selected subjects are representative. This is true both for the
web apps and the human programmers. In particular, the programmers were graduate
students who may make different mistakes than experienced programmers. Because of
the amount of work involved, we could only get one professional tester to participate
in the requirements based tests. If more testers had participated, the results could have
been different. A threat to internal validity is that manual analysis was used for vari-
ous activities, including running tests, calculating coverage, and calculating the atomic
sections. Finally, we cannot be sure that the tools used worked perfectly.

5 Related Work

Research into testing web applications can be split into static techniques, which analyze
HTML and other static aspects of websites, and dynamic techniques, which test web ap-
plication software. Dynamic techniques can be further divided into external techniques,
which use only the URLs to access the program, and internal techniques, which can
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access the source code or the server. Our research analyzes the source code to design
tests, thus is dynamic and internal.

Most static research has focused on client-side validation and static server-side vali-
dation of links. An extensive listing of existing web test support tools is on a web site
maintained by Hower [11]. The list includes link checking tools, HTML validators, cap-
ture/playback tools, security test tools, and load and performance stress tools. These are
all static validation and measurement tools, none of which support functional testing of
programs deployed on the web, as our research does.

Kung et al. [12,13] developed a model to represent web sites as a graph, and provided
preliminary definitions for developing tests based on the graph in terms of web page
traversals.

Their model includes static link transitions and focuses on the client side with only
limited use of the server software. They did not model application transitions, as the
ASM does.

Halfond and Orso [14] studied the problem of finding web app user interface screens.
These screens are created dynamically, thus the problem of finding all screens is unde-
cidable. They used static analysis to find more of the screens than previous techniques.
Instead of focusing on individual screens, the ASM technique is internal and identifies
atomic sections that represent all possible screens.

The closest research to this paper was by Di Lucca and Di Penta [15]. They proposed
testing sequences through a web application that incorporate some of the operational
transitions in this paper, specifically focusing on the back and forward button transi-
tions. Di Lucca and Di Penta’s model focused on some browser capabilities, but not
server-side software or web pages generated by the software.

Andrews et al. [16,17] modeled web applications as hierarchical finite state ma-
chines, and generated tests as paths through the FSMs. This approach was pure sys-
tem level and focused on behavioral aspects of web applications, as opposed to the
structural aspects the atomic section model represents. Benedikt, Freire, and Godefroid
[18] presented VeriWeb, a dynamic navigation testing tool for web applications. Veri-
Web explores sequences of links in web applications by exploring “action sequences”
[18]. Values are provided by the tester. VeriWeb only follows explicit HTML links, as
opposed to the many transitions the atomic section model uses.

Finding input values is a difficult problem that we do not address. Elbaum, Karre,
and Rothermel [19] proposed the use of “user session data,” which are values supplied
by previous users in log files. Alshahwan and Harman [20] introduced a technique that
supports web application regression testing by repairing user session data when the
software changes. Lee and Offutt [21] used a form of mutation analysis to generate test
values from previously existing XML messages. Jia and Liu [22] also generated test
values using XML.

In related research, we have developed bypass testing [23,24] to send invalid data
to web applications, bypassing some of the input validation. This is a stress testing
approach that does not explore the kinds of interaction paths that ASM explores.
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6 Conclusions and Future Work

This paper makes two contributions. First, the atomic section model has been imple-
mented in a tool that analyzes web app source files, extracts atomic sections and com-
putes component expressions, then identifies transitions and constructs web application
transition graphs. Second, the ATSs and ATGs were used to design three different types
of tests, and compared with requirements-based tests, which are typical of those used
for system testing, on the basis of how many naturally occurring faults they detected.
Because the ASM test generation process is incomplete and imperfect, we did not com-
pare cost.

We generated a total of 278 ASM tests (73 PP, 41 IA, and 164 IP), which revealed
31 failures. The two tests that were added to cover additional atomic sections revealed
two more failures, and the analysis to cover the remaining atomic sections uncovered
two more. This contrasts with the 169 requirements-based tests, which only revealed
five failures. Thus, we conclude that the ASM tests are much more effective at detect-
ing failures than the requirements-based tests. This should not be surprising; the atomic
section model captures elements of the design and implementation that are not captured
in the requirements, and some of those elements are commonly misused and misunder-
stood by software engineers.

In the future, we hope to extend WASP to handle more technologies such as GWT,
AJAX, JSF, etc. The atomic sections are less visible in some of these technologies, so
computing the component expressions could be quite different. We also hope to include
JavaScript in our analysis, including the concurrency aspects. Finally, we would like to
explore other uses of the ASM. It captures fundamental aspects of the integration and
execution of web applications, and could be used to support design modeling, program
slicing, and change impact analysis.
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Abstract. Having multiple representations of the same instance is com-
mon in software language engineering: models can be visualised as graphs,
edited as text, serialised as XML. When mappings between such represen-
tations are considered, terms “parsing” and “unparsing” are often used with
incompatible meanings and varying sets of underlying assumptions. We
investigate 12 classes of artefacts found in software language processing,
present a case study demonstrating their implementations and state-of-
the-art mappings among them, and systematically explore the technical
research space of bidirectional mappings to build on top of the existing
body of work and discover as of yet unused relationships.

Keywords: Parsing, unparsing, pretty-printing, model synchronisation,
technical space bridging, bidirectional model transformation.

1 Introduction

Parsing is a well established research field [1] — in fact, its maturity has al-
ready become its own enemy: new results are specialised refinements published
at a handful of venues with a critical mass of experts to appreciate them. Un-
parsing is a less active field, there are no books on unparsing techniques and
there is no general terminological agreement (printing, pretty-printing, unpars-
ing, formatting), but this family of mappings has nevertheless been studied
well [2,3,4,5,6,7,8,9,10,11]. Parsing research concerns recognising grammatically
formed sentences, providing error-correcting feedback, constructing graph-based
representations, as well as optimising such algorithms on time, memory and
lookahead. Research questions in the domain of unparsing include conservatism
(in BX related to hippocraticness [12] and resourcefulness [13]), metalanguage
completeness and designing a universal way to specify pretty-printers. It was
suggested that unparsing in a broad sense should comprise advanced techniques
like syntax highlighting [14, §3.8.3] and adjustment to screen width [11, §2.1].
Methods have been proposed to infer parsers from unparsers [11], unparsers
from parsers [15,16] or both from annotated syntactic definitions [17,18,19]. Our
attempt is about modelling parsing and unparsing together as bidirectional trans-
formation, essentially by breaking up big step parsing into smaller steps for the
sake of bidirectionalisation [20] and analysis. There are no general BX frame-
works [12] to give a solution. This modelling approach can provide useful insights
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in bridging the gap between structural editors and text-based IDEs, which is
known to be one of the open problems of software language engineering [21].

2 Motivation

Bidirectional transformations are traditionally [12] useful for situations when we
need consistency restoration among two or more entities that share information
in such a way that if one is updated, the other(s) need to coevolve. For example,
a language instance (the term we use to avoid committing to “model”, “program”,
“table”, etc) can be expected to be defined in a specific way (i.e., to belong to
an algebraic data type), but its concrete implementation can take a form of a
textual file, or a graph, or an XML tree — one can think of scenarios when we
would like to freely choose which instance to update so that the rest get co-
updated automatically. (This can be seen correponding to the classic PIM/PSM
distinction in MDA or to Ast/Cst from the next sections).

When two instances represent the same information in different ways, the
mapping between them is bijective, and the solution is trivial. However, it is
often the case that each kind of an instance is only a “view” on the complete pic-
ture. In the database technical space, this complete picture is formally defined,
and we know exactly what the view is lacking. This allows an asymmetrical
view/update or get/putback solution with one function taking just one argu-
ment and replacing its target with a new result, and one function taking two
arguments and updating one of them [22,13,23]. However, in software language
engineering we often end up having bits of specific locally significant informa-
tion scattered among many artefacts. For example, a text of a program (Str) can
contain indentation preferred by programmers, while the graphical model of the
same instance (Dra) can contain colours and coordinates of its visualisation, and
the abstract internal representation (Ast) can have precalculated metrics values
cached in its nodes. Solving the problem by creating one huge structure to cover
everything is undesirable: this solution is neither modular nor extendable.

In our endeavour to stay unbiased, we adopt a symmetrical approach that
treats all views uniformly, as will be described in detail in § 3. To model all
existing work we will also need a more demanding definition than the one used
for lenses [22], since many techniques in the grammarware technological space
are error-correcting, and thus can update both entities for consistency.

In § 4, we will propose a megamodel of mappings between strings, tokenised
strings, layout-free lists of tokens, lexical source models, parse forests, parse
trees, concrete syntax trees, abstract syntax trees, pictures, graphs and models
of different kinds. We will also give examples of such mappings and argue how
they fit our framework and what can we learn from it, leading to § 5 where a
case study is presented with all types and mappings from Figure 1 implemented
in Rascal [24], a metamodelling/metaprogramming language.

The main contribution of the paper is the structured megamodel of activities
that can be viewed as either “parsing” or “unparsing”; the case study demon-
strates its otherwise non-apparent aspects; the rest of the paper revisits and
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catalogues common software language engineering processes. The reader is ex-
pected to be familiar with modelling and megamodelling; background on parsing
and bidirectionality is appreciated but not required: the necessary explanations
and literature references are provided.

3 Bidirectionality

In this section we will recall some of the kinds of bidirectional mappings covered
by previously existing research, in order to establish the background needed to
appreciate and comprehend the main contribution of the paper (the megamodel
on Figure 1). To simplify their comparison, we take the liberty of reformulating
the definitions in a way that leaves them equivalent to their corresponding origi-
nals. We will also put a dot above a relation to account for undefined cases: e.g.,
the sign “ .=” will denote “if all subformulae are defined, then equals”.

The simplest form of a bidirectional mapping is a reversible function [25]:

Definition 1 (reversible function). For a relation Ψ ⊆ L × R, a reversible
function f is a pair of functions for its forward execution

−→
f : L → R and reverse

execution
←−
f : R → L, such that

∀x ∈ L, 〈x,−→f (x)〉 ·∈ Ψ (1)

∀y ∈ R, 〈←−f (y), y〉 ·∈ Ψ (2)

If it is bijective, then also

∀x ∈ L, (
←−
f ◦ −→

f )(x)
.
= x (3)

∀y ∈ R, (
−→
f ◦ ←−

f )(y)
.
= y (4)

A lens [22] is a more complex bidirectional mapping defined asymmetrically
such that one of its components can observe both the “old” value being updated
and the changed one. We will call them “Foster BX” here to avoid confusion
with many variations of lenses (for the purpose of this paper, we only need
well-behaved lenses).

Definition 2 (Foster BX). A get function ↗ : L → R and a putback function
↘ : R× L → L form a well-behaved lens, if

∀x ∈ L, ↘ (↗ (x), x)
.
= x (5)

∀x ∈ L, ∀y ∈ R, ↗ (↘ (y, x))
.
= y (6)

If a reversible function f exists, then constructing a lens is trivial: ↗ ≡ −→
f

and ∀x ∈ L,↘ (y, x) ≡ ←−
f (y). The inverse construction of a reversible function

from a lens is only possible if both ↗ and ↘ are bijective (Eq. 3 and Eq. 4 hold).
As an example of symmetric bidirectional mapping, we recall the notation by

Meertens [26], with terms for properties inherited from Stevens [12]:



Parsing in a Broad Sense 53

Definition 3 (Meertens BX). A bidirectional mapping is a relation Ψ and
its maintainer, which is a pair of functions � : L×R → R and � : L×R → L
that are correct:

∀x ∈ L, ∀y ∈ R, 〈x, x� y〉 ·∈ Ψ, 〈x� y, y〉 ·∈ Ψ (7)

and hippocratic:

∀x ∈ L, ∀y ∈ R, 〈x, y〉 ∈ Ψ ⇒ x� y = y, x� y = x (8)

Intuitively, correctness means that the result of either function is according to
the relation Ψ . Hippocraticness means that no modification happens if the two
values are already properly related (i.e., the transformation is guaranteed to “do
no harm”). In other words, a maintainer � and � can maintain the relation Ψ
either by leaving their arguments unchanged if the relation is already respected
or by massaging one of them with the data from the other one, until they do.

Constructing a trivial Meertens maintainer from a lens is straightforward:

x� y ≡ ↗ (x)

x� y ≡ ↘ (y, x)

Obviously, the inverse operation is only possible when the right semi-maintainer
does not require y for computing its result.

While the symmetry of the definition allows us to research scenarios of two or
more views of equal importance and comparable expressiveness, semi-maintainers
always assume one side to be correct, which especially in the context of parsing
only models straightforward precise parsing [1] or noncorrecting recovery strate-
gies [27]. For more complicated scenarios, we introduce the following kind of bidi-
rectional transformations:

Definition 4 (Final BX). A final bidirectional mapping is a relation Ψ and
its sustainer, which is a pair of functions �: L × R → Ψ and �: L × R → Ψ
that are hippocratic:

∀x ∈ L, ∀y ∈ R, 〈x, y〉 ∈ Ψ ⇒ x � y = 〈x, y〉, x � y = 〈x, y〉 (9)

Final BX is also correct in the sense of the codomain of � and � being Ψ .
Constructing a sustainer from a Meertens BX or a Foster BX is trivial:

x � y ≡ 〈x, x � y〉 ≡ 〈x,↗ (x)〉
x � y ≡ 〈x� y, y〉 ≡ 〈↘ (y, x), y〉

Correctness of this construction is a direct consequence of the (rather strict)
properties we have demanded in Def. 2 and Def. 3. For example, if maintainer
functions were allowed to violate correctness, we would have needed to construct
a sequence of updates until a fixed point would have been reached.

The inverse operation is only possible for noncorrecting sustainers:
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Fig. 1. Bidirectional megamodel of parsing. Dotted lines denote mappings that rely on
either lexical or syntactic definitions; solid lines denote universally defined mappings.
The loops are examples of transformations.

Definition 5 (noncorrection property). A sustainer is noncorrecting, if

∀x ∈ L, ∀y ∈ R x � y = 〈x, y′〉 (10)
∀x ∈ L, ∀y ∈ R x � y = 〈x′, y〉 (11)

Noncorrecting sustainers are equivalent to maintainers.

4 Artefacts and Mappings

Let us first introduce the kinds of artefacts we will use for the remainder of the
paper:
• Str — a string.
• Tok — a finite sequence of strings (called tokens) which, when concatenated,

yields Str. Includes spaces, line breaks, comments, etc — collectively, layout.
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• TTk — a finite sequence of typed tokens, with layout removed, some classified
as numbers of strings, etc.

• Lex — a lexical source model [28,29] that addes grouping to typing; in fact a
possibly incomplete tree connecting most tokens together in one structure.

• For — a forest of parse trees, a parse graph or an ambiguous parse tree
with sharing; a tree-like structure that models Str according to a syntactic
definition.

• Ptr — an unambiguous parse tree where the leaves can be concatenated to
form Str.

• Cst — a parse tree with concrete syntax information. Structurally similar to
Ptr, but without layout.

• Ast — a tree which contains only abstract syntax information.
• Pic — a picture, which can be an ad hoc model, a natural model [30] or a

rendering of a formal model.
• Dra — a graphical representation of a model (not necessarily a tree), a

drawing in the sense of GraphML or SVG, or a metamodel-indepenent syntax
but metametamodel-specific syntax like OMG HUTN.

• Gra — an entity-relationship graph or any other primitive “boxes and arrows”
level model.

• Dia — a figure, a graphical model in the sense of EMF or UML, a model
with an explicit advanced metamodel.

Figure 1 shows a megamodel of all the different artefacts and the mappings
between them. The artefacts in the left column of the megamodel are textual
(examples of these can be seen in Figure 2), the ones in the middle are struc-
tured (examples of these can be seen in Figure 3), and the ones on the right are
graphical (Figure 4). Going “up” the megamodel increases the level of details in
annotations: in Str we have one monolithic chunk, in Tok we know the bound-
aries between tokens, in TTk some tokens have types, in Lex some are grouped
together (and similarly for other columns).

For example, classic parsing (e.g., using yacc [31]) is TTk → Cst or Tok →
Ptr; layout-sensitive generalised scannerless parsing is Str → For (and possibly
Str → For → Ptr). Going from TTk or Cst to Tok or Ptr is code formatting.

An interesting and important detail of those mappings for us is whether they
are defined generally or parametric with a language specification of some kind
(usually a grammar, a metamodel, a lexical definition, a regexp). For example,
Ptr → Tok unparsing can be done by traversing a tree and collecting all its leaves
from left to right. However, in order to construct a meaningful Cst tree from a
TTk sequence, we need to rely on the hierarchy of linguistic categories (i.e., a
grammar). Especially for the case of Ast � Cst there are fairly complicated
mapping inference strategies from (annotated) language specifications [32,33].

4.1 Fundamental Operations

Tokenisation. A tokeniser tokenisel : Str → Tok for some lexical grammar L,
maps a character sequence c1, . . . , cn to a token sequence w1, . . . , wk in such a
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Fig. 2. Textual representations of a simple program. Clockwise from top left, Str (initial
string), Tok (including layout), TTk (tokenised), Lex (lexical model).

Fig. 3. Structured representations of a simple program. Clockwise from top left, For
(forest of ambiguous interpretations), Ptr (parse tree including layout), Cst (concrete
syntax), Ast (abstract syntax).

Fig. 4. Graphical representations of a simple program. Clockwise from top left, Pic
(rasterised picture), Dra (vector picture), Gra (specific graphical model), Dia (abstract
model).
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way that their concatenations are equal (i.e., c1 + · · · + cn = w1 · · · + wk). We
call the reverse operation concat:

∀x ∈ Str, concat(tokenisel(x))
.
= x (12)

∀y ∈ Tok, tokenisel(concat(y))
.
= y (13)

Note that concat can be defined independently of the lexical grammar.

Adding/Removing Layout. The strip operation removes layout; format intro-
duces it. While stripping of layout is grammar independent, format is not. We can
apply stripping and formatting to sequences (strip : Tok → TTk, formatl : TTk →
Tok), trees (strip : Ptr → Cst, formatg : Cst → Ptr) and models (strip : Dra → Gra,
formatm : Gra → Dra).

Stripping has the following property (shown for formatm, defined similarly for
the other two variants):

∀x ∈ Gra, strip(format(x))
.
= x (14)

Bidirectional stripping/formatting is at least a Foster BX: without knowing
what the original input looked like prior to stripping, it is generally impossible
to format it in the same way. With a Final BX we can model error correcting
formatting as well. For example, if an arc is added to a Gra model, the visual
formatter can suggest to add the target node to the model because it knows
that drawing an edge always ends in a vertex. However, it is often desirable
that such a sustainer is deterministic in the sense of Eq. 14 or close to it — i.e.,
reformatting a model will not result in a totally alien graph.

Layout preservation and propagation through transformations remains a chal-
lenging research topic even without considering error correction [34,19].

Parsing/Unparsing. Parsing recovers the implicit structure in the input se-
quence, representing it explicitly in a tree. The forward operations parseg :
Tok → Ptr and parseg : TTk → Cst uncover the grammatical structure (de-
fined in a grammar G) of a sequence (with or without layout). Parsing is readily
reversible, with universally defined reverse operations unparse : Ptr → Tok and
unparse : Cst → TTk:

∀x ∈ Tok, unparse(parseg(x))
.
= x (15)

∀x ∈ TTk, unparse(parseg(x))
.
= x (16)

∀y ∈ Ptr, parseg(unparse(y))
.
= y (17)

∀y ∈ Cst, parseg(unparse(y))
.
= y (18)

Unparsing may be implemented by, for instance, collecting the leaves of the tree
into a sequence.

Implosion/Explosion. For conversion to and from abstract syntax trees, we
have implodeg : Cst → Ast and explodeg : Ast → Cst. The explode mapping is
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non-trivial and requires knowledge of the intended syntax; implode can be de-
fined in multiple ways, including the straightforward uniform mapping of Strat-
ego/XT’s implode-asfix [35] or Rascal’s implode [24]. The explosion is harder
to implement, and therefore it is rarely found in standard libraries.

Tree disambiguation. Earlier approaches to parsing always tried to burden
the grammar with additional information to guide the parsing (and sometimes
also the unparsing) process [1]. The state of the art in practical source code
manipulation usually relies on a relatively uniform parsing algorithm (SGLR,
GLL or Packrat) that yields a For structure which is then filtered according to
extra information [36,24]. In such a decoupled scenario this additional knowledge
can come from the grammar, from a separate specification, from a classifying
oracle, etc, which gives more flexibility to the language engineer. Thus, we must
add the disambiguate operation both as a (metamodel-specific) mapping from For
to Ptr, and as a For → For refinement. There is no currently available research
results on bidirectionalising this mapping, even though many recommenders can
possibly be implemented as Ptr → For transformations.

Rendering/Recognising. Image recognition techniques can be applied to ex-
tract structured graph information from a picture, identifying (with some degree
of certainty) model elements, their positioning and relationships. Of course, some
natural models are never meant to be recognised this way [30]. The reverse map-
ping is much more trivial and present in most visual editors.

4.2 Familiar Operations Decomposed

We can now decompose common operations into the fundamental components of
the previous section; either single-step mappings L → R from one representation
to another, or transformations L → L within the same representation.

For example, code reindentation is a transformation at the layout level, indent :
Tok → Tok (or Ptr → Ptr), modifying the layout of the input while preserving
the property:

∀x ∈ Tok, strip(indent(x)) .
= strip(x) (19)

That is, changes in indentation make no difference at the layoutless level.
A compiler can be similarly decomposed, with the crucial transformation

being, for example, Astc → Astasm. A full C compiler might be a pipeline
Strc → Tokc → Ptrc → Cstc → Astc → Astir → Astasm → Cstasm → TTkasm →
Tokasm → Strasm.

Examples

• A traditional lexer does Str → Tok → TTk in a single integrated step.
• Classic compiler textbook parsing is TTk → Cst [1]; though the resulting

tree is often implicit (e.g., syntax-directed compilation).
• Layout-sensitive parsing is Tok → Ptr [37].
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• Scannerless parsing is, in effect, parsing with Tok = Str or TTk = Str [38].
• The crucial steps of the PGF code formatting framework [9] are Ptr →

Tok →∗ Tok → Str, with tokens being annotated with extra information,
and additional information from the parse tree appearing as control tokens.

• Code refactoring is, for instance, Ptr → Ptr [19], lowered to Str → Str.
• A structural editor does user-directed Ast → Ast transformation internally,

while maintaining a Str representation for the user’s benefit [39]. An IDE
editor does user-directed Str → Str transformation, while maintaining an
internal Ast representation.

• Wadler’s prettier printer [5] does Cst → Ptr → Tok in single integrated step.

4.3 Discussion

Source-to-Source Transformations and Lowering. From the user’s per-
spective, a transformation such as reindentation is an operation indentStr : Str →
Str on text, rather than on tokens. It has the property:

∀x ∈ Str, tokenise(indentStr(x))
.
= indentTok(tokenise(x)) (20)

An implementation of indentStr may be obtained by applying concat to both sides
and reducing:

concat(tokenise(indentStr(x)))
.
= concat(indentTok(tokenise(x))) ⇐⇒

indentStr(x)
.
= concat(indentTok(tokenise(x))) by Eq. 12

This is called the lowering (to an operation on more concrete representations) of
indent. A transformation lowered to Str → Str is usually called a source-to-source
transformation. Given the operations in § 4.1 we may lower any transformation,
as we please.

Transformation tools often allow the use of concrete syntax when specifying
transformations – in effect, specifying transformation rules at the Str or Pic
level. The rules are then lifted to the representation where the transformation
actually takes place. For example; Stratego/XT [35] allows concrete syntax in
transformation rules. Such rules are then parsed, disambiguated, stripped and
imploded (and optionally desugared) into transformations on Ast.

In general, given a series of converting transformations from artifact A to B
and back, we may implement any transformation on A by a transformation on
B. Further explorations are needed to determine the required properties of such
conversions.

Model-to-Model Transformation. There are models that have an advanced
metamodel and many relations like “inherits from” or “conforms to” (i.e., Dia),
which are apparently distinct from a simple view on the same models (i.e., Gra).
Such a simplified view, a “concrete visual syntax” so to speak, can concern itself
with the fact that we have nodes of various kinds (boxes, tables, pictures) which
are connected by edges (lines, arrows, colours), all of them possibly labelled. If
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such distinction was to be made, we could see the difference between model-to-
model transformations that refine and evolve the baseline model, and model-to-
model transformations that “downgrade” it to one of the possible forms suitable
for rendering. Then, Gra → Dia is a model-to-model transformation that can
also be seen as “parsing” of the visual lexems to a model in a chosen language
(a diagram).

Ast → Dia mappings are often viewed as visualisations and Dia → Ast ones as
serialisations, even though in general they are glorified tree-to-graph transfor-
mations and graph-to-tree ones. So far we could not spot any research attempts
to investigate mappings between lower levels of the central and the right column
of Figure 1, except for idiosyncratic throwaway visualisations that are not meant
to be edited and not meant to be transformed.

Layout Preservation. Layout preservation is an important requirement in
certain grammarware applications, such as for instance automated refactoring.
A layout-preserving transformation is one where all layout is intact, except for
layouts in the parts that have been changed by the transformation. In essence,
a transformation on an abstract representation is reflected in the concrete rep-
resentation.

A layout-preserving transformation on a Cst is a transformation t : Cst → Cst,
lowered to u : Ptr → Ptr, using a Foster BX with ↗= strip:

u(x) =↘ (t(↗ (x)), x), x ∈ Ptr (21)

Lowering all the way to Str is simple, and gives us r : Str → Str:

r(x) = concat(unparse(u(parse(tokenise(x))))), x ∈ Str (22)

Incrementality. Suppose that we have a concrete and an abstract representa-
tion (e.g., a Str and a Cst), and a change in the concrete one should be reflected
in the abstract one (this could be seen as the dual of layout preservation).

Again, we can use Foster BX. For example, for incremental parsing, we de-
fine editing editPtr of parse trees as follows, where editStr is the user’s editing
transformation:

editPtr(x) = parseinc(editTok(unparse(x)), x) (23)
editTok(y) = tokeniseinc(editStr(concat(y)), y) (24)

The unparse and concat operation corresponds to the ↗ of Foster BX, while
parseinc : Tok × Ptr → Ptr and tokeniseinc : Str × Tok → Tok corresponds to ↘.
While the former two operations are trivial (defined in § 4.1), the latter two
would be somewhat more challenging to implement.

We consider incremental parsing as a function taking the changed source and
the original parse tree as input. In practice incremental parsing could hardly be
constructed in this way as we still need to at least scan the source, which takes
O(n) time. It is more often that the incremental transformation takes the change
directly as input [40], which is better formalised as delta lenses [41,42] or edit
lenses [43].
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Multiple Equitable Views. Foster BX inherently prefers one view over the
other(s), which is acceptable for any framework with a clear baseline artefact
and ones derived from it. However, there are cases when we want to continuously
maintain relations among several views of the same “importance”, and that is
where we switch to Meertens BX. Imagine an IDE-enabled textual DSL with a
built-in pretty-printing functionality. In that case, we have Str which is being
edited by the user, whose typing actions can be mapped to incremental transfor-
mations on Ptr, since the grammar is known to the tool. However, an automated
pretty-printing feature is a mapping from Cst to Ptr. In both cases we would like
to retain the information present the the “pre-transformation” state of both Cst
and Ptr entities, for the sake of optimisation (incremental parsing makes IDE
much more responsive) and usability (a user should be able to pretty-print a
fragment of code without destroying the rest of the program).

Correcting Updates. By using Final BX, we can perform correcting updates,
where a change in one of the views can trigger a negotiation sequence ultimately
resulting in multiple updates possibly at all other views, including the initially
changed one. For example, a parse error (e.g., “’;’ expected”) during incremental
parsing may result in a corrective measure being taken (e.g., “insert ’;’”) in order
for the parsing to continue [44]. Final BX pushes this change back to the input,
so that the error can be corrected at the source, most likely by some kind of user
interaction, such as Eclipse’s Quick Fix feature.

5 Case study

In order to demonstrate the main ideas of this paper, we have prepared an open
source prototype available at http://github.com/grammarware/bx-parsing.
This section will introduce it briefly, all interested readers are invited to investi-
gate the code, illustrations and documentation at the repository. The language
for the implementation is Rascal [24], which is a one-stop-shop language work-
bench suitable for rapid prototyping of grammarware, defining data types, spec-
ifying program analyses and visualising results. Most figures on pages of this
paper were automatically generated by it. All type definitions include a valida-
tion and a visualisation function. All types and mappings contain test cases.

The following twelve algebraic data types are defined in our prototype:

• Str — a string;
• Tok — a list of strings;
• TTk — a list of strings non-empty modulo whitespace stripping;
• Lex — a lexical model: left hand side tokens, right hand side tokens; tokens

are typed (alphabetic, numeric, special);
• For — a parse forest defined by an ambiguous grammar;
• Ptr — a parse tree with explicit layout;
• Cst — a parse tree with layout discarded;
• Ast — an abstract data type;
• Pic — a multiline string representing a textual drawing;

http://github.com/grammarware/bx-parsing
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• Dra — a list of visual elements such as symbols and labels, with coordinates;
• Gra — a hierarchical structure of prefix/infix/confix operators with implicit

positioning;
• Dia — an abstract graphical model.

The mappings within the left (“textual”) column of Figure 1 are mostly string
manipulations on regular language level: since Rascal’s default parsing algorithm
is GLL, we implemented an explicit DFA tokeniser for Str → Tok; a library func-
tion trim() is used for Tok → TTk; pattern matching with regular expression-
based for TTk → Lex. Going down on the diagram is even easier: Lex → TTk
does not rely on the structure of Lex, it just grabs all the tokens from it sequen-
tially; TTk → Tok intercalates tokens with one space between any adjacent ones;
Tok → Str uses a standard concatenation function.

In the default setup of Rascal, For → Ptr is called disambiguation and/or
filtering [36], and Ptr � Cst is provided automatically. In order to separate
bijective mapping between instances of one equivalent type to another, from the
actual adjustments, we defined For, Ptr and Cst with three different grammars.
Traditional concrete syntax matching does not work on ambiguous grammars
(since the query of the match is also ambiguous), so For → Ptr is the longest and
the ugliest of the mappings since it relies on low level constructions. Ptr → Cst
is a top-down traversal that matches all layout and reconstructs a tree without
it. Cst → Ast is very similar, it traverses a tree and constructs an ADT instance.

In general, Pic → Dra involves some kind of image recognition, and in our
prototype indeed we scan the lines of the textual picture to identify elements,
and convert them to Dra elements with appropriate coordinates. (Avoiding true
image recognition algorithms outweighing illustrative code was one of the rea-
sons we opted for drawing with text instead of pixels). In Dra → Gra we make
some assumptions about the structure of the drawing: for example, we expect
parenthesis to match.(Parentheses in our textual picture correspond to box con-
tainers in pixel visualisations, and the parenthesis matching thus corresponds
to checking whether other elements fit inside the box or are placed outside it).
Gra � Dia are m2m transformations between domains of graph models (boxes
and arrows) and of function definitions (arguments and expressions).

Horizontal mappings are easier, since one of the main design concerns behind
Rascal is EASY [24] parsing and fact extraction. We provide both Ast/Dia bridges
(which are not uncommon in modern practice) and Lex/Ast (which are non-
existent) bridges. There are several bonus mappings illustrating technological
shortcuts, which we will not describe here due to space constraints. For example,
there is a Gra → Pic mapping using Rascal string comprehensions to avoid low
level coordinates arithmetic.

Now let us consider Ptr � Dra: a bidirectional mapping between a parse tree
and a vector drawing. As we know, a parse tree contains structured information
about the instance, including textual indentation; a drawing is similar to that,
but contains information about graphical elements comprising the picture. We
have prepared several implementations of Ptr � Dra:
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• Reversible.rsc (Def. 1):
−→
f is ptr2dra,

←−
f is dra2ptr, and a problem with

obtaining a valid final or intermediate instance is modelled by throwing an
exception. From the tests we can see that

←−
f ◦ −→

f is not always an identity
function, which breaks Eq. 3 — hence, this mapping is reversible, but not
bijective.

• Foster.rsc (Def. 2): ↗ is still ptr2dra, but ↘ is a superposition of dra2ptr
on an updated Dra instance and a balancing function that traverses two
Ptr instances (the old one and the updated one) and in its result saves all
the element information from the new instance with as much as possible
from the indentation of the old one. This ensures the GetPut law (Eq. 5).
However, this mapping disregards repositioning of graphical elements, which
breaks the PutGet law (Eq. 6). Hence, the well-behavedness of the mapping
is only preserved if the elements of the vector drawing do not move frome
their default locations.

• Meertens.rsc (Def. 3): both � and � implemented in the same way ↘ was
explained above — � traverses two Dra instances and � traverses two Ptr
instances. There are two lessons to learn here: first, since we have achieved
correctness and hippocraticness in all desired scenarios, this is probably the
BX that we want to have for Ptr � Dra; second, both Dra and Ptr traversals
needed to be programmed separately, which leads to duplicated effort and
error-proneness.

• Final.rsc (Def. 4): � and � behave similarly to � and � resp., with two major
differences: they fix some mistakes in Ptr (referencing undeclared variables)
and in Dra (unbalanced brackets). This error recovery is motivated by the
fact that the main purpose of bidirectional model transformation is consis-
tency restoration [12]. However, Final BX can also be used to detect certain
properties of instances and consistently enforce them at all ends.

The entire prototype is around 3000 lines, well tested and documented.

6 Related Work

Danvy [45] was the first one to propose a type-safe approach to unparsing by us-
ing embedded function composition and continuations. More recent research re-
sulted in both embedding of this approach, referred to as string comprehensions,
in modern metaprogramming languages [24] and development of the counterpart
solution for pattern-driven selective parsing, referred to as “un-unparsing” [46].

Matsuda and Wang [11] propose a way to derive a (simplified) grammar from
an unparser specification, which allowed them to focus on unparsing and infer a
parser automatically.

Rendel and Ostermann [18] and Duregård and Jansson [16] independently de-
fine collections of Haskell ADTs to represent invertible syntax definitions, which
can be used together with compatible combinator libraries to infer both parser
(with Alex and Happy) and unparsers.

https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Reversible.rsc
https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Foster.rsc
https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Meertens.rsc
https://github.com/grammarware/bx-parsing/blob/master/src/bridges/ptrdra/Final.rsc
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Brabrand et al [15] propose XSugar language that is used to provide a readable
non-XML syntactic alternative to XML documents while retaining editability of
both instances and preserving schema- conformance on the XML side.

For quasi-oblivious lenses [13], where the put function ignores differences be-
tween equivalent concrete arguments, we can say that ∀x ∈ L, ∀y ∈ R, 〈x, y〉 ∈
Ψ ⇒ x � y = 〈x′, y〉,where x ∼ x′, 〈x′, y〉 ∈ Ψ . In general, the vision expressed
in this paper, can be conceptually viewed as establishing several equivalence re-
lations specific for the domain of parsing/unparsing. Moreover, our research is
not limited to dictionary lenses of Bohannon et al [13], since it concerns Final
BX (Def. 4) and allows to continue expanding the bidirectional view on semi-
parsing methods [47], especially Lex � Ast mappings that are entirely avoided
in the current state of the art.

The distinction we draw between textual, structured and graphical representa-
tions on Figure 1 and Figures 2–4, relates to the concept of a technical space [48].
We admit not having enough knowledge to add another column related to on-
tologies [49] and perhaps other spaces.

Obviously, the landscape of bidirectional model transformation [12] is much
broader than just introducing or losing structure. The topics our work is the
most close to, are model driven reverse engineering [50,51,52] for the parsing
part and an even bigger one of model driven generation for the unparsing part.

7 Concluding Remarks

In this paper, we have considered parsing, unparsing, formatting, pretty-printing,
tokenising, syntactic and lexical analyses and other techniques related to map-
ping between textual, structured data and visual models, from the bidirectional
transformation perspective. We have proposed a uniform megamodel (Figure 1)
for twelve classes of software artefacts (Figures 2–4) involved in these mappings,
and given a number of examples from existing software language processing liter-
ature. We were able to find a place for all the mappings that we have considered,
even though some explicitly or implicitly “skip” a step. The framework that was
introduced, can be used to study such mappings in detail and assess actual con-
tributions, weaknesses and compatibility. For example, with such an approach,
we can take a seemingly monolithic Ast � Str mapping of Ensō [32] and decom-
pose it in easily comprehensible stages of Str � Tok which is bijective because of
fixed lexical syntax; Tok � Ptr � Cst which relies on the Wadler algorithm [5];
and Cst � Ast inferred by the authors’ own interpreter relying on annotations in
Ast specifications (“schemas”). Another example is clear positioning of techniques
such as rewriting with layout [34] which provide data structures that work like
Cst in some cases and like Ptr in others.

Detailed investigation of lowering/lifting operations deserves much more at-
tention than we could spare within this paper, because these concepts can help
us seek, understand and address cases of lost information due to its propagation
through the artefacts of Figure 1. We have also not touched upon the very re-
lated topic of model synchronisation [53] as a scenario when both bidirectionally
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linked artefacts change simultaneously, and the system needs to evolve by incor-
porating both changes on both sides — it would be very interesting to see how
the existing methods work on Final BX, especially on their compositionality,
which requires termination proofs.

After introducing a megamodel for (un)parsing mappings in § 4, we have ex-
plained the difference between general mappings (the ones defined universally,
like concatenation) and language-parametric (roughly speaking, the ones requir-
ing a grammar), and presented a case study in § 5. This work will serve as a
foundation for us to answer research questions not only like “how to map X to
Y, given specifications for all involved syntaxes?”, but also like “how to map X
to some Y?” and “how to find the best Y to map from X?”.
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Abstract. Streaming model transformations represent a novel class of
transformations dealing with models whose elements are continuously
produced or modified by a background process [1]. Executing streaming
transformations requires efficient techniques to recognize the activated
transformation rules on a potentially infinite input stream. Detecting a
series of events triggered by compound structural changes is especially
challenging for a high volume of rapid modifications, a characteristic of
an emerging class of applications built on runtime models.

In this paper, we propose a novel approach for streaming model trans-
formations by combining incremental model query techniques with com-
plex event processing (CEP) and reactive (event-driven) transformations.
The event stream is automatically populated from elementary model
changes by the incremental query engine, and the CEP engine is used
to identify complex event combinations, which are used to trigger the
execution of transformation rules. We demonstrate our approach in the
context of automated gesture recognition over live models populated by
Kinect sensor data.
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1 Introduction

Scalability of models, queries and transformations is a key challenge in model-
driven engineering to handle complex industrial domains such as automotive,
avionics, cyber-physical systems or ubiquitous computing. The maintenance and
manipulation of large models identifies unique scenarios addressed by a novel
class of model transformations (MT) to overcome the limitations or extend the
capabilities of traditional (batch or incremental) MT approaches.

Change-driven transformations [2] consume or produce changes of source and
target models as their input or output models to enable transformations over
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partially materialized models and to reduce traceability information. Streaming
transformations are defined [1] as a “special kind of transformation in which the
whole input model is not completely available at the beginning of the trans-
formation, but it is continuously generated.“ An additional class of streaming
transformations aims to tackle huge models by feeding a transformation process
incrementally (keeping only a part of the model in memory at any time).

In the current paper, we identify and address a novel class of streaming trans-
formations for live models where the models themselves are not necessarily huge
or infinite, but they change or evolve at a very fast rate (for instance, 25 times
per second), and it is the stream of model changes that requires efficient process-
ing. We propose a novel technique for streaming transformations to process these
event streams in order to identify a complex series of events and then execute
model transformations over them in a reactive way.

Our contribution includes a domain-specific event processing language for
defining atomic events classes (from elementary or compound model changes
using change patterns [2]) and combining these events into complex patterns
of events. We also propose a general, model-based complex event processing
architecture with a prototype engine Viatra-CEP to process rapidly evolving
event streams. We also include an initial scalability assessment of the framework
on a live model transformation scenario.

Our approach keeps the advantages of change-driven transformation as models
can be partially materialized, since the processed event stream carries over only
few relevant contextual model elements but not the models themselves. Instead,
incremental model queries observe the model and publish relevant structural
changes as atomic events in an event stream. Then this stream is processed
by integrating known techniques from complex event processing (CEP) [3] to
identify and handle a complex series of events.

In the rest of the paper, in Section 2, we introduce a case study of gesture
recognition over live models used as a running example. The core ideas of our
approach are presented in Section 3 while Section 4 presents an integrated tool
set as a proof-of-concept. We carry out an initial performance of the approach in
Section 5. Finally, related approaches and tools are described in Section 6 and
Section 7 concludes our paper.

2 Case Study: Gesture Recognition by Live
Models

Our approach will be demonstrated on a gesture recognition case study. The
use case is based on our preliminary work [4], presented earlier at EclipseCon
Europe 2012, but without using the framework described in this paper.

In the case study, a human body is observed by optical sensors. The stream
of data from the sensors (Microsoft Kinect [5] in our case) carries the spatial
position of the hands, wrists, knees, etc. This stream is continuously processed
and its data is stored in a live model, technically, an EMF model maintained
via a Java based API [6]. Every time the optical sensors capture a new frame,
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the model is updated with the appropriate spatial data. The sensors process 25
frames per second, resulting in 25 model update transactions each second. The
complexity of the scenario arises from the frequent changes the model undergoes.
Executing model transformations on such a model poses several problems, since
it would become obsolete quickly after being loaded into the memory. Moreover,
model update transactions affect multiple model elements.

Fig. 1. Excerpt from the domain meta-
model [6]

Figure 1 shows an excerpt from
the domain metamodel [6], contain-
ing the head and the right arm. Sim-
ilar metamodel elements describe the
other three limbs of the body.

In this case study, we aim at recog-
nizing a gesture in order to control a
PowerPoint presentation with it. On
the recognized gesture, the presenta-
tion advances to the next slide, there-
fore the gesture is referred to as the
forward gesture. In our presentation
[4] there is also a backward gesture to
move back to the previous slide.

As illustrated in Figure 2, the for-
ward gesture consists of two postures:
the forward start and the forward end.
To recognize the gesture, the series of
these two postures needs to be iden-
tified. Postures are considered as cer-
tain states of the body, which are de-
scribed with a range or interval of spatial data. For example, the forward start
posture is defined by the right arm being approximately stretched roughly to the
height of the shoulder. Determining whether the arm is stretched is achieved by
continuously measuring the angle between the upper and lower arm and smooth-
ing the resulting stream of spatial data by a moving average transformation [7].

Processing a series of postures could be interpreted as a state machine, in
which the states represent postures and transitions are triggered if a body leaves
the valid range of the state and enters another. For instance, the body initiates
the forward start posture by first entering the posture (forward start found),
then leaving it (forward start lost) after a certain amount of time.

3 Overview of the Approach

First, in Section 3.1, we provide a taxonomy (illustrated in Figure 3) on struc-
tural model changes and events (Section 3.1). In Section 3.2 we propose a novel
approach for modeling and processing these changes as complex events in order
to support streaming transformations. In Section 3.3, the detection of complex
event processing is briefly discussed.
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(a) Forward start
found

(b) Forward start
lost

(c) Forward end
found

(d) Forward end
lost

Fig. 2. Body postures with the key context of the human body highlighted

3.1 A Taxonomy of Structural Model Changes

Elementary and compound structural model changes. We define elementary
changes as the most basic modifications applied on the model which cannot be re-
fined into multiple modification steps. For example, in the case study in Section 2,
such an elementary change would be moving the body’s right hand on the x-
axis, since it would require changing only one attribute of a PositionedElement.
(See Figure 1.) Elementary model changes in this case are handled by the Eclipse
Modeling Framework (EMF) [8] and its notifier/adapter techniques enabled by
the EMF Notification API.

Fig. 3. Structural changes vs. events

On the other hand, compound
changes consist of multiple elemen-
tary changes between two states
(snapshots) of the model (called the
pre-state and the post-state). For ex-
ample, if the whole right arm is
moved, the elbow, the wrist and the
hand are moved consequently, i.e.
the change affects multiple model el-
ements. The techniques of change-
driven transformations (CDT) [2]
are capable of identifying compound
structural changes by using change patterns [2,9,10]. Change patterns observe
the delta between the pre-state and the post-state irrespective of how those
states were reached, thus they abstract from the actual trajectories in the state
space.

Atomic and Complex Events. In our work, we consider both atomic and com-
pound structural changes as atomic events in the event stream. This setup allows
the use of events of different granularity. An atomic event is specified by its type,
a set of model elements passed as parameters and a timestamp. Complex events
are built up from sequences of atomic events and other complex events, using
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operators of an event algebra. Common operators enable the definition of events
following other events, mutually prohibited events, or events occurring within a
given time window.

Complex event processing (CEP) [3] techniques provide guidance on how to
evaluate the stream of atomic events in order to detect complex events. Unfor-
tunately, most CEP tools do not integrate well with existing model manage-
ment frameworks (like EMF) and significant programming effort is required to
translate elementary and compound structural model changes originating from
a modeling tool into event types appropriate for a CEP engine.

In our work, we aim at combining the benefits of CDT and CEP resulting in
a novel technique for identifying arbitrarily complex change events of compound
structural changes.

3.2 Structural Changes, Events and Streaming
Transformations

In this section, we demonstrate how streaming transformations can be defined
by building upon well-established model query and transformation languages
by elaborating the case study of Section 2. First, model queries will be used to
identify the current state of the model and automatically publish notifications on
relevant state changes in the form of atomic events. Then these atomic events will
be combined into complex events using operators of an event algebra. Finally,
we define transformation rules that are activated by a complex event.

Model Queries for Structural Constraints. Model queries capture struc-
tural constraints of a model. In this paper, we employ the graph pattern language
IQPL used by EMF-IncQuery [11]. This choice is motivated by the high ex-
pressiveness of the language and the incremental query evaluation strategy of
EMF-IncQuery, which allows the sending of notifications upon the change of
the result set of queries.

Listing 1 presents the graph pattern depicting the Forward start posture, as
presented in Figure 2a. The pattern is parameterized with the spatial data of the
right arm (consisting of the right hand, the right elbow and the right shoulder);
the head; and the body the previous parts belong to. Accordingly, joins over the
model are defined to describe this relationship in Lines 8-11. The Forward start
posture requires a stretched right arm to be detected, but the arm shall not be
held higher than head level (see Lines 13-14 and 16-17, respectively).

The latter one is a negative pattern call, which prohibits the occurrence of
the rightHandAboveHead pattern presented in Listing 2. The pattern compares
the spatial coordinates of the right hand and the head by their y coordinate.
In Lines 8-9, the y coordinate of the right hand and the head is bound to the RHy
and Hy variables, respectively. The variables are evaluated in a check block in
Lines 11-18 by invoking a Java based MovingAverageCalculator using Xbase
syntax [12]. The details of the rightHandAboveHead pattern are omitted for
space consideration.
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1 pattern ForwardStart(
2 B: Body ,
3 RH: RightHand ,
4 RE: RightElbow ,
5 RS: RightShoulder ,
6 H: Head)
7 {
8 Body.Head(B, H);
9 Body.RightHand(B, RH);

10 Body.RightElbow(B, RE);
11 Body.RightShoulder(B, RS);
12
13 find
14 stretchedRightArm(B, RH, RE , RS);
15
16 neg find
17 rightHandAboveHead(B, RH, H);
18
19 }

Listing 1. ForwardStart posture

1 pattern rightHandAboveHead(
2 B: Body ,
3 RH: RightHand ,
4 H: Head)
5 {
6 Body.RightHand(B, RH);
7 Body.Head(B, H);
8 RightHand.y(RH,RHy);
9 Head.y(H,Hy);

10
11 check(
12 MovingAverageCalculator::
13 getCalculator("HY").
14 addValue (Hy).movingAvg <
15 MovingAverageCalculator::
16 getCalculator("RHY").
17 addValue (RHy).movingAvg
18 );
19 }

Listing 2. rightHandAboveHead

Defining Atomic Events. In order to define atomic events, we propose an
event processing language called the Viatra-CEP Event Processing Language
(Vepl). We built upon the result set of model queries to identify relevant struc-
tural changes, i.e. we identify when a new match is found for a model query or
when an existing match is lost. These compound changes constitute the atomic
events in our approach. Formally, an atomic event is specified as a = (t,P , d)
where a.t denotes the type, a.P is a list of parameters and a.d is a timestamp of
the event.

1 IQPatternEvent ForwardStartFound(B: Body)
2 {
3 iqPatternRef:
4 ForwardStart(B, _RH , _RE , _RS , _H)
5 iqChangeType:
6 NEW_MATCH_FOUND
7 }
8
9 IQPatternEvent ForwardStartLost(B: Body)

10 {
11 iqPatternRef:
12 ForwardStart(B, _RH , _RE , _RS , _H)
13 iqChangeType:
14 EXISTING_MATCH_LOST
15 }

Listing 3. Atomic event types

Listing 3 presents two atomic
events reusing the graph pat-
tern from Listing 1. Pattern
FSFound describes the event
when the Forward start posture
is found (Figure 2a), while pat-
tern FSLost describes the event
when the Forward start posture
is lost (Figure 2b).

Both atomic events are
parameterized with a Body pa-
rameter (Line 1, Line 8), eval-
uated at execution time. This

enables collecting atomic events per body, i.e. to distinguish between atomic
events based on their source.

Referring to IQPL patterns is a special feature of our language aiming to seam-
lessly integrate a language for graph patterns with a language for event patterns
in Vepl. This reference to the IQPL pattern is supported by the iqPatternRef
attribute (Line 2-3, Line 9-10). The parameter list after the IQPL pattern reuses
the input parameter (B: Body). The other parameters are not specified, as des-
ignated by their names augmented with an underscore character. (A notation
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similar to Prolog’s anonymous predicates.) Two similar atomic events describe
the cases in which the Forward end posture is found and lost.

Defining Complex Events. In the next step, atomic events are combined into
a complex event. In Listing 4, the definition part contains the constraints for
the complex event, consisting of atomic events in this specific case. The atomic
events connected with the ordered operator (denoted with an arrow). Therefore,
this pattern defines a complex event, in which the referred atomic events are
observed in the specific order. Since atomic events carry information about the
appropriate structural changes, this complex event will occur exactly on the
series of postures depicted in Figure 2. The input parameter of the complex
event (B: Body) and its usage in the definition part ensures that only atomic
events originating from the same body are combined in a single complex event
instance.
1 ComplexEvent ForwardGesture(B: Body){
2 definition : ForwardStartFound(B) -> ForwardStartLost(B)
3 -> ForwardEndFound(B) -> ForwardEndLost(B)
4 }

Listing 4. A complex event pattern reusing atomic events from Listing 3

Complex events are built up from sequences of atomic events and other com-
plex events, using operators of an event algebra. The event algebra of the Vepl
language offers three operators to formalize complex event patterns: the ordered,
the unordered and the timewindow operator. The ordered operator (o) pre-
scribes strict ordering between the events the complex event pattern consists of.
The unordered operator (u) allows the corresponding atomic events to occur
in arbitrary order. The timewindow operator defines an upper limit for the
complex event to be detected, starting from the first atomic event observed in
the particular complex event pattern.

Formally, a complex event pattern C is built inductively from a set A of atomic
events using three operators {o, u,w} as follows:

– Atomic events: Every atomic event a is a complex event e ∈ C.
– Ordered operator: If c1 and c2 are complex events then o(c1, c2) is a

complex event
– Unordered operator: If c1 and c2 are complex events then u(c1, c2) is a

complex event
– Timewindow operator: If c is a complex event and d is a timestamp then

w(c, d) is a complex event

A complex event pattern C is evaluated against a timestamp ordered stream
of observed events denoted as �En

0 : e0 . . . en with ei = (ti, Pi, di) and ∀j > i :
dj > di. Initially, all ei are atomic event instances. However, during evaluation,
when a complex event instance cj is detected after processing event ei, then cj
is inserted into the stream (with di as the timestamp of the detection) to allow
the detection of depending complex events later. The semantics of the operators
in the event algebra is defined as follows:
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– Ordered operator: �En
0 |= o(c1, c2) iff two events with types corresponding

to c1 and c2 are present in the stream in the given order with the same
parameter binding, i.e. ∃i, j : c1.t = ei.t∧c2.t = ej .t∧ej .d > ei.d∧ei.σ(Pi) =
ej .σ(Pj). The timestamp of o(c1, c2) becomes ej .d.

– Unordered operator: �En
0 |= u(c1, c2) iff both c1 and c2 are present in

stream in an arbitrary order �En
0 |= o(c1, c2) or �En

0 |= o(c2, c1); The times-
tamp of o(c1, c2) is max(ei.d, ej.d).

– Timewindow operator: �En
0 |= w(c1, d1) iff exists an event ei in the stream

with timestamp value less then d1, i.e. ∃i : c1.t = ei.t ∧ ej.d < d1.

Defining Transformation Rules. As the final step to our approach, the actual
streaming transformations are defined. Vepl enables defining model transforma-
tions and organizing them into rules guarded by the previously defined complex
event patterns. In principle, an arbitrary transformation language can be used
as an action language (e.g. Xtend as in our example). All variables are bound
when the trigger event is instantiated are accessible in the action part. Listing
5 shows a rule containing a model transformation which executes the action
defined within the action block on the appearance of the ForwardGesture pat-
tern, referenced in the event block.

1 Rule transactionRule {
2 event : ForwardGesture(B: Body)
3 action {
4 // acquiring the complex event
5 val observedComplexEvent = activation.observableEventPattern
6 // extracting the parameter
7 val body = observedComplexEvent.B
8 // additional operation to be executed
9 }

10 }

Listing 5. A streaming transformation rule

3.3 Detecting Complex Events

The event processing algebra, its operators and logical structures are mapped to
a deterministic finite automaton (DFA) based representation, to keep track of
partially and fully matched complex event patterns. As highlighted in Figure 4,
exactly one automaton is generated for every complex event pattern at compile
time. States in the automaton represent the relevant phases of detecting the
complex event pattern, i.e. the different states of the pattern matching process.
Transitions of the automaton identify how the matching process can evolve from
one state to another in accordance with the operators used in the complex event
pattern and the triggering event.

During execution time, tokens represent the (partial or complete) complex
event pattern instances which are stored in the states of the automaton. If there is
a token at a state of the DFA, and the next event in the event stream corresponds
to the trigger event of an outgoing transition, then the token is passed along the
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Fig. 4. Mapping between complex event
patterns and the semantic model

transition to the next state, thus the
detection of the complex event enters
a new phase. There may be multiple
tokens flowing in the same automa-
ton at a time since the next event in
the stream may contribute to different
parts of the same complex event pat-
tern according to its context. When a
complex event is detected, a new com-
plex event instance is placed to the
event stream with corresponding type
and timestamp.

Event processing contexts specify constraints on how occurrences may be se-
lected when looking for occurrence patterns that match the operator semantics
[13]. Due to space restrictions, the reader is referred to [14] for the details of
complex event pattern detection in Vepl. There we also prove that the au-
tomaton representing the detection cycle of complex events is always finite and
deterministic.

4 Architecture and Use of the Prototype Tooling

In this section, we give an overview of the technological aspects and the tooling
of our approach. First, in Section 4.1 we present an architecture and a prototype
tool Viatra-CEP1 for processing complex events and supporting streaming
transformations. We also present the tool in action along a sample execution
scenario of our case study in Section 4.2.

4.1 Architectural Overview

Figure 5 presents the architecture of our streaming transformation framework.
The Model is continuously queried by an Incremental query engine with queries
that are defined using the Query language. This enables not only to efficiently
obtain the match sets of a query, but it also continuously tracks changes of the
model.

Changes in the model are continuously propagated to the query engine through
a notification API, where callback functions can be registered to instance model el-
ements that receive notification objects (e.g. ADD, REMOVE, SET etc.) when an
elementary model manipulation is carried out. The framework internally stores
and maintains the partial pattern matches as notifications arrive.

As a query evaluates successfully, it produces a tuple of elements as the match
set. This data is wrapped into atomic change events and published on the Event
stream. The Event stream is continuously processed by a reactive Rule engine,
which handles the triggering of the predefined model transformations.

1 https://incquery.net/publications/viatra-cep

https://incquery.net/publications/viatra-cep
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Fig. 5. Conceptual overview of the approach with our key contributions highlighted

In order to activate streaming transformation rules guarded by complex event
patterns, the Event stream is also processed by a CEP engine. The engine con-
tinuously evaluates the complex event patterns based on the processed atomic
events. If a complex event pattern is matched, a complex event instance is gener-
ated, published on the event stream and eventually processed by the Rule engine,
which would trigger the appropriate model transformation.

In our prototype tool, a dedicated general purpose CEP engine (called
Viatra-CEP) was developed to support the Vepl language. However, the ar-
chitecture can also incorporate the integration of an external CEP engine (such
as Esper [15]) as demonstrated in our preliminary work [4]. The case studies
in [4] highlighted that significant programming overhead is required to translate
structural changes to appropriate events and define complex event patterns ac-
cordingly, which requires further investigations. Our Viatra-CEP prototype
seamlessly integrates with advanced EMF-related technologies such as EMF
models, the EMF-IncQuery framework [11] for incremental queries and ex-
isting transformation languages and tools.

4.2 Sample Execution of the Case Study

Table 1 summarizes the execution steps triggered by four consecutive snapshots
of the forward gesture.

– Phase #1. The ForwardStart pattern (Listing 1) is found (1) in the model
by the query engine. This results in a new tuple of model elements as a
match set, which data is wrapped into an atomic event by the query engine
and passed to the event stream (2). In Step (3a) the Rule engine processes
the atomic event and if a transformation rule is activated, the appropriate
transformation gets executed. However, since no transformation rules are
associated with event ForwardStart, no transformation rules are activated
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Table 1. Gesture phases and the execution steps triggered

Posture Triggered execution

P
h
as

e
#

1

FS found

P
h
as

e
#

2

FS lost

P
h
as

e
#

3

FE found

P
h
as

e
#

4

FE lost

Legend

at this point. In Step (3b) the CEP engine processes the atomic event as
well and updates the complex event candidates, i.e. the partially matched
complex events.

– Phase #2 and #3. In the next phase, we detect that a match of the
ForwardStart pattern is lost. The same steps are executed as above, only
this time an atomic event of type ForwardStartLost is published on the event
stream and processed by the Rule engine and the CEP engine. In Phase #3,
a ForwardEndFound atomic event is identified and placed on the stream.
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– Phase #4. The ForwardEnd pattern is lost and a ForwardEndLost atomic
event is published on the event stream consequently. Now there will be ad-
ditional steps triggered after Step (3b). After having processed the Forwar-
dEndLost atomic event, the CEP engine detects the ForwardGesture complex
event, instantiates the appropriate complex event instance consequently and
publishes it on the event stream Step (4). In Step (5) the Rule engine pro-
cesses the complex event and checks for activated transformation rules. The
rule defined in Listing 5 will be activated and the appropriate action will be
executed in Step (6).

5 Evaluation

To estimate the performance and scalability of our tool, we had to design a semi-
synthetic benchmark based on the use case of Section 2. The reason for this is
that Microsoft Kinect can only detect at most two bodies, and the refresh rate is
a fixed 25 frames per second (FPS), which is easily processed by our CEP engine.

Evaluation Setup. The core of the simulation is a previously recorded real exe-
cution sequence in which the right arm is rotated. A full arm cycle consists of
12 positions, i.e. 12 frames. Every cycle yields exactly one Forward gesture (Fig-
ure 2) composed of the sequence of 4 atomic events; and every cycle also yields
two atomic events considered as noise. This makes 6 atomic events generated for
each cycle.

Our simulations aim at stress testing our CEP prototype, which is carried out
by multiplying this sequence along a different number of bodies in the model.
This part of the benchmark scenario is artificial in the sense that Kinect can
handle at most two bodies, but the actual positions of the bodies remain realistic.

After starting the simulations, we primarily measure the number of detected
complex events per second. From this rate, we calculate the effective processing
rate (i.e. the theoretical upper limit) of the CEP engine measured in frames per
second (FPS). This value is compared to the original FPS rate of the Kinect
sensor. We continue increasing the number of bodies up to the point when the
processing rate is greater than the recording rate.

Summary of Results. Table 6 summarizes our results. Rows represent the in-
dividual measurements with respect to the increasing number of bodies Body
count. The next two columns present the throughput of complex events (1/s)
and atomic events (1/s), respectively. The latter is calculated from the former,
since for every complex event to be detected, 6 atomic events are observed (as
discussed above). The number of atomic events in the model denotes how many
atomic events are triggered by elementary or compound model changes per cy-
cle, i.e. while the right arm makes a circle. This is the number of atomic events
required to be processed in order to achieve the frames-per-second (FPS) ratio
the Kinect sensors work with. Finally, processing speed summarizes the FPS of
our prototype compared to the basic FPS value of Kinect (25). This value is
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calculated as the ratio of the Atomic event throughput and the Atomic events in
the model. This ratio is acceptable if it is above 1, otherwise the processing rate
of complex events falls short to the data production rate of the Kinect sensor.

Fig. 6. Throughput and the highest processing speed

As a summary, our measurements show that our approach scales up to 24
bodies in the model (the lowest processing speed above 1) at 25×1.009 FPS.
In order to interpret this value, we need to recall that one body consists of 20
control points each of them containing 6 attributes (see PositionedElements in
Figure 1), from which 2 are actually modified in the simulations. Therefore, for
each body, 40 elementary model changes are triggered in every frame (assuming
that the limbs are not reattached to different bodies).

Handling 24 bodies at a rate of 25×1.009 FPS yields approximately 24000
complex events per second. Based on our measurements (which were carried out
using a 2.9GHz CPU), we conclude that our proof-of-concept implementation
offers promising performance and scalability while it integrates smoothly with
Eclipse based tooling. It should be noted, however, that because of the rather
simple movement profile (only a few coordinates are manipulated), the results
cannot be trivially extrapolated for data streams of real Kinect devices.

6 Related Work

We give an overview of various approaches related to our work.

Streaming Model Transformations. In [1] the authors present streaming
transformationsworking on a stream of model fragments and elements. In contrast
to this technique, our approach leverages derived information regarding the
model in the form of change events, which decouples the execution from the
actual model. Consequently, the issues discussed in [1] (e.g. dealing with refer-
ences among model elements and transformation scheduling) are not present in
our case.
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The concept of change-driven transformations is proposed in [2] for executing
transformations on change models as input or output. Our approach extends
this approach since identifying complex model changes enables CDTs of higher
granularity and also enables the integration of complex event processing. Live
models used in the current paper are different from living models [9], while
the change pattern formalism is reused from [2] while similar formalisms were
proposed in [9,10]. A formal foundation of infinite models is presented in [16]
by redefining OCL operators over infinite collections. This is complementary
problem as the models themselves are finite in our case, but their lifeline is
infinite due to high frequency model changes.

Complex Event Processing. Esper [15] is an open source event processing engine.
It has been employed in our preliminary work [4], presented at the EclipseCon
Europe 2012. Despite being a high-end CEP engine concerning its performance
and the descriptive power of its language, supporting the scenarios like those
presented in [1] is cumbersome and infeasible.

Other open CEP engines (e.g. StreamBase, Drools Fusion) can also be consid-
ered but integration into an existing MDE tooling remains a significant technical
challenge since defining change patterns and feeding model (change) information
into the engine requires significant programming effort. The integrated approach
presented in this paper (classified as a detection-oriented CEP) overcomes this
issue by providing a language supporting directly referencing graph patterns and
organizing them into complex event patterns.

Processing Runtime Models. Processing of runtime models may introduce some-
what related challenges. Incremental model transformations are used in [17] for
efficient runtime monitoring. Song et al. introduced incremental QVT transfor-
mations [18] for runtime models. However, these techniques primarily focus on
obtaining a faithful model of the running system, while they do not consider
event streams or complex event processing over live models.

Context-aware systems [19] introduce novel challenges for model transforma-
tions where not only business-relevant data needs to be processed, but also data
from the context or environment of the system. Our approach could be a feasi-
ble solution to execute model-transformations in a context-aware fashion, e.g. in
cyber-physical systems where environmental data gathered by the sensors could
affect the overall transformation process.

7 Conclusions and Future Work

In this paper, we identified and addressed a novel class of streaming transfor-
mations [1] for live models where the models themselves are available, but they
evolve at a very fast rate (resulting in thousands of changes in every second).
Elementary model changes (e.g. EMF notifications) as well as derived compound
changes of match sets of change patterns [2] are encapsulated into a stream of
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atomic events. This event stream is consumed by complex event processing tech-
niques to identify complex series of events (appearing within a timeframe) and
execute streaming transformations upon their detection.

We proposed a language built as an extension of an existing query and trans-
formation language with execution semantics, and presented an integrated model-
based complex event processing engine Viatra-CEP to a proof-of-concept pro-
totype. Initial experimental evaluation over a complex gesture recognition case
study demonstrates the practical feasibility of our approach.

A main advantage of our framework is that models are not required to be
kept in memory during transformation as only the stream of events is processed.
Elementary and compound structural changes are first encapsulated into atomic
changes by incremental model queries. Atomic events contain only the few rele-
vant contextual model elements required to identify complex events and trigger
related transformations for complex event processing. As a result, the time and
structural dimension of changes is kept separated both from a conceptual and a
tooling viewpoint.

Future Work and Potential Applications. In the future, we plan to apply the
framework in various domains. Models at runtime (M@RT) [20] aim at represent-
ing the prevailing state of the underlying system. Processing streams of changes
or change events arising from these models, instead of approaching them with
batch or incremental transformations seems to be a natural fit.

Increasing the number of source models might introduce issues regarding the
scalability of a transformation engine, especially when distributed and federated
data sources are required to be handled. Dealing with change events instead
of keeping model fragments from different models in memory, may significantly
simplify this task.

As a primary direction for technical future work, we plan several enhance-
ments to the change pattern modeling language, which currently lacks desirable
features, such as branching patterns [21], negative patterns and temporal al-
gebraic structures [22]. We envisage a general canonical form of event pattern
definitions, which every event pattern could be translated into and would enable
optimization steps prior to the execution.

References

1. Sánchez Cuadrado, J., de Lara, J.: Streaming model transformations: Scenarios,
challenges and initial solutions. In: Duddy, K., Kappel, G. (eds.) ICMB 2013.
LNCS, vol. 7909, pp. 1–16. Springer, Heidelberg (2013)

2. Bergmann, G., Ráth, I., Varró, G., Varró, D.: Change-driven model transforma-
tions. change (in) the rule to rule the change. Software and Systems Modeling 11,
431–461 (2012)

3. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2001)



Streaming Model Transformations By Complex Event Processing 83

4. Dávid, I., Ráth, I.: Realtime gesture recognition with Jnect and Esper. Tech demo
at EclipseCon Europe (2012), http://incquery.net/incquery/demos/jnect
(Accessed: July 1, 2014)

5. Microsoft Corp.: Microsoft Kinect official website, http://www.microsoft.com/
en-us/kinectforwindows/ (Accessed: July 1, 2014)

6. Helming, J., Neufeld, E., Koegel, M.: jnect – An Eclipse Plug-In providing
a Java Adapter for the Microsoft Kinect SDK, http://code.google.com/a/
eclipselabs.org/p/jnect/ (Accessed: July 1, 2014)

7. Box, G., Jenkins, G., Reinsel, G.: Time Series Analysis: Forecasting and Control.
Wiley Series in Probability and Statistics. Wiley (2008)

8. Eclipse Foundation: Eclipse Modeling Framework Project (EMF), http://www.
eclipse.org/modeling/emf/ (Accessed: July 1, 2014)

9. Breu, R., Agreiter, B., Farwick, M., Felderer, M., Hafner, M., Innerhofer-
Oberperfler, F.: Living Models - Ten Principles for Change-Driven Software Engi-
neering. Int. J. Software and Informatics 5(1-2), 267–290 (2011)

10. Yskout, K., Scandariato, R., Joosen, W.: Change patterns: Co-evolving require-
ments and architecture. Software and Systems Modeling (2012)

11. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Szatmári, Z., Varró,
D.: An Integrated Development Environment for Live Model Queries. Science of
Computer Programming (2013)

12. Eclipse Foundation: Xtext 2.6.0 Documentation, http://www.eclipse.org/
Xtext/documentation/2.6.0/Xtext%20Documentation.pdf (Accessed: July 1,
2014)

13. Carlson, J.: An Intuitive and Resource-Efficient Event Detection Alge-
bra (2004), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.
9957 (Accessed: July 1, 2014)

14. Dávid, I.: Complex Event Processin in Model Transformation Systems. Master’s
thesis, Department of Measurement and Information Systems, Budapest University
of Technology and Economics (2013)

15. EsperTech Inc.: Esper Official Website, http://esper.codehaus.org (Accessed:
July 1, 2014)

16. Combemale, B., Thirioux, X., Baudry, B.: Formally Defining and Iterating Infinite
Models. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 119–133. Springer, Heidelberg (2012)

17. Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Incremental Model
Synchronization for Efficient Run-Time Monitoring. In: Ghosh, S. (ed.) MODELS
2009. LNCS, vol. 6002, pp. 124–139. Springer, Heidelberg (2010)

18. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., Mei, H.: Instant
and Incremental QVT Transformation for Runtime Models. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 273–288. Springer,
Heidelberg (2011)

19. Baldauf, M., Dustdar, S., Rosenberg, F.: A Survey on Context-Aware Systems. Int.
J. Ad Hoc Ubiquitous Comput. 2(4), 263–277 (2007)

20. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10), 22–27
(2009)

21. Ben-Ari, M., Manna, Z., Pnueli, A.: The Temporal Logic of Branching Time. In:
Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL 1981, pp. 164–176. ACM, New York (1981)

22. Gabbay, D.M.: Temporal Logic: Mathematical Foundations and Computational
Aspects. Clarendon Press, Oxford (1994)

http://incquery.net/incquery/demos/jnect
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
http://code.google.com/a/eclipselabs.org/p/jnect/
http://code.google.com/a/eclipselabs.org/p/jnect/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/documentation/2.6.0/Xtext%20Documentation.pdf
http://www.eclipse.org/Xtext/documentation/2.6.0/Xtext%20Documentation.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.9957
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.9957
http://esper.codehaus.org


On the Use of Signatures for Source Incremental
Model-to-text Transformation

Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos

Department of Computer Science, University of York
Deramore Lane, Heslington, York, YO10 5GH, UK

{bjo500,louis.rose,dimitris.kolovos}@york.ac.uk

Abstract. Model-to-text (M2T) transformation is an important model
management operation, used to implement code and documentation gen-
eration, model serialisation (enabling model interchange), and model vi-
sualisation and exploration. Despite the importance of M2T transforma-
tion, contemporary M2T transformation languages cannot be used to eas-
ily produce transformations that scale well as the size of the input model
increases, which limits their applicability in practice. In this paper, we
propose an extension to template-based M2T languages that adds sup-
port for signatures, lightweight and concise proxies for templates, which
are used to reduce the time taken to re-execute a M2T transformation in
response to changes to the input model. We report our initial results in
applying signatures to two existing M2T transformations, which indicate
a reduction of 33-47% in transformation execution time.

1 Introduction

Model-Driven Engineering (MDE) often involves the application of different
types of model management operations including model-to-model transforma-
tion, model-to-text transformation, model validation, model merging, model
comparison and model refactoring. As MDE is increasingly applied to larger
and more complex systems, achieving greater scalability of contemporary MDE
processes, practices and technologies is of increasing importance.

Scalability in software engineering has different dimensions, including but not
limited to: the number of software engineers; the size of engineering artefacts; the
size and complexity of languages used; and the size of engineering tasks that are
carried out. In this paper, we focus on assessing and improving the scalability of
model-to-text transformation with respect to the increasing size of engineering
artefacts (i.e., models).

Our work is motivated by our recent participation in an EC FP7 project
(INESS, grant #218575), which involved applying model-to-text transformation
to generate (from UML models) code that was amenable to model checking.
In our work on this project, we found that code generation would take around
1 hour for the largest models provided by our industrial partners. Often the
results of model checking would necessitate small changes to these large models,
and hence re-execution of the code-generating transformation was necessary to
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verify the new models. Each new version of a model would result in an hour
of code generation, irrespective of the proportion of the source model that had
changed. Ideally, the execution time of the code-generating transformation would
have been directly proportional to the magnitude of the change to the source
model: small changes to the model would have resulted in significantly reduced
execution time of the code-generating transformation. This ideal is realised with
a source incremental transformation engine [1].

In this paper, we present and evaluate the use of signatures, which are
lightweight mechanisms for determining which subset of a M2T transformation
must be re-executed in response to a change to its input model(s). By reducing
the number of templates (and, consequently, expressions) that must be evalu-
ated by the transformation engine in order to propagate changes from input
models to generated text, signatures contribute to increasing the scalability of
M2T transformation by providing source incrementality. This paper makes the
following contributions:

– A brief review of existing contemporary M2T languages and their support
for incrementality (Section 2).

– A design for signatures, an extension for template-based M2T languages
that can be used to implement source incremental M2T transformations
(Section 3).

– An empirical evaluation and discussion of the benefits of the use of signa-
tures based on our experiences with introducing source incrementality to two
existing M2T transformations (Section 4).

2 Background: Model-to-text Transformation

Model-to-text (M2T) transformation is a model management operation that
involves generating text (e.g., source code, documentation, configuration files,
reports, etc.) from models. Historically, M2T transformations have been imple-
mented using either a visitor-based or a template-based approach [1]. A visitor-
based approach traverses the source model, generating text for a subset of the
elements encountered during the traversal. A template-based approach (List-
ing 1.1) involves specifying templates whose structure more closely resemble the
generated text. Any portions of generated text that vary over model elements
are replaced with dynamic (executable) sections, which are evaluated with re-
spect to the model. Any portions of generated text that remain the same are
termed static sections. Many contemporary M2T transformation languages use
the template-based rather than the visitor-based approach. This is likely to be
partly due to OMG’s standardisation of a M2T language in 2008, MOFM2T 1.0,
which proposes a template-based M2T language.

2.1 M2T Transformation Languages

Over the past decade, many M2T transformation languages have been developed,
including T4, JET, Acceleo, Xpand and the Epsilon Generation Language (EGL)
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[2]. We now briefly compare these languages and discuss the extent to which they
are in use today.

JET and MOFScript were among the first implementations of usable M2T
transformation languages for MDE. JET is used to generate text from EMF-
based models. JET templates can contain any Java code, and the JET engine
translates JET templates into pure Java code prior to transformation execution.
MOFScript was a direct result of the OMG RFP for a M2T transformation lan-
guage. MOFScript works with any MOF based model, and is heavily influenced
by QVT. It is essentially an imperative language which supports all primitive
data types and abstract data types such as collections, lists etc. Development and
maintenance of JET and MOFScript appears to have ceased in 2008 and in 2009,
respectively (according to http://www.eclipse.org/modeling/m2t/
downloads/).

T4, Acceleo, Xpand and EGL are more recent M2T transformation languages.
The T4 transformation engine is largely dependent on the .NET framework and
thus targeted towards Microsoft’s Visual Studio developers. Transformation con-
trol logic is written as fragments of program code in C# or Visual Basic. Acceleo,
Xpand and EGL are template-based languages which integrate with the Eclipse
development environment. They generally provide similar core capabilities, al-
though each language also has a few unique features (e.g., Acceleo provides an
editor that can be used to quickly parameterise a text file to form a template;
Xpand provides aspect-oriented programming constructs for enhanced modular-
ity and reusability of templates; and EGL can generate text from many different
types of model including EMF, plain XML, Google Drive spreadsheets, etc.).

2.2 Incrementality in M2T Transformation

Incrementality in software engineering refers to the process of reacting to changes
in an artefact in a manner that minimises the need for redundant re-computations.
In 2006, Czarnecki and Helsen [1] identified 3 types of incrementality for M2T
transformation: user edit-preserving incrementality, target incrementality, and
source incrementality. In previous work, we have reviewed contemporary M2T
transformation languages, identifying that whilst user-edit preserving incremen-
tality and target incrementality are widely supported, source incrementality is
not supported at all, to the best of our knowledge [3]. In this paper, we focus
on source incrementality and argue that it is an essential feature for providing
scalable M2T transformation capabilities.

1 [template public helloWorld(name : String)]
2 Hello [name/]!
3 [/template]

Listing 1.1. Example of a template-based M2T transformation, in OMG MOFM2T
syntax. Line 2 contains a static section (“Hello”), a dynamic section (that outputs the
value of the name variable) and another static section (“!”).

http://www.eclipse.org/modeling/m2t/downloads/
http://www.eclipse.org/modeling/m2t/downloads/
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(a) Metamodel.

brown.txt

Academic Transcript
Name: Andy Brown

Module     Grade
SEPR       88

Remarks

sepr.txt

Module Report for SEPR
Lecturer: Mary Johnson

Number of students: 2
Average mark: 65

Student transcripts Module reports

(b) Example output.

Fig. 1. Artefacts for a M2T transformation that generates reports

Source incrementality is the capability of a M2T transformation engine to
respond to changes in its source models in a way that minimises (ideally elimi-
nates) the need for recomputations that will not eventually have an impact on
its output. Achieving a high degree of source incrementally can significantly im-
prove the efficiency of complex transformations, especially when they operate on
large and/or complex source models (with many cross-references between model
elements and/or inter-dependencies between source models).

3 Signatures for Source Incremental M2T Transformation

Arguably, a combination of precise model differencing and static analysis could
be used to achieve source incrementality: static analysis could be used to identify
the set of templates that need to be re-executed in response to changes identi-
fied via model differencing. However, this approach to source incrementality is
very challenging to achieve in practice as the majority of contemporary M2T
languages are not amenable to static analysis at the required level of precision.
More specifically, contemporary M2T languages are normally dynamically-typed
and support features, such as dynamic dispatch and first-order logic functions,
that inhibit precise static analysis.

This section proposes an alternative approach that uses signatures : concise
and lightweight proxies for templates that indicate whether or not a change to
an input model will alter the output of a template. Signatures provide some
support for source incrementality for contemporary template-based M2T lan-
guages, without relying on model differencing and static analysis. This section
summarises the approach, discusses the way in which existing template-based
M2T languages can be extended with support for signatures, and briefly de-
scribes a prototypical implementation of signatures.

3.1 Overview

A source-incremental transformation engine seeks to reduce the amount of trans-
formation execution time necessary to propagate changes from the source model
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to the target. In providing source incrementality, a transformation engine must
be capable of identifying the subset of the transformation that is sensitive to the
changes (impact analysis), and re-executing the subset of the transformation to
update the target (change propagation).

Of these capabilities, as mentioned above, performing accurate impact analysis
presents arguably the greatest challenge. In a template-based M2T transforma-
tion, a template might be sensitive to some types of change to a model element,
but not to others. In the example presented in Figure 1, the student reports are
generated by a template that, clearly, is sensitive to changes to the name of a
module (e.g., “SEPR” changes to “Software Project”), but not to the name of the
lecturer (e.g., “Mary Johnson” changes to “Mary Johnson-Smith”).

Signatures, as discussed below, provide a lightweight mechanism for describing
the changes to which a template is sensitive. When a transformation is first
executed, signatures are calculated and written to non-volatile storage. When a
transformation is re-executed in response to changes to the source model, the
signatures are recomputed and compared to those from the previous execution.
A template is re-executed only if its current signature differs from its previous
signature.

3.2 Design

Before discussing our proposed extension to support signatures in template-
based M2T languages, we must first consider the way in which transformation
execution is implemented in typical template-based M2T languages. To avoid
specialising the discussion to a specific transformation language or engine, we use
the terminology and execution model described in the OMG MOFM2T standard.

A M2T transformation is specified using a Module, which comprises one or
more Templates. A Template comprises a set of Parameters, which specify the
data on which a template must be executed; and a set of Expressions, which
specify the behaviour of the template. In addition to the typical types of expres-
sion used for model management (e.g., accessing or updating the properties of
a model element, iterating over associated model elements, etc.), M2T transfor-
mation languages provide two further types of expressions: TemplateInvocations,
which are used for invoking other templates; and FileBlocks, which are used for
redirecting generated text to a file. A TemplateInvocation is equivalent to in situ
placement of the text produced by the Template being invoked.

Consider, for example, the M2T transformation in Listing 1.2, which produces
student transcripts of the form shown on the right-hand side of Figure 1. This
M2T transformation comprises three templates: generateReports (lines 3-10),
studentToTranscript (lines 12-22), and courseToReport (lines 24-32). All of the
templates accept one parameter (a University object, a Student object and a
Course object, respectively). The first template invokes the second (third) tem-
plate on line 5 (line 8) by passing an instance of Student (Course). Note that
the second and third templates both redirect their output to a file named after
the Student or Course on which they are invoked (lines 13 and 25).
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1 [module generateReports(University)]
2

3 [template public generateReports(u : University)]
4 [for (s : Student | u.students)]
5 [studentToTranscript(s)/]
6 [/for]
7 [for (c : Course | u.courses)]
8 [courseToReport(c)/]
9 [/for]

10 [/template]
11
12 [template public studentToTranscript(s : Student)]
13 [file (s.name)/]
14 Academic Transcript
15 Name: [s.name/]
16 Module Grade
17 [for (g : Grade | s.grades)]
18 [g.course.name/] [g.mark/]
19 [/for]
20 Remarks
21 [/file]
22 [/template]
23
24 [template public courseToReport(c : Course)]
25 [file (c.name)/]
26 Course Report for [c.name/]
27 Lecturer: [c.lecturer/]
28
29 Number of students: [c.grades->size()/]
30 Average mark: [c.grades->collect(mark)->sum() / c.grades->size()/]
31 [/file]
32 [/template]

Listing 1.2. Example of a template-based M2T transformation, specified in OMG
MOFM2T syntax.

Execution of a M2T transformation specification (i.e., a Module) is performed
by a transformation engine. A transformation engine takes as input a source
model and a Module, and outputs text. Execution begins by creating a Tem-
plateInvocation from an initial Template and Parameter Values. The TemplateIn-
vocation is executed by evaluating the expressions of its Template in the context
of its Parameter Values. During the evaluation of a TemplateInvocation, addi-
tional TemplateInvocations can be created and evaluated in the same manner,
and any FileBlocks are evaluated by writing to disk the text generated when
evaluating the expressions contained within the FileBlock.

For example, execution of the of the M2T transformation in Listing 1.2 would
proceed as follows:

1. Load the source model.
2. Create and evaluate a TemplateInvocation for the primary template, gener-

ateReports (see line 1), passing the only University object in the source as
a parameter value.

3. For each of the Students contained in the University:
(a) Create and evaluate a TemplateInvocation for the studentToTranscript

template, passing the current Student object as a parameter value.
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(b) Emit the text for the student transcript (lines 14-20) to a text file with
the same name as the Student.

4. For each of the Courses contained in the University:
(a) Create and evaluate a TemplateInvocation for the courseToReport tem-

plate, passing the current Course object as a parameter value.
(b) Emit the text for the course report (lines 26-30) to a text file with the

same name as the Course.

In a typical M2T transformation engine, execution involves creating and eval-
uating TemplateInvocations. In a source incremental M2T transformation en-
gine, execution additionally involves identifying the subset of TemplateInvoca-
tions that need to be evaluated to propagate changes from the source model to
the generated text. In other words, a source incremental M2T transformation
engine identifies but, crucially, does not evaluate TemplateInvocations for which
the generated text is known due to a previous invocation of the transformation.

3.2.1 Extending M2T Transformation Languages with Signatures.
Given a template-based M2T language with the execution model described
above, an extension to provide source incrementality via signatures involves the
addition of the following three concepts:

– A Signature is a value that is isomorphic with the text generated by a Tem-
plateInvocation, and is used by a source incremental transformation engine
to determine whether or not a TemplateInvocation needs to be re-evaluated.

– A SignatureCalculator is a strategy for computing a Signature from a
TemplateInvocation. The choice of algorithm for calculating signatures is left
to the implementor, but we discuss two suitable algorithms in Section 3.2.2.
Note that any algorithm for calculating a signature must be less computa-
tionally expensive than executing the TemplateInvocation (i.e., producing
the generated text from the template).

– A SignatureStore is responsible for storing the Signatures calculated dur-
ing the evaluation of a M2T transformation, and makes these Signatures
available to the transformation engine during the next evaluation of M2T
transformation on the same source model. The way in which Signatures
are stored is left to the implementor, but some possible solutions are flat
files, an XML document, or a database. A SignatureStore must be capable
of persisting Signatures between invocations of a M2T transformation (in
non-volatile storage). Moreover, a SignatureStore must be performant: any
gains achieved with a source incremental engine might be negated if the
SignatureStore cannot efficiently read and write Signatures.

Adding support for signatures to a template-based M2T language involves
extending the transformation engine with additional logic that invokes a Signa-
tureCalculator and a SignatureStore (Figure 2). During initialisation, the trans-
formation engine requests that the SignatureStore prepares to access any existing
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TransformationEngine

6. new(template, parameterValues)

SignatureStore SignatureCalculator

TemplateInvocation

2. calculate(template, parameterValues)

5. hasChanged

[ hasChanged ]

opt

8. dispose()

1. load(module, configuration)

3. signature

4. store(signature)

7. execute()

loop

Fig. 2. UML sequence diagram describing how Signatures are used to determine
whether or not a TemplateInvocation should be executed

Signatures for the current M2T transformation (Module) and the current Con-
figuration (i.e., source model, file system location for the generated files, etc).
Whenever the transformation engine would ordinarily create a TemplateInvoca-
tion from a Template and a set of ParameterValues, it instead asks the Signature-
Calculator to calculate a Signature from the Template and ParameterValues
(step 2). The transformation engine stores the Signature using the SignatureStore
(step 4). The SignatureStore returns a Boolean value (hasChanged) which indi-
cates whether or not the Signature differs from the Signature already contained
in the SignatureStore from any previous evaluation of this M2T transformation
(step 5). If the Signature has changed, a TemplateInvocation is created and ex-
ecuted (steps 6 and 7). The transformation engine informs the SignatureStore
(step 8) when the transformation completes, so that it can write the Signatures
to non-volatile storage.

3.2.2 Signature Calculation Strategies. As discussed briefly above, a Sig-
natureCalculator is a strategy for computing a Signature. The remainder of this
section describes two calculation strategies: automatic and user-defined. In both
cases, Signature values comprise (i) data obtained from the ParameterValues
and Template (as discussed below), and (ii) a hash of the Template. The latter
is included to ensure that the transformation engine can detect and re-execute
templates that have been modified by the transformation developer.
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name = "Andy Brown"

andy : Student

name = "Sally Graham"

sally : Student
name = "SEPR"
lecturer = "Mary Johnson"

 sepr : Modulemark = 88

: Grade

mark = 42

: Grade

Fig. 3. Example input model for the transformation in Listing 1.2

1 // Signature for studentToTranscript(s : Student)
2 [s.name/],
3 [for (g : Grade | s.grades)]
4 [g.course.name/],[g.mark/],
5 [/for]
6

7 // Signature for courseToReport(c : Course)
8 [c.name/],
9 [c.lecturer/],

10 [c.grades->size()/],
11 [c.grades.collect(mark)->sum() / c.grades->size()/]

Listing 1.3. Example using automatic signatures for the studentToTranscript and
courseToReport templates in Listing 1.2, specified in OMG MOFM2T syntax.

Automatic Signatures. A straightforward algorithm for calculating signatures
is to concatenate the text generated by evaluating only the dynamic sections of a
template, ignoring any static sections and any file output blocks. This algorithm
is likely to be less computationally expensive than a typical evaluation of the
template because fewer statements are evaluated and no disk access is required.
For example, suppose the M2T transformation in Listing 1.2 is evaluated on the
model in Figure 3. The automatic signature calculation strategy would compute
signatures equivalent to the code in Listing 1.3 for the studentToTranscript and
courseToReport templates in Listing 1.2. Consequently, the following signatures
will be computed:

1. For studentToTranscript on Andy Brown: Andy Brown,SEPR,88
2. For studentToTranscript on Sally Graham: Sally Graham,SEPR,42
3. For courseToReport on SEPR: Mary Johnson,2,65

Suppose that mark of the Grade associated with Sally Graham and SEPR
is changed from 42 to 54. When the M2T transformation is next executed, the
following new signatures will be computed:

1. For studentToTranscript on Andy Brown: Andy Brown,SEPR,88
2. For studentToTranscript on Sally Graham: Sally Graham,SEPR,54
3. For courseToReport on SEPR: Mary Johnson,2,74

The second and third Signatures differ, and hence the transformation engine
will create and evaluate TemplateInvocations to recompute the generated text
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1 [template public voterStatus(p : Person)]
2 [if (person.age >= 18)]
3 [person.forename/] [person.surname/] should complete a voting form.
4 [else]
5 [person.forename/] [person.surname/] is ineligible to vote.
6 [/if]
7 [/template]

Listing 1.4. Use of a dynamic section to control the flow of execution, which causes our
straightforward signature calculation strategy to produce a non-isomorphic signature.

1 [template public voterStatus(person : Person)]
2 [signature person.age + person.forename + person.surname/]
3 ...
4 [/template]

Listing 1.5. Enhancement to the template in Listing 1.4, which adds a user-defined
signature on line 2.

for these templates and parameter values. The first Signature remains the same
and so the transformation engine takes no further action.

Despite reducing the execution time of transformations, this algorithm does
not always produce Signatures that are isomorphic with the text generated
by their corresponding TemplateInvocations. For example, consider Listing 1.4.
Here, the person.age attribute indirectly contributes to the generated text. The
Signature calculated by the automatic algorithm would be equivalent to evalu-
ating the expression person.forename+person.surname, which is not sensitive
to changes to the person.age attribute.

User-defined Signatures. An alternative strategy, which addresses the short-
comings of the automatic strategy, is to allow users to specify the expressions
that are used to calculate Signatures. This can be achieved by adding a new
construct to the M2T template language. For example, Listing 1.5 demonstrates
the way in which a user-defined signature could be used to calculate signatures
for the template that the automatic strategy finds problematic. In addition to
addressing the primary shortcoming of the automatic strategy, the user-defined
strategy is also likely to be more performant, because no analysis or invocation
of a template is necessary to calculate signatures.

A drawback of the user-defined strategy is that the transformation developer
must ensure that signature expressions are consistent with the template. For
large or complicated templates, user-defined signatures are likely to be both dif-
ficult to specify initially and difficult to maintain. A hybrid strategy in which
a transformation developer can add to the automatically generated signature
might be an acceptable compromise. For example, the developer would be able
to add the person.age attribute to the automatically generated signature for the
template in Listing 1.4. As discussed in Section 6, we are currently investigat-
ing structures that assist developers in identifying and maintaining user-defined
signatures.
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4 Evaluation and Experience Report

We now report the results of an empirical evaluation of the signature-based ap-
proach, which compared transformation execution times in incremental and non-
incremental modes and investigated the threshold after which incremental trans-
formation no longer outperformed non-incremental transformation. The evalua-
tion shows that source incremental transformations can be more efficient than
non-incremental transformations, particularly for frequent or relatively small
changes to models.

The automatic signature calculation strategy (rather than the user-defined
strategy) was used for the evaluation, for two reasons. Firstly, the automatic
strategy was sufficient for generating accurate signatures for the selected M2T
transformations. Secondly, we have not yet developed structures to assist in
identifying and testing user-defined signatures, and hence adding user-defined
signatures to larger and more complicated M2T templates would have been time
consuming and error-prone. The use of the automatic strategy does not threaten
the validity of our results, because the user-defined strategy is more performant
than the automatic strategy. In other words, the results presented in this section
are an underestimate of the efficacy of our approach, and would be improved by
application of the user-defined signature calculation strategy.

4.1 Empirical Evaluation

We applied our extensions to EGL to two M2T transformations (Pongo and
GraphitiX) to investigate the comparative execution times of using and not us-
ing signatures to provide source incrementality. When measuring execution times
for transformation invocations that did not use signatures, we used our modified
version of EGL but disabled source incrementality (by substituting dummy im-
plementations of the SignatureCalculator and SignatureStore). We elected not
to use the larger and more complicated M2T transformation from INESS (Sec-
tion 1) until we have developed structures for assisting in the identification and
testing of the user-defined signature calculation strategy, as discussed in Sec-
tion 4.2.

4.1.1 Pongo. Pongo1 is a M2T transformation, implemented in EGL, that
generates data mapper layers for MongoDB, a non-relational database. Pongo
consumes an Ecore model that describes the types and properties of the objects
to be stored in the database, and generates Java code that can be used to interact
with the database via the user-defined types and properties (without needing to
use the MongoDB API). Pongo was developed by one of the authors (Kolovos).
The results presented below use Pongo v0.5, which was released prior to our
implementation of source incrementality in EGL.

To replicate the effects of using a source incremental transformation engine
throughout the lifetime of a development project, we used Pongo to generate
1 https://code.google.com/p/pongo/

https://code.google.com/p/pongo/
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Table 1. Results of using non-incremental and incremental M2T transformation for
the Pongo M2T transformation, applied to 11 historical versions of the GMFGraph
Ecore model

Non-Incremental Incremental
Version Elements Changed (#) Invocations (#) Time (s) Invocations (#) Time (s; %)
1.23 - 67 1.51 67 1.83 (121%)
1.24 1 67 1.85 1 0.78 (42%)
1.25 1 68 1.71 2 0.67 (39%)
1.26 1 69 1.54 1 0.70 (45%)
1.27 10 69 1.55 44 0.77 (50%)
1.28 10 69 1.64 44 0.62 (38%)
1.29 14 69 1.69 14 0.53 (31%)
1.30 24 72 1.58 35 0.61 (39%)
1.31 1 72 1.53 0 0.57 (37%)
1.32 1 72 1.53 0 0.46 (30%)
1.33 3 74 1.58 3 0.45 (28%)

17.71 7.99 (45%)

Java code from the 11 versions the GmfGraph Ecore model obtained from the
Subversion repository2 of the GMF team. We selected GmfGraph due to the
availability of historical versions, and because it was not developed at York.

The results (Table 1) show the difference in number of template invocations
and total execution time between non-incremental and incremental execution
modes of execution, for each of the 11 versions of the GmfGraph model. For the
first invocation of the transformation (version 1.23), the incremental mode of
execution took slightly longer to execute than the non-incremental mode because
the former incurs an overhead as it must calculate and store signatures for every
template invocation. In every subsequent invocation of the transformation, the
incremental mode of execution required between 28% and 50% of the execution
time required by the non-incremental mode. In a project for which Pongo was
applied once for each version of the GMF project, the incremental mode would
require 45% of the execution time of the non-incremental mode. The overall
reduction in execution time (9.72s) is modest, but that is partly explained by
the relatively small size of the Pongo transformation (6 EGL templates totalling
329 lines of code), and of the GmfGraph model (averaging 65 classes).

4.1.2 GraphitiX. GraphitiX 3 is a code generator, implemented in EGL, that
generates Java code for a graphical editor from a description of the concrete
and abstract syntax of a domain-specific modelling language. Compared to the
Pongo transformation, GraphitiX is much larger (23 EGL templates totalling
1689 lines of code). GraphitiX was developed by one of the authors (Ogunyomi).
The results presented below use Subversion revision 1 of GraphitiX, which was
developed prior to our implementation of source incrementality in EGL.

To examine how the reduction of execution time varies as the magnitude of
change in a model increases, we applied GraphitiX to a large model, changed a

2 https://git.eclipse.org/c/gmf-tooling
3 https://code.google.com/p/graphiti-x/

https://git.eclipse.org/c/gmf-tooling
https://code.google.com/p/graphiti-x/
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proportion of the model, and re-executed GraphitiX. We wished to determine the
proportion of the model that needed to change after which the incremental mode
of execution became more costly than non-incremental mode with respect to the
total transformation time. (Recall that incremental mode incurs the overhead
of calculating and storing signatures). The input models were constructed via
a script that generated classes with identical structure (a constant number of
attributes and no associations). At every iteration, a subset of all classes were
modified (by renaming one attribute).

As shown in Table 2, the results highlight the impact that the magnitude
of change on an input model can have on an incremental transformation. The
results suggest that source incremental transformation requires less computation
than non-incremental transformation until a significant proportion of the source
model is changed. In this case, source incremental transformation outperforms
non-incremental transformation until 300 (30% of) classes in the input model
were changed.

Table 2. Results of using non-incremental and incremental M2T transformation for the
GraphitiX M2T transformation, applied to increasingly larger proportions of changes
to the source model

Non-Incremental Incremental
Change (# Elements) Template Invocations (#) Time (s) Template Invocations (#) Time (s; %)
- 4012 49.97 4012 76.04 (152.17%)
1 4012 45.02 3 38.99 (86.61%)
4 4012 43.86 6 36.51 (83.24%)
5 4012 43.38 7 36.40 (83.91%)
10 4012 43.99 12 36.56 (83.11%)
20 4012 43.75 22 36.73 (83.95%)
100 4012 44.44 102 39.29 (88.41%)
300 4012 44.39 302 44.71 (100.72%)
600 4012 44.02 602 53.57 (121.69%)

4.2 Discussion

Our initial experiments have indicated that the use of signatures for providing
source incrementality is promising: we have demonstrated that a reduction in
execution time is observed both for realistic changes to a model (e.g., the changes
made to GmfGraph Ecore model) and until a significant proportion of a model
is changed (e.g., renaming an attribute in around 30% of the classes in a model
used as input to the GraphitiX transformation). The results also indicate that
source incrementality using our approach is more efficient than non-incremental
transformations when frequent, small changes are made to a model throughout
the lifetime of a project.

Further performance improvements are likely to be achievable via the applica-
tion of user-defined signatures, particularly to templates that have been identi-
fied as bottlenecks. We will extend our empirical investigations along these lines
once we have developed structures that assist in the identification and testing of
user-defined signatures. In particular, we anticipate extending our evaluation to
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include the larger and more complicate M2T transformation used in the INESS
project (Section 1), for which the automatic signature calculation strategy will
not always be sufficient.

5 Related Work

Source incrementality has been previously explored in the context of model-to-
model (M2M transformation). PMT [4] is a M2M transformation language that
synchronises models via trace links, which contain information relating to the
provenance of target model elements with respect to source model elements [5].
PMT is a rule-based M2M transformation language and the transformation en-
gine uses identifiers to match source model elements to target model elements.
PMT has two source incremental execution modes. In fully conservative mode,
changes made to a source model that do not affect any elements of the existing
target model (e.g., the addition of a new element to the source model), a match-
ing target element is created in the target model. In semi-conservative mode,
changes made to a source model element that replace elements of the existing
target model are permitted.

Hearnden et al. [6] describes a source incremental M2M transformation engine,
in which a tree is used to represent the trace of a transformation execution. Each
node in the tree represents either a source or target element, while the edges
represent the transformation rules. An important feature of this approach is that
the entire transformation context is maintained throughout all transformation
executions. As changes are made to the source model, the changes are propagated
to the tree and, in turn, to the target model.

6 Conclusion

Notwithstanding the potential productivity and portability gains of MDE, scala-
bility – the ability for MDE tools, techniques and practices to be applied to larger
and more complex systems – remains an open research challenge. In this paper,
we have explored an approach to reducing the execution time of M2T trans-
formations in the response to changes to large models. We have contributed
a design for an extension to M2T transformation languages that will enable
support for source incrementality via the application of signatures, concise and
lightweight proxies for templates that are used to perform impact analysis on
a model with respect to a transformation. We have demonstrated the potential
efficacy of signatures via an empirical evaluation.

In future work, we will develop structures that can assist developers in the
identification and testing of user-defined signatures (which will outperform au-
tomatic signatures). In particular, we will apply dynamic analysis techniques to
determine the data that is accessed by a template. The results of the dynamic
analysis will be compared to any user-defined signature for a template to deter-
mine whether the data used to calculate the signature is necessary and sufficient.
Once we have automated support for developing user-defined signatures, we will
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also extend our empirical evaluation to investigate incrementality for larger and
more complicated M2T transformations (such as the INESS M2T transforma-
tion described in Section 1), for which user-defined signatures will be required
to ensure correctness of the incremental transformation.
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Abstract. The paper explores a vision in modeling the behavior of com-
plex systems by modular units hosting state machines arranged in part-
whole hierarchies and communicating through event flows. Each modular
unit plays at the same time the double role of part and whole, i.e. it is
inspired by the philosophical idea of holon, providing both an interface
and an implementation by which other component state machines may be
controlled in order to achieve a global behavior. It is moreover observed
that it is possible to assign a formal characterization to such state mod-
ules, due to their part-whole arrangement, since higher-level behaviors
can derive formally their meaning from lower-level component behaviors.
Such a way of arranging behavioral modules allows to establish directly
correct-by-construction safety and liveness properties of state-based sys-
tems thus challenging the current approach by which state machines
interact at the same level and have to be model-checked for ensuring
correctness.

Keywords: state-based modeling, holons, component-based modeling,
model checking, correctness by construction.

1 Introduction

Holons, in the terminology of Arthur Koestler in his 1967 book The Ghost in the
Machine [1] are entities which are, at the same time, both parts and wholes. Ac-
cordingly, complex phenomena and entities can be decomposed into part/whole
hierarchies, named holarchies, with holon nodes at each level. The main interest
in the holonic approach lies in the fact that it reconciles both the reductionist
and the holistic view in systems analysis.

By the reductionistic view, which dates back to Descartes and is sometimes
referred to as divide and conquer or more formally analytic reduction, a com-
plex system can be analyzed by “reduction” into distinct parts so that they
can be analysed separately. Such decomposition allows to deal effectively with
systems complexity, by recursively confining it into less complex and distinct
parts, namely subsystems. In order to be effective, analytic reduction implies the
following assumptions: the division into parts will not distort the phenomenon
being studied and the behavior of the components is the same when examined
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apart as when playing their part in the whole system. Additionally a third fun-
damental assumption is that it is possible to draw a clear boundary between the
interactions among the subsystems and the behavior of the subsystems them-
selves [2][3].

While it is easy to discover and model standalone entities and systems, dif-
ficulty arises in assembling more complex systems using such entities as com-
ponents, since there is no agreement on a composition model which allows full
composability of abstractions. By full composability we mean that the same ex-
act component should work in the whole without having to modify it in order to
adapt it to any composition context (off the shelf approach), thus fully satisfying
the second assumption of the reductionistic program reported above.

The current approach consists essentially of the composition model implicit
in the object-oriented paradigm, by which systems modeled by objects inter-
act and synchronize by invoking procedural methods on other objects, typically,
albeit not only, by direct message exchange through object-valued attributes,
called references. In other words, since there are no specific constructs for mod-
eling the composition of objects as a whole, the object-oriented paradigm is
inherently “component-oriented”. As stated by Rumbaugh, it may be therefore
observed that “in the current object-oriented paradigm interactions are buried
in the instance variables and methods of the classes, so that the overall structure
of the system is not readily apparent” [4]. A construct for modeling the overall
structure of systems is missing in the object-oriented paradigm. Such a “missing”
construct should be able to emphasize such a structure and to model its overall
dynamics as a whole, thus correcting its tendency to be component-oriented.

Finally, such a construct should be moreover able to act as a standalone
component into more complex wholes without further modifications. In other
words, it is desirable, for elegance and simplicity, not only to have an additional
modular construct for implementing wholes from components, but to have a
single constructs playing both roles seaminglessy.

1.1 The “Missing Whole” Problem

The major difficulty in achieving effective object composition lies in missing the
semantic distinction between intra- and inter -object behavior. While the former
pertains naturally to the object itself, the latter acts as some sort of glue in the
assembly of object components into more complex wholes.

Current object-oriented modeling techniques do not make any semantic dis-
tinction amongst the two kinds of behavior, since both are modeled by the same
object construct, that is by mutual object references and remote method invoca-
tion through message passing. In this way, as observed, most of current modeling
object oriented development methodologies and formalisms in analysis and im-
plementation make the object construct semantically overloaded, since it hosts
both its endogenous behavior as a component and, at the same time, the exoge-
nous behavior of the system being assembled, resulting in the tight coupling of
abstractions and implementations.
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The “missing whole” problem has been moreover partially dealt with by means
of different external mechanisms patched to the object-oriented paradigm in
order to enhance it. for example, by specific object patterns and communication
mechanisms, like the Mediator and the Observer design pattern [5] as well as the
Model View Controller (MVC) mechanism [6]. The Mediator pattern decouples
interacting classes by gathering their interacting portion of behavior within a
single “mediator” class, thus improving the overall understandability and self-
containment of the original classes. The role and the meaning of such “mediator”
class has interesting interpretations beyond its immediate pragmatic one, which
consists in laying a bridge among different behaviors. Such a bridging role is
achieved by prescribing changes to other classes in reaction to other changes
happening in the original classes. In other words such a bridging class hosts, as
a matter of fact, a behavior on its own.

On the other hand, any systemic behavior can be seen abstractly as a re-
active, coordinating behavior: it must in fact specify which actions have to be
undertaken in reaction to specific changes in system components in order to pre-
scribe additional changes to other system components. In other words a systemic
behavior links different behaviors, and it can be modeled either by a specific
modular construct of the language or it may be embedded within the original
behaviors. The two approaches in modeling systemic behavior can be named
respectively “explicit” versus “implicit” [7][8] depending on whether or not the
system dynamics is hosted within a single modular unit of behavior. By the im-
plicit approach an aggregate is modeled through a web of references by which the
component objects refer one to another. This way the associative knowledge be-
tween the component objects is modeled directly (by object-valued attributes),
hiding the structure and the behavior of the aggregate which is therefore not
identified as a relevant object. By the explicit approach, an explicit additional
object is inserted in the modeling instead, holding part-of relationships to the
component objects. The two approaches bear consequences on software quality
factors, for example implicit modeling tends to produce software artifacts which
are tightly coupled and not self contained, thus producing software which is
difficult to maintain, reuse, understand, and so on.

By adopting the explicit view, communication among systems has moreover
to be revised accordingly, due to the presence of an additional centralized unit
of behavior. In other words, components, which are no more tightly coupled one
with another are now tightly coupled with the mediator class itself. The original
tightly coupled modules have in fact to maintain static references to the class
implementing the centralized behavior in order to notify them of changes in their
internal status, allowing the mediator class to react appropriately through other
static references. The Observer design pattern and the MVC mechanism may
then be used in order to patch a reactive event-based communication framework
to the object paradigm, with the aim of decoupling components classes from
such specialized controller classes.

Object-oriented methodologies in the last two decades presented different ap-
proaches to the joint modeling of structural and behavioral aspects, essentially
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by encapsulating behavior around already discovered structures, with the result
that not readily apparent systems and wholes were often missing in the final
design. In other words, since components are self-evident while systems are of-
ten not, such methodologies provided very few support in discovering enclosing
wholes, thus committing themselves towards the implicit modeling approach. A
slightly different approach may be found instead in the Object Modeling Tech-
nique (OMT) by Rumbaugh [4] and in the Fusion method by Coleman et al. [9]
which emphasized the role played by mutual relationships in discovering new
encapsulating classes. Most of such work eventually merged into the UML [10]
and the UML 2 [11] standards, which partly corrected the implicit tendency by
a wealth of modeling constructs, for example by distinguishing between “weak”
aggregation and “strong” composition relationships and introducing suitable “as-
sociation” classes, albeit missing, in some sense, a unifying and comprehensive
theoretical framework.

The aim of this paper is to show that a different paradigm may be pur-
sued by going beyond the existing, partial, solutions towards a vision of the
object paradigm which coherently combines components and wholes through a
revised communication mechanism. The paper employs the Part-Whole Stat-
echarts (PWS) formalism [12] in order to illustrate the more general idea of
holonic modeling. Part-Whole Statecharts have already been used in pioneer-
ing the feasibility of holarchies of unmanned vehicles and of multiagent sys-
tems [13][14][15]. The same formalism has been endowed recently [16] with a
formal syntax and semantics which allows, by construction, to build correct
modules without using model checking techniques.

1.2 Structure of the Work

Section 2 discusses and compares general principles of behavioral composition,
interaction and synchronization. Section 3 presents a modular construct which
implements the general idea of holon and Section 4 discusses the feasibility of
modeling real-world cases through Part-Whole Statecharts.

2 Behavioral-Driven Composition

It may be observed that entities which exhibit a peer to peer coordinated be-
havior act, globally, as a new aggregated entity. This is true both of entities
communicating and coordinating through exchange of signals as well as of enti-
ties having a mechanical connection which trivially constrains them to behavioral
coordination. Process algebras [17][18] furnish an interesting example in Hoare’s
CSP seminal work, where a customer CUST is modeled by a process which inter-
act with a vending machine VM, the interaction becoming a new single process
P = CUST||VM, with || being the concurrency operator in CSP. In the rest of
the paper we will use, with no loss of generality with respect to process alge-
bras, a state-based formalism which lends itself to a very readable, albeit formal,
diagrammatic form through the concepts of states and state transitions.
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Focusing directly on entities without considering their joint behavior, a prac-
tice inspired by common-sense real-world observation, may be misleading in
finding higher level, more complex entities and systems. A system is in fact as-
sembled from a set of physical components, which exercise physical control one
upon another and exhibit individual state changes induced by mutual and direct
physical interactions. The point is that local state changes can be seen, alterna-
tively, as a global single state change at the system level, since an aggregate of
coordinated entities moves from one global state to the another as its distinct
components move from one state to the another.

The final step consists in hypothesizing that since each entity hosts a behavior,
each behavior implies the existence of a suitable entity which hosts it. Looking at
behavioral aggregation represents therefore a challenging clue in developing new
modeling paradigms and constructs built according to the principle of explicit
modeling of associative behavior.
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Fig. 1. The behavioral assemblage of three standalone Statecharts (a), into a complex
system (b), obtained by modifying their behavior through direct event forwarding
and mutual state condition testing. Grey arrows emphasizing mutual interactions and
dependences visually depict the global systemic behavior.

2.1 The Explicit Modeling Conjecture

Statecharts, by David Harel [19], allow to model compound behaviors by a set of
interacting parallel state machines, each state machine hosted within an AND-
decomposed state, each single state of the machine being an XOR-decomposed
state. Statecharts may then be used in a straightforward way to represent sin-
gle behaviors. Such behaviors in turn may be composed into more complex
ones through mutual coordination and synchronization, by forwarding command
events from one machine to the another as well as by requiring state conditions to
be satisfied before a transition is taken. As an example consider Figure 1 where
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three Statecharts automata taken in isolation in (a) form, globally, a system
in (b) once automata are modified in order to mutually implement the following
behavior:

“The pump may be started and stopped, and the valve is opened and
closed accordingly in order to allow the flow of liquid into tank. A sensor
detects tank pressure and inhibits valve opening when the pressure is
too high, in order to avoid reflux from the tank. When the opening of
the valve is not permitted, a stop signal is sent back to the pump.”

Behavioral interdependences which implement the behavior above are de-
picted in Figure 1 (b) by grey arrows: it may be easily observed that in such a
form, the whole behavior is hardly understandable, modifiable, testable and not
easily amenable to be checked for safety analysis. In other words, the Statecharts
construct requires to modify the internal behavior of components, thus contra-
vening Parnas’ principle of information hiding [20]. It may be also observed that
Statecharts’ state-based modeling is subject to “the missing whole problem” of
Section 1.1.

It may be conjectured, although a formal demonstration is outside of the
scope of the paper, that it is always possible to obtain, through a single coor-
dinating state machine W , called “whole”, the same exact behavior that would
be obtained by the direct interaction of a finite number of state machines.
Let A = {m1,m2, . . . ,mN} be a set of self contained state machine, and let
A′ = {m′

1,m
′
2, . . . ,m

′
N} be the corresponding set with m′

i being state machine
mi ∈ A extended in order to interact with other state machines in the same set
by event forwarding and mutual condition testing. For example, Figure 1 depicts
both the original self-contained machines (a) as well as the modified ones (b)
(compare for example pump with pump′). Figure 2 shows a state machine W
which implements the same behavior of Figure 1 (b) through the syntax and the
semantics of the Part-Whole Statecharts formalism.

State machine W plays a coordination role towards the original interacting
state machines, by labeling its state transitions with coordination commands
directed to state machines belonging to the set A and reacting to state changes
coming from the machines in the same set. Additionally, a definite semantics can
be assigned to the states in W as shown in [16].

3 Holons

Holons are modular units which host a behavioral construct, in the case at hand
a state machine, playing, at the same time, a twofold role:

1. the statemachine coordinates the behavior of other component holons through
their state machine interface;

2. the state machine provides an interface to other holons which coordinate the
holon.
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t4
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< v.close, p.stop >t1
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[ps=High]

< v.close, p.off >

ps.low
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ps.high

Fig. 2. The complex behavior of Figure 1 (b) modeled through a coordinating state ma-
chine, obtained as the “whole” section of an extend PW Statecharts machine (adapted
from [21]). The automaton coordinates the behavior of the pump (p) and of the valve
(v) depending on the pressure sensor (ps). State HTP denotes the exceptional case
of “high tank-pressure”. Transitions t4 and t6 are taken automatically as the tank
pressure changes.

The two points match the general notion which stands behind the holonic
paradigm (the so called “Janus”, i.e., double face, paradigm). Holons are at the
same time both whole (i.e., coordinating) and part (i.e., coordinated) entities.
Holons are arranged in part-whole hierarchies called holarchies by the recursive
pattern of composition depicted in Figure 3 (b). In such a pattern holon W
coordinates the joint behavior of its component holons A,B,C.

The proposed holonic pattern of composition is asymmetrical, since wholes
know their parts, but parts are forbidden to know the whole in order to maximize
self containment and reusability.

Such an asymmetry is achieved by having two typologies of signals which
travel from parts to whole and viceversa, as shown in Figure 3 (b):

1. the (whole section of the) holon has to prescribe coordinated behavior to
each of its component holons: this is depicted by grey arrows in the picture;

2. the holon has to react to changes happening in its component parts: this is
depicted by white arrows in the same picture.

Such a feature heavily relies on a suitable communication mechanism which
implements both event delivery from the whole to a recipient (grey arrows) as
well as a notification mechanism of any change happening within a component
towards the whole (white arrows in the picture). Aim of the mechanism is, be-
yond carrying events, to decouple component holons from their coordinating
counterparts, since the holon interface does not contain any reference to them.
If, on one hand, such a holon implementation is tightly coupled to its component



106 L. Pazzi

A B

C

communication medium

A B C

W

(a) (b)

Fig. 3. The implicit modeling of three interacting entities through the reference con-
struct (a) and the correspondent explicit modeling through four holons (b). The picture
suggests that triangle-shaped associative behavior may be gathered within holon W
thus freeing holons A,B and C from unnecessary details.

parts, holon interface does not contain any reference to any other holon in order
to achieve loose coupling among them. Parts do not know the whole, since they
have to be composed in many different, not foreseeable, contexts. The whole
does know its parts, instead, in order to achieve a useful composition.

For example, state transitions in the Part-Whole Statecharts formalism (cho-
sen for illustrating holons’ features in the paper) contain event commands of the
form 〈c.e〉: once the transition is triggered, event e is delivered to component c
whose interface contains a transition which has e as trigger (Figure 4 (a)). Vice
versa, any change in a component holon, say d, is “notified” to the holon which
has d as component, where a transition may have d.f as trigger, meaning that
holon W has to react to event f from holon d (Figure 4 (b)).

4 Formal Specification and Semantics

It is possible to annotate state-based holons at design time in such a way that
the behavior implemented at each level of composition can be formally specified
and verified. Part-Whole Statecharts, as observed, already provide the formal
instruments for performing formal specification of the semantics of state-based
holons. This marks an evolutionary advantage with respect to traditional object-
oriented and state-based modeling, where interacting and mutually referring
modules have no semantics, as observed in the Statecharts case [22].
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Fig. 4. The double role played by a communication medium among holons. (a) The
“delivery” role, by which a command c.e is dispatched, by the occurrence of state tran-
sition t2, from the whole automaton of holon W to component holon c, activating,
through its interface, state transition t1 triggered by e. (b) The reverse “notification”
role, by which the occurrence of state transition t1, labelled by f in the interface of com-
ponent holon d, is notified to the whole section of holon W activating state transition
t2 triggered by d.f (Figure 4 (b)).

It is presumable that part-whole arrangement of modules in combination with
hierarchical rules of control are at the basis of this important property of holons.
Coordinating state-based holons, each referring to a finite and fixed number of
component holons, allows in fact to map each of its states at a given composition
level to a well defined configuration of states belonging to the next composition
level. Such configurations can be equivalently expressed by a propositional for-
mula in a suitable boolean algebra [16].

Correctness, and consequently safety and liveness, may thus be achieved by
construction, by computing such propositions state by state as already shown
in Part-Whole Statecharts. It can be hypothesized that checking correctness of
each holon by construction may be also achieved by employing other formalisms
for expressing holons dynamics, for example by procedural languages, since any
state automaton may be deterministically translated into plain code. It may
be finally observed that state based specifications and models may be directly
executed.

4.1 Example

An automated car has to be controlled in order to start and stop depending on a
traffic light on a track. The same car has a system of automated doors which can
be operated either by a controller or manually. The car can be therefore seen
as a holon having the automated doors and the engine as component holons
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(Figure 5); at the same time the car holon can be composed into a higher level
holon which has the car and the traffic light as components (Figure 6). Moreover
safety and liveness constraints have to be met by the whole system and will be
be enforced, compositionally, at different levels of the holarchy:

1. The doors have to be closed while the car is moving;
2. The car has to be stopped when the traffic light is red, restarted when green.

Doors holon module: The doors may be opened and closed either by a signal
from the car controller or manually. In both cases the module moves from the
Open to the Closed state and vice versa. In the former case, the doors system
works as an actuator, by receiving event signals open and close which trigger
state transitions t3 and t4. In case doors are opened and closed manually, the
same holon may be seen as a sensor, since it takes autonomously state transitions
t2 and t5 and emits event signals open and close towards the holon which has the
doors as components, namely Car in the example. Autonomous state transitions
such as t2 and t5 are denoted by a small white circle near the starting state.
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Fig. 5. A holarchy controlling a safe automated car on a track

Engine holon module: The car engine may be simply turned on and off by
receiving event signals on and off which trigger state transitions t2 and t3 and
move the holon into the corresponding states On and Off.

Car holon module: this holon has two regular working states, Stop and Go. An
additional FailSafe state takes into account the exceptional behavior resulting
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from the manual opening of the doors while the car is moving. As in PW State-
charts, states are annotated by state propositions which are guaranteed to hold
when the system is within that state. For example, d.Open & eng.Off associated
to state Stop means that when in such a state the doors have to be opened and
the engine must be turned off. State proposition d.Close & eng.On associated
to state Go means conversely that when the car is moving the doors have to
be closed and the engine turned on. Transitions t2 and t3 are externally trig-
gerable by events go and stop which will be part of the interface of the holon
(see holon Car in the context of the holarchy in Figure 6). Transitions t2 and
t3, once triggered, propagate respectively command events 〈d.close, eng.on〉 and
〈d.open, eng.off〉 towards component holons Doors and Engine. It can be easily
verified that both transitions agree with the state propositions of the starting
and arrival states. Finally, when in the Go state, the manual opening of the doors
causes event open belonging to transition t2 of holon Doors to be sent towards
holon Car. This in turn triggers transition t4, which sends an off command event
〈eng.off〉 to the Engine holon which then moves to state FailSafe. Since transition
t4 is triggered by an event coming from a component, the resulting transition t4
will be seen by external contexts as autonomously triggered (see the interface
of Car in Figure 6). The system may be restarted by sending a restart event
from external composition contexts (such as holon GlobalTrackMonitor of Fig-
ure 6) which triggers transition t5 which in turns closes the doors and restarts
the engine by commands 〈d.close, eng.on〉.
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Red Green
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<c.go>

c.fail
c.FailSafe 

<c.restart>
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Fig. 6. The holarchy coordinating the automated car of Figure 5 and a traffic light
which enables either a main (Main) or a crossing secondary (Sec) road. Holon Car is now
employed in the model through its interface, obtained by simply hiding its components’
holons as well as any reference to them from the implementation of Figure 5.

Once holon Car has been designed and verified against the first of the two
safety constraints listed above, its interface may be employed in higher level



110 L. Pazzi

composition contexts without any concern for safety. In other words, any of the
go-, stop- and restart-triggered state transitions may asked to be taken in holon
Car without having doors opened while the car is moving. We then model a
global monitor for the track system, which has in charge both the automated
car and a traffic light in order to stop it when a secondary road is enabled
(Figure 6). Since it employs the holon Car which has been already verified for
safety, it now suffices to employ it for implementing the final behavior checking
only for the second safety constraint.

Traffic Light holon module: the state machine is the interface of a sensor which
detects the current color of the lights from the main road, by changing state
(Red and Green) by taking the two autonomous transitions t2 and t3. The traffic
light device enables and prevents access to the secondary road accordingly.

Global Track Monitor holon module: as red and green events are emitted by the
Traffic Light, autonomous transitions t2 and t3 are triggered, which in turn send
actions go and stop to the car (〈c.go〉 and 〈c.stop〉). It may be easily verified
that state propositions c.Stop & tl.Red c.Go & tl.Green, associated respectively
to states Sec and Main are trivially verified by such state transitions. When in
state Main the event unsafe signaling that a a door has been opened while the
car is moving, brings the system to state Emergency where additional actions
can be taken (not shown in the example): the car is restarted by transition t4
through action 〈c.restart〉 as soon as such additional actions are completed and
the traffic light is green.

4.2 Application to Incremental Modeling of Safety Constraints

The holonic approach allows to partition safety tasks and to model them into
hierarchically arranged modules, which can be checked incrementally by visiting
a single finite state diagram in constant time instead of having to unfold all
feasible behaviors of a set of many interacting machines, as in current model
checking techniques, which leads to exponential visiting time. Once designed
and checked for safety, the module can be used “as is” in further composition
contexts. In general a safe holon module can be arranged from already-designed
safe modules by specifying that their interaction will occur in a safe manner,
that is, as observed, by checking a single state machine in constant time. In case
of physical systems which inherently fail, a suitable fault management strategy
can be hosted at each level of decomposition, provided a sound decomposition
has been carried out in the entire design phase. It becomes thus possible to defeat
the overall complexity given by the concurrent modeling of operating modes and
failure management policies. For example, fail silently sub-devices may be used
as components for assembling a device behavior, which is able, at the higher
level to reduce the fail silent behavior to a more tractable fail explicit behavior.
The latter, in turn, may be used, at the next composition level, to obtain a fail
safe or fail operational behavior. Examples of such hierarchical arrangement of
failure modes and related devices are given in [23][24][25] and are summarized
in Figure 7.
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Fig. 7. Fault management strategies and devices tend to be placed at different levels
of complexity in hierarchically decomposed behavior(adapted from [24])

5 Conclusions and Further Research

The paper main thesis is that an unifying paradigm may be founded upon differ-
ent empirical and theoretical evidences, among which already existing improve-
ments to the current OO paradigm.

Interacting modules synchronize system behavior by message exchange. Such
messages, however, denote different kinds of information. Typically, systems
communicate either by “peer to peer” or “part to whole” message exchange,
the latter case pertaining to systems composed of other systems. The problem
consists, at the ontological level, in determining whether two systems stand in
the former or in the latter relationship. The object oriented paradigm, for exam-
ple, do not distinguish amongst the two cases, thus giving rise to the “semantic
overloading” of the reference mechanism.

As observed, vertical, part-whole, system composition is asymmetrical in na-
ture and preserves model reusability. On the other hand, horizontal, peer to peer
message exchange hinders model reusability, since it forces system modelers to
introduce exogenous details within systems being modeled, bringing severe limi-
tations to the overall software quality of the modeled systems. Physical interac-
tions among physical systems denote in fact conceptual structures, not evident at
first sight, which are well suited in order to host the overall interaction and syn-
chronization knowledge among the component parts. By introducing additional
system entities with the aim of lodging such a knowledge in a localized and
compact manner, we obtain a part-whole hierarchy of systems, called holarchy.
Such systems are, at the same time, both parts and wholes within a holarchy,
thus giving a formal characterization to the notion of holon [26][27] which may
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give, in turn, further impulse to use of holarchies in distributed agent-based
manufacturing systems[28][29][30][31].

The paper presents an explicit construct for the recursive modeling of systems.
The approach forces the modeler to express the behavior of composition by a
single unit of behavior. Such a behavioral unit plays the double role of being
both a specification of the behavior of the system of interacting parts, as well
as an interface for further composition of the entire assembled system as whole.
This double side, “Janus”-like feature makes such kind of construct suitable for
modeling, as observed, the behavior of holons.

The presented approach may be finally used in order to partition safety tasks
into hierarchically arranged modules, each checked incrementally. Real-time crit-
ical systems, for example, may benefit from the approach since it allows to de-
compose a single, monolithic, control program into smaller, safe, reusable and
composable systems, each hosting a different safety policy.

5.1 Further Research

Peer-to-peer (P2P) direct modeling is of paramount importance in expressing
mutual interaction among entities and systems. Peer-to-peer interacting enti-
ties may be seen in many cases as playing specific roles within an implicit
whole/holon. For example, “husband” and “wife” are both entities playing the
respective roles in a P2P cooperation. Peer-to-peer modeling however does not
allow to compute an exact state semantics, while part-to-whole (P2W) modeling
instead does, as suggested by the paper. It seems evident that any peer-to-peer
modeling corresponds to a specific part-to-whole modeling. For example, wife
and husband are both part of a “family”, which may be represented by an ex-
plicit entity/holon having two “humans” as components playing the “husband”
and “wife” roles as components of the family holon.

As observed in the paper, it may be conjectured that it is always possible to
obtain through the holonic P2W approach the same exact behavior that would
be obtained by the direct P2P interaction of a finite number of state machines. It
would then be interesting to investigate further whether an equivalence theorem
between P2P and P2W modeling could be show to hold. Any P2P cooperation
could then be checked by transforming it in a P2W holonic model for the sake
of verification, and back for the sake of readability.

Another point which is worth further investigating and is not covered in the
paper deals with inheritance. It is worth noting that the more we model state con-
straints within single modules the more we restrict the resulting global cartesian
automaton [32]. A starting point towards a novel notion of holonic inheritance
should therefore take into account, among possible other aspects, adding or re-
moving behavioral restrictions to state machines in moving along inheritance
hierarchies.

Finally, more research is needed in order to move towards more complex com-
position structures albeit retaining the part-whole hierarchical arrangement. For
example, what if the same component is part of two different holons? Figure 8-(a)
shows two different cross road controllers (CrossRoad1 and CrossRoad2) which
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share traffic light main1:TLight1. In order to avoid race conditions, the idea is to
restrict control of main1 to a single holon (CrossRoad1 in the picture) through
triggerable transitions t2 and t3 by command events go and stop (b). The rule,
to be further investigated, is that transitions controlled by a given holon become
simply observable by other holons in the composition graph. In this way, holon
CrossRoad2 would acquire the same traffic light with transitions t2 and t3 seen as
autonomous and non controllable (c), i.e. by simply “sensing” its state changes
and taking decisions accordingly. Holarchies, by such a perspective, may be thus
thought as acyclic direct graphs instead of simple partonomic trees, thus gaining
more flexibility in modeling complex scenarios.
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Fig. 8. (a) The same traffic light holon main1:TLight1 may be shared by two crossroad
controller holons, with the restriction that at most one is allowed to trigger its transi-
tions in order to avoid race conditions. (b) The interface of main1 as seen by CrossRoad1
with transitions t2 and t3 triggerable by events go and stop. (c) The interface of main1
as seen by CrossRoad2 with autonomous transitions t2 and t3 emitting events go and
stop.
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Abstract. Identifying differences among models is a crucial prerequisite for sev-
eral development and change management tasks in model-driven engineering.
The majority of existing model differencing approaches focus on revealing syn-
tactic differences which can only approximate semantic differences among mod-
els. Significant advances in semantic model differencing have been recently made
by Maoz et al. [16] who propose semantic diff operators for UML class and activ-
ity diagrams. In this paper, we present a generic semantic differencing approach
which can be instantiated to realize semantic diff operators for specific model-
ing languages. Our approach utilizes the behavioral semantics specification of
the considered modeling language, which enables to execute models and capture
execution traces representing the models’ semantic interpretation. Based on this
semantic interpretation, semantic differences can be revealed.

1 Introduction

The identification of differences among independently developed or consecutive ver-
sions of software artifacts is not only a crucial prerequisite for several important devel-
opment and change management tasks, such as merging and incremental testing, but
also for enabling developers to efficiently comprehend an artifact’s evolution. As in
model-driven engineering the main software artifacts are models, techniques for identi-
fying differences among models are of major importance.

The challenge of model differencing has attracted much research in the past years,
which lead to significant advances and a variety of approaches. The majority of them use
a syntactic differencing approach, which applies a fine-grained comparison of models
based on their abstract syntax representation. As shown by Alanen and Porres [1] and
later by Lin et al. [14], syntactic differencing algorithms can be designed in a generic
manner—that is, they can be applied to models conforming to any modeling language.
The result of such a differencing approach is a set of syntactic differences, such as
model elements that only exist in one model. Although syntactic differences constitute
valuable and efficiently processable information sufficient for several application do-
mains, they are only an approximation of the semantic differences among models with
respect to their meaning [10]. In fact, few syntactic differences among models may in-
duce many semantic differences, whereas also syntactically different models may still
exhibit the same semantics [16]. The identification of semantic differences is crucial
for understanding the evolution of a model, as it enables to reason about the meaning
of a change. Compared to syntactic differencing, semantic differencing enables several
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additional analyses, such as the verification of the semantic preservation of changes like
of refactorings and the identification of semantic conflicts among concurrent changes.

Significant advances towards semantic model differencing have been recently made
by Maoz et al. [16]. They propose semantic diff operators yielding so-called diff wit-
nesses, which are interpretations over a model that are valid in only one of the two com-
pared models. The semantic diff operator has to be realized specifically for each mod-
eling language by transforming models into an adequate semantic domain, performing
dedicated analyses within this semantic domain, translating the results of the analyses
back again, and representing them in the form of diff witnesses. Following this proce-
dure, Maoz et al. presented dedicated diff operators for UML activity diagrams [17] and
class diagrams [18]. Developing such diff operators for a specific modeling language,
however, still remains a major challenge, as one has to develop often non-trivial trans-
formations encoding the semantics of the modeling language into a semantic domain,
perform analyses dedicated to semantic differencing in this semantic domain, and trans-
late the results into diff witnesses on the level of the modeling language—notably, this
challenging process has to be repeated for every modeling language.

To mitigate this challenge, we present a generic semantic differencing approach that
can be instantiated to realize semantic diff operators for specific modeling languages.
This approach follows the spirit of generic syntactic differencing, which utilizes meta-
models to obtain the necessary information on the syntactic structure of the models to
be compared. Accordingly, we propose to utilize the behavioral semantics of a model-
ing language to support the semantic model differencing. In particular, we exploit the
executability of the behavioral semantics to obtain execution traces for the models to
be compared. These traces are considered as semantic interpretations over the models
and, thus, act as input to the semantic comparison. The actual comparison logics is
specified in terms of dedicated match rules defining which differences among these in-
terpretations constitute semantic differences. Semantic diff operators defined with our
approach are enumerative yielding diff witnesses, which constitute manifestations of
semantic differences among models and enable modeler’s to reason about a model’s
evolution. Hence, the diff operators constitute a crucial basis for supporting collabora-
tive work on models as well as for carrying out model management activities, such as
model versioning and refactoring, which can be supported by an automated analysis of
diff witnesses for identifying conflicting changes and causes of semantic differences.

In Section 2, we discuss existing work in the area of model differencing, before we
introduce our semantic differencing approach in Section 3. Subsequently, we show in
Section 4 how semantic diff operators can be implemented by applying our approach to
an existing semantics specification approach. In Section 5, we address the issue of gen-
erating model inputs relevant to semantic differencing. Finally, we present an evaluation
of the feasibility of our approach in Section 6 and draw conclusions in Section 7.

2 Related Work

Most of the existing model differencing approaches compare two models based on their
abstract syntax representation (e.g., [1,2,14,25,26,31]). In particular, a match between
two models is computed yielding the correspondences between their model elements,
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before a fine-grained comparison of all corresponding model elements is performed.
The result of this syntactic differencing is the set of model elements present in only one
model and a description of differences among model elements present in both models.

However, to determine whether two syntactically different models also differ in their
meaning, the semantics of the modeling language they conform to has to be taken into
account [10]. Few semantic model differencing approaches have been proposed in the
past. Generally, we can distinguish enumerative and non-enumerative approaches. Enu-
merative approaches calculate semantic interpretations of two compared models called
diff witnesses, which are only valid for one of the two models and, hence, provide evi-
dence about the existence of semantic differences among the models. Non-enumerative
approaches do not calculate and enumerate diff witnesses directly, but instead compute
an aggregated description of the semantic difference among the compared models [8].

Significant advances in semantic differencing have been achieved by Mazo et al.,
who propose an approach for defining enumerative semantic diff operators [16]. In this
approach, two models to be compared are translated into an adequate semantic domain
whereupon dedicated algorithms are used to calculate semantic differences in the form
of diff witnesses. Following this approach, they define the diff operators CDDiff [18]
and ADDiff [17], for UML class diagrams and UML activity diagrams, respectively.
CDDiff translates UML class diagrams into an Alloy module to generate object dia-
grams that are valid instances of one class diagram but not of the other. ADDiff trans-
lates two UML activity diagrams into SMV modules to identify execution traces which
are possible only in one of the two activity diagrams. Gerth et al. [9] developed an enu-
merative semantic diff operator similar to ADDiff for detecting semantic differences
among process models. Therefore, the process models are translated into process model
terms, which are subsequently compared to identify execution traces valid only for one
of the two compared models. Another approach for defining enumerative semantic diff
operators was presented by Reiter et al. [28]. In their approach, two models that shall
be compared are translated into a common semantic domain. The resulting so-called
semantic views of the two models are subsequently compared by syntactic differencing
techniques to identify semantic differences.

Unlike the approaches discussed so far, Fahrenberg et al. [8] propose an approach
for defining non-enumerative semantic diff operators. Therefore, the models to be com-
pared are mapped into a semantic domain having an algebraic structure that enables
to define the difference among two models in the form of an operator on the seman-
tic domain. Thereby, the difference is captured in the form of a model conform to the
same modeling language as the two compared models. Fahrenberg et al. applied this
approach for defining semantic diff operators for feature models as well as automata
specifications [8], and later also for UML class diagrams [7].

3 Overview

Developing semantic diff operators using the discussed existing semantic differencing
approaches poses a major challenge, because one has to develop non-trivial transfor-
mations encoding the semantics of the modeling language into an adequate seman-
tic domain, in which then specific semantic comparison algorithms have to be imple-
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Fig. 1. Overview of semantic differencing approach

mented. To mitigate this challenge, we propose a generic semantic differencing ap-
proach that can be instantiated to realize semantic diff operators for specific modeling
languages. Therefore, we utilize the behavioral semantics specification of a modeling
language, which can be defined using existing semantics specification approaches, such
as xMOF [20], Kermeta [22], or DMM [5]. Such semantics specifications can be used
for various application domains, ranging from model simulation, verification, through
to validation. In this work, we aim at reusing such semantics specifications also for se-
mantic model differencing. In particular, we exploit the fact that behavioral semantics
specifications enable the execution of models and that the identification of semantic
differences among models is possible based on execution traces, since they reflect the
models’ behavior and, hence, constitute the semantic interpretation of the models.

Figure 1 depicts an overview of our semantic model differencing approach consisting
of three steps: syntactic matching, model execution, and semantic matching. In the syn-
tactic matching step, syntactically corresponding elements of the two compared models
M1 and M2 are identified based on syntactic match rules MatchRulesSyn for estab-
lishing syntactic correspondences Csyn

M1,M2
between the models. In the model execution

step, the models M1 and M2 are executed for relevant inputs IM1 and IM2 based on the
behavioral semantics specification of the modeling language. During model execution,
the traces TM1 and TM2 are captured, which constitute the semantic interpretation of
the executed models M1 and M2. We assume that the model execution is deterministic,
meaning that the model execution yields for a given input always the same execution
trace, and that the number of possible traces is finite. In the semantic matching step, the
captured execution traces TM1 and TM2 are compared based on semantic match rules
MatchRulesSem, which define the semantic equivalence criteria, to establish seman-
tic correspondences Csem

M1,M2
between the models M1 and M2. Thereby, two models

M1 and M2 are semantically equivalent, if the traces captured during their execution
TM1 and TM2 match according to the semantic match rules. In the semantic matching,
also the syntactic correspondences of the examined models Csyn

M1,M2
may be taken into

account.
Our semantic model differencing approach is generic, because it enables to imple-

ment semantic diff operators for any modeling languages whose behavioral semantics
is defined such that conforming models can be executed and execution traces can be
obtained. From all artifacts involved in the semantic differencing, only the semantic
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match rules are specific to the realization of a semantic diff operator for a modeling
language. This is an important differentiator of our approach compared to currently
existing semantic model differencing approaches.

4 Semantic Model Differencing

In this section, we show how the proposed semantic model differencing approach can
be realized for the behavioral semantics specification language xMOF [20]. Therefore,
we first introduce how the behavioral semantics of modeling languages can be defined
with xMOF and how this definition is used to execute models. Second, we present
which trace information is needed for semantically differencing models. Third, we show
how semantic match rules can be defined for semantically comparing models based on
execution traces. For illustrating the presented techniques, we use the Petri net language
as a running example throughout the paper.

4.1 Behavioral Semantics Specification with xMOF

The semantics specification language xMOF integrates existing metamodeling
languages, in particular Ecore, with the action language of UML [23]. This enables
the definition of the behavioral semantics of the concepts of a modeling language by
introducing operations for the respective metaclasses and defining their behavior with
UML activities. UML’s action language for defining activities provides a predefined
set of actions for expressing the manipulation of objects and links (e.g., CreateObject-
Action) and the communication between objects (e.g., CallOperationAction), as well as a
model library of primitive behaviors (e.g., IntegerPlus). xMOF enables the execution of
models by executing the activities defined in the modeling language’s semantics spec-
ification based on the fUML virtual machine. fUML [24] is a standard of the OMG,
which defines the semantics of a subset of UML activity diagrams formally and pro-
vides a virtual machine enabling the execution of fUML-compliant models.

Example. In the upper left part of Figure 2, the Ecore-based metamodel of the Petri
net language is depicted. A Petri net (Net) consists of a set of uniquely named places
(Place) and transitions (Transition), whereas transitions reference their input and output
places (input, output). The initial marking of the Petri net is captured by an Integer
attribute (initialTokens) of the Place metaclass.

In xMOF, the behavioral semantics of a modeling language is defined in an xMOF-
based configuration. This xMOF-based configuration contains for each metaclass in the
metamodel a configuration class, which extends the respective metaclass with its behav-
ioral semantics by introducing additional attributes and references for capturing runtime
information, as well as additional operations and activities for defining behavior. In the
lower left part of Figure 2, the configuration classes contained by the xMOF-based con-
figuration of the Petri net language are shown. To capture the number of held tokens
of a Petri net during its execution, the Integer attribute tokens is introduced in the con-
figuration class PlaceConfiguration. The main() operation of NetConfiguration serves as
entry point for executing a Petri net model. It first calls the operation initializeMark-
ing(), which initializes the tokens attribute of each Place instance with the value of the
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Fig. 2. Petri net language specification

initialTokens attribute, before the operation run() is invoked. The activity defining the
behavior of run() is depicted in the right part of Figure 2. It determines in a loop the set
of enabled transitions (ExpansionRegion “determine enabled transitions”), selects the
first enabled transition (CallBehaviorAction “call ListGet”), and calls the operation fire()
(CallOperationAction “call fire”) for this transition. Subsequently, the operation fire() calls
for each input place of the transition the operation removeToken() to decrement its to-
kens value and addToken() for each output place to increment its tokens value.

Based on this behavioral semantics specification, a Petri net model can be executed.
Therefore, the configuration classes are instantiated for each model element in the Petri
net model and the resulting instances are initialized according to the attribute values and
references of the respective model element. These instances are then provided to the
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Fig. 3. Trace information format specification
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fUML virtual machine as input before the main() operation is invoked. Consequently,
during the execution, the values of the tokens attribute of the PlaceConfiguration in-
stances are updated accordingly by the fUML virtual machine.

4.2 Trace Information

In our approach, trace information obtained from executing the two models to be com-
pared constitutes the basis for reasoning about semantic differences among the models.
The format of the trace information is defined by the metamodel depicted in Figure 3.
A trace (Trace) consists of states (State) capturing the runtime state of the executed
model (objects) at a specific point in time of the execution. Transitions (Transition) are
labeled with the event (Event) that caused a state change of the executed model leading
from one state (source) to another (target). This trace information format constitutes
the interface for using our semantic differencing approach. Hence, our approach does
not directly depend on a specific behavioral semantics specification language or on a
specific virtual machine; it only operates on traces conforming to this very basic trace
format.

4.3 Semantic Model Differencing Based on Trace Information

For semantically differencing two models, the trace information captured by executing
these models are compared according to semantic match rules. These match rules de-
cide based on the states of the compared models and based on the events causing state
transitions which model elements semantically correspond to each other and whether
the two models are semantically equivalent. The semantic match rules are specific to
the considered modeling language as well as to the relevant semantic equivalence cri-
teria. Thereby our approach is flexible in the sense that match rules can be expressed
for different equivalence criteria. This is an important property because, depending on
the usage scenario of a modeling language, different equivalence criteria for models
may apply. For Petri nets, for instance, different equivalence criteria are marking equiv-
alence, trace equivalence, and bisimulation equivalence [6]. If Petri nets are used to
define production processes, where the tokens residing in places represent production
resources, the marking equivalence criteria might be the most suitable equivalence cri-
teria. However, if Petri nets are used to define business processes, the trace equivalence
criteria might be more adequate.

For defining match rules, our implementation integrates the model comparison lan-
guage ECL [12]. In ECL, model comparison algorithms are specified with declarative
rules which are used to identify pairs of matching elements in two models.

Example. We now consider two different semantic equivalence criteria for Petri nets:
final marking equivalence (which we defined for illustration purposes) and marking
equivalence (adopted from literature [6]). Two Petri net models with the same set of
places are final marking equivalent if they have the same final marking, whereas they
are marking equivalent, if they have the same set of reachable markings. The example
Petri net models PN1 and PN2 depicted in Figure 4 are not final marking equivalent
because their final markings M2,PN1 and M2,PN2 are different. However, they are
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marking equivalent, as they have the same set of reachable markings (M0,PN1 matches
with M1,PN2, M1,PN1 with M2,PN2, and M2,PN1 with M0,PN2).

Listing 1 shows the semantic match rules expressed in ECL for determining whether
two Petri net models are final marking equivalent. The semantic match rule Match
Trace (lines 1-8) is responsible for matching the traces captured for the execution
of two compared Petri net models. If the models are final marking equivalent, this
rule has to return true, otherwise false. Therefore, the respective final states of the
two traces markingStatesLeft and markingStatesRight are obtained using the
operation getMarkingStates() (lines 10-12). These retrieved final states are then
matched with each other (line 6) and if they match, the Petri net models are final
marking equivalent and true is returned. The two final states are matched by the rule
MatchState (line 14-22). Therefore, the final runtime states of the PlaceConfigu-
ration instances from the respective final state are retrieved by calling the operation
getP laceConfigurations() (lines 24-30) and true is returned if the PlaceConfigura-
tion instances match (line 20). The PlaceConfiguration instances are matched by the rule
MatchP laceConfiguration (lines 32-37), which defines that two PlaceConfiguration
instances match, if they match syntactically (this is checked by the extended syntactic
match rule MatchP lace not shown here, which defines that two Place instances match
if they have the same name) and if they contain the same amount of tokens (line 36).
Thus, in the end, the match rule MatchTrace returns true, if the two compared Petri
net models have the same markings in the end of the execution and are, hence, final
marking equivalent.

For realizing the marking equivalence criteria, the operation getMarkingStates()
has to be adapted as shown in Listing 2. It retrieves the state after the initializeMark-
ing activity has been executed for the NetConfiguration instance (line 3) and after each
execution of the fire activity for any TransitionConfiguration instance (line 4). There-
fore, the operation getStatesAfterEvent() provided by the trace is used, which re-
trieves the states caused by an event corresponding to the provided qualified name.
Thus, the operation getMarkingStates() returns the runtime states of the compared
models after initializing the marking of the net and after each transition firing, i.e.,
each state after reaching a new marking. These sets of states markingStatesLeft and
markingStatesRight match (cf. line 6 in Listing 1), if each state in markingStates-
Left has a corresponding state in markingStatesRight and vice versa; that is, if each
marking reachable in PN1 is also reachable in PN2 and vice versa. Please note that
we restrict ourselves in this example to conflict-free and terminating Petri nets.

t1p1 p2

p3

t2p4

PN1 PN2

M0,PN1: p1=1, p2=0, p3=0, p4=0
M1,PN1: p1=0, p2=1, p3=1, p4=0
M2,PN1: p1=0, p2=0, p3=0, p4=1

M0,PN2: p1=0, p2=0, p3=0, p4=1
M1,PN2: p1=1, p2=0, p3=0, p4=0
M2,PN2: p1=0, p2=1, p3=1, p4=0

t1p1 p2

p3

p4t2

Fig. 4. Example Petri net models
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1 rule MatchTrace
2 match left : Left!Trace with right : Right!Trace {
3 compare {
4 var markingStatesLeft : Set = left.getMarkingStates() ;
5 var markingStatesRight : Set = right.getMarkingStates() ;
6 return markingStatesLeft.matches(markingStatesRight) ;
7 }
8 }
9

10 operation Trace getMarkingStates() : Set {
11 return self .states.at( se lf .states.size() − 1) .asSet() ;
12 }
13

14 @lazy
15 rule MatchState
16 match left : Left!State with right : Right!State {
17 compare {
18 var placeConfsLeft : Set = left.getPlaceConfigurations () ;
19 var placeConfsRight : Set = right.getPlaceConfigurations () ;
20 return placeConfsLeft.matches(placeConfsRight) ;
21 }
22 }
23

24 operation State getPlaceConfigurations () : Set {
25 var placeConfs : Set = new Set () ;
26 for (object : Any in se lf .objects)
27 i f (object.isKindOf(PlaceConfiguration ) )
28 placeConfs.add(object) ;
29 return placeConfs;
30 }
31

32 @lazy
33 rule MatchPlaceConfiguration
34 match left : Left!PlaceConfiguration with right : Right!PlaceConfiguration
35 extends MatchPlace {
36 compare : left.tokens = right.tokens
37 }

Listing 1. Semantic match rules for Petri net final marking equivalence

1 operation Trace getMarkingStates() : Set {
2 var markingStates : Set = new Set () ;
3 markingStates.addAll( se lf .getStatesAfterEvent (”petrinetConfiguration . NetConfiguration .

↪→ initializeMarking ”) ) ;
4 markingStates.addAll( se lf .getStatesAfterEvent (”petrinetConfiguration .

↪→TransitionConfiguration . f i re ”) ) ;
5 return markingStates;
6 }

Listing 2. Adaptation of semantic match rules for Petri net marking equivalence

5 Input Generation Using Symbolic Execution

In Section 4, we showed how a semantic diff operator can be specified with match
rules that are applied to concrete execution traces for determining whether two models
are semantically equivalent. However, for several modeling languages additional input
is required—alongside the actual model—before it can be executed. For instance, the
Petri net language depicted in Figure 2 could take the initial token distribution as input
instead of representing it in the model directly (Place.initialTokens). Enumerating all
possible inputs and performing the semantic differencing for all resulting traces is not
feasible for several scenarios, as the number of possible inputs may quickly become
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large or even infinite. In fact, we are interested only in inputs that cause distinct and for
the semantic differencing relevant execution traces. Having obtained such inputs, the
models to be compared can be executed for these inputs and the semantic match rules
can be applied on the captured traces for semantically differencing the models. Thereby,
two models are semantically equivalent, if they exhibit the same behavior for the same
inputs as defined by the semantic match rules. If they behave differently for the same
input, they differ semantically and the respective input constitutes a diff witness.

For automatically generating relevant inputs from the semantics specification of the
modeling language for the two models to be compared, we apply an adaptation of
symbolic execution [3]. The basic idea behind symbolic execution, as introduced by
Clarke [4], is to execute a program—in our case, the semantics specification for a spe-
cific model—with symbolic values in place of concrete values and to record a path con-
straint, which is a quantifier-free first-order formula, for each conditional statement that
is evaluated over symbolic values along an execution path. For each symbolic value, a
symbolic state is maintained during the symbolic execution, which maps symbolic val-
ues to symbolic expressions. After executing a path symbolically, we obtain a sequence
of path constraints, which can be conjuncted and solved by a constraint solver to obtain
concrete inputs. An execution with these inputs will consequently exercise the path that
has been recorded symbolically. If a conjunction of path constraints is unsatisfiable, the
execution path can never occur. Using backtracking and negations of path constraints,
we may further obtain all feasible paths represented as an execution tree, which is a
binary tree, where each node denotes a path constraint and each edge a Boolean value.

More recently, several extensions and flavors of traditional symbolic execution have
been proposed (cf. [3] for a survey). For this work, we apply a combination of concolic
execution [29] and generalized symbolic execution [11]. Concolic execution signifi-
cantly decreases the number of path constraints by distinguishing between concrete and
symbolic values. The program is essentially executed as normal and only statements
that depend on symbolic values are handled differently. As we execute the semantics
specification with a concrete model (to be compared) and additional input, we may
consider only the additional input as symbolic values—statements that interact with the
executed model itself are executed as normal. One of the key ideas behind generalized
symbolic execution also used in this work is to use lazy initialization of symbolic values.
Thus, we execute the model as normal and initialize empty objects for symbolic values
only when the execution accesses the object for the first time. Similarly, attribute values
of objects are only initialized on their first access during the execution with dedicated
values to induce a certain path during the execution.

