
MoSaRT Framework: A Collaborative
Tool for Modeling and Analyzing
Embedded Real-Time Systems

Yassine Ouhammou, Emmanuel Grolleau, Michaël Richard, Pascal Richard,
and Frédéric Madiot

Abstract. The increasing evolution of real-time and embedded systems
needs methodologies and design tools in order to reduce design complex-
ity. Moreover, the scheduling analysis is one of the aspects that integrate
the development process to reduce development costs and to validate sys-
tems. Since model-driven engineering offers interesting solutions to the above-
mentioned challenges, it is widely used in various industrial and academic
research projects. This paper presents an overview of a model-based frame-
work called MoSaRT (Modeling oriented Scheduling analysis of Real-Time
systems), which aims to help real-time designers to conceive, dimension and
analyze real-time systems. The underlying idea behind this proposal is to fill
the gap between the academic real-time scheduling theory community and
industrial practices. In fact, research results have been exploited in indus-
trial contexts only to a modest extent to date. The MoSaRT framework is
also a software tool for technology transfer enabling researchers to promote
their works (e.g. analysis models and scheduling tests), then to increase the
applicability of the real-time scheduling analysis.

1 Introduction

Real-time and embedded systems have been widely used in different indus-
trial areas, like transportation, nuclear plants, and telecommunications. A

Yassine Ouhammou · Emmanuel Grolleau · Michaël Richard · Pascal Richard
LIAS lab. (ISAE-ENSMA and University of Poitiers) - Futuroscope, France

Frédéric Madiot
Obeo, France
e-mail: {ouhammoy,grolleau,richardm}@ensma.fr,

pascal.richard@univ-poitiers.fr, frederic.madiot@obeo.fr

c© Springer International Publishing Switzerland 2015 283
F. Boulanger et al. (eds.), Complex Systems Design & Management,
DOI: 10.1007/978-3-319-11617-4_20



284 Y. Ouhammou et al.

real-time system is a system that must interact with a correct behavior to
input events within specified timing bounds [2]. So, a result that is function-
ally correct, but not temporally correct (i.e. not respecting the deadline), is
considered as a wrong behavior.

We are interested in the temporal correctness of hard real-time systems.
A hard real-time system has to meet its timing requirements (i.e. in order
to be schedulable), otherwise, something unacceptable and catastrophic can
occur. The hard real-time system is composed on a set of tasks and messages
sharing a set of execution/communication resources. The way of sharing re-
sources depends on the scheduling algorithms, the network protocols and
the memory access policies which are chosen by designers. To check if the
used resources/policies/protocols are enough and well adapted for that tasks
and messages always meet the timing requirements, the “scheduling analy-
sis” is applied during the design phase not only to check the schedulability
of hard real-time systems, but also to help designers to dimension system’s
architecture when the system design is not completely defined. The real-time
scheduling analysis can be based on the model checking, the simulation or
the analytical methods of the scheduling theory.

Nowadays, the utilization of the real-time scheduling theory in practical
cases could be profitable. Unfortunately, it is not sufficiently applied and the
research results have been exploited in the industry only to a modest extent to
date. The chasm between the scheduling theory and the industrial practices
may be due to several reasons. For instance, to master the scheduling tech-
niques, a colossal work related to the real-time theory knowledge is required.
However, systems designers may not be well versed in the real-time scheduling
theory. Industrial designers are too busy to perform accurate analyses due to
cultural and economical reasons (e.g. concurrency/competitiveness), and they
are unwilling to take risks with new approaches. Furthermore, transferring
the knowledge from the research area to an industrial area can be expensive.
Even if many analysis tools exist, a tool cannot offer all the analysis models
and techniques. Moreover, whereas an academic researcher develops a proto-
type easing the exploitation of a special research study, adding this prototype
in different analysis environments may require to modify their internal struc-
tures. That needs a high development effort for a research group other than
the original tool makers.

