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Abstract. The availability of technology and tools enables the public to partic-
ipate in the collection, contribution, editing, and usage of geographic informa-
tion, a domain previously reserved for mapping agencies or companies. The data
of Volunteered Geographic Information (VGI) systems, such as OpenStreetMap
(OSM), is based on the availability of technology and participation of individuals.
However, this combination also implies quality issues related to the data: some
of the contributed entities can be assigned to wrong or implausible classes, due to
individual interpretation of the submitted data, or due to misunderstanding about
available classes. In this paper we propose two methods to check the integrity of
VGI data with respect to hierarchical consistency and classification plausibility.
These methods are based on constraint checking and machine learning methods.
They can be used to check the validity of data during contribution or at a later
stage for collaborative manual or automatic data correction.

1 Introduction

During the last decade, low-cost sensing devices like handheld GPS receivers or smart-
phones became available and accessible for many consumers. In the same period pow-
erful open GIS software and web technologies have been developed. The availability
of technology and tools enables the public to participate in the collection, contribution,
editing, and usage of geographic information, a domain previously reserved for map-
ping agencies or large organizations. Volunteered Geographic Information (VGI) [1],
the voluntary collection and contribution of geo-spatial data by interested individuals
became a large and vital movement. VGI projects like OpenStreetMap1 (OSM) result
in large scale data sets of geographic data covering many parts of the world. This new
way of geographic data production changed not only the way of data processing but
also applications and services built on it [2–4].

There exist a huge number of services based on e.g., OSM data, such as map providers,
trip advisers, navigation applications. Depending on the service, reliable data is neces-
sary. However, without coordinated action, the experience and training of experts, and
industrial grade sensing devices it is hard to guarantee data of homogeneous quality.

The absence of a clear classification system in, e.g., OSM, the ambiguous nature of
spatial entities, and the large number of users with diverse motivations and backgrounds

1 http://www.OpenStreetMap.org
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foster the generation of data of mixed quality. Whatever a body of water is a pond or a
lake, whatever a grassland is a meadow, natural reserve, a park, or a garden is not just a
question of a proper, crisp definition, but also a question of perception, conceptualiza-
tion, and cultural background. What is a pond somewhere, might be a lake in a different
environment, a river might be a creek or a stream. In addition to rather conceptual is-
sues, many contributed entities are incompletely classified or wrongly attributed due to
the open and loose attributation mechanism in OSM. As a result, a significant amount
of data is not correctly classified and can cause errors whenever they are addressed
by algorithms, such as rendering, analysis, or routing. This situation triggers questions
about the quality of VGI data, suitable mechanisms for guaranteeing and fostering high
quality contributions, and correcting problematic data.

Hence, it becomes increasingly important to analyze the heterogeneous quality of
VGI data. Several studies investigate the quality of VGI by applying geographic data
quality measures, such as feature completeness, positional accuracy, and attribute con-
sistency [5–7]. These approaches usually require using reference data sets to evaluate
the VGI data. However, these data sets are in many cases not available.

In this paper we present two approaches for analyzing the quality of VGI data: one
by constraint checking and one by machine learning, i.e., we are analyzing the avail-
able data only with respect to consistency and plausibility based on contributions them-
selves. The results can be used to re-classify existing data and to provide guidance and
recommendations for contributors during the contribution process. Recommendations
can be directly generated from the data source itself by analyzing the distribution of the
contributed feature in the surrounding area, thus the locality of entitles is preserved and
no global rules are applied to locally generated data.

2 Related Work

In VGI, contributors produce geographic information without necessarily being edu-
cated surveyors or cartographers. In open platforms such as OSM, the motivation for
contribution can be highly diverse, and the quality of contributions also depends on
the used equipments and methods. Thus, the combination of diverse educational back-
grounds, different views on required data and its quality, as well as technical constraints
lead to data of mixed quality. Hence, the assessment of VGI data quality became a focus
in VGI related research.

Quality of VGI data has various perspectives and notions: completeness, positional
accuracy, attribute consistency, logical consistency, and lineage [8]. The quality can
be assessed by basically three different methods: comparison with respect to reference
data, semantic analysis, and intrinsic data analysis.