Example: Initial tokens as input. Before we discuss how we apply symbolic execution
on our running example, we have to slightly modify the Petri net language depicted in
Figure 2 such that it takes the initial token distribution as input. Therefore, we add a
class Token, which owns a reference named place to Place denoting the token’s initial
place. Additionally, we change the operation NetConfiguration.main() and add a param-
eter initialTokens of type EList<Token> to this operation. The activity specifying the
behavior of the operation main() passes the list of initial tokens to the operation initialize-
Marking(), which in turn sets the number of tokens for each place p to p.tokens =
initialTokens->select(t | t.place = p).size(); note that we define
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$initialTokens = List<Token>()//  symbolic input
p1.tokens = $p1Tokens <- $initialTokens->select(t | t.place = p1).size()
p2.tokens = $p2Tokens <- $initialTokens->select(t | t.place = p2).size()
p3.tokens = $p3Tokens <- $initialTokens->select(t | t.place = p3).size()
p4.tokens = $p4Tokens <- $initialTokens->select(t | t.place = p4).size()

p1.tokens == 0

$enabled = List(t1)

false

$enabled = List()

true

p4.tokens == 0 p4.tokens == 0

$enabled = List(t1, t2)

false

$enabled = List(t1)

true

$enabled.size > 0 $enabled.size > 0

false

// t1 fires
p1.tokens = $p1Tokens - 1
p2.tokens = $p2Tokens + 1
p3.tokens = $p3Tokens + 1

true

// t2 fires
p4.tokens = $p4Tokens - 1

p1.tokens = $p1Tokens - 1 + 1

// t1 fires
p1.tokens = $p1Tokens - 1 + 1 - 1

p2.tokens = $p2Tokens + 1 + 1
p3.tokens = $p3Tokens + 1 + 1

termination

false

// t1 fires
p1.tokens = $p1Tokens - 1
p2.tokens = $p2Tokens + 1
p3.tokens = $p3Tokens + 1

true

termination

$enabled = List(t2)

false

$enabled = List()

true

$enabled.size > 0 termination

false

// t2 fires
p4.tokens = $p4Tokens - 1
p1.tokens = $p1Tokens + 1

true

initializeMarkings

run -> isEnabled for t1

run -> isEnabled for t2

run

run -> fire

// t1 fires
p1.tokens = $p1Tokens + 1 - 1

p2.tokens = $p2Tokens + 1
p3.tokens = $p3Tokens + 1

termination

Fig. 5. Excerpt of the execution tree for PN2 (cf. Figure 4)

this assignment here in OCL syntax for the sake of brevity, in an operational semantics
specification, this assignment is specified in terms of an action language, such as fUML.

Example: Symbolic execution. To derive input values that cause all distinct execution
traces, we symbolically execute the operational semantics of the Petri net language
with both models to be compared, whereas the input of the execution—that is, the pa-
rameter initialTokens of type EList<Token>—is represented as a symbolic value. Fig-
ure 5 shows an excerpt of the resulting execution tree for PN2 (cf. Figure 4). Note
that we bound the symbolic execution to at most one initial token per place in this
example. We depict path constraints as diamonds and the symbolic states of sym-
bolic values in boxes; symbolic values are prefixed with a $ symbol. The uppermost
box shows the symbolic states after executing the operation initializeMarking(initial-
Tokens). As this operation assigns the number of tokens based on the symbolic in-
put initialTokens to the tokens attribute of each place, also the values assigned to this
attribute are handled symbolically. The initial symbolic values for this attribute are
mapped to the symbolic expression $initialTokens->select(t | t.place
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= pX).size(). In Figure 5, this expression is abbreviated with $pXTokens. After
the markings are initialized, the operation run() is called (cf. Figure 2). This operation
iterates through the transitions of the net and checks whether they are enabled. There-
fore, in the first iteration, isEnabled() is called on transition t1, which in turn iterates
through all of its incoming places (p1 in our example) and checks whether there is an
incoming place without tokens. Therefore, the symbolic value p1.tokens is accessed
and the condition p1.tokens == 0 is evaluated. We do not interfere with the con-
crete execution except for the access of the symbolic value and the evaluation of the
condition in order to record the path condition, update the execution tree (cf. Figure 5),
and solve the constraint to compute concrete values for the involved symbolic values
inducing the true branch and the false branch, respectively. After that, we continue
with the concrete execution with the respective concrete values for both branches. De-
pending on which branch is taken (i.e., t1 is enabled or not), t1 is added to the output
expansion node enabled of the expansion region in the activity run (cf. Figure 2). In the
symbolic execution of activities, we handle expansion nodes as list variables. As the ad-
dition of t1 to the expansion node depends on symbolic values, we also consider the list
variable, denoted with $enabled, as symbolic. In the next iteration of run, the same
procedure is applied to transition t2 and its input place p4; thus, the execution tree is
updated accordingly. Next, the execution checks whether the list of enabled transitions
contains at least one element with the condition $enabled.size > 0. As this con-
dition accesses $enabled, which is considered as symbolic value, we record it in the
execution tree and try to produce values for the true and false branch. However,
the constraint solver cannot find a solution for the false branch, denoted with ⊥ in
Figure 5, because in three paths $enabled will always contain at least one transition
according to the path conditions and symbolic states. Thus, in three of the six branches,
fire() is called for the first transition in the list $enabled causing changes in the tokens
attribute of the incoming and outgoing places. As the tokens attribute is considered as
symbolic, we update their symbolic states. Finally, the execution proceeds with iter-
ating through transitions again and firing them, if they are enabled. As we bound the
symbolic execution to at most one initial token per place, all branches either terminate
eventually or lead to an unsatisfiable state (e.g., violating the bound condition).

The final execution tree contains four satisfiable execution paths. The path conditions
of these paths represent symbolically all relevant initial token markings for this net
inducing all distinct execution traces. Using a constraint solver, we can generate Token
objects with corresponding links to the places in the net such that the initial markings of
the four inputs are: {p1 = 1}, {p1 = 1, p4 = 1}, {p4 = 1}, and {} (no tokens at all).
When repeating the symbolic execution for the Petri net PN1 in Figure 4, we obtain
two additional inputs: {p1 = 1, p2 = 1} (or p3 instead of p2), and {p1 = 1, p2 =
1, p3 = 1}. With this total of six inputs, we invoke the semantic differencing based on
the semantic match rules to obtain all diff witnesses (cf. Section 4).

6 Evaluation

We evaluated our approach regarding three aspects. First, we investigate whether our
generic approach is powerful enough to specify semantic diff operators equivalent to
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those specifically designed for particular modeling languages. Second, we examine the
performance of applying semantic diff operators realized with our approach. Third, we
evaluate the feasibility of realizing symbolic execution of models based on an opera-
tional semantics specification, in particular, using fUML.

Expressive power of generic semantic differencing. To assess whether our generic ap-
proach provides the necessary expressive power to define non-trivial semantic diff oper-
ators, we carried out two case studies, in which we implemented diff operators for UML
activity diagrams and class diagrams according to ADDiff [17] and CDDiff [18] devel-
oped by Maoz et al. This allows us to evaluate whether our generic approach is powerful
enough to compare to one of the most sophisticated language-specific approaches in the
semantic differencing domain. Therefore, we implemented the same semantics of UML
activity diagrams and class diagrams as defined by Maoz et al. using xMOF. While the
focus of the evaluation lies on the expressive power of our approach regarding the defi-
nition of diff operators, the following figures shall indicate, that the semantics specifica-
tions developed for the case studies are of high complexity. The semantics specification
of activity diagrams comprises 38 configuration classes consisting of 60 activities in
total, which contain altogether 380 activity nodes. The semantics specification of class
diagrams comprises 56 configuration classes, 119 activities, and 1003 nodes. For real-
izing the semantic diff operators we implemented semantic match rule corresponding to
the semantic differencing algorithms defined by Maoz et al. They enabled us to detect
the same diff witnesses as Maoz et al. among their case study example models published
in [17,18]. The interested reader can find our case studies at our project website [21].
For brevity, we discuss only the results of the case studies in the following.

From the case studies, we conclude that the expressive power of our generic seman-
tic differencing approach is sufficient for defining non-trivial semantic diff operators.
Implementing the semantic match rules requires besides knowledge about model com-
parison languages, such as ECL, knowledge about the behavioral semantics specifica-
tion of the considered modeling language. Hence, defining semantic diff operators is a
task that has to be performed by someone experienced with language engineering.

Performance of applying the semantic matching. We measured the performance of the
implemented diff operators in terms of time needed for evaluating whether the example
models are semantically different for a given set of input values. This experiment was
performed on a Intel Dual Core i5-2520M CPU, 2.5 GHz, with 8 GB RAM, running
Windows 7. Table 1 shows the time needed for syntactic matching (SynMatching),
model execution (Execution), and semantic matching (SemMatching), as well as
the total time needed (Total). Please note that these figures do not include the time
needed for generating all relevant inputs because an implementation of symbolic model
execution for fUML is not integrated yet with our semantic differencing prototype. For
activity diagrams, Table 1 also provides the number of activity nodes (#Nodes), as
well as the number of input values to consider (#Inputs), as they have a significant
influence on the execution time. For class diagrams, we provide the number of objects
(#Objects) as well as links (#Links) of the input object diagram. The performance
results indicate that the model execution is the most expensive step in the semantic
model differencing as it takes around 95% of the overall time. Thus, the main reason
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Table 1. Performance results for semantically differencing example models

UML activity diagram
Example #Nodes #Inputs SynMatching Execution SemMatching Total
Anon V1/V2 15/15 2 51 ms 7905 ms 341 ms 8297 ms
Anon V2/V3 15/19 1 72 ms 7374 ms 246 ms 7692 ms
hire V1/V2 14/15 1 47 ms 5259 ms 283 ms 5589 ms
hire V2/V3 15/15 1 47 ms 5745 ms 304 ms 6096 ms
hire V3/V4 15/15 1 48 ms 2011 ms 95 ms 2154 ms
IBM2557 V1/V2 18/16 3 85 ms 25889 ms 1159 ms 27133 ms

UML class diagram
Example #Objects #Links SynMatching Execution SemMatching Total
EMT V1/V2 2 1 17 ms 1203 ms 119 ms 1339 ms
EMT V1/V2 4 3 16 ms 6790 ms 275 ms 7081 ms
EMT V1/V2 6 5 15 ms 26438 ms 543 ms 26996 ms

for the weaker performance result compared to the approach of Maoz et al. [17,18] is
the performance of the model execution carried out by the fUML virtual machine.

Symbolic execution of fUML. An important prerequisite for realizing symbolic exe-
cution is the identification of conditional executions, as well as the extraction of the
condition in terms of a quantifier free path constraint. Therefore, we analyzed the fea-
sibility of identifying and mapping conditional language concepts of fUML’s action
language to corresponding OCL path constraint templates. In this analysis, we faced
several challenges, since the execution flow is driven by offering and accepting object
tokens through input and output pins of actions; if an action, e.g., a ReadStructural-
FeatureValueAction, reads a non-existing value, no token is placed on its output pin,
which in turn prevents the execution of the action that waits for the token. Thus, actions
that take inputs from actions reading symbolic values, have to be considered as condi-
tional and, therefore, a dedicated path constraint has to be generated. Besides, we have
to map the different ways of using DecisionNodes to path constraints, which was, how-
ever, mostly straightforward. Nevertheless, we were able to map the fUML concepts
used in the case studies to corresponding path conditions. Moreover, in the semantics
specifications of our two case studies, we only used the standardized primitive operators
and behaviors of fUML, such as greater than, logical AND, list size, etc. As all of these
operators and behaviors are supported in OCL, it is straightforward to represent the
symbolic state of symbolic variables entirely in OCL, which enabled us to avoid suffer-
ing from symbolic imprecision. For realizing generalized concolic execution [29,11] of
fUML, it is moreover crucial to distinguish among concrete and symbolic values and,
therefore, to extract a value dependency graph for determining whether a value depends
directly or indirectly on a symbolic value. Therefore, we performed an experimental
implementation for analyzing the dependencies of values, which is, in comparison to
usual programming languages, easily possible thanks to the explicit representation of
the object flow in fUML. The support for explicating data dependencies has been inte-
grated in our execution trace for fUML [19].

Constraint solving with symbolic execution paths. To enable finding concrete objects
and links that satisfy a sequence of path conditions, we implemented an integration of
xMOF and fUML with the model validator plug-in for USE [13] by Kuhlmann et al.
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Therefore, we translate the (configuration) metamodel of the modeling language into a
UML class diagram in USE, transform the models to be compared into object diagrams,
and represent path constraints as OCL invariants. Now, we may start the model validator
plug-in, which internally translates those diagrams and the constraints into the relational
logics of Kodkod [30] to apply an efficient SAT-based search for an object diagram
that satisfies all constraints. Note that constraint solving is an inherently computation-
intensive task. Although our experiments showed that this plug-in of USE is comparably
efficient, the constraint solving took up to several seconds in our case studies, which
may impair the runtime of symbolic execution drastically. Nevertheless, the runtime
of the constraint solving significantly depends on the bounds (e.g., number of objects
per class, range of Integer values); thus, there is a large potential for optimizing the
constraint solving by extracting heuristics from the operational semantics specification
to limit the bounds automatically. Moreover, a feature of this plug-in that significantly
improved its application for our purpose is its support for extending specified object
diagrams incrementally for validating additional constraints.

7 Conclusion

We proposed a generic semantic model differencing approach that—in contrast to ex-
isting approaches—makes use of the behavioral semantics specifications of modeling
languages for supporting the semantic comparison of models. Thus, non-trivial transfor-
mations into a semantic domain specifically for enabling semantic differencing can be
avoided. Instead, the behavioral semantics specifications of modeling languages, which
may also be employed, e.g., for simulation, are reused to enable semantic differencing.

We showed how our approach can be realized for the operational semantics specifica-
tion approach xMOF to enable the implementation of semantic diff operators. Further-
more, we presented a solution for generating relevant inputs required for the underlying
model execution based on symbolic execution. The evaluation of our approach with
two case studies revealed that our approach is expressive enough to define different se-
mantic equivalence criteria for specific modeling languages. However, it also turned out
that we face serious performance issues caused by the slow model execution, but also
by the inherently time-consuming constraint solving task in the symbolic execution. To
address this issue we plan to improve the virtual machine for executing models, but
also envision an adaptation of directed and differential symbolic execution [15,27] for
generating relevant inputs more efficiently. One idea behind those symbolic execution
strategies is to consider syntactic differences in the models to be compared and direct
the symbolic execution towards those differences, whereas unchanged parts are pruned,
if possible. Moreover, we will investigate whether it is possible to avoid the genera-
tion of concrete inputs at all and, instead, analyze the symbolic representations of the
execution trees of both models directly for reasoning about semantic differences.
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Abstract. UML Profiles are not only sets of annotations. They have se-
mantics. Executing a model on which a profile is applied requires seman-
tics of this latter to be considered. The issue is that in practice semantics
of profiles are mainly specified in prose. In this form it cannot be pro-
cessed by tools enabling model execution. Although latest developments
advocate for a standard way to formalize semantics of profiles, no such
approach could be found in the literature. This paper addresses this issue
with a systematic approach based on fUML to formalize the execution
semantics of UML profiles. This approach is validated by formalizing the
execution semantics of a subset of the MARTE profile. The proposal is
compatible with any tool implementing UML and clearly identifies the
mapping between stereotypes and semantic definitions.

Keywords: fUML, Alf, Profile, Semantics, Execution, MARTE.

1 Introduction

A model of a system relies on a particular language. This language (i.e. its ab-
stract syntax) may support syntactic constructs enabling engineers to describe
structure and/or behavior. Choices made by engineers at design time usually
have an important impact on how the future system behave at runtime. The
interest for them is to put confidence in their modeling choices [19]. Model ex-
ecution is a solution to help obtaining such confidence. By enabling engineers
to have a direct insight in the models at runtime, it enables them to evaluate
impact of their modeling choices. This approach by execution is complementary
with formal technics. For instance, in the context of a large applicative model, it
can be used to run a set of well identified scenarios to ensure about correctness
of a particular behavior instead of trying to explore a huge state space.

Executability of a language is a property provided both by the way a language
semantics is formalized and by the language chosen to formalize it. The semantics
in itself only defines the meaning of a language [8] regardless of the form (e.g.
operational, axiomatic, translational) it is formalized. Interest of having well-
formalized semantics for our languages is widely admitted by the model-driven
engineering (MDE) community. Beyond executability, the semantic formalization
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ensures language users share a common understanding of artifacts (e.g. models)
built with the language and that verification techniques can be applied to assess
correctness of the semantics.

Since 2010 and the release of foundational UML [1] (fUML) a subset of UML
limited to composite structures, classes (structure) and activities (behavior) has
a precise execution semantics. This semantics is formalized as a class model called
semantic model. Application models designed with this subset of UML are de-
facto executable. However if these models have applied profiles, semantics of
these latter have no influence in the execution. There are two reasons for that.
First fUML is agnostic of stereotypes. Next, most of the time profiles semantics
remain specified in prose (at the best). For instance, this is the case for MARTE
[3] and SysML [4] which are widely used profiles. This observation is highlighted
by [6] and confirmed by Pardillo in [7]. In this systematic review of UML profiles,
the author identifies reasons that may lead language designers to keep semantic
definitions informal. The lack of guidelines and tool support to assist language
designers in this task are the main reasons. This considerably limits interest of
profiles and their practical usability in a context in which engineers look for
rapid prototyping and evaluation of their modeling choices at early stages of
their design flows.

Although latest developments advocate [9] for a standard way to formalize
semantics of profiles, no such approach could be found in the literature. This pa-
per addresses this issue with a systematic approach based on fUML to formalize
the execution semantics of UML profiles. The central idea is that if a profile has
execution semantics, it can be specified as a fUML model being an extension
of the fUML semantic model. The approach aims to guide language designer to
designing semantics with fUML. It is completely model-driven and compatible
with any tools implementing UML.

This paper is organized as follows. In section 2 we provide key points to un-
derstand fUML and the architecture of its semantic model. Next, in section 3
we review the approaches proposing to formalize language semantics and espe-
cially those related to UML profiles. According to this analysis, we define the
objectives a systematic approach to define profile semantics must fulfill. Section
4 describes the process of extending the fUML semantic model and semantics
relationships with the profile. In section 5 we validate our approach by defining
the execution of semantics of a subset of MARTE [3]. Benefits and limitations
of the approach are discussed. Finally, section 6 presents the tooling built to
support the methodology and section 7 concludes the paper.

2 fUML Background

This section provides an overview of the fUML semantic model and identifies
its extension points. The fUML semantic model defines a hierarchy of semantic
visitors specified by UML classes. There are three fundamental types of visitors:
Value, Activation and Execution.
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– Visitors defined as sub-classes of Value define how instances of UML struc-
tural elements are represented and handled at runtime. For instance, Object
is a visitor which captures the execution semantics of Class (cf. Figure 1).
This means Object is the representation of an instance of Class. It is ex-
tended by CS Object in the context of composite structures to capture a
wider semantics.

– Visitors defined as sub-classes of ActivityNodeActivation implement the ex-
ecution semantics of activity nodes. For instance, AcceptEventActionActiva-
tion (cf. Figure 1) captures the semantics of AcceptEventAction which is an
action node and so an activity node.

– Visitors defined as sub-classes of Execution are not related to a particular
element of the abstract syntax considered by fUML. Instead, they are in
charge of managing a set of activation nodes capturing a behavior.

In fUML, each semantic visitor (associated or not to an element of the UML
abstract syntax subset) captures execution semantics through its operations.
Extending the execution semantics captured in the fUML semantic model can
be realized by extending (i.e. inheriting) one or more visitors.

Fig. 1. foundational UML background

The fUML semantic model also provides key classes (i.e. Locus, Executor and
ExecutionFactory shown in Figure 1) that are responsible for instantiation and
storage of semantic visitors.

– Locus defines a virtual memory keeping track of values created at runtime.
It is reponsible for instantiation of classifiers. This formalizes the semantic
mapping exisiting between Class and Object.
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– Executor defines the entry point of an execution in the fUML semantics.
– ExecutionFactory is responsible for the instantiation of visitors inheriting

from Execution and ActivityNodeActivation. The instantiation strategy for-
malizes the relation between visitors (e.g. AcceptEventActionActivation) and
abstract syntax elements (e.g. AcceptEventAction).

Providing these key classes with extensions enables integration of new se-
mantic visitors and specification of their instantiation rules. Details on fUML
architecture can be found in [1] and [2].

3 Related Works Analysis

Language semantics can be specified with different techniques: operational, ax-
iomatic, denotational or translational. Although it is possible to execute models
from axiomatic semantics as shown in [12], in practice languages requiring to be
executable have a semantics defined using either the operational technique or
the translational technique.

The operational technique enables the definition of an interpreter for a par-
ticular language. This latter captures the semantics of each statement of the
language in a simple set of operations. These operations can be expressed with
any language having an execution semantics.

In the area of MOF-based Domain Specific Modeling Languages (DSMLs)
two approaches have been proposed to define execution semantics using the op-
erational technique: Kermeta [10] and xMOF [11]. The main difference between
these two approaches is the formalism used to specify behavioral concerns at
the metamodel level. Kermeta provides its own action language and xMOF pro-
poses to use fUML. In the first case the formalism is not standardized while
in the second case it is standardized which is an important aspect to ensure
the semantic description can be supported by different tools. Although both
approaches are interesting they do not address the problem of formalizing the
execution semantics of UML profiles. Indeed, profiles are not standalone lan-
guages but extensions to UML enabling expression of domain specific concerns
over UML models. Consequence is that their semantics must be expressed as
compliant extensions to UML standard semantics regardless the formalism used
to formalize these extensions.

Few proposals have been made in the area of UML-based languages to system-
atize the way execution semantics are described. According to what we found in
the litterature, proposed approaches rely on translational semantics. The trans-
lational technique aims to map a language abstract syntax to another language
abstract syntax which is intented to have a formalized semantics. It exists dif-
ferent solution to implement the translational approach. Contributions trying
to provide UML semantics with an execution semantics seem to focus on code
generation and model transformation.

Code generation approaches (e.g. the one presented in [13]) have the drawback
to encapsulate the semantics of the language within the code generator. The
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consequence is that UML profile users have to study the implementation to
understand its semantics [9]. In addition, during generated code analysis a strong
technical effort will be required to distinguish what represents the semantics and
what represents the model.

The probably most complete approach proposing to use model tranforma-
tions for specifying UML profiles execution semantics is the one presented in
[15]. Authors proposal is to represent UML abstract syntax and its extensions
(i.e. stereotypes) as an ASM [14] domain whose semantics is then described op-
erationally using abstract state-machines (i.e. extended Finite State Machines).
The ASM language seems to be a good target to express equivalent UML mod-
els. It has formal basis, it is known by the community and supported by tools.
However the approach implies models produced by users are transformed into
equivalent ASM representations. Therefore the execution is performed on trans-
formed models and not on the users models. The consequence is that users will
have to investigate the transformation program to understand the impacts of
their modeling choices in terms of execution.

According to the analysis of the related works, our working context and ex-
perience, we derive a set of objectives a systematic approach to formalize the
execution semantics of UML profiles must provide. In addition we motivate our
choice to use fUML as semantic pivot.

1. Semantic designed through the methodology must be tool agnostic. Ratio-
nale: To enable language users to share a common understanding of the
semantic, the description must be compatible between different tools. The
best way to achieve this goal is to rely on a standard.

2. Semantic specification must be based on standard UML semantics. Ratio-
nale: Profiles are UML based languages. Extensions made to UML have im-
pacts on its semantics. This latter is formalized by fUML therefore profiles
semantics should be extensions to fUML.

3. Effort required to understand the semantics must be minimized. Rationale:
Translational approach increases the technical effort to understand a se-
mantic specification. Indeed, they introduce intermediate steps (e.g. model
transformations) to obtain an executable model from the source model. This
step must be investigated in addition to the semantics of the target lan-
guage to enable the designer to understand impact of his modeling choices
at runtime.

4. Clear relationships between stereotypes and semantics definitions must be
defined. Rationale: Providing a language with a semantics means the abstract
syntax elements of this language are mapped to their semantic definitions
(i.e. meanings). Profiles do not escape the rule. It must possible to identify
elements of the specification capturing the semantic of a stereotype.

5. Verification techniques must be applicable to ensure the correctness of the
semantic specification. Rationale: Languages used to describe critical sys-
tems (e.g. real-time systems) may have to demonstrate their conformance to
a specific semantics. UML base semantics is based on mathematical founda-
tions which ensures verification techniques are applicable.
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4 Extending fUML Semantic Model: A Model-Driven
Approach

This section presents the process of extending the fUML semantic model to for-
malize profile execution semantics. In sub-section 4.1 we present the relationships
existing between a profile, the fUML semantic model and its extensions. Next,
in section 4.2, we provide a detailed description of the methodology enabling
the construction of a semantic model formalizing profile execution semantics. To
improve readability of this section, fUML concepts or extensions are followed by
quote SV (i.e. semantic visitor) while UML concepts are followed by quote MC
(i.e. meta-class).

4.1 Concepts

Guidelines to define profile abstract syntax are identified by Selic in [16]. The
profile design process starts with the construction of a domain model capturing
the concepts of the domain under study. Then, this model is projected on the
UML metamodel. The projection consists in selecting the metaclasses that will
be extended to support domain concepts over UML. Extensions are defined as
stereotypes with an expressiveness limited to what the domain must support.

In rectangle number 1 of Figure 2, a profile specified through this method-
ology is represented. It provides the Broadcast concept which is formalized as
a stereotype only applicable on action nodes of type SendSignalAction (MC).
Here starts the specification of the profile execution semantics.

Fig. 2. Conceptual Approach
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Fig. 3. Execution semantics captured by BroadcastSendSignalActionActivation

Formalizing the Execution Semantics of Stereotypes. In the fUML se-
mantic model SendSignalAction (MC) has a formalized execution semantics
which states “When all the prerequisites of the action execution are satisfied,
a signal instance of the type specified by the signal property is generated from the
argument values and this signal instance is transmitted to the identified target
object”. This execution semantics is captured by CS SendSignalActionActivation
(SV) through the behavior specified for its doAction operation (cf. rectangle 2
of Figure 2). Applying the stereotype Broadcast on a SendSignalAction (MC)
changes its execution semantics. Indeed the semantics associated to such stereo-
type could be “When all the prerequisites of the action execution are satisfied, a
signal instance of the type specified by signal is generated from the argument val-
ues and this signal instance is transmitted concurrently to every object classified
under the type specified by the argument targetType”.

If we want the application of the stereotype to be reflected at runtime, the
fUML semantics model must be extended. An extension is the formalization of
the execution semantics associated to each stereotype of a profile. It is a fUML
model (i.e. a class model) that can be used to parameterize the standard semantic
model.

The general process of formalizing the execution semantics of a stereotypes
consists in extending visitors defined in the fUML semantic model using standard
object oriented mechanisms (e.g. inheritance, polymorphism). Visitors that can
be extended have been identified in Section 2. As an exemple, The formalization
of the Broadcast stereotype is presented in the rectangle 3 of Figure 2.

1. We identify the semantic visitor (cf. rectangle 2) capturing the execution
semantics of SendSignalAction (MC).

2. In a new model this semantic visitor is specialized (cf. BroadcastSendSig-
nalActionActivation (SV) in rectangle 3).

3. The new semantic visitor implements the execution semantics by redefining
behaviors associated to its generalization (cf. Figure 3). This can be realized
using Alf [5] (i.e. the textual notation for fUML) or activity models. Both
are equivalent.
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4. The stereotype is linked with its semantic definition using a Dependency
(MC) stereotyped SemanticMapping. This is illustrated in Figure 2.

Dependencies and Instantiation. The role of dependencies stereotyped Se-
manticMapping is also to indicate the context in which a new semantic visitor
can be instantiated in the fUML runtime. A stereotype can depend on multiple
semantic visitors. This is the case when a stereotype is defined as being applica-
ble on an abstract UML element (i.e. an abstract UML metaclass). For example,
if a stereotype is applicable on any action nodes (i.e. Action (MC)).

Depending on the concrete action this stereotype is applied on, the execution
semantics can be different. As an example if the stereotype Trace is applied on a
CallBehaviorAction (MC) we will trace the call to a specific behavior. Meanwhile
if it is applied on an AcceptEventAction (MC) we will trace the signals that are
received. This implies that the stereotype has two associated visitors extending
the basic execution semantics defined for these kinds of action nodes in the
extended semantic model.

Core Extensions of the fUML Semantic Model. Specific classes of the
fUML semantic model are in charge of organizing the instantiation of semantic
visitors, their execution and the management of runtime values. These classes
are Locus, Execution and ExecutionFactory. They have been introduced in Sec-
tion 2. Extensions to these classes are usually implied by the definition of new
semantic visitors. This sub-section identifies cases in which these classes need to
be extended.

– Extension to Locus class and its instantiate operation is implied by the
specification of a specialization of CS Object (SV) which is a particular type
of Value. This case occurs when the profile has a stereotype defining a new
semantics for Classifier (MC). An extension to this class and its associated
behaviors can be automatically derived from the dependencies stereotyped
SemanticMapping specified in the extended semantic model.

– Extension to Execution (SV) class and its execute operation can be required
by the definition of a stereotype targeting Behavior (MC) or any of its sub-
classes. Likewise it can be implied by the contextual visitor requiring an
Execution (SV) to be instantiated (e.g. Object (SV)).

– ExecutionFactory is responsible for instantiating any other semantic visitors.
Extension to this class is required as soon as one ore more semantic visitors
have been defined in the semantic specification. As for Locus, a full extension
to this class can be automatically derived from dependencies stereotyped
SemanticMapping.

4.2 Semantic Model Extension: Detailed Construction Process

In the previous section, we have presented how we formalize stereotypes seman-
tics with fUML and the implications on core classes defined in the standard
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semantic model. In this section, we define a fine grained process to formalize the
execution semantics of a UML profile.

S1 The first step consists in selecting the definition of one stereotype of a profile.

(a) If the meta-class extended by the stereotype does not have sub-meta-
classes and is not abstract then the designer of the semantic model can
start step 2.

(b) If the meta-class extended by the stereotype has concrete sub-meta-
classes this implies the stereotype can be applied on every syntax element
defined from that meta-class. Consequently, the designer of the semantic
model must select every concrete sub-meta-classes of that meta-class for
which an execution semantics should be formalized. Note that if the
base meta-class is not abstract then it belongs to the set of selected
meta-classes. For this set the step 2 must be applied.

S2 The second step describes how to extend a semantic visitor existing in the
fUML semantic model and to link this extension to a particular stereotype
defined in the profile. It consists in the following tasks.

(a) The designer must select in the standard fUML semantic model the
visitor defining the execution semantics of the current meta-class.

(b) To capture the execution semantics related to the stereotype application
the designer must create a new class extending that semantic visitor.

(c) Operation(s) of the newly created visitor must be defined using activi-
ties (specified textually using Alf [5]) in order to perform the expected
behavior when interpreting the profiled element.

(d) Finally the relationship between the current stereotype and the semantic
visitor is formalized using a dependency link. The stereotype plays the
client role while the opposite end (i.e. the semantic visitor) plays the
supplier role.

S3 Steps S1 and S2 must be repeated for every stereotype of the profile. When
all stereotypes have been considered, then the specification of extensions re-
lated either to the management or the instantiation strategy of the semantic
visitors must be defined.

5 Formalizing the Execution Semantics of a Subset of the
HLAM MARTE Sub-profile

Based-on the concepts presented in section 4, we validated our approach on a
subset of the MARTE profile [3]: HLAM (i.e. High-Level Application Modeling).
This case study has been chosen by the OMG in the context of composite struc-
tures semantic specification (cf. annex A of [2]). It is representative to validate
our approach. Indeed, it implies extensions to all visitors of the fUML seman-
tic model except to ActivityNodeActivation which has already been extended in
Figure 2.
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Fig. 4. The sub-profile under consideration

5.1 Presentation of the HLAM Subset

HLAM is a sub-profile of MARTE. It provides high-level modeling concepts to
deal with real-time and embedded feature modeling. An excerpt of this sub-
profile is shown on Figure 4. It contains the definition of the stereotype PpUnit
and an enumeration CallConcurencyKind.

The stereotype PpUnit (i.e. protected passive unit) can be applied on syn-
tactic elements inheriting from BehavioredClassifier (MC) (e.g. Class (MC)). A
protected passive unit is used to represent shared information among execution
threads. It provides protection mechanisms to support concurrent accesses from
these latter. This implies to capture an execution semantics that is different than
for regular Class (MC). We can distinguish three different cases :

1. If the concPolicy value is sequential, only one execution thread can access
a feature (e.g. property) of a PpUnit. In this case the PpUnit does not own
the access control mechanism. Each client of this object must deal with
concurrent conflicts.

2. If the concPolicy value is concurrent then multiple execution threads at a
time can access a PpUnit.

3. If the concPolicy value is guarded then only one execution thread at a time
can access a feature of a PpUnit while concurrent ones are suspended.

Among the three semantics presented above, the second is already captured
by fUML. No assumption is made in the execution semantics to avoid concur-
rent access to features of a particular instance. With respect to the two other
semantics (i.e. sequential and guarded) they are extensions of the fUML stan-
dard execution semantics. In the case study we will define required extensions
to handle the guarded semantics.

5.2 Construction of the Semantic Model

This section describes the construction of the semantic model formalizing the
execution semantics of the HLAM subset shown in Figure 4.

The first step (cf. item S1 of sub-section 4.2) consists in selecting a stereo-
type of the profile. We select PpUnit. It can be applied on BehavioredClassifier
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(MC) which is abstract. Step S1-b applies: we search in fUML syntactic sub-
set all concrete meta-classes of BehavioredClassifier (MC). We obtain the set
ϕ = {Class,Activity, OpaqueBehavior}.

Each meta-class in ϕ requiring a specific execution semantics must have its
corresponding semantic visitor extended (cf. item S2 of sub-section 4.2). Here we
only consider Class (MC) which semantics is captured by Object (SV) because
MARTE profile [3] does not define semantics when stereotype PpUnit is applied
on Activity (MC) or OpaqueBehavior (MC).

Object (SV) captures the access semantics to feature values through the op-
erations getFeatureValue and setFeatureValue. Semantics captured in these op-
erations does not constrain concurrent access to features. Constraining access
control to the features requires Object (SV) to be extended. Using standard ob-
ject oriented inheritance mechanism we define PpUnitObject (SV) as a subclass
of CS Object (cf. Figure 5). One can notice the extension is done over CS Object
(SV) instead of Object (SV). This makes the extension usable in the composites
structures context. To enable PpUnitObject (SV) class to provide access control
to its features values we add a property guard representing a mutex. The mutex
library is itself an fUML model.

Fig. 5. Definition of a PpUnitObject as an extension of CS Object

The next step of the methodology (cf. item S2-c of sub-section 4.2) consists in
formalizing the behavioral part of the execution semantics captured by PpUni-
tObject. Semantic limitations where identified in getFeatureValue and setFea-
tureValue operations. Both are extended to implement an access control mecha-
nism based on the property: guard. Figure 6, shows the behavior specification of
the operation getFeatureValue. This specification clearly states that if the con-
cPolicy of a class is guarded then only one active object at a time can access
a feature of the PpUnitObject. The same pattern applies for the specification of
the operation setFeatureValue.

PpUnitObject (SV) extension is not sufficient to ensure that operations that
are also features of a Class will not be executed concurrently. In fUML runtime
when an operation is called, an ActivityExecution (SV) is produced. This visitor
is in charge of executing the behavior associated to an operation and encapsulates
informations about the execution context. In the standard fUML semantics, two
active objects can execute operations concurrently.
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Fig. 6. Behavioral specification of getFeatureValue operation

Formalizing this constraint implies the definition of a new semantic visitor cap-
turing how operations must be executed in the context of a PpUnitObject (SV).
This is typical application of derived semantic visitor definition as explained
in sub-section 4.1. Figure 7 shows the definition of the MarteGuardedExecution
(SV) extending ActivityExecution (SV). Behavioral extension to the execution
semantics is defined in the execute operation of the new visitor. Again the be-
havior specification relies on the access control mechanism introduced by the
property guard.

Fig. 7. Constrain concurrency between operation call

The last part of the methodology (cf item S3 in sub-section 4.2) consists in
specifying under which conditions the semantic visitors defined in the context of
the MARTE HLAM profile will be instantiated. As presented in sub-section 4.1,
classes instantiation is handled by the Locus. A PpUnitObject (SV) is the repre-
sentation at runtime of a instance of Class stereotyped PpUnit. Consequently its
instantiation must be handled by the Locus. Therefore we define MarteLocus (cf.
Figure 8) as an extension of CS Locus. The instantiation logic is then captured
in the behavior of the instantiate operation.

Visitors capturing execution semantics of behavioral specifications (e.g. Read-
SelfActionActivation (SV)) or controlling execution of other semantic visitors
(e.g. Execution (SV)) are instantiated by the ExecutionFactory. We defined
MarteGuardedExecution (SV) which falls into this category. This implies the
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Fig. 8. Definition of MarteLocus as an extension of CS Locus

Fig. 9. Definition of MarteExecutionFactory as an extension of CS ExecutionFactory

extension of the regular ExecutionFactory. Instantiation rule is expressed in Alf
[5] in the operation instantiateVisitor. This rule is: a MarteGuardedExecution
(SV) can only be instantiated when an operation is called in the context of
a PpUnitObject (SV) constraining the concurrency with a guarded semantics.
Figure 9 shows the specification.
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5.3 Benefits of the Approach

The semantics is defined once as an extension of the fUML semantic model
expressed with fUML models and enables any profile models to be executed
without any intermediate step.

The semantic model is a standard UML class model. This kind of model is
known by UML practicioners and is the main interface of communication with
stakeholders from other modeling communities. This makes specifications easily
understandable from a structural point of view.

Behavioral specification of visitors can be specified in Alf [5] which is close
to c-like programming languages. This enables a large community to read and
verify the specification.

Our approach is model-driven and promotes reuse of standards. Semantic
models can be used by any tool implementing UML and fUML (e.g., Papyrus,
Entreprise Architect, Magic Draw). In addition, the approach benefits from an
integration within Papyrus (cf. Section 6).

fUML has formal foundations. As stated in [17], these foundations can be used
to verify properties of fUML models “applying the theorem proving approach”.
Since the semantic model is a fUML model verification techniques can be applied
to check semantic consistency.

The specification provides a clear separation between syntax and semantics
and identifies the relations between stereotypes and semantic definitions.

5.4 Limitations of the Approach

The approach requires a background in fUML to be usable. This implies a tech-
nical effort to realize the first specification.

The semantic specification does not handle cases were multiple stereotypes
are applied over the same modeling construct. This mean there are no rules to
compose the execution of multiple semantic visitors for the same model element.

The problem of semantic consistency is not adressed since we do not have
mechanisms to ensure a profile semantics does not contradict fUML semantics.
However it may be possible to develop automatic consistency check based on the
axiomatic foundations of fUML.

The current version of tools supporting the methodlogy does not support
automated generation of extensions to ExecutionFactory and Locus.

6 Tool support

Papyrus modeler provides an fUML engine called MOKA (cf. Figure 10). This
latter implements the standard fUML semantics. What we have added to MOKA
is the possibility to be parameterized by an fUML model implementing the se-
mantics of a particular profile (inspired from [18]). Thus on requesting a fUML
profiled model to be executed a designer can choose the adequate semantic exten-
sion. Contributions found in the extension are dynamically injected at runtime
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Fig. 10. Make use of formalized execution semantics through MOKA

to reflect the execution semantics applied by stereotype application. Portions of
the extended semantic model injected at runtime are executed as fUML models.

Although our approach advocates for specifying the entire semantics of a pro-
file as a fUML model, we also let the opportunity to the designer to define exten-
sions as implementations. An eclipse plugin can be generated from a semantic
specification placed in a fUML model. This plugin will contains glue classes re-
quired to interface the model execution and an implementation of fUML. Other
semantic contributions can be placed as regular Java classes in the plugin.

7 Conclusions and Future Works

In this paper, we have presented a methodology to formalize UML profiles se-
mantics. Our approach relies on the fUML standard. It proposes to specify the
semantics of a particular profile as an extension of the semantic model defined
by fUML.

Our approach is entirely model-driven. An extension to the semantic model is
formalized by the definition of new semantic visitors extending those considered
by fUML. New visitors are UML classes which override behaviors provided in
their parent classes using standard object oriented mechanisms. The semantic
specification is an fUML model which is by construction compliant with the
design of the standard.

Models using profiles with a semantics formalized using our approach are
directly executable and observable executions reflect the semantics introduced
by the profile. This enables engineers to evaluate impacts of their modeling
choices by executing their profiled models at early stages of their design flows.

For future works, we plan to support the automatic generation of extensions
related to classes responsibles for instantiating visitors specified in a extended
semantic model. Next, the main challenge is to consider cases were a single model
element can have multiple stereotypes applied. This implies multiple semantic
visitors to be defined and composed at runtime which actually not supported by
fUML. Furthermore, to ensure a consistent execution, semantic compatibility of
these visitors will have to be evaluated.
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Abstract. UML is a comprehensive notation, offering a very large set of dia-
grams and constructs covering any possible modelling need. As consequence, on
one hand, it is difficult and time consuming to master it, and on the other hand,
people tend, naturally, to consider only a part of it. In practice, many UML di-
agrams/constructs seem scarcely used or even their existence is not known. By
means of a study covering any possible source of information (e.g. UML books
and tools), we started to assess which part of the UML is considered and used
in practice. Here, we present some results about knowledge and usage of the
UML diagrams by means of a personal opinion survey with 275 participants from
both industry and academy, analysing also the influence of different factors: work-
ing environment (academia vs. industry), working role, seniority, education, and
gender.

Keywords: UML Usage and Knowledge, Personal Opinion Survey, Empirical
Study.

1 Introduction
UML is a comprehensive notation grown up during the years; it is general purpose and
so it has a very large number of constructs to cover any possible modelling need in any
possible context. Here we report some data to illustrate the size of UML: (1) the speci-
fication document for version 2.4.1 (superstructure only) [22] has 732 pages, (2) there
are 14 different types of diagrams (the latest, profile diagram, has been added in version
2.1), and (3), each diagram offers a large number of constructs (e.g. 47 for the activity
diagram).

Being a so big notation has some drawbacks hindering its acceptance, its adoption
and its usage; see, e.g. as this feeling is quite strongly expressed on the SEI (Software
Engineering Institute) Architecture Technology User Network blog1 “UML is too com-
plex. UML has increased in complexity and size over the years. Today there are 14
different types of diagrams! That’s too much for a human being to grasp. Some peo-
ple shy away from UML because they judge that the effort to climb the learning curve
will not pay off ”. Trivially, printing the UML specification requires a large number of
paper sheets, but it also requires many hours to read and understand it, not to mention
maintaining and evolving it by the designers of the notation, and of course learning and
teaching the whole UML is a difficult task [25].

1 http://saturnnetwork.wordpress.com/2010/10/22/five-reasons-
developers-dont-use-uml-and-six-reasons-to-use-it/

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 149–165, 2014.
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It is worthwhile noticing that this feeling has been also acknowledged by the OMG2,
indeed the next version (2.5) waiting for the formal release is the result of the “UML
Simplification” initiative [19], but in this case the simplification will cover only the way
UML is defined without any impact on its constructs; nevertheless as stated by Steve
Cook in his blog3 “the work done in 2.5 provides an excellent foundation for future
simplifications and improvements”.

However, to the best of our knowledge, only few studies have addressed the extent to
which UML diagrams are known and used in practice [2,4,8,18], and neither examined
why professionals choose to use some diagrams and ignore others. Our research seeks
to address the first issue by surveying the UML usage in practice.

UML is so huge that it is not possible to investigate the knowledge and usage level
of the whole notation in “only one shot”. So we decided to start considering only the
UML diagrams and the constructs of use case and activity diagrams.

We have decided to investigate all the possible sources providing information on
the knowledge/usage of the UML. Precisely, the considered sources are: books (guides
about the UML and books using the UML as a notation, i.e. books where UML is not
the primary subject), university courses, tutorials, tools, people (academics and profes-
sionals), web resources and model repositories, e.g. ReMoDD4. We think to have taken
into account all sensible, accessible, and non-biased sources; for example research pa-
pers on the UML are not a good choice, since they usually cover the newest and most
problematic features; whole models produced in industry are wonderful, but it is ex-
tremely difficult to get a sensible number of them, and in many cases it is impossible to
examine them, since they have been produced with tools not available to the authors.

We have already published the results of our first survey concerning static sources
(only UML books, courses, tutorials and tools) [14,15,16]. Here, we present the results
of a novel personal opinion survey with 275 respondents from both academia and indus-
try aimed to understand: (1) which UML diagrams are known/used, and (2) whether the
working environment (academia versus industry), the working role, the UML senior-
ity (years of UML knowledge), the UML education (how the UML was learned), and
the gender influence the results. Then, we briefly compare the personal opinion survey
results with those of the previous survey on the static sources. The results of our inves-
tigations will be useful to anyone that for various reasons has to consider only a part of
the UML, for example teachers and instructors with a fixed number of teaching hours,
people engaged in self learning and developers of model transformations interested to
understand which diagrams/constructs are neglected and why.

We present in Section 2 the design and the procedure of the conducted personal
opinion survey, and in Section 3 some results and possible threats to validity. Related
works are in Section 4, followed by conclusions and future works in Section 5.

2 http://www.omg.org
3 http://searchsoa.techtarget.com/feature/Steve-Cook-on-what-
architects-can-expect-from-UML-25-revision

4 http://www.cs.colostate.edu/remodd/v1/

http://www.omg.org
http://searchsoa.techtarget.com/feature/Steve-Cook-on-what-architects-can-expect-from-UML-25-revision
http://searchsoa.techtarget.com/feature/Steve-Cook-on-what-architects-can-expect-from-UML-25-revision
http://www.cs.colostate.edu/remodd/v1/
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2 Study Definition, Design, and Procedure
The main aim of this work is to collect information on the knowledge and usage of the
UML in the industrial and academic reality. In particular, the survey focuses on UML
diagrams and on the constructs of the use case and activity diagrams. In this paper, for
space reason, we focus only on the results about the UML diagrams. To implement
this survey, we: (i) used the same framework of [20,21] (based on [6]), (ii) followed as
much as possible the suggestions given in [7], and (iii) adopted an on-line questionnaire
to collect information.

The goal of the survey is taking a snapshot of UML knowledge and usage in the
industry and academy taking the perspective of:
– teachers and instructors: allowing to offer courses and/or tutorials concentrating on

a smaller language made out of the most used UML diagrams/constructs;
– tool builders/users: interested to focus the tools on the most used UML diagrams/

constructs, since the tools covering a smaller number of diagrams/constructs will be
simpler to implement and to use;

– notation designers: interested in discovering scarcely used constructs, and under-
standing for which reasons they have been added to the UML. Moreover, other in-
teresting questions could arise: are the scarcely used constructs derived5 or primitive?
Can the scarcely used constructs be applied only in specific cases? It will be interest-
ing to investigate whether the metamodel (and subsequently the UML specification)
may be easily simplified, without losing expressive power, to cover only the most used
parts.

The context consists of a sample of 275 professionals and academics having at least
a basic UML knowledge.

Research Questions. Given the above goal, the survey aimed at addressing the follow-
ing research questions:
RQ1: Which of the UML diagrams are the most/less known?
RQ2: Which of the UML diagrams are the most/less used in practice?
RQ3: Have Professionals and Academics the same level of knowledge and use of UML?
RQ4: Have the working role, UML seniority, UML education type, and gender any kind

of influence on the level of knowledge and use of the UML?

Target Population and Sample Identification. The target population is the set of indi-
viduals to whom the survey applies. In our case the population consists of professionals
and academics having at least a basic UML knowledge. Our sample consists of univer-
sity professors, researchers, students (mainly PhD), and professionals (mainly, project
managers, business analysts, software architects, designers, and developers) who work
(1) in companies of the IT field; their skills are related to the production, maintenance
or management of software systems (the larger part); (2) in companies that do not di-
rectly belong to the IT field (a smaller part) but that use information systems to carry
out and support the company’s business activities; (3) for public agencies, government
enterprises; the remainder of the sample perform other kinds of activities.

The sample was obtained in two ways: (1) by convenience, i.e. relying on the network
contacts of our research group, and (2) by sending invitation messages on mailing lists

5 A derived construct may be replaced by a combination of other constructs.
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and Web groups concerning UML, MD and software engineering. In particular, we
have used some lists available at the university (such as former students or people who
have participated in previous surveys about other topics) and international professional
groups (e.g. LinkedIn). We opted for non-probabilistic sampling methods even if we
know all the problems of this sampling (e.g. the risk of using a sample not representative
of the target population) [7] because this survey is exploratory and because we thought
that the target population was hard to identify and of limited availability.

In total, we received 275 complete responses to our survey. Unfortunately, we do
not know exactly how many people have been reached by our invitation messages and
advertisements, so we cannot calculate the response rate. The same problem is present
also in other software engineering surveys (e.g. in [10]).

Data Collection. Data were collected through the creation of an on line questionnaire.
The use of a web-based tool simplifies and speeds up the completion of the question-
naire with clear advantages in terms of the number of responses obtained [6]. The online
questionnaire has been developed and published using LimeSurvey6.

Questionnaire Design. The questionnaire is organized into four sections each of them
implemented as a Web page. The first section contains the questions designed to get
information about the survey participants, while the 2nd, 3rd, and 4th sections contain
a series of questions designed to assess the knowledge and usage of the UML, respec-
tively focusing on UML diagrams, use case diagram constructs and activity diagram
constructs. This division was necessary to create different paths to complete the ques-
tionnaire depending on the type of response given by the participants (e.g. the activity
diagram section is skipped if a participant states that (s)he does not know that kind of
diagram). Thus, the total number of questions to compile is variable depending on the re-
sponses given to previous questions. A partial list of questions (i.e. the “Personal Data”
and “UML Diagrams” sections) is shown in Table 1. Some of them are not mandatory
(e.g. questions 1.1 and 1.2).

We have decided to formulate the questions about the knowledge and usage of a di-
agram/construct in terms of “having seen a model containing it” and “having produced
a model containing it”, to avoid misunderstandings or personal interpretations by the
respondents. For example “I know diagram/construct X” may be interpreted as “I know
its existence” or “I know its syntax and semantics”; similarly, instead of “I have used
diagram/construct X” we have preferred the most precise “I have produced a model
containing diagram/construct X”. Furthermore, to avoid that someone that knows or has
used a diagram/construct but perhaps (s)he is not able to remember its precise name (e.g.
composite structure diagram used to represent structured classes and collaborations) we
have added an example to the question (see, e.g. Fig. 1).

We have chosen to force the participants to answer all the questions in each section
of the questionnaire using a special option provided by LimeSurvey; in this way it was
possible to get all the questionnaires filled out correctly. The only optional questions
concern full name and email (i.e. questions 1.1 and 1.2); so we allowed the participants
to complete the questionnaire anonymously (some studies have shown that the response
rate is affected by the anonymity policy of a study [24]).

6 http://www.limesurvey.org

http://www.limesurvey.org
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Table 1. Questionnaire (only “Personal Data” and “UML Diagrams” sections reported)

ID Conditional Question
1.1 What is your full name? (optional)
1.2 Please provide a valid personal email address. (optional)
1.3 What is your gender?
1.4 How old are you?
1.5 What is your nationality?
1.6 What is your current occupation?
1.7 Yesa What legal entity does your company fit?
1.8 Yesa What is the main business activity of your company?
1.9 Yesa Are modelling and/or MD* techniques used in your company?
1.10 Are you currently using UML for your (business) activity?
1.11 How did you learned UML?
1.12 How many years have you been using UML?
1.13 Yesa Do you use software tools to produce UML models?
1.14 Yesa List all the software modelling tools you have used.
1.15 Have you read the OMG UML specifications?
1.16 Are you active in OMG?
1.17 Did you take part in OMG UML definition?
1.18 Which one of the following OMG UML certifications do you have?
2.1 Class Diagramb

2.2 Object Diagramb

2.3 Activity Diagramb

2.4 Use Case Diagramb

2.5 State Machineb

2.6 Sequence Diagramb

2.7 Communication Diagramb

2.8 Component Diagramb

2.9 Composite Structure Diagramb

2.10 Deployment Diagramb

2.11 Package Diagramb

2.12 Timing Diagramb

2.13 Interaction Overview Diagramb

2.14 Profile Diagramb

a Shown only if a condition on the previous answers is satisfied
b

I have never seen it, I examined a model containing it, I produced a model containing it
For each question in this group an image depicting a sample diagram is shown (see Fig. 1)

Fig. 1. A question (Q 2.8) from the “UML Diagrams” questionnaire section

To harvest more answers, we decided that the questionnaire should take no longer
than approximately 15 minutes to complete (long questionnaires get fewer answers than
short questionnaires [24]) and we designed it accordingly.
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The questionnaire was introduced with a brief statement about the purpose of our
research (as suggested in [7]), and we added a sentence to clarify that all the collected
information had to be considered highly confidential7.

Survey Execution. The data presented in this paper have been collected since 1st of
October 2013 until the 10th of March 2014 (about 5 month and half). Approximately
every month, we sent to different mailing lists and groups an invitation to participate to
the survey. The procedure followed to prepare, administer, and collect the questionnaire
data is made up of the following five main steps:
1. Preparation and Design of the Questionnaire. Starting from similar questionnaires

[20,21] and tailoring them to our objectives, an initial set of questions was agreed
among us.

2. Pilot Study. A pilot study was performed before executing the survey (i) to tune
the questionnaire and (ii) to reduce the ambiguities contained in the questions. An
industrial IT professional and a university professor filled a preliminary version of
the questionnaire and provided their judgment on it. Following the suggestions of
the two contacted experts, minor changes to the questionnaire were made. After
this pilot study we concluded that the survey was well suited for IT professionals
and academics and that the questions were clear enough.

3. On-line Deployment. Once the questionnaire was refined after the pilot study, it was
deployed on-line by using LimeSurvey as explained before.

4. Monitoring. During the data capture phase, our research group monitored the
progress of the questionnaire submission. A few people reporting difficulties about
the questions asked us for clarifications.

5. Data Analysis. After questionnaires have been collected, simple analyses were per-
formed with the aim of answering the research questions. Given the nature of this
survey, that is mainly descriptive (it describes some conditions or factors found
in a population in terms of its frequency and impact [7]), we applied quite ex-
clusively descriptive statistics and showed our findings by means of charts. For
space reasons, we employed line charts instead of the more common/adapt col-
umn charts. Anonymized raw data are available at: http://sepl.dibris.unige.it/2014-
UMLPersonalSurvey.php

3 Results
We first present some information about the background of the respondents, and then
some results from the execution of the survey.

We assume that a diagram is known iff the respondent did not answered “I have
never seen it” to the corresponding question from 2.1 to 2.14 in the questionnaire (see
Table 1), and thus if (s)he has either just examined or produced a model containing it.

3.1 Respondents’ Background

From the answers to the first section of the questionnaire we have found that: (Q1.3) the
majority (83%) of the respondents are male, and (Q1.4) the most common age groups
are 28-37 and 38-47 with respectively the 43% and 30% of the respondents.

7 In conformity with privacy Italian law: “D.lgs. n. 196/2003”.
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Fig. 2. Nationalities of the Respondents (dark grey means that in our sample we have at least one
respondent for that Nation) – (Q1.5)

We have respondents from many different nationalities (Q1.5, see Fig. 2) with 231
participants from Europe (mainly from Italy with about the half of the survey’s respon-
dents, and then Germany and France), 32 from Americas (mainly from US, Brazil and
Canada), 10 from Asia, and 2 from Africa. The majority of the respondents are profes-
sionals (60%) while the remaining are from the academia (40%). For what concerns
the role of the respondents (Q1.6), the most frequent are software developer, professor,
PhD student, and university researcher, see Fig. 3.

MD*8 techniques (Q1.9) are used in the company of the 61% of the respondents,
while the 54% of the respondents is using UML in their current activities (Q1.10). The
majority of the respondents learned UML in university courses 50% or by self-study
38% (Q1.11). The 39% of the respondents use UML by less than 5 years, 35% by 5-10
years, 17% by 10-15 years and the remaining (9%) by more than 15 years (Q1.12). The
80% of the respondents create UML models using specific tools (Q1.13). The 49% of
the respondents have read the OMG UML specifications (Q1.15). Only 2 respondents
are active in the OMG, and only 7 took part in the OMG UML definition. Finally, only
the 6% of the respondents have an OMG UML certification (Q1.18).
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Fig. 3. Current Roles and number of the Respondents – (Q1.6)

8 A common name for several model driven approaches and methodologies, such as MDD,
MDSD, MDE, MDA [23].
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3.2 RQ1: UML Diagrams Knowledge

The results about the knowledge of the UML diagrams of all the respondents can be
seen in Fig. 4 (straight dark line). The chart shows that the level of knowledge of the
various diagrams is quite different, and that we can distribute the diagrams in three main
groups.
(K1) They are diagrams that are without any doubt widely known, precisely use case
diagram (97%), class diagram, state machine and sequence diagram (96%), and activity
diagram (92%). The most known one is the use case diagram, and this it is not surprising,
since this diagram may be used without any other part of the UML, and it is truly useful
to complement classical textual use case based requirements specifications, offering a
nice way to visually summarize use cases, actors and relationships among them. Also
the authors have proposed a method for building “disciplined use case specifications”
where only this part of the UML is used [17]. All the diagram types in this group were
already present in UML version 1.
(K2) Other diagrams are known with good percentage: package diagram (86%), compo-
nent diagram (82%), object diagram (81%), deployment diagram (77%), and communi-
cation diagram (73%).
(K3) The remaining diagrams are scarcely known: composite structure diagram (59%),
profile diagram (52%), interaction overview diagram (51%), and timing diagram (42%).

The answer to RQ1 is then that some UML diagrams are very widely known (K1),
others are known (K2), and the remaining ones are scarcely known (K3). The least
known is the timing diagram.

In Fig. 4 we have also presented the combined results of the previous survey [14]
(dotted line) covering static sources about the UML (books, tools, university courses
and tutorials). In this case the percentage is relative to the number of sources in which
the various diagram types were considered. The lines in Fig. 4 are slight different but
their trend is very similar (the Pearson’s correlation coefficient between the two poly-
lines is really high, 0.92), thus the most/less known diagrams are more or less the same,
and so we have a confirmation of the soundness of the above answer to RQ1. The only
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Fig. 5. UML diagrams knowledge: people currently/not currently using UML for their job

real visual difference between the two polylines concerns the profile diagram, where
people knowledge seems better than its consideration by the static sources. However, it
is the newest diagram (indeed it was introduced only in UML version 2.1), and it is sen-
sible to assume that books/tools/courses take more time to integrate the novelties than
people. A possible confounding factor about this comparison could be that our previous
survey on static sources [14] has been performed about one year ago.

Finally, we have partitioned the knowledge level of the UML diagrams consider-
ing question Q1.10 (Are you currently using UML for your business activity?). Fig. 5
clearly shows that the current usage of the UML in the respondents’ job activities is
correlated with a higher level of UML knowledge. The difference about the two distri-
butions (used/not used) is clear-cut for all the UML diagrams with the exception of the
four most known diagrams where it is really small.

It is interesting to note that: (1) using currently UML implies a better knowledge
of all the diagrams and not of only a subset of them, and (2) with the reduction of
the UML diagrams knowledge increases the difference between the two distributions,
in other words, diagrams in group K1 are known by everyone while specific diagrams
(groups K2 and K3) are more known by those who are currently using UML in the
everyday activities.

3.3 RQ2: UML Diagrams Usage

The data about the real usage of the various UML diagrams are also shown in Fig. 4
(dashed line). We can see that obviously the usage figures are lower than those referring
to the knowledge of the various diagrams (on average of about 30%), but the distance
is greater for the less known diagrams (e.g. for the composite structure diagram). This
fact may be interpreted as either less known are less used because they are less “useful”
or they are less used because people do not know them. However, they follow the same
trend: most/less known diagrams are also the most/less used ones. This is confirmed by
the Pearson’s correlation coefficient between the two polylines that is really high (0.96).
Thus we can again distribute the diagrams in three groups:
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(U1) The diagrams that are without any doubt widely used are: sequence diagram (79%),
class diagram (78%), use case diagram (77%), state machine diagram (70%), and activ-
ity diagram (67%). Here we can observe that some people have produced a sequence
diagram without a supporting class diagram (thus they have made an inconsistent UML
model, since the classes typing the lifelines have not been defined).
(U2) Other diagrams are used but with lower percentage: package diagram (48%), com-
ponent diagram and object diagram (47%), deployment (42%), and communication di-
agram (32%).
(U3) The remaining diagrams can be considered scarcely used: composite structure and
profile diagram (21%), interaction overview diagram (15%), and timing diagram (12%).

The answer to RQ2 is then quite similar to that to RQ1 (the correlation between the
two RQs is really strong): some UML diagrams are widely used (U1), other are used
(U2), and the remaining (U3) are scarcely used; and also in this case the least used one
is the timing diagram. Future empirical work is needed to understand in which niches
of the industry the diagrams in (U3) are really used, and whether they could be also
useful elsewhere.

3.4 RQ3: Professionals vs. Academics

Fig. 6 presents the data about knowledge and usage of the UML partitioning the sample
by category of occupation: professionals vs. academics. For what concerns the knowl-
edge level, academics (straight dark line) seems to know a little more than profession-
als (dashed light line) — average less than 7%. Only in two cases professionals seem
to know a slightly more than academics: for composite structure diagram (+6%), and
timing diagram (+10%). Probably, this is due to a specific use of these two types of dia-
grams in industrial niches (e.g. timing diagrams are heavily used in avionics industries
to model guidance and control systems).

The data about the usage of the various UML diagrams are also shown in Fig. 6 (see
the dashed polylines). We can see that obviously the usage figures are lower than those
referring to the knowledge of the various diagrams, but the distance between industry
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and academic usage — on average of about 10% — is greater in some cases (e.g. for
class, object, state machine, sequence and package diagrams). We believe that this is
due to the different nature of the produced models containing the considered diagram
type: relative to a real project for professionals and to a toy model used for teaching in
the case of academics.

Thus, we can answer to question RQ3 simply saying that UML is slightly more
known and used by the academics than by the professionals except for composite struc-
ture diagrams and timing diagrams.

3.5 RQ4: Working Role, Seniority, Education, and Gender

Fig. 7 (upper part) shows the data about the knowledge of the UML diagrams distin-
guishing the different working roles. To keep the charts readable we do not report the
data about the roles with a very low number of respondents (e.g. software tester, see
Fig. 3).

In the case of the professionals, we can see that there is a visual difference between
the developer and the other roles in the majority of the diagrams; it seems that devel-
opers are those with the less knowledge of the UML diagrams. These results seem to
suggest that UML is less relevant for the last software development phases. For the aca-
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demics, we can see — always in Fig. 7 (lower part) — that, as expected, students (86%
of them are PhD) have slightly lower knowledge of the UML with respect to the other
academic roles. This is more marked for object and timing diagrams.

For what concerns the UML seniority (i.e. partitioning for question Q1.12, how many
years UML has been used?), we can see in Fig. 8, that the range “less than 5 years”
presents the lower level of knowledge, the range “between 5 and 10 years” shows a
slight better knowledge, whereas people in the ranges “between 11 and 15 years” and
“more than 15” have both a higher level of knowledge, in particular concerning the less
known diagrams.

The way the UML has been learned seems to influence the knowledge level, see
Fig. 9. Indeed, while participants that studied UML on their own are only slightly better
that who learned UML in university courses, we can observe that participants that stud-
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ied UML in dedicated courses have a better knowledge in particular for communication,
component, composite structure, deployment and package diagrams.

Finally, there is almost no difference in the UML knowledge if we consider the gen-
der of the survey respondents (see Fig. 10).

Thus, we can answer to question RQ4 saying that the factors we have considered
(working role, seniority, education, and gender) do not have an influence on the UML
knowledge.

3.6 Threats to Validity

In our opinion the main threats to validity of this study are the following: (1) non-
probabilistic sampling method, (2) possible self-exclusion from participants not inter-
ested in our survey, (3) possible non representativeness of the sample, and (4) sample
size and not uniform geographic distribution of the data points.

We opted for non-probabilistic sampling methods, even if we know very well all the
problems of this sampling, for two reasons. First, this survey is exploratory. Second, we
thought that the target population was hard to identify and reach (especially non-Italian
people), and of limited availability (this is often true in software engineering surveys).
This should be carefully considered when interpreting the results we obtained: with this
kind of sampling it is difficult to generalize the results to the entire population.

We cannot exclude that some participants could have avoided to answer because they
have already a well-defined opinion about the UML (e.g. “it is not useful” and “there
is nothing to discuss about it”). Self-exclusion is a well-known problem in Internet
surveys, in particular when advertised by means of mailing lists and groups as we did.

We were expecting the questionnaire to be filled by people with at least minimal
knowledge of the UML. Examining the collected data, we discovered that eight respon-
dents answered “I have never seen it” at all the questions about UML diagrams and thus
we decided to delete them from the sample. Moreover, we received 22 incomplete ques-
tionnaires. We contacted some of these respondents to understand the drop out reason.
In several cases the motivation was little knowledge of UML. So we can conjecture that
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those that completed the questionnaire are people with a non-negligible knowledge of
the UML, and thus perhaps the survey results may present a higher level of knowledge
of the UML than the real one.

Finally, we are aware that the size of our sample is greater than the one of previously
performed software engineering surveys [2,9,20,21]. Of course, further geographically
distributed data points are highly desirable to generalize our findings.

4 Related Work

UML is currently on of the most widely used modelling language [11] and it is often
employed by companies in the software analysis and design phases [18,21]. However, it
is also perceived as a very complex notation. For this reason, in the last decade, several
works [3,4,8,25] have been presented with the aim of identifying a relevant subset of
the UML. In the tentative to find the “essential UML”, Erickson and Siau [3] have con-
ducted a Delphi study9 with the goal of identifying a UML kernel for three well-known
UML application areas: Real-Time, Web-based, and Enterprise systems. The partici-
pants to the study were asked to rate the relative importance of the various UML dia-
grams in building systems. UML overall results (i.e. non-domain specific) were: 100%
for class and state machine diagrams, 95.5% for sequence diagrams, 90.9% for use case
diagrams. All the others diagrams received a percentage lower than 50%, e.g. 27.3%
for activity diagrams. This last finding is in contrast with our results where the activity
diagrams are well-known (92%) and used (67%). Another personal opinion survey by
Grossman et al. [4] about UML confirms the results of Erickson and Siau. Results in-
dicate that the three most important diagrams are use case diagram, class diagrams and
sequence diagrams. Wrycza and Marcinkowski [25], in another personal opinion sur-
vey, have tried to downsize the UML finding the most useful diagrams. The participants
perceived use case, class, activity, and sequence diagrams as the most useful.

In comparison to these works, our survey is quite different for several reasons: (1) we
invited very different categories of UML users to participate, from academia and indus-
try, while, for instance, the sample used by [25] is composed only by students (180 in
total) with a very homogeneous background (e.g. they have all studied UML on the
same book), and Grossman et al. focused their study only on developers; (2) we tried to
get a remarkable number of participants (i.e. 275) compared for instance to the 131 of
Grossman et al. [4] and the 44 of [3].

Another personal opinion survey about UML (171 professionals in total), by Dob-
ing and Parsons [2], points out another strong statement: “regular usage of UML com-
ponents were lower than expected”. The authors of [2] suggest that the difficulty of
understanding many of the notations “support the argument that the UML may be too
complex”. The same claim, in more or less different forms, is present in several blogs,
where many proposals of UML simplification are arising10. Maybe, the most authorita-
tive is the one of Ivar Jacobson entitled “Taking the temperature of UML” [5], where

9 It attempts to form a reliable consensus of a group of experts in specialized areas.
10 e.g. http://www.devx.com/architect/Article/45694 and
http://blogs.msdn.com/b/sonuarora/archive/2009/11/02/simplify-
uml.aspx

http://www.devx.com/architect/Article/45694
http://blogs.msdn.com/b/sonuarora/archive/2009/11/02/simplify-uml.aspx
http://blogs.msdn.com/b/sonuarora/archive/2009/11/02/simplify-uml.aspx
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he wrote: “Still, UML has become complex and clumsy. For 80% of all software only
20% of UML is needed. However, it is not easy to find the subset of UML which we
would call the ‘Essential’ UML. We must make UML smarter to use”. The need to sim-
plify the UML is also shown by the recently released OMG draft proposal about this
topic [19]. Moreover, the complexity of the UML seems to be one of the factors that
limit its diffusion and usage in the industry [13].

The work in [8] shares our opinion on the importance to determine “ which parts of
UML are extensively used, which are scarcely or never used” (using their own words);
however, differently from us they decided to analyse models publicly available on the
web. Moreover, in their paper the frequency of use refers to the concrete metaclasses
appearing in the metamodel (that should correspond to modelling concepts), and to lan-
guage units (groups of tight-coupled modelling concepts), whereas we consider UML
diagrams and visual constructs, that it is a user-view of the UML. The result of this
study is that class, use case, and interaction are the most used language units, which
roughly correspond to class, use case, sequence and interaction overview diagrams.

The main conclusion from a systematic literature review by Budgen et al. [1] is:
while there are many studies that use the UML in some way, there are relatively few for
which the UML is itself the object of study; there is a need to study the UML and its
elements much more rigorously and to identify which features are valuable, and which
could be discarded. Our work can be considered a first attempt in this direction.

5 Conclusions and Future Work
In this paper we have presented some results from a personal opinion survey, with re-
spondents being both members of the academia and professionals, performed to investi-
gate the level of knowledge and usage of the various UML diagrams, and to understand
whether the working context, the working role, the education, the seniority (both obvi-
ously referring to the UML), and the gender influence the answer. This survey is part of
a wider study aimed to gain information on the knowledge and usage of the UML dia-
grams and of the constructs of use case and activity diagrams, that includes a survey of
static informative sources on the UML [14,15] (an extended version of [15], including
also the constructs of use case diagram will appear in [16]).

The found results show that the level of knowledge and of usage of the various
types of diagrams is quite different, and that these differences are quite stable also
when considering different categories of peoples, for example the timing diagram is al-
most always the less known/used. Furthermore, these differences among the diffusion
of the various diagram types are consistent with those found by the survey on the static
sources.

The UML diagram types may be placed in three different groups. In the first group
there are the widely known and used diagrams. They cover the basic modelling func-
tionalities: structural (class diagram) and behavioural (state machine, sequence diagram
and activity diagram), while use case diagram has a specific role for the requirement
specifications based on use cases (and it seems to be used also without any other UML
diagram). All of them were already present in the UML version 1. In the second group
there are diagrams useful for representing more specific aspect of systems/software
(e.g. communication and object diagrams) or useful in specific cases (e.g. component
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and deployment diagram) or needed only to structure a model in packages (package
diagram). They are known and used but at a less extent than those in the first group.
The third group contains diagrams covering very specific aspects of a system (e.g. inter-
action overview and timing diagrams) or having a very specific role (profile diagram),
while composite structure diagram has two different forms, one for modelling structured
classes and one for collaborations (the latter are quite useful for example for modelling
SOA based systems, see e.g. SoaML [12]). All these diagrams have been introduced in
UML version 2, and the profile diagram only in UML 2.1.

As future work we would like: (1) to extend our personal opinion survey in several
directions (e.g. adding more data points, extending the survey to other nations and ex-
tending the goal of our survey, for example for understanding why professionals choose
to use some diagrams and ignore others), (2) to extend the static sources considering
also web resources and model repositories, e.g. ReMoDD.
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Abstract. Model-Based Engineering (MBE) aims at increasing the ef-
fectiveness of engineering by using models as key artifacts in the devel-
opment process. While empirical studies on the use and the effects of
MBE in industry exist, there is only little work targeting the embedded
systems domain. We contribute to the body of knowledge with a study
on the use and the assessment of MBE in that particular domain. We col-
lected quantitative data from 112 subjects, mostly professionals working
with MBE, with the goal to assess the current State of Practice and the
challenges the embedded systems domain is facing. Our main findings
are that MBE is used by a majority of all participants in the embedded
systems domain, mainly for simulation, code generation, and documenta-
tion. Reported positive effects of MBE are higher quality and improved
reusability. Main shortcomings are interoperability difficulties between
MBE tools, high training effort for developers and usability issues.

Keywords: Model-Based Engineering, Model-Driven Engineering, Em-
bedded Systems, Industry, Modeling, Empirical Study, State-of-Practice.

1 Introduction

Model-Based Engineering (MBE)1 has a long history in the embedded systems
domain. For example, the first version of Matlab/Simulink has been released
exactly 30 years ago and by now, it is one of the standard development tools in
the automotive domain. MBE aims to increase the effectiveness and efficiency
of Software Development [4]. However, empirical evaluation of MBE in industry
is scarce [12]. The few existing empirical studies in this field suggest that MBE
can have positive effects such as reduction of defects and productivity improve-
ments [3, 12], or increased understandability [10]. Nevertheless, they also report

1 We use the terms Model-Based Engineering and Model-Driven Engineering inter-
changeably for a process in which models are used as the primary artifacts.

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 166–182, 2014.
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challenges such as insufficient tool support [3, 12, 13], need for additional train-
ing [10] or the use of MBE with legacy software [10,12]. However, existing studies
are not explicitly targeted at the embedded systems domain [3,9,10,12–14], tar-
get only UML [2,5,8], limit themselves to the Brazilian embedded industry [1], or
collect only qualitative data from the automotive domain [11]. We contribute to
the body of knowledge with a survey on the use of MBE in the embedded systems
domain. The goal of the survey was to get an overview about the SoP and chal-
lenges the industry is faced with in order to understand industrial needs. More
precisely, with the study we want to answer the following research questions:

– RQ1: What is the current state of practice and the assessment of Model-
Based Engineering in the embedded systems domain?

– RQ2: How does the use and the assessment of Model-Based Engineering
differ between different demographic subgroups in the embedded systems
domain?

RQ1 aims to capture the SoP of MBE in the embedded systems domain,
which includes the used modeling environments, modeling languages, types of
notations, purposes models are used for and how much activities concern MBE
compared to non-MBE. Moreover, we are interested in the introduction rea-
sons and the effects, both positive and negative, after introduction of MBE as
well as current shortcomings of this method. With RQ2, we want to find out
whether there are substantial differences in the SoP between different groups in
the embedded systems domain, e.g., differences in the automotive domain and
the avionics domain or between new MBE users and highly experienced users.

In order to answer the research questions, we developed a web survey con-
sisting of 24 questions. The survey was distributed to partners taking part in
five industrially driven European research projects (between 22 and 100 project
partners) as well as to personal contacts of which most are professionals working
with MBE. Finally, we have got 121 completed surveys from which 112 are used
for the data analysis.

In this paper, we focus on the presentation of the reported positive and nega-
tive effects of MBE, shortcomings of MBE, reasons for introducing MBE and
purposes models are used for in the development process. Overall, the sur-
vey answers show that many survey participants think that the positive ef-
fects predominate the negative effects of MBE. Nevertheless, they mention also
that interoperability challenges between tools exist and that it causes high ef-
forts to train the developers. More detailed results will be discussed in Section
4. The complete data sample together with the questionnaire is published at
www.cse.chalmers.se/~tichy/models14_LMTLH_dataset.zip

2.
The remainder of this paper is structured as follows. In the following section,

we discuss related work. Section 3 contains the research methodology. This in-
cludes the process of study design, data collection, threats of validity. In Section
4, the key results of the survey are discussed. Finally, conclusions and future
work are discussed in Section 5.

2 Password: mbe usage14

www.cse.chalmers.se/~tichy/models14_LMTLH_dataset.zip


168 G. Liebel et al.

2 Related Work

While industrial evaluation of MBE in research is limited [10], there are a num-
ber of recent publications addressing this topic. With respect to the embedded
systems domain, we are only aware of two reported studies, [1] and [11], pre-
senting the SoP of MBE in this particular domain. Other publications, such
as [3,12] and [9], also include cases from the embedded systems domain, but do
not explicitly address this domain as their target.

In [1], Agner et al. present the results of a survey on the use of UML and
model-driven approaches in the Brazilian embedded software development in-
dustry. The participants come from a variety of different sub-domains, with in-
dustrial automation, information technology, telecommunications and electronic
industry being the biggest groups. Key findings are that 45% of the 209 partic-
ipants use UML. Of these 45%, the majority are experienced developers work-
ing at medium-sized companies. The subjects report increases in productivity
and improvements in quality, maintenance and portability as key advantages of
model-driven practices. According to the participants, the use of UML is mostly
hindered by short lead times, lack of knowledge regarding UML and a limited
number of employees with expert UML knowledge. Additionally, it is stated that
models are mainly used for documentation with only little use of code genera-
tion or model-centric approaches in general. In contrast to [1], we do not limit
ourselves to a region but include a wide range of subjects from global companies
based in Europe.

Kirstan and Zimmermann report a case study within the automotive domain
[11]. Their interviewees report positive effects of MBE like an earlier detection of
errors, a higher degree of automation and cost savings during the initial phases
of development. On the negative side, they state that large function models can
become too complex and that interoperability between tools is difficult. The
study is limited to qualitative data from a single sub-domain of the embedded
systems domain, namely automotive.

Baker et al. present experiences with MBE at Motorola over a time span of
almost 20 years in [3]. On the positive side, they report a defect reduction and an
improvement in productivity. However, a number of challenges regarding MBE
are named as well, such as lack of common tools, poor tool and generated code
performance, lack of integrated tools, and lack of scalability.

Mohagheghi and Dehlen published a literature review on the industrial ap-
plication of MBE [12]. The evidence collected during the review suggests that
the use of MBE can lead to improvements in software quality and productivity.
However, studies which report productivity losses are also quoted in the review.
Insufficient tool chains, modeling complexity, and the use of MBE with legacy
systems are reported as challenges. Additionally, the maturity of tool environ-
ments is stated to be unsatisfactory for a large-scale adoption of MBE. Generally,
the authors conclude that there is too little evidence in order to generalize their
results.

In a later publication by Mohagheghi et al., experiences from three companies
in a European project “with the objective of developing techniques and tools for
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applying MDE” are reported [13]. According to the experiences at the studied
companies, advantages of using MBE include the possibility to provide abstrac-
tions of complex systems, simulation and testing, and performance-related deci-
sion support. However, the authors also state that the development of reusable
solutions using MBE requires additional effort and might decrease performance.
Moreover, transformations required for tool integration can increase the com-
plexity and the implementation effort according to the authors. Furthermore,
the user-friendliness of MBE tools and means for managing models of complex
systems is described as challenging.

Hutchinson et al. report industrial experiences from the adoption of MBE at a
printer company, a car company and a telecommunications company in [9]. The
authors conclude that a successful adoption of MBE seems to require, among
others, an iterative and progressive approach, organizational commitment, and
motivated users. The study is focused mainly on organizational challenges of
MBE.

A further assessment of MBE in industry by Hutchinson et al. based on over
250 survey responses, 22 interviews, and observational studies from multiple do-
mains is presented in [10]. From their survey, the authors report that significant
additional training is needed for the use of MBE, but that MBE in turn can
speed up the implementation of new requirements. Furthermore, the survey in-
dicates that code generation is an important aspect of MBE productivity gains,
but integrating the code into existing projects can be problematic. The majority
of survey participants states that MBE increases understandability. From their
interviews, the authors conclude that people’s ability to think abstractly can
have a huge impact on their ability to model. Hence, this ability influences the
success of MBE.

According to a survey of 113 software practitioners reported by Forward and
Lethbridge, common problems with model-centric development approaches are,
among others, inconsistency of models over time, model interchange between
tools and heavyweight modeling tools [7]. Code-centric development approaches,
on the other hand, make it difficult to see the overall design and hard to under-
stand the system behavior.

Torchiano et al. present findings from a survey on the State of Practice in
model-driven approaches in the Italian software industry [14]. From the 155
subjects, 68% report to always or sometimes use models. The subjects who do
not use models commonly state that modeling requires too much effort (50%)
or is not useful enough (46%). Further findings are that models are used mainly
in larger companies and that a majority of all the subjects using models (76%)
apply UML.

Further empirical evaluations on the application of UML in particular can be
found in [2, 5, 8]. These publications are related to our survey with respect to
some aspects, such as UML notation types. However, they do not address MBE,
or any approach where models are the primary artifact, in particular. Therefore,
they are not discussed here in detail.
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In conclusion, commonly reported problems in industry are insufficient tool
support or tool chains, using MBE together with legacy systems, and the com-
plexity of MBE and modeling in general. On the positive side, productivity gains,
defect reductions and increased understandability are reported. However, there
is a lack of empirical evidence and reported industry evaluations on the use of
MBE within the embedded systems domain. Existing work is either not targeted
at the embedded systems domain in particular [3, 9, 10, 12–14], is limited to the
Brazilian market [1], or lacks quantitative data [11].

3 Research Methodology

This section outlines the research methodology, consisting of the study design,
an outline of the data collection and threats to validity.

3.1 Study Design

The study was designed by three researchers from two different institutions
and three practitioners from two different companies as part of the CRYSTAL
project.

We decided to perform a survey in order to reach a larger sample size compared
to other empirical strategies and, thus, get an overview of the embedded systems
domain.

The survey questionnaire consisted of 24 closed-ended and open-ended ques-
tions. The first part of the questionnaire contained 13 questions gathering de-
mographic data. Hereby, we asked for company size, position in the value chain,
domain, experience with MBE, product size, working tasks, and the attitude
towards MBE. The second part, consisting of the remaining eleven questions,
addressed RQ1. Due to space limitations, we only use questions for the data
analysis in this paper regarding the positive and negative effects of MBE, short-
comings of MBE, reasons for introducing MBE and purposes models are used
for. The answers for all four questions were scored on a 5-level likert scale. Both
parts of the questionnaire were considered together for answering RQ2.

The survey was piloted by eleven colleagues in academia and industry. Given
their feedback and the time they needed to fill out the survey, the questionnaire
was refined. The revised survey was reviewed a second time by one colleague not
included in the pilot survey.

Furthermore, we derived a list of 24 hypotheses from the related work dis-
cussed in Section 2 (see Table 1) in order to guide the data analysis for RQ1.
These were then evaluated based on our collected data. The descriptions of hy-
potheses H1.1 through H1.9 are summaries of the actual statements in the
related work, based on our understanding. This is due to the fact that simi-
lar statements are present in multiple sources. For instance, Hypothesis H1.5
describes tool quality in general, while Baker et al. talk about poor tool perfor-
mance [3], Mohagheghi and Dehlen report lack of maturity of third-party tool
environments [12], Mohagheghi et al. report challenges with the user-friendliness
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of tools [13], and Forward et al. report that heavyweight modeling tools are prob-
lematic [7]. While we lose the exact statements for H1.1 through H1.9 from
related work, we argue that this summary is helpful for getting an overview over
the findings in the area of MBE. We do not claim that this list of hypotheses
is complete. However, we believe that it can guide future research in this area.
Additionally, we derived a list of eight hypotheses in order to answer RQ2. We

Table 1. Hypotheses from related work

Hypoth. Description Reported
by

H1.1 MBE leads to a reduction of defects/improvements in quality. [1, 3,12]

H1.2 MBE leads to improvements in productivity. [1,3,12]

H1.3 MBE increases understandability. [10], partly
[13]

H1.4 Using MBE with legacy systems is challenging. [10,12]

H1.5 Current MBE tools are insufficient. [3, 7,11–13]

H1.6 Significant additional training is needed for using MBE. [1,10]

H1.7 UML is the preferred modeling language employed in MBE. [1,14]

H1.8 Managing models of complex systems is challenging. [11,13]

H1.9 Tool integration is challenging. [7,11,13]

H1.10 Code generated from models has poor performance. [3]

H1.11 MBE lacks scalability. [3]

H1.12 The complexity of modeling is challenging. [12]

H1.13 Advantages of MBE are simulation and testing, and
performance-related decision support.

[13]

H1.14 MBE leads to an earlier detection of errors. [11]

H1.15 MBE can speed up the implementation of new requirements. [10]

H1.16 Code generation is an important aspect of MBE productivity
gains.

[10]

H1.17 Companies which consider software development their main
business seem to find the adoption of MBE more challenging
than other companies.

[10]

H1.18 Modeling requires too much effort. [14]

H1.19 Handling the consistency of models over time is challenging. [7]

H1.20 Modeling is not useful enough. [14]

H1.21 Models are used mainly in larger companies. [14]

H1.22 UML is mostly used by experienced developers working at
medium-sized companies.

[1]

H1.23 There is little use of code generation or model-centric ap-
proaches.

[1]

H1.24 MBE leads to a higher degree of automation. [11]

derived these hypotheses after designing our questionnaire from our own view on
MBE. That is, we elicited the hypotheses based demographic subgroups which
we were able to distinguish in our survey. The alternative hypotheses that there
are significant differences between the subgroups are listed in Table 2. The cor-
responding null hypotheses are that there are no significant differences between
the subgroups.
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Table 2. Hypotheses defined for RQ2

Hypoth. Description

H2.1 Users of in-house tools report more positive and less negative effects of MBE
than users who do not use in-house tools.

H2.2 Supporters of MBE report more positive effects than subjects opposed to or
neutral towards MBE.

H2.3 Subjects who are still using MBE report more positive and less negative
effects than subjects who stopped using MBE.

H2.4 Subjects who only use models for means of information/documentation re-
port less positive than negative effects.

H2.5 Subjects who do not see many usability issues with MBE tools report fewer
negative effects.

H2.6 Highly experienced users of MBE report less problems with MBE tools than
users with less experience.

H2.7 Large companies have more tool integration problems than small or medium-
sized enterprises.

H2.8 MBE promoters use more MBE tools in comparison to subjects neutral or
opposed to MBE.

3.2 Data Collection

The theoretical target population of the survey are all people involved with
systems engineering from the embedded systems domain, e.g. software archi-
tects, software developers, project managers, system engineers. We distributed
the survey to partners taking part at the Artemis projects Crystal (70 part-
ners), VeTeSS (22 partners), MBAT (38 partners), nSafeCer (29 partners), and
EMC2(100 partners), as well as to personal contacts of which most are pro-
fessionals working with MBE. This can be described as a convenience sample.
However, we also encouraged recipients to distribute the survey to colleagues or
partners. We used an online survey3 in order to keep administration costs low
and facilitate the distribution.

The final version of the survey was published on 18th October 2013 for a time
period of six weeks. Out of 196 started surveys, 121 were completed correspond-
ing to a completion rate of 61.73%. The survey data was automatically coded
and enhanced with additional quality data by the survey tool, such as completed
answers and time to fill out the survey. We cleaned the remaining 121 surveys
based on degradation points computed from missing answers and the time to fill
out each survey page. As we did not use compulsory questions, it could happen
that subjects lost interest but still navigated through the entire survey until the
end or simply looked at the survey without filling in data. Therefore, we argue
that this data cleaning process is necessary in order to ensure data validity as
discussed in [15]. We excluded nine surveys based on a threshold of 200 degra-
dation points proposed by the survey tool for a light data filtering. This left
us with 112 answered surveys for data analysis. We made adaptations to the

3 Through www.soscisurvey.de

www.soscisurvey.de
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demographic data in cases where free-text answers clearly corresponded to one
of the given answering options.

3.3 Validity Threats

In the following, we discuss the four different aspects of validity as discussed in
Wohlin et al. [15].

Construct Validity. Construct validity reflects whether the studied measures
are generalizeable to the concept underlying the study. We collected data from
different sources in order to avoid mono-operation bias. Hypothesis guessing,
the participants guessing what the researchers are aiming for and answering
accordingly, can not be ruled out completely. We tried, however, to formulate
the questions in a neutral way and improved the questionnaire based on obtained
feedback from the pilot study in order to address this threat. Finally, answers
were treated completely anonymous in order to avoid biased answers due to
evaluation apprehension.

Internal Validity. Internal validity reflects whether all causal relations are
studied or if unknown factors affect the results. Instrumentation was improved by
using a pilot study. The survey took approximately 15 minutes to fill out and was
intended to be filled out once by every participant. This reduces the likelihood for
learning effects and, hence, maturation effects. Additionally, the completion rate
of 61.73% indicates that the majority of participants was interested in finishing
the survey. Selection threats can not be ruled out as participants volunteered to
fill out the survey.

External Validity. External validity is concerned with the generalizeability
of the findings. The CRYSTAL project and other projects, to which the survey
was distributed, consist of partners from all major sub-domains of the embed-
ded systems domain. Additionally, demographic data was collected in order to
confirm this aspect. Therefore, we are confident that we have reached subjects
with a variety of different backgrounds representative for the embedded systems
domain. While CRYSTAL is a project on European level, many of the involved
partners are global companies. Hence, we argue that this does not limit the va-
lidity of our results and that it is possibile to generalize them to other cases on
non-EU level.

Conclusion Validity. Conclusion validity is concerned with the ability to draw
correct conclusions from the studied measures. We involved three researchers and
three practitioners with different background into the study design. Therefore,
the survey was designed by multiple people with different aims and backgrounds,
which should reduce the risk for “fishing” for results. A standard introduc-
tion e-mail was designed to be distributed with the link to the online survey.
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Hence, reliability of treatment implementation is given. Reliability of measures
was increased through a survey pilot filled out by eleven people and then, after
improvements, reviewed by one more researcher. The detailed questionnaire is
furthermore published in order to enable replications and an assessment of the
validity of our study. Significance tests were only performed based on our hy-
potheses. That is, we did only perform a fixed number of statistical tests and
did not randomly search for significant results.

4 Results

This chapter summarizes the results of the survey. First, demographic data about
the subjects participating in the survey is illustrated in order to get information
about their company and experiences. Then,RQ1 is addressed and, where possi-
ble, compared to hypotheses H1.1 to H1.24 in order to show our survey results
and compare it to related work. Finally, we discuss RQ2 based on hypotheses
H2.1 to H2.8 and evaluate validity of the hypotheses.

4.1 Demographic Data

The first part of the survey contained context questions providing demographic
data. Mainly, two kinds of background information have been asked; first, some
context questions concerning the company and secondly, questions about the
personal MBE experiences of the participants. With the company related ques-
tions we wanted to get an idea of the work environment such as domain, company
size or company position. Questions about the personal experiences such as daily
working tasks, usage of MBE or whether the participant is a supporter for MBE
or not should help to better understand answers and opinions of the surveyed
subjects.

Company context. From the 112 surveys a bit more than the half stated the
company they worked for; consequently, at least 30 different companies could
have been identified that participated in the online survey. About three-fourths
of all respondents (87) work in large companies with more than 250 employees,
14 persons are employed in small and medium enterprises (SME) and 11 at
university. Hence, the main percentage of answers represent opinions of large
companies. 50 of the companies are first-tier supplier, 40 OEMs, 25 second-
tier supplier and 18 have other positions in the value chain such as research
institutes, consultants or technology/software provider. More than a half of the
respondents (60) work in the automotive industry, 31 in avionics, 25 in health
care, 15 in defense, 11 in rail and 4 in telecommunications. 16 companies work
domain independently and 9 operate in other domains such as semiconductor or
industrial automation industry. Asking the participants the point in time their
company introduced MBE, 37 say that their company started 10 or more years
ago, 56 state 1-10 years ago and 4 started in the last 12 months. 8 companies still
do not apply MBE, the rest (10 participants) does not know the introduction
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time. Accordingly, most companies have experiences with MBE for quite some
time. 73 companies use MBE for developing a commercial product, 46 therefrom
for large scale series production (more than 1000 pieces), 19 for medium scale
production and 8 for small scale production (less than 10 pieces). 23 use MBE
for research demonstration, 9 use it for non-commercial products and 7 for other
purposes such as teaching or developing methods and tools.

Personal experiences. In order to understand for which activities the partic-
ipants use MBE, we asked for their main working tasks. The answers, multiple
answers were possible, are: 60 of the participants implement software, 56 are
responsible for architecture definition, 55 for testing, 53 for design definition, 49
specify requirements, 39 are project managers, 24 are safety managers, 16 are
quality managers, 14 are responsible for customer support and 12 work in gen-
eral management. 14 participants execute other activities than the mentioned,
such as process improvement, consulting or tool engineering. Hence, we cover a
diversity of subjects working in different functions. Concerning the MBE expe-
rience, many participants (46) are well experienced with more than 3 years of
usage. 40 persons state that they have moderate experience and only 26 are new
in the field of MBE. 72 of the participants are still using MBE, 15 have used
MBE the last time 1 month to 1 year ago and 16 have used MBE the last time
more than 1 year ago. Only 9 people state that they have never used MBE; thus,
a large percentage of the survey participants are experienced. 86 of subjects are
promoters for MBE, 25 have a neutral attitude for MBE and 0 are opponents.

4.2 RQ1: State of Practice

The key results of the survey should offer valuable clues to industrial needs con-
cerning MBE. Mainly, reasons for applying MBE, effects of using it, shortcomings
of MBE and model purposes represent interesting outcomes of the survey.

Modeling tools and languages. Even though we do not focus on present-
ing the answers about modeling tools and languages in this paper, we present
a summary about the most used tools and languages as context for the follow-
ing results. Regarding the technical aspects of MBE, we asked the participants
which languages and notation types they use for modeling and which functional
aspects of their system they describe using models. Most survey participants
use Matlab/Simulink (50 answers) or Eclipse-based (34 answers) MBE tools. As
for notations, Finite State Machines are used by 74 participants, followed by
sequence-based models (64 participants) and block diagrams (61 participants).
Finally, we asked for which functional aspects of a system participants already
use models. Here, structure (68 participants), discrete state specifications (48
participants) and static interfaces (47 participants) are most common.
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Needs for introducing MBE. One interesting issue is the motivation why
companies decide to use models for developing their systems. Reasons for in-
troducing MBE will give information about companies’ opinions regarding the
advantages of MBE as well as challenges they are faced with. Therefore, the
survey contains one question asking about the needs for introducing MBE. The
results are summarized in Figure 1.
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Need for shorter development time

Need for cost savings

Required by customers

Required by standards

Need for formal methods

Need for traceability
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Fig. 1. Reasons for introducing MBE

On the left side of the figure the needs, which have been stated in the question-
naire, and the responses concerning the needs are listed. The three percentage
declarations in the figure show on the left side the percentage of the answers
with ’not relevant’ and ’somewhat relevant’, in the middle the percentage of the
neutral ’relevant’ answers and on the right side the percentage of answers with
’mostly relevant’ and ’very relevant’. The second part of the figure located on
the right side gives information about the amount of participants who filled in
the grade (completed) and the number of participants who did not fill in a grade
or do not know it (Not answered/I don’t know). The figures in the following
sections can be read equally but with adapted questions, responses and response
types. As the figure shows, most participants (69%) think that their company
adopted MBE because they had a need for shorter development time. Further,
more than 50% say that needs for reusability, quality, maintainability and re-
liability improvements as well as cost savings and traceability are reasons for
applying MBE. Least important for the respondents are needs to improve avail-
ability and confidentiality and that MBE is required by customers or standards.

Purpose of models. Further, we wanted to know for which purposes models
are used for. The results for this question are illustrated in Figure 2. According
to the responses, models are mainly used for simulation, code generation, op-
posing H1.23, and for information/documentation; hence, the automation of
activities in the development process seems to be an important function. In con-
trast, timing analysis, safety compliance checks, reliability analysis and formal
verification have not as much application as the other mentioned purposes.
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Fig. 3. Positive and negative effects of MBE

Positive and negative effects of MBE. In addition to the needs for introduc-
tion, the effects of the actual use of MBE are interesting. There are positive and
negative effects when applying MBE; hence, we asked ’What were the effects of
introducing MBE in your division/department?’. Figure 3 shows the answers for
this question. For this question, between 5 and 9 people did not answer each item
and between 30 and 53 did not know the effects. Accordingly, quality, reusabil-
ity, reliability, traceability, maintainability, development time, formal method
adoption, integrity, safety, availability, cost and efficiency of resulting code are
rated highly or partially positive by most participants. Standard conformity and
confidentiality have no effect according to more than 50% of the surveyed sub-
jects. Thus, most survey participants think that MBE has more positive effects
than negatives. From related work, H1.1 (quality improvements) is supported
by the data. H1.2 (productivity improvements) and H1.15 (increased devel-
opment speed of new requirements) are supported with respect to development
times. Other aspects of these hypotheses, such as productivity improvements
due to increased efficiency, are not captured by our questionnaire. Finally, H1.3
is supported with respect to maintainability.

Shortcomings of MBE. In order to identify potential improvements, subjects
were asked about current shortcomings of MBE. Figure 4 shows the answers for
this question which range from does not apply at all to fully applies. Many sur-
vey participants think that difficulties with interfaces to inter-operate with other
tools is a shortcoming that fully or mostly applies. This is in line with survey
results in [7], supporting H1.9. Moreover, more than one third of the people
thinks that MBE requires a high effort to train developers (supporting H1.6),
that there are usability issues with tools (supporting H1.5 with respect to us-
ability) and that benefits require high efforts (supporting H1.18 and supporting
H1.20 with respect to the required effort). Even though H1.18 is supported by



178 G. Liebel et al.

Benefits require high efforts

High overhead involved

Many usability issues with the tools

Impossible/difficult to customize tools

Expressiveness of tools limited/difficult

Lack of proper semantics

Lack of completeness/consistency checks

Lack of model checking capabilities

Diffic. with integration into development process

Diffic. with interf. to interop. with other tools

Diffic. of syntactic integration with other tools

Diffic. of semantic interop. with other tools

Difficulties for distributed development

Difficulties/lack of traceability support

Difficulties with code generation capabilities

Difficulties of integration with legacy code

Difficulties with variability management support

Difficulties with version management support

High effort for training of developers

22%

27%

24%

26%

35%

30%

33%

40%

37%

40%

38%

35%

58%

50%

51%

63%

58%

43%

61%

48%

43%

43%

43%

42%

42%

41%

40%

38%

37%

35%

33%

23%

22%

21%

21%

21%

20%

15%

31%

29%

33%

31%

23%

29%

26%

19%

26%

23%

27%

33%

19%

28%

27%

16%

21%

38%

24%

100 50 0 50 100
Percentage

Response doesn't
apply

somewhat
applies

partly
applies

mostly
applies

fully
applies

0 50
n

I Don't know/
Not answered Completed

Fig. 4. Shortcomings of MBE

“benefits require high efforts”, opinions about whether high overhead is involved
with the usage of MBE vary. No shortcomings according to the responses are
difficulties to customize tools and limitations on what can be expressed within
tools what is in opposite to H1.5 with respect to customization aspects and
H1.5 with respect to expressiveness. Hence, although the interoperability be-
tween tools seems to be a main shortcoming, capabilities of single methods and
tools are satisfactory for many surveyed subjects.

MBE tool usage. In order to judge how familiar subjects are with MBE tool-
ing, we asked how much they use MBE tools in comparison to non-MBE tools.
Here, 5 subjects stated to not use any MBE tools, 26 answered that they use less
MBE tools than non-MBE tools, 46 use more MBE tools than non-MBE tools
and 11 use only MBE tools. Finally, 8 answered that they do not perform any
engineering activities. Hence, the majority of all participants use mainly MBE
tools during their work.

All in all it can be said that many survey participants think that the positive
effects predominate the negative effects of MBE. However, the interoperability
between tools and the usability of them, the effort to train developers as well as
that the benefits require high efforts are considered as the main shortcomings of
MBE.

4.3 RQ2: Differences by Subgroups

In the following, we discuss the results on research question 2 with respect to our
hypotheses about differences in answers of subgroups of survey participants (cf.
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Table 2). As shown in the previous section, the answers of the survey participants
are ordinal scaled, e.g., a likert scale in the question about positive and negative
effects of MBE. Thus, we have to use a statistical test which supports ordinal
scaled data to assess whether the differences are significant. We use Fisher’s
exact test [6] (two-tailed) with a level of significance α ≤ 0.05. This test is a non-
parametric statistical test for contingency tables. In our case, the contingency
table consists of the answers of the participants in the columns and the different
subgroups in the rows.

The hypotheses H2.1, H2.2, H2.3, H2.4, and H2.5 address the full list of
positive and negative effects as presented in Section 4.2. We check and report
significance for each effect (e.g., cost, quality) individually.

For hypothesis H2.4, we do not have enough data for each subgroup in order
to compare the groups. Hypotheses H2.1, H2.6 and H2.7 did not show any
significant differences (i.e. p ≥ 0.05) between the subgroups. Hence, here we can
not reject the null hypotheses.

It is common that supporters of a paradigm or a methodology perceive its
advantages much more positively than subjects who do not support it. Therefore,
we tested this hypothesis for the case of MBE supporters and MBE opponents
or neutral participants (H2.2). Traceability (p = 0.00017), safety (p = 0.018),
and reusability (p = 0.019) yielded significant differences. That is, supporters
of MBE perceive the effects of MBE on these three aspects significantly more
positive than subjects opposed to or neutral towards MBE (See Fig. 3 for the
complete sample). On traceability, 80% of MBE supporters report partially or
highly positive effects, in contrast to only 27% for the opponents and neutral
participants. Note that in our sample there are no opponents of MBE.

Similarly, it could be expected that participants who still use MBE also see
more positive effects of MBE than participants who stopped using MBE (H2.3).
However, significant differences exist only for cost (p = 0.016) and traceability
(p = 0.006). That means that participants who are still using MBE report in
total more positive effects on cost and traceability than participants who stopped
using MBE. For instance, 79% of the participants still using MBE report partially
or highly positive effects on traceability, while participants who stopped using
MBE report only 48%. A possible explanation for the few significant differences
might be that participants who stopped using MBE did so because they moved
to a different position, e.g. in management, and not because they did not see the
benefits of MBE.

Tooling in MBE is often reported to be insufficient. We would expect that
usability issues with tools also influence other aspects such as productivity or
quality negatively. Therefore, we investigated whether subjects who see many
usability issues with MBE tools also report more negative effects than other
subjects (H2.5). However, there is only a significant difference with respect to
quality (p = 0.011). Participants who reported that many usability issues with
tools mostly or fully applies rated the effects on quality slightly less positive (10%
highly or partially negative, 13% no effect, and 77% partially or highly positive)
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than participants who reported that usability issues apply at most partly (0%,
7% and 93%).

Supporters of MBE also use more MBE tools in comparison to subjects who
are opposed to or neutral towards MBE (H2.8) (p = 0.00046, less-than Fisher
test). Here, 51 supporters of MBE reported to use MBE tools more than non-
MBE tools or only MBE tools, and 18 reported to use less MBE tools than
non-MBE tools or no MBE tools at all. This contrasts with a score of 5 and 13
answers on the opponent/neutral side.

In total we performed 72 significance checks resulting in seven significant
differences. While the number of found significances is low for this amount of
significance checks, we believe that our results could be used as indicators for
future studies.

5 Conclusions and Future Work

The presented results strongly confirm that indeed Model-Based Engineering is
widespread in the embedded domain. Models are clearly not only used for infor-
mative and documentation purposes; they are key artifacts of the development
processes, and they are used for, e.g., simulation and code generation. Other
widespread uses of significant importance are behavioral and structural consis-
tency checking, as well as test case generation, traceability and timing analysis.
While survey respondents reported mostly positive effects of Model-Based En-
gineering, the data also suggests some common and major challenges for MBE
that need further attention. These include effective adoption among developers
to reduce effort-intensive activities currently needed to realize benefits of MBE.
Furthermore, some challenges concern the specific tools adopted and their inter-
operation.

In the future, we plan on following-up the results of this study by replicating
the survey with a different target group in the embedded domain to validate
the identified results. Furthermore, a validation of some effects of the introduc-
tion of Model-Based Engineering can be performed by collecting quantitative
data in a company which introduces a MBE approach. Tool interoperability was
mentioned as one of the key shortcomings, which fits well with the goals of the
research project CRYSTAL where we focus on interoperability.
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Abstract. Although model-driven engineering (MDE) is now an established 
approach for developing complex software systems, it has not been universally 
adopted by the software industry. In order to better understand the reasons  
for this, as well as to identify future opportunities for MDE, we carried out a 
week-long design thinking experiment with 15 MDE experts. Participants were 
facilitated to identify the biggest problems with current MDE technologies, to 
identify grand challenges for society in the near future, and to identify ways that 
MDE could help to address these challenges. The outcome is a reflection of the 
current strengths of MDE, an outlook of the most pressing challenges for socie-
ty at large over the next three decades, and an analysis of key future MDE re-
search opportunities. 
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1 Introduction 

Model-driven engineering (MDE) is now an established approach for developing 
complex software systems and has been adopted successfully in many industries  
including the automotive industry, aerospace, telecommunications, and business in-
formation systems [26][27][38]. However, MDE is arguably still a niche technolo-
gy [51]. It has not been adopted as widely as popular programming languages such as 
Java and C#, and, whilst some modeling languages like the Unified Modeling Lan-
guage (UML) have become widespread [19], they are often not used to their full po-
tential [43] and the use of models to automatically generate systems is still relatively 
rare [51]. One could argue that now is a good time to reflect on the successes of MDE 
as well as its shortcomings. It is a little over ten years since OMG published the first 
Model Driven Architecture (MDA; http://www.omg.org/mda/) specification, almost 
20 years since it adopted UML, and many decades since the first Computer-Aided 
Software Engineering (CASE) tools were introduced. In all that time, MDE has not 
become the de-facto way to develop software systems. It is perhaps time, then, to 
examine the barriers to MDE adoption as well as to look for opportunities where 
MDE can make a difference in the future. 

Towards this end, this paper reflects on the last twenty years of MDE research and 
practice, makes a candid assessment of where we believe MDE has succeeded and 
failed, and highlights key research and application opportunities for MDE in the next 
30 years. Our intent is to bring fresh impetus to the MDE community and to define a 
roadmap for future research in this area, particularly in areas that remain largely un-
explored by the community. The paper provides an opportunity for MDE researchers 
to consider their current MDE research within the broader context of grand societal 
challenges, with the aim to stimulate novel modeling research, techniques, and tools. 

To put together this roadmap, we followed an approach loosely based on design 
thinking [15]. Design thinking is a well-established, brainstorming-oriented approach 
to problem solving that attempts to understand a problem from diverse perspectives, 
applies creativity techniques to generate as many solutions as possible without pre-
filtering, and then down-selects and refines a smaller number of solutions based on 
well-defined criteria. In essence, design thinking is a process for tackling a problem 
by first diverging (pushing the envelope, envisioning novel ideas) and then converg-
ing (consolidating the results). Design thinking is based around a number of guiding 
principles that aim to take a diverse set of participants, each with differing views and 
experiences, and shape them towards a common and transformative solution: listening 
is favored over dominating, quantity of ideas over filtering, being positive over saying 
“No”; participation; seeking wild ideas; and trusting the process. 

In our case, the “problem” to which we applied design thinking was how to in-
crease the adoption of MDE and change the perception that MDE might not yet be a 
solution for the grand societal challenges of today. We brought together 15 junior and 
senior MDE researchers for a week-long design thinking exercise. Participants per-
formed a series of activities, inspired by design thinking and creativity literature, that 
promoted thinking outside the box, including external provocations. 
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The result is a reflection of the current strengths of MDE and an analysis of key fu-
ture research opportunities for MDE. This exploratory paper first gives an overview 
of the key accomplishments of the MDE community over the last 20 years (Section 
2.1), and then summarizes major current problems in MDE (Section 2.2). Before con-
tinuing, the employed methodology based on design thinking is explained in more 
detail, including a description of specific activities and their rationale (Section 3). The 
paper then re-examines MDE through the lens of what are the most pressing chal-
lenges for society at large over the next three decades (Section 4.1). By focusing on 
four fictitious future software systems (Section 4.2), the paper unravels how MDE 
does or does not address the future challenges of society. Based on this analysis, the 
paper suggests four grand challenges for MDE (Section 5), which we hope will stimu-
late new research directions in this area. Section 6 concludes the paper and proposes 
action items that can be initiated immediately. 

2 The Last 20 Years 

MDE has made significant progress in addressing software engineering challenges 
over the past 20 years. The major areas of advancement include: modeling languages, 
model analysis techniques, model-based verification and validation, and model trans-
formations. Each of these areas has developed foundational theories, tool support, 
bodies of empirical evidence, and, to varying degrees, has been used in industrial 
settings. For each area, we identify the key research challenges being addressed, high-
light the key accomplishments, and give a few representative examples. 

2.1 Major Areas of Advancement 

Modeling Languages. Researchers working in the area of modeling languages have 
focused on two key challenges [21]: (i) Abstraction Challenge: What kind of model-
ing constructs and underlying foundation is needed to support the development of 
domain- or problem-level abstractions that are considered first-class modeling ele-
ments in a language? (ii) Formality Challenge: What characteristics and/or properties 
of a modeling language are necessary to enable automated processing and rigorous 
analysis? Furthermore, what aspects of a language should be formalized? 

To address these challenges, a complementary set of strategies has evolved [21]. 
Extensible General-Purpose Modeling Languages. The abstraction challenge is 

addressed by providing a general-purpose language that has support for customizing 
the language to a specific domain. Example customizations are profiles (e.g., UML 
profiles), domain-specific modeling processes, and, at a fine-grained level, the use of 
specialized syntactic forms and constraints on specific modeling elements. The for-
mality challenge can be handled by either mapping the modeling language to a formal 
language, or annotations can be added to the modeling language at the meta-model 
level to constrain properties that should hold between language elements. 

Domain-Specific Modeling Languages (DSMLs). In order to create a modeling lan-
guage for a given problem domain, meta-metamodeling mechanisms, such as OMG’s 
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MOF [33] and its Ecore implementation have been extensively used. Intelligent tex-
tual and graphical editors, together with debuggers and code generators, can now be 
built (and even modeled) for DSMLs with relatively little effort. 

General-purpose modeling languages are relatively more popular in the research, 
industrial, and educational arenas. Furthermore, the use of modeling has become suf-
ficiently mature such that modeling standards have emerged. UML has been the de 
facto standard for object-oriented modeling [40]. Furthermore, commercial tools are 
also available for commonly used modeling languages, such as the Object Constraint 
Language (OCL), the Systems Modeling Language (SysML), and the Business 
Process Model and Notation (BPMN). Recently, numerous studies have been per-
formed to study the impact of modeling on various aspects of software develop-
ment [23][40], for use in specific domains, such as embedded systems [1], and to 
study the impact of the use of modeling languages in industry [43]. 

While initially DSMLs were created on a limited basis by individual organizations 
mostly in the research sector, numerous industrial organizations have witnessed the 
significant advantages of using DSMLs, particularly when considering automatic 
code generation and domain-specific analysis as objectives. As such, the field of 
modeling language engineering has emerged as an important area of research to ena-
ble a broader community to systematically develop DSMLs for their respective do-
main and organization. Example frameworks to support DSML development include 
MOF (http://www.omg.org/spec/MOF), EMF (http://www.eclipse.org/modeling/emf), 
VisualStudio [14], JetBrains/MPS (http://www.jetbrains.com/mps), Kermeta [29], 
GME (http://www.isis.vanderbilt.edu/Projects/gme), Epsilon [31], and Xtext 
(http://www.eclipse.org/Xtext). A popular DSMLs in relatively wide use is 
MATLAB’s Simulink (http://www.mathworks.com/products/simulink). 

Model Analysis. While the process of modeling facilitates a better understanding 
of system requirements, design constraints, and user needs, the value of models in-
creases significantly with the ability to automatically process the models and analyze 
the models for various properties. Significant progress has been made to formally 
analyze models for behavioral properties [21][34][37]; analyze models for structural 
properties [6], both within a given diagram type [12], and across multiple types of 
diagrams [8]. Within the embedded systems domain, model analysis is achieved by 
executing models in simulation environments, such as Simulink [21][30] or USE [35]. 
Also models may be queried using standardized model query languages [32]. Finally, 
model understanding can be achieved through animation and visualiza-
tion [13][22][44][46]. In some cases, production-quality tools have been built from 
research tools (e.g., Microsoft’s Static Driver Verifier is based on a model-based ap-
proach to find errors in device drivers using the model checker SLAM [4]). 

Model-Based Analysis. Models have also been an enabling technology used to fa-
cilitate numerous software and systems development tasks. For example, model-based 
testing has long been used in industry [7][17][18][48], and for specific domains, such 
as reactive and embedded systems [9]. Enterprise architecture models are among the 
modeling approaches settled in practice ([28], also see The Open Group Architecture 
Forum at http://www.opengroup.org/subjectareas/enterprise/togaf). The major goal of 
these models is to document actual elements of an organization’s IT infrastructure, 



 The Relevance of Model-Driven Engineering Thirty Years from Now 187 

 

and to interrelate these elements as a basis for further analysis and decision support. 
Since enterprise architecture models usually get very large, visualization aspects have 
been considered for several years [10]. Similarly, business process and workflows 
models have been adopted by industry for many years. Business process models are 
both applied in a pure organizational context and within IT management to analyze 
organizational processes and their IT support [45]. In addition, workflow models are 
used to configure workflow engines, thus they have been precursors of using models 
at runtime [49]. Model-based testing applies implementation-independent models and 
code generation to the area of testing [41]. The manifold approaches in this area have 
not only addressed theoretical considerations of generating models and test cases, but 
yielded also practice-oriented methods and tools [48] and standardization efforts [3]. 

Model Transformations (Management). A model transformation establishes a 
relationship between two sets of models, and itself may even be model-based. Several 
categories of model transformations have been defined, as well as the intent for model 
transformations [39]. An operational transformation takes a source set of models to 
produce a target set of models that are a refinement, abstraction, or refactoring of the 
source. Emerging techniques in this category focus on the composition of multiple 
views to form a single integrated model, the decomposition of a single model into 
multiple models, each representing a different aspect of a system, and the translation 
of models to a format amenable to automated analysis, including static analysis, mod-
el checking, and other types of behavioral and performance analyses. 

Synchronization transformations enable model traceability and synchronization be-
tween a model and its related artifacts. Examples include transformations to support 
code generation and code updates to reflect changes to models. The OMG 
Query/View/Transformation (QVT) standard [32] defines several languages that can 
be used to define such transformations at different levels of abstraction. To facilitate 
their use and development, Czarnecki and Helsen developed a survey of features used 
for transformation languages [16]. Successful tools for model transformations include 
ATL (http://www.eclipse.org/atl/), Epsilon (http://www.eclipse.org/epsilon/), and 
several tools based on Triple Graph Grammars [25]. 

Other contributions have gained traction, but are not as well established as the 
above, including model repositories (e.g., REMODD: http://www.remodd.org), pat-
terns, aspects, features, models at run-time, and MDA/MDE processes. 

2.2 Major Current Problems in Model-Driven Engineering 

While much progress has been made in MDE over the last 20 years, the MDE com-
munity also has recognized many problems that it still must face. This subsection 
summarizes the main current problems in the field of MDE (in no particular order) as 
identified by the workshop participants. 

Shortcomings of MDE to Address Increasing Demands on Software. Software 
has to respond to an ever-increasing number of demands. The explosion of stringent 
functional requirements and qualities is complemented by the ever-increasing need to 
customize and tailor software to specific usage contexts. Many software systems are 
tightly connected with their environment, are distributed, need to support heterogeneous 
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platforms, and/or are open in nature. Software needs to adapt to rapidly changing hard-
ware and implementation platforms, and is developed in a context that requires develop-
ers to shorten time-to-market to a minimum. In such context, the inherent complexity of 
the problems that we are trying to solve with software keeps growing. 

Current modeling approaches, techniques and tools do not live up to the challenge. 
Often, mature tools provide techniques that can successfully cope with software sys-
tems that we were building a decade ago, but fail when applied to model complex 
systems like the ones described above. Some academic techniques propose interesting 
ways of addressing these shortcomings, but the prototypical nature of academic tools 
often prohibits their application to the development of real-world software systems. 

Obstacles for Tool Usability and Adoption. The proliferation of modeling lan-
guages, tools, and techniques makes it hard for users to commit to using MDE. Even 
after a suitable language and tool have been identified, the users face significant usa-
bility challenges [24][42][52], e.g., steep learning curves, arduous user interfaces, and 
difficulty with migrating models from one version of a tool to the next. Despite the 
fact that software development is a team activity, there is little effective tool support 
for collaborative modeling. In general, tools do not support the fundamentally creative 
side of the modeling process due to their inflexibility and complexity. Far fewer MDE 
community or interactive forums on the web can be consulted to find solutions to 
problems when compared to programming-based forums. Finally, model transforma-
tions, which are essential in order for MDE to be effective, are difficult to maintain 
and adapt to changing requirements and implementation platforms [50]. 

MDE Is Not Considered “Cool”. Even though MDE has been around for over 10 
years, it is currently not as widespread in industry as the modeling community has 
hoped for [51]. As bluntly illustrated in Table 1, MDE is simply not considered cool. 
Why this is the case needs to be investigated. Maybe, the bad experience with CASE 
tools decades ago still casts a dark shadow on MDE. Maybe, the effects of the so-
called UML Fever [5] are continuing to hurt the perception of MDE by people outside 
the community. Some even argue that there is a stronger need to investigate people’s 
perception of MDE than to research new MDE technologies [11]. 

Table 1. Results of six queries (with quotes) on Google Search, February 12, 2014 

 “Agile”… “MDE”… “Model-Driven Engineering”… 
...“is cool” 4,250 10 (*) 0 
...“is not cool” 1 41 10 

(*) The first two results actually linked to Cabot’s article entitled “Model driven engineering is not 

cool” [11], and 7 links had nothing to do with MDE. 

 
Inconsistencies between Software Artifacts. A number of companies are using 

software modeling languages such as UML in their architecture development. The 
problem is that these models are often ignored as soon as one moves on to coding. 
Changes are made in the code but not in the models, leading to inconsistencies be-
tween software models and code. Synchronization of models between different levels 
of abstraction is not the norm. Good tool support is lacking to keep these models in 
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sync today. A complicating factor is that often a system is modeled with multiple 
views using different models and modeling notations, thus further increasing the like-
lihood of introducing inconsistencies between these models. Even when additional 
information is overlaid onto an existing view (as is the case, for example, in UML, 
when stereotypes define non-functional properties), there are no guarantees that the 
resulting system is consistent or correctly functioning. 

Models Are Still Not Valued as Much as Code. The advantage of code is that it 
is a product on its own. It is often quite motivating to work directly on the product. It 
permits a software engineer to point out, e.g., that this part is due to her programming. 
In addition, one can obtain constant feedback when programming by executing the 
code, allowing one to easily experiment with the code and test its behavior. Unfortu-
nately, for many people, modeling is considered a superfluous activity that becomes 
an activity in itself not necessarily for the benefit of the software development. This 
concern makes it hard to see both the short and long time benefits of using models to 
specify the product and creates a lack of trust in the technology. 

Lack of Fundamentals in MDE. Unlike most other fields of engineering, model-
driven engineering does not have a Body of Knowledge (BoK) as such. Some recent 
initiatives such as SWEBOK (http://www.computer.org/portal/web/swebok) and 
SEMAT (http://semat.org/) aim at filling this gap, but the required effort is huge. This 
deficiency also hampers the support for reuse. Programming languages have libraries. 
Modeling libraries are emerging (e.g., [2], also see REMODD) but the lack of com-
mon representations, query mechanisms, and critical mass pose obstacles. 

Education Issues. There is a large mismatch between modeling examples found in 
books and the ones used in the real world. For example, small and unrealistic state-
chart diagrams are often used. It is relatively easy to teach the syntax of a modeling 
language such as UML, but we still struggle with how to teach design principles using 
modeling. For students, it is difficult to learn to use their abstraction abilities [36][47], 
which have been shown to closely relate to software design skills. For effective teach-
ing, students need to be motivated by the benefits of modeling (e.g., solution com-
plexity can only be managed by models instead of simple coding problems).  

Uncertainty in Environments, Requirements, and Systems. It is not that hard to 
create a model if the problem fits one’s mental picture. That usually depends on the 
modeler’s domain knowledge and well-defined, stable domain abstractions. However, 
nowadays software more and more adapts (and sometimes self-adapts) to its environ-
ment. The inherent uncertainty in many such problem domains (such as human 
science, social issues, etc.) and environments makes software very complex. In the 
face of uncertainty, actual modeling techniques neither ease the integration of mul-
tiple concerns nor support problem domain modeling. 

Lack of (Industrial) Evidence of Benefits. There have been a number of empiri-
cal papers in the last few years that address the lack of industrial proofs of bene-
fits [20][50]. These papers give a good status of the use of MDE in industry, but they 
do not let us understand why MDE projects fail or succeed. We are still lacking 
knowledge on factors that make MDE successful, also considering that model-based 
approaches are regularly used in the hardware industry (e.g., model checking to ana-
lyze hardware designs instead of testing). 
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3 Methodology 

In this section, we describe our methodology for defining the MDE roadmap pre-
sented in this paper. The method is loosely based on principles of design think-
ing [15], which aims to approach a problem from as many angles as possible (i.e., 
problem understanding), generate as many ideas as possible (i.e., ideas generation), 
and then only finally consolidate those ideas into a small number of workable solu-
tions (i.e., ideas selection). This section describes how we applied design thinking in 
terms of the concrete activities (see Table 2) that our participants undertook. 

Table 2. Activities of the Design Thinking Workshop 

(Phase) Activities Rationale 
(1) Put Aside Personal Interests. Each 
participant was given an opportunity to 
talk about their own research agenda. 

The aim was NOT to look for research overlaps or 
to build on existing research strengths. Since the 
workshop aimed at getting people to think diffe-
rently, participants needed to put aside their own 
research interests for the week. By providing a 
forum to air their research first, participants feel 
content that their research has been articulated, and 
also feel happy to step outside their boundaries. 

(2) Think Beyond MDE and Software 
Engineering. Participants were asked to 
identify the grand challenges of the 
population at large in the next 30 years. 
This was done by asking participants to 
describe two futuristic scenarios: a per-
fect day and a hellish day in 2030. (*) 

One way to reach genuinely novel and different 
ideas is to change context completely. By asking 
participants to temporarily not think about software 
engineering, but instead think about societal chal-
lenges, we created an environment in which new 
thinking could blossom and participants could 
engage with issues that they feel passionate about. 

(3) External Influences. Two external 
speakers from outside the software engi-
neering community were invited to talk 
to participants: one was an expert on 
environmental sustainability, the other 
was an expert on robotics in marine 
environments. 

External speakers were introduced at key points as 
a nudge to make sure participants continued to 
think differently: these speakers were introduced to 
provide inspiration from a perspective traditionally 
not considered in MDE research. 

(4) Ideas Generation. Participants self-
organized into small groups and gener-
ated ideas for future systems that could 
address grand challenges identified in 
phase 2. 

Participants were provided with a safe, supportive 
environment to generate ideas. Ground rules were 
put in place to ensure that any idea could be heard. 
Participants were told to value listening over do-
minating in conversations, quantity of ideas rather 
than pre-filtering, being positive over being criti-
cal, to seek wild ideas, and to fully engage with the 
process. 
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Table 2. (Continued) 

(5) Consolidation of Ideas. The partici-
pant groups were taken through a series 
of iterative cycles where they presented 
their ideas to an external mentor and 
their peers, received constructive feed-
back, and then were asked to re-present 
the evolving idea at regular intervals. 

Through this process, the most promising ideas 
were nurtured to ensure that they satisfied the 
criteria of: novelty, feasibility (within 30 years), 
relevance to MDE, and a different way of thinking. 

(6) Documentation of Results. During 
the workshop, the participants began 
writing this paper, which was then com-
pleted after the workshop. 

The ideas developed in phase 5 were used as driv-
ing exemplars to identify new areas for MDE re-
search, which are the ultimate result of the design 
thinking exercise. 

(*) Not included for space reasons, see http://www.cs.mcgill.ca/~joerg/SEL/motb-day.html. 

 
Setup and Participant Selection. We brought together 15 participants for a week-

long design thinking workshop at McGill University’s Bellairs Research Institute. 
Participants were required to devote themselves fully to the workshop for the whole 
week so that outside distractions could be minimized. The approach to participant 
selection was largely “curated” in that the organizers made a prioritized list of poten-
tial participants with the aim of maximizing diversity in terms of seniority, gender, 
and research area. In the case that an invited potential participant could not attend, the 
organizers went down the prioritized list trying to maintain diversity. The final set of 
15 participants included 2 women and 13 men, who came from thirteen academic 
institutions from across 8 countries and covered research in a wide spectrum of the 
software lifecycle from early requirements to implementation. (It was of course dis-
appointing to not maintain a better gender balance. Despite best efforts, we were con-
strained by the heavy skew towards male MDE researchers.) 

Activities. Table 2 summarizes the activities of the design thinking workshop. Ac-
tivities were designed to avoid tunnelled thinking so that genuinely fresh ideas could 
emerge. This was achieved in a number of ways: (1) Move people away from their 
own research areas so that they are open to fresh ideas; (2) Move people away from 
software engineering by having them discuss grand challenges of society today; (3) 
Introduce external speakers at key points to inject fresh ideas from a completely dif-
ferent perspective; (4) Encourage unfettered ideas generation, where “anything goes” 
and pre-filtering of ideas is discouraged; (5) Consolidate ideas by down-selecting 
and/or refining them according to well-defined criteria; and (6) Document the results. 
All of these activities are tried and tested, and are based on well-accepted techniques 
in design thinking and/or creativity theory. 

Rationale. Table 2 gives the rationale for each phase of the design thinking exer-
cise. Each phase was carefully designed so that, taken as a whole, the phases would 
lead to new ways of thinking about MDE and MDE research. It is important to under-
stand that many of the activities in phases 1-5 are not an end by themselves, but are 
either ways of moving the group of participants towards the end goal, or ways of ge-
nerating useful by-products. The ultimate end-result comes in phase 6, where the 
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roadmap is defined. The ideas selected in phase 5, for example, were example futuris-
tic systems where MDE could have an influence. Rather than proposing that the 
community should start developing these systems, we see these systems as useful 
driving ideas to help understand where the current gaps are in MDE research. 

4 Grand Challenges for the Next 30 Years 

Through several iterations of group brainstorming activities, prioritization activities, 
and the perfect/hellish-day-in-2030 session (phase 2 of our methodology), we identi-
fied six grand challenges for society at large to be addressed over the next three dec-
ades. They are introduced here in Section 4.1, in no particular order of importance. 
We also provide examples of futuristic software systems in Section 4.2 to illustrate 
potential solutions to some of these challenges and highlight the characteristics of 
such systems that may have to be addressed by new modeling solutions (phases 4 and 
5 of our methodology). 

4.1 Six Grand Challenges 

1) Resource Affordability and Availability. Many kinds of resources exist, includ-
ing health, food, knowledge, and energy. Yet, they are not available and affordable to 
all in equitable ways, even for primary needs. There is a need to substantially improve 
the management of resources, including their Creation, Access, Distribution, Usage, 
and Disposal (collectively referred to as CADUD), in order to improve resource 
availability and affordability for everyone. Additional threats to mitigate include 
costs, corruption, greed, wrong incentives, lack of basic infrastructures and data, and 
the use of local optimizations instead of more sensible global optimizations. 

2) Sustainability. Many resources such as energy and food are not easily renewa-
ble without control and efforts, and we are now facing many sustainability issues that 
demand more precise, trustable, and timely information for decision making. In par-
ticular, there is much room for better trade-offs between economic growth and re-
sponsible use of resources, for education and understanding of cause and effects of 
CADUD-like resource management, and for ways to avoid misinformation of sustai-
nability factors by special interest groups. There is a vicious cycle where the need for 
comfort often leads to growth, which in turn requires more energy, leading to pollu-
tion (and global warming) that stresses our level of comfort. Attitudes need to change 
at all levels of granularity (from the individual level to city-wide, regional, national, 
continental, and planetary levels). 

3) Disaster and Crisis Management. There is a strong need to improve the pre-
dictability of natural disasters such as storms and earthquakes, as well as of human-
triggered crises related to economy, health, and social tensions. Where predictions are 
impossible or fail, societies should be enabled to react in a timely way. 

4) Steady-State Economy. Global and local economies are still based on a growth 
model that cannot be sustained forever. Mechanisms are needed to bring economies of 
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any scale to a “steady-state” that would no longer rely on continuous growth, exploit-
ing resources and people in all areas of the world. 

5) Life Balance. Individuals are subject to many extrinsic factors such as peer 
pressure and demand for performance that are difficult to balance with real intrinsic 
motivation and a sustainable lifestyle. They are also bombarded with an ever-growing 
amount of information that strains the individual’s abilities to cope with life’s chal-
lenges. Support is needed to help understand, manage, and control extrinsic factors 
and information to avoid getting caught in a pernicious “rat race” and, instead, to 
achieve a healthy balance in life. 

6) Common Sense. Current governance structures are often subject to bureaucracy 
and abusive lobbying. There is an opportunity to bring back common sense in gover-
nance and better balance the weight of individual/common needs versus the interests 
of special interest lobbying groups. 

4.2 Four Examples of Futuristic Systems 

1) Model-Experiencing Environments (MEEs). Facing the vicious cycles that ham-
per sustainable solutions development and effective resource management, we believe 
that any person, community, decision maker, or company should be able to play, ana-
lyze, and “experience her personalized Model-Experiencing Environments (MEEs). 
Those MEEs are very “sophisticated and highly tuned “what-if” impact models, but 
with a simplified and adaptive user interface. Each MEE consists of combinations of 
interconnected models based on open data, enabling one to play, run, and see evi-
dence on the impact over resource consumption chains. 

We envision different kinds of MEEs. In any MEE, the user can adjust the level or 
amount of different properties she is interested in, e.g., impact on health, employment, 
economy, amount of waste, gas, water, or even taxes. Then, she is able to specify and 
assemble certain criteria in a do-it-yourself way for the scenario she is interested in. 
The selection is automatically propagated to the outcome view where the different 
impacts are shown. The impacts are visualized in graphs, charts, or any adapted inter-
faces such as personalized virtual reality ones. Finally, deployed MEEs feed back into 
underlying open models to improve accuracy or user confidence. 

The following list overviews the different kinds of MEEs: 
● MEE for Game-Based Learning: allows children to learn about impacts in a 

playful way (tackling challenge 5 (life balance)). 
● Crowd-Sourcing MEE Use: permits several people to see impacts if they do 

something together (tackling challenges 1 (resources affordability and avail-
ability), 2 (sustainability), and 5). 

● MEE-Enabled Community Decisions: informed decisions can be made by 
community members (tackling challenges 1, 2, 5, and 6 (common sense)). 

● MEE-Driven Policy Analysis: enables policy makers to understand impacts 
of their decisions (tackling challenges 1, 2, 3 (disaster and crisis manage-
ment), 4 (steady-state economy), 5, and 6). 

In addition, MEEs are likely to be useful in broader domains than just resource  
impact models. Any kind of experiencing can benefit from MEEs: personal health 
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companion, family expenses habits monitoring, etc. This ultimately allows models to 
be part of everybody’s life and usage, making them trusted daily objects that enable 
everyone to learn, think, and act on her own. 

2) Making Zense. Imagine relaxing yoga music… “Do you feel like you are in a 
rat race? Do you need to make personal decisions, but can’t evaluate their short term 
and long term impact? Do you have trouble balancing work, family, and personal 
activities?” Making Zense helps you find a healthy balance. Humans are unique; mod-
eling a human being is too complex. A human story captures important events and 
facts, accomplishments, failures, health records, nutrition history, sleep patterns, and 
social connections. A human story is completely personal and confidential, i.e., it is 
not possible to identify a living person from her human story, but there is a way to 
assess happiness levels throughout a person’s life. 

Billions and billions of human stories make up the Human-esZense – a vast collec-
tive wisdom, the essence of the human race. It does not stop there. Cities and coun-
tries are also unique, and their stories are also found in the Human-esZense. From 
time to time, a role model emerges from human stories. It is shaped by societal forces 
at play. A role model displays characteristics that are beneficial to achieve happiness. 

Making Zense feeds your human story continuously into the Human-esZense and 
compares it with similar human stories. Based on this collective knowledge, personal 
trajectories are continuously presented, possible outcomes of one’s life with varying 
probabilities and happiness levels, and role models are used to characterize these 
possible paths along your road to happiness. Once a role model you would like to 
aspire to is selected, the Human-esZense enables the assessment of what-if scenarios 
by comparing the proposed changes to your life based on the role model against the 
Human-esZense, addressing challenge 5 (life balance)). 

3) Models4 ∆○⌂҉ (Modeling for the Illiterate). Most modeling languages  
and tools target highly-educated experts. Yet, many complain that models are difficult 
to create and use. One reason is that we have not yet fully understood what modeling 
is, and the intuition needed to make it effective. In addition, a global trend nowadays 
is to invite the population at large to learn programming (e.g., see the code.org  
effort), as programming and configuration will become pervasively required.  
Models4∆○⌂҉   is an application that enables anyone to create and use models 
needed to configure their daily lives and long-term goals, for example with the MEE 
and Making Zense systems. It is so intuitive that illiterate people can use it as effec-
tively as domain experts, hence confronting the education portion of challenge 1  
(resources affordability and availability). Note that by targeting illiterate people as a 
primary audience, the development of Models4∆○⌂҉   helps us truly understand 
what modeling really is, which in turn enables us to transfer this knowledge to a much 
broader set of modeling approaches, including those for software and systems devel-
opment. 

4) Have You Thought of … (HYTo). Too often, projects are cancelled at very late 
stages. Political, cultural, or other factors can play a role in these decisions. For ex-
ample, after the election of a local government, the political leaders decide to stop the 
creation of a promised ‘very green’ park, because of the intense lobbying of other 
parties, such as influential contractors who plan to develop the space into lucrative 
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real-estate projects. ‘Have you thought of the coming elections, which could possibly 
be won by the opposition party?’, the HYTo application will ask you – along with 
‘Have you thought of the increase in tourist revenue because of the park?’ and ‘Have 
you thought of the increased CO2 emissions because of reduced green space and in-
creased traffic to the real-estate project?’. HYTo helps you make decisions while tak-
ing the predictions of other (external) factors into account. Consequently, HYTo is 
applicable to all challenges identified in the previous sub-section. 

5 Grand Challenges of Model-Driven Engineering 

As a community, we have made substantial progress in the areas of modeling lan-
guages, processes, quality, and automated integration of models (across domains and 
at different levels of abstraction). In addition, we now have, or are very close to hav-
ing, good modeling techniques for tackling complexities related to scalability, fore-
casting/predictions, data/knowledge-awareness, personalized adaptation, usability, 
real-time, and perceived intelligence. However, these techniques are currently not 
capable of supporting the modeling needs required to realize the kinds of systems 
outlined in the previous section. While the MDE community tends to cope well with 
only one of these dimensions of complexity at a time, existing and future systems will 
face many of these dimensions at the same time, for example: 

● Real-time, knowledge-aware forecasting at the personal level (as exemplified 
by MEE, Making Zense, and HYTo, which all try to predict future events and 
behaviors based on gathered knowledge), 

● Personalized, ubiquitous access for uneducated users (obviously applicable 
to Models4∆○⌂҉   but also to a certain degree to all other identified sys-
tems as they are deployed on a massive scale to users without expert know-
ledge), 

● Ultra-large scale, intelligent, near-future predictions (which is an essential 
part of MEE, HYTo, as well as Making Zense not just at the personal level 
but also at the level of whole communities or even countries), and 

● Knowledge-aware shaping of usable models, i.e., the tailoring of models to 
stakeholders’ immediate needs based on knowledge accumulated at the indi-
vidual, community, and global levels (as required for Making Zense, HYTo, 
and MEE because the power of these systems lies in the fact that contextual 
models are provided at the right level of abstraction for each stakeholder). 

In the final phase of our design thinking-inspired methodology, we more closely 
looked at the grand societal challenges, futuristic systems and scenarios, and iterative 
refinements of our ideas through the lens of the MDE community and distilled them 
into common threads to highlight the following four grand modeling challenges and 
new research areas for MDE for the next 30 years. 

I) Cross-Disciplinary Model Fusion. One grand challenge is to better take advan-
tage of modeling knowledge across disciplines. Our MDE community has focused 
much on software and systems modeling, without much interaction with modeling 
activities in areas such as artificial intelligence, databases, the semantic web, or hu-
man-computer interactions. This lack of interaction and awareness is even worse 
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when we consider entirely different fields, e.g., biology, economics, arts, law, medi-
cine, and social sciences. We need to study more rigorously what other communities 
do and learn from their modeling experience and challenges. This will help us im-
prove our modeling approaches to better deal with multiple dimensions of complexi-
ty, while at the same time enabling us to provide modeling approaches that better fit 
the needs of other disciplines. The MDE community has a lot to offer in terms of 
language, process, quality, and automation expertise that can be leveraged in these 
other disciplines. All of the challenges identified in the previous section require mod-
els from different disciplines to be fused into models that are usable by stakeholders. 
Solutions to challenges 2 (sustainability), 3 (disaster and crisis management), 4 
(steady-state economy), and 6 (common sense) must, for example, make use of mod-
els from economics, physics, biology, and politics to adequately address these prob-
lems. Consequently, solution systems for these challenges (e.g., the highly sophisti-
cated what-if scenarios of MEE and the context-aware questions of HYTo) rely on 
cross-disciplinary model fusion. 

II) Personal Model Experience. A second grand challenge of MDE is to make 
modeling and the use of models directly benefit the individual. Nowadays, access to 
sophisticated models and model analysis is restricted to a select few. We need to find 
ways to provide individual end users with straightforward access to models that en-
code global information relevant to their particular situation. Furthermore, individuals 
must be allowed and able to customize these models to their particular context and 
needs, and feel confident that the customization is trustworthy and accurate. While 
some default models may be used as starting points, the high individuality of these 
personalized models presents new challenges for model reuse. Furthermore, innova-
tive model analysis algorithms and tools have to be developed, that based on the glob-
al information and the individual’s personal context, can produce valuable, timely 
insight, which the individual can then use to make decisions on a local scale in accor-
dance to personal beliefs. Solutions to challenges 1 (resource affordability and availa-
bility), 2 (sustainability), and 5 (life balance), and hence solution systems for these 
challenges (i.e., Making Zense, MEE, and HYTo), depend on such a personal model 
experience to demonstrate to the individual the consequences of local/global and indi-
vidual/communal actions. Models4∆○⌂҉,  on the other hand, highlights the need to 
pay close attention to non-expert users. 

III) Flexible Model Integration. An additional grand challenge is to determine 
how software models should be structured to provide value when developing systems 
that flexibly address many concerns simultaneously, as seen in the four types of sys-
tems described at the beginning of this section. This challenge is complementary to 
the first one that seeks for cross-fertilization with radically different disciplines to 
MDE, but it focuses on heterogeneous concern integration within an application field. 
This integration is already happening in the industry today. For example in the auto-
motive industry, mechanical parts, electronic parts, and software are now extremely 
integrated. Furthermore, telecommunication plays an important role, as cars start to 
communicate more and more with each other and the surrounding environment. Soft-
ware modeling can play an important role in integrating these large and complex sys-
tems. Tackling this integration challenge also means to be able to dynamically use 
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and reuse models as well as integration strategies with better confidence in and pre-
dictability of the result. To this aim, means must be devised that allow modelers to 
specify assumptions and limitations of models explicitly, as well as the contexts in 
which a model can successfully be applied, and how to apply it. Solutions to any of 
the identified societal challenges require flexible model integration, which can be 
observed most prominently in the MEE and HYTo solution systems where models for 
differing concerns need to be assembled on the fly depending on the user’s context. 

IV) Resemblance Modeling – From Models to Role Models. Last but not least, 
modeling, and object-oriented modeling in particular, has traditionally adopted an 
Aristotelian view according to which individuals (objects) are classified by universals 
(classes). These classes introduce a very convenient level of abstraction in that they 
allow forgetting the myriads of individuals that, from the viewpoint of the modeler, 
are all more or less the same. In particular, the introduction of classes allows the re-
duction of a potentially infinite domain to a finite (and usually also rather small) one. 

However, this abstraction is not without a price. In complex systems, the differenc-
es between objects may be more important than their commonalities, and if traditional 
class-based modeling is used, one quickly ends up with one class per object. While 
this is not a problem per se, it does question the usefulness of class-based modeling in 
these contexts. The real problem surfaces however when the number of significantly 
differing individuals becomes so vast that mapping them to classes boosts models to 
an ultra-large scale. In that case, it may make sense to resort to a prototype-based 
classification of individuals, defined by the similarity and differences of one individu-
al from another. Certain individuals, the prototypes, then serve as role models for 
others, which characterize themselves by stating their role models and the differences 
from them. Interaction between individuals is first defined at the prototype level; in-
dividuals may choose to override wherever deemed apt. Models of this kind may 
never reach perfect accuracy; yet, they may trade precision for manageability which, 
at the ultra-large scale, may be the higher good. 

The need for highly individualized models is most obvious in the Making Zense 
system (with its billions of unique human, city, and country models) and for the grand 
societal challenges where the individual is key (e.g., challenges 1 (resource afforda-
bility and availability), 2 (sustainability), 5 (life balance), and 6 (common sense)). 

6 Conclusion and Proposed Action Items 

This paper formulates a roadmap by describing four grand MDE challenges that need 
to be addressed by the MDE community over the next 30 years. Cross-Disciplinary 
Model Fusion highlights the need to investigate modeling in radically different discip-
lines. Personal Model Experience points out that the power of modeling and model 
analysis needs to be made available at an individual’s level. Flexible Model Integra-
tion advocates looking inward at software models to find ways to capture and conso-
lidate heterogeneous application concerns. Finally, Resemblance Modeling questions 
the applicability of class-based modeling for systems with large numbers of highly 
unique individuals. 
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The six societal and four MDE challenges are an opportunity for the reader to put 
her modeling research into the perspective of the broader context of grand societal 
challenges, possibly stimulating her to apply modeling research, techniques, and tools 
to new areas, to different disciplines, or to bridge the gap and connect fields that have 
traditionally been isolated. The intermediate workshop results (summary of MDE 
success stories, current MDE problems, six pressing challenges for society at large, 
the perfect/hellish day in 2030, and the examples of futuristic systems) provide a rich 
frame of reference that allows the reader to look at the relevance of her research, and 
the research of the MDE community as a whole, from a different angle. 

The roadmap intends to inspire the MDE community. It is our hope that the ideas 
presented here will incite new research directions and new technologies, which even-
tually partake in the creation of systems, similar to the ones envisioned in this paper, 
that considerably improve the quality of life of mankind. 

While the main purpose of this paper is to explore an MDE research roadmap for 
the next 30 years, there are two immediate action items that emerged through intense 
discussions throughout the workshop. First, there is a need in the MDE community to 
more actively look outward instead of inward and invite other disciplines to join the 
dialog. Perhaps, a cross-disciplinary or extra-disciplinary track at the MODELS con-
ference (e.g., a Models OUtside Software Engineering (MOUSE) track) may be a 
promising start. Second, the Artificial Intelligence, Analytics, and Natural-Language 
Processing communities had a coup d’éclat when IBM’s Watson won Jeopardy. The 
MDE community should look for a similar demonstration of MDE capabilities that 
helps solve a significant societal problem, captivates informed insiders and general 
audiences, and makes everyone understand the value of modeling. 
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Abstract. We present an approach, based on model-driven verifying
compilation, to construct distributed applications that satisfy user-
specified safety specifications, assuming a ”synchronous network” model
of computation. Given a distributed application Pd and a safety specifi-
cation ϕ in a domain specific language dasl (that we have developed), we
first use a combination of sequentialization and software model checking
to verify that Pd satisfies ϕ. If verification succeeds, we generate an im-
plementation of Pd that uses a novel barrier-based synchronizer protocol
(that we have also developed) to implement the synchronous network se-
mantics. We present the syntax and semantics of dasl. We also present,
and prove correctness of, two sequentialization algorithms, and the syn-
chronizer protocol. Finally, we evaluate the two sequentializations on a
collection of distributed applications with safety-critical requirements.

1 Introduction

Distributed applications (i.e., software implementing distributed algorithms)
play a critical, often silent, role in our day-to-day lives. Increasingly, they are
being used in safety-critical domains. For example, Cyber-Physical intersection
protocols [4] have been developed for ground-based vehicles that rely on vehicle-
to-vehicle (V2V) communication. Safety-critical distributed applications must
be subjected to rigorous verification & validation (V&V) before deployment. In-
deed, incorrect operation of such applications can lead to damage or destruction
of property, personal injury, and even loss of life.

The state-of-the-art in V&V of distributed applications relies heavily on test-
ing. This has two problems. First, testing has poor coverage. This is particularly
severe for distributed applications, since concurrency enables a large number
of possible executions . Second, safety-critical applications are often produced
via model-driven development (MDD), e.g., using Simulink in the automotive
domain. While some form of testing is applied at each level of MDD, the as-
surance obtained at one level is not transferred to the next. In this paper, we

� This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded research and de-
velopment center. This material has been approved for public release and unlimited
distribution. DM-0001118

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 201–217, 2014.
c© Springer International Publishing Switzerland 2014



202 S. Chaki and J. Edmondson

present and empirically evaluate an approach, called diver, for producing ver-
ified distributed applications, that addresses both these challenges. Specifically,
diver uses software model checking, an exhaustive and automated technique,
for verification. It also uses a single “model” of the application to perform both
verification and code generation, thus transferring the results of one to the other.

diver targets the synchronous network model of computation [16], or sn-
moc, where each node executes in rounds. Nodes communicate via single-writer-
multiple-reader shared variables1. The final value of a variable at its writer node
in any round (i) becomes visible to its reader nodes in the next round (i + 1).
snmoc makes both programming and verification simpler, and is used in safety-
critical domains, e.g., it reduced [17] verification time of an active-standby pro-
tocol (used in avionics systems) from 35 hours to 30 seconds.

diver is a verifying compiler [11]. The input to diver is a program Pd written
in a domain specific language we have developed called Distributed Application
Specification Language (dasl). Pd describes both a distributed application App
and its correctness specification ϕ. diver outputs an executable for each node
of App but only if it satisfies ϕ. It works in two steps:

1. Verification: Verify whether App satisfies ϕ. The verification is automated
and exhaustive, and consists of two sub-steps:
(a) Sequentialization: Construct a sequential (i.e., single threaded) program

Ps that is semantically equivalent to App w.r.t. ϕ. Specifically, Ps is a C
program containing an assertion α such that Ps |= α ⇐⇒ Pd |= ϕ, i.e.,
all legal executions of Ps satisfy α iff Pd satisfies ϕ.

(b) Model Checking : Verify whether Ps |= α using software model check-
ing [13] (SMC). We chose C and assertions for expressing Ps and α since
these are the de-facto standards for describing SMC problems, and sup-
ported by state-of-the-art SMC engines. If SMC successfully verifies that
Ps |= α then proceed to Step 2, otherwise declare App �|= ϕ and abort.

2. Code Generation: Generate C++ code for each node of App that relies on
the madara [8] middleware for communication. We choose madara due to
prior expertise, and our ability to implement snmoc on top of its primitives.
However, diver is compatible with other middleware that either support
snmoc natively, or provide an API on top of which snmoc is implementable.

Our ultimate goal is to verify distributed applications running on mobile
robots communicating over wireless networks. Such networks are not only asyn-
chronous but have unbounded message delay. Therefore, we have also developed
a protocol, called 2bsync, that implements snmoc over asynchronous networks
without relying on clock synchronization. To our knowledge, it is a new synchro-
nizer protocol for wirelessly connected systems, and of independent interest.

The rest of this paper is organized as follows. After surveying related work
(Sec. 2), we focus on our specific contributions. In Sec. 3, we present the syntax
and semantics of dasl. The semantics leads immediately to a sequentialization
we call seqsem. However seqsem produces a program with O(n2) variables

1 A version of snmoc based on message-passing also appears in the literature.
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(where n = number of nodes). This is undesirable from a verification perspec-
tive since the statespace of a program grows exponentially with the number of
variables. Therefore, in Sec. 4 we develop, and prove correctness of, a more so-
phisticated sequentialization, called seqdbl, that only requires O(n) variables.
In Sec. 5, we present and prove correctness of our synchronizer protocol 2bsync.
In Sec. 6, we present code generation from dasl to madara/C++. In Sec. 7,
we compare seqsem and seqdbl on a collection of distributed applications. Our
results indicate that while seqdbl is clearly better overall, for some applications,
seqsem produces programs that are verified more quickly despite having many
more variables. Finally, Sec. 8 concludes the paper.

2 Related Work

This work spans multiple disciplines – verification, distributed systems, middle-
ware technology and code generation – which we briefly survey.

Verification.Most work in model checking concurrent software [2] use an asyn-
chronous model of computation, based on either shared memory [1] or message-
passing [7]. Some of these projects are also based on sequentialization [14,24].
Synchronous programming languages, such as Lustre [5], are not suitable for dis-
tributed applications, since they can only describe systems with a fixed number
of nodes. diver is a verifying compiler for synchronous distributed applications
that does both model-driven verification and code generation from a single dasl
program. Humphrey et al. [12] use LTL to specify and synthesize correct multi-
UAV missions. In contrast, our approach is based on verification. Process calculi,
such as CCS [18] and CSP [10], use asynchronous message-passing communica-
tion and are verified via refinement checking. DASL uses synchronous shared-
variable based communication, and its verification is based on model checking
user-specified assertions. The synchronous programming language Lustre [5] dif-
fers from DASL in that there can be no cyclic-dependency (i.e., causality loops)
between nodes, and each Lustre program has a fixed number of nodes. Note,
however, that every ”instance” of a DASL program can be represented in Lustre
using unit-delay nodes to break causality.

Distributed Systems. Distributed algorithms are typically verified at the
pseudo-code level manually using invariants and simulation relations [16]. Dis-
tributed systems are also heavily simulated [23] and tested, which are incom-
plete. diver is based on model checking, which is automated and exhaustive.
Synchronizer protocols [3] have also been widely studied. Many rely on clock
synchronization [17] – which is inappropriate for wireless communication – or
direct message passing. 2bsync uses barriers, which is more appropriate for
middleware, like madara [8], that provide a shared memory abstraction.

Middleware and Code Generation. For our code generation target, we chose
madara [8]. There are multiple middleware solutions that provide infrastruc-
ture support for control and communication between distributed applications.
CORBA [22] is an OMG standard for component-based distributed application
development, but requires definition of component interactions and precise man-
agement of transportation options. OMG has another standard called the Data
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Distribution Service [19] which facilitates quality-of-service contracts between
publishers and subscribers and a complex but robust networking feature set.
Tripakis et al. [25] have also explored implementing synchronous models via
reduction to Kahn Process networks.

Several toolkits – e.g., COSMIC [20], AUTOSAR [9], and OCARINA [15]
– provide verification and code generation for distributed applications, often
with requirements of real-time support from underlying hardware, network con-
nections, and operating systems. They force component paradigms or complex
deployment configurations and metadata that is unnecessary for synchronous ap-
plication specification and hinders verification. madara provides a more direct
mapping for distributed algorithm logic, specializes in wireless communication –
which is more appropriate for our target domain – and enforces Lamport clock-
based consistency which provides a clean semantics and supports verification.

3 The dasl Language

A dasl program Pd describes a distributed application App, as well as its speci-
fication. The application consists of a number of nodes communicating via global
variables over a synchronous network. Recall that each node executes in rounds.
Formally, Pd is a 5-tuple (GV ,LV , ρ, n, ϕ) where: (i) GV is the set of global
variables; (ii) LV is the set of node-local variables whose values persist across
rounds; (iii) ρ is a function executed by each node in every round; (iv) n is the
number of nodes; and (v) ϕ is the specification defined by a pair of functions Init
and Safety that, respectively, establish a valid initial state, and check for viola-
tions of the desired safety property. The specification ϕ is used for verification
only. The rest of Pd is used both for verification and code generation.