Our objective is to help designers to cope with the analysis difficulty, then to
orient them in order to choose the most appropriate analysis tests and to ease
the design modifications due to refinement or dimensioning actions. There-
fore, designers will be guided to build scheduling-aware models. The second
objective is to enhance the applicability of the real-time scheduling theory.
Therefore, it is needful to provide an easy way for transferring the research
studies from academia to industrial practices. To achieve the above objectives,
we propose a framework calledMoSaRT (Modeling-oriented Scheduling analy-
sis of Real- Time systems).MoSaRT is also an intermediate framework between
real-time design languages and schedulability analysis tools. In this paper, we



MoSaRT Framework: A Collaborative Tool 285

gather different parts of the MoSaRT framework which have been already pub-
lished separately [14] [15] [13], then we present to readers a global view of this
framework.

The rest of the paper is organized as follows. In the next section, we give a
brief overview of real-time scheduling concerns. Section 3 gives a general idea
introducing the MoSaRT framework. Section 4 describes the MoSaRT design
language. Section 5 presents the MoSaRT analysis repository. Section 6 high-
lights some typical MoSaRT usage scenarios. Finally, Section 7 summarizes
and concludes the paper.

2 Background and Related Work

Since 1970s, researchers of the real-time community have presented several
research works dedicated to the scheduling analysis of hard real-time sys-
tems [18] [3]. On the one hand, these works consist on a set of analysis
models. Indeed, an analysis model represents formal expressions admitting
mathematical evaluations and based on temporal properties taking into con-
sideration different task characteristics (like the precedence relationship or
the self-suspension) and hardware architectures (uniprocessor, multi-cores
processors, distributed systems, etc.). On the other hand, the research works
have also tackled various analysis tests helping designers (especially analysts)
to check the temporal validation of the real-time applications. While every
analysis model is an extraction of the non-functional temporal properties
from a system design, then the analysis tests depend on the analysis models.
In fact, the kind of the analysis tests depends on the completion stage of
the system design (i.e. does the system design need to be dimensioned or
validated ?). Moreover, the efficiency and the consistency of an analysis test
depend on the design and temporal characteristics of the system.

The steep learning curve behind many of the current analysis methods has
been one of the major impediments to their adoption and their exploitation in
the industry. Several works have treated the difficulty of the scheduling anal-
yses utilization through a model-based engineering process. They proposed
modeling languages and tools to decrease this difficulty. Recently, UML-
MARTE [12] and AADL [1, 10] are among standard modeling languages that
have been proposed. MARTE (Modeling and Analysis of Real-Time and Em-
bedded Systems) is a UML profile that offers several stereotypes and tagged
values helping designers to annotate their UML models (e.g. class diagrams).
The purpose is to add temporal characteristics and constraints for further
scheduling analyses. However, since UML-MARTE does not follow a specific
standard methodology, semantics of the stereotypes differ from an utilization
to another. Hence, a set of methodologies have been proposed using only a
subset of UML-MARTE and with different semantics (like Optimum [9] and
MADES [17]). The underlying idea behind those methodologies is not only to
ease the utilization of a subset of UML-MARTE, but also to help designers



286 Y. Ouhammou et al.

by proposing a task-set (i.e. design patterns of the tasks architecture) that
fits with the functional model. AADL (Architecture and Analysis Description
Language) is a component-based language leading to get hierarchical system
architectures close to the reality, containing a set of hardware and software
components. Although AADL does not allow designers to define the func-
tional part of real-time systems, the architectures are expressed in a modular
way. Nevertheless, the utilization of AADL only through the development
life-cycle of embedded system can not help to get refined models iteratively.
In other words, AADL does not enable to dimension models (e.g. allocation
of tasks, mapping of functions, partitioning).

The implementation of the analysis techniques has also taken advantage of
the model-driven engineering. Recently, several academic and industrial tools
were proposed as providers of the well-known analysis techniques by offering
the possibility to apply some subsets of schedulability tests during the design
phase. Some examples of those tools are RT-Druid [4], SymTA/S [5] and
Cheddar [19]. The utilization of the analysis tools provides often a simple
Yes/No answer to the question “does the system meet all its deadlines?”.
This kind of information is not efficient and not helpful enough for real-
time designers, in particular, when the analysis tool is not able to analyze
the system. Moreover, analysis tools do not help designers to choose the
appropriate tests which match the model requesting the analysis. So, even if
the analysis result is provided, it may be very pessimistic due to the choice
of a wrong analysis test.

