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Abstract  Yield increases and sustainability of conservation agriculture (CA) sys-
tems largely depend on systematic crop rotations and in situ crop harvest residue 
management coupled with adequate crop nutrition. In this chapter, the beneficial 
effects of crop residue management and crop rotations on maize ( Zea mays L.) 
grain yield in CA systems under rainfed conditions are explained through a meta-
analysis. The effects of crop residue management are most beneficial under rainfed 
conditions as rainfall distribution is often erratic and seasonal dry spells common. 
The meta-analysis was based on the weighted mean difference (WMD) effect size 
using the random effects model. Yield advantages of CA systems over conventional 
tillage systems were only significant when in rotation, under low rainfall conditions 
and with large N fertiliser inputs. The WMD for CA with continuous maize ranged 
from − 1.32 to 1.27 with a mean of − 0.03 t ha−1, and when rotation was included 
the WMD ranged from − 0.34 to 1.92 with a mean of 0.64 t ha−1. Mulch retention 
under low rainfall (< 600 mm) had a WMD between −0.2 and 1.0 with a mean of 
0.4 t ha−1 while high rainfall (> 1000 mm per season) reduced the yield advantage 
with the WMD ranging from − 1.2 to 0.02 with a mean of − 0.59 t ha−1. CA is likely 
to have the largest impact in low-rainfall environments where increased infiltration 
of rainfall and reduced evaporative losses are achieved by retaining crop residues. 
However, it is in these areas that achieving sufficient crop residues is a challenge, 
particularly in mixed crop–livestock systems where crop residues are needed for 
livestock feed in the dry season. The results suggest that CA needs to be targeted 
and adapted to specific biophysical as well as socioeconomic circumstances of 
farmers for improved impact. The ability of farmers to purchase fertiliser inputs, 
achieve sufficient biomass production as well as produce alternative feed will allow 
them to practise CA and possibly achieve large yields.

Keywords  Crop rotation · Crop residues · Conservation agriculture · Maize grain 
yield · Meta-analysis · Weighted mean difference · Rainfed conditions
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2.1 � Introduction

Systematic crop rotations and in situ crop harvest residue management are the pillars 
of conservation agriculture (CA). Yet, they are also the most pronounced barriers to 
its widespread practice especially on smallholder farms in the tropics. A crop rota-
tion is the sequence of crop types grown in succession on a specific field (Wibberley 
1996; Castellazzi et al. 2008). Crop rotations play a key role in CA systems where 
they facilitate soil fertility replenishment while at the same time minimising pest 
and disease build-up (Trenbath 1993). Crop rotations with leguminous crops have 
the potential to increase soil nitrogen (N) concentration through biological nitrogen 
fixation (BNF; Giller 2001). Research results have shown that synthetic fertilis-
ers or organic manure do not solve the challenges of soil degradation and fertility 
decline except when used in combination (Chivenge et al. 2009, 2011). The use of 
mineral fertiliser is needed and should be combined with management practices that 
build up organic carbon and achieve sustainability in the longer term. The underly-
ing hypothesis of this chapter is that yield increases in CA over conventional agri-
culture systems are underpinned by successful crop residue management and crop 
rotation, and such yield increases differ according to fertiliser inputs by farmers and 
the amount and distribution of seasonal rainfall.

The importance of crop residue retention to sustainability of crop production is 
widely acknowledged. In situ retention of crop harvest residues coupled with no 
tillage has the potential to increase substantially soil organic carbon (SOC) although 
current data and knowledge are inconclusive (Govaerts et al. 2009). However, there 
is consensus that consistent and sufficient C inputs are the major determinants of 
SOC changes in soil and not so much the type of tillage (Chivenge et al. 2007). 
Reduced tillage is important in reducing decomposition rates but this is only rel-
evant if sufficient organic inputs have been applied (Chivenge et  al. 2007). The 
absence of soil inversion may lead to SOC accumulation in the top layers of the 
soil (Franzluebbers and Arshad 1996). Carbon increases are expected over time if 
the amount of crop residue retained is more than that dissipated by the oxidation 
process. Current literature suggests that the importance of crop residue retention in 
the short term might be related to the maintenance of SOC rather than its absolute 
increase.