Syntax of dasl. Let TV be a set of temporary variables, IV be a set of id
variables, and id be a distinguished variable such that GV , LV , TV , IV and
{id} are mutually disjoint. The body of ρ is a statement. The “abstract” syntax
of statements, lvalues and expressions is given by the following BNF grammar:

(Statements) stmt := skip | lval = exp|ite(exp, stmt , stmt) | while(exp, stmt)

| all(IV , stmt) | 〈stmt ; . . . ; stmt〉 | ν(TV , stmt)

(LValues) lval := GV [exp] | LV | TV
(Expressions) exp := Z | lval | id | IV |∼ exp | exp � exp
Intuitively, skip is a nop, l = e is an assignment, ite is an “if-then-else”, while
is a while loop, all(v, st) executes st iteratively by substituting v with the
id of each node, 〈st1 ; . . . ; stk〉 executes st1 through stk in sequence, ν(v, st)
introduces a fresh temporary variable v in scope of st , ∼∈ {−,¬} is an unary
operator, and � ∈ {+,−, ∗, /,∧,∨} is a binary operator. all enables iteration
over all nodes of App without knowing the exact number of such nodes a-priori.

Scoping and Assumptions. All global variables are arrays. We assume that:
(i) each element of a global array has a single writer node; the mechanisms to
enforce this are discussed later; (ii) variables in GV ∪ LV ∪ {id} are always in
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1 CONST OUTSIDE = 0;
2 CONST TRYING = 1;
3 CONST INSIDE = 2;
4
5 NODE node(id) {
6 GLOBAL _Bool lock[#N];
7 LOCAL unsigned char state;
8
9 void ROUND() {

10 _BOOL c;
11 if(state == OUTSIDE) {
12 c = should_enter();
13 if(c) {
14 if(EXISTS_LOWER(idp,lock[idp]))
15 return;
16 lock[id] = 1; state = TRYING;
17 }
18 } else if(state == TRYING) {
19 if(EXISTS_HIGHER(idp,lock[idp]))
20 return;
21 state = INSIDE;
22 } else if(state == INSIDE) {
23 if(in_cs()) return;
24 lock[id] = 0; state = OUTSIDE;
25 }
26 }
27 }

28 PROGRAM = node(0) || node(1);
29
30
31 void INIT()
32 {
33 FORALL_NODE(id) {
34 ND(state.id); ND(lock[id]);
35 ASSUME(state.id == OUTSIDE &&
36 lock[id] == 0 ||
37 state.id == INSIDE &&
38 lock[id] == 1);
39 }
40 FORALL_DISTINCT_NODE_PAIR
41 (id1,id2) {
42 ASSUME(state.id1 != INSIDE ||
43 state.id2 != INSIDE);
44 }
45 }
46
47 void SAFETY()
48 {
49 FORALL_DISTINCT_NODE_PAIR
50 (id1,id2) {
51 ASSERT(state.id1 != INSIDE ||
52 state.id2 != INSIDE);
53 }
54 }

Fig. 1. Example dasl program with 2 nodes using an id-based mutex protocol

scope; (iii) for each statement all(v, st) and ν(v, st), variable v is in scope of st ;
(iv) scoping is unambiguous, and only variables in scope are used in expressions;
(v) id and id variables do not appear on the LHS of assignments, i.e., they are
read-only; (vi) in any execution of ρ, a global array element is written atmost
once. Note that these assumptions do not limit expressivity.

Init and Safety. The body of Init is a statement whose syntax is the same as
stmt except that lval and exp are defined as:

(LValues) lval := GV [exp] | LV .IV | TV
(Expressions) exp := Z | lval | IV |∼ exp | exp � exp

Thus the key differences of Init with ρ are: (i) variable id is no longer in scope;
and (ii) it is able to refer to local variables of nodes – specifically, the lvalue
v.i refers to local variable v of node with id i. Function Safety is the same as
Init except: (i) it cannot access global variables; and (ii) it cannot modify local
variables. Formally, the body of Safety is a statement whose syntax is the same
as stmt except that lval and exp are defined as:

(LValues) lval := TV

(Expressions) exp := Z | lval | LV .IV | IV |∼ exp | exp � exp

Concrete Syntax. The “concrete” syntax of Pd consists of declarations for GV
and LV , definitions of ρ, Init , and Safety , and the value of n. For example,
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Figure 1 shows a dasl program with 2 nodes that use a protocol based on their
ids to ensure mutual exclusion. The program consists of constant definitions
(lines 1–3), the nodes and their ids (line 28), definition of function Init (lines 31–
45), function Safety (lines 47–54), declarations of GV (line 6), LV (line 7), and
the definition of function ρ (lines 9–26). Note that:

1. The concrete syntax is similar to C. This provides familiarity to practitioners,
and simplifies sequentialization and code generation.

2. Constant definitions (lines 1–3) are allowed for readability.
3. Multi-dimensional global arrays are supported. Dimension #N denotes the

number of nodes. Thus, there is one element of lock for each node. This
supports a programming pattern where a node always writes to a global
array element whose index equals its id (lines 16 and 24), ensuring that
every global array element has one writer node.

4. Function ρ is called ROUND, and variable id is called id.
5. A node can invoke external functions (e.g., should enter on line 12 and

in cs on line 23) as needed. External functions are assumed to be “pure”
(i.e., they do not modify global, local, or temporary variables) and to return
integer values non-deterministically.

6. There are three built-in functions to aid specification: (i) ND(v) sets variable
v to a value non-deterministically; (ii) ASSUME(e) blocks all executions
where e is false; and (iii) assert(e) aborts all executions where e is
false. ASSUME and ND help specify legal initial states (lines 34, 35 and 42).
ASSERT helps (line 51) to check for a violation of the safety property.

7. Iterators are available to: (i) execute a statement over all
nodes (FORALL NODE at line 33), all pairs of distinct nodes
(FORALL DISTINCT NODE PAIR at line 40 and 49), etc.; and (ii) evaluate
an expression disjunctively over nodes that have a lower id (EXISTS LOWER
at line 14), a higher id (EXISTS HIGHER at line 19), etc. They are all
“syntactic sugar” defined formally using all in a natural manner.

Example 1. The dasl program in Figure 1 uses global variable lock to ensure
mutual exclusion. Specifically, the node with id id enters the critical section (CS)
if id is the largest index for which lock[id] is true. To enter the CS, a node
first checks (line 14) if the CS is available (i.e., not occupied by another node with
smaller id). If this is not the case, it retries in the next round (line 15). Otherwise,
it requests the CS (line 16). In the next round, the node checks (line 19) if it can
enter the CS. If not, it retries (line 20) in the next round. Otherwise, it enters
the CS (line 21). Once in the CS, the node performs arbitrary computation
(line 23), releases the lock and exits (line 24). Note that since in cs (line 23)
returns a non-deterministic value, the node remains in the CS for arbitrary many
rounds. Init ensures that initially each node is either inside or outside the CS
(lines 33–39) with atmost one node being inside (lines 40–44). Function Safety
aborts (lines 49–53) if multiple nodes are in the CS simultaneously.

Semantics of dasl. Consider a dasl program Pd = (GV ,LV , ρ, n, ϕ). We
define the semantics of Pd in terms of a “sequential” (i.e., single-threaded) pro-
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Δ(ε1, ε2, skip) ≡ skip Δ(ε1, ε2, l = e) ≡ ε1(l) = ε2(e)

Δ(ε1, ε2, ite(e, s, s′)) ≡ ite(ε2(e), Δ(ε1, ε2, s),Δ(ε1, ε2, s′))

Δ(ε1, ε2,while(e, s)) ≡ while(ε2(e), Δ(ε1, ε2, s))

Δ(ε1, ε2,all(v, s)) ≡ 〈Δ(ε1 ⊕ (v, 0), ε2 ⊕ (v, 0), s); . . . ;Δ(ε1 ⊕ (v, n− 1), ε2 ⊕ (v, n− 1), s)〉
Δ(ε1, ε2, 〈s; s′〉) ≡ 〈Δ(ε1, ε2, s);Δ(ε1, ε2, s′)〉 Δ(ε1, ε2, ν(v, s)) ≡ ν(v,Δ(ε1, ε2, s))

Fig. 2. The statement transformer mapping Δ

gram. Recall that Pd consists of n nodes executing concurrently and communi-
cating via the shared variables GV . Each node is assigned a unique id between
0 and n − 1, with Ni denoting the node with id i. We first create n copies of
GV and LV , one for each node. For any v ∈ GV ∪ LV , let vi denote its copy
made for Ni. Next, for each node Ni we create a copy of ρ, denoted ρi, by: (i)
replacing each v ∈ GV ∪ LV with vi; and (ii) expanding out each statement of
the form all(v, st) appropriately. We now define this formally.

ID Instantiation. An id instantiation is a partial mapping from id∪IV to Z. Let
IdInst be the set of id instantiations. Let μ⊥ denote the empty id instantiation,
i.e., Domain(μ⊥) = ∅. Given an id instantiation μ, a variable v �∈ Dom(μ) and
an integer z, μ⊕ (v, z) is the id instantiation that extends μ by mapping v to z.

Expression Transformer. An expression transformer is a mapping from expres-
sions to expressions. Let ExpTrans be the set of all expression transformers.
Every id instantiation induces an expression transformer as follows.

Definition 1. Define a mapping ε : IdInst �→ ExpTrans such that for any μ ∈
IdInst and e ∈ exp, ε(μ, e) is obtained from e by replacing: (i) each v ∈ GV ∪LV
with vμ(id); and (ii) each v.i ∈ LV .IV with vμ(i).

A pair of expression transformers (ε1, ε2) induces a statement transformer
that uses ε1 to transform lvalues, ε2 to transform expressions, and expands all
statements. Formally, this defined as follows.

Definition 2 (Statement Transformer). Define a mapping Δ : ExpTrans �→
ExpTrans �→ stmt �→ stmt as shown in Figure 2.

Often, the two expression transformer arguments of Δ are equal. Therefore,
for simplicity we write Δ(ε, s) to mean Δ(ε, ε, s). Let the body of any function f
be denoted by the statement f(). Then the semantics of node Ni in each round
is given by the function ρi such that:

ρi() = Δ(ε(μ⊥ ⊕ (id , i)), ρ())

Thus, the body of ρi is obtained by transforming the body of ρ, starting with
an id instantiation that maps id to i. Also, define functions ˜Init and ˜Safety as:

˜Init() = Δ(ε(μ⊥), Init()) ˜Safety() = Δ(ε(μ⊥), Safety()) (1)

Thus, when transforming Init and Safety , variable id is not in scope. Also, every
lvalue v.i is transformed to vμ(i) since it refers to the local variable v of node Ni.
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Semantics of Pd. The semantics of Pd is the sequential program that: (i) ini-
tializes variables by executing ˜Init(); and then (ii) executes rounds. Each round
consists of the following steps: (a) for every global array element v[j], copy its
value at its writer node to all its reader nodes; (b) check the property by exe-
cuting ˜Safety(); and (c) execute the sequence of statements 〈ρ0(); . . . ; ρn−1()〉.

Recall that every global variable is an array. For a global variable v ∈ GV , let
Dim(v) denote its size. For each j ∈ [1,Dim(v)], let W(v, j) denote the index of
the node that writes to the element v[j]. Note that W(v, j) is well-defined due
to our assumption that all global variables have a single writer node.

Definition 3 (Semantics). The semantics of a dasl program Pd =
(GV ,LV , ρ, n, ϕ), denoted [[Pd]], is the sequential program:

[[Pd]] = 〈 ˜Init();while(true,Round)〉, where
Round = 〈CopyGlobals ; ˜Safety(); ρ0(); . . . ; ρn−1()〉, where

CopyGlobals = ∀v ∈ GV � ∀j ∈ [1,Dim(v)] � ∀i ∈ [0, n) � vi[j] = vW(v,j)[j]

Note that the quantifiers in the definition of CopyGlobals are finitely instan-
tiable. Hence, CopyGlobals expands to a finite sequence of assignments.

The semantics of Pd (Definition 3) is a sequential program. Thus, the proce-
dure to construct [[Pd]], denoted seqsem, is a valid sequentialization for dasl.
Note that [[Pd]] has O(n2) global variables since there are O(n) global arrays,
and each global array has O(n) elements. In Sec. 4 we present a more advanced
sequentialization, seqdbl, that produces programs with O(n) global variables.

4 Sequentializing dasl Programs

seqdbl uses only two copies of GV , GV 1 and GV 0, where: (i) GV 1 is used as
input in odd rounds and output in even rounds, while (ii) GV 0 is used as input
in even rounds and output in odd rounds. More specifically, seqdbl constructs
the program Ps that: (i) initializes GV 1 and LV by executing Init(); and (ii)
executes rounds. An odd round consists of the following steps: (a) check the
property by executing Safety(); (b) copy GV 1 to GV 0; (b) execute the sequence
of statements 〈ρ0(); . . . ; ρn−1()〉, reading fromGV 1 and writing to GV 0. An even
round is the same as an odd round except that the roles of GV 1 and GV 0 are
reversed. We now define Ps formally. For a global variable v ∈ GV , let v1 and
v0 be its copy in GV 1 and GV 0, respectively. We begin with two expression
transformers, ε1 and ε0. Then, we use them to transform functions Init , Safety ,
and ρ0, . . . , ρn−1. Finally, we define Ps in terms of these transformed functions.

Definition 4. Define a mapping ε1 : IdInst �→ ExpTrans such that for any
μ ∈ IdInst and e ∈ exp, ε1(μ, e) is obtained from e by replacing: (i) each v ∈ GV
with v1; (ii) each v ∈ LV with vμ(id); and (iii) each v.i ∈ LV .IV with vμ(i).
Define mapping ε0 : IdInst �→ ExpTrans to be the same as ε1, except that every
v ∈ GV is replaced by v0.
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Note that the only difference between ε1 and ε0 is in the treatment of global
variables. For i ∈ [0, n) define functions ρ1i and ρ0i such as:

ρ1i () = Δ(ε0(μ⊥ ⊕ (id , i)), ε1(μ⊥ ⊕ (id , i)), ρ())
ρ0i () = Δ(ε1(μ⊥ ⊕ (id , i)), ε0(μ⊥ ⊕ (id , i)), ρ())

(2)

Note that ρ1i uses GV 0 for LHS of assignments, and GV 1 for other expressions.
Thus, ρ1i reads GV 1 and modifies GV 0. Similarly, ρ0i reads GV 0 and modifies
GV 1. Also, define functions ¨Init , Safety1 and Safety0 as:

¨Init() = Δ(ε1(μ⊥), Init()) Safety1() = Δ(ε0(μ⊥), ε1(μ⊥), Safety())
Safety0() = Δ(ε1(μ⊥), ε0(μ⊥), Safety())

(3)

Note that, ¨Init reads and modifies GV 1, Safety1 reads GV 1 and modifies
GV 0, while Safety0 reads GV 0 and modifies GV 1. We now define Ps formally.

Definition 5 (Sequentialization). The sequentialization of a dasl program
Pd = (GV ,LV , ρ, n, ϕ), denoted Ps, is the sequential program:

Ps = 〈 ¨Init();while(true, 〈Round1;Round0〉)〉, where
Round1 = 〈Safety1();CopyFwd ; ρ10(); . . . ; ρ

1
n−1()〉, where

CopyFwd = ∀v ∈ GV � ∀j ∈ [1,Dim(v)] � v0[j] = v1[j], and

Round0 = 〈Safety0();CopyBwd ; ρ00(); . . . ; ρ
0
n−1()〉, where

CopyBwd = ∀v ∈ GV � ∀j ∈ [1,Dim(v)] � v1[j] = v0[j]

Note that CopyFwd and CopyBwd expand to a finite sequence of assignments.

Correctness of seqdbl. We now show that [[Pd]] and Ps are semantically equiv-
alent, i.e., there is an execution of [[Pd]] that aborts iff there is an execution of
Ps that aborts. For brevity, we only give a proof sketch. First, recall that [[Pd]]
has n copies of GV , while Ps has just two. For simplicity, let D be the domain of
values of all variables. Given a set of variables X , let V(X) be the set of mapping
from X to D. We write Vd to mean V(GV 1 ∪ · · · ∪GV n), V1 to mean V(GV 1),
V0 to mean V(GV 0), and Vl to mean V(LV ). Thus, for example, an element of
Vl maps local variables to values.

To relate [[Pd]] and Ps, we relate valuations of global variables of one to global
variables of the other. Formally, we define a relation≈⊆ Vd×(V1∪V0) as follows:

V ≈ V ′ ⇐⇒ ∀v ∈ GV � ∀j ∈ [1,Dim(v)] � V (vW(v,j)[j]) = V ′(v[j])

In other words, V and V ′ are related iff for every global array element v[j],
the value of v[j] at its writer node W(v, j) according to V is the same as the
value of v[j] according to V ′. A state of [[Pd]] is a pair (vg, vl) ∈ Vd×Vl. Similarly,
a state of Ps is a triple (v1, v0, vl) ∈ V1 × V0 × Vl. Then, the following holds.

Theorem 1. For every i ≥ 1, state (vg, vl) is reachable at the start of the i-th

execution of ˜Safety() in [[Pd]] iff: (a) i is odd and state (v1, v0, vl) is reachable
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at the start of the  i
2!-th execution of Safety1() in Ps such that vg ≈ v1; or (b)

i is even and state (v1, v0, vl) is reachable at the start of the i
2 -th execution of

Safety0() in Ps such that vg ≈ v0.

Proof. The proof is by induction over i. For brevity, we only give an outline. The
base case (i = 1) follows from the definitions of ˜Init(), CopyGlobals (cf. (1)) and
¨Init() (cf. (3)). For the inductive step, suppose i is odd and (vg, vl) is reachable

at the start of the i-th execution of ˜Safety() in [[Pd]]. By inductive hypothesis,
(v1, v0, vl) is reachable at the start of the  i

2!-th execution of Safety1() in Ps

such that vg ≈ v1. Since, Safety does not modify global or local variables, [[Pd]]
next executes statement Xd = 〈ρ0; . . . ; ρn−1;CopyGlobals 〉 from state (vg, vl).
Suppose it reaches state (v′g, v′l). Also, from the definition of CopyFwd , we know
that Ps next executes statement Xs = 〈ρ10(); . . . ; ρ1n−1()〉 from state (v1, v1, vl).

It can be shown that after executing Xs, Ps can also reach a state (v1, v′1, vl)
such that v′g ≈ v′1. Similarly, suppose that after executing statement Xs, Ps

reaches state (v1, v′1, vl). Again it can be shown that after executing statement

Xd, [[Pd]] can also reach state (v′g , v
′
l) such that v′g ≈ v′1. This establishes the

result for i+1. By a symmetric argument, we can show that the result holds for
the case when i is even as well. "#

Correctness of seqdbl. Recall that function Safety reads local variables only.
Thus, ˜Safety() = Safety1() = Safety0(). By Theorem 1, [[Pd]] executes ˜Safety
from a state (vg, vl) iff Ps executes Safety1 or Safety0 from a state (v1, v0, vl).
Hence, [[Pd]] aborts iff Ps also aborts, proving that seqdbl is correct.

Note that both seqsem and seqdbl rely crucially on our assumption of sn-
moc. However, in practice, networks in our domain of interest are asynchronous
with unbounded message delays, and snmoc must be implemented on top of it
in order to deploy dasl applications. This is the topic of Section 5.

5 Implementing snmoc

The synchronous network abstraction (snmoc) is implemented on top of an
asynchronous network via a “synchronizer” [3] protocol. In the literature, several
synchronizers [16] have been proposed. Many, such as PALS [17], rely on clock
synchronization. However, this is not appropriate for our target domain where
networks have unbounded latency. To address this challenge, we have developed
a new synchronizer that does not rely on any clock synchronization. Instead,
our protcol, called 2-Barrier-Synchronization (2bsync), uses global variables to
enforce a barrier before and after each round, thereby synchronizing rounds
across all the application nodes. We now present 2bsync in more detail.

Consider a dasl program Pd = (GV ,LV , ρ, n, ϕ). Let Wi be the set of global
variables written by node Ni, i.e., Wi = {v[j] | W(v, j) = i}. We introduce n
additional global “barrier” variables – b0, . . . , bn−1 – each initialized to 0. For
any set of global variables X , let (X)! denote the atomic broadcast of the current
value of all variables inX to other nodes. This means that the broadcasted values
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are received by other nodes atomically, i.e., at any point in time, either all of
them are visible to a recipient node or none of them are. The atomic broadcast
capability is crucial for implementing 2bsync, and we discuss it further later.
Then, node Ni is implemented by the program Nodei defined as follows (bi++
is a shorthand for bi = bi + 1):

Nodei = while(true,Round i), where
Round i = 〈bi++; (Wi, bi)!;Barr i(); ρi(); bi++; (bi)!;Barr i()〉, where
Barr i = while(b0 < bi ∨ · · · ∨ bn−1 < bi, skip)

(4)

Note that Barr i implements a barrier since it forces Nodei to wait till the
values of the barrier variables at all other nodes have “caught up” with the
value of its own barrier variable bi.

Correctness of 2bsync. For any global array element v[j], let r(v[j], i, k) and
w(v[j], i, k) be the value of v[j], before and after respectively, the execution of
ρi() during the k-th iteration of the outermost while loop of Nodei. Let I(v[j])
be the initial value of global array element v[j] at its writer node. Thus, 2bsync
is correct iff the following two conditions hold:

∀v[j] � ∀i ∈ [0, n) � r(v[j], i, 1) = I(v[j]) (5)

∀v[j] � ∀i ∈ [0, n) � ∀k > 1 � r(v[j], i, k) = w(v[j],W(v, j), k − 1) (6)

Let B(v[j], i, k) be the value of v[j] broadcast atomically during the k-th
iteration of the outermost while loop of Nodei in (4). Note that B(v[j], i, 1) =
I(v[j]) and ∀k > 1 � B(v[j], i, k) = w(v[j], i, k − 1). Thus, (5) and (6) hold iff:

∀v[j] � ∀i ∈ [0, n) � ∀k ≥ 1 � r(v[j], i, k) = B(v[j],W(v, j), k) (7)

Then, (7) follows from two observations. Due to the first Barr i:

∀v[j] � ∀i ∈ [0, n) � ∀k ≥ 1 � r(v[j], i, k) = B(v[j],W(v, j), k′) =⇒ k ≤ k′

Again, due to the second Barr i, we have:

∀v[j] � ∀i ∈ [0, n) � ∀k ≥ 1 � r(v[j], i, k) = B(v[j],W(v, j), k′) =⇒ k′ < k + 1

This completes the proof. Note that the 2bsync protocol must be imple-
mented over a middleware that supports global variables as well as atomic
broadcast. For this research, we use madara [8], a middleware developed for dis-
tributed AI applications. The support for global variables was already available
in madara. We augmented it by implementing the atomic broadcast capability.
In Section 6 we describe the process of generating C++ code for each node of a
dasl program against the madara API.

6 Code Generation: From dasl to madara/C++

Once a dasl program Pd has been successfully verified, it is converted into
an equivalent madara application Pm. madara is an open-source2 middleware

2 http://madara.googlecode.com

http://madara.googlecode.com
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developed for distributed AI applications. It has been ported to a variety of real-
world platforms and architectures (e.g., ARM and Intel) and operating systems
(e.g., Linux, Windows, Android and iOS). madara applications can commu-
nicate via IP-based protocols like UDP, IP broadcast and IP multicast or the
Data Distribution Service (DDS). These advantages are inherited by Pm by
virtue of its use of madara. madara ensures consistency of global variables
(GV ) within Pm through a distributed context that maps variables to values,
with each v ∈ GV controlled by a private Lamport clock vt, which enforces tem-
poral consistency. This type of consistency is inherent in the underlying madara
subsystems, and is useful for encoding the 2bsync protocol into the Pm program.

madara has two additional features crucial for implementing 2bsync. First,
as part of this research, we augmented madara with a sendlist mechanism
that allows application nodes to dynamically specify, at runtime, which vari-
ables in GV are disseminable immediately, and which variable disseminations
should be delayed until later. This sendlist mechanism maps directly to the
requirements of the 2bsync protocol (cf. Sec. 5). Specifically, we use it to enable
barrier variable updates while actively suppressing the dissemination of other
values written by node Ni until the time is appropriate. This is required to
perform the atomic broadcast operation (bi)! in (4). Second, madara allows
an application node to broadcast values of multiple context variables to other
nodes as a “packet”. madara ensures that the packet is received by other nodes
“atomically”, i.e., at any point in time, either all the values in the packet are
observed by a receiver node, or none is. This is required to perform the atomic
broadcast operation (Wi, bi)! in (4).

The generated program Pm preserves the semantics of the dasl program Pd

that has been verified via sequentialization to Ps. The differences between Pm

and Pd revolve around the following limitations and features of madara:

1. madara supports several first class types like strings, doubles, raw binary,
and images but only one type of integer (a 64 bit integer). Consequently,
Booleans and integers in Pd are encoded as 64 bit integers in Pm.

2. madara includes an efficient scripting environment for manipulating global
variables (GV ). It also provides classes – Integer, Array, Array N , etc. –
that allow direct access to GV . We use the scripting environment wherever
applicable, such as in the implementation of the 2bsync protocol. However,
for user-defined functions, we generate code that uses the classes. This leads
to a more direct mapping from Pd to Pm, especially for control statements
such as if/then/else and switch statements. The madara equivalents of these
control structures use logical operators like && and ||, and the class facades
into the madara context yields Pm code that is easier to debug and modify,
without requiring expertise about madara internals.

3. The madara context is appropriate for storing GV and LV but does not
contain primitives that allow a node to perform omniscient variable accesses
(i.e., to variables of other nodes) present in dasl programs, specifically in
the Init and Safety functions (cf. Fig. 1). Because each node of Pm only
has access to its own local variables, Pm does not contain code for Init or
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0 // Source model in Pd

1 EXISTS_LOWER(idp,lock[idp])
2 ...

3 // Generated code in (*$P_m$*)
4 (id == 1 && lock[0]) ||
5 (id == 2 && (lock[0] || lock[1])) ||
6 (id == 3 && (lock[0] ||

lock[1] || lock[2]))

0 // Source model in Pd

1 2BSYNC for 2 processes
2 ...
3
4 // Generated code in Pm

5 if (id == 0)
6 settings.send_list ["B.0"]
7 = true;
8 else
9 settings.send_list ["B.1"]

10 = true;
11
12 // Continued on the right

13 while (1)
14 {
15 knowledge.evaluate("++B.{.id}");
16 if (id == 0)
17 knowledge.wait("B.1 >= B.0");
18 else
19 knowledge.wait("B.0 >= B.1");
20
21 ROUND ();
22
23 knowledge.evaluate("++B.{.id}");
24 if (id == 0)
25 knowledge.wait("B.1 >= B.0",settings);
26 else
27 knowledge.wait("B.0 >= B.1",settings);
28 }

Fig. 3. Pm code generated from: (top) EXISTS LOWER; (bottom) 2bsync

Safety . This makes sense since these two functions are meant for verification
only. Still, for verification results to be valid, the initial state of Pm must be
consistent with that constructed by Init . Currently, this is ensured manually.

4. Unlike the sequentialized program Ps, madara allows us to build a Pm that
is id-neutral at compilation time. Through the usage of madara’s object-
oriented facades into the GV and LV contexts, a more direct mapping of the
source Pd to Pm takes place. While the sequentialized program Ps contains
separate code for each node of Pd, the application Pm consists of code for a
single node whose id is supplied via a command line argument.

Fig. 3 illustrates examples of the code generation from sections of the Pd

defined in Fig. 1. The examples outline the code unrolling of EXISTS LOWER
(top) and 2bsync (bottom), respectively. Note that variables B.0 and B.1 in
Fig. 3 correspond to variables b0 and b1 in (4).

7 Empirical Evaluation

We implemented diver in a verifying compiler called daslc, and used it
to compare seqsem and seqdbl on a set of synchronous distributed appli-
cations. All our experiments were done on a 8 core 2GHz machine running
Ubuntu 12.04 with a time limit of 1 hour and a memory limit of 16GB.
The parser for dasl programs was generated using flex/bison. The rest of
daslc was implemented in C++. daslc generates ANSI C code – the safety
property is encoded by assertions – which we verify using the model checker
cbmc [6] v4.7. cbmc converts the target C program Prog and assertion Asrt
into a propositional formula ϕ such that Prog violates Asrt iff ϕ is satisfi-
able. It then solves ϕ using an off-the-shelf SAT solver. We use the parallel
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MUTEX-OK
R TS TD TS TD TS TD

n = 6 n = 8 n = 10
60 406 396 1116 1051 2388 2268
80 850 806 2268 1967 4525 4249
100 1404 1381 3584 3452 7092 6764

μ=1.040 σ=0.038

MUTEX-BUG1
TS TD TS TD TS TD

n = 6 n = 8 n = 10
184 175 517 439 1068 959
402 372 1013 925 2203 1812
734 686 1726 1566 3513 3287

μ=1.056 σ=0.060

MUTEX-BUG2
TS TD TS TD TS TD

n = 6 n = 8 n = 10
233 216 637 553 1292 1167
500 462 1218 1112 2602 2139
890 838 2056 1860 4216 3742

μ=1.065 σ=0.056

3DCOLL-OK-4x4
R TS TD TS TD TS TD

n = 2 n = 4 n = 6
10 13 10 59 40 219 96
20 37 31 351 123 1014 480
30 48 48 406 202 – –

μ=2.213 σ=0.715

3DCOLL-OK-7x7
TS TD TS TD TS TD

n = 2 n = 4 n = 6
31 35 323 148 1099 323
73 72 1262 401 – –
142 113 – – – –

μ=2.294 σ=0.763

3DCOLL-BUG-4x4
TS TD TS TD TS TD

n = 2 n = 4 n = 6
8 9 49 36 123 96
24 36 119 101 410 210
42 44 206 155 – –

μ=1.615 σ=0.425

3DCOLL-BUG-7x7
TS TD TS TD TS TD

n = 2 n = 4 n = 6
22 23 194 114 – –
57 76 – – – –
117 134 – – – –

μ=1.514 σ=0.344

2DCOLL-OK-4x4
R TS TD TS TD TS TD

n = 2 n = 4 n = 6
10 17 25 87 262 280 831
20 123 271 1474 2754 – –
30 863 1301 – – – –

μ=0.446 σ=0.118

2DCOLL-BUG1-4x4
TS TD TS TD TS TD

n = 2 n = 4 n = 6
3 2 12 11 30 22
8 7 36 29 80 75
12 15 57 51 144 105

μ=1.282 σ=0.264

2DCOLL-BUG2-4x4
TS TD TS TD TS TD

n = 2 n = 4 n = 6
4 3 13 11 30 29
8 9 33 33 76 66
16 21 57 77 150 120

μ=1.056 σ=0.266

2DCOLL-OK-7x7
R TS TD TS TD TS TD

n = 2 n = 4 n = 6
10 74 146 395 1016 1707 –
20 1726 3096 – – – –
30 – – – – – –

μ=0.598 σ=0.202

2DCOLL-BUG1-7x7
TS TD TS TD TS TD

n = 2 n = 4 n = 6
7 7 32 24 101 70
15 22 94 55 345 150
40 35 180 91 – 223

μ=1.382 σ=0.517

2DCOLL-BUG2-7x7
TS TD TS TD TS TD

n = 2 n = 4 n = 6
5 10 26 36 188 113
19 22 71 113 207 166
46 68 124 295 416 235

μ=0.906 σ=0.393

Fig. 4. Experimental Results; TS, TD = verification time with seqsem, seqdbl; n =
no. of nodes; R = no. of rounds; G ×G = grid size; μ, σ = mean, standard deviation
of TS/TD for all experiments in that category; – denotes out of time/memory.

SAT solver plingeling (http://fmv.jku.at/lingeling) to utilize mul-
tiple cores. Since cbmc only verifies bounded programs, we fixed the number
of rounds of execution of the target application for each verification run. Due
to lack of space, we only present a subset of results that suffice to illustrate
our main conclusions. Our tools, benchmarks, and complete results are available
at http://www.contrib.andrew.cmu.edu/˜schaki/misc/models14.
zip . We verified several applications, varying number of nodes (n) and rounds
(R), and using both seqsem and seqdbl. We now present our results in detail.

Mutual Exclusion. The first application implemented a distributed mutual ex-
clusion protocol. The dasl program for the correct version of this protocol is
in Fig. 1. We also implemented two buggy versions of this protocol by omitting
important checks (at lines 14–15 and lines 19–20 in Fig. 1). Results of verifying
all three versions are shown in Fig. 4. As expected, verification time increases
both with n and R. However, it is almost the same between seqsem and se-
qdbl for a fixed n and R, as shown by the values of μ and σ. This indicates that
the techniques implemented in cbmc and plingeling effectively eliminate the
complexity due to additional variables produced by seqsem.

3-Dimensional Collision Avoidance. The next application implemented a col-
lision avoidance protocol where nodes (denoting robots flying over an area de-
marcated by a two-dimensional grid) are able to change their height to avoid

http://fmv.jku.at/lingeling
http://www.contrib.andrew.cmu.edu/~schaki/misc/models14.zip
http://www.contrib.andrew.cmu.edu/~schaki/misc/models14.zip
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colliding with each other. We implemented a correct and a buggy version of this
protocol. The results of verifying the two versions are shown in Fig. 4. Again,
verification time increases with n, R, and G (where grid-size = G×G). In addi-
tion, programs generated by seqdbl are verified faster (over 100% for the correct
version and 50% for the buggy version) than those generated by seqsem, for a
fixed n, R and G. This supports our intuition that the O(n) variables used by
seqdbl is better for verification.

2-Dimensional Collision Avoidance. The final application implemented a col-
lision avoidance protocol where nodes can only move in two dimensions. We
implemented a correct and two buggy versions of this protocol. The results of
verifying them are shown in Fig. 4. Again, verification time increases with n, R,
and G. However, the difference between seqdbl and seqsem is subtle. For the
BUG2 version, they are almost identical. For BUG1, seqdbl leads to over 30%
faster verification. However, for the correct version, seqsem allows verification
to be 40% faster, even though it generates programs with more variables.

In summary, while seqdbl is clearly the better option overall, there are cases
where seqsem is more efficient. We believe that the optimizations and symbolic
algorithms used by modern model checkers means that verification time is not
just determined by the number of variables. While these results were obtained
using cbmc, we believe that they are representative of symbolic model checkers.
For example, similar non-monotonic performance has also been observed in other
contexts, e.g., when comparing [21] BDD and SAT-based LTL model checkers.
Note that, in general, model checking a buggy application is easier than a correct
one since the latter requires complete statespace exploration.

8 Conclusion

We presented an approach for model-driven verifying compilation of distributed
applications written in a domain-specific language, called dasl, against user-
provided safety specifications. We assume a ”synchronous network” model of
computation. Our verification is based on sequentialization followed by software
model checking. We develop two sequentialization techniques – seqsem and se-
qdbl– and compare them on a set of applications. seqdbl produces programs
with fewer variables, and empirically is more efficient for verification in most
cases. We also develop a protocol to implement a synchronous network abstrac-
tion over an asynchronous network. This protocol does not require clock synchro-
nization and is of independent interest. We believe that extending our approach
to handle asynchronous and fault-tolerant programs, and proving correctness of
code generation and middleware, are important directions to pursue.
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Abstract. A contract splits the responsibilities between a component
and its environment into a guarantee that expresses an intended property
under the responsibility of the component, given that the environment
fulfills the assumptions. Although current contract theories are limited
to express contracts over interfaces of components, specifications that
are not limited to interfaces are used in practice and are needed in or-
der to properly express safety requirements. A framework is therefore
presented, generalizing current contract theory to environment-centric
contracts - contracts that are not limited to the interface of components.
The framework includes revised definitions of properties of contracts, as
well as theorems that specify exact conditions for when the properties
hold. Furthermore, constraints are introduced, limiting the ports over
which an environment-centric contract is expressed where the constraints
constitute necessary conditions for the guarantee of the contract to hold
in an architecture.

Keywords: Environment-Centric, Contracts, Architecture.

1 Introduction

The notion of contracts was first introduced in [1] as a pair of pre- and post-
conditions [2–5] to formally specify the interface of software components. How-
ever, in more recent work [6–9] where the use of contracts is extended to the
design of Cyber-Physical Systems (CPS) [10], the conceptual idea of a contract
is rather described as: ”a component model that sets forth the assumptions un-
der which the component may be used by its environment, and the corresponding
promises that are guaranteed under such correct use” [6], which indicates that
contracts must not necessarily be limited to the interfaces of components.

However, in current contract theories [1,5–9,11–20], contracts are indeed lim-
ited to the interface of components, e.g. as shown in Fig. 1a where a contract
for a controller C1 is limited to its interface. In this case, the guarantee G ex-
presses that the desired output signal v to another controller C2 is a function of
the voltage u at an input pin connected to a sensor S. However, the guarantee
G can only be assured to hold, given that the assumption A is fulfilled where
A expresses constraints on the input u. In contrast to Fig. 1a, Fig. 1b shows
another contract for C1 where both the guarantee G′ and the assumption A′ are
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(a) (b)

Fig. 1. Two contracts for a controller C1 are shown in (a) and (b), where the contract
in (a) is limited to the interface of C1 and the contract in (b), is not

not limited to the interface of C1. In this case, the guarantee G′ expresses that
the output signal v shall correspond to a physical quantity x, as sensed by the
sensor S, given the assumption A that sensor S is functioning correctly.

In order to support specifications that are not limited to component interfaces,
e.g. the one shown in Fig. 1b, the present paper generalizes current contract the-
ories [1,5–9,11–20] to contracts that are not limited to interfaces of components.
Inspired by [21,22], a contract that is not limited to the interface of a component,
will in the following be referred to as an environment-centric contract.

It could be argued that the environment-centric contract in Fig. 1b is not
needed since the interface of C1 could be extended to include the port x, which
would allow the contract in Fig. 1b to be a contract for C1. However, in this
case, the interface of the component C1 would not match the interface of the
real world object that it models and would hence require the use of ambiguous
representations of the real world.

Although environment-centric contracts are not supported by current contract
theories [1, 5–9, 11–20], there are at least two reasons why a generalization of
current contract theories to environment-centric contracts is strongly needed.

The first reason is that a specification that is not limited to the interface of
a component, e.g. the one shown in Fig. 1b, is capable of expressing that the
responsibility of the component is to achieve an overall intended property of a
system, instead of being restricted to express only its intended behavior. The
same need, but in the context of functions, has been identified in [21, 22]. An
example of when a specification such as the one shown in Fig. 1b is used in an
industrial case-study, can be found in [23] where ModelicaML [24] is used to
specify and verify requirements on a subsystem of a fuel management system
where the requirements express the end-to-end functionality of the fuel manage-
ment system in general. Another example can be found in [25] where SysML [26]
is used to specify requirements on an engine knock controller and where the re-
quirements allocated to the controller explicitly refer to parts, such as e.g. the
piston, of the environment of the controller.

The second reason why environment-centric contracts are needed is that, in
the area of functional safety [27, 28], the associated risk of a component, is as-
sessed in the context of how it affects its environment, and not just by its imme-
diate behavior. In order to properly express safety requirements on a component,
there is hence a need to refer to parts in the environment that the component is
to be deployed in. For example, in ISO 26262 [28], top-level safety requirements
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for an item, i.e. a system, are formulated in order to prevent or mitigate hazards,
where the hazards ”shall be defined in terms of the conditions or behaviour that
can be observed at the vehicle level” [28]. This can be observed in the industrial
examples [29, 30], where requirements that are not limited to component inter-
faces are necessarily used in order to properly express safety properties of the
components.

The two reasons above explain the importance of allowing assumptions and
guarantees to be expressed, not only over the interface, but also over ports in
the environment. This motivates the main contribution of this paper, namely
a framework that generalizes current contract theories to environment-centric
contracts.

At the core of the framework is a corollary that, given an environment-centric
contract, separates the respective conditions that a component and its environ-
ment need to meet in order to ensure seamless integration into a final product
where the guarantee of the environment-centric contract holds. Considering such
conditions, necessary constraints on the set of ports, i.e. the scopes, over which
guarantees and assumptions can be expressed, are introduced. The constraints
serve as a sanity check in order to determine that an environment-centric con-
tract is not an unreasonable specification for a component in an architecture.

The framework includes revised definitions of the contract properties consis-
tency [6,7,19], compatibility [6,7,19], and dominance [8,20] as defined in current
contract theories, as well as two theorems that specify necessary and sufficient
conditions of consistency and compatibility. As a basis for structuring contracts
in parallel to an architecture, a graph, called a decomposition structure, is intro-
duced. Based on a decomposition structure, a theorem is presented with sufficient
conditions of dominance.

Out of an extensive literature study of contract theories [1, 5–9, 11–20], no
previous contract theories were found to explicitly support contracts that are
not limited to the interface of components. Although both [19, 20] do allow as-
sumptions that extend outside of the interface, both are, however, limited to
express guarantees over the interface of components. Even though the abstract
definition of a contract in [8] does not exclude that assumptions and the guar-
antees are limited to the interface of components, it is not treated explicitly.
Moreover, [8] does not address compatibility and consistency issues between in-
terfaces. In contrast to [8,19,20], the present paper focuses on fully generalizing
contract theories by revising properties of contracts and providing theorems to
support practical application.

Although the work in the present paper is a generalization of current contract
theories [1, 5–9, 11–20] in general, due to the numerous contract theories that
exist, the text is limited to discuss properties of contracts as presented in contract
theories [6–8,20] that can be traced back to the FP6 project SPEEDS [31]. This
means that, e.g. the quotient operator [9,19], is not discussed. The work is further
confined to representing assumptions and guarantees as sets of runs, which means
that neither modalities [8, 18] nor probabilities [17], are considered.
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2 Assertions, Elements and Architectures

This section establishes a theoretical framework in order to model a CPS and
its parts, and to be able to describe the notion of environment-centric contracts
and its properties in Sec. 3 and 4. The framework mainly draws inspiration from
the contract theory of the FP6 project SPEEDS [31] as described in [6, 7].

2.1 Assertions and Runs

Let X = {x1, . . . , xN} be a set of variables. Consider a trajectory of values of
a variable xi over a time window starting at a certain time t0, e.g. as shown in
Fig. 2a. A tuple of such trajectories, one for each variable in X , sorted according
to a global ordering with respect to the identifiers of the variables, is called a
run for X , and denoted ωX . For example, a run ω{xi,xj} is shown in Fig. 2b as
a solid line, consisting of the trajectory shown in Fig. 2a and another trajectory
of values of xj , both represented as dashed lines.

(a) (b)

Fig. 2. A trajectory of values of xi is shown in (a) and a run ω{xi,xj} is shown in (b)

Given a set of variables X ′, an assertion W over X ′ is a possibly empty set of
runs for X ′. This notion corresponds to similar definitions in [6,7,30]. Note that,
in the examples in the present paper, assertions will be specified by equations.
The assertion is then the set of runs that are solutions to the equation.

Given an assertion W over X = {x1, . . . , xN}, and another set of variables
X ′ ⊆ X , the projection [6, 19, 20, 30] of W onto X ′, written projX′ (W), is the
set of runs obtained when the trajectory of values of each variable xi /∈ X ′

is removed from each run in W. Using notation of relational algebra [32], it
holds that projX′ (W) = πX′ (W). For example, consider an assertion {ω{xi,xj}}
consisting of the run in Fig. 2b, proj{xi}({ω{xi,xj}}) is the assertion containing
only the trajectory in Fig. 2a.

Given an assertion W′ over X ′ and another set of variables X , p̂rojX(W′)
denotes the set of runs where each run in W′ is first extended with all pos-
sible runs for X \ X ′, prior to applying the operation of projection. That is,

p̂rojX (W′) = projX({ωX∪X′|projX′ ({ωX∪X′}) ⊆ W′}).
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In the following, the symbols ∩̂,∪̂,⊂̂,⊆̂, etc. will be used to denote that prior
to using operations and relations on assertions over dissimilar sets of variables,
the assertions are first extended to the union of the sets of variables involved
using the operator p̂roj. For example, given two assertions W and W′ over the
set of variables X and X ′ respectively, W ∩̂W′ = p̂rojX∪X′(W)∩ p̂rojX∪X′(W′).

Let ΩX denote the set of all possible runs for a set of variablesX . An assertion
W over X constrains a set of variables X ′ if for each x′ ∈ X ′, it holds that{

W ⊂̂ projX\{x′} (W) X \ {x′} �= ∅
W ⊂ Ω{x′} otherwise.

(1)

where ⊂ denotes a proper subset.

2.2 Elements and Architectures

This section starts by introducing the concept of elements, corresponding to
Heterogeneous Rich Component (HRC) in [6,7], in order to model any entity of
a CPS, such as software, hardware, or physical entities, as well as to serve as a
functional or logical design entity in general, e.g. as a SysML block [26].

Definition 1 (Element). An element E is an ordered pair (X,B) where:

a) X is a set of variables, called the interface of E and where each x ∈ X is
called a port variable; and

b) B is an assertion over X, called the behavior of E.

Port variables model tangible quantities of the element from the perspective
of an external observer to the element, and the behavior models the static and
dynamic constraints that the element imposes on the port variables, independent
of its surroundings. For example, consider a potentiometer Epot = (Xpot,Bpot)
where Xpot = {vref , vbranch, vgnd}. The port variables vref , vbranch, and vgnd
model the reference, branch, and ground voltages, respectively. Furthermore, h
models the position (0 − 100%) of the ’slider’ that moves over the resistor and
branches the circuit. Given a simplified model where currents are neglected, the
behavior Bpot can be specified by the equation h =

vbranch−vgnd

vref−vgnd
.

The following describes how a set of elements can be structured in order to
model a CPS, its parts, and its surroundings. Similar to e.g. [28, 33], such a
structure will be referred to as an architecture, which, in the present paper, will
be denoted with the symbol A . Prior to presenting the formal definition of an
architecture, the concept is introduced informally by describing an architecture
ALM−sys of a ”Level Meter system” (LM-system) ELM−sys, as shown in Fig. 3a
where an element is represented as a rectangle filled with gray with white boxes
on its edges that symbolize its port variables and in Fig. 3b where the hierarchical
structure of the LM-system is shown as a tree.

As shown in Fig. 3a, the LM-system ELM−sys consists of a tank Etank and an
electric-system EE−sys. The electric-system EE−sys consists of the potentiometer
Epot as described in Sec. 2.2, a battery Ebat and a level meter ElMeter where the
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(a) (b)

Fig. 3. An architecture ALM−sys of a ”Level Meter system”

behaviors Bbat and BLmeter of Ebat and ElMeter are specified by the equations
vref − vgnd = 5V and l =

vbranch−vgnd

5 , respectively. The slider h is connected to
a ”floater”, trailing the level f in the tank. In this way, the potentiometer Epot

is used as a level sensor to estimate the level in the tank. The estimated level is
presented by the level meter ElMeter where l denotes the presented level.

Notably, since each part of the electric-system EEsys will have quantities
that may not be perceivable when the parts are integrated with each other,
e.g. vref , a port variable x of a child of EEsys where x /∈ XEsys cannot be a
member of an interface of a non-descendant of EEsys, e.g. Etank. In order to
further relate the individual behaviors of the children of EEsys with the behav-
ior of EEsys, the individual behaviors are first combined with each other using
the intersection operator and subsequently restricted to the interface of EEsys

using the projection operator, in accordance with the Sec. 2.1, i.e., BEsys =

p̂rojXEsys

(
Bpot ∩̂Bbat ∩̂BLmeter

)
.

The formal definition of an architecture now follows:

Definition 2 (Architecture). An architecture A is a set of elements orga-
nized into a rooted tree, such that:

(a) for any non-leaf node E = (X,B), with children {(Xi,Bi)}Ni=1, it holds that

B = p̂rojX(
⋂̂N

i=1Bi); and
(b) if there is a child E

′ = (X ′,B′) and a non-descendent E
′′ = (X ′′,B′′) of

E = (X,B), such that x ∈ X ′ and x ∈ X ′′, then it holds that x ∈ X.

For convenience, in the context of an architecture, the environment of an
element E is considered to be the set of elements in the surroundings of E. That
is, as shown in Fig 3, the elements Ebat, Etank, and ElMeter are elements in the
environment of the potentiometer Epot.

Definition 3 (Environment of Element). Given an architecture A , the en-
vironment of an element E = (X,B) in A , denoted EnvA (E), is the set of

elements {Ei}Ni=1 such that Ei = (Xi,Bi) is either a sibling or a sibling of a

proper ancestor of E. Let BEnvA (E) =
⋂̂N

i=1Bi denote the behavior of EnvA (E).

Given that an assertion is possibly the empty set (See Sec. 2.1), a realizable
architecture A is defined:
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Definition 4 (Realizable Architecture). An architecture A is realizable if
the behavior of the root element of A is non-empty.

Proposition 1. Given an architecture A containing an element E = (X,B), it
holds that A is realizable, if and only if BEnvA (E) ∩̂B �= ∅.

The proof of Proposition 1 can be found in [34].

3 Environment-Centric Contracts

As mentioned in Sec. 1, the notion of contracts was first introduced in [1] as a
pair of pre and post-conditions, to be used as a specification in object-oriented
programming. The principles behind contracts can, however, be traced back to
early ideas on proof-methods [2–4] and compositional reasoning/verification [5,
11, 12]. Since then, several frameworks for compositional reasoning [13, 14] have
emerged and also techniques to automate the approach have been proposed, see
e.g. [35] or [36] for a survey. The work in [1] has been extended to e.g. component-
based design [15] and analog systems [16].

In more recent work [6–8, 20], inspired by e.g. [37–40], the use of contracts is
extended to serve as a central design philosophy in systems engineering to sup-
port the design of CPS. As mentioned in Sec. 1, in a context of CPS design, the
conceptual idea of a contract does not prescribe that a contract must necessarily
be limited to the interface of an element, thus allowing environment-centric con-
tracts. Considering this, an environment-centric contract will, in the following,
simply be referred to as a contract unless further distinction is necessary.

Definition 5 (Contract). A contract C is a pair (A ,G), where

i) G is an assertion, called guarantee; and

ii) A is a set of assertions {Ai}Ni=1 where each Ai is called an assumption.

The set of variables over which an assumption Ai ∈ A or a guarantee G is
expressed, is called the scope of Ai or G, denoted XAi and XG, respectively. For

the sake of readability, let AA =
⋂̂N

j=1Ai and XAA =
⋃N

i=1 XAi .

Fig. 4. A contract ClMeter = ({AlMeter},GlMeter)
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As an illustrative example, consider the architecture ALMsys as shown in
Fig. 3 and a contract ClMeter = ({AlMeter},GlMeter) for the level meter ElMeter

as shown in Fig. 4 where the dashed lines represent the scopes of AlMeter and
GlMeter , respectively. The assertion GlMeter , specified by the equation l = f ,
expresses that the responsibility of ElMeter is to guarantee that the presented
fuel level l, shown by the meter, shall correspond to the level f in the tank.
However, in order for the level meter ElMeter to be able to ensure that GlMeter

holds, the voltage measured between vbranch and vgnd on ElMeter must map to
a specific level in the tank. That is, the assumption AlMeter is specified by the
equation f =

vbranch−vgnd

5 .
While contracts in current contract theories [1, 5–9, 11–20] are limited to ex-

press the intended behavior of ElMeter as a relation between the voltage connec-
tions vbranch and vgnd, and the presented level l, Definition 5 allows assigning
the responsibility of achieving the guarantee GlMeter to ElMeter where GlMeter

has a scope that extends outside of the interface of ElMeter .

3.1 Conditions on Element and Environment

In this section, conditions on an element and the environment of the element
are presented, where the conditions ensure that the overall property expressed
by the guarantee of a contract is met. As previously indicated, a guarantee of a
contract C = (A ,G) expresses an intended property under the responsibility of
an element E, given that the environment of the element fulfills the assumptions
in an architecture A . Formulated differently, the responsibility of the element is
to ensure that the relation BEnvA (E) ∩̂B ⊆̂G holds, given that BEnvA (E) ⊆̂AA .

Notably, if AA ∩̂B ⊆̂G, which means that E satisfies C [6–8, 19, 20], and if
BEnvA (E) ⊆̂AA , then it follows that BEnvA (E) ∩̂B ⊆̂G. Hence, the conditions for

the relation BEnvA (E) ∩̂B ⊆̂G to hold in a given architecture, can be partitioned

into the relations AA ∩̂B ⊆̂G and BEnvA (E) ⊆̂AA that express conditions on E

and the environment of E, respectively.
However, these conditions do not ensure that BEnvA (E) ∩̂B �= ∅, which, ac-

cording to Proposition 1, implies that the architecture is realizable. Since this
is a necessary property in order to develop the product in practice, additional
conditions must hence be imposed on the environment and on the element in
order to ensure that not only the guarantee holds, but also that the architecture
is realizable, i.e. that

∅ ⊂ BEnvA (E) ∩̂B ⊆̂G. (2)

Proposition 2. Consider a contract C = (A ,G) and an element E = (X,B).
If A is an architecture containing E where ∅ ⊂ BEnvA (E) ∩̂B ⊆̂G, then it holds

that BEnvA (E) ∩̂G �= ∅.
The proof of Proposition 2 can be found in [34]. Proposition 2 expresses that

BEnvA (E) ∩̂G �= ∅ is a necessary condition for the relation (2), which means that
it is not enough to simply require that the environment fulfills the assumptions
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in order for the relation (2) to hold. Now that this necessary condition on the en-
vironment has been identified, the following theorem expresses a complementary
condition on the element in order for the relation (2) to hold.

Theorem 1. Consider a contract C = (A ,G) and an element E = (X,B) where
AA ∩̂B ⊆̂G. It holds that AA ∩̂G ⊆̂B, if and only if ∅ ⊂ B ∩̂BEnvA (E) ⊆̂G for

each architecture A containing E where BEnvA (E) ∩̂G �= ∅ and BEnvA (E) ⊆̂AA .

The proof for Theorem 1 can be found in [34]. The findings in Proposition 2
and Theorem 1 are now summarized in the following central corollary:

Corollary 1. Given a contract C = (A ,G) and an architecture A containing
an element E = (X,B), it holds that ∅ ⊂ B ∩̂BEnvA (E) ⊆̂G if

i) AA ∩̂B ⊆̂G and AA ∩̂G ⊆̂B, and
ii) BEnvA (E) ⊆̂AA and BEnvA (E) ∩̂G �= ∅.
Corollary 1 cleanly separates the respective conditions that an element E and

the environment of E need to meet with respect to a contract C, in order to
obtain a realizable architecture where the guarantee of C holds.

3.2 Scoping Constraints

This section presents necessary constraints on the structural properties of a
contract in order for the conditions (i) and (ii) of Corollary 1 to hold. The
constraints serve as a sanity check in order to determine that a contract is not
an unreasonable specification for an element in an architecture.

Consider two contracts C′
Esys nor C′′

Esys for EEsys, as shown in Fig. 5a and 5b,
respectively, in the context of the architecture ALMsys as shown in Fig 3. Since
vbranch is in both A′

Esys and G′′
Esys, but neither in the interface of an element

in the environment of EEsys nor on the interface of EEsys, the environment of
EEsys cannot fulfill A′

Esys and EEsys cannot satisfy C′′
Esys in the generic case.

This hence means that EEsys and EnvALMsys(EEsys) cannot meet the respective
conditions (i) and (i) of Corollary 1 with respect to neither C′

Esys nor C′′
Esys.

(a) (b)

Fig. 5. Two contracts C′
Esys and C′′

Esys for EEsys where the conditions (i) and (ii) of
Corollary 1 do not hold in the generic case
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Theorem 2. Given a contract C = (A ,G), if A is an architecture containing
an element E where: i) AA ∩̂B ⊆̂G and AA ∩̂G ⊆̂B; and ii) BEnvA (E) ⊆̂AA and

BEnvA (E) ∩̂G �= ∅, then it holds that

a) X ′
AA

⊆ XEnvA (E); and
b) X ′

G ⊆ XEnvA (E) ∪X,

where X ′
AA

⊆ XAA and X ′
G ⊆ XG are the sets of variables constrained by AA and

G, respectively, and XEnvA (E) denotes the union of the interfaces of the elements
in the environment of E in A .

The proof of Theorem 2 can be found in [34]. The relations (a) and (b) of
Theorem 2 express necessary conditions on the structural properties of a contract
C = (A ,G) in order for an element and its environment to meet the conditions (i)
and (ii) of Corollary 1 in the context of an architecture. Considering Theorem 2,
a contract C is said to be scope-compliant for E = (X,B) in an architecture A ,
if the respective scopes of AA and G are subsets of XEnvA (E) and XEnvA (E)∪X .

Definition 6 (Scope-Compliant Contract for Element). A contract (A ,G)
is scope-compliant for an element E = (X,B) in an architecture A , if

a) XAA ⊆ XEnvA (E); and
b) XG ⊆ XEnvA (E) ∪X.

Under the assumption that the scopes of AA and G are equal to the set of
variables which they constrain, relations (a) and (b) of Definition 6 hold for
all cases where the relations (i) and (ii) of Theorem 2 also hold. This includes
all of the practical cases since the relations (i) and (ii) of Theorem 2 still hold
regardless of the inclusion of all variables that are not constrained by AA and G
in XAA and XG, respectively.

Regarding the examples shown in Fig. 5a and 5b, since XA′
Esys

�⊆ Xtank and

XG′′
Esys

�⊆ Xtank∪XEsys, in accordance with Definition 6, neither C′
Esys nor C′′

Esys

is scope-compliant for EEsys in ALMsys. Definition 6 hence provides a means to
detect that both the contracts C′

Esys and C′′
Esys are unreasonable specifications for

EEsys in ALMsys considering the scopes of the assumptions and the guarantees.

4 Properties of Environment-Centric Contracts

Since contracts in current contract theories [1, 5–9, 11–20] are limited to ele-
ment interfaces, definitions that specify whether a contract or a set of contracts
has a certain property or not, are also limited to the cases where contracts
are limited to the interfaces of elements. Hence, in order to support the use
of environment-centric contracts, this section presents revised definitions of the
properties consistency [6, 7, 19], compatibility [6, 7, 19], and dominance [8, 20] of
contracts as defined in current contract theories, as well as conditions for when
such properties hold.
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4.1 Consistency and Compatibility

In order to get a better understanding of when the properties consistency [6,7,19]
and compatibility [6, 7, 19] are relevant, a scenario is examined where a contract
is used to outsource the development of an element E with an interface X .
Specifically, the scenario can be described in three phases:

1) a contract (A ,G) and an interface specification X are handed from the client
to a supplier;

2) an element E = (X,B) is delivered to the client that meets the condition (i)
of Corollary 1; and

3) the client integrates the element E with a set of elements to form an archi-
tecture where the environment of E meets the condition (ii) of Corollary 1.

As expressed in phases (1-2), the client would expect the supplier to deliver an
element that meets the condition (i) of Corollary 1 with respect to the contract
C. However, in order for the supplier to be able to meet the demands from the
client, the supplier would expect that the contract is such that there actually
exists an element that meets the condition (i) of Corollary 1. If such an element
exists, then the contract will be referred to as a consistent contract.

Furthermore, in order for the client to be able to complete phase (3), at least
one architecture containing an element E = (X,B) where the environment of E
meets the condition (ii) of Corollary 1, needs to exist. If such an architecture
exists, then the contract will be referred to as a compatible contract.

Now that the concepts of consistency and compatibility have been introduced
in the context of a scenario, formal definitions follow.

Definition 7 (Consistent Contract). A contract (A ,G) is consistent with
respect to a set of variables X if there exists an element E = (X,B) such that
AA ∩̂B ⊆̂G and AA ∩̂G ⊆̂B.

Definition 7 is essentially a revision of the definition of consistency in [19] by
considering the condition (i) of Corollary 1. Definition 7 is also closely related to
definitions in [6,7], but where Definition 7, in contrast to the definitions in [6,7],
allows contracts that are not limited to the interface and are further not limited
to elements with defined inputs and outputs.

Theorem 3. A contract (A ,G) is consistent with respect to a set of variables

X, if and only if AA ∩̂ p̂rojX(AA ∩̂G) ⊆̂G.

The proof of Theorem 3 can be found in [34]. Given a contract C = (A ,G),
Theorem 3 supports a way of verifying that C is consistent with respect to X or
not, without having to go through all possible elements with an interface X in
order to determine whether there exists an element E = (X,B) that meets the
conditions (i) of Corollary 1.

Corollary 2. Given a consistent contract C = (A ,G) with respect to a set of
variables X, it holds that X ′

G ⊆ XAA ∪X, where X ′
G ⊆ XG is the set of variables

constrained by G.
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The proof of Corollary 2 can be found in [34]. Similar to Theorem 2, Corol-
lary 2 expresses a structural property of C that constitutes a necessary condition
in order for C to be consistent with respect to X . In the generic case, i.e. when
X ′

G = XG, the scope of G must be a subset of XAA ∪X .

Definition 8 (Compatible Contract). A contract (A ,G) is compatible with
respect to a set of variables X if there exists an architecture A containing an
element E = (X,B), such that BEnvA (E) ∩̂G �= ∅ and BEnvA (E) ⊆̂AA .

Definition 8 is essentially a revision of the definitions of compatibility in [19]
by considering the condition (ii) of Corollary 1. Definition 8 is also closely related
to the definitions of compatibility in [6,7], but where Definition 8, in contrast to
the definitions in [6,7], allows contracts that are not limited to the interface and
are further not limited to elements with defined inputs and outputs.

Theorem 4. A contract (A ,G) is compatible with respect to a set of variables
X if and only if AA ∩̂G �= ∅.

The proof of Theorem 4 can be found in [34]. Given a contract (A ,G) and a set
of variables X , Theorem 4 supports a way of verifying that (A ,G) is compatible
with respect to X or not, without having to go through each architecture A
containing an element E = (X,B) in order to determine whether there exists an
architecture A where the condition (ii) of Corollary 1 hold.

4.2 Dominance

Prior to formally presenting the definition of dominance, a scenario is presented
in the context of an Original Equipment Manufacturer (OEM)/supplier chain in
order to provide an understanding of when the property is relevant:

1) a contract C = (A ,G) is decomposed into a set of contracts {Ci}Ni=1 where
each contract Ci and an interface specification Xi is handed from the OEM
to either a development team within the organization or to a supplier;

2) each development team or supplier develops an element Ei = (Xi,Bi) that
meets the condition (i) of Corollary 1 with respect to Ci; and

3) the OEM integrates the set of elements Ei with each other to form an element
E that meets the condition (i) of Corollary 1 with respect to C.

As expressed in phase (3), the overall intent is to obtain an element E that
meets the condition (i) of Corollary 1 with respect to C. In order to achieve this,
the intent is hence to decompose the contract C into the set {Ci}Ni=1 such that if
each Ei meets the condition (i) of Corollary 1 with respect to Ci, then E meets
the condition (i) of Corollary 1 with respect to C. If such a property holds, then
C is said to dominate the set of contracts {Ci}Ni=1.

Notably, regardless of whether each child Ei of E meets the condition (i) of
Corollary 1 or not, it might not be possible for E to meet the condition (i) of
Corollary 1 with respect to C. Specifically, this happens if G constrains variables
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on the interface of an element Ei that are not on the interface of E. In accordance
with Definition 6, if C is scope-compliant for E in A , then G is not allowed to
constrain any subset of

⋃N
i=1 Xi \X .

Definition 9 (Dominance of Contracts). Given a set of variables X, a con-
tract C and a set of contracts {Ci}Ni=1, the contract C dominates {Ci}Ni=1 if for
any architecture A where C is scope-compliant for an element E = (X,B) in A
and where {Ei = (Xi,B)}Ni=1 is the set of children of E, it holds that

AAi
∩̂Bi ⊆̂Gi and AAi

∩̂Gi ⊆̂Bi for each i =⇒ AA ∩̂B ⊆̂G and AA ∩̂G ⊆̂B.

Definition 9 is essentially a generalization of the definitions of dominance
presented in [8,20] by relying on the notion of scope-compliance as presented in
Definition 6 and by considering the condition (i) of Corollary 1.

Decomposition Structures. This section introduces a graph, called a decom-
position structure, in order to find a decomposition of a contract C into a set
of contracts {Ci}Ni=1 to achieve the property as expressed in Definition 9. Prior
to presenting the formal definition of a decomposition structure, the concept is
introduced informally by structuring a decomposition of a contract CEsys into
a set of contracts {Cpot, Cbat, ClMeter}. The contracts represent the specifications
of the parts of an electric-system of an LM-system, e.g. the one shown in Fig. 3.

Consider that the assumptions and the guarantees of each contract in the set
{CEsys,Cpot,Cbat,ClMeter} are organized as nodes in a directed graph, as shown
in Fig. 6 where the boxes with rounded corners and dashed edges represent an
hierarchical structure of contracts. The set of incoming arcs to a guaranteeG from
a set of assumptions A , represents that A and G are in the same contract, e.g. the
arc from AEsys to the guarantee GEsys represents the contract ({AEsys},GEsys).

The set of incoming arcs to an assumption A from a set of assertions {Wi}Ni=1

where Wi is either an assumption or a guarantee, represents the intention of⋂̂N

i=1Wi ⊆̂A. For example, the arc to Apot2 from the assumption AEsys, represents

the intent of AEsys ⊆̂Apot2. The set of incoming arcs to a guarantee G from a set

of guarantees {Gj}Mj=1 represents the intent of
⋂̂M

j=1Gj ⊆̂G. For example, the arc

from the guarantee GlMeter to GEsys, represents the intent of GlMeter ⊆̂GEsys.
The formal definition of a decomposition structure now follows:

Definition 10 (Decomposition Structure). A decomposition structureD of
a contract (A ,G) into a set of contracts {(Ai,Gi)}Ni=1 is a Directed Acyclic Graph
(DAG), such that:

a) the guarantees Gi, the assumptions in each set Ai, the assumptions in A ,
and the guarantee G are the nodes in D;

b) G has no successors and at least one Gi is a direct predecessor of G;
c) Gi is the only direct successor of each assumption in Ai; and each assumption

in Ai has at least one predecessor;
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Fig. 6. A decomposition structure of CEsys into {Cpot,Cbat,ClMeter}

d) each Gi has a direct successor that it is either an assumption in Ak where
k �= i or G;

e) G is a direct successor of each assumption in A ; and if an assumption in A
has a direct successor that is not G, then it is an assumption in Ai.

Sufficient Conditions of Dominance. As previously indicated, a decompo-
sition structure represents the intended dependencies between the assumptions
and guarantees of a set of contracts. Given that the intended dependencies are,
in fact, true, a decomposition structure will be referred to as proper.

Given a decomposition structure D, let dPred() denote a function that takes
a node W in D as input and returns the direct predecessors of W.

Definition 11 (Proper Decomposition Structure). A decomposition struc-
ture of a contract (A ,G) into a set of contracts {({Aij}Mi

j=1,Gi)}Ni=1 is proper if:⋂̂
W ∈ dPred(G),

W ∈ {Gi}N
i=1

W ⊆̂G and
⋂̂

W∈dPred(Aij)
W ⊆̂Aij, for each i, j.

For example, since the relations Gbat ⊆̂Apot1, AEsys ⊆̂Apot2, Gpot ⊆̂AlMeter ,

and GlMeter ⊆̂GEsys holds in Fig. 6, the decomposition structure is proper ac-
cording to Definition 11.

However, even if a decomposition structure of a contract (A ,G) into a set
of contracts {(Ai,Gi)}Ni=1 is proper, it does not mean that (A ,G) dominates
{(Ai,Gi)}Ni=1. The reason for this is that a guarantee Gi can impose harder
constraints on a variable than G and this variable can also be constrained by
the environment of an element E = (X,B) in an architecture A . This means
that even if each element Ei meets the condition (i) of Corollary 1 with respect
to (Ai,Gi), it cannot be ensured that it holds that AA ∩̂G ⊆̂B where E is the
parent of each Ei in A .

Now that the need for another condition, in addition to the decomposition
being proper, has been introduced, sufficient conditions for dominance follow.

Theorem 5. Given a set of variables X, a contract C and a set of contracts

{Ci}Ni=1, the contract C dominates {Ci}Ni=1, if G ⊆̂ p̂rojXAA ∪X(
⋂̂N

i=1Gi) and there

exists a proper decomposition structure of C into {Ci}Ni=1.
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The proof of Theorem 5 is found in [34]. The relation G ⊆̂ p̂rojXAA ∪X(
⋂̂N

i=1Gi)

ensures that the guarantees Gi do not impose harder constraints than G on any
variable that can also be constrained by the environment of E in an architecture.

Considering the decomposition structure of CEsys into {Cpot, Cbat, ClMeter}
shown in Fig 6, since it holds that G = p̂rojXAA ∪X(

⋂̂N

i=1Gi) and it has been

previously shown that the decomposition structure is proper, Theorem 5 implies
that CEsys dominates {Cpot, Cbat, ClMeter}. Since the contract CEsys is scope-
compliant for EEsys in the architecture shown in Fig. 3 according to Definition 6,
and each child Ei of EEsys meets the condition (i) of Corollary 1 with respect
to Ci ∈ {Cpot, Cbat, ClMeter}, in accordance with Definition 9, it can be inferred
that EEsys meets the condition (i) of Corollary 1 with respect to CEsys.

Remark 1 (Circular Reasoning). Since a decomposition structure is an acyclic
graph, the use of circular argumentation [13, 20, 41] is avoided.

5 Conclusion

As discussed in Sec. 1, in order to be able to express that the responsibility of an
element is to achieve an overall intended property of a system, current contract
theories need to be generalized to environment-centric contracts. In order to
achieve this, a theoretical framework was first introduced in Sec. 2 where the
concepts element and architecture model a CPS and its parts.

Building on the theoretical framework, in Sec. 3, the constraint that a contract
must be specified over the interface of an element was relaxed and Corollary 1 ex-
plicitly declares what conditions an element and an environment need to meet,
respectively, in order to achieve a realizable architecture where the guarantee
holds. Furthermore in Sec. 3, the notion of a scope-compliant contract was in-
troduced that serves as a sanity check that a contract is not an unreasonable
specification for an element in an architecture.

Building on Corollary 1, revised definitions of consistency, compatibility, and
dominance were presented in Sec. 4. Complementing the definitions, Theorems 3
and 4 express necessary and sufficient conditions of consistency and compatibil-
ity, respectively, and Theorem 5 expresses sufficient conditions of dominance
based on a graph, called a decomposition structure.

By providing revised definitions of properties of contracts and complementary
theorems and definitions for practical application, the present paper fully gener-
alizes current contract theories to environment-centric contracts. As mentioned
in Sec. 1, such a generalization provides a much needed support for practical
engineering and a necessary capability to properly express safety requirements.
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SAFECOMP. LNCS, vol. 8153, pp. 166–177. Springer, Heidelberg (2013)

31. SPEEDS: SPEculative and Exploratory Design in Sys. Eng. (2006-2009)
32. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun.

ACM 13(6), 377–387 (1970)
33. ISO/IEC/IEEE 42010: System and software eng. - Architecture description (2011)
34. Westman, J., Nyberg, M.: Environment-Centric Contracts for the Design of Cyber

Physical Systems. Technical Report urn:nbn:se:kth:diva-143401, KTH (2014)
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Abstract. The emerging Model-driven Engineering approach puts mod-
els at the heart of the software development process. The Class Diagram
language is central within the UML. Automated support for class dia-
grams involves identification and repair of correctness and quality prob-
lems.

This paper presents methods and rules for improving class diagram
quality. The paper introduces formal semantics for class diagrams, which
distinguishes between existential to universal constraints, and defines
redundancy of existential constraints. It provides and analyzes algo-
rithms for removing redundancy of multiplicity and generalization-set
constraints in class diagrams with class hierarchy, qualifier, association
class, aggregation/composition, and inter-association constraints, and
presents inference rules for deducing element equivalence. All methods
are under implementation in the FiniteSatUSE tool.

1 Introduction

The central role of models in the emerging Model-driven Engineering approach
calls for deep formal study of models, so that tools can provide an inclusive
support to users. It is essential to have precise, consistent and correct models.
Models should provide reliable support for the designed systems, and be subject
to stringent quality verification and control criteria.

Class Diagrams are probably the most important and best understood model
among all UML models. The Class Diagrams language allows complex con-
straints on its components. But the interaction among these constraints can
create correctness and quality problems that users cannot observe without as-
sistance. For example, the class diagram in Figure 1a includes (redundant) mul-
tiplicity constraints that cannot be realized, i.e., are not used in any legal in-
stance (a system state). The minimum cardinalities of properties fm1, tr, ca
and the maximum cardinalities of properties cr, ev, htr2, are redundant. Fig-
ure 1b presents an equivalent class diagram without redundancy of multiplicity
constraints: All multiplicity constraints are either increased to meet the corre-
sponding maximum, or decreased to meet the corresponding minimum. In order
to develop tool support for class diagrams there is a need for a formal detailed
study of the constraints and their interactions.
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(a) A class diagram with redundancy of
multiplicity constraints

(b) A tight class diagram, equivalent to
Figure 1a

Fig. 1. A class diagram with its tightened equivalent version

Detection of redundant constraints and deduction of implied element equiv-
alence are of utmost importance for model based software. Yet, although cor-
rectness of class diagrams has been studied in quite a few works, there is very
little research on class-diagram constraints [1,2,3,4,5]. In [6] we started research
in this direction with a complete method for removing redundant boundary car-
dinalities in a simple subset of UML class diagrams.

In this paper we develop methods for removing wider constraint redundancy
and embark on equivalence deduction. We prove gap properties for multiplicity
constraints, provide a complete wide extension for the previous method, remove
redundancy in generalization-set constraints and suggest inference rules for ele-
ment equivalence. For this purpose we present, in Section 2, formal semantics for
class diagrams, with distinguishing between existential to universal constraints,
and define redundancy of existential constraints. Section 3 introduces methods
for removal of redundancy of multiplicity constraints; Section 4 handles redun-
dancy of generalization-set constraints, and Section 5 introduces and analyzes
basic inference rules. Section 6 shortly summarizes related work and concludes
the paper.

2 Abstract Syntax and Semantics of Class Diagrams

We provide a formal set-based semantics, following the OMG specification [7,8].
Due to scope limitations we omit reference to class attributes, n-ary associations
and to the constraints association-class hierarchy, non-unique associations, re-
definition, union and XOR. Operations are not discussed since without contracts
(OCL [9,10]) or other models, their effect on the semantics is not defined.

Abstract syntax:
A class diagram is a tuple 〈C,A,P ,M,Q,DT,Mappings, Constraints〉, where
C is a set of class symbols, A is a set of association symbols, P is a set of
property (association end) symbols, M is a set of multiplicity symbols, Q is a
set of qualifier symbols, and DT is a set of data type symbols.

The Mappings are:
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– Association mappings: prop1, prop2 : A → P are injections that satisfy
prop1(A) ∩ prop2(A) = ∅ and prop1(A) ∪ prop2(A) = P (where propi(A) =
{propi(a)|a ∈ A}).
Notation: For a ∈ A props(a) = 〈prop1(a), prop2(a)〉; for p ∈ P assoc(p)
denotes its unique association, and for props(a) = 〈p1, p2〉, assoc(p1, p2) = a.

– Property (association end) mappings:
1. inverse : P → P is a bijective mapping such that for p ∈ P , inverse(p) =

p′, where assoc(p) = a and props(a) = 〈p, p′〉 or props(a) = 〈p′, p〉.
That is, inverse(p) assigns to every property p its unique dual in its
association. Note that inverse is well defined since for each property p
assoc(p) is defined and maps p to a single association a, and props(a)
identifies exactly two properties, one of which is p.
Notation: inverse(p) is denoted p−1. It satisfies p = (p−1)−1, p �= p−1.

2. source : P → C and target : P → C are mappings of properties to classes
such that for a property p ∈ P , target(p) = source(p−1).
Notation: For a ∈ A, class1(a) = target(prop1(a)), class2(a) = target(
prop2(a)), and classes(a) = 〈class1(a), class2(a)〉.

3. domain size : DT → N ∪ {∞} is a size (cardinality) mapping for the
data type symbols. The default data type cardinality is ∞.

4. qualifier : P → Q× DT is a multi-valued mapping that assigns a (pos-
sibly empty) set of qualifier data type pairs to a property. The assigned
property is called a qualified property and its association is a qualified
association.
For a property p, with min(p) > 0, for every qualifier 〈q,Dt〉 ∈ qualifier
(p), domain size(Dt) �= ∞.
In Figure 1a, cr is fm1

−1, target(fm1) = source(cr) = Feasible-
Model, source(fm1) = target(cr) = Car, props(has) = 〈fm1, cr〉,
assoc(cr) = assoc(fm1) = assoc(fm1, cr) = has, and classes(has) =
〈Car, Feasible-Model〉. In Figure 2, qualifier(p2) = {〈q1, D1〉, 〈q2, D2〉},
and domain size(D1) = domain size(D2) = ∞.

Fig. 2. A qualified association

– Multiplicity mappingss: mul : P → M is an injection that assigns a
unique multiplicity to every property symbol. A multiplicity symbol is associ-
ated with a minimum and a maximum cardinalities: min cardinality : M →
N ∪{0} and max cardinality : M → N ∪{∗}, such that if max cardinality(
mul(p)) �= ∗, then min cardinality(mul(p)) ≤ max cardinality(mul(p)). A
compact notation for the minimum and maximum cardinalities of a property:
min(p) = min cardinality(mul(p)), max(p) = max cardinality(mul(p)).
The natural numbers in the interval [min(p),max(p)] (consider ∗ as ∞) are
termed cardinalities of p, and min(p),max(p) are the boundary cardinalities.
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For simplicity we use a compact symbolic notation that captures all symbols
related to an association. For example, the association has in Figure 1a is de-
noted has(cr : Car[1..∗], fm1 : Feasible-Model[0..1]). For qualified properties
the qualifiers and their domains and sizes are added. The compact notation of
the qualified association in Figure 2 is: r(p1 : A[m1..n1], p2 : B{q1 : D1(∞), q2 :
D2(∞)}[m2, n2]) (recall that ∞ is the default domain size). Note that the quali-
fier of a property p is visualized on the side of its source(p), i.e., on the opposite
side of the visualization of p.

The Constraints are:

– Association class: A predicate on C that singles out the association classes
within C. Association classes are marked CAC , and AC denotes the subset
of association classes in C.
An injection assocac : AC → A identifies every association class with a
unique association. Visually, an association class is denoted as a class that
is connected by a dashed line to its association line.
For simplicity, we overload the mapping notations such that assoc(CAC),
props(CAC), props1(C

AC), props2(C
AC), denote the association of an as-

sociation class CAC and its properties. The association class of an asso-
ciation a (if exists) is denoted ac(a) = assoc−1

ac (a). For example, in Fig-
ure 1a, assocac(Evaluation) = testedBy, props(Evaluation) = 〈fm2, tr〉
and ac(testedBy) = Evaluation.

– Aggregation and Composition: Predicates on P , such that composition
is a refinement of aggregation, i.e., for p ∈ P , composition(p) ⇒ aggregation
(p). Aggregate/composite properties are denoted pa and pc respectively. Vi-
sually, aggregate/composition properties are marked by diamonds, with an
empty diamond for aggregation and a solid diamond for composition.
Restriction: For a composition property pc, max(pc) = 1.

– Class hierarchy: A non-circular binary relationship ≺ on the set of class
symbols: ≺ ⊆ C × C. Henceforth C1 ≺ C2, stands for C1 is a subclass
of C2. The classes in a class hierarchy are either both association classes or
both non-association classes. ≺∗ is the transitive closure of ≺, and C1 (∗ C2

stands for C1 = C2 or C1 ≺∗ C2.

– Generalization-set (GS): An (n + 1)-ary n ≥ 2 relationship on C. Its
elements 〈C,C1, . . . , Cn〉, called GS constraints, must satisfy: For i, j = 1..n
(1) C �= Ci; (2) Ci �= Cj ; (3) Ci ≺ C. C is called the superclass and the Ci-s
are called the subclasses. GS constraints are associated with at least one of
the disjoint/overlapping and complete/incomplete constraints.
A GS constraint is denoted GS(C,C1, . . . , Cn;Const).

– Subsetting:A binary relation≺ 1 on the set of property symbols:≺ ⊆ P×
P . p1 ≺ p2, stands for “p1 subsets p2”, where p1 is the subsetting prop-
erty, and p2 is the subsetted property. The UML specification requires that
source(p1) ≺∗ source(p2), target(p1) ≺∗ target(p2) andmax(p1) ≤ max(p2).

1 We use the same symbol as in class hierarchy. Distinction is made by context.
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Similarly to class hierarchies, ≺∗ is the transitive closure of ≺, and p1 (∗ p2
stands for p1 = p2 or p1 ≺∗ p2.

Semantics:
The standard set theoretic semantics of class diagrams associates a class diagram
with instances (states, interpretations) I = 〈D, •〉, that consists of a semantic
domain D and an extension mapping •, that maps syntactic symbols to elements
over the semantic domain. Classes are mapped to sets of objects in the domain,
properties are mapped to multi-valued functions over these sets, and associations
are mapped to relationships between these sets. The sets denoted by classes
and associations are called extensions. For a symbol x, •(x), its denotation in
I, is shortened into xI . The specification of symbol denotation and constraint
semantics appears online in [11], and is not repeated here due to lack of space.

An instance I of a class diagram might or might not satisfy the constraints in
the class diagram. For a constraint γ, the notation I |= γ stands for “γ holds in
I”. A legal instance of a class diagram is an instance that satisfies all constraints;
it is empty if all class extensions are empty, and is infinite if some class exten-
sion is not finite. A class diagram CD′ is a logical consequence of a class diagram
CD, denoted CD |= CD′, if all legal instances of CD are legal instances of CD′.
They are equivalent, denoted CD ≡ CD′, if CD |= CD′ and CD′ |= CD′. A
class diagram is satisfiable if it has an instance in which all class and association
extensions are not empty, and is finitely satisfiable if all the class and association
extensions in this instance are also finite.
Existential constraints: UML class diagram constraints are universal in the
sense that they impose restrictions on all intended instances. Constraints that
specify inter-relationships that might hold in an intended instance are termed
existential constraints. These are the GS-constraints overlapping and incomplete,
and the multiplicity constraints, which in addition to the universal semantics
have also an existential one. The existential constraints can be interpreted de-
mandingly – requiring that the existential constraint is satisfied (realized) in
some legal instance, or permissively – impose no constraint. For the class dia-
gram existential constraints, the demanding approach means:
(1) Overlapping GS constraint: There exists an instance I such that for some
i, j, CI

i ∩ CI
j �= ∅;

(2) Incomplete GS constraint : There exists an instance I such that
n⋃

i=1

CI
i �= CI .

(3) Multiplicity constraints: For every cardinality n of a property p, i.e.,min(p) ≤
n ≤ max(p), there exists a legal instance I, and an object e ∈ source(p)I , such
that |pI(e)| = n. That is, n is realized by some object in some legal instance.

An existential constraint that does not hold under the demanding semantics
is redundant and can be removed, since it has no effect on the set of states of a
class diagram. Moreover, redundancy of an overlapping constraint implies a dis-
joint constraint, and redundancy of an incomplete constraint implies a complete
constraint. Redundancy of boundary cardinalities implies tightening of multi-
plicity intervals, and redundancy of non-boundary cardinalities implies splitting
of a multiplicity interval into several intervals.
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A class diagram is existentially satisfiable if it is satisfiable and satisfies the
demanding semantics, and is existentially finitely satisfiable if it is finitely satis-
fiable and satisfies the demanding semantics. In the following sections we inves-
tigate methods for removing redundancies in order to achieve existential finite
satisfiability.

3 Removing Redundant Multiplicity Constraints

A property that has a redundant cardinality can be tightened by removing the
redundant cardinality from its multiplicity interval (which might split the inter-
val). We say that a property is boundary tight if its boundary cardinalities are
not redundant, and is tight if all of its cardinalities are not redundant. A class
diagram is boundary tight if all of its properties are boundary tight, and is tight
if all of its properties are tight.

In [6] we presented a method for tightening boundary cardinalities of properties
in class diagrams with binary associations and class hierarchy constraints (the set
of such class diagrams is denoted CDmul,≺). The method, termed multiplicity-
tightening has three steps: (1) Construct an identification graph whose nodes
correspond to classes and directed edges are labeled by property pairs and have
weights that result from their multiplicities; (2) Identify cycles with weight 1 in
the graph (where the weight of a path is the product of its edge weights); (3) Based
on edge weights, tighten redundant multiplicities of properties in such cycles into
point intervals, i.e., increase redundant minimum boundary cardinalities to meet
their maximum ones, and decrease redundantmaximum boundary cardinalities to
meet their minimum ones.

The results in [6] show that this method handles all cases of redundancy of
boundary cardinalities in class diagrams in CDmul,≺. That is:

1. Baoundary tight properties: In a finitely satisfiable class diagram CD,
with identification graph graph(CD), a property p with min(p) �= max(p)
is boundary tight if and only if all cycles in graph(CD) through an edge
labeled 〈p, 〉 or 〈 , p〉 ( being a wild card) have weight greater than 1.

2. Completeness of multiplicity-tightening: For a class diagramCD,mul-
tiplicity-tightening is an equivalent boundary tight class diagram.

Cardinality gaps: The above results ensure that application of the multiplicity-
tightening method removes redundancy of boundary cardinalities. However,
it is possible that a boundary tight property p with min(p) �= max(p) has a
redundant cardinality, implying that its multiplicity interval has gaps, and should
be split2. The following theorem shows that for class diagrams in CD ∈ CDmul,≺,
boundary tightness implies tightness. Therefore, the multiplicity-tightening
method yields a tight class diagram.

2 Note that the abstract syntax introduced in Section 2 does not include multiplicity
constraints with gaps.
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Theorem 1 (No cardinality gaps in CDmul,≺). For a finitely satisfiable class
diagram in CDmul,≺, if a property is boundary tight then it is also tight.

Proof. In the appendix.

Corollary 1. For a class diagram CD ∈ CDmul,≺, multiplicity-tightening
(CD) is an equivalent tight class diagram.

3.1 Extension to Class Diagrams with Qualifier,
Aggregation/Composition, and Association Class Constraints

The results for tightening class diagrams in CDmul,≺ can be extended to class di-
agrams including also qualifier, aggregation/composition, and association class
(without association class hierarchy) constraints (denote the set of such class
diagrams CDmul,≺,Agg/Com,Qua,AC). The extension to CDmul,≺,Agg/Com,Qua,AC

is obtained by translating a class diagram in CDmul,≺,Agg/Com,Qua,AC into a
tagged class diagram in CDmul,≺, so that tightness is preserved (reduction of
the ”is tight?” problem). That is, we define a bijective translation Tr from
CDmul,≺,Agg/Com,Qua,AC to CDmul,≺, and show that it preserves tightness: For
every CD ∈ CDmul,≺,Agg/Com,Qua,AC , CD is tight iff T r(CD) is tight. The
overall multiplicity tightening method for CD ∈ CDmul,≺,Agg/Com,Qua,AC is:

multiplicity-tightening(CD) = Tr−1(multiplicity-tightening(Tr(CD))).

The Tr Translation
For a class diagram CD ∈ CDmul,≺,Agg/Com,Qua,AC , denote CD′ = Tr(CD).
CD′ is a class diagram in CDmul,≺, with additional tags that mark the original
roles of the changed elements. The marks are used by the inverse construction.
The Tr translation appears in the appendix. Figures 3b and 4b present the Tr
translation of the class diagrams in Figures 3a, and 4a receptively.

(a) CD (b) CD′

Fig. 3. The Tr translation of an association class constraint

Example (Multiplicity tightening in CDmul,≺,Agg/Com,Qua,AC): Figure 1a presents
a non-tight class diagram with an association class: The minimum cardinalities of
properties fm1, tr, ca and the maximum cardinalities of properties cr, ev, htr2,
are redundant. Figure 1b presents a tight class diagram, equivalent to the one



242 A. Maraee and M. Balaban

(a) CD (b) CD′

Fig. 4. The Tr translation of a qualifier constraint

in Figure 1a. It is obtained by applying the multiplicity-tightening method
described above: First, Figure 1a is translated, using Tr into a class diagram in
CDmul,≺ (Figure 5a), then this class diagram is tightened into an equivalent tight
class diagram, still in CDmul,≺ (Figure 5b), which is then translated back, using
Tr−1, into the tight equivalent class diagram in Figure 1a.

(a) A non-tight class diagram in CDmul,≺:
The Tr translation of Figure 1a

(b) A tight class diagram, equivalent to
the class diagram in Figure 5a

Fig. 5. Tightening steps for the class diagram in Figure 1a

Correctness of the Tr translation
The translation is proved correct in the appendix. The results are:

Corollary 2. For a class diagram CD ∈ CDmul,≺,Agg/Com,Qua,AC , CD is tight
iff Tr(CD) is tight.

This corrolary leads to an extension of corollary 1 for the class diagrams in
CDmul,≺,Agg/Com,Qua,AC :

Corollary 3. For a class diagram CD ∈ CDmul,≺,Agg/Com,Qua,AC ,
Tr−1(multiplicity-tightening(Tr(CD))) is an equivalent tight class diagram.

Cardinality gaps: The results showing that there are no cardinality gaps in
CDmul,≺ can be extended to cardinality gaps in CDmul,≺,Agg/Com,Qua,AC :

Theorem 2 (No cardinality gaps in CDmul,≺,Agg/Com,Qua,AC). For a finitely
satisfiable class diagram in CDmul,≺,Agg/Com,Qua,AC , if a property is boundary
tight then it is also tight.
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3.2 Extension to Class Diagrams with Inter-association Constraints

The semantics of inter-association constraints is not local – it involves multiple
associations and their end classes. The previous methods do not handle such
global interaction. Our approach is to strengthen the multiplicity-tightening
method with additional rules for removing redundant boundary cardinalities in
inter-related associations. Due to space limitations we present only a rule for the
subsetting constraint:
Subsetting-hierarchy: For every property p, setmax(p) := min{max(p′)|p (∗

p′}, where (∗ is the reflexive transitive closure of ≺.
Example: Figures 6a and 6b present a non-tight class diagram (a) and an equiv-
alent tight version (b), obtained by applying multiplicity-tightening, followed
by application of the Subsetting-hierarchy rule. Figure 6a is not tight since
applying multiplicity-tightening shows that property p is not boundary tight
(max(p) is set to 2), and p1 ( p implies that in every legal instance I, for each
object e ∈ AI

1, p
I
1(e) ⊆ pI(e), and hence |pI1(e)| ≤ 2. Therefore, property p1

should be tightened into max(p1) := 2.

(a) Redundancy due to interaction of
subsetting and multiplicity constraints

(b) An tight class diagram equivalent to
6a

Fig. 6. Removing redundancy that involves the subsetting constraint

4 Removing Redundant Overlapping and Incomplete
Constraints

The demanding semantics for the overlapping and complete constraints requires
that they are realized in some legal instances. Figures 7a and 7b show overlap-
ping and incomplete constraints that do not satisfy this requirement. In 7a, the
overlapping constraint is redundant since in every legal instance I, BI ∩CI = ∅
and DI ⊆ CI . Therefore, BI ∩ DI = ∅. In 7b, the incomplete constraint is
redundant since in every legal instance I, BI ⊆ AI , CI ⊆ AI , AI ⊆ DI and
DI = BI ∪CI , implying AI = BI ∪CI . Identification of these redundancies can
meaningfully improve class diagram quality since redundancy of an overlapping
constraint implies a disjoint constraint, and redundancy of an incomplete con-
straint implies a complete constraint. Due to space limitations, we focus only on
overlapping constraints.

4.1 Redundancy of Overlapping Due to Interaction with Disjoint
Constraints

A disjoint constraint, being universal, is stronger than the existential overlap-
ping constraint. Therefore, when applied to the same GS, i.e., GS(C,C1, . . . , Cn;
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(a) A class diagram
with a redundant
overlapping constraint

(b) A class diagram with a re-
dundant incomplete constraint

A

B C

D E

F

(c) The disjoint graph
of Figure 7a

Fig. 7. Redundant overlapping and incomplete GS constraints

disjoint, overlapping), disjoint overrides overlapping, turning it redundant. Such
cases can be immediately detected, and are syntactically forbidden. But what
about implied disjoint constraints, i.e., constraints that hold in every legal in-
stance of a class diagram, but are not explicitly specified in the class diagram.
Examples for such disjoint constraints are GS(F,B,D; disjoint) in the class dia-
gram of Figure 7a, and GS(A,B,C; disjoint) in the class diagram in Figure 8a.
The first holds in every legal instance of 7a as explained above. The second
holds in every legal instance I, of 8a since CI ∩DI ∩EI = ∅ and DI ∪EI = BI ,
imply BI ∩ CI = ∅. In both cases, the implied disjoint GS turns the specified
overlapping constraint redundant.

Algorithm 1 identifies implied GS constraints of the form GS(C,C1, . . . , Cn;
disjoint, overlapping), and removes such redundant overlapping constraints. It
constructs an undirected graph termed disjoint graph, which summarizes known
disjoint relations between classes. The nodes of the disjoint graph represent
classes and its edges connect nodes of disjoint classes. A possible construction
is described in [3], and the resulting disjoint graph for Figure 7a is shown in
Figure 7c. Whenever the algorithm infers a GS with the disjoint, overlapping
constraint, it drops the overlapping from the diagram. For Figure 7a, it removes
the overlapping constraint on GS(F,B,D). The algorithm does not add the
disjoint constraint since this action might involve other considerations, e.g., over
specification of constraints (see [3]).
Algorithm 1: Remove-Overlapping-by-disjoint
Input: A class diagram CD
Outpu: An equivalent class diagram CD′

Graph construction step: Initialize garphCD to be a disjoint graph of CD
Identification of redundant overlapping :
for every GS(C,C1, . . . , Cn;Const) ∈ CD where Const = overlapping or
overlapping, complete or overlapping, incomplete:
If there is a clique in garphCD connecting the nodes of C1, . . . , Cn,
remove the overlapping constraint from Const

End



Removing Redundancies and Deducing Equivalences in UML Class Diagrams 245

Correctness of Algorithm 1: The algorithm removes redundant overlapping
constraints. Therefore, it is sound since its output class diagram is equivalent to
the input class diagram.

The completeness of the algorithm depends on the completeness of the disjoint
graph in use. The construction of [3] is not complete, but can be strengthened
by applying a preceding propagation algorithm that extends the input class di-
agram with implied disjoint constraints. For example, in Figure 8a, although
GS(A,B,C; disjoint) is an implied constraint, since it is not explicitly specified
in the diagram, it does not appear in the disjoint graph, and therefore Algorithm
1 does not detect the redundant overlapping constraint. But, if the propagation
algorithm is first applied to the input class diagram, implied disjoint constraints
might be added, the disjoint graph might provide more disjointness information,
and the results of the algorithm might be stronger. For the class diagram in
Figure 8a, the propagation algorithm adds the GS(A,B,C; disjoint) constraint,
and the algorithm removes the redundant overlapping.

(a) (b)

Fig. 8. Class diagrams with redundant overlapping constraints

4.2 Redundancy of Overlapping Due to Interaction with Complete
Constraints

An overlapping constraint might be overridden by a joint complete constraint.
In Figure 8, the multiplicity constraints on associations r1, r2 imply that in
every legal instance I, |CI | = 2 × |CI

1 | and |CI | = 2 × |CI
1 |, and therefore

|CI | = |CI
1 |+|CI

2 |. The complete constraint implies |CI | ≤ |CI
1 |+|CI

2 |. Therefore,
the joint overlapping constraint cannot hold in any legal instance (it requires
|CI | < |CI

1 |+ |CI
2 |), implying that it is redundant.

The FiniteSat algorithm of [3] can be used for detecting redundant overlap-
ping constraints that appear jointly with complete constraints. FiniteSat is a
detection algorithm for finite satisfiability problems in class diagrams, and it is
based on the demanding semantics for existential GS constraints. This means
that if an overlapping constraint cannot hold in any legal instance, the algorithm
announces a finite satisfiability problem. The idea here is to use FiniteSat as a
detector for redundant overlapping constraints: If FiniteSat detects a finite sat-
isfiability problem, and the problem disappears when removing an overlapping
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constraint, it implies that the removed constraint is redundant. This approach
applies only to joint overlapping, complete constraints since checking Finite-
Sat on single overlapping constraints cannot detect redundant overlapping con-
straints. Applying this idea to the class diagram in Figure 8b indeed detects the
redundancy of the overlapping constraint and removes it.

5 Inference Rules for Deducing Element Equivalences

Model investigation requires deep semantic analysis. Inference rules for deduc-
ing implied inter-relationships between model elements are of great help. In this
section we present two inference rules for deducing class and association equiv-
alences. These rules are representatives of a larger set of inference rules that we
currently develop.

5.1 Deducing Class Equivalence

Class equivalence can arise from interactions of class hierarchy and multiplicity
constraints, and possibly from additional constraints. In Figure 9a, classes C
and C1 are equivalent (C ≡ C1) since they have the same extensions in all legal
instances. The argument is that in every legal instance I, the multiplicity con-
straints on associations assoc(p1, p2) and assoc(p3, p4) imply the size inequalities
3|CI | ≤ |EI | and |DI | ≤ 3|CI

1 | receptively, while the class hierarchy E ( D im-
plies the inequality |EI | ≤ |DI |. Therefore, 3|CI | ≤ 3|C1

I | and since C1 ( C
implies |CI

1 | ≤ |CI |, it follows that for in every finite legal instance I, |CI
1 | = |CI |.

Therefore, C ≡ C1.

(a) Class equivalence: C ≡ C1

∏n
i=1

n′
i

mi
= 1

(b) An illustration for the condi-
tion of rule Class equivalence

Fig. 9. Equivalence of classes and associations

Inference rule Class equivalence below generalizes and abstracts the last
case. For this purpose we define a property sequence as a sequence of properties
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p1, p2, . . . , pn, i = 1, n− 1, such that target(pi) = source(pi+1) for i = 1, n− 1.
A sequence of properties p1, p2, . . . , pn forms a property-hierarchy sequence if
target(pi) (∗ source(pi+1) for i = 1, n− 1. Properties p2, p4 in Figure 9a form
a property-hierarchy sequence.
Inference rule Class equivalence:3

if Cn (∗ C, C ( A, A (∗ B, and p1, p2, . . . , pn is a property-hierarchy sequence
such that source(p1) = B and target(pn) = Cn,

then if
∏n

i=1
max(p−1

i )

min(pi)
= 1, then A ≡ C.

Soundness proof for this inference rule is sketched in the appendix.

5.2 Deducing Association Equivalence

Association equivalence can arise when two associations whose properties are
constrained by inter-association constraints have the same size in every legal
instance. Figure 10a, presents subsetting constraints that imply an inclusion
relation between the association extensions in every legal instance, sI ⊆ rI ,
while the multiplicity constraints on r and s imply |sI | = |rI |. Therefore, sI = rI ,
implying r ≡ s.

(a) Association equivalence: r ≡ s (b) An illustration for the condi-
tion of rule Association equivalence

Fig. 10. association:equivalence

Inference rule Association equivalence generalizes this case: The associa-
tions form a property-hierarchy sequence whose multiplicity constraints satisfy
an equality that forces the association to have the same size in every legal in-
stance. Figure 10b illustrates the rule conditions.
Inference rule Association equivalence:
if assoc(p1), assoc(pk) are associations such that target(pk) (∗ source(p1),
sourcet(pk) (∗ target(p1), p

−1
k (∗ p1 and p1, . . . , pk, . . . , pn forms a property-

hierarchy sequence with target(pn) ( source(p1),

then if
∏n

i=1
max(pi)

min(p−1
i )

= 1, then assoc(p1) ≡ assoc(pk).

6 Related Work and Conclusions

Most works on class diagram correctness focus on consistency [13,14,15] and fi-
nite satisfiability problems [16,17,18,19,20,21,22,3,5]. There is a limited amount

3 This rule generalizes the rule of Rosati [12] for finite model reasoning in DL-Lite,
to arbitrary multiplicity constraints .
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of works investigating class-diagram constraints, including their impact on cor-
rectness and quality [1,23,24,2,3,5,4,6,25,26]. The catalog in [26,27,6] presents
simplification patterns for constraint interactions. Hartmann [28] presents a
graph-based method for tightening multiplicity constraints with gaps in Entity-
Relationship Diagrams with functional dependencies and without hierarchy con-
straints. Feinerer et al. [2] investigate multiplicity constraint redundancies in
class diagrams with multiplicity, uniqueness and equation constraints.

Conclusions and future work: The paper formally defined the notion of redun-
dancy using the distinction between existential to universal constraints, and in-
troduced methods for removing redundancy and inferring element equivalence.
All algorithms are now being implemented in our FiniteSatUSE tool [29].

The study of redundancy in presence of GS or inter-association constraints
still poses major problems, due to their global nature. Another challenge involves
the development of complete inference systems for fragments of the class diagram
language. This research direction might be inspired from inference systems for
Description Logic.

A Appendix

I. Proof of Theorem 1, Section 3:
Let p be a boundary tight property in a finitely satisfiable class diagram

CD, and assume that there exist a number k such that min(p) < k < max(p)
(otherwise p is already tight). Since p is boundary tight, there exist legal in-
stances I1, I2 (possibly the same instance) of CD in which the boundary cardi-
nalities of p are realized, respectively. We know that the set of legal instances
of a class diagram is closed under union, and therefore I = I1 ∪ I2 is also
a legal instance of CD. Consequently, I is a legal instance of CD in which
the boundary cardinalities of p are realized. Let o1, o2 be two objects such
that |pI(o1)| = min(p) and |pI(o2)| = max(p). Denote l = k − min(p). In or-
der to realize the cardinality k of p we “move” l links from o2 to o1. Select
{e1, . . . , el} ⊂ pI(o2). Let I ′ be a new instance of CD, which is the same as I,
except that pI

′
(o2) = pI(o2) \ {e1, . . . , el} and pI

′
(o1) = pI(o1) ∪ {e1, . . . , el}.

Therefore, in I ′ |pI′
(o1)| = k. I ′ is a legal instance of CD since: (1) |pI′

(o2)| =
max(p)− (k−min(p)) > max(p)− (max(p)−min(p)) = min(p); and (2) Redi-
recting links in a legal instance of CD leaves it legal, as long as size inter-relations
between association and class extensions are preserved [16,3].

II. The Tr Translation, Section 3.1

1. Initialization: CD′ := CD.

2. For every aggregation/composition property pa/c in CD, remove the aggre-
gation/composition constraint from p, but mark it as such (for example,
using tagging or a stereotype).
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3. For every association class C = CAC of an association c, with A = class1(C),
B = class2(C), remove the association class constraint and add two asso-
ciations acA(aPart : A[1..1], a : C[m2..n2]) and acB(bPart : B[1..1], b :
C[m1..n1]). Mark C as the association class of c, and the associations acA
and acB as the derived associations.

4. For every qualified association r(p1 : A[m1..n1], p2 : B{q : D(k)}[m2..n2])
4,

remove r, add a new class Q and two new associations rAQ(q1 : A[1..1], q2 :
Q[k..k]) and rQB(qp1 : Q[m1..n1], qp2 : B[m2..n2]). Mark Q as the qualifier
class and qp2 as the qualified property p2 with qualifier(p2) = 〈q,D〉 and
domain size(D) = k.

Correctness of the Tr translation:
Tr is correct if, for CD,CD1, CD2 ∈ CDmul,≺,Agg/Com,Qua,AC :

1. CD1 ≡ CD2 iff T r(CD1) ≡ Tr(CD2).
2. CD is tight iff T r(CD) is tight.

The first property is immediate since the translation has minor effects on in-
stances of the translated class diagrams (note that the output of Tr is a tagged
class diagram in CDmul,≺). For showing tightness preservation we define a cor-
respondence relation between properties of the input and output class diagrams,
and show that it preserves tightness. For a property p ∈ props(a), where a is
an association/association-class in CD, the corresponding property in Tr(CD)
denoted by p′ is defined as follows:

1. If a is an unqualified association or an association class: p′ = p.
2. If a is a qualified association as in Figure 4a: p′2 = qp2 and p′1 = qp1 .

Claim (Preservation of property tightness) A property p in CD is tight iff its
corresponding property p′ in Tr(CD) is tight.
Proof (Sketch): The proof is based on constructive bijective mappings between
legal instances of CD and CD′, that preserve the number of links that an object
has for a given property [22,3,30]. Therefore, if a property p has no redundant
cardinality, so is p′, and vice versa.

III. Soundness of the Class equivalence rule, Section 5.1: (Sketch) The
constrained structure in the rule condition is illustrated in Figure 9b. From [3],

it follows that in every finite legal instance I, |AI |
|CI | ≤ ∏n

i=1
max(p−1

i )

min(pi)
. Therefore,

|AI |
|CI | ≤ 1. C ( A implies |CI | ≤ |AI |. Consequently, |CI | = |AI |, which for finite

legal instance implies A ≡ C.
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Abstract. Models@run.time provides semantically rich reflection lay-
ers enabling intelligent systems to reason about themselves and their
surrounding context. Most reasoning processes require not only to ex-
plore the current state, but also the past history to take sustainable
decisions e.g. to avoid oscillating between states. Models@run.time and
model-driven engineering in general lack native mechanisms to efficiently
support the notion of history, and current approaches usually generate
redundant data when versioning models, which reasoners need to nav-
igate. Because of this limitation, models fail in providing suitable and
sustainable abstractions to deal with domains relying on history-aware
reasoning. This paper tackles this issue by considering history as a na-
tive concept for modeling foundations. Integrated, in conjunction with
lazy load/storage techniques, into the Kevoree Modeling Framework, we
demonstrate onto a smart grid case study, that this mechanisms enable
a sustainable reasoning about massive historized models.

Keywords: Models@run.time,Model-driven engineering,Model version-
ing, Historized models.

1 Introduction

The paradigm of Models@run.time [8], [26] empowers intelligent systems with
a model-based abstraction causally connected to their own current state. This
abstract self-representation can be used by reasoning processes at runtime. For
instance, this enables systems to (i) dynamically explore several adaptation op-
tions (models) in order to optimize their state, (ii) select the most appropriate
one, and (iii) run a set of verifications of viability on new configurations before
finally asking for an actual application. This capability enables the develop-
ment of safer and more intelligent software systems. However, reasoning on the
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current state of the system is sometimes not sufficient. Indeed, if the system
only reacts to the current state, it may become unstable, oscillating between
two configurations as conflicting events are continuously detected. To avoid this
state flapping, it is necessary to consider historical information to compare past
versions, detect correlations and take more sustainable and stable adaptation
decisions. This scenario and the associated challenges are also illustrated in an
industrial context. Creos Luxembourg S.A. is the main energy grid operator in
Luxembourg. Our partnership with them is geared at making their electricity
grid able to self adapt to evolving contexts (heavy wind or rain, consumption
increase) to better manage energy production and consumption. This requires
to make predictions on the basis of current and historical data. Here, a linear
regression of the average electric load values of the meters in a region, over a
certain period of time, has to be computed in order to predict the electric load
for this region. This obviously requires access to the model history.

Usually, dynamic modifications operated by intelligent systems at runtime
react to small changes in the state (parameter changes; unavailability of a com-
ponent). These adaptations often enact only few changes to make the system fit
better to its new context. Being a slight change in the execution context, or on
the system’s state, all these changes create successive versions. These changes
have to be tracked to keep the history and help reasoners in making decisions.

Unfortunately, Models@run.time in particular and model-driven engineering
in general lack native mechanisms to efficiently support the notion of model ver-
sioning. Instead, current modeling approaches consider model versioning mainly
as an infrastructural topic supporting model management in the sense of version
control systems commonly used for textual artefacts like source code [6], [22].
Moreover, current approaches focus more on versioning of meta-models, with a
lesser emphasis on runtime/execution model instances. In contrast to this, our
versioning approach regards the evolution of models from an application point of
view allowing to keep track and use this evolution of domain models (at runtime)
at an application level (like e.g. Bigtable [12] or temporal databases [25]).

The approach presented in this paper is a general concept to enable version-
ing of models (as runtime structures) and is not restricted to Models@run.time
paradigm, although our approach is very well suited for this paradigm. An ef-
ficient support would include (1) an appropriate storage mechanism to store
deltas between two model versions, and (2) methods to navigate in the modeling
space (as usual), but also to navigate in history (i.e. in versions). To overcome
this limitation, current implementations usually create their own ad-hoc histor-
ization solutions that usually come with at least two major drawbacks. First,
ad-hoc mechanisms make the maintenance complicated and sometimes less effi-
cient than native mechanisms. Secondly, the realization of the models storage is
often a simple list of complete models for each change (or periodically), creating
either a linear explosion of the memory needed for storage, or a strong limit
in the history depth. Moreover, the combination of these two drawbacks makes
the navigation in space and versions (models and history) a real nightmare for
developers in terms of algorithmic complexity, performance and maintenance.
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This paper tackles this issue by including versioning as a native concept di-
rectly managed within each model element. This inclusion comes with native
mechanisms to browse the versions of model elements to enable the navigation
in space (model) and history (versions). The paper is structured as follows. Sec-
tion 2 describes the fundamental ideas and mechanisms of our contribution.
Section 3 gives details on how we implemented this idea into the Kevoree Mod-
eling Framework. Based on this implementation, we evaluate our approach in
section 4 on a smart grid case study and compare it to classical approaches.
Finally, we discuss the related work in section 5 before section 6 concludes.

2 Native Versioning for Models at Runtime

This section describes the concepts and mechanisms, which are necessary to
enable (1) the versioning of model elements and (2) the navigation in space
(model) and history (versions).

2.1 A Path to Reach Elements in the Modeling Space

There are different ways to identify an element within a model: static identity-
based matching (unique identifiers), signature-based matching [30], similarity-
based matching, and custom language-specific matching [10], [23]. This is needed,
for example, to detect changes in a model, and to merge and compare models. To
allow model elements to evolve independently and enable an efficient versioning
of these elements, we rely in our approach on unique identifiers (UID). We use
the path of a model element as its unique identifier within a model. Directly
inspired by the select operator of relational databases and by XPath [14], the
path defines a query syntax aligned with the MOF [29] concepts. The naviga-
tion through a relationship can be achieved with the following expression: re-
lationName[IDAttributeValue]. The IDAttribute is one attribute tagged
as ID in the meta-model. This expression defines the PATH of an element in
a MOF relationship. Several expressions can be chained to recursively navigate
the nested model elements. Expressions are delimited by a /. It is thus possible
to build a unique path to a model element, by chaining all sub-path expres-
sions needed to navigate to it from the root model element, via the contain-
ment relationships. For instance, let us consider a model that has a collection
vehicles of Vehicle, identified by a plate number. Further, each vehicle has a
collection wheels of Wheels identified by their location (FL:Front Left, etc.). In
this case, the path to access the front left wheel of the vehicle “KG673JU” is:
vehicles[KG673JU]/wheels[FL]. Our definition of UID only relies on domain el-
ements (relationships and attributes) and thus does not require an additional
technical identifier. It is important to note that the IDAttribute alone does
not define uniqueness. Uniqueness is only defined in combination with the refer-
ence. Therefore, in the example two wheels named FL can exist but only in two
different vehicles.
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2.2 Reaching Elements in the Versioning Space

The mechanism of path allows to uniquely identify and efficiently access model
elements in the modeling space, but does not consider the notion of version.
Since elements in a model usually evolve at different paces, versions shouldn’t
be considered at the model level but on a model element level. For example,
the rim of the front left wheel of vehicle ”KG673JU” could have been changed
after an accident. Therefore, we could have two versions of the front left wheel,
one with the old rim and one with the new one. Using only the path vehi-
cles[KG673JU]/wheels[FL] to identify the wheel is not sufficient. To address
this new requirement, we introduce a version identifier (VI) in conjunction with
the path. This makes it possible to retrieve a model element in a specific version
and enables the base navigation in history (space of versions). A timestamp,
a number, or a string are examples for valid VIs. A model element version is
therefore uniquely identified by its path together with a version identifier. This
is shown in figure 1. This concept allows to create an arbitrary number of ver-

unique version 
identifier

version 
identifier

path

Fig. 1. Model element version identifier

sions during the lifetime of an element. Figure 2 shows an exemplary lifecycle of
a model element e. The first version (with version identifier v1) of model element
e is created at time t1 and added to the model. Then e evolves over time and
two additional versions (with version identifiers v2 respectively v3) are created
at t2 respectively t3. Finally, at t4 e is removed from the model and its lifecycle
ends. The extension of the concept of path with a version identifier enables basic

e(v1)

t1 t2

time

e(v2)

t3

e(v3)

t0

start of lifetime end of lifetime

t4

Fig. 2. Lifecycle of a model element

navigation in modeling space and versions, without any impact on the business
modeling API. To support this non intrusiveness, and allow for more complex
navigation in space and versions, we use the notion of navigation context.

2.3 Enhancing Navigation Capabilities with Navigation Context

To ease the navigation in versions, we enrich the modeling API with three basic
operations to navigate in versions. These can be called on each model element:
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The shift operation switches the modeling space to another version. The previous
operation is a shortcut to retrieve the direct predecessor (in terms of version) of
the current model element. The next method is similar to the previous operation,
but retrieves the direct successor of the current model element.

These operations allow to independently select model element versions. Even
if this mechanism is powerful, the navigation in such models can rapidly become
very complicated. Indeed, a relationship r from an element e1 to an element e2
is no longer uniquely defined because of the versioning. Thus, the navigation
between model elements can no more rely on relations (in space) only. Figure 3
shows two model elements, e1 with only one version and e2 with three versions.
The version of e2, which has to be returned when navigating the relationship r

r

version v1

model element e1 model element e2

path

version v1

path

version v2

version v3
navigation 

context

Fig. 3. Different versions of a model element and their relations

is ambiguous. Since each model element can have several versions, a selection
policy has to be defined to navigate from one model element to a related. This
navigation is thus along two dimensions (space and version). To cope with this
problem, we define a navigation context.

This navigation context can be either set globally for all model elements, e.g.
to always return the latest or first version, or can be set individually for each
model element. The navigation context for a model element can also be set to a
specific version. For example, for the scenario of figure 3 the navigation context
for model element e2 could be set to version v2. When the model is traversed
from e1 to e2 using relationship r, version v2 of e2 will be returned.

This resolution is transparent and hidden behind methods to navigate in the
model. Unlike in previous approaches (e.g. relationships in MOF [29]), the nav-
igation function is no longer constant but yields different results depending on
the navigation context.

2.4 Leveraging Traces to Store Versions

The storage of model element versions relies on the possibility to get a serialized
representation of all attributes and relationships of a model element. For this
purpose we use so called traces. A trace defines the sequence of atomic actions
necessary to construct a model element (or a complete model). Each model
element can be transformed into a trace and vice versa [9]. A trace includes all
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attribute and relationship information of the model element. Listing 1.1 shows
a trace for one model element.

Listing 1.1. Trace of a model element
{
"type":"SET","src":"meters[m3]","refname ":"consumption","content ":"100kWh"
"type":"ADD","src":"meters[m3]","refname ":"reachable","content ":"hubs[hub2]"
}

The listing shows a trace of a model element with an attribute consumption and
a relationship reachable. The value hubs[hub2] of relation reachable shows how
we leverage the path concept in our traces to uniquely identify a model element
within a model. We use the JSON [15] format for a lightweight representation
and storage of traces.

The version identifier in conjunction with the path (extended path) can be
used as key and the trace as value. This is shown in figure 4. The data can then

extended path
 = 

key

version 
identifier

path trace value

Fig. 4. Storage concept for versioned model elements

be stored using arbitrary back ends e.g. key/value stores, relational databases,
in RAM (as cache), or even in common version control systems like Git [2].

This section described the foundation of our contribution. To assess its suit-
ability in real cases, we implemented this idea into the KMF project [17].

3 Implementation in KMF

This section presents the implementation of the proposed approach into the
Kevoree Modeling Framework. The source is available on the project web page1.

3.1 The Kevoree Modeling Framework

KMF [17], [18] is an alternative to EMF [11], specifically designed to support the
Models@run.time paradigm in terms of memory usage and runtime performance.
The code generator of KMF generates a modeling API from an Ecore meta-
model and offers several features, e.g. (1) event-based listeners, (2) management
of persistence, (3) different serialization formats (XMI [28] and JSON [15]), and
more recently, (4) the option to compile for Java [19] and JavaScript [16].

3.2 Unique IDs and Model Elements Paths in KMF

As described in section 2, our contribution assumes the availability of an at-
tribute, which is able to uniquely identify model elements within relationships.
To enforce this, KMF generates a method getID(). If one or several attributes are

1 http://kevoree.org/kmf

http://kevoree.org/kmf
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tagged as IDs in the meta-model, the getID() method returns a concatenation of
the ID attributes’ values, ordered alphabetically on the attributes’ names. If no
ID attribute is specified, KMF adds one and the generated API automatically
injects a UID value at creation, though developers are strongly encouraged to
provide a more readable, domain-specific value.

In addition, we also assume the uniqueness of the container for any model
element. This property is actually ensured by EMF, and KMF also complies to
this convention: apart from the root element that is not contained, every model
element has to be present once in a containment collection within the entire
model [29]. Then, the unique identifier ensures the uniqueness of model elements
in the containment collection. By chaining these pieces of information from the
root, KMF can create a path that uniquely identifies each model element in the
scope of the model. This defines the semantics to navigate in the model along
the space dimension.

As presented in the contribution section, the activation of the versioning of
model elements implies an extension of this path mechanism to enable the lo-
calization of a model element in both version and modeling dimensions. If the
conjunction of the version identifier (VI) to the path is a simple idea, its interpre-
tation to resolve a real model element is more intricate. Moreover, it is important
to not pollute the modeling space navigation with versioning concerns. There-
fore, we introduce a navigation context that is used to precisely drive both the
navigation in versions and support the resolution mechanisms of modeling ele-
ments (used by the path resolver). This navigation context is implemented by a
special object given to the factory of the generated API. This object seamlessly
determines which version should be resolved while the model is traversed.

3.3 Traces and Load/Save Mechanisms

Loading and saving model versions can be efficiently managed by big data-like
tools, such as key-value stores. The extended path (path and version ID) of a
model element is used as key, and the serialized trace of this elements as value.
We provide an expandable datastore interface and several implementations of
NoSQL storages. Google LevelDB [5] is used by default. It is optimized for an
efficient handling of big data, can be easily embedded into applications, and
most importantly, it has proved to be very fast for our purpose (see section
4). The data storage implementation itself is not part of our contribution, in-
stead we intend to provide an efficient layer for versioning of model elements
on top of already existing storage technologies. As history data can quickly be-
come very big (millions of elements), they may no longer fit completely into
memory. We thus implement a lazy loading [1] mechanism, which leverages our
serialization strategy and our notion of path. Attributes and relationships are
now only loaded when they are accessed (read or written). Until this happens,
we use proxies [1] containing only the path and version identifier, to minimize
memory usage. This has been achieved by extending KMF so that relationships
are dynamically resolved when the model is traversed. It is important to note
that our proxy mechanism works at the model element level rather than at the
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model level. It first must be determined which version of a related model element
must be retrieved. This depends on the navigation context. After this, the actual
model element version can be loaded from storage. Load (get) and save (put)
operations are very efficient using extended paths as keys to uniquely identify
model element versions. Lazy loading a model element in a specific version re-
quires just one get operation from the datastore. This allows to manage models,
including histories of arbitrary size, efficiently and it hides the complexity of
resolving and navigating versioned data behind a modeling API.

3.4 Navigation Mechanisms

Modeling approaches use meta-model definitions to derive domain specific APIs.
Following this idea, our implementation generates an extended API that in ad-
dition provides operations to manipulate and navigate the history of model el-
ements. It is illustrated here on a simplified smart grid meta-model definition
that consists of a smart meter with an attribute for electric load and a rela-
tionship to the reachable surrounding meters. The API provides functions to
create, delete, store, load, and navigate model element versions. In addition the
API can be used to specify the navigation context on which elements should be
resolved while navigating the model. Listing 1.2 shows Java code that uses a
Context ctx (abstraction to manipulate model element versions) demonstrating
some of these operations. In the first part of the listing below, the modeling API
is used to create and manipulate a version v1 of a smart meter element e1. In
the second, the navigation context is defined so that element e1 is resolved to
version v1 and e2 to v2.

Listing 1.2. Usage of the modeling API
// creating and manipulating model element versions
e1_1 = ctx.createSmartMeter("e1","v1");
e1_1.setElectricLoad(712.99);
e1_1.addReachables(ctx.load("e2"));
e1_2 = m1.shift("v2");
e1_2.setElectricLoad(1024.4);

// definition of the navigation context
ctx.navDef ("e1","v1);
ctx.navDef ("e2","v2");
r_e1 = ctx.load("e1");
assert(r_e1.getElectricLoad()==712.99);
r_e2 = r_e1.getReachables().get(0);
assert(r_e2.getVersion()=="v2")

4 Evaluation

The native support of versioning at the level of model elements enables the
construction of domain specific models, aware of history that, for instance, can
empower reasoning processes. To evaluate this claim, this section analyses the
impact of using our approach on an industrial case study, which is provided by
Creos Luxembourg. In a nutshell, with this case study we evaluate the perfor-
mance of a model-based reasoning engine that aggregates and navigates smart
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grid state information to take corrective actions, like shutting down a windmill
in case of overproduction. This reasoning is based on a domain model, which is
periodically filled with live data from smart meters and sensors. In this context,
our approach is used to store and track the history of the smart grid sate and
smart-grid elements’ values. A new version of a model element is created each
time this model element is updated.

The validation is based on three key performance indicators (KPI): (1) evo-
lution of time and memory required to update a value in the model, (2) gain
on time for standard navigation operations in the model (e.g. for a reasoning
process), and (3) impact on the size required for the persistence of history-aware
models. For each KPI, we compare our approach with the classic model sam-
pling strategy taking a snapshot of the entire model for each modification (or
periodically). The measured memory value for KPI-1 is main memory (RAM),
for KPI-2 disk space. The time measured is the time required to complete the
process (depending on the KPI). All experiments are conducted on an Intel core
i7 CPU with 16GB RAM and an SSD disk. The full sampling approach and our
approach both use a Google LevelDB database for storage and run on the Java
Virtual Machine 8. We start our evaluation with a description of the meta-model
used in the case study.

4.1 Smart Grid Meta-Model

The smart grid is an emerging infrastructure leveraging modern information and
communication technology (ICT) to modernize today’s electricity grid. Figure 5
shows an excerpt of the smart gird meta-model that we designed together with
our industrial partner Creos Luxembourg. It describes the concepts required
to model and store an abstraction of the smart grid infrastructure currently
deployed in Luxembourg. We use this meta-model to evaluate all KPIs. This
meta-model is of central importance for the following evaluation. Smart meters,
concentrators, and their topology allow to reason about communication systems
and messages exchanged, while electric segments and measured consumption
data are used to reason about consumption/production. Smart meters installed
at customers sites continuously measure consumption information and propagate
it through network communication links. Concentrators then push these data
into the smart grid domain model.

4.2 KPI-1: Impact on Model Updates (CRUD)

To evaluate the impact of our approach on model update operations, we analyse
modifications of two magnitudes: (1) a large update (LU) that consists in the
creation of a new concentrator and a smart meter subtree (1000 units) and (2) a
minor update (MU) that consists in updating the consumption value measured
for a specific smart meter already present in the domain model. The size of
each update is constant and we vary the size of the domain model and the
history (number of versions) of measured values, by repeating the addition of
model elements. We grow the domain model from 0 to 100.000 elements, which
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Concentrator

maxAllowedPower : ELong
electricityActive : EBoolean
highPowerCurrentActive : EBoolean
distance2concentrator : EInt
hops2concentrator : EInt
duration2Read : EDouble

isRepeater() : EBoolean

SmartMeter

maxAllowedPower : ELong
electricityActive : EBoolean
highPowerCurrentActive : EBoolean
distance2concentrator : EInt
hops2concentrator : EInt
duration2Read : EDouble

isRepeater() : EBoolean

PLC

WirelessCommunicationMedia

GasMeter WaterMeter

serialNumber : EString
communicationActive : EBoolean

Entity
serialNumber : EString
communicationActive : EBoolean

SmartGridModel

Customer

Meter

id : EString
payloadPerSecond : ELong

CommunicationMedia
id : EString
payloadPerSecond : ELong

latitude : EString
longitude : EString
address : EString

GpsPoint

latitude : EString
longitude : EString
address : EString

material : EString
size : EString
remark : EString

WiredCommunicationMedia
material : EString
size : EString
remark : EString

measuringTime : ELong
reportingTime : ELong
consumption : ELong
production : ELong
voltage : ELong
current : ELong

MeasuredData

measuringTime : ELong
reportingTime : ELong
consumption : ELong
production : ELong
voltage : ELong
current : ELong

electricalLoad : EDouble

ElectricitySegment

electricalLoad : EDouble
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Fig. 5. Smart grid meta-model [4]

approximately corresponds to the actual size of our Luxembourg smart grid
model. The results of KPI-1, in term of heap memory and time, are depicted
in figure 6 and figure 7. The full sampling strategy is presented on the left, our
approach on the right.
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Fig. 6. Memory impact of model manipulation with full and lazy sampling strategies

Let us first consider memory. The full sampling strategy depends on the
size of the model, as reflected by the linear progression of the heap memory size
required to insert fixed size updates. In contrary, our approach results in two
flat curves for LU and MU updates, showing that the memory required depends
only on the size of the update, not on the model size. This is verified by the
fact that minor modifications (MU) require less memory than LU and both are
constant and under 2.5MB while the full sampling requires up to 100MB.
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Fig. 7. Time and memory impact of model manipulation with full sampling strategy

Let us now consider time. Again, the time to insert new elements with full
sampling is related to the size of the model, but nearly constant with our solution.
Also, the time reduction is more important for MU than LU, confirming that our
approach reduces the necessary time to modify elements. KPI-1 demonstrates
that even in the worst case scenario, where all elements evolve at the same pace,
our approach offers a major improvement for CRUD operations (factor of 33 for
time and between 50 to 100 for memory).

Finally, let us consider batch insertions. To validate this result, we addition-
ally performed a batch insert operation in full sampling and with our solution.
This batch consists of 10.000 historical values for each meter, resulting in a model
of 1 million elements. We obtain as result 267s to insert with the full sampling
strategy and 16s for our approach. Even in this worst case, we still have an
improvement of a factor 17 for the insertion time.

4.3 KPI-2: Impact on Time Required for Exploration in Versions
and Reasoning Process

For this evaluation, we consider an already existing smart grid model containing
measurement values. The goal is to measure the gain (or loss) of time needed
to execute a complex computation on this history. We run several prediction
algorithms on the model, which correlate historical data to evaluate the current
state of the grid and, for example, throw an alert in case of an overconsumption.

We define two kind of predictions for the smart grid, at two different scales,
resulting in 4 different reasoning strategies: (1) small deep prediction (SDP),
(2) small wide prediction (SWP), (3) large deep prediction (LDP), and (4)
large wide prediction (LWP). Wide prediction means that the strategy uses
a correlation of data from neighbour meters, to predict the future consump-
tion. In a deep prediction, the strategy leverages the history of the customer
to predict its consumption habits. Both approaches perform a linear regres-
sion to predict the future consumption using two scales: large (100 meters)
and small (10). Results and time reduction factors are presented in the ta-
ble 1. The gain factor of our approach, compared to full sampling, is defined
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Table 1. Reasoning time in ms for consumption predictions

Type SDP SWP LDP LWP

Full 1147.75 ms 1131.13 ms 192271.19 ms 188985.69 ms

Lazy 2.06 ms 0.85 ms 189.03 ms 160.03 ms

Factor 557 1330 1017 1180

as Factor = (Full Sampling time / Native V ersioning time). The gain factor
is between 557 and 1330, reducing the processing time from minutes to seconds.
Although, we perform the computation for only one point of the grid, it has to
be multiplied by the number of smart meters to evaluate in a district. Now, the
gain highlighted here has already allowed to drop the time required to analyse
the entire grid, from hours of computation to seconds. Beyond Models@run.time
usage, this enables reasoning processes to react in near real-time (milliseconds
to seconds), which is required for smart grid protection reactions.

4.4 KPI-3: Versioning Storage Strategy Overhead Evaluation

In this section, we study and evaluate the overhead induced by our approach,
compared to the classic full model sampling strategy. Our goal is to detect the
percentage of modifications of a model, in a single version, above which the full
sampling approach creates less overhead. In other words, which percentage of
modifications makes the overhead of our solution a disadvantage in terms of
storage, despite its navigation gains are still valid.

For this evaluation, we load an existing model (containing 100 smart meters),
update the consumption value of several meters, serialize it again and store the
size. By varying the percentage of meters updated per version (period), we can
compare the size of the storage required for the diff with our approach, and the
full sampling. To ensure a fair comparison we use a compact JSON serialisation
format for both strategies. Results are depicted in Figure 8. The full sampling
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Fig. 8. Impact on the storage required to save versions

mechanism implies 39.1Kb of storage per model, regardless of the percentage of
modifications. This is a serious overhead for small modifications. Our strategy
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requires a variable amount of memory, from 393 bytes for 1% of change to 39.8Kb
for 100% (complete change of the model). Also, linear augmentation of changes
in the model with our approach creates a linear augmentation of the storage.
This confirms that our independent storage strategy for each model element has
no hidden side effect.

Our storage offers a reduction of 99.5% for 1% of change, but an increase
of only 1.02% for 100% of modifications. This means that, up to 98.5% of
modifications of a model, our approach needs less memory than full sampling.
Also, the overhead of 1.02% for full model change storage has to be related to the
features enabled by this overhead (navigation, insertion time gains, comparison
time gains). In this context, we consider the overhead acceptable.

Beside runtime usage improvements, this validation proves that we can offer
nearly constant memory and time consumption for model-based contexts, which
allows to face potentially massive history. These improvements are mainly due
to lazy-load and efficient path mechanisms, which by construction reduce the
floating memory window to read and write model elements. Similarly to how
NoSQL databases scale, we carefully reuse the modeling hierarchy concept to
fit with the datastore organization that offers the best performance, which ex-
plains this very considerable gain. Finally, this validation demonstrates that our
approach is suitable for the manipulation of massive historical model.

5 Related Work

Considering versioning (or time) as a crosscutting concern of data modeling has
been discussed for a long time, especially in database communities. In [13] Clif-
ford et al. provide a formal semantic for historical databases and an intentional
logic. Rose and Segev [31] incorporate temporal structures in the data model
itself, rather than at the application level, by extending the entity-relationship
data model into a temporal, object-oriented one. In addition they introduce a
temporal query language for the model. Ariav [7] also introduces a temporally-
oriented data model (as a restricted superset of the relational model) and pro-
vides a SQL-like query language for storing and retrieving temporal data. The
works of Mahmood et al. [25] and Segev and Shoshani [33] go into a similar
direction. The later also investigate the semantics of temporal data and corre-
sponding operators independently from a specific data model in [32]. In a newer
work [12], Google embeds versioning at the core of their BigTable implementa-
tion by allowing each cell in a BigTable to contain multiple versions of the same
data (at different timestamps).

The necessity to store and reason about versioned data has also been discussed
in the area of the Semantic Web and its languages, like RDF [24] and OWL [35].
For example, Motik [27] presents a logic-based approach for representing versions
in RDF and OWL.

Recently, the need to efficiently version models has been explored in the do-
main of model-driven engineering. However, model versioning has been mainly
considered so far as an infrastructural issue in the sense that models are artifacts
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that can evolve and must be managed in a similar manner to textual artifacts
like source code. Kerstin Altmanninger et al. [6] analyze the challenges coming
along with model merging and derive a categorization of typical changes and
resulting conflicts. Building on this, they provide a set of test cases which they
apply on state-of-the-art versioning systems. Koegel and Helming [22] take a
similar direction with their EMFStore model repository. Their work focuses on
how to commit and update changes and how to perform a merge on a model.
Brosch et al. [10] also consider model versioning as a way to enable efficient team-
based development of models. They provide an introduction to the foundations
of model versioning, the underlying technologies for processing models and their
evolution, as well as the state of the art. Taentzer et al. [34] present an approach
that, in contrast to text-based versioning systems, takes model structures and
their changes over time into account. In their approach, they consider models
as graphs and focus on two different kinds of conflict detection, operation-based
conflicts between different graph modifications and the check for state-based
conflicts’ on merged graph modifications. These works consider versioning at a
model level rather than at a model element level. Moreover, these approaches
focus on versioning of meta-models whereas our work focuses on versioning of
runtime/execution models. Our approach enables not only to version a complete
model, but considers versioning and history as native mechanisms for any model
element. Moreover, versioning in the modeling domain is usually considered from
a design / architecture / infrastructural point of view, and models are versioned
as source code files would be. In contrast to this, our versioning approach re-
gards the evolution of model elements from an application point of view (e.g.
Bigtable [12] or temporal databases [25]). It allows to keep track of the evolution
of domain model elements —their history— and use this history efficiently on
an application level.

Most of the above mentioned work address storing and querying of versioned
data but largely ignores the handling of versioning at an application level. How-
ever, many reasoning processes require to explore simultaneously the current
state and past history to detect situations like a system state flapping. Our ap-
proach proposes to consider model versioning and history as native mechanisms
for modeling foundations. We not only efficiently store historical data (what is
done in other works before), but we propose a way to seamlessly use and navi-
gate in historized models. Also, we do not extend a specific data model (e.g. the
relational data model or object-oriented one) but use model-driven engineering
techniques to integrate versioning as a crosscutting property of any model ele-
ment. We aim at providing a natural and seamless navigation into the history of
model element versions. Just like version control systems, e.g. Git [2], we only
store incremental changes rather than snapshots of a complete model.

6 Conclusion

The use of models to organize and store dynamic data suffers from the lack of
native mechanism to handle the history of data in modeling foundations. Mean-
while, the recent evolutions of model-driven engineering, and more precisely,
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the emergence of the Models@run.time paradigm spreads the use of models to
support reasoning at runtime. Therefore, the need for efficient mechanisms to
store and navigate the history of model element values (a.k.a. dynamic data)
has strongly increased. The contribution presented in this paper aims at ad-
dressing this need, adding a version identifier as a first-class feature crosscutting
any model element. This approach, coupled with the notion of trace and lazy
load/save techniques, allows model elements to be versioned independently from
each other without the need to version a complete model. Moreover, this paper
describes the navigation methods introduced on each model element to enable
the basic navigation in versions. Finally, we defined a navigation context to
simplify and improve the performances of navigation between model elements
coming from heterogeneous (different) versions.

We evaluate the added value of this work on a case study from the smart grid
domain, defined with an industrial partner. The validation relies on an imple-
mentation of the approach into the Kevoree Modeling Framework. This evalu-
ation shows the efficiency of the storage and navigation mechanisms compared
to full sampling and ad-hoc navigation techniques. It also demonstrates that in
the worst case (i.e. when all model elements are modified at the same pace) the
storage overhead is negligible (1.02%), while our navigation mechanism still offer
constant performances. Even if the evaluation has been run in use cases linked
to the Models@run.time paradigm, we are convinced that this approach can also
be used in any kind of applications using versioned data. For example, we use
a derivation of this approach to enable what we call time-distorted context rep-
resentations to manage a huge amount of temporal data in runtime reasoning
processes [21]. This has been proven especially useful in the context of reactive
security for smart grids [20].

In future work we plan to: (i) integrate a declarative query language on top
of our approach to improve the selection of model element versions, instead
of relying only on the three basic operations shift, previous, and next, (ii) use
distributed data stores like HyperDex DB [3], and (iii) define reusable patterns
of version navigation to tame the complexity of reasoning process development.

Acknowledgments. The research leading to this publication is supported by
the National Research Fund Luxembourg (grant 6816126) and Creos Luxem-
bourg S.A. under the SnT-Creos partnership program.

References

1. CDO eclipsedia, http://wiki.eclipse.org/CDO (accessed: February 01, 2014)
2. Git, http://git-scm.com/
3. HyperLevelDB Performance Benchmarks, http://hyperdex.org/performance/

leveldb/ (accessed: February 01, 2014)
4. KMF Samples, MoDELS14, https://github.com/kevoree/kmf-samples/

models14 (accessed: March 15, 2014)
5. leveldb a fast and lightweight key/value database library by google,

https://code.google.com/p/leveldb/ (accessed: February 10, 2014)

http://wiki.eclipse.org/CDO
http://git-scm.com/
http://hyperdex.org/performance/leveldb/
http://hyperdex.org/performance/leveldb/
https://github.com/kevoree/kmf-samples/models14
https://github.com/kevoree/kmf-samples/models14
https://code.google.com/p/leveldb/


A Native Versioning Concept to Support Historized Models at Runtime 267

6. Altmanninger, K., Kaufmann, P., Kappel, G., Langer, P., Seidl, M., Wieland, K.,
Wimmer, M.: Why model versioning research is needed!? An experience report. In:
Proceedings of the Joint MoDSE-MC-CM 2009 Workshop (2009)

7. Ariav, G.: A temporally oriented data model. ACM Trans. Database Syst. 11(4),
499–527 (1986)

8. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009)

9. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering, ICSE 2008, pp. 511–520. ACM, New
York (2008)

10. Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer, M.: An in-
troduction to model versioning. In: Bernardo, M., Cortellessa, V., Pierantonio, A.
(eds.) SFM 2012. LNCS, vol. 7320, pp. 336–398. Springer, Heidelberg (2012)

11. Budinsky, F., Steinberg, D., Ellersick, R.: Eclipse Modeling Framework: A Devel-
oper’s Guide (2003)

12. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for
structured data. In: Proceedings of the 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, OSDI 2006, vol. 7, p. 15. USENIX Association,
Berkeley (2006)

13. Clifford, J., Warren, D.S.: Formal semantics for time in databases. In: XP2 Work-
shop on Relational Database Theory (1981)

14. World Wide Web Consortium. Xml path language (xpath) 2.0. Technical report,
World Wide Web Consortium, 2nd edn. (2010)

15. Douglas Crockford. The application/json media type for javascript object notation
(json). RFC 4627, IETF, 7 (2006)

16. ECMA International. Standard ECMA-262 - ECMAScript Language Specification,
5.1th edn. (June 2011)

17. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel,
J.-M.: An eclipse modelling framework alternative to meet the models@runtime re-
quirements. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS
2012. LNCS, vol. 7590, pp. 87–101. Springer, Heidelberg (2012)

18. Francois, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel,
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Abstract. In order to develop appropriate adaptation policies for self-
adaptive systems, developers usually have to accomplish two main tasks:
(i) identify the application-level constraints that regulate the desired sys-
tem states for the various contexts, and (ii) figure out how to transform
the system to satisfy these constraints. The second task is challenging
because typically there is complex interaction among constraints, and a
significant gap between application domain expertice and state transi-
tion expertice. In this paper, we present a model-driven approach that
relieves developers from this second task, allowing them to directly write
domain-specific constraints as adaptation policies. We provide a language
to model both the domain concepts and the application-level constraints.
Our runtime engine transforms the model into a Satisfiability Modulo
Theory problem, optimises it by pre-processing on the current system
state at runtime, and computes required modifications according to the
specified constraints using constraints solving. We evaluate the approach
addressing a virtual machine placement problem in cloud computing.

1 Introduction

As software systems and their interactions with the executing environments are
becoming more and more complex, many systems are required to adjust them-
selves at runtime to harmonize with their dynamic environments. Such self-
adaptations can be seen as guided transitions between system states (such as
the system’s structure, configuration, environments, etc.). A key challenge to
build such self-adaptive systems [1] is to develop the adaptation policies that
guide such transitions [2,3]. To develop appropriate policies, developers usually
need to cope with the following two concerns: (i) to identify the constraints on
the system states for the various contexts, which determine when the system
needs to be adapted, and what are the desired states after adaptation. (ii) to
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figure out the appropriate transitions between system states that satisfy these
constraints. Developers specify these transitions in a policy language (e.g., in
event, condition, action (ECA) rules). Figuring out the transitions is partic-
ularly challenging, because the constraints usually have complex interactions
with each other, i.e., a transition that satisfies one constraint may violates an-
other. Moreover, there is typically a conceptual gap between constraints in the
application domain (e.g., cloud computing, health care, etc.), and transitions in
a state-transition model (e.g., ECA or state machines).

In this paper, we propose a model-driven approach where developers can di-
rectly specify the constraints as adaptation policies, using concepts specific to
the application domain and applying the object oriented constraint specifica-
tion language, the OCL [4]. Our runtime engine then dynamically computes the
required modifications on the current system to satisfy the constraints.

This approach is based on our previous work [5], which showed that SMT
(Satisfiability Modulo Theory) constraint solving [6] can be used to compute
adaptation decisions from constraints in First Order Logic (FOL). However, we
used a simple SMT theory based on variables and operations, and therefore it
only supports adaptation of numeric configurations. To support domain-specific
modelling of constraints, more expressive theories to encode structural informa-
tion such as objects and references between them, are needed. This implicates
the challenge to transform expressive OCL constraints to SMT. Moreover, the
previous work lacks a way to assist developers in specifying the constraints. To
address these challenges, we present the following contributions in this paper.

– A modelling language based on MOF and OCL to specify adaptation policies
as application domain concepts and constraints applying these concepts;

– A new method to encode object-oriented models and constraints to SMT
instances, to enable the use of SMT constraint solving for adaptation.

– A new partial evaluation semantics on OCL, which realises the systematic
transformation from OCL constraints to formulas used by SMT, and opti-
mizes the formulas by embedding the current system states into them.

We have applied the approach on a representative self-adaptation problem, the
dynamic mapping of virtual machines to physical machines in clouds. The case
study shows that the approach is able to specify classical adaptation policies,
and produces desired adaptation decisions. The partial evaluation significantly
improves the performance of constraint solving, making it applicable at runtime.

The rest of this paper is organised as follows. Section 2 introduces a running
example, and outlines the approach. Sections 3, 4 and 5 present our modelling
language, the generation of SMT instances and the computation of adaptation
decision using SMT solving, respectively. Section 6 shows our case study. Section
7 discusses related approaches and Section 8 concludes the paper.
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2 Approach Overview

2.1 Motivating Example

Managment of the mapping of virtual machines (VM) to physical machines (PM)
in private clouds can be treated as a dynamic adaptation problem. Different from
renting VMs from public clouds, an organisation that sets up its own private
cloud has the full control of the infrastructures (i.e., PMs) behind the VMs. As
the system keeps evolving (e.g., new VMs are provisioned, applications are de-
ployed on VMs), the infrastructure administrators need to adjust the placement
and configuration of VMs, in order to optimise the overall deployment.

frequent
comm

vm1
core=8
mem=6

vm2
core=8
mem=8

vm3
core=4
mem=4

pm1
core=8

mem=20

pm2
core=4

mem=10

mysql mysql web

backup

not close

Fig. 1. A simplified VM placement problem

Figure 1 illustrates a simplified
private cloud, where three VMs are
placed on two PMs, each VM re-
quires and provides different numbers
of CPU cores and memory sizes (unit
in GB). We assume that the adapta-
tion engine is capable of altering the
VM placement and the provided CPU
cores. Early approaches on VM place-
ment mainly consider resource limita-
tions and consolidations (e.g., a sin-
gle VM’s CPU core number should
not exceed its hosting PM, total VM
memory should not exceed the PM’s
capacity, and using as few PMs as pos-
sible to save energy) [7]. These concerns implies migrating vm3 to pm1.

However, there are other concerns that impact the adaptation decisions. For
example, based on the applications shown in Figure 1 we can see that vm1 and
vm2 are replicated for backup purposes (we simplified the identification of backup
relations between VMs: Any two VMs that host applications with the same name
are backup to each other). The two VMs should be placed in different PMs so
that a physical crash would not halt both VMs and makes the application data
unavailable. Moreover, if vm2 and vm3 are communicating frequently, they should
ideally be deployed on two PMs that are “close” in terms of latency, or even the
same PM. Considering these two objectives, a potential modification is to swap
vm1 and vm3, and decrease the CPU cores of vm1, even though this violates the
objective of consolidation. Finally, migrating VMs is an expensive operation,
depends on their memory sizes. When a to-be-migrated VM is big, a better
choice may be to keep the current configuration.

As highlighted by the example, an adaptive system typically have many con-
straints, and an action that satisfies one constraint may violate others. Manually
developing adaptation policies by exhausting all the constraints to figure out ap-
propriate actions is not practical for complex systems.
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Fig. 2. Approach architecture

2.2 The Approach

In this paper, we propose a model-driven approach to enable specifying adapta-
tion policies as domain specific constraints. The overall architecture is illustrated
in Figure 2. Developers (domain experts) apply their knowledge of the domain to
specify an adaptation model. This includes the base domain concepts, the adap-
tation capability (i.e., what can be changed by adaptation), and the constraints
applying the domain concepts to specify what are the desired system states
for various contexts. From the adaptation model, we perform an automated
adaptation at runtime, using three components. The models@runtime engine
maintains an updated instance model monitoring the system state (through a
causal connection). From the current instance model and the adaptation model,
the transformation engine interprets what the constraints imply on the current
system state, and generates an SMT instance, which is fed to the constraint
solver to compute the appropriate target system state, taking into account the
constraints, their priorities, and the cost of system modifications. Finally, the
models@runtime engine propagates the changes to the real system.

On the basis of our previous work on models@runtime engine [8] and con-
straint solving for adaptation [5], this paper is focused on the front-end of this
approach, i.e., the modelling language for domain-specific constraints, and the
transformation to an SMT instance. At this stage, we base our work on the
closed world assumption, i.e., the number of objects under each type is not sub-
jected to be changed by the adaptation. This assumption is reasonable in our
VM placement example: It is the administrator’s duty to provision or terminate
VMs, whereas the adaptation engine optimises the deployment of them.

3 Constraint Modelling

We provide a prototype language based on MOF and OCL to assist the modelling
of adaptation policies as constraints. Figure 3 is a snapshot of the model for the
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Fig. 3. Constraints for VM placement

VM placement problem, taken from our text-based modelling editor with syntax
checking and auto-completion. The modelling process has two steps: defining the
concepts in the domain, and specifying the constraints applying the concepts.

The concept modelling is to specify the types of elements that compose the
system states (e.g., the concepts VMs, PMs at Line 9 and 20), the attributes of
these types (such as VM.mem at Line 10, for the memory required by a VM), and
the relations between them (e.g., VM.plc at Line 12 records on which PM a VM
is placed).

A property (attribute or relation) marked by “[*]” is a multi-valued one.
Derived property can be defined by an OCL query. For example, the set of
backups of an VM is the subset of VM instances that host Apps with the same
name. Developers also need to define what properties can be changed by adap-
tation (which are marked by keyword config, such as VM.plc at Line 12), and
the changing scope of such a property (which is defined by an OCL expression
in type of collection, such as the domain of VM.core at 11).

Constraint modelling captures the developers’ concerns regarding what are the
desired system states, such as MemoryLimit (Line 24) and BackupSplit (Line
17), with the meanings discussed above. In our language, a constraint is defined
as an boolean-typed OCL expression, inside a target class. Take the MemLimit

constraint as an example, the direct meaning of the OCL expression is as follows:
For each PM, we get the hosted VMs on it (which in turn is derived from the
configurable reference VM.plc), collect the mem of these VMs, and calculate
the sum of them. Then we claim that this summary should be less than or equal
to the mem of the PM. Each constraint is assigned with a priority between 0 and
100, indicating how important it is. A hard constraint is the one that must be
satisfied. Each configurable property has a cost, indicating the importance to
maintain the current values, e.g., the cost of changing a VM’s placement (i.e.,
VM migration) is proportional to its memory size.
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4 SMT Instance Generation

In this section, we first give an overview about SMT, illustrated by our running
example. After that, we summarise the mapping from an adaptation model to
the SMT instance. Finally, we present a partial evaluation approach to transform
and simplify OCL constraints into formulas in SMT.

4.1 SMT Overview

In order to apply automated constraint solving for adaptation, we convert the
adaptation problem into an SMT instance composed of functions and con-
straints, based on the theories of uninterpreted functions [9], algebraic data types
[10], linear arithmetic, and first order logic (FOL). An uninterpreted function is
a function that declares domains and a codomain, but without a definition about
the concrete mapping between them. A domain or codomain can be a primitive
data type (integer, real or boolean), or an enumeration. Here we define enumer-
ations using algebraic type theory, which supports defining a type from limited
and disjoint constructors1. The constraints are boolean-valued FOL formulas on
these functions, connected by arithmetic and logic operators. An SMT solver
searches possible interpretations for the functions, satisfying all the constraints.

Figure 4 shows a sample SMT instance. It is divided in three parts.

VM : {vm1, vm2, vm3}, PM : {pm1, pm2}, int, boolean
vc : VM → int, pc : PM → int, vmem : VM → int, pmem : PM → int

plc : VM → PM, frqt : VM× VM → bool, near : PM× PM → bool
∀vm, pm. (plc(vm) = pm ⇒ vc(vm) ≤ pc(pm))

∀pm.

( ∑
vm∈V M

ite(plc(vm) = pm, vmem(vm), 0)) ≤ pmem(pm)

)
∀vm, vm′. (frqt(vm, vm′) ⇒ near(plc(vm), plc(vm′))) , ∀pm. (near(pm, pm))

vc(vm1) = 8, vmem(vm1) = 6, plc(vm2) = pm1, frqt(vm2, vm3)...

Fig. 4. VM placement in SMT

The first part defines the realm of this VM placement problem, in the form of
functions and their domain types. Under a closed-world assumption, the number
of objects of type VM or PM is not subject to change by the adaptation,
and therefore each type is an enumeration of its current objects (Of course,
administrators can still add or remove VMs and PMs, and the new VMs can

1 For example, an enumeration Colour with red, green, and blue can be defined as
(type C::=r|g|b), meaning that the type C has three unique constructors. Algebraic
type theory is supported by SMT solvers such as Z3 [11]
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be moved between PMs by our adaptation engine). The functions for virtual
cores (vc), physical cores (pc), virtual memory (vmem) and physical memory
(pmem) from the enumerations to primitive types represent states of objects.
The functions placement (plc), frequent (frqt) and near (near) represent the
relations between objects. Placement (plc) is a functional relation, specifying
that a VM is placed on one and only one PM. By contrast, frequent (fqrt) is
an example of binary relation. For two VMs vm and vm′, frqt(vm, vm′) = true
means they are communicating frequently.

The second part of the SMT instance defines the constraints applying FOL
formulas. The first constraint specifies that the number of CPU cores required by
a vm cannot exceed the one provided by its hosting pm. The second constraint
specifies that the total memory size of VMs hosted on the same PM should not
exceed the memory provided by this PM. The constraint computes the sum of
VM’s memories utilizing a predefined ite(if-then-else) function from the SMT-
LIB standard [12], which returns the second or the third parameter based on if
the first one is true or false, respectively. The constraint denotes to iterate over
all vms, and if and only if a vm is placed on the specific pm its memory is added
to the sum. The third constraint depicts that two frequently communicating vms
should be deployed to pms that are near to each other (remark that a PM is
also considered to be near to itself).

The third part of the SMT instance expresses the current state of the model
instance as a set of equations between function calls and values. The excerpt of
Figure 4 is according to the state shown in Figure 1.