3 Objectives of MoSaRT Framework

As the modeling and the scheduling analysis of real-time systems are both
in constant evolution and improvement in distinct scientific communities,
the design methodologies, design languages and analysis tests are sharply
improved. Indeed, the methodologies are impacted by the hardware equip-
ments, the software operating systems and the programing languages. While
the model-driven engineering offers a relative independence regarding tech-
nological changes, and provides a re-usability of the design elements, that are
measurable, predictable, and manageable, hence we are based on the model-
driven engineering: (i) to unify modeling and analysis efforts,(ii) to achieve a
friendly utilization taking benefits from standard design languages and timing
analysis tools and (iii) to increase the applicability of the real-time scheduling
theory. Consequently, we propose an intermediate framework named MoSaRT
(Modeling-oriented Scheduling analysis of Real-Time systems). To partition
the efforts, the intermediate framework plays the role of a bridge between the
real-time design languages and the analysis tools (see Figure 1). It is based
on two metamodels interacting with each other:



MoSaRT Framework: A Collaborative Tool 287

− MoSaRT Design Language, which is a domain specific language offering
enough concepts and semantics to obtain models independent from any
methodology, and to cover with few modifications, most existing analysis
models and easily extended to include concepts enabling to support future
notions.

− MoSaRT Analysis Repository metamodel allows analysts to plug different
theoretical studies and prototypes and ensures the interoperability with
different analysis tools in order to compare their output results.

Fig. 1 MoSaRT Framework

Figure 1 gives only an overview of our contributions. It shows a generic sce-
nario due to the usage of the MoSaRT framework. This latter helps designers
to analyze step by step their system designs during the design phase, which
can be increasingly improved by applying the three following processes:

− Using the MoSaRT design language for system modeling, or for refining
imported models.

− Selection of the analysis models and the relevant tests, by helping the
real-time designers to extract the relevant elements from the models.

− Scheduling analysis, by offering to the real-time designers the equipped
analysis tests which correspond to their models via the proposition of one
or several analysis repositories. The next sections discuss the details of
each contribution.

4 MoSaRT Design Language

MoSaRT design language [14] [15] is conceived as a domain specific modeling
language for real-time systems. It contains several concepts which are very
close to the real-time analysis. The MoSaRT language is based on the notion
of viewpoints complementarity by proposing different kind of models: hard-
ware model, software architecture model, behavioral model and functional



288 Y. Ouhammou et al.

model. The implementation of MoSaRT language is based on Ecore language
[20] and Sirius (see Section Acknowledgment).

The MoSaRT language generic real-time properties: every real-time con-
cept (like execution-time property) has been meta-modeled to support dif-
ferent kinds of systems in different design stages. Furthermore, every model
expressed in MoSaRT language can be checked by several structural rules im-
plemented in OCL (Object Constraint Language) [11] ensuring the vivacity,
the safety and architectural correctness.

Figure 2 shows a hardware architecture of a real-time system. The sys-
tem is composed of two nodes communicating through a CAN (Controller
Area Network) network. The first node is uniprocessor, and the second node
is a multi-core processor containing four cores. The software architecture

Fig. 2 Different steps of the identification process



MoSaRT Framework: A Collaborative Tool 289

diagram of Figure 2 represents a software architecture model that contains
seven tasks managed by three schedulers, and two of them are hierarchi-
cal. It also contains two interaction resources shared by three tasks (mutual
exclusion resource and box communication resource), and a remote commu-
nication resource allowing to transmit data between two tasks. The software
architecture model can be mapped to different behavioral models. The one
shown in Figure 2 represents the global behavior of the system and requires
a root trigger meaning the timing reference of the remainder triggers. The
model contains several task activities. A task activity can be triggered by
its own trigger or it can be triggered by another task activity. The prece-
dence relationship represents a synchronization between the task activities.
The existence of a communication relationship between two task activities
implies the existence of a shared communication resource in the software ar-
chitecture model. Through the behavioral model, the content of every task
activity can be defined thanks to the step diagram. Every step describes the
elementary actions of the task activity like the read action, the release action,
etc. The importance of step elements is also their capability to allocate the
operational side of a real time-system (hardware, software architecture and
behavioral models) to the functional side (e.g. UML models).