Crop residues provide soil cover which decreases run-off and soil loss especially 
on low slopes but it is less effective on steep slopes (Adekalu et al. 2007). In a study 
on a utisol in Nigeria, Adekalu et al. (2007) reported that water infiltration increased 
with increasing levels of mulch cover (giant elephant grass) and decreased with in-
creasing slope. The authors suggested that to improve infiltration and reduce run-off 
and soil erosion, up to 90 % cover may be necessary especially if organic matter is 
low and sand content is high. Other researchers have suggested mulch application 
rates of 4–6 t ha−1 as adequate (Lal 1976; De Silva and Cook 2003) but what these 
quantities translate to in terms of soil cover for different crops is not well known 
(Morrison et  al. 1985). Some authors suggest that mulch rates of up to 6  t  ha−1 
may completely eliminate soil loss (Fig. 2.1, Lal 1998; Adekalu et al. 2006, 2007). 
Understanding the interactions between the type and rate of mulch application, the  
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contribution to nutrient enhancement in soil and the potential for crop yield 
improvement are needed (Cook et al. 2006). Crop residues have low thermal con-
ductivity such that mulching can reduce soil temperature for optimal germination 
and root development in hot environments (Lal 1978; Riddle et al. 1996). They in-
sulate the soil surface and increase resistance to heat and vapour transfer leading to 
increased available soil water (Hatfield and Prueger 1996; Dexter 1997; Cook et al. 
2006). Mulch is also important for intercepting rainfall energy and reduces erosion. 
In areas of relatively short duration and low-intensity rainfall, mulching may reduce 
soil water recharge; this could be crucial in areas with frequent and small amounts 
of rainfall because it can be intercepted before it recharges the topsoil (Sadler and 
Turner 1993; Savabi and Stott 1994). It has also been suggested that the crop resi-
due thickness has a direct effect on total interception of rainfall (Savabi and Stott 
1994). Thus, mulch application is not always positive and may be detrimental to 
crop productivity.

In cereal-based systems which dominate the tropics, most crop residues are de-
rived from maize, millet and sorghum, which are rich in lignin and have high C/N 
ratios that are generally greater than 60 (Cadisch and Giller 1997; Handayanto et al. 
1997). Although crop residues are often on the soil surface, they are more likely to 
partially incorporate and decompose as the season progresses adding to SOC (Park-
er 1962). However, the wide C/N ratio leads to prolonged N immobilization by 
microorganisms, rendering N unavailable for crop growth in the short term (Giller 

Fig. 2.1   The relationship between the amount of crop residue retained and soil loss. (Data used 
were reported by Adekalu et al. 2006, 2007; Lal 1998)
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et al. 1997). Thus, high N inputs are required when poor-quality crop residues are 
used as mulch cover.

This chapter collates and performs a meta-analysis on existing literature on the 
effect of crop rotations and crop residue management on maize grain yield under 
CA. Meta-analysis allows combined quantitative analyses of experimental yield 
data reported in the literature and estimation of effect sizes (Glass 1976; Rosenburg 
et al. 2000; Ried 2006; Borenstein et al. 2009). The analysis increases the statistical 
power available to test hypotheses and can help unravel differences in responses 
between treatments under different environments (Gates 2002; Borenstein et  al. 
2009). The effect size for each individual study is considered an independent 
estimate of the underlying true effect size, subject to random variation. All studies 
contribute to the overall estimate of the treatment effect whether the result of each 
study is statistically significant or not thus reducing publication bias. Data from 
studies with more precise measurements or larger studies (many cases) are given 
more weight, so they have more influence on the overall estimate (Gates 2002). 
However, meta-analysis has potential weaknesses due to publication bias and other 
biases that may be introduced in the process of locating, selecting and combining 
studies (Egger et al. 1997; Noble 2006). Publication bias arises when researchers, 
reviewers and editors submit or accept manuscripts for publication based on the 
direction or strength of the study findings (Dickersin 1990). This means that studies 
reporting contradictory or neutral results are likely to be omitted from publications. 
To reduce publication bias, data searches were carried out online to find results 
from all parts of the world under rainfed conditions. Some researchers were also 
contacted to provide some grey literature. Moderators, i.e. factors likely to influ-
ence effect sizes such as mean annual precipitation (MAP) and N fertiliser input, 
were identified during data collation and the random effects model was used during 
the analysis (Ried 2006).