Solving these SMT constraints can be very time-consuming. However, the
constraints can be simplified significantly based on knowledge of the current
system state (i.e., the third part), making the solving much more efficient. For
example, according to Figure 1, we know that there is one and only one pair
of VMs (vm2 and vm3) that are frequently communicating, and this will not
be changed after the adaptation. Therefore, we can weave this known informa-
tion into the constraints and rewrite the third constraint in Figure 4 simply as
near(plc(vm2), plc(vm3)). In our approach, we provide to directly generate such
simplified constraints.

4.2 Mapping from Adaptation Model to SMT

In order to transform the adaptation model into an SMT instance, we need
systematic mappings from the elements in the adaptation model to their corre-
sponding representations in SMT. Table 1 summarises these mapping rules. A
class is mapped into an enumeration, with its objects as the enumerable items,
and primitive types are transformed to the corresponding integer, real or boolean
types in SMT (according to mc in Table 1). Objects and primitive data are
mapped to enumeration items or primitive values (mo). A C2-typed single-valued
property p defined in class C1 is mapped to an uninterpreted function with one
parameter, while a multi-valued one (marked by a “*” in the table) is mapped
to a function with two parameters (mp). The two functions plc and frqt in Fig-
ure 4 are examples for the two categories, respectively. The OCL constraints,
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Table 1. Mapping from adaptation model to SMT instance.

model SMT name
class C with objects o1, o2 enum C {o1, o2} mc

types int, real, boolean SMT types: Z, R, B
object o: C enum item o ∈ C mo

value v: literal value v
single property: C1.p:C2 function p : C1 → C2 mp

multiple property: C1.p:C2[*] function p : C1 × C2 → B

constraint, derivation, domain FOL formula PE
property value: o.p=d p(o) = d ms

o.p=D={di|i ∈ 1..n} (
∧

di
a(o, di)) ∧ (

∧
dj

¬a(o, dj))dj ∈ C2 −D

and the derivation and domain definitions are mapped to FOL formulas (such
as the ones shown in the second part of Figure 4). The transformation (named
PE) will be shown in the next section. Finally, we generate constraints from the
current values of properties (ms). If a single valued property p of object o has
value d, we enforce p(o) = d. However, for a multi-valued p, the value will be a
set D of data or enumeration items. The generated constraint enforces that for
any di ∈ D, p(o, di) is true, and for any other dj , p(o, dj) is false.

4.3 Partial Evaluation of OCL Constraints

We use partial evaluation (PE) [13] to transform the OCL constraints into SMT
predicates such as the ones shown in the second part of Figure 4, and simplify
the results based on the static information in the current model instance. In
particular, PE takes three inputs: an OCL expression, a static model and a
context, and outputs FOL formulas. The following example illustrates how we
notate partial evaluation in our approach.

[[self.core<self.mem-2]]{self 	→vm2}(ms) = (< (core vm2) 6)

The OCL expression is written inside the brackets [[]]2. The static model ms is
the part of a model instance that does not change after adaptation, e.g., below
is the static model corresponding to Figure 1

vm2:VM{mem=8, frqt=[vm3], app=[app1], core =_, plc=_}

pm2:PM{mem=10, core=4, near=[]}

Here we give every dynamic property (defined by config in Figure 3) an unde-
fined value “ ”. The context τ is a map from variables to values or objects in
ms, and in this example, τ = {self �→ vm2}, meaning that the variable self in
the OCL expression represents vm2. The output of PE is a FOL formula, written

2 We borrow the “[[]]” notation from denotational semantics, which indicates that PE
can be understood as another semantics to OCL language, i.e., a function from a
static model to a FOL formula, depending on a context.
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in the standard SMT-LIB language [12] following the style of prefix notation.
This output has the same meaning of core(vm2) < 63. In this example, since
vm2.mem=8 is known in ms, we directly evaluate self.mem-2 into a value 6,
whereas since vm2.core is unknown, we translate it into a function call.

The Fidelity Property PE should guarantee the fidelity of the transformation
from OCL to SMT, which means any adaptation result that satisfies the gener-
ated SMT should also satisfy the original OCL constraints, and vice versa. Specif-
ically, a static model ms can be complemented with dynamic information (no-
tated asmd), so thatms+md is a complete model and therefore can be fully eval-
uated by a common OCL engine. Fidelity means that no matter whatmd we give
on ms, ([[e]]τ (ms) = [[e]]τ (ms+md))∧ms(md) is always true. Here, [[e]]τ (ms+md)
degrades into normal OCL evaluation, and ms(md), as defined in Table 1, is a set
of predicates encoding the dynamic information. For example, the sample above
satisfies fidelity, because if we give vm2.core a value smaller than 6 (say 5), then
the full evaluation results true, and (core(vm2) < 6 = true) ∧ core(vm2) = 5
holds. It is the same when vm2.core > 6.

PE is executed in a recursive way, following the OCL syntax tree [4]. For
example, the first step to evaluate the example above will be:
[[self.core<self.mem-2]]τ (ms) = (< [[self.core]]τ (ms) [[self.mem-2]]τ (ms)),
and after that [[self.mem-2]]τ (ms) = (− [[self.mem]]τ (ms) 2) = (− 8 2) = 6.

In the following, we explain how we do PE by defining the transformation
rules on the typical OCL syntax structures.

We start from the basic building blocks of OCL expressions. For a literal
constant of primitive value, we directly transform it into the corresponding value
(Equation 1). For the reference to a variable v, we obtain its value from the
context τ and return it (2). The let statement (3) introduces a new variable
into the main expression. We evaluate the source expression e1 into result r, and
add a new variable mapping v �→ r into the context dictionary τ , so that the
variable v in e2 will be r in the subsequent evaluation.

[[literal]]τ (ms) = mo(literal)

[[v]]τ (ms) = r, (v �→ r) ∈ τ

[[let v=e1 in e2]]τ (ms) = [[e2]]τ∪{v 	→r}(ms) where r = [[e1]]τ (ms)

(1)

(2)

(3)

The transformation of OCL property calls is the main point to encode object-
oriented structures into FOL formulas (4). We first evaluate the source expres-
sion e into result r. If r is an object (which means that e purely depends on
the static model), and r.p has a value v in the static model, we directly return
v. However, if r.p is undefined, or if r is a formula (which means that e de-
pends on dynamic information), we compose a new formula using the functions

3 We use SMT-LIB to distinguish the transformation outputs (i.e., an SMT “pro-
gram”) from the calculations within the evaluation. For example (f 5) means a SMT
formula that call function f with parameter 5, while mo(o) means that PE obtains
the enumeration item for object o
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and constants resolved from p and r, respectively. The composition method pc
(Equation 5) creates a function call if the property is single-valued. Otherwise,
it enumerates all the objects oi in the property type, and creates an ite for
each of them: if f(s, oi) is true then oi is returned, otherwise, an empty value
⊥ is returned. We introduce an empty value ⊥ whose semantics is that for any
binary operation ∗ and value x, x ∗ ⊥ = x. For example, [[self.plc]]self 	→vm2 =
{(ite (= (plc vm2) pm1) pm1 ⊥), (ite (= (plc vm2) pm2) pm2 ⊥)}. This result
satisfies Fidelity, because if we place vm2 to an arbitrary PM, the result will
be this PM plus ⊥, equivalent to the result of a full OCL evaluation. Equation
(6) defines the derivation: the property call e.p will be replaced by the expression
ed defined for p, with self redirected to the source expression e.

[[e.p]]τ (ms) =
(r = [[e]]τ (ms))

⎧⎪⎨⎪⎩
v if (r.p �→ v) ∈ ms

pc(mp(p), mo(r), mc(p.type)) if (r.p �→ ) ∈ ms

pc(mp(p), r, mc(p.type)) if r is a formula

pc(f, s, c) =

{
(f s) single-valued

{(ite (f s oi) oi ⊥)|oi ∈ c} multi-valued

[[e.p]]τ = [[let self=e in ed]]τ , if ed is the derivation expression of p

(4)

(5)

(6)

PE handles and simplifies structural OCL syntax rules. For an if expression
(7), we first evaluate the condition expression e1 into r1. If it is determined to
either true or false, we return either result of the two sub expressions. Only
when r1 is a formula, we transfer the OCL branch into an ite . The second sample
is the binary operation (8), such as +, ×, and etc. If both results r1 and r2 of
the two operands are values, we calculate the result and return it. If either r1 or
r2 is a formula, we compose a corresponding binary operation in SMT.

[[if e1 then e2 else e3]]τ (ms) =
(ri = [[ei]]τ (ms), i ∈ {1, 2, 3})

⎧⎪⎨⎪⎩
r2 if r1 = true

r3 if r1 = false

(ite r1 r2 r3) if r1 ∈ F

[[e1 + e2]]τ = λms.
(ri = [[ei]]τ (ms), i ∈ {1, 2})

{
r1 + r2 if both r1 and r2 are values

(+ r1 r2) if r1 or r2 is a formula

(7)

(8)

We handle composite OCL syntax rules on the basis of the primitive ones
above. The collect operation (9) is a combination of let (i.e., we evaluate the
main expression e2 repeatedly, each time with a si from the source result). The
select operation (10) is a combination of if-then-else. The resulted set will
be simplified if any ri is resolved to a true or false: For the former case, si will
be included into the resulted set, and for the latter case, it will be ⊥. Similarly,
forAll (11) is an extension of the binary and operation to multiple inputs. We
divide the source set s into a single element sh and the remaining set st. Then
we evaluate sh and st recursively, and combine the results by an and. The sum
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operation (12) is a similar extension to the binary operation +. We regard the
size operation (13) as equivalent to first mapping each element to an integer
1, and then calculate the summary. The last important collection operations is
include (14), which is often used to check if a relation holds upon two objects
(e.g., Line 12 in Figure 3). We inspect the source set r1 from e1, and see if there
is an item related to the target value r2 evaluated from e2. If there is an item
r equal to r2, the result is true; If there is an ite item in r1 whose main branch
equals to r2, then whether r2 ∈ r1 depends on the condition r3, and we simplify
the whole operation to this condition r3. Finally, we transform domain definition
on a property into the following equivalent OCL expression (15): the value of
self.p on context τ must equal to one of the values limited by e.

[[e1->collect(v|e2)]](ms) = {[[e2]]τ∪{v 	→si}(ms)|si ∈ [[e1]]τ}
[[e1->select(v|e2)]]τ (ms) = λms.{[[if ri then si else ⊥]]τ (ms)}

si ∈ s = [[e1]]τ (ms), ri = [[e2]]τ∪{v 	→si}(ms)

[[e1->forAll(v|e2)]]τ (ms) = [[rh and st->forAll(v|e2)]]τ (ms),
rh = [[e1]]τ∪{v 	→sh}(ms), {sh} ∪ st = s = [[e1]]τ (ms);

[[e1->sum()]]τ = [[rh + rt->sum()]]τ ; {rh} ∪ rt = [[e1]]τ

[[e->size()]]τ = [[e->collect(1)->sum()]]τ

[[e1->include(e2)]]τ (ms) =
(ri = [[ei]]τ (ms), i ∈ {1, 2})

⎧⎪⎨⎪⎩
true if ∃r ∈ r1 : r = r2

r3 if ∃ite(r3, r2, ) ∈ r1

false otherwise

[[domain e on p]]τ = [[e->exists(x|x=self.p)]]τ

(9)

(10)

(11)

(12)

(13)

(14)

(15)

We use the MemLimit constraint at Line 24 in Figure 3 as an example to
show how PE works. The constraint is evaluated on the two PM objects, and
Figure 5 shows the main steps on pm1. The PE starts from self.hosting, and
is redirected to its derivation (the two OCL constraints are shown in the first
two lines of Figure 5). From allInstances, the engine obtains a set of three
VM objects, and the following select transforms it into a set of if-then-else.
Inside it, v.plc calls a configurable property, and is therefore evaluated to a ite.
After that, we push the following equation into the ite. As pm1=pm1 is always
true, and ite(x, true,⊥) = x, the set is simplifed again. Getting back to the
main expression, collect substitutes the mem value for each VM object, and
sum joins the three elements by “+”, and replace ⊥ by 0. Finally, we get the
inequality as the final output.

5 SMT Solving

Using the generated SMT instance, we leverage an extended constraint solving
approach [5] to calculate the appropriate adaptation actions. The generated SMT
instance is composed of FOL formulas (SMT constraints), originating from the
current context values, configuration values, and adaptation constraints. The
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self.hosting->collect(e|e.mem)->sum() <= self.mem
derive PM.hosting: VM.allInstances()->select(v|v.plc=self)

:
allInstance: {vm1, vm2, vm3} v.plc: (ite (plc v pm1) pm1 ⊥) self: pm1

v.plc=self: {(ite (= (ite (plc v pm1) pm1 ⊥) pm1) vm1 ⊥)... }
{(ite (ite (plc v pm1) (= pm1 pm1) ⊥) vm1 ⊥)... }

select: {(ite (plc vm1 pm1) vm1 ⊥), (ite (plc vm2 pm1) vm2 ⊥), (ite (plc vm3 pm1) vm3 ⊥)}
collect: {(ite (plc vm1 pm1) 6 ⊥), (ite (plc vm1 pm1) 8 ⊥), (ite (plc vm1 pm1) 4 ⊥)}

sum: (<= (+ (ite (plc vm1 pm1) 6 0) (ite (plc vm2 pm1) 8 0) (ite (plc vm3 pm1) 4 0)) 20)

Fig. 5. Sample partial evaluation steps

latter two categories are weak constraints, meaning that they can be violated
when necessary. Each weak constraint has a weight generated from a constraint
priority or a property cost. The first step is to identify a subset of constraints that
we need to remove from the SMT instance in order to make the rest satisfiable.
We use a weighted constraint diagnosing approach to find such a subset with
the lowest total weight. The second step is to compute the system modifications
to satisfy the remaining constraints. Details of this constraint solving approach
can be found in our earlier publication [5].

Going back to our running example in Section 2.1, we have shown three
potential adaptation solutions, i.e., migrating vm3 to pm1, switching vm2 and
vm3 (and decrease pm2.core), and do nothing. They correspond to three di-
agnosis: {BackupSlipt, FrequentNear, mem-cost}, {mem-cost×2, core-cost,
Consolidation}, {BackupSlipt, FreqentNear}, respectively, and the second
one has the lowest total weight of 120 (4 × 10 and 8 × 10 for migrating two
VMs, and 20 for decreasing vm2.core). The corresponding adaptation solution
is vm1.plc=pm2, vm3.plc=pm1, and vm1.core=4.

6 Case Study

We apply the approach on the VM placement problem extended from the running
example, and use this case study to evaluate: (i) the expressive power of the
adaptation modelling language; (ii) the effect of transformation and constraint
solving; (iii) the performance improvement achieved by our partial evaluation.

Implementation. We implement the adaptation modelling language on the
Xtext framework and DresdenOCL toolkit [14], with a text-based syntax and
a fully functioning editor (as is shown in Figure 3). We choose Z3 [6] as our
constraint solver, and implement the OCL partial evaluation to generate SMT
instance in Z3Py, a python-based SMT representation. The generated result is
fed into the constraint solving based adaptation engine that we presented in our
previous work [5]. The source code is hosted at github.com/songhui/cspadapt

Adaptation Modelling. Our adaptation model on VM placement is based on
the general cloud computing concepts from CloudML [15]. We use OCL con-
straints to model the policies that originate from the following research ap-
proaches: 1) Deployment constraints from CloudML, such as 64 bit VM should

github.com/songhui/cspadapt
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run on 64 bit PM. 2) Resource limitation and consolidation [7]. 3) Cost of mi-
gration [16]. 4) Load balancing between PMs [17], e.g., immigrating VMs out of
overloaded PMs, and scatter the VMs with synchronized peak times. 5) Run-time
observed logical relations [18], such as frequently communicating VMs should be
placed closely. 6) SLA matching [18], such as VMs with high stability requirement
should be placed to specially protected PMs. The final adaptation model can be
downloaded from thingml.org/dist/diversify/casestudy.constraint. The
adaptation modelling shows the language’s expressive power to specify different
adaptation policies, and also reveals a major benefit, i.e., to ease the combination
of the policies from different origins.

Adaptation Behaviour. We test the adaptation model on simulated cloud
configurations. From a starting model instance, we randomly generate changes
to the system, and feed the changed model to the adaptation engine. The engine
outputs the suggested changes, and records the main constraints it followed and
discarded when making the decision. Table 2 lists some sample traces. We choose
the ones that are from the same starting state (as shown in Figure 6, where m

and t stand for memory and throughput, respectively), and are only involved
in 8 particular constraints. When we enlarge vm2 (see #1 in Table 2), vm1 is
migrated, because it is smaller and therefore cheaper to move. However, when
vm2 exceeds the capacity of pm1 (#2), itself is migrated. Their destinations are
different because of the constraints we listed in the table. When we enlarge vm4
(#3), the more expensive vm5 is moved, because moving vm3 to any PMs would
break more expensive constraints. When vm5 has bigger throughput (#4), vm4 is
moved out to the sole valid destination pm6. But since it has synchronised peak
time with vm6, the latter is moved to pm2 to avoid vm4. When vm7 has bigger
throughput (#5), considering its high stability requirement, the engine moves
vm9 and vm10 out of the other stable PM to make a room for vm7. However,
when vm7’s stability requirement is lowered down (#6), the engine will move it
to a not-so-stable PM, to avoid the cost of moving two VMs. #7 illustrates how
we do consolidation: when v8 is not active, the engine moves it out to free pm4,
because the cost of immigration is lower than the weight of the consolidation
constraint. When vm6 and vm9 are observed to be frequently communicating,
the engine moves vm9 to a nearby PM, and brings vm10 as well. The numbers of
constraints in follows and discards imply the complexity of making the decision.

Performance. The runtime performance of constraint-driven adaptation is ac-
ceptable for medium sized systems. We create 6 model instances from the adap-
tation model on VM placement. In this models, the total number of VMs and
PMs are from 15 to 60, and total number of properties are from 140 to 560.
For each case, we launch the standard adaptation process for 50 cycles, each
started from randomly generated changes (0.5 to 8.5 changes in average), and
the average adaptation durations are 0.1, 1.4, 2.2, 7.1, 7.9 and 12.3 seconds, for
each model instance. The experiments are performed on a MacBook Pro with
Intel i5 CPU and 4G memory. The performance is acceptable since it is still a

thingml.org/dist/diversify/casestudy.constraint
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vm1
m:2, t:2

vm2
m:2, t:2

pm1
m:4 t:10

64bit

pm2
m:4 t:10

64bit

pm3
m:16 t:5

64bit, stable

pm4
m:4 t:20

pm5
m:4 t:10
stable

vm3
m:1, t:3

64bit

vm4
m:3, t:3

64bit

vm5
m:6, t:2

vm6
m:2, t:1

sta:1

vm7
m:2, t:2

sta:9

vm8
m:1,t:10

vm10
m:2, t:1

sta:9

vm9
m:1, t:1

sync

sync syncbackup frqt frqtbackup

near near

Fig. 6. Starting system status of the sample results

Table 2. Sample adaptation actions from the VM placement case study.

MC=Migration Cost, SP=Synchronized Peaktime, LB=Load Balance, ML=Memory Limit,

BU=Backup, FR=Frequent Communication, ST=Stability, CS=Consolidation, B64=64 bit

# change adaptation follows discards

#1 vm2.m:3 vm1->pm4 MC SP LB BU CS

#2 vm2.m:5 vm2->pm3 ML BU MC CS

#3 vm4.m:4 vm5->pm3 MC ML FR BU B64 MC CS

#4 vm5.t:5 vm4->pm3, vm6->p2 B64 BU ML FR LB MC ST CS

#5 vm7.t:6 vm7->pm5, vm9vm10->pm3 FR ST LB MC CS

#6 vm7.t:6, vm7.st:1 vm7->pm4 MC LB ST CS

#7 vm8.t:1 vm8->pm2 CS BU MC

#8 frqt(vm6,vmm9) vm9->pm2, vm10->pm3 MC LB FR MC CS

short time relative to the time it takes to modify topologies and configurations
in cloud. Typically migrating one virtual machine in a cloud takes from a half
to several minutes. In order to inspect the improvement caused by partial eval-
uation, we run another 50 cycles for each case from random changes, but with
partial evaluation switched off, generating FOL formulas as shown in Figure 4.
The adaptation durations are then 0.3, 8.2, 31.5, 49.3, 51.3 are 129.2 seconds,
which are significantly longer than the ones with PE. Furthermore, the fraction
of reduction increases with the larger models (e.g., the fraction is 3 times faster
for the simplest model and about 10 times faster for the largest one)

7 Related Work

Research approaches on self-adaptive systems provide many different ways to
define adaptation policies. The ECA type of rules are most widely adopted, such
as the event triggering in [19] and [20], the guard-action rules in [21], etc. Kephart
and Walsh [22] discussed the advantage of declarative policies over imperative
ECA rules. Floch et al. [23] utilise declarative properties and utilities functions to
capture adaptation policies, but they require predefined system configurations
instead of calculate them at runtime. The DiVA project [24] defines a small
language to capture constraints as policies, and utilises the Alloy constraint
solver to obtain the result. In this work, we support the general purpose OCL
language with higher expressive power, and tolerate the conflicts in constraints.
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Model driven engineering is widely used to tame the complexity of developing
adaptive systems. One branch is to model the system states in high-level archi-
tectures, such as in [25] and [26]. But the policies on top of their architectures
are essentially ECA rules. Another branch is to support the development process
of self-adaptive system. Brun et al. [27] propose a programming model for self-
adaptive systems, based on control loops. Cheng et al. [28] and Baresi et al. [29]
use goal-based modelling to help derive adaptation policies from requirements.
Such approaches are complementary to the work in this paper, and our future
plan is to utilise goal models to elicit adaptation constraints from requirements.

The transformation from constraints to SMT instances is related to the ap-
proaches that generate constraint satisfiability problems from class diagrams
[30,31] or OCL constraints [32], for the purposes of design time verification.
When using constraints to guide adaptation at runtime, the searching space for
constraint solving is much smaller than at design time, because the context data
are known and not changeable. This is the main idea behind our partial eval-
uation to optimise the generated SMT problem, and differentiate our approach
from the existing ones. Partial evaluation [13] is a compiling technique to op-
timise target code by pre-processing constant values in the source code, and is
widely used to support domain specific languages [33]. In our approach, we widen
the concept of “constant values” to the current context in an adaptive system.

The modelling process for adaptation constraints is inspired by the construc-
tion of domain-specific modelling languages [34,35]: We support domain experts
in defining the concepts in a particular application domain, and then the con-
straints are specified in a domain-specific way, applying these concepts.

8 Conclusion

This paper presents a model-driven approach to developing self-adaptative sys-
tems. We provide a language for modeling declarative adaptation polices, in the
form of domain-specific constraints. Our runtime engine generates an SMT prob-
lem from the constraints, optimises it based on the current system state, and
calculates the appropriate system reconfigurations. From our previous work, the
new contributions in this paper include a modelling language, a new method to
encode structural information in object oriented models into SMT, and a new
partial evaluation semantics on OCL based on the encoding.

The main limitation of the current approach is the closed world assumption.
In practice, we loosen this assumption by adding a small number of stub objects
before constraint solving, and if any stub object is referred by a real object after
the solving, we launch a create-object request to the system. Our future work
on this is to generalise this approach and assist developers in customising where
a new object is required. The approach can be also used together with an outer
adaptation loop that adds or removes VMs, either a manual or an automated
one. The case study in the current stage is still a proof of the idea. We will seek
for bigger scale applications involving third-party developers, based on our cloud
computing research projects.
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Abstract. Cloning a model is usually done by duplicating all its runtime
objects into a new model. This approach leads to memory consumption
problems for operations that create and manipulate large quantities of
clones (e.g., design space exploration). We propose an original approach
that exploits the fact that operations rarely modify a whole model. Given
a set of immutable properties, our cloning approach determines the ob-
jects and fields that can be shared between the runtime representations
of a model and its clones. Our generic cloning algorithm is parameter-
ized with three strategies that establish a trade-off between memory
savings and the ease of clone manipulation. We implemented the strate-
gies within the Eclipse Modeling Framework (EMF) and evaluated mem-
ory footprints and computation overheads with 100 randomly generated
metamodels and models. Results show a positive correlation between the
proportion of shareable properties and memory savings, while the worst
median overhead is 9,5% when manipulating the clones.

1 Introduction

Cloning a model consists in obtaining a new and independent model identical
to the original one. An implementation of this operation can be found in the
EcoreUtil.Copier class of the Eclipse Modeling Framework (EMF) [11], which
consists in first creating a copy of the runtime representation of a model (i.e. the
set of Java objects that represent the model) and then resolving all the references
between these objects. Such an implementation is also known as deep cloning.
This implementation is effective to produce valid, independent clones. However
it has very poor memory performances for operations that require manipulating
large quantities of clones (e.g. genetic algorithms [6], design space exploration [10]
or model simulation traces [8]).

We address the performance limitations of current deep cloning operations by
leveraging the following observation: given a metamodel and an operation defined
for this metamodel, the operation usually writes only a subset of this metamodel.
That means that it is possible to identify the footprint of the write accesses of
these operations on a metamodel. This footprint is the set ofmutable parts of the
metamodel, i.e. elements that can be modified by an operation. The counterpart
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of these elements, the immutable elements, are definitively stated at the creation
of objects. Our intuition is the following: knowing the immutable elements of
the metamodel, data could be shared between the runtime representation of a
given model and its clones, saving memory when generating the clone.

In this paper, we propose a new model cloning algorithm, which implements
different strategies to share immutable data between clones. This contribution
relies on a specific runtime representation of the model and its clones in order
to share the data and still provide an interface that supports the manipulation
of the clones independently from each other. We articulate our proposal around
the following questions:

– Considering that we know which parts of a metamodel are mutable, how can
we avoid duplicating immutable runtime data among cloned models?

– Can it effectively save some memory at runtime when creating a high number
of clones as compared to EMF cloning implementation ?

Our goal is both to give a solution that can be implemented in various existing
execution environments, and to provide concrete evidence of the efficiency of
such an approach on a widely used tool set: the Eclipse Modeling Framework
(EMF). Section 2 motivates our problem. We present a list of requirements for
cloning operators, and give the intuition of our idea regarding existing cloning
techniques. Section 3 defines what we call model cloning and what are runtime
representations of models. Section 4 presents the main contribution of this paper:
a new approach for efficient model cloning. The idea is to determine which parts
of a metamodel can be shared, and to rely on this information to share data
between runtime representations of a model and its clones. We provide a generic
algorithm that can be parameterized into three cloning operators (in addition to
the reference deep cloning one): the first one only shares objects, the second only
shares fields, and the third shares as much data as possible. Section 5 describes
our evaluation, which was done using a custom benchmarking tool suite that
relies on random metamodel and model generation. Our dataset is made of a
hundred randomly generated metamodels and models, and results show that
our approach can save memory as soon as there are immutable properties in
metamodels. Finally, Section 6 concludes.

2 Motivation and Position

In this section we give requirements for cloning operators, and we explain how
our idea is related to existing approaches

2.1 Requirements for Cloning

New activities have emerged in the model-driven engineering community in re-
cent years, which all rely on the automatic production of large quantities of
models and variations of models. For example, several works rely on evolution-
nary computation to optimize a model with respect to a given objective [3, 6].



288 E. Bousse, B. Combemale, and B. Baudry

Optimization in this case, consists in generating large quantities of model vari-
ants through cloning, mutation and crossover and selecting the most fitted. In
the field of executable domain specific modeling languages, modeling traces [8]
(i.e. set of snapshots of the executed model) is a way to verify and validate
the system through visualization or analysis of traces. Yet, a complete model
trace consists in copying the state of the model at each simulation step, pro-
ducing large quantities of model variants. Design space exploration [10] is the
exploration of design alternatives before an implementation, which requires the
generation of the complete design space (i.e. set of variations, which are models).

All these new MDE techniques produce large sets of models that originate
from few models. From a model manipulation point of view, all these techniques
require the ability to clone—possibly many times—an original model, and to
query and modify the clones as models that conform to the same metamodel as
the original. More precisely, we identify four requirements for model manipula-
tion in these contexts

Req #1 scalability. Runtime representations of models must scale in memory.

Req #2 manipulation performance. It is necessary to manipulate the clones
as efficiently as any model.

Req #3 model interface. The clones and the original model must be manip-
ulated through the same interface.

Req #4 metamodel independence. Support model manipulation through
a reflexive layer (the model operation is defined independently of a given
metamodel).

Our work defines novel cloning operators that reduce the memory footprint
of clones, while trying to comply with the aforementioned requirements. In par-
ticular, we evaluate the relevance of our solution with respect to the following
four research questions:

RQ#1 Do the new operators reduce the memory footprint of clones, compared
to deep cloning?

RQ#2 Can a clone be manipulated with the same efficiency as the original
model?

RQ#3 Can a clone be manipulated using the same generated API as the orig-
inal model?

RQ#4 Can a clone be manipulated using the reflective layer (e.g. as stated in
the MOF Reflection package)?

2.2 Existing Cloning Approaches and Intuition

Object copying has existed since the beginning of object-oriented programming
languages [4] with the deep and shallow copy operators. While the second oper-
ator does not ensure the independence of a clone and is thus not of interest, the
first is at the basis of model deep cloning. Concerning models, the EMF provides
a class named EcoreUtil.Copier with operations for deep copying sets of objects,
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which can trivially be used to implement a model deep cloning operator. Yet, as
stated previously, this operator does not fit our needs. In [5], Karsai et al. added
model cloning to the Generic Modeling Environment (GME) in order to support
model prototyping, i.e. applying the concepts of object prototyping [7] to models.
However, this work considers that changes made in a model are reflected in its
clones, whereas by definition a clone is independent from its origin. Overall, to
our knowledge, no work attempted to tackle the requirements that we identified.

In terms of memory management, copy-on-write (a.k.a. lazy copy) is a
widespread way to reduce memory consumption. The idea is the following: when
a copy is made, nothing is concretely copied in memory and a link to the original
element is created. At this point, both elements are identical, and accordingly
reading the copy would in fact read the origin directly. But when writing opera-
tions are made on the copy, modified elements are effectively copied so that the
copy keeps its own state and appears like a regular and independent element.
Applied to model cloning, the runtime object configuration of a clone obtained
using this technique would eventually only contain written mutable elements of
the original model, which meets our need to reduce memory footprint (Req #1).
However, it adds a considerable amount of control flow at runtime in order to
detect when copies must be done, and such copies can happen unpredictably
depending on the manipulations; this contradict the need for efficient clones
(Req #2). More importantly, depending on the programming language used,
this technique can be very difficult to implement; for instance, Java is pass-by-
value, making it impossible to dynamically change the value of a variable from
a different context (i.e. updating all references to an object that was just effec-
tively copied), which is required to dynamically copy a model progressively and
transparently.

Our intuition is that while deep cloning is easy to implement but memory
expensive, and copy-on-write is memory-efficient but complicated with poorly
efficient clones, it is possible to provide operators in between these two extremes.
Similarly to the way copy-on-write discovers dynamically which parts of a model
are mutable when copying written elements, our idea is to statically determine
which elements that have to be copied at runtime. Such elements are opposed
to the ones that can be referenced by both the original runtime representation
and its clone. We present an approach based on this idea in the next section.

3 On Model Cloning

The purpose of this section is to clarify what we mean by the runtime represen-
tation of a model and to precisely define what we call a clone in this work.

3.1 Modeling

Since we focus on the runtime representation of models, we consider a meta-
model to be the definition of a data structure. More precisely, we rely on the
Meta-Object Facility (MOF) [9] that defines a metamodel as an object-oriented
structure.
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Fig. 1. Example of modeling and EMF usage with a sample metamodel AB and a
sample model abb

Definition 1. A metamodel is an object oriented model defining a particular
domain. More precisely, a metamodel is composed of classes composed of prop-
erties, a property being either an attribute (typed by a datatype) or a reference
to another class. In practice, we consider a MOF model.

Since a metamodel is composed of classes, a model that conforms to this
metamodel is quite intuitively a set of objects that are instances of these classes.

Definition 2. A model is a set of objects that conforms to a metamodel. Con-
formity means that each object in the model is an instance of one class defined in
the metamodel. An object is composed of fields, each being based on a property
of the corresponding class.

During its lifecycle, a model can change in two possible ways: by creat-
ing/deleting objects or by changing values of fields of objects. We designate
as mutable elements both the elements of a model that may change over time
and the metamodel parts that define these elements. Our approach considers a
given object configuration in order to produce a clone, and is thus not influenced
by the creation of deletion of objects.

Definition 3. A property of a class of a metamodel is mutable if, in each ob-
ject instance of this class, the value of the field corresponding to this property
can change after the construction of the object. Dually, a property is said to be
immutable if its value cannot change after construction.

Fig. 1 shows a metamodel named AB that is composed of two classes A and B. A
has two attributes i and j and one reference b. j is mutable as specified by (mut).
B has a single attribute x. Below the metamodel, a model abb conforms to AB and
is composed of one object instance of A and two objects instance of B.
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3.2 Implementation of Metamodels and Models

Specific execution environments are necessary to use metamodels and models.
The Eclipse Modeling Framework (EMF) is one of the most popular. It gener-
ates Java interfaces and classes that implement a given metamodel, providing
concrete mechanisms to create runtime representations of models that conform
to the metamodel. We define a runtime representation as follows:

Definition 4. The runtime representation of a model is the set of runtime data
that is sufficient to reflect the model data structure. It must be manipulated
through an interface that is consistent with the corresponding metamodel.

Top right of Fig. 1 shows the API (Java interfaces and classes) generated
by the EMF generator. Interfaces A and B define services corresponding to the
data structure of the original metamodel AB, while Java classes AImpl and BImpl
implement these interfaces. These elements support the instantiation and manip-
ulation of runtime representations—here, Java object configurations—of models
that conform to the metamodel. The bottom right of the figure shows a runtime
representation of abb.

Note that a runtime representation that is eventually obtained using the EMF
is structurally very similar to the original model: each object is represented by a
Java object; each reference is represented by a Java reference; and each attribute
is represented by a Java field. Yet runtime representations could theoretically
take any form, as long as they are manipulated through an API that reflect the
metamodel. One could imagine “empty” objects that get data from a centralized
data storage component, or the use of a prototype-based programming language
to create consistent runtime representations without defining classes.

3.3 Cloning

In this paper, we consider cloning1 to be at the intersection of two main ideas:
the exact duplication of elements and the independence of the obtained clone.
Applied to models, a clone is therefore an independent duplication of some ex-
isting model. We define a clone as follows:

Definition 5. A clone is a model that is, when created, identical to an existing
model called the origin. Both models conform to the same metamodel and are
independent from one to another

Cloning a model is a deterministic procedure that has a unique possible output
(i.e. a model identical to the original model). However there are multiple ways
to implement this procedure for a given runtime environment. We therefore
introduce the idea of cloning operator as follows:

Definition 6. A cloning operator is an operator that takes the runtime repre-
sentation of a model as input and returns the runtime representation of the clone
of the model.
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Fig. 2. Following Fig. 1, deep cloning of the model abb, which created a new model
abb clone along with a new runtime representation in memory. Then abb clone di-
verged from abb by changing its j value.

Fig. 2 gives an example of cloning: the model abb clone is a clone that was
created at some point from the model abb. The moment the clone was created is
important, since it is an independent model that can completely diverge from its
origin; on this example, abb clone already changed and has a different j value.

At the bottom right of Fig. 2, the runtime representation of abb clone was
obtained using the deep cloning operator. However, as stated in the previous
section, runtime representations of models can virtually take any form, as long
as it can be manipulated through an API consistent with the metamodel. This is
what we investigate in the next section, where we present our main contribution:
cloning operators that reduce the memory footprint of runtime representations
of clones through data sharing.

4 Memory Efficient Cloning Operators

In this section we present our main contribution: an approach for memory ef-
ficient cloning through data sharing among runtime representations. For this
work, we consider that input runtime representations were obtained using the
EMF, i.e. each input runtime representation is identical to its model. Moreover,
for our clones to be compliant with EMF, we ensure that each object of a clone
is implemented by exactly one runtime object.

4.1 Data Sharing Strategies

When using the deep cloning operator, each object of a runtime representation
is duplicated, which means twice as many objects and fields in memory. Our

1 In terms of vocabulary, it is very similar to copying, and the choice of word is mostly
a matter of habit. In this paper we rather copy objects and clone models.



Scalable Armies of Model Clones through Data Sharing 293

intuition is that since we know which parts of a metamodel are immutable, it
must be possible to avoid duplicating some runtime objects and fields by safely
using them for both the runtime representations of a model and its clones. Given
a model conforming to a metamodel, we call shareable both the elements that
can be shared between the runtime representations of the model and its clones,
and the parts of the metamodel that define these elements.

In Section 2, we defined Req #2 (efficient manipulation of clones) and Req #4
(ability to define generic operations). However, sharing objects and fields between
runtime representations necessarily breaks one or both of these requirements.
First, if the same runtime object is shared between two runtime representations,
it is supposed to represent two distinct objects—one per model. Therefore, it is
possible for each of these objects to have a different container, since both ob-
jects are conceptually separate. The problem is that the MOF Reflection package
states that each object must provide a container() operation that returns the
unique container of an object, which is implemented in an operation of EMF
EObject called eContainer(). Unfortunately, when a shared EMF runtime ob-
ject is used, there is no way to know in which context (i.e. model) this manipu-
lation occurs, and this operation thus cannot always return a unique container
as expected. Therefore, generic operations that rely on this operation cannot
be used on clones, which contradicts our Req #4. Second, we rely on a proxy
design pattern to share the fields of runtime objects: a runtime object with a
shareable field can be copied into a new runtime object without this field, but
with a reference pointing to the original runtime object to provide access to this
field. However, there is an overhead when accessing shared data through these
proxy objects, which can be an issue with respect to Req #2.

Data sharing is essential to reduce the memory footprint of clones, which is
our primary objective. Consequently, we designed several strategies that estab-
lish trade-offs between memory savings and satisfaction of Req #2 and Req #4.
Modelers can then decide how to tune the cloning algorithm with respect to
their specific needs. We provide four strategies that implement different inter-
pretations of shareable metamodel elements:

DeepCloning Nothing is shareable.

ShareFieldsOnly Only immutable attributes are shareable.

ShareAll Shareable elements are immutable attributes, classes whose proper-
ties are all shareable, and immutable references pointing to shareable classes.

ShareObjOnly Same shareable classes as ShareAll, while properties are not.

If implementing the DeepCloning and ShareFieldsOnly strategies is quite
straightforward, ShareAll and ShareObjOnly are more complicated because of
a double recursion: shareable properties depend on shareable classes, and con-
versely. This can be solved using a fixed-point algorithm, or using the Tarjan
algorithm [12] to compute strongly connected components of a metamodel seen
as a graph. We choose Tarjan in our implementation. Our approach to memory
management through data sharing is quite close to the flyweight design pattern
from Gamma et al. [2], which consists in identifying mostly immutable objects
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in order to share them between multiple objects. The main difference is that this
pattern specifies that the mutable part of shared objects must be a parameter
of all the operations of the objects, which contradicts our first requirement since
the API of the clones hence differs from the one of the original model.

4.2 Generic Cloning Algorithm

Before defining our algorithms for model cloning, we introduce data structures
and primitive functions on which the algorithms rely. We use pseudo-code in-
spired from prototype-based object-oriented programming [7], i.e. creating and
manipulating objects without defining classes. The goal is to define the algo-
rithms independently from any API that may be generated by a particular mod-
eling framework. We consider the following structures and operations:

a runtime object o is created completely empty (i.e. no fields) using the cre-
ateEmptyObject() operation. Fields can be added using addField(name,value),
and can be retrieved using getFields().

a strategy is an object that implements one of the strategies given Section 4.1
with three operations:

isFieldShareable(f) returns true if, at the metamodel level, there is a
shareable property represented by f .

isObjShareable(o) returns true if, at the metamodel level, the class of the
object that match this runtime object is shareable.

isObjPartShareable(o) does the same, but for partially shareable classes,
i.e. non-shareable classes with shareable properties.

copyObject(o) returns a copy of a runtime object o, i.e., a new object with the
same fields and the same values. This is equivalent to the operation copy of
EMF EcoreUtil.Copier

a runtime representation is a set of runtime objects. It can be created empty
with createEmptyRR(), and it can be filled with objects using addObject(o).

a map is a data structure that contains a set of 〈key,value〉 pairs. It can be
created with createEmptyMap() and be filled with addKeyValue(key, value).

resolveReferences (map) is an operation that, given a map whose keys and
values are runtime objects, will create references in the values based on the
references of the keys. This is equivalent to the operation copyReferences of
EMF EcoreUtil.Copier.

The operation copyObjectProxy(o,strategy) is presented as Algorithm 1. It is
parameterized by a strategy and an original object o, and it copies in a new
object all the fields of o, except those considered shareable by the strategy. The
last line of the operation creates a link to the original object in order to keep
a way to access to the shareable data. Fig. 3 illustrates this operation with a
simple object o that has two fields x and y: x is not copied in p, but can still be
accessed using the reference originObj.

The second operation is cloning(rr, strategy), the cloning algorithm itself,
presented as Algorithm 2. It takes a runtime representation rr as input and a
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Algorithm 1. copyObjectProxy

Data:
o, a runtime object
strategy, the strategy used (i.e. what is shareable)
Result: p, a proxy copy of o

1 begin
2 p ← createEmptyObject()
3 for f ∈ getFields(o) do
4 if ¬ strategy.isFieldShareable(f) then
5 p.addField(f .name, f .value)

6 p.addField(“originObj”, o)

o

int x = 1
int y (mut) = 4

p

int y (mut) = 4

originObj

Fig. 3. Example of
proxy object: p is a
copy of o.

Algorithm 2. cloning

Data:
rr, a runtime representation of a model
strategy, the strategy used (i.e. what is shareable)
Result: rrclone, a runtime representation of the clone

1 begin
2 rrclone ← createEmptyRR()
3 copyMap← createEmptyMap()
4 for o ∈ rr do
5 if strategy.isObjShareable(o) then
6 rrclone.addObject(o)
7 copyMap.addKeyValue(o, o)

8 else if strategy.isObjPartShareable(o) then
9 copy ← copyObjectProxy(o,strategy)

10 rrclone.addObject(copy)
11 copyMap.addKeyValue(o, copy)

12 else
13 copy ← copyObject(o)
14 rrclone.addObject(copy)
15 copyMap.addKeyValue(, o, copy)

16 resolveReferences(copyMap)

Table 1. Cloning operators obtained, one per strategy

Objects not shared Objects shared
(RQ #4 ok) (RQ #4 not ok)

Fields not shared (RQ #2 ok) DeepCloning ShareObjOnly
Fields shared (RQ #2 not ok) ShareFieldsOnly ShareAll
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considered strategy, and returns a runtime representation rrclone of a clone of
the model of rr. Depending on the strategy outputs, each object is processed
differently. If the object o is shareable, it is simply added in rrclone, and is thus
shared between rr and rrclone. If o is partially shareable (not shareable but
with shareable fields), a proxy copy of o is added to rrclone. Finally, if o is not
shareable at all, a regular copy is put in rrclone.

4.3 Family of Cloning Operators

From our single cloning algorithm, we eventually obtain four cloning operators
depending on the strategy used. We sum up the possibilities in Table 1, and we
illustrate them with examples in Fig. 4. DeepCloning clones without any form of
data sharing. ShareFieldsOnly clones using proxy objects to share as many fields
as possible; Fig. 4a shows an example where each runtime object has a reference
to the runtime object from which it originates. ShareObjOnly clones with object
sharing only; Fig. 4b shows an example where B runtime objects are referenced
by both models. Finally, ShareAll clones with both objects and fields sharing;
Fig. 4c shows an example where only j is kept by the A runtime object.

In section 4.1, we listed four research questions to evaluate our cloning oper-
ators. Without proper benchmarking, we cannot answer the memory consump-
tion (RQ #1) question yet. Concerning the efficiency when manipulating clones
(RQ #2), we do not expect ShareFieldsOnly and ShareAll to comply because of
proxy objects. As they rely on of object sharing, ShareObjOnly and ShareAll are
not compatible with generic operators that use the MOF container() reflec-
tive operation (RQ #4). However, our clones perfectly comply with the need to
be manipulable by operations defined for the metamodel of the original model
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(RQ #3). This is illustrated by our implementation, which allows each clone to
be manipulated using the EMF Java API generated for the metamodel.

4.4 EMF-Based Implementation

We implemented our approach in Java with as much EMF compatibility as
possible, which required us to face two main challenges. First, we had to extend
EMF libraries—including implementations of EObject and Resource—to ensure
that containment references are handled consistently in each model. Second, our
approach relies on proxy objects, which are easy to create dynamically using a
prototype-based object oriented language. However, with a class-based object
oriented language such as Java, the fields of an object are determined by its
class at design-time. We thus have to generate appropriate classes beforehand,
which we do with a java-to-java transformation using EMF and MoDisco [1]
to remove non-shareable properties of generated EMF implementations. More
details about the implementation can be found in the companion web page of
the paper: http://diverse.irisa.fr/software/modelcloning/.

5 Evaluation and Results

This section presents our evaluation. First we describe our dataset, then what we
measure and the metrics considered for our metamodels, and finally the obtained
results and how they relate to the requirements stated in Section 2.

5.1 Dataset

To evaluate this work, we need both various metamodels and models that con-
form to thesemetamodels. For themetamodels part, we developed a randomEcore
model generator. We parameterized it the following way: a maximum number of
100 classes per metamodel, 250 properties per class and 50 mutable properties
(which are properties with a m suffix) per class. We use weighted randomness to
create different kinds of properties, with the following weights: 30% of integers,
30% of booleans, 30% of strings, and 10% of references. For the models part, we
generate for each metamodel a single model in a deterministic way that covers the
whole metamodel. It starts from the roots, navigates through each composition
and creates a maximum of two objects per encountered class. Then, all attributes
are initialized with random values and references with random objects. We could
have generatedmoremodels per metamodel, but our goal was to illustrate how our
operators behavewith varyingmetamodels, eachwith different shareable parts. For
more information concerning the evaluation process you can refer to our compan-
ion web page http://diverse.irisa.fr/software/modelcloning/.

5.2 Measures

To verify that we reached our main objective, we must measure the memory
consumption of the runtime representations of the clones, and more precisely

http://diverse.irisa.fr/software/modelcloning/
http://diverse.irisa.fr/software/modelcloning/
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Fig. 5. Memory gain results obtained for 1000 clones

the memory gain compared at the DeepCloning operator. For precise memory
measures, we create a heap dump at the end of each evaluation run, and we
analyze it using the Eclipse Memory Analyzer (MAT) 2. The second measure
we make is the read-access performance of the runtime representations of clones,
compared to the one of the original model. We expect to see some performance
decrease when proxy runtime objects are involved We proceed by measuring the
amount of time required to navigate 10 000 times through each object of a model
while accessing each of their properties.

5.3 Metrics

To embrace the variety of metamodels, we consider two metrics: the proportion
of shareable classes when using either the ShareObjOnly or the ShareAll strategy,
and the density of shareable properties within partially shareable classes when
using the ShareFieldsOnly strategy. The first metric most likely correlates with
the memory gain for operators that share objects, and the second for the operator
that only shares fields.

5.4 Results

Each measure was done by creating the model of the metamodel, cloning it 1000
times with the chosen operator, and measuring both the memory footprint and
the efficiency of one of the clones.

Fig. 5a shows the memory gain of the ShareObjOnly and ShareAll operators
over the DeepCloning operator with varying proportion of shareable classes. We

2 http://www.eclipse.org/mat/

http://www.eclipse.org/mat/
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can see that the more shareable classes there are, the more memory gain there
is. This relation appears linear for ShareObjOnly, and less regular for ShareAll.
This is quite normal since the first operator only relies on object sharing, while
the second is also influenced by the amount of shareable properties that can
be shared through proxies. We also observe that ShareAll is always better that
ShareObjOnly, which was expected since it shares fields in addition to objects.
Some points may look surprising at position 0%, however they are simply caused
by metamodels with very few classes and a high amount of shareable properties.
Thus, sharing fields of such metamodels quickly gives very high gains.

Fig. 5b shows the memory gain of the ShareFieldsOnly operator over the Deep-
Cloning operator with varying density of shareable properties within partially
shareable classes. We observe a correlation between gain and the metric, and the
gain raises up to approximately 40%. This operator gives overall worse results
that the ShareObjOnly and ShareAll operators, but can give better results in
some situations (e.g. metamodels with mostly partially shareable classes).

Finally, Fig. 6 presents the model manipulation efficiency gain over the run-
time representation of the model originally cloned. We observe that, as expected
because of the proxy design pattern, the operators ShareFieldsOnly and ShareAll
both suffer from a little performance decrease. The median overhead is -9,5% for
ShareFieldsOnly and -5.9% for ShareAll.

Overall, the results match our expectations. On the one hand, memory gain
measures show that our operators are as good as DeepCloning when no parts are
shareable, and are better and better as the quantity of shareable parts raises.
Therefore, all our operators satisfy the need to reduce the memory footprint
of clones (RQ #1). On the other hand, manipulation efficiency measures show
that there is a little overhead when manipulating clones obtained by our opera-
tors ShareFieldsOnly and ShareAll. Thus, as we foresaw, these operators do not
comply with the efficiency requirement (RQ #2).
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5.5 Threats to Validity

We identified two main threats to our evaluation. First, using random meta-
models, we hope to cover as many situations as possible in terms of metamodel
design. Yet, have no way to be sure that our dataset contains enough “realistic”
designs, as we have no metric for this criterion. Second, we use only one model per
metamodel, which even if it covers the whole metamodel and is thus appropriate
to evaluate our approach regarding metamodels characteristics, may overshadow
some situations. For instance, if the objects of the model are mostly instances of
non-shareable classes despite the fact that most classes are shareable, memory
gain would not correlate with this metric as much as we observe.

6 Conclusion

Model cloning is an operation to duplicate an existing model that can be used in
many kinds of applications. We identified four requirements for cloning operators:
to be able to apply domain operators on clones, to have some memory gain over
deep cloning, to be able to apply generic operators on clones, and to be able to
manipulate clones as efficiently as their original model. Our goal was to provide
cloning operators compliant with the first two requirements while satisfying the
last two if possible. The approach we presented consists in sharing both runtime
objects and fields between runtime representations of a model and its clones. We
give four possible strategies to determine which parts of a metamodel are share-
able, and we use these strategies to parameterize a generic cloning algorithm.
We obtain four cloning operators, each being more appropriate for a specific
situation. DeepCloning is the most basic operator with no memory footprint re-
duction, but that can be used in all situations where memory consumption is not
an issue. ShareFieldsOnly shares fields of immutable attributes, which reduces
the memory footprint of the clones but also introduces an overhead when manip-
ulating them. ShareObjOnly shares objects to reduce significantly the memory
footprint, but produced clones are not compatible with generic operations that
rely on the container() specifiec in the MOF Reflection package. Finally, Share-
All shares both objects and remaining shareable fields, which saves even more
memory, but with the weaknesses of the two previous operators. Our evaluation
was done using a hundred randomly generated metamodels, and results show
both memory gain over DeepCloning for all three other operators, and a loss of
manipulation efficiency for ShareObjOnly and ShareAll operators.

To pursue this work, a possible direction would be to automate the choice
of a cloning operator. For instance, it must be possible using static analysis
of operations to determine whether the reflexive layer is used or not, and more
precisely to detect the use of EMF eContainer(). This would give the possibility
to automatically disable cloning operators that forbid the use of this operation.

Acknowledgement. This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011).
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Abstract. Large software product lines need to manage complex vari-
ability. A common approach is variability modeling—creating and main-
taining models that abstract over the variabilities inherent in such
systems. While many variability modeling techniques and notations have
been proposed, little is known about industrial practices and how indus-
try values or criticizes this class of modeling. We attempt to address this
gap with an exploratory case study of three companies that apply vari-
ability modeling. Among others, our study shows that variability mod-
els are valued for their capability to organize knowledge and to achieve
an overview understanding of codebases. We observe centralized model
governance, pragmatic versioning, and surprisingly little constraint mod-
eling, indicating that the effort of declaring and maintaining constraints
does not always pay off.

1 Introduction

Many modern systems contain an increasing amount of variability to tailor sys-
tems for different customers and hardware. Variability can be realized using
a wide range of mechanisms including static and dynamic configuration param-
eters, components, frameworks, and generators. Variability-rich systems range
from large industrial product lines [12,32,1] to prominent open-source software,
such as the Linux kernel [7] with over 11,000 configuration options—aka
features [26].

Variability in these systems has to be managed. Variability modeling, the dis-
cipline of describing variability in formal representations—variability models—is
one of the key techniques to deal with complex variability. Variability models,
such as feature [26,14] or decision [35,16,13] models, provide abstractions of the
variabilities present in software. They allow engineers to scope systems and to
plan their evolution; they can also be used for system configuration and deriva-
tion using automated tools, such as configurators and generators.

However, variability modeling, as any modeling layer, comes at a cost. Models
have to be created and maintained, tools introduced, developers trained, and
possibly the organization restructured. These costs may outweigh any realized
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benefit, such as a high degree of automation or decreased time-to-market—two
benefits often emphasized in the literature. But surprisingly, although hundreds
of publications target variability modeling techniques [10,22,9], little is known
about actual practices in the industry. This scarcity of published empirical data
impedes research progress and the improvement of methods, languages, and
tools.

We attempt to address this gap with an exploratory case study of variabil-
ity modeling in three companies. Our objective is to provide contextualized
empirical data on practices, and to elicit perceived strengths and weaknesses
of variability modeling. The analysis of each case is guided by three research
questions:

– How are variability models created and evolved (RQ1)? We investigate mod-
eling practices, such as strategies to identify features and to modularize,
evolve and scale models. We also gather core characteristics of the models.

– What are the benefits (RQ2) and what are the challenges (RQ3) of variabil-
ity modeling? We identify technical, organizational, and commercial values
and challenges of modeling, as experienced and perceived by practitioners.

To put this empirical data into context, we also inquire organizational struc-
tures supporting the practices, and elicit scales, architectures, and technologies
of the respective software product lines.

This case study is part of our ongoing effort to improve the empirical under-
standing of variability modeling. We previously surveyed companies in their use
of variability modeling [5] and conducted semi-structured interviews with eight
of them. In the present work, we select three companies and describe and ana-
lyze them in-depth. Our selection represents a broad range of development scales
from very small (two developers) to ultra-large (100 development teams); com-
prises domains that commonly use variability modeling (automotive, industrial
applications/energy, and eCommerce [5]); and covers all product-line adoption
strategies (proactive, extractive, and reactive [27]). In contrast to quantitative
research, our goal is not too reach any statistically significant deductions, but to
describe the practices that were successful in three heterogeneous cases. We pro-
vide rich descriptions of three selected cases rather than analyzing all interviews,
such as using Grounded Theory [20], which is the subject for future work.

We proceed as follows. Sect. 2 introduces variability modeling and related
work. Sect. 3 describes our methodology. Sect. 4 presents results for all cases.
Sect. 5 compares the cases, Sect. 6 discusses threats to validity, and Sect. 7
concludes.

2 Background and Related Work

We previously studied variability modeling in systems software [6]. That study
revealed the significance of feature and decision modeling concepts in languages
conceived by practitioners. It also showed that additional concepts (such as de-
faults, visibility conditions, derived features) are needed to scale modeling. Inter-
estingly, the models had very different characteristics (size, shape, constraints)
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Mobile Phone

EarPhone Multimedia Resolution

240x400 600x800 CustomMP3 Camera
requires excludes

Fig. 1. Simple feature model (adapted from [18])

than models considered in research. In the present work, we strive to gain insight
into how the results from the previous study relate to industrial practices. Our
preceding survey [5] showed that feature models were among the most popular no-
tations, but also that a wide range of notations and tools is used. It also confirmed
the existence of large models—which have been reported before [39,38,29], but
without any further characteristics, such as the use or complexity of constraints.

In the present study, all of our subjects use feature models. These are hierar-
chical structures of features, together with constraints that restrict valid feature
combinations. Fig. 1 shows the model of a Mobile Phone. It always (solid dot) has
the feature Resolution and optionally (hollow dot) has the features EarPhone or
Multimedia, or both. Multimedia is an OR group (select at least one) and Resolu-
tion an XOR group (select exactly one). Further constraints reside in the hierar-
chy (child-parent implication) and in additional cross-tree constraints (requires
and excludes). For instance, MP3 requires an Earphone. In practice, constraints
may be more complex. Some languages support rich constraints (e.g., arithmetic)
over features with non-Boolean values, such as numbers and strings [31,6].

Variability modeling is a core activity in software product line engineering
(SPLE) [12]. Although detailed industrial experience reports on SPLE exist, only
few focus variability modeling. The “Software Product Line Hall of Fame” [1],
a catalog of SPLE case studies [37], and a practice-oriented book [28] contain
information on adoption practices, organizational structures, and architectures,
but offer little insight into the use of variability models, their sizes and con-
tents, and the techniques used to build them. In fact, recent literature reviews
on the evaluation of variability modeling lament the lack of empirical work on
this topic [11,9,22,10]. Exceptions are industrial experience reports. Grünbacher
et al. [21] emphasize that techniques need to be customized to the organizational
context in which they are used; Reiser et al. [33] request compliance constraints
for the same purpose; Riebisch et al. [34] point out the use of feature models by
non-software developers; Gillan et al. [19] identify a lack of documented method-
ologies to create feature models. These reports are complementary to our study,
but cannot provide a coherent picture. Finally, variability modeling can be seen
as an instance of model-driven development (MDD). Hutchinson et al. [24,25]
study MDD practices and experiences in industry. They reveal success factors
for applying MDD, such as incremental adoption, organizational commitment,
and integration with existing development processes. While these results are rel-
evant to variability modeling, we strive to gain insights specific to variability
modeling.
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Table 1. Variability model characteristics, variable artifacts, and variability mechanisms

consulting company component producer car manufacturer
notation feature model feature model semi-structured feature lists
tools CaptainFeature pure::variants TeamCenter (prev. Excel)
modularization single model single model hierarchy of models
model sizes 40 1,100 top level: 300–500,
(features, approx.) intermediate level: up to 800,

low-level: up to 3000
feature types 100% Boolean 95% Boolean, 100% Boolean

5% integers and strings
feature kinds mandatory, optional mandatory, optional mandatory, optional
model hierarchy depths 5–6 3–4 2–3
cross-tree constraints none very few none
custom relations none recommended marketing relevance
variable artifacts code, help system code (requirements and code, logical design blocks,

database schema test cases planned) components, Simulink models
variability mechanisms custom preprocessor and C preprocessor and C preprocessor and

code generator dynamic parameters dynamic parameters
feature-to-artifact mapping hard-coded in generator pure::variants’ family model, informal textual descriptions

(imperative) feature Makefiles and architecture diagrams

3 Methodology

We conducted semi-structured interviews with knowledgeable representatives
from eight organizations identified in our previous survey [5]. In this paper, we
explore three of these cases in depth. Our selection criteria were that the cases (i)
represent a wide range of organizational sizes, (ii) stem from domains that most
frequently apply variability modeling according to the survey, and (iii) cover all
of the three common adoption strategies: proactive, extractive, and reactive [27].

Each of the interviews lasted one hour on average. We allowed the intervie-
wees to speak freely, but assured coverage of the following five topics: Context of
variability modeling, including organizational structure, variability mechanisms,
programming languages, and technologies; Practices (RQ1) used to create and
evolve models, including roles and responsibilities of the actors involved; Char-
acteristics of models, including size, shape, modeling elements, and richness of
constraints; Benefits (RQ2) of variability modeling; and Challenges (RQ3) expe-
rienced. The interviews were recorded, transcribed, and analyzed by extracting
information relevant to the research questions.

4 Results

We report the results in a structured narrative form together with interpretations.
For each case, we provide the context; then in the first subsection the practices
(RQ1); in the second subsection the benefits (RQ2); and in the third subsection
the challenges (RQ3) of variability modeling. Interview quotes are prefixed with
A, B, and C for the respective subjects, and our questions with Q.

Table 1 summarizes the characteristics of the respective models, the types of
artifacts whose variability they describe, and variability mechanisms.
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4.1 Consulting Company

Our first subject is a small (≤ 50 employees) consulting company delivering cus-
tomized web-based e-commerce and enterprise applications. The company spe-
cializes in MDD of software solutions for customers. We interviewed a depart-
ment lead, acting both as a software architect and developer. Our case study
focuses on a Java web-shop system that was in production for 2–3 years. Its
purpose was to explore the potential of generator-based SPLE using variabil-
ity management and modeling solutions originating from research—including
feature models, a feature-model configurator, and a code generator framework.
The latter is the main variability mechanism: it conditionally compiles source
files after preprocessing them with a home-grown preprocessor. The development
can be characterized as follows:

– Research-driven: The company followed a textbook approach to variability
modeling. It adopted practices mainly originating from [14], using a feature
model and a code generator for product derivation.

– Small-scale: The development team comprised two developers, both working
on the code, the generator framework, and the feature model (40 features).

– Prototype-based: The company started with a prototype to experiment and
to gain experience with software product lines and feature modeling. The
prototype went into production and was sold to six customers.

– Fully platform-oriented: All artifacts are integrated into one platform. New
customer requirements are always realized within the platform.

– Re-active: The product line and the feature model are the result of decom-
posing an initial product into features.

Modeling Practices (RQ1). The company developed a feature model with
the goal of configuring and deriving products automatically. It used the rela-
tively simple tool CaptainFeature [3], which had usability issues, but no better
tool existed in 2002. The interviewee emphasized the preference for having a
tool that supported the exact graphical notation of feature models (Fig. 1). This
representation of variability could be handled sufficiently well for a small model
of 40 features, using the tool’s zoom capabilities. To create models, the devel-
opers performed a domain analysis of the web-shop domain, including customer
requirements. The developers modeled both variability (optional features) and
commonality (mandatory features) of the product line. In this manner, following
advice and processes from SPLE literature, the developers scoped the product
line. New features were introduced either when requested by customers or when
the team saw added value for future customers:
A: The question in our case was rather: What can we sell to the customer? What
would be the added value a customer might want to have [...]? We always looked
at it from the perspective of what we can sell.

A core part of a model is the feature hierarchy, which was developed top-down,
based on domain-specific ontological relationships (part-of ):
A: We tried to come up with logical relationships between the features [...] we
had a feature that was called "Catalog System". That was the basis, since a shop
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always has a catalog. If you cannot display articles, then you just don’t have a
shop. Underneath, we put features such as "Shopping Cart", since only when you
have a catalog, it makes sense to take the shopping cart as a feature.

However, decomposing the initial product might have influenced the creation
of the feature model, and optional features mapped to artifacts might stem from
a bottom-up approach. Thus, the commonality (domain modeling) was likely
created top-down, while the actual variability was created bottom-up.

The resulting feature model had around 40 Boolean features and was relatively
balanced. Our interviewee estimated around 2–6 children per non-leaf feature on
average, and a maximum depth of 5 or 6 levels. The model was under-constrained.
Although constraints among features existed, only hierarchy constraints and fea-
ture groups (OR and XOR, Fig. 1) were modeled and could be used to support
the configuration process.

The model evolved rarely and only 2–3 features were added per new customer.
The overall structure of the feature model was also rarely changed and feature were
never removed. Feature additions almost never affected existing functionality.
Benefits (RQ2). Our interviewee sees the main benefit of variability modeling
in organizing the information needed to maintain an overview understanding of
the system. He emphasizes that the tool and the model provide management
facilities that are useful to summarize product capabilities, to understand rela-
tionships between features, and to see the assignment of features to customers.

The company also sees benefit in a feature-model configurator. However, short-
comings in it can negatively impact the configuration process. Yet, the company
experienced no significant impact given the limited scale of the system:
A: The tool wasn’t really that optimal [...] we had no real support where we could
see that feature X conflicts with feature Y [...] We might have sometimes reached
a point where we didn’t know what happens why, or when the nesting was too
deep. But that wasn’t anything dramatic.

In the literature, a common argument for SPLE is the reduced time-to-market.
When asked about this benefit, our interviewee responded:
A: I’d answer with a clear “depends on.” It reduces time-to-market when I can
rely on a basis and only have to make small changes for a client. On the other
hand, I cannot do it rashly or without care, because otherwise I break something
in my product family, which is not planned either. Where it also helps is when the
customer wants exactly what we already implemented, then the time-to-market
really converges to zero.

In summary, the company considered its prototype successful and reused most
of its infrastructure in a subsequent system: a jewelry-ring configurator devel-
oped for a ring manufacturer. The company developed a DSL used to describe
properties of rings, in order to generate 3D models of them. This DSL used
feature-model concepts, but introduced domain-specific terminology and lan-
guage elements to facilitate a fine-grained configuration of the rings. Interestingly,
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it also introduced feature cardinalities [15], which allow multiple instantiations
(cloning) of features, since a prototyped feature model became too wide and
shallow.
Challenges (RQ3). Despite rare evolution, the co-evolution of the variability
model and the product-line infrastructure is considered as a major challenge:
A: I think the biggest problem we faced at that time and also today, and which is
not really solved yet, is the evolution: To exactly know how to evolve features, on
which implementation components they depend, so that you don’t break anything
when you work in the generator. I mean, to keep the complete overview: what is
there and how does it all play together?

Interestingly, even though one of the main purposes of feature models is to
allow non-experts (customers) to configure a product, this turned out to be
difficult, as the customers did not have the right prerequisites:
A: Currently, we use it just internally. When we started in 2003, the underlying
idea was also to build a frontend from the feature model where the customer can
freely configure—exactly like the paradigm. But we abandoned this idea relatively
quickly, because it is still very difficult for the customer [...] In the end, you need a
consultant who tells the customer what he needs, because that is the first problem.
And then [you need] to understand what that means in our configuration.

Another challenge lies in the organization of teams. Since the company is
small, the same developers were building the platform infrastructure and target
products simultaneously. Developers would get confused working in both worlds:
A: We tried to develop the generator and target code in parallel. That was rather
driven by the theory. But we noticed that it doesn’t really make sense, I mean it
slows us down [...] When you work in both worlds and you come to a spot in the
target code where variability is addressed, you always automatically ask yourself
whether it’s something that you resolve in the target code or in the generator. And
then you start pondering what makes most sense, and you loose time, although
it’s not your task to think about that as a target code developer.

4.2 Component Producer

Our next subject is a large (≤25,000 employees) vendor of electronic and me-
chanical components for end-user and industrial applications. The company has a
large portfolio of products, many of which are derived from ad-hoc product lines,
often using a clone-and-own approach. We interviewed two software architects re-
sponsible for variability management in a division that develops a product line of
software controllers for power electronics. The product line has twelve products,
which are fully integrated into the platform, and over 30 optional add-ons for
sub-products maintained outside the platform. The product line has been in pro-
duction since 2005. In 2009, variability modeling was introduced using the tool
pure::variants [8], which also provides variability mechanisms: a “family model”
representing the source files, and a build system. The C/C++ preprocessor han-
dles fine-grained variations. The binding of variability is mainly static, but the
shipped products include a large number of runtime parameters, which can be
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configured by customers in a semi-static manner (they are normally not changed
during normal operation of a component, only in the configuration phase). The
codebase has 1.5M lines of C++ (98%) and C code, distributed over 10,000 files
with around 14,000 conditional compilation directives. The development can be
characterized as follows:

– Research-driven: SPLE and variability modeling practices were adopted in
interaction with consultants and researchers.

– Medium-scale: The feature model has slightly more than 1100 features. The
product-line-development involves around 60 software engineers.

– Mostly platform-oriented: Core parts of the product line are integrated into
one platform. Customer-specific artifacts (sub-products) exist outside.

– Extractive: The product line and the feature model are results of a migration
of existing individual products originating from a clone-and-own approach.

Modeling Practices (RQ1). Variability is modeled using a single centralized
feature model. Features are mapped to code using a family model. Building,
maintaining, and evolving the feature model is under the control of one expert:
B: We have a colleague who [...] really has the domain knowledge, because he took
care of all the development [...]. He consults with the other development teams.
[...] So we try to have one place, or one person that is responsible. But then it’s
not the case that he decides all the things. So, whenever we have an issue, we
try to organize a workshop or a meeting [...], it’s actually his responsibility to
make [sure] [...] that it’s correct.

The modelers focus on building the hierarchy (child-parent) relationship be-
tween features and try to avoid cross-tree constraints; few exist in the model.
However, they begun adding custom relationships, such as “recommended”. The
latter often indicates bug fixes, which are actually modeled as features, since
not every customer has an interest in enabling them. Some exploit the “invalid”
behaviors in their applications and prefer to keep them without fixing.

The variability models are under-constrained. Dependencies among source
files are not modeled in the family model, which could be used by pure::variants
to verify configurations. Instead, the company finds it easier to maintain tested
configurations of its twelve main products instead of exhaustively modeling all
constraints. The few dependencies used are primarily binary “requires” and “ex-
cludes” relations. There are no numeric or string constraints in the feature model.
Instead, complex constraints are put into the feature-to-code mapping as pres-
ence conditions of source files. This strategy is interesting, as it reduces con-
straints both in the variability model and the family model, which contains no
dependencies at all. The team strives to keep all models simple.

The hierarchy of the feature model is reasonably well balanced. The engineers
avoid deep trees and consider a maximum depth of three or four levels reasonable.
Yet, problems with finding the optimal grouping of features occur in some cases:
B: Then actually it becomes too flat somehow. So, it’s a question of how to group
them. We’re still working on the optimal way. But I think four, that’s really the
maximum. We don’t have really like huge trees over there.

The resulting model has around 1100 features. Evolution of it is mostly limited
to adding features. Feature removal occurs within rare, but important, clean-up
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tasks. The hierarchy is also relatively stable without any major refactoring. The
overall growth rate of the model is estimated at around 5–10% per year, with
up to 50 new features per release, 3–4 times a year. Versioning is considered or-
thogonal to modeling, so models are versioned but not features (i.e., no multiple
temporal versions of features in the model).
Benefits (RQ2). Our interviewees emphasize the organization of knowledge
and the visualization of variability as the main benefits. Naming and organizing
features makes them visible and accessible to developers, encouraging reuse:
B: The first one is that it’s visible, you see the features that you had in the code,
before, and actually you see the features of the whole product line. Before, they
saw features of the specific products. And then there was a process to make sure
that the new features were propagated to the rest of the product.
Q: So you know what’s common?
B: This, and actually now you can see them. I think the best is you can see
relationships, to actually know what configurations are allowed and what are not
allowed. That was also not so easy to express in the past [...] This is from the
developer’s point of view. But it’s also, we can see that from the, say project
development, it’s also important, because before we noticed that the same func-
tionality was implemented twice within the same project, basically they haven’t
realized that. They implemented the same features.
Q: Because it was not visible?
B: Yes, exactly. So it’s not only from the development point of view; now you can
somehow understand the code easily; you can see the dependencies between the fea-
tures; you know actually how this code works. And there’s also documentation that
is attached to the modeling. So you can generate documentation automatically.

Although our interviewees could not estimate increased productivity quanti-
tatively, they claimed substantial quality improvements by employing SPLE and
feature modeling, that it reduced the number of critical bugs significantly. They
also claimed that time-to-market was significantly reduced due to automated
product derivation. Interestingly, the organization presently strives for further
automation by linking features to portfolio and requirements models.
Challenges (RQ3). The interviewees expressed three challenges related, re-
spectively, to organization, modeling, and development. First, it is difficult to
convince all stakeholders to invest in core assets when the organization has a
matrix structure. Such an organization has two opposing forces: those who opti-
mize for short-term revenue by resorting to clone-and-own approaches with less
(short-term) development effort, and those who insist on proper SPLE activities
to assure revenue and less maintenance effort in the long run, but with higher
(short-term) effort:
B: In a big, big, really big company that has this [inertia], it’s easier to enforce
things also, because the management can actually push the things. [Our company]
is in the middle, it’s not very big, it’s not a small one. So there’s some kind of
let’s say, maybe not fight, but some kind of
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Q: pushback?
B: Yes, between the development and the management. And that’s actually a
challenge, because introduction of a product line requires that there’s some kind
of organizational structure introduced [...] So people will have to start thinking in
terms of developing assets that can be reused and this can be achieved only if you
have a group that takes care of [...] domain engineering. And I’d say in the really
big companies, maybe they have somehow the will to invest in actually organizing
the whole undertaking. Whereas in the companies that are in the middle, it’s
some kind of a strained situation when we have product development that is
really looking at the business and economy point of view, and then we have the
technology people, or the part that are developing the product, that are pushing
really for doing things the right way. And then the management is somehow in
between. [...] Because we have to earn money, so business tells them we have to
earn money. But we cannot do it the way we do it.

The second challenge concerns modularization of the model. It was difficult
to find a good structure when trying to separate product-specific features. Both
common and product-specific features exist, as well as commonalities between
these two groups. It is also possible to have many different combinations between
the groups. Thus, the result would have been an intricate model.

The third expressed challenge concerns the high amount of conditional com-
pilation directives in the code and the additional variability model layer that
developers need to take into account:
B: I think the biggest problem is that the developers are used to working for a long
time on the same abstraction level, basically text. Now somehow we introduce a
concept, a new way of working, because they cannot just, for example, merge
everything at the source code level. They also have to think about models [...]
So whenever they add a feature, they have to add the feature to the model. So
later whenever they merge back the integration branches, they have to merge all
the artifacts. They just have to learn about the modeling part. But I think the
modeling in pure::variants, I think the way they realize that is a big advantage.
Because in the past, they did it all in source code. So you had a huge header file
with features enabled and disabled. The dependency was hardly expressed.

4.3 Car Manufacturer

The third subject is a very large (≤ 150, 000 employees) car manufacturer pro-
ducing over 400,000 cars per year. From three main platforms, an estimated
number of three million different car models can be derived. Our interviewee is a
software architect who was involved in modeling and managing variability. The
product-line engineering comprises two major activities: development of car com-
ponents and manufacturing of cars. Our focus is on the development, which uses
features to capture variability. Features are mapped to hardware and software
article numbers to facilitate the manufacturing. The software is mainly written
in C, with a few exceptions, such as the infotainment system relying on C++
and Java. Variability mechanisms comprise component composition, conditional
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compilation with the C preprocessor, and dynamic adaptation at car startup
using configuration options. The latter allow finer-grained variations, while fea-
tures are generally coarser-grained. The development can be characterized as
follows:

– Practice-driven: Software variability-management strategies are an adapta-
tion of the mechanical manufacturing processes, which have evolved over
decades.

– Large-scale: There are three main vehicle software platforms. 50–100 teams
constantly interact with one another on individual subsystems of the plat-
form.

– Multi-level modeling: Three levels of feature models are maintained in the
company, each level facing different dynamics and governance.

– Heterogeneous modeling: The company uses diverse modeling approaches, in-
cluding behavior modeling (Simulink) and structural modeling using a spe-
cific subset of UML (Sparx Systems Enterprise Architect).

– Pro-active: Product-line engineering was adopted from the beginning. Single-
system development was infeasible due to the huge diversity. The current
platforms are the result of a slow evolution over 15 years.

Modeling Practices (RQ1). Feature models are used on different organiza-
tional levels to describe the variability of the in-car software. All models are
stored in a database, the TeamCenter product lifecycle management tool [2]. Be-
fore that, Excel was used. Each of the three platforms has a top-level model
describing the “complete vehicle level” with around 300–500 features. Most of
these are customer-visible features with a few exceptions, such as “remote diag-
nostics”. The top-level model is built and maintained by a central group in the
company. Features are refined into lower-level models to a maximum of three
levels. For instance, the infotainment system has an “intermediate” level with
700–800 features and a low-level model with up to 3000 features. For other sub-
systems, fewer levels suffice, such as the chassis system with two levels.

Often, just a superset of the actual variability is modeled: finer-grained vari-
ability is realized by configuration options or via dynamic adaptation. Thus, the
feature modeling concepts used are very simple, without any strong formaliza-
tion. Structural grouping of features according to functionalities exists, such as
for chassis, powertrain, or comfort features in the top-level model. Features are
tagged as optional or mandatory, together with information about their relevance
for marketing purposes. Only Boolean features exist; more types, such as enu-
merations (up to ten values) and integers, occur in the dynamic configuration
options managed separately from features. Neither feature groups (OR/XOR,
Fig. 1) nor cross-tree constraints are modeled. Although many exist, they are
only documented informally or contained in the manufacturing database. Like-
wise, the mapping between features and software components or other models
is only informally documented. Checking constraints does not play a role in
development:
C: We do that check in the manufacturing though, because we have a lot of
constraints. I mean, two physical things can’t occupy the same place physically.
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So, for example, if you have an engine of this size, there are things that you
cannot have because it’s so big. And that type of constraints we have, or checks,
we have in the manufacturing. And we also do that, the same thing to software,
for example, this software article is not compatible with that one. But, we don’t
do that a lot in development, but in manufacturing.

The different model levels face different governance and evolution. The top-
level is very stable, with updates only occurring at specific “update” events
twice a year. There, features are primarily added. Old features are removed, but
usually directly replaced with new ones. The low-level models are highly volatile.
For instance, the infotainment subsystem changes almost weekly.

Given all of these large-scale practices, the company never aimed for a
configurator-based approach to facilitate more automated derivation processes.
The latter is partly handled by a home-grown manufacturing tool, which combines
hardware and software article numbers during manufacturing, while adhering to
dependencies. Thus, the prime reason for variability modeling is the management
of variability, which does not require more formal modeling techniques.
Benefits (RQ2). Our interviewee sees the largest benefit of variability model-
ing at the requirements level: in scoping products, understanding configuration
spaces, maintaining development overviews, and fostering communication across
teams. Further benefit lies in marketing and coordination of new model releases:
C: I would say the most important purpose is to agree between the R&D or-
ganization and with the product planning organization over the content of each
product. And based on that, you, what I’d say, you break down, or derive the
requirements on each subsystem to realize these features. In most cases, these
features are realized by several subsystems co-operating.

Our interviewee expressed a neutral opinion about the value of variability
modeling in our previous survey. According to him, feature modeling in its sim-
plest form, as practiced in the company, provides the mentioned benefits, but
provides little assistance with product configuration and derivation activities.
Challenges (RQ3). Our interviewee sees the biggest challenge in organizational
and cultural issues among heterogeneous teams. While he expressed some issues
with code, his focus as a software architect was primarily on the organizational
level, where he is concerned about interaction and efficient use of modeling:
C: We have a lot of dependencies between subsystems and between teams, so it’s
quite difficult for the teams to work autonomously [...] I think there is an inherent
complexity, because the number of interfaces is also great [...] If we look at the
present processes at [...] when it comes to modeling, it seems like we’re aiming to
[...] keeping practices, which means that we’re trying to align the modeling efforts
between different domains, we try to align the design artifacts that we are using,
and so on. And [we focus] on keeping the traceability between the different kinds
of artifacts that we use—the feature models, the software in itself, the different
[...] component models, AUTOSAR component models, our design model, our
architecture model, and so on. So we put a lot of effort in maintaining all these
design artifacts in a consistent way [...] My personal opinion is that I don’t
think that’s the right way to go, because since the complexity of our systems is
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exponentially increasing [...] we actually need to identify ways of working such
that different development teams can work more autonomously, that they can use
the tools they need for their specific problems [...]

In summary, our interviewee is concerned with handling the many dependen-
cies between subsystems and establishing a harmonized collaboration between
teams. While he observes that processes are heading towards textbook practices
that strive to unify the current diversity in modeling approaches and introduce
coherent traceability, he would prioritize autonomous teams over a unified ar-
chitecture, which is increasingly complex due to a high amount of dependencies.
The whole development might become even harder to manage with increasing
effort spent on maintaining traceability and explicitly modeled dependencies.

5 Cross-Case Analysis

We now conduct a cross-case analysis and discuss commonalities and differences
across cases. After summarizing the context in which variability modeling is
performed, we compare practices (RQ1), benefits (RQ2), and challenges (RQ3).

Our cases applied variability modeling in very different contexts. The con-
sulting company used feature modeling and SPLE as known from the literature,
using the original graphical notation, a configurator, and a generator that re-
solves variability in an automated process. Although these web shops generated
revenue, the project was a means to experiment and to gain expertise in vari-
ability modeling. For the component producer, feature modeling and SPLE was
a core strategy to conquer complexity and maintenance issues stemming from
a previous clone-and-own approach. Their practices originated from a close col-
laboration with researchers and the vendor of their modeling tool. The company
was open to adopt solutions from research and saw the value of the solutions in
lower time-to-market and increased code quality, but faced friction between de-
mands for short-term revenue and the necessity of systematic variability manage-
ment for long-term advantages. The car manufacturer applied feature modeling
at a much larger scale and with simpler modeling concepts than both previ-
ous subjects. Practices originated from an engineering culture that had evolved
over decades. While the other subjects strive for higher automation, unification,
and integration of modeling, the reported experience suggests that textbook ap-
proaches might not work, or their effort might outweigh any potential benefit to
this organization.
Practices (RQ1). Limited constraint modeling: Our most surprising finding is
that all subjects avoid modeling constraints. This observation is in contrast to
our previous observations in systems software, where detailed constraints are
formally defined in rich languages. However, while configuration in our subject
companies is performed by only a few knowledgeable domain experts, the systems
software projects are configured by a large number of third-party users in ways
that are not closely controlled by the platform developers. The latter setting
requires constraint modeling, choice propagation, and conflict resolution facilities
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in order to guide users to correct configurations and prevent incorrect ones. These
facilities do not seem to be essential in the context of our subjects.

Centralized model governance: Variability models need to be controlled cen-
trally. While in the consulting company, the total development team was too
small to draw any conclusion, the other subjects apply strict governance of ei-
ther the whole model (component producer) or the top-level model (car manu-
facturer). Either one expert or a central team control the evolution and mainte-
nance of the model. Interestingly, this observation confirms Hypothesis 1 in our
study [4] on variability mechanisms in software ecosystems.

Furthermore, larger organizations, such as the car manufacturer, even require
clear responsibilities per feature: it has to be defined, specified (e.g., by writing
use cases) and developed by a dedicated entity in the organization.

Pragmatic versioning: We have not found any sophisticated support for version-
ing. One could, for example, imagine specific modeling elements for deprecated or
experimental features, version annotations, or constraints over versions of features.
Instead, the component producer uses an ordinary version control system for the
whole model, and the car company applies a pragmatic solution: features have a
unique identifier capturing lifecycle information. This approach, however, would
lead to highly redundant constraints when modeled among features.

Domain knowledge in feature hierarchies: Our first subject built the feature
hierarchy using domain knowledge. This indicates that hierarchical relations be-
tween features in fact represent domain-specific, ontological relationships. This
observation supports insights from our previous work on reverse-engineering fea-
ture models [36,30]. Thus, feature models contain unique ontological information,
and building a feature hierarchy can hardly be automated and will have to be
done by domain experts in a largely manual effort.

Top-down and bottom-up creation of models: All our subjects obviously needed
some amount of top-down knowledge and analysis. The first two subjects also
used the code of existing products to identify features. Thus, we believe that the
creation of models that are used to configure products will be often created by
a mixture of top-down and bottom-up approaches.
Benefits (RQ2). Organization of knowledge: The most important benefit of vari-
ability modeling, emphasized by all interviewees, is the organization of knowledge.
This benefit resembles perceived benefits of MDD [24]—companies appreciate the
potential of MDD to ease communication and to overview the development.

Visualization and scoping. All interviewees appreciate the visualization and
product-scoping capabilities of feature models. Most of them were able to better
understand product functionalities. The consulting company found it beneficial
to see which customers have which features. The component producer was even
able to identify duplicate implementations of certain features.

Configurator support: The insignificance of configuration in the three indus-
trial cases is surprising, which is in contrast to our previous study of systems
software (Sect. 2). We conjecture cost/benefit considerations. Configurators re-
quire formally declared constraints and, according to our previous experience,
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also proper usage of different constraint types (e.g., configuration constraints,
visibility constraints, default constraints) to leverage a configurator. Such ef-
fort would not pay off for our subjects, and even with intelligent configurators,
users can spend substantial time configuring products when intricate constraints
exist [23].
Challenges (RQ3). Mindset changes: Introducing variability modeling requires
mindset changes of all actors. As can be seen from the component producer,
developers commonly think at one abstraction level and struggle with trying to
maintain features (at another abstraction level). Even in the consulting company,
where the developers had bought into modeling, both struggled with developing
application code and infrastructure code in parallel. The situation for the car
manufacturer was different, however. SPLE was an adaptation of mechanical-
engineering practices that have a long tradition; thus, developers always under-
stood that single-systems or cloning-based development is infeasible.

Short-term versus long-term benefit: SPLE requires discipline from all actors—
specifically, to consistently co-evolve models and code. In a matrix organization,
there is a higher risk of conflict between proponents and opponents of systematic
variability management. Actors who strive for short-term revenue might fall back
to clone-and-own for product derivation, leading to high maintenance in the
future, as the clone requires maintenance. Establishing a culture for systematic
management and modeling is a core challenge.

Evolution: All subjects primarily add features and seldom remove features
or restructure the hierarchy. The consulting company mentioned that evolution
was challenging as it requires understanding the feature-to-code mapping and
the impact of feature changes, to avoid breaking the system. The car manufac-
turer expressed concerns about exploding complexity of their development, but
not specifically about the (simple) models. Although the company strives for
increased commonality of the software for all car models, whether this effort will
affect features or only the finer-grained configuration options remains an open
question.

6 Threats to Validity

External validity. Our findings originate from only three cases. However, we
do not attempt to reach any statistical generalizations from the data, but de-
scribe substantial cases in their full richness. In fact, case-study research does
not aim at representativeness, which is impossible to assess since the whole pop-
ulation of cases is usually unknown. Our selection of cases is based on theoretical
sampling [17]. We chose them according to three criteria (Sect. 3) among all of
our subjects. A limitation of our study is that all subjects successfully applied
variability modeling. Studying failed attempts would be valuable future work.
Internal validity. Our findings rely on interview data, since no other data-
sources (e.g., artifacts) were available. We interviewed actors centrally involved
with variability modeling. Still, triangulating our results with data gathered us-
ing other methods, such as action research or ethnographic field studies, would
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be valuable future work. Interestingly, the practices of the car manufacturer
correlate with our experiences with another car manufacturer of similar size, im-
proving our confidence in the results. Last, the interview data could be biased
due to leading or misphrased questions. We did pre-tests and carefully analyzed
the transcripts, omitting responses that indicated uncertainty. The consulting
company interview was done in German. We carefully, almost literally, trans-
lated it.

7 Conclusion

We have provided empirical data on variability modeling in successful industrial
applications. The reported experiences show that feature models are perceived
as intuitive and simple notations that organize unique domain knowledge and
foster understanding and collaboration among developers. Many practices are
pragmatic, such as versioning, the mix of top-down and bottom-up modeling,
central model governance, or the very limited constraint modeling. Interestingly,
instead of declaring and maintaining constraints, our subjects prefer to manage
a set of configurations or to let experts configure products. Thus, the primary
benefit of variability modeling lies in variability management—organizing, vi-
sualizing, and scoping features—less in configuration and automation for our
subjects. Yet, the benefits require acceptance of an additional abstraction level
and discipline in maintaining models. Otherwise, long-term advantages can be
compromised for quick revenue, which we found is especially a problem in matrix
organizations.
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Abstract. When developing large-scale industrial software systems en-
gineers need to instantiate, configure, and deploy diverse reusable compo-
nents. The number of component instances required depends on customer
requirements only known during configuration and is typically unknown
when modeling the systems’ variability. Also, the hierarchy of dynam-
ically created component instances leads to complex dependencies be-
tween configuration decisions. Dealing with component multiplicity and
hierarchy thus requires an approach capable of expressing the depen-
dencies among dynamically instantiated components and configuration
decisions. Furthermore, users need tool support for navigating the com-
plex decision space during configuration. In this experience paper we
report on applying a decision-oriented modeling approach for defining
component variability, multiplicity, and hierarchy. We further present a
configuration tool that guides end users through the complex decision
space. We report applications of the approach to industrial software sys-
tems and describe patterns and lessons learned.
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1 Introduction and Motivation

Managing the variability of industrial software systems is challenging [1,2]. En-
gineers of such systems frequently capture domain experts’ knowledge regarding
the characteristics of the reusable components and the restrictions on how they
can be combined in variability models [3]. Such models define the possible sys-
tem variants and provide a foundation for automating the product configuration
process.
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Many existing variability modeling approaches [3] assume that a product vari-
ant can be derived by selecting a subset of available features satisfying the con-
straints defined in the variability model. However, the assumption that the set
of components for a product variant can be statically inferred based on a feature
configuration often does not hold in industrial settings [4]. Our experience shows
that instead complex industrial systems are built incrementally during configu-
ration by creating multiple instances of components, wiring different component
instances, and configuring their properties. The composite nature of the compo-
nents implies that the containment hierarchy of the component instances also
has to be taken into account. Existing approaches [3] provide capabilities for
dealing with the multiplicity of reusable components and managing the hierar-
chy of dynamically created component instances. However, tool support is still
immature, in particular end users lack support for the dynamic and complex
configuration process.

This paper describes experiences we gathered while developing and applying
a product line approach in the industrial automation domain. In particular,
we report about two experiences: (i) we describe how component multiplicity
and hierarchy can be supported by extending an existing variability modeling
language [5] and (ii) we present a configuration tool, which enacts the models
and supports end users in creating and configuring component instances. It also
supports users to navigate in the hierarchically structured decision space.

This experience paper significantly extends an earlier workshop paper [6] in
which we presented the motivation and basic modeling concepts. Here we de-
scribe industrial requirements for modeling and configuring components (Sec-
tion 2). We summarize capabilities of existing modeling approaches (Section 3)
and provide an overview of our approach for modeling multiplicity and hier-
archy (Section 4). We describe our tools for defining and enacting the models
(Section 5). We discuss the application of our approach to three industrial au-
tomation systems and present typical modeling patterns (Section 6). We discuss
lessons learned (Section 7) and conclude the paper.

2 Industrial Requirements

We use an example from the industrial automation domain to motivate the
requirements for variability modeling and configuration support. MultiRoll
automates and optimizes the controlled movement and cooling of molten steel in
continuous casting machines (see Fig. 1). After the molten steel passes through
the mold—where it is cast into the desired shape—the strand is immediately
supported by closely spaced rollers which support the walls of the strand against
the ferro-static pressure. The rollers must be carefully selected for use with dif-
ferent casting practices and different steel grades to assure highest performance
even under transient casting conditions.

MultiRoll comprises different hardware and software components that need
to be instantiated and configured to meet different customer requirements and
plant characteristics. A continuous casting machine has a variable number of
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Fig. 1. Rollers in a casting machine support the walls of a metal strand after it leaves
the mold. Configuring the rollers is crucial for achieving the desired steel quality.

strands and each strand can have a variable number of rollers, which vary with
respect to cooling capability, steel quality requirements, and casting conditions.
The final product variant thus depends on the multiplicity of different compo-
nents like Roller Variants or Segments as well as Life-Cycle Steps and Service
Performance Parameters of the rollers. Depending on the utilization, workload
and steel grades to be produced different types of rollers need to be installed
at the casting machine which vary in terms of size and diameter, initial costs,
maintenance periods, and cooling mechanisms. Each machine is equipped with a
variable number of segments in which the rollers are installed depending on the
dimension of the plant, the target production, and the desired utilization. Dif-
ferent segment types are used in different positions within the casting line. For
example, specific vertical segments are used within the first meters of a casting
line before the strand is bent to a horizontal position. Depending on the type of
rollers and their utilization, different life cycles and maintenance periods are ap-
plicable. For example rollers of type A can support a 5-iteration life cycle where
a roller is skimmed and refurbished multiple times before it needs to be replaced,
whereas for rollers of type B only a 3-iteration life cycle can be guaranteed under
certain circumstances.

Configuring MultiRoll involves dynamically instantiating software compo-
nents to address the customer requirements. Modeling the variability of Mul-
tiRoll requires defining its topology, i.e., the actual hierarchy of the caster as
well as the rules and constraints for strands, segments, and rollers. The prod-
uct architecture allows defining a variable number of segments and rollers for
each strand. Therefore, the physical structure and characteristics of the target
environment are essential for determining the different components needed for
building the system meeting a customer’s requirements.

The derivation of specific product variants requires the creation and admin-
istration of multiple instances of the different components contained in a strand
at the various levels of the hierarchy. MultiRoll cannot be modeled without
considering multiplicities as the number of segments and rollers is unknowable
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during variability modeling. For instance, during configuration time a customer
might decide that a Strand consists of two Segments with Segment1 consisting
of 20 Rollers and Segment2 consisting of 30 Rollers. Each of these component
instances has to be configured individually.

The configuration decisions needed for configuring all dynamically instanti-
ated components are typically not known during modeling and need to be created
on the fly. Furthermore, the components are composite in nature which leads to a
hierarchical and dynamic structure of the configuration decisions. Modelers from
industry have thus demanded an approach which supports modeling variability,
hierarchy, and multiplicity of components.

Hierarchy and multiplicity have also strong implications on model-based con-
figuration tools for end users. For instance, during configuration, the possible
configuration paths and hierarchical structure of complex systems need to be
presented intuitively and comprehensibly. The usability of end-user configura-
tion tools [7] is thus an essential requirement.

3 Existing Modeling Approaches

Defining the composition of components and their interaction is a primary pur-
pose of architecture specification [8]. Architecture description languages (ADLs)
[9] model architectural elements and their relation in terms of sub-systems, com-
ponents, ports, interfaces, and connectors. While some ADLs provide variability
mechanisms [10,11] they provide only limited support to define the variability of
the instantiated components. Also, ADLs typically do not provide abstractions
for end users performing configuration.

Issues of multiplicity and hierarchy have been addressed by existing variability
modeling approaches. In cardinality-based feature modeling [12] each feature has
a cardinality to define how many clones of the feature can be included in a con-
crete configuration. Orthogonal modeling approaches document software product
line variability in dedicated models independent of its realization in the various
product line artifacts. An extension to the OVM notation [2] has been pro-
posed, which introduces cardinality-range dependencies [13]. Decision-oriented
approaches define a set of decisions adequate to distinguish among the members
of a software product line and to guide the derivation and configuration of prod-
ucts. Approaches such as Synthesis [14] and FAST [15] also support modeling
cardinalities of decisions. However, these approaches do not consider component
hierarchies and there is no tool support for enacting variability models with car-
dinalities to support configuration. SimPL [16] supports modeling multiplicity
and hierarchy with a UML-based variability modeling approach. However, it also
lacks guidance for the derivation of products and end-user configuration support.

In addition, numerous approaches exist addressing specific related variabil-
ity modeling issues: Dhungana et al. [4] presented a new technique for reasoning
over cardinality-based feature models based on generative constraint satisfaction.
Riebisch et al. [17] presented a new notation for feature diagrams, emphasizing
the multiplicity of sets of features. Tool support for feature modeling with car-
dinalities is also described as part of the modeling language Clafer [18] which
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uses Alloy as the underlying reasoning mechanism. The feature modeling tool
Forfamel [19] uses answer set programming (smodels) for reasoning over mul-
tiple instances. The approach by Gomez and Ramos [20] allows to translate
cardinality-based feature models to domain variability models using model-to-
model transformations to take advantage of existing generative programming
tools and validation formalisms.

Although these approaches cover multiplicity and hierarchy each approach
addresses only parts of the industrial requirements. In particular, an integrated
approach is needed supporting both interactivity during configuration to guide
end users and modeling of multiplicity and hierarchy. We thus chose a decision-
oriented approach with support for guiding end users in configuration [7,5] and
extended it with support for multiplicity and hierarchy.

4 Modeling Multiplicity and Hierarchy of Variable
Components

We developed a modeling approach and embedded DSL supporting multiplicity
and hierarchy of variable components to address our industrial requirements. We
illustrate the key modeling concepts of the approach (cf. our earlier workshop
paper [6]) using the MultiRoll example.

4.1 Modeling Constructs

Our approach covers two levels as shown in Fig. 2: Component variability is
defined by specifying configuration decisions and assets, i.e., abstractions of so-
lution space building blocks. Following the idea of Configurable Units [21] the
components expose to the external world a variability interface, i.e., the config-
uration decisions which can be configured by resolving the defined variability.
Multiplicity and hierarchy are addressed by defining the types of configurable
components in the system and their structure during configuration.

Component Variability. Our model addresses component variability in terms
of configuration decisions and assets as defined in the DOPLER modeling ap-
proach [5].

Decisions represent problem space variability of reusable components, i.e.,
user visible choices leading to different component variants. Modelers need to
define the decision type (Boolean, string, number, or enumeration) and its de-
pendencies to other decisions. For instance, the required segments of MultiRoll
can be defined as a decision of type number. A decision can depend on other
decisions hierarchically (if it needs to be made before other decisions) or logi-
cally (if the answer affects other decisions). For example, the decision about the
number of segments becomes visible to the user during configuration only if the
number of strands has already been set.

Assets represent abstractions of technical solution space elements. Meta-
modeling allows adaptations to domain-specific concepts by defining concrete
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Fig. 2. Extended Dopler meta-model with the new model elements ComponentType

and ComponentCollection

types, attributes, and allowed relationships between assets. Structural depen-
dencies are used to specify the physical organization of the assets (e.g., consists
of, contributes to, is predecessor of, is successor of). Functional dependencies
specify relationships stemming from the underlying implementation of a system
and can be represented with relationship links like requires or excludes. Finally,
inclusion conditions are expressions defining when an asset is present in a system
variant depending on the values assigned to decisions during configuration.

Multiplicity and Hierarchy. We added two new modeling elements (cf. Fig. 2)
to Dopler’s core meta-model to support component hierarchies in the model:

A ComponentType represents a configurable unit in a complex system and serves
as a wrapper and recursive container for Decisions and Assets. The dependency
ComponentType contains ComponentType is used to model the containment hierar-
chy of component types (cf. Fig. 3 (a) – Segment contains Roller). Furthermore,
a ComponentType can contain an arbitrary number of ComponentCollections.

A ComponentCollection is a container for managing runtime instances of com-
ponent types. This element is vital for defining rules and constraints over the
runtime instances of components, for instance, when iterating over the instances.
The dependency ComponentType contains ComponentCollection is required to
manage the associated component instances (cf. Fig. 3 (b) – Segment contains a
collection of Rollers). The dependency ComponentCollection contains instances
of ComponentType is used to specify the type of configurable components that can
be stored in a ComponentCollection (cf. Fig. 3 (c) – the collection of Segments
contains components of type Segment). A ComponentCollection is always bound
to a specific ComponentType and thus contains instances of one particular type.

4.2 Example

Fig. 3 depicts a partial variability model of the MultiRoll system. A Strand

consists of the component type Segment. Each segment maintains a collection
of runtime instances of Segment in a container called segments. Configuration
decisions in the strand have effects on the decisions in the segment. For instance,
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Fig. 3. A partial variability model of the MultiRoll system supporting multiplicity
of ComponentType elements organized in a containment hierarchy. Each node in the
hierarchy consists of both decisions and assets (instances not shown in Figure).

the user configuring the strand can specify the number of segments. For each
segment selected a number of assets (software components) will be included in
a configured product automatically [5]. At the root of the variability model the
ComponentCollection list_strands represents the collection of all strands being
configured.

The hierarchical decomposition of components resembles a feature model at
first sight, but in our approach each node in the hierarchy is a Configurable Unit
containing the core modeling elements Decisions and Assets.

4.3 Configuration Time Behavior

The new modeling elements ComponentType and ComponentCollection require more
sophisticated language constructs to specify configuration time behavior in the
variability models. We use an embedded DSL with Java as a host language to
define the rules for this behavior. Rules consist of firing conditions (Boolean
expressions) and actions—functions affecting the configuration. Rules can be
triggered when model elements are instantiated or after the user makes a con-
figuration decision in the configuration tool.

Decision effect rules are triggered after a decision value has been changed. All
rules associated with a certain decision are fired after that decision value changes
(either directly by the user or as the result of other rules). For example, as soon
as the user sets the value of decision calculateWeight a rule may be triggered to
sum the weight of all component instances of a certain type (e.g., of all rollers).
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Initialization rules are triggered once when a component is created. For ex-
ample, every strand in the MultiRoll system consists of at least one segment
in which rollers move the solidifying steel. This can be expressed using an init
rule that is executed whenever a new instance of Strand is created resulting in
a Default Segment in each strand accessible through the collection segments.

4.4 Working with Component Instances

In addition to basic actions for value assignment we introduced actions for man-
aging instances of components maintained in a ComponentCollection at runtime
and for iterating over runtime instances of components, accessing decisions, and
configuring other properties:

Creating new instances of components at runtime can be done by specifying
a rule on a ComponentCollection, which manages the newly created instance
or by specifying a decision effect rule. As a ComponentCollection defines the
type of objects it can hold, the required type is instantiated automatically. For
example, if the number of segments in the strand depends on a user decision,
the modeler can add a decision numSegments to the ComponentType Strand and
associate a decision effect rule adding the required number of Segments to the
ComponentCollection segments. This rule is executed at configuration time as
soon as the value of the decision numSegments changes due to user input or due to
another rule. The newly instantiated Segments are now part of the configuration,
so the decisions associated to the Segments must also be instantiated for each
instance of the Segment. The same paradigm continues deeper in the hierarchy,
where the user can decide for each Segment about the number of Rollers and so
on. Removing specific instances of a component from the ComponentCollection is
similar to adding the instances. Iterating over the instances of components in the
collections is for instance required whenever the modeler needs to assert global
properties of the system. For example, to calculate the total number of rollers
in the caster, the modeler has to iterate over all the segments and rollers in each
segment to aggregate data from all constituent components. Specifying cross-
components rules is possibly by referring to instances by name. For example, to
ensure that “the 1st roller of the 2nd segment must have the same diameter as
the 3rd roller of the 4th segment”, a rule can be specified.

5 Tool Support for Model-Based End-User Configuration

As Dopler is already in use in different industrial projects [5], we realized the
described modeling capabilities by extending the Dopler tool suite for modeling
and configuration.

5.1 Model Execution Engine

We developed an engine that allows executing the rules defined in the variabil-
ity model. Variability models are mapped to Java classes to support enacting
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the models during configuration. At configuration time a class is generated and
compiled on the fly. The decisions represent variables in the Java class whereas
decision types are mapped to basic data types (e.g., Boolean, String, Integer).
Boolean expressions describing decision and asset dependencies as well as rules
are internally transformed to methods. The initialization rules are transformed
to class constructor statements that are automatically executed upon class in-
stantiation. A ComponentType is mapped to an inner class mirroring the hierar-
chy modeled in the variability model. A ComponentCollection is mapped to a
standard Java java.util.Collection class. The model-to-Java transformation is
performed on the fly and the resulting class is subsequently compiled by invoking
the Java Compiler through the compiler API. Resulting compilation warnings
and errors produced by the Compiler are used to provide instant feedback to the
modeler regarding the validity of the defined rules and the model in the editor.
As the rule engine needs to selectively fire and propagate the effects of rules, we
use an off-the-shelf byte-code analyzer component [22] to work with the class

representation of variability models. Modifications of the structure or content of
a variability model during modeling result in the immediate re-generation and
re-evaluation of the corresponding Java representation.

5.2 Configuration Tool

We extended the existing Dopler product configurator [7] to support configu-
ration with multiple instances of decisions and assets (cf. Fig. 4). The Runtime
Elements view depicts a hierarchy of components and provides an overview of
the created instances. When the user selects a component, the Decisions view
displays all configuration options of this component instance. For example, in
Fig. 4 the root component RollerSimulator1 is selected. Decisions in one Com-

ponentType can be further categorized into several tabs (in the figure: General,
Machine Definition, Life Cycle Definition) to support the user by displaying re-
lated decisions in groups. For each component instance, the user can make the
decisions and thereby trigger the rule propagation and evaluation of decision
dependencies in the compiled Java class.

The tree shown in the runtime elements view dynamically adapts based on the
user’s decisions and can become quite large over time depending on the number
of created instances and the depth of the hierarchy. Our product configurator
tool thus provides additional features to guide users in working with the compo-
nent hierarchy. Besides basic features for expanding and collapsing elements the
user can focus on one particular runtime element, i.e., select a subtree as current
context in the runtime elements view. This eases working with deeper hierar-
chies. The user may also apply type-based and textual filters to further reduce
the complexity of the configuration tree. A progress bar (cf. Fig. 4 bottom left)
indicates how many of the currently existing instances have already been fully
configured (all decisions part of the component instance have been made). On
top of the decisions view a breadcrumb navigation bar provides further support
by facilitating the quick navigation through different tree levels. The user can
select a component instance in the runtime elements view and use the context
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Fig. 4. Configuring MultiRoll products with support for multiplicity and hierarchy
based on Dopler variability models. The Dopler product configurator provides a
Runtime Elements view and a Decisions view. Making decisions updates the Runtime
Elements tree, selections in the Runtime Elements tree update the Decisions view.
Parts of the figure are blurred due to non-disclosure agreements.

menu to apply decision values to all instances. This allows to quickly configure all
instances by just making the decisions of one instance. Afterwards, the user can
adapt decisions of different instances to configure the desired deviations among
instances. The tool also supports dynamic adaptation of decision and asset at-
tribute names based on placeholders which are automatically resolved for each
run-time instance. This can be used, e.g., to present instance-specific questions
to users. For example, instead of asking users about the number of rollers in the
segment the question can be automatically adapted for each instance to allow
questions such as “How many rollers are available in the 2nd segment?”.

6 Modeling Patterns in Industrial Applications

We report on experiences of applying our approach to three industrial applica-
tions: MultiRoll, MultiLog, and MultiCMS. Each of these three applica-
tions is a real product line containing multiple hardware and software compo-
nents. We report model characteristics and modeling patterns we discovered.
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Table 1. Variability model characteristics of three industrial applications

MultiRoll MultiLog MultiCMS

Decisions 45 102 43
ComponentTypes 9 6 8
ComponentCollections 9 7 9
Rules 12 18 6

6.1 Model Characteristics

For each of the products modelers from industry defined a variability model
providing the functionality required to configure the three systems by using
the modeling concepts for multiplicity and hierarchy our approach provides.
The modelers used different sources to create the models. For instance, already
existing spreadsheets provided a starting point for the engineers to elicit the
variability of the systems.

MultiRoll is used for strand and segment configuration in continuous cast-
ing machines (cf. Section 321).MultiLog is a software-intensive logistics system
providing support for intelligent storage and transportation of material in steel
plants. It has been designed as a product line and facilitates optimal storing and
retrieving of raw materials, intermediate goods, or final products. The system
optimizes transport tasks and material relocation by helping to control trans-
port vehicles like cranes, forklifts and trucks, guiding them to transport materials
automatically to the location where they will be needed. MultiCMS is a mon-
itoring system for metallurgical plants. Each plant contains several equipment
locations where data is captured and subsequentially processed by PLCs (Pro-
grammable Logic Controller). The PLCs are in turn configured by various Data
Blocks and Channels which need to be mapped to monitoring specifications. This
data is used to assess the equipment status within the various plant facilities.

The resulting variability models (cf. Table 1) range from about 40 to 102
decisions (which are instantiated multiple times together with ComponentType el-
ements at runtime). Decisions are part of ComponentType elements representing
rollers, segments, bays or configuration blocks. All three models contain a similar
amount of ComponentType elements (6 to 9) and ComponentCollection elements (7
to 9). A ComponentType is defined once at top-level and then used multiple times
within in the product hierarchy. Each product contains various rules to instan-
tiate the components, to define dependencies or to calculate attribute values by
iterating over instances.

6.2 Modeling Patterns

When modeling MultiLog, MultiRoll, and MultiCMS we frequently en-
countered three patterns related to multiplicity and hierarchy. These patterns
are of general interest for researchers as well as practitioners facing similar
modeling challenges. We report these patterns and their implementation in the
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extended Dopler approach. We use Gamma et. al.’s design pattern struc-
ture [23] and describe intent, motivation, example, context, and solution for
each pattern.

Predefined Multiplicity. The modeler should be supported when defining a
predefined number of component instances which will later be instantiated at
runtime.

Motivation: If the number of component instances is already known at mod-
eling time the number of dynamic instances can be predefined by default.

Example: Both MultiRoll and MultiLog need exactly two contact data
forms for user data input and the ContactDataForm has to be instantiated twice.
This is already known at modeling time and will not change during configuration.
At runtime, whenever a roller or stockyard configuration model is instantiated,
the two contact forms (one for the customer and one for the contact person on
vendor side) and associated decisions are automatically generated for the user.

Context: This situation can be visualized using a decision table with a fixed
number of rows (representing instances of a type) and a fixed number of columns
(representing configuration decisions of the instance). Each cell of the table rep-
resents a decision value to be set for the component instance (rows).

Decisions
ComponentCollection ComponentTypes name address

ContactDataForms
Customer

SVAI Employee

Solution: A new component (e.g., ContactDataForm) is defined in the variability
model, including the decisions related to the component (e.g, name, address). A
ComponentCollection (e.g., ContactDataForms) is created to hold the instances of
that type. A rule is added to the container of the component, to instantiate
a fixed set of instances, i.e., Customer and SVAI Employee, as shown in the
following example.

Mu l t i R o l l . i n i t −>
ContactDataForms . add ( ”Customer ”) ;
ContactDataForms . add ( ”SVAI Employee ”) ;

Single-dimensional Multiplicity. If the number of instances of components
is known only at configuration time, instances have to be generated dynamically
based on user input.

Motivation: In many cases the number of instances is not known at modeling
time. However, the modeler should be able to define the component only once
and specify the number of instances required at runtime.

Example: MultiCMS supports a flexible number of PLCs to be configured
for a single project. Therefore, the user must make a decision on the number of
PLCs required for his context. A ComponentType PLC defines the parameters to
be set for a PLC (such as id, name, and type).
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Context: This situation can be visualized using a decision table with multi-
ple rows (representing instances of a component type) and a fixed number of
columns (representing configuration decisions of the instance). Each cell of the
table represents a decision value of the selected component instance.

Decisions
ComponentCollection ComponentTypes id name type

plcs
PLC 1
PLC 2
. . .

Solution: To support such scenarios a decision can be defined to capture the
required number of instances at configuration time (e.g., PLCs). This can either
be done by directly asking the user or by inferring the required number from
other decisions. The rule that is fired as a result of changing the decision adds
instances of a certain component type to a collection plcs as shown in the listing
below. Depending on the user choice the required PLCs are instantiated and
added to the ComponentCollection plcs. Each created element is represented in
the configuration tool as one item in the runtime elements tree that provides a
set of decisions (i.e., the columns of the table shown above) upon selection for
the selected instance.

decisionNumPLCS . r u l e −>
p l c s . add ( ”PLC” , numPLCS) ;

Multi-dimensional Multiplicity. In this case the number of instances of com-
ponents and the number of decisions per instance are both known only at con-
figuration time.

Motivation: The modeler should be able to define a variable number of deci-
sions per component instance and a variable number of component instances.

Example: This scenario can be found when configuring the amount of rollers of
a specific variant for each Segment Type (cf. Fig. 4–(3)). Depending on the user
selection the required number of Segment Types have to be added to the Compo-

nentCollection SegmentTypes. Each of these elements contains another Compo-

nentCollection RollerVariantNums which holds the same number of elements
as Roller Variants (cf. Pattern Single-dimensional multiplicity). Each instance
of the ComponentType Num of Roller-Var. provides a configuration decision for
defining the amount of rollers of this variant within the selected Segment Type.

Context: The situation in which the number of configurable components and
the number of parameters for each component are unknown at modeling time
can be visualized using a decision table in which both the rows and the columns
depend on configuration decisions. In this case, each cell of the table corresponds
to a set of configuration decisions and not just a single decision.
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ComponentCollection/-Types
rollerVariants

ComponentCollection ComponentTypes RV. 1 RV. 2 . . .

segmentTypes

Type1 decisions decisions . . .
Type2 decisions decisions . . .
. . . . . . . . . . . .

Solution: The decisions thatmust be instantiatedmultiple times arewrapped in
a new component type (e.g., RollerVariant). A decision is defined to capture the
required number of instances at configuration time (e.g., decisionNumVariants).
The rule that is fired as a result of changing the decision iterates through another
dynamically created instance collection and adds instances to the component (e.g.,
rollerVariants) as shown in the following listing.

dec i s i onNumVar i an t s . r u l e −>
segmentTypes . add ( ”Type ” , numOfSegmentTypes ) ;
f o r ( SegmentType s t : segmentTypes . g e t A l l ( ) {

s t . r o l l e r V a r i a n t s . add ( ”RV. ” , d ec i s i onNumVar i an t s ) ;
}

7 Discussion and Lessons Learned

We discuss lessons learned for both researchers and practitioners requiring sup-
port for multiplicity and hierarchy.

Modeling precision and complexity. Existing modeling languages provide ex-
tensive support for defining the structure and topology of systems, i.e., the hier-
archy of configurable components. Variability modeling approaches on the other
hand allow defining the hierarchy of features and the possible system variants.
We have learned that in order to be useful in practice a variability modeling
approach must also allow defining the actual system structure. The expressive-
ness of the modeling constructs and the rule language features of our approach
satisfied the requirements regarding multiplicity and hierarchy. However, our ex-
periences in modeling industrial systems also show that these benefits come at
an expense. The approach allows to represent complex industrial scenarios but at
the same time modeling becomes more challenging. For instance, the mechanisms
for querying and manipulating runtime instances of configurable components in-
crease the complexity of the modeling language. We improved tool support for
modelers and added capabilities for code completion, syntax highlighting, and
syntax checking to address this additional complexity.

Trade-offs of using an embedded DSL. Instead of developing a new language
we decided to use Java as a host language of our embedded DSL to avoid the “yet
another language” syndrome. Modelers in the domain already used Java which
accelerates the adoption of the tools and increases acceptance. Furthermore,
the use of a general purpose language makes it easy to extend the approach,
e.g., by adding new types of rules and actions to the rule engine. On the other
hand the benefits of modeler acceptance and extensibility come at the expense of
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sacrificing analyzability as the cost of verifying formal properties of the rule base
– e.g., consistency, cycle-freeness, and redundancy – ranges from polynomially
decidable to undecidable. Driven by industrial requirements, in our case, testing
was primarily done through test runs and simulated configuration sessions which
allowed the use of Java as a host language.

Navigation support for different users. While it is comparably easy to syntac-
tically define multiplicity and hierarchy in variability models, developing a user
interface that hides the complex internal structure of the configuration space
from end users while still providing guidance is challenging. Also, the different
responsibilities and skills of end users in configuration need to be supported
with different views and perspectives in the configuration tool. We extended the
Dopler configuration tool [7] with a runtime elements view and capabilities to
work with multiple instances in a hierarchy. The existing role and user concept
in Dopler allows us the tailoring of the UI to the specific needs and skills of end
users. In a hierarchical configuration process with multiple levels, this can for
example be used to restrict the configurable part of the runtime elements tree
depending on the currently active role leaving the rest invisible or not editable.
Also, filters for certain types can be applied automatically to further restrict the
configuration tree.

8 Conclusions

We described a modeling approach for dealing with multiplicity and hierarchy of
configurable components. Based on an industrial example we discussed modeling
requirements and described an implementation of the approach in the Dopler
tools. A new modeling layer for dealing with multiplicity was added to an ex-
isting modeling approach. Existing projects can be migrated to the extended
approach easily if needed. Support for enacting variability models is provided by
mapping the variability models to Java. A configuration tool supports end users
in navigating through the complex decision space. We assessed the usefulness
of our approach by applying it to three different industrial products. We also
documented frequent modeling patterns and discussed lessons learned.

Acknowledgments. This work has been supported by the Christian Doppler
Forschungsgesellschaft, Austria.
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7. Rabiser, R., Grünbacher, P., Lehofer, M.: A qualitative study on user guidance
capabilities in product configuration tools. In: 27th IEEE/ACM Int’l Conference
Automated Software Engineering, Essen, Germany, pp. 110–119. ACM (2012)

8. Shaw, M., Garlan, D.: Formulations and formalisms in software architecture. In:
van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 307–323.
Springer, Heidelberg (1995)

9. Medvidovic, N., Taylor, R.N.: A classificiation and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

10. Matinlassi, M.: Comparison of software product line architecture design methods:
COPA, FAST, FORM, KobrA and QADA. In: 26th International Conference on
Software Engineering (ICSE 2004), pp. 127–136. IEEE CS, Edinburgh (2004)

11. Dashofy, E., van der Hoek, A., Taylor, R.: A highly-extensible, XML-based ar-
chitecture description language. In: Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001), pp. 103–112. IEEE Computer Society, Amsterdam
(2001)

12. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10(1),
7–29 (2005)

13. Maersk-Møller, H.M., Jørgensen, B.N.: Cardinality-dependent variability in orthog-
onal variability models. In: 6th Workshop on Variability Modeling of Software-
Intensive Systems, Leipzig, Germany, pp. 165–172. ACM (2012)

14. Software Productivity Consortium, “Synthesis guidebook,” SPC-91122-MC. Hern-
don, Virginia, Tech. Rep. (1991)

15. Weiss, D., Lai, C.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison Wesley Professional (1999)

16. Behjati, R., Yue, T., Briand, L., Selic, B.: SimPL: A product-line modeling method-
ology for families of integrated control systems. Information and Software Technol-
ogy 55(3), 607–629 (2013)
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Abstract. In configuration processes with multiple stakeholders, con-
flicts are very likely because each decision maker has a different concerns
and expectations about the product. They may not be aware of features
selected by others or the restrictions that these selections impose. To
help solve the conflicts, this paper introduces a new approach to provide
explanations about their causes. Our approach is based on representing
features from different concerns using different Feature Models (FMs),
and relating them through Feature-Solution Graphs. An FSG contains
dependency relationships between two FMs: one feature from the left
side forces or prohibits the selection of features in the right side feature
model. The strategy to detect and explain conflicts is based on propaga-
tion of constraints over the FSGs. We claim that our approach is more
expressive and efficient than when using a single FM that contains all
concerns and SAT solvers to detect conflicts.

Keywords: Multi-level configuration processes, Feature Models,
Feature-Solution Graphs, Conflict explanation.

1 Introduction

Feature Models (FMs) represent alternatives and restrictions to configure a prod-
uct. They are widely used to analyse the commonality and variability in a set of
products [1], and to support configuration processes where one or many stake-
holders select which options include into a specific product [2,3].

In feature-based approaches, a product configuration includes a selection of
features from one or several feature models. An invalid configuration usually
means that stakeholders have different perspectives and expectations on the
product and, for some reasons, their selections produce a conflict. A configuration
conflict may arise when the stakeholders configuring a product select features
that cannot be selected at the same time. To determine if a configuration is
valid or without conflicts, i.e., it satisfies the constraints of a feature model,
many approaches rely on Constraint Programming (CSP) [4] or/and satisfiability
solvers (SAT solvers) [5].
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The main issue with these approaches lies in their inability to explain the rea-
sons of conflicts without further process. For instance, after a conflict is detected,
CSP-based approaches may use diagnosis theory to repair the configuration [4],
i.e., select and deselect automatically some features in order to transform an
invalid configuration into a valid configuration, but they do not provide con-
crete information about the reasons of conflicts. On the other hand, SAT-based
approaches may exploit strategies to isolate some constraints during evaluation
on SAT solvers such as MaxSAT[5] and HUMUS[6] to obtain information about
conflicts and suggest solutions, but there are some cases where all the defects
are not detected or incorrect information is provided [7].

Other approaches, instead of detecting conflicts they focus on preventing con-
flicts by feature model specialization [2]. Once one or more features are selected,
the feature models are modified, i.e., specialized, to remove those features that
conflict with the already selected. However, because these approaches prevent all
the conflicts, a stakeholder cannot determine why something cannot be selected,
i.e., the explanation of the conflict is impossible.

The main contribution of this paper is a configuration process that can ex-
plain conflicts if they occur. The strategy relies on: (1) a process of feature
model specialization that updates the model without removing features from
it, instead, features are marked as not-selectable. We call this FMs, conflic-
t-tolerant FMs. (2) modeling multiple Feature Models, one per stakeholder or
concern (3) Feature-Solution Graph (FSGs) that relates features in one model to
the features that must be selected or cannot be selected in other feature models
when they are selected; (4) an algorithm to propagate decisions from one FMs to
the others marking the features in these models as mandatory or non-selectable
according to the consequence of the decisions made (5) an algorithm to explain
conflicts by finding the features that cause the conflicts using the FSGs updated
after propagating the decisions.

The rest of paper is organized as follow: Section 2 presents a motivating
case, Section 3 presents our approach. Section 4 presents an evaluation of the
approach, Section 5 summarizes the related work, and Section 7 concludes the
paper.

2 Motivating Example

When developing and deploying applications in the cloud, software architects
face the challenge of conciliating architectural decisions with the options and
restrictions imposed by the chosen cloud provider.

In Software Architecture, an architectural decision can be seen as a two-step
process: selecting architectural tactics to promote quality attributes and choosing
design alternatives to implement those tactics. Available design alternatives are
limited by the offer of the provider. When configuring the cloud platform and
its services as directed by the chosen tactics, the architect must be mindful of
conflicts among the available alternatives. These trade-offs amongst the desired
quality attributes can be difficult to detect, understand and ultimately solve.
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In this scenario, at least two different stakeholders are involved: on one hand,
the architects that are concerned about the quality attributes and architectural
tactics, and on the other hand, the technical leaders that are concerned about
the technological options they can use to implement the application.

For example, to promote performance the architect may want to use a tactic
called “Reduce Overhead” and to promote availability she can choose a tactic
called “Active Redundancy”. On the other hand, the technical leader can opt
by selecting the option a Load Balancer in Jelastic and High Availability option
in Glassfish. Although these choices seem valid for each stakeholder, they may
lead to a conflict because the “Reduce Overhead” tactic aims to eliminate any
additional processing such as the required by load balancers to process HTTP
headers or by the High Availability option to replicate data for application’s
state and sessions.

In the context of software architecture, many of the choices are trade-off de-
cisions. When conflicts arise, architects have to deal with those decisions and to
negotiate about which options must be deselected or selected in order to solve
them. Thus, it is very important to understand what quality attributes are in-
volved and why. We want to provide, when the choices of the stakeholders are
in conflict, an explanation about which features selected in other feature models
are the cause.

3 Detecting and Explaining Conflicts

The main contribution of our work is the ability to explain conflicts in terms of
selected features. In our strategy, we specialize feature models tolerating conflicts
during the propagation process, and maintaining structures that allow us to
trace the decisions and explain the reasons of conflicts. This section presents an
overview of the process1.

3.1 Conflict-Tolerant Feature Models

To tolerate conflicts, we propose feature models where features can be typed as
non-selectable, in addition to the standard mandatory and optional types. Our
feature models allow features to carry more than one type at the same time.
Thus, a feature model can be well-formed even when a feature is mandatory and
non-selectable. Notice that normally, a feature model would not be constructed
using non-selectable features, rather the type is used to make explicit the cases
in which a feature cannot be selected due to constraints in the model propagated
during the configuration process.

In our approach, we distinguish full mandatory features as those that must be
included in all the configurations (i.e. the mandatory features which ancestors
are also mandatory features). Notice that a feature model is invalid2 if any full
mandatory feature is also non-selectable.

1 A formal definition of the approach is presented in a technical report[8]
2 If there are no valid configurations for a feature model.
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Fig. 1. Example feature model supporting multiple types. A cross-box is used to indi-
cate non-selectable feature.

Figure 1 shows a feature model, result of a configuration step, supporting
multiple types and non-selectable features. It includes an optional feature f1 and
a mandatory feature f2 as traditional feature models. These features are in an Or
Group denoting that both can be included in a valid configuration. In addition,
the model includes a feature f3 that has an optional and an additional mandatory
type (i.e. effectively rendering the feature mandatory). The feature f4 is optional
and non-selectable (i.e. it is non-selectable or a dead feature) and feature f5 is
optional, mandatory and non-selectable (i.e. a conflicting feature that makes its
parent non-selectable). The feature f2 is full mandatory because it and all its
ancestor features are mandatory. Features f3, f4 and f5 are in an Alternative
Group, i.e. only one of them can be included in a valid configuration. Notice that
the presented feature model is valid because no full mandatory feature is also
non-mandatory (e.g. a configuration including root, f2 and all its ancestors is a
valid configuration).

3.2 Feature-Solution Graphs (FSGs)

We specify selectable features in a configuration process using feature models
and feature solution graphs (FSGs) that relate two feature models. Instead of
using a single feature model, we define a different feature model for each concern,
and a set of relationships from features of one concern to features in the next
concern. When a feature in the left-side model is selected, using the relationships
in the FSG, we can affect features in the right-side model. We define two types of
relationships that reflect specialization operations for the defined feature models.
For a given configuration c and f and f ′ features of the left and right hand side
feature models of an FSG respectively:

Forces. A relation f
forces−−−−→ f ′ denotes that the feature f ′ must be converted

to full-mandatory when f is included in the configuration c.

Prohibits. A relation f
prohibits−−−−−−→ f ′ denotes that the feature f ′ must be typed

as a non selectable feature when f is included in c.
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(a) forces relationships (b) prohibits relationships

Fig. 2. Effect of forces and prohibits relationships in a feature model specialization

3.3 Configuration Process

During a configuration process, stakeholders make decisions by selecting features
to include in a configuration. We propose here an algorithm to propagate those
decisions by selecting and making non-selectable other features. This propagation
of decisions is achieved through a feature model specialization, a transformation
that takes a feature model and yields another feature such that the set of valid
configurations of the resulting model is a subset of the valid configurations of
the original feature model. Informally, an FSG holds the information to perform
a feature model specialization. The specialization process takes the features of
a valid configuration in the left-side feature model, obtains the relationships
defined in the FSG that start on these features, and modify the types of the
features in the right-side model where those relationships end.

Figure 2 shows, for each type of relationship in a FSG, how the right-side
feature model is specialized according to the semantics that we have associated
to the relationships.

Forces. Figure 2.a shows an FSG where a feature in the left-side has a forces
relationship to a feature in the right-side. Then, if that feature is selected in
the left-side, the corresponding feature in the right-side is converted into a
full-mandatory feature, adding a mandatory type to that feature and all its
ancestors.

Prohibits. Figure 2.b shows a prohibits relationship: if the feature in the right-
side is selected, a non-selectable type is added to the corresponding feature
in the left-side.

Our propagation of decisions makes explicit all mandatory and non-selectable
features in the right-side feature model, either because: 1) they are originally
marked or, 2) they are a result of the forces and prohibits relationships in the
FSG, or 3) they are a result of the constraints defined in the right-side feature
model.

In addition, this propagation creates new relationships in the FSG represent-
ing, for each selected feature in the left-side model, which additional features
in the right-side model are converted to mandatory or non-selectable in con-
sequence. This updated graph maintains a trace that is later used to explain
conflicts.

Figure 3 shows how a propagation of decisions updates an FSG. The left side
shows an FSG where a feature in the right-side model has a forces relationships
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Fig. 3. Propagation of decisions into new relationships in the feature-solution graph

to a feature in the left-side model. After propagation, new relationships are
added into the FSG to denote, for the original feature in the first model, which
additional features are suggested and prohibited.

Fig. 4. Example FSG

As a more complete example, Figure 4 presents two feature models and FSG
relating features of the left-side model with features of the right-side model.
These relationships specify that feature f1 in the left-side forces the feature f ′

10

in the right side, the feature f2 forces f ′
5 and f3 prohibits f ′

2.
According to these relationships, each time a stakeholder selects one of the

features f1, f2 and f3, variability in the right-side feature model is modified by
adding new types to the features in that model. In addition, new relationships
are added to the FSGs to represent which selection caused those new types.
Figure 5 shows the updated FSGs that result from selecting each feature in the
left-side model.

As we already mentioned, propagating the selection of a feature results in a
set of changes on the right-side feature model. For instance, Figure 5.a shows
the propagation of selecting f1 assuming that that f1 forces f ′

10: First, f
′
10 must

become in a full mandatory feature, thus the features f ′
10 and its ancestors, i.e.

the feature f ′
8, must be marked as mandatory. Then, because each of those fea-

tures now marked as mandatory are part of alternative groups, other features in
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(a) after propagating the decision of selecting f1

(b) after propagating the decision of selecting f2

(c) after propagating the decision of selecting f3

Fig. 5. Updated FSGs after propagating decisions of selecting each feature f1, f2 and
f3

that group must be typed as non-selectable, i.e. the features f ′
7 and f ′

9. In addi-
tion, because f ′

3 implies f ′
9 (a non-selectable) feature, f ′

3 becomes non-selectable
too. Finally, because f ′

3 is non-selectable and it is in an alternative group with
only other feature, that feature f ′

2 must be typed as mandatory. Besides the new
types in the right-side feature model, new relationships are added to the FSG
to denote that f1 suggests f ′

2, f
′
8 and f ′

10, and prohibits f ′
3, f

′
7 and f ′

9.
Figure 5.b shows that propagating the decision of selecting f2, considering

that f2 forces f ′
5, adds relationships to the FSG that represent that f2 suggests

f ′
5, f

′
4 and f ′

2. Figure 5.c shows that propagating the decision of selecting of f3,
considering that f3 prohibits f ′

2, results in that f3 prohibits f ′
2 and suggests f ′

3.
When a stakeholder selects two or more features, that decisions can be also

propagated. Figure 6 shows the updated FSG after propagating the decision of
selecting f1 and f3. The resulting FSG includes the relationships presented in
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figures 5.a and 5.c but also other relationships. For instance, notice that feature
f ′
2 is suggested by f1 but prohibited by f3. That means that the feature f ′

1,
parent of f ′

2 is non-selectable. Then, the FSG is updated indicating that f ′
1 is

prohibited by the selection of f1 and f3.

Fig. 6. Excerpt of FSG after propagating decisions of selecting the features f1 and f3

Once decisions have been propagated into new relationships in the FSG, we
use these relationships to explain why a feature is already selected or is non-
selectable. For instance, in figure 6 we can identify that f ′

5 is non-selectable
because the selection of both f1 and f3, but the feature f

′
9 is non-selectable only

because the selection of f1.

3.4 Detecting and Explaining Conflicts

A configuration conflict occurs when the effect of selecting two or more features
in the left-side model invalidates the right-side because some feature becomes
full mandatory and non-selectable.

Fig. 7. Excerpt of FSG after propagating decisions of selecting all features f1, f2 and
f3

Using the example above, if only two of the features f1, f2 and f3 are se-
lected, the resulting feature model is valid. However, selecting all three features
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results in conflicting features: full mandatory features that are non-selectable.
Figure 7 shows some updated relationships after propagating decisions in FSGs.
It includes relationships that show that feature f ′

1 is suggested by f2 but, at the
same time, prohibited by f1 and f3. Note that, at least, f ′

1, f
′
2 and f ′

3 are full
mandatory and non-selectable at the same time, i.e. they are conflicting features
that invalidate the feature model.

4 Revisited Example

In this section we describe how to model alternatives in a configuration pro-
cess, and how to detect and explain configuration conflicts using feature-solution
graphs. In addition, this section discusses the expressiveness, efficiency and lim-
itations of our approach.

4.1 Modeling Architectural Decisions

In Section 2, we have presented a scenario where software architects and technical
leaders decide how to design and deploy applications. We model that scenario
specifying decisions for each concern in a different feature model, i.e., a fea-
ture model for the concern architectural tactics and another feature model for
platform options. In addition, we are using Feature-Solution Graphs (FSGs) to
represent, for each architectural tactic, which options must be used to implement
it.

We propose Feature-Solution Graphs (FSGs) to relate architectural tactics,
as presented in [9], with their implementation, in this case, using the Jelastic
cloud provider 3. In fact, we can reuse the feature model of architectural tactics
and to define a new feature model for other technological domain and to relate
them with FSGs.

In Figure 8, we have an excerpt of that Feature-Solution Graph (FSG)4[10].
This FSG includes two feature models, one representing architectural tactics and
the other representing cloud platform configuration options. A set of relation-
ships describes, for each tactic, which configuration options can be selected and
which should not.

For instance, this FSG shows that the architectural tactic “Passive Redun-
dancy” for Availability is implemented in Jelastic by configuring the Load Bal-
ancer option with any of the application servers. In addition, it also shows that
tactic “Active Redundancy” is implemented by configuring the Load Balancer
and the HA (High Availability) option in Glassfish Application server. Also, it
shows that tactic “Reduce Overhead” for Performance is implemented by not
selecting the HTTP Load Balancer option.

3 http://www.jelastic.com
4 Technical report and example feature models are available at
http://soft.vub.ac.be/~jchavarr/jelastic-fsg/

http://www.jelastic.com
http://soft.vub.ac.be/~jchavarr/jelastic-fsg/
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Fig. 8. Excerpt of a Feature-Solution Graph representing Architectural Tactics and
the corresponding configuration options in Jelastic

4.2 Conflict Detection and Explanation

Our approach focuses on detecting and explaining configuration conflicts prop-
agating decisions in one feature model into the other model. After a feature is
selected in the left-side model, the algorithm performs a set of changes on the
right-side feature model to represent the effects of that selection.

For instance, Figure 9 shows the propagation after “Active Redundancy” is
selected in the left-side in two steps. First, because the tactic in the left side
forces the Load Balancer and the High availability, these features in the right
side must be marked as mandatory. In addition, becauseHigh availability requires
the HTTP Load Balancer, the latter is also marked as mandatory.

Along with the marks to the features, the propagation also creates relation-
ships to describe which feature in the left side cause the modification in the
right side. Note in Figure 9 that a new set of relationships shows that “Active
Redundancy” forces the Load Balancer, the HTTP Load Balancer and the High
Availability option; and prohibits the TCP Load Balancer, the Tomcat and the
Jetty options.

Figure 10 shows the propagation after the “Reduce Overhead” tactic is se-
lected in the left-side. During the propagation, the process add some marks to
denote that a feature is not-selectable, and a set of relationships to describe
which features are prohibiting these non-selectable features.

When both tactics “Reduce Overhead” and “Active Redundancy” are se-
lected, there is a conflict. Figure 11 shows the propagation after both tactics are
selected. On one hand, the “Reduce Overhead” prohibits the use of the HTTP
Load Balancer, and on the other hand, the “Active Redundancy” forces the se-
lection of the HA option in Glassfish, a feature that requires the HTTP Load
Balancer. Note that while one tactic forces the selection of a configuration op-
tion, the other tactic prohibits its selection (i.e. there is a configuration conflict).
The conflict is then: HTTP Load Balancer is at the same time mandatory and
non-selectable.

To determine why a feature in the right-side is in conflict, we can use the forces
and prohibits relationships in the FSG. For instance, to explain to a software
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(a) after marking features as selected or non-selectable

(b) after creating new forces and prohibits relationships
to denote which features are the cause

Fig. 9. Effects of selecting the “Active Redundancy” architectural tactic in the features
of Jelastic

(a) after marking features as selected or non-selectable

(b) after creating new forces and prohibits relationships
to denote which features are the cause

Fig. 10. Effects of selecting the “Reduce Overhead” architectural tactic in the features
of Jelastic
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Fig. 11. Effects of selecting the “Reduce Overhead” and “Active Redundancy” archi-
tectural tactics

architect why there is a conflict in the HTTP Load Balancer, the relationships
can be used to indicate that this load balancer is forced by the “Active Re-
dundancy” tactic but prohibited by “Reduce Overhead”. The explanation is:
the architect has to deal with a trade-off between Performance and its tactic
“Reduce Overhead” and Availability and its tactic “Active Redundancy”.

5 Related Work

There are several proposals to support configuration processes based on Fea-
ture Models, covering the tasks related to configuring products, detecting and
explaining configuration conflicts [3].

Multi-stage configuration processes [2,11,12] use a single feature model to
represent the variability independently of the stakeholders. These approaches
combine the feature models of all the stakeholders in a single model and introduce
new implies and excludes relationships between features of a stakeholder and
features of others. These types of relationships allow to specify that a feature
must be or not included in a configuration as an effect of a selection.

On the other hand, Multi-level configuration processes use multiple feature
models, normally, one per stakeholder. Czarnecki, Classen et al. [2,11] use an-
notations in features to include expressions that determine if a feature must be
included in a configuration. These expressions are defined in terms of features of
other stakeholders. However, although there is a feature model for each stake-
holder, existing formalizations combine these models into a single FM to validate
configurations and detect conflicts [11]. This integrated feature model includes
requires and excludes relationships to relate features of one concern to features
of other concerns. However, these relationships are aimed to define constraints
about which features can be selected at the same time but not to describe the
effect of a decision in one concern into other concerns.

In contrast to existing proposals, we use Feature-Solution Graphs [13,14] to
support configuration processes with multiple concerns. These Feature-Solution
Graphs were proposed to represent, after a selection of features, which compo-
nents must be included in the application. We have extended these graphs to
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support processes with many concerns organized in a sequence of feature mod-
els, where decisions performed in one feature model affect decisions that must
be made in the further feature models.

In any of these types of configuration processes, an Invalid configuration is a
selection of features that does not satisfy the constraints defined in the corre-
sponding feature models. There are many approaches to detect conflicts during
configuration [15,11,5] and provide information about the conflicts [4,6] based
on constraint programming (CSP) and SAT solvers. In contrast, we have de-
fined an algorithm to propagate decisions along feature-solution graphs in order
to detect and explain conflicts. Our propagation updates relationships between
feature models that allow us to explain why some feature cannot be selected or
which features are causing a conflict.

6 Discussion

6.1 Expressiveness

As we pointed out in the related work, the main difference between our approach
and the other multi-stage configuration approaches, is the use of multiple feature
models and feature-solution graphs to related them instead of a single feature
model to represent the alternatives for multiple stakeholders.

From the expressiveness point of view, this means: (1) our approach uses sets
of smaller and easier to process reusable feature models, where each one rep-
resents the alternatives for a single stakeholder, and (2) it uses “forces” and
“prohibits” relationships with additional semantics that allow us to propagate
the decisions performed by one stakeholder in a feature model into the subse-
quent feature models; besides, during this propagation process we can create
traceability links that help us to explain why a feature is selected or not, and
furthermore to explain later conflicts if they appear.

Finally, we introduce conflict-tolerant feature models that allow us to de-
tect conflicts without removing elements in the model. In contrast to other ap-
proaches [2], these features models can be specialized without removing features
and keeping traceability links to selected and non-selectable features. Thus, an
automatic process can be later use these traceability links with to explain de-
tected conflicts.

6.2 Efficiency

An advantage of our approach is that it considers a reduced number of features
during the analysis. As reviewed by other authors[16], the performance of ana-
lyzing feature models depends on their size. Multi-level configuration approaches
merge the feature models for each concern into a larger model in order to analyze
it. This merging results in larger feature models that takes more time to process.
In contrast, our approach exploits that we can organize small feature models in
sequence and propagate decision made by stakeholders in one model to other
feature models.
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Other existing approaches perform two different processing tasks: one to de-
tect if there is a conflict, and other to determine the conflict causes [7]. These
approaches, after detecting a conflict, start to analyze again the model using
subsets of the selected configuration to determine which is causing the conflict.
That implies executing again the process for analyzing each combination. Instead
of that, our approach uses a single propagation process to detect and explain
conflicts.This process is amenable to incremental processing, that is hard or
impossible to do in SAT or CSP approaches.

Regarding the algorithm complexity of our approach, it is mainly determined
by the propagation across the relationships between the feature models and
the feature groups and relationships in the right side. While other approaches
rely on SAT solvers, that are NP complete problems, or CSP programs where
the searched space of the constraint satisfaction problem may be as large as
2m+n, where m is the number of features and n the number of relationships and
feature groups in both left-side and right-side models, our propagation algorithm
complexity is in the order r∗ lm ∗ ln where r is the number of prohibit and forces
relationships, lm is the number of features and ln the number of relationships
and feature groups in only the right side feature model.

6.3 Limitations

Our propagation algorithm works on basic feature models or models with group
cardinality. In these models, we can propagate that a feature should be selected
or not, and detect conflicts when the same feature should be selected and not
selected at the same time. However, this algorithm is not aimed to work on
feature models with instance cardinality (i.e. cloneable features) or extended
models with constraints about attributes in the features. In these models, con-
straints and relationships may imply that, after selecting some feature, other
features must be cloned or some attribute values must be modified. Although
we can propagate decisions altering the model, conflicts cannot be detected only
checking if the same feature should be selected and not selected at the same
time. These models may have other different types of conflicts (e.g. more clones
of a feature or higher values in attributes than the allowed).

In addition, our algorithm works efficiently propagating decisions in a se-
quence of feature models. That means that selections in one feature model have
effects in the following feature models but not effects in the already selected
models. There are many configuration processes that follow these patterns and
can be benefited by our approach. However, there are also other configuration
processes where decisions in some feature models may have effects in decisions
in preceding feature models.

7 Conclusions

We have presented an approach to detect configuration conflicts, and explain the
causes of conflicts using feature-solution graphs and feature models that tolerate
conflicts.
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Our approach is based on feature models that can be specialized without re-
moving features, because each feature can be typed at the same time as manda-
tory, optional and non-selectable. We use FSGs to specify how features in one
level affect features in other levels. These FSGs support forces, and prohibits rela-
tionships. In addition, our configuration process uses these relationships to prop-
agate decisions from one level (left-side feature model) to the next one (right-side
feature model). A conflict is detected when, at the same time a feature becomes
mandatory and non-selectable. Thanks to the relationships between the two fea-
ture models we can trace the reasons of the conflict and to give an explanation
that can help solve it.

We can make equivalent our work to the SAT solvers approach to detect
configuration conflicts. Thus, we can transform our forces, and prohibits rela-
tionships for includes, and excludes relationships and use the SAT solvers to
find conflicts. Our advantage, in this case, is that we use forces, and prohibits
semantics not only to constrain features but to propagate decisions and to find
the causes of the conflicts. In addition, because our algorithm does not need to
process all the features of all the concerns, it performs better than others using
CSP and SAT solvers.

In recent approaches, once they detect conflicts, they use CSP or SAT solvers
to find fixes to the configuration. We are planning further work on providing fixes
in addition to the explanations, and to overcome the other limitations explained
above.
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Abstract. We present the tools, metamodels and code generation tech-
niques in use at Elettronica SpA for the development of communication
adapters for software and firmware systems from heterogeneous models.
The process start from a SysML system model, developed according to
the platform-based design (PBD) paradigm, in which a functional model
of the system is paired to a model of the execution platform. Subsystems
are refined as Simulink models or hand coded in C++. In turn, Simulink
models are implemented as software code or firmware on FPGA, and an
automatic generation of the implementation is obtained. Based on the
SysML system architecture specification, our framework drives the gener-
ation of Simulink models with consistent interfaces, allows the automatic
generation of the communication code among all subsystems (including
the HW-FW interface code).

Keywords: System Engineering, Model-Driven Architecture, Model-
Based Design, Platform-Based Design, Automatic Code Generation.

1 Introduction

In our previous work [1] we described the methodology and the process in use at
Elettronica SpA for the development of complex distributed systems. The process
benefits from the complementary strengths of different Model-driven approaches
such as domain-specific modeling languages, Model-Driven Architecture (MDA)
[4] and Model-Based Development (MBD) [5]. Starting from requirement cap-
ture, our approach follows the tenets of Platform-Based Design (PBD)[2], in
which a functional model of the system is paired to a model of the execution
platform. In this work, we focus on the tools and techniques used for the au-
tomatic generation of communication adapters between components generated
from Simulink models and implemented in software or firmware. The target ap-
plication is a high speed radar processing system, in which a stream of PDMs
(Pulse Descriptor Messages), obtained by sampling RF signals are processed to
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discover and classify of emitters. PDM sequences arrive at a rate of 106 messages
per second and to produce the results within the time constraints, the processing
is partitioned in an FPGA front processor data is controlled and feeds data to
a SW classifier.

The starting point is an architecture-level SysML model of the system and
its component subsystems, defined according to PBD, which separates the func-
tional model from the model of the execution platform, and the physical archi-
tecture. A third model represents the deployment of the functional subsystems
onto the computation and communication infrastructure and the HW devices.
Some of the functional subsystems are refined, simulated and prototyped using
the Simulink environment [10]. These subsystems must adhere to the Simulink
(synchronous reactive) execution semantics. In addition, domain-specific SysML
[6] extensions define the execution platform and the mapping relationships be-
tween the functions and the platform (which defines the model of the software
tasks and the FPGA implementation, among others), the mapping of ports into
the programmable HW registers, and the mapping of functional code (including
the code generated from Simulink) onto a model of threads and processes.

We define model-to-text transformations for the subsystems refined in Simulink
to generate an interface specification (ports and port types) consistent with the
SysML subsystem definition. The subsystem is then refined as a Simulink model
and validated by simulation and an implementation for it is generated. For func-
tionality deployed onto a SW thread, a SW implementation is generated (a ded-
icated C++ class, with an interface defined by the Simulink Coder/Embedded
Coder [10] standards). An FPGA implementation is automatically generated for
components mapped onto programmable HW.

Our framework provides the generation of the communication code that sends
and receives data to and from the automatically generated subsystems and those
subsystems for which a manual implementation is required. This is done by creat-
ing an abstraction layer around each component, with a standard interface that
is defined and implemented leveraging the SysML DataFlow port definitions.
The (internal) connections between the standard wrapper abstractions and the
internal implementations are defined using:

– A standard interface for reading and writing ports for handwritten code.
– A layer that remaps to the standard interface defined by the Mathworks

software code generator (for subsystems implemented in Simulink and auto-
matically refined in software).

– A translation to a standard driver interface for reading/writing from/to
FPGA registers in the case of an (automatic) firmware implementation.

The (external) connections among the wrapper code abstractions are real-
ized in a different way according to where the component functions (and the
wrappers) are allocated for execution.

In summary, the main contributions of our work are the following:

– The definition of a SysML profiles that extends MARTE to express the
realization of embedded functionality as software or firmware components.

– An environment for the generation of communication wrappers towards the
automatic generation of implementations from the Simulink environment
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with deployment onto FPGA (in this case also a driver layer is generated)
or in SW. This avoids the need to program code that is mostly tedious,
consisting of data marshalling, and automatically selects the mechanisms
for data consistency when needed.

– An implementation that is entirely based on open source tools and standard
languages (except, of course, for the integrated Simulink models and the
code generated from those).

The organization of the paper is the following. Section 2 provides an outline to
our methods, tools and models for the generation of the adapters , including an
outline of the structure of the generated code. Section 3 outlines the relationships
(and provides a comparison) with previous work in this context. Section 4 defines
all the stereotypes and metamodels used in our flow to represent the design
of the system components and the generation of the driver code towards the
programmable HW. Section 6 provides the details of methods and tools for the
integration of Simulink components and Section 7 discusses the generation of
the communication code. Finally, Section 8 provides the conclusions.

2 Outline of The Process, Models and Code Generation

The main objective of the models and tools presented in this paper is to enforce
the consistency of the developed components with respect to a SysML system
description and introduce automation in the generation of the code that performs
data communication and synchronization among the functional subsystems.

The starting point for our methodology is a SysML model as in the left side
of Figure 1. The model is organized according to a layered structure (each layer
in a separate package [1]). The Functional description consists of a set of SysML
blocks communicating through standard and flow ports (top part of the fig-
ure). Some of these blocks are identified as subsystems executing according to a
synchronous reactive semantics, refined and validated in Simulink.

A separate package in the SysML system model identifies the execution plat-
form for the system, including a model of the execution HW, with computing
nodes, boards, cores and FPGAs (bottom-left part of the figure). Each core is
associated with the operating system managing the execution of the software
processes and threads residing on it. Finally, a third package defines the alloca-
tion of the functional subsystems onto the execution platform. This layer defines
the model of the software threads and processes, of the communication messages
and the allocation of functionality onto threads (for software implementations)
or programmable HW.

Following the system-level architecture description in SysML, components
are designed, refined, and implemented using different methods and technolo-
gies. Components that define complex algorithms or control laws are modeled,
simulated, and verified as Simulink models. For these components, an implemen-
tation path making use of automatic generation tools is used. Other components
are designed in UML and then refined as manually written C++ code.

Two software layers, generated automatically from the SysML model descrip-
tion provide for the interaction between the subsystem functionality and the
FPGA implementations (access to the HW platform, as described in Section
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5) and for the communication and interactions among functional components.
The communication among the data ports of all functional subsystems is real-
ized through code automatically generated from the SysML Mapping layer and
consisting of a number of software wrappers that provide an API for accessing
the data ports specified in SysML with the correct type information (shown in
light blue, in Figure 1). These wrappers translate from a standard interface for
the access to ports (directly used by hand-written components) to the standard
interface to the SW functions automatically generated by Simulink and/or the
driver functions automatically generated for the access to FPGA functionality
in the case of functionality mapped onto programmable HW.

Fig. 1. The generated wrappers provide for the communication among subsystems

3 Related Work

The match of a functional and execution architecture is advocated by many in
the academic community (examples are the Y-cycle [12] and the Platform-Based
Design PBD [2]) and in the industry (the AUTOSAR automotive standard is
probably the most relevant recent example) as a way of obtaining modularity
and separation of concerns between functional specifications and their imple-
mentation on a target platform. The OMG [3] and the MDE similarly propose
a staged development in which a PIM is transformed into a Platform Specific
Model (PSM) by means of a Platform Definition Model (PDM) [13].

The development of a platform model for (possibly large and distributed) em-
bedded systems and the modeling of concurrent systems with resource managers
(schedulers) requires domain-specific concepts. The OMG MARTE [7] standard
is very general, rooted on UML/SysML and supported by several tools. MARTE
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has been applied to several use cases, most recently on automotive projects [15].
However, because of the complexity and the variety of modeling concepts it has to
support, MARTE can still be considered as work in progress, being constantly
evaluated [14] and subject to future extensions. Several other domain-specific
languages and architecture description languages of course exist, such as, for
example EAST-AADL and the DoD Architectural Framework.

Several other authors [18] acknowledge that future trends in model engineering
will encompass the definition of integrated design flows exploiting complementar-
ities between UML or SysML and Matlab/Simulink, although the combination
of the two models is affected by the fact that Simulink lacks a publicly accessi-
ble meta-model [18]. Work on the integration of UML and synchronous reactive
languages [19] has been performed in the context of the Esterel language (sup-
ported by the commercial SCADE tool), for which transformation rules and
specialized profiles have been proposed to ease integration with UML models
[20]. With respect to the general subject of model-to-model transformations and
heterogeneous models integration, several approaches, methods, tools and case
studies have been proposed. Some proposed methods, such as the GME frame-
work [21] and Metropolis [22]) consist of the use of a general meta-model as an
intermediate target for the model integration.

A large number of works deal with the general subject of integration of hetero-
geneous models. Examples are the CyPhy/META Toolchain at Vanderbilt [17]
and the work on multiparadigm modeling (a general discussion in [16]). In both
cases, emphasis is placed on the role of domain-specific languages and model
trasformations in the general context of large and distributed Cyber-Physical
systems. Other groups and projects [23] have developed the concept of study-
ing the conditions for the interface compatibility between heterogeneous models.
Examples of formalisms developed to study compatibility conditions between dif-
ferent Models of Computation are the Interface Automata [24] and the Tagged
Signal Language [25].