5 MoSaRT Analysis Repository

We have noticed the absence of an instrumented method guiding the designers
to the best model and tests for their systems. Moreover, the passage from
the system modeling to the system analysis requires dual skills, in order (i)
to identify the appropriate analysis situation of the system design and (ii)
to find the suitable analysis tests. We note, Ar = <R, X , G, T , E> is the
MoSaRT analysis repository, where:

− X is a set of real-time contexts. Every real-time context represents a set
of specific assumptions, where each assumption is related to the software
architecture, the timing behavior or the hardware architecture. The real-
time context represents the analysis situation to which the system design
corresponds. In other words, thanks to the real-time context we can know
the analysis model that matches the system design.

− G is a set of generalization relationships between some real-time contexts.
The generalization relationship is an order-relation treated in the real-time
scheduling theory. A real-time context “a” is a generalization of the real-
time context “b”, if the behavior of “a” includes all possible behaviors
of “b”.

− T is a set of analysis tests. Every analysis test is based on a real-time
context. When it is applied to a system, the result provided by the test is
correct if the system respects all the context assumptions.

− E is a set of analysis tools. The analysis tool is an engine proposing an
independent functionality inside an analysis framework (like MAST or



290 Y. Ouhammou et al.

Cheddar). The same analysis functionality inside another analysis frame-
work is considered as another engine.

− It is common to find several real-time context characterized by the same
subset of assumptions, or the opposite subset of assumptions. So, for fac-
toring the number of assumptions and to guarantee a good scalability of
the analysis repository, we suggest that the analysis repository contains
also a set of identification rules R. They will help for identifying correctly
the closest real-time context matching the design model which requests
analysis. Every identification rule is characterized by a formal expression
as an OCL constraint, this latter depends on MoSaRT design language.

5.1 Instantiation of the MoSaRT Analysis Repository

The metamodel of the MoSaRT analysis repository (see Figure 3) is dedi-
cated to be instantiated by schedulability-aware theorists/analysts in order
to obtain analysis decision supports. Thus, the designer’s orientation will be
based on the richness and the correctness of the analysis decision support.
This latter may be fed and enriched by theorists/analysts (i) to compare their
results with existing ones (already stored in the decision support), (ii) and
to facilitate the use of their works (and their prototypes) by designers.

Fig. 3 Analysis repository Metamodel

In order to create a new repository instance from scratch, we start by
instantiating the IdentificationRule to get a set of identification rules.
Next, we instantiate the Context to create a real-time context based on the
existing identification rules. Furthermore, we add to the repository instance
some tests and analysis tools corresponding to the created real-time context.

First of all, we provide an analysis repository containing a real-time con-
text corresponding to the Liu and Layland model [8]. This context is based on
several identification rules (some of them are shown in Figure 4). Each rule
is mapped to a formal expression implemented as an OCL constraint related
to the design language of the system that needs analysis (i.e. the MoSaRT
design language). Figure 4) shows the formal expression of the identification



MoSaRT Framework: A Collaborative Tool 291

rule called “UniprocessorArchitecture”. Moreover, we have chosen the re-
sponse time analysis test presented in [6] as an analysis test for the context
corresponding to the analysis model of [8]. This test is implemented by several
tools like Rt-Druid [4].

Furthermore, we have added the real-time context of the transaction model
[16]. This latter represents a “generalization” of the periodic model which
had been previously created in the analysis repository. A second response
time analysis test is added to the repository. It is devoted to analyze the
transaction model. We mention MAST as a provider of this second test.
Besides, we have embodied the generalization relationship, and connect it
with a transformation program enabling the transition from the periodic
model to the transaction model (when it is possible). The transformation
program is done with ATL (Atlas Transformation Language) [7]. It represents
an endogenous transformation (i.e. a transformation from MoSaRT design
language to MoSaRT design language).