2.2 � Meta-analysis

Maize grain yield data were obtained from studies on the effect of crop residue 
management and crop rotation. Due to the voluminous nature of the search results, 
meta-analysis was restricted to rainfed conditions in semiarid and subhumid envi-
ronments where the effects of mulch on crop productivity would be better assessed. 
Data searches were predominantly online and obtained from refereed journals, book 
chapters or peer-reviewed conference proceedings. The following keywords and 
their combinations were searched: crop rotations, legumes, CA, mulch cover, no 
tillage, maize yield, corn yield, subhumid, semiarid and rainfed. The treatments 
from which maize grain yield data were collated are described in Table 2.1. Nutrient 
inputs needed to be the same across the treatments tested in each study. Unpub-
lished data or grey literature was obtained from researchers working on CA. Result 
moderators or factors likely to influence the meta-analysis outcome such as annual 
rainfall and N input as reported in the literature were included in the analysis. Fifty 
publications met the selection criteria and were used in the meta-analysis (Table 2.2).
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The meta-analysis procedure and calculation followed that described by 
Rusinamhodzi et al. (2011) as presented below. Data required for the meta-analysis 
were in the form of treatment mean ( X ), standard deviation ( SDX ), and number 
of replicates ( n ) mentioned in the experimental design. Several authors presented 
statistical data in different formats such as standard error SEX  and coefficient of 
variation (CV% ). These were converted to standard deviation ( SDX ) using the 

following equations: SD SE nX X= ×  and SD
CV
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obtained by computing the weighted mean difference (WMD) using the random 
effects model (DerSimonian and Laird 1986; Borenstein et  al. 2009). The mean 
difference (Eq. 2.1) in yield between the treatment and control was used due to its 
ease of interpretation and the relevance for comparing potential gains (Ried 2006; 
Sileshi et al. 2008). To obtain overall treatment effects across studies, the differ-
ences between treatment and control were weighted (Eq. 2.3). The weight given 
to each study was calculated as the inverse of the variance (Eq. 2.2). The random 
effects model assumed that the true effect of CA on crop yield varied from site 
to site and from season to season; thus, contributions of each study to the overall 
effect size were considered independent. Nitrogen input and amount of seasonal 
rainfall were chosen as the most important moderators and their effect tested on the 
magnitude of the responses (mean differences). Nitrogen input and MAP classes 
were categorized as reported by Rusinamhodzi et al. (2011) with MAP classes as 
low (< 600 mm), medium (600–1000 mm) and high (> 1000 mm), and N fertiliser 
input as low (< 100 kg ha−1) and high (> 100 kg ha−1):
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Table 2.1   Tillage treatments used in the meta-analysis
Tillage management option Short description
Conventional tillage (CT) Mouldboard ploughing without crop residue reten-

tion. The most widely practised tillage technique used 
by communal farmers with animal draught power in 
southern Africa

No tillage + mulch (NTM) Practice of minimising soil disturbance plus previous 
crop residues to achieve soil cover after planting. Weed 
control is accomplished primarily with herbicides