4 SysML Profiles for PBD

We defined SysML profiles to express concepts that are required for our scope
(and of general use to specify resources and complex embedded systems designs).
Overall, the stereotype definitions contained in these profiles follow the general
organization of Functional, Platform and Mapping models.

4.1 Functional Modeling

The functional model contains the definition of the subsystems, at some level
of refinement of the system functional architecture. Each subsystem processes
input signals and produces outputs, according to a port-based interface. The
profiles that apply to the functional model must support the code generation
stage allowing the identification of the subsystems with a synchronous execution
semantics. The profile FunctionalModels defines the stereotypes.
<<FunctionalSystem>> applies to Block, and identifies the root block (or sys-
tem) in the functional model.
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<<SRSubsystem>> applies to Block and defines a subsystem that processes sig-
nals according to a synchronous reactive semantics, that is where the functional
behavior consists of a single processing stage or activity (typically activated on
a periodic time base), which synchronously samples all inputs, reads the internal
state and updates the subsystem state and its output.
<<SimulinkSubsystem>> specializes SRSubsystem and defines a subsystem that
is modelled and defined according to the Simulink semantics.

4.2 Platform Modeling

The execution platform and the mapping models define the structure of the HW
and SW architecture that supports the execution of the functional model.

The execution platform is defined in a package called PlatformModels. Blocks
represent hardware components at different levels of granularity, but also classes
of basic software, including device drivers, middleware classes and operating
system modules.

Fig. 2. A SysML profile for the description of Interfaces to programmable HW

The MARTE profile provides several concepts that can be leveraged for the
definition of the hardware and software platform. For our code generation, we
need to identify what subsystems are implemented in SW, running on a core and
using services provided by a given operating system, and what subsystems are
implemented on programmable HW (FPGA). Also, we need a model describing
the register interface of the FPGA, offering not only the register abstraction but
also a higher level description of a hardware ”port”.

For the definition of processors, MARTE offers the stereotype definition of
«HwProcessor» and the stereotype «HwPLD» for the definition of FPGAs and
FPGA interface registers. The modeling elements to specify the register inter-
face of an FPGA, however, are not easily found. For this reason, we defined our
taxonomy of stereotypes for FPGA components and interfaces. Programmable
hardware components are derived as a refinement of the MARTE «HwPLD»
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(Figure 2). The hardware interface is represented by a stereotype «HwFPGAIn-
terface». The registers in the addressing space can be grouped in contiguous sets
intended to be accessed for a homogeneous set of data/information and called
«HwFPGAPort». The stereotyped definition of FPGA Port objects is obtained
from the SysML Block (not the SysML port, because it is itself the composition
of other objects and the Port entity in SysML cannot be a composite of other
ports). A Hardware interface block typically consists of a number of FPGA Ports,
in turn composed by atomic data items denominated FPGA Physical Field.
The main stereotypes with their properties (Figure 2) are:
<<HwFPGA>> refines «HwFPGA» and defines an FPGA component.
<<HwFPGAInterface>> refines the MARTE stereotypes «HwBus» (to define ad-
dress and data bus widths), «HwEndPoint» and «HwRAM» (for addressing
modes, memory size), which in turn apply to Block. It is used for the descrip-
tion of the Interface to a programmable HW component (the component itself
is identified by its interface). It uses the MARTE properties
addressWidth (from «HwBus», representing the address bus width).
wordWidth (from «HwBus», representing the data bus width). In both cases,

legal values are 8, 16, 32, and 64.
and defines the additional property
memoryOffset a long representing the physical address of the first word in the

programmable HW address space.
<<HwFPGAPort>> refines «HwEndPoint» and «HwRAM» (which apply to Block),
from which the property memorySize defining the port size (the number of bits
required for storing the information carried by the entire Port) is inherited. It
is used to identify structured information that the programmable hardware will
read or write as a whole (the description of its properties is omitted for space
reasons).
<<HwFPGAPhysicalField>> refines «HwRAM». It defines a hardware register
representing a field of information in a Port.

For the software part of the platform, we are interested in defining the Operat-
ing system running on a given Processor. In this case, MARTE states that ”Op-
erating systems may be represented through properties of the execution platform
or, requiring significantly more detail, modeled as software components”. For the
second option, however, no stereotypes are offered. Therefore, we defined our
own stereotype <<SwOperatingSystem>>, which only has an enumerated prop-
erty with the OS name. In our code generation (described in the next section)
the operating system information is only used to check whether a communication
implementation using the boost library is possible.

4.3 Mapping Model

The profile Mapping defines the stereotypes of general use for the mapping of
functions onto a platform, including the stereotypes for the mapping of functions
onto a SW architecture of processes and threads and the messaging.

For our code generation, we are interested in knowing whether the commu-
nication between two functional subsystems is implemented as intrathread, in-
terthread, interprocess or remote. Therefore, we need to identify Processes and
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Threads in the software implementation model. MARTE provides the stereo-
type SwConcurrentResource, which is cumbersome and possibly confusing. The
<<SwSchedulableResource>> stereotype is recommended for the well-known
concepts of Process (which should also inherit from <<MemoryPartition>>),
Thread, or Task and comes with 39(!) stereotype attributes defining each and
every aspect related to its management.
Our mapping profile contains the definition of the following stereotypes:
<<MappedSystem>>, applies to Block, and identifies the root block of the mapping
model. The Mapping model includes a functional model, a platform model, a
process model and a message model.
<<ProcessModel>> applies to Block, and identifies the root block of the model
of all the processes in the system. A ProcessModel can recursively contain a
ProcessModel or a set of Processes
<<Process>> applies to Block and identifies a Process or a SW application. A
Process may (should) contain Threads.
<<Thread>> applies to Block and identifies a concurrent unit of execution.

In addition, we had to define deployment relations. We built on the MARTE
«Allocation» stereotype to define an implementation mapping between the func-
tional layer subsystems and the platform. The provided stereotypes are:
<<SWdeployment>> refines Allocation to specify an implementation of a func-
tional subsystem (all the operations and actions in it) by a thread.
<<FPGAdeployment>> refines Allocation to specify an Implementation of a func-
tional subsystem (all operations and actions in it) by an FPGA.
<<AutoGenerated>> defines a deployment (an implementation) for which auto-
matic generation is supported.
<<ManagingOS>> refines Allocation to specify a mapping relationship between a
process and the real-time operating system managing it.

4.4 An Example
Figure shows the BDD and IBD views (Block Definition Diagram and Inter-
nal Block Diagram, standard SysML views) of a very simple example of func-
tional model, with three subsystems communicating through SysML flow ports:
a Configurator, a Detector and a Receiver. The functional model is defined in
the package FunctionalModels. The types that apply to the flow ports are de-
fined in the package InterfaceDataTypes. The model is only meant to provide an
example of communication scenarios and is void of any functional content (not
representative of the real industrial application)

Fig. 3. The ibd showing the port connections for the a sample model
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The corresponding platform model is shown in Figure 4, with a single node
containing a CPU and an FPGA, which has in turn one interface with three
ports. For one of the ports, the details of its physical fields are provided. Finally,
the mapping model defines how the functional model is realized on the execution
platform. This mapping information is in the package MappingModels to allow
full independence and reusability of the functional and platform parts.

Fig. 4. The platform model for the example

The mapping model information for our example is represented in an ibd di-
agram as in Figure 5. The Detector and Configurator subsystem instances in
the functional system model are deployed as software implementations onto two
threads (Thread1, and Thread2, defined in a Process model package, which is
part of the mapping model), which are in turn part of a Process Process1, ex-
ecuting on the CPU of our node. The Receiver part is mapped as an FPGA
deployment onto the node FPGA. The interface ports of this block are imple-
mented on an FPGA interface. The mapping between ports with primitive types
on the functional side and implemented by a single register (no physical field) on
the hardware side can be defined directly. For ports with structured types, each
single field of the port type must be mapped onto a register (physical field) of the
FPGA. This is performed by exposing the internal properties of the structured
type (the imported reference to the port type) and building mapping relation-
ships between each type property and a physical field. All mapping relationships
(except those originating from the process/thread model) are defined through a
stereotyped constraint, which is itself part of the mapping model. This allow to
keep the functional and platform models completely independent, while at the
same time, providing the necessary information for the code generation stage.

5 Generation of The FPGA Driver Code
The communication with a functionality implemented by programmable HW is
structured in layers. The firmware function is accessed through a set of control
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Fig. 5. The mapping model for the example

and data registers implemented on the FPGA and mapped in the memory space.
Access to the FPGA registers is provided by a low-level driver, which is manually
developed and provides basic read and write functions, according to an interface
defined as IBusAccess and used by the upper layers. Read and write operations
are overloaded according to the width of the data bus. For example, for a 64-bit
data bus the functions are simply:
Read(char*address, unsigned long &in)
Write(char*address, unsigned long &in)

On top of this driver, an upper layer with set of higher-level operations is
automatically generated. This layer maps application objects with structured
data types onto elementary (bus-width) data registers and provides for caching,
fragmentation and reassembly, notification of events and endianness conversions.

This higher-level layer is automatically generated from the SysML model of
the FPGA Interface with a model-to-text transformation, from the Platform
model into a set of C++ classes.

The generated code has the following structure. Two classes (in a pair of .ccp
and .h files) are generated for the device.
A class called NAME HW INTERFACECacheddriver implementing a cache for
all FPGA registers. The purpose of the cache class is to save time upon reading
and writing into the HW only when values change (commands are requested).
A class NAME HW INTERFACEdriver providing port-level access functions
for reads and writes. for each port the following operations are generated:
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Get(&tNOME PORT x values), to read values from the Port (registers).
Set(&tNOME PORT x values), to write value into all the HW registers as-

sociated with the port.
ResetNOME PORT x () to reset the values of all the registers associated with

the port to their default values.

In addition, a class constructor is generated, with a reference to the low-level
driver functions implementing the reads and writes on the physical registers.

6 Refinement of Simulink Subsystems

A top-down development flow makes use of transformations from the SysML
<<SRSubsystem>> block into the specification of a Simulink Subsystem, com-
plete with its ports and datatype specification as Bus Objects (the tool-specific
type/class declarations). An Acceleo [9] module transforms the SysML block
and generates a Matlab script that creates in the Matlab environment a set
of Bus Object specifications mirroring the definitions of the data types in the
SysML model; one file for each enumerated type in the SysML type specifications
that apply to the subsystem ports; and a script that generates the boundary of
the subsystem with its ports (as described in [11]). The subsystem is then de-
fined internally and simulated, until its behavior is defined in a satisfactory way.
When the Simulink model is completed, the automatic generation of its FPGA
(if firmware) or C++ code implementation (if software) implementation is per-
formed using Simulink Coder.

The generated FPGA implementation communicates with the other subsys-
tems using a set of memory-mapped registers, accessed using the drivers de-
scribed in the previous section. The C++ generated code follows the conventions
of the code generator: for each subsystem, a class is generated with name Subsys-
temNameModelClass. The class has operations for the subsystem initialization
and (if required) termination, and a step operation for the runtime evaluation
of the block outputs given the inputs and the state. The Simulink Coder con-
ventions defines how the interface ports translate into arguments of the step
and allows to define the data types in an external (user provided) file. Listing
1.1 shows the code generated for the Receiver subsystem in our example.

Listing 1.1. Code generated for the Receiver subsystem
class ReceiverModelClass {

public:
void initialize (); /* model initialize function */
/* model step function */
void step ( const ReceiverType &arg_In1 ,

const RFParameters & arg_In2 ,
Threat * arg_Out1 );

ReceiverModelClass (); /* Constructor */
˜ ReceiverModelClass (); /* Destructor */

}
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7 Subsystem Deployment and Communication Code
Generation

Some of the subsystems defined in the SysML functional model are refined in
Simulink and an implementation is automatically generated for them. Other
subsystems are developed as hand-written code or implemented by purposely
designed HW or firmware. The software infrastructure that provides communi-
cation and synchronization among blocks, and realized as port and subsystem
wrappers is automatically generated from the SysML model using Acceleo trans-
formations that create application-specific classes (and objects) refining library
classes.

Fig. 6. Hierarchy of classes for subsystems ports

The class hierarchy defining the subsystem wrappers is simple. A virtual base
class SubsystemWrapper is at the root of the hierarchy. Two classes are derived
from it: SubsystemSimulinkWrapper, the base class for subsystems modelled by
Simulink, and SubsystemCppWrapper, the base class for subsystems developed in
C++ by hand (FPGA-implemented components do not have a wrapper). These
classes are statically defined in a library. The Acceleo scripts define subsystem-
specific classes derived from them. The communication between subsystems takes
place through instances of port classes, whose hierarchy is depicted in Figure 6.
The following template classes are defined:

OutputPort<Message> (base class for output ports): a concrete class imple-
menting the following methods:
Send(Message), to send data (at runtime) to the connected blocks,
Connect(IReceiver), invoked at initialization time to connect the port to

an instance of the IReceiver class in a corresponding input port or stub
(for interprocess communication).

IInputPort<Message> (base class for input ports): an abstract class defining
the method:
Read(Message), to read the data received on the port from the subsystem

methods.
IReceiver<Message>: an abstract class defining the method:

Receive(Message), to receive data from an OutputPort.
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Listing 1.2 shows the code of the OutputPort class. The Send method forwards
the data to all connected IReceiver(s) that provide the data buffers. Concrete in-
stances of input ports inherit from IInputPort. They also inherit from IReceiver
when connected to output ports in the same process. IntraThreadInputPort and
InterThreadInputPort inherit from the abstract interfaces IInputPort and IRe-
ceiver, allowing direct transmission of the Message data between different sub-
systems in the same process. Both store the Message data in an instance variable
upon reception. The class InterThreadInputPort provides thread-safe access to
its internal buffer using the protection method provided by the OS on the CPU
hosting the process (currently only boost mutexes are supported).

Listing 1.2. Code of the Output port class
template < typename Message >
class OutputPort
{
public:

OutputPort () {}
virtual ˜ OutputPort () {}
virtual void Send ( const Message & message ) {

for ( typename ReceiversVector :: const_iterator
i= receivers_ . begin ();
i != receivers_ .end (); ++i)

(*i)-> Receive ( message ); }
virtual void Connect ( IReceiver <Message > * receiver ) {

receivers_ . push_back ( receiver ); }
protected :

typedef std :: vector <IReceiver <Message >*> ReceiversVector ;
ReceiversVector receivers_ ;

};

The separation between IReceiver and IInputPort is necessary when the out-
put port and the connected input port belong to components mapped into dif-
ferent processes.

In this case, the OutputPort instance will be connected to a proxy object de-
rived from IReceiver (living in the same process), which will then implement a
(currently socket-based) inter-process communication to send data to the match-
ing IInputPort instance on the other process. In Figure 6, this is represented by
the classes InterProcessInputPort, derived from IInputPort, and Proxy, derived
from IReceiver. This allows the users to ignore the details of specific implemen-
tations and only rely on the Send/Received methods with maximum portability.

The classes generated for the communication of C++ hand-written sub-
systems inherit from SubsystemCppWrapper and provide only the concrete defi-
nition of the communication ports and read/write operations for accessing them.
The behavior of the subsystem is then manually coded (the listing of the gener-
ated code is quite straightforward and omitted for space reasons).

The Simulink wrapper instantiates the ports to communicate with the other
subsystems and provides two methods Init and Step, that encapsulate the
corresponding automatically generated methods.
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Listing 1.3. Code generated for the Receiver subsystem (of Simulink type)
class SubsystemReceiver : public SubsystemSimulinkWrapper {
public:

SubsystemReceiver ();
virtual void Init ();
virtual void Step ();
InterThreadInputPort < ReceiverType > * getSet_type ();
InterThreadInputPort < RFParameters > * getParameters ();
OutputPort <Threat > * getThreats ();

private :
InterThreadInputPort < ReceiverType > set_type_ ;
InterThreadInputPort < RFParameters > parameters_ ;
OutputPort <Threat > threats_ ;
ReceiverModelClass simulink_receiver_ ;

};
...
void SubsystemReceiver :: Init (){

simulink_receiver_ . initialize ();
}
void SubsystemReceiver :: Step () {

ReceiverType input1 = set_type_ . Read ();
RFParameters input2 = parameters_ .Read ();
Threat output1 ;
simulink_receiver_ . step (input1 , input2 , & output1 );
threats_ .Send ( output1 );

}

The SubsystemReceiver class generates for our example (shown in listing 1.3)
defines the parameters and set type ports. These ports receive input from the
Configurator subsystem, which is mapped to another thread. Hence, their imple-
mentation is thread-safe. The user has the responsibility of writing the periodic
thread that invokes the Step method of the generated subsystem wrapper class
after the Send methods are called for all the output ports connected to the input
ports of the subsystem block.

The FPGA communication code consists of port and receiver wrappers
that encapsulate the high level driver functions and connect to the input and
output ports of the components communicating with an FPGA subsystem (list-
ing 1.4). The library code consists of a base class FPGAInputPort used to derive
the Acceleo-generated classes implementing the input ports of a SW component
connected to an FPGA subsystem output port.

When reading, the Read operation forwards the request to a Get operation
from the FPGA driver port. For FPGA input ports, a dedicated Receiver is
provided. A Send to a port connected to an FPGA input results in a Set on
the FPGA driver. In both cases, the Acceleo-generated code mainly consists in
overriding the definition of the Convert operation, translating the fields of the
data port type into the PhysicalFields of the FPGA physical port, according to
the mapping specified in the SysML model.
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Listing 1.4. library classes for FPGA ports and receivers
template < typename Message , class Driver , typename PortData >
class FPGAInputPort : public IInputPort <Message > {
public:

FPGAInputPort ( Driver * driver) : driver_ ( driver) {}
virtual Message Read () {

PortData data ; Message message ; driver_ ->Get(data );
Convert (data , message );
return message ;

}
protected :

virtual void Convert ( const PortData &data , Message &msg )=0;
private :

Driver * driver_ ;
};
...
template < typename Message , class Driver , typename PortData >
class FPGAPortReceiver : public IReceiver <Message > {
public:

explicit FPGAPortReceiver ( Driver * driver ): driver_ ( driver ){}
void Receive ( const Message & message ) {

PortData data ; Convert (message , data );
driver_ ->Set(data );

}
... };

Finally, an additional code section is generated for each process to perform
the initialization of all the components in the threads/processes and connect-
ing their ports. A reference to the FPGA driver managing the FPGA registers
accessed by the subsystems in the process is passed to the reading components
and a receiver class is defined for each input FPGA port.

8 Conclusions and Future Work

We presented the flow and related tools (mostly open source, the backbone is
provided by the open source Eclipse Modeling Framework (EMF) [8] and its
metamodeling, model-to-model and model-to-code transformation capabilities)
used for the automatic generation of communication adapters to automatically
generated software and firmware components (from Simulink) and hand-coded
classes. The generates adapters guarantee conformance with a SysML specifica-
tion and adherence to the Simulink execution semantics and conformance with
a generic model of an FPGA driver interface, which alleviates the tedious pro-
gramming of selecting and coding the appropriate data passing pattern. Future
work includes the full extension to adapters for networked (distributed) commu-
nication on heterogeneous stacks.
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Abstract. To increase the performance of embedded devices, the cur-
rent trend is to shift from serial to parallel and distributed computing
with simultaneous instructions execution. The performance increase of
parallel computing wouldn’t be possible without efficient transfers of
data and control information via complex communication architectures.
In UML/SysML/MARTE, different solutions exist to describe and map
computations onto parallel and distributed systems. However, these lan-
guages lack expressiveness to clearly separate computation models from
communication ones, thus strongly impacting models’ portability, espe-
cially when performing Design Space Exploration. As a solution to this
issue, we present Communication Patterns, a novel UML modeling arti-
fact and model-driven approach to assist system engineers in efficiently
modeling and mapping communications for parallel and distributed sys-
tem architectures. We illustrate the effectiveness of our approach with
the design of a parallel signal processing algorithm mapped to a multi-
processor platform with a hierarchical bus-based interconnect.

Keywords: Model Driven Engineering, Hardware-Software Co-Design,
Design Space Exploration, Parallel Computing, Embedded Systems.

1 Introduction

Today’s embedded systems are more and more realized as parallel systems where
the processing and the control are distributed over a network of interconnected
subsystems. Such systems are typically deployed to perform parallel comput-
ing for data-dominated applications where performance is driven by both data
processing and data transfers. Currently, we find these parallel and distributed
systems both at the chip level (e.g., Multi-Processors Systems on Chip) or in
domains where the electronics components are physically distributed over the
structure of the whole system (e.g., automotive and avionics systems). In this
context, an important challenge is to efficiently program these complex architec-
tures where interactions between computations and transfers, from both hard-
ware and software points of view, significantly impact the software development
(e.g., time-to-market of new products, development time and costs).
Among the possible approaches that can be taken to alleviate application soft-
ware development, there is raising the level of abstraction at which these systems
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are programmed, e.g., with the aid of Model Driven Engineering [1]. Thus, in-
stead of manually programming a parallel and distributed system, a developer
can separately model both the application(s) - i.e., the functional part of the
system - and the candidate resources - i.e., the hardware architecture - therefore
abstracting out low-level details (e.g., memory addressing modes) with the guid-
ance of Electronic Design Automation tools. Then he/she selects the architecture
units for executing the function’s workload (mapping) and once a solution com-
pliant with the predefined performance requirements is reached, the application
code can be generated via automated model transformations. Finding a map-
ping solution compliant to some performance requirements (i.e., Design Space
Exploration, DSE) is typically an iterative process: performance numbers are
first extracted from mapping models. Then, according to these numbers, pre-
mapping models are improved and the process starts over until performance
numbers converge to the desired performance requirements.
The performance of a data-dominated application executed on a parallel and dis-
tributed system is driven both by computations (i.e., processing) and by commu-
nications (e.g., data transfers). However, UML/SysML models intertwine both
computation entities (i.e., classes/blocks) and communication entities (i.e., re-
lationships/ports) aspects within the same diagrams. This lack of separation
of concerns causes serious issues when models are to be modified due to DSE.
As communications cannot be described separately from computations, input
models must be re-designed from scratch each time a mapping alternative does
not match the desired performance requirements. Thus, models mix information
about the functionality of an application (i.e., the computations to be carried
out) with information that is specific to a given architecture (i.e., how data can
be transferred). This dramatically limits models’ portability, transformations
and impacts the time, costs and quality of a model-driven design.
In response to the above issues, this paper presents a novel approach and the cor-
responding artifacts to separately describe and map communications and compu-
tations, independently of the pair application-architecture. We apply our mod-
eling approach to DiplodocusDF, a UML Model-Driven Engineering method-
ology for the rapid prototyping of data-dominated applications onto heteroge-
neous Multi-Processor System-on-Chip (MPSoC) architectures. In the scope of
DiplodocusDF, we make use of its UML/SysML modeling facilities that are sup-
ported by the open source toolkit TTool [2]. Last, we show the benefits of our
TTool/DiplodocusDF via the Design Space Exploration of a complete system
composed of a signal processing application mapped onto an MPSoC architec-
ture.
The rest of this paper is organized as follows. In Section 2 we describe in greater
detail the problem statement accompanied by a clarifying example. Section 3
presents our systematic approach to separate computations and communica-
tions in the input specification models. Section 4 applies these principles to the
modeling assets available in UML/SysML and demonstrates how we are able to
solve the example problem of Section 2. The case study of Section 5 presents
the implementation of our approach in TTool/DiplodocusDF, in the context of
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a complete pair application-architecture. Section 6 discusses our contributions
with respect to related works and Section 7 concludes the paper.

2 Problem Statement

In this section we will describe the problem statement in greater detail. We
start with a discussion related to the application of the Y-chart approach [3]
to map UML/SysML application models onto parallel and distributed architec-
tures. Next, we extend the discussion with a practical example and state the
problems that we aim at solving in this article.

2.1 Design Space Exploration with the Y-chart in UML/SysML

The problem that system engineers face when working with parallel and dis-
tributed architectures is the many design alternatives involved. The Y-chart
approach (see Fig. 1) has been proposed as a methodology to help designers
“to explore the design space of an architecture template in a systematic way, to
design programmable embedded systems that are programmable and satisfy the
design constraints” [3]. It has become a de facto standard approach underlying
many Electronic Design Automation (EDA) tools and methodologies.
It is our belief, however, that applying the Y-chart of Fig. 1 to map appli-
cations modeled in UML/SysML, onto parallel and distributed architectures, is
inefficient. This is due to a lack of separation of concerns in the application mod-
els between operations (i.e., processing and control operations), represented in
UML diagrams as classes, and their dependencies, represented in UML diagrams
as relationships. Indeed, the semantics associated by UML/SysML diagrams to
relationships works well for applications mapped to architectures where oper-
ations are sequentially executed onto centralized units. Typically in these con-
texts, communications1 have a small impact on performance and are executed
on simple point-to-point paths (e.g., memory-bus-memory). On the other hand,
relationships in UML/SysML diagrams are not suited to describe dependencies
among operations when the latter are executed by parallel and distributed units
that require intensive communications on complex paths, affecting performance.

2.2 A UML/SysML Producer-Consumer Example in TTool

Fig. 2 depicts the scenario of our example modeled in TTool. Fig. 2a shows a
sample application made up of a pair of producer-consumer operations, inter-
connected by a relationship ch1 which represents the exchange of data from the
producer to the consumer. Fig. 2b illustrates a sample architecture where the
producer-consumer application is mapped. The producer operation is mapped to

1 In this article we loosely use the word communications to refer to any transfer of
data or control items.
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Fig. 1. The Y-chart approach for the design of programmable embedded systems

the Digital Signal Processor (DSP) DSP1, the consumer operation to the Central
Processing Unit (CPU) CPU1. Due to the capabilities of DSP1 and CPU1, we
can imagine that DSP1 is able to directly store its output data only to Mem-
ory1 and CPU1 is able to directly retrieve its input data only from Memory2.
Thus, in order to execute the consumer operation, a transfer is needed to move
the producer’s data from Memory1 to Memory2. Moreover, such a transfer can
either be issued with a bus transaction or with a Direct Memory Access (DMA)
transaction. So how to describe it in UML/SysML?
We encounter here a first problem, namely a modeling problem: a lack of
expressiveness to describe at the same time (1) a specific transfer, (2) the ar-
chitecture units involved and (3) the way the transfer is performed. Typically
what a system designer would do is to create a second instance of the application
model of Fig. 2a, as depicted in Fig. 2c. In the latter an additional operation
is injected between the producer and the consumer to imitate how data can be
transferred with a DMA transaction. However, such an arrangement does not

Fig. 2. A sample producer-consumer application mapped over an architecture in
UML/SysML with TTool

prevent us from running into another issue if, for instance, it turns out that the
DMA transaction is not efficient enough or if we want to map the application
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model to a different architecture that does not include any DMA engine. In ei-
ther case the application model must be re-designed from scratch.
Thus, we face a second problem, namely a mapping problem: how to map a
relationship (ch1 in this case) to the description of a transfer, in a portable way
(i.e., in a way that prevents a designer from re-modeling the application)?

If the MARTE [4] profile has been specifically defined for the modeling of
complex systems, and moreover supports the definition of scenarios for the usage
of resources (BehaviorScenarios), it is unfortunately also not well adapted for
reasons that are discussed in the related work section (Section 6).

3 The Approach

Fig. 3 shows a global view of the approach we propose in response to the modeling
and mapping problems introduced in Section 2. The overall goal of our approach
is to assist the system designer with a systematic methodology to separately
define the modeling assets that are needed to describe a triplet application-
architecture-communications. This separation of concerns aims at minimiz-
ing the intersection between modeling concepts that would otherwise be mixed
in the application and the architecture descriptions. We believe that this lack
of separation of concerns is at the root of the modeling and mapping problems
of Section 2. In this section, we describe how the Y-chart approach of Fig. 1 is
extended to accommodate for separate models for the application, the architec-
ture and communications. At the same time we define the vocabulary of some
key concepts that will be used throughout the paper.

In our vision, a communication model (Communication modeling box) acts
as a an interface between the application and the architecture models. On one
hand, the main purpose of an application model (Application(s) box), is to ex-
press the functionality of a given algorithm in terms of processing operations
and control operations as well as in terms of the data and control dependencies
among these operations. On the other hand, from the viewpoint of communica-
tion modeling, the main purpose of an architecture model (Architecture instance
box) is to express the topology2 of the system’s architecture. The latter can be
roughly defined as the structure of the interconnections of all the architecture
units. For our purposes, the communications that are of interest are those needed
to transfer data between a source and a destination storage units. Thus, the
above topology must express all the possible transfer paths, defined as the set of
interconnected architecture units that are involved in moving data from a source
to a destination storage unit, as well as in exchanging the control information
that configure such a data transfer. A communication model (Communication
modeling box) aims to match the needs expressed by data dependencies in the
application, to the capacity of an architecture to serve such needs. In order to
capture these concepts, we need a communication model to elegantly express the
architecture units that participate in a data transfer, the transfer components,

2 The topology includes performance parameters.
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and to allow a system designer to describe the transfer algorithm that must be
put in place to move data according to the dependencies of the application. More
specifically, we define a transfer algorithm as the set of activities that must be
executed by the components to move data in a transfer path. Also the mapping
phase (Mapping box) must be defined to accommodate for our separation of
concerns and it is composed of two stages. First, the workload of the application
algorithm in terms of processing and control operations is projected over the
specific architecture instance. In this stage, the designer selects the architecture
units that will execute the processing and control operations. Next, the workload
expressed by the control and data dependencies of the application is projected
onto the transfer paths of the specific architecture instance through the commu-
nication models (components and algorithm). When exploring different mapping
alternatives in the design space, we now dispose of separate modeling assets - i.e.,
application, communication and architecture models - that can be individually
modified without impacting on each other.

modeling
Application(s)

Architecture
instance

Communication

Mapping

Application
model
improvement

Design Space
Exploration

Architecture
model
improvement

Communication
model
improvement

Fig. 3. The Y-chart approach extended with the separation of concerns between the
application and the architecture models

4 Communication Modeling and Mapping in
UML/SysML: Communication Patterns

In this section we put into effect the principles described in our extended Y-chart
approach with the modeling assets available in UML/SysML. Next, we practi-
cally show how these assets can be used to solve the producer-consumer issues
illustrated in Section 2. We regroup the UML/SysML modeling assets under the
name of Communication Pattern, that defines a single modeling artifact used to
model one or more transfers.

4.1 Models for the Communication Pattern’s Transfer Algorithm

In order to model a transfer algorithm, we first need to abstract out the activities
that take place in the communication protocols or standards of the architecture
instance. Further, we need to compose these activities and express their de-
pendencies by means of some sort of structure or hierarchy. In the scope of
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UML/SysML, the diagrams that we estimated to be suitable for these purposes
are Behavior Diagrams, and more specifically both Activity and Sequence Dia-
grams. The Activity Diagrams of a Communication Pattern capture the struc-
ture and dependencies of the simple and repeatable activities that are part of
a transfer algorithm (e.g., program a DMA, execute a bus transaction). Each
of these simple and repeatable activities is then described either directly by Se-
quence Diagrams or recursively via other Activity Diagrams. Within an Activity
Diagram, activities are composed by operators to describe concurrency, sequenc-
ing, choice and iteration. The latter two are governed by control variables that
are global to a given Activity Diagram and to all the diagrams that it references.
An Activity Diagram is associated to a set of components which is global to all
the diagrams it references.

The Sequence Diagrams of a Communication Pattern describe the way com-
ponents interact in order to execute an activity, a well as the order in which
these interactions are executed. The lifelines of Sequence Diagrams are associ-
ated to instances of components. Interactions are described via the exchange of
parameterized messages (e.g., Read(), Write()) representing an abstraction of
the signals wired on bus lines. In order to separate the control aspects from mes-
sage exchanges, Sequence Diagrams are limited to asynchronous messages and
Activity Diagrams are limited to above control operators, diagrams dependen-
cies. Indeed, the latter are instantiated in Activity Diagrams when describing
the dependencies among multiple Sequence Diagrams3.

4.2 Communication Pattern’s Components

In order to describe the executors of a transfer algorithm, we classify the archi-
tecture units into three classes of components: storage, transfer and controller.

– A storage component is an architecture unit whose main functionality is to
store input/output data produced or consumed by a processing operation,
e.g., a RAM memory, a buffer.

– A transfer component is an architecture unit whose main functionality is to
physically move data items between components, e.g., a AMBA bus, a CAN
bus, a DMA.

– A controller component is an architecture unit whose main functionality is
to coordinate a data transfer by configuring a transfer component, e.g., a
Central Processing Unit, a microcontroller, a Digital Signal Processor.

When modeling a communication (Communication modeling box in Fig. 3) we
use these three classes of components to describe a generic transfer algorithm in-
dependently of the architecture units of a given instance. This abstraction allows
the transfer algorithm to be portable with respect to the system’s architecture.

3 In analogy with a computer program, we can see the messages exchanged in Se-
quence Diagrams as the low-level instructions of a given transfer algorithm. These
instructions are grouped into the activities captured by both Activity and Sequence
Diagrams. Activities can be thought of as routines in programming languages.
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Finally, when projecting the application workload expressed by data dependen-
cies onto the architecture, (Mapping box in Fig. 3) these abstract components
are mapped to the specific units of the architecture instance.

4.3 Modeling the Consumer-Producer Problem with
Communication Patterns

In this subsection we illustrate how a Communication Pattern can solve the mod-
eling and mapping problems for the producer-consumer example of Section 2.

In the architecture model of Fig. 2b, according to our classification of com-
ponents, we dispose of: two storage objects (i.e., Memory1 and Memory2), four
transfer objects (i.e., Bus1, Bus2, Bridge1 and DMA1) and two controller objects
(i.e., DSP1 and CPU1). In the application of Fig. 2a, we have two processing
operations (i.e., producer and consumer) and one data dependency (i.e., channel
ch1). The mapping of the application workload in terms of processing operations
has already assigned the producer to DSP1 and the consumer to CPU1. The ac-
cess capabilities of DSP1 and CPU1 force the producer output data to reside
in Memory1 and the consumer input data to be accessible from Memory2. This
scenario thus defines the need to have one transfer from Memory1 to Memory2.
Such a transfer can be executed in two ways: either via a bus transaction or
a DMA transaction. When modeling we know nothing about the performance
numbers of the two transfer options, so we have to model the communication
in the most generic possible way; thus, in terms of components we need two
storage, one controller and three transfer components. The transfer algorithm is
fairly simple given we only have one data dependency; it is illustrated in Fig. 4a:
first the transfer component is programmed by the controller (ProgramTransfer
box), then data is moved iteratively from the source to the destination storage
by the transfer component (ExecuteTransfer box, loop operator) until an inte-
ger counter reaches the value zero. At this point the controller is informed of
the completion (AcknowledgeTransfer box). Fig. 4b illustrates the Sequence Di-
agram corresponding to the activity ExecuteTransfer of the algorithm, Fig. 4a.
Data is moved from the source storage to the destination storage via the transfer
components.

4.4 Mapping the Producer-Consumer Problem with Communication
Patterns

During mapping phase, the behavior diagrams of a Communication Pattern
are arranged to match the capacity of the architecture instance. Since in our
consumer-producer example we deal with only one data transfer we dispose of
the full architecture capacity and we do not need to arrange the algorithm mod-
eled in the Activity Diagram of Fig. 4a. However, in case the producer-consumer
application required an algorithm to model multiple transfers, the algorithm
would have been arranged to match the limited parallelism available in Fig. 2b.
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Fig. 4. The transfer algorithm for the consumer-producer example (a). The interactions
among components corresponding to the ExecuteTransfer activity of the algorithm (b).

In the latter, there are two transfer paths from Memory1 to Memory2: (1) Bus1-
Bridge1-Bus2 if a bus transaction is to be issued or (2) Bus1-DMA1-Bus2 in
case a DMA transaction is to be issued. The choice between which of the two
paths performs best is a matter of performance analysis and will not be treated
in this paper as we are concerned with the pure modeling aspects. At this point,
all we need to do is to map the Communication Pattern’s components to the
architecture units and individually arrange the algorithm’s activities (Sequence
Diagrams) accordingly. The ExecuteTransfer activity of the algorithm of Fig. 4a
is shown in Fig. 5a for the transfer path corresponding to the DMA transaction
and in Fig. 5b for the bus transaction. In Fig. 5a the three transfer components
are mapped to units Bus1, DMA1 and Bus2, whereas in Fig. 5b they are mapped
to units Bus1, Bridge1 and Bus2. In both cases the message exchanged within
the activity ExecuteTransfer must be adapted to describe the exact operating
mode of the architecture units, e.g., data passes through Bridge1 one sample per
time, while 2 samples are stored in DMA1’s internal buffer before they can be
forwarded to Memory2.

5 Case Study

So far, we have showed to the reader the effectiveness of our works to the sample
producer-consumer example of Section 2, demonstrating how our approach and
Communication Patterns technically solve what we called the modeling and map-
ping problems for complex communication schemes. In this section, we demon-
strate the effectiveness of our approach and of Communication Patterns in the
context of a complete system application-architecture, when Design Space Ex-
ploration comes into play.

5.1 TTool/DiplodocusDF

As part of our works, we integrated the approach presented in this article in
DiplodocusDF [5], a UML Model-Driven Engineering methodology for the de-
sign and rapid prototyping of data-dominated applications on heterogeneous
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Fig. 5. The Sequence Diagram for the ExecuteTransfer activity of Fig. 4 mapped
onto the transfer path Bus1-DMA1-Bus2 (a) and onto the transfer path Bus1-Bridge1-
Bus2 (b)

real-time embedded systems. To support this extension of DiplodocusDF, we
implemented the diagrams needed by Communication Patterns into TTool [2],
a toolkit for the edition, simulation and formal verification of UML/SysML dia-
grams supporting DiplodocusDF. An application model in TTool/DiplodocusDF
is implemented as a composition of SysML Block Definition and Block Instance
diagrams, where the behavior of each block is described by a SysML State Ma-
chine. An application model describes an algorithm from a functional view, with
processing and control tasks interconnected by data and control dependencies.
On the other hand, an architecture instance in TTool/DiplodocusDF is described
by a UML Deployment Diagram made up of a set of generic interconnected units
(e.g., bus, CPU, DMA) decorated with performance parameters. At mapping
level an application is projected onto an architecture by respectively associating
SysML blocks to nodes in the Deployment Diagram, via UML artifacts.
So far, we have integrated the mapping of the Communication Pattern diagrams
and components onto a transfer path in the architecture Deployment Diagram
as well as the association of a data dependency in the application to a Commu-
nication Pattern. Such a mapping has been implemented with a UML artifact
within the architecture Deployment Diagram.

5.2 A Parallel Application: High Order Cumulants

The application for this case study is a classification algorithm, High Order
Cumulants (HOC) as implemented in [6], that is used in cognitive radio by a
transmitter to sense the spectrum and detect if another user is currently trans-
mitting in the same frequency range. The SysML diagram for the application
algorithm, as modeled in DiplodocusDF with TTool, is illustrated in Fig. 6. For
the sake of simplicity, in Fig. 6 the control operations and control dependencies
are omitted and only the dataflow view (processing operations and data depen-
dencies) of the model is displayed. The HOC algorithm operates on segments of
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the input stream (SOURCE) that are independently processed (CWM1, CWM2,
SUM, CWS) to extract a score. The occupancy of a specific frequency range is
determined by accumulating scores (ACC) over a given classification period and
by comparing the accumulated scores with a pre-computed threshold (SINK).

Fig. 6. Dataflow view of the SysML diagram for the HOC application, as modeled in
DiplodocusDF with TTool

5.3 A Parallel and Distributed Hardware Architecture: Embb

The target hardware architecture for HOC is Embb [7]. Embb is a generic base-
band architecture dedicated to signal processing applications. Fig. 7a shows
the architecture Deployment Diagram of the overall topology, as modeled in
DiplodocusDF with TTool. Embb is composed of a processing subsystem and a
control subsystem. In the former, left-hand side of Fig. 7a, samples coming from
the air are processed in parallel by a distributed set of Digital Signal Processors
(DSP1 through DSPn) interconnected by a crossbar (Crossbar). The control sub-
system, right-hand side of Fig. 7a, is where the control operations of the HOC ap-
plication are executed. The latter run on a Control Processing Unit (MAINcpu)
in charge of configuring and controlling both processing operations performed by
the DSPs and the data transfers. The CPU of the control subsystem disposes of
a memory unit (MAINmemory) and a bus interconnect (MAINbus). The latter
is linked to the processing subsystem via a bridge (Bridge1). Fig. 7b illustrates
the internal architecture of a DSP: each unit is equipped with a local control unit
(DSPcpu), a processing core (DSP) and a Direct Memory Access unit (DSPdma)
to transfer data in and out of the local memory (DSPmemory).

5.4 Design Space Exploration with Communication Patterns

In the application graph of Fig. 6, we apply Communication Patterns to describe
the transfers associated to channels ch1, ch2, ch3 and ch8 as the parallelism be-
tween CWM1 and CWS allows to describe two mapping scenarios. As a first sce-
nario, we map SINK to the MAINcpu, SOURCE to DSP1 and the pair CWM1,2
to DSP2. Given the topology of the architecture, SINK, SOURCE and CWM1,2
store data respectively in MAINmemory, DSP1memory and DSP2memory. Thus,
to move data produced by SOURCE we need a Communication Pattern to model
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Fig. 7. The Deployment Diagrams of an architecture instance of Embb, a MPSoC plat-
form dedicated to signal processing applications. Part (a) displays a global architecture
of Embb with its processing subsystem (left-hand side) and control subsystem (right-
hand side). Part (b) depicts the internal architecture of each Digital Signal Processor
within the processing subsystem.

one transfer that serves CWM1,2 (ch2, ch3) and a second transfer that serves
SINK (ch8). To do so, the ease of use of Communication Patterns allows us to
extend the structure of the Activity Diagram of Fig. 4a with a second transfer
as showed in Fig. 8. The latter illustrates one possible transfer algorithm where
data is transferred to SINK (Transfer1) and to CWM1,2 (Transfer2), simulta-
neously. As a second mapping scenario, we associate CWM1,2 to two different
DSP units, namely DSP2 and DSP3 in Fig. 7. Again we can re-use the Commu-
nication Pattern of Fig. 8, adapting it to model three transfers that each serve
CWM1, CWM2 and SINK. Fig. 9 displays one of the possible transfer algorithms
where data is delivered in parallel to SINK (Transfer1), CWM1 (Transfer2) and
CWM2 (Transfer3).

Discussion Due to limits of space in this paper, we do not provide the Sequence
Diagrams for the transfer algorithms of Fig. 8 and Fig. 9, nor the post-mapping
Activity Diagrams. Thanks to the separation of concerns between control as-
pects (Activity Diagrams) and message exchanges (Sequence Diagrams), differ-
ent mapping alternatives are investigated by re-adapting only Activity Diagrams.
This reduces considerably the efforts spent during Design Space Exploration as
well as design time and costs. At the beginning of a design, it is inevitable to
build from scratch the transfer algorithm, choose the components and arrange
both of them according to specific transfer paths selected at mapping phase.
However, when different mapping alternatives come out, diagrams can be re-
used with little changes: only the transfer algorithm in the Activity Diagrams
has to be modified. Sequence Diagrams that are specific to transfer paths that
have already been explored, are re-used without further modifications.

6 Related Work

In the literature, the problem of modeling and mapping complex communication
schemes is tackled within the larger context of a complete system design. With
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Fig. 8. The Activity Diagram for an algorithm modeling two parallel transfers

Fig. 9. The Activity Diagram for an algorithm modeling three parallel transfers

respect to our contributions we roughly divide existing approaches in two cat-
egories: manual and automatic, based on the way Design Space Exploration is
performed. We label as automatic an approach where Design Space Exploration
is performed by Computer Aided Design (CAD) tools which automatically find
a mapping solution and evaluate its performance numbers, from input specifica-
tions of a pair application-architecture. In this case, no separation of concerns
between application and architecture is needed in input specifications, as most
of the DSE efforts are charged to CAD tools. Consequently, input specifications
are based on formalisms that can be easily handled by a computer, e.g., dataflow
models, process networks. Examples of what we define automatic approaches are
Daedalus [8], [9], Metropolis [10], Ptolemy [11], PeaCE/HoPES [12], SCE [13],
SystemCoDesigner[14], DOL [15].
We call manual those approaches where it is up to the user to manually de-
fine a mapping solution whose performance numbers are then analyzed by CAD
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tools. Within this category we find works based on UML/MARTE such as GAS-
PARD [16], MOPCOM [17], Koski [18] and [19], [20] dedicated to both hard-
ware and software synthesis. These approaches rely on a refinement process that
progressively lowers the level of abstraction of input models. However, such a
refinement does not completely separate the application (software synthesis) or
the architecture (hardware synthesis) models from the communications, as we
defined in Fig. 3. MARTE [4] shares many commonalities with our approach,
in terms of the capacity to separately model communications from the pair
application-architecture. For such a purpose, MARTE proposes Behavior Sce-
narios and Steps (Communication Steps). However, these assets are designed
for performance and timing analysis, rather than DSE. Consequently, they in-
trinsically lack a separation between control aspects and message exchanges as
we proposed in Activity and Sequence Diagrams. MARTE does not integrate a
systematic methodology for DSE and does not define the necessary abstraction
levels, proposing only a distinction between logical and physical level. In the
context of our Communication Patterns, these levels of abstraction have been
the subject of a previous publication [21].
With respect to the above classification, we can place TTool/DiplodocusDF in
the category of the manual approaches as it is up to the user to find a suit-
able mapping for the input models. Performance analysis can be automated in
TTool/DiplodocusDF by means of scripting facilities but it is not comparable
to the solutions proposed by the above automatic approaches.
Independently of the works we presented, in the past edition of MODELS Arkin
et al. [22] proposed a model-driven approach and tool, to automate the mapping
of parallel algorithms onto parallel platforms. Interestingly enough, the authors
introduce their definition of a Communication Pattern to describe the dynamic
behavior of the nodes of a parallel platform via communication paths made up
of a pair source-destination nodes and a route between the two. Their Commu-
nication Patterns target larger systems and are presented in the frame of an
approach where separate steps define the architecture, communication and ap-
plication similarly to Fig. 3. From the description available in [22] the aim and
context of their Communication Patterns is clear and similar to ours. However,
with respect to our works, it is not clear what the effective expressive power of
such Communication Patterns is, what can be exactly represented in terms of
architecture units, transfer algorithm and how they are employed during DSE.

7 Conclusion

In this paper we have provided a systematic approach and its implementation to
separately model and map communications from a pair application-architecture,
in the frame of the Y-chart approach. In response to the modeling problem, we in-
troduced Communication Patterns and their implementation with UML/SysML
modeling diagrams. In the latter, we further introduced an additional separation
of concerns between control aspects (Activity Diagrams) and message exchanges
(Sequence Diagrams). In response to the second problem, we defined the mapping
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of data dependencies in the application onto transfer paths in the architecture.
We illustrated our solution, first, by means of a simple producer-consumer ex-
ample and secondly, within the context of a complete application (HOC) and
architecture (Embb). Moreover, we provided an implementation of the overall
approach we propose in TTool.
Although we have applied Communication Patterns to a MPSoC architecture
and a signal processing application, we believe that our contribution is general.
We believe it can be applied to other data-dominated applications (e.g., video
and image processing) and to other types of distributed architectures (e.g., auto-
motive). In the approach we presented, we have proposed that input specification
are manually modeled and mapped. Such a manual approach may constraint the
applicability of our solution to systems with a limited number of components.
Nevertheless, it is our intuition that our Communication Patterns may scale well
also for larger systems (i.e., hundreds of components) via the creation of libraries
of communication models.
In our future works we will focus on generating application code from auto-
matic transformation of models that result from the approach we proposed in
this paper. Additionally, we will complete the implementation of our approach
by extending the simulator of TTool/DiplodocusDF with the support for per-
formance analysis with Communication Patterns.
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Abstract. In order to handle complexity of software systems, component-
based as well as model-driven approaches have become popular in the past.
In a model-driven development process the problem arises that over time
model and code may be not aligned. Thus, in order to avoid this steadily
increasing distance between models and code, we propose the integration
of (executable) models and code at the component level. Redundancy –
the source of inconsistencies – is reduced by interpreting models directly.
Moreover, variability andadaptivity canbeachievedbyqueryingand trans-
forming the embedded models. As the basis for such Model-Integrating
Components (MoCos), we introduce a component realization concept that
is compatiblewith existing component technologies.Weprovidea reference
implementation using Java, OSGi and TGraphs and apply it successfully
in a feasibility study on AndroidTM.

Keywords: Model-integrating component, model execution, flexibility.

1 Introduction

In Model-Driven Development (MDD) [9], [22] models are used to describe a
system. At some point in the development process, code is generated from these
models. Despite all efforts (e.g., round-trip engineering), this generation step is
often a source of inconsistencies between model and code artifacts as they evolve.

Currently, models and code artifacts are kept separately and are – at most
– connected by links, e.g., to maintain traceability or a “causal connection” at
runtime. In that setup, the model and source code parts that comprise a logical
unit of functionality are not always kept together. Thus, understanding and
reusing associated parts of models and code may become tedious.

Modularization concepts proposed in Component-Based Development (CBD)
are well-established to manage the development of complex software and to
achieve reuse [23]. Yet, component concepts for realizing software architectures
have been traditionally targeted at the programming language level. To the
best of our knowledge, carrying executable models as first-class constituents of
components has not been in their focus. Even if models are executed, they are
usually not software components. A modular approach is required to construct
complex software systems, though.
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c© Springer International Publishing Switzerland 2014



Model-Integrating Software Components 387

In this paper, a realization concept for the combination of models and code
in the form of Model-Integrating Components (MoCos) is introduced. MoCos
are the basis for a novel Model-Integrating Development (MID) approach for
software systems. A MoCo is a non-redundant, reusable and executable combi-
nation of logically related models and code in an integrated form where both
parts are stored together in one component. MoCos enable the interplay of code
with (i) design-time models of software (e.g., feature models, documentation),
(ii) reflective models@run.time [8] as well as (iii) stand-alone, non-reflective and
possibly executable models. A sketch of the core idea is given in Figure 1.

Fu
nc
tio

n

Model

IRequire

IProvide

Code

Fig. 1. High level sketch of a MoCo

The code part of a MoCo allows better performance than model execution
for performance-critical functionality. Moreover, it supports the use of existing
software libraries and enables the connection to third-party middleware.

The model part of a MoCo supports flexibility and comprehensibility of the
component as all models can be queried and transformed (using dedicated lan-
guages) and may be interpreted to achieve direct model execution [12]. This
supports software engineers with evolving components and system administra-
tors with observing and managing a running system. We discussed the feasibility
of this query/transform/interpret (QTI) approach in our previous work on en-
gineering Self-Adaptive Software (SAS) [5].

Code and models are both first-class entities in MID with equal rights. The
component realization concept proposed in this paper supports the modular de-
velopment of software systems where users of components cannot differentiate
between MoCos or other, more traditional, components. This component real-
ization concept is independent of a specific component model, and we present it
in the form of an abstract template that is compatible with existing technologies.

Fundamental research is required to tackle the associated challenges. The
contributions of this paper are as follows:
(C1) Defining a generic and modular realization concept for model-integrating

software: The practicability and usability of the MID approach depends
significantly on design decisions that govern the structure and behavior of
the model-integrating components. Based on the vision introduced earlier,
a component realization concept for MoCos is developed.

(C2) Providing a reference implementation for the realization concept: Based on
the design of the component realization concept, a reference implementa-
tion for MoCos is constructed. It is the technical basis for the conducted
feasibility study. The concrete implementation is done in Java, because
the Java Virtual Machine (JVM) is a portable execution platform. The
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component technology chosen is OSGi [24] due to its dynamic capabilities
and the modeling technological space [19] is provided by TGraphs [13] .

(C3) Evaluating the approach’s potential for success: The feasibility of the pre-
sented work is evaluated in the form of a feasibility study. The main concern
of this study is to examine the component realization concept’s applicabil-
ity on a mobile platform (limited resources) with different modeling lan-
guages. We explore how the concept can be realized with state-of-the-art
component technology and discuss the results and threats to validity.

2 Related Work

Model-Driven Development. Stahl and Völter [22] describe Model-Driven
Development (MDD) as a generic term for technologies that derive executable
source code from formal models in an automated way. Especially Domain-Specific
Languages (DSLs) are used together with code generators and interpreters.

A special variant of MDD can be found in OMG’s Model-Driven Architecture
(MDA) that focuses on the separation of (domain) functionality and implemen-
tation technology. Kleppe et al. [18] describe the core concepts of MDA such
as the multi-staged transformations from source to target models. Herrmann et
al. [15] describe an interesting list of MDA problems as a motivation for their
compositional modeling approach.

There are also efforts to integrate models and code. For instance, Tolvanen [25]
describes why, in practice, models are usually dropped after the first code gen-
eration phase. He recommends the adequate application of DSLs with mature
modeling tools to move models to an adequate abstraction level for avoiding
redundancy between models and code.

Blair et al. [8] shaped the notion of “models@run.time” which has become
a mature field of research [7]. Adequately abstract models reflect the behavior
and structure of the programmed system and are causally connected to it. That
way, software can be monitored by querying its models and it can be adapted
by transforming them.

In a white paper on direct model execution by E2E technologies [12], it is de-
scribed how the company successfully develops flexible business applications by
encoding a significant part of the logic in executable models. Results from exten-
sive benchmarking of interpreting behavioral models are presented by Höfig [16].
He concludes that even though model interpretation is slower than compiled
code, the enhanced flexibility can pay off.

Existing MDD approaches specifically focus on transforming models to code.
Hence, knowledge is kept redundantly in code and models. Dependencies between
models and generated code may get lost during multiple stages of transformation,
though. To reduce redundancy, we propose to keep (some) design-time models
as an inherent part of software at runtime and to replace programmed behavior
with additional executable models where appropriate.

Component-Based Development. Components support reuse and the mod-
ular development of complex software systems. Szyperski et al. [23] give a com-
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prehensive introduction to software components and cover the fundamental con-
cepts, properties and methods of Component-Based Development (CBD).

Crnkovic et al. [10] identify and discuss the basic principles of component
models and provide a classification framework for them. A wide range of existing
component models is classified and discussed in-depth. The authors also clarify
that existing modeling languages derived from the Unified Modeling Language
(UML), like xUML [20], may be translated to executable components, but “...do
not operate with components as first-class citizens...”.

On the technical side, modern dynamic component models such as OSGi [24]
support the loading, unloading and updating of components at runtime. This
enables flexible systems that can be adapted at the granularity of components
(architectural reconfiguration).

Usually, the topics of models and software components have not been mixed.
The work of Ballagny et al. [6] is an exception to this where a state-based
component model for self-adaptation is introduced that is based on components
that carry models at runtime. In contrast to our generic approach, these models
are always UML state machines.

Existing CBD approaches aim at reuse, exchangeability or performance at the
implementation level and support the development of large software systems.
Yet, their symbiosis with arbitrary modeling languages and especially with exe-
cutable models has not been inspected well. The Model-Integrating Components
(MoCos) presented in this work are an attempt towards closing this gap.

3 Component Realization Concept

In this section, we describe the component realization concept for MoCos in the
form of a template that describes a pattern for developing software components.
The template does not rely on any specific capabilities of an existing component
model. Rather, it is meant to be implementable by using an existing component
technology of choice.

In the broader sense, every existing component (e.g., a Java EE bean or an
OSGi bundle) can be seen as a simple MoCo that does not carry a model. The
intention behind this perspective is to stress the compatibility of the presented
approach with any available component technology.

The main goal of this section is to define the conceptual foundation for flexible,
model-integrating software components that – when instantiated for a specific
application context – tackle the challenges described earlier in Section 1.

Subsequently, we use the term “MoCo” for referring to (i) the template for
software components that can be realized in various technologies as well as to
(ii) the concrete instances of this template for a given application area.

All MoCos communicate with each other via specific ports. There is an arbi-
trary number of functionality ports encapsulating core functionality. There is also
an arbitrary number of management ports that provide access to the internals
of a component for administration purposes.

The key characteristic that distinguishes components in our concept from
existing ones is that each MoCo may consist of a code module and a model
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Fig. 2. Structural view on the MoCo template and its constituents

module. Both parts are first-class entities of the component realization concept
and each one can be executable. Hence, behavior and data can be represented
as models or as code – the full spectrum of MoCos [11] from (i) code-only to
(ii) a mixture of code and models to (iii) model-only is supported.

Assuming that a comprehensive technological modeling space exists, the model
part of a MoCo can be accessed and modified systematically by queries and trans-
formations during development but also at runtime. Variants of a MoCo can be
derived during development by extracting only the needed functionality for a spe-
cific product (tailoring), and deployed MoCos can be evolved at runtime to face
changes in the operating environment, too (adapting).

The MoCo template exposes the main parts of any component to be cre-
ated according to our approach. It is a specification of the possible constituent
concepts of concrete MoCo instances. This template must be implemented and
instantiated for a specific context of use. Next, we describe the structure of the
MoCo template along its illustration given in Figure 2.

3.1 External View

Judging from the outside, all MoCos show a similar structure to their users. This
external view on the structure is described in the following.

MoCos can have two kinds of ports: (i) the PFunction port and (ii) the
PManage port. While PFunction groups the conventional set of interfaces of a
component, PManage groups interfaces for systematically accessing and manip-
ulating the internals of a MoCo. Both are the major contact-points between a
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component and its environment such as other components or software engineer-
ing tools. The important aspect is that pure functional application logic can be
clearly distinguished from the services that are required or provided to manage
the MoCo during its life-cycle.

PFunction. The PFunction port represents a logical grouping of all core func-
tionality that is either required or provided by the component. There are no
special restrictions for the design of this port and, because the set of required
and provided interfaces depends on the concrete application domain, no detailed
interfaces can be illustrated here. Functionality can be implemented by code or
by models, internally. This is hidden from the MoCo’s users.

The PFunction port is optional for all MoCos. Components that automati-
cally start their task without further dependencies do not require it.

PManage. The PManage port represents a logical grouping of all management
functionality that is either required or provided by the component. To manage
a MoCo, we rely heavily on applying techniques from model-driven development
(MDD) [22,9] such as querying and transforming models using languages de-
signed specifically for these tasks. This is an essential prerequisite for realizing
MoCo-specific functionality to support tailoring and adapting processes.

The PManage port is optional for all MoCos. Components that do not need
to be observed or manipulated, e.g., from a software engineering tool or an
adaptation manager [21], do not require it.

3.2 Internal View

The encapsulated details are not so much of interest for the users of MoCos, but
component developers need to be familiar with guidelines for the internal design
of MoCos. The internal view on the structure is described in the following.

From a coarse-grained perspective, the MoCo template comprises three mod-
ules1:(i) MoCoCode, (ii) Mediator and (iii) MoCoModel. Note, that the code and
the model are not illustrated on top of each other in Figure 2 but reside side-
by-side to hint at their equally important roles.

MoCoCode. The MoCoCode is a module that holds stable, efficient and well-
tested core functionality. Parts of the provided services of the MoCo can be
implemented in code like in all traditional ways of building software components.
Not every MoCo needs to implement its application behavior in plain code,
though. Models can be used to realize similar functionality, as well.

The realization concept does not require the code to be structured in a pre-
defined way. In cases where the MoCoCode shall cooperate and interact with
the MoCoModelmodule, standardized ways of implementation for single program
elements (e.g., classes, interfaces) are proposed, though.

1 Here, a module is a structured and logically coherent group of software elements.
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These prepared program elements support interfacing with the Mediatormod-
ule and/or the MoCo’s ports. For example, some of the data fields may need to
be exposed for read/write access and methods may need to be marked as re-
placeable by modeled behavior. Hence, it may be required to prepare some of
the code – for instance by applying a sequence of refactorings [4] – to allow
communication with other modules within the MoCo.

MoCoModel. The MoCoModel module primarily contains and manages the set
of models that contribute to the functionality of the component. It is up to the
designer of a MoCo to plan and decide what kinds of modeling languages to use
in the specific application domain.

Each model conforms to a meta-model that describes its abstract syntax.
Moreover, constraints may be defined and stored with the meta-model as needed.

Model semantics is described via model interpreters that traverse the abstract
syntax graph of a model. There may be an arbitrary number of such interpreters
for a given meta-model (i) to achieve the same task in multiple technologies, e.g.,
a GUI interpreter for Android user interfaces and another one for web-based
interfaces, (ii) or to perform different tasks, e.g., execute a model’s behavior or
visualize it for human inspection.

Mediator. The Mediator module provides the technical means for connecting
the MoCoCode and the MoCoModel so they can cooperate, i.e., exchange data as
well as mutually trigger the invocation of behavior.

Regarding its position between MoCoCode and MoCoModel, the Mediatormod-
ule plays the role of (i) a potentially bidirectional data synchronizer (propaga-
tion of state information from code to models and vice-versa) and (ii) a behavior
provider (provision of executable models for code and programmed methods for
models). This is reflected by the internals of the Mediator and especially by its
associated interfaces.

Moreover, theMediator forwardsany call to the exposed interfacesat theMoCo’s
ports to an implementation available in the MoCoCode or in the MoCoModel.

Interfaces. The connection between model and code within a MoCo is a critical
part of the design w.r.t. performance and genericity. We propose an extendable
base set of interfaces as a part of the MoCo template. In Table 1, each interface
is listed and its purpose is described.

These internal interfaces are not visible to users of the component, but they
need to be well-understood by software engineers that implement new MoCos or
migrate existing code. They shall be seen as types of interfaces, so there may be
multiple instances of each. We do not claim that this is a complete set (for any
task or domain of applications), but we have gained a high level of confidence
that these interfaces are truly useful during component design and at runtime,
based on previous work and our conducted as well as ongoing feasibility studies.
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Table 1. Overview of internal interfaces of the MoCo template

Interface Description

IModelState provides functionality for accessing the model in MoCoModel via an
API or a dedicated model query/transformation language.

ICodeState provides functionality for extracting information on the state of ele-
ments in MoCoCode as well as for editing it.

IInterpret provides functionality to execute parts of a model in MoCoModel by
traversing its abstract syntax representation.

IAction provides handles to arbitrary (atomic) actions realized in MoCoCode.

4 Reference Implementation

Besides the required choice of (i) a programming language, the realization of
MoCos requires (ii) a concrete component model and (iii) a solid technological
space [19] for handling models.

For programming, we chose Java because it is widely known and provides a
virtual machine for many different hardware and software environments. Addi-
tionally, Java supports multi-language development, i.e., different programming
languages can be executed by its virtual machine. Well-known JVM languages
are Closure, Groovy, Scala, JRuby and Jython as well as JavaScript. In fact, the
modeling languages used in MoCos can be seen as a part of a multi-language
approach, too, since model interpreters are also executed by the JVM.

For components, we chose OSGi ’s [24] dynamic component model as it is the
technological basis for mature plug-in environments such as the Eclipse IDE.
It supports changes to components, i.e., bundles or (declarative) services, at
runtime so MoCos can be loaded or replaced during operation, too. There are
various implementations of the OSGi specification. We use Apache Felix [1].

For modeling, we chose our versatile modeling library JGraLab [3]. It pro-
vides a mature and efficient implementation of TGraphs [13], powerful query
and transformation languages as well as many additional utilities in the form
of a Java library. Models can be accessed and changed via an API that can
be generated from their meta-models. Meta-models are expressed as UML class
diagrams in the IBM Rational Software Architect [2] tool.

4.1 MoCo Core API

In this section, we give an overview of our current implementation of the MoCo
Core API that supports developing components according to the MoCo tem-
plate. In the following, we describe the structure and the rationale behind its
internal architecture.

The external structure of a MoCo depends on the chosen component model.
Hence, a clear mapping of a MoCo’s wrapping and ports to the component
model’s elements is required. In our case, each MoCo is represented by an OSGi
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bundle. Ports are represented by packages that contain plain old Java interfaces,
i.e., OSGi service declarations.

The internal structure of a MoCo is less dependent on the chosen component
model and, thus, can be supported by our reusable implementation to maintain a
similar structure across all MoCos. While modules are represented by packages,
there is a set of basic types to realize their internals. An excerpt of these types
is illustrated in Figure 3.

Fig. 3. Overview of the essential MoCo Core library classes

This implementation is centered around a base type called MoCoObject, in
analogy to the Object base type in Java. This abstract class is the elementary
type for representing entry points to constituents of all three modules of the
MoCo template. More specifically, there is: (i) the MoCoCodeObject for repre-
senting parts of the MoCoCode, (ii) the MoCoModelObject for representing parts
of the MoCoModel and (iii) the Mediator for representing the similarly named
module. Additionally, the internal interfaces introduced in the MoCo template
are available as a mix of Java interfaces and annotation types.

At its heart, the internals of each MoCo consist of a network of MoCoObject
instances. MoCoModelObjects as well as MoCoCodeObjects register a defined
subset of their methods with the central Mediator. This component-specific me-
diator can be fully generated from the set of interfaces available at a MoCo’s
ports by using a utility class offered by MoCo Core. It acts like a proxy to the
actual realization of the component’s interfaces that may be either programmed
in code or by a mix of query/transform/interpret operations on a model. Each
MoCoModelObject can access the actual model (here: the TGraph).

Users of the MoCo can consume a Java interface that is implemented by a mix
of pure code and (executable) models without noticing any difference. A form of
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dynamic dispatching performed by the Mediator enables this partial interface
implementation as follows:

When a MoCo’s service – offered via a PFunction or PManage interface – is
consumed, the call is delegated from the port to the Mediator. Based on the
signature of the called interface method and an internal resolution strategy (e.g.,
based on priority, accuracy or expected performance), the Mediator identifies
a suitable registered MethodProvider that encapsulates a handle to the actual
realization provided by a MoCoCodeObject or MoCoModelObject. Finally, method
invocation is done via Java reflection.

For communication between a MoCoModelObject and a MoCoCodeObject, the
Mediator can be asked for a handle to an implementation of the required type.

5 Feasibility Study: Insurance Sales App

Fig. 4. Screenshot of ISA’s in-
surance form on Android

In order to study the feasibility of the introduced
MoCo template and its reference implementation,
we developed a fictional scenario of an insurance
company that equips its field staff with an assis-
tive Insurance Sales App (ISA) for the AndroidTM

mobile platform. Although fictional, our selected
scenarios are based on information collected in in-
terviews at a German insurance company.

We found this context to be suitable for the
study, because it requires a flexible software so-
lution. In the insurance domain, parts of the ap-
plication logic such as the fee computations de-
pend on frequently changing laws and other im-
pact factors so the software needs to be perma-
nently evolved. Moreover, different user roles (e.g.,
car or home insurance specialist) require different
variants of ISA. In addition, parts of the fee cal-
culations may even depend on geo-locations so the
app needs to adapt itself automatically to support
its users.

The primary goals to be achieved with this feasibility study were (i) to explore
the feasibility of building software with MoCos (practicality), (ii) to gain real-
istic hands-on experience with the development workflow and design of MoCos
(implementation) and (iii) to experience how to embed different (executable)
modeling languages in MoCos (genericity).

5.1 ISA User Workflow

The typical workflow of an ISA user consists of the following steps:
1. The user starts ISA and is presented with a simple log-in screen, that is more

of a user role picker consisting of two buttons for car and home insurance
specialists respectively.
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2. After picking a role, ISA shows a menu with a selection of three different
insurance product calculation forms for the chosen domain.

3. Clicking an insurance product menu item opens a form with input fields for
entering data such as customer age, yearly income, amount of children and
a calculate button. The screenshot in Figure 4 shows this form.

4. Upon button click ISA calculates a monthly insurance product fee based on
the entered data and displays it at the bottom of the form.

At any time, the user can log out again using an application menu entry. That
function resets the state of the app and the log-in screen shows up again.

5.2 ISA Architecture

ISA has been implemented in a completely component-based manner. The ISA
architecture is illustrated with a UML component diagram in Figure 5. Com-
ponents can provide and use interfaces. A provided interface is illustrated as
a “ball” with a direct connection to the realizing component. Usage of these
interfaces is illustrated by dashed lines with an open arrow head. Stereotypes
are used to mark simple components (<<component>>), conventional Android
components (<<app>>) and MoCos (<<moco>>). Port interfaces of MoCos are
marked with the <<pFunction>> or the <<pManage>> stereotype.

Fig. 5. Logical view of the ISA architecture with one active insurance product

The IsaMetaModelApi component provides an API for creating and editing
models from the three modeling languages used throughout the app. This API
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is fully generated by JGraLab tools based on the meta-model diagram. One lan-
guage represents features and trace links to implementing components, a second
language encodes graphical user interfaces and a third one represents insurance
fee computation formulas.

The host Android app starts the IsaSessionMoCo which uses the ICreate-
FormUi interface to display the role picker. This interface is realized by the
IsaUserInterfaceMoCo which receives a GUI model as input. GUI models are
encapsulated by product-specific MoCos such as IsaCarProduct1. IsaUserIn-
terface traverses the GUI model and builds a corresponding Android view
hierarchy that is immediately visible. The view hierarchy is kept in sync with
the GUI model using an event system.

Upon user role selection, IsaSession selects the corresponding role feature
through IFeatureSelector. This interface allows access to the feature configu-
ration of ISA which is managed by the IsaConfig MoCo. Here, a feature con-
figuration is a feature model [17] with a valid feature selection.

IsaConfig contains a model interpreter that can execute feature configu-
rations to achieve architectural reconfiguration.2 If the selected user role was
changed, then IsaConfig updates the application’s main menu by using the
IMenuController interface to display a list of available insurance products for
the selected role. The MenuController implements this functionality.

Otherwise, if an insurance product feature has been selected, IsaConfig de-
termines the corresponding OSGi bundle that implements the product feature
and activates it.3 Deactivation of features and the stopping of associated OSGi
bundles is done analogously. In this example, IsaCarProduct1 is activated.

Example MoCo: IsaCarProduct1. To give a concrete example, the imple-
mentation structure of IsaCarProduct1 MoCo is described subsequently.

– Ports: In the logical architecture shown in Figure 5, IsaCarProduct1 uses
the ICreateFormUi and IComputationFactory. In this specific Java-based
implementation, the use of interfaces is realized by passing references to an
activate method offered by IProductActivate. This interface belongs to
the MoCo’s PFunction port. IReport is another functionality-related inter-
face that enables the printing of details about this specific product’s insur-
ance fee. In terms of management capabilities, this particular MoCo supports
adapting its contained application model via the IUpdateModel interface.

– Mediator Module: In this example, the mediator simply receives calls to the
MoCo’s ports and delegates them to the registered internal MoCoObject in-
stances that are located either in the MoCoModel or in the MoCoCodemodule.

– MoCoCode Module: The EmailReportGenerator is a MoCoCodeObject that
can generate an email with details on the selected insurance product offer
based on data stored in the MoCo’s product model. This functionality is of-
fered to users via IPrint. The EmailReportGenerator can use the mediator
to access the embedded product model’s state.

2 ISA can be seen as a Dynamic Software Product Line (DSPL) [14].
3 The details of OSGi bundle handling via Apache Felix are not visualized in Figure 5.
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– MoCoModel Module: The ProductActivator is a MoCoModelObject that im-
plements the activate()method offered by the MoCo’s IProductActivate
port interface. References to two model interpreters are passed to this ini-
tialization procedure: a computation model interpreter and a GUI model
interpreter. References to both are stored and used internally.

This MoCo carries the ProductModel, which consists of two parts as illus-
trated in Figure 6: the CarProduct1ComputationModel4 and the CarProduct1-
GuiModel. Internally, both parts are represented by a single TGraph. This is
possible, because both sub-models conform to the same integrated meta-model.
There are links between GUI elements and computation variables in order to
read user input from input fields (loadInto) or to output a computed result to
a text view (storeIn). These links are used by the two model interpreters.

The embedded ProductModelManager controls access to the product model.
Moreover, it facilitates adapting of the product’s business logic and correspond-
ing GUI representation with model transformations via IModelUpdate.

:LinearLayout

Feemonthly = 5 * ownership * FB * FC * FD * FE + AF + AG

LoadValueFrom

CarProduct1ComputationModel

:TextView
ownership:DropDownBox

:TextView
ownerAge:EditText

:TextView
vehicleAge:EditText
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netWorth:EditText

:TextView
deductible:DropDownBox

towingAndLabor:CheckBox
rentalCoverage:CheckBox

monthlyFee:TextView

CarProduct1GuiModel

StoreValueIn

Fig. 6. Excerpt of integrated ISA meta-model and the compound product model in
IsaCarProduct1 consisting of a fee formula and a GUI (here shown in concrete syntax)

5.3 Discussion

We are convinced that integrating models and code in the broader context of
component technology is feasible and interesting. Choosing an adequate language
and the fraction of the component to be modeled is a creative task. Based on

4 Insurance fee calculations are simplified.
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the expected need for adaptation at runtime or for technology independent rep-
resentation of knowledge, component developers have the opportunity to embed
their own Domain-Specific Modeling Languages (DSMLs).

MoCos can be consumed as usual but additional management functionality
may be available at the PManage port to enable runtime adaptation via queries
and transformations. Changes to a model in a MoCo have an immediate impact
at runtime. In ISA for example, corrections to the insurance fee formula in
IsaCarProduct1 can be made via the IModelUpdate interface.

In case that software is already being developed in a model-driven manner,
some of these design-time models can be also used at runtime. For example, the
IsaConfigMoCo introduced in Figure 5 carries a feature model that was devel-
oped to describe possible configurations of ISA at design time. This model can be
used to determine the components needed for a certain ISA variant (tailoring),
but it can be also used at runtime for architectural reconfiguration.

By designing the meta-models for each individual modeling language, software
engineers are forced to introduce concepts and their relationships (also across
meta-models) explicitly. The visual models enhance communication, too. In ad-
dition, a similar effect as in MDA can be observed. While models include the
domain-specific knowledge (e.g., the basic GUI elements), a model interpreter
encodes the technology-specific knowledge (e.g., about Android GUIs). When
migrating a “model-only” MoCo to another platform, model interpreters may
need to be replaced but the modeled application logic can be fully reused.

In the following, we revisit the initially stated issues.
– Reducing redundancy: At the artifact level, the MoCo concept reduces re-

dundancy in the sense that it systematically embeds executable models into
software components. For this subset of models, no code is generated. The
models are directly executed by model interpreters. There is no redundancy
unless it is introduced willfully. At runtime, patterns like architectural reflec-
tion and models@run.time are based on propagating values from code objects
to a reification layer. Thereby, redundancy is introduced deliberately which
requires a thorough construction of the “causal connection” between models
and code. This is supported by the Mediator.

– Achieving variability and adaptivity: Since models are integrated parts of Mo-
Cos, runtime querying and transformation of models is supported. Thereby,
self-adaptation is possible (e.g., using event-condition action rules) using the
services of the technological modeling space. Tailoring of components is sup-
ported by similar operations: Models in MoCos can be edited within an editor
and model transformations can be applied as a part of build scripts. That
way, variants of a MoCo can be derived based on a variability model, for in-
stance, to support software product line engineering. Adapting and tailoring
are based on the same operations of the modeling technological space.

– Avoiding inconsistencies between model and code: MID builds on the ideas of
MDD. Especially, when keeping the domain-logic in models and the platform-
specific technical logic in code, the core ideas of MDD may still be used.
Furthermore, the MoCoCode may be developed in a model-driven manner.
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In this case, the handling of consistency between the models and the code
derived from them (vertical consistency) does also not differ from MDD.
Consistency between code and models inside a MoCo (horizontal consis-
tency) must be handled by the development technique like in conventional
consistency assurance between several code parts. But, consistency between
several models inside one MoCo may potentially also be described explicitly
using the technological modeling space’s constraint description language.
In principle, the models of a MoCo may be also used to generate its Mo-
CoCode. Here, the model may either be deleted after code generation (which
we call freezing of the model) or it may be kept (which would be another
example of the deliberate use of redundancy inside the MoCo). In the lat-
ter case, the demand for consistency of model and code is an instance of
horizontal consistency, since both do coexist inside one component.

6 Conclusions and Future Work

In this paper, we motivate our perspective on why we believe that Model-
Integrating Development (MID) based on Model-Integrating Components (Mo-
Cos) is a desirable long-term goal. Based on a feasibility study, we conclude that
– although no silver bullet – the envisioned direction is a reasonable alternative
way to developing flexible software that provides promising opportunities.

There are some threats to validity related to our presented work. First, our
impression that the presented approach is feasible is based on a single study with
only a single component technology. Hence, we have not inspected all kinds of
constellations of MoCos possible in the spectrum from code-only to model-only,
yet. Experiences from our previous works with runtime models [5] hint at the
validity of our assumption, though.

While not small, the size of the study is not “industrial scale”. Especially the
writing of queries, transformations and model interpreters will be more challeng-
ing, the more concepts and relationships a meta-model consists of. Therefore,
software engineers need a check list that supports them with making the decision
on what parts to model and what parts to program. We plan to establish such
best practices in the context of software engineering processes.

An integrated development environment for MoCos is desirable to support
software engineers. In addition, topics such as component hierarchies and ways
to support software engineers with implementing model interpreters need to be
discussed. Further case studies and a mature technological modeling space can
prepare the MoCo concept for use in practice. During the two-years project
“MoSAiC”, we will cover these and further aspects comprehensively.
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Abstract. The development of control systems for large telescopes is frequent-
ly challenged by the combination of research and industrial development 
processes, the bridging of astronomical and engineering domains, the long de-
velopment and maintenance time-line, and the need to support multiple hard-
ware and software platforms. This paper illustrates the application of a model 
driven engineering approach to mitigate some of these recurring issues. It de-
scribes the lessons learned from introducing a modeling language and creating 
model transformations for analysis, documentation, simulation, validation, and 
code generation. 

Keywords: model driven engineering, telescope control systems, model trans-
formation, model validation, code generation. 

1 Introduction 

1.1 The European Southern Observatory Programmes 

The European Southern Observatory (ESO) is an intergovernmental astronomy organ-
ization that carries out ambitious programmes focused on the design, construction and 
operation of observing facilities. ESO has its headquarters in Garching bei München 
(Germany) and operates three observing sites in Chile: La Silla, Paranal, and Chaj-
nantor. The two major programmes of ESO during the last 20 years were the Very 
Large Telescope (VLT) and the Atacama Large Millimeter Array (ALMA). 

The VLT [16] is an optical-light astronomical observatory and consists of an array 
of four telescopes, each with a main mirror of 8.2m diameter, that can observe togeth-
er or individually and four smaller (1.8m) telescopes dedicated to interferometry, 
making it the largest facility of its kind. The construction of the VLT started in 1988 
and it has been fully operational at the Paranal Observatory since the year 1999. 

ALMA [17] is a global partnership between the scientific communities of East 
Asia, Europe and North America with Chile. It comprises an array of 66 12-metre and 
7-metre diameter antennas observing at millimeter and sub-millimeter wavelengths. 
Its construction started in 1998 and in early 2013 it was handed over to the science 
operations at the Chajnantor site. 
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1.2 Telescope and Instrument Control Systems 

An astronomical observation consists of collecting electromagnetic radiation (such as 
visible light) emitted or reflected from a distant celestial target. Optical telescopes 
collect the light. Instruments create images analyzed for intensity, size, morphology, 
or spectral content. Telescope and instruments form a tightly coupled system [19]. 

Control systems for astronomical observing facilities execute observing blocks, de-
fining celestial targets, necessary boundary conditions (e.g. required atmospheric 
conditions), and observing modes (e.g. quality of the wave front) to produce scientifi-
cally-relevant data. The Telescope Control System (TCS) main goal is to maintain 
wave front or radio signal quality throughout the duration of the observation. The 
Instrument Control System (ICS) is responsible for acquiring the scientific data using 
the TCS to receive the wave front. The TCS includes all hardware, software, and 
communication infrastructure required to control the telescope and the dome. It pro-
vides access to the opto-mechanical components, manages and coordinates system 
resources, and performs fault detection and recovery. Large observing facilities in-
volve the control and coordination of distributed actuators and sensors, the real-time 
compensation of atmospheric turbulences, and  the coordination of the safety func-
tions to protect humans and the system itself from hazardous situations. 

When building control systems for large science facilities, like telescopes, a num-
ber of challenges have to be faced. Telescopes and their instruments are interdiscipli-
nary and software intensive systems with long operational life-times between 10 and 
50 years. While two generations of telescopes are typically 15 years apart, introducing 
major technological changes, new instruments are introduced every year and are 
bound to the telescope’s technology.  

Although they are one-of-a-kind experimental machines with many components 
that had never been built before (e.g. nanometer accuracy position actuators, very low 
noise CCDs), they have to guarantee high dependability. For example the VLT re-
quires maximum technical downtime of 3% during the observation time. 

Most of the time, it is not possible to perform complete system tests before the dep-
loyment in the operational environment. This is due to different ambient and observ-
ing condition constraints and to the cost of integrating the full system which can be 
afforded only once. Therefore the architecture needs to build in the capability to cope 
with last minute changes such as modifications in the control system hierarchy, dif-
ferent combination of actuator and sensors, different interaction of distributed control 
loops. 

Despite the fact that those systems are at some point handed over to science opera-
tions, they are never frozen but evolve over their lifetime. New scientific objectives 
may require additional functionalities, or hardware and software can become obsolete. 
The result is a telescope with subsystems and instruments running on different control 
SW releases or even different versions of hardware and software infrastructure. A key 
element of the software infrastructure is the software platform which is used to devel-
op the control applications and includes operating systems, programming languages, 
communication middleware, IDEs, application frameworks, real-time database, log-
ging, alarms, configuration and error handling services. The overview of the software 
platforms used for various ESO programmes is given in Table 1.  
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Table 1. Software platforms at ESO 

Software  
Platform 

Programme OS RTOS Languages Middle-
ware 

VLTSW 
 

Very Large  
Telescope 

Linux VxWorks C, C++, 
TCL/TK 

Proprietary 
messaging 
system 

ACS 
 

Atacama Large 
Millimeter Array 

Linux Linux RT C++, Java, 
Python 

CORBA, 
DDS 

SPARTA 
[34] 
 

Very Large  
Telescope 

Linux VxWorks C, C++, 
Java, 
TCL/TK 

CORBA, 
DDS 

Rapid 
Prototype 

Any JVM  N/A  Java RabbitMQ 
[31] 

2 Modeling Environment 

2.1 Evolution of Modeling Environment 

The first successful attempt1 to apply model transformation to the development of 
telescope control software was the Local control unit Server Framework (LSF) tool. 
LSF was created in 2000 to help building the applications running on the real-time 
local control units providing access to HW. In order to build an LSF application, a 
configuration file containing information on the number and type of devices to control 
is processed by a Tcl script which produces the skeleton code of an application with 
call-backs for custom code to be completed by the developer. In addition, LSF pro-
vides a predefined state machine implementation where the developer can hook in 
code for predefined actions. An LSF application can be extended by adding more 
device definitions in the configuration files and reapplying the transformation. LSF 
has been extensively used for the development of the Auxiliary Telescopes Control 
Software (ATCS), Phase Reference Image and Micro-arcsecond Astrometry (PRIMA) 
control software, and the Active Phase Experiment (APE). 

In 2004, inspired by LSF, a tool suite called Workstation Software Framework 
(WSF) was developed to generate soft real time supervisory applications [1]. WSF was 
initially created to build the supervisory applications of the PRIMA control software 
and later successfully adopted for the development of applications for many other 
projects of the Very Large Telescope program such as the Interferometric Supervisor 
Software configuration process, the Delay Lines rail-alignment tool, the APE project, 
and the New Generation CCD (NGC). In the beginning WSF applications were gener-
ated from a configuration file containing the textual description of their behavior in  
the form of a state machine. Later on, tools were developed to transform Rational 
ROSE and MagicDraw UML State Machine models into the text configuration file.  

                                                           
1  Earlier, the use of Rhapsody code generation capabilities was investigated and considered 

too constraining because of the dependency on proprietary run-time libraries. 
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The modeling tools acted as a front end to facilitate the creation of Statecharts [10] 
since, with increasing complexity the maintenance of the text description became sig-
nificantly more time-consuming. The applications generated by WSF were based on 
the State design pattern [11]. 

A development parallel to WSF was started in 2004 for the ALMA programme. 
The ALMA Project Data Model generator (APDMGen) generates, at the beginning 
only from XML schema and later also from UML class diagrams, the data classes 
representing the data model: complex data structures to describe science targets, cali-
brations, data quality requirements, or hardware configurations. 

LSF

WSF

2000

2002

2004

2006

2008

2010

2012

COMODO

APDMGen

ATCS

P
R
I

M
A

A
P
E

Threaded 
NGC

APDM

P
R
I
M
A

SupervisionReal-Time Data Model

Tool 
Evolution

2013

A
P
E N

G
C

LSV 
Prototype

Project Applications
Size in 
kSLOC

UML 
Elements

FTE

ATCS 104 0 14

PRIMA 204 1416 14.4

APDM 113 1680 6

APE 215 8193
17.3
5

NGC 51 560 3

LSV
Prototype

20 1288 0.4

Event 
Subscriber

1 100 0.1

Threaded 
NGC

30 1426 0.2

 

Fig. 1. The left panel shows the projects (blue boxes) developed using code generation tools 
(brown boxes) in the last 13 years (Y axis). The type of applications built is also reported (X 
axis). The right panel lists the projects and some information on size and cost: the second col-
umn provides the application size in kSLOC; the third column is the size of the input model in 
terms of UML Elements and their subclasses with the exception of profiles and libraries; the 
last column is the effort expressed as Full Time Equivalents (FTE), including application  
specific (meta-) modeling. 

In 2009, based on the experience gained with WSF, a new project was started to 
create a platform independent transformation tool to develop state machine driven 
applications. Two new main requirements were introduced: the possibility to support 
multiple software platforms2 like the control software for the Very Large Telescope 
(VLTSW) and the Alma Common Software (ACS), and the ability to interpret state 
machines. The first requirement focused on enabling model reusability across differ-
ent platforms allowing the developers to create applications regardless of the target 
development and execution environment. The second requirement aimed at reducing 
the size of the generated applications by decoupling the application from the state 
machine execution engine and to provide the capability of changing the state machine 
logic at runtime allowing for fast last minute changes. The project delivered a toolkit, 
called COMODO [2], which has been used to develop the Telescope Control Local 
                                                           
2  Note that LSF and WSF tools are specific to the VLT platform and APDMGen works only 

for the ACS platform. 
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Supervisor (LSV) prototype running on a rapid prototyping software platform based 
on Java and RabbitMQ [31], to redevelop a new multi-threaded version of the NGC 
for the VLTSW platform, and to create the Event Subscriber application for the ACS 
platform. Fig. 1 summarizes the evolution of the code generation tools at ESO and 
provides an idea on the size and cost of the projects. 

In order to maximize the return on investment of modeling, more applications of 
model transformations were explored in addition to the ones targeted on the final 
production code. For example model simulation was used to get an early feedback on 
the logical correctness of the model especially in the context of collaborating state 
machines. Initially simulation was applied in order to understand some principles of 
State Analysis methodology [15] and later on to verify the behavior of telescope con-
trol architecture. However, it became quickly clear that proper model validation could 
be better achieved using a model checking approach. Therefore COMODO was ex-
tended to support a transformation to the Java Pathfinder model checker to be able to 
formally validate state machine models [6]. This transformation was applied to vali-
date the control software design of the PRIMA Variable Curvature Mirror and, in 
collaboration with NASA/JPL, to verify part of the Soil Moisture Active Passive fault 
protections system [21].  

To guarantee consistency between models and documentation some effort was 
spent in 1999 to implement a “one document” approach [36] where HTML and Word 
documents were produced using Telelogic DocExpress from Rational ROSE models. 
Unfortunately the transformation framework offered insufficient control over the 
generated artifacts and therefore this approach was used only in the ATCS project. 
Ten years later a plug-in for MagicDraw, the Model Based Document Generator [18][ 
24], was developed in-house with ownership over the transformation allowing full 
compliance with ESO documentation templates.  

Finally, the recent Conceptual Modeling Framework (CMF) initiative aims at en-
forcing model correctness using ontologies to capture more formally business rules.  

2.2 Current Status 

The modeling environment currently in use is based on the following elements. 

UML™ / SysML™ modeling languages and MagicDraw®.  MagicDraw [29] is a 
commercially available software and system modeling tool with teamwork support. It 
supports UML 2 [27] and, via plug-in mechanism, SysML [28]. The Cameo Simula-
tion Toolkit® [30] is a plug-in for MagicDraw which provides an extendable model 
execution framework based on OMG fUML [35] and W3C SCXML [4] standards.  

Conceptual Modeling Ontology.  The Conceptual Modeling Ontology (CMO) is an 
ontology language similar to OWL2 [33] introduced, in form of UML Profile, to per-
mit the expression of business specific concepts and relationships recurring across all 
our models. It has been developed by ESO based on work done by NASA/JPL [23] 
and some experiences in defining DSLs using SysML [24]. CMO is also used to  
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express the mapping between the ontology and the UML meta-model elements. Vari-
ous layers of interdependent ontologies are supported.  

Conceptual Modeling Framework. The Conceptual Modeling Framework (CMF) is 
an approach, under development at ESO, for turning UML into a domain specific 
modeling language. It transforms ontologies written in CMO into UML profiles, the 
associated validation rules and custom diagram editors. The generated validation rules 
are used by MagicDraw’s validation engine which can run on-demand or can con-
stantly check the model in the background while it is being edited. MagicDraw cus-
tomization features are used to adjust the diagram editor to only offer certain element 
types to the modelers according to the specified ontology. 

Model Based Document Generator. The Model Based Document Generator 
(MBDG [18][24]) is a profile and a plug-in for MagicDraw developed by ESO to be 
able to write documents as SysML models and to transform them into DocBook [25] 
XML files. Since documents and system models coexist within the same modeling 
environment, duplication of information is avoided and consistency is automatically 
maintained. The generated DocBook files can be converted into different document 
formats such as PDF. 

APDMGen. The ALMA Project Data Model generator is a toolkit, developed by 
ALMA and based on openArchitectureWare [22], to transform UML class diagrams 
into XML schemas and Java data classes. 

Java Pathfinder model checker.  Java Pathfinder (JPF) [32] is a system to verify 
executable Java byte code programs. JPF was developed at the NASA Ames Research 
Center and open sourced in 2005. It provides an extension, called jpf-statechart [6], 
used to execute and systematically verify Statecharts models. 

SCXML Engine. The SCXML engine is required to interpret the SCXML documents 
that describe applications behavior. For Java applications, the Apache Commons 
SCXML [5] is used, while for C++ the scxml4cpp library has been developed by 
ESO. The Apache Commons SCXML is also used by Cameo Simulation Toolkit. 

COMODO Ontology and Profile. The COMODO ontology, based on CMO, cap-
tures the concepts and relations required to describe the structure and behavior of 
component based distributed systems. The COMODO profile is the UML representa-
tion of the COMODO ontology [3]. COMODO ontology and profile have been devel-
oped by ESO to be used by the COMODO Toolkit. 

COMODO Toolkit. COMODO Toolkit transforms UML models, based on  
the COMODO profile, into different artifacts depending on the target platform.  
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In addition to the VLTSW, ACS, and Rapid Prototype software platforms, it supports 
plain Java, and Java Pathfinder model checker by generating Java code compliant 
with jpf-statechart3. A summary of the artifacts and activities involved in a COMODO 
transformation is given in Fig. 2. For all target platforms, the input model, together 
with some configuration information such as the part of the model to transform and 
the target platform itself, is transformed by COMODO into: 

• One or more application skeletons. 
• One SCXML document compliant with the StateChartsXML notation defined by 

the W3C [4] for each UML State Machine4. The mapping between UML and 
SCXML has been defined in [2]. 

• Test code. 
• Build files (ant or makefile). 

The generated artifacts together with the developer’s implementation of the actions 
and do-activities are compiled and linked with platform specific libraries such as the 
SCXML engine (Apache Commons SCXML library [5] or scxml4cpp library). 

 

UML Model

COMODO

Build System

Generated
Application

Code

Libraries 
(SCXML Engine)

SCXML
Document

MakefileTest Code

Configuration

Application TestCases

Manually
Developed
Application

Code

 

Fig. 2. COMODO data flow: in dark gray the platform dependent artifacts and activities; in 
light gray the platform independent ones 

                                                           
3  By inserting manually assertions in entry/exit/transition actions it is possible to verify prop-

erties of the system. 
4  For the Java Pathfinder Statecharts platform the SCXML document is not used. 
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COMODO is composed of a java front-end processing the input parameters and 
triggering the execution of the modeling workflow (EMF MWE [12]) specific to the 
target platform, a set of Check model validation rules applied to the UML model, a set 
of Xpand [13] templates organized by target platform (VLTSW, ACS, etc.) and target 
language (C++, Java, XML, text, etc.), and a library of Xtend functions to navigate 
the model (Fig. 3)5. 

«xpt»
ACS

Template

«xpt»
SCXML

Template

«mwe»
ACS

Workflow

«xpt»
RapidPrototype

Template

«mwe»
SCXML

Workflow

«mwe»
RapidPrototype

Workflow

«mwe»
VLT

Workflow

«xpt»
VLT

Template

«chk»
Rule

«ext»
ProfileSupport

«uml»
Model

«java»
COMODO

«text»
Configuration

Rapid
Prototype
Artifact

VLT
Artifact

«scxml»
SCXML
Model

ACS
Artifactexpands

1..*

expands

1..*

expands

1..*

generates

1..*

generates

1..*

generates

generates

1..*

run

verifies
1..*

expands

1..*

run

uses

uses

uses

 

Fig. 3. COMODO’s structure. Only four target platforms are shown here: SCXML, VLTSW, 
Rapid-Prototype, and ACS. SCXML workflow is reused by the other three platforms. Stereo-
types indicate the language: mwe = modeling workflow engine, xpt = Xpand, ext = Xtend. 

3 Lessons Learned 

3.1 Modeling Language 

The process to move from traditional programming languages to a more abstract lan-
guage has been gradual and natural. For example, a developer in charge of building 
ten or more applications tries to minimize the repetitive work by copying the first 
application nine times and replacing the application specific parts. The application 
specific parts are usually composed of concepts that can be abstracted using a model-
ing language (like states, events, and state transitions) and concepts which are hard to 
abstract (like the implementation of actions and do-activities). Initially the abstract 
information was stored in text files using simple property-value syntax or using XML 
schemas. However for large models we quickly felt the need to use a graphical  
notation to group parts of the model and emphasize certain view points. In addition, 
models based on topological concepts (e.g. Statecharts) are easier to appreciate using  
 
                                                           
5  MWE, Check, Xpand, and Xtend were part openArchitectureWare toolkit [22] and are now 

included in the Eclipse Modeling project [14]. 
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visual formalism than text [20][7]. Therefore WSF, APDMGen, and COMODO tools 
provide the ability to process models created with graphical UML modeling tools. 
Unfortunately UML and related tools are not as simple and fast to make small 
changes as a text language and a text editor. They require some skills which can be 
easily forgotten if the tools are used only once or twice per year (as it may be the case 
during the software maintenance phase). Two opposite needs have been observed: 

• During development, when models have to be frequently changed, reviewed and 
discussed, the graphical representation of models containing topological informa-
tion is very important since it is easier to understand and more compact. 

• During maintenance, the software has to be modified few times per year. The 
maintenance engineers are infrequent users of our graphical tooling. They feel they 
can apply small changes to the model much more quickly in a text editor. 

At the moment, we support both textual (SCXML, XML schemas) and graphical re-
presentation (UML Class diagrams and State Machine models) as successfully 
adopted in WSF in the past. In order to avoid diverging of the two representations, 
changes to the textual one must be recorded and ported back to the graphical one. The 
lesson learned is that we need to restrict and customize the user interface of the mod-
elling tool to provide only a subset of UML specialized on Statecharts and composite 
structures. 

3.2 Obsolescence Management of Tool Chain 

Due to the long development and operational life time, the obsolescence of a third-
party tool chain and the associated competence is a major concern. A number of risks 
have been identified, in particular for modeling and model transformations activities. 
They are related to the unavailability and/or change of: 

• UML/SysML modeling tool (MagicDraw and plug-ins)  
• UML profile and meta-model (EMF UML2) 
• transformation languages (Xpand, Xtend) and modeling frameworks (EMF) 
• competent people 

The first UML tool integrated with WSF has been RationalROSE by Rational (now 
IBM). Later on MagicDraw became our standard UML tool. The porting of the mod-
els from RationalROSE to MagicDraw was done manually since the automatic ex-
port/import procedures to XMI did not work, since UML meta-models were different. 
Despite the Model Interchange Working Group effort [37]6, still today it is a chal-
lenge to port models between different UML commercial tools. This is definitely a 
problem since large telescopes have more than 20 years life time and we cannot 
 afford to rely only on a single tool vendor or to manually port large models. At the 

                                                           
6  The test case examples proposed are trivial and cover only a subset of UML. For example, 

in the State Machine examples history states, internal transitions, nested orthogonal regions, 
and different types of triggers and behaviors are not covered. 
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moment, in order to avoid vendor lock in, COMODO supports UML models in the 
EMF UML2 XMI format. 

Changes in the meta-model bear the risk of corrupting existing models because 
sometimes the migration path from one version to another is not well defined. In par-
ticular when meta-model elements disappear, as it happened from UML 2.3 to 2.4 
where the ExecutionEvent event type became obsolete causing potential data loss 
(avoided by developing an ad-hoc M2M transformation).  

An intermediate vendor independent representation of the model (e.g. EMF XMI 
and SCXML) is used to mitigate the risks associated to the modeling tools and UML. 
Transformation languages and modeling frameworks were selected among the ones 
with larger user base, open source, and most compliant with standards. Concerning 
the competences, a small team with modeling and model transformation know how 
was established. The team is in charge of providing modeling support to the projects 
and customizes the transformations. 

3.3 Transformation Ownership 

A key point in the successful adoption of MDE is the ability to customize the trans-
formations to have full control over the generated artifacts [8]. This allows: 

• generating code conforming to project standards, guidelines and platforms 
• producing documentation using the organization’s templates 
• supporting changes to the meta-model  
• managing problems downstream the tool chain such as new versions (or deficien-

cies) of libraries and compilers 

3.4 Platform Independent Modeling 

During the creation of COMODO, the definition of the ontology has been the most 
time-consuming activity. We believe that this is a general issue since the ontology 
definition is an iterative process involving domain specialists capturing the necessary 
semantics to enable an efficient and correct transformation. The ontology had to be 
adapted many times before a stable compromise between formality and practicability 
could be found. The UML profile resulting from the ontology is platform independent 
and is designed to be used for all ESO target platforms7. Platform specific informa-
tion, when needed, is provided directly to the model-to-text transformation tool via 
command line arguments or a configuration file. This approach intentionally avoids 
the Platform Independent Model (PIM) to Platform Specific Model (PSM) model-to-
model transformation, suggested in [26], since this introduces not negligible devel-
opment and maintenance costs, especially when dealing with UML as target meta-
model. For example, the type of target platform is given as a configuration parameter 
to the tool and does not appear in the model. 

                                                           
7  Features appearing in the meta-model and semantically irrelevant for a specific target plat-

form are ignored by the transformation tool. 
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3.5 Modeling vs. Coding 

An important lesson learned from WSF development relates to the amount of generat-
ed code. Even though model-to-text transformations take usually an insignificant 
amount of time, the compilation of the generated code can be time-consuming. There-
fore it is important to be able to transform only part of the model: in this way we 
avoid rebuilding the whole system at each modification. Moreover, preference should 
be given to the usage of configurable libraries instead of code generation. For exam-
ple, control applications created with WSF are based on the State Design pattern 
which requires the generation of one C++ class per state while applications created by 
COMODO use a state machine engine library able to execute SCXML documents. In 
the latter case only the SCXML description of the state machine has to be generated. 
In general our transformations are targeted for “rich” software platforms: platforms 
which include all common services required by the applications (such as logging, 
messaging, error and alarm handling, configuration management, etc) and do not need 
to be generated. 

3.6 Semantic Consistency 

There are different flavors of Statecharts semantic [9] and to avoid inconsistency it is 
important to stick to one across the tool chain. For example, UML does not specify 
any language construct to query at run-time the current Statechart configuration (“in-
State()” or “In()” as defined in [10]). In SCXML the active Statechart configuration is 
updated after invoking the exit actions and before invoking the entry actions. We 
chose SCXML's over alternative implementations for the following reasons: 

• It provides well defined syntax and operational semantic as pseudo-code 
• The relevant features of UML State Machines can be easily mapped to SCXML 
• The same engine is used for model simulation, production code, and prototyping 

Unfortunately the validation step, currently based on jpf-statecharts, is not follow-
ing the SCXML semantics. 

3.7 Archive Generated Artifacts 

Despite the risk of using outdated artifacts, we keep under version control generated 
code in addition to the models for the following reasons: 

• To have quick access to the generated artifacts (e.g. for urgent modifications in an 
operational environment) and speed-up the build process. 

• To verify that models are equivalent by comparing the generated artifacts. 

The second point is very important since it avoids having to repeat system tests when 
models have to be ported to new tools or to evaluate the impact of changes in the 
meta-model.  
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We also learned that, when using commercial tools, any floating license server ap-
plication should be subject to the same version control procedures as the rest of the 
tool chain. Failing to do so prevented us from running legacy versions of the tool. 

3.8 Model Correctness 

Due to complexity, sometimes weak semantics and general purpose of UML/SysML 
it is necessary to customize it and guide the modeler with standardized patterns and 
conventions. The compliance of the user model with the defined rules can be verified 
in various ways (e.g. offline analysis). However, we have observed that one effective 
way is giving the modeler immediate feedback during the modeling activity to create 
upfront a model which is correct by construction. This can be achieved by reducing 
the number of choices that modelers can make, prescribe certain modeling patterns, 
and come up with concise semantics. CMO and CMF are conceived for this purpose. 
CMO, following the recommendations given in [23], focuses on conveying in UML 
syntax the logical organization of a conceptual ontology whose essential constituents 
are unary concepts and reified binary relationships. This approach has the advantage 
that the ontology and the user model can be modeled with a single tool and the same 
language (UML/SysML). It has been used to define a number of reusable ontologies: 
foundational ontologies (Interface Ontology, Structural Ontology), engineering 
oriented ontologies (Protocol Ontology, Connector Ontology), telescope oriented 
ontologies (Telescope Instrument Ontology).  

3.9 Roundtrip and Annotated Code 

From the beginning we avoided round-trip transformations since transforming back 
the code and merging it into the model is considered too expensive to implement and 
maintain. Instead, a clear separation of generated code from manually crafted code is 
preferred. Generated code is stored in dedicated files which can be referenced using 
delegation or inheritance mechanisms.  

Moreover, we observed that is not efficient to model the behavior of actions and 
activities because it requires the same time (in the best case, since code editing capa-
bilities within the modeling tool cannot compete with a conventional IDE) as writing 
the target code and introduces additional transformation from UML or platform inde-
pendent action languages (e.g. ALF) to the target code. If the model is annotated with 
target code then the model-to-text transformation has to be executed every time the 
model or the annotated code is modified. In addition the model is not platform inde-
pendent anymore8. 

                                                           
8  In the executable models or model simulation scenario the annotated code is usually a sim-

plification of the final production code. A mapping of simulation code to final production 
code can be quite challenging. 
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3.10 Reusable Modeling 

Solutions to recurring problems of control application can be extracted in the form of 
a set of modeling patterns documented and collected in a catalog similarly to Design 
Patterns. Some examples of state machine modeling patterns are described in [1]. 

For particular domain specific classes of applications, the whole model is used as a 
template to be copied and pasted. Certain elements of the model are parameters (e.g. 
events or actions in state machines) that can be replaced with concrete arguments. 

3.11 Cost / Benefit Analysis of Model Transformations 

ESO’s primary goal is the delivery of telescopes and instruments and not the devel-
opment of modeling tools. It is therefore important to constantly compare the effort of 
abstracting information and transforming it into specialized artifacts with the cost of 
creating the specialized artifacts manually. 

Given a generic SW application, it is always possible to find an abstraction of the 
application, called model, and define its source code as composed of two parts: one 
that is model dependent (MD) and one that is model independent (MI). A very simple 
abstraction is, for example, a function name: the model is simply the name of the 
function. Using this abstraction the function’s source code can be separated into two 
parts: the name of the function (model dependent because it is generated) and the 
body of the function (model independent because it is hand crafted) without the name 
of the function.  

If TAPPL is the total effort, measured for example in Full Time Equivalent (FTE), 
spent to develop an application, then: 

 TAPPL = TMI + TMD (1) 

where: 

• TMI = is the average effort  spent to develop by hand the model independent part 
of an application 

• TMD = is the average effort  spent to develop by hand the model dependent part of 
an application 

A model-to-text transformation requires:  

• the definition of a source meta-model (TMMDEF) 
• the ability to navigate models based on the source meta-model (TMMNAV) 
• the creation of the templates required to generate the target artifacts (TTPL)9 
• the creation of the model to transform (TM) 

Therefore the effort10 to build N applications using model to text transformation is: 

 TAPPL = TMMDEF + TMMNAV + TTPL + N * (TMI + TM) (2) 
                                                           
9  TTPL includes also the development of libraries used by the templates. 
10  The effort to apply the transformation is considered to be negligible. 
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The efficiency of developing an application using model to text transformation with 
respect to developing the application by hand requires the comparison the cost of the 
two approaches: 

 TMMDEF + TMMNAV + TTPL + N * (TMI + TM) ≤ N * (TMI + TMD) 

 (TMMDEF + TMMNAV + TTPL) + N * TM ≤ N * TMD (3) 

The model transformation approach is more efficient if: 

 (TM ≤ TMD) and (N is big enough) 

N has to be big enough so that the fixed cost for the creation of the meta-model 
(TMMDEF), the development of the tool to navigate the meta-model (TMMNAV) 
and the templates (TTPL) is absorbed by the difference between writing by hand the 
model dependent code and creating the model. The model transformation approach 
tends to be more efficient with simple meta-models easy to navigate and that allow 
the creation of compact models. Note that, for projects within the same organization, 
ambiguities in the effort measurement can affect in the same way both terms of eq. 3. 

For example, the NGC project, composed of five applications based on WSF, re-
quired about 3 FTEs to implement the same functionalities of a similar project 
(FIERA) which took about 6.9 FTEs. Both projects were done by roughly the same 
team. The average effort for the NGC model independent part of an application (TMI) 
equals the total effort minus the effort to build its model; i.e.  (3 – 0.1*5) /5 = 0.5. The 
average effort for the NGC model dependent part of an application (TMD) equals the 
effort to build FIERA minus the model dependent part; i.e. (6.9/5 – 0.5) = 0.88.  WSF 
development required for the definition of the meta-model (TMMDEF) about 0.02 
FTE and for the development of the parser (TMMNAV) 0.76 FTE. The definition of 
the templates (TTPL) took 1.76 FTE. Using the simple linear model the breakeven 
point is reached at N=3.3 so that for every further application we save 0.78 FTEs. 

In case of K transformations (3) becomes: 

 (TMMDEF + TMMNAV + ∑ TTPLi) + N * TM ≤  N * ∑ TMDi, i = [1 .. K]  

And therefore: 

 (TM ≤ ∑ TMDi,) and (N is big enough) 

This is similar to (3) except that the sum of the effort to develop the templates for 
various transformations has to be taken into account.  

Note that with modern transformation languages like Xpand, writing templates is, 
in our opinion, very similar to writing normal code. However the assumption TTPL = 
TMD cannot be made since TTPL includes some of the effort of generalizing MD.  

The maintenance activities like adding new features, fixing bugs, or porting to a 
newer (version of the) SW platform, can affect the model independent part of the 
application or the model dependent part. In the former case the cost is the same for 
both approaches. In the latter case the modification may have to be applied to the 
meta-model, the templates, or the models. Changes to the meta-model are the most 
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expensive since they can imply modifications of the models, templates and/or the tool 
to navigate the model. Changes to the templates are more efficient by a factor N-1 
(where N is number of applications) with respect to the traditional approach. Changes 
to the models are in general more efficient since the level of abstraction is higher and 
dependencies (i.e. side-effects introduced by the change) are more evident.  

4 Conclusions 

In this paper we have presented our experiences in moving from document and code 
centric development to a process driven by models. The main focus is on behavioral 
models because they have turned out to be most beneficial for the telescope and in-
strument software. The model as a single source of information allows having consis-
tency across different transformed artifacts such as code, documentation, simulation, 
and analysis. Automatic transformations simplify for a wider audience of engineers 
the usage of specialized tools without requiring expert skills. In addition models are 
easier to analyze by model checkers than the final target code, thanks to the higher 
level of abstraction and reduced computational complexity. However we observed 
that not everything is worth modeling. Therefore we defined a key performance indi-
cator (as a function of the model dependent and the model independent code) to con-
stantly measure the effort introduced by abstracting information and compare it with 
the effort required by the traditional development practices. 

Large Telescope Control Systems have long operational life-time and are evolving 
continuously. New scientific instruments are constantly introduced and the obsolete 
components of HW and SW platforms have to be replaced. The ability of transform-
ing domain specific models into new or upgraded target SW platforms by simply 
updating templates introduces significant advantages. In contrast to the traditional SW 
development approach, changes can be propagated across a number of existing appli-
cations in a systematic and well defined way. The same type of flexibility is also 
beneficial when dealing with the last minute changes required during the on-site inte-
gration and deployment.  

Two major problems have been encountered when applying a model driven devel-
opment process: the possible lack of semantic integrity and consistency among the 
produced artifacts, and the shortage of modeling competences during the maintenance 
activities. The former applies to domain specific ontologies that are mapped to stan-
dard modeling languages, and to the structural and behavioral models that are used as 
a source for simulation, validation and code generation. The latter concerns the ability 
to maintain generated code in a highly dependable system like a telescope without 
modeling skills. 
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Abstract. We demonstrate the application of Model Driven Engineer-
ing techniques to support the development of research grant proposals. In
particular, we report on using model-to-text transformation and model
validation to enhance productivity and consistency in research proposal
writing, and present unanticipated opportunities that were revealed after
establishing an MDE infrastructure. We discuss the types of models and
the technologies used, reflect on our experiences, and assess the produc-
tivity benefits of our MDE solution through automated analysis of data
extracted from the version control repository of a successful grant pro-
posal; our evaluation indicates that the use of MDE techniques improved
productivity by at least 58%.

1 Introduction

The majority of experience reports in the field of Model Driven Engineering
come from adopters in the software development industry and typically involve
modelling and generating software. Here, we report on the use of Model Driven
Engineering techniques in the context of research grant proposal development.
Proposing and running collaborative research projects is one of the main ac-
tivities undertaken by academics, and in our experience, existing tooling and
processes for supporting some steps of this activity are sub-optimal. In this pa-
per, we describe how we used MDE techniques to automate some of the laborious
and error-prone steps of this activity, and report on the delivered productivity
benefits, which we have measured through automated analysis of data from the
version control repository of a successful proposal.

The rest of the paper is organised as follows. In Section 2, we outline the pro-
cess of developing grant proposals and highlight its laborious and error-prone
steps. In Section 3 we present how we applied Model Driven Engineering tech-
niques to automate these steps, and discuss some key decisions we had to make
along the way, and in Section 4 we present some measurements that demon-
strate the obtained productivity improvements, and reflect on our experiences.
In Section 5 we discuss related work and in Section 6 we conclude the paper.
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2 Background

Often, a research project commences with the formation of a consortium compris-
ing several academic and industrial partners, and is followed by the collaborative
development of a grant proposal that outlines the objectives, technical organisa-
tion, and management of the project. In particular, the technical work needs to
be decomposed into a number of work packages consisting of specific tasks and
deliverables. Multiple partners can contribute to each work package and each
partner can lead on the preparation and production of multiple deliverables.

Typically, proposal documents need to adhere to a template provided by the
funding body, which prescribes their structure and formatting. Often, such tem-
plates require different views of the same information that appears in multiple
places in the proposal (e.g. effort per work package, effort per partner, deliv-
erables per work package, project deliverables ordered by delivery date). As a
result, consistency of the proposal is an issue: if, for example, the effort asso-
ciated with producing all of the deliverables in a project does not match the
effort allocated to all partners in the project, there is a consistency problem
(and such problems may be reflected in the proposal’s review scores). To make
matters worse, the information that could lead to inconsistencies in the pro-
posal may change frequently during the core stages of development (e.g. the
effort allocated to a partner for a particular work package may change several
times during negotiations, or the deadline for a deliverable may be modified
several times). Changes to this kind of information may require some substan-
tial effort to implement in the proposal. For example, updating the due date of
a deliverable in a proposal under the European Commission’s 7th Framework
Programme1 template, requires updates in two separate tables (deliverables by
chronological order, project Gantt chart), and in the section of the proposal that
describes the deliverable itself. Similarly, modifying the effort of a partner in a
work package requires updates in two different tables (effort per partner, effort
for work package). In our experience, this information will change many times
during the life-cycle of the proposal, and maintaining these views in a consistent
state manually is both tedious and error-prone.

3 Model Driven Grant Proposal Engineering

In the spirit of MDE – that is, in the spirit of automating repetitive and error-
prone tasks through the use of models and automated model processing – and
in order to reduce the accidental complexity involved in developing grant pro-
posals, we decided to use MDE techniques to automatically generate different
views (tables, graphs, Gantt charts) of core proposal information. The generation
process would be based on an abstract model of important information, and as
a result the different views would be guaranteed to be consistent by construction.

1 http://cordis.europa.eu/fp7/home_en.html

http://cordis.europa.eu/fp7/home_en.html
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In this section we discuss our operating context, the approach we followed, and
the challenges and opportunities we encountered along the way.

3.1 Context

We focus on the process of developing proposals for EC-funded, ICT2-focused,
collaborative, targeted research projects (STREP), however, developing propos-
als for other types of collaborative projects and research funding bodies should
not be too dissimilar. Such proposals typically take between 3-6 months to pre-
pare and involve 6-9 partner organisations from academia and industry, each
participating with at least one representative in the proposal development phase.
Proposals themselves range from 70-120 pages in length, and include technical,
management and financial sections; technical and financial sections are most
likely to change frequently during proposal development, whereas management
sections tend to be reasonably stable. Partner representatives involved in the
preparation of such projects typically have a computer science background or
at least above-average computing skills. Our typical setup for collaborative de-
velopment of such proposals involves a Subversion version control repository to
which all partner representatives have read/write access, and which hosts the
proposal document, distributed across many smaller LATEX files in order to min-
imise merge conflicts.

3.2 Approach

Modelling To improve the internal consistency of the proposal and automate
the repetitive steps of the proposal development process, we followed a bottom-
up iterative approach in which we used an XML document to model the proposal
we were working on at the time. We chose plain XML instead of a rigorous
modelling framework, such as the Eclipse Modelling Framework [1], primarily
due to XML’s agility; using XML, we would be able to engage in exploratory
modelling without being constrained by a rigid metamodel, and we would also
not need to engage in metamodel-model co-evolution activities. On the other
hand, by choosing XML we would miss strong typing and built-in support for
cross-references between model elements – which we considered to be a fair trade-
off in the context. Another agile option would have been to use an annotated
general-purpose diagram [2] however, we considered XML to be more suitable as
we anticipated that the information we would need to capture in the proposal
model would have a predominantly hierarchical (as opposed to graph-based)
structure. After a few iterations, we converged to a first version of the XML
document that captured the work packages, tasks, deliverables, and milestones
of the project (see Figure 1 for a conceptual metamodel to which project models
conform to, and Listing 1.1 for a sanitised excerpt from a successful3 proposal).

2 Information & Communication Technology.
3 http://www.ossmeter.org

http://www.ossmeter.org
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1 <?xml version="1.0"?>
2 <project name="OSSMETER" duration="30"
3 title="Automated Measurement and Analysis of Open-Source

Software" >
4
5 <wp title="Requirements & Use Cases" leader="TOG" type="RTD">
6 <effort partner="TOG" months="6"/>
7 <effort partner="York" months="6"/>
8
9 <task title="Use Case Analysis"

10 start="1" end="6" partners="TOG, York, ..."/>
11 <deliverable title="Project Requirements"
12 due="6" nature="R" dissemination="PU" partner="TOG"/>
13 </wp>
14
15 <milestone title="Requirements and case studies completion"

month="6"/>
16 <milestone title="Project completion" month="30"/>
17
18 <partner id="York" name="University of York"
19 country="United Kingdom"/>
20 </project>

Listing 1.1. Sanitised excerpt of the model of the OSSMETER project

Fig. 1. Conceptual metamodel for project models
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Model-to-text Transformation Our next activity was to decide how to best
integrate any LATEX content that we would generate from the constructed pro-
posal model, with the hand-crafted parts of the proposal. We considered two
options. The first option was to mix generated and hand-crafted content and
rely on the M2T transformation engine’s capabilities to preserve hand-crafted
content upon re-generation. The second option was to keep generated and hand-
crafted content separate, by producing a single file that would contain a number
of auto-generated LATEX commands which we could then reference from the
hand-crafted LATEX files. The main advantage of the first option was that con-
tributors would not need to memorise any generated LATEX commands; the main
advantage of the second option was that we would enable contributors to use
the generated LATEX-commands in arbitrary locations in the proposal, without
needing to adapt the generator every time. Automated content assistance and
previewing facilities in modern LATEX editors partially compensate for the short-
comings of the second approach, so as illustrated in Figure 2, we chose to produce
a single LATEX file containing a set of generated commands, which could then be
imported by the main proposal file.

Fig. 2. Overview of the organisation of our MDE solution

In terms of the actual M2T transformation that would generate the LATEX
commands file, we chose to implement it using the Epsilon Generation Language
[3], both because of prior familiarity with it but also because it provides built-in
support for consuming plain XML documents in an elegant manner [4]. For ex-
ample, the excerpt of the M2T transformation4 presented in Listing 1.2, iterates
through all work package (wp) elements in theXMLdocument presented in Listing
1.1 (t wp.all in line 2) and then through their task children (wp.c task in line 5) to
generate a LATEX command (workPackageAndTaskList in line 1) that

4 The complete M2T transformation is 529 lines long.
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presents the project’s work packages and tasks5. The executable content of anEGL

template is contained within the [% %] tags (e.g. lines 3, 5, 7, 8), text-emitting

instructions are contained within the [%= %] tags (e.g. [%=wp.a title%] in line

4), and everything outside these tags is treated as static text.

1 \newcommand{\workPackageAndTaskList} {
2 \begin{itemize}

3 [%for (wp in t wp.all) { %]

4 \item \textbf{ [%=wp.getId()%] [%=wp.a title%] }

5 [%for (task in wp.c task) { %]

6 \subitem Task [%=task.getId()%] [%=task.a title%]

7 [%}%]
8 [%}%]
9 \end{itemize}

10 }

Listing 1.2. Excerpt of the proposal model to LATEX M2T transformation

Having generated a consistent set of commands, we could now import them
from the main proposal LATEX document and use them in arbitrary places. Listing
1.3 illustrates an excerpt of the main proposal document that uses generated
LATEX commands (i.e. projectDuration, projectName, workPackageAndTaskList,
numberOfMilestonesAsWord).

1 \subsubsection{Project Planning - Timeline and Effort
Distribution}

2 \label{sec:projectPlanning}
3
4 The project duration will be \projectDuration months.
5
6 The \projectName project will be articulated in the following

work packages:
7
8 \workPackageAndTaskList
9

10 We foresee \textbf{\numberOfMilestonesAsWord milestones} ...

Listing 1.3. Excerpt of the main proposal document that uses generated
LATEX commands

Model Validation Our next step was to define validation constraints for
project models. We chose to express these constraints using the Epsilon Vali-
dation Language [5], for similar reasons to the ones discussed above. In Listing
1.4 we demonstrate two of the defined constraints that are evaluated for all task

5 Naming conventions such as the use of t and c prefixes in Epsilon’s XML integration
driver are discussed in detail in [4].
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elements (context t task in line 1) of the proposal model. The first constraint
(EndAfterStart in line 3), checks that the start date of a task always precedes
its end date (line 4), and produces an appropriate error message if this condition
is not met (line 5). Similarly, the second constraint (constraint WithinThePro-
ject in line 8) checks that the end date of the task does not extend beyond the
project completion date (line 9). To present any identified problems to the con-
tributors of the proposal, unsatisfied constraints produce a new LATEX command
(generatedWarnings), which is then imported from the main proposal document.

1 context t_task {
2
3 constraint EndAfterStart {
4 check : self.i_end > self.i_start
5 message : "Task " + self.getId() + " ends before it

starts"
6 }
7
8 constraint WithinTheProject {
9 check : self.i_end <= t_project.all.first().i_duration

10 message : "Task " + self.getId() + " ends after the end
of the project"

11 }
12 }

Listing 1.4. Validation constraints for PropoGen models

Deployment To enable other contributors to invoke our MDE solution locally,
we had to develop and distribute a standalone runnable application. In the in-
terest of simplicity, we developed a self-contained executable Java bundle (JAR)
on which users could drag-and-drop their project model to invoke the validation
constraints and M2T transformation discussed above. The JAR had to include
a complete copy of the EGL/EVL execution engines as well as the actual trans-
formation and validation constraints.

On a side-note, attempting to bundle the Epsilon execution engines into a
self-contained JAR file was as useful exercise in itself as collecting and packaging
all required dependencies turned out to be quite challenging. As a result of this
exercise, Epsilon now provides pre-bundled standalone JAR files6 that developers
can use in their standalone (i.e. non-Eclipse-based) Java or Android applications
with minimal effort.

3.3 Unexpected Opportunities

As discussed above, our initial motivation for modelling project proposals was
so that we could eventually generate LATEX content that was tedious and error-
prone to maintain manually. However, after developing the LATEX M2T transfor-
mation discussed above, we realised that we could now also produce interesting

6 http://www.eclipse.org/epsilon/download/

http://www.eclipse.org/epsilon/download/
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visualisations for quality assessment purposes from the same model. For exam-
ple, we developed an additional M2T transformation that generates tree-map
charts such as the one displayed in Figure 3, which visualises the distribution
of effort across different work packages of the project, and Sankey charts, such
as the one illustrated in Figure 4 which visualises the contributions of different
work packages to the milestones of the project – both of which we have found
to be extremely useful for establishing confidence in the balance of the project:
one aspect that evaluators tend to study is whether the work/effort/contribu-
tion balance is well distributed across partners, themes and work packages (and
hence both risk and workload are suitably mitigated and managed).

Fig. 3. Tree map visualising the distribution of effort per work package
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Fig. 4. Sankey diagram visualising how work packages contribute to project milestones
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4 Evaluation

In this section we assess the productivity benefits delivered by the XML to
LATEX M2T transformation by analysing data from a recent project proposal
that was developed between August 2012 - January 2013. In particular, we mea-
sure the number of added, removed and deleted lines of text across consecutive
versions of the model and the generated LATEX commands file, using the svn diff
and diffstat tools as displayed in Listing 1.5. The rationale for doing this is that
in the absence of the M2T transformation, we would have needed to perform the
same changes to the LATEX commands file manually.

#<file>: the file to diff
#<r1>: older revision number of the <file>
#<r2>: newer revision number of the <file>
svn diff -r <r1>:<r2> <file> | diffstat - m

Listing 1.5. Bash command used to calculate the number of changes between
consecutive revisions of the XML model and the generated LATEX commands file

Table 1 presents the obtained measurements. The first column of the table
displays the SVN revision numbers for the two files, the second and third columns
display the number of changes in the XML model and LATEX command file with
respect to their previous revision in the repository, and the last column displays
the difference of these two values. A plotted version of the data displayed in
Table 1, appears in Figure 5.

Table 1. Changes in the XML model and generated LATEX command file by revision

Revision Changes (XML model) Changes (generated LATEX) Difference

3558 30 38 8

3595 1 46 45

3645 12 29 17

3646 1 3 2

3649 7 13 6

3675 2 5 3

3913 2 21 19

3914 2 9 7

3922 2 8 6

3991 16 31 15

3992 2 6 4

4019 16 75 59

4044 39 43 4

4045 2 5 3

4065 1 2 1

4075 11 39 28

4088 5 15 10

4091 28 42 14

Total 179 430 251
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Fig. 5. Plotted data from Table 1

The obtained measurements demonstrate that the M2T transformation de-
livered a productivity improvement of ∼58% over the lifecycle of the proposal.
The latest version of the model for that proposal comprised 256 lines of XML
(13,194 bytes) while the generated LATEX command file comprised 676 lines of
dense text (56,694 bytes). Although we do not have hard supporting evidence, it
is reasonable to assume that it is also significantly easier and faster to locate and
update information in the XML document instead of the LATEX command file,
which has a potential to further amplify the productivity improvement figure
obtained above.

4.1 Reflection

Compared to 3-layer metamodelling architectures such as EMF, plain XML is
clearly sub-optimal from a technical point of view for capturing interconnected
models as it lacks features such as support for cross-references and types. In a
non-collaborative environment, we would have most likely used EMF to capture
grant proposal models, as this would have also simplified the subsequent model-
to-LATEX transformation.

However, if we were to use EMF in a collaborative environment, we would
have needed to implement and distribute standalone language-specific editors
(i.e. Eclipse RCP applications) to all partners involved. As RCP applications
are platform-specific, we would have needed to export and distribute several
permutations of the editor for different operating systems. Moreover, with every
change of the metamodel, we would have needed to distribute a new version of
the editor application (and most likely deal with the confusion that multiple
versions of the same editor can cause).

By choosing to model projects using plain XML, we eliminated the need
for developing, maintaining and distributing specialised editors. Despite having
some initial concerns about requiring partners to edit XML directly, providing a
comprehensive first version of the XML document appears to have been sufficient
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even for non-technical partners as we have never – over the last 3 years and 5
grant proposals – received any clarification requests.

Another option we considered early in the design process was to use an off-the-
shelf project management tool (e.g. Microsoft Project, ProjectLibre7) instead of
XML for modelling grant proposals. We decided to use XML instead so that we
could have finer control over the structure and organisation of our models.

5 Related Work

There is anecdotal evidence to suggest that several bespoke solutions with com-
parable functionality have been developed and are currently in operation both in
academia and industry. This is unsurprising given the size of the domain (over
16,000 proposals were submitted in response to the European Commission’s
Horizon 2020 calls in April 2014 alone8). However, to the best of our knowledge,
there is no published work that reports on the organisation, architecture and
evaluation of such systems, nor of the specific use cases that such systems aim
to support.

In a wider context, several approaches have been proposed for automatically
generating system reports, documents and manuals from models in different do-
mains. Hyperdoc [6], is a toolkit that provides support for automated generation
of manuals for interactive systems (e.g. VCR players) from state-machine mod-
els. Hyperdoc applies graph analysis techniques in order to identify the shortest
path between pairs of states and provide efficient instructions to the end-user of
the product. In [7], the authors present an approach for generating manuals for
families (product lines) of industrial automation systems, using the DOPLER
variability modelling tool, DocBook as the target document format, and XSLT
for model transformation. In [8], the authors demonstrate how system documents
and reports can be generated using a model-based approach from SysML view-
points and views. In a different domain, in [9], the authors demonstrate how
multimedia presentations can be specified at a high level of abstraction using
XML, and then compiled using XSLT transformations into concrete artefacts
targeting different delivery platforms. XSLT and XML are also used to support
processing of highly structured documents with signing requirements (e.g., to
comply with security policies and governance requirements) in [10], though no
explicit metamodel is used in this work.

In [11], the authors provide a systematic review of 34 approaches for gener-
ating requirements documents from software engineering models such as UML,
user-interface, and goal models and identify a number of best practices including
support for 1) bidirectional traceability, 2) structural correspondence between
the models and the generated documents, 3) generation of documents in a mod-
ifiable format, 4) incremental synchronisation when models change and 5) tai-
loring the generated document according to its target readership. The approach

7 http://www.projectlibre.org
8 http://www.sciencebusiness.net/news/76612/Record-numbers-apply
-for-Horizon-2020-first-round-funding (Last accessed: July 1, 2014)

http://www.projectlibre.org
http://www.sciencebusiness.net/news/76612/Record-numbers-apply-for-Horizon-2020-first-round-funding
http://www.sciencebusiness.net/news/76612/Record-numbers-apply-for-Horizon-2020-first-round-funding
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proposed in this paper is consistent with best practices 2-5 and provides some
support for traceability – mainly from the document back to the project model
through the generation of LATEX commands with human-readable identifiers (e.g.
\workPackageOneTitle).

6 Conclusions

In this paper we have presented how we have applied MDE techniques to auto-
mate repetitive and error-prone tasks in the context of the collaborative develop-
ment of grant proposals. We have demonstrated how grant proposals can be mod-
elled and validated at a high level of abstraction and how model-to-text trans-
formation can then be used to produce correct-by-construction LATEX macros
automating the most tedious and error-prone parts of the process. We regard
this application as highly successful and an essential asset for our work on col-
laborative research projects. Indeed, we have shared this MDE application with
partners and colleagues elsewhere, who now use it as part of their proposal de-
velopment activities.

Acknowledgements. This researchwas part supported by the EPSRC, through
the Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU,
through the OSSMETER FP7 STREP project (#318736) and the MONDO FP7
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Abstract. Model-driven engineering focuses on structuring systems as
well as permitting domain experts to be directly involved in the soft-
ware development. Agile methods aim for fast feedback and providing
crucial knowledge early in the project. In our study, we have seen a
successful combination of MDE and agile methods to support the devel-
opment of complex, software-driven mechatronic systems. We have inves-
tigated how combining MDE and agile methods can reduce the number of
issues caused by erroneous assumptions in the software of these mecha-
tronic systems. Our results show that plant models to simulate mechan-
ical systems are needed to enable agile MDE during the mechatronic
development. They enable developers to run, verify, and validate mod-
els before the mechanical systems are delivered from suppliers. While
two case studies conducted at Volvo Car Group confirm that combining
MDE and agile works, there are still challenges e.g. how to optimize the
development of plant models.

Keywords: Model Driven Engineering, Agile, Mechatronic Software De-
velopment, Virtual Testing, Assumptions, Plant Models.

1 Introduction

Developers working on complex embedded systems are consciously and uncon-
sciously making assumptions early in the project about properties and behavior
of other components in the system [1, 17, 21]. For example, a developer might
make the implicit assumption that the velocity signal from one component is
supposed to be in km/h, but it is in fact provided as m/s. These assumptions
are often difficult to verify until later phases in a project, such as subsystem
integration, because it is common that development is distributed within and
between companies. When assumptions lead to unexpected behavior, the costs
for fixing these issues increase rapidly the longer they go undetected [19]. There-
fore, there is a clear need to address the negative impact of assumptions already
early during the development.

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 433–449, 2014.
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Today’s automotive industry undergoes a rapid transformation from a mainly
mechanical industry into a computerized electromechanical industry where cars
are composed of several mechatronic systems, which interact with their sur-
roundings, e.g. autonomous emergency braking. Already twelve years ago it was
estimated that 80% of the automotive innovation stems from electronics [13],
mainly driven by software, and the size and complexity of software in cars have
continued to grow exponential [7]. For example, a modern hybrid electric car
has more than 100 electronic control units (ECU), collaborating in a complex
in-vehicle network and executing several gigabytes of software.

Sequential development processes that are traditionally used during vehicle
development have shown to be insufficient for handling such an exponential
growth of software [5, 7]. Furthermore, car manufacturers consider vehicle func-
tions powered by software as a competitive advantage and hence, they tend to
develop an increasing amount of this software in-house. Thus, innovation cycles
can be shortened as well.

We conducted a case study at the Volvo Car Group (VCG) in Sweden at the
Department of Electric Development to better understand challenges originating
from combining MDE with agile methods. The main findings from this study
are:

– It is possible to combine MDE and agile methods during the development
of complex mechatronic systems at automotive original equipment manufac-
turers (OEM) to gain more knowledge earlier in the projects and decrease
the number assumptions.

– Virtual test environments to validate software components are a flexible
instrument to support MDE and agile to improve the quality of software
regarding wrong assumptions.

Overview: In Sec. 2, we present the development process at VCG to provide
the background on how software development is usually carried out at automo-
tive OEMs and Sec. 3 outlines the problem domain and motivation. In Sec. 4,
we present our research questions and the methods we used to address them.
Sec. 5 reports about the design and results from an exploratory study that was
conducted as a pre-study to address RQ-1 and to derive RQ-2 and RQ-3. To
address these derived research questions, we did two case studies at VCG, which
are reported in Sec. 6. The findings from the investigated cases are analyzed and
discussed in Sec. 7. Related work is described in Sec. 8 before a summary and
conclusion is provided.

2 Background

Mechatronic development, such as for a modern car, involves software, hardware
and mechanical development. The widely adopted model for this distributed
development is the V-model, see Fig. 1. The V-shape represents the journey
for each component in the car, from the high level requirement and design, via
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Fig. 1. The V-model as it is implemented at VCG for a car development project.
Software, hardware and mechanical development happens in parallel and is integrated
at certain points during the project.

the detailed component development and up to verification of the integrated
component in the product.

As shown in Fig. 1, the overall system development process at VCG is a
sequential process with a number of points in time where artifacts are to be
delivered. There are three tracks of parallel development: (a) the software com-
ponents (SWC), (b) the hardware like ECU, and (c) mechanical parts. E1-E3 are
electronic integration points and P is where the software should be production
ready. The OEM has an overall system responsibility but purchases mechanical
systems, hardware and software from suppliers. The suppliers then deliver their
components for integration in later phases of the project. VCG has traditionally
ordered all the software from suppliers, except for the engines. Recently, an ini-
tiative for developing more software in-house has been initiated to keep domain
knowledge as a competitive advantage within the company and to improve the
speed of innovation.

To meet deadlines in the project, the in-house software development needs to
be started before suppliers deliver their components. This is a major challenge
for the development teams because they do not have the components available
to validate that their assumptions on the behavior of the component are correct.

At the beginning, all requirements and the system design for the next iteration
is captured as a model inside a custom-made tool, referred to as SysTool. This
model contains, among other things, software components, the requirements they
should realize, their deployment on ECUs within the car, and the communication
between them. At a certain point in time, this model is frozen and no new changes
are allowed until the next iteration starts. These freezes usually last for 20 weeks.
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The SysTool model is the single point of truth with respect to two aspects:
Firstly, it is used to schedule the communication on the in-vehicle networks;
secondly, the component model is transformed into Simulink model skeletons.
Each Simulink model represents an ECU with skeletons of the deployed software
components including ports and connections. These models are then comple-
mented with functionality by developers as specified by textual requirements.
If the system model changes, the Simulink models are updated to reflect these
adaptations and preserve any existing implementation.

The executable Simulink models are tested in a virtual, model-in-the-loop
(MIL), environment. In MIL-testing the software models are executed within
the modeling tool. So-called plant models are used for simulating the surround-
ings of the ECUs, including software and mechanical components. This enables
the developer to get instant feedback by running and testing their models on
their PCs. MIL-testing is the focus for this article in terms of investigating and
understanding the role and impact of assumptions.

The suppliers provide their software as binaries to protect their intellectual
property (IP). Code is generated from in-house models, compiled to a binary and
linked with the supplier modules. The resulting software is transferred to the
hardware and tested in hardware-in-the-loop (HIL) test rigs. HIL testing means
that the code is executed on the intended ECU-hardware and uses real network
buses but the rest of the environment surrounding the ECU is simulated. Due to
the fact that suppliers provide binaries, this is the first time that both, in-house
and supplier developed software, can be integrated and validated together.

The final phase of testing is when software and hardware is integrated with
the mechanical systems in a complete prototype vehicle and tested. In these
prototypical cars, the whole system is tested altogether.

3 Motivation and Problem Domain

Many systems in today’s vehicles are so-called cyber-physical systems (CPS),
which use sensors and mechatronic parts to realize their functionality. These
systems include assistant systems like adaptive cruise control, safety-critical sys-
tems like autonomous emergency braking, but also mechatronic systems like
electronically supported steering. While some of the software development for a
car is conducted in-house, other parts of the software as well as a majority of the
hardware and mechanical components are developed and provided by suppliers.
When the software development takes place in-house, mechatronic components,
which are used to obtain data from the surroundings or to interact via actuators
with the surroundings, are not available yet and hence, the software develop-
ment would be partially based on assumptions about the behavior and data to
be expected from such hardware and mechatronic components. The in-house de-
velopment cannot be delayed until suppliers have delivered their finished systems
as this would make it impossible to meet project deadlines.

Additionally, a standardization of hardware and software platforms like AU-
TOSAR [9] would have the potential of facilitating the integration and lower the
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number of platform-related assumptions. However, the automotive industry has
a long tradition of optimizing on component price, since the hardware cost is still
believed to dominate the total production costs and thus, packing and weight
are valuable. Therefore, there is no breakthrough of component standardization
yet, which could help to reduce the potential risk of relying on assumptions.

In order to achieve faster feedback as well as better utilizing the expertize
of domain experts in-house VCG has decided to use the executable software
modeling language Simulink. This permits one to simulate and test the code
continuously and translates it automatically into C code whenever necessary. It
also enables in-house engineers with domain expertise to implement solutions
themselves.

Having the above in mind we wanted to improve on the way of developing
mechatronic systems by combining elements from MDE with agile development
methods. There are different methods and techniques called agile but they share
a number of concepts, such as having working software early, rapid feedback
reducing the time between decisions and seeing the consequences, taking advan-
tage of faster and less formal communication and focusing on how to best utilize
the skills and talents of the people in the organization [6, 10]. The focus in this
study has been on having working systems early in contrast to writing specifi-
cations and requirement documents up front, faster feedback by short iterations
and more direct communication with stakeholders.

We are only looking at agile MDE within single ECUs. The input and output
to the ECUs are exported from the SysTool and the design process on this level
follows the overall system process common for the whole car project. However,
even when being constrained to one ECU it is complicated to achieve agile
development for mechatronic systems, since the connected physical systems are
not always available and therefore require plant models as part of the virtual
test environment. Without these plant models of mechanical parts one will not
have an executable system early.

4 Research Questions and Methods

With the said-to-be standard tooling of Matlab Simulink in the automotive in-
dustry, the OEMs and their suppliers are successful adopters of model-driven
engineering (MDE). Considering the aforementioned problem domain, the goal
of this study is to investigate the challenges for MDE at an automotive OEM,
when (un-)consciously depending on assumptions during in-house software de-
velopment.

RQ-1: What are the causes that lead to assumptions in distributed mechatronic
development and what are the consequences?

RQ-2: Does the combination of MDE and agile methods increase the knowledge
in earlier phases of the project compared to a plan driven process?

RQ-3: What impact does faulty assumptions within the test environment have
on the product and process?
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Our study incorporates an exploratory study as a pre-study and two case
studies. The exploratory study was conducted to address RQ-1, investigating
the challenges regarding software, hardware, and mechanical assumptions by
conducting interviews with developers, requirement engineers, testers, and ar-
chitects. The design of the interview was semi-structured with open-ended ques-
tions, which allowed the interviewees to focus on topics as they arose during
the discussion. The design and results for the exploratory study are described in
Sec. 5.

The results from the semi-structured interviews were used to cluster topics to
identify main challenges. From these topics, the research questions RQ-2 and RQ-
3 were derived and two case studies were designed to follow upon on these topics.
In the case studies, data was collected by observation and complementary semi-
structured interviews. The results were validated by discussions with involved
participants in the projects. The design and results for the case studies are
described in Sec. 6.

The findings from the application of both methods are analyzed and discussed
in Sec. 7.

5 Exploratory Study to Prepare the Case Studies

To address RQ-1, we conducted an exploratory study as a series of semi-structured
expert interviews with open-ended topics. In this section, we report about the
design and results of this exploratory study according to the guidelines of Shull
et al. [19].

5.1 Design of the Semi-structured Interviews

The exploratory study consisted of eight semi-structured interviews with eight
engineers. In general the interviewees had a background in electronics, physics,
automation or mechanical engineering and a long-term experience in mechatronic
and automotive development. The interviewees were sampled from different roles
and working on different levels in the development project covering engineers
working with software development and writing detailed requirements, testers
on different levels, as well as developers working on the electronic architecture
for the complete vehicle.

The following topics were open-ended discussed and recorded for post-
processing:

– Background of the interviewee including role and responsibilities
– Type of involvement during the development process
– Experiences with assumptions:

• Concrete examples for assumptions during the development
• How wrong assumptions were identified and corrected
• How corrected assumptions were documented afterwards

The interviews took on average 45 minutes and were very informative in terms
of initiating reflection processes while discussing with the interviewees.
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5.2 Results from the Semi-structured Interviews

Motivational factors for challenges stated from interviewees could be boiled down
to having their roots in the sequential development process used on system level
at VCG. To pass the project stage gates, decisions have to be taken before having
the complete knowledge for deriving well-informed decisions. Thus, this gap of
missing knowledge is filled in by assumptions as depicted by Fig. 2.

The earlier an engineer has to make a decision the higher is the risk of faulty
assumptions that lead to unwanted side-effects of defects, which need to be fixed
later. Furthermore, these assumptions can only be verified at the integration
points when the different parts of the system are delivered. Since the integra-
tion often happens late in the development project, any serious issues that are
discovered at this time are obviously costly and time-consuming to fix.
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Fig. 2. A process that require early decisions regarding requirements, design or im-
plementation details, before having any activities on building the knowledge needed
will inevitably force its participants to make assumptions. These assumptions can be
faulty, consequences of which will be visible first after the first real integration, usually
leading to a huge increase in needed activities at the final stages of the project.

The main finding, confirmed with the involved interviewees, was that there
is a clear need for earlier and faster feedback to the developers and designers of
systems. This clearly shows that there is a need for agile methods to support
delivering and integrating in increments early to build knowledge for making
more informed decisions and getting early feedback on if their solution is heading
in the right direction.

From the feedback of the interviewees in this exploratory study, we derived
the research questions RQ-2 and RQ-3, which shall be followed up on with two
subsequent case studies.
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6 Case Studies

From our exploratory study, we derived the research questions RQ-2 and RQ-3,
which are addressed by two case studies conducted at VCG. Here, we report
about the case studies according to the guidelines from Runeson and Höst [18].

6.1 Case Study Design

The two cases are from different units in electric development department at
VCG. The first case (Case 1) is from Electrical Propulsion Systems (EPS). EPS is
the unit at VCG that develops the components for electrical and hybrid vehicles.
The second case (Case 2) is from Central Electronic Module (CEM). CEM is
responsible for an ECU within the car, which holds a collection of functionality
that is central, such as locking and headlight control.

The software developers in the case studies have different backgrounds. A ma-
jority is educated in electrical engineering, some in computer science, and one
has studied physics. The developers have between 2-10 years of automotive or
embedded systems development experience. The software development part of
Case 1 was about five man years, the one for Case 2 is two man years. Addition-
ally, resources from other groups include test engineers to specify and execute
component tests in MIL and HIL environment and computer aided engineering
(CAE) engineers for constructing simulation models that are used in MIL and
HIL testing.

6.2 Case 1: Clutch Control for Electric Drivetrain

The first case study was conducted at the group responsible for the electric part
of the drivetrain in the hybrid car under development. Between the traditional
and electrical drive train there is a clutch that is required to safely engage when
the electric engine should be used. The study investigated the development of
the software that controls the clutch.

Way of Working. The team used MDE techniques to develop their software.
The wrappers for the behavior models were automatically generated from a sys-
tem model and then complemented by the actual behavior implementation. A
virtual environment was built to quickly iterate, test, and get feedback on their
implementation. This virtual environment contains a number of models that
simulate mechanical and software systems (plant models) for those components
that have not been delivered from suppliers yet. The models needed for the
simulation were developed by an in-house team specializing in CAE and veri-
fication. The basic functionality was implemented and tested against the plant
models to avoid waiting for the first prototype vehicle with the real hardware
and mechanical systems.
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Results. In relation to research question RQ-2, we saw that there was a strong
development of the plant models, e.g. of the clutch, from a simple model to a
more detailed and realistically parameterized model. The work bench utilizing
the plant models was used to continuously test the software models during the
development work. Although the early executable models were not completely
matching the final mechanics, they allowed flexible testing of the early controller
software in a way which would have been very difficult or impossible without
the virtual environment.

The test bench that was designed to run the controller software and plant mod-
els was optimized in collaboration between all involved parties, spanning over
three groups. The methods were very different e.g. from Case 2, which demon-
strates the importance of agility. Later in the project, when faulty assumptions
were discovered, both controller code and plant model could be corrected locally
with continuous testing on the developers PCs. One should note that both CAE
team and control system developers were at that time used to the model design
and had the understanding required to adjust it rapidly.

Considering RQ-3, in early car tests when the controller software was com-
bined with a real clutch, there were indeed problems. The clutch did not behave
as the CAE team had thought, since assumptions on the behavior of the clutch’s
teeth was proved wrong. This prevented the clutch from engaging properly. It
took about one month of calendar time for identifying what the problem was,
implementing a fix and get it deployed on the prototype vehicle. However, as
soon as the problem was identified the resulting changes to fix the controller
code were small and mainly parameter-related and the overall design was not
affected.

6.3 Case 2: Active High Beam Headlight

The second case study investigated the way how the software for the active high
beam headlights (AHBH) was developed. AHBH are used to let the headlight
use the high beam but still not blind fellow motorists. This is done by identifying
other vehicles using the cameras in the car and then mechanically obstruct the
light to put the other vehicles in shade. This helps to keep the visibility at the
sides of the road high at the same time as not blinding other road users.

Way of Working. This project was in the beginning a requirement engineering
project following a classical waterfall process. The functional hardware, camera
and image analysis system was developed, with well defined APIs and reasonably
good specifications. Hence, detailed specifications existed of the sensor and actu-
ator systems. The function was specified at high level, mainly using PowerPoint
presentations describing customer use cases, but the control system, intended
to be developed in a VCG ECU, was undefined. The solution was to engage an
external expert in MDE to be part of the development team for a few months,
creating a simulation environment, a demonstration/visualization environment
and a first version of the control software, which was based on the supplied API
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and high level requirements. Later on the project was taken over by the original
team, strengthened with a software modeling engineer. The second half of the
project was carried out mainly in the laboratory, switching between software
modeling and test in HIL rigs and on a real vehicle in a garage. Hence, plant
models were used to little extent. The modeling environment was used for soft-
ware modeling and visualization, and for simulations running with videos and
recorded data from the supplier device and camera as input.

Results. With respect to RQ-2, much was learned using the available demon-
stration model by quickly trying out different solutions and algorithms. Before
the simulation and demonstration environment was available the team struggled
with getting approval from management to go ahead. The project was literally
stuck. When the test environment with the demonstrator, including also the
first version of the control software, was built it did not only help to start up
the project work but also to communicate the ideas and to obtain approval.

Regarding RQ-3, the lack of a real, closed loop, plant model created assump-
tions of ideal actuators and sensors in the system. As a direct consequence, the
early versions of the controller software was over-engineered in terms of imple-
mented algorithms and code that the mechanical system could not support. This
also resulted in an unnecessary complex architecture, judging from the design of
the final version. The accuracy of the system actuators especially, regarding re-
action speed, finally led to a significant simplification of the controller algorithm.
The architecture and design of the first and more advanced controller software
influenced also later versions, still showing signs of over-engineering.

Another assumption was caused by the visualization, which was created using
simple light shape overlay on a 2D video with no 3D compensation or more
advanced light rendering. Moreover, the edges of the overlay were unrealistically
sharp, as the calculated image represented a plane only about five meters in
front of the car. When the developers finally got into a car with the essential
equipment installed, it was obvious that the spread of the light was higher than
they had assumed by basing it on their visualization and the solution had to
be rethought. Regarding this assumption one should also note that it was not
unveiled during laboratory tests, although the real equipment was present, since
the beam was projected on a screen inside the laboratory.

6.4 Interpretation of Results

In both of the case studies we found that the use of virtual test environments
significantly improved the knowledge in early stages of the projects. The test
environments enabled reliable tests of prototypes and assumptions about exter-
nally developed technology.

We found that the development team in Case 2 had little progress at all
before gaining access to a virtual environment for testing. Looking at Case 1
one could see that having virtual testing available from the start enabled the
software models to grow faster and more organically than if they had followed
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the overall system process where decisions had to be made upfront, such as in
the start of Case 2. The software model in Case 1 also showed less signs of
over-engineering compared to Case 2. Furthermore, in Case 1, more effort was
spent on a realistic plant model, compared to Case 2 where the visualization was
prioritized. Observing the progress, we note more late issues caused by faulty
assumptions related to hardware and mechanics in Case 2, which were also re-
worked in longer time. Finally, Case 2 suffered from late issues, found in traffic
situations, which theoretically could have been discovered much earlier using
more advanced simulation environments.

By integrating and executing the software models in a virtual environment the
developers were forced to address holes in their knowledge. Hence correct knowl-
edge was gained although models or virtual environments included assumptions.
This gain of knowledge is visualized in Fig. 3. Faulty assumptions were indeed
discovered in vehicle tests in both use cases. Nevertheless, the time to fix these
issues was shortened by a realistic simulation environment in Case 1.
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Fig. 3. By being able to integrate and execute tests more frequently using plant models
and virtual environments the developers can build and validate knowledge also early in
the project. Although numerous assumptions still have to be made, since the mechanical
system or other parts of the mechatronic system are unknown to the developers, the
ability to conduct simulations will increase the knowledge. At the first real integration
there will obviously still be a risk for faulty assumptions, but the knowledge gap is
significantly reduced.

The plant models in Case 1 was constructed from specifications, intended for
the external supplier developing the equipment, and suffered both from smaller
inconsistencies and incompleteness. Some simplifications were also made, forced
by limited understanding of the mechanical behavior of the clutch. Furthermore,
the plant model developer and the function developers worked in separate groups.
Hence, the team developing plant models lacked some contextual background
for the intended use case of the plant models as well as direct contact with the
supplier. However, the benefit of having software tested with plant models before
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deploying in real vehicles greatly outweighed losses due to an incomplete process
or problems with communication.

Finally one should note that some architecture decisions, e.g. regarding com-
munication between ECUs, still had to be done upfront. The teams expressed
frustration over this but a solution would require changing the overall systems
process as we reported on in our previous work [8].

7 Analysis and Discussion

The case studies unveiled that applying MDE in combination with agile helped
to address the challenge of shortened development cycles. Together with a vir-
tual test environment, it was possible to relax the dependency on mechanical
components provided by suppliers later during the development. This would not
be possible in mechatronic development otherwise.

Furthermore, this environment enabled short iterations to experiment with
different solutions and get feedback. This helps to gain knowledge earlier in the
project and to reduce the number of assumptions that had to be made.

However, it turned out that is important to understand the weaknesses of
the plant model. Any issues in the plant model, for example caused by faulty
assumptions, heavily impact the software models that are tested against them.
This can lead to issues in the software that are not visible until the integration
phase with the real components later. Thus, the software is believed to be more
mature than it actually is.