6 MoSaRT Usage Scenarios

6.1 The Back-end of the MoSaRT Framework

Figure 5 indicates the back-end and the front-end of the MoSaRT framework.
MoSaRT back-end provides to analysts various capabilities. So, one may pro-
pose a new analysis repository (related to a specific company/laboratory)
by instantiating the analysis repository model (Action (1) of Figure 5). In

Fig. 4 Part of an analysis repository highlighting the details of a context



292 Y. Ouhammou et al.

this case, one should define at least the contexts and tests to guarantee a
minimum usability of the repository. To rise the usability and to get a full
coherence of an analysis repository, this latter can be enriched progressively
by adding new contexts, new tests, new tools, etc (Action (2) of Figure 5).
Therefore, every real-time context already existing in such a repository can be
refined by specifying more accurate identification rules, more characteristics
of the analysis tests, and automatizing the transformation to analysis tools,
etc.(Action (3) of Figure 3). Once an analysis repository becomes ready for
use, it can be shared in order to be used by designers (Action (4) of Figure 5).

Fig. 5 Some of the relevant utilization scenarios related to the MoSaRT Framework



MoSaRT Framework: A Collaborative Tool 293

6.2 The Front-end of the MoSaRT Framework

The MoSaRT front-end is totally related to the MoSaRT design language.
Figure 5 gives an overview of some capabilities. The design models expressed
in a standard language like MARTE can be imported (Action A of Figure
5). Then, designers can use the transformation process offered by MoSaRT
framework in order to transform their models to MoSaRT design language.
The transformation process from a standard language to MoSaRT language
is based on the extraction of timing details (Action C of Figure 5). While the
MoSaRT framework gives the possibility to use its modeling environment,
actions A and C are not mandatory. Once designers obtain models expressed
in MoSaRT language, they can refine them and check the correctness of their
structure (Action D of Figure 5). Hence, the analysis stage starts when de-
signers select an available MoSaRT analysis repository (Action E of Figure
5). When identifying the corresponding real-time context (if the repository is
rich enough), a customizable transformation to analysis tools can be provided
(Action F of Figure 5). Once getting the analysis result, MoSaRT framework
gives the possibility to import the tool output files (Action G of Figure 5).
Due to technical transformation reasons, the Action H of Figure 5 requires
both the original MoSaRT model and the analysis result file. The refinement
and the analysis actions can be repeated many times until getting accurate
models. The transformation of the MoSaRT analyzed model to an external
design language can be done only if the model was imported (Action B of
Figure 5).

7 Conclusion

By proposing the MoSaRT framework, our objective is to benefit from the
analyst’s skills and designer’s skills in order to unify their efforts, then to
avoid wrong design choices at an early design phase. The framework is based
on the MoSaRT design language and the MoSaRT analysis repository, and
presents a helpful modeling support for both designers and analysts. Since we
have tried to facilitate the use of concepts based on theoretical studies and
dedicated to a concrete industrial utilization, we may consider the MoSaRT
framework as a tool for technology transfer.

We are working to enrich the MoSaRT Framework, in particular, in case
of the non schedulability of the system, currently the MoSaRT framework
proposes only a dimensioning analysis if it exists (it depends on the system
context). However, some works like Optimum (applied to UML-MARTE)
proposes to change down-right the system architecture if the functional model
exists. Such works can be connected to the framework in order to be called
after the restitution step (e.g. obtaining the analysis result). It will be also
helpful to generate a design expressed in MoSaRT language by choosing a
priori the real-time context to which the design corresponds. In this case,



294 Y. Ouhammou et al.

the real-time context is used as a design pattern. For example, generating
a design model respecting the pattern “Ravenscar Profile” which is widely
used in industry can be very interesting.

Acknowledgment.We thank Obeo1 that has provided us the Sirius product which

is a new Eclipse project (http://www.eclipse.org/sirius). We used this tool to im-

plement the concrete graphical syntax of the MoSaRT design language. It is partic-

ularly adapted to define a DSL (Domain Specific Language) that needs graphical

representations to better elaborate and analyze a system and improve the communi-

cation with other team members, partners or custom. All shape characteristics and

behaviors can be easily configured with a minimum technical knowledge. This de-

scription is dynamically interpreted to materialize the workbench within the Eclipse

IDE. No code generation is involved, the specifier of the workbench can have instant

feedback while adapting the description. Once completed, the modeling workbench

can be deployed as a standard Eclipse plugin. Thanks to this short feedback loop

a workbench or its specialization can be created in a matter of hours.