No tillage + mulch + rotation (NTMR) As described above for NTM. Main crop of maize in a 
rotation sequence with legumes such as soybean ( Glycine 
max L.) or cowpea ( Vigna unguiculata (L.) Walp)
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Table 2.2   Site information for experiments used in the meta-analysis
Country Treatments Reference
Madagascar CT, NT, NTR Djigal et al. (2012)
USA CT, NT Wilhelm and Wortmann (2004)
USA CT, NT Karlen et al. (1991)
USA CT, NT Griffith et al. (1988)
USA CT, NT, NTM Linden et al. (2000)
Nigeria CT, NT, NTM Lal (1997)
Zimbabwe CT, NT Vogel (1993)
Zimbabwe CT, NT Moyo (2003)
Zimbabwe CT, NT Nehanda (2000)
USA CT, NT Olson et al. (2004)
USA CT, NT Wilhelm et al. (1987)
Australia CT, NT Thiagalingam et al. (1996)
USA CT, NT Iragavarapu and Randall (1995)
India CT, NT, NTM Acharya and Sharma (1994)
Brazil CT, NT Sisti et al. (2004)
China CT, NTM Jin et al. (2007)
USA CT, NT Karunatilake et al. (2000)
Italy CT, NT Mazzoncini et al. (2008)
Canada CT, NT, NTM Dam et al. (2005)
Mexico CT, NT, NTM Fischer et al. (2002)
USA CT, NT Rice et al. (1986)
India CT, NTR Ghuman and Sur (2001)
USA NT, NTR Karlen et al. (1994b)
USA CT, NT, NTR Ismail et al. (1994)
Zimbabwe CT, NT Nyagumbo (2002)
USA CT, NT Dick and Van Doren (1985)
Zimbabwe, Zambia CT, NT Marongwe et al. (2011)
Malawi CT, NT, NTR Ngwira et al. (2012a)
Malawi CT, NT, NTR Ngwira et al. (2012b)
Malawi, Mozambique, Zambia, Zimbabwe CT, NT, NTR Thierfelder et al. (2012a)
Zimbabwe CT, NT, NTR Thierfelder et al. (2012b)
Malawi CT, NT, NTR Thierfelder et al. (2013a)
Zambia CT, NT, NTR Thierfelder et al. (2013c)
Malawi, Mozambique, Zambia, Zimbabwe CT, NT Thierfelder et al. (2013b)
Zimbabwe CT, NT Thierfelder and Wall (2012)
Kenya CT, NT, NTM Paul et al. (2013)
Nigeria CT, NT Osuji (1984)
Zimbabwe CT, NT, NTR Mupangwa et al. (2007)
Zimbabwe CT, NT, NTR Mupangwa et al. (2012)
Nigeria CT, NT Mbagwu (1990)
Kenya CT, NT, NTR Kihara et al. (2012)

CT conventional tillage, NT no tillage, NTM no tillage with mulch
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2.3 � Yield Data from Different Mulch and Crop Rotations

The WMD of CA with continuous maize cropping was almost zero but ranged from 
− 1.32 to 1.27 t ha−1 (Fig. 2.2). Including the rotation into the CA system increased 
the WMD which ranged from − 0.34 to 1.92  t  ha−1 with a mean of 0.64  t  ha−1. 
Retention of mulch alone without crop diversification does not necessarily lead to 
improved crop productivity. The overall effect of mulch on crop productivity could 
be considered neutral in this case. These results agree with Kapusta et al. (1996) 
who observed no significant yield difference between no tillage and conventional 
ploughing on poorly drained soils after 20 years of continuous no tillage. Similarly, 
Dam et al. (2005) reported that, after 11 years, maize yields were more affected 
by the amount of rainfall and temperature across years than tillage and crop resi-
due management. Rotations especially with legumes often have positive effects on 
maize yield across soil fertility regimes (Karlen et al. 1991, 1994a). The larger yield 
in rotation compared with continuous monocropping was attributed to reduced pest 
infestations, improved water-use efficiency, good soil quality as shown by increased 
organic carbon, greater soil aggregation, increased nutrient availability and greater 
soil biological activity (Van Doren et al. 1976; Hernanz et al. 2002; Kureh et al. 
2006). In the Highlands of Madagascar, Djigal et al. (2012) observed CA systems 
that supported comparable or better yields in the long term than conventional tillage 
if crop rotation was correctly managed.

Fig. 2.2   The weighted mean difference ( WMD) for continuous maize under conservation agri-
culture ( CA) and for maize in rotation with legumes under CA. The WMD were computed as the 
difference in yield of the CA options over continuous maize cropped using conventional tillage
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Subgroup analysis of continuous maize production with mulch suggested that 
the amount of seasonal rainfall and fertiliser inputs are important yield modera-
tors. The most yield advantage (WMD between − 0.2 and 1.0 t ha−1) from mulch 
retention was obtained in environments where seasonal precipitation did not exceed 
600 mm, with an overall effect of 0.4 t ha−1 (Fig. 2.3). The yield advantages from 
mulch application decreased with increasing seasonal rainfall as expected; above 
600 mm, there was no yield advantage from mulch retention over conventional 
tillage. The retention of mulch increases rainfall infiltration into the soil and reduces 
evaporative losses resulting in waterlogging. In other studies, yields under CA prac-
tices were 5–20 % less than under conventional tillage practices in wet years, but 
10–100 % higher in relatively dry years (Hussain et al. 1999). Similarly, Lueschen 
et al. (1991) reported larger crop yields with CA practices than conventional tillage 
in a relatively dry year.