We have also seen in Case 2 that assumptions on the capabilities of the me-
chanical systems that exceed reality can result in a more complex and resource-
demanding implementation than the mechanical components can support. This
in turn could result in that the requirements for the ECU-hardware are higher
than needed and a more expensive ECU is bought when a cheaper one could
have been used. Because of the number of cars produced, even small increases
in cost for a component have an impact in the profits of the OEM. E.g. if an
ECU costs 10 USD more than a less expensive one that would suffice, and 100
000 cars are produced, the profit shrinks with 1 000 000 USD just caused by one
component.

Delaying software development until the mechanical systems are delivered
is not an option, as that would delay the whole project. But there are some
potential methods that could possibly decrease the number of assumptions in
the virtual testing environment.

One solution is that the suppliers deliver plant models of their mechanical
systems. This should in theory give the OEM more accurate plant models to
base their development on. However, for a number of reasons not all suppliers
are willing to share their models. This could often be traced back to a way of
protecting their IP. The other one is that, in the cases where suppliers do deliver
plant models, they only provide them as black boxes. This makes it impossible
for the OEM to verify that the model is actually working correctly. There have
been cases where a model delivered from a manufacturer of a mechanical system
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was shown to be incorrect when compared to the real component and without
insight into a model it is hard for the OEM to investigate where the issue lies,
in the software model or the plant model. It also prevents the OEM to see if
the plant model is fit for the testing. E.g. if the plant model provided does not
simulate the teeth within the clutch it would not be possible to verify that the
algorithm within the software model could calculate the correct offset needed for
successfully engaging the clutch.

Alternatively, plant models could be built in-house but verified by the sup-
plier. Most suppliers of mechanical systems have environments where they could
execute such models. This would have the potential of avoiding structural and
fundamental mistakes in the plant models.

Even though using plant models and MIL-testing for rapid prototyping seems
to be promising, there are also aspects that need to be considered. It is time-
consuming to construct and maintain the plant models and integrate them in
the MIL environment; furthermore, developers or testers need to develop the
test cases for the MIL-testing. Here, the task seems to be rather less attrac-
tive because the implementation will be tested on the prototypical real vehicle
later anyway; however, the gains of having an early validation in a virtual test
environment needs to be underlined properly. This is also confirmed by the par-
ticipants in our studies who see otherwise the risk of not meeting deadlines in
the demand of shorter development cycles.

As the groups studied in the case studies have not had in-house software
development before, there was no previous software development process that
needed to be adjusted to allow for MDE and agile. Furthermore, the toolchain
could also be built from the ground up to support agility.

To address threats to validity in our studies, we follow the guidelines from
Wohlin et al. and Runeson and Höst [18, 22, 23].

Construct Validity: The subjects in our exploratory study were experts in how
to build embedded software for automotive systems. We validated our re-
sult by discussing our findings with the interviewees. The case studies were
conducted on two projects where the resulting artifacts of the projects were
components that will be used in cars delivered to customers at VCG. By
having two studies, effects, which might be present only in one case could
be reduced.

Internal Validity: The main objective for the studied cases was primarily on
delivering a running system with high quality in the end. Effects that would
favor MDE or agile methods could be reduced.

External Validity: There are a lot of companies where hardware, mechanical
parts, and software need to interplay well like trucks, radars, and pumps etc.
For many of these companies our findings can be of interest and stimulate
similar studies.

Reliability: The analysis was conducted by the authors. Our findings and con-
clusions were confirmed with the participants of the studies in feedback and
discussion rounds to reduce the risk of dependency on the conducting re-
searchers.
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8 Related Work

Matinnejad [16] has done a review on the existing agile model-driven develop-
ment (AMDD) processes. They think that an intelligent compromise can be done
to gain the advantages from the two different approaches to software develop-
ment. We have seen that there might not be such a big contradiction between
MDE and agile. Instead they two complement each other well, especially in a
distributed mechatronic domain where it enables to develop and test against
yet to be delivered components. However, we agree that there are benefits from
combining the two and that it is an area that needs more interest and research.

Zhang et al. [24] applied agile MDD on a development project for real-time
telecommunication. The project was considered successful and was delivered on
time. MDD was only applied to two of five components, the other three compo-
nents were “hand-coded”. They saw a threefold increase in productivity in terms
of lines of code compared to hand-coding and that the defect density was lower
in code generated from models. They also saw that there was a steep learning
curve for the organization to adopt to MDD and agile methods. Therefore they
thought that short-term benefits were not likely but the long-term benefits still
made it worthwhile. We however observed that the engineers at VCG instead
could get started faster with software development due to the fact that they were
allowed to work in a tool that was close to their domain and that was familiar
from their engineering education.

Kulkarni et al. [11] reported on their experience with agile MDD in their
development projects of business systems. They found that some activities were
not suitable to be conducted in short sprints and that code generation and
transformations can be a bottleneck. They solved this by introducing meta-
sprints that do not necessarily have to deliver working software but can comprise
for example design documents or an evaluation of a set of design strategies. In
our studies and experience from VCG a major point in the success of MDE is
that they use a product for their software modeling that is mature and where
the C-code generation is already tested and stable.

Auweraer et al. [2] have also identified the need for virtual testing to enable
concurrent development of mechanical components and the software for control-
ling it. However, their motivation is to accelerate the design process and not
to enable software development at the OEM while the mechanical component
is developed somewhere else. Therefore they do not discuss the problem of the
OEM having a gap of knowledge of the mechanical system, or software processes.

Virtual test environments are proved to be successful especially for highly
complex cyber-physical systems like self-driving cars as outlined by Berger,
2010 [3] and Berger and Rumpe 2012 [4]. These systems will play an increasingly
important role in the future with more and more diverse product families and
shorter development cycles. Faster and precise feedback of the quality for imple-
mentation models when using these simulation-based virtual test environments
will be the competitive advantage for automotive OEMs.

Research has been done on different ways of modeling assumptions to verify
them [12, 14, 20]. These approaches can be divided into two classes, formal or
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semi-formal [15]. Formal approaches, such as Tirumala 2006 [20] try to capture
assumptions in a model and formalize their attributes, so that these can be
verified automatically. Semi-formal approaches, such as Lewis 2004 [14] and Lago
2005 [12] capture the assumptions in a model but their attributes is free text
and could therefore not be checked by a machine. Such approaches were initially
considered, however we found them not feasible. Firstly, without having the
properties of the real system such a model will in itself contain assumptions
and the result of a verification could not be trusted. Secondly, it would add a
new tool and language for the engineers to not only use but also to learn. With
them already being on a tight schedule it was deemed impossible to introduce
such tools. It could be a good exercise to make the developers more aware of
the assumptions they are making, but the ones that will cause problems are the
ones that are not explicitly thought about. Experience from practice shows that
assumptions will always be made and capturing them all seems impossible.

9 Conclusion and Future Work

In our case studies we have seen that MDE and agile methods can successfully
be combined to develop software for complex mechatronic systems. Together
with virtual test environments, it enables an organization to start developing
and test their software before they receive deliveries of mechanical and software
components from their suppliers. We saw that it was possible for the develop-
ers to quickly iterate their implementation and get feedback. This made the
developers aware of holes in their knowledge that needed to be addressed, and
it allowed for exploring solutions and build knowledge before writing the final
requirements and committing to a design.

It was obvious that assumptions made when constructing the models for the
simulated environment had great impact on the software models constructed.
Faulty assumptions in the simulation of yet to be delivered components caused
issues in the software. These issues were discovered at integration but feedback
from involved engineers let us conclude that the advantages with fast feedback,
building knowledge, and a more mature solution earlier outweigh the fact that
not all issues are caught in the virtual test environment.

For the future, we aim for automating further parts of the testing and reach
continuous integration and deployment. Both in a model based virtual test envi-
ronment but also for hardware-in-the-loop testing and finally to deploy the new
software to prototypical vehicles.

For the problems caused by faulty plant models there are two directions to fur-
ther explore with better collaboration between suppliers and OEMs. One would
be to get access to their white box models of their mechanical components as part
of the business agreement. The other potential way is to keep the construction
of plant models in-house but have the supplier on-site to verify them.
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18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14, 131–164 (2008)



Agile Model-Driven Engineering in Mechatronic Systems 449

19. Shull, F., Singer, J., Sjøberg, D.I.: Guide to advanced empirical software engineer-
ing. Springer (2008)

20. Tirumala, A.S.: An Assumptions Management Framework for Systems Software.
Ph.D., University of Illinois at Urbana-Champaign, United States – Illinois (2006)

21. Uchitel, S., Yankelevich, D.: Enhancing architectural mismatch detection with as-
sumptions. In: Seventh IEEE International Conference and Workshop on the Pro-
ceedings of the Engineering of Computer Based Systems, ECBS 2000, pp. 138–146.
IEEE (2000)
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Abstract. Many laws, e.g., those concerning taxes and social benefits,
need to be operationalized and implemented into public administration
procedures and eGovernment applications. Where such operationaliza-
tion is warranted, the legal frameworks that interpret the underlying
laws are typically prescriptive, providing procedural rules for ensuring
legal compliance. We propose a UML-based approach for modeling pro-
cedural legal rules. With help from legal experts, we investigate actual
legal texts, identifying both the information needs and sources of com-
plexity in the formalization of procedural legal rules. Building on this
study, we develop a UML profile that enables more precise modeling of
such legal rules. To be able to use logic-based tools for compliance analy-
sis, we automatically transform models of procedural legal rules into the
Object Constraint Language (OCL). We report on an application of our
approach to Luxembourg’s Income Tax Law providing initial evidence
for the feasibility and usefulness of our approach.

1 Introduction

Legal compliance is a major concern for governments. In domains such as tax-
ation and social benefits, laws need to be operationalized so that they can be
implemented into administrative procedures and software systems. Such opera-
tionalization is typically performed by putting in place a legal framework, com-
prised of legislation, regulations, and circulars, aimed at providing a detailed
interpretation of the underlying laws. These frameworks are often prescriptive:
they provide step-by-step guidance in the form of procedural rules as to what
needs to be done for compliance. Procedural legal rules are closely linked to
the behavior of eGovernment applications. To illustrate, consider Article 2 from
Luxembourg’s Income Tax Law [14], describing how taxpayers are classified as
resident and non-resident:
Article 2.1Individuals are considered resident taxpayers if they have their address in the
Grand Duchy. Individuals are considered non-resident taxpayers if they do not reside in
the Grand Duchy but have a local income within the definition of Article 156.

To be able to analyze whether a software system complies with the taxpayer
classification described in the law, one could develop a UML model like the one
1 The article has been translated from the original French text and simplified.

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 450–466, 2014.
© Springer International Publishing Switzerland 2014
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in Fig. 1: The domain model in Fig. 1(a) captures the main concepts and associ-
ations in Article 2 of the Income Tax Law; and the OCL expression in Fig. 1(b),
written in the context of TaxPayer, provides a procedural rule for distinguishing
between resident and non-resident taxpayers (L. 2-5 and 7-13, respectively).

(b)

Address
- country: Country

taxpayer
*

 
Income

incomes

taxpayers

1..*

1

(a)

- LU
- ...

Country
«enumeration»

1..*

1. context TaxPayer inv ResidentialStatus:
2. let hasLocalAddress:Boolean = self.addresses→
3. select(a:Address | a.country = Country::LU)→notEmpty() in
4. if hasLocalAddress then
5. self.oclIsTypeOf(ResidentTaxPayer)
6. else
7. let hasLocalIncomes:Boolean = self.incomes→
8. select(i:Income | i.oclIsTypeOf(LocalIncome))→notEmpty() in
9. if hasLocalIncome then
10. self.oclIsTypeOf(NonResidentTaxPayer)
11. else
12. false
13. endif
14. endif

addresses

 
TaxPayerNonResidentTaxPayer

 

ResidentTaxPayer 
 

 
LocalIncome ForeignIncome

 

Fig. 1. (a) domain model for a legal article, (b) pro-
cedural rule for the article (expressed as OCL)

To be a resident taxpayer,
one must have a Luxembour-
gish address (L. 2-3). If such
an address exists (L. 4), the
taxpayer is deemed resident
(L. 5). To be a non-resident
taxpayer, one must have a
local income (L. 7-8) but no
local address. If these require-
ments are met (L. 9), the tax-
payer is deemed non-resident
(L. 10). A model like that in
Fig. 1 makes the underlying
legal article amenable to au-
tomated analysis. In particu-
lar, one can use such a model
to check whether the outcome
produced by a software system
is consistent with the law. For example, using existing OCL evaluators such as
Eclipse OCL [11], one can verify if a system correctly classifies taxpayers (in-
stances of the model in Fig. 1(a)) into resident and non-resident.

Before a model such as the one in Fig. 1 can be used for automated analysis, it
needs to be reviewed and validated by legal experts. To aid with validation, it is
helpful to express procedural rules such as that in Fig. 1(b) in a visual manner.

This paper develops a visual and at the same time semantically-precise way
to model procedural legal rules. Our approach follows the Domain-Specific Mod-
eling (DSM) paradigm; but rather than building a new language, we use UML’s
built-in customization mechanism, namely profiles [22], to adapt UML for use
in our context. Using UML is motivated by its widespread use, commercial tool
support, and the availability of standard extension mechanisms in the language.

Our work addresses a real need observed during our collaboration with our
public service partner, CTIE (Centre des Technologies de l’Information de l’Etat).
CTIE is Luxembourg’s national center for information technologies and respon-
sible for developing eGovernment services for the state. CTIE already applies
Model Driven Engineering (MDE), including UML and its extensions, for sys-
tem development and is interested in enhancing its development methods with
means for modeling legal rules. An important consideration for CTIE is for the
models to be palatable to governmental stakeholders without IT background,
but who have familiarity with simple conceptual models and business process
models from earlier exposure and training.
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The approach we propose in this paper is not meant as a general solution
for modeling all types of legal rules. In particular, we focus on prescriptive legal
frameworks where legal rules are procedural. This situation is typical of highly-
regulated domains such as taxation and social benefits. In general, however,
many legal frameworks, e.g. privacy laws, are declarative, with rules defined
using deontic notions, i.e., permissions, obligations, and prohibitions [24]. Our
current solution does not extend to declarative legal rules. In the rest of this
paper, we therefore take legal rule to mean “procedural” legal rule.

The starting point for our work is a field study, where we interacted with le-
gal experts and analyzed several legal statutes, to identify both the information
needs and the sources of complexity in the formalization of (procedural) legal
rules (Section 2). Drawing on our field study, we define a UML-based methodol-
ogy for modeling legal rules (Section 3). The core component of the methodology
is a customization of UML Activity Diagrams, defined through a UML profile
(Section 4). To use for analysis purposes the models resulting from our approach,
we provide an algorithm for automatic transformation of the models into OCL
(Section 5). We report on a case study, providing initial evidence for the feasibil-
ity and usefulness of our approach (Section 6). Finally, we compare our approach
with related work and suggest avenues for future work (Sections 7–8). The paper
is accompanied by a technical report [26] where we provides additional details
about our UML profile and automated transformation to OCL.

2 Field Study of Legal Rules

Our field study applies a Grounded Theory (GT) process [8], whereby obser-
vations and analysis of collected data are used for defining the problems to be
addressed. In our context, we apply GT to define (1) what needs to be expressed
in models of legal rules, i.e., the information requirements that such models
should meet; and (2) factors that lead to complexity in models of legal rules and
thus need special consideration in an approach targeted at building such models.

We began our field study with a series of meetings with legal experts, totaling
≈ 15 hours. The purpose of these meetings was (a) for the researchers to develop
familiarity with legal concepts; (b) to define a suitable scope for the laws to
consider; and (c) to identify representative legal rules for further investigation.
Taxation was selected as the scope for the study, partly because of the priorities
of the legal experts in our study, and partly because of the tax law’s large societal
impact. Our field study resulted in several observations, outlined below.
Information Requirements. To identify the information needs in the speci-
fication of legal rules, we analyzed selected legal texts concerned with personal
income taxes. While personal income taxes are only one facet of the tax law,
the experts deemed the scope to be largely representative within the tax do-
main and the closely related domain of social benefits delivery. With help from
legal experts, we identified, read, and interpreted the legal provisions relevant
to personal income taxes. Our analysis covered a summary of direct taxes levied
by the Government of Luxembourg, 16 articles from Luxembourg’s Income Tax
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Provision
(Legal Text)

Data Type

Legal Rule

 Decision + Operation

Data Element (Input)

Data Element
(Input)Decision

Operation
Data Element (Input)

Data Element 
(Output)

Operation

Art. 105bis […]The commuting expenses deduction is defined as a function over the distance between the 

principal town of the municipality on whose territory the taxpayer's home is located and the place of taxpayer's

work. The distance is measured in units of distance expressing the kilometric distance between [principal] towns. 

A ministerial regulation provides these distances. 

The amount of the deduction is calculated as follows: 

If the distance exceeds 4 units but is less than 30 units, the deduction is € 99 per unit of distance.

The first 4 units are not taken into account and the deduction for a distance exceeding 30 units is limited to € 2,574.

Fig. 2. Excerpt of Article 105bis from LITL (translated from French)

Law (for brevity, referred to as LITL in the remainder of this paper), three
regulations, one tax scale, and several official web pages and circular letters.

While reading the above material, we applied a standard technique from qual-
itative data analysis [8,21,9] for analyzing text, and classifying, describing, and
connecting the information presented in it. We annotated each important con-
cept with a label denoting the nature of the concept, i.e., a meta-concept. Each
time that a new meta-concept was encountered, we defined it in a glossary. As we
proceeded through the text, we either created new labels or reused previous ones
based on the definitions we had. We illustrate our analysis over an excerpt, shown
in Fig. 2, of Art. 105bis of LITL. The excerpt, a simplified translation of the orig-
inal French text, covers many of the information requirements identified by our
study. The meta-concepts gleaned from the excerpt are shaded and labeled.

The (Legal) Rule the excerpt is concerned with is calculating the deduction a
taxpayer is eligible for in relation to their commuting expenses. A rule may de-
pend on several Provisions. It is important to maintain traceability from rules to
the provisions they depend on. This is necessary both for reasoning about com-
pliance and also for managing change in a predictable way. For the commuting
expenses deduction, these provisions are: Art. 105bis of LITL, and an abstract
reference to a ministerial regulation. LITL does not cite any regulation explic-
itly, as regulations may vary from year to year. The regulation that was in effect
for commuting distances at the time our study was conducted is the ministerial
regulation of February 6, 2012 (“règlement ministériel du 6 février 2012”).

Each rule is made up of a set of Decisions and Operations, describing the
(procedural) flow of the rule. An example decision from the excerpt is: “If the
distance exceeds 4 units but is less than 30 units”; an example operation is setting
“the deduction [amount to be] e99 per unit of distance”.

There are several Data Elements in the excerpt, denoting inputs to, outputs
from, or intermediate values computed within the rule. For example, distance
is an input to and amount is the output from the rule. The constants in the
text, e.g., e2,574, are marked as input. This choice is motivated by the fact that
constants may change over time and thus need to be treated explicitly.

Data elements are typed. The types are sometimes specified in the text, e.g.,
the excerpt states that distance is measured in certain units; but most often, the
types are implicit, e.g., for monetary values and dates. One of the goals of our
analysis was to identify and restrict the data types associated with the inputs
and outputs of legal rules. Doing so is important for improving consistency. For
example, all mathematical operations, e.g., summation and multiplication, over
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monetary values have to be consistent in how they round decimal values with
precision points. A uniform treatment requires a specific data type to be defined
for monetary values and used consistently in all legal rules.

For data elements that represent inputs, it is important to maintain trace-
ability to the sources where the inputs come from. Some inputs are obtained
directly from legal texts, e.g., the constants in the excerpt of Fig. 2. Alterna-
tively, an input may be provided based on expert judgment by a legal agent. For
example, to decide whether a company is eligible for certain deductions, a tax
officer may need to determine whether the accounting performed by the com-
pany is adequate. Finally, an input may be derived from a physical or electronic
data record, e.g., the distance input mentioned in the excerpt.

We distinguish different sources for inputs. The distinctions are important
for better elaboration and validation of legal rules. For example, elaborating the
inputs derived from electronic records often requires consultation with both legal
experts and IT staff; whereas, inputs based on expert judgment or legal texts
typically only concern legal experts.
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Fig. 3. Information model for legal rules

Based on our analysis above, we
have developed an abstract informa-
tion model, shown in Fig. 3, for legal
rules. The model is organized into
three packages, in line with the three
main observations from the analysis,
namely: (1) capturing legal rules as
decisions and operations, (2) main-
taining traceability, (3) restricting
data types to what is essential.

The Process package in Fig. 3 defines the concepts related to the flow of a rule.
Each Legal Rule is made up of a set of Steps, which can be either Decisions or
Operations. Each step has Data Objects as input and output. The Traceability
package groups the information sources to which traceability needs to be main-
tained from the elements in the Process package. Rules need to be traceable to
Legal Texts. Inputs need to be linked to the Legal Text, Legal Agent, or Record
where they originate from. The Datatype package contains a partial list of data
types identified in our study. There is a special data type, named Domain Object,
to enable handling instances of domain concepts, e.g., TaxPayer (see Fig. 1(a)).
In addition, the data types include a composite type, Set, to enable handling
sets of objects. Note that the data types in Fig. 3 are specific to the tax law and
may require tailoring if the approach is applied to other laws and regulations.
Complexity Factors. We considered nine legal rules from LITL in our analy-
sis of complexity factors. Six of these concern requirements on taxpayers’ records
(e.g, the taxpayer classification in Fig. 1). The rest concern the calculation of in-
come tax credits. We captured these rules in OCL (total of 108 OCL lines, exclud-
ing comments and blanks). Our investigation of the resulting OCL constraints
alongside our interactions with legal experts led to the following observations:
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– Navigation: Navigation expressions in OCL tend to be lengthy for legal rules.
For example, Art. 127 of LITL sets a cap on the costs a taxpayer can claim for
the care of dependents. Calculating this cap requires identifying the dependents
who live in the same household as the taxpayer but are not taxpayers them-
selves, and for whom the taxpayer receives some allowance. The corresponding
OCL navigation expression (the OCL context being TaxPayer) is as follows:

self.taxPayerDependents→select(dependent:Person| not dependent.oclIsTypeOf(TaxPayer) and
dependent.addresses→intersection(self.addresses)→notEmpty() and
dependent.allowances.amount→sum()>0)

The complexity of navigation expressions is caused in part by the expressive
(and thus long) labels of domain model elements in legal contexts, and in part
by the richness of legal rules and the need for multiple navigation levels.
– Branching: Legal rules often have numerous decision branches, capturing the
different cases where they apply and the corresponding actions to take. To il-
lustrate, we recall the example of Fig. 1. Even for the simple task of classifying
taxpayers into resident and non-resident, we need two if-then-else statements
(or similarly complex propositional logic equivalents of if-then-else). This num-
ber rises to six or seven for more complex rules. Feedback from legal experts
indicate that branching statements negatively impact comprehension.
– Iteration: OCL iterator operations (e.g., select, exists, forAll, iterate) are
often inevitable in legal rules. For instance, in the navigation expression given
earlier for identifying eligible dependents, one has to iterate over the dependents
to determine which ones satisfy the desired criteria. Our interaction with legal
experts suggests that iterations, specially nested ones, reduce comprehensibility.

Our approach, described next, take steps to address the observed information
requirements and complexity factors.

3 Modeling Methodology

Model the 
domain

Model the
legal rules

Relevant
legal texts

UML
Profile

Domain 
model

Legal rules
(Activity

Diagrams)

Transform legal 
rules into OCL

OCL Legal rules
(OCL)

Analysis

 
 

 
 

 
 

 
 

Fig. 4. Methodology

An overview of our modeling methodology is shown
in Fig. 4. The legal texts and the specific provisions
within them that are relevant to the legal rules of
interest are provided as input by legal experts. The
modeling step in the methodology includes two paral-
lel but interrelated tasks: (1) modeling the domain and
(2) modeling the legal rules. Both tasks require close
interaction with legal experts to ensure a sound un-
derstanding of the underlying legal notions. The first
task results in a domain model, providing a precise
representation of the concepts and relationships in the input legal texts. As is
common in object-oriented analysis, we use UML class diagrams for representing
domain models [18]. A domain model excerpt for Article 2 of LITL was shown
in Fig. 1(a). We follow standard practices for domain modeling and thus do not
elaborate this task further. For guidelines, see [18].

The second modeling task, i.e., modeling of the legal rules, is performed using
a customization of UML Activity Diagrams (ADs). ADs have long been used for
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modeling procedural aspects of systems and organizations [17]. The procedural
nature of legal rules makes ADs a good match for our needs. Our customization
of AD’s is based on UML profiles [22].

The domain model in our methodology is an instrument for elaborating the
information that legal rules use as input. It is thus best to conduct tasks (1) and
(2) in tandem and not sequentially. Doing these tasks in parallel ensures that the
domain model is aligned with the legal rules in terms of data needs, and further
narrows the scope of domain modeling to what is necessary for supporting the
legal rules of interest. Once the legal rules have been modeled using our tailored
AD notation, the models are automatically translated into OCL. The resulting
OCL expressions along with the domain model can then be used for automated
analysis using OCL evaluators [11] and OCL solvers [7,1].

Our main technical goal in this paper is to present the profile we have devel-
oped to customize ADs for expressing legal rules, and to describe how ADs built
using our profile are transformed into OCL. The profile and the OCL transfor-
mation are respectively tackled in Sections 4 and 5.

4 UML Profile for Legal Rules

Our profile’s stereotypes are shown in the first column of Table 1, followed by
a description in the second column. The third column shows the UML meta-
class(es) that each stereotype extends. We distinguish two kinds of stereotypes:
(1) those that directly represent concepts from the information model of Fig. 3,
and (2) those that are auxiliary, providing additional information about model
elements. The fourth column in Table 1 shows the mapping between the stereo-
types and the concepts and packages of our information model. Auxiliary stereo-
types are marked as Auxiliary in the column. The Datatype package of the
information model is not represented through stereotypes. Instead, typing infor-
mation is attached directly to the input and output nodes of ADs. The profile
diagram, the relevant fragment of the UML metamodel, and our datatype library
are provided in the supplementary material [26].

We illustrate our profile over the Commuting Expenses Deduction rule from
the excerpt of Article 105bis given in Fig. 2. The French term for this deduction
is “Frais de Déplacement”. We refer to this deduction as FD. In Fig. 5, we show
how the FD rule is modeled using an AD. The «rule» stereotype applied to
the AD in this figure indicates that the AD is a legal rule. The AD is further
annotated with a «context» stereotype denoting the OCL context in which the
AD is being specified. The context is always an instance of a class from the
underlying domain model. For the AD in Fig. 5, the context is an instance of the
TaxPayer class from the domain model.

The core of the AD in Fig. 5 is a calculation procedure. The procedure yields
a value of 0 (zero) when a taxpayer is deemed not eligible for FD, i.e., when
distance > minimal_distance is false. For an eligible taxpayer, the procedure
yields the result of multiplying three quantities: (1) a flat rate (constant) from
the law, denoted flat_rate, (2) the distance between a taxpayer’s work and home
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Table 1. UML profile stereotypes
Stereotype Description UML Metaclass(es) Concept &

Package
«rule» Defines an activity as a legal rule Activity Legal Rule«iterative» Defines an iterative region ExpansionRegion

«context» Defines the OCL context in which a
legal rule is being specified Activity Auxiliary

«decision» Defines a decision step DecisionNode
Operation

P
ro

ce
ss

«calculate» Defines an operation that calculates
a value OpaqueAction

«assert» Defines an operation that checks an
assertion OpaqueAction Auxiliary

«in» Defines an input to a legal rule ActivityParameterNode,
InputPin Data Object

«out» Defines an output from a region OutputPin

«intermediate» Defines an intermediate value result-
ing from a calculation CentralBufferNode Auxiliary

«formula» Defines the formula for a calculation Constraint Auxiliary

«statement» Defines the logical expression for an
assertion Constraint Auxiliary

«fromlaw» Declares a (constant) input as origi-
nating from a legal text

ActivityParameterNode,
InputPin Legal Text

T
ra

ce
ab

il
it
y

«fromagent» Declares an input as being provided
by a legal expert

ActivityParameterNode,
InputPin Legal Agent

«fromrecord» Declares an input as being retrieved
from a record (e.g., a database)

ActivityParameterNode,
InputPin Record

«query» Defines the query for obtaining an
input from its respective source Comment Auxiliary

addresses, denoted distance, and (3) a prorated ratio representing the full-time
equivalent period during which the taxpayer has been employed over the course
of the tax year, denoted prorata_period. The formula applies up to a maxi-
mum home-to-work distance threshold, denoted maximal_distance and specified
in the law. Beyond this threshold, a nominal rate, denoted maximal_flat_rate,
is applied irrespective of distance but prorated as discussed above.

As illustrated in Fig. 5, the decisions and calculations are marked respectively
with the «decision» and «calculate» stereotypes. Each calculation has a «for-
mula» constraint attached, providing the formula for the calculation. The result
of a calculation is always stored in a (typed) intermediate variable marked by
the «intermediate» stereotype, e.g., expected_amount in Fig. 5.

Each legal rule concludes with an assertion: an operation marked by the «as-
sert» stereotype and providing an implicit Boolean output for the rule. Specifi-
cally, an assertion is used to ascertain that the outcome produced by a system
or a human agent matches the outcome envisaged by the legal rule. Associated
with an assertion is a constraint with the «statement» stereotype, defining the
Boolean claim that needs to be checked. For example, the assertion in Fig. 5
checks whether the value of FD on a taxpayer’s file, denoted actual_amount,
matches the value computed by the rule, denoted expected_amount.

Inputs to decisions and operations are represented by small rectangles with a
gray shade and an «in» stereotype. The origin of each input is captured through
one of the following stereotypes: «fromlaw», «fromrecord» or «fromagent». Each
input has a query attached to it, represented as a comment with a «query»
stereotype. A query provides details on how an input is obtained from its source.
The «fromlaw» stereotype is used for inputs that are constants and specified in a
legal text, e.g., flat_rate. For these inputs, the query provides a traceability link
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Fig. 5. Activity Diagram for Commuting Expenses Deduction (FD)

to the legal provision where the constant is defined. The «fromrecord» stereotype
is used for inputs derived from a record, e.g., incomes. For these, the query is
an OCL expression over the underlying domain model. Additional information
may be provided along the OCL expression such as the legal text that describes
the input, e.g., distance. Finally, «fromagent» stereotype is applied to inputs
that originate from a legal agent, e.g., tax_year. For these, the query provides
information about the agent type (role) authorized to provide the input as well
as the question that the agent needs to answer.

The legal rule in Fig. 5 takes into account the fact that a taxpayer may have
multiple (simultaneous or sequential) employment activities, and thus multiple
incomes and work addresses. To correctly compute the FD for a taxpayer, one
needs to iterate over all incomes gained by the taxpayer and ensure that the
computation of the FD portion for each income is consistent with the law. To
capture this iterative behavior, we use expansion regions from the AD notation.
An expansion region is an activity region that executes multiple times over the
elements of an input collection [22]. The legal rule of Fig. 5 has one expansion
region with incomes as its input collection. UML provides three execution modes
for expansion regions: iterative, parallel, and stream [22]. Of these, our profile uses
only the iterative mode, marked by the «iterative» stereotype. In this mode, exe-
cutions are performed sequentially and according to the order of elements in the
input collection. The name of the region’s expansion node, inc in our example,
serves as an alias for the iterator element in an individual execution. This alias
can be used in the OCL expressions associated with the inputs of the expansion
region, e.g., the OCL expression in the query attached to prorata_period.
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The expansion region in the legal rule of Fig. 5 does not require an explicit
output because the assert operation occurs within the expansion region. Our
profile allows expansion regions to have an explicit output. This is useful for
capturing complex iterative calculations, e.g., computing the total amount of
benefits received by the dependents of a taxpayer. We use the «out» stereotype
to denote the (explicit) output of an expansion region, if one exists.
Consistency Constraints. To apply our profile in a sound manner, a number
of consistency constraints need to hold. We provide a complete list of these
constraints in the supplementary material [26]. The consistency constraints are
aimed at enforcing the following: (1) Completeness of the information in models
of legal rules, e.g., to ensure that the source for each input has been specified
through the application of an appropriate stereotype and a query; (2) Mutually
exclusive application of certain stereotypes, e.g., to ensure that each input has
one and only one source stereotype («fromlaw», «fromrecord» or «fromagent»)
applied to it; and (3) Restrictions on the structure of ADs. Most notably, these
structural restrictions ensure that the flows do not give rise to cyclic paths, and
further that only the notational elements allowed by our methodology are being
used. All consistency constraints can be enforced as the models are being built.

We next describe how ADs built using our profile are transformed into OCL.

5 Transforming Legal Rules into OCL

In this section, we provide an algorithm to automatically transform ADs to OCL,
and illustrate this model-to-text transformation over the Commuting Expenses
Deduction (FD) rule discussed in Section 4. The choice of OCL as the target
language for the transformation is motivated by OCL being part of the UML and
further to benefit from existing testing and simulation frameworks, e.g., [1], that
are built around OCL. This section does not cover all the implementation details
of our transformation. See the supplementary material for full details [26].

The algorithm for the transformation, named ADToOCL and shown in
Alg. 1, takes as input an Activity Diagram, AD, and an element ∈ AD. Specifi-
cally, AD is an instantiation of the UML metamodel fragment for activity mod-
eling, and element is an object within this instantiation. We assume that AD sat-
isfies the consistency constraints of our profile (Section 4). To ensure consistency
between the semantics of activity diagrams and that of the OCL constraints gen-
erated from them, we further assume that AD uses only deterministic decisions.

Initially, the algorithm is called over AD with element pointing to the root
Activity instance in AD. In Fig. 6, we show the OCL constraint resulting from
the application of Alg. 1 to the FD rule of Fig. 5. Note that when our approach is
applied, analysts work over the ADs and are not exposed to such complex OCL
constraints. The generated constraints are meant for use by OCL engines.

The transformation is based on a set of predefined patterns. These patterns are
detailed in the supplementary material [26]. Each pattern is defined as a graph
P . If P is matched to a subgraph of AD rooted at element, the appropriate
OCL fragment for P is generated. For example, consider the intermediate value
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Alg. 1: ADToOCL
Inputs : (1) An Activity Diagram, AD. (2) An element ∈ AD.
Output: An OCL string, result.

1 if (element is NULL) then
2 return ' ' /* Return empty string */
3 end if
4 Let P be the transformation pattern applicable to element.
5 Let input1, . . . , inputn be the non-declared inputs required by P .
6 foreach inputi do
7 result← result+ADToOCL(AD, inputi)
8 end foreach
9 if (element is not a DecisionNode) then

10 Let st1, st2 respectively be the opening and closing OCL fragments obtained from applying P .
11 Let next be the next element to visit. /* ... chosen based on P and its outgoing flow */
12 result ← result+st1+ADToOCL(AD, next)+st2
13 if (element is an ExpansionRegion with an output) then
14 Let out denote the output element.
15 result ← result+ADToOCL(AD, out)

16 end if
17 else
18 Let f1, . . . , fm be the outgoing flows from element. /* m ≥ 1 */
19 foreach fi do
20 if (i = 1) then
21 result← result+'if('+element.name+')='+fi.name+'then'+ADToOCL(AD, fi.target)
22 else
23 result← result+'else if('+element.name+')='+fi.name+'then'+ADToOCL(AD, fi.target)
24 end if
25 end foreach
26 result ← result+'else false'+

m times
︷ ︸︸ ︷

'endif'+. . .+'endif'
27 end if
28 return result
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1. context TaxPayer inv FD:
2. let tax year:Date = self.tax year in
3. let incomes:Set(Income) = self.incomes→select(i:Income | i.year = tax year) in
4. incomes→forAll(inc:Income |
5. let distance:DistanceUnit = inc.distance in
6. let minimal distance:DistanceUnit =
7. Constant::MINIMAL DISTANCE.oclAsType(DistanceUnit) in
8. if (distance > minimal distance) = true then
9. let maximal distance:DistanceUnit =
10. Constant::MAXIMAL DISTANCE.oclAsType(DistanceUnit) in
11. if (distance < maximal distance) = true then
12. let flat rate:MonetaryValue =
13. Constant::FLAT RATE.oclAsType(MonetaryValue) in
14. let prorata period:Numeric = inc.prorata period in
15. let expected amount:MonetaryValue = prorata period * flat rate * distance in
16. let actual amount:MonetaryValue = inc.getFD(tax year).amount in
17. actual amount = expected amount
18. else if (distance < maximal distance) = false then
19. let maximal flat rate:MonetaryValue =
20. Constant::MAXIMAL FLAT RATE.oclAsType(MonetaryValue) in
21. let prorata period:Numeric = inc.prorata period in
22. let expected amount:MonetaryValue = prorata period * maximal flat rate in
23. let actual amount:MonetaryValue = inc.getFD(tax year).amount in
24. actual amount = expected amount
25. else false endif
26. endif
27. else if (distance > minimal distance) = false then
28. let expected amount:MonetaryValue = 0 in
29. let actual amount:MonetaryValue = inc.getFD(tax year).amount in
30. actual amount = expected amount
31. else false endif endif
32. )
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Fig. 6. Generated OCL expression for the example of Fig. 5 (FD)
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expected_amount in FD. There is a pattern, Intermediate Value Pattern, that
deals with such values. This pattern has the following shape: an action with
the «calculate» stereotype connected by a flow to an intermediate value with
the «intermediate» stereotype. The application of this pattern generates a let
expression which defines an intermediate value based on a given calculation.
This pattern is applied three times during the transformation of FD for the
three calculations that lead to expected_amount. The OCL fragments for these
three applications are shown on L. 15, 22, and 28 of the constraint in Fig. 6.

The transformation process is recursive and mimics a depth-first traversal of
the underlying graph of AD. There are three main parts to this process: (1)
input declarations (Alg. 1, L. 4-8); (2) transformation of all elements other than
decisions (Alg. 1, L. 10-16). Within this class of elements, additional processing
is necessary for expansion regions to propagate their output if they have one
(Alg. 1, L. 13-16); and (3) transformation of decision nodes (Alg. 1, L. 18-26).

The first part of the transformation process concerns identifying all inputs to
be declared before transforming a given element (Alg. 1, L. 5). Each such input
is transformed into a let expression (Alg. 1, L. 6-8). To illustrate, consider the
decision distance > minimal_distance in FD. The inputs to this decision are
transformed into L. 5-7 of the constraint in Fig. 6. This is performed before the
transformation of the decision itself (Fig. 6, L. 8). An input may have dependen-
cies to other inputs, e.g., incomes (Fig. 6, L. 3) depends on tax_year (Fig. 6, L. 2).
Such dependencies are handled through the recursive call of L. 7 in Alg. 1.

The second part of the process handles non-decisions. This is where the initial
call to Alg. 1 begins to unwind. The initial call is handled by the Context Pat-
tern, which transforms the context information attached to an Activity instance
via the «context» stereotype. There are no inputs associated with the Context
Pattern. Handling the pattern thus reduces to executing L. 10-12 of Alg. 1. The
opening OCL fragment (st1) resulting from the application of this pattern is L. 1
of Fig. 6; the closing fragment (st2) is empty. Then, on L. 12 of Alg. 1 a recursive
call is made with next set to the initial node of FD. The unwinding of this re-
cursive call generates the remainder of the OCL constraint (Fig. 6, L. 2-32). On
the left side of Fig. 6, we mark the scope of each recursive call and the respective
pattern. To avoid clutter, calls that handle input declarations are not marked.

The third and final part of the process transforms decisions into if-then-else
statements. This part is analogous to what we previously described.

We have implemented our transformation using Acceleo [10] – a model-to-text
transformation tool for Eclipse. Our Acceleo implementation is closely aligned
with the way we present the transformation in Alg. 1. While we currently support
only OCL as the target language for the transformation, it is possible to modify
our text generation rules to support other languages, e.g., Alloy [16].

6 Evaluation

We report on an industrial case study where we apply our approach to LITL. The
case study is an initial step towards answering the following Research Questions
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(RQs): RQ1. Is the approach expressive enough to model complex legal rules?
RQ2. Is the level of effort required by our approach reasonable? And, RQ3. Are
the ADs built using our approach structurally less complex than OCL constraints
written directly? In the longer term, we plan to perform more extensive user
studies to evaluate the approach in a more thorough manner.

Our case study builds on an initiative by the Government of Luxembourg
to improve its eGovernment services in the area of taxation. One of the main
objectives of the initiative is to ensure that these services remain verifiably com-
pliant with the tax law as the law evolves. A key prerequisite for verification of
compliance is to have analyzable models of the tax law. Our case study develops
such models for a substantial fragment of the income tax law. The case study
was conducted in collaboration with our public service partner, CTIE.
Study selection and execution. Our study concerns a set of legal rules from
LITL. Luxembourg has two complementary schemes for income taxes: (1) with-
holding taxes from salaries, and (2) assessing taxes based on a declaration. Our
study focuses on the former scheme. The basis for withholding is a tax card, de-
tailing the tax deductions and credits that apply to an income. Deductions are
expense items subtracted from the gross income before taxes. Credits are items
applied either against the taxes due or paid to the taxpayer in cash. A tax card
provides information about five deductions and three credits. The deductions are
for commuting expenses (FD), miscellaneous expenses (FO), spousal expenses
(AC), extraordinary expenses (CE), and special expenses (DS). CE is decom-
posed into three sub-categories and DS into six. The credits are for salaried
workers (CIS), pensioners (CIP), and single parents (CIM).
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The above deductions and credits give rise to 15 legal
rules. We applied our methodology described in Section 3
for expressing these rules. This resulted in a domain model
and 15 ADs built using our profile. The domain model has
7 packages, 61 classes, 15 enumerations, 106 attributes, and
24 operations. The distribution for the number of elements
in the ADs is given in the box plot of Fig. 7. The element
count for each AD is the sum of the number of inputs, outputs, decisions, actions,
flows, intermediate variables, expansion regions, and constraint/comment boxes.
Discussion . We next discuss the RQs that motivated our study. The three tax
credits in our study (CIS, CIP, and CIM) were used previously in our inves-
tigation of OCL complexity factors (Section 2) along with six other rules that
are unrelated to the case study. Since we had a priori knowledge about the tax
credits, the AD models for the tax credits are uninteresting for RQ1. To mitigate
learning effects, we further exclude these three models when discussing RQ2.

RQ1. Our profile provided enough expressiveness to conveniently capture the
legal rules in our study. One of the factors we considered in our models was
to avoid nested structures, particularly nested expansion regions. Although our
profile and OCL transformation can handle nesting, models containing nested
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Table 2. Comparison of complexity: direct use of OCL vs. OCL fragments in ADs
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structures can be hard to comprehend. In our study, we could avoid nesting in
all models by choosing a suitable OCL context for each of the legal rules.

RQ2. We are interested in measuring the level of effort as an indicator for
whether the approach has a realistic chance of adoption in practice. The ADs
were built by the first author, who has 6 years of formal training in computer
science and 3 years of experience in MDE. The models were built following a half-
day tutorial on personal income taxes by legal experts. The domain model was
developed simultaneously with the ADs, as suggested in Section 3. Developing
the 12 ADs for tax deductions took ≈ 40 person-hours (ph) including the effort
spent on the domain model. This is an average of 3.3 ph per AD. The 3 ADs for
tax credits took ≈ 7 ph to build, i.e., an average of 2.3 ph per AD. Only the tax
deductions are representative in terms of effort, due to reasons discussed earlier.
Once built, the ADs were presented to a group of six legal experts in a half-day
training and walkthrough session. We received positive feedback from the legal
experts involved in our study; however, we have not yet conducted a detailed
user study to thoroughly assess our approach. We consider the overall effort to
be worthwhile as the resulting models provide a complete characterization of the
tax card, which applies to a large majority of the taxpayers.

RQ3. Our profile limits the use of OCL to the inputs, formulas, and state-
ments of ADs. In this way, the profile to a large extent shields users from OCL
and the structural complexity of OCL expressions. Reynoso et al. [23] argue
that reductions in OCL structural complexity bring about reductions in cogni-
tive complexity and improvements in understandability. The aim of RQ3 is to
measure the value of our profile in terms of structural complexity reduction when
compared to the situation where legal rules are directly written in OCL. This
comparison provides preliminary insights as to whether our profile can result in
more intuitive and understandable specifications of legal rules.

To answer RQ3, the second author manually wrote constraints for the tax
deductions, in a similar manner to the tax credits (Section 2). We then com-
pared these constraints to the OCL expressions used in the ADs, i.e., the OCL
expressions to which the users of our profile are exposed. For the comparison, we
selected a subset of the OCL structural complexity metrics proposed by Reynoso
et al. [23]. Our selection was driven by what we deemed relevant to the com-
plexity factors observed in our field study (Section 2). Specifically, we consider
the following metrics: number of navigations (C1), number of if-then-else state-
ments (C2), number of operations on collections, e.g., any, sum, excludes (C3),
and number of iterative operations, e.g., select, forAll (C4). C1 and C2 respec-
tively reflect the navigation and branching complexity factors; C3 and C4 both
relate to the iteration complexity factor.
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Table 2 shows the metrics, across all the deductions and credits, for manually-
written OCL constraints (denoted, M) vs. the OCL fragments used in the ADs
(denoted, A). As the table suggests, the ADs built using our approach lead to
reductions in structural complexity. In particular, the AD’s reduce on average:C1

by 45%, C2 by 100%2, C3 by 72%, and C4 53%. The structural complexity that
carries over to the ADs is primarily caused by the OCL expressions that define
the inputs to the ADs. To validate the ADs with non-software engineers, one can
replace these expressions with intuitive descriptions without any impact on the
ADs. Finally, we need to emphasize that the complexity reductions seen are only
suggestive of benefits, but not definitive evidence for them. Further empirical
validation remains essential to determine whether the complexity reductions
indeed translate into improved understandability.

7 Related Work

In this section, we compare our approach with several areas of related work.
Legal Rules. van Engers et al. [28] express legal rules via OCL; however, they
use OCL directly in their specifications. Our approach provides a model-based
solution for expressing legal rules. Breaux et al. [5] describe a rule-based frame-
work for legal requirements. Nevertheless, they do not operationalize these re-
quirements. The legal rules in our approach are in contrast executable.
Verification of Legal Compliance. Compliance verification has long been
studied for business processes in domains such as healthcare [12,13] and fi-
nance [15]. Few strands however address compliance for software systems. No-
table among these is work by Maxwell et al. [19], where they derive system
compliance rules from legal texts, and by Breaux [4] where he extracts finite
state machines from legal texts to guide system compliance checking. These ear-
lier strands focus on capturing the functional requirements of software systems.
Our approach instead focuses on modeling software systems in terms of inputs
and expected outputs (as envisaged by the law), and irrespectively of specific
system functions.
Visualization of Logical Languages. Bottoni et al. [3] and Stein et al. [27]
propose visualizations for OCL, and Amàlio et al. [2] – for the Z language [25].
These approaches are not tailored to legal rules and lack means for addressing
the information requirements and complexity factors discussed in Section 2.
Model-to-OCL Transformation. Cabot et al. [6] construct OCL transforma-
tions of domain-specific language rules, and Milanović et al. [20] derive OCL
constraints from integrity rule models. These approaches neither address le-
gal rules nor tackle the transformation of activity diagrams, as done in our
approach.

2 The 100% reduction is due to the fact that the ADs in our study do not contain
if-then-else statements, as all branching behaviors are captured using decision nodes.
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8 Conclusion

We proposed a UML-based approach for modeling procedural legal rules. The
key component of the approach is a profile for activity diagrams. To enable
automated compliance analysis, we defined a transformation that produces OCL
specifications from activity diagrams built using our profile. We presented a
preliminary evaluation of our approach.

Our approach focuses on prescriptive legal frameworks. In the future, we would
like to investigate how and to what extent our approach can accommodate declar-
ative frameworks and notions such as permissions and obligations. Another topic
for future work is to conduct more field studies and generalize our UML profile
to a larger set of legal domains. Further, a more thorough evaluation of our
approach is essential. In particular, the legal experts in our study underwent
training before they were able to understand our models. Legal experts trained
in other approaches, e.g., mathematical logic, may have done equally well. User
studies are necessary to determine what advantages and disadvantages our ap-
proach offers compared to the direct use of logic. Finally, we plan to study how
our models can support automated analysis tasks such as simulation.
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Abstract. The Common Variability Language (CVL) allows deriving
new products in a software product line by substituting fragments (place-
ment) in the base model. Relations between elements of different place-
ment fragments are an issue. Substitutions involving interfering place-
ments may give unexpected and unintended results. However, there is a
pragmatic need to define and execute fragments with interference. The
need emerges when several diagrams are views of a single model, such as a
placement in one diagram and a placement in another diagram reference
the same model elements. We handle the issue by 1) classifying inter-
fering fragments, 2) finding criteria to detect them, and 3) suggesting
solutions via transformations. We implement our findings in the tooling
available for downloading.

Keywords: Graph transformations, software product lines, fragment
substitutions, adjacent, interference, cvl, conflict resolution.

1 Introduction

Software Product Line Engineering (SPLE) [1] has proved itself as a valuable
approach to produce configurable and customizable systems. CVL is a domain-
specific language [2,3] for variability modeling [4] which enables defining software
product lines. The variability model is typically organized in a tree of features.
A resolution of the tree structure constitutes a particular product. Defining the
features [5] comprises a variability modeling (VM) process. There are several
approaches to variability modeling which make use of the feature concept, e.g. the
cardinality-based feature modeling approach by Czarnecki et al. [6]. Pohl et al. [1]

Variability model Base model

Product

Substitutions

Fig. 1. CVL product derivation workflow
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(a) Containment (b) Component

Legend
- placement
- replacement

(c) Generalization

Fig. 2. Containment, component and generalization (with placement and replacement
fragments)

describe the Orthogonal Variability Model (OVM) methodology that prevents
cluttering of a base language with variability concepts. The Common Variability
Language (CVL) [7] exploits the feature term, defines variability orthogonally
and specifies how to derive a concrete product [8, 9]. Fig. 1 sketches how CVL
derives a product. The feature tree defines all possible configurations of a car, i.e.
a car comprises an engine with two possible options (hp110, hp140), transmission
(WD2, WD4) and some extra equipment (FrontSensor, RearSensor). We would
like to have an engine with one hundred ten horsepower (hp110), two wheel drive
transmission (WD2) and front sensor (FrontSensor) for our car; therefore, we
need to choose the corresponding features. An engineer selects desired features
defining the Resolution tree in CVL. We illustrate this definition by gray shading
in the Feature tree, see Fig. 1.

To derive a product we specify how these abstract features are related to their
concrete representations in a base model. In Fig. 2, there are three UML [10] class
diagrams modeling the base model of a car. The derivation process is a set of
substitutions which remove elements of a placement fragment and inject elements
of a replacement. We have also defined two substitutions on our base model in
Fig. 2. We replace the Extras class and corresponding containment (placement
fragment, the diagram in Fig. 2a) with the FrontSensor class and associated
containment relation (replacement fragment, the diagram in Fig. 2b). We also
substitute Unit with the Sensor class to keep the generalization diagram in Fig.
2c consistent because FrontSensor is a Sensor specialization and not a Unit one.
We do not show the necessary substitutions of the engine and transmission for
the sake of simplicity.

Modern modeling languages such as UML may have quite large meta-models.
A model in UML has a complex structure even for relatively small tasks. A
diagram is a view of a specific model part. Entities in different diagrams may
reference the same model elements. For example, we are not able to specify all
modifying elements for the car base model as a single selection in one diagram
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pl2

pl1
Legend

- placement
- replacement

Fig. 3. Simplified instance diagram

since the involved classes and associations are present in different diagrams. A
modeling practice shows that an engineer works only with one diagram at a time
focusing on a specific part of a model.

In the instance diagram (see Fig. 3) of the UML meta-model [10], we show
all components presented in Fig. 2. We use arrows to show links between ob-
jects. The UML meta-model specifies even more objects and links than shown in
the figure. Fig. 3 outlines that even though the selections are made in different
diagrams (containment and generalization) and may look completely indepen-
dent, there are direct references from one placement to the other. We call such
relations between fragments adjacent. In the given example, the result of the
substitutions is well understood, i.e. we want a car with the front sensor which
is a specialization of the Sensor class. However, if the substitutions are carried
out independently as in MoSiS CVL [11, 12], the adjacent relation leads to an
incorrect final product.

In the paper we explain our approach to the adjacent relation using an ABC
example, present formal criteria and sketch algorithm to resolve this relation.
Further, we apply the suggested approach on the presented motivation exam-
ple to demonstrate the adjacent resolution technique. In addition, we catego-
rize other problematic inter-placement relations and propose solutions to tackle
them. We show that the graph rewriting techniques and tools [13–16] do not
give us a necessary vehicle for conquering the presented challenges.

We organize the rest of the paper as follows. Section 2 covers background
and related works. Section 4 gives a classification of the placement interferences
using the ABC example for simplicity. In Section 5, we discuss the adjacent
relation between placements while Section 6 elaborates all crossing cases. We
walk through the introduced approach against the motivation example in Section
7. Finally, Section 8 concludes our work.

2 Background

2.1 Variability Realization in CVL

The basic concepts for a variability realization in CVL are placement fragment,
replacement fragment and substitution combining them.
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Definition 1. Placement fragment is a set of elements forming a conceptual
’hole’ in a base model, which may be replaced by a replacement fragment.

Fig. 4 exemplifies a pair of the placement and replacement fragments. We high-
light the placement by the solid oval line, while the dashed oval outlines the
replacement. The elements inside ovals belong to the placement and replace-
ment respectively. Placement and replacement fragments in CVL are defined via
boundary elements depicted by black dots in Fig. 4.

Definition 2. Boundaries are elements which represent the edges of a placement
or replacement fragment.

Definition 3. ToBoundary is a boundary that represents a reference going from
the outside to the inside of a placement or replacement fragment.

Definition 4. FromBoundary is a boundary that represents a reference going
from the inside to the outside of a placement or replacement fragment.

2
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r2

41

5
3

r3

r1

r2
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5

pa

pb

rb
ra

pa

pb

- placement
- replacement
- boundary
- boundary refs.
- substitution

Legend

Fig. 4. Basic CVL concepts

A variability expert defines a placement or replacement using our tool through
a simple selection procedure on a model. These elements inside placement or
replacement may reference entities outside the given selection. Boundaries cut
these references. Fig. 4 shows four boundary elements, i.e. two for the placement
fragment (pa - toBoundary, pb - fromBoundary) and two for the replacement
fragment (ra - toBoundary, rb - fromBoundary).

A subsequent execution of substitutions fragments modifies a base model de-
riving a new product in CVL.

Definition 5. Fragment substitution is an operation that substitutes model frag-
ment (placement fragment) for another (replacement fragment).

The result of one fragment substitution is found in the rightmost of Fig. 4.
The operation removes the placement elements and copy the contents of the
replacement onto the recently cleared placement fragment.

Definition 6. A binding is a map between a placement and replacement bound-
ary elements.
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We specify that the element 5 should reference element r1 and r2 should point
to 4 in the derived product via the binding of pa to ra and pb to rb respectively.
Thus, bindings control substitutions instructing how replacement elements glue
into existing structures.

3 Related Works

3.1 Conflicts in CVL

Oldevik et al. [17] analyze conflicts and confluence between substitution frag-
ments in CVL. The paper states that transformations in CVL can be mapped
to graph transformations in general case and checked using the critical pair an-
alyzes. In our work we give more elaborated classification of interferences, check
their confluence using graph transformation based tools, define solutions, for-
malize them and implement in the substitution engine 1.

Svendsen et al. [18] analyze conflicts in CVL on a Train Control Language
(TCL) [19] example. They discuss two kinds of conflicts: border inconsistency
and element inconsistency. The authors propose an algorithm to deal with incon-
sistencies in the base model by recording evaluation of the CVL model. Further,
they use the original and evolution CVL models to derive a product. To perform
the product derivation they analyze contextual information. Absence or shortage
of the context may prevent an automatic product derivation. In our approach,
we suggest evolving one CVL model and claim that the necessary information to
derive a product automatically is always in the model. In addition, we illuminate
other conflicts and propose solutions.

3.2 Confluence of Graph Transformations

Confluence of conflicting graph transformations plays a major role in the graph
rewriting theory. Conflicts between transformations occur if transformations
share common elements, the graph rewriting theory calls such transformation
non-parallel independent. Heckel, Küster and Taentzer [16] give theoretical bases
for identifying the parallel independence between transformations in terms of
the rewriting theory. If two transformations are parallel independent then the
local Church-Rosser theorem states that the transformations can be performed
in any order yielding the same result [20]. Thus, we can speak of confluence
in the parallel independent transformations. We do not consider confluence of
placement fragments without any relations between each other in this paper
rather address cases where fragments are non-parallel independent (in terms of
the graph rewriting theory). Confluence is also feasible for non-parallel indepen-
dent transformations when all their critical pairs are confluent. A critical pair
analysis of our motivation example reveals a non-confluent graph transforma-
tion system [21]. Therefore, the desired product is not possible to derive in the
given settings. The basic graph approach is not capable of resolving the adjacent
relation in general since the critical pair analysis reveals a non-confluent system.

1 One can find instructions to set up experiments at http://goo.gl/9WD8Gx

http://goo.gl/9WD8Gx
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3.3 Feature-Oriented and Delta-Oriented Programming

Feature-oriented programming (FOP) [22] is a step-wise refinement approach by
Batory et al. [23] to the development of complex systems. A core idea of the
step-wise refinement approach is that a product may emerge by adding features
incrementally to a simple base model. Hence, we can avoid conflicts during a
product derivation, which is different with respect to the CVL methodology of
defining fragments. Batory et al. show that the approach can be applied to both
code and non-code artifacts given that one defines the composition operation for
each kind of artifacts.

Delta-oriented programming (DOP) [24] is an extension of the FOP paradigm
and a novel programming language approach which operates with deltas to derive
a product. Deltas allow removing elements from a product which is not generally
allowed in the feature modeling. One may define a SPL on any language using
the DOP paradigm. The approach proposes to resolve all conflicts between deltas
by specifying the order of their resolution. The notion of deltas is somehow sim-
ilar to fragments in CVL. However, one may define several fragments modifying
the same elements in a model, which is a core distinction. Moreover, we con-
sider substitutions as independent operations which the CVL engine may apply
potentially in the arbitrary order. Therefore, the ordering is not a solution to
conflicting fragments at least within the current CVL semantics. In addition, any
specific resolution order of the adjacent fragments does not solve the problem
with dangling references.

3.4 Aspect-Oriented Programming

Aspect-oriented Programming (AOP) is an approach to weave cross-cutting con-
cerns into a program. Aspects are developed as separate units which can be ap-
plied independently. Lauret et al. [25] state that AOP suffers from a well-known
composition issue i.e. several concerns are applied to the same join point. The
problem is known as the aspect interference issue. Lauret et al. suggest inserting
executable assertions to detect different kind of interference between aspects.
As a solution to avoid undesirable interferences, the authors suggest ordering
of conflicting advises. The notion of aspects is highly relevant to fragments in
CVL which can be applied to the same model elements. However, the ordering of
fragments to resolve conflicts is somewhat different with respect to CVL where
substitution operations do not have any particular order. In addition, ordering
of substitutions does not help with adjacent fragments.

4 Placement Interference

4.1 Definitions and Concepts

A placement fragment forms a conceptual ’hole’ in a base model according to
Definition 1. The fragment substitution operation removes all elements of the
placement creating a ’hole’ in the model. Subsequently, the substitutions fills this
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’hole’ out with a copy of the replacement fragment. Any placement fragment is
defined by means of boundary elements in CVL. Boundary elements reference
objects outside and inside placement/replacement fragments (see Fig. 4) defining
gluing points and elements to remove. Outside boundary references point to
elements beyond a placement fragment. Boundary references outline also a set
of affected elements (neighboring elements or gluing points), which we do not
remove during a resolution process. We do not explicitly select these elements.
Hence, we can conclude that a placement affects a set of objects which is wider
than the set of the explicitly outlined objects by an engineer.

Legend
- PEint
- PEint and PEext
- boundary
- inside-/outside refs.

4 5

3

6

Fig. 5. Internal and external placement elements (PEint, PEext)

Definition 7. Placement Element internal (PEint) is a set of all elements re-
ferred by inside boundary references and all elements in the transitive closure of
all references from the elements in the set, but cut off at elements found through
outside boundary references.

Definition 8. Placement Element external (PEext) is a set of all elements re-
ferred by outside boundary references.

In Fig. 5 PEint = {4, 5, 6} and PEext = {3}. Thus, we define two sets of
elements (PEint, PEext), which are affected by a selection. The dashed arrows
pointing to 3 are outside boundary references, while the dashed arrows pointing
to 4 and 5 are inside boundary references. The oval in Fig. 5 with the solid black
border outlines PEint while the solid gray line highlights the union of PEint and
PEext. Finally, we can conclude that PEint is a placement fragment in the CVL
terminology, while PEext is a set of elements which relations are affected.

4.2 Kinds of Interference

A variability engineer defines a set of elements to substitute via a selection in a
base model. This selection is a set of objects which defines a placement fragment.
This selection defines PEint that is a placement fragment and set of the affected
elements, i.e. PEext. Thus, we can discuss relations between placements in terms
of set relations. To find all possible relations between two different fragments we
consider PEext

⋃
PEint for each fragment and look for intersections between

these unions. If the unions do not intersect then the substitution process goes
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Fig. 6. Placement kinds of interference

smoothly. We do not discuss this case further. There are three unique intersection
cases considering other combinations and simple 2x2 table. An overlap only
between two PEext does not cause malformed configurations during resolution in
MoSiS CVL [11]. Thus, we are left with two basic overlapping kinds. There is also
a special case for an intersection between PEints, namely when one placement
is fully contained by another placement. The given interference kinds are not
mutually exclusive. Fig. 6 depicts four overlapping relations between placements
which we will elaborate in the subsequent sections.

Definition 9. Adjacent placements are placements, where PEint1 intersects
PEext2.

Definition 10. Adjacent relation is a reference between two elements in differ-
ent adjacent placements.

Definition 11. Crossing placements are placements, where PEint1 intersects
PEint2.

Definition 12. Crossing relation is a reference between two elements in differ-
ent crossing placements.

Fig. 6 shows three cases, where two placements conform to the definition of
crossing placements.

Definition 13. Contained placements are placements, where PEint1 ⊆ PEint2.

Definition 14. Contained relation is a reference between two elements in dif-
ferent contained placements.

5 Adjacent Placements

Independent substitutions of interfering placements cause dangling references in
a variability model. Fig. 7 demonstrates a derivation process in MoSiS CVL [11].
There are two adjacent placements and corresponding replacements in Fig. 7a.
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We bind pa to ra and pb to rb to specify substitutions. A substitution of the
adjacent fragment pl1 results in a dangling outside boundary reference going
from pb to the object 3 (an arrow with the filled large head) in Fig. 7b. Note,
the object 3 is not in the model any more. A subsequent substitution of the
second adjacent fragment pl2 in MoSiS CVL yields an invalid product due to
this reference, i.e. the product in Fig. 7c misses a link between r2 and r3. Graph
transformation tools (Henshin [26], EMorF [27]) consider the given transforma-
tions as non-confluent since the first substitution disables the second one. Thus,
the desired substitutions are not feasible applying the graph techniques either.
Fig. 8 sketches the derivation process with a necessary adjustment (see Fig. 8c)
of the dangling reference to obtain the expected product in Fig. 8d.

The case shows that we cannot consider substitutions with adjacent place-
ments as independent. We need to see these transformations together. A solution
for the problem is to modify the variability model during an execution. In our
example, if the outside boundary reference of pb (see Fig. 8b) pointed to the
object r2, then the resolution would yield the proper model. Fig. 8c exemplifies
the required adjustment of the outside boundary reference. Thus, an essence of
our approach to adjacent placements is to find and correct dangling references
in such a way that they point to correct objects all the way through a derivation
process. Summarizing, the adjacent resolution is a threefold process: 1) find ad-
jacent placements, 2) find adjacent boundaries, 3) fix references of the adjacent
boundaries during a product derivation.
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Definition 9 gives necessary criteria to find adjacent placements, i.e. PEint1⋂
PEext2 �= ∅ ∧ PEint1

⋂
PEint2 = ∅. Therefore, we need to walk through

all placements in the model testing them against the proposed criterion. Two
placements are adjacent placements if the criterion holds.

Further, we find all adjacent boundaries for adjacent placements. An adjacent
relation between placements affects these boundaries yielding dangling references
during substitutions. Thus, we have to modify them as the derivation progresses
to keep the model consistent. Boundaries are adjacent if their outside boundary
and inside boundary references match certain patterns. We formalize these pat-
terns in Algorithm 1. Two adjacent boundaries are an adjacent boundary pair
if these boundaries conform to the same match pattern. In Fig. 8a, the bound-

Data: boundariesP lc1 - boundaries of the first adjacent placement,
boundariesP lc2 - boundaries of the second adjacent placement

Result: adjBoundaryCurrent, adjBoundaryStale - boundary maps
for b1 ∈ boundariesP lc1 do

for b2 ∈ boundariesP lc2 do
if IsInstanceOf(b1) = FromBoundary and
IsInstanceOf(b2) = ToBoundary then

if b1.inside� b2.outside = ∅ and b2.inside ⊆ b1.outside then
adjBoundaryCurrent[b1] ← b2;
adjBoundaryStale[b1] ← copyBoundary(b2);

end

end
if IsInstanceOf(b1) = ToBoundary and
IsInstanceOf(b2) = FromBoundary then

if b1.outside� b2.inside = ∅ and b1.inside ⊆ b2.outside then
adjBoundaryCurrent[b1] ← b2;
adjBoundaryStale[b1] ← copyBoundary(b2);

end

end

end

end

Algorithm 1. Procedure to find adjacent boundaries

aries pa and pb constitute an adjacent boundary pair. Informally, an adjacent
boundary pair is a pair of adjacent boundaries which cut the same adjacent
relation.

Fig. 8c shows a modification we have to execute once we substitute pl1. We
need to modify an adjacent boundary of the adjacent pair. The modification is
a twofold process, i.e. 1) walk through adjacent boundaries of a not yet sub-
stituted placement removing pointers to invalid objects, e.g. the object 3 2)
correct boundary references to point to just replaced elements, e.g. object r2
(see Fig. 8c). Algorithm 2 presents formally the outlined procedure. This proce-
dure eliminates the dangling reference from the boundary pb to an element in
the placement pl1.
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Data: boundaries - boundaries of a not yet substituted adjacent placement;
adjBoundaryCurrent - a map that stores adjacent boundary pairs and
their current references; adjBoundaryStale - map that stores adjacent
boundary pairs and their stale references (before substitution)

Result: fixed outside and inside boundary references
for b ∈ boundaries do

if IsInstanceOf(b) = ToBoundary then
b.outside ← adjBoundaryCurrent[b].inside;

end
if IsInstanceOf(b) = FromBoundary then

b.outside ← b.outside \
adjBoundaryStale[b].inside

⋃
adjBoundaryCurrent[b].inside;

end

end

Algorithm 2. Fixing boundary references for adjacent placements

6 Kinds of Crossing Placements

6.1 Approach Overview

Fig. 6b, Fig. 6c and Fig. 6d outline all possible crossing kinds between place-
ments. An engineer may define placement fragments in different diagrams that
leads to crossing placements in the base model. An attempt to substitute these
two placements one by one, results in dangling references and malformed prod-
ucts. In addition, two substitutions may replace elements of the crossing twice.
This may cause different final products depending on the substitution order.

We argue that crossing placements should be considered as a single place-
ment as well as their replacement fragments. Thus, we introduce a unionization
procedure as a solution for this case. The crossing may originate from either
a pragmatic need or an error in a variability definition. Therefore, we must be
able to distinguish the cases. Required information for the decision is already
in a variability model. By checking for unionizing crossing fragments we 1) spot
erroneous variability definitions, tackle cases where the unionization operation
is possible, 2) reduce the overall amount of substitutions facilitating the deriva-
tion process and 3) widen the semantics of the fragment definition which may
enhance the variability specification process.

6.2 Crossing Placements

Two substitutions with crossing placements should be resolved as a single sub-
stitution, i.e. we should attempt to unionize the given placements and corre-
sponding replacements. Boundary elements in CVL fully define placement and
replacement fragments; therefore, we can alter boundaries in order to adjust
fragments. The unionization of crossing fragments removes boundary elements
which are internal to the unionized fragment. Boundary elements are removed
when their outside boundary references point to elements inside the unionized
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placement since this contradicts the definition [7]. In Fig. 9a, we bind pa to ra,
pb to rb, pc to rc and pd to rd. The boundary elements pb and pc are inter-
nal w.r.t. the unionized placement as well as rb and rc. Thus, we remove these
boundaries to unionize the placement and corresponding replacement fragments.
The unionization result is in Fig. 9b.

Let us now consider the same placement fragments from Fig. 9a and replace-
ments in Fig. 9c. We bind the boundaries as in the previous case. The unioniza-
tion approach suggests removing the placement boundary elements pb, pc and
corresponding boundaries rb, rc. This unionizes the placement fragments. On
the contrary, the replacement fragments become inconsistent and the remaining
boundaries do not define a unionized replacement. In addition, the unionization
of the non-crossing fragments does no make any sense. We consider an error in a
variability definition when placement fragments overlap, but their replacements
do not intersect or the replacement overlap of a different kind.

6.3 Crossing and Adjacent Placements

Fig. 10a shows an example of two placements and replacements that are both ad-
jacent and crossing. We cannot apply to such fragments the adjacent technique
since it does not handle the crossing relation. While the unionization procedure
should eliminate the adjacent relation between two crossing placements. The
boundary elements pc and pb define the overlap of the kind crossing placements,
and pe and pf constitute the adjacent case. As in the crossing case, the boundary
elements pc, pb and rc, rb have to be removed when we unionize two placements.
These boundaries are internal w.r.t. the newly unionized placement and replace-
ment. The reference in Fig. 10b (which creates the adjacent relation between
pl1 and pl2 ), is an internal link now. Hence, the adjacent relation is eliminated
and there is no any interference . The pure crossing case is a special case of the
crossing placements with the adjacent relation. Thus, developed criteria should
be capable to handle both cases. The suggested unionization approach can tackle
pure adjacent placements. However, unionization needs to consider relations be-
tween corresponding replacements. Thus, it reduces the amount of valid frag-
ment definitions. The adjacent resolution method does not count on relations
between replacement fragments. Therefore, the adjacent resolution method is
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more applicable to adjacent placements and can handle more cases than the
unionization technique.

6.4 Contained Placements

An example of the contained placements in Fig. 6d. If we execute a containing
placement, then the corresponding contained placement is never substituted.
This resolution order never brings problems to the derivation process. On the
contrary, a subsequent execution of the contained fragment and containing place-
ment results in dangling references. We consider the contained placements as a
potential problem in variability definition due to this ambiguity. The unioniza-
tion procedure is also feasible for contained placements. We cannot find examples
where such configuration is practically useful. Thus, we suggest unionizing for
crossing fragments and reporting every time the substitution engine discovers
contained placements.

7 Example Walkthrough

Let us finally walk through our motivation example from the introduction sec-
tion. Fig. 11a and Fig. 11b depict two placement and replacement fragments
which specify the desired transformation, i.e. we want to derive a car with a
front sensor. In order to substitute pl1 onto rl1, we bind pa to ra, pb to rb, while
pl2 substitution is achieved via binding of pc to rc, and rd is bound to null (we
do not need this relation in the final model). We do not show inside-/outside
boundary references just for the sake of neatness in the figures. The given place-
ments in Fig. 11a are adjacent. Two adjacent boundaries pb and pc constitute
the adjacent pair, i.e the outside boundary references of pl1 and pl2 point to
the elements of the opposite placements. Hence, the outside references of these
boundaries have to be modified during a transformation process.

Let us first substitute pl1, the outside boundary reference of pc points to
Extras:Class which does not exist in the model; therefore, it is a broken reference.
We know that pc is an adjacent boundary and should be modified to reference
FrontSensor:Class. This reference is taken from inside boundary reference of
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rc which is bound to pc. Therefore, we are able to perform a substitution of
pl2, where the substitution engine restores the link down to Sensor:Class from
FrontSensor:Class. Two subsequent substitutions yield the product in Fig. 11c,
which conforms to our expectations and definitions. We achieve the same result
even if we perform substitutions in a different order.

We implemented the suggested approach in the CVL tool 1. The procedure
does not require any human interaction and completely automated as a deriva-
tion progresses.

8 Conclusion

CVL is a language to define software product lines. The language has the notion
of fragments to specify elements to substitute in a model. Modern modeling
languages may have complex meta-models; therefore, the tools, which implement
the corresponding meta-models, may use different diagrams to represent a model
and facilitate the development process. Fragments defined in different diagrams
may interfere in a model causing unintended results during a product derivation.
A variability engineer can define interference intentionally, reflecting a pragmatic
need to specify substitution fragments in different diagrams, or by accident where
overlaps indicate a failure in a variability model. In this article, we classify the
fragment interferences, i.e. adjacent, crossing, adjacent and crossing, contained
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placements. For each kind we define the detection criteria and how to handle
them properly.

We have implemented the findings in the substitution engine developed at
SINTEF 1 as well as demonstrated the proposed method to the adjacent relation
on the motivation example. The engine performs substitutions, has functionality
to detect and solve the adjacent relation. The resolution process of the adjacent
relation includes the following steps: 1) detect adjacent relations, 2) find adjacent
boundaries, 3) modify the adjacent boundaries. The engine executes the adja-
cent resolution procedure after a single substitution step to keep a variability
model consistent all the way through a derivation process. The adjacent detec-
tion between placement fragments is a costly procedure. There are C2

n possible
combinations, where n is the number of placement fragments and order is not
important. Thus, we require to suggest optimizations to speed up this step. It
is a part of our future work.

We have introduced the unionization approach to fragments with the cross-
ing relation. There are three kinds of the crossing relation, i.e. crossing frag-
ments, adjacent and crossing fragments, contained fragments. We demonstrate
that the unionization approach is feasible only when placements and correspond-
ing replacements have similar crossing kinds. Otherwise, a variability model is
not consistent; thus, we assert an error. We argue that a case with contained
placements indicates a potential problem in variability definition. The crossing
resolution technique requires further elaboration and is not implemented in the
engine yet which is a part of the future work.
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Abstract. Context-aware systems aim to improve the interaction be-
tween a computer and a human being by using contextual information
about the system itself, the user, and their environment. The number of
relevant contextual information is expected to grow rapidly within the
next years which tends to result in a complex, error-prone and hence,
expensive task of programming context-aware systems. Model-based de-
velopment can overcome these issues. Current approaches do not allow
to model calculation of reliabilities and do not offer options to handle
multiple sources of contextual information.

In this paper, we present an approach of modeling contextual in-
formation of a context-aware system using the example of a context-
aware in-car infotainment system. In particular, we show how develop-
ers of context-aware in-car infotainment systems can model reliability
calculations of contextual information and handling of multiple sources
of contextual information by using a hybrid, ontology-based modeling
technique.

Keywords: Context-aware, ontology, infotainment, modeling.

1 Introduction

A context-aware computer system observes its user and his or her environment
to get an understanding of the situation the user is in: The user’s context. Having
this understanding, the system is able to react to the user’s context in terms of
system behaviour or parametrization. This concept seems to be beneficial in
the automotive domain and in particular in the domain of in-car infotainment
systems.

Whereas in the 1980s in-car infotainment systems mainly featured radio func-
tionality, today’s in-car infotainment systems offer many extended features, in-
cluding enhanced media playback from different sources like smartphones or
brought-in flash storages, navigation functionality, or traffic announcements. The
number of features that users and drivers will demand from future infotainment
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systems is expected to grow rapidly1. Hence, it is important to explore inter-
action concepts which allow using feature-rich infotainment systems without
distracting the driver from his or her primary task: Driving the car. It may be-
come necessary to e.g. adapt the user interface of the in-car infotainment system
to the speed of the car or the age of the user.

Along those concepts, it is inevitable to study software architectures and meth-
ods which allow developers to design and implement such in-car infotainment
systems. Feature-rich infotainment systems are likely to have a perception of
what the user wants to do and what the situation around the car is about. In
order to understand the car’s situation, it becomes necessary to build a context-
aware in-car infotainment system. However, people developing context-aware
in-car infotainment systems will not necessarily be computer scientists and may
not have an expertise in building complex software systems. They will rather be
people with an understanding of how users (drivers) interact with the in-car in-
fotainment system. Among others, this is why this paper aims for a model-based
approach of developing context-aware in-car infotainment systems.

The modeling technique we present in this paper offers solutions to the fol-
lowing problems:

– modeling contextual information and their relations
– modeling reliability calculations of contextual relations
– modeling handling of multiple sources of contextual information

Corollary, the focus of our proposed technique is not on the actual context-
aware system, but rather on the retrieval and processing of contextual informa-
tion. The contextual processing takes place in subsequent software systems, e.g.
in a component trying to identify a user’s intention. Therefore these subsequent
systems need high level context data and information about the current situa-
tion. The techniques presented in this paper allow creating systems which are
able to deliver such high level context data.

This paper is structured as follows: The next section provides background
information on context-aware systems and context modeling. Afterwards, we
define requirements for our model in Section 3 and present our approach in
Section 4. We will validate the requirements in a use case-based evaluation in
Section 5, before we conclude with an overview of related work and an outlook
on future work in Section 6 and 7.

2 Background

In this section, we give some background information on context-aware systems
in general and in an automotive environment. We also show techniques for mod-
eling contextual information and for dealing with uncertain and unreliable data,
which form the base for our approach.

1 Connect with your car, Consumer Reports magazine, April 2013,
last accessed July 2014
http://www.consumerreports.org/cro/magazine/2013/04/connect-with-your-car

http://www.consumerreports.org/cro/magazine/2013/04/connect-with-your-car
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2.1 Context-Aware Systems and Context Modeling

In an automotive environment, especially in in-car infotainment systems, con-
textual information can be separated into three main categories: Driver, car and
their environment [24,20]. Data regarding the driver may contain the driver’s
stress level, appointments, communication behavior and the destination or mo-
tivation of the current route. Data about the car may contain its type, power
and fuel capacity or current status including warning messages and available fuel
amount. Also sensor data and data from driver assistance systems belong to the
car category, e.g. current speed and position according to GPS. The environment
category contains everything from outside the car, e.g. the weather, traffic, date
and time of day, and the presence of important places (POIs) near the route.

Context-aware systems read low level context data, e.g. from sensors, process
the data to high level context data or even whole situations, and react or change
their parameters according to the context [5]. Context data include everything
which may have an impact on the system. In a system for automatic volume
control, a high level context may be the in-cabin acoustic level. This is depending
on the speed of the vehicle and the RPM of the vehicle’s engine, which are low
level contexts in this case, since the high level context can be determined based
on them.

To work with context in a computer system, a model to store and process
context data is needed. A special model for working with contextual information
brings some benefits: The model helps to specify relationships and a hierarchy of
context data. It also allows to create rules for a reasoning process that supports
the workflow of extracting high level context data and situations from low level
context data. Several different types of context models can be found in literature.
An overview on them is given in the survey paper by Strang and Linnhoff-
Popien [21] and the survey paper by Bettini et al. [5].

State of the art in context modeling are ontology-based models [5,21]. An
ontology contains knowledge of a certain domain and can model hierarchies and
dependencies between context data. It is possible to infer new facts based on the
knowledge in the ontology using a reasoner. A common language for ontologies
is OWL [15] which will be used as the base of our approach in union with its
rule-based extension SWRL [11].

To model uncertainty in context-aware systems, common methods are e.g.
Bayesian networks or fuzzy logic [5]. The presented context models lack a stan-
dardized support for processing uncertainty, unreliability or incomplete informa-
tion as they may appear in an automotive environment. Thus, we will create an
object-oriented model extension based on fuzzy logic which is used to represent
the reliability of context sources and contextual information. Hence, we create
an ontology-based hybrid context model.

2.2 OWL and SWRL

OWL [15] is a language to define the structure of an ontology, based on first
order logic. It structures data using classes and properties. OWL classes can be
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seen as categories of data and behave similar to mathematical sets, but can also
be compared to classes of the object-oriented paradigm. Actual data is added
in form of individuals. An individual can be compared to objects of the object-
oriented paradigm which are instances of classes. An example of an ontology is
shown in Figure 1.

ThingSpeed

CabinAcousticLevel

NormalLevel HighLevelMediumLevel

speedValue
exactly 1 int

RPM

rpmValue
exactly 1 int

NormalRPM HighRPM

rpmValue only int[<3000] rpmValue only int[>=3000]

Legend

class

data property

Fig. 1. Example of an OWL ontology for classifying a cabin acoustic level

This sample ontology is composed of eight classes. The class RPM represents in-
formation about the current revolutions per minute of a vehicle’s engine. Speed
covers a vehicle’s speed. CabinAcousticLevel represents an acoustic level of
a vehicle’s cabin which can be either a NormalLevel, a MediumLevel or a
HighLevel. Ontologies are able to define hierarchies between classes. The su-
perclass of all OWL classes is called Thing (cf. Object in Java). NormalRPM and
HighRPM are subclasses of RPM, indicating that they are a more specific RPM.

Properties attached to a class can either be data properties, which resemble
attributes of defined data types (e.g. integer, string, etc.), or object properties,
which resemble relations to other classes. Since the revolutions per minute are
measured as an integer value, RPM has a data property called rpmValue of data
type int with the restriction that there has to be exactly one value for this prop-
erty. Properties are inherited from classes to their subclasses. Hence, NormalRPM
and HighRPM inherit RPM’s data property rpmValue. However, there are data
property restrictions made to NormalRPM and HighRPM, which are used to clas-
sify a RPM as NormalRPM if the rpmValue is below 3,000 or as a HighRPM if
rpmValue is greater or equal than 3,000.

The main benefit of the ontology shown in Figure 1 is to classify an acoustic
level of the passenger cabin to normal, medium or high. For our example, we
assume that this classification is dependent on the speed of the vehicle and
the revolutions per minute of the engine. SWRL rules help to define which
speed-rpm combination will lead to which cabin acoustic level. SWRL enhances
OWL with rule-based decisions and simple calculations as well as comparisons
which cannot be modeled in standard OWL. SWRL rules are composed of a
conjunction of preconditions and a result that is performed if all preconditions
are fulfilled [11]. In order to classify a cabin acoustic level as HighLevel, we define
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that we need a HighRPM and a Speed with a speedValue above 60mph. Hence, we
need the following SWRL rule to classify an individual of CabinAcousticLevel
as HighLevel:

IF there is an individual of the class CabinAcousticLevel (named c)
AND there is an individual of the class HighRPM (named r)
AND there is an individual of the class Speed (named s)
AND the data property speedValue of s is greater than 60
THEN c belongs to the class HighLevel.

2.3 Fuzzy Logic

Fuzzy logic is an extension to normal Boolean logic. It provides a finer segmen-
tation than just true and false since a degree of membership m ∈ [0, 1] to every
category can be given. A value could e.g. be 0.3 true and 0.7 false. Fuzzy logic
values can be combined as in normal propositional logic. In this case their mem-
bership values are combined using a t-norm for AND and a t-conorm for OR.
There exist several possible calculation norms, e.g. the product norm or the min-
max norm [13]. The product norm states that the membership m(A∧B = true)
is equal to m(A = true) · m(B = true). The membership m(A ∨ B = true)
is equal to m(A = true) + m(B = true) − m(A = true) · m(B = true). This
theory will be used to model a reliability value for our approach. It fits well
for handling the reliability of sources since calculation results behave similar to
reliability assumptions in reality. A value which is combined from several sources
which are all necessary (AND connection) is less or equal reliable than the single
values from the sources since different, maybe unrealiable values are combined.
A value with several redundant sources (OR connection) gets more reliable than
the single values from the sources since the sources support each other and thus
the result can be trusted.

3 Requirements

In this section, we identify requirements for a model-based approach of process-
ing contextual information in a context-aware in-car infotainment system. The
requirements raised in this section are based on our experiences in developing
in-car infotainment systems. Nevertheless, we will use our running example of
classifying a cabin acoustic level (cf. Figure 1) to explain the requirements.

R1: Aggregation and Abstraction. In our running example we aggregate
a vehicle’s speed and the revolutions per minute of the car’s engine to a cabin
acoustic level. Hence, one of the basic requirements an approach for context
modeling has to meet is the ability to aggregate single, simple contextual infor-
mation (most-likely measured by a sensor) to more complex values or even entire
situations a car and its driver are in. Furthermore, the modeler needs a possibil-
ity to express how this aggregation works and which contextual information is
aggregated to new contextual information.

R2: Hierarchy of Contextual Information. To aggregate contextual data
more easily, the modeler has to be able to classify contextual information to
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subclasses (e.g. a RPM may be normal or high). Hence, it is necessary to map
such hierarchical compositions to the context model which describes the context
of the driver, the vehicle and their environment.

R3: Diversity of Contextual Information. Contextual information differs
a lot with regard to its characteristics. Some data do not change during the whole
lifetime of a car (e.g. type of the car), some data may change during a drive (e.g.
the country the car is in), and some data changes in milliseconds (e.g. speed of
the car, or an engine’s RPM). In addition to this, contextual information differ
in their data types. Most likely, there will be data types like Boolean values,
numeric values, textual values, and complex combinations of such simple data
types. With respect to our running example, it may happen that a cabin acoustic
level is also influenced by the type of the car which may be represented as a
String. Hence, a model describing relations of contextual information must be
able to support different data types of contextual information as well as different
rates of them.

R4: Data from Multiple, Unreliable Sources. When modeling the clas-
sification of a cabin acoustic level by using speed and RPM of the car and its
engine respectively, the modeler does not have any knowledge of the reliability
of the speed and the RPM. A speed may be measured by different sources (e.g.,
incremental rotary encoder and GPS) with different reliabilities. Whereas the
incremental rotary encoder (which is typically used to visualize the speed of the
car to the driver) has a high reliability, the reliability of a speed calculated via
GPS will be much lower. The modeling approach has to allow multiples sources
which deliver the same kind of data (e.g., speed) and express how to deal with
different reliabilities of these multiple sources.

R5: Comprehensibility. Model-based development enables people who are
not used to implement software systems by using a programming language like
C, C++, or Java by offering them a solution of abstractly modeling the software
system. In order to support such people by creating context-aware in-car info-
tainment systems, modeling contextual information and their relations has to be
easy and comprehensible. This may require sufficient tool support for creating
context models.

R6: Extensibility. Designing and developing a context-aware in-car info-
tainment system has to be future-proof in terms of new contextual information
becoming relevant for a context-aware in-car infotainment system. It should be
possible to add new sources of contextual information to the context model with-
out changing the way the context model and the software-architecture evaluating
the context model perform. In case of our running example, it may happen that a
sensor measuring the cabin acoustic level will be included in future cars. Hence,
an approach with a defined set of inputs and outputs is not appropriate for
modeling contextual information and their relations.

4 Ontology-Based Modeling of Contextual Information

In this section, we present our approach of modeling contextual information for
a context-aware in-car infotainment system.
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We choose ontologies as the basis of our modeling technique, because they
meet almost all of the requirements presented in Section 3: OWL ontologies
support hierarchies and logical reasoning (cf. requirement R1). SWRL rules offer
extended possibilities to design rules with calculations and comparisons (cf. R2)
of different data types (cf. R3). OWL allows to add new sources of contextual
information by adding them to the ontology and make use of them in further
calculations (cf. R6). OWL and SWRL are standardized by the W3C and there
are mature APIs like the OWL API2 for Java, reasoners like Pellet3 and editors
like Protégé4. OWL ontologies can be seen as state of the art and are used in
various context-aware systems [5,6,9].

However, OWL lacks support for handling unreliability and multiple data
sources (cf. R4). Since OWL and SWRL are not domain-specific to modeling a
context-aware (in-car infotainment) system, the comprehensibility is expected
to be low when using OWL and SWRL without any domain-specific adaption
(cf. R5). Hence, we extend OWL by adding an object-oriented part to handle
multiple data sources with different reliabilities. In addition, a possibility to
handle the link between OWL data and real data sources in the car is devised.

4.1 Handle Multiple Sources of Contextual Information

The central idea of the proposed system is that a modeler does not have to think
about programming details. If he wants to use a source, he just has to know a
few facts to link an OWL class to it. This OWL class has to be defined as an
input class. The system automatically tries to find corresponding sources for
input classes at runtime, reads data from the sources and transforms the data
into OWL individuals of OWL classes to which the source definition belongs to.
These individuals are used as input for data processing via OWL and SWRL
rules. Classes, whose individuals are results of the processing and should be given
to other systems later, can be defined as output classes. A definition as both,
input and output, is possible, too. This may be useful if a value provided by an
input source should be changed with respect to other values. Hence, this value
would be input at output at the same time.

To link an OWL class to a source, an identifier is needed to state which source
should be used. A source which provides the expected content understands the
identifier, so that the system can automatically use it as a source for content
of this OWL class at runtime. OWL offers the possibility to link a class to
attributes in the form of data properties (concrete values) and object properties
(relations between individuals). To read them from the source, the modeler has
to be able to give the source a property identifier and the name of the OWL
property, which has to be filled with data belonging to this identifier. There are
two different types of sources. For some sources, the system can add itself as a
listener and wait for data. This is called a push source. For other sources, the

2 http://owlapi.sourceforge.net
3 http://clarkparsia.com/pellet
4 http://protege.stanford.edu

http://owlapi.sourceforge.net
http://clarkparsia.com/pellet
http://protege.stanford.edu
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system has to read data on its own with a certain frequency, which is called a
pull source. This depends on the type of source and has to be stated by the
modeler, too.

The definition of source information is done using OWL annotations. Anno-
tations for classes defined in OWL can be interpreted as a kind of comments to
these classes. The annotations have to be made for an OWL class to describe
its task (in- or output) and its source understandable to the system. We pro-
vide a base ontology containing a set of annotations to specify the additional
information about sources as described above.

As stated by requirement R4, a modeling technique of contextual information
has to allow modeling of how an aggregation of contextual information should
behave if there are multiple sources. We propose to achieve this by annota-
tions which can be added to an OWL class. For example, using the annotation
sourceName, will connect an OWL class with a source of real data of the car.
Figure 2 shows our running example supplemented by several annotations. Anno-
tations made to OWL classes are evaluated during runtime of the context-aware
in-car infotainment system. The OWL class Speed is annotated with the follow-
ing: exchangeType = Exchange In states that an individual of the class Speed
has to be created for every source which delivers information about the vehicle’s
speed. Sources which provide such information can be identified by a source
name. This link between the ontology and the data source is guaranteed by the
annotation sourceName = SpeedSource (sourceType = Source Push indicates
that a speed source automatically sends updates without any need for polling). If
there are multiple sources providing information about the current speed of the
vehicle, the question comes up which speed information should be chosen. Our
approach allows to model which source should be used. However, we do not need
to know the exact sources during modeling time. Our approach offers various pos-
sibilities of selecting sources. For the RPM of the vehicle’s engine, we modeled to
merge different values of all sources (sourceSelection = Select MergeAll). In
this case we defined to calculate the average of the data property rpmValue by us-
ing the annotation valueCombination = Calculation Average. Using the an-
notation sourceSelection = Select HighestConf, allows to choose the source
with the highest confidence, for example. Every source defines its confidence.
Hence, we have to trust sources about their confidence.

4.2 Combination of Unreliable Information

With respect to our beforehand deduced requirements, a strategy to represent
the reliability of sources of contextual information is needed. This can be used
to express that a source from the car is more reliable than a source on the
internet or to differentiate the reliability of different sensor types. The reliability
is supposed to have an impact on the calculation results, so a result is only as
reliable as the data used for its calculation.

As a concept to support all theses ideas, we propose the confidence value. The
confidence is a value conf ∈ [0, 1]. It is interpreted as a fuzzy Boolean value for
reliability, so conf(X) = 0.8 means fact X is reliable = (0.8 true, 0.2 false).
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ThingSpeed

CabinAcousticLevel

NormalLevel HighLevelMediumLevel

speedValue
exactly 1 int

RPM

rpmValue
exactly 1 int

NormalRPM HighRPM

rpmValue only int[<3000] rpmValue only int[>=3000]

Legend

class

data property

annotation

exchangeType = Exchange_In
sourceName = SpeedSource
sourceType = Source_Push

sourceSelection = Select_HighestConf

exchangeType
= Exchange_Out

exchangeType
= Exchange_Out

exchangeType
= Exchange_Out

exchangeType = Exchange_In
sourceName = RPMSource
sourceType = Source_Push

sourceSelection = Select_MergeAll
valueCombination = Calculation_Average

calculationNorm = Norm_ Product

calculationNorm = Norm_ Product

Fig. 2. Running example of classifying a cabin acoustic level supplemented by anno-
tations to enable handling of multiple sources with different reliabilities

The confidence is calculated for every assertion of an individual to a class. For
new data, the confidence from the source is used. For calculated data, the con-
fidence can be calculated according to the rules that lead to the new facts.
Therefore, fuzzy logic calculation norms can be used. Which norm the sys-
tem should use during runtime can again be defined by an annotation (e.g.,
calculationNorm = Norm Product) Using this concept, the right source out of
multiple sources could be selected by using the highest confidence. For cases, in
which the source with the highest confidence is not necessarily the best one, a
weight ∈ N for the sources is added, so that the source with the highest weight
can be selected. In other cases even data from all sources in parallel could be
desired. If it is necessary to combine the values from various sources, the system
also has to know how to calculate combinations for numeric values. Besides it
has to be chosen whether it is sufficient that only one source provides data or
whether all available sources have to provide data before the merged data is
added to the system. All theses selections depend on the context data and its
use. So the modeler has to make these decisions.

Figure 3 shows an exemplary calculation of the confidence: s is an individual of
Speed and r is an individual of RPM are created from sources S and R and get the
confidence of their sources. c is a predefined individual of CabinAcousticLevel
and is used to be put into one of the subclasses of CabinAcousticLevel dur-
ing reasoning. Since it is predefined it has the confidence 1.0. We assume that
s has a speedValue of 120 and r has an rpmValue of 3500. So r is identified
as an individual of HighRPM, the confidence for this fact is 0.8, too. The asser-
tion to class HighLevel is calculated using a SWRL rule. All preconditions of
the rule, “there exists an individual of class CabinAcousticLevel”, “there ex-
ists an individual of class Speed with speedValue greater than 60” and “there
exists an individual of class HighRPM”, are met by c, s and r. So the rule is
processed and c is asserted to class HighLevel. This is an AND condition, so
the product norm has been chosen to calculate the confidence of this result. So
conf (c individual of HighLevel) = 1.0 · 0.9 · 0.8 = 0.72.
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s Speed
conf = 0.9

conf(c HighLevel) 
= conf(c CabinAccousticLevel)·conf(s Speed)·conf(r HighRPM) 
= 1.0·0.9·0.8 = 0.72

conf(r HighRPM) = conf(r RPM) = 0.8

conf(s Speed) 
= conf(S) = 0.9

conf(r RPM) 
= conf(R) = 0.8

Legend

Source

OWL Individual

Individual
of Class

r RPM
conf = 0.8

c CabinAccousticLevel
conf = 1

conf(x CabinAccousticLevel) 
= 1.0 [predefined]

Source S for Speed
conf = 0.9

Source R for RPM
conf = 0.8

Individual sIndividual c

predefined individual
conf = 1.0

Individual r

r HighRPM
conf = 0.8

due to rpmValue

c HighLevel
conf = 0.72 due to SWRL rule

Fig. 3. Example for confidence calculation

5 Implementation and Evaluation

In this section, we evaluate our approach of modeling contextual information
by modeling an extensive part of a context-aware in-car infotainment system.
Therefore, we first present our implementation before introducing our evaluation
use case. Finally, we check which of the requirements (cf. Section 3) we met and
which remain open.

5.1 Implementation

For our evaluation use case we used a setup composed of a CAN bus simula-
tion and an OSGi-based software architecture, which is connected to the CAN
bus simulation. Every source which is specified in our context model needs an
OSGi-Service which propagates the data (e.g., a vehicle speed coming from the
simulated CAN bus) so that our system is able to use such data as input for
reasoning the context model.

After creating this evaluation base, we are able to create our context model
for processing contextual information. We used the open-source ontology editor
Protégé5 for creating this model. This model can be read by our system and is
evaluated in real time whenever source data do change. However, for reading and
reasoning the context model no model-specific implementation is necessary. To
visualize results, we implement a software component which listens to ontology
classes which are modeled as output of the ontology reasoning.

5 http://protege.stanford.edu/

http://protege.stanford.edu/
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5.2 Evaluation Use Case: Driver Drowsiness Detection

For an evaluation of our approach, we decided to build a part of a context-aware
in-car infotainment system which classifies a driver’s drowsiness based on three
types of low level information: The driver’s steering behavior, the journey time,
and information about the driver’s eyelid closure.

In this use case, we assume that it is necessary to subsequent parts of the
context-aware in-car infotainment system to classify a driver’s drowsiness to no
drowsiness, medium drowsiness, or high drowsiness. To classify the drowsiness,
we propose to classify the steering behavior, the journey time, and the infor-
mation about the eyelid closure in advance to normal and abnormal steering
behavior, short and long journey time, and normal and abnormal eyelid closure.
The classification however, is exemplary and may be changed by experts of the
appropriate domain. The values we chose are exemplary and do not necessarily
represent an optimal classification.

For the steering behavior, we assume a steering behavior value between 0 and
1 indicating an absolutely normal steering behavior (0), an overall abnormal
steering behavior (1) or something in between. We assume that this value is cal-
culated by a preceding controller connected to the steering column. We propose
to classify the steering behavior to normal if the steering behavior value is less
than 0.8 and abnormal otherwise.

For the journey time, we assume that we do have access to a value which
indicates how long the car is steered without interruption. Hence, we assume
that the journey time is basically characterized by a duration in minutes. We
further propose, to classify a journey time as short if the duration is less than
120 minutes, and as long otherwise.

For the information about the eyelid closure, we assume two values: An av-
erage duration of eyelid closures over the last minutes and an eyelid closure
frequency. We exemplary propose to classify an eyelid closure to normal if the
average duration of an eyelid closure is less than 400 milliseconds and the time
between two eyelid closures is more than 5 seconds, otherwise we assume the
eyelid closure of the driver as abnormal and classify it as such.

Figure 4 summarizes the beforehand mentioned relations as an OWL ontology.
The driver’s steering behavior and the the journey time can be classified by an
OWL reasoner because we modeled data property restrictions to them which
allow classification similar to the classification of an engine’s RPM in our running
example (cf. Figure 1). To classify an eyelid closure however, we have to add the
following SWRL rules to this ontology:

i) e ∈ EyelidClosure ∧ e.avg duration < 400
∧ e.frequency > 5 ⇒ e ∈ NormalEyelidClosure

ii) e ∈ EyelidClosure ∧
(e.avg duration ≥ 400 ∨ e.frequency ≤ 5) ⇒ e ∈ AbnormalEyelidClosure

For finally classifying the driver’s drowsiness, we make the following assump-
tions: If steering behavior and eyelid closure are normal and the journey time is
short, we classify the drowsiness as no drowsiness. If one of these three contextual
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JourneyTime* Thing

SteeringBehavior*

Drowsiness
LongJourneyTimeShortJourneyTime

AbnormalSteeringBehavior

NormalSteeringBehavior

NoDrowsiness

MediumDrowsiness

HighDrowsiness

 

duration exactly 1 long

duration only long[>= 120]

duration only long[< 120]

steeringBehaviorValue
exactly 1 double

sourceSelection = Select_MergeAll
valueCombination = Calculation_Average

calculationNorm = Norm_ Product

sourceSelection = Select_HighestConf

steeringBehaviorValue only
double[>= 0.8]

steeringBehaviorValue only
double[< 0.8]

exchangeType
= Exchange_Out

exchangeType
= Exchange_Out

exchangeType
= Exchange_Out

EyelidClosure*

frequency exactly 1 int avg_duration exactly 1 int

AbnormalEyelidClosure

NormalEyelidClosure

sourceSelection = Select_MergeAll
valueCombination = Calculation_Average

calculationNorm = Norm_ Product

Legend

class

data property

annotation

* some annotations are
omitted to improve
readability

Fig. 4. Ontology model of an exemplary driver drowsiness detection using a driver’s
steering and eyelid closure behavior and a journey time to classify a driver’s drowsiness
to no, medium, or high drowsiness

information (steering behavior, eyelid closure and journey time) is abnormal or
long respectively, we classify the driver’s drowsiness as medium. If two or more
of these contextual information are abnormal or long respectively, we classify
the driver’s drowsiness as high. This classification again is just exemplary. To
achieve this classification, we add the following SWRL rules to the ontology:

iii) d ∈ Drowsiness ∧ s ∈ NormalSteeringBehavior ∧
j ∈ ShortJourneyT ime ∧ e ∈ NormalEyelidClosure
⇒ d ∈ NoDrowsiness

iv) d ∈ Drowsiness ∧ ((s ∈ AbnormalSteeringBehavior ⊕
j ∈ LongJourneyT ime)⊕ e ∈ AbnormalEyelidClosure)
⇒ d ∈ MediumDrowsiness

v) d ∈ Drowsiness ∧ ((s ∈ NormalSteeringBehavior ⊕
j ∈ ShortJourneyT ime)⊕ e ∈ NormalEyelidClosure)
⇒ d ∈ HighDrowsiness

With this context model, composed of an ontology including custom annotations,
and a set of SWRL rules, we are now able to classify a driver’s drowsiness
by taking the driver’s journey time, steering and eyelid closure behavior into
account.

Journey time, steering and eyelid closure behavior are the contextual informa-
tion in this exemplary use case. However, it is possible to add further contextual
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information to this model to classify a driver’s drowsiness even more precise (e.g.
by taking a driver’s state of health into account).

5.3 Requirements Validation

We finally validate every requirement (cf. Section 3) and see which requirements
remain unsatisfied for now. Table 1 summarizes this validation. As an essence,
our modeling technique satisfies 6 of 7 requirements. The only requirement which
remains unknown for now is the comprehensibility of our apprach to model pro-
cessing of contextual information for a context-aware in-car infotainment system.

Table 1. Summary of the requirements validation

Req. Satisfied? Explanation

R1 yes

In our evaluation use case we aggregate steering behavior, jour-
ney time and eyelid closure behavior to a driver drowsiness.
Hence, our approach is able to aggregate simple contextual in-
formation to high level information like a driver drowsiness.

R2 yes

Our approach enables modelers of context-aware in-car infotain-
ment systems to model hierarchies. E.g. in our evaluation use
case we modeled a normal steering behavior as a sub-classes of
steering behavior.

R3 yes
Our evaluation use case contains data properties of the types
long, double and int. Hence, it is possible to use diverse data
types.

R4 yes

By the use of annotations we added the possibility to model
how the system should behave if multiple sources delivering the
same contextual information are present during runtime. We also
added possibilities to model how reliability values of different
sources of contextual information are combined. Hence, our ap-
proach is able to handle information from multiple, unreliable
sources.

R5 unknown

The comprehensibility of our approach remains unknown for now
because we designed our evaluation ontology by ourselves and did
not yet ask in-car infotainment modelers to design a context-
aware system. We expect difficulties especially when creating
SWRL rules without any further, domain-specific support.

R6 yes
If a modeler wants to add more parameters to a drowsiness de-
tection, he or she could easily add these to the ontology and add
rules using these values.

6 Related Work

There are several approaches to add context-awareness to automotive systems.
Many driver assistance systems may be regarded as context-aware, but they only
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regard data from a certain limited domain for the special processing they need
for their task [24]. As shown in the following paragraphs, there are also attempts
to use context-awareness in the domains of infotainment, navigation and to cre-
ate context-aware architectures for the combination of data from various driver
assistance systems.

Several systems try to help the driver in handling the car. Zhang et al. use an
ontology-based system with a layered architecture to improve safety and comfort
with a telematics system [26]. Also, Madkour et al. propose a system with this
ability based on context-awareness using ontologies [14]. Ablaßmeier et al. [1]
and Bader [3] created systems that shall only provide neccessary information to
the driver. Both use Bayesian networks to support decisions. Wu et al. use OWL
and see the car as a special case of an intelligent room [25]. Rodriguez et al. [18]
want to show information about local shops based on the context and the users
behavior in the past.

Driver assistance systems improved by context-awareness are presented by
Fuchs et al. [7]. Also, Tönnis et al. [23] show such a system in which they want
to detect the driving situation based on contextual information. Hoch has created
a system to provide driver assistance systems with context [10]. His example is a
context-aware lane departure detection based on video observation of the driver.
Sun et al. [22] and Kannan et al. [12] try to realize critical situations based on
context and want to show appropriate warning messages.

Context-awareness may also be used for entertainment purposes. Park et
al. [17] and Baltrunas et al. [4] want to select music based on the context and a
driver’s preferences. Alt et al. [2] aim to use short stops e.g. at a traffic light, to
provide the right bits of entertainment for this situation.

Münter et al. [16] describe use cases for a context-aware navigation system
that fits its grade of support for the driver to the driving situation. Context
could also be used to detect the drivers motivation for a tour, so that additional
information about the tour’s goal may be displayed, as proposed by Rodzina et
al. [19].

Gringoleit [8] aims to use a context-aware system to reduce the energy con-
sumption in the car. Since not all systems have to work at the same time, context
information can be used to deactivate systems which are unnecessary in the cur-
rent situation.

It can be concluded that ontology-based models are state of the art when
modeling context-aware systems. Handling of uncertain and unreliable data is
only part of a few systems. The techniques are mostly used to make suggestions,
not to process context data. Most systems are created specifically for their field
of application. Ontologies and processing rules are predefined and included in
the systems.

The approach proposed in this paper has a different focus than the related
work presented in this section. It is a generic system with respect to context
information processing. There are no predefined ontology or rules, also the kind
and number of data sources is not given in advance. The modeler is able to
define and model everything he or she needs, so many different parts of the
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infotainment system can be improved using data from our approach. Another
advantage of our system is the mechanism to deal with uncertain and unreliable
data and data from more than one source.

7 Conclusion and Future Work

Current in-car infotainment system are created during a model-based develop-
ment. Adding contextual information to them necessarily leads to the problem of
how to model contextual information and their relations. The approach presented
in this paper shows how processing of contextual information can be modeled.
We used an ontology-based model to describe the real world and added possi-
bilities to model uncertainty and unreliability of data within this ontology. We
also developed techniques to model handling of multiple sources of contextual
information.

To evaluate our approach, we defined requirements a modeling technique for
processing contextual information has to meet, modeled an extensive automo-
tive use case using our proposed modeling techniques, and finally validated the
requirements.

We will extend these evaluation in a future work by e.g. comparing our ap-
proach to standard OWL/SWRL or completely different techniques of modeling
contextual information. Furthermore, we will consider high-level contextual in-
formation. In particular, we will look into modeling a user’s intention using
high-level contextual information and how we can create an integrated modeling
process for an entire context-aware in-car infotainment system. We also aim for
a domain-specific editor for creating context-aware in-car infotainment systems
and an appropriate evaluation of this editor by comparing it to other techniques
of creating context-aware in-car infotainment systems.

After creating and evaluating the entire development process of context-aware
in-car infotainment systems, we aim to check and if needed improve the perfor-
mance of our approach to enable it to run on target hardware (e.g. a real in-car
infotainment system).
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Abstract. Feature modeling is a common way to present and manage variability 
of software and systems. As a prerequisite for effective variability management 
is comprehensible representation, the main aim of this paper is to investigate 
difficulties in understanding feature models. In particular, we focus on the com-
prehensibility of feature models as expressed in Common Variability Language 
(CVL), which was recommended for adoption as a standard by the Architectur-
al Board of the Object Management Group. Using an experimental approach 
with participants familiar and unfamiliar with feature modeling, we analyzed 
comprehensibility in terms of comprehension score, time spent to complete 
tasks, and perceived difficulty of different feature modeling constructs. The re-
sults showed that familiarity with feature modeling did not influence the com-
prehension of mandatory, optional, and alternative features, although unfamiliar 
modelers perceived these elements more difficult than familiar modelers. OR 
relations were perceived as difficult regardless of the familiarity level, while 
constraints were significantly better understood by familiar modelers. The time 
spent to complete tasks was higher for familiar modelers. 

Keywords: Variability analysis, Software Product Line Engineering, Model 
Comprehension. 

1 Introduction 

With the proliferation of software systems as an essential part of almost any business, 
their requirements increased and became more complex. Against this background, the 
variety of software artifacts has also heightened and a fundamental challenge is figur-
ing out how to manage this variety. One way to tackle these challenges is analyzing 
and representing variability. Variability is extensively studied in the field of Software 
Product Line Engineering [1, 2] which aims at supporting the development and main-
tenance of families of software products, termed software product lines.  

A systematic review published in 2011 [3] shows that variability management in 
software product lines is primarily done utilizing feature-oriented modeling. A feature 
diagram is a tree or graph that describes the end-user visible characteristics (features) 
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of systems in a software product line and the relationships and constraints (dependen-
cies) between them. Different feature-oriented languages have been proposed over the 
years. However, no standard feature-oriented modeling language has emerged yet. 
Recently, some initiatives in this direction started in the Object Management Group 
(OMG), yielding the submission of the Common Variability Language (CVL) pro-
posal [4]. CVL is a domain-independent language for specifying and resolving varia-
bility. It facilitates the specification and resolution of variability over any instance of 
a Meta-Object Facility (MOF)-based language (such an instance is termed a base 
model). Lately, CVL was recommended for adoption as a standard by the Architec-
tural Board of OMG. 

A prerequisite for effective variability management is comprehensible representa-
tion of variability. However, there are few empirical studies that analyze difficulties 
in understanding variability representations in general and feature diagrams in par-
ticular. To fill this gap, the main aim of this study was to examine the cognitive diffi-
culty of understanding variability in feature modeling. In order to address this chal-
lenge we conducted an exploratory study using CVL models, perceiving CVL as an 
emerging standard that uses feature-oriented principles for specifying and 
representing variability. We concentrate on the variability abstraction part of CVL, 
which provides constructs for specifying variability without defining the concrete 
consequences on the base model. We further seek to answer in this study how mod-
eler’s familiarity with feature modeling influences comprehension difficulties. Differ-
ences between novices and experts can point on specific problems in comprehension. 
In addition, it is of specific interest how the target user group of CVL, modelers who 
are familiar with feature modeling, comprehend CVL and can easily switch from 
feature models to CVL models, as comprehensibility of a new modeling language is 
an important basis for its acceptance in practice.  

The rest of the paper is structured as follows. Section 2 reviews the related work 
and provides the required background on CVL. Section 3 elaborates on the experi-
ment design and procedure, while Section 4 presents the analysis procedure and the 
results. Section 5 discusses the results and the threats to validity. Finally, Section 6 
summarizes and points on future research directions. 

2 Related Work and Background 

2.1 Comparison of Feature Modeling Languages 

Comparison of feature modeling languages is mainly done using classification 
frameworks or according to lists of characteristics. Istoan et al. [5], for example, sug-
gest a metamodel-based classification of variability modeling approaches: methods 
may use a single (unique) model to represent both commonality and variability or 
distinguish and keep separate the variability model from the base model. Methods that 
use a single model may annotate the base model by means of extensions or combine a 
general, reusable variability meta-model with different domain metamodels. Methods 
that use separate models specify the variability model using notations such as feature 
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diagrams, decision models, or CVL [4]. Istoan et al. further compared the artifacts of 
these methods in the metamodel and model levels. 

Czarnecki et al. [6] compared feature modeling and decision modeling along ten 
dimensions: applications, unit of variability (features vs. decisions), orthogonality, 
data types, hierarchy, dependencies and constraints, mapping to artifacts, binding time 
and mode, modularity, and tool aspects. They further showed how the main properties 
of feature modeling and decision modeling are reflected in three specific methods 
including an initial version of CVL. 

Schobbens et al. [7] surveyed and compared seven feature diagram notations. 
These notations differ in their graph types (trees vs. directed acyclic graphs – DAG), 
the supported node types (e.g., cardinality support), the supported graphical constraint 
types (namely, “requires”, “excludes”, none, or both), and the supported textual con-
straint types (i.e., textual composition rules support). In a later work, Heymans et al. 
[8] evaluated the formal properties of feature diagram languages using Krogstie et 
al.’s semiotic quality framework [9] and Harel and Rumpe’s guidelines for defining 
formal visual languages [10]. The list of evaluation criteria included: (1) expressive-
ness: what can the language express? (2) embeddability: can the structure of a dia-
gram be kept when translated to another language? and (3) succinctness: how big are 
the expressions of one and the same semantic object? 

Djebbi and Salinesi [11] provided a comparative survey on four feature diagram 
languages for requirements variability modeling. The languages are compared accord-
ing to a list of criteria that includes readability, simplicity and expressiveness, type 
distinction, documentation, dependencies, evolution, adaptability, scalability, support, 
unification, and standardizeability. 

Haugen et al. [12] proposed a reference model for comparing feature modeling ap-
proaches. This model makes distinction between the generic sphere, which includes 
feature models and product line models, and the specific sphere, which includes fea-
ture selection and product models. Standard languages, annotations, and special do-
main-specific languages are compared based on this reference model.  

Comparing product line architecture design methods, Matinlassi [13] suggested an 
evaluation framework that is based on Normative Information Model-based Systems 
Analysis and Design (NIMSAD) [14]. According to this framework, there are four 
essential categories of elements for method evaluation: (1) context, including specific 
goals, product line aspects, application domains, and methods inputs/outputs; (2) user, 
including target groups, motivation, needed skills, and guidance; (3) contents, includ-
ing method structure, artifacts, architectural viewpoints, language, variability, and 
tool support; and (4) validation, including method maturity and architecture quality.  

All the above studies concentrate on the expressiveness of the compared languages, 
while usability-related issues follow a “feature comparison” approach. The drawback 
of such an approach is the subjectivity in developing both the comparison checklist 
and its interpretation. In addition, the above studies neglect comprehensibility, which 
is an important issue in modeling, as the abstract goal of modeling is to formally de-
scribe some aspects of the physical and social world around us for the purpose of 
understanding and communication [15].  



504 I. Reinhartz-Berger, K. Figl, and Ø. Haugen 

 

Recent research has started to examine comprehensibility aspects of variability 
modeling languages. The work in [8] looks into comprehensibility appropriateness, 
namely whether or not language users understand all possible statements of the lan-
guage. Comprehensibility appropriateness is, however, handled subjectively through 
embeddability and succinctness. 

Conducting two experiments, Reinhartz-Berger and Tsoury [16, 17] compared the 
comprehensibility of Cardinality-Based Feature Modeling (CBFM) [18] and Applica-
tion-based DOmain Modeling (ADOM) [19]. The comparison is based on compre-
hensibility of commonality- and variability-related concepts, including mandatory and 
optional elements, dependencies, variation points and variants. The experiments were 
conducted with small numbers of participants with similar background and expe-
rience. Accordingly, the conclusions were limited and concentrated on the differences 
between the methods: the feature-oriented CBFM and the UML-based ADOM.  

To summarize, comprehensibility of feature modeling languages still needs to be 
assessed empirically. To fill this gap, we concentrate in this study on identifying diffi-
culties in understanding feature models expressed in CVL. Next, we briefly present 
CVL. 

2.2 Common Variability Lanaguge (CVL) 

As noted, CVL facilitates the specification and resolution of variability over any base 
model defined by a metamodel. Its architecture consists of variability abstraction and 
variability realization. Variability abstraction supports modeling and resolving varia-
bility without referring to the exact nature of the variability with respect to the base 
model. Variability realization, on the other hand, supports modifying the base model 
during the process of transforming the base model into a product model.  

In this study, which concentrates on the variability abstraction part of CVL, the 
main examined concepts are VSpecs (variability specifications), their relationships, 
and constraints. VSpecs are technically similar to features in feature modeling and can 
be divided into four subclasses: (1) choices – require yes/no decisions, (2) variables – 
require providing values of specified types, (3) VClassifier (variability classifiers) – 
require creating instances and resolving their variability, and (4) CVSpec – composite 
VSpecs. The VSpecs are organized in trees that represent logical constraints on their 
resolutions (configurations). VSpec children are related to their parents higher in the 
tree in two different ways: (1) Mandatory or optional: The positive resolution of a 
child may be determined by the resolution of the parent (mandatory) or can be inde-
pendently determined (optional).  (2) Group multiplicity: A range is given to specify 
how many total positive resolutions must be found among the children: 
XOR/alternative – exactly one, OR – at least one.  

Finally, constraints express dependencies between elements of the variability 
model that go beyond what is captured in the tree structure. Two types of constraints 
are primarily supported in CVL: (1) A implies B – if A is selected, then B should be 
selected too (this constraint is known as “requires” in feature modeling), and (2) Not 
(A and B) – if A is selected, then B should not be selected and vice versa (this con-
straint is known as “excludes” in feature modeling). 
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As an example, consider Fig. 4(a) in the appendix. This figure describes the al-
lowed variability in Skoda Yeti cars, a sport utility vehicle model of Skoda: the fuel 
of these cars is either diesel or benzin; the gear is either manual or automatic; the 
drive is either 2-weel-drive or 4x4; and the gadget level is either active or adventure. 
These configurations are further restricted by the constraints, e.g., a Skoda Yeti car 
whose gadget level is active and its fuel is diesel must have a manual gear (i.e., it 
cannot have an automatic gear). Fig. 4(b) further elaborates on the possible configura-
tions of extra features in Skoda Yeti cars: such a car may have heated front pane, 
sunset, or panorama roof; it may have parking heater; and it may have styling package 
(and if so it may also have offroad styling).  

3 Experiment Design and Procedure  

3.1 Research Goal 

Following Wohlin et al.’s guidelines [20], the goal of our exploratory study was to: 
Analyze the effect of feature modeling familiarity on the comprehension difficulties 

of CVL, an emerging common variability language;  
For the purpose of evaluation; 
With respect to comprehension score in terms of percentage of correct solution, time 

spent to complete tasks, and participants’ perception of difficulty; 
From the point of view of modelers;  
In the context of students of information systems, informatics and business. 

3.2 Research Planning and Design 

We derived from the above goal the following research questions and settings:  
RQ1: Are there differences in the difficulty to comprehend CVL models for modelers 
who are familiar with feature modeling in general, in comparison to those who are 
unfamiliar with it? 

To answer this research question we followed a quasi-experimental between-
subject design. We classified participants into two distinct groups: participants famili-
ar/unfamiliar with feature modeling. The exact classification procedure is explained in 
Section 3.6. The independent variable in this case was familiarity with feature model-
ing, while the dependent variables were comprehension scores (measured using the 
percentage of correct solution), time spent to complete tasks, and difficulty perception 
using self-rated difficulty of specific element types. 

There is a long tradition of researching domain familiarity in terms of expert-
novice differences in the area of system development. Petre [21] has argued that  
“experts ‘see’ differently and use different strategies than novice graphical program-
mers”. Prior research has revealed that experts develop language-independent, ab-
stract problem representations, so-called schemas, which make similar tasks for them 
easier. In light of these theoretical considerations we conjecture that comprehending 
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CVL models should be easier for modelers who are familiar with feature modeling. 
We hypothesize that as follows: 
H1a. Familiarity with feature modeling will be positively associated with the com-
prehension score. 
H1b.  Familiarity with feature modeling will be positively associated with the time 
spent to complete tasks. 
H1c. Familiarity with feature modeling will be negatively associated with the per-
ceived difficulty of specific feature modeling constructs. 

The second research question is divided into the following two parts: 
RQ2a: Which feature modeling constructs are difficult to understand?  
RQ2b: Are there specific difficulties in comprehending CVL models for modelers 
who are familiar with feature modeling, in comparison to those who are unfamiliar 
with it? 

To answer the second research question we used a within-subjects design. The se-
lected independent variable was element type, namely mandatory, optional, and alter-
native (XOR) features, as well as OR relations and feature constraints (dependencies). 
The dependent variables were comprehension score, time spent, and self-rated diffi-
culty of the specific feature modeling elements. As it is not possible to construct com-
prehension tasks that only demand the understanding of “basic” elements, namely, 
mandatory, optional, and alternative features, we could only assess their subjective, 
but not their objective, difficulty. However, it was possible to objectively determine 
comprehension score and time to complete tasks related to OR relations and con-
straints. 

We refrain from hypothesis development for the second research question, as it 
would not be helpful in such an exploratory setting [22]. While a considerable amount 
of literature has been published on expert-novice difference in general (RQ1), no 
research has been conducted on the comprehension of specific feature modeling con-
structs (RQ2) up to now. To our knowledge this is the first study evaluating compre-
hension of CVL, thus there is neither an adequate empirical nor a theoretical basis 
available to formulate a priori hypotheses. 

3.3 Experimental Material  

The objects of the experiment were two CVL models describing different sets of fea-
tures of Skoda Yeti cars. The CVL models for the experiment were built by Prof. 
Haugen, who is the founder of CVL and is familiar with the possible Skoda Yeti con-
figurations from the Norwegian Skoda public web pages. The first model (see Fig. 4a 
in the appendix), named “basic”, describes basic features of Skoda Yeti. It includes 
mandatory and alternative features (using XOR relations), as well as four “implies” 
(“requires”) constraints. The number of valid configurations is 6. The second model 
(see Fig. 4b in the appendix), named “expanded”, describes advanced (extra) features. 
It includes optional features and an OR relationship, as well as two “excludes” con-
straints (phrased as “not (A and B)”). The number of valid configurations in this case 
is much higher. 
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3.4 Tasks  

The tasks were embedded within an online questionnaire. On each model ten ques-
tions were asked, examining whether specific configurations of Skoda Yeti are al-
lowed according to the model. These questions can be described as surface-level tasks 
which measure comprehension of models more directly than deep-level tasks, which 
require participants to work with the models in a usage context [23]. For our research 
goal of checking the comprehensibility of a relatively new language, surface-level 
model comprehension tasks are most appropriate.  

The participants were presented with the model and one question at a time. They 
had to choose between the following answers: Correct, Wrong, Cannot be answered 
from model, I don’t know. After answering a question, the participant proceeded to 
the next question, but could not return to previous questions. This way we could 
measure the time needed to answer an individual question. The questions used in the 
experiment appear in the appendix. 

3.5 Procedure  

The participants were requested to open the online questionnaire. There, they had to 
fill first a pre-questionnaire that was composed of two parts. The purpose of the first 
part of the pre-questionnaire was to obtain general information about the participants 
and their background, including age, gender, degree and subject of studies, and fami-
liarity with feature modeling. To measure self-rated familiarity with feature modeling, 
which was one of the independent variables, we adopted the three-item modeling 
grammar familiarity scale of Recker [24]: (1) Overall, I am very familiar with feature 
diagrams; (2) I feel very confident in understanding feature diagrams; (3) I feel very 
competent in modeling feature diagrams.  

The second part of the pre-questionnaire aimed to objectively examine the prior 
knowledge of the participants in modeling. This part included three models in three 
languages: ER, BPMN, and feature diagrams. The participants had to state in which 
language each model was specified and answer three comprehension questions about 
the models. Each question presented a statement and four possible answers: Correct, 
Wrong, Cannot be answered from model, I don’t know.  

After filling the pre-questionnaire, the participants were presented with slides ex-
plaining and exemplifying the variability abstraction part of CVL (the participants 
also got hard-copies of these slides which they could consult while answering the 
questions). The participants had to study CVL variability abstraction part on their own 
from the slides and proceed to the main questionnaire. The main questionnaire in-
cluded two CVL models of Skoda Yeti cars and two sets of questions, each of which 
referred to a different model (basic vs. expanded). To avoid any order effects due to 
fading attention, we used two different samplings of the main questionnaire, in which 
models were arranged in a different sequence. As noted, the models and questions of 
the main questionnaire appear in the appendix.  

The time spent on each question was recorded by the online questionnaire. No rigid 
time constraints were imposed on the participants. 
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After completing the questions on each model, the participants had to fill a post-
part questionnaire that collected feedback on the tasks and the difficulty to understand 
different model elements (mandatory and optional features, XOR and OR relations). 
The answering options ranged from 1=very easy to 7=very difficult. In addition, the 
participants could report on difficulties they experienced in open text fields.  

3.6 Participants  

Participants were recruited from three different classes from information systems, 
informatics and business curricula with prior training in modeling. Indeed, it can be 
argued that using students to evaluate a language that aimed at software professionals 
is problematic, but it has been shown in [25] that students have a good understanding 
of the way industry behaves, and may work well as subjects in empirical studies in 
specific areas, such as requirements engineering. Additionally, students are a relative-
ly homogenous group concerning knowledge about and experience with conceptual 
modeling [26].  

The executions of the experiment took place in the spring semester of 2013 in 
three courses that deal with modeling in the University of Haifa, the Vienna Universi-
ty of Economics and Business, and the University of Oslo. To assure sufficient moti-
vation, the experiment was defined as an obligatory exercise or participants received 
approximately 5% course credit for participating. A total of 38 students participated in 
the study.  

We now turn to the categorization of participants as familiar/unfamiliar with fea-
ture modeling. Since CVL is a relatively new language there are so far no “experts”, 
however familiarity with feature modeling can serve as an adequate proxy. We use an 
extreme group selection approach to define two clearly distinct groups on the conti-
nuous variable familiarity in order to heighten power of statistical tests [27]. 15 par-
ticipants were categorized as not familiar with feature modeling. They had answered 
the question “are you familiar with feature diagrams?” negatively. Regarding those 
who had answered this question affirmatively, we crosschecked the mean score of the 
scale familiarity with feature diagrams (3 items). We also assessed the reliability of 
this scale, which was adequate (Cronbach’s alpha = 0.96). According to Nunnally and 
Bernstein [28] Cronbach’s alpha should be higher than 0.8 to combine items in a 
mean value. The answering options for this scale ranged from 1=strongly disagree to 
7=strongly agree. We concluded that only participants with a mean threshold value  
of 3.5 for this scale could be regarded as “familiar”. Based on this criterion, 6 partici-
pants were excluded. In addition we checked whether all of these “familiar” partici-
pants also had correctly identified the figure of the feature diagram in the  
pre-questionnaire. This objective test led to further exclusion of one participant. 
Overall 7 participants were excluded as they were neither unfamiliar nor sufficiently 
familiar with feature modeling, resulting in 16 participants who were categorized as 
familiar with feature modeling. The final sample consisted of 31 participants: 22 
males (58%) and 16 females (42%) with a mean age of 28 years. 
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Table 1. Differences in participants’ skills 

 Unfamiliar with  
feature modeling (n=15) 

Familiar with  
feature modeling (n=16) 

Statistical 
Test 

Mean SD Mean SD 
Feature modeling test 
score (3 points possible) 

1.20 0.77 2.13 0.89 Tdf=29=-3.09 
p=0.00 

Modeling score test (8 
points possible) 

4.00  1.25  4.19  0.91 Tdf=29=-0.48 
p=0.64 

 
We performed t-tests to demonstrate differences between the groups (see Table 1 

for detailed results). As expected, participants of the familiar group scored better in 
the feature modeling test, while no significant differences in the modeling pre-test 
were found. This means that the students in the unfamiliar group were familiar with 
modeling in general, but unfamiliar with feature modeling and these differences may 
affect their difficulties in comprehending CVL models. 

4 Analysis Procedure and Experiment Results 

Data analysis was performed using SPSS 19. We first present the effects of familiarity 
with feature modeling on comprehension. We then refer to difficulties to comprehend 
specific model elements. Finally, we present results on comprehension difficulties as 
perceived and reported by the participants. 

4.1 Comprehension and Familiarity with Feature Modeling   

To answer the first research question (RQ1: Are there differences in the difficulty to 
comprehend CVL models for modelers who are familiar with feature modeling in 
general, in comparison to those who are unfamiliar with it?), we performed an 
analysis of covariance (ANCOVA) for repeated measures (basic and expanded 
models) for each dependent variable (comprehension score and time spent). The 
independent variable was familiarity with feature modeling (familiar vs. unfamiliar). 
Familiarity had a significant influence on the comprehension score (F=2.60, p=0.01). 
Participants familiar with feature modeling achieved a comprehension score of 85% 
on average, while unfamiliar participants achieved only 69%, lending support to H1a, 
which had predicted a positive association between familiarity and comprehension 
score. In addition, the interaction effect of familiarity and model (basic vs. expanded) 
was significant (F=9.68, p=0.00). As can be seen in Fig. 1 there was almost no 
performance difference between familiar and unfamiliar modelers in the expanded 
model, but a clear difference in the basic model. As noted, the basic model included 
only XOR relations and mandatory features, as well as “implies” (“requires”)  
constraints, while the expanded model included an OR relation and “excludes” con-
straints. H1a can only be partially supported in case of the basic model.  

There was also a significant influence of familiarity on time (F=5.39, p=0.03). 
Contrary to our expectations, however, participants familiar with feature modeling 
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took more time to complete tasks (418 seconds vs. 298 seconds). Thus, H1b could not 
be supported, i.e., familiarity is negatively associated with time spent.  

To control for possible order effects, we had included a second independent 
variable in the analyses – model order – which represents the order in which models 
were presented to the participants. Model order had two values: ‘basic first’ – the 
basic model was presented first and ‘basic later’ – the expanded model was presented 
first. We found that the model order did not have any significant effect on the 
comprehension score, but it influenced the time spent; there was a significant 
interaction effect of model (basic vs. expanded) and model order (F=9.00, p=0.01). 
Participants spent more time on answering questions on the first model they were 
presented with than for the second model. 
 

  

Fig. 1. Familiarity and Comprehension of Basic and Expanded Models 

4.2 Difficulties to Comprehend Specific Model Elements 

In order to answer the second research question (Which feature modeling constructs 
are difficult to understand? Are there specific difficulties in comprehending CVL for 
modelers who are familiar with feature modeling, in comparison to those who are 
unfamiliar with it?), we identified two model elements which could be addressed in 
seperation from other elements via comprehension tasks and whose comprehension 
deserve special attention: constraints and OR relations. 

To check whether comprehension tasks which demand understanding of con-
straints in general are more difficult to understand than tasks without constraints, we 
performed again ANCOVAS. Overall, there was no difference between the compre-
hension of questions which involved constraints (79% correctness) and questions 
which did not involve constraints (81%). However, participants spent more time to 
solve questions without constraints (43 seconds) than with constraints (25 seconds; 
F=26.20, p=0.00). Familiarity has a significant influence on comprehension score 
(F=5.29, p=0.03) and time spent (F=4.74, p=0.04) as already reported in the prior 
analysis. We further observed that there is a significant interaction effect of familiari-
ty and the existence of constraints (F=4.76, p=0.04) on comprehension score. As can 
be seen in Fig. 2 below, there is a larger performance difference of comprehension for 
questions involving constraints. While participants familiar with feature modeling 
achieved an average comprehension score of 90% on questions involving constraints, 

60%

77%

87%

78%

74%
78%

50%

55%
60%

65%

70%

75%
80%

85%

90%

95%
100%

Basic Model Expanded Model

Unfamiliar Users

Familiar Users

All Users



 Comprehending Feature Models Expressed in CVL 511 

 

unfamiliar participants achieved only 67%. The difference in questions not involving 
constraints is smaller (84% vs. 78%, respectively). These results strengthen support 
for H1a (familiarity is positively associated with the comprehension score) in case 
constraints are involved. 

 

 

Fig. 2. Familiarity and Comprehension of Constraints 

Another worth-mentioning result refers to OR relations, which were only included 
in the expanded model. We grouped questions according to the semantics of the OR 
relation: none – no option appears in the question, one – exactly one option appears, 
and many – two or more options appear. Comparisons between the three groups were 
analyzed with ANCOVAS. We found significant main effects of OR relations on 
comprehension score (F=3.18, p=0.05) and time spent (F=8.53, p=0.00). As can be 
seen in Fig. 3, questions including no option (‘none’) were the easiest for both groups. 
Questions including no option (‘none’) took on average most time (40 seconds), fol-
lowed by one option selection (‘one’, 48 seconds) and multiple selections (‘many’, 26 
seconds). The analysis further showed that for those tasks from the expanded model 
familiarity had no effect on the comprehension score, but on time, as discussed in the 
previous section. There were no significant interaction effects with familiarity. 

 

 

Fig. 3. Familiarity and Comprehension of OR Relations 

4.3 Perceived Comprehension Difficulties 

To find out whether familiarity with feature modeling changed the difficulties partici-
pants experienced, we performed a series of t-tests. Table 2 gives descriptive statistics 
and the details of the analyses. Note, we used 7-point scale for these items, with 
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1=very easy and 7=very difficult. Basic elements, namely, mandatory, optional, and 
alternative (XOR) features, were rated significantly more difficult by participants 
having no prior experience with feature models. There was no difference between the 
groups for the difficulty rating of OR relations, which were only included in the ex-
panded model. As familiarity was associated negatively with perceived difficulty of 
specific feature modeling constructs in 4 of 5 cases (the gray rows in the table), the 
results lend support to H1c. 

Regarding constraints, participants mentioned difficulties in the open text fields. 
Participants of the unfamiliar group mentioned that “learning and mapping constraints 
were a little [bit] difficult”. Participants of the familiar group mentioned that “the 
‘implies’ relationships were fairly difficult to understand” and “the NOT (A and B) 
[constraint] was difficult without [an] example” (although an example of such a con-
straint was included in the CVL slides). One participant of the familiar group also 
stated that “the constraints helped understand the model's intent very clearly”. The 
participants further mentioned difficulties that we had not explicitly asked for, includ-
ing the unclear meaning of parent-child relations in the feature tree (“It’s hard to un-
derstand if feature can be used without his parent”) and the lack of explicitness of all 
feature combinations (“Many combinations were not specified directly in the model“). 

Table 2. Comprehension difficulties as reported by the participants 

  Unfamiliar with 
feature modeling 

Familiar with 
feature modeling 

Total t p 
 

M SD M SD M SD 
mandatory features 
(basic model) 

3.40 1.55 2.13 0.72 2.74 1.34 2.91 0.01 

optional features 
(basic model) 

3.67 1.63 2.19 0.83 2.90 1.47 3.14 0.00 

optional features 
(expanded model) 

3.33 1.35 2.31 1.01 2.81 1.28 2.40 0.02 

XOR relations 
(basic model) 

3.27 1.67 2.13 0.72 2.68 1.38 2.45 0.02 

OR relations 
(expanded model) 

3.07 1.39 2.56 1.09 2.81 1.25 1.13 0.27 

5 Discussion and Threats to Validity 

This study set out with the aim of assessing the comprehensibility of feature models 
expressed in CVL and identifying differences in comprehension difficulty for mod-
elers familiar or unfamiliar with feature modeling principles. It was hypothesized that 
participants familiar with feature modeling would comprehend CVL models better 
and faster and experience less difficulties. And indeed, the results showed that com-
prehension score was higher and perceived difficulty lower for familiar modelers. 
This result is in line with findings of [29] who showed that familiarity with models in 
a specific domain also enables modelers to understand a new modeling language in 
that domain faster and with less effort. 
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It is interesting to note that the performance difference for familiar modelers was 
higher for the model which mainly included XOR relations than the second CVL 
model which included an OR relation. A possible explanation for this result is that  
OR relations in general are difficult to understand and that familiarity with feature 
modeling not necessarily trains modelers in understanding OR relations nor enables a 
cognitive advantage for understanding this construct. Further findings support this 
interpretation, because familiar and unfamiliar modelers subjectively rated the diffi-
culty of OR relations similarly and while multiple selections (‘many’) were more 
difficult than ‘one’ or ‘none’ OR selections, familiarity did not interact with the com-
prehension of OR relations. Research findings on deductive reasoning with natural 
language connectives provide a theoretical explanation for the high cognitive difficul-
ty of inclusive ORs. “OR” is likely to be misinterpreted in its exclusive form, not as 
an inclusive OR-operator [30]. Based on empirically detected comprehension difficul-
ties, other model domains as process modeling have advised in modeling guidelines to 
avoid inclusive OR gateways altogether [31]. While this option is not feasibility for 
the area of feature modeling, still our results can be used to adopt training material 
and to inform modeling practitioners to be cautious in case of OR relations. 

In addition, familiar modelers had a clear advantage in understanding textual con-
straints in CVL models in comparison to unfamiliar modelers. The observed differ-
ence could be attributed to the familiarity of the modelers with feature modeling. An 
implication of this result for modeling practice includes the need to put a specific 
emphasis on making constraints easier to understand for novice modelers. A possibili-
ty to achieve this goal might be to place textual constraints spatially close to respec-
tive features in the model, thus following the spatial contiguity rule [32]  if possible. 
Indeed, the currently developed CVL tool supports associating constraints closely to 
the relevant features. 

Unexpectedly, familiarity with feature modeling was negatively related to time. 
This result might sound counterintuitive at first sight, however there are possible in-
terpretations. Knowing the notation may increase the doubts, requiring more time and 
not necessarily improving the performance. Participants might also be more motivated 
to solve the comprehension tasks correctly and work harder and longer to solve them 
if they already have prior experience in that modeling domain. Furthermore, unfami-
liar modelers have lower comprehension of OR relations and constraints than familiar 
modelers, but familiar modelers spent long time to achieve their better comprehen-
sion. This may be due to the perception of familiar modelers that OR relations and 
constraints are more difficult – a perception that made them spend more time on those 
questions. This is similar to experienced drivers who slow down properly in curves. 

As with all studies, the reader should bear in mind that a number of limitations as-
sociated with laboratory experiments need to be acknowledged [20]. One source of 
weakness regarding external validity includes the use of student subjects. However, 
the participants had received training in modeling and, therefore, we do believe that 
they serve as an adequate proxy for future modelers of CVL. In addition, we assured 
that random influences to the experimental setting were low to improve conclusion  
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validity. First, participants were committed to the experiment by making the experi-
ment an obligatory exercise or giving course credit (of about 5%) for participation. 
Second, the students self-studied CVL, so no influence of the lecturers’ capabilities, 
knowledge, and opinions were introduced to the CVL training.  

Despite the clear support for the hypothesized associations, the generalizability of 
findings reported here should be undertaken with caution, because we could only 
include two different CVL models in the study and we selected a specific feature 
modeling language – the variability abstraction part of CVL. As the two models in-
cluded in the questionnaire were typical representatives we argue that they provided a 
reasonable test of comprehensibility, thus, assuring construct validity. The selection 
of the language was done perceiving CVL as an emerging standard which systemati-
cally includes the main feature modeling concepts. However, only further experi-
ments with other feature modeling languages and models can confirm or disconfirm 
the generalizability of our results. 

6 Conclusions and Future Work  

The purpose of the current study was to determine comprehensibility of feature mod-
els as expressed in CVL and possible difficulties for different user groups. We found 
that familiarity with feature modeling did not influence the comprehension of basic 
elements, namely mandatory, optional, and alternative features, although unfamiliar 
modelers perceived these elements more difficult than familiar modelers. OR relations 
were perceived as difficult regardless of the familiarity level, while constraints were 
significantly better understood by familiar modelers. The time spent to complete tasks 
was higher for familiar modelers. The findings from this study add to the current body 
of knowledge on feature modeling by investigating comprehension and have relevant 
implications for practice and research. The results further add to a growing body of 
literature on novice-expert differences in modeling research. Our results also offer 
important suggestions for training in feature modeling. While understanding of man-
datory and optional features, constraints and XOR relations is important in the train-
ing of users new to feature modeling, understanding of OR relations remains difficult 
even for experienced modelers. In addition, results can be used to guide feature mod-
eling language developers in their design efforts and help in ongoing revision of CVL. 
Our initial results provide evidence that CVL is comprehensible for novice and expert 
modelers and that they can read such models after a short training.  

Several opportunities for future research emerge from our study. For instance, fur-
ther experimental investigations with a larger variety of models would be required to 
estimate comprehension difficulty of specific modeling elements. Future studies could 
also extend this work and examine difficulties in modeling (and not just understand-
ing) variability using CVL. Finally, comprehension difficulties can be researched in 
additional feature modeling languages, as well as in the variability realization part of 
CVL. 
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Abstract. Practical experience suggests that usage and understanding
of UML diagrams is greatly affected by the quality of their layout. While
existing research failed to provide conclusive evidence in support of this
hypothesis, our own previous work provided substantial evidence to this
effect. When studying different factors like diagram type and expertise
level, it became apparent that diagram size plays an important role,
too. Since we lack an adequate understanding of this notion, in this
paper, we define diagram size metrics and study their impact to modeler
performance. We find that there is a strong negative correlation between
diagram size and modeler performance. Our results are highly significant.
We utilize these results to derive a recommendation on diagram sizes that
are optimal for model understanding.

1 Introduction

The Unified Modeling Language (UML) has been the “lingua franca of software
engineering” for over a decade now. It is a generally held belief that visual lan-
guages are superior to textual languages in that they support human perceptual
and thought processes, and that this is also true for the UML, in fact, that this is
a major reason for the success of UML. However, there are actually few research
results to support this belief. There is a large body of experimental results on
the layout of UML class diagrams and how it affects human understanding and
problem solving, but the findings are ambiguous, and sometimes unintuitive. In
particular, only very small effects have been found in vitro. For instance, Eichel-
berger and Schmid note that “We could not identify [...] a significant impact [by
diagram quality].” (cf. [9, p. 1696]).

On the other hand, practical experience in industrial software projects sug-
gests a much higher impact of good or bad layout, and previous work by the
author strongly supports this hypothesis (see [28,29]). Inspection of our data
and a qualitative study with our study participants suggested, however, that
the size of the models portrayed in the diagrams might be a relevant factor.
In order to study this question, we define a precise notion of diagram size and
re-examine existing data sets of substantial size (78 participants, well over 1200

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 518–534, 2014.
c© Springer International Publishing Switzerland 2014



On the Impact of Layout Quality to Understanding UML Diagrams 519

measurements). Our working hypothesis is that modeler performance correlates
negatively with diagram size. We also hypothesize, that layout quality1 matters
more with increasing diagram size: small diagrams are easy to use irrespective
of the layout quality simply because they are small; modelers simply cope with
bad layout. With increasing diagram size, however, the visual and/or mental
capacity of a modeler is stretched, so that the layout quality impacts modeler
performance. In other words, layout quality matters more, and is more apparent
for larger diagrams. We analyze the diagram size metrics and various modeler
performance indicators, including errors, preference/assessment, and cognitive
load (cf. [13]).

If we can indeed correlate diagram size with modeler performance, however,
we can exploit this relationship conversely to determine limits to the size of
diagrams that afford being understood easily and correctly by modelers. Such
limits might be helpful as guidelines to inexperienced modelers, such as students.

2 Related Work

The layout of graphs (in the mathematical sense) has been a longstanding re-
search challenge, both with respect to automatic layout and to various aspects
of usability, e.g., diagram comprehension, user preferences, and diagrammatic
inference. Based on the rich knowledge on general graphs, research on the layout
of UML has started with those of UML’s notations that are closest to graphs,
namely, class diagrams (cf. [23,7,10,33,18]), and, to a lesser extent, communi-
cation diagrams (see e.g. [17,20] who use UML 1 terminology). Other types of
UML diagrams, in contrast, have only attracted little interest so far (e.g. use
case diagrams [8], or sequence diagrams, cf. [2,32]). There is only little work
on the Business Process Model and Notation (see [5]), and even less on UML
activity diagrams [21].

Research on aspects of UML class diagrams has mostly focused on the impact
of isolated low-level layout criteria such as line bends, crossings, and length.
Unsurprisingly, each of these properties has little impact by themselves and are
hard to prioritize. The more elusive higher levels like layout patterns, diagram
flow, and the correspondence between a diagram and its intended message seem
to have not yet been studied empirically at all. The influence of the expertise
level, on the other hand, has been studied [1,22].

The main focus of previous work on UML diagram types and their layout has
been with one of four aspects: diagram comprehension (cf. [25,26,15,20] and/or
user preference (cf. [18,31]), automatic layout (cf. [7,10,16,8,4]), or one of a vari-
ety of diagram inference tasks, e.g., program understanding based on visualiza-
tions (cf. [32]), or the role of design patterns in understanding (cf. [26,27]).

Most research uses controlled experiments and evaluate user performance us-
ing paper questionnaires, or online surveys. Only a few contributions have used
other methods, most notably eye tracking (see [3,33,26]). After using both meth-
ods for essentially the same experiment, Sharif et al. have concluded that these

1 We will elaborate on the notion of layout quality in Section 3 below.
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two methods are mostly complementary wrt. comprehension tasks (cf. [24]).
Thus, eye tracking is only favorable for a tightly restricted set of research ques-
tions, in particular when taking into account the considerable cost and effort in-
volved. Having said that, most questionnaire-based approaches employ only very
few participants in their experiments, typically in the range of 15 to 30, with
the notable exceptions of [25], [19] and [2] involving 45, 55 and 78 participants,
respectively. The research done for the current paper involved 78 participants.

3 “Good” Layout of UML Diagrams

In this section, we will briefly review the knowledge on aesthetic criteria for
the layout of UML diagrams and its effects on model understanding. A detailed
discussion of aesthetic criteria for class diagrams is found in [7, p. 54–65], a
recent survey of empirical results on layout criteria is found in [9]. Wong and
Sun [32] provide an overview of these criteria from a cognitive psychology point
of view, along with an evaluation of how well these principles are realized in
several UML CASE tools. Purchase et al. discuss aesthetic criteria with a view
to the layout of UML class and communication diagrams (cf. [18,17]) and also
provide sources to justify and explain these criteria (cf. [15]). Eichelberger [6]
also discusses these criteria at length, and shows how they can be used in the
automatic layout of UML class diagrams.

Elements of good layout
 - Join/cluster similar elements
 - Orthogonal arrangement

Elements of bad layout
 - Edge crossings and bends
 - Overlaping/obscuring

Fig. 1. Examples of good/bad layouts of a diagram as used in the study
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The layout of UML diagrams is governed by four levels of design principles.
First, there are the general principles of graphical design and visualization that
apply to all kinds of diagrams, and probably any kind of visualization. For in-
stance, in a good layout, elements should not obscure each other, the Gestalt
principles should be respected [12], text should be shown in a readable size,
elements should be aligned (e.g., on a grid), and there should be sparing and
careful use of colors, and different fonts or styles.

Second, there are layout principles applying to all structures that can be
considered as a graph, mathematically speaking. Thus, good layouts should avoid
or minimize crossings, bends, and length of lines. Most of the empirical research
on UML diagrams focuses on principles from this level, e.g., [23,7,10,33,18].

Third, there are layout principles that apply mostly only to notations like
those found in UML. For instance, diagrams with some inherent ordering of ele-
ments should maintain and highlight that ordering as visual flow. Visual clutter
should be reduced by introducing symmetry when possible. For instance, similar
edges should be joined, similar elements should be aligned and grouped, and so
on. In UML, this means that if a class has several subclasses, it might be helpful
to group and align the subclasses and join the arcs indicating the inheritance-
relationship. Another application is found in activity diagrams, where several
consequences of a decision could be aligned and grouped.

Fourth, there is the level of pragmatics, that is, support for underlining the
purpose of a diagram in order to better address the audience. Items may be
highlighted by color, size, or position to guide and direct the attention of readers.
On this level, rules and guidelines from lower levels may be put aside to better
serve the paramount purpose of conveying the message and telling whatever
story the diagram designer intends to tell.

In order to develop algorithms for creating automatic layouts that are per-
ceived as being helpful (or “good”) by human modelers, detailed knowledge
about the individual criteria, their relative and absolute impact, and their for-
malization is needed. So, it is not surprising that most of the empirical research
on UML diagrams has so far focused on studying individual principles, with an
emphasis on the second group (cf. [23,7,10,33,18]). For instance, work by Pur-
chase et al. has shown that there are many such criteria with varying degrees
of impact (see e.g. [18]), though all of them seem to have a rather small im-
pact with findings that are not highly or not at all statistically significant. Also,
the ranking and contribution of these criteria may vary across different diagram
types. Even between class and communication diagrams, which are rather close
relatives as far as concrete syntax is concerned, [18, pp. 246] shows notable dif-
ferences in the ordering and impact of layout criteria. Thus, other notations
that share even less commonalities with class diagrams (e.g., activity, use case,
or sequence diagrams) may need a completely different set of criteria.

For humans creating diagram layouts, on the other hand, a set of comparatively
vague guidelines together with some instruction is often good enough for practical
purposes. Humans may (and will) mix and match criteria from all four levels as
appropriate and create what they and their peers perceive as high quality UML
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diagrams. Of course, there is still a large degree of subjectivity in this definition,
but it does capture the intuition (see [28,29] for detailed evidence). Therefore,
in the remainder of this paper, we will call a diagram (layout) good, if it mostly
adheres to the criteria from all these levels, and bad if it mostly violates them.
Generally speaking, in terms of the four levels of layout rules described above, if
a diagram layout does not (significantly) violate any of the rules on the first two
levels but (more or less) adopts the rules described in the latter two levels we call
it a “good” layout. Conversely, we call a diagram layout “bad” if it consistently
violates these rules.

4 Size of UML Diagrams

Surprisingly, there seems to be no metric for the size of UML diagrams that we
can use as a basis in our correlation. So, we have to define such a metric. We
will visit three of them to find the most appropriate, starting with the simplest
conceivable approach of simply counting the number of diagram elements (not
to be confused with the number of model elements presented or implied in the
diagram). This metric has the advantage of being straightforward to compute,
but does not take into account differences among the potential elements of a
diagram.

Arguably, this metric is not just simple, but too simple, as it implies that all
diagram elements contribute the same amount of complexity and information to
the diagram. If this assumption does not hold true, we could introduce a weight
factor for the individual types of elements to compensate for differences between
different element types. It is not quite clear, however, what the ”right” weights
should be, and how to obtain them.

As a pragmatic approach to defining weights uniformly, we use the approach
pursued in [30], and provide a simple classification of the elements of UML dia-
grams into lines, shapes, and labels, and assign one of three complexity levels to
each of them (simple, medium, and large), according to the amount of cognitive
load we may expect involved in processing them based on the laws of Gestalt
psychology (cf. [12]). For instance, a plain association might be considered a sim-
ple line, an association with an adornment on one side (such as a composition or
a directed association) might be considered a line of medium complexity, and an
association with adornments on both sides might be considered a line with large
complexity. Lines with several legs could be understood as sets of lines, e.g., an
association with two adornments and two corners decomposes into one simple
line and two medium lines (one adornment each).

– Lines include all kinds of straight or curved lines. Lines made up of n different
segments are considered as n different lines. Decorations at the beginning or
end of a line or line segment (such as arrow heads) are considered to be an
integral part of the line but increase its complexity.

– Shapes include the basic geometric shapes like circles, rectangles, and ellipses
as simple elements. Shapes that occupy a large area of a diagram and contain
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other shapes are considered to be of medium complexity, while the more
complex iconic shapes like a stick-person or a lightning-arrow are considered
complex shapes.

– Labels are strings of text that are attached to or positioned relative to other
elements. Labels are restricted to single lines. Single characters or short
names are considered simple, long names are considered as medium com-
plex, and structured expressions like sentences or operation declarations are
considered to be highly complex.