References

1. W. SAE AADL. The SAE Architecture Analysis & Design Language Standard,
vol. 2009 (2009)

2. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages: Ada,
Real-Time Java and C/Real-Time POSIX, 4th edn. Addison Wesley (2009)

3. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. 43(4), 35 (2011)

4. Gai, P., Natale, M.D., Serreli, N., Palopoli, L., Ferrari, A.: Adding timing analy-
sis to functional design to predict implementation errors. SAE Technical Paper
2007-01-1272 (2007)

5. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System
level performance analysis–the symta/s approach. IEE Proceedings-Computers
and Digital Techniques 152(2), 148–166 (2005)

6. Joseph, M., Pandya, P.K.: Finding response times in a real-time system. Com-
puter Journal 29(5), 390–395 (1986)

7. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

8. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM 20(1), 46–61 (1973)

9. Mraidha, C., Tucci-Piergiovanni, S., Gerard, S.: Optimum: a marte-based
methodology for schedulability analysis at early design stages. ACM SIGSOFT
Software Engineering Notes 36, 1–8 (2011)

10. Society of Automotive Engineers (SAE). The SAE architecture analysis & de-
sign language standard, http://www.aadl.info (last access: April 15, 2014)

11. Object, O.: constraint language, omg available specification, version 2.0 (2006),
http://www.omg.org/spec/OCL/2.0/

12. OMG. Uml profile for marte: Modeling and analysis of real-time embedded
systems (2009), http://www.omgmarte.org

1 www.obeo.fr

http://www.aadl.info
http://www.omg.org/spec/OCL/2.0/
http://www.omgmarte.org


MoSaRT Framework: A Collaborative Tool 295

13. Ouhammou, Y., Grolleau, E., Hugues, J.: Mapping aadl models to a repository
of multiple schedulability analysis techniques. In: IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC), p. 8
(2013)

14. Ouhammou, Y., Grolleau, E., Richard, M., Richard, P.: Model driven timing
analysis for real-time systems. In: IEEE International Conference on Embedded
Software and Systems (ICESS), pp. 1458–1465 (2012)

15. Ouhammou, Y., Grolleau, E., Richard, M., Richard, P.: Reducing the gap be-
tween design and scheduling. In: Real-Time and Network Systems (RTNS), pp.
21–30. ACM (2012)

16. Palencia, J.C., González Harbour, M.: Schedulability analysis for tasks with
static and dynamic offsets. In: IEEE Real-Time Systems Symposium (RTSS),
pp. 26–37 (1998)

17. Quadri, I.R., Brosse, E., Gray, I., Matragkas, N.D., Indrusiak, L.S., Rossi, M.,
Bagnato, A., Sadovykh, A.: Mades fp7 eu project: Effective high level sysml/-
marte methodology for real-time and embedded avionics systems. In: Interna-
tional Workshop on Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC), pp. 1–8 (2012)

18. Sha, L., Abdelzaher, T., AArzén, K.-E., Cervin, A., Baker, T., Burns, A., But-
tazzo, G., Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory:
A historical perspective. Real-Time Systems 28(2-3), 101–155 (2004)

19. Singhoff, F., Plantec, A., Dissaux, P., Legrand, J.: Investigating the usability of
real-time scheduling theory with the cheddar project. Real-Time Systems 43(3),
259–295 (2009)

20. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Pearson Education (2008)


	MoSaRT Framework: A Collaborative Tool for Modeling and Analyzing Embedded Real-Time Systems
	1 Introduction
	2 Background and Related Work
	3 Objectives of MoSaRT Framework
	4 MoSaRT Design Language
	5 MoSaRT Analysis Repository
	6 MoSaRT Usage Scenarios
	7 Conclusion
	References