Retention of mulch requires a concomitant increase in N inputs to ensure larger 
yields. WMD for systems where N input was less than 100 kg ha−1 indicated that 
conventional systems would yield more than CA options tested (Fig. 2.4). When N 
fertiliser input was raised beyond 100 kg ha−1, the WMD had a yield advantage for 
CA over conventional tillage. The results agree with Vanlauwe et al. (2014) who 
identified adequate nutrient management in CA systems as another critical factor, 
i.e. the need for a fourth principle. Similarly, Díaz-Zorita et al. (2002) reported that 
maize yields increased more with nitrogen fertilisation than tillage under subhumid 

Fig. 2.3   The weighted mean difference (WMD) for continuous maize under conservation agricul-
ture (CA) under different rainfall categories. The WMD were computed as the difference in yield 
of the CA over continuous maize cropped using conventional tillage
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and semiarid regions of Argentina. The most notable crop residues in semiarid areas 
are those of maize, millet and sorghum of poor quality due to high C/N ratios, 
generally greater than 60, which immediately immobilizes N (Cadisch and Giller 
1997; Handayanto et al. 1997). Thus, high N inputs are required when poor-quality 
crop residues are used as mulch.

2.4 � Constraints to Systematic Crop Rotations

Poorly developed markets, minimal household food contributions and limited 
land sizes are the major impediments to successful crop rotations by smallholder 
farmers. Widespread poverty prevents farmer access to credits and inputs such as 
fertiliser, seed and pesticides (Graham and Vance 2003; Sanginga and Woomer 
2009). Specialized agrifood markets such as those in Laos limit the integration of 
grasses and legumes into diversified crop rotations (Lestrelin et al. 2012). Limited 
landholdings are becoming a major problem due to the rising population pressure—
a classic example is in Malawi where land sizes are often below 1 ha limiting the 
number of crops farmers can grow in a season (Ellis et al. 2003; World Bank 2007). 
Soil fertility decline is another major challenge in the field where deficiencies of 
phosphorus (P), potassium (K), sulphur (S) and micronutrients such as zinc (Zn), 
molybdenum (Mo) and boron (B) may limit legume growth and N2 fixation (O’Hara 
et al. 1988). P availability is often regarded as the most limiting factor (Giller and 

Fig. 2.4   The weighted mean difference (WMD) for continuous maize under conservation agricul-
ture (CA) under different N fertiliser categories. The WMD were computed as the difference in 
yield of the CA over continuous maize cropped using conventional tillage
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Cadisch 1995). At the farm level, it is important that grain legumes provide multiple 
benefits especially as a food and are acceptable to farmers (Giller 2001). Formal seed 
systems are poorly developed with limited varieties of maize seed available, often 
open-pollinated varieties. Most farmers use retained seed, informal seed exchanges 
with other farmers and seed bought from local markets. They see their local seed as  
better adapted to their conditions but lack of quality uniformity means they are 
less preferred at the market (cf. Rohrbach and Kiala 2007). Widespread adoption 
of legume production will be achieved by strengthening seed systems, improving 
farmer access to input markets for improved, short-season and disease-resistant 
varieties and P fertiliser and output markets for better prices and trade terms.

2.5 � Constraints to Crop Residue Management

A comprehensive appraisal of the benefits and constraints related to crop resi-
due management has been explored (Erenstein 2002; Lal 2005). Major con-
straints to successful crop residue management in CA systems are related 
to the small baseline crop productivity and other alternative economic uses 
of crop residues such as livestock feed, fuel, bedding in kraals (animal pad-
docks) during the rainy season and construction (fencing and thatching) for 
some farming households (Mazvimavi et  al. 2008; Erenstein 2011; Rufino et  al.  
2011; Johansen et al. 2012). Crop and livestock production are closely integrated in 
mixed smallholder farming systems in much of the tropics (Thornton and Herrero 
2001; Rufino et al. 2011). Crop residues are needed to provide livestock feed during 
the dry season where feed is severely limited while manure is needed for crop pro-
duction (Rufino et al. 2011; Rusinamhodzi et al. 2013). The application of livestock 
manure has been shown to increase crop productivity especially targeted to respon-
sive fields (Zingore et  al. 2008; Rusinamhodzi et  al. 2013). Such yield benefits 
derived from manure, whose quantity and quality partly depends on crop harvest 
residues (Nzuma and Murwira 2000; Lekasi et al. 2003; Rufino et al. 2007), suggest 
that farmers face trade-offs in crop residue management and it might be benefi-
cial for them to follow the manure production pathway than apply crop residues as 
mulch (Naudin et al. 2012; Valbuena et al. 2012; Rusinamhodzi 2013). Moreover, 
livestock provides a source of cash income and spreads the risk (Sumberg 2002; 
Rufino et al. 2006). In most situations, alternative grazing does not exist as commu-
nal rangelands are often degraded and characterized by poor-quality fodder (Rufino 
et al. 2011). Although development agents have made potential legume, grass and 
other agroforestry trees available for use as a fodder, farmers reject them because 
they do not contribute directly to food security despite the enormous labour inputs 
required (Giller 2001). The unimodal nature of the cropping seasons suggest that 
farmers concentrate all their limited resources to major food production and other 
crops are considered much later in the season leading to small productivity.