With these conventions, we define diagram size as the number of elements in
a diagram, weighted by their complexity (e.g., one might define the weights S:
1, M: 1.5, L: 2). This metric is substantially more difficult to compute than our
first proposal above, but it reflects the intuition more accurately, and could thus
be expected to be more realistic, and provide higher validity.

Still, one might argue that the second approach is too simplistic, as the influ-
ence of diagram types is not considered. After all, every UML diagram establishes
a context that restricts the admissible vocabulary in this diagram to a small sub-
set that is available for the given diagram type. For instance, there are many
more notational elements in the UML sub-language of Activity Diagrams than
there are in the sub-language of Use Case Diagrams. Thus, according to classic
information theory, the weight of any element in an Activity Diagram ought to
be higher than the weight of the elements in Use Case Diagrams.

In analogy with classic information theory, the number of choices should de-
termine the information content (i.e., the weight) of a diagram element. We
compute the information content of diagram elements as the binary logarithm
of the set of similar elements a modeler may chose from, per diagram type. So,
for every diagram element e from a class E of diagram elements in a given di-
agram type, we compute weight(e) = log2(|E|). Using this as a weight factor
provides a third metric of diagram size.

Note that we disregard topological information (i.e., containment). Thus, our
metric is not necessarily a measure of diagram complexity or information content.
Clearly, we will need to validate these diagram size metrics. So, we computed the
sizes according to each measure with some (sensible) variations for the weights
of the second metric for the same 38 diagrams that have been used in [28,29].
We compared the outcomes using Pearson’s product-moment correlation. Sur-
prisingly, we found that all three measures show a very high level of correlation
(between 0.967 and 0.992) with very high confidence (p < 10−15). That is to
say: the measures do not yield significantly different results. In other words, it
does not matter which metric we use. So, we decide for the one that offers the
practical advantage of being simple to compute, that is, in the remainder we
simply count the number of diagram elements as a metric for diagram size.

5 Experimental Setup

We used [14] as a guideline for our experimental setup. We presented the partici-
pants with paper questionnaires showing one UML diagram and ten questions on
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the diagram, recording four categories of answers (right, wrong, “don’t know”,
and no answer), time used, subjective assessment of the task difficulty (three
questions in experiment D, and four questions in experiments E and F). The
questionnaires also contained a separate sheet where we asked for personal pref-
erence, and subjective assessment of layout quality. The dependent variables are
accuracy and speed of comprehension, and preference. The independent vari-
ables are the experience level of the participants (beginner/advanced/elite), the
diagram type (class, sequence, state machine), the diagram size (small/large),
and, of course, the layout quality (good/bad). Altogether, we ran three experi-
ments with together 78 participants, and a completion rate of 80%. Minor ad-
justments and corrections were made as compared to the experimental setup
reported in [28]. In the remainder, we will focus on the setup of the second and
third experiment. The details of the setup are discussed below; a summary of
the experimental setup and study design is shown in Fig. 2.

largesmall

U
se

 C
as

e
M

od
el

s
Cl

as
s

M
od

el
s

M
od

el
s

package

use case

class

Case Study 1

Case Study 3

Case Study 2

U

C

A

U

C

A

U CA UC A U AC

U ACCU A CU A

create good &
bad layouts

CA UC A U AC

CA UC A U AC

U

U

U ACCU A CU A

U ACCU A CU A

3 similar case studies 

C

A

U

U

to models

Fig. 2. The experimental setup and study design

5.1 Model Population

The models used in the experiments have been created by students as part of
their coursework in a requirements engineering course taught by the author.
These models belonged to one of three case studies and have been prepared by
teams of 4-7 students over a period of twelve weeks with an approximate effort of
600-800 working hours for each model. For each case study, two or three teams
worked in parallel; for each case study, the model of the team achieving the
highest grade was selected. This procedure ensured several desirable properties.

Firstly, by using models created by students undergoing the same course and
being awarded the same grade, very similar levels of modeler capability and
model quality may be assumed. Furthermore, the models used exhibit a large
degree of methodological homogeneity in that they are very similar in terms of
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model structure and size, model and diagram usage, and frequency distribution
of diagram types. Also, in the models used in our experiments, model elements
had their original, semantic-bearing names, whereas in some previous experi-
ments this vital aspect seems to have been deliberately eliminated by giving
meaningless synthetic names to model elements (cf. [9, p. 1697]). Secondly, due
to the project oriented nature of the course, we can assert that the models un-
derlying our experiment are realistic in the sense that their size, quality, and
purpose are very close to industrial reality. Finally, all of these models used exist
at the same stage of the software life cycle, namely requirements analysis.

In contrast, all earlier works seem to have used only a single case study and
model, and most work has been carried out on models at the design or imple-
mentation level. Also, there is no indication in previous work as to how close to
the reality of practical software development the underlying models are.

5.2 Diagram Samples and Questions

From each of the three model types selected from the model population, we
chose one large and one small example of class, state machine, and interaction
diagrams with particularly good or bad layout. The quality of layout is mea-
sured by the adherence or non-adherence to a number of layout rules discussed
in the related work (see Section 3). This step yielded three models (one from
each case study) for each of the six buckets, that is, the categories of small/large
diagrams of types class/activity/use case. So we arrived at 18 models altogether
which were then trimmed to fit onto a questionnaire page. We then derived
two variants from each diagram exhibiting good and bad layout (i.e., two dif-
ferent treatments), respectively, yielding 36 different diagrams (see Fig. 1 above
for good/bad layouts of a diagram; a sample questionnaire can be found at
www2.compute.dtu.dk/~hsto/downloads/q2.pdf).
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5.3 Participants and Completion Rates

The participants for experiments 1 and 2 were recruited among students from
different computer science classes at the Danish Technical University in Lyn-

www2.compute.dtu.dk/~hsto/downloads/q2.pdf
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Table 1. Demographic data on the participants of all experiments, ”completion” refers
to the completion rate on core questions

Experiment male female all completion

1 (BEng) 29 3 33 75.1%

2 (MSc) 29 5 34 82.6%

3 (Elite) 10 1 11 90.1%

all 68 9 78 82.6%

gby. The participants for experiment 3 were recruited among elite graduate stu-
dents and staff from the University of Augsburg.2 All participants took part
voluntarily with no reward or threat and under complete anonymity, i.e., it was
clear to students that their performance had no influence whatsoever on their
grades, for instance. Immediately before the experiment, all participants received
a ten-minute introduction to those parts of the UML that were covered in the
experiment.

The participants showed a wide spread in UML knowledge. In all experiments,
in the core parts of the questionnaire, nine diagrams were presented and ten
questions were asked per diagram. We saw an overall completion rate of these
core questions of over 80%. See Table 1 for more details on the population.

6 Results

6.1 Correlations between Diagram Size and Modeler Performance

As outlined above, our initial hypothesis was that there is a correlation between
diagram size and modeler performance in understanding these diagrams. Plot-
ting the diagram size as defined above against the performance on all diagrams
yielded the scatter plots shown in Fig. 4. Adding trend-lines reveals that the cor-
relation is indeed present: with increasing diagram size, the mean score decreases
while the variance increases. Similarly, perceived diagram clarity decreases with
increasing diagram size. Surprisingly, there is also a positive correlation between
diagram size and perception of layout quality.

We then tested properly for correlations between diagram size and modeler
performance. We used the simple diagram size metric, as discussed above, and
correlated it with all measures of modeler performance observed in our experi-
ments. We calculated the correlations between diagram size and modeler perfor-
mance using Pearson’s product-moment correlation (cor.test in R). We assess
the effect size of a correlation of up to 0.3 to as small (S), as large (L) for values
over 0.4, and as medium (M) for values in between, see Table 2.

2 These experiments correspond to the experiments D, E, and F reported before in
[29].
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quality and diagram clarity. The trend-lines are created from linear models.

It is quite clear that there is indeed a large correlation between increasing
diagram size and decreasing mean scores. This is in line with the observation
that the variance increases with diagram size: increased difficulty will provoke a
greater spread of results. We have seen a similar effect in our previous studies,
where the natural variance in capability of the population becomes more visible
when testing poor layouts because these help less with diagram understanding.
For the good layouts, individual performance differences matter less, as they are,
partially, leveled by the helpful layout. This objective measure is further con-
firmed by the subjective measure of asking the participants to assess the clarity of
the diagrams: uniformly large correlations are found between increasing diagram
size and decreasing clarity. Yet more confirmation is found when considering the
subjective assessment of cognitive load: with increasing size, cognitive load as
expressed by subjective assessment of task complexity increases, too. Observe
that subjective assessment has been found to be highly correlated with objective
measures of cognitive load [11], and that both questions asked to measure cog-
nitive load exhibit similar patterns. The negative correlation between diagram
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Table 2. Pearson’s product-moment correlation between diagram size and modeler
performance, measured as mean and variance of objective performance (correct an-
swers, i.e., score), different subjective assessments, and cognitive load measures. In
each cell, the first number is Pearsons’s r indicating the size of the correlation, the
letter S/M/L classifies the effect size, the next number is the p-value, and the stars
indicate its significance level.

Objective Score Mean Score Variance
Performance r ES p SIG r ES p SIG

All Diagrams −0.423 L 0.010 ** 0.424 L 0.010 **

Bad Layout −0.491 L 0.039 * 0.534 L 0.023 *

Good Layout −0.396 M 0.104 * 0.303 M 0.222

Diagram Layout Quality Layout Clarity
Assessment r ES p SIG r ES p SIG

All Diagrams 0.538 L < 0.001 *** −0.508 L 0.002 **

Bad Layout 0.521 L 0.027 * −0.563 L 0.015 *

Good Layout 0.573 L 0.013 * −0.766 L 0.0002 ***

Cognitive Diagram Understanding Diagram Complexity
Load r ES p SIG r ES p SIG

All Diagrams −0.338 M 0.044 ** −0.081 S 0.640

Bad Layout −0.452 L 0.060 * −0.313 M 0.207

Good Layout −0.197 S 0.434 0.152 S 0.548

size and perceived diagram complexity might be an experimental artifact since
it has no statistic significance and relatively small effect sizes.

We also see a positive correlation between diagram size and layout quality,
which seems to contradict our hypothesis. We explain this by observing that
it is literally obvious to most modelers that a diagram has high quality when
presented with one. Answering this question for a poor diagram, on the other
hand, is much harder, as it requires knowledge about what makes a poor diagram,
too. In particular novice modelers have yet to appreciate the negative impact of
line crossings, bends, obscuring elements and so forth.

All of these effects are substantially stronger for poor layouts than for good
layouts. This is in support of our initial hypothesis that layout quality matters
more with increasing diagram size. In other words: small diagrams are easy to use
anyway, so bad layout can be easily compensated. For larger diagrams, however,
when the visual and/or mental capacity of a modeler is reached or exceeded,
the impact of layout quality becomes visible: layout quality matters more, and
is more apparent for larger diagrams.

The results for objective measures and subjective assessments seem to provide
stronger results than the results for cognitive load measures, although this might
be attributable to factors outside of the experimental control.
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Table 3. Pearson’s product-moment correlation between diagram size and modeler
performance, controlled for expertise level

Objective Score Mean (low/high expertise)
Performance r ES p SIG r ES p SIG

All Diagrams −0.494 L 0.002 ** 0.018 S 0.917

Bad Layout −0.397 M 0.103 . −0.173 S 0.493

Good Layout −0.615 L 0.007 ** 0.243 M 0.331

Objective Score Variance (low/high expertise)
Score r ES p SIG r ES p SIG

All Diagrams 0.290 M 0.086 . 0.053 S 0.764

Bad Layout 0.254 M 0.309 0.204 M 0.432

Good Layout 0.343 M 0.163 −0.085 S 0.736

Diagram Layout Quality (low/high expertise)
Assessment r ES p SIG r ES p SIG

All Diagrams 0.569 L 0.0003 *** 0.484 L 0.003 **

Bad Layout 0.534 L 0.023 * 0.516 L 0.028 *

Good Layout 0.615 L 0.007 ** 0.536 L 0.022 *

Diagram Layout Clarity (low/high expertise)
Assessment r ES p SIG r ES p SIG

All Diagrams −0.525 L 0.001 *** −0.440 L 0.007 **

Bad Layout −0.742 L 0.0004 *** −0.698 L 0.001 **

Good Layout −0.554 L 0.017 * −0.570 L 0.014 *

Cognitive Diagram Understanding (low/high expertise)
Load r ES p SIG r ES p SIG

All Diagrams −0.313 M 0.063 . −0.199 S 0.245

Bad Layout −0.184 S 0.465 −0.064 S 0.800

Good Layout −0.421 L 0.082 . −0.306 M 0.218

Cognitive Diagram Complexity (low/high expertise)
Load r ES p SIG r ES p SIG

All Diagrams −0.082 S 0.634 0.042 S 0.808

Bad Layout 0.133 S 0.600 0.251 M 0.315

Good Layout −0.349 M 0.156 −0.134 S 0.595

6.2 Correlations Differentiated by Expertise Level

Previous work by Abraho, Ricca and others [1,22] suggests that the expertise
level is important in diagram understanding, and when controlling for expertise
levels, more interesting phenomena become visible (see Table 3). In this table, we
have used the same arrangement of values in cells as in Table 2, but have split the
data between modelers with lower and higher levels of expertise (left and right,
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respectively). First of all, let us establish that there is indeed a performance
difference in expertise level in our sub-populations. Using a one-sided Wilcoxon-
test to compare the average score on good layouts for the two sub-populations, we
can reject the hypothesis that the sub-populations exhibit the same performance
with very high significance (p = 0.00013). When comparing the scores, score
variances, and the cognitive load measures, participants with high expertise level
are much less affected by increasing diagram size than participants with lower
expertise levels. This holds irrespective of layout quality, but is even stronger
for poor layouts. Some of these findings are not statistically significant, however,
since analyzing the sub-populations separately drastically decreases the number
of data points. Still, all correlation show the same pattern and tendencies which
does add evidence to our earlier observations.

Even with the reduced population size we find significant or highly significant
correlations between increasing diagram size and reduced layout clarity, partic-
ularly for poor layout where correlation exceeds −0.7 (p < 10−3). Again, the
effect is larger for poor layouts than for good ones, and again, the same pattern
is found in the cognitive load measures (“Understanding” and “Complexity”),
though the latter findings are not statistically significant.

6.3 Optimal Diagram Size

Based on our data, we can compute trend-lines of the correlations, as shown in
Fig. 4 (bottom right). Computing a linear model yields coefficients of a linear
equation (intercept = 7.21, slope = −0.014). This allows us to compute the dia-
gram sizes at which the study participants answered a given number of questions
about the diagrams correctly. It seems natural to use the boundaries of the sec-
ond and third quartile as lower bound, optimum, and upper bound of expected
performance. The values for these boundaries and a geometric interpretation of
the relationship between quantiles of score and optimal size is given in Fig. 5.

In practice, the quality of diagrams and modelers will vary widely. When
disregarding these factors, we conclude that diagrams with approximately 20 to
60 diagram elements should allow average modelers to answer approximately half
of the questions about the model represented by the diagram correctly. Thus,
an objective recommendation for boundaries of diagram size would be in this
range, too. It would be trivial to implement such a function in a modeling tool,
which could provide guidance to modelers.

7 Threats to Validity

Internal Validity. Great care has been taken to provide systematic permuta-
tions of diagrams, questions, and sequences thereof to avoid bias by carry-over
effects (“learning”). Any such effects would occur similarly for all treatments
and, thus, would cancel each other out. Participants have been assigned to tasks
randomly. We can also safely exclude bias through the experimenter himself,
since there were only written instructions that apply to all conditions identi-
cally. We correlated it with different measures, each of which was measured in
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Fig. 5. The red trend-line visualizes the correlation between scores and diagram
sizes. Geometrically speaking, this means to mirror the distribution of scores at the
size score trend-line. Observe that high scores correlate to small diagram sizes.

multiple different ways to reduce the danger of introducing bias through the
experimental procedure.

External Validity. The selection of the models and diagrams may be a source
of bias. However, we applied objective and rational criteria to the selection,
and compared to previous similar studies, we used three different diagram types
(rather than just one or two), a competitively large number of models, and very
realistic models. The layouts for the models were, to a large degree, used-as-
found, that is, they were created under realistic conditions by people unconnected
to these experiments. On top of that, our study is based on a comparatively
large number of participants. So, the present study is certainly among the best
validated among studies of its kind and we expect our results to be valid for
UML models in general, i.e., we expect a markedly higher degree of external
validity than previous contributions can claim.

Conclusion Validity. We have used non-parametric tests, where applicable, to
compensate for skewed distributions in our data. We have consistently provided
statistical significance level and the effect size with our inferences. Due to the
(relatively) high number of study participants, most of the inferences we present
are equipped with high or very high levels of statistic significance and large effect
sizes, using Cohn’s thresholds for the effect size levels for want of any better
guideline. When controlling for sub-populations, the significance levels decrease,
but keep showing the same patterns which is sufficient for the claims we make
based on these data. We do assume a linear correlation between variables prima
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facie, but this is justified by an earlier ANOVA-analysis where the squared terms
were much too small to have a significant impact on our study.

Construct Validity. Gopher and Braune [11] show that subjective assessments of
cognitive load is accurate in the sense that it correlates strongly with objective
measures such as skin conductivity, pupillary response, or heart rate. Catego-
rizing layout quality as good and bad was done based on existing findings on
layout understanding and aesthetics (see Section 2 for more details), which in
turn are grounded in the well-established findings of Gestalt psychology.

There is no established metric for ”diagram size” in the context of UML or
similar notations. We have developed different metrics but found that they all
correlate highly. Thus, we have opportunistically adopted the simplest of these
metrics. There is no particular evaluation as to whether this construct is valid.

8 Conclusion

In earlier work, we established that layout quality does impact the understanding
of UML diagrams [28], and that this applies irrespective of diagram type, but
dependent on modeler expertise [29]. We could so far not answer the question
whether diagram size had an influence, and, if so, what its magnitude would be.
Thus, in this paper, we developed measures for the size of UML diagrams. Since
they correlate almost perfectly on a population of 38 diagrams, we concluded
that it is irrelevant which of these diagram size metrics is used. Thus we chose
the pragmatically simplest metric.

Using this diagram size metric, we re-analyzed existing data sets and find
strong evidence in support of our hypothesis. We conclude that high layout
quality is particularly helpful for large diagrams, and that it is particularly help-
ful for modelers with low expertise. Based on these findings, we derive pragmatic
guidelines on the optimal size of diagrams that are very easy to apply in tools,
based on objective findings, and promise to be beneficial to many modelers.

The experimental procedure has been designed carefully to exclude bias of
any kind, learning effects, and distortion. We have included a relatively large
number of participants (n = 78) in our experiments, as a further contribution
to validity. Most of the tests and correlations we have computed are equipped
with high or very high levels of statistical significance. We consistently report
completion rates, effect sizes, and similar data to allow scrutinizing our results,
and allow other scientists to conduct secondary research based on our work.
Thus we conclude, that our findings have a high level of validity.

Consistent with previous findings reported in [28,29], a stronger effect is seen
in subjective measures (cognitive load, assessment) than in objective measures
(score), pointing to cognitive mechanisms to cope with diagram complexity. We
hypothesize that increasing extrinsic cognitive load will lead to stronger effects
in the objective measures. One way of doing this is through dual-stimulus ex-
periments.
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21. Reggio, G., Ricca, F., Scanniello, G., Di Cerbo, F., Dodero, G.: On the comprehen-
sion of workflows modeled with a precise style: results from a family of controlled
experiments. Software & Systems Modeling, 1–24 (2013)

22. Ricca, F., Penta, M.D., Torchiano, M., Tonella, P., Ceccato, M.: How Develop-
ers’ Experience and Ability Influence Web Application Comprehension Tasks Sup-
ported by UML Stereotypes: A Series of Four Experiments. IEEE Txn. SE 36(1),
96–118 (2010)

23. Seemann, J.: Extending the Sugiyama algorithm for drawing UML class diagrams:
Towards automatic layout of object-oriented software diagrams. In: DiBattista, G.
(ed.) GD 1997. LNCS, vol. 1353, pp. 415–424. Springer, Heidelberg (1997)

24. Sharif, B., Maletic, J.I.: An empirical study on the comprehension of stereotyped
UML class diagram layouts. In: Proc. 17th IEEE Intl. Conf. Program Comprehen-
sion (ICPC), pp. 268–272. IEEE (2009)

25. Sharif, B., Maletic, J.I.: The effect of layout on the comprehension of UML class di-
agrams: A controlled experiment. In: Proc. 5th IEEE Intl. Ws. Visualizing Software
for Understanding and Analysis (VISSOFT), pp. 11–18. IEEE (2009)

26. Sharif, B., Maletic, J.I.: An eye tracking study on the effects of layout in under-
standing the role of design patterns. In: Proc. 2010 IEEE Intl. Conf. Software
Maintenance (ICSM), pp. 41–48. IEEE (2010)

27. Sharif, B., Maletic, J.I.: The Effects of Layout on Detecting the Role of Design
Patterns. In: Proc. 23rd IEEE Conf. Software Engineering Education and Training
(CSEE&T), pp. 41–48. IEEE (2010)
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Abstract. The development of graphical editors for visual DSLs is far
from being a trivial task. There are consequently several tools that pro-
vide technical support for this task. However, this paper shows that the
analysis of the main characteristics of such tools leaves some space for
improvement as regard the cognitive effectiveness of the visual nota-
tions produced with them. To deal with this issue, this work introduces
CEViNEdit, a GMF-based framework for the development of visual DSLs
which takes into account Moody’s principles for the development and
evaluation of graphical notations. To that end, CEViNEdit eases the
selection of values for the visual variables of which the notation is com-
posed, computes a set of metrics to assess the appropriateness of these
values and then automates the generation of the graphical editor.

Keywords: Model Driven Engineering (MDE), Domain Specific Lan-
guage (DSL), Visual Notation, Cognitive Effectiveness.

1 Introduction

Domain Specific Languages (DSLs) [1] play a cornerstone role in almost any
proposal which applies the principles of the Model-Driven Engineering (MDE)
[2]. The fact that they are targeted to a particular domain contributes to ease
of use and greater expressiveness and allows the distance between business users
and developers to be shortened [3].

Given that the two main principles of the MDE paradigm are to enhance
the role of models and to increase the level of automation throughout the de-
velopment process, not only modelling languages but also tool support to auto-
mate every model-processing task are needed. In particular, owing to the drastic
change undergone by the role of models, modelling has probably become into
the most relevant task. Tool support for this activity is therefore mandatory:
just as IDEs assist developers when programming, editors have to be provided
to help modellers when modelling.

The advent of the MDE has led to the emergence of a number of tools for
the development of DSLs. Most of these tools implement a metamodel-based
approach in which the abstract syntax of the language is first defined and then
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used as the basis to produce its concrete syntax, editors and the other related
artefacts (mainly transformations, model-checkers, etc.) until a DSL toolkit has
been formed [4,5]. Note that only visual (modelling) DSLs are considered here:
although a number of textual language workbenches already exist, such as XText
or TEF, the use of textual DSLs was until recently limited to internal DSLs and
programming tasks [6]. Moreover, visual DSLs are probably more appealing if
the use of model-based approaches is to be extended to non-IT users [7].

Unfortunately, the aforementioned metamodel-based approach for the devel-
opment of DSLs adopted by most of the existing tools, reinforces one of the main
issues of existing MDE tools: Human Computer Interaction (HCI) principles and
methods have been almost completely dismissed to date [8]. In particular, the
definition of concrete (visual) syntaxes so far have until now consisted basi-
cally of the arbitrary assignment of graphical symbols to the concepts defined of
which the abstract syntax of the language is composed. This scenario is, in some
respects, related to the fact that, as occurs with any emerging paradigm, MDE-
practitioners have dismissed quality aspects in favour of showing that MDE
can be effectively used, i.e. proving that the new paradigm deserved attention
and recognition has prevailed over the adoption of systematic and rigorous ap-
proaches, the classical trade-off between time-to-market and quality. Neverthe-
less, since MDE has reached certain levels of maturity, the time has come to
start considering quality aspects in the development of model-based tools and
proposals [9].

To contribute in this line, this work introduces CEViNEdit, an EMF-based tool
that leans on Moody’s principles [10] to support the model-driven development
of DSLs’ graphical editors, which takes into account the speed, ease and accuracy
with which visual notations can be processed by the human mind (also known as
cognitive efficiency [11]). To that end, CEViNEdit respects the metamodel-based
approach but helps developers in the process of assigning graphical representa-
tions to the elements of the abstract syntax by leaning on Moody’s Physics of
Notations theory [10]. The underlying idea is that the design of visual notations
and the choice of graphical conventions should therefore be based on theoretical
principles and empirical evidence of cognitive effectiveness rather than on best
practices, common sense or social opinion [12]

The reminder of this paper is structured as follows: Section 2 presents the
motivation of this work; Section 3 introduces CEViNEdit, a tool that allows the
evaluation and consideration of some aspects related to the cognitive effectiveness
during the generation process of the graphical editors that support the DSLs;
and finally, Section 4 summarizes the main conclusions derived from this work.

2 Motivation

This section present the motivation of this work. To that end, instead of the
classical review of related works, the main features of existing tools for the model-
driven development of graphical editors are summarized. This review serves to
show that despite having achieved a certain level of maturity, existing tools have
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not been concerned with the quality of the visual notations supported by the
editors produced.

Theoretical proposals that could be used to address this issue are then re-
viewed in order to back the selection of the Physics of Notations as a scientific
basis that can be used to provide a new tool for the development of graphical
editors for visual DSLs which takes into account cognitive effectiveness.

2.1 Tool Support for the Development of Graphical Editors

Recently, and under the assumption that MDE is getting closer to the slope
of enlightenment of the technology hype cycle [4], we have undertaken certain
works oriented towards the adoption of more rigorous and systematic approaches
for the development of MDE tools. They were first focused on identifying best
practices for the development of DSL toolkits [13] while the focus later shifted
to the development of model transformations [14], provided that they are widely
acknowledged to be the main assets as regards automating MDE proposals.

As well, our attempts to take advantage of the use of MDE technologies in
other fields have also served to demonstrate that one of their most appealing
MDE features is their ability to abstract their problems in terms of visual models
(see for instance [13]) tailored to their needs. This implies the need for new DSLs
that are tailored to their domains in which the development of the corresponding
editors gains significance.

Therefore, in order to obtain a clear understanding of the state-of-the-art on
tools for the development of graphical editors for DSLs, we therefore performed
a literature review according to the guidelines proposed by Biolchini et al. [15]
for the development of Systematic Literature Reviews in SE. This way, instead
of the classical review of Related Works, a brief overview of the main highlights
of this review follows.

The aim of the review was to identify the current state of MDE tools that
support the production of graphical editors from a domain model. The following
research questions were therefore posed:

– RQ1 : Are there tools to generate editors that apply the principles of MDE?
– RQ2 : What are the main features and functionalities of these tools?

The review of meta-modeling frameworks previously introduced in [13] were
therefore taken as a starting point, and the tools listed in Table 1 were field
reviewed according to the following criteria. Note that this is indeed a never-
ending task since new tools appear everyday. For instance, the recent Eclipse
Sirius, which is an Open Source version of Obeo Designer, has yet to be included.

Scope. Whether the tool is commercial or open source. The type of license is
also stated.

Abstract Syntax. Language or notation used for the specification of the ab-
stract syntax.

Concrete Syntax. Means used to assign a graphical notation to each concept
of the abstract syntax.
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Distinction between Abstract and Concrete Syntax. Whether the tool
treats the abstract and concrete syntax separately.

Editing Capabilities. Subjective assessment of the ability to modify gener-
ated editors.

Use of Models. The extent to which models are used for the production of
graphical editors.

Automation. The level of automation in the production of editors.
Usability. This criterion collapses different usability related issues, such as ease

of use or available documentation.
Framework. Whether it is an isolated tool or runs over an existing framework.
Scientific Basis. Whether the tool follows or applies any kind of scientific the-

ory or method to guide, derive or define visual notations. This criteria is
somehow subsumed under Usability but it has been considered apart to
clearly illustrate the issue addressed in this paper.

Table 1. Metatools analized

Tool Website

Concrete http://github.com/mthiede/concrete
DiaGen http://www.unibw.de/inf2/DiaGen/
Eugenia http://www.eclipse.org/epsilon/doc/eugenia/
GenGED http://user.cs.tu-berlin.de/~genged/
GMF http://www.eclipse.org/modeling/gmf/
Graphiti http://www.eclipse.org/graphiti/
MetaEdit+ http://www.metacase.com/mep/
Obeo Designer http://www.obeodesigner.com/
Poseidon http://www.gentleware.com/poseidon-for-dsls.html
Pounamu http://www.cs.auckland.ac.nz/pounamu/index.htm
TEF http://www2.informatik.hu-berlin.de/tef/tool.html
Tiger http://user.cs.tu-berlin.de/~tigerprj/
Topcased http://www.topcased.org/

For reasons of space, Table 2 summarizes the results of the study for some of
the tools analyzed1. In particular, Obeo Designer and MetaEdit+ (commercial
tools) and EuGENia and GMF (open-source tools) were found to be those best
aligned with the criteria introduced. Likewise, DiaGen results are shown to con-
trast the features of the aforementioned tools with those of tools which do not
adopt a model-based approach.

The review showed that most of the tools analyzed properly addressed the
conceptual separation between the DSL’s domain model (abstract syntax) and
its visual notation (concrete syntax), thus preventing the former from being
polluted with unnecessary information. What is more, some tools do support
1 The complete table can be found in "A Systematic Review of the Current Features

of Metaeditors", p. 37, http://www.kybele.es/cevinedit/?page_id=30

http://github.com/mthiede/concrete
http://www.unibw.de/inf2/DiaGen/
http://www.eclipse.org/epsilon/doc/eugenia/
http://user.cs.tu-berlin.de/~genged/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/graphiti/
http://www.metacase.com/mep/
http://www.obeodesigner.com/
http://www.gentleware.com/poseidon-for-dsls.html
http://www.cs.auckland.ac.nz/pounamu/index.htm
http://www2.informatik.hu-berlin.de/tef/tool.html
http://user.cs.tu-berlin.de/~tigerprj/
http://www.topcased.org/
http://www.kybele.es/cevinedit/?page_id=30
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Table 2. Overview of tools for development of graphical editors

Features DiaGen Eugenia GMF MetaEdit+ Obeo

Scope OS(GPL) OS(EPL) OS(EPL) Com Com
Abstract syntax Ecore/UML Ecore Ecore GOPPRR Ecore
Concrete syntax DiaMetaDesign EOL Draw2D Internal API Odesign
Syntax distinction No Yes Yes Yes Yes
Editing ✔✔ ✔✔ ✔✔✔ ✔✔✔ ✔✔✔

Models ✔✔ ✔✔✔ ✔✔✔ ✔✔ ✔✔✔

Automation ✔✔ ✔✔✔ ✔✔ ✔✔✔ ✔✔✔

Usability ✔✔✔ ✔✔✔ ✔✔ ✔✔✔ ✔✔✔

Framework Eclipse Eclipse Eclipse None Eclipse
Cognitive eff. No No No No No

Legend (for weightable fields): Poor (✔), Good (✔✔), Excellent (✔✔✔)

the automation of many of the intermediate steps involved in the generation
of the editor but most of them require some manual refinements for which not
very intuitive mechanisms are provided. Only some of the tools reviewed lean
on the use of models while most of them were built atop of Eclipse, ensuring
certain levels of interoperability with existing MDE tools. All in all, the most
remarkable conclusion from the point of view of this work is that, although
mature and stable model-based tools for the development of graphical (editors
for) DSLs exist, none of them considers usability issues related to their visual
notations.

The following section therefore provides a wide overview of existing proposals
for the analysis of visual notations and introduces the one adopted to sustain a
proposal with which to improve the current state of the art.

2.2 Proposals for Notation Analysis

Software Engineering currently has a number of established methods that are
used to evaluate the semantics of the concepts used in different languages, but
it lacks equivalent methods with which to evaluate their visual syntax, whose
relevance has historically been undervalued, probably because visual notations
have traditionally been considered as an informal concept, contrary to that which
occurs with semantics.

Among the few works in this line that can be found in the literature, it is
worth mentioning the one of Krogstie et al. on Semiotic Quality (SEQUAL) [16]
and the one of Green et al. on Cognitive Dimensions (CDs) [17].

SEQUAL is based on semiotic theory and provides a list of properties with
which to evaluate the quality of models and modelling languages, defining an
extensive ontology of modelling language quality concepts such as: physical, em-
pirical, syntactical, semantic, perceived semantic, pragmatic, social, knowledge,
language and organizational quality.
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In its current form it is far from being focused on visual notations. It was
therefore discarded as a scientific basis for this work. However, some of the con-
cepts that have to be considered in order to assess the quality of a given language
according to the authors of SEQUAL, are related to the adequacy of notations.
For instance, the authors argue that the Comprehensibility Appropriateness of a
language depends on some principles directly related to visual representations,
such as the ease of symbol discrimination, symbols uniformness, symbols sim-
plicity or graphic economy [18].

The CDs proposal, which was first introduced by Green in [17] as a set of
features that provide a language with which to compare the form and structure
of programming languages, has been the approach regarding the usability of
visual languages most frequently referenced by researchers. In short, the proposal
provides a vocabulary of terms (or dimensions) that can be used to specify the
details of the structure of cognitive artefacts.

Existing literature states that the CDs framework has some flaws from the
point of view of this work, some of which are acknowledged by the authors:

– It was devised to be used in any type of domain [19], from spreadsheets to
programming languages. In particular, it was not particularly intended to
work for visual modelling languages.

– The blurred definitions of dimensions (main basis of the proposal), along
with the lack of a well-defined procedure, causes confusion and hampers
understanding at the time of using them [20].

– The number of dimensions has grown since the appearance of the framework,
resulting in an unmanageable set of dimensions requiring simplification to
target non-skilled potential users.

In contrast, the Physics of Notations (PoN) theory [10], which is briefly de-
scribed in the next section, is a framework that is exclusively to the design,
evaluation, comparison and improvement of visual notations.

With the advent of MDE, in which visual modelling languages have become
even more relevant, Moody’s proposal has gained a lot of attention as an eval-
uation technique since it fits perfectly with the nature of these languages while
preserving complexity of application at certain admissible levels.

As a matter of fact, these principles have already been used in several works
to evaluate other visual languages such as UML [21], BPMN [22] or i*[23].

2.3 The Physics of Notations

Moody’s Physics of Notations theory [10] establishes nine principles with which
to design, evaluate, compare and improve visual notations. These principles were
defined from theory and empirical evidence brought from different disciplines
such as: cognitive and perceptual psychology, graphic design, cartography, etc.

Each principle contains design strategies which may contribute towards im-
proving visual notations, an assessment procedure that can be used to compare
different notations and samples of notations that satisfy or violate the principle.

The nine principles are summarized as follows:
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1. Principle of Semiotic Clarity: there should be a one-to-one correspondence
between elements of the language and graphical symbols.

2. Principle of Perceptual Discriminability: different symbols should be
clearly distinguishable from each other.

3. Principle of Visual Expressiveness: the full range and capacities of visual
variables should be used.

4. Principle of Semantic Transparency: the appearance of visual represen-
tations should suggest their meaning.

5. Principle of Complexity Management: explicit mechanisms to deal with
complexity should be provided.

6. Principle of Cognitive Integration: explicit mechanisms to support the
integration of information from different diagrams should be provided.

7. Principle of Dual Coding: text must be used to complement graphics.
8. Principle of Graphic Economy: the number of different graphical symbols

should be cognitively manageable.
9. Principle of Cognitive Fit: different visual dialects for different tasks and

audiences should be used when needed.

Since it is exclusively focused on the best way to represent visually a set of
constructs, the Physics of Notations also has some limitations. In particular,
it does not propose any principle with which to assess the effectiveness of the
composition rules of the language, which may result in cognitively inefficient
diagrams. Note, however, that these composition rules are mainly inherited from
the definition of the abstract syntax of the language which typically precedes the
development of the concrete syntax. Solving any issue related to the assessment
of composition rules would imply refining the metamodel of the language, with
the consequent impact on the ecosystem of related models and transformations.

As a matter of fact, some initiatives towards moving the focus of DSL de-
velopment to its notation instead of its metamodel have recently emerged in
response to this scenario [24]. A notation-driven approach fits with the applica-
tion of the Cognitive Dimensions framework since it eases the task of rethinking
the composition rules of the language.

In contrast, the Physics of Notations theory fits better with the metamodel-
driven approach adopted by most of the existing DSLs. Adopting Moody’s pro-
posal does not ensure a cognitively efficient language but provides certain levels
of confidence without compromising the balance between effort and reward.

To confirm this assumption we have applied Moody’s proposal to conduct a
detailed analysis of the visual notation used by WebRatio [25,26], an Eclipse-
based IDE for the model-driven development of Web and mobile applications
[27] that implements WebML and could be considered to be one of the most
successful model-based tools [28].

The data obtained allowed us to detect various problems and provide certain
recommendations on how to improve the visual notation of the language, but
more importantly, the analysis provided us with a number of lessons learned. One
of the most relevant conclusions was that, even though the analysis of the cogni-
tive effectiveness of any given (visual) DSL is feasible while keeping a reasonable
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balance in terms of effort and time, solving the problems revealed by the analysis
is either impossible or at best requires too much effort. These aspects should be
therefore considered from the early stages of the development of new DSLs, so
that good decisions related to cognitive effectiveness are translated throughout
the different stages of the development until the working implementation. These
issues are dealt with in the following section. This section presents our proposal
to support the development of visual DSLs graphical editors which takes into
account cognitive efficiency, i.e. the speed, ease and accuracy with which visual
notations can be processed by the human mind [11].

2.4 Visual Variables

Before presenting CEViNEdit, another theoretical concept must be introduced.
Visual Variables are a set of elementary building blocks that can be used to
graphically encode information, which are often used and referenced in each
of the principles proposed by Moody’s framework [10], and therefore, in our
proposal.

Fig. 1. Visual variables used to construct visual notations (adapted from [29])

Studies conducted on the nature of graphical symbols have identified eight
different visual variables (see Figure 1) that can be used to encode information.
These variables can be defined in two subsets: planar and retinal. The most im-
portant work in this regard is the seminal work of Bertin [29], which is considered
to be to graphic design what the periodic table is to chemistry. Each of these
visual variables has a set of properties that are used to encode certain types of
information and these properties must therefore be known if effective choices are
to be made.

3 CEViNEdit: Improving the Development of DSLs
Visual Notations

This section introduces CEViNEdit (enabling Cognitive Effectiveness in the Vi-
sual Notation of graphic Editors)2, a tool that supports the model-driven de-
velopment of graphical editors for visual DSLs that fosters the production of
cognitively effective visual notations.
2 The Eclipse plug-in can be download from: http://kybele.es/cevinedit

http://kybele.es/cevinedit
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To that end, CEViNEdit depends on the capabilities of EMF and GMF for the
production of DSL toolkits [5] and the enhancement in automation that EuGENia
[30] brings to the model-driven development process of GMF-based editors.

GMF is a generative component for the development of graphical editors.
GMF uses a domain model (defined in terms of Ecore, the metamodeling lan-
guage of EMF) and a set of additional models that establishes the relationship
between elements of the domain model and their visual representations to gener-
ate the code that implements the graphical editor as an Eclipse plug-in. EuGENia
is able to generate the intermediate models automatically if the domain model
is previously annotated using a set of GMF-specific annotations defined in [30].

CEViNEdit therefore conforms to the metamodel-based approach adopted by
GMF by improving the information with which EuGENia is fed before it is run
to produce the interim models used by GMF. To that end, the user is provided
with user-friendly panels that can be used to establish relationships between the
elements of the domain model and its graphical representations in terms of GMF
graphic abstractions as well as to set the values for the visual variables of such
graphic elements. In order to drive design decisions towards the production of
a cognitively effective visual notation, the user is provided with contextual help
as regards the impact of selected variables on cognitive effectiveness. Further-
more, informal assessments of the current results according to some of Moody’s
principles can be invoked on demand. Finally, a fully functional GMF-based ed-
itor can be generated with a single click, without having to modify any of the
intermediate GMF models.

The reminder of this section is structured as follows: subsection 3.1 presents
the CEViNEdit metamodel, which abstracts is the basis for creating models in
which the customized elements and their graphical properties are stored; sub-
section 3.2 provides a detailed description of the process used to develop a GMF
editor with CEViNEdit; subsection 3.3 presents the possible assessment and met-
rics that can be obtained with the tool, according to some of the principles es-
tablished in the PoN theory; finally, we present the limitations of the current
version of CEViNEdit.

3.1 CEViNEdit Metamodel

In order to persist the information gathered about the graphical representa-
tion of each element of the domain model, a small DSL, whose metamodel is
shown in Figure 2, has been defined. In essence, it abstracts the graphic elements
that can be used as building blocks when designing GMF editors (NodeEClass,
LinkEReference, etc.) and the visual variables defined by Bertin [29].

In order to bridge the specification of the abstract and the concrete syntax,
every CEViNEdit model contains a Root object that stores the path to the file
containing the domain model. Next, a unique Diagram object contains the rest
of objects used to model which will be the GMF elements used to represent
each concept, whereas a number of enumerations are provided to support the
customization of each graphic element since each type of element admits different
values for the visual variables.
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Fig. 2. CEViNEdit metamodel

3.2 CEViNEdit Development Process

This section briefly describes the user interface of CEViNEdit and the develop-
ment process for the production of GMF-based editors supported by the tool.
To that end, the simple yet intuitive filesystem example used by EuGENia3 is
used as case study.

Figure 3 shows some excerpts of screen-captures taken from the development
of the case study with CEViNEdit . The UI is basically composed of four panels
and a toolbar. The first panel (A) shows the domain model whereas the second
one (B) depicts the CEViNEdit model that gathers the information about the
relationships between the elements of the abstract and concrete syntax needed for
the production of the GMF-based editor. The third panel (C) provides controls
to set the values for the visual variables of the graphic elements comprising
the notation of the DSL and thus refine these relationships, and the last panel
(D) provides contextual information about the influence of the visual variable
selected on cognitive effectiveness. This panel can be enabled or disabled by
the user at any time. Finally, the toolbar at the top (E) allows reports to be
produced, which provide information regarding the extent to which the visual
notation produced with the information gathered at that time would be aligned
with some of Moody’s principles. Controls for the generation of the GMF-based
editor are also provided.

The development process supported by CEViNEdit is depicted in Figure 4.
Note that graphical abstractions are used to illustrate each step of the process
according to Moody’s principles.

The first step is to create an empty CEViNEdit model. The wizard then re-
quests the location of the domain model, which can be loaded in the correspond-
ing panel from either the Eclipse workspace or the underlying file system. The
user next states which of the GMF graphic elements have been selected to repre-
sent each element of the domain model using the contextual menus shown when
3 EuGENia GMF Tutorial: http://www.eclipse.org/epsilon/doc/articles/
eugenia-gmf-tutorial/

http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial/
http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial/
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Fig. 3. CEViNedit Metaeditor

Fig. 4. Overview of the CEViNEdit development process

each element is clicked. These decisions are then collected in the second panel
which depicts the CEViNEdit model. To return to the case study, the filesys-
tem EClass will be represented as a gmfdiagram; the File, Drive, Folder and
Shortcut EClasses are represented as gmfnodes and finally the Shortcut.target
EReference and the Sync EClass will be visualized as gmflinks.

With regard to the element selected in the CEViNEdit model (Node, Link
or Compartment), the third panel shows a list of visual variables (as Color,
Texture, Size, Location, Shape or Brightness) and their possible values. The
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user can therefore define the main characteristics of the concrete syntax that
will be supported by the editor in a simple and intuitive way. To ease this task,
contextual help is displayed in the fourth panel every time an element of the
CEViNEdit is selected in the third panel. The contents of this help were adapted
from Moody’s and Bertin’s work [10,29] and they were devised to assist in the
appropriate selection of values for the visual variables. After a first draft of the
CEViNEdit model has been defined, the automatic assessment of the resultant
visual notation can be run at any time.

Finally, the automatic generation of the GMF-based editor is invoked. A se-
ries of internal transformations then translates the user decisions collected in
the CEViNEdit model into GMF annotations that are attached to a copy of
the domain model, keeping the separation between the abstract syntax and the
concrete syntax and avoiding the pollution of the domain model. Next, the an-
notated copy of the domain model is used as input to create and run a new
GMF project using the facilities provided by EuGENia. A screencast showing the
process in action can be found at http://kybele.es/cevinedit.

3.3 Automatic Assessment of Moody’s Principles

As mentioned previously, the current version of CEViNEdit automates the as-
sessment of the decisions gathered in CEViNEdit models regarding three of the
principles of the Physics of Notations. The first principle to be supported is that
of Semiotic Clarity, which states that according to Goodman’s theory of sym-
bols [31], there should be a 1:1 correspondence between language elements and
graphical symbols, in order to satisfy the requirements of a notational system.
This theory establishes four types of symbol anomalies:

– Redundancy: multiple graphical symbols are used to represent the same lan-
guage element. These symbols are called synographs [32].

– Overload : the same graphical symbol is used to represent different language
elements. These symbols are called homographs [32].

– Excess : a graphical symbol does not represent any language element.
– Deficit : a language element is not represented by any graphical symbol.

The development process supported by CEViNEdit automatically prevents re-
dundancy and excess anomalies. Thus, in the current version of the tool we
show only those anomalies that are related to overloads and deficits. However,
although the redundancy may have a negative impact on cognitive effective-
ness, we consider that this option should be left open for the designer in case
s/he wishes to show a given model element using different representations. We
consequently plan to implement this behavior in the next version of the tool.

Figure 5 shows the Semiotic Clarity report for the filesystem example when
the decisions related to the representation of the two Links defined result in
a homograph being produced. The report also shows those elements from the
domain model for which no representation has been set.

CEViNEdit also supports the assessment of the principle of Visual Expres-
siveness, which is defined as the number of variables efficiently used in a visual

http://kybele.es/cevinedit
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notation. Software Engineering notations tend to use a limited range of visual
variables, each of which permits only a limited range of values, i.e., they do not
favour Visual Expressiveness.

Fig. 5. Semiotic Clarity report

For instance, of the possible values for the Shape variable, the rectangle (and
its possible variants) is that most frequently adopted by SE modelling languages
like the UML. Nevertheless, rectangles are the least effective Shapes for human
visual processing. In order to facilitate this processing, it might be preferable to
use curves, 3D or icons instead [33].

The range of values used for the Colour variable deserves the same consid-
eration, since it is one of the most cognitively effective [34]. Indeed, differences
between Colours are detected even faster than those between Shapes [35].

What is more, according to research in psychophysics, each of the eight visual
variables has a capacity, i.e., a number of different steps that can be perceived
by human mind [10]. Given all of the above, the choice of the visual variables
used (and their ranges of values) should not be arbitrary, but should depend on
the type of information that one wishes to encode.

In this context, the Visual Expressiveness report produced by CEViNEdit
provides information regarding the number of values used for each visual variable,
its capacity and its saturation, i.e. the ratio between the number of values used
and the capacity of each variable. This ratio illustrates to what extent the visual
variable is efficiently used in the visual notation in order to avoid, among other
things, a psychedelically colorful diagram. Figure 6 therefore shows a report for
the filesystem editor, including the metrics computed for some visual variables.

Although it is not introduced here for the sake of space, CEViNEdit also
automates the assessment of the Graphic Economy principle, which states
that the strategy of providing graphical symbols for a language is effective until
the cognitive recognition process becomes too complex.

The underlying idea is that each new symbol introduced reduces cognitive
effectiveness since the number of different objects that an average human can
hold in working memory is around six categories [36]. This number is therefore
the upper limit for the graphic complexity.
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Fig. 6. Visual Expressiveness report

Unfortunately, modelling languages tend to increase graphic complexity over
time owing to the effort made to increase semantic expressiveness, i.e. model’s
efficiency as regards reflecting the underlying reality represented by that model.

In order to help alleviate this issue, CEViNEdit informs the user about the
graphic complexity of the visual notation that s/he is currently designing.

3.4 Current Limitations and Further Work

Since CEViNEdit is on-going work, the following main limitations and possible
threats to validity are briefly introduced. Pointers for improvement are provided
when appropriate.

In order to validate the proposal, an empirical study is needed and has con-
sequently been planned with MSs students who will use CEViNEdit to develop
a graphical editor for a set of DSLs with different grades of complexity. This
signifies that not only will the feasibility and the usability of the proposal will
be evaluated, but that feedback will also be gathered from end-users to address
future improvements.

More work is also needed to automate the assessment of the theoretical prin-
ciples which are not yet supported. Note, however, that not every principle is
subject to automation. For instance, the Cognitive Integration principle, which
only applies when multiple diagrams are used to represent a system. This type
of problem is beyond the scope of our application, since this principle evaluates
the cognitive effectiveness of systems in which different types of heterogeneous
diagrams are used as occurs for example in software development with WebRa-
tio, in which E/R, UML, BPMN and WebML diagrams are involved in the same
project. However, with our proposal it is possible to generate more than one
visual notation for each language, but creating different projects. It would be
useful and interesting to provide the possibility to generate more than one visual
notation for a single project, so that the designer could compare which one is
more suited to his/her needs in real time. As well, the current version of the
tool supports a limited set of GMF annotations. So, more customization op-
tions for graphical are being implemented to cover the whole spectrum of GMF
annotations.
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Finally, there are two more lines for further work which do not represent cur-
rent limitations but are rather ambitious and potential open fields of application.
On the one hand, we believe that once we are able to compute some indicators
on the cognitive effectiveness of an editor’s visual notation, we are in a good
position to address the development of mechanisms to support automatic refine-
ments in order to improve the indicators obtained for certain principles. It would
eventually be a case of finding the appropriate algorithm and implementing it
in terms of model management operators.

On the other hand, CEViNEdit is currently oriented towards fostering the
interest on cognitive effectiveness for new editors but it would also be feasible to
apply the idea to the assessment of existing editors which have been developed
with EuGENia and/or GMF. An assessment of this nature would be performed
by analyzing either the GMF annotations collected in the domain model or even
the interim models used by GMF (namely gmfgraph, gmftool and gmfmap).

4 Conclusions

This paper has introduced CEViNEdit, a tool to support the model-driven devel-
opment of graphical editors which enables the definition of cognitively effective
visual notations according to the principles of the Physics of Notations [10].

To the best of our knowledge, CEViNEdit is the first tool to consider quality
aspects in the model-driven development of graphical editors. Note, however,
that this is a line in which much work needs to be done, since MDE proposals
have, to date, tend to be authored by developers with a technical background
but without in-depth experience of HCI or cognitive issues [8].

It is also worth noting that the use of CEViNEdit is by no means sufficient to
assert that the visual notation of the graphical editor produced has no problems
but it does provide certain levels of confidence. In some respects, the idea is
similar to that guiding software testing: 100% code coverage is either not feasible
or requires too much effort.

Beyond the functionality provided by the tool itself, this work aims to foster
interest in using a scientific basis to design, evaluate, improve and compare
visual notations as part of a more generic movement that MDE practitioners
have started towards the inclusion of quality features in the development of
modelling languages [37].

In this respect, this work serves to show that it is not only feasible to partially
automate this type of quality considerations in the development of MDE tools,
but also that it is feasible to do so while keeping a reasonable balance in terms
of effort and time. This is particularly relevant when bearing in mind that MDE
practitioners have to date focused on showing that their proposals could be
efficiently applied while quality aspects have been dismissed. If we wish MDE
practitioners to be concerned about quality issues, then it will allow this occur
without too much extra effort. In other words, automation is key to avoiding
the accidental increase in complexity brought about by dealing with quality
concerns.
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Abstract. The capability of UML profiles to serve as annotation mechanism has
been recognized in both industry and research. Today’s modeling tools offer pro-
files specific to platforms, such as Java, as they facilitate model-based engineer-
ing approaches. However, the set of available profiles is considerably smaller
compared to the number of existing Java libraries using annotations. This is be-
cause an effective mapping between Java and UML to generate profiles from
annotation-based libraries is missing. In this paper, we present JUMP to over-
come this limitation, thereby continuing existing mapping efforts by emphasiz-
ing on annotations and profiles. We demonstrate the practical value of JUMP by
contributing profiles that facilitate reverse-engineering and forward-engineering
scenarios for the Java platform. The evaluation of JUMP shows that profiles can
be automatically generated from Java libraries exhibiting equal or even improved
quality compared to profiles currently used in practice.

Keywords: Java Annotations·UML Profiles·Model-Based Engineering·Forward
Engineering·Reverse Engineering.

1 Introduction

Since the introduction of the UML profile mechanism, numerous profiles have been
developed [38], many of which are available by the OMG standardization body [36].
Even in industry, the practical value of profiles has been recognized as today’s modeling
tools offer already predefined stereotypes covered by such profiles. They are considered
as a major ingredient for current model-based software engineering approaches [6] by
providing features supplementary to the UML standard metamodel. This powerful capa-
bility of profiles can also be exploited in terms of an annotation mechanism [42], where
defined stereotypes show similar capabilities as annotations in Java. Hence, deriving
stereotypes from established programming libraries to produce corresponding profiles
at the modeling level is desirable. For instance, IBM’s Rational Software Architect pro-
vides profiles for certain Java libraries. By applying such profiles, high-level platform-
independent models (PIMs) are refined into models specific to a platform (PSMs),
where the platform refers to the library from which the profile was derived. Turning
this forward-engineering (FE) perspective into a reverse-engineering (RE) one, existing
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programs can be represented as UML models that capture annotations by applying the
corresponding profiles. Therefore, platform-specific profiles and their application are
beneficial from both perspectives. In a reverse-engineering step, model analyzers can
exploit captured stereotypes to facilitate comprehension [10], whereas profiled UML
models, i.e., models to which profiles are applied, pave the way for model transformers
to generate richer program code in a forward-engineering step [42].

Problem. However, to date, an effective conceptual mapping between UML and Java
as a basis for an automated process to generate profiles from libraries that use annota-
tions is still missing. As a result, profiles need to be manually developed, which is only
achievable by a huge effort when considering the large number of possible annotations
in Java. In the ARTIST project [4], we are confronted with this problem, as we work to-
wards a model-based engineering approach for modernizing applications by novel cloud
offerings, which involves representing PSMs that refer to the platform of existing appli-
cations, e.g., the Java Persistence API (JPA), when considering persistence, and the plat-
form of “cloudified” applications, e.g., the Objectify library1, when considering cloud
datastores. For instance, JPA annotations at the modeling level facilitate distinguish-
ing between plain association and composition relationships and precisely deciding on
multiplicities, which is in general not easily to grasp [7]. UML models profiled by Ob-
jectify annotations enable generating method bodies even from a structural viewpoint.
These examples highlight the practical value of platform-specific reverse-engineering
and forward-engineering tools, which are developed in the ARTIST project.

Contribution. In this paper, we present a fully automatic transformation chain for
generating UML profiles from Java libraries that use annotations. For that reason, we
propose an effective conceptual mapping between the two technical spaces [25, 30].
Thereby, we continue the long tradition of investigating mappings between Java and
UML [15,23,28,33]. Though, in this work, we also consider Java annotations and UML
profiles in the mapping process. This necessitates overcoming existing heterogeneities
that, e.g., refer to the target specification of Java annotations and other peculiarities of
how Java annotation types are declared. To operationalize the conceptual mapping, we
employ model transformation techniques [12] as a basis for our approach JUMP, which
allows developers to “jump” from annotation-based Java libraries to UML profiles. We
collect all the automatically generated profiles and make them publicly available in
terms what we call the UML-Profile-Store [43], thereby complementing OMG’s collec-
tion of standardized profiles with supplementary profiles for the Java platform.

Structure. In Section 2, we motivate the practical value of platform-specific profiles
by a typical JUMP use-case and we give the background for UML Profiles and Java An-
notations in terms of metamodels. We present JUMP in Section 3 by providing insights
into our proposed conceptual mapping and elaborating effective solutions to overcome
existing heterogeneities of the two languages. In Section 4, we discuss our prototyp-
ical implementation based on the Eclipse ecosystem, while in Section 5, we evaluate
JUMP. In particular, we (i) compare our methodology how to represent annotations
and annotation types in UML with methodologies used in current modeling tools and
(ii) evaluate the quality of automatically generated profiles compared to profiles used
in practice. Finally, in Section 6, we discuss related work and conclude in Section 7.

1 https://code.google.com/p/objectify-appengine

https://code.google.com/p/objectify-appengine
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2 Motivation and Background

To motivate the practical value of platform-specific profiles, we introduce a typical
JUMP use-case. Then, we discuss the concepts of Java’s annotation mechanism and
briefly introduce UML’s profile mechanism to establish the basis for our approach.

2.1 Application of Platform-Specific UML Profiles

A typical JUMP use-case is directed to scenarios in the context of reverse-engineering
(RE) and forward-engineering (FE). They are of particular relevance for migration
projects, which aim at reinterpreting existing reengineering processes [26] in the light
of advanced model-based engineering approaches [17]. In this respect, UML profiles
play an important role as they enable models annotated with platform-specific infor-
mation [39]. To demonstrate a concrete use-case, we selected the JPA and Objectify
profile from the area of data modeling. The idea is to replace the former profile by the
latter one, thereby realizing a change of the data access platform as typically required
by “moving-to-the-cloud” scenarios. Figure 1 depicts an excerpt of the PSMs of a typ-
ical eCommerce web application, where the platform refers to the selected profiles.
From the JPA-based PSM, a sliced PIM is generated that sets the focus solely on the
domain classes, i.e., annotated with JPA stereotypes, which are intended to be modi-
fied. Even better, this generated PIM interprets JPA stereotypes in terms of native UML
concepts. As a result, the accuracy of the PIM is improved because it explicitly cap-
tures identifiers, compositions, and more precise multiplicities. These improvements of
the PIM demonstrate the practical value of considering platform-specific information
in the context of a model-based RE scenario. Furthermore, they leverage the refinement
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of the PIM towards an Objectify-based PSM without the need to identify mappings be-
tween the pertinent platforms. From the produced Objectify-based PSM, program code
can be generated by also interpreting applied stereotypes in the context of a FE sce-
nario. For instance, method bodies for CRUD operations can be generated for domain
classes as they are indicated by the respective stereotypes and generated code elements
can be automatically annotated. Clearly, JUMP acts as an enabler for both RE and FE
scenarios by providing the required platform-specific profiles.

2.2 Mechanisms for Annotations in Java and Profiles in UML

Before annotations can be applied on code elements, they need to be declared in terms
of annotation types. A rough overview of the main concepts behind annotations in Java
is given in the metamodel depicted in Figure 2a. We extracted this metamodel from the
JLS7 [37]. AnnotationTypes declare the possible annotations for code elements
and may have, similar to Java interface declarations, optional modifiers. They are
identified by a name. AnnotationTypes may themselves be subject for annota-
tions. Most importantly for the context of this work is the target annotation that is
represented in the metamodel as an attribute for simplicity reasons. It indicates the
code elements that are valid bases for an application of an AnnotationType. The
body of an annotation type declaration consists of zero or more AnnotationType-
Elements for holding information of AnnotationType applications. They are de-
clared in terms of method signatures with optional modifiers, a mandatory type
and name, and an optional default value that is returned if no custom value is set.

With the introduction of UML 2, the profile mechanism has been significantly im-
proved compared to the beginnings of UML [18]. In particular, a profile modeling
language has been incorporated in the UML language family to precisely define how
profiles are applied on UML models. Figure 2b depicts the core elements of UML’s
Profiles package and relates them to the Classes package of UML. As the Ste-
reotype metaclass specializes the Class metaclass, it inherits modeling capabil-
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ities such as properties. Defined stereotypes reference the metaclasses that are ex-
tended by the Extension relationships. The ExtensionEnd realizes the reference
from the extended metaclass back to the Stereotype. Similar to Annotation-
Types, Stereotypes are identified by a name property, and modified by an op-
tional visibility and the mandatory isAbstract property.

To demonstrate the relationship between annotations and stereotypes, we set the fo-
cus on the Order class of the JPA-based PSM in Figure 1. Listing 1.1 shows the appli-
cation of the Entity annotation type to the Order class whereas Listing 1.2 depicts
the respective declaration at the programming level.

Listing 1.1. Application of Entity

package . . . ;
import javax .persistence . Entity ;

@Enti ty (name = "Order" )
p u b l i c c l a s s Order {

. . .
}

Listing 1.2. Declaration of Entity

package javax . persistence ;
import java .lang . annotation . ∗ ;

@Target (ElementType .TYPE )
p u b l i c @inter face Entity {
String name ( ) d e f a u l t "" ;

}

The corresponding UML-based representation is presented in Figure 3, which demon-
strates the stereotype application to the Order class and the Entity declaration by
a Stereotype. Similarly, at the package-level, the UML profile, which covers the
Entity stereotype needs to be applied to the Order’s package as a prerequisite for
the stereotype application. To ensure that the Entity stereotype provides at least sim-
ilar capabilities as the corresponding annotation type, the extension relationship ref-
erences the UML metaclass Type. Furthermore, the stereotype comprises a property
corresponding to the annotation type element name of the Entity.

«Metaclass»
Type

«Stereotype»
Entity

name : String = "" [0..1]

«Profile»
javax.persistence

«Entity»
Order

«Entity»
name = “Order"

«Profile Application»

«Stereotype Application»
……

Fig. 3. Application and Definition of Entity Stereotype

3 UML Profile Generation from Annotation-Based Java Libraries

We start our investigation for generating UML profiles from annotation-based Java li-
braries by presenting the process of JUMP, as shown in Figure 4. The entry-point to
JUMP is Java Code that is translated into a corresponding Code Model, which is con-
sidered as a one-to-one representation of Java Code, i.e., the transition from a text-based
to a model-based representation expressed in terms of MOF [35]/EMF [14]. The Code
Model is the basis for generating a UML Profile, which facilitates to capture Java anno-
tation type declarations in terms of UML stereotypes (cf. middle of Figure 4). In turn,
they serve as foundation to apply profiles as an annotation mechanism [42]. In case of
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reverse-engineering Java Code (cf. left hand side of Figure 4), the Profiled UML Model
results from applying profiles to the generated UML Model, where the Code Model
covers the annotated elements that indicate to which elements of the UML Model the
corresponding stereotypes are applied. Similarly, in case of forward-engineering Java
Code (cf. right hand side of Figure 4), profiles are applied to the UML Model even
though, in this case, the Profiled UML Model serves as input for generating the Code
Model from which Java Code is extracted. Bridging the two technical spaces [25] we
are confronted with, i.e., GrammarWare (GW) [27] and ModelWare (MW) [30], is re-
quired for the two scenarios as well as JUMP.

3.1 Bridging Technical Spaces

Transforming plain Java code into a UML-based representation requires overcoming the
different encoding and resolving language heterogeneities. Concerning the first aspect,
the Java code needs to be encoded according to the format imposed by the modeling
environment [5]. Concerning the second aspect, a bridge between Java and UML based
on translations requires a conceptual mapping between the two languages. Instead of
directly translating plain Java code into a UML-based representation, the use of a two-
step approach is preferable [24], which is also applied by JUMP. In a first step, Java
Code is translated into a Code Model that uses Java terminology and structures con-
forming to the Java metamodel provided by MoDisco [9]. This Code Model is the basis
for generating UML profiles and input for the second step that is dedicated to resolving
language heterogeneities by relying on the correspondences between the Java and UML
metamodels.

3.2 Generating UML Profiles

To facilitate the generation of UML profiles, we present a conceptual mapping between
Java’s annotation concept and the concept of profiles in UML. Thereby, stereotypes play
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a vital role for representing annotation types at the modeling level as they enable their
application in a controlled UML standard-compliant way. From a language engineer-
ing perspective, stereotypes only extend the required UML metaclasses and facilitate
defining constraints and model operations, such as model analysis or transformations,
because they can directly be used in terms of explicit types similar to a metaclass in
UML. Our proposed mapping is generic in the sense that any declared annotation type
can be represented by a stereotype.

Table 1. Mappings between Java Annotations and UML Profiles

Java Concept UML Concept

AnnotationType a add Stereotype s

   a.name   s.name = a.name
   a.annotationTypeElement add Property p for each AnnotationTypeElement in a.annotationTypeElement

  switch(a.modifier)
case : public s.visibility = public
case : abstract   s.isAbstract = false

    case : annotation an and

              not an.type = Target
apply Stereotype for an.type to s

    case : annotation an and

an.type = Target
  add Property p for each ElementType in a.target
    p.name = "base_".concat(p.type) 
add Extension e for each ElementType in a.target

    e.metaClass = p.type
add ExtensionEnd f

      f.type = s
    switch(a.target)
        case : AnnotationType     p.type = Stereotype
        case : Constructor     p.type = Operation

add Constraint {self.base_Operation.oclIsDefined() implies

self.base_Operation.name =
      self.base_Operation.oclContainer().oclAsType(uml::Classifier).name}

        case : Field     p.type = {EnumerationLiteral, Property}
        case : LocaleVariable     p.type = Property
        case : Method     p.type = {Operation, Property}

add Constraint {self.base_Property.oclIsDefined() implies

self.base_Property.oclContainer().oclIsTypeOf(uml::Stereotype)}
        case : Package     p.type = Package
        case : Parameter     p.type = Parameter
        case : Type     p.type = Type

add Constraint {self.base_Type.oclIsDefined() implies

Set{uml::Stereotype,uml::Class,uml::Enumeration,uml::Interface} ->
      includes(self.base_Type.oclType())}

        case : none -- no Property p needed 
        case : all     p.type =  {Class, Enumeration, Interface, Operation, Package,

                        Parameter, Property, Stereotype}

AnnotationElementType a add Property p

  a.name   p.name = a.name

  a.default   p.default = a.default

  switch(a.modifier)
case : public p.visibility = public
case : abstract -- no corresponding feature

    case : annotation an   apply Stereotype for an.type to p

switch(a.type)
case : PrimitiveType   p.type = uml::PrimitiveType for a.type
case : Class   p.type = uml::Class 
case : Class<T>   p.type = uml::Class 

apply javaProfile::JGenericType Stereotype to p
  case : EnumType   p.type = uml::Enumeration
case : AnnotationType   p.type = uml::Stereotype
case : ArrayType -- infer lower and upper bound multiplicities
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AnnotationType → Stereotype. The mapping presented in the upper part of Table 1
serves as a basis to generate a Stereotype from an AnnotationType. Thereby,
not only its signature needs to be considered but also Java’s Target meta-annotation.
It determines the set of code elements an annotation type is applicable to. The name
and, with two exceptions, the defined modifiers of an AnnotationType can
straightforwardly be mapped to UML. First, the abstract modifier would lead to
Stereotypes that cannot be instantiated if directly mapped. The problem is caused
by Java’s language definition. Although the abstract modifier is supported to facil-
itate one common type declaration production rule, it does not restrict the application
of AnnotationTypes. To ensure the same behavior on the UML level, we never
declare a Stereotype to be abstract. Second, because annotations are considered as
modifiers, it needs to be ensured that the Target annotation is properly treated. In fact,
the defined set of Java ElementTypes determines the required set of Extensions
to UML meta-classes that specify the application context of the stereotypes.

Generally, most Java ElementTypes correspond well to one or more UML meta-
classes. Still, constraints are required for some ElementTypes to precisely restrict
the application scope of the generatedStereotype according to their intention. UML
does not explicitly support a constructor meta-class. The workaround is to map the
Constructor to Operation and introduce a constraint that emulates the naming
convention for constructors in Java. Note that annotation types can have several target
types. Thus, before validating the OCL constraint, we have to check which target is ac-
tually used in the application. Similarly, the mapping of Java methods to UML requires
a constraint as a declared method of an AnnotationType, i.e., Annotation-
TypeElement, is mapped to a Property rather than an Operation in UML.
This is because such methods do not provide a custom realization but merely return
their assigned value when they get called. Properties in UML provide exactly this
behavior. Hence, the constraint ensures that stereotypes generated from annotation types
that target Java methods are applicable also to Property if they are contained by a
Stereotype. Finally, we use a constraint to overcome the heterogeneity of Java’s and
UML’s scope of Type. Consequently, stereotypes that extend Type are constrained
to those elements that correspond to the set of elements generalized by Java’s Type:
AnnotationType, Class, Enumeration and Interface. The clear benefit of
this approach is a smaller number of generated extension relationships between stereo-
types and meta-classes in the profile.

AnnotationTypeElement → Property. AnnotationTypeElements are mapped
to Properties as depicted in the lower part of Table 1. Except for the fact that UML
properties cannot be defined as abstract, AnnotationTypeElements straightfor-
wardly correspond to Properties. As AnnotationTypes in Java cannot explic-
itly inherit from super-annotations, the abstract modifier is rarely used in practice.
To fully support all return types of AnnotationTypeElements, we introduce a
Stereotype to properly address the fact that java.lang.Class provides generic
capabilities, which is not the case for UML’s meta-class Class. Hence, we apply our
custom JGenericType stereotype to properties with return type Class<T>.
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4 Implementation and Collected Profiles

To show the feasibility of JUMP, we implemented a prototype based on the Eclipse
ecosystem. We developed three transformation chains— JavaCode2UMLProfile, Java-
Code2ProfiledUML, and ProfiledUML2JavaCode—to realize JUMP and the RE and FE
scenarios introduced in Figure 1. For injecting Java Code, we employed MoDisco [9].
Hence, JUMP can be considered as a model discoverer to extract UML profiles from
Java libraries. To realize the FE scenario, we extended the Java-based transformer pro-
vided by Obeo Network2. The prototype and the collection of profiles that we have
generated for the evaluation of JUMP is available at the UML-Profile-Store [43]. It cov-
ers 20 profiles, comprising in total over 700 stereotypes. To share these profiles with
existing community portals, we submitted them also to ReMoDD [16].

5 Evaluation

The evaluation of JUMP is twofold. First, we compare it with existing modeling tools
regarding their representational capabilities for dealing with the declaration and appli-
cation of Java annotation types. Second, we compare UML profiles automatically gen-
erated by JUMP with UML profiles delivered by IBM’s Rational Software Architect.
Thereby, our focus is on estimating the quality of the generated UML profiles.

5.1 Methodological Evaluation

As several commercial and open-source modeling tools provide modeling capabilities
for UML and the Java platform, the aim of this study is to investigate on their methods
for dealing with the application and declaration of annotations. For that reason, we set
the focus on a Java-based reverse-engineering example that includes annotations and
their declarations. We aim to answer the following research question (RQ1).

RQ1: What are the methods of current modeling tools to represent Java annotation
types and their applications in UML and what are the practical implications?

To answer RQ1, we define a set of comparison criteria that mainly address (i) how
the conceptual mapping between Java and UML for annotations is achieved by cur-
rent modeling tools and (ii) the generative capabilities of these tools regarding profiles.
Based on the defined criteria, we evaluate six representative modeling tools and JUMP.

Comparison Criteria. As there are different approaches on how annotation types and
their applications are represented at the modeling level, the first and the second compar-
ison criteria (CC1 and CC2) refer exactly to these extensional capabilities. The third
criterion (CC3) refers to the support of generative capabilities regarding profiles.

−CC1 : How are Java annotations applied to UML models?
−CC2 : How are Java annotation type declarations represented in UML?
−CC3 : Is the generation of UML profiles from Java code supported?

Selected Tools. We selected six major industrial modeling tools that claim to sup-
port reverse engineering capabilities for Java and UML, as summarized in Table 2.

Evaluation Procedure. We defined a simple reference application [43] that declares

2 http://marketplace.eclipse.org/content/uml-java-generator

http://marketplace.eclipse.org/content/uml-java-generator
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a Java class to which we applied an annotation type from an external library. For the
purpose of importing the application, we activated the offered functionality of the mod-
eling tools required for a reverse-engineering scenario from Java to UML. While some
of the modeling tools are delivered with standard configurations, other modeling tools
allow configurations to change the reverse-engineering capabilities by using specific
wizards. Moreover, some modeling tools go one step further and allow modifications
on the transformation scripts used for the import of Java code. We evaluated the capa-
bilities of the modeling tools offered in the standard settings and explored the different
wizard configurations if supported, but we restrained from modifying transformation
scripts.

Results. The results of our comparison are summarized in Table 2. Regarding the
mapping between Java annotations and UML, we identified that the investigated mod-
eling tools apply one of three significantly different approaches: (i) annotations are
considered as a built-in feature of the modeling tool, (ii) a generic profile for Java is
provided, which enables capturing annotations and their type declarations, and (iii)
profiles are offered, which are specific to a Java library or even an application with cus-
tom annotation type declarations. Modeling tools with built-in support for annotations
allow their application to arbitrary elements and so to UML elements. Clearly, such
an approach facilitates to capture Java annotations, though the type declaration of the
annotation in terms of a UML element and its application are not connected. The gener-
icity of this approach, which goes beyond UML models, is clearly one reason for such
a behavior. Providing a generic profile for Java means that the modeling tool emulates
the representational capabilities of Java, which includes annotations. Although with this
approach, the connection of annotation type declarations and their applications can be
ensured, the native support of UML for annotating elements with stereotypes is still ne-
glected. However, explicitly defined stereotypes for declared annotation types facilitate
their reuse in a UML standard-compliant way and allow model operations to directly
exploit them. With specific profiles for Java annotation types, these drawbacks can be
overcome. While all evaluated modeling tools provide support for generating profiled
UML class diagrams, none of them is capable of generating profiles from Java code.

Table 2. Comparison Results

Name Version Availability
Visual Paradigm
www.visual paradigm.com 10.2

commercial
free community edition Built in Tool Feature Class

Rational Software Architect
www.ibm.com/developerworks/rational/products/rsa

8.5.1
commerical
free for academice use

Specific Profiles Stereotype

Magic Draw
www.nomagic.com 17.0.4

commerical
free trial version Generic Java Profile Interface

Enterprise Architect
www.sparxsystems.com 9.3

commerical
free for academice use Built in Tool Feature Interface

Altova UML
www.altova.com/umodel.html 2013

commerical
free for academice use Generic Java Profile Interface

ArgoUML
argouml.tigris.org 0.34 open source Generic Java Profile Interface

JUMP 1.0.0 open source Specific Profiles Stereotype +

UML Profile
Generation

Mapping (Java > UML)
Modeling Tool Annotation

Application
Annotation
Declaration
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5.2 Quality Evaluation

As UML profiles are already offered by current modeling tools, the aim of this study
is to investigate their quality in comparison with profiles automatically generated by
JUMP. For that reason, we conducted a positivist case study [32] based on real-world
Java libraries to evaluate the commonalities and differences between generated profiles
and profiles used in practice by following the guidelines of Roneson and Hörst [41]. In
this study, we aim to answer the following research question (RQ2).

RQ2: How is the quality of UML profiles automatically generated from annotation-
based Java libraries compared to UML profiles used in practice?

To answer RQ2, we define the requirements of the case study, briefly mention the
used Java libraries, and specify the measures based on which the comparison is con-
ducted. Then, we discuss the results of our study not only from a syntactic perspec-
tive, but also from a semantic one. The rationale behind this two-step approach is that
even though a syntactical matching process for comparing the profiles provides already
valuable results, some interesting correspondences may still be uncovered because of
potential syntactical and structural heterogeneities [46] between the compared profiles
and the conservative matching strategy applied for the syntactical comparison.

Case-Study Design. To conduct this study, the source code of Java libraries that ex-
ploit annotations is required. Furthermore, we require existing profiles that claim to
support the selected Java libraries at the modeling level. To accomplish an appropriate
coverage of different scenarios, the selected Java libraries ideally comprise different
intrinsic properties with respect to the design complexity and exploited language ele-
ments. Unfortunately, profiles specific to Java libraries in reasonable quality are rarely
available. Consequently, in the process of selecting the Java libraries for this study,
we were also confronted with the actual offering of modeling tools. IBM’s Rational
Software Architect (RSA) is obviously close to JUMP and offers several profiles of
well-known Java libraries mainly for code generation purposes. Thus, we conducted
this study by relying on profiles of RSA in version 8.5.1. We selected four established
Java libraries for which the source code is available and a corresponding RSA profile
in the same major version is offered: Java Persistence API (JPA), Enterprise Java Beans
(EJB), Struts and Hibernate. RSA offers them in a UML standard-compliant way. Con-
sequently, we could directly compare them without an intermediate conversion step.
All the case-study data including the Java libraries and the profiles are available at our
project web site [43].

Case-Study Measures. The measures used in the case study are based on model
comparison techniques [29]. Thus, we are interested in equivalent elements that reside
in our generated profiles and in the RSA profiles, elements that reside in both solutions
but still show differences in their features, and elements that are only available in one
of the compared solutions. The measures for estimating the quality of the generated
profiles are collected in a two-step matching process. While the first step automatically
collects measures based on syntactic model comparison, the second step relies on man-
ually processing differences produced in the first step to deal with semantic aspects.

In the syntactic model comparison, we compute the following measures for cer-
tain model elements. To determine element correspondences, we employ as match-
ing heuristic name equivalence, i.e., only if two elements have completely the same
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name, they are considered to be corresponding. If an element has no name, such as the
Extension relationship, it is considered that the elements are corresponding if their
source and target elements correspond. Finally, fine grained comparison of the feature
values for the given elements is performed. Regarding model elements, we set the focus
on (i) Stereotypes that are common to both and unique either to JUMP or RSA,
(ii) differences regarding the Extensions of common Stereotypes, and (iii)
differences regarding the Properties such Stereotypes cover.

In the semantic model comparison, we take the syntactical differences as input and
aim at finding additional correspondences between elements which are hardly explored
by a pure syntactic comparison due to the conservative matching strategy. We investi-
gate unmatched elements, especially stereotypes, in our generated profiles and in the
RSA profiles, and reason about possible element correspondences beyond String equiv-
alences. Finally, in the semantic processing, we further evaluate the correspondences
found in the first phase due to the potential syntactical and structural heterogeneities.

Results. We now present the results of applying JUMP to the four selected Java
libraries and compare them to the profiles offered by RSA. The full results are also
available at our project web site [43]. The absolute number of generated stereotypes
by JUMP and the provided ones by RSA are depicted in Figure 5a. Figure 5b summa-
rizes (i) the number of stereotypes generated by JUMP but not covered by the RSA
profiles, (ii) the number of stereotypes that are exclusively covered by the RSA pro-
files, and (iii) the number of stereotypes that are common to both. These results in-
clude correspondences between stereotypes detected throughout the syntactic and se-
mantic comparison. For instance, the EJB profile of RSA covers stereotypes that refer
to the @Local and @Remote annotations of the EJB library, though their signature
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additionally contains the substring “Interface”. Another example refers to the class
QueryHint in the JPA profile of RSA, which is in fact an annotation type in the JPA
library. In our solution, the QueryHint is represented by a stereotype even though it is
also valid to use a class instead, because the QueryHint can not actually be applied,
but can rather only be used inside of another annotation. Although some stereotypes
in the set of common ones show differences regarding the meta-classes they extend,
we granted them to be equal if the extended meta-classes are related by a generalization
relationship. We encountered this case in the EJB and the JPA library with respect to ex-
tensions of the meta-classes Type and Class. Stereotypes generated by JUMP extend
the more general meta-class Type because the scope of Java’s element type Type also
covers Enumeration, Interface and AnnotationType in addition to Class.

The comparison regarding extensions of stereotypes common to both JUMP and
RSA is summarized in Figure 5c. In a few cases, the RSA profiles comprise extensions
to the UML meta-class Association to allow stereotypes on associations between
elements rather than on properties contained by associations. Although both modeling
variants are valid, we adhere to the second one as it is more accurate w.r.t. the target
specifications of the original annotation type declarations.

Finally, in Figure 5d, the differences regarding the properties of common stereotypes
are presented. Except for the JPA profile, we cover all stereotype properties of the RSA
profiles. Consequently, our profiles are more complete. The main reason for missing
properties in our JPA profile seems to be that RSA provides additional properties for
code generation purposes, but these properties are not covered by the JPA library.

Discussion. In this study, we have demonstrated that automatically generated UML
profiles from Java libraries comprise a more comprehensive set of stereotypes and fea-
tures compared to profiles used in practice for the purpose of supporting such libraries.
Clearly, the purpose of the developed profiles plays an important role. From a forward-
engineering perspective, one may argue that the set of stereotypes, which is actually
supported by the accompanying code generators is reasonable to capture at the mod-
eling level. In fact, RSA offers code generation capabilities specific to the profiles we
have evaluated in this study. However, for unsupported annotations, which have no cor-
responding stereotypes, code generators may only produce program code by conven-
tions without allowing developers to intervene in this generation process at the model-
ing level. From a reverse-engineering perspective, we would lose relevant information at
the modeling level if offered profiles provide less capabilities compared to the program-
ming level, which is, however, the case for RSA profiles. Hence, with a fully automated
approach, the quality of current profiles can be improved by providing more complete
stereotypes that precisely capture the intention of the original annotation types in terms
of target definitions, member declarations and return values of such members.

Threats to Validity. There are two main threats that may jeopardize the internal va-
lidity of this study. First, we consider only profiles from RSA. The main reason for this
procedure is that RSA applies a similar approach as JUMP and offers specific UML
profiles for Java libraries. Furthermore, RSA offers standard-compliant UML profiles
that conform to the same UML 2 metamodel implementation as used in JUMP. Second,
it may be possible that we missed correspondences between elements of the profiles in-
volved in the study. Several kinds of heterogeneities [46] exist that are real challenges
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for model matching algorithms and, thus, may affect the results of our study. However,
by applying a two-step matching process which includes a syntactic as well as semantic
comparison phase, we tried to minimize the possibility of missing correspondences as a
result of different naming conventions and modeling styles. While in the first phase we
used a quite conservative matching strategy to avoid false positives, we applied a rather
liberal strategy in the second phase to avoid losing potential correspondences.

Concerning external validity, JUMP sets the focus on Java annotations. Many li-
braries embrace them and real-world cases provide validity for annotated Java code [39].
However, we cannot claim any results outside of Java.

6 Related Work

We investigated three lines of research: (i) mappings between Java and UML, (ii) gen-
eration of UML profiles and (iii) metamodel generation from programming libraries.

Mapping Java and UML. The elaboration on the mapping between Java and UML
has a long tradition in software engineering research [15, 23, 28, 33]. Round-trip engi-
neering for UML and Java has been extensively studied in the context of the develop-
ment of FUJABA [33]. One particular concept of UML that received much attention in
the context of Java code generation is the association concept [2,20,21]. However, none
of these mentioned approaches consider the transformation of annotation types and their
applications from Java to UML. The only exception is the mTurnpike approach [44] that
considers Java annotations at the modeling level. Thereby, round-trip transformations
between UML models and Java code are realized by considering stereotypes and an-
notations in the transformations. In contrast, JUMP sets the focus on the automated
generation of UML profiles that facilitate round-trip transformations or transformations
in general. Besides academic efforts, today’s modeling tools support the transformation
of Java code to UML models, and vice versa. Their current capabilities and limitations
w.r.t. JUMP are discussed in Section 5.1.

Generating UML Profiles. The only area we are aware of approaches that deal with
the automated generation of profiles, is concerned with bridging the gap between MOF-
based metamodels and UML’s profile mechanism, which is also related to the discussion
of an external DSMLs vs. internal DSMLs in UML. Several papers discuss the pros and
cons of these approaches(e.g., [42]) and their combination (e.g., [45]). The visualiza-
tion of domain-specific models in UML with profiles is discussed in [22]. Abouzahra
et al. [1] present an approach for interoperability of UML models and DSML models
based on mappings between the DSML metamodel and the UML profile. Brucker and
Doser [8] go one step further and propose an approach for extending a DSML meta-
model for deriving model transformations able to transform DSML models into UML
models that are automatically annotated with stereotypes. A related approach is pre-
sented in [47], where mappings between the UML metamodel and a DSML metamodel
are defined and processed to generate UML profiles for the given DSMLs.

Generating Metamodels. To the best of our knowledge, there is only one automated
approach for generating modeling languages from programming libraries—all other
automated approaches that deal with exploring libraries, such as [9], set their focus
on the generation of domain models rather than a language. API2MoL [11] deals with
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generating metamodels based on Ecore [14] from Java APIs as well as models con-
forming to the generated metamodels for Java objects instantiated from the Java APIs,
and vice versa. As a result, an external Domain-Specific Modeling Language (DSML)
is generated from a Java API. While the general idea and motivation of the API2MoL
approach is comparable to JUMP, there is a significant difference on how the DSML is
realized. JUMP targets UML modelers that are familiar with UML class diagrams and
generates internal DSMLs by exploiting the language-inherent extension mechanism
of UML, i.e., UML Profiles. Furthermore, annotations are not explicitly considered in
the metamodel generation process of API2MoL. One possible reason for neglecting
them is that standard versions of current meta-modeling languages, such as Ecore, do
not support language-inherent extension mechanisms out-of-the-box [31]. Antkiewicz
et al. [3] present a methodology for creating framework-specific modeling languages.
While we aim for an automated approach, Antkiewicz et al. use a manual one to create
the metamodel and the transformations between model instances and instantiated ob-
jects of the frameworks. Again, annotations are not captured by the created languages.
When considering the term modeling language in a broader scope, research of related
fields consider ontologies as a kind of (meta-)model [19]. In particular, research on
ontology extraction from different artifacts is commonly subsumed under the term on-
tology learning [13]. We are aware of only one approach for extracting ontologies from
APIs [40], which neglects, however, also annotations.

To summarize, JUMP is—to the best of our knowledge—the first approach to gen-
erate standard-compliant UML profiles from Java libraries that exploit annotations.

7 Conclusion

With JUMP, we proposed an approach to close the gap between programming and mod-
eling concerning annotation mechanisms. Thereby, we set the focus on the “Java2UML”
case and demonstrated the feasibility of JUMP by generating high-quality UML pro-
files for numerous Java libraries and applied them in practical reverse-engineering and
forward-engineering scenarios. The results gained by our evaluation seem promising.
Still, a number of future challenges remain to further integrate programming and model-
ing. Some interesting differences between Java annotations and UML profiles remain to
be explored. On the UML side, inheritance between stereotypes is possible, a concept
that is not supported by Java for annotation types. Thus, the design quality of auto-
matically generated UML profiles can be enhanced by exploiting inheritance. On the
Java side, retention policies determine at which stages annotations are accessible. UML
stereotypes are considered only at design-time. Therefore, an interesting line of future
work is to support stereotype applications also during run-time, which becomes espe-
cially interesting for executable models, a research area that is currently experiencing
its renaissance by the emergence of the FUML standard [34]. Furthermore, we plan to
study the support of annotations in other programming languages, e.g., by investigating
attributes in C# and decorators in Python, and how these concepts corresponds to UML
profiles. Finally, as we set the focus in this work to platform-specific profiles, we plan to
extend this scope to profiles that capture annotations independent of platforms, thereby
shifting their application to a more conceptual level.
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Abstract. Model manipulation environments automate model opera-
tions such as model consistency checking and model transformation.
A number of external model manipulation Domain-Specific Languages
(DSL) have been proposed, in particular for the Eclipse Modeling Frame-
work (EMF). While their higher levels of abstraction result in gains in
expressiveness over general-purpose languages, their limitations in ver-
satility, performance, and tool support together with the need to learn
new languages may significantly contribute to accidental complexities.

In this paper, we present Sigma, a family of internal DSLs embed-
ded in Scala for EMF model consistency checking, model-to-model and
model-to-text transformations. It combines the benefits of external model
manipulation DSLs with general-purpose programming taking full ad-
vantage of Scala versatility, performance and tool support. The DSLs are
compared to the state-of-the-art Epsilon languages in non-trivial model
manipulation tasks that resulted in 20% to 70% reduction in code size
and significantly better performance.

1 Introduction

Model manipulation languages and tools provide support for automating model
operations such as model consistency checking, and model-to-model (M2M) and
model-to-text (M2T) transformations [41]. A number of different model manip-
ulation technologies have been proposed, particularly within the Eclipse Mod-
eling Framework (EMF) [43]. The EMF models can be manipulated directly in
Java, however, a General Purpose Programming Language (GPL) such as Java
does not conveniently express model manipulation concepts and the loss of ab-
straction can give rise to accidental complexities [40]. Therefore, a number of
external Domain-Specific Languages (DSLs) for EMF model manipulation have
been proposed, e.g., the OMG standards including OCL [34] for navigating and
expressing constraints on models, QVT [33] and MOFM2T [32] for model trans-
formation; the Epsilon project [36] with an extensive family of model manipu-
lation DSLs; Kermeta [31], a single, but more general imperative language for
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c© Springer International Publishing Switzerland 2014
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all model manipulation tasks; and ATL [20], a M2M transformation language.
External model manipulation DSLs provide language constructs that allow de-
velopers to manipulate models using higher-level abstractions. This should result
in higher expressiveness and ease of use in comparison to GPLs [29].

However, there are several impediments to such approaches. Even for a simple
model manipulation task users have to learn one or more new languages and
tools, which may require considerable effort [11]. Users might feel limited by the
more specific, but less versatile language constructs, by the language execution
performance or by the provided support tools [18]. In most cases the languages
build on a subset of OCL concepts for model navigation and model consistency
checking. Despite that, there are well known inconsistencies, interoperability and
reusability issues among these languages [22,23]. Finally, the large dependency
stacks associated with these languages can make their integration into existing
software projects rather challenging.

A notable exception is the Epsilon project, which alleviates some of these
issues. Epsilon provides an extensive family of model management languages
and tools such as Epsilon Validation Language (EVL) [24], Epsilon Transforma-
tion Language (ETL) [22], and Epsilon Generation Language (EGL) [38]. These
task-specific languages are based on a common OCL-like expression language
called EOL [23]. While this currently makes it one of the most complete lan-
guage workbenches for model manipulations, we identify several shortcomings.
EOL is a dynamically typed language, providing little compile time checking.
Consequently, IDE features such as content assists, static checking or refactor-
ing are rather basic in comparison to what is provided by the other approaches
that use static typing. EOL lacks certain programming constructs that makes
the code unnecessary lengthy in particular in the case of non-trivial model ma-
nipulations. Moreover, Epsilon DSLs are interpreted and their performance is an
order of magnitude slower than the compiled languages, but they are also slower
than the Eclipse implementation of the OMG stack [25]. As a result, these short-
comings also give rise to some accidental complexities, albeit of a different nature
than those associated with GPLs.

These issues are not easy to alleviate. The need to provide a lot of GPL-
like constructs together with the necessity of some level of Java interoperability
make the external DSLs large and complex. Evolving and maintaining complex
DSLs is known to be hard since it not only requires domain knowledge and
language development expertise, but also involves significant language and tool
engineering effort [29,13]. In this paper we propose an alternative internal DSL
approach whereby model manipulation constructs are embedded into a GPL.
The intent is to provide an approach that developers can use to implement
many of the practical EMF model manipulations within a familiar environment
with reduced learning overhead and improved usability.

An internal DSL leverages the constructs and tools of its host language. For
this approach to be effective, the host GPL must be flexible enough to allow
definition of domain-specific constructs. We thus use Scala [35], a statically typed
object-oriented and functional programming language, to implement a family
of internal DSLs, called Sigma [28], for model consistency checking and model
transformations. In this paper, our contribution is to evaluate the resulting DSLs,
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comparing their expressiveness and features to corresponding Epsilon DSLs in
several non-trivial model manipulation tasks. We observe this results in 20% to
70% reduction in code size and significantly better performance.

The remainder of the paper is organized as follows. In Section 2 we give a
quick overview of the Sigma languages family. Section 3 develops the common
infrastructure for model navigation and modification. This is used for model
consistency checking described in Section 4, M2M transformations described
in Section 5 and M2T transformations described in Section 6. In Section 7,
we overview the current implementation and provide an evaluation of Sigma.
Finally Section 8 discusses related work and Section 9 concludes the paper.

2 SIGMA Overview

Sigma is a family of internal DSLs for model manipulation that were created
with the aim to alleviate some of the main limitations of the currently pro-
posed approaches. It is thus not proposing new concepts in model manipula-
tion languages, but instead providing the existing concepts with the following
main requirements: (1) Epsilon-like features and expressiveness, (2) competi-
tive performance, (3) usable tool support, (4) simple testability with existing unit
frameworks, and (5) simple integration into existing EMF projects. We chose
Epsilon since it represents the state-of-the-art model manipulation languages
with proven features essential for usable model manipulation. Furthermore, it is
also presented as an approach that addresses most of the shortcomings of the
other external model manipulation DSLs (details in Kolovos et al. [22,24,23] and
Rose et al. [38]).

Sigma DSLs are embedded in Scala [35], a statically typed production-ready
GPL that supports both object-oriented and functional style of programming.
It uses type inference to combine static type safety with a “look and feel” close
to dynamically typed languages. It is interoperable with Java and it has been
designed to host internal DSLs [13]. Furthermore, it is supported by the major
integrated development environments.

A typical way of embedding a shallow DSL into Scala is by designing a library
that allows one to write fragments of code with domain-specific syntax. These
fragments are woven within Scala own syntax so that it appears different [16].
Next to Scala flexible syntax (e.g. omitting semicolons and dots in method invo-
cations, infix operator syntax for method calls, etc.), it has a number of features
simplifying DSL embedding such as implicit type conversions allowing one to
extend existing types with new methods, mixin-class composition (i.e. reusing
a partial class definition in a new class) [35], and lifting static source infor-
mation with implicit resolutions to customize error messages in terms of the
domain-specific extensions using annotations [30]. Furthermore, Scala supports
compile-time meta-programming allowing for code self-optimization and to re-
duce boilerplate code generation.

Figure 1 depicts the general organization of the Sigma DSLs. The use of EMF
models in Sigma is facilitated by a dedicated support layer that underneath
uses the default EMF generated Java classes and the EMF API (implementa-
tion details are given in Section 7.1). This layer provides a convenient model



572 F. Křikava, P. Collet, and R.B. France

Sigma

Eclipse Modeling Framework (EMF)

S
ca

la

Sigma EMF to Scala Support

Model Navigation

Model-to-Model Transformation

Model Consistency Checking

Model Modification

Model-to-Text Transformation
te
ch

no
lo
gy

-s
pe

cifi
c

dr
ive

r
ta
sk

-s
pe

cifi
c

lan
gu

ag
es

provides

uses

uses

section 3

section 4

section 5

section 6

section 7.1

Fig. 1. Sigma EMF to Scala Support

navigation and modification support forming a common infrastructure for the
task-specific internal DSLs. While currently Sigma targets the EMF platform,
other meta-modeling platforms could be used since the task-specific languages
are technology agnostic (cf. Section 7.1).

In the following sections we detail the common infrastructure and the differ-
ent task-specific DSLs. We deliberately skip some technical details about how
certain DSL constructs are implemented. The complete examples with further
documentation are available at the project web site [8]. For illustration purposes,
in the following sections we consider a simplified Object-Oriented (OO) model
(cf. companion web page [4]).

3 Common Infrastructure

Essentially, any model manipulation technique is based on a set of basic opera-
tions for model navigation (e.g. projecting information from models) and mod-
ification (e.g. changing model properties or elements) [23]. In this section we
show their realization in Sigma for EMF based models. Implementation details
are discussed in Section 7.1.

Model Navigation. The model navigation support provides OCL-like expres-
sions for convenient model querying. For example, retrieving names of all OO
package elements stereotyped as singletons can be expressed using the following
OCL query:

let singletons = pkg.ownedElements
->select(e | e.stereotypes->exists(s | s.name = ’singleton’))->collect(e | e.name)

In Sigma, the very same query can be expressed almost identically to OCL:

val singletons = pkg.ownedElements
.filter(e => e.stereotypes exists (s => s.name == "singleton")).map(e => e.name)
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In both versions the singletons type is inferred from the expression.
While navigating models, one often need to filter the types of the objects to

be kept during navigation. For example, selecting the operations of a package
abstract classes corresponds to the following OCL expression:

pkg.ownedElements
->select(e | e.oclIsKindOf(Class) and e.oclAsType(Class).abstract = true)
->collect(e.oclAsType(Class).operations)

This is rather verbose with the recurring pattern of oclIsKindOf/oclAsType,
which makes longer queries hard to read. Scala, on the other hand, provides sup-
port for pattern matching that can be used in combination with partial functions
to obtain the following Sigma code1:

pkg.ownedElements collect { case c: Class if c.abstract_ => c.operations }

In addition Sigma can also prevent null pointer exceptions when navigating
over potentially unset references and attributes (0..1 multiplicity). It wraps them
into Scala Option type, a container explicitly representing an optional value,
which consequently forces one to always check for the presence of the value.

Model Modification. The model modification support provides facilities for
seamless creation, updates and removal of model elements. By design, the OCL
does not have model modification capabilities, but in Epsilon for example, an
OO singleton class can be created using the code in Listing 1.1. Using Sigma
the same model instance is created in Listing 1.2.

var cls = new Class;
cls.name = "MyClass";

var singleton = new Stereotype;
singleton.name = "singleton";
cls.stereotypes.add(singleton);

var op = new Operation;
op.name = "getInstance";
op.returnType = cls;
cls.operations.add(author);

Listing 1.1. EOL

val cls = Class(name = "MyClass")
val singleton = Stereotype(name = "singleton")
cls.stereotypes += singleton

val op = Operation(name = "getInstance",
returnType = cls)

cls.features += op

Listing 1.2. Sigma

These methods provide a convenient way to author complete EMF models
directly in Scala. Additionally, Sigma provides support for delayed initialization
in the cases an element initialization should only happen after its containment,
and for lazy resolution of contained references2.

4 Model Consistency Checking

Model consistency checking provides facilities to capture structural constraints as
state invariants and to check model instances against these constraints. In OCL
or EVL, a structural constraint is a boolean query that determines whether a
model element or a relation between model elements satisfies certain restrictions.

1 The _ suffix to abstract is automatically added by the Sigma EMF support since
it is a Scala keyword.

2 Technical details at http://bit.ly/18javEY

http://bit.ly/18javEY
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For example, in the OO model, an invariant may represent a restriction that
within one package, there cannot be two classes having the same name. In Sigma,
such an invariant can be expressed as:

1 class ClassInvs extends ValidationContext with OOPackageSupport {
2 type Self = Class // context type
3

4 def invUniqueNamesWithinPackage =
5 self.pkg.ownedElements forall (e => e != self implies e.name != self.name)
6 }

Invariants are represented as regular Scala methods (line 4). They are organized
into a validation context class (line 1) that specifies a context type (line 2), i.e.,
the type of instances the invariants can be applied to. As in OCL, self represents
the current instance that is being checked. The OOPackageSupport trait (cf.
Section 7.1) mixes-in the Sigma EMF to Scala support for model navigation
and modification (line 1). By organizing invariants as methods in classes we can
simply reuse them through inheritance. Furthermore, it allows one to easily test
invariants using any of the Java unit testing frameworks.

Listing 1.3 shows an extended OO class validation with additional features. A
validation context class can narrow its applicability by providing a context guard
(line 4). Invariant violation can distinguish different severity levels such as errors
and warnings (line 10). In order to prevent meaningless evaluation of constraints
whose dependencies are not satisfied, invariants can also have guards (line 7).
Finally, a user can be provided with a feedback including a meaningful message
(line 10), as well as means to repair the inconsistency with change suggestions
over the affected model elements (line 11).

1 class ClassInvs extends ValidationContext with OOPackageSupport {
2 type Self = Class // context type
3

4 override def guard = self.annotations exists (_.name == "ignore") // context guard
5

6 def invUniqueNamesWithinPackage = guardedBy {
7 self satisfies invHasValidName // invariant guard
8 } check { // invariant body
9 self.pkg.ownedElements find (e => e != self && e.name == self.name) match {

10 case Some(c) => Error(s"Class $c has the name")
11 .quickFix("Rename ’${self.name}’ to ’${self.name}_2’") { self.name += "_2" }
12 case None => Passed
13 }
14 }
15

16 def invHasValidName = // ...
17 }

Listing 1.3. Example of model consistency checking

5 Model-to-Model Transformations

M2M transformations provide necessary support for translating models into
other models, essentially by mapping source model elements into correspond-
ing target model elements. An imperative style of M2M transformation [15]
is already supported thanks to the common infrastructure layer described in
Section 3. On the other hand, the lower level of abstraction of the imperative
transformation style leaves users to manually address issues such as orchestrating
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the transformation execution and resolving target elements against their source
counterparts [22]. Therefore, inspired by ETL and ATL, we provide a dedicated
internal DSL that combines the imperative features with declarative rule-based
execution scheme into a hybrid M2M transformation language.

Transformation rules constitute the abstract syntax of the M2M transforma-
tion DSL. Similarly to ETL or ATL, a rule defines a source and a target element
to which it transforms the source. It may optionally define additional targets,
but there is always one primary source to the target relation. A rule can also be
declared as lazy or abstract. Each non-lazy and non-abstract rule is executed for
all the source elements it is applicable. Lazy rules have to be called explicitly.
When a rule is executed, the transformation engine initially creates all the ex-
plicitly defined target elements and passes them to the rule that populates their
content using arbitrary Scala code. Similarly to consistency checking constraints,
transformation rules can optionally limit their applicability by defining a guard.

1 class OO2DB extends M2M with OOPackageSupport with DBPackageSupport {
2

3 def ruleClass2Table(cls: Class, tab: Table, pk: Column) {
4 // standard Scala
5 tab.name = cls.name
6 tab.columns += pk
7 pk.name = "Id"
8 pk.type_ = "Int"
9

10 // SIGMA specific: target elements resolution
11 tab.columns ++= cls.properties.sTarget[Column]
12 }
13

14 def ruleProperty2Column(prop: Property, col: Column) = guardedBy {
15 !prop.multi // prevent transformation of multi-valued properties
16 } transform {
17 col.name = prop.name.toUpperCase
18 col.type_ = prop.type_.name
19 }
20 }

Listing 1.4. Example of M2M transformation

Listings 1.4 illustrates the internal DSL using the traditional example of OO
model to database schema transformation3. A M2M transformation is a Scala
class that extends the M2M base class with the generated package support traits
for model navigation and modification (line 1). Transformation rules are rep-
resented by methods. For example, the ruleClass2Table denotes a rule that,
for a given class, produces a table and a column (line 3). Additional target ele-
ments can be constructed within the rule body, but in such a case a developer
is responsible for their proper containment.

During the M2M transformation, there is often the need to relate the target
elements that have been already (or can be) transformed from source elements.
For this purpose, Sigma provides a set of operations. An example is shown on
the line 6 where sTarget[Column] transforms class properties into columns. It
does that by looking up a rule with property-to-column mapping, which in this
case is the ruleProperty2Column rule. This operation can be applied both to

3 While it is a worn example, it enables one to easily compare to similar examples
provided by ETL and ATL cf. companion web page [4].
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a single instance as well as to a collection of model elements. Similarly, Sigma
includes support for resolving source elements from their corresponding targets.

6 Model-to-Text Transformations

M2T transformations translate models into text by mapping source model el-
ements into corresponding textual fragments. We focus on template-based ap-
proach whereby string patterns are extended with executable logic for code se-
lection and iterative expansion [15]. This approach is used by all the major M2T
transformation languages including EGL and MOFM2T. In model-driven soft-
ware development, the aim is to synthesize a running system implementation
and therefore our primary focus is on generating source code artifacts.

Unlike EGL and Acceleo, our internal DSL for M2T transformation is using
the code-explicit form, i.e., it is the output text instead of the transformation
code that is escaped. This is one of the syntax limitations that cannot be easily
overcome. On the other hand, from our experience, in non-trivial code gener-
ations, the quantity of text producing logic usually outweighs the text being
produced. For the parts where there is more text than logic we rely on Scala
multi-line string literals and string interpolations allowing one to embed variable
references and expressions directly into strings.

1 class OO2Java extends M2T with OOPackageSupport {
2 type M2TSource = Class // input type for transformation
3

4 def execute = !s"public class ${root.name}" curlyIndent {
5 for (o <- root.operations) {
6 genOperation(o) // call to another template
7 !endl // extra new line
8 }
9 }

10

11 def genOperation(o: Operation) =
12 !s"public ${o.retType.name} ${o.name}()" curlyIndent {
13 !s"""
14 // TODO: should be implemented
15 throw new UnsupportedOperationException("${o.name}");
16 """
17 }
18 }

Listing 1.5. Example of M2T transformation

Listing 1.5 shows an example of OO class to Java transformation4. Follow-
ing the same pattern, a M2T transformation is a Scala class extending from
the M2T base class (line 1). Line 2 defines the type of model element, i.e., the
transformation source. A M2T transformation consists in a set of templates that
are represented as methods (lines 4 and 11). The execute method is the entry
point, which will be invoked when the transformation is executed. Usually, from
there, a transformation is split and logically organized into smaller templates in
order to increase modularity and readability.

The most common operation in a M2T transformation is a text output. A
convenient way to output text in our DSL is through a unary ! (bang) operator

4 Similar examples are provided for both EGL and Acceleo cf. companion web page [4].
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that is provided on strings (e.g. line 4). The prefix s right before the string double
quote denotes an interpolated string, which can include Scala expressions in a
type-safe way.

An important aspect of any M2T transformation language is the template
readability, e.g., layout and indentation. The internal DSL maintains it through
dedicated support for decorators, smart whitespace handling and relaxed new-
lines. Decorators are nestable string operations that reformat a given block. For
example, on line 4 we use curlyIndent decorator, that wraps its body into a
pair of curly brackets and indent each line. Smart whitespace handler removes
extra whitespace from multi-line strings that are there only for the template
readability. For example the whitespaces prefixing the text on lines 14 and 15
will be discarded. Relaxed newlines loosen the necessity to output new line char-
acters by doing it automatically after every text output. Both smart whitespace
and newlines handlers are enabled by default, but can be turned off.

Finally, the DSL also allows one to fork new text sections. This makes it
possible to output text into different locations at the same time. All sections are
appropriately merged in the final text at the end of the transformation. This is
useful for example for handling imports while generating Java code, as they can
be resolved one-by-one during the model traversal.

7 Evaluation

Our aim is to propose an approach that improves the overall usability of model
manipulations through DSLs. However, defining usability of a DSLs and associ-
ated tool support tend to be subjective, since it largely depends on the prefer-
ences and background of its users [41] and its improvement cannot be measured
directly. Therefore, we structure the evaluation as follows. First we give details
about the implementation and current applications. Next, we compare Sigma
DSLs to their corresponding Epsilon counterparts with regard to implementa-
tion effort measured in terms of code size, performance and features. Finally, we
discuss the limitations of the approach and threats to validity.

7.1 Implementation

Sigma is implemented as a Scala library which is available from the project
website [8]. Its task-specific languages are all relying on a common infrastructure.

Common infrastructure. The common infrastructure aligns EMF generated
Java classes with Scala to enable use of model navigation and modification no-
tation similar to OCL and EOL. This involves (1) model navigation without
“get noise” (e.g. getSuperPackage.getName becomes superPackage.name),
and (2) promoting EMF collections to corresponding Scala collections to bene-
fit from convenient first-order logic operations (e.g., map, filter, collect) similar
to OCL. Both issues are addressed by generating extension traits5 that make
EMF model elements interoperable with Scala. These traits implicitly extend
all model classes with property accessors without the get prefix and convert

5 Technical details at http://bit.ly/18javEY

http://bit.ly/18javEY
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EMF collections into the corresponding Scala ones. The conversion only hap-
pens at the interface level leaving the underlying data storage unchanged. In the
same way, existing Scala types are extended with missing OCL operations (e.g.
implies). These traits are either generated by provided Sigma M2T transfor-
mation executed explicitly by a user or implicitly using the experimental Scala
macro annotations [12].

Task-Specific Languages. The model consistency checking and M2M trans-
formation have similar abstract syntax (i.e. constraints and rules) to EVL and
ETL respectively, and their execution semantics is the same as defined in Ep-
silon. The M2T transformation is a purely imperative DSL and as such it does
not contain any particular execution engine. All DSLs are implemented follow-
ing the same pattern, i.e. organizing task-specific concerns into Scala classes
that extend from a task-specific base class. The main constructs such as invari-
ants, rules and templates are expressed as methods in order to foster reuse and
extensibility.

7.2 Applications

Sigma has been used in the SALTY project [7] to develop a modeling environ-
ment for developing self-adaptive software systems [27]. The main motivations
were the shortcomings of OCL used for the initial implementation [26]. Sigma
has been also adopted by the Yourcast project [10] for M2T transformations
replacing Velocity [1] and plain Java templates, gaining 20% reduction in code
size, mainly thanks to more expressive model navigation and more compact text
outputting constructs.

7.3 Code Comparison

In order to evaluate the overall usability of our approach we re-implemented
larger Epsilon model manipulation tasks for each of the Sigma DSLs. As sug-
gested by the Epsilon community6, we chose Eugenia [3] GMF Ecore constraints
for model consistency checking, Unicaneer2sql [9] (an ER to relational model
transformation) for M2M transformation, and Egldoc [2] (an Epsilon tool for gen-
erating Ecore documentation in HTML including Graphviz diagram) for M2T
transformation. The Eugenia and Egldoc comes directly from Epsilon, which
should guarantee certain quality of the source code. The complete implementa-
tion is available from the paper companion web page [4].

Table 1 summarizes the implementation effort in terms of Source Lines of
Code (SLOC) for the three scenarios, for both Epsilon and Sigma. Interpreting
SLOC metrics is always problematic. The issue of what is the right level of
“verbosity” in a language is complex and should not be reduced naively to just
counting SLOC. Our assumption, however, is that usability is not achieved by
having fewer lines of code, but instead, by having more expressive and concise
code, which is beneficial to writers as well as to readers. On the other hand, code
bloat resulting from code duplication and from lack of constructs that enable
the building of more concise but expressive statements, is not desirable.

6 http://www.eclipse.org/forums/index.php?t=rview&goto=1235103

http://www.eclipse.org/forums/index.php?t=rview&goto=1235103
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Table 1. SLOC comparison

Scenario Epsilon Sigma difference
Model consistency checking 364 EVL 286 22%
M2M transformation 733 ETL 389 47%
M2T transformation 1400 EGL 412 70%

Most of the code reduction comes from the fact that Scala contains more
general programming constructs than EOL. In particular, pattern matching and
inheritance helped to reduce many of the code duplications. In the case of model
consistency checking, the code reduction is the least significant one since Sigma
contains the same constraints constructs as EVL and the invariant expressions
were mostly simple first-order logic queries. The EVL code is therefore almost
identical to the Sigma one and the only reduction was in the EOL helper meth-
ods. They can be expressed more concisely in Scala primarily thanks to pattern
matching.

The case of M2M transformation led to a similar situation. Sigma supports
the same M2M transformation rules and thus the ETL code is very close to
the Sigma one. However, the M2M transformation involved a lot of imperative
EOL code which could be reduced by using more expressive Scala statements.
Furthermore, about 15% of the transformation generates text for which we could
use Sigma M2T constructs reducing the code even further.

The M2T transformation scenario involved generating both HTML code and
Graphviz code. Generally, code-explicit forms of M2T transformation are not
particularly suitable for generating HTML code since in this case the quantity
of text outweighs the text producing logic. However, despite this, the code has
been reduced by 70%. The main reason is that, by the use of inheritance, a lot
of code duplication present in the EGL templates was avoided.

We do not provide a comparison of the coding time. First we do not have
the measures of the Epsilon versions. Second it is always easier to port an exist-
ing code to a new language than to write it from scratch. However, we expect
some strong points of the Sigma DSLs to reduce coding time. Static type safety
prevents runtime typing errors. The highly usable tool support provided by the
Scala IDE [5] with a code completion and a debugger and the ability to easily
run and test the transformations should facilitate development.

7.4 Performance Comparison

The performance of Sigma is determined by the host language one and the over-
head of the Sigma API. Sigma compiles directly into Java byte-code and thus
it significantly outperforms Epsilon and other interpreted DSLs. For example,
generating QVT meta-model (159 classifiers) documentation using Egldoc takes
on average 8 times more time than using the Sigma version.

However one of the concerns is related to the extensive use of implicit type
conversions and other Scala constructs that might have negative performance im-
pact. Therefore, as a part of the performance evaluation, we have implemented
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the same M2T transformation in Sigma and the related M2T languages7. In
addition, we have also implemented it in pure Java and Scala with no additional
libraries. The Java version is used as a performance baseline. The Scala version is
used to measure the overhead of Scala in comparison to Java and the performance
penalty caused by Sigma. The implementation in the other languages aims at
evaluating our requirement of competitive performance. The M2T transforma-
tion has been chosen because (1) it uses many Scala constructs that might cause
performance issues (e.g., implicit conversions, string interpolation), (2) M2T
transformation is one of the most often used model manipulation tasks [21], and
(3) the implementation in the other languages was straightforward, limiting the
possibility of misusing some features. As a concrete transformation we chose our
simple OO model to Java transformation, since nearly all the listed languages
provide an example that is based on it. Table 2 shows the median of 20 con-
secutive runs for two different model sizes, (A) corresponds to 250 classes with
50 methods and properties each, while (B) is 500 classes with 100 methods and
properties each.

Table 2. Performance of different M2T languages normalized to Java version

Scenario Java Sigma EGL Acceleo Xtend Kermeta Scala
A 1.0 1.0 18.6 11.9 0.9 1.0 0.9
B 1.0 1.8 48.1 16.4 1.0 1.0 1.0

As expected, the performance of Sigma together with the other compiled
languages is close to Java, while the interpreted ones are an order of magnitude
higher (also their memory footprint is double). The decrease in Sigma perfor-
mance in the case of the larger model is caused by the whitespace handling
decorator. Every appended string is checked for whitespaces to be removed, and
its complexity increases with the indent level. Without this decorator, the per-
formance is again close to Java (A: 0.9, B: 1.0).

7.5 Evaluation of Requirements

In the previous section we evaluated the competitive performance requirement.
The following is the evaluation of the other requirements identified in Section 2:
(1) Epsilon-like features and expressiveness. In Table 3, we evaluate the require-

ment stating that our DSL should contain similar features as in Epsilon
languages, i.e. EOL, EVL, ETL and EGL. The listed Epsilon features are
taken from the Epsilon website [6].

(2) Usable tool support. One of the advantages of an internal DSL is that it can
directly reuse the tool support provided for the host language. As mentioned
above, the recent versions of the Scala IDE [5] provide solid tools facilitating
Scala development. Moreover, additional tools operating on the JVM class
level such as profilers can be directly used.

7 Kermeta version was put together by Didier Vojtisek, a Kermeta committer. All the
source code is available from the companion web page [4].
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(3) Simple testability with existing unit frameworks. The method-based styles
of all the three languages allows to cherry-pick the fragments of model ma-
nipulation to be tested by any Java-based unit testing framework, which is
especially useful for larger model transformations.

(4) Simple integration into existing EMF projects. Executing a model manip-
ulation task in Sigma is no different from executing a regular JVM-based
application and therefore it can be included in many building tools.

With the basic set of Scala skills necessary to use Sigma, we consider that
the DSLs are rather small and thus less learning effort is likely to be required
in comparison to language such as OCL or EOL. Finally, being an internal DSL
is notably reflected in the code size of the implementation. Sigma is currently
implemented in 3500 lines of Scala code, which is an order of magnitude less
than just EOL, which is an order of magnitude less than Eclipse OCL.

7.6 Limitations

Apart from the syntax limitations, an internal DSL is in general a leaky abstrac-
tion [42]. For example an implementation of guards and structural constraints
can contain arbitrary code and by default. There is no simple way to make sure
they are side-effect free without employing an external checker such as IGJ [45],
which brings additional overhead. Traditionally, the support for domain-specific
analysis, error checking and optimization has been difficult to realize in internal
DSLs. However, Scala offers some more advanced methods for DSL embedding,
using language virtualization and lightweight modular staging [37,13].

Depending on the target audience, the use of Scala can be seen as a drawback
rather than a merit. It is a new language that has not yet reached the popularity
of some of the mainstream programming languages. It might be hard to justify
learning a language such as Scala solely for the purpose of model manipula-
tion. Finally, there is a small compile-time overhead of generating the common
infrastructure.

7.7 Threats to Validity

There are few potential threats to validity of the evaluation presented in Sec-
tions 7.3 and 7.4. First, the implemented model manipulation tasks represent
only a small subset of possible scenarios. To the best of our knowledge, we do not
know about other publicly available larger model manipulations implemented in
Epsilon. In some parts, the Epsilon code itself could be improved which, would
result in more concise solutions, nevertheless, we believe that this would not
make a major difference.

As for the performance evaluation, it is a form micro benchmark and as such
it should be considered with all the validity threats micro benchmarking brings.
We have implemented only a small model manipulation task, yet, we already see
the trends of the different approaches whose performance will likely remain in
the same order of magnitude even for other model manipulations.



582 F. Křikava, P. Collet, and R.B. France

Table 3. Supported Epsilon features. (+) supported, (-) unsupported, (0) partially supported

DSL Feature Sigma support

EOL

Simultaneously accessing/modifying many
models of (potentially) different metamodels

+ Accessing a model in Sigma is the same as
accessing a Scala/Java class

All the usual programming constructs + Sigma is based on Scala GPL
First-order logic OCL operations + All OCL collection operations are supported
Create and call methods of Java objects + Scala is interoperable with Java
Dynamically attaching operations to existing
meta-classes and types

+ Supported through Scala implicit conver-
sions

Cached operations + Supported using Scala implicit conversions
and lazy values

Extended properties + Supported using Scala implicit conversions
User interaction + Supported through Scala and Java libraries
Create reusable libraries of operations + Scala has notions of packages and imports

that goes beyond the one in Epsilon

EVL

Distinguish between errors and warnings dur-
ing validation

+ Both errors and warnings are supported

Guarded constraints + Constraints can have guards (line 5-7 in List-
ing 1.3)

Specify constraint dependencies + Constraint dependency can be specified in a
guard condition (line 6 in Listing 1.3)

Break down complex constraints to se-
quences of simpler statements

+ Sigma constraints can contain arbitrary Scala
code (cf. Section 7.6)

Automated constraint evaluation + Sigma execution semantics is the same as in
Epsilon

Out-of-the-box integration with the EMF
validation framework and GMF

+ Sigma provides an EValidator implementa-
tion

ETL

Ability to query/navigate/modify both
source and target models

+ Accessing a model in Sigma is the same as
accessing a Scala/Java class

Declarative rules with imperative bodies + Method signature declares a rule and the
method body can contain any Scala code

Automated rule execution + Sigma execution semantics is the same as in
Epsilon

Lazy and greedy rules + Both rule types are supported using annota-
tions

Multiple rule inheritance 0 Currently, inherited rules must be called ex-
plicitly

Guarded rules + Rules can have guards (lines 12-14 in List-
ing 1.3)

EGL

Decouple content from destination + The result of M2T transformation is a string
that can be outputted to any destination

Call templates (with parameters) from other
templates

+ An M2T template is just a Scala class that
can be used from any Scala code

Define and call sub-templates + A sub-template is a Scala method that can
be used from any Scala code

Mix generated with hand-written code - There are several problems with mixing gen-
erated and non-generated code (e.g., com-
plicated merge, non-generated code is lost
among the generated one, generated code has
to be put under version control) and there-
fore Sigma promotes the generation gap pat-
tern [17] instead

8 Related Work

Cuadrado et al. [14] developed RubyTL, a Ruby internal DSL for ATL-like M2M
transformations. Later, they used it for a comparison on the effort of building an
internal DSL and an external one. They concluded that the success of an internal
DSL highly depends on the selection of the host language, its support for DSL
embedding, execution performance, tool support, and popularity [39]. The main
difference with Sigma is that using a dynamic language prevents any compile
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type checking. Also RubyTL relies on its own EMF model parser facilities and
is not directly interchangeable with the mainstream EMF.

George et al. [18] used Scala to build a M2M transformation DSL for the EMF
platform that resembles ATL. Since we use the same host language, their DSL is
fully interoperable with ours, e.g. the common infrastructure (Section 3) can be
directly used in the transformation rules. However their internal DSL is not com-
pletely type safe and they represent transformation rules directly as anonymous
classes, which limits their modularity and reusability. Wider [44] presents an in-
teresting approach to bidirectional model transformations by embedding lenses
(a combinator-based approach to bidirectional term-transformations) into Scala
and showed how they can be used in an MDE context. Akehurst et al. [11] de-
veloped a Java library for simple imperative M2M transformations. Being based
on Java gives it performance and tool support advantages, as well as a wider
audience. On the other hand, there is no particular support for improving the
expressiveness of model navigation and modification, resulting in rather verbose
and complicated code.

9 Conclusion

In this paper we have presented an alternative internal DSL approach for model
manipulation whereby the supporting constructs are embedded into a GPL.
We used Scala as the host language to design and fully implement Sigma, a
family of type-safe internal DSLs for EMF model consistency checking, M2M
and M2T transformations. We have shown that the resulting DSLs have similar
expressiveness and features found in external model manipulation DSLs, while
providing competitive performance, compact implementation, and the ability to
take advantage of the advanced Scala tool support.

Non-trivial model manipulation tasks often involve a lot of general purpose
programming. By using a GPL such as Scala with rich general purpose program-
ming constructs, we were able to significantly reduce the code size of the model
manipulation tasks implemented in our evaluation process, without jeopardizing
their readability.

Current work in progress around Sigma consists in carrying out more evalu-
ations to further assess the usability of the proposed DSLs. Sigma has notably
participated in the 2014 edition of the Transformation Tools contest [19]. For the
future we first want to apply the Scala advanced DSL embedding techniques to
address identified limitations such as the problem of leaky abstraction. We also
plan to tackle DSL composition issues by exploring appropriate ways to couple
Sigma with other DSLs in different case studies.
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Büorger Festschrift. LNCS, vol. 5115, pp. 204–218. Springer, Heidelberg (2009)

25. Krikava, F.: Domain-Specific Modeling Language for Self-Adaptive Software Sys-
tem Architectures. Ph.D. thesis, University of Nice Sophia-Antipolis (2013)

26. Krikava, F., Collet, P.: On the Use of an Internal DSL for Enriching EMF Models.
In: Proceedings of the 2012 International Workshop on OCL and Textual Modelling
(2012)

27. Krikava, F., Collet, P., France, R.: ACTRESS: Domain-Specific Modeling of Self-
Adaptive Software Architectures. In: Symposium on Applied Computing (SAC),
track on Dependable and Adaptive Distributed Systems, DADS (2014)

http://scala-ide.org/
http://eclipse.org/epsilon/doc/
https://salty.unice.fr
https://github.com/fikovnik/Sigma
https://code.google.com/p/unicaneer2sql/
http://yourcast.fr/


SIGMA: Scala Internal Domain-Specific Languages for Model Manipulations 585

28. Krikava, F., Collet, P., France, R.B.: Manipulating Models Using Internal Domain-
Specific Languages. In: Symposium on Applied Computing (SAC), track on Pro-
gramming Languages, PL (2014)

29. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

30. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. In: Proceedings
of the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Ma-
nipulation (2012)
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Abstract. We present a framework and methodology to benchmark
NoSQL stores for large scale model persistence. NoSQL technologies
potentially improve performance of some applications and provide schema-
less data-structures, so are particularly suited to persisting large and het-
erogeneous models. Recent studies consider only a narrow set of NoSQL
stores for large scale modelling. Benchmarking many technologies re-
quires substantial effort due to the disparate interface each store pro-
vides. Our experiments compare a broad range of NoSQL stores in terms
of processor time and disc space used. The framework and methodology
is evaluated through a case study that involves persisting large reverse-
engineered models of open source projects. The results give tool engineers
and practitioners a basis for selecting a store to persist large models.

1 Introduction

Model Driven Engineering (MDE) is being applied to larger and more complex
systems. The current generation of modelling and model management technolo-
gies (such as EMF [1]) are being stressed in terms of capacity to accommodate
collaborative development and persistence of models larger than a few hundreds
of megabytes in size. Recent research has focused on different dimensions of
scalability in MDE [2], including being able to construct large models and lan-
guages in a systematic manner; enabling large teams of modellers to construct
and refine large models in a collaborative manner; enhancing model querying and
transformations tools so that they can cope with large models; and providing
infrastructure for efficient storage, indexing and retrieval of such models.

The current standard model storage format is the XML Metadata Interchange
(XMI). As XMI is based on XML, in order to access any model elements using,
e.g., EMF, the complete model file needs to be parsed and loaded in memory.
This implies that the larger the model file, the more time and memory needed
to load it. Also, XMI inherits the verbosity of XML which means that XMI-
encoded model files are much larger in size than needed in order to store the
information they do. As a result, recent research has explored alternatives to
XMI, particularly NoSQL stores, e.g., [3,4]. NoSQL stores eliminate the tradi-
tional relational structures of classical databases (see Section 2) and as such are
claimed to be more appropriate for very large and heterogeneous datasets, and
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arguably persisting very large models. However, numerous NoSQL datastores
exist while providing different features. A clear conceptual model and method
for comparing them – for large-scale model persistence – is currently missing.

Increasingly, NoSQL technologies reflect the needs of particular classes of
applications; new NoSQL implementations are being introduced and existing
stores adapted for new applications. As a result, NoSQL implementations can be
difficult to compare, as each NoSQL implementation is suited to a specific set of
applications and workloads. Furthermore, small improvements to each data store
can have a large impact on performance. As development in the area is rapid,
the performance profile of each implementation is subject to change. Systematic
ways to compare NoSQL implementations for large-scale model persistence are
also challenging to provide.

This paper aims to directly address these challenges, by proposing a frame-
work and methodology for benchmarking NoSQL stores for large-scale model
persistence. The benchmarking experiments consider a broad range of NoSQL
stores, compared in terms of processor time usage and disk space usage. Our
experiments consider a substantial number of NoSQL datastores, and the frame-
work and methodology can be directly applied to further stores not considered
here. We evaluate the framework and methodology via a realistic case study that
involves persisting large models reverse engineered from open source projects.

2 Background

2.1 Categories of NoSQL Data Stores

This section presents a categorisation of NoSQL data stores with features com-
mon to each category. NoSQL stores tend to organise data without the table-
based schemas of traditional relational databases. The broad categories of NoSQL
stores considered here are key-value, document, column-oriented, graph and
triple stores. A brief introduction is given below with example implementations
and general characteristics of each category.

Key-value stores allow data to be dereferenced based on a key. All data is held
in documents retrieved only via a primary key and not any other document value,
making this the simplest data model. Although in-memory key-value stores have
been available for some time [5], the release of Dynamo by Amazon [6] has
led to several distributed and persistent key-value implementations. One clear
advantage of key-value stores is the speed at which data can be accessed, with
some implementations claiming ∼100k reads and writes per second [7]. The
values are stored without any schema, in a uniform document format such as
JSON. As a simple data model, direct, traversable references within documents
are not supported – requiring work-arounds at the application level. Examples
include Amazon Dynamo [6], Apache Accummulo [8], Project Voldemort [9] and
Riak [7].

Document stores are somewhat similar to key-value stores with two impor-
tant differences. Multiple document types can be stored in the same system,
so for example it is possible to mix JSON and XML documents. Also, indexes



588 S.M. Shah et al.

are created for all attributes of the stored documents, allowing documents to be
dereferenced by potentially any value, sacrificing write speed for more flexibil-
ity in data access. However, document stores also have the disadvantage that
traversable references are not supported, and as such, workarounds at the appli-
cation level are required to support inter-document links. Similar to key-value
stores, documents may have any schema and JSON is typically used as a docu-
ment interchange format. Examples include MongoDB [10], CouchDB [11] and
ArangoDB [12].

Distributed tabular data stores (sometimes called column-oriented or ‘BigTab-
le’ [13] stores) have some of the features of document and key-value stores, yet
have others in common with traditional relational databases. Data is referenced
by a primary key (used to retrieve a row, or group columns) and columns in
a row can be clustered on separate servers to increase retrieval performance.
There is no fixed schema, and any two rows may have different columns. Direct
references between rows are supported and any column can be used as a key via
indexing, separately from the primary key. These stores have emerged based on
the Google BigTable [13] design. A common feature in tabular stores is support
for distributed data processing facilities, such as MapReduce [13]. This allows
user-written data management programs; results are automatically executed and
gathered in parallel across the nodes of the store. Examples of tabular stores
include Apache Cassandra [14] and Apache HBase [15].

Property graph databases have some of the features of each of the above.
Firstly, in common with all NoSQL stores, the graph has no fixed schema; data
is stored in a graph of vertices and edges. Like document stores, a vertex can store
documents, as properties and the documents are not restricted by any schema.
Similar to key-value stores, vertices may be dereferenced based on a primary
key and further, like tabular data stores, secondary indexes allow vertices to be
accessed based on any property. Graph databases are distinct from other NoSQL
stores as relationships between data (edges) provide a direct reference to vertices,
so traversal of edges is instant. This makes graph databases particular suited
to analysis of data where links are traversed often, such as network analysis.
Examples include Neo4J [16], OrientDB [17] and TitanDB [18].

Closely related to property graph databases are triple stores, which work on
the same principle but graphs are flattened into pairs of vertices with an edge
between them. Vertices do not store documents; properties of a vertex are stored
as additional triples. Triples may optionally conform to a schema set out in a
namespace and duplicate triples are not supported.

2.2 Related Work

There has been some past research on benchmarks and benchmarking for MDE
technologies, including evaluations of constraint languages [19], high-performance
query languages [20], as well as transformation languages [21]. Many of the stud-
ies have considered EMF models. One conclusion that can be drawn is that
substantial tuning needs to be carried out (e.g., to EMF or operations on EMF
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models) to achieve good performance with large EMF models. None of this past
benchmarking work has considered performance of non-XMI datastores.

A comparative analysis of a small set of technologies used to store EMF
models was performed, including benchmarks of prototypes based on the NoSQL
databases Neo4J and OrientDB [22]. The benchmarking suggested that there
is a significant benefit in using Graph-based NoSQL databases to store model
data. Further analyses [3] considering Connected Data Objects (CDO[23]) as
well as integration with model management tools [24] showed that use of model
management is not detrimental to the performance of NoSQL databases for
storing models. This work however, did not present a systematic framework or
methodology for comparing individual NoSQL stores.

Various tools attempting to provide a scalable approach to storing EMF mod-
els have been proposed, such as Morsa [4], which aims to support scalable model
persistence using MongoDB to store EMF models as sets of documents. Mon-
goEMF [25] is an extension of the persistence API of EMF that stores EMF
models using MongoDB. It supports basic create, read, update and delete oper-
ations as well as queries (including native MongoDB queries via inline JSON).
Neo4EMF [26] supports lazy loading, storage, and unloading of large EMF mod-
els. It provides a NoSQL database persistence framework based on Neo4J. All
of these tools focus on a single back-end driver and attempt to optimise their
functionality with that in mind.

Other related work proposes extensible frameworks that persist large models
in various back-end stores. The Connected Data Objects repository (CDO[23])
permits the storage and access of models in repositories supported by a range
of back-end stores (both relational stores like MySQL[27] and NoSQL/Object
stores such as MongoDB and Objectivity/DB[28]). EMF fragments [29] is a per-
sistence layer for distributed data stores; this includes both NoSQL databases
(like MongoDB or Hadoop) but also distributed file systems. EMF fragments
map model fragments to URIs, which permits storing models on a wide range of
distributed datastores. It supports background fragmentation of models, based
on client specifications of fragmentation points. Hawk [30] creates model indexes
that are used to efficiently query large sets of XMI models by providing a frame-
work for NoSQL (such as Neo4J) or other stores as back-ends. All of these tools
tend to focus on providing an application-specific platform for persisting models.

3 A Framework to Benchmark NoSQL Stores

3.1 Benchmarking Methodology

This section outlines the methodology framework used to evaluate NoSQL stores
for storing and querying large-scale models. The framework presented takes in-
spiration from the Yahoo Cloud Service Benchmark (YCSB) framework [31], for
On-Line Transaction Processing, an extensible and generic framework used to
evaluate NoSQL key-value stores using synthetic data and workloads. Similar to
YCSB, the current work provides drivers for several NoSQL stores, but proposes
several essential improvements towards benchmarking for large-scale modelling.
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Section 3.2, describes an architecture for benchmarking a broad range of model
serialisation formats and NoSQL stores. Section 3.4 discusses how different types
of stores can be used to persist large-scale models. Our approach also provides
several ready-made driver implementations, which are benchmarked in Section 4.

Rather than the synthetic, generated data sets used in [31], we used reverse-
engineered software models from real projects as benchmarking data; we argue
that this is preferable in cases where real-world large models are not readily
available. The GRABATs 2009 data set1 is a set of readily available large-scale
models and is used Section 4. Alternatively, the MoDisco framework [32] can be
used to create further data sets from Java code projects.

For the framework we use a multi-phase run-off, to narrow down candidates
and avoid benchmarking unsuitable stores. Section 3.3 sets out general and ap-
plication specific requirements for large-scale model persistence. These require-
ments are used to select the initial candidates suitable for the application, in the
first phase. The following phases involve defining the critical benchmarking tasks
and minimum expected performance in each task for the intended application.
After benchmarking has been carried out in each phase, stores that do not meet
the minimum expected performance or do not have the required features should
be eliminated. In Section 4, model persistence and model traversal performance
are set as critical benchmarking tasks.

3.2 Framework Implementation

The framework is designed to be modelling technology agnostic. Although at
the current stage this framework interacts with EMF [1] models only, it can
be extended to support other modelling technologies such as Express [33]. The
benchmark framework is made available online2. The framework avalaible online,
so it may be downloaded and applied to commercially sensitive tools, queries and
datasets.

The TinkerPop Blueprints [34] interface provides third-party drivers and an
API to several NoSQL stores. Blueprints is a property graph model interface
with several concrete implementations. Databases that implement the Blueprints
interfaces automatically support Blueprints-enabled applications. Blueprints is
open source; implemented in Java; and currently has drivers for databases such
as Neo4J [16], Sail [35], Sparksee [36], Accumulo [37], ArangoDB [12], Founda-
tionDB [38], MongoDB [10], Oracle NoSQL [39], OrientDB [17]and TitanDB [18].
Theoretically, Blueprints drivers can be developed for any database technology;
the minimum requirement is that the database provides either a Java interface
or a REST API.

The structure of the proposed benchmarking framework is shown in Figure 1.
The framework supports a number of database technologies by implementing
new or reusing existing Blueprints drivers. The persistence layer is responsible
to load models defined in different modelling technologies then persist them into

1 http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study
2 https://bitbucket.org/yorkmde/benchmarks/

http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study
https://bitbucket.org/yorkmde/benchmarks/
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Fig. 1. Structure of the framework

the designated database. The persistence layer contains definitions of different
configurations of modelling and database technologies.

3.3 Benchmark Candidate Selection and Model Persistence
Requirements

This section outlines the functional and non-functional properties of NoSQL
stores taken into account when selecting technologies for benchmarking. NoSQL
store performance can vary widely depending on the work load; experiments
and benchmarks in this paper focus on large-scale modelling, where the ability
to persist models into the store, and model traversal performance are critical.
Other requirements are specific to the intended application, so the guidelines
here should be adapted depending on the application.

There are several application specific properties to consider for large scale
modelling when using NoSQL stores:

– CAP [40] Trade-Off : NoSQL stores can trade-off consistency or avail-
ability, to provide partition tolerance. Partition tolerant stores can perform
better on a cluster of dedicated servers at the cost of temporary inconsistency
(eventual consistency) or possible unavailability of model data.

– Native Referencing Support: NoSQL stores may not support referencing
between entities, which will require adaptation to model access clients and
create an impact on performance.

– Disk-Resident vs. in Memory Storage: To improve performance, NoSQL
stores may adopt an in-memory-only model and provide no on-disc persis-
tence support. This is prevalent in highly available multi-node stores where
replicant servers handle failure but may not be appropriate for modelling
applications with single-node, client side stores or where memory is limited.

– Data Interchange Protocol: The protocol or API used by a store can be
a significant consideration. As there is no common interface between stores,
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Fig. 2. Model Persistence Formats in NoSQL Stores

each provides a different set of APIs and language drivers. Stores may use
HTTP-REST APIs only, which can mean significant performance overhead,
or provide language specific drivers.

– Client-Server vs. Embedded Architecture: Several stores proved an
embedded file-based architecture to increase performance, as well as the tra-
ditional client server-mode. Embedded databases are more suited to for single
client applications or offline use, where high performance batch operations
are used but not for distributed applications where multiple clients access
models.

– Querying Support: Stores may provide dedicated high-level querying lan-
guages, which must be interfaced to support modelling queries, or only simple
data access APIs which require implementing modelling query logic directly
in the client.
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3.4 Model Persistence Formats for NoSQL

The BluePrints API exposes the underlying NoSQL store as a property graph
which we exploit to persist models in our benchmarking framework. The property
graph model of NoSQL graph databases, such as Neo4J and OrientDB, employs
a similar structure to models, making model representation straight-forward.
In order to map from EMF to the BluePrints API, objects are represented as
graph vertices and object-attributes are represented as properties of these ver-
tices. Multi-valued attributes are stored as lists, which are sub-documents in the
vertex properties. Relationships between objects are represented as edges in the
property graph. Similar to object-attributes, reference features such as name, di-
rectionality, ends’ names and containment are kept in the properties of the edge.
Figure 2a shows a model that is represented as a property graph in Figure 2b.

The BluePrints drivers for each store control how property graphs are rep-
resented using the primitives provided by each type of stores. For example, in
triple stores, the basic data entities are triples, that do not differentiate between
object-instances and object-attributes. Triples are in the form subject-predicate-
object, where subject and object are uniquely identifiable entities. To store mod-
els, triples are used for relations between objects and to store attributes, in effect
flattening models to relationships, this is shown is Figure 2c. A notable aspect
of this structure is that entities are only stored in triples, so can appear as the
subject of several triples, and also cannot be retrieved independently of triples.

The BluePrints API may be used with any kind of data store. For exam-
ple, although PostgreSQL is a relational database, it can replicate the schema-
less design of a property graph store via an appropriate BluePrints driver. The
four relational tables needed are Vertices, Edges, Vertex-Properties and Edge-
Properties- linked by traditional relational foreign keys. An example of model
persistence using this structure is shown in Figure 2e.

Several document stores and key-value stores do not support references be-
tween entities, which precludes those stores from our study because, travers-
ing between documents has high performance over-head. Both types of stores
have entities that can be used to store object instances and object attributes,
as documents. In order to support key-value stores and document stores in the
BluePrints property-graphmodel, special considerations must be made for edges.
In some cases, the model persistence layer can include work-arounds to support
edges with properties, for example in the case of the MongoDB BluePrints driver
a dedicated document is created that links documents together, as shown in
Figure 2d.

4 Case Study: Benchmarking Persistence and Traversal
of GRABATS Models

To demonstrate the proposed framework, this section presents the results of
benchmarking for a realistic case study that involves persisting large models
reverse engineered from open source projects.
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Table 1. Grabats dataset characteristics

set0 set1 set2 set3 set4

XMI file size 9.2m 27.9m 283.2m 626.7M 676.9M
# of objects 69,680 197,699 2,082,841 4,594,899 4,961,779
# number of relations 69,806 197,965 2,083,272 4,595,522 4,962,567
# total elements 139,486 395,664 4,166,113 9,190,421 9,924,346

4.1 Dataset Characteristics

To obtain meaningful benchmarking results, there is a need for representative
large models. As mentioned earlier, instead of using synthetic models, we used
models reverse-engineered from open source Java projects. The JDTAST meta-
model used in Java Legacy Reverse-Engineering use case, presented in the GRA-
BATS 2009 contest, is used, as well as the five models provided in the contest.
The JDTAST metamodel has similar concepts to the Java programming lan-
guage and allows representation of Java programs as models. Five large models
have been extracted from existing Java code that conform to the JDTAST meta-
model. These are EMF models serialised in XMI format and they range from
69680 model elements and 69680 relationships in a 9.2MB XMI file (set0), to
4961779 model elements and 4962567 relationships in a 676.9MB XMI file (set4).
Detailed characteristics of all five models are displayed in Table 1.

4.2 Experimental Setup

For most of the experiments, we used a single commercial class computer with
Intel Core i7 2.3GHz CPU, 8GB of DDR3 memory and a 256GB Solid State
Disk running OSX 10.9.1 and JDK 1.7.0. To run the experiments, we gave the
JVM 6GB of maximum heap memory.

Table 2. Model persistence performance - time taken in seconds and disc space used,
per dataset

Store set0 set1 set2 set3 set4

Baseline 6s 15s 54s 218s 303s
Neo4J 1.x 9s (44MB) 29s (129MB) - - -
Neo4J 2.x 21s (44MB) 40s (129MB) - - -
Neo4J Batch 1.x 9s (14MB) 18s (44MB) 118s (334MB) 431s (744MB) 852s (805MB)
Neo4J Batch 2.x 6s (15MB) 19s (45MB) 256s (334MB) 756s (767MB) 940s (830MB)
OrientDB 16s (35MB) 39s (98MB) 438s (955MB) 1031s (2.11GB) 1127s (2.28GB)
TitanDB (BerkeleyDB) 11s (48MB) 25s (147MB) 196s (1.29GB) 814s (3.01GB) 997s (3.32GB)
TitanDB (Cassandra) 38s (75MB) 90s (165MB) 876s(1.06GB) 1967s(1.75GB) 2419s(1.81GB)
MongoDB 33s (807MB) 100s (1.28GB) 983s (4.77GB) 2537s (6.67GB) 2839s (6.98GB)
Sesame 87s (33MB) 265s (97MB) 3140s (734MB) - -
PostgreSQL 460s (206MB) 1216s - - -
ArangoDB 420s (71MB) 1620s (194MB) - - -
ArangoDB Batch 8s (71MB) 18s (104MB) 174s (641MB) - -
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Fig. 3. Model persistence performance - time taken in seconds, per dataset

Table 3. Model traversal performance - time taken in seconds, per data set

Store set0 set1 set2 set3 set4

Baseline 1s 1s 1s 1s 1s
Neo4J 1.x 4s 6s 12s 24s 28s
Neo4J 2.x 6s 7s 16s 27s 37s
OrientDB 3s 6s 53s 192s 870s
TitanDB (BerkeleyDB) 6s 14s 186s 2414s -
TitanDB (Cassandra) 14s 53s 400s 1212s 1263s
MongoDB 2s 2s 16s 40s 44s
Sesame 2s 3s 17s - -
PostgreSQL 2s 2s - - -
ArangoDB 60s 180s - - -
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Fig. 4. Model traversal performance - time taken in seconds, per data set

4.3 Results

This section discusses the results when the benchmarking framework is applied
to the GRABATS datasets and the selected NoSQL stores. Table 2 and Figure 3
outline the results for persisting large models to each store. When persisting
models, the ‘Baseline’ is the time taken to load, traverse and unload each model,
without any interaction with the data store. This represents the overhead of the
framework. In traversing the data store the baseline is the overhead of starting
and executing the framework, without connecting to a data store. In Table 2, a
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dash (-) indicates a data store that could not complete the benchmark, within the
time or memory given. Some results shown in Table 2 and Table 3 may not appear
in Figure 3 and Figure 4 to ease readability. Several interesting observations
can be made about relative performance of the stores and the architecture of
BluePrints drivers.

The categories outlined in Section 2 do not have any effect on performance
in model persistence or model traversal. The Neo4J (versions 1.x and 2.x) and
ArangoDB stores were unable to complete the benchmark for data sets set3 and
set4. This is due to the architecture of the BluePrints drivers; ArangoDB, uses a
client-server mechanism, so must create a separate HTTP request per insertion.
Both standard Neo4j and ArangoDB drivers store a cache of each insertion (i.e.
the whole graph) in memory, causing model insertion processes to run out of
memory. The Neo4j store can only persist set4 and set3 when using a special
‘batch’ insertion driver and protocol. In Neo4J the batch driver includes the logic
to modify the underlying database files directly, without a client server archi-
tecture. Also in both batch and standard from, Neo4j 1.x performs better than
Neo4J 2.x, possibly due to the stability and enhanced optimisation of the older
version. ArangoDB uses a client server architecture so instead uses a dedicated
REST API on the server for batch insertion requests. In both ‘batch’ drivers,
the graph is not cached and in Neo4J it is in a read-only state during model
insertion and in ArangoDB the model can not be read until after insertion com-
pletes. This makes stores with bulk-insertion drivers clearly more suitable for
persisting large models, where model insertion time is critical but the model will
not be modified or accessed during insertion.

The TitanDB/Cassandra and TitanDB/BerkeleyDB drivers are able to insert
all data sets, without using a batch insertion, because the graph is not cached by
the driver in memory. However, this impacts the performance, making the store
take longer to insert large models. However, the drivers highlight the difference
in using an embedded database as a back-end and using client-server back-end
for the store. In TitanDB/Cassandra, the textual CQL language and protocol
are used to store graph data, whereas TitanDB/BerkeleyDB uses an embedded
file based store to persist graphs. The difference is apparent in the benchmark
results for set3 and set4, where TitanDB/BerkeleyDB takes half the insertion
time of TitanDB/Cassandra. TitanDB/BerkeleyDB provides the fastest inser-
tion time without using batch insertion, however, the driver is less stable than
TitanDB/Cassandra and can run out of memory unexpectedly.

The OrientDB and MongoDB Blueprints drivers use a binary protocol to com-
municate with the server and do not keep a cache of the graph in memory, so
they are able to insert the larger data sets without a batch driver. The insertion
performance for set3 and set4 is lower than Neo4J or ArangoDB for two main
reasons. During insertion the graph is read-write which means extra integrity
checks are needed during insertion; and when inserting edges, the vertices must
be read from the server, adding significant overhead to model reference inser-
tion. The OrientDB and MongoDB stores are suited to workloads where model
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elements may be accessed or modified during insertion and model insertion time
is critical.

The Sesame store driver has a similar architecture to the Neo4J driver, directly
accessing the data store in embedded mode3 to create or modify a file-based
store that may later be served by a triple store. The PostgreSQL driver uses
the text-based JDBC protocol to create a simple schema for storing graphs on
a database server. However, Sesame and PostgreSQL were unable to complete
insertion benchmarks for set3 and set4, as both cache the graphs in memory
during insertion and do not support bulk insertion. These drivers are not suited
to large scale model persistence.

Table 3 and Figure 4 outline the results for traversing all stored elements. In
Table 3, a dash (-) indicates those data stores which could not be benchmarked as
the model was not persisted in the previous benchmarking phase. Both Sesame
and PostgreSQL have better relative model traversal performance than many
of the others stores for set0 and set1. Sesame, performs better than Neo4J in
smaller sets but not in set2, which indicates that its traversal capabilities may
not scale, even if the larger stores can be persisted. These stores are not suitable
for large scale model persistence in the current form, however, they may be
suitable where traversal performance is important in data sets similar to set0
and set1, and insertion time is not critical.

As with model insertion, Neo4J 1.x performs better than Neo4J 2.x for model
traversal, which suggests the newer version is less optimised than the older, stable
release. MongoDB suffers at model insertion-time due to the indexes automat-
ically created to address each element stored documents, which also negatively
impacts on disc space used for each dataset. The indexing is beneficial, as Mon-
goDB has similar relative performance for the larger set3 and set4 sets (within
∼10 seconds) and better performance than Neo4J in the set0, set1 and set2
datasets. OrientDB also has better model traversal performance than Neo4J in
set0 and set1, which seems to indicate that Neo4J does not scale down to smaller
datasets as well as MongoDB or OrientDB. However, OrientDB does not per-
form as well as either MongoDB or Neo4J on set2, set3 or set4, indicating issues
with scaling OrientDB up to larger models.

TitanDB with the relational BerkeleyDB back-end and ArangoDB were the
only two store where a model was persisted but could not later be traversed,
for the model in set4 and set2 respectivly, where the driver ran out of memory.
This seems to indicate the limits of TitanDB when using BerkeleyDB. When
using Cassandra with TitanDB, traversal performance is lower than with Berke-
leyDB. The worst traversal performance is found in ArangoDB, where separate
HTTP REST requests are used to retrieve individual model elements, creating
a significant overhead.

3 A SPARQL (REST-like) client-server architecture is available, with more overhead
than the embedded triple store used in our experiments.
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4.4 Threats to Validity

Standard desktop specification machines have been used to perform benchmark-
ing, so the results are representative of a desktop environment. In future work,
the NoSQL systems will be benchmarked using servers with greater resources
available and the results compared with desktop-type performance.

In these experiments, the Blueprints API has been used to create a common
interface to load data into and to query the stores. This allows us to treat the
stores as ‘black-box’ and benchmark a broad range of them. This approach relies
on the availability of high-quality, optimised Blueprints drivers for each data
store. In the case of ArangoDB and Neo4J, batch insertion drivers are available,
and Neo4J also has targeting different versions of the underlying store. However,
most drivers do not support batch insertion, even where the underlying store
does, which has a negative impact on performance. Similarly, the underlying data
stores have various parameters that could be modified to improve performance
but the configuration parameters are not always exposed by the drivers. In future
work, each driver and data store will be investigated for possible optimisations,
based on the obtained benchmark results.

Large models conforming to the JDT meta model have been used to bench-
mark a wide range of data stores. The JDT meta model stores Java source code
in a model based format and the models are created from reverse engineering
large Java code-bases. The largest model has 5 million class-instance elements
with around 5 million references between class-instances and other models in
the data set are similarly connected. The models used in benchmarking were
selected based on the size and availability, so the results presented here may not
be representative of other metamodels. Researchers and practitioners are invited
to make available large models for benchmarking in this framework.

5 Conclusions and Future Work

We have presented a framework and methodology for benchmarking NoSQL
datastores in the context of large-scale modelling applications. The framework
builds on the Blueprints property graph model interface and provides a layered
architecture to avoid repetition and to allow future support of non-EMF mod-
elling technologies. The framework advocates the selection of candidate stores
via a multi-stage process, which involves drawing from the literature and existing
benchmarks.

There are several interesting possible extensions to the framework. The cur-
rent framework can be downloaded and executed on user-specified models or
queries. Applying the framework to a wide range of queries and models would
help identify classes of models and queries that affect performance. Another area
for further investigation is that of tuning the workloads and parameters of data-
stores, and recording the results in an online corpus, so developers have a range
of benchmarks results for comparison.

Our experiments have investigated the persistence and traversal performance
of models of different sizes, for a realistic case study that involves persisting
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large models reverse engineered from open source projects. The experimentation
revealed that OrientDB, Neo4J (both v1.x and v2.x) and TitanDB (using Berke-
leyDB) scale up well in terms of persisting large models, while Neo4J (both v1.x
and v2.x) and MongoDB scale up well for querying such models. Also, unexpect-
edly many of the evaluated stores were unable to persist/traverse models larger
than set2 in time and under the provided resources.
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Abstract. In Model-Driven Engineering (MDE) models are first-class entities
that are manipulated by means of model transformations. The development of
complex and large transformations can benefit from the reuse of smaller ones
that can be composed according to user requirements. Composing transforma-
tions is a complex problem: typically smaller transformations are discovered and
selected by developers from different and heterogeneous sources. Then the iden-
tified transformations are chained by means of manual and error-prone composi-
tion processes.

In this paper we propose an approach to automatically discover and compose
transformations: developers provide the system with the source models and spec-
ify the target metamodel. By relying on a repository of model transformations,
all the possible transformation chains are calculated. Importantly, in case of in-
compatible intermediate target and source metamodels, proper adapters are auto-
matically generated in order to chain also transformations that otherwise would
be discarded by limiting the reuse possibilities of available transformations.

1 Introduction

Model-driven engineering (MDE) is a software discipline that employs models for de-
scribing problems in an application domain by means of metamodels. Different ab-
straction levels are bridged together by automated transformations which permit source
models to be mapped to target models. In MDE, model transformations play a key role
and in order to enable their reusability, maintainability, and modularity, the development
of complex transformations should be done by composing smaller ones [1].

The common way to compose transformations is to chain them [2,1,3,4,5], i.e., by
passing models from one transformation to another. In order to chain transformations
it is necessary to ensure the pre- and post-conditions of the considered transformations
and to verify the metamodels compatibility condition, i.e., that the output metamodel of
the first transformation is immersed in the input metamodel of the second one. How-
ever, in case of similar output and input metamodels (e.g., subsequent versions of the
same metamodel), the metamodels compatibility condition can be too strong and would
discard transformations that potentially might be chained.

In this paper, we propose an approach that under certain conditions permits to chain
model transformations defined on incompatible metamodels. This is done by means of
an adapter transformation that can be automatically synthesized from a delta model

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 602–618, 2014.
c© Springer International Publishing Switzerland 2014
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representing the differences between the output and input metamodels of the transfor-
mations to be chained. By relying on a repository of model transformations, the system
is able to automatically retrieve the model transformations that can be chained to satisfy
the user request. To this end some of our results on model differencing, and metamod-
el/model coupled evolution [6,7] are combined.

This paper is organized as follows: In Section 2 we overview the problem of trans-
formation composition and we motivate the needs for chaining transformations defined
on metamodels that are not compatible. Section 3 describes the proposed approach. An
overview of the prototypical implementation of the proposed technique is given in Sec-
tion 4. After a summarizing discussion given in Section 5, related work is described in
Section 6. Conclusions and research perspectives are given in Section 7.

2 Background and Motivation

Composing model transformations is a difficult problem that can be approached in
two different ways [5]: by chaining separate model transformations and passing mod-
els from one transformation to another (external composition), or by composing two
model transformation definitions into a new model transformation (internal compo-
sition). Even though both methods for composing transformations are important and
complement each other, in this paper we focus on external composition1.

Fig. 1. Model transformation chain example with incompatible metamodels

Figure 1 shows an explanatory model transformation chain. In particular, T1 is a
model transformation that generates models conforming to the target metamodel MM2

from models conforming to MM1. Additionally, T2 is a model transformation that gen-
erates models conforming to MM4 from models conforming to the source metamodel
MM3. In general, if the input metamodel of T2 would be also the output metamodel of
T1, then these two transformations could be chained. However, under certain conditions,
two transformations can be chained even though the output metamodel of the first trans-
formation does not correspond to the input metamodel of the second transformation as
discussed later in the paper.

Over the last years, different approaches have been proposed to support the composi-
tion of model transformations (e.g., see [2,3,4,5]). The main activities that are typically
performed when chaining model transformations are summarized in the following:

1 For readability reasons, hereafter with the term composition we refer to external composi-
tion. Moreover, the terms composition and chaining are used interchangeably.



604 F. Basciani et al.

(1) Specification of model transformation chains: in this activity by considering the lo-
cally available model transformations, chains are specified by means of dedicated
languages. For instance, in [8] the authors propose Wires*, a domain-specific lan-
guage for the specification and orchestration of ATL transformations only. Another
common way to chain model transformations is to use ANT scripts 2,3,4. In [9]
the authors propose the adoption of feature models to support the design of model
transformation chains. In such a work, transformations are considered as features
that are properly composed as specified in the considered feature models.

(2) Execution of the specified model transformations chains: in this phase the chains
previously specified are executed on the source models given by the user. The exe-
cution environments of the adopted transformation languages are employed.

Activity (1) is the most complex one and over the last years a number of works have
been proposed to support it and mainly focusing on the following aspects:

– pre- and post-conditions of transformations: when chaining transformations the
conditions of applicability of a transformation (pre-conditions) and the conditions
of validity of the resulting transformation (post-conditions) have to be satisfied.
In [10] the authors propose an approach able to discover hidden chaining con-
straints between endogenous transformations by statically analysing the transfor-
mation rules. The approach is based on the adoption of Higher-Order Transforma-
tions (HOT) and it is specific for ATL transformations.

– commutativity/transformation order: two model transformations are commutative
(or parallel independent) if they can be chained in either order and produce the
same results. In [1] the authors focus on this problem by providing an approach that
permits to statically analyse two transformations and check if they are commutative
or not.

In all the works mentioned above, the definition of transformation chains rely on the
concept of compatible metamodels [2] as defined below.

Definition 1 (metamodels compatibility). Let MM1 and MM2 be two metamodels,
then MM1 is compatible with MM2 if MM1 ⊆ MM2.

Definition 2 (transformation composability). Let T1 : MM1 → MM2 be a model
transformation from the metamodel MM1 to the metamodel MM2, and let T2 : MM3 →
MM4 be a model transformation from the metamodel MM3 to the metamodel MM4.
Then, T1 and T2 are composable as the sequential application T1;T2 if MM2 ⊆ MM3.

Unfortunately, restricting the definition of transformation chains only for the cases of
compatible metamodels can reduce the number of chains that might be potentially ob-
tained. For instance, let us consider the following ATL [11] model transformations5:

2 Apache Ant: http://ant.apache.org/
3 Epsilon Workflow: http://www.eclipse.org/epsilon/doc/workflow/
4 ATL-specific launch configurations and ANT tasks: http://wiki.eclipse.org/ATL/
Howtos

5 http://www.eclipse.org/atl/atlTransformations/Grafcet2PetriNet/
Grafcet2PetriNet.zip

http://ant.apache.org/
http://www.eclipse.org/epsilon/doc/workflow/
http://wiki.eclipse.org/ATL/Howtos
http://wiki.eclipse.org/ATL/Howtos
http://www.eclipse.org/atl/atlTransformations/Grafcet2PetriNet/Grafcet2PetriNet.zip
http://www.eclipse.org/atl/atlTransformations/Grafcet2PetriNet/Grafcet2PetriNet.zip
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– Grafcet to PetriNet1.0 : Grafcet → PetriNet1.0 - It generates PetriNet models con-
forming to the metamodel in Fig. 2.c starting from source Grafcet models (Fig. 2.a).

– PetriNet2.0 to PNML : PetriNet2.0 → PNML - It generates PNML models conform-
ing to the metamodel Fig. 2.b from PetriNet models conforming to the metamodel
in Fig. 2.d.

Because of the metamodels compatibility concept previously defined, the transfor-
mations Grafcet to PetriNet1.0 and PetriNet2.0 to PNML are not composable since
PetriNet1.0 �⊆ PetriNet2.0 and PNML �⊆ Grafcet. However, by analyzing the two ver-
sions of the PetriNet metamodel in Fig. 2 it is possible to notice that there are many
commonalities that might be exploited to increase the possible transformation chains.
In particular, depending on the cases, it can be possible to adapt transformations like
in the case of PetriNet2.0 to PNML in order to enable their application on some of the
models produced by transformations like Grafcet to PetriNet1.0.

In the next section, we present an approach that permit to fully automatize the activ-
ities of the chain process, and to enable the composition of transformations that could
not be chained according to Def. 2. In particular, we introduce the concept of adapter
that under certain conditions can be automatically synthesized and executed between
two transformations that otherwise could not be chained.

a) Grafcet metamodel b) PNML metamodel

c) PetriNet1.0 metamodel d) PetriNet2.0 metamodel

Fig. 2. Metamodels of the considered model transformations
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3 Automatizing Model Transformations Chaining

As previously mentioned, several approaches have been already proposed to support
the specification and execution of model transformation chains. The main focus of such
works is about checking if two given transformations can be chained or not with respect
to Def. 2 [1]. Then, compatibility can be exploited to manually defining chains and
singularly selecting the required transformations [9,8,3].

In this section, we present an approach that exploits and complement existing works
by advancing the state-of-the-art in two different directions: (i) the user gives as input
only the source model and the target metamodel, and the system automatically derives
the possible chains that can satisfy the user request, (ii) under certain conditions the pro-
posed approach is able to generate chains that include non-compatible transformations
through synthetised metamodel adapters.

The proposed chaining process is shown in Fig. 3. In particular, the previous activ-
ity 1 , presented in the previous section, has been enriched in order to automatize the
discovery of the required transformations and their chaining with respect to the user
request. The sub-activities of 1 are discussed in the following.

Discovery of the required model transformations The whole activity 1 in Fig. 3 is
enabled by a novel repository of model transformations, which are stored in a directed
graph-based structure as shown in Fig. 4. The nodes in the figure represent metamodels,
whereas the arcs represent all the available model transformations in the repository.
In other words an edge represents an existing direct transformation in the repository
having as source (target) metamodel the one represented by the source (target) node. It
is important to note that the graph is updated each time a transformation is added in the
repository or deleted.

Derivation of model transformation chains Representing all the available transforma-
tions as shown in Fig. 4 permits to deal with the problem of deriving a transformation
chain from a source metamodel to a target one as the problem of finding paths between
two nodes of a graph [12]. For instance, if the user wants a transformation able to take

 
 
 
 
 
 
 
 
 
 
 
 
 

User request 
Execution of the derived 

model transformations chain 

Derivation of the  
model transformations chain 

Discovery of required  
model transformations 

1 

2 

Target 
metamodel 

Source 
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Fig. 3. Proposed model transformations chaining process
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Fig. 4. Graph-based structure of a simple model transformations repository

a Grafcet model as input and generate a target XML model, then according to the trans-
formations available in the repository shown in Fig. 4 the solution would be the chain
Grafcet to PetriNet1.0;PetriNet1.0 to XML.

In the next sections, we give details about the sub-activities of 1 in Fig. 3. In particu-
lar, we focus on the management of incompatible metamodels (Section 3.1). Moreover,
an initial solution to the problem of managing multiple chains that satisfy the same user
request is discussed in Section 3.2.

3.1 Managing Transformations with Incompatible Metamodels

In this section, we describe the approach to support the chaining of transformations with
incompatible metamodels. For instance, let us consider the repository shown in Fig. 4.
In that case, it is not possible to satisfy the user who wants a chain from Grafcet to
PNML. In fact, as discussed in the previous section, PetriNet1.0 and PetriNet2.0 are not
compatible, and Grafcet to PetriNet1.0 and PetriNet2.0 to PNML cannot be chained.
However, it is possible to add a new transformation (see the dashed arrow labeled
AdapterPetriNet1.0,PetriNet2.0) that is able to adapt models conforming to PetriNet1.0
so to enable their manipulation and transformation from PetriNet2.0 to PNML .

In order to discuss how to obtain the adapter transformation let us consider the
explanatory transformation rules of Grafcet to PetriNet1.0 and PetriNet2.0 to PNML
shown in Fig. 5.a and Fig. 5.b, respectively, and the differences between the PetriNet1.0
and PetriNet2.0 metamodels. In particular, the new version of the PetriNet metamodel
has been obtained by operating the following changes on PetriNet1.0:

δ1: pull up of the attribute name to the new abstract metaclass NamedElement
δ2: renaming of the metaclass Net as PetriNet

Intuitively, all the rules of the transformation PetriNet2.0 to PNML that refer to the
pulled up attribute name are still valid and do not require any adaptation. Concerning
the rules of PetriNet2.0 to PNML whose source patterns refer to PetriNet elements
can be still applied on Net elements after an adaptation phase that simply copies all
the Net elements to target PetriNet ones. Thus the rule PNMLDocument in Fig. 5.b
can be applied on Net elements generated by Grafcet to PetriNet1.0 after an adaptation
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a) PetriNet transformation rule of Grafcet to PetriNet1.0 b) PNMLDocument transformation rule of PetriNet2.0 to PNML

Fig. 5. Sample transformation rules of Grafcet to PetriNet1.0 and PetriNet2.0 to PNML

step that generates PetriNet elements from the generated Net ones. More precisely,
the adaptation step can be performed by means of the Adapter transformation shown in
Fig. 6.

Fig. 6. Fragment of the adapter transforma-
tion AdapterPetriNet1.0,PetriNet2.0

The previous discussion relates to the
coupled-evolution problem that has been in-
tensively investigate over the last years [6].
For instance, in [7] the authors propose an
approach to support the migration of mod-
els when the corresponding metamodels have
been changed and it is necessary to recover
the conformance relation with the new ver-
sion of the metamodels.

In such contexts, according to [7,13] me-
tamodel manipulations can be classified by
their corrupting or not-corrupting effects on
corresponding artifacts as

– non-breaking changes: changes which do not break the conformance of models to
the corresponding metamodel;

– breaking and resolvable changes: changes which break the conformance of models
even though they can be automatically co-adapted;

– breaking and unresolvable changes: changes which break the conformance of mod-
els which can not automatically co-evolved and user intervention is required.

The synthesis of the adapters can be seen as the automated generation of migration
rules for adapting models when metamodels undergo evolution. Thus, we have con-
ceived the approach shown in Fig. 7: starting from a difference model [14] representing
the differences between two incompatible metamodels, the approach is able to gener-
ate adapter transformations like the one in Fig. 6. The approach relies on the higher-
order transformation we have developed to deal with the problem of metamodel/model
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Difference 
calculator  

MM1 MM2 

Delta Model 

HOT 

Adapter 
MM1toMM2 

m1 m2 

Fig. 7. Generation of the adapter transformation

coupled evolution presented in [7] and subsequently refined to deal with other related
co-evolution problems [15,16,17,18].

The proposed approach can be applied in case of non-breaking and breaking and re-
solvable changes. In fact, in such cases the adapter generation is completely automated
without requiring user intervention. By considering the running example, since δ1 is a
non-breaking change, and δ2 is breaking and resolvable, the approach in Fig. 7 can be
applied and the output is the adapter shown in Fig. 6.

It is important to remark that adapter transformations are generated when new trans-
formations are added in the repository or deleted from it. In particular, for each transfor-
mation addition, the corresponding source and target metamodels are taken as input by
a similarity function [19,20,21] used to calculate a similarity value between such meta-
models and all the others already stored in the repository. The used similarity algorithm
has been borrowed from [21] that converts the input metamodels into graphs and apply
on them the similarity flooding algorithm [20]. The similarity values are maintained in
a table like the one shown in Table 1. If the similarity value between two considered
metamodels is higher than a threshold (in our initial tests we have used 0,80 as thresh-
old value) then an adapter transformation between them is generated. In particular, the
metamodels found to be similar as previously said are compared and if the resulting
delta model consists of non-breaking and breaking and resolvable changes, then cor-
responding adapter transformations are generated by means of the approach shown in
Fig. 7. The similarity value is not calculated for those metamodels that are already re-
lated by a direct transformation. For instance, the similarity value between the Grafcet
and PetriNet1.0 metamodels is missing in Table 1, since the repository in Fig. 4 contains
the transformation Grafcet to PetriNet1.0. For explanatory reason in Fig. 4 we have re-
ported only the adapter transformation AdapterPetriNet1.0,PetriNet2.0. However, even
though it is not shown in Fig. 4, the repository contains also the adapter transforma-
tion AdapterPetriNet2.0,PetriNet1.0. When a model transformation is deleted from the
repository, the similarity table has to be updated in order to add the missing values.
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Table 1. Sample metamodel similarity values

 Grafcet PetriNet1.0 PetriNet2.0 XML PNML 
Grafcet 1 0,2 0,30 0,29 0,26 
PetriNet1.0 - 1 0,89 0,2 0,28 
PetriNet2.0 0,30 0,89 1 0,3 0,3 
XML 0,29 0,2 0,3 1 - 
PNML 0,26 - - 0,28 1 

3.2 Dealing with Multiple Chains

The activity 1 in Fig. 3 might give place to different possible chains and before going
ahead with executing activity 2 , users have to select one of them. For instance, let
us consider the situation shown in Fig. 8, and let us suppose that the user gives as
input a Grafcet model and wants to generate a target PNML. According to the available
transformations, such a request can be satisfied by two possible chains, i.e., T1 → T2,
and T1 → T3 → T4. In these cases it is necessary to consider one or more evaluation

Fig. 8. Choosing among suitable chains

criteria that can be used to select one of the derived chains. By borrowing concepts from
[22,23] in the implementation of the approach presented in the next section we support
users by giving information about the following aspects:

– Coverage of the source metamodels: coverage is the measure regarding how many
concepts of the metamodel have been covered by the transformation;

– Usage: we identified the usage of a transformation as one of the possible indicators
of the trustworthiness of a transformation;

– Number of transformations: it refers to the number of transformations that are
chained;

– Execution time: it refers to the time required to execute the whole transformation
chain.
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Fig. 9. Upload of the source model

It is important to note that the list of the aspects previously mentioned is not ex-
haustive and it is subject to extensions and refinements. We considered such a list in the
current implementation of the system and we plan to extend it according to the outcome
of a more extended validation of the approach as discussed in Section 5.

4 Implementation

In this section, we present a prototypical implementation of the approach discussed in
the previous section. The implemented system consists of a J2EE application providing
a Web-based front-end that users can conveniently adopt to (i) upload the source model,
(ii) select the target metamodel among the available ones, (iii) select one of the proposed
chains that are derived in a transparent manner for the user as discussed in the previous
section, and (iv) remotely execute the selected chain. At the end of the process, the user
can download the generated model. In the sequel, the front-end and the back-end of the
developed system6 are described separately.

4.1 Front-End of the Supporting System

The Web form to upload the source model is shown in Fig. 9. Once the model has been
uploaded, the system is able to detect the metamodel the model conforms to. After-
wards, the user has to select the target metamodel as shown in the screenshot in Fig. 10.
The list of metamodels shown to the user is retrieved from the repository used to store
transformations and all the metamodels required to execute them. Once the target me-
tamodel is selected, the whole activity 1 of the process in Fig. 3 is executed.

In the third step, all the possible chains that satisfy the user request are shown. To
help users in the selection, each chain is characterized by different attributes, like the
number of single transformations that will be executed, the coverage with respect to the
source metamodel, how many times the chain has been already executed, and its average
execution time. Once the chain is selected, then the user can trigger its execution and
wait for the generated model. Once the chain has been executed some statistical data
are stored in the system and shown to the user as shown in Fig. 12.

6 http://www.mdeforge.org

http://www.mdeforge.org
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Fig. 10. Selection of the target metamodel

4.2 Back-End of the Supporting System

Figure 13 shows an overview of the architecture of the system back-end. A key role
is played by the Artifact Repository which stores all the available transforma-
tions in a graph-based structured as presented in the previous section. The component
Transformations Discoverer is able to retrieve the required transformations with
respect to user requests. The Adapter Generator component is devoted to the gen-
eration of the adapter transformations as discussed in the previous section. Once the

Fig. 11. Transformation chain selection
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Fig. 12. Some information about the executed chain

required transformations are available, then all the possible transformation chains are
derived by the Transformations Chain Creator component. The actual execu-
tion of the selected chain is performed by the Transformation Chain Execution

Engine component.

Fig. 13. Overview of the system back-end

5 Discussion

The main strengths of the approach proposed in this paper are related to the possibility
of chaining transformations that would be discarded if only the notion of metamodel
compatibility is considered. However, the approach as proposed in this paper can be
enhanced in different directions as discussed in the following:

Management of Breaking and Unresolvable Changes: When the delta model of two
considered metamodels contain at least one breaking and unresolvable change (BUR),
the corresponding adapter transformation is not generated. We are aware that in this
way we might exclude some feasible transformation chains. However, as also in the
case of coupled evolution of metamodels and other related artifacts, managing BUR
metamodel changes is complex and typically requires user intervention. This is why we
decided to do not manage BUR changes at a first stage and investigate them as a future
work.
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Identification of Metamodels by Universal Resource Identifiers: Currently the identifi-
cation of metamodels is performed by exploiting universal resource identifiers (URIs).
This means that when a new transformation is added, if it is based on metamodels that
already exist in the repository but that for some reason have different URIs, then such
metamodels are added again. To avoid duplications of metamodels, we plan to improve
the existence check of metmaodels in our repository by exploiting model differencing
techniques. In this way, metamodels containing exactly the same elements but identified
with different URIs will not be duplicated in the repository.

Metamodel Similarity Functions: The generation of adapter transformations strongly
depends on the used metamodel similarity function. If it is not properly defined, we
might end up with false positives (i.e., metamodels that are considered similar when
they are not) and false negatives (i.e., metamodels that are not considered similar when
they are). It is important to remark that the metamodel similarity problem is related
to the problem of finding correspondences between two graphs [24]. Theoretically, the
graph isomorphism problem is NP-hard [25] and the available approaches provides so-
lutions which approximate the exact one. In this respect, the definition of a ”good” simi-
larity function relies on an iterative process that starts from an initial set of metamodels
that has to increased when critical situations have to be better fixed in the similarity
function being developed. Also, similarity functions are related to the application do-
main which means that cross-domain normalization is also necessary. Our implementa-
tion is independent from the similarity function in the sense that, when a new similarity
function is considered to be more appropriate, then the modification to be operated in
our implementation consists of refining only one method of a dedicated Java class.

Missing the Management of Semantic Aspects of the Transformations: The proposed
approach is based only on structural aspect of transformations and metamodels. This
means that users do not have semantic information about the derived transformation
chains. However, dealing with semantics of model transformations and in MDE in gen-
eral is complex [26] and represents an interesting and challenging research direction to
pursue for extending the proposed approach. For instance, a first problem we should in-
vestigate to enhance our approach is related to semantics preservation of chained model
transformations. Many approaches have been proposed to deal with such a fundamental
aspect of model transformations (e.g., [27]) and we intend to rely on them.

Experimentation and Evaluation: The prototypical implementation of the approach has
been validated by considering the transformations available in the ATL Zoo 7. To better
assess the validity of the proposed approach it is necessary to consider an extended set
of data whose definition is a complex task per se.

6 Related Work

Increasingly, model transformation chaining has been a current topic of research and it
has been treated from different perspectives.

7 ATL Transformations Zoo:
http://www.eclipse.org/atl/atlTransformations/

http://www.eclipse.org/atl/atlTransformations/
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In the database community, the problem of generating adapters between databases
with similar schemata has been studied for many years. There are several works study-
ing this problem and many different implementations do exist. Some of them could be
related to our approach by translating sequences of modifications of database schemata
into sequences of transformations of related databases [28]. In [2] the authors present a
convenient approach to design highly flexible chains from existing independent model
transformations. The main difference with the presented approach is the design part that
in our case is automatically calculated by the engine in discovery mode. They propose
to artificially change the input and output of transformations in order to recover the
compatibility of the involved metamodels. The work in [2] is an extension of what is
presented in [1] where the authors address the problem of identifying conflicts between
transformations, and checking if two transformations are commutative or not.

A language for defining composition of transformations is given in [3]. To support
the concrete realization of transformation chains they propose a language to allow the
concatenation of transformation components. A recent work [9] uses feature models
to classify model transformations. Based on this feature models, automated techniques
help the designer to generate executable chains of transformations. Another interesting
work has been proposed in [29] where transformation chaining is called orchestration.
This paper introduces a graphical executable language for the orchestration of ATL
transformations, which provides appropriate mechanisms to enable the modular and
compositional specification and execution of complex model transformations chains.
The work presented in [4] describes an approach to designing large model transforma-
tions for large languages, based on the principle of separation of concerns. Chains are
built by linking output parameters to input ones through connectors. Differently from
such works we do not require the specification of transformation chains that in our
approach are automatically derived with respect to the request of the user and to the
transformations, which are stored in a dedicated repository.

In [30] the authors propose a mechanism of module superimposition to compose
small and reusable transformations. The idea is to overlay several transformation def-
initions on top of each other and then execute them as one transformation. Differently
from our work, the approach in [30] is specific for ATL and it is an internal composition
approach. The work proposed in this paper is an external composition technique and it
is independent from the used model transformation language.

Finally our work is related to the Electronic Tool Integration (ETI) Online Plat-
form [31] complementing the STTT journal8 by providing the opportunity to experi-
ment interactively via internet with tools presented in STTT papers. Initially, the inte-
gration of such tools in the ETI platform was made by hand but the authors experience
stated that this task was hard and error-prone. Then to partially automate the coding,
and to ensure a uniformity in the programming style and result, an adapter specifica-
tion language called MFI was introduced. From MFI specifications, the needed adapter
code can be automatically generated similarly to the adapter transformations discussed
in this paper.

8 http://sttt.cs.uni-dortmund.de/

http://sttt.cs.uni-dortmund.de/
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7 Conclusions and Future Work

In this paper we presented a novel approach to support the chaining of model transfor-
mations. Starting from a user request consisting of a source model, and the specifica-
tion of a target metamodel, the system is able to calculate the possible chains satisfying
the user request according to the transformation available in a proposed transforma-
tion repository. Interestingly, the approach is able to chain also transformations based
on incompatible metamodels. To this end, adapter transformations are automatically
generated in order to enable the chaining of transformations that otherwise would be
discarded.

As said in the previous section we plan to extend the approach in different directions.
Because of the key role played by the metamodel similarity function, we intend to
enhance it by considering an extended set of metamodels. This will require also a proper
validation of the approach by involving a significant number of model transformation
experts. The current implementation of the approach is able to manage one-to-one ATL
transformations only. However, since the chaining technique is transformation language
independent we plan to support the derivation of chains consisting of transformations
developed with different technologies. Finally, we will support also the off-line usage
of the identified transformation chains. In particular, instead of uploading models and
transform them on-line as discussed in the paper, we plan to provide users with the
possibility to download a bundle containing the required transformation chains ready to
be locally executed.
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22. Planas, E., Cabot, J., Gómez, C.: Two Basic Correctness Properties for ATL Transformations:
Executability and Coverage. In: 3rd International Workshop on Model Transformation with
ATL, Zurich, Suisse (2011)

23. Vignaga, A.: Metrics for Measuring ATL Model Transformations. Technical report (2009)
24. Read, R.C., Corneil, D.G.: The graph isomorphism disease. J. Graph Theory 1, 339–363

(1977)
25. Lin, Y., Gray, J., Jouault, F.: DSMDiff: A Differentiation Tool for Domain-Specific Models.

16, 349–361 (2007), (Special Issue on Model-Driven Development)
26. Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Karsai, G.: Challenges and

directions in formalizing the semantics of modeling languages. Comput. Sci. Inf. Syst. 8,
225–253 (2011)
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Abstract. While comparing different model transformation languages
(MTLs), it is common to refer to their syntactic and semantic features
and overlook their supporting tools’ performance. Performance is one of
the aspects that can hamper the application of MDD to industrial scenar-
ios. An highly declarative MTL might simply not scale well when using
large models due to its supporting implementation. In this paper, we fo-
cus on the several pattern matching techniques (including optimization
techniques) employed in the most popular transformation tools, and dis-
cuss their effectiveness w.r.t. the expressive power of the languages used.
Because pattern matching is the most costly operation in a transforma-
tion execution, we present a classification of the existing model transfor-
mation tools according to the pattern matching optimization techniques
they implement. Our classification complements existing ones that are
more focused at syntactic and semantic features of the languages sup-
ported by those tools.

Keywords: Model Transformations, Languages Design, Pattern Match-
ing Techniques.

1 Introduction

The immersion of computer technology in a wide range of domains leads to a
situation where the users’ needs become demanding and increasingly complex
(the problem domain). Consequently, engineering successful software systems
also becomes increasingly complex (solution domain). A promising “divide-and-
conquer” idea to break down this increasing complexity, is to intensively use
Models during all stages of software development.

In Model Driven Development (MDD), both the design and development of
new software systems is done by having multiple levels of abstraction, where
each level deals only with a particular aspect of the system (therefore decreasing
its complexity), and assuring the consistency between them (e.g., translations,
synchronizations, etc.). In practice, each level of abstraction can be formalized
by means of a Domain Specific Modelling Language (DSML), and materialized
by its respective supporting tools ,i.e., editors, simulators, interpreters, analysers
and compilers [1,2,3].
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In this context, Model Transformation Tools (MTTs) are specifically designed
to transform models according to a transformation specification expressed in a
Model Transformation Language (MTL) [4]. Model transformation specifications
are expressed by means of a set of symbolic representations of the source lan-
guages syntactic structures (also known as patterns) that represent is to be
transformed during its execution.

Meanwhile, there exist so many different MTLs, with so many different prop-
erties and features, that anyone using them, here denominated as Transformation
Engineer, can have serious problems selecting which one is the most appropri-
ate to be used in a particular model transformation task. Moreover, the level
of abstraction used on these MTLs, in practice, impacts both the productiv-
ity, and the scalability. In the one hand, it is known that the high level of
abstraction employed in declarative MTLs, implies that model transformations
expressed on them are not only easier to read and maintain by the Transforma-
tion Engineers [5]. In the other hand, this high level of abstraction still imposes
a considerable downside on the run-time performance of the execution of the
model transformations expressed on these MTLs [6,7,8,9,10,11,12]. This can be
explained by the fact that the operation of finding the specified pattern in an
arbitrary input model of the source language (also called pattern matching) is
equivalent to the problem of finding a graph isomorphism [13,14], which is an
NP-Complete problem.

Run-time performance of MTLs is one of the aspects that can hamper the
application of MTLs and consequently MDD, to industrial scenarios. In the gen-
eral practice of software engineering, Transformation Engineers that use highly
declarative MTLs in order to express their model transformations, can be forced
to repeat themselves using imperative low-level programming languages, just
because, it is still a major challenge for a declarative MTL to reach the point
where its productivity outweighs its performance problems, at least compared
with as imperative approach. We believe that research will continue to improve
the performance aspect to the point where scalability will no longer be an issue.
It is of utmost importance to provide the Transformation Engineer with a classi-
fication of the existing MTLs along with their supporting Model Transformation
Tools (MTTs) in what matters to optimization techniques supported.

In this paper, we observe several Model Transformation Tools (MTTs), with
particular focus on the implementation and optimization of the pattern matching
techniques they employ.

This article contributes with the extensive collection of many different tech-
niques ranging from the amount and kind of performance-related information
required from the user, to the optimization techniques used on those tools.

In the next section, we present our methodology to select and classify existing
MTTs. Then, in Section 3, we present some of the most used techniques, how
they are organized according to our classification and which tools implement
them. In Section 4, we explore our classification, how it can be used, and how
it complements existing other existing classifications. Finally, we conclude in
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Section 5 by relating the degree of optimization of each MTT with the syntactic
features of the supported Model Transformation Language (MTL).

2 Methodology

In order to properly classify and compare the existing tools and their pattern
matching techniques, we need to establish a common view and understanding
of what is a model transformation environment and the execution process as a
whole.

2.1 Transformation Environment Overview

A model transformation is “the automatic generation of a target model from a
source model, according to a transformation definition” [15]. Fig. 1 establishes
a common view of a generic MTL, its supporting tools and the involved models
(input and output). Notice that all represented models are conforming to their
respective metamodels.

Fig. 1. Model transformation overview: language, tool and models

2.2 Transformation Execution Overview

In order to improve pattern matching, existing tools employ optimizations at
multiple stages of the transformation process. This is very similar to what hap-
pens in database systems where, prior to any query execution, there is index
creation so that, when a query is made, other techniques such as exploring dif-
ferent evaluation plans, are applied to get the most efficient execution of that
query [16]. It is because of that, that in order to study each pattern matching
technique, we need an high-level description of a typical transformation execu-
tion highlighting the multiple stages of the process.

Fig. 2 identifies the two most followed approaches to MTL execution: inter-
pretation (left) and compilation (right). We stress the fact that the presented
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(a) Interpretation process
of a transformation model.

(b) Compilation process of
a transformation model.

Fig. 2. Execution process of a transformation model

diagrams are not supposed to describe exactly how model transformation tools
operate, but instead to provide a clear view of the stages where optimization
techniques can be employed. But these diagrams are general enough to fit even
imperative tools (e.g., ATC [17]), where most of the stages are manually coded
by the Transformation Engineer. We also assume that a transformation is com-
prised of a set of rules, each containing a Left Hand Side (LHS) pattern, that
needs to be found in the input model, and a Right Hand Side (RHS) pattern
which represents the model that will be output in the end of the execution. There
is no loss of generality, since these rules (with the mentioned patterns) do not
need to be explicitly represented in the MTL, but instead be explicit.

These Figures also show that an MTT always starts by loading the transfor-
mation and, in the particular case of interpretation, the input model. At this
point, some existing MTTs perform global optimizations, such as the definition
of indexes, refactorings, based on the analysis of the transformation specification.
For instance, a global optimization may influence the order of rule selection, and
even the information shared between different rules. Then the tool executes the
transformation, selecting each rule and optionally performing some local opti-
mizations. These optimizations are concerned with minimizing the search space
while searching for the occurrences of the LHS pattern in a given input model,
i.e., while executing one rule.



Classification of Model Transformation Tools: Pattern Matching Techniques 623

We define global and local optimizations in terms of the scope of their im-
pact. While local optimizations are concerned with improving one particular
pattern match operation, global optimizations can impact several ones. Fur-
thermore, global optimizations handle information from the whole input model,
or from a representative one while local ones rely on limited information, either
about the pattern in execution, or from some kind of aggregation provided by
some other global technique.

The main difference between a compilation and an interpretation, from the
point of view of the pattern matching process, is when the information input
model is available to the tool. The two approaches have advantages and disad-
vantages: in interpretation mode, an MTT has to spend some cycles gathering
information about the input model before executing the actual transformation
process; whereas while compiling a transformation, a MTT can only access to
statistics about typical input models. However, in order to compensate for the
lack of information available during the compilation process, some tools can still
prepare the generated transformation code so that the actual input model can
be analysed when it gets executed. This means that, in both execution modes,
the information about the input models can always be retrieved so, in principle,
each optimization technique can be applied regardless of whether we are talking
about a compilation approach or an interpretation approach. Of course there are
techniques that do not depend on the information about the input model.

In summary, the possible optimization techniques that can be employed do
not depend on the execution mode of the transformation tools, and so we do not
need to classify the optimization techniques according to the execution approach
in which they are employed.

2.3 Classification Rationale

In order to identify most of the existing pattern matching techniques, we tried to
cover as many and as diverse MTTs as possible. We achieved variety on the dif-
ferent observed MTTs, by taking into account their distinguishing syntactic and
semantic features as identified in [18], namely: (i) imperative tools such as ATC
[17] and T-Core [19]; (ii) declarative tools such as AGG [20], Atom3 [21]; (iii) pro-
grammed graph rewriting approaches such as GReAT [22], GrGen.NET [23],
PROGReS [24], VMTS [25] and MoTif [26]; (iv) incremental approaches such as
Beanbag [27], Viatra2 [9] and Tefkat [28]; (v) and bidirectional approaches such
as BOTL [29]. Notice that there are many more MTTs but we had to restrict our
search to MTTs that published at least one paper about its internal execution
mechanisms and optimization techniques. For instance, we did not consider tools
such as SmartQVT [30] because we did not find any paper about optimization
techniques being used in SmartQVT.

We followed a systematic approach to classify the pattern matching tech-
niques. We first paid attention to the degree of domain and tool knowledge
the Transformation Engineer has to have in order to perform (and/or improve)
the pattern matching execution of a model transformation. For instance, there
are MTTs that require the Transformation Engineer to both manually code and
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improve the pattern matching procedure (these are calledmanual approaches).
However, most of the existing MTTs do not require (or even allow) any inter-
vention from the Transformation Engineer in the pattern matching procedure
(automatic approaches). Yet, in an attempt to obtain the best of both worlds,
there are MTTs whose languages introduce special syntactic constructs, so that
if performance is at stake, the Transformation Engineer is able to interfere and
optimize their execution (semi-automatic approaches).

We then organised the pattern matching techniques with respect to the scope
of their impact. i.e., whether they are global or local optimizations.

We observed that some local techniques had a planning phase, were a cost
model is used to perform the optimization, and some techniques rely on heuristics
and hence, do not have a planning phase. These were classified in planned and
unplanned.

These categories are just the foundation to classify most of the existing pattern
matching optimization techniques. We found more categories while exploring
a specific set of techniques. For instance, most global techniques are either
caching, indexing or overlapped pattern matching techniques. In the next
section we explore each of these categories and the concrete techniques with
examples and referring to the state of the art MTTs that implement them.

3 Classification

Table 1 shows many MTTs and which pattern matching techniques they make
use of. Since tools evolve very rapidly we have included the year next to the
tool in which a paper was published concerning the tool’s internal mechanisms
to perform pattern matching. The header of Table presents the techniques we
studied, organized according to the categories we introduced in the previous
section. Notice that we do not include all the pattern matching techniques that
we have found: we give special emphasis to those that are more pervasive across
multiple MTTs.

We try to provide a simple and general explanation for each pattern matching
technique with the help of the sample patterns shown in Fig. 4. We present each
pattern as being matched against the input model shown in Fig. 3(a). Notice
that, in the input model, the id attribute of each element appears to the left of
its type.

3.1 Manual Techniques

MTTs that enable the Transformation Engineers to manually code and op-
timize the pattern matching process, usually do so by providing an API with
the necessary imperative constructs to perform CRUD (Create-Read-Update-
Delete) operations in the input model of the transformation. For instance, if
the Transformation Engineer wants to match the pattern shown in Fig. 4(a)
against the input model of Fig. 3(a), s/he could leverage his/her domain knowl-
edge by manually coding the pattern matching process as shown in Algorithm 1.
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(a) (b)

Fig. 3. Sample input model (left) and corresponding metamodel (right)

(a) (b) (c) (d)

Fig. 4. Sample patterns

The Transformation Engineer combines two crucial bits of information: (i) do-
main knowledge, since s/he knows that any instance of B is always contained
in an instance of A (as it is shown in the metamodel of Fig. 3(b)); and (ii) tool
knowledge, since s/he knows that the underlying model storage framework keeps
inverse associations (such as y.abInverse in Algorithm 1). Also note that the
GetAllInstances(B) operation is part of the tool’s API, and is used to fetch the
set of all instances of B in the input model of Fig. 3(a).

ATC [17] and T-Core [19] are good examples of low-level, imperative languages
that require the Transformation Engineer to manually code the pattern matching
process.

Due to the imperative nature of these languages, there are no optimization
techniques that fall under the Manual category: if we want optimization, we
have to do it ourselves.

3.2 Semi-automatic Techniques

There is a wide array of Semi-automatic techniques such as the usage of
lazy rules (as in ATL [31]), or the user-specified strategies employed to solve
systems of equations involving several attributes (as in BOTL [32]). Most of the
considered Semi-automatic techniques are exclusive of each individual tool
but there is one that is pervasive in almost all the studied tools: Pivoting. It
basically consists of reusing previously matched objects.
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Algorithm 1. A manually coded algorithm to match the pattern shown in
Fig. 4(a) that takes advantage of the metamodel topology and the existence of
inverse associations
1: function Match
2: for y ∈ GetAllInstances(B) do
3: x ← y.abInverse
4: results ← results ∪ {(x,y)}
5: end for
6: return results
7: end function

In order to support Pivoting, the MTL must include the necessary syntactic
and semantic features that enable: (i) rule parametrization; and (ii) a way to
instantiate those parameters with concrete model elements, effectively provid-
ing a starting point for the pattern matching process. It falls under the Semi-
automatic category because the Transformation Engineer must identify which
rules are suited to be parametrized, and forward previously matched model el-
ements into those rules. As an example, let us assume that the pattern shown
in Fig. 4(b) is matched before the pattern of Fig. 4(c). A keen Transformation
Engineer parametrizes the pattern of Fig. 4(c) with elements that are to be
matched in the pattern Fig. 4(b). Algorithm 2 shows the resulting generated
code that matched the pattern of Fig. 4(c). For the sake of brevity, we omit
the code generated to match the pattern of Fig. 4(b) as it would be similar to
Algorithm 1. We also omit the generated code that calls the function defined in
Algorithm 2 with the set of bindings collected during the matching process of
pattern of Fig. 4(b).

GReAT [22,11] and MoTif [33] allow for semi-automatic Pivoting. In those
MTTs, a transformation specification consists of a network of rules with a well
defined interface of input and output parameters. The input interface declares
the rule’s incoming partial matches that serve as a starting point for the pattern
matching. The output interface represents the bindings that will be propagated
to the next rules in the network.

Algorithm 2. An algorithm to match the pattern of Fig. 4(c)

1: function GeneratedMatch(AacCOccurrences)
2: for (x,z) ∈ AacCOccurrences do
3: for y ∈ x.ab do
4: results ← results ∪ {(x,y,z)}
5: end for
6: end for
7: return results
8: end function
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3.3 Automatic Techniques

Most of the identified techniques are automatic, i.e., they require minimal inter-
vention and knowledge from the Transformation Engineer in order to be used.
The MTTs that employ these techniques typically work with declarative rules
and, optionally, provide imperative constructs in order to enable the control (or
configuration) of the rule scheduling. In what matters to the pattern matching
process, we distinguish Local techniques from Global techniques.

The Local pattern matching techniques are algorithms that have to transverse
the input model (in the worst case), while checking if there is a match for each
element in the pattern.

Since their execution involves the selection of multiple choice points (i.e., pos-
sible candidate nodes to be checked), and going back to those choice points to
test further alternatives, these algorithms are said to be local search based [34].
Even MTTs that reduce the pattern matching problem to a constraint satis-
faction problem (e.g., AGG [12]), or even a database query problem (e.g., Gr-
Gen(PSQL) [35]) are indirectly performing local search [36,16]. Because of this,
they all fall in the category of Local optimization techniques.

While studying these techniques, we found that some involved a planning
phase in which they use special data structures (such as search graphs in Vi-
atra2 [9], or pattern graph in PROGRES [37]); and some simply execute the
search immediately using nothing but some global data structures (such as in-
dexes, as is done in VMTS [25]). We classified the former kind of techniques as
Planned and the later asUnplanned. The referred data structures in Planned
techniques are typically built automatically from LHS patterns, and provide a
representation of all possible ways of searching for a given LHS pattern. For in-
stance, a possible way to represent the search graph for the pattern of Fig. 4(d)
is represented in Fig. 5(a). Notice that from the starting point, represented as
a smaller circle, the local search can begin at either A, or B, or C. Suppose it
starts from C, as indicated by the bold arrows, it then can proceed to A elements
(maybe taking advantage of inverse relations), and so on for B elements. The
bold arrows represent one of the many search plans.

In order to be able to compare between search plans, and select a good one,
MTTs use a cost model. We distinguish different Planned techniques accord-
ing to the cost model used. Some cost models only use information about the
metamodel (these are called Metamodel Sensitive); other cost models use sta-
tistical information about the input model (these are called Model Sensitive);
or even explicit information about the tool’s implementation (these are called
Implementation Sensitive).

Metamodel Sensitive cost models employ a set of heuristics that make use
of the match metamodel in a given model transformation—these were presented
in [37], and used in the PROGRES tool. An example of such heuristics is the
first-fail principle: a good plan should start the search in the most restricted
pattern element, since it will have the fewest possible occurrences. Following
this principle, a good plan to search for occurrences of the pattern shown in
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Fig. 4(d) would be to start by searching all the z elements, given that they
specify attribute constraints.

Model Sensitive cost models use statistical information about the current
input model or, at least, of a representative collection of input models. As an
example, we demonstrate the cost model used in the Viatra2 [9]. According
to [9], the cost of a search plan is given by the potential size of the search tree
formed by its execution. For instance, if we consider the search graph presented
in Fig. 5(a), then the potential size of the search tree corresponding to a possible
search plan shown in bold is given by z̄ + z̄ ∗ x̄z + z̄ ∗ x̄z ∗ ȳx, where: z̄ denotes
the expected number of model elements that can be matched by the z element;
x̄z denotes the average number of model elements that can be matched by x
after binding z to some model element; and ȳx denotes the same for y after
binding x to some model element. In Fig. 5(b), we show a weighted version of
the presented search graph, but now considering the statistics of a given input
model. Following the presented cost model (i.e., computing the potential sizes
of the different search trees), it is clear that, in this case, the evaluation of a
search plan that follows the order z → x → y (shown in bold) yields a cost of
9.99, is preferable to a search plan that follows the order y → x → z, since its
evaluation yields a higher cost of 12.

An Implementation Sensitive cost model such as the one presented in [6]
and implemented in the GrGen.NET [23] tool, takes into account not only the
size of the search tree, but also the cost of each individual operation such as the
search for all the elements given some type. This allows the MTT to consider
the existence of indexes and other characteristics of its own implementation in
the cost model. This is similar to the cost model used in database systems since
they typically take the indexes and other implementation features into account
[16].

(a) (b)

Fig. 5. Search graph (left) and weighted search graph (right). These graphs represent
the pattern of Fig. 4(d).

In what matters to Global techniques, we identify three different types of op-
timization techniques:Caching, Indexing, andOverlapped Pattern Match-
ing.
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Most of the analysed MTTs allow the definition of variables and conditions
composed of multiple expressions over elements in a match pattern definition.
Depending on the number of times that the same expression is used in different
match patterns, its repeated evaluation may degrade the overall performance of
the transformation. To mitigate this problem, transformation tools such as ATL
[31], apply Caching techniques, by evaluating all expressions once, and storing
the resulting values so that they can be directly retrieved later.

All of the observed MTTs use indexes. Most of the indexes used keep model
elements grouped by their corresponding type as described in the metamodel
(Type Indexing). However, we have identified two additional kinds of indexes:
Attribute and Structural. While the former allows the MTTs to efficiently
find elements given a condition on one of their attributes, the later allows MTTs
to index whole patterns that are matched often in the transformation. In order
to perform indexing, the required intervention and knowledge from the Transfor-
mation Engineers range from minimal (as in PROGRES [37,24]), to none (as in
Viatra2 [10,9]), where in the later case, the structural indexes are automatically
created for all of the patterns defined in a transformation specification.

Finally, there are MTTs that try to automatically factorize two or more match
patterns, in order to identify a common pattern that can be matched before
them. In this technique, known as Overlapped Pattern Matching, the com-
mon (or overlapped) pattern occurrences are then passed as pivots in order
to be matched by the remaining patterns of the two rules [38]. Note that the
difference between this technique and Pivoting is in the common occurrences
detection, which has to be fully automated. If the user is required to identify
common occurrences, then it is just Pivoting, as is done in Great [22,11] and in
Viatra2 [10,9]. To the best of our knowledge, only VMTS [25] implements this
technique.

4 Discussion

Performance is one of the aspects that can hamper the application of MDD
to industrial scenarios. Before undergoing a major project, the Transformation
Engineer should study which tools are better suited for that project. S/He can
not risk choosing a declarative and productive MTL and, at a later stage of the
project, discovering that the transformations specified in that language, sup-
ported by that tool, do not scale well.

Our classification in Table 1 complements existing ones by looking at the
optimizations employed in the implementation of the MTLs. Of course this is a
moving target: in theory, a language is independent of its implementation, so we
expect that more and more optimizations will emerge that will outdate Table 1.
However, we do not expect the kinds of optimization techniques as identified
in Section 2, such as Manual vs Semi-automatic vs Automatic, Local vs
Global, Planned vs Unplanned, and so on. . . to change that much.
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Perhaps the most widely applicable categorization of MTLs is presented in
[18]. Their MTL categorization is done in a comprehensive way by means of
a feature model that elicits the variability of MTLs w.r.t. both their syntactic
constructs and their semantic features. However, they do not make explicit any
features regarding the run-time performance of their transformation engines.

On a more pragmatic point of view of MTL’s usage context, [39] provides a
taxonomy that aims to aid Transformation Engineers in deciding which MTL is
best suited to carry out a particular model transformation activity. They iden-
tify as important characteristics the degree of automation and complexity. This
taxonomy was extended in [40] by grouping several model transformation pur-
poses (e.g., simulation, synchronization, optimization), according to the models,
metamodels and abstraction levels involved in a given transformation.

In the context of quality engineering, [41] proposes a comprehensive evaluation
schema based on ISO 9126 [42]. The proposed evaluation schema aims to help
the Transformation Engineers on choosing an appropriate MTL, by comparing
different MTL’s tooling support, implementation, syntactic features, community
support and their future perspectives. In a similar line of research, [43] compares
four different MTLs and corresponding MTTs using a common transformation
problem. Their categorization is based on the following characteristics: the rep-
resentation of models and metamodels, the constructs used to define transfor-
mation rules, rule scheduling constructs and formal analysis support. They also
take into account the tooling support for each language such as: Editors, Trans-
formation Simulation Support, Compilation, Debugging and Validation.

To our knowledge, only [9] provides a categorization of graph transformation
tools based in their pattern matching strategies but with focus in the execution
of individual rules.

In summary, there is no classification directed at the underlying techniques
employed in the transformation engines of the existing model transformation
languages across the whole transformation process. Instead, most classifications
are directed at their usability w.r.t their syntactic and semantic features and
usage scenarios. Knowing the optimization techniques supported by a given tool
allows the Transformation Engineer to assess if that tool can be applied to
industrial scenarios.

5 Conclusions

There is a wide variety of approaches to the pattern matching problem, hav-
ing different outcomes, in what matters to the required amount of effort from
the Transformation Engineer, and the end result in what matters to run-time
performance. In this paper, we presented a classification of the different model
transformation approaches w.r.t. the employed pattern matching techniques.

MTTs that focus on Manual approaches typically provide imperative (see
Czarnecki’s categorization [18]) constructs in their MTLs. Therefore, they re-
quire domain expertise and knowledge about the tool’s internal pattern match-
ing mechanisms. Their MTLs are powerful and expressive. However, the specified
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transformations are verbose and difficult to read, which hinders the productivity
of the Transformation Engineer. Nevertheless, their execution can be extremely
fast, since the Transformation Engineer is able to directly code any kind of opti-
mizations using his/her knowledge about the domain. Therefore, these MTTs are
ideally suited to perform critical model transformations, or even to implement
higher-level MTLs, as is the case of T-Core [19], which was used to implement
MoTif [44].

MTTs that support many Automatic pattern matching techniques require
less amount of information from the Transformation Engineer and ease the cre-
ation and maintenance of the transformation specifications. The transformations
are typically comprised of a set of rules declaring the manipulations in the in-
put model without any information regarding the underlying required pattern
matching process. Therefore, we can expect the maximum productivity of the
Transformation Engineer. However, if the Transformation Engineer knows some-
thing about the domain that can be used to speed up the transformations’ execu-
tion, he/she will not be able to use that knowledge because all the optimization
decisions are made solely by the tool.

Finally, MTTs that support Semi-automatic techniques still require that
the Transformation Engineer have some knowledge about their internal mech-
anisms, while enabling the expression of high-level declarative transformations.
These tools typically focus on allowing the Transformation Engineer to modu-
larize and parametrize rules (Pivoting) so that matched elements can be shared
among them. The impact in the run-time performance is obvious: the initial
bindings of a rule are automatically shared among the shared rules, decreasing
(sometimes in several orders of magnitude) the amount of computation needed
to match the remaining elements of a given pattern. However, in order to use this
feature, the Transformation Engineer has to explicitly create the transformation
with these features in mind in order to maximize the sharing of initial bindings
between rules—i.e., this imposes a negative impact in the end productivity of
the Transformation Engineer.

Ideally, one could expect that the problem of run-time performance of MTTs
can be solved solely by Automatic pattern matching techniques. However, we
observed that the approaches which invested more research in addressing the
pattern matching problem tend to combine Semi-automatic and Automatic
techniques. In the one hand, they allow the expression of model transformations
as networks of rules, where the flow between rules represents shared LHS pattern
occurrences; and in the other hand, they employ planned search in order to
perform the pattern matching of the declared rules, while taking advantage of
the shared LHS pattern occurrences.

We believe that further improvements on the state of the art regarding MTLs
and their MTTs’ run-time performance, will follow this research trend of power-
ful constructs to enable the tuning of model transformation specifications, and
the configuration of the increasingly sophisticated pattern matching techniques.
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Abstract. We propose an evolutionary approach that, in addition to
learn model transformation rules from examples, allows to capture im-
plicit and explicit control over the transformation rules. The derivation
of both transformation and control knowledge is performed through a
heuristic search, i.e., a genetic programming algorithm, guided by the
conformance with examples of past transformations supplied as pairs
of source and target models. Our approach is evaluated on four model
transformation problems that require non-trivial control. The obtained
results are convincing for three of the four studied problems.

Keywords: Model transformation by example, transformation control,
genetic programming.

1 Introduction

Model transformation (MT) are a keystone of the model-driven engineering
(MDE) paradigm, allowing to move from one model to another while keeping the
overall consistency. As MT is the main mechanism that supports the MDE vision,
much effort has been put into developing new approaches, languages and tools
to improve model transformation writing and promote the adoption of MDE.
However, writing MT remains a very difficult task and can thus compromise the
benefits brought by MDE. In this regard, the automation of MT is critical to
the success of an MDE-based project. There are many contributions that have
been proposed to improve the automation of model transformations. Among
them, learning model transformation by example (MTBE) is an appealing al-
ternative to achieve automation in the absence of sufficient knowledge regarding
the transformation.

During the last decade, the idea of learning MT using examples caught on. Nu-
merous contributions have been proposed to learn model transformations from
examples. Nonetheless, one common limitation of the existing approaches, is
their inability to learn complex model transformations that require sophisti-
cated mechanisms of control. Indeed, many transformations are complex and
cannot be handled by separate pieces of knowledge. Target-model fragments to
create must be arranged in a non trivial way to produce a consistent model [18].
Moreover, source-model constructs cannot be transformed in an arbitrary order.
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To deal with these situations, MTBE approaches should also learn knowledge
about the transformation control.

Recently, we proposed an approach to learn transformation rules from exam-
ples using a genetic programming approach [9]. We tested this approach on sim-
plified model transformation problems that do not require sophisticated control.
In this paper, we propose an enhanced approach that, in addition to learn trans-
formation rules, allows to capture implicit control, i.e., control embedded within
the transformation rules, and explicit control, i.e., in the form of meta-rules, over
the transformations. Moreover, we broaden the spectrum of the learned trans-
formations. The difference with our previous work includes, in addition to the
control, the inclusion of navigation primitives, negative condition use (NOT),
and the consideration of types and definition domains for the constants gen-
eration and constructs property setting. Similarly, to our previous work, the
derivation of both transformation and control knowledge is performed through
a heuristic search guided by the conformance with examples of past transforma-
tions supplied as pairs of source and target models. In our approach evaluation,
we obtained precision and recall values higher than 75% for three out of four
model transformation problems that require non-trivial control.

The rest of this paper is organized as follows. Section 2 reviews the related
work on learning model transformations and on control in model transformation
languages. Section 3 describes the transformation control mechanisms and learn-
ing problem. Our learning algorithm is detailed in Section 4, and its evaluation
is reported in Section 5. Our findings are discussed in Section 6.

2 Related Work

To our best knowledge, there are no research contributions on the explicit con-
trol learning for model transformations. In this section, we briefly introduce the
existing work on model transformation by example. Then, we give an overview
on how the control is handled in the model transformation community.

In 2006, Varro [24] proposed a first approach to learn 1-to-1 model transfor-
mation rules by example. Transformation rules are derived semi-automatically
from a prototypical set of interrelated source and target models. This initial con-
tribution was improved in 2009 [1] by automating the approach using inductive
logic programming (ILS) instead of the original ad-hoc heuristic. Similarly to the
previous work, Wimmer et al. proposed in [26] a contribution to derive 1-to-1
transformation rules in the form of ATL rules. Later, Gacia-Magarino et al. [11]
proposed an algorithm to generate many-to-many transformation rules presum-
ably in several transformation languages (in the paper, rules are created in a
generic tranformation language and are translated to ATL). Close to the above-
mentioned work, Dolques [6] learn many-to-many transformation mappings or-
ganized in a lattice by means of relational concept analysis. Saada et al. [21]
extended this work by producing executable rules from the mappings. With a
different strategy, Kessentini et al. proposed in [14] an approach to transform
a given source model by analogy with transformation examples. This approach,
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improved later in [15], does not produce knowledge (rules) but a concrete trans-
formation of a given model. All these contributions need explicit mappings be-
tween the constructs of the source and target models given as examples. Faunes
et al. [8] recently removed this constraint using genetic programming. Although
the control was not considered in the learning process, this approach succeeded
to learn complex transformations [9].

The only work that enforces the control in model transformation learning
is the one on model transformation by demonstration [22,17]. The control is
not learned per se. It is recorded from the order in which the operations are
performed in the demonstration.

In the context of rule-based transformations, execution control [4], or rule
scheduling, denotes the mechanisms responsible for determining the order in
which the individual rules should be applied. Most of the existing model trans-
formation languages offer such control mechanisms. However, the implementa-
tion and features differ greatly from one language to another. According to [2],
those variations can be considered with respect to three rule scheduling aspects:
rule selection, rule iteration and phasing.

Rule Selection. Rules can be selected by either implicit or explicit control tech-
niques. There are languages such as BOTL [3] and OptimalJ that offer an implicit
rule control, with which, the user can enforce a desired execution order by con-
ditioning, for example, the execution of a rule to the presence of another rule’s
output. Hybrid transformation languages such as VIATRA [25] and ATL[13] use
explicit control techniques. Explicit control techniques can be external (the con-
trol logic is decoupled from the rules) or internal. VIATRA offers external control
through the basic set of Abstract State Machines (ASM) to support complex con-
trol flow. ATL, on the other hand, uses internal scheduling with the possibility
for transformation rules to directly invoke other rules (called lazy rules). Other
languages such as AToM3 [5] offer priorities based conflict resolution mecha-
nisms as well as interactive rule selection. KERMETA [7] and SmartQVT [23]
imperative approaches entail an explicit rules execution control where the rules
are executed according to the flow of the transformation code. ModelMorf [19],
which is an implementation of Relational QVT (and thus is fully declarative),
allows both implicit and explicit scheduling. While a user cannot establish the
execution order of the top-level rules explicitly, those rules can call others in
when and where clauses.

Rule Iteration. This includes recursions, looping and fixpoint iterations. ATL,
KERMETA SmartQVT supports recursion. VIATRA on the other hand, sup-
ports fixpoint iterations.

Phasing. A transformation may be organized into several phases. For each phase,
a subset of rules is defined. ATL, OptimalJ, SmartQVT, and ModelMorf sup-
port phasing. For instance, OptimalJ has two distinct phases, one creates the
containment hierarchy of the target model, and the other sets the attributes and
references.
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3 Problem Statement

3.1 Implicit and Explicit Control

To illustrate the notion of transformation control, let us consider the transfor-
mation of UML class diagrams into relational schemas. For this transformation,
some constructs have to be transformed before others to produce a consistent
relational schema. For instance, classes must be transformed into tables before
transforming their attributes into columns of the corresponding tables.

The transformation control can be implicit or explicit or both depending on
the transformation language. It is called implicit when it is embedded in the
transformation rules themselves. For our example, we could ensure that classes
are transformed before their attributes in different ways. If the language provides
navigation facilities, we can define a single rule that, for each class, first generates
a table and then iterates on its attributes to produce the corresponding columns.
When the transformation language is fact-based like in Jess1 [12], another way is
to filter both an attribute and its class and then create a table and a column. The
same table is created several times for the same class (one for each attribute of
the class). However, as mentioned in [9], this is not a problem, since the creation
of a table is a fact assertion, and the same fact can be asserted several times.
Another possibility for defining implicit control is to test target model constructs
in the left-hand side of the rules. For our example, one defines a first simple rule
that generates a table from a class. Then, she adds a second rule that filters a
class and an attribute from the source model, and a table from the target model.
This rule tests if the attribute belongs to the class and if the table has the same
name as the class. If yes, it creates a column with the same name as the attribute
and attaches this column to the table. With this rule if a class is not transformed
yet, its attributes cannot be transformed. This way of implementing the control
works for transformation languages when the facts that trigger the rules could
change during the firing process. This is possible in Jess because the rule firing
is reevaluated each time after fact assertions using a Rete algorithm [10].

The control is explicit when it is possible to specify when rules should be
fired. Many control strategies could be defined to explicitly state the control over
the transformation rules [20]. In Jess, two strategies can be used. The first one
consists in grouping rules into modules and defining an execution order for the
modules. In our example, the rule that transforms a class is added to a module A
and the rule for transforming an attribute is added to a module B. Then, module
A is executed before B, i.e., rules in A are executed first and when no more rules
can be fired, then rules of module B are considered. The second strategy available
in Jess is rule salience. Each rule is assigned a priority level. When many rules
can be fired, the one with the highest priority is executed. In our example, the
class transformation rule will have a higher priority than the attribute one. This
guarantees that classes are transformed before their attributes. In our approach,
we consider both implicit and explicit control. For the implicit control, we learn

1 In this work, we use the pure declarative generic language Jess to implement the
transformations.
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rules that, in addition to source constructs, filter target constructs. For the
explicit control, we consider module or salience strategies offered by Jess.

3.2 Control Learning

Our learning process takes as input one example pair of models. This contains
a source model smi and its corresponding target model tmi. Each of the two
models conforms to its respective metamodel (SMM or TMM). The goal of our
process is to produce a transformation T (rules + control) such that T (smi) =
tmi. Note that T is not necessary the transformation Tr that allows to transform
any model smk conforming to SMM into a valid model tmk conforming to
TMM . Indeed, generally, for a given input/output (smi/tmi), there exist a
family of transformations that allow to obtain tmi from smi. By analogy, if we
search for the program that produces as output the value 4 from the input 2,
then, there exist a large number of programs that are valid for this input/output
example pair (e.g., b := a + 2, b := a × 2, b := a2, ...). However, we conjecture
that the more complete and complex is smi, the more probable that T = Tr.

Our goal is to learn both transformation rules and the control over these rules.
Transformation rules, including the implicit control knowledge, are considered
as the transformation knowledge fragments, whereas, the explicit control is seen
as the control knowledge. Two alternatives could be explored to learn both types
of knowledge: simultaneous and sequential learning. Simultaneous learning con-
sists in learning simultaneously both types of knowledge. This alternative makes
the hypothesis that transformation knowledge cannot be learned independently
from the control. In sequential learning, we consider that, in a first step, the
transformation knowledge fragments can be learned in the form of rules. Then,
we explore how these fragments could be arranged (control) to produce consis-
tent transformations. In the rest of this paper, we explore the first alternative,
whereas, the second alternative is currently under investigation.

4 Transformation Rule and Control Learning

In our contribution, transformation rules are executable programs that analyze
certain aspects of source models given as input and synthesize the corresponding
target models. Learning complex and dynamic structures such as programs is
not an easy task that can be handled by basic machine learning algorithms.
Considering that we address an automatic program generation problem, genetic
programming (GP) is a natural direction to explore.

4.1 Transformation Learning Using GP

Genetic programming is a learning technique allowing to solve automatically a
programming problem, starting from high level statement on how the program
should behave [16]. This statement usually takes the form of a set of input and
output example values. Taking inspiration from the theory of evolution by means
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of natural selection, the learning process starts from a population of programs,
obtained randomly or by means of another technique, and iteratively refines them
by applying the genetic operators, crossover and mutation. At each iteration, the
newly created programs are evaluated using a fitness function, which allows to
rank them and to favor the fittest programs in the creation of the new ones. In
general, to calculate the fitness of a program, this latter is executed with the
provided inputs and its outputs are compared with the provided outputs.

The application of a GP algorithm to our transformation problem is not
straightforward. In the majority of GP applications, the sought programs are
imperative, and are modeled as abstract syntax trees. Consequently, the genetic
operators are manipulations of trees (e.g., exchanging subtrees between programs
or a random change of a subtree). Moreover, the inputs and particularly the out-
puts that are given to guide the learning have simple types and are then easy
to compare. In our case, we are looking for declarative transformations with
control mechanisms that cannot necessarily be encoded as trees. New genetic
operators have to be defined according to the defined transformation encoding.
Additionally, the inputs and outputs provided as examples are models, i.e., com-
plex structures. This makes it difficult to define a cost-effective fitness function
that compares the produced target models with the expected ones.

In the following subsections, we detail our adaptation of the general GP algo-
rithm to the specific problem of model transformation and control learning. This
adaptation concerns the candidate transformation encoding, the evaluation of a
given candidate with the fitness function, and the derivation of new candidates
by genetic operators. As the learning process requires that the candidate trans-
formations are executed to determine their fitness, our adaptation is performed
for the rule language and engine Jess.

4.2 Candidate Transformation Encoding

We encode a candidate transformation Tc as a vector of rules Tc = {r1, r2, ..., rn}.
Each transformation rule ri is encoded as a triple ri =< LHSi, RHSi, cli >,
where LHSi is the pattern to search for in a source model and possibly in the
already-created fragments of the target model, RHSi is the pattern to instanti-
ate in the target model, and cli is the module or priority level of ri depending
on the (explicit) control strategy given as parameter to the learning process.
Implicit control is achieved by allowing LHSi to filter target model constructs.

LHSi (Left-Hand Side) is the conditional part of a rule. When all the
conditions of a rule ri match the source or target model constructs, the rule
is said fireable. LHSi is composed of several interconnected “bricks”. A brick
is a generic model fragment (interconnected model constructs) which is self-
contained, i.e., respects the minimum cardinalities of the references defined on
the metamodel. For example, in a UML class diagram, a single class could
form a brick (class (name ?c)) where ?c is the variable to match with the
names of the classes in the source model. However, an attribute should be asso-
ciated to its class to form a valid brick, i.e., (attribute (name ?a)(class ?c))
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AND (class (name ?c)). Similarly, an inheritance relationship with two related
classes (superclass and subclass) forms a valid brick with three constructs.

The bricks must be interconnected to be matched by concrete model frag-
ments during the transformation execution. When two bricks belong to the same
metamodel (source or target), the interconnection is made through a common
construct. For example the superclass of an inheritance brick is the same as the
class of an attribute brick. This is expressed in Jess by giving the same variable
name to both construct names in the two bricks. When the two bricks to connect
are respectively from the source and target metamodels, the connection is made
through properties of the same type, e.g., class name and table name.

The example given in Listing 1.1 shows bricks (one from the source model
and the other from the target model). The two bricks are connected through the
variable ?c. The presence of a brick from the target model enforces the implicit
control that a column cannot be created before its table.

Listing 1.1. A rule example

( d e f r u l e Attribute2Column
( a t t r i b u t e (name ?a ) ( c l a s s ? c ) )
( c l a s s (name ?c ) )
( t ab l e (name ?c ) )

=>
( a s s e r t ( column (name ?a ) ( t ab l e ? c ) ) ) )

RHSi (Right-Hand Side) is the action part of a rule. It consists of the
creation (assertion) of target constructs, their initialization with property values
from LHSi. For example, the rule in Listing 1.1 creates a column and initializes
its name with the attribute name ?a. RHSi allows also to connect a newly-
created construct with an already-created one. In this case, the already-created
construct is filtered in LHSi. In Listing 1.1, the column is connected to the table
by assigning to its table property the name ?c of the filtered table.

cli (Explicit Control Level) is expressed in Jess by assigning the rule ri to a
module or by giving it a salience level. In the first case, for each candidate trans-
formation, we create by default a fixed number of modules, {Module1, Module2,

..., ModuleM} using the primitive (defmodule <module name>). Then, the
rule ri is inserted into the scope of the module corresponding to cli. When execut-
ing a candidate transformation, the modules are considered in the order of their
definition. For the second control strategy, the salience is declared as an integer
value inside the rule using the primitive (declare (salience <value>)).

Following this encoding, the initial population of candidate transformations
is randomly generated. Each generated candidate transformation (rules + con-
trol) has to be syntactically correct with respect to Jess, and consistent with
the source and target metamodels. A candidate is created by generating a ran-
dom number of rules, bounded by a parameter nrs. For each rule ri, we use a
random combination of bricks from the source and target metamodels to define
LHSi. In addition to the interconnections explained in Section 4.2, we randomly
generate conditions that combine three mechanisms: construct property testing,
Non-existence operator, and Navigation primitives.
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Construct property testing allows comparing the property of a filtered con-
struct with a property of another construct, e.g., equality of names between two
constructs, or with a randomly-generated and type-compatible constant, e.g., a
cardinality of an association higher than a certain value. Non-existence operator
(NOT) allows to check the absence of a construct type or constructs having a
certain value for a property. For example, one can define a rule that merges two
classes, having a 1-to-1 association, into a single table with the condition that
none from the two classes has subclasses. Navigation primitives consist in creat-
ing sets by navigating into a model starting from one of the filtered constructs.
Navigation primitives are not randomly created but used when creating candi-
date transformations. They are used in the transformation but their definition
is independent from the transformation knowledge. For example, the following
primitive, implemented as a query in Jess, produces the list of attributes of a
class:

(defquery getAttributes

(declare (variables ?c))

((attribute (class ?c)))

As the query results are sets, the random generation of rule conditions can
include tests on the size of the returned sets. For example, a rule can test if a
class has a single attribute as follows:

(class (name ?x))

(test (eq (count-query-results getAttributes ?x) 1))

The implicit control is generated in the initial rules by including bricks and
conditions involving target model constructs. The explicit control is initially
generated by randomly assigning a module/salience to the created rules.

4.3 Candidate Transformation Evaluation

The candidate transformations of each generation are ranked according to their
quality by means of a fitness function. For each candidate Tc, this function com-
pares, for the example pair (smi, tmi), the target model Tc(smi), produced by
Tc with the expected model tmi. Despite the complexity of comparing two mod-
els, the fitness function should perform the evaluation at a low cost. Moreover,
to avoid a bias towards frequent but simple constructs, we first calculate the
correctness ft of transforming the constructs of each construct type t present in
tmi. ft is defined as the weighted sum of the percentages of constructs that are
respectively fully (fmt), partially (pmt), or non-matched (nmt). Formally,

ft(mti, T c(msi)) = αfmt + βpmt + γnmt, with α+ β + γ = 1 (1)

For each construct of type t in Tc(smi), we first determine if it is fully matched
by a construct in tmi. As we are dealing with asserted facts, a construct cannot
be matched to more than one expected construct (and vice versa). This allows
us to calculate fmt. For the remaining constructs of type t, we determine if they
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can be partially matched. A construct is partially matched if it exists in the
produced model a construct of the same type that was not matched in the first
step. Thus, pmt is equal to the percentage of the partially-matched constructs of
type t in tmi. Finally, the last step is to classify all the remaining constructs of
type t as non-matched and take their percentage as the value of nmt. Regarding
the weights α, β, and γ, we used the same range of values as for our previous
contribution [9], with α usually set to a high value (typically 0.6) in order to
favor the rules that produce the expected constructs. β is set to an average value
(around 0.3) to give chances to rules producing the right types of the expected
constructs. Finally, we set γ to a very small value (around 0.1). Although giving a
small weight to the non-matched constructs seems counterintuitive, it promotes
diversity, in particular, during the early generations, which helps avoiding local-
optimum solutions.

The fitness f of a candidate transformation Tc is derived by calculating the
average correctness of transforming the various construct types Ttmi used in tmi:

f(tmi, T c(smi)) =
∑

t∈Ttmi

ft(tmi, T c(smi))

|Ttmi |
(2)

4.4 Candidate Transformation Derivation

As mentioned earlier, the transformation learning consists in refining an initial
set of candidate transformations. At each iteration, a new set of candidates is
derived from the current set. This is done, by elitism, i.e., putting automatically
the top fittest candidates into the next generation, crossover, i.e., deriving sib-
ling transformations from existing ones, and mutation, i.e., randomly changing
an existing transformation. Crossover and mutation should preserve the syntac-
tic correctness and the consistency of the produced candidates. The process of
creating the next population of candidates is as follows. First, the existing n
candidates of the generation i are ranked according to their fitness. Then, the l
top-ranked candidates are injected automatically into the candidate population
of generation i + 1. Until we complete the n slots of the new population, we
iteratively and randomly select two parent candidates and using the crossover,
when possible, produce two child candidates. These are possibly mutated and
added to the population. Each time, we have to select a parent for reproduction,
we use the roulette-wheel selection. This allows to assign, to each candidate,
a probability to be selected proportional to its fitness. This selection strategy
favors the fittest candidate transformations while still giving a chance of being
selected to the others.

Crossover: The crossover operation consists of producing new rule sets
(including the control) by exchanging the rules between the selected parents
using the one-cut-point strategy. This operation is applied with high probabil-
ity to each pair of selected parent candidates, i.e., by flipping a coin with a
higher probability to obtain heads (accept the crossover). For instance, con-
sider the two candidates p1 = {r11, r12, r13, r14} having four rules and p2 =
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{r21, r22, r23, r24, r25} with five rules. If the cut-points are randomly set to 2 for
p1 and 3 for p2, the offspring obtained are candidates o1 = {r11, r12, r24, r25}
and o2 = {r21, r22, r23, r13, r14}. The rules keep their control level (module
name or salience), and the control for the obtained candidates is readjusted
accordingly.

Mutation: After the crossover, the obtained offspring could be mutated with a
certain probability, given as a parameter. Unlike the crossover where the exist-
ing transformation knowledge is only combined (rule exchange), mutation allows
the introduction of new knowledge, which may or may not improve the trans-
formations. This is achieved by randomly altering existing rules or by adding
randomly-generated ones. Each time a candidate is selected for mutation, a
strategy is randomly selected. Mutation strategies occur at different levels.

Rule-Set Level: Two strategies are defined at this level: adding a randomly-
created rule to the rule set or deleting a randomly-selected rule. To avoid
empty rule sets, deletion is not performed if the rule set has only one rule.

Rule Level: Seven mutations have been implemented at the rule level. The
first one adds a brick in the LHS when the maximum number of bricks has
not been reached yet. This additional brick has to be connected properly to
the existing ones. The second strategy removes a brick from the LHS when
the rule has at least two bricks. Conditions involving this brick are removed
accordingly. The third strategy recreates a new LHS but conserves the RHS
of the rule. The fourth mutation creates an additional construct in the RHS
and initializes it. The fifth strategy removes a construct from the RHS. The
sixth mutation recreates a new RHS while keeping the LHS. Finally, the last
mutation changes the initialization of the created constructs in the RHS.

Control Level: The control could be mutated by assigning the rule to another
module or by increasing or decreasing the salience of a rule depending on
the chosen control strategy.

5 Evaluation

5.1 Setting

We assessed our approach on four transformation problems with different char-
acteristics. In addition to the well known transformation of UML class dia-
grams to relational schemas (CL2RE), we selected three other transformations
from the ATL database2, namely, UML activity diagram to MS project dia-
gram (AD2MSP), table to SVG bar charts (TB2BC) and finally simple process
description language to petri nets (SP2PN).

The goal of CL2RE is to transform a class diagram into a relational schema.
Unlike the version used in our previous contribution [9], we consider in this study
a more complete version of the UML class diagram metamodel. The transforma-
tion we wrote is complex and considers many variations for the transformation

2 http://www.eclipse.org/atl/atlTransformations/

http://www.eclipse.org/atl/atlTransformations/
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of the constructs. For example, 1-to-1 associations between two classes could
be transformed in many ways dependent on the presence of other associations
involving these classes. The control here is very important because the chosen
transformation impacts those of the other constructs. The expected transforma-
tion contains 20 rules organized into 7 modules.

AD2MSP aims to generate MS project diagrams from UML activity dia-
grams. The representation of the input activity diagram includes actions states,
transitions, and pseudostates: initial, join, fork and final. The control here en-
sures that rules that generate MS project tasks are executed before those that
establish the precedence between these tasks. The sought transformation con-
tains 6 rules with two modules.

The purpose of TB2BC is to generate an SVG model containing bar chart
representations that describe a data table. Roughly speaking, rectangle elements
are created from the table to represent both the data and the table. These rect-
angles are grouped with their corresponding labels into group elements. A con-
tainment relation is defined between the group elements to allow to have the
data rectangles (bars) inside the table rectangle. The dimension and positions
of the rectangles are extracted from the cell values but also computed by means
of the containment relationship. Indeed, the positions of the inner rectangles
depend both on the outer rectangle and on the order in which the data is given
in the table. Conversely, the dimension of the outer rectangle depends on the
dimensions of the inner rectangles. The control in this problem enforces the con-
straints on the determination of positions and dimensions. This transformation
involves 8 rules with two modules.

The goal of SP2PN is to build a petri net that describes the transitions be-
tween different states of the activities that form a process. A process is composed
of work definitions, work sequences and resources. Each work definition is trans-
lated into four places characterizing the state (not started, started, in progress
and finished) and two transitions (start and finish). The places are linked to their
corresponding transitions. Work sequences, which denotes dependency between
work definitions (activities), are translated into arcs of type ’read’ that link the
corresponding places and transitions. Resources are also transformed into places
and are linked through regular arcs to the transitions (work definitions) that
make use of them. One particularity of this transformation is that most of the
target construct properties are not derived from source construct properties.
Moreover some target constructs such as arc constructs depend highly on other
target constructs (places and transitions). This dependency is expressed in the
rules through the implicit control of filtering in the LHS the target constructs.
This transformation is expressed with 10 rules.

After representing all the metamodels in Jess (as fact templates), we gath-
ered/defined five prototypical examples as model pairs (source and target) for
each transformation problem (20 example pairs in total). Table 1 shows the
descriptive statistics of the size of the example models in terms of number of
constructs SC in a source model (respectively TC in a target model). In our set-
ting, we also wrote manually the transformations (rules + control) for the four
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problems and tested them on the corresponding examples. The choice of the
four transformation problems allows us to explore various forms of control. For
CL2RE, AD2MSP, and TB2BC, in addition to the implicit control, we used the
module-based control strategy. For these problems module based and salience
controls are equivalent. For SP2PN, implicit control was sufficient to write the
transformation. The four transformations will serve later as references to which
the learned transformations will be compared.

Table 1. Size of the example pairs in terms of source (SC) and target constructs (TC)

Transformation Number of SC Number of TC

Min Max Average Min Max Average

CL2RE 12 28 18 18 38 26

AD2MSP 23 65 42 15 44 28

TB2BC 5 17 12 17 53 37

SP2PN 3 11 7 23 52 36

As our learning process is probabilistic by nature, we had to run it several
times (five times in our validation) for each problem-example pair and select the
transformation with the best fitness from the executions. Considering the size of
the search space, the runs involved 100 candidate transformations per genera-
tion, with 1000 generations. We set both crossover and mutation probabilities to
0.9, and we included into each new generation the 10 fittest solutions (elitism).
At the end of the five runs, the correctness of the best candidate is evaluated
in two ways. First, we use the precision and recall to assess the target model
produced by the candidate with respect to the expected model. The precision is
measured as the ratio between the expected constructs that were produced and
all the produced constructs, whereas the recall is the ratio between the expected
constructs that were produced and all the expected constructs.

The second way to assess the learned transformations is by a manual qualita-
tive analysis of the produced rules and control. Regarding the derived rules, we
categorized them as correct, partially correct, or incorrect with respect to the
transformation problem. In addition to the transformation knowledge contained
in the rule, we also assess the implicit and explicit control.

5.2 Results and Interpretation

Table 2 gives descriptive statistics for the precision, recall, and fitness, obtained
with the 5 example pairs considered for each transformation problem.

We observed the largest variability for the 5 examples in CL2RE with a
precision ranging from 60% to 90% and a recall between 57.9% and 85.7%.
We believe that these variations could be explained by the complexity of the
transformation in terms of rules and control. Indeed, the search space for this
problem is very large, and the fixed number of generations can be for some
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Table 2. Fitness values, precision and recall for the 5 examples

Case Value of the fitness function Precision Recall

Min Max Average Min Max Min Max

CL2RE 74.0% (14 rules) 93.1% (8 rules) 82.2% 60.0% 90.0% 57.9 % 85.7%

AD2MSP 92.5% (6 rules) 100% (4 rules) 95.7% 92.9% 100.0% 83.3 % 100.0%

TB2BC 86.7% (5 rules) 89.3% (6 rules) 87.8% 65.9% 76.5% 65.9% 76.5%

SP2PN 73.2% (4 rules) 80.6% (2 rules) 76.4% 36.8% 52.2% 34.1 % 52.2%

examples not large enough. This have been said, the maximal values obtained
are very high considering the complexity of the transformation and the absence
of knowledge other than the example source and target models. The derived
rules were mostly partially correct. Some rules contained unnecessary conditions
whereas others were less general than the expected ones. An example of this
latter case is the rule in listing 1.2. This rule filters a 1-to-1 association and
its related classes, and checks that the class to be merged (class ?c10) is not
the superclass of another class. However, it does not check that this same class
is not involved in other associations. The transformation control was mostly
learned through explicit module mechanism. For instance, the rule in Listing 1.2
was, as expected, in the first module of the transformation plan. Similarly, rules
that transform classes and attributes were in modules to execute before those
containing rules dealing with associations.

Listing 1.2. CL2RE - Rule to transform 1-1 associations

1 ( d e f r u l e R 5488581
2 ( a s s o c i a t i on 1 1 ( c l a s s a ? c00 ) ( c l a s sb ? c10 ) )
3 ( c l a s s (name ? c00 ) )
4 ( c l a s s (name ? c10 ) )
5 ( not ( i nh e r i t an c e ( c l a s s ? c20 ) ( s u p e r c l a s s ? c10 ) ) )
6 =>
7 ( a s s e r t ( t ab l e (name ? c00 ) ( altername ? c10 ) ) ) )

Our approach obtained good results for the transformation AD2MSP. The
precision was greater than 90% for all the examples, and perfect for one of them.
The same observation can be made for the recall (from 83% to 100%). Regarding
the produced rules, the genetic program derived between 4 and 6 rules. Most
of the rules were ranked as partially correct because they contain unnecessary
conditions in their LHS, which did not affect the outcome of the transformation
(see listing 1.3 in which line 7 is always true). In most cases, rules were correctly
scheduled, i.e., rules responsible for transforming states are scheduled before
those transforming direct or indirect transitions.

TB2BC transformation gave good but less higher results than the previ-
ous ones with a maximum of 76.5% for the precision and 76.5% for the recall.
The main reason is that the positions and dimensions of the rectangles require
calculation primitives which increases dramatically the size of the search space.
Concerning the rules that were derived, we obtained many partially correct rules.
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The rules were unnecessary big and many constructs were created several times,
which did not change the final results. Our algorithm was able to learn partially
the control, as tables were transformed prior to cells. However rules that deal
with positions and dimension constructs were not scheduled correctly because
of the above-mentioned search space problem.

Listing 1.3. AD2MSP - Rule to transform two actions linked through a join or a fork

1 ( d e f r u l e R 6382313
2 ( a c t i onS t a t e (name ? as00 ) )
3 ( a c t i onS t a t e (name ? as40 ) )
4 ( pseudoState (name ?ps00 ) ( kind ?ps01 ) )
5 ( t r a n s i t i o n ( sou rce ? as00 ) ( t a r g e t ? ps00 ) )
6 ( t r a n s i t i o n ( sou rce ? ps00 ) ( t a r g e t ? as40 ) )
7 ( not ( r e l a t i o n ( pred ?ps01 ) ( succ ? ps01 ) ) )
8 =>
9 ( a s s e r t ( r e l a t i o n ( pred ? as00 ) ( succ ? as40 ) ) ) )

The results obtained for SP2PN for the five example pairs are average. The
executions reached a maximum fitness score around 75%. However these results
were mostly achieved by partial matches, the target models that were produced
had average precision and recall (52.2%). Although the number of produced con-
structs was close to the number of the expected ones, many constructs, especially
arcs, were incorrect. When inspecting the rules, those producing the arcs were
incomplete. This is due to the fact that an arc construct contains 6 properties,
most of which take constant values. As there is a large number of constants, this
increases the search space and lowers the chances to reach the optimal solution.
The implicit control works well except for rules dealing with arcs.

6 Discussion

After many contributions in the MTBE field [14,15,8,21,9], a main conclusion
that we can draw is that if we seek to learn complex transformations, the search
space is huge. This lowers the chance to learn complete correct transformations.

In our approach, we address both explicit and implicit control learning. The
learning is only guided by the example models which makes it difficult to con-
verge toward the optimal strategy. An aspect that may be worth studying to
reduce the search space, is to help the learning process by injecting knowledge
derived from the target metamodel specifications (minimal cardinalities and con-
straints). For example, one can conjecture that some target constructs should be
connected to other already produced constructs when they are created, indepen-
dently from the transformation program, e.g., in AD2MSP, the learning could
use the information that tasks should be created before they are connected.

Another observation arose from the SP2PN transformation problem where
the transformation uses many constants. In the current state of our approach,
the sets of constants to use are provided per property type (integer values, a list
of values for string properties, etc.). The search space could be reduced by spec-
ifying a domain definition for each construct property of the target metamodel.
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Moreover, large domains such as integers could be partitioned into equivalence
classes, which would reduce the number of possibilities to explore.

One of the important limitations of MTBE is the derivation of complex target
property values from the source property values. In the TB2BC transformation,
rectangle dimensions and positions are not set directly with values from source
construct properties, but with calculated values. The trivial solution is to give
all the possible operations allowed on source and target property values and let
the learning algorithm explore their combinations. However, this results in an
explosion of the search space size which reduces the convergence probability. Here
again, a direction to investigate is to use knowledge about the target model to
guide the combinations. In TB2BC, the learning process could use the constraint
that an outer rectangle must be large enough to contain the bars.

As mentioned in Section 3, there are many possible transformations that can
produce the given target model; the simplest is the example models, the largest
is the set of possible transformations. To reduce the number of possibilities, we
can either give large and complex example models or give many example pairs to
the learning algorithm. However, this will increase dramatically the computation
cost of which a substantial part is dedicated to compare target models (fitness).
This can be circumvented by defining fitness functions with a good tradeoff
between the comparison precision and the computation cost, and by providing
input examples that balance the size with the source metamodel coverage.

Furthermore, many of the obtained rules are partially correct. After analyzing
them, we noticed that many of them could be corrected automatically by a
cleaning postprocessing task. For example, many conditions are subsumed by
others, some conditions are contradictory or always false, which makes the rule
useless, and finally, some conditions are always true, so they can be removed
without changing the applicability of the rule.

Regarding the scalability, although the learning process may take up to 8
hours for the largest transformation, this could be acceptable in our context.
Indeed, the transformation learning is not intended to be executed frequently.

7 Conclusion

In this paper, we presented an approach that aims to learn, simultaneously, the
transformation rules and the control needed to perform the transformation cor-
rectly. To explore the large search space, we implemented our learning algorithm
as an evolutionary process by means of genetic programming. We assessed our
contribution on four transformation problems, three of which gave promising
results. We believe that learning the transformation control is an important step
towards making MTBE approaches more effective. Although our results are sat-
isfactory, there is still room for improvement. In the future, we plan to investigate
the option of learning the transformation and control knowledge in two separate
phases. In addition to reduce the size of the search space, this strategy allows us
to address the two problems with specific strategies (induction vs scheduling).
We also plan to investigate the ideas sketched in the discussion section.
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Abstract. Queries are the foundations of data intensive applications. In
model-driven software engineering (MDE), model queries are core tech-
nologies of tools and transformations. As software models are rapidly
increasing in size and complexity, traditional tools exhibit scalability
issues that decrease productivity and increase costs [17]. While scala-
bility is a hot topic in the database community and recent NoSQL ef-
forts have partially addressed many shortcomings, this happened at the
cost of sacrificing the ad-hoc query capabilities of SQL. Unfortunately,
this is a critical problem for MDE applications due to their inherent
workload complexity. In this paper, we aim to address both the scal-
ability and ad-hoc querying challenges by adapting incremental graph
search techniques – known from the EMF-IncQuery framework – to
a distributed cloud infrastructure. We propose a novel architecture for
distributed and incremental queries, and conduct experiments to demon-
strate that IncQuery-D, our prototype system, can scale up from a
single workstation to a cluster that can handle very large models and
complex incremental queries efficiently.

1 Introduction

Nowadays, model-driven software engineering (MDE) plays an important role
in the development processes of critical embedded systems. Advanced modeling
tools provide support for a wide range of development tasks such as require-
ments and traceability management, system modeling, early design validation,
automated code generation, model-based testing and other validation and ver-
ification tasks. With the dramatic increase in complexity that is also affecting
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critical embedded systems in recent years, modeling toolchains are facing scala-
bility challenges as the size of design models constantly increases, and automated
tool features become more sophisticated [17].

Many scalability issues can be addressed by improving query performance.
Incremental evaluation of model queries aims to reduce query execution time by
limiting the impact of model modifications to query result calculation. Such algo-
rithms work by either (i) building a cache of interim query results and keeping it
up-to-date as models change (e.g. EMF-IncQuery [5]) or (ii) applying impact
analysis techniques and reevaluating queries only in contexts that are affected by
a change [10,21]. This technique has been proven to improve performance dra-
matically in several scenarios (e.g. on-the-fly well-formedness validation or model
synchronization), at the cost of increasing memory consumption. Unfortunately,
this overhead is combined with the increase in model sizes due to in-memory
representation (found in state-of-the-art frameworks such as EMF [25]). Since
single-computer heaps cannot grow arbitrarily (as execution times degrade dras-
tically due to garbage collection problems), memory consumption is the most
significant scalability limitation.

An alternative approach to tackling MDE scalability issues is to make use of
advances in persistence technology. As the majority of model-based tools uses a
graph-oriented data model, recent results of the NoSQL and Linked Data move-
ment [20,1,2] are straightforward candidates for adaptation to MDE purposes (as
experimented e.g. in Morsa [7] or Neo4EMF [3]). Unfortunately, this idea poses
difficult conceptual and technological challenges as property graph databases
lack strong metamodeling support and their query features are simplistic com-
pared to MDE needs [15]. Additionally, the underlying data representation for-
mat of semantic databases (RDF [11]) has crucial conceptual and technological
differences to traditional metamodeling languages such as Ecore [25]. Addition-
ally, while there are initial efforts to overcome the mapping issues between the
MDE and Linked Data worlds [13], even the most sophisticated NoSQL storage
technologies lack efficient and mature support for executing expressive queries
incrementally.

We aim to address these challenges by proposing a novel architecture for a
distributed and incremental model query framework by adapting incremental
graph pattern matching techniques to a distributed cloud based infrastructure.
A main contribution of our novel architecture is that the distributed storage of
data is completely separated from the distributed handling of indexing and query
evaluation. Therefore, caching the result sets of queries in a distributed fashion
provides a way to scale out the memory intensive components of incremental
query evaluation, while still providing instantaneous execution time for complex
queries.

We present IncQuery-D, a prototype tool based on a distributed Rete net-
work that can scale up from a single workstation to a cluster to handle very large
models and complex queries efficiently (Sec. 3). For the experimental evaluation,
we revisit a model validation benchmark (Sec. 2) from the railway systems do-
main and extend it to a distributed setup (Sec. 4). Furthermore, we carry out
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detailed performance evaluation in the context of on-the-fly well-formedness val-
idation of design models (Sec. 4) which demonstrates that our distributed incre-
mental query layer can be significantly more efficient than the native SPARQL
query technology of an RDF triple store. Finally, we discuss related work in
Sec. 5 and conclude the paper in Sec. 6.

2 Preliminaries

2.1 Motivating Example: A DSL for Railways System Design

In this paper, we use the Train Benchmark [15,29] to present our core ideas
and evaluate the feasibility of the approach. The Train Benchmark is used in
the MONDO EU FP7 [27] project to compare query evaluation performance of
various MDE tools and it is publicly available1. It is built around the railroad
system defined in the MOGENTES EU FP7 [26] project. The system defines a
network composed of typical railroad items, including signals, segments, switches
and sensors. The complete EMF metamodel is shown in Fig. 1.

2.2 Queries

The Train Benchmark defines four queries which have similar characteristics to
the workload of a typical MDE application. The queries look for violations of
well-formedness constraints in the model. The violations are defined by graph
patterns. The graphical representation of the patterns is shown in Fig. 2. Opaque
blue rectangles and solid arrows mark positive constraints, while red rectangles
and dashed arrows represent negative application conditions (NACs). The result
of the query (also referred as the match set) is marked with transparent blue
rectangles. Additional constraints (e.g. arithmetic comparisons) are shown in the
figure in text.

The queries contain a mix of join, antijoin and filtering operations. The two
simpler queries involve at most 2 objects (PosLength and SwitchSensor), while the
1 https://opensourceprojects.eu/p/mondo/wiki/TrainBenchmark

https://opensourceprojects.eu/p/mondo/wiki/TrainBenchmark
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Fig. 2. Graphical representation of the patterns in the Train Benchmark

other two queries involve 4–8 objects and multiple join operations (RouteSensor
and SignalNeighbor).

For the sake of conciseness, we only discuss the RouteSensor query in detail.
The RouteSensor constraint requires that all sensors that are associated with a
switch that belongs to a route must also be associated directly with the same
route. Therefore, the query (Fig. 2c) looks for sensors that are connected to a
switch, but the sensor and the switch are not connected to the same route. This
query checks for the absence of circles, so the efficiency of both the join and the
antijoin operations is tested.
1 pattern routeSensor(Sen : Sensor) = {
2 Route(R);
3 SwitchPosition(Sp);
4 Switch(Sw);
5 Route.switchPosition(R, Sp);
6 SwitchPosition.switch(Sp, Sw);
7 Trackelement.sensor(Sw, Sen);
8 neg pattern noRouteDefinition(Sen , R) {
9 routeDefinition(R, Sen);

10 }
11 }

Fig. 3. The RouteSensor query
in IncQuery Pattern Language

The textual representation
of the RouteSensor query, de-
fined in IncQuery Pattern
Language, is shown in Fig. 3.
This query binds each variable
(Sen, Sw, Sp, R) to the appro-
priate type. It defines the three
edges as relationships between
the variables and defines the
negative application condition
as a negative pattern (neg find).

2.3 Transformations

The Train Benchmark defines a quick fix model transformation for each query.
The graphical representation of the transformations is shown in Fig. 4. The
insertions are shown in green with a «new» caption, while deletions are marked
with a red cross and a «del» caption. In general, the goal of these transformations
is to remove a subset of the invalid elements from the model. For example, in the
case of the RouteSensor query, randomly selected invalid sensors are disconnected
from their switch, which means that the constraint is no longer violated (Fig. 4c).
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3 A Distributed Incremental Model Query Framework

The queries and transformations introduced in Sec. 2 represent a typical work-
load profile for state-of-the-art modeling tools [15]. With current MDE tech-
nologies, such workloads can be acceptably executed for models up to several
hundred thousand model elements [29], however when using larger models con-
sisting of multiple million elements (a commonplace in complex domains such
as AUTOSAR [5]), the performance of current tools is often not acceptable [17].
Incremental techniques can provide a solution, however they require additional
(memory) resources.

The primary goal of our approach is to provide an architecture that can make
use of the distributed cloud infrastructure to scale out memory-intensive incre-
mental query evaluation techniques. As a core contribution, we propose a three-
tiered architecture. To maximize the flexibility and performance of the system,
model persistence, indexing and incremental query evaluation are delegated to
three independently distributable asychronous components. Consistency is en-
sured by synchronized construction, change propagation and termination proto-
cols.

3.1 Architecture

In the following, we introduce the architecture of IncQuery-D (see Fig. 5), a
scalable distributed incremental graph pattern matcher. The architecture con-
sists of three layers: (i) the storage layer, (ii) the distributed indexer with the
model access adapter and (iii) the distributed query evaluation network.

Storage. For the storage layer, the most important issue from an incremental
query evaluation perspective is that the indexers of the system should be filled as
quickly as possible. This favors database technologies where model sharding can
be performed appropriately (i.e. with balanced shards in terms of type-instance
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Fig. 5. The architecture of IncQuery-D, an incremental query framework (deployed
in a sample four-node cluster configuration)

relationships), and elementary queries can be executed efficiently. Our framework
can be adapted to fundamentally different storage back-ends, including triple
stores, graph databases and relational database managements systems.

Model Access Adapter. In contrast to a traditional setup where the dis-
tributed model repository is accessed on a per-node basis by a model manipula-
tion transaction, IncQuery-D provides a model access adapter that offers three
core services:

1. The primary task is to provide a surrogate key mechanism so that each model
element in the entire distributed repository can be uniquely identified and
located within storage shards.

2. The model access adapter provides a graph-like data manipulation API ( 1©
in Fig. 5) to the user. The model access adapter translates the operations
issued by the user to the query language of the backend and forwards it to
the underlying data storage.

3. Change notifications are required by incremental query evaluation, thus
model changes are captured and their effects are propagated in the form
of notification objects ( 3© in Fig. 5). The notifications generate update mes-
sages that keep the state of the query evaluation network consistent with
the model. While relational databases usually provide triggers for generating
notifications, most triplestores and graph databases lack this feature. Due to
the lack of general support, notifications are controlled by the model access
adapter by providing a façade for all model manipulation operations.

Distributed Indexer. Indexing is a common technique for decreasing the exe-
cution time of database queries. In MDE, model indexing has a key role in high
performance model queries. As MDE primarily uses a metamodeling infrastruc-
ture, all queries utilize some sort of type attribute. Typical elementary queries



IncQuery-D: A Distributed Incremental Model Query Framework 659

include retrieving all vertices of a certain type (e.g. get all vertices of the type
Route), or retrieving all edges of a certain type/label (e.g. get all edges of label
sensor).

To support efficient query processing, IncQuery-D maintains type-instance
indexes so that all instances of a given type (both vertices and edges) can be
enumerated quickly. These indexers form the bottom layer of the distributed
query evaluation network. During initialization, these indexers are filled from
the database backend ( 2© in Fig. 5).

The architecture of IncQuery-D facilitates the use of a distributed indexer
which stores the index on multiple servers. A distributed indexer inherently
provides some protection from exceeding memory limits.

Distributed Query Evaluation Network. IncQuery-D constructs a dis-
tributed and asynchronous network of communicating nodes that are capable of
producing the results set of the defined queries ( 4© in Fig. 5). Our prime candi-
date for this layer is the Rete algorithm, however, the architecture is capable of
incorporating other incremental (e.g. TREAT [18]) and search-based query eval-
uation algorithms as well. In the upcoming section, we provide further details
on this critical component of the architecture.

3.2 The Rete Algorithm in a Distributed Environment

Numerous algorithms were proposed for the purpose of incremental query eval-
uation. The Rete algorithm was originally proposed for rule-based expert sys-
tems [8] and later improved and adapted for EMF models in [4]. Our current
paper discusses how to adapt the Rete algorithm in a distributed environment.

Data Representation and Structure. The Rete algorithm uses tuples to
represent the vertices (along with their properties), edges and subgraphs in the
graph. The algorithm defines an asynchronous network of communicating nodes
(see Fig. 7).

The network consists of three types of nodes. Input nodes are responsible for
indexing the model by type, i.e. they store the appropriate tuples for the ver-
tices and edges. They are also responsible for producing the update messages
and propagating them to the worker nodes. Worker nodes perform a transfor-
mation on the output of their parent node(s) and propagate the results. Partial
query results are represented in tuples and stored in the memory of the worker
node thus allowing for incremental query reevaluation. Production nodes are ter-
minators that provide an interface for fetching the results of the query and the
changes introduced by the latest transformation.

Construction. The system constructs the Rete network from the layout derived
from the query specification. The construction algorithm may apply various opti-
mization techniques, e.g. reusing existing Rete nodes, known as node sharing [4].
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An efficient Rete construction is discussed in detail in [31], and it is out of scope
for the current paper.

In a distributed environment, the construction of the Rete network introduces
additional challenges. First, the system must keep track of the resources avail-
able in the server cluster and maintain the mapping between the Rete nodes
and the servers accordingly. Second, the Rete nodes need to be aware of the
current infrastructure mapping so they can send their messages to the appro-
priate servers. In our system, the Rete nodes are remotely instantiated by the
coordinator node. The coordinator node then sends the infrastructure mapping
of the Rete network to all nodes. This way, each node is capable of subscribing
to the update messages of its parent node(s). The coordinator also starts the
operations in the network, such as loading the model, initiating transformations
and retrieving the query results.

Operation. The operational workflow of IncQuery-D is shown in Fig. 6. Based
on the metamodel and the query specification, IncQuery-D first constructs a
Rete network 1© and deploys it 2©. In the next step, it loads the model 3© and
traverses it to initialize the indexers of the Rete network. The Rete network
evaluates the query by processing the incoming tuples 4©. Because both the
Rete indexers and the database shards are distributed across the cluster, loading
the model and initializing the Rete network needs network communication. The
client is able to retrieve the results 5©– 6©, modify the model and reevaluate the
query again 7©– 9©.

The modifications are propagated in the form of update messages (also known
as deltas). Creating new graph elements (vertices or edges) results in positive
update messages, while removing graph elements results in negative update mes-
sages. The operation of the network is illustrated on the instance graph depicted
in the lower left corner of Fig. 7. This graph violates the well-formedness con-
staint defined by the RouteSensor query, hence the tuple 〈3, 4, 2, 1〉 appears in
the result set of the query. The figure also shows the Rete network containing
partial matches of the original graph.

To resolve the violation, we apply the quick fix transformation defined in the
Train Benchmark and delete the sensor edge between vertices 4 and 1. When the
edge is deleted, the sensor type indexer (an input node) receives a notification
from the model access adapter 1© and sends a negative update 2© with the tuple
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〈4, 1〉. The subsequent join node processes the update messages and propagates
a negative update 3© with the tuple 〈3, 4, 2, 1〉. The antijoin node also propa-
gates a negative update message with the same tuple 4©. This is received by
the production node, which initiates the termination protocol 5©– 7©. After the
termination protocol finishes, the indexer signals the client about the successful
update. The client is now able to retrieve the results from the production node.
The client may choose to retrieve only the change set, i.e. only the tuples that
have been added or deleted since the last modification.

Termination Protocol. Due to the asynchronous propagation of changes in
Rete, the system must also implement a termination protocol to ensure that
the query results can be retrieved consistently with the model state after a given
transaction (i.e. by signaling when the update propagation has been terminated).

The protocol works by adding a stack to the update message propagated
through the network. The stack registers each Rete node the message passes
through. After the message reaches a production node, the termination protocol
starts. Based on the content of the stack, acknowledgement messages (Ready)
are propagated back along the network. When all relevant input nodes (where
the original update message(s) started from) receive the acknowledge messages,
the termination protocol finishes. The operation of the termination protocol can
be observed in Fig. 7 (messages 5©– 7©).



662 G. Szárnyas et al.

4 Evaluation

To evaluate the feasibility of the IncQuery-D approach, we created a dis-
tributed benchmark environment. We implemented a prototype of IncQuery-D
and compared its performance to a state-of-the-art non-incremental SPARQL
query engine of a (distributed) RDF store.

4.1 Benchmark Scenario

In order to measure the efficiency of model queries and manipulation opera-
tions over the distributed architecture, we adapted the Train Benchmark [15,29]
(briefly introduced in Sec. 2.1) to a distributed environment. The main goal of
the Train Benchmark is to measure the query reevaluation times in systems op-
erating on a graph-like data set. The benchmark targets a “real-world” MDE
workload by running a specific set of queries (Sec. 2.2) and transformations on
the model (Sec. 2.3). In this workload profile, the system runs either a single
query or a single transformation at a time, as quickly as possible.

To assess scalability, the benchmark uses instance models of growing sizes,
each model containing twice as many model elements as the previous one. Scal-
ability is also evaluated against queries of different complexity. For a successful
run, the tested tool is expected to evaluate the query and return the identifiers
of the model elements in the result set.

Execution Phases. The benchmark transaction sequence consists of four dis-
tinct phases. The serialization of the model is loaded into the database (load);
a well-formedness query is executed on the model (initial validation); some ele-
ments are programmatically modified (transformation) and the query is reevalu-
ated (revalidation).

Instance Models. We developed a generator that creates instance models.
The instance models are generated pseudorandomly, with pre-defined structural
constraints and a regular fan-out structure (i.e. the in-degree and out-degree of
the vertices follow a uniform distribution) [15].

Transformations. In the transformation phase, the benchmark runs quick fix
transformations (Sec. 2.3) on 10% of the invalid elements (the result set of the
first validation phase), except for the SignalNeighbor query, where 1/3 of the invalid
elements are modified. The transformations run in a single logical transaction,
implemented with multiple physical transactions.

Metrics. To quantify the complexity of the benchmark test cases, we use a set of
metrics that have been shown to correspond well to performance [15]. The values
for the test cases are shown in Fig. 8. The problem size numbers take the values
of 2n in the range from 1 to 4096. For space considerations, only every other
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Fig. 8. Metrics of the instance models and queries

problem size is listed. The complexity of an instance model is best described by
the number of its triples, equal to the sum of its nodes and edges. The queries
are quantified by the number of their variables (shown in parentheses) and their
result set size (RSS). The transformations are characterized by the number of
model elements modified (modification size, MS).

4.2 Benchmark Architecture

Benchmark Executor. The benchmark is controlled by a distinguished node
of the system, called the executor. The executor delegates the operations (e.g.
loading the model) to the distributed system. The queries and the model manip-
ulation operations are handled by the underlying database management system
which runs them distributedly and waits for the distributed operation to finish,
effectively creating a synchronization point after each transaction.

Methodology. We defined two benchmark setups. (1) As a non-incremental
baseline, we used an open-source distributed triplestore and SPARQL query sys-
tem, 4store. (2) We deployed IncQuery-D with 4store as a backend database. It
is important to mention that the benchmark is strongly centralized: the coordi-
nator node of IncQuery-D runs on the same server as the benchmark executor.

The benchmark executor software used the framework of the Train Benchmark
to collect data about the results of the benchmark. These were not only used for
performance benchmarking but also to ensure the functional equivalence of the
systems under benchmark.

The precise execution semantics for each phase are defined as follows. (1) The
load phase includes loading the model from the disk (serialized as RDF/XML),
persisting it in the database backend, and, in the case of IncQuery-D, initial-
izing the Rete network. (2) The execution time of the initial validation phase is
the time required for the first complete evaluation of the query. (3) The trans-
formation phase starts with the selection of the invalid model elements and is
finished after the modifications are persisted in the database backend. In the
case of IncQuery-D, the transformation is only finished after the Rete network
has processed the changes and is in a consistent state. (4) The revalidation phase
re-runs the query of the initial validation phase, and retrieves the updated results.

The execution time includes the time required for the defined operation, the
computation and I/O operations of the servers in the cluster and the network
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communication (to both directions). The execution times were determined using
the System.nanoTime() Java method.

Environment. We used 4store [12] (version 1.1.5) as our storage backend. The
servers ran the Ubuntu 12.10 64-bit operating system with Oracle Java 7. For
the implementation of the distributed Rete network, we used Akka [28] (version
2.1.4), a distributed, asynchronous messaging system.

The system was deployed on the private cloud that runs on the Apache VCL
(Virtual Computing Lab) platform. We reserved four virtual machines on sepa-
rate host machines, with each using a quad-core Intel Xeon L5420 CPU running
at 2.5 GHz and having 16 GB of RAM. The host machines were connected to a
dedicated gigabit Ethernet network.

4.3 Results

The benchmark results of our experiments are shown in Fig. 9. On each plot,
the x axis shows the problem size, i.e. the size of the instance model, while the
y axis shows the execution time of a certain phase, measured in seconds. Both
axes use logarithmic scale.

First, we discuss the results for RouteSensor, a query of medium complexity.
Fig. 9a presents the combined execution time for the load and initial validation
phases. The execution time is a low order polynomial of the model size for both
the standalone 4store and the IncQuery-D system. The results show that de-
spite the initial overhead of the Rete network initialization, IncQuery-D has
a significant advantage starting from medium-sized models (with approximately
1 million triples). Fig. 9b shows the execution time for the sum of the trans-
formation and revalidation phases. The results show that the Rete maintenance
overhead imposed by IncQuery-D on model manipulation operations is low,
and overall the model transformation phase when using IncQuery-D is con-
siderably faster for models larger than a few hundred thousand triples. Fig. 9c
focuses on the revalidation phase. The performance of IncQuery-D is charac-
teristically different from that of the SPARQL engine of 4store. Even for models
with tens of millions of tuples, IncQuery-D provides close to instantaneous
query re-evaluation.

Fig. 9d–9f are presented to compare the results for the PosLength, the Signal-
Neighbor and the SwitchSensor queries, respectively. The PosLength query uses
only a few variables but has a large result set. The SignalNeighbor query includes
many variables but has a small match set. The SwitchSensor query uses a few
variables and has a medium-sized result set.

The large result set of the PosLength query (Fig. 9d) is a challenge for incre-
mental query evaluation systems, however, IncQuery-D still provides reason-
ably fast load, transformation and query evaluation times, while outperforming
4store on the revalidation time. The results for the SignalNeighbor query (Fig. 9e)
show IncQuery-D has a characteristic advantage on both the transformation
and the revalidation times. The SwitchSensor query also shows a clear advantage
of IncQuery-D for transformation and revalidation.
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(f) SwitchSensor

Fig. 9. Benchmark results

Summary of Observations. Based on the results, we can conclude the fol-
lowing observations. As expected, due to the overhead of the Rete construction,
the non-incremental approach is often faster for small models. However, even
for medium-sized models (with a couple of million triples), the Rete construc-
tion overhead already pays off for the first validation. After the Rete network
is initialized, IncQuery-D provides significantly improved transformation and
revalidation times, with the revalidation times being consistently orders of mag-
nitude faster due to the different characteristics of their execution time.

In summary, these observations show that IncQuery-D is not just capable of
processing models with over 10 million elements (pushing the limits well beyond
the capabilities of single-workstation modeling tools), but also, it provides close
to instantaneous query evaluation times even for very complex queries.
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Threats to Validity. To minimize internal threats to validity, we turned off
the caching mechanisms of the operating system to force rereading the serial-
ized model from the disk. Additionally, to avoid the propagation of the warmup
effect of the Java Virtual Machine between the runs, each test case was started
independently in separate JVM.

As our cloud infrastructure was subject to minimal concurrent load during
the measurements, we aimed to minize the distortion due to load transients by
running the benchmark three times and taking the minimum value for each phase
into consideration. We did experience a certain deviation of execution times for
smaller models (Fig. 9f). However, for larger models (our most important target),
the transient effects do not influence validity of the benchmark results.

Regarding external validity, we used a benchmark that is a faithful represen-
tation of a workload profile of a modeling tool for large-scale models [15,29]. The
queries both for 4store and IncQuery-D were validated by domain experts. We
aimed to minimize the potential bias introduced by the additional degrees of
freedom inherent in distributed systems, e.g. by a randomized manual allocation
of the processing nodes of Rete network in the cloud. We plan to conduct a more
detailed investigation of these effects as future work.

5 Related Work

A wide range of special languages have been developed to support graph-based
querying over EMF [25] for a single-machine environment. OCL is a declarative
constraint and query language that can be evaluated with the local-search based
[6] engine. To address scalability issues, impact analysis tools [10,21] have been
developed as extensions.

Outside the Eclipse ecosystem, the Resource Description Framework
(RDF [11]) is developed to support the description of instances of the semantic
web, assuming sparse, ever-growing and incomplete data stored as triples and
queried using the SPARQL [33] graph pattern language. Property graphs [23]
provide a more general way to describe graphs by annotating vertices and edges
with key-value properties. They can be stored in graph databases like Neo4j [20]
which provides the Cypher [24] query language.

Even though big data storages (like document databases, column family stores
or MapReduce based databases) provide fast object persistence and retrieval,
query engines realized directly on these data structures do not provide dedicated
support for incremental query evaluation or efficient evaluation of query primi-
tives (like join). This inspired Morsa [7] and Neo4EMF [3] to use MongoDB and
Neo4j, respectively, as a scalable NoSQL persistence backend for EMF persis-
tence, extended with caching and dynamic loading capabilities. The commercial
Virtuoso binds relational and RDF domains into one universal database, sup-
porting SQL and SPARQL querying, and distributed query evaluation. While
Morsa and Virtuoso use disk-based backend, Trinity.RDF [34] is a closed source,
pure in-memory solution, which executes a highly optimized local-search based
algorithm on top of the Trinity distributed key-value store with low response
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time. However, the effect of data updating on query performance is currently
not investigated.

Rete-based caching approaches have been proposed to process Linked Data
(bearing the closest similarity of our approach). INSTANS [22] uses this al-
gorithm to perform complex event processing (formulated in SPARQL) on
RDF data, gathered from distributed sensors. Diamond [19] evaluates SPARQL
queries on Linked Data, where the main challenge is the efficient traversal of data,
but our distributed indexing technique is still unique wrt. these approaches.

The Train Benchmark framework was introduced in [29], where the domain
and scenario were defined together with four queries, and an instance model gen-
erator. In [15], we extended the approach by characterizing models and queries
with metrics, and introducing 30 new queries, and a new instance model gen-
erator. There are numerous graph and model transformation benchmarks [32,9]
presented also at GRABATS and TTC tool contests, but only [16,30] focus
specifically on query performance for large models.

The conceptual foundations of our approach are based on EMF-IncQuery
[5], a tool that evaluates graph patterns over EMF models using Rete. With re-
spect to an earlier prototype [14], the main contributions of the current paper are
(i) a novel architecture that introduces a separate distributed indexer component
in addition to the distributed data store and distributed query evaluation net-
work (which is key distinguishing feature compared to similar tools [19,22,34])
and (ii) the detailed performance evaluation and analysis of the system with
respect to a state-of-the-art distributed RDF/SPARQL engine. Up to our best
knowledge, IncQuery-D is the first approach to support distributed incremental
query evaluation in an MDE context.

6 Conclusion

We presented IncQuery-D, a novel approach to adapt distributed incremental
query techniques to large and complex model-driven software engineering sce-
narios. Our proposal is based on a distributed Rete network that is decoupled
from a sharded graph database by a distributed model indexer and model ac-
cess adapter. We presented a detailed performance evaluation in the context of
quick-fix software design model transformations combined with on-the-fly well-
formedness validation. The results are promising as they show nearly instanta-
neous complex query re-evaluation well beyond 107 model elements.
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Abstract. Model-driven tools use model queries for many purposes,
including validation of well-formedness rules and specification of de-
rived features. The majority of declarative model query corpus avail-
able in industry appears to use the OCL language. Graph pattern based
queries, however, would have a number of advantages due to their more
abstract specification, such as performance improvements through ad-
vanced query evaluation techniques. As query performance can be a key
issue with large models, evaluating graph patterns instead of OCL queries
could be useful in practice.

The current paper presents an automatic mapping from a large sub-
language of OCL expressions to equivalent graph patterns in the dialect
of EMF-IncQuery. Validation of benefits is carried out by performance
measurements according to an existing benchmark.

Keywords: Model query, OCL, graph pattern, incremental evaluation.

1 Introduction

Model queries are important components in model-driven tool chains. They are
widely used for specifying reports, derived features, well-formedness constraints,
and guard conditions for behavioural models, design space rules or model trans-
formations. Although model queries can be implemented using a general-purpose
programming language (Java), declarative query languages may be more concise
and easier to learn, among other advantages. Popular modeling platforms (e.g.
the Eclipse Modeling Framework (EMF) [1]) support various query languages.

OCL [2] is a standard declarative model query language widely used in indus-
try. OCL queries specify chains of navigation among model objects in a functional
programming style. However, query languages inspired by graph patterns [3,4]
(such as SPAQL [5]) resemble logic programming, where the order of model ex-
ploration is freely determined by the query engine at evaluation time. Such more
abstract query specifications have numerous advantages. The steps of graph pat-
tern matching can be automatically optimized for performance in advance by a
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Fig. 1. Ecore Diagram of State Machine metamodel package

query planner [6,7] or during evaluation by a dynamic strategy [8]. For fur-
ther performance gains in case of evolving models, incremental graph pattern
matcher techniques [9] can deeply analyze the query to store and maintain the
result of subqueries (as in EMF-IncQuery [10], see Sec. 2.3). In search-based
software engineering, if the goal condition is a graph pattern, its structure can
be inspected to automatically guide [11] the design space exploration towards
reaching the goal. When analyzing behavioural models, pre/post condition graph
patterns can be inspected for efficient model checking [12,13] or to prove conflu-
ence [14]. It is possible to automatically generate instance models (e.g. for tool
testing) that satisfy a given graph query [15] more efficiently than OCL [16].

Since the majority of declarative model query corpus available in industry ap-
pears to be OCL, the above mentioned benefits can only be reaped by translating
OCL queries into graph patterns. This is not always possible, as OCL is more
expressive. Nevertheless, by extending prior work [15], an automated mapping
is presented in the current paper that transforms a large sublanguage of OCL
expressions to equivalent graph patterns in the dialect of EMF-IncQuery.

From the benefits listed above, query performance was chosen for validating
the approach, as it can be a key issue with large models. This task is carried out
by performance measurements according to an existing benchmark [10].

The running example and query formalisms are introduced in Sec. 2. The map-
ping is specified in Sec. 3. Performance measurements are presented in Sec. 4,
Sec. 5 summarizes related work, and Sec. 6 adds concluding remarks.

2 Preliminaries

2.1 Running Example

Several concepts will be illustrated using a simple state machine modeling lan-
guage. The metamodel, defined in EMF [1] and depicted by Fig. 1, describes how
state automata contain states and transitions, where the latter have a source
state, a target state, and a triggering input symbol. Model queries can support
the application of this metamodel in many ways (such as simulation, model
checking, code generation, etc.), two of which will be explored in greater detail.

A sample instance model containing a single Automaton, States s1 . . . s6 and
the Transitions listed by Table 1a will be used to demonstrate model queries.



672 G. Bergmann

Table 1. Sample instance model with conflictingTransitions query results

Transition source trigger target
t1 s1 A s2
t2 s1 A s3
t3 s1 B s4
t4 s1 B s5
t5 s1 C s6
t6 s3 C s6

(a) Transitions

State return value
s1 {t1, t2, t3, t4}
s2 ∅
s3 ∅
s4 ∅
s5 ∅
s6 ∅
(b) OCL results

conflictingTransitions
self t1

s1 t1
s1 t2
s1 t3
s1 t4

(c) Pattern match set

An instance model of this Ecore package is only considered well-formed if
certain criteria are met. One such important sanity criterion is that the source
and target states of a transition must both belong to the same automaton that
contains the transition. A modeling environment could automatically validate
instance models by issuing a model query that finds violations of this constraint.

Another use case of model queries is the definition of derived features - ref-
erences or attributes that are not freely chosen, but are rather computed auto-
matically from the values of other features (i.e. via a model query). The derived
reference conflictingTransitions of class State identifies those outgoing tran-
sitions that are in conflict, i.e. share their triggering input symbol with one or
more other outgoing transitions from the same state. Such a derived reference
could be useful for exploring the nondeterminism of the behavioural model.

If the model is being continuously edited, the results of validation and derived
feature queries have to be repeatedly updated. In case of large models, this could
lead to performance problems unless incremental techniques are applied.

2.2 The OCL Language

OCL [17] is a pure functional language for defining expressions in context of a
metamodel, so that the expressions can be evaluated on instance models of the
metamodel. The language is very expressive, surpassing the power of first order
logic by constructs such as collection aggregation operations (sum(), etc.). OCL
queries taking a model element as input can be applied in use cases such as
specifying well-formedness constraints (invariants).

Example 1. The OCL version of the derived feature is included as Lst. 1. When
evaluated at a given State object, for each outgoing transition it collects the
other outgoing transitions with the same trigger symbol, and the returns the ac-
cumulated set. The Set-valued expression is built by navigating from the State
along references, and filtering the results according to attribute conditions. Re-
sults on the sample instance model are listed by Table 1b.

The rest of the section gives a basic overview of the most important charac-
teristics of OCL expressions that will be necessary for understanding the paper;
the reader is referred to the OMG standard [17] for more information.
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Listing 1 OCL expression specifying the derived feature conflictingTransitions

1 context State def: conflictingTransitions: Set(Transition) =
2 let a : Automaton = self.automaton in
3 a.transitions ->select(t1|t1. sourceState=self and
4 a.transitions ->exists(t2| t1<>t2 and
5 t2.sourceState = self and t1.triggerSymbol = t2.triggerSymbol))

OCL Values and Types. OCL can express values of various types. Primi-
tive types include character strings, integer and real numbers, etc.; Boolean is
especially significant, e.g. for expressing well-formedness constraints. Classes in
metamodels are OCL types; instance model elements are OCL values conforming
to them, with subclassing. OCL allows constructing tuple types and collection
types (Set, Bag, OrderedSet and Sequence) from any OCL type. In the current
paper, primitive and metamodel types are collectively referred as ground types,
while collection and tuple types are referred as structured types.

OCL Expressions. OCL expressions are functions expressed on a set of input
variables (also known as free variables), each with an associated type. When
a type-compatible OCL value is substituted for each of these input variables,
the expression evaluates to a single result value, which is compatible with
the type of the expression. For an OCL expression O taking input parame-
ters X1, X2, . . . , Xn, let G |= y = O(x1, x2, . . . , xn) denote that expression O
parametrized by actual parameter values x1, x2, . . . , xn yields the result y if
evaluated over model G.

Expressions are compositional: an expression may have sub-expressions whose
results contribute to the result of the expression. Input variables of sub-
expressions are often free variables of the whole expression as well.

OCL has literal expressions for various types. Primitive literals have no input
variables and return constants. Collection or tuple literals contain zero or more
sub-expressions yielding the elements of the collection or the tuple; note that
such a structure literal may have input variables due to these sub-expressions.

A variable reference OCL expression returns the value of its input variable.
The inputless allInstances() expression returns a Set of all instances of a given
metamodel type; oclIsKindOf() tests membership of this Set. The constructs
let-in and if-then-else combine the results of their subexpressions in the
expected way. Property call expressions express navigation from tuples to their
field values, or along (single- or multi-valued) model element features; the source
of navigation is identified by a single sub-expression called source.

Example 1 demonstrates a derived feature specification as a let-in OCL ex-
pression taking a State as input and yielding a Set of Transitions as output.
The first subexpression is navigation self.automaton, initializing variable a.

Operation call expressions evaluate operations associated with the type of
their source sub-expression. The operation takes the result of the source as its
argument, and in some cases the result of other sub-expressions as additional
arguments. Some significant operations will be discussed in the following.
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OCL Operations. Classes may declare read-only model operations (such as
derived features) that OCL expressions can invoke on their instances. These
operations can be specified as model queries (often written in OCL).

OCL also supports built-in operations on primitive types, including arithmetic
operations, logical connectives, or comparisons (<> for inequality, <=, etc.).

Collection operations include membership testing, union, etc. of Sets. Oper-
ations that aggregate a collection into a single value include size() and sum().

Iterator expressions are a special kind of collection operations that take a
lambda expression (the body) as their argument. When evaluating the iterator
expression, the body is evaluated repeatedly, with collection members substi-
tuted for one or more of its input variables (called the iterator). The iterator
expression select() will evaluate a Boolean-valued body predicate on each el-
ement of a collection, and form a resulting subset/subsequence/etc. containing
those elements that evaluated to true. Similarly, exists() returns a Boolean
indicating whether any members of the collection satisfy the body predicate.

Example 1 demonstrates operations =, <>, and, select(), exists().

2.3 Graph Patterns and EMF-IncQuery

Graph Patterns as a QueryLanguage. The EMF-IncQuery framework [10]
aims at the efficient definition and evaluation of incremental model queries over
EMF-based models, building on the idea of graph patterns. The query language is
detailed in [18], only a brief overview is given here.

A basic graph pattern consists of pattern constraints expressed over pattern
variables that represent model elements or primitive values. The parameter vari-
ables of a graph pattern are a subset of the pattern variables that are exposed
to the query user. Pattern variables that are not parameters are called local
variables. Structural constraints prescribe the existence and interconnection of
graph nodes and edges of given types. Attribute constraints are defined by pure,
deterministic expressions given in a Java-based language.

Basic patterns can be composed in numerous ways, thus the query language
has the expressiveness [4] of first-order formulae over the model. Disjunction (OR)
is expressed by several basic patterns (pattern bodies) defining alternative con-
straint sets (and local variables) for the same parameters. A pattern call reuses
a pattern within another pattern as a single constraint expressed over its actual
parameters (quantifying away the local variables of the called pattern). A nega-
tive application condition (NAC) is a pattern call constraint with negation, i.e.
it is satisfied iff the called pattern isn’t.

A match of a graph pattern is a value substitution of the parameters, so that
the local variables of at least one pattern body can be assigned values to satisfy
all pattern constraints of that body. The result of an (unbound) model query is
the set of all matches, called the match set. Matches of a pattern are all tuples
of the same format (one entry for each pattern parameter), and the result of
pattern matching is the set of valid matches in the model, therefore the pattern
essentially evaluates to a mathematical relation on elements of the model and
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primitive values, where the arity of the relation corresponds to the number of
pattern parameters, and members of the relation are the matches of the pattern.

P (X1, X2, . . . , Xn) will denote a pattern P having parameters X1, X2, . . . , Xn.
The fact that the tuple 〈x1, x2, . . . , xn〉 is a match of the pattern P over model
G will be denoted as G |= 〈x1, x2, . . . , xn〉 ∈ MatchSetP .

Example 2. The derived feature in the example metamodel can be specified by
the pattern conflictingTransitions (Fig. 2). The single pattern body imposes
8 structural constraints (existence of connecting edges, inequality) on local pat-
tern variables a, t2, str and parameters self, t1. Each pattern match means
that transition t1 is included in the derived set conflictingTransitions of
state self. See Table 1c for the match set on the sample model.

1 pattern conflictingTransitions (
2 // parameters
3 self : State , t1 : Transition
4 ) = { // constraints of single body
5 State.automaton(self , a);
6 Automaton.transitions(a, t1);
7 Automaton.transitions(a, t2);
8 Transition.sourceState(t1, self);
9 Transition.sourceState(t2, self);

10 Transition.triggerSymbol(t1, str);
11 Transition.triggerSymbol(t2, str);
12 t1 != t2;
13 }

(a) Textual syntax

t1: Transition t2: Transition

a: Automaton

self: State

str: EString

automaton

transitions transitions

sourceState sourceState

triggerSymbol triggerSymbol

not 
equal

(b) Graphical form, parameters highlighted

Fig. 2. Graph pattern specifying the derived feature

Incremental Evaluation. A powerful feature of EMF-IncQuery is its in-
cremental query evaluation. This means that the match sets of graph patterns
are cached and continuously updated as the model evolves. This choice increases
memory consumption and imposes a run-time maintenance overhead on model
manipulation; on the other hand, query results can be instantaneously retrieved
without re-traversing the model. This characteristic can be beneficial in use cases
including model validation, simulation and derived feature computation [19,20].

The particular algorithm used in EMF-IncQuery is Rete [9], which caches
match sets of subpatterns as well, with the benefit that maintenance cost is
proportional to the change only, independently of model size (see [21]).

3 Mapping OCL Expressions to EMF-IncQuery

An approach for constructing semantically equivalent EMF-IncQuery graph
patterns for certain kinds of OCL expressions is proposed in the following sec-
tions. Note that the graph pattern of Example 2, disregarding minor beautifi-
cation, was automatically constructed from the OCL expression of Lst. 1 by a
partial prototype implementation of this strategy (available at [22]).
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3.1 Overview of the Approach

Graph patterns evaluate to match sets that are relations in the mathemati-
cal sense, while OCL expressions are typed functions. Thus the proposed ap-
proach aims to find relations that are equivalent to the original OCL functions,
and then construct graph patterns that in turn express exactly these relations.
For instance, the pattern of Example 2 is equivalent to the OCL expression of
Example 1, as demonstrated on the sample instance model (Table 1).

One of the main challenges of defining such a mapping is making sure that
relation domains (columns) are of ground types, as the graph pattern formalism
does not support variables representing collections of model elements.

By structural recursion, the proposed approach first maps each OCL subex-
pression to a pattern; then these helper patterns are used for translating the
whole expression. The helper pattern will often be included via pattern compo-
sition. In lieu of positive pattern composition, it is also possible to construct the
whole pattern as a modified copy of the helper pattern, by augmenting it with
additional pattern constraints, and/or modifying the set of pattern parameters
- this approach may yield more concise output and potentially better run-time
query performance. In case of multiple such subexpressions, several helper pat-
terns can be unified into a single one that contains all their constraints.

An abstract specification of the proposed mapping will be provided in Sec. 3.2,
by introducing possible relational representations for various kinds of OCL ex-
pressions. Then Sec. 3.3 provides the actual mapping of OCL language elements
to graph patterns whose match sets will correspond to the appropriate mathe-
matical relation specified in Sec. 3.2. The mapping is applicable to many graph
query languages; only a few cases discussed in Sec. 3.4 require EMF-IncQuery-
specific constructs. For the sake of brevity, the complete coverage of the OCL
Standard was only included in [22]. Limitations will be discussed in Sec. 3.5.

3.2 Abstract Mapping to a Relational Representation

Single-ValuedNon-booleanExpressions. AnOCLexpressionOwithground-
typed inputs X1, X2, . . . , Xn and a ground-typed, non-Boolean result type will be
mapped to a graph pattern PO such that G |= y = O(x1, x2, . . . , xn) ⇔ G |=
〈x1, x2, . . . , xn, y〉 ∈ MatchSetPO for any instance model G and appropriately
typed x1, x2, . . . , xn, y. Simply speaking, the function is mapped to a relation ex-
pressed on the function inputs and results. From Example 1, the OCL subexpres-
sion t1.triggerSymbol (a function that maps a transition to a string) is equiva-
lent to the single-constraint pattern Transition.triggerSymbol(t1, str) that
evaluates to a relation between transitions and strings. For the instance model of
Table 1a, the relation is {〈t1, A〉, 〈t2, A〉, 〈t3, B〉, 〈t4, B〉, 〈t5, C〉, 〈t6, C〉}.

Note that if at least one of x1, x2, . . . , xn, y has a primitive type with prac-
tically infinite instance set (e.g. 264 integers), the above definition of PO may
appear to yield a practically infinite match set size, making it unfeasible to apply
fully incremental evaluation model query, where all matches have to be enumer-
ated and stored. However, as we will see below, the value of these primitive-typed
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variables are in many practical cases either equated to literal values, or available
as an attribute value of an instance model element, or (transitively) inferrable by
expression evaluation from other primitive variables that have these properties.
Augmentation also improves finiteness : even if a helper pattern for a subexpres-
sion does not meet this condition, its augmented version associated with the
composite expression may do so. Therefore typically the match set will still be
finite and computable by the query engine. The proposed approach does not
support cases where this condition is violated. Another limitation is that the
relation domains have to be of ground types, since domains of structured types
would put the relation beyond the expressive power of graph patterns.

Boolean-Valued Expressions. An OCL expression O with ground-typed in-
puts X1, X2, . . . , Xn and a Boolean result type can be mapped to a graph pattern
PO similarly as above. Additionally, it can also be mapped to graph patterns
P+
O or P−

O that match those inputs for which the expression evaluates to true
respectively false: G |= true = O(x1, x2, . . . , xn) ⇔ G |= 〈x1, x2, . . . , xn〉 ∈
MatchSetP

+
O ⇔ G |= 〈x1, x2, . . . , xn〉 �∈ MatchSetP

−
O for any instance model G

and appropriately typed x1, x2, . . . , xn, y. From Example 1, let O be the OCL
subexpression t1 <> t2 (a function that maps two transitions to a Boolean);
then binary pattern P+

O has the constraint t1 != t2 (and implicit type re-
strictions) and no Boolean variables; while P−

O has t1 == t2 and evaluates to
{〈t1, t1〉, 〈t2, t2〉, 〈t3, t3〉, 〈t4, t4〉, 〈t5, t5〉, 〈t6, t6〉} for the model of Table 1a.

For each Boolean-valued OCL expression O, it is sufficient to define one of the
three mappings PO, P+

O , P−
O , as it can then be trivially transformed into the other

two, unless a simpler mapping is known for them. P+
O (respectively P−

O ) can be
synthesized from PO by asserting y == true; (respectively y == false;) as an
additional pattern constraint, and removing y from the pattern parameters. P+

O

and P−
O transform into each other via negative pattern call. Finally, PO can be

derived from P+
O (respectively P−

O ) by counting its matches, and then evaluating
the Boolean expression that the number of matches is positive (respectively zero).

The reason for having three possible images PO, P+
O , P−

O for a Boolean-valued
expression O is that OCL often uses Boolean variables as conditions (e.g. in if,
select(), or logical connectives), in which cases it is natural to include a pattern
composition constraint of P+

O or P−
O (or augment it, as discussed before). Thus

the mapping result is simplified (potentially gaining run-time query performance
benefits as well) in case P+

O or P−
O are simpler to express than PO.

Tuple-Valued and Tuple-Consuming Expressions. Since tuples consist of
a statically known number of components, a tuple-typed variable can always be
substituted with a set of variables, one for each tuple field. This principle can
be applied to expression inputs and results in an analogous way; the latter case
is elaborated in more detail below.

An OCL expression O with ground-typed inputs X1, X2, . . . , Xn and a k-
ary tuple-typed result can be mapped to a graph pattern PO such that G |=
〈y1, y2, . . . , yk〉 = O(x1, x2, . . . , xn) ⇔ G |= 〈x1, x2, . . . , xn, y1, y2, . . . , yk〉 ∈
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MatchSetPO for any instance model G and appropriately typed x1, x2, . . . , xn

as well as y1, y2, . . . , yk. Simply speaking, the function is mapped to a relation
expressed on the function inputs and tuple components of the result.

If the result is a tuple of ground-typed fields, then the domains of the relation
are of ground types. Tuples containing tuples can be trivially flattened before
the mapping to tuples containing ground-typed values only. For tuples having
one or more collections as components, see the following paragraphs.

Multi-valued Expressions. An OCL expression O with ground-typed inputs
X1, X2, . . . , Xn and a collection result type will be mapped to a graph pat-
tern PO such that G |= y ∈ O(x1, x2, . . . , xn) ⇔ G |= 〈x1, x2, . . . , xn, y〉 ∈
MatchSetPO for any instance model G and appropriately typed x1, x2, . . . , xn, y.
Simply speaking, the function is mapped to a relation expressed on the function
inputs and elements appearing in the result, where each element of the result
collection corresponds to a separate element of the associated relation. From
Example 1, the OCL subexpression a.transitions (a function that maps an
automaton to a set of transitions) is equivalent to the single-constraint pattern
Automaton.transitions(a, t1) that evaluates to a relation between automa-
tons and transitions, with one row for each transition. Similarly, the graph pat-
tern of Example 2 evaluates to a relation (see Table 1c) that associates a State
with individual Transitions, as opposed to a Set of transitions, which is what
the equivalent OCL derived feature of Example 1 yields (see Table 1b).

If the element type of the collection is a ground type, then the domains of the
relation are of ground types. Tuples can be dealt with as described in Sec. 3.2.
Collections of collections (as well as tuples of more than one collection) are not
supported by the approach due to the limitations discussed before.

Relations (pattern match sets) have set semantics, without multiplicity or or-
dering. Thus only Set collections can be faithfully mapped (and also Bags in case
input and internal variables together make the output unique); other collection
types are not supported in general. However, many collection operations (such
as isEmpty()) and iterator expressions (such as select()) behave equivalently
for the various collection types, in which case the collection can be implicitly
cast to a Set by asSet() for the sake of the mapping.

The proposed approach does not support collection-typed input variables in
OCL expressions, as collection operations are typically mapped to pattern com-
position constructs that call the pattern associated with the expression that
defines the collection. Note that a collection can be used as an argument of an
OCL operation, if it is provided as the result of a sub-expression (typically nav-
igation along a multi-valued property); collection types are unsupported for free
variables only. In practice, this limitation is not directly relevant for class invari-
ants and derived features (due to single non-collection input); so OCL-defined
model operations and preconditions are restricted only in their parametrization.
The iterator input variable of an iterator expression body can be a collection
only in case of a collection of collections, which is unsupported anyway. The only
other way a new variable can be introduced is a let expression, in which case
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the initialization expression of the variable can replace the variable references
in the in branch for the sake of the mapping, so once again it will not matter
whether the type is a collection.

3.3 Concrete Mappings for Simple Expressions

The following paragraphs construct mappings of the simplest OCL expression
into graph patterns according to the specifications in Sec. 3.1. The mappings
result in single-bodied patterns unless indicated otherwise.

Navigation and Variable References. If O is a navigation expression along
property edgeType and with source expression Osource, where Osource is mapped
to pattern POsource with parameters x1, x2, . . . , xn, y

source, then O is mapped to
PO with parameters x1, x2, . . . , xn, y. PO is constructed by augmenting POsource

by a new structural constraint edgeType(ysource, y) and replacing pattern pa-
rameter ysource with y. This works both for single-valued and multi-valued
(collection-typed) properties. Mapping variable references is trivial.

For instance, self.automaton from Example 1 is translated in Example 2 to
State.automaton(self, a); note the variable reference self as source expres-
sion. On the other hand, a hypothetical self.automaton.transitions, con-
taining the former OCL expression as its source expression, would augment this
pattern by a second pattern constraint Automaton.transitions(a, y).

Type Checks and Literals. If O is T.allInstances() for metamodel class T ,
it is mapped to the pattern PO with parameter y and single pattern constraint
T (y); the same pattern is P+

O if O is y.oclIsKindOf(T ). If O is a primitive-typed
literal of value c, it is mapped to the pattern PO with parameter y and the single
pattern constraint c==y. For treatment of tuple literals, see Sec. 3.2. Set literals
are mapped to a disjunction of helper patterns mapped from subexpressions.

Arithmetic Operations. If O is an arithmetic operation op on subexpressions
O1, O2, . . . , Om, then O is mapped to PO with parameters consisting of all in-
put parameters of PO1 , PO2 , . . . , POm in addition to y, and with the attribute
constraint y==eval(op(y1, y2, . . . , ym)) (where yi is the result variable of POi)
augmenting the unification of PO1 , PO2 , . . ., POm . For instance, OCL expression
p < q+r is mapped to pattern constraints y1==eval(q+r) and y==eval(p < y1).

If O is an equality, it can be more effectively mapped to P+
O using a pattern

constraint y1==y2 and to P−
O as y1!=y2 instead of the eval construct. Vice versa

for inequality; e.g. <> from Example 1 is mapped to a != constraint in Example 2.
Similarly, many Boolean operations have simpler mappings. In case of and,

the single body of P+
O is the unification of P+

O1 and P+
O2 (as applied repeatedly

in the running example); while P−
O would have two bodies: P−

O1 and P−
O2 .
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If-Then-Else and Let-In. In a let-in expression, the result of the let subex-
pression is used to parameterize the in subexpression. If O is a let-in expression
with subexpressions Olet, Oin, then O is mapped to PO with parameters consist-
ing of y along with input variables of POlet and input variables of POin except for
the result variable of POlet ; with the pattern body unifying POlet with POin . For
instance, constraint State.automaton(self, a) in Example 2 is from POlet .

If O is an if-then-else expression with subexpressions Ocondition, Othen, Oelse,
then O is mapped to PO with parameters consisting of all input parameters of
POcondition , POthen , POelse in addition to y, and with two pattern bodies, one with
ythen==y augmenting the unification of POthen and P+

Ocondition , the other with
yelse==y augmenting the unification of POelse and P−

Ocondition . Can be simplified
to Boole-logic if the result type is Boolean.

First-Order Collection Expressions. Many collection operations and iter-
ator expressions are trivial to translate to first-order logic formulae, which are
within the power of graph patterns [4]. A few cases will be briefly outlined below.

For instance, a collection is non-empty iff the mapped pattern has any matches
with the given values of input variables. If O is an isEmpty() expression with
subexpression Osource, then O is mapped to P−

O , which is the same as POsource ,
with its result variable removed (quantified away) from the parameters.

If O is a select() expression with subexpressions Osource, Obody, then PO is
POsource and P+

Obody unified, with the result variable of the former substituted
for the iterator variable of the latter (and both removed from the parameters).
For exists(), P+

O is constructed similarly, but the result variable is removed
from the parameters. Example 1 demonstrates both cases.

3.4 Mapping Higher-Order OCL Constructs

Some OCL constructs are not expressible using first-order formulae, but the
EMF-IncQuery language provides extensions over conventional graph patterns
that may suffice in some cases. As above, details will be omitted here.

EMF-IncQuery supports transitive closure [23], so a closure() iterator ex-
pression can be mapped by (1) mapping first the body expression to a graph
pattern, (2) taking the transitive closure of this graph pattern, and (3) augment-
ing the graph pattern mapped from the source expression with the transitive call.

The simplest case of aggregation is the size() collection operation returning
the number of elements of a set. A count find constraint in EMF-IncQuery
can aggregate matches of the graph pattern corresponding to the source expres-
sion defining said set. An analogous solution is proposed for OCL aggregation op-
erations sum(), etc.; but the corresponding EMF-IncQuery aggregators, while
included in the language specification, are not fully implemented as of today.

3.5 Miscellaneous Cases and Limitations

Operation calls toward metamodel-defined custom (read-only) operations are
trivial to support if they are defined as OCL expressions (or EMF-IncQuery
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patterns, as in [20]). Operations implemented in a generic-purpose programming
language are not supported in general, as there is no universal way to ensure that
the incremental engine is notified of changes in the computation result, which is
necessary for incremental maintenance. A solution [24] has been proposed which
records all model reads during the computation to invalidate the result when
these parts of the model are affected by a change, but this approach has its
own practical limitations, as it would require wrapping all model processing -
including the implementation of the metamodel-defined read-only operation -
into a compliant model access layer.

As discussed throughout Sec. 3, the proposed approach has limitations. Due to
the lack of support for ordering in the relational representation, iterator expres-
sions sortedBy() and iterate() cannot be mapped, similarly to order-sensitive
operations (e.g. first(), at()) on ordered collections. Representation of mul-
tiplicity (i.e. Bag collection) has limitations as well. Support for collections of
collections is also lost due to the relational approach. As discussed before, the
usage of collections of primitive types and primitive-typed top-level arguments
is restricted due to finiteness / computability limitations of EMF-IncQuery.

OCL has two special undefined values, null and invalid, which conform to
(almost) all OCL types, but are not equivalent to each other. The proposed ap-
proach does not support them at the moment, partly due to type system incom-
patibility, and also due to semantic issues [25]; see [16] for a possible workaround.

Altogether it is clear that the mapped sublanguage is significantly weaker than
OCL. Still, practice has shown that the supported OCL constructs are expressive
enough to be useful in many cases.

4 Performance Measurements

The justification of the proposed mapping is that one can deliver efficient, in-
cremental query evaluation for a subset of OCL expressions by transforming
them to graph patterns of equivalent semantics, and applying EMF-IncQuery.
To demonstrate this, a subset of an existing performance benchmark for well-
formedness (invariant) constraint checking was applied.

4.1 Measurement Setup

The Train Benchmark [10] defines a number of well-formedness constraints (of
which only SignalNeighbor is used here) in a custom metamodel, and measures
the constraint checking performance of various model query tools as they pro-
cess automatically generated instance models of various sizes conforming to the
metamodel. The goal is to provide near instantaneous feedback on constraint
violations as the (simulated) user is editing a large model. The workload and
measured performance indicators involve: (phase 1 ) reading the model, (phase
2 ) checking it for any inconsistencies as defined by the well-formedness con-
straint, (phase 3 ) simulating a transformation / manual editing of the model
that performs a predefined sequence of modifications, and (phase 4 ) checking
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Table 2. SignalNeighbor evaluation times for the instance model of 213K elements

Tool Java OCL OCL-CG OCL-IA EIQ OCL2IQ
Batch Validation [ms] 169 867 36 157 126 461 36 444 6 142 6 205
Continuous Validation Time [ms] 167 891 32 237 126 723 331 523 2 1
Memory Footprint [kB] 14 009 15 304 17 755 26 073 108 435 118 319

the updated model as well for inconsistencies. For fair comparison [10] of state-
less tools against incremental ones, the most relevant performance indicators are
phase 1+2 ("Batch Validation") execution time and phase 3+4 ("Continuous
Validation") execution time (and of course the memory footprint). The workflow
actually executes phase 3+4 repeatedly; the reported values are the average time
of one repetition (small modification + 1 query).

The run-time performance of the following solutions were compared1. Java:
a naive Java implementation of the constraint check, as a hypothetical pro-
grammer would quickly implement it, without any special effort to improve
performance. EIQ: hand-written graph patterns evaluated incrementally by
EMF-IncQuery. OCL: the OCL interpreter [2] of Eclipse, as it evaluates the
OCL representation of the constraint check. OCL-CG: is Java code generated
from the same OCL expression by Eclipse OCL [2]. OCL-IA: the OCL Impact
Analyzer [26] toolkit, as it incrementally evaluates the same OCL expression.
OCL2IQ: graph patterns automatically derived from the same OCL expression
by a prototype partial implementation of the proposed mapping, likewise inter-
preted incrementally by EMF-IncQuery (new contribution extending [10]).

4.2 Results

Results obtained from the input model of 213K elements (nodes+edges) are
presented in Table 2; details and further experiments are reported at [22] along
with instructions for reproduction.

The incremental strategy of EMF-IncQuery performs extremely well in the
"Continuous Validation" workload, delivering practically immediate feedback af-
ter model manipulation, at the cost of increased memory footprint. Furthermore,
comparison against benchmark instances with different model sizes [22] confirms
the theoretical result that this "Continuous Validation" time is practically inde-
pendent of the size of unchanging parts of the model; EMF-IncQuery memory
consumption and "Batch Validation" time was found to scale approximately
proportionally to model size, while OCL execution times are between a linear
and quadratic proportion to model size. Finally, the graph queries automati-
cally generated using the proposed transformation (OCL2IQ) perform similarly

1 Experimental setup: Dell Latitude E5420 Laptop, Intel Core i5-2430M @ 2.4Ghz
CPU, 16GB of DDR3-1066/1333 RAM, Samsung SSD 830; Eclipse Kepler on Java
SE 1.7.0_05-b06 (with 2G maximum heap size) on Windows 7 x64; Eclipse OCL pre-
release version 3.4.0.v20140124-1452, EMF-IncQuery 0.8.0 (nightly at 2014-03-05).
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to manually written EMF-IncQuery code (EIQ), outperforming pure Java as
well as stateless or incremental OCL-based approaches.

The advantage of graph patterns at “Batch Validation" time likely stems from
automatic query planning, while "Continuous Validation" times are a conse-
quence of the deep caching of the Rete incremental evaluation strategy; these
are two of the benefits of the proposed approach foreseen in Sec. 1. Thus trans-
lating OCL code to graph patterns is justified in this scenario.

4.3 Remarks and Threats to Validity

Diverging from [10] at the suggestion of Eclipse OCL leader Ed Willink, OCL
evaluation was not invoked by substituting each model element as self, but
only on a prefiltered list of instances of the context type of the constraint.

The performance of incremental techniques may depend on what kind of changes
are performed in phase 3. The presented results were obtained from the UserSce-
nario mode of Train Benchmark. The “Continuous Validation” times for OCL-IA
are significantly worse in this case than with the alternative model manipulation
workload ModelXFormScenario (see [22]), where OCL-IA re-evaluation is quick
after a change, leading to efficient incrementality. EIQ and OCL2IQ are much less
sensitive to this option, in line with theoretical predictions [21].

Note that the OCL query was produced by non-experts. Hand-optimized
queries may perform better. However, the OCL2IQ approach received the same
unoptimized query as input, so the comparison is fair.

The benchmark scenario was deliberately chosen as one where incremental
approaches have potential advantages, and the selected query was complex to
increase the role of automatic query optimization. Therefore the results do not
show universal superiority of one tool over another, merely produce evidence
that the proposed approach has legitimate use cases.

5 Related Work

5.1 Translating OCL to Logic-Based Languages

A similar translation procedure from OCL to graph patterns was utilized in [15],
focusing on providing a means to automatically generate large instance models
(e.g. for testing) that conform to a metamodel with OCL invariants. Compared
to the proposed approach, [15] handles a smaller subset of OCL, translates it
into a slightly different graph query language, and does not investigate query
performance. Due to conceptual differences, the translation method proposed
here is not a straightforward extension of theirs, even if there are some common
elements. Particularly focusing on differences between the supported subsets of
OCL, [15] has the following shortcomings: (i) support is focused on Boolean-
valued OCL expressions only (though non-Boolean navigations can be used in
certain ways); (ii) set operations such as select(), collect(), union(), etc.
are not supported; (iii) aggregations such as sum() are not supported; (iv) the
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result of size() can only be compared against constants; (iv) the result of two
paths of navigation can only be compared for equality. Thus e.g. the derived
feature of Lst. 1 cannot be translated for multiple reasons.

Metamodel consistency checkers UML2Alloy [16] and UMLtoCSP [27] com-
pile OCL to a constraint or logic language, similarly to the proposed approach;
but without “flattening" collections to relational semantics (contrast Sec. 3.2).
Thus the expressive power of OCL is preserved (at least for [27]), but the Rete
algorithm (and some other benefits foreseen in Sec. 1) cannot be applied.

Mappings to formal semantic domains such as HOL (higher-order-logic) re-
vealed [25] inconsistencies and ambiguities in the OCL standard. Fortunately,
they have low impact on the OCL sublanguage supported in the current paper.
Such transformations could not be directly reused for the same reason as above.

5.2 Incremental Evaluation of OCL

Due to the expressive power of OCL constructs, the Rete-based approach used in
EMF-IncQuery is not applicable for all queries formulated as OCL expressions.
There are, however, alternative approaches for incremental evaluation of OCL
queries, though they have a lower level of incrementality [21] than Rete.

Cabot’s approach [28] and the Impact Analyzer [26] extension of the freely
available query engine Eclipse OCL [2] rely on static analysis of OCL expressions
when computing an over-estimate of query inputs that need to be re-evaluated
from scratch for given elementary model change.

The Groher-Reder-Egyed approach [24] for incremental constraint checking is
independent from the constraint language, but can be instantiated for OCL. The
strategy is to wrap the model into a model access layer that records elementary
model access operations, such as retrieving the value of an attribute, during the
query evaluation; later the query can be re-evaluated for the given input if any
of the recorded elementary queries are affected by a change. Some re-evaluations
can be saved by language-specific maintenance [29] of a Boolean validation tree.

Case study-driven comparative performance benchmarking of incremental
model query evaluation technologies is a currently ongoing effort [30,31,10].

6 Conclusion

The paper presented a general specification for mapping a large subset of OCL
expressions to equivalent graph patterns, and provided concrete translations
conforming to this scheme for numerous OCL constructs and Standard Library
operations, while clearly indicating any limitations of the approach.

Experiments have demonstrated that query performance can be increased
by evaluating the generated graph patterns (using EMF-IncQuery) instead
of the original OCL expressions, which was one of the benefits of the approach
foreseen in Sec. 1. Although the measurements do not constitute a comprehensive
performance assessment of the various tools, they suffice for proving the existence
of cases where the proposed mapping can be directly useful.

The author wishes to thank Ed Willink for his advice on Eclipse OCL.
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Izsó, Benedek 653

Jonckers, Viviane 337

Kappel, Gerti 116, 552
Karban, Robert 403
Kienzle, Jörg 183
Klein, Jacques 252
Kolovos, Dimitrios S. 84, 420, 586
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