On the other hand, the availability of crop residues is not a technological panacea. 
The overall effect depends on the local biophysical and socioeconomic environ-
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ment; i.e. they differ substantially between the agricultural settings of developed 
and developing countries (Erenstein 2002). In South Asia, Aulakh et  al. (2012) 
concluded after a 4-year study that future efforts are required to develop new tech-
nologies to alleviate the negative effects of relatively cooler environments created 
by surface-retained crop residues especially during germination and initial growth in 
the subtropical region. In the Trans-Gangetic plains of India, crop residue manage-
ment practices are largely incompatible with year-round mulch retention needed in 
CA despite significant biomass production (Erenstein 2011) due to other important 
activities for the household.

2.6 � Future Outlook

Much of the research on CA has been conducted at plot level, focusing on the effects 
of CA on soil quality, with little effort on how CA fits into broader farming systems 
(Giller et al. 2009; Baudron et al. 2012). Retention of crop residues as a mulch in 
the field is not feasible for most farmers due to competition for livestock feed and 
the need for more fertiliser, making CA unattractive for most farmers. Retention of 
crop residues will lead to depressed yields in the short term due to immobilization 
of N which contrasts sharply with farmers’ needs. Therefore, the short-term needs 
of farmers may be a threat to CA uptake. While the short-term crop yield response 
to CA is highly variable, yields often improve in the long term when the continued 
accumulation of crop residue increases the availability of SOC and nutrients for 
crop growth.

Until recently, the discourse around CA has been the inadequate amounts of crop 
residue produced against multiple important uses, i.e. creating trade-offs for their 
use. The success of CA was considered directly related to the ability to provide 
enough soil cover, and little attention has been paid to adequate nutrient manage-
ment, firstly to offset the N deficit caused by immobilization due to poor-quality 
residues and secondly to provide a balanced nutrient supply to the growing crop. 
Recently, Vanlauwe et al. (2014) suggested the need for a fourth principle to add 
to the principles of no till, mulch retention and crop rotation. Optimum fertiliser 
application may help to increase biomass production which may allow both the 
retention of crop harvest residues for mulch as well as providing livestock feed. 
Both crop rotations and fertiliser inputs are important for improved yields in CA 
systems. Future research needs should be devoted to identifying appropriate nutri-
ent management strategies in CA systems together with crop residue retention and 
crop rotations to boost crop productivity (Vanlauwe et al. 2014). Efforts are needed 
to increase fertiliser use by smallholder farmers especially in Africa where figures 
as low as 8 kg ha−1 are often mentioned (Groot 2009; Sanginga and Woomer 2009).
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2.7 � Conclusions

The meta-analysis suggested that to achieve any meaningful yield increases in CA 
systems, crop residues must be retained in situ coupled with crop rotations and 
increased N fertiliser inputs to offset the immobilization effect of crop residues. 
Moreover, CA is likely to have the largest impact in low-rainfall environments 
where increased infiltration of rainfall and reduced evaporative losses will be 
achieved by retaining crop residues. However, it is in these areas where achieving 
sufficient crop residues is also a challenge, particularly in mixed crop–livestock 
systems where crop residues are needed for livestock feed in the dry season. CA 
needs to be targeted and adapted to specific biophysical as well as socioeconomic 
circumstances of farmers for improved impact. The ability of farmers to purchase 
fertiliser inputs, achieve sufficient biomass production as well as produce alterna-
tive feed will allow them to practise CA and achieve large yields. Considerable 
efforts are needed in the future to develop nutrient management strategies tailored 
for the practice of CA.
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