One approach to assess the quality of VGI data is by means of a direct comparison
with reference data collected with a certain quality standards. The challenge of this
approach is to identify a robust mutual mapping function between the entities of both
data sets. In [6, 9] the authors are able to show a high overall positional accuracy of
OSM data in comparison with authoritative data. In terms of completeness, some studies
conclude that some areas are well mapped and complete relative to others. They also
show a tight relation between completeness and urbanization [9, 10].
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Different aspects have influence on the quality of VGI data, e.g., the combination
of loose contribution mechanisms, and the lack of strict mechanisms for checking the
integrity of new and existing data are major sources of the heterogeneous quality of
VGI data [11]. Amongst others, semantic inconsistency is one of the essential problems
of VGI data quality [12]. In [13] and [14] the authors present methods for improving the
semantic consistency of VGI. The analysis of semantic similarity is applied to enhance
the quality of VGI by suggesting tags and detecting outliers in existing data [13, 14], as
well as by ontological reasoning about the contributed information (e.g., [15]). Another
approach for tackling quality issues is the development of appropriate interfaces for the
data generation and submission. In [16, 17] the authors demonstrate that task-specific
interfaces support the generation of high quality data even under difficult conditions.

An alternative approach is evaluating the available data along three intrinsic dimen-
sions [8]:

– Crowdsourcing evaluation: the quality of data can be evaluated manually by means
of cooperative crowdsourcing techniques. In such an approach, the quality is en-
sured through checking and editing of objects by multiple contributors, e.g., by
joint data cleaning with gamification methods [18].

– Social measures: this approach focuses on the assessment of the contributors them-
selves as a proxy measure to the quality of their contributions. [6, 9] use the number
of contributors as a measure for data quality, [19] analyzes the individual activity,
[11] investigates positive and negative edits, [20] is researching fitness-for-purpose
of the contributed data.

– Geographic context: this approach is based on analyzing the geographic context of
contributed entities. This approach relates to Tobler’s first law of geography which
states that “all things are related, but nearby things are more related than distant
things” [21].

3 Managing Quality of VGI Data

A big challenge for VGI is the quality management of the contributed data because of
its multidimensional heterogeneity (knowledge and education, motivation for contribu-
tion, and technical equipment). The problem requires the development of tools advising
contributors during the entity creation process, but also to correct already existing data
of questionable quality. Amongst others, quality problems can be general accuracy is-
sues, geometric or topological constraint violations, hierarchical inconsistencies, and
wrong or incomplete classification. In this work we focus on hierarchical inconsisten-
cies and wrong or incomplete classification. Whenever we use the term “wrong” in our
study we mean the assignment of a potentially wrong class or tag to the respective en-
tity due to labeling ambiguity. “Wrong” entities will be detected by our classification
and consistency checking algorithms. This is only an indicator for a potential conflict.

In the case of OSM, it is known that the data set contains large amounts of prob-
lematic data (e.g., see Section 2). On the other hand, we can assume that a significantly
larger part of the data is of sufficient quality: the large amount of volunteers constantly
improving the data set and the large number of commercial applications built on top of
the data set are good indicators for it. Given that this rather unprovable statement is true,



Data Quality Assurance for Volunteered Geographic Information 129

we can use the data itself for quality assessment by learning its properties and using the
results as an input for the processes described in our approach.

Figure 1 describes the two phase approach: in the Classification phase, we can either
apply machine learning algorithms to learn classifiers of the so far contributed data,
or we can define classification constraints the data has to satisfy. Some of the before
mentioned quality issues could be solved if at the point of data generation or contri-
bution the integrity with existing data is checked. Depending on the potential problem
to be addressed, different automatic approaches for satisfying inherent constraints are
available, e.g., [22].

Fig. 1. Proposed approaches to ensure VGI quality, see Section 3 for a detailed description

Hence, in the Consistency Checking phase we propose three approaches for checking
the consistency of the data: during Contribution Checking the contribution tool should
inform users during the contribution process about potentially problematic data based
on the generated classifier. Contributors can now consider the hints generated by the
system about an object and can take actions to correct it if necessary. After contribu-
tion, the new data can be used to train the classifier again (if checking is based on an
learning approach). Manual Checking should provide tools allowing the identification
of problematic entities in the existing data set. They can be presented to volunteers
for checking and correcting, ideally based on plausible suggestions. And finally, Auto-
matic Checking can correct obviously wrong data automatically, if the correction can
be computed without human assistance.
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4 Tackling Areal Consistency and Classification Plausibility

The majority of data quality studies focus on point-like or linear geographic entities,
such as points of interest or road networks (see Section 2). In this work we focus on
quality issues related to areal entities, that is extended geometric entities. Our methods
can be applied to entities of all possible scales, from very large administrative or natural
entities to rather small ones like buildings or park benches.

The focus of our work is the quality of the classification of the contributed data. We
are particularly interested in:

– Hierarchical consistency of administrative data: we check if administrative ele-
ments are used according to intrinsic, logical rules.

– Classification plausibility of areal entities: the correct classification of entities can
be difficult, especially when contributors are not aware of potential conflicts due to
similar concepts. Here we focus on ambiguity issues resulting from the availability
of two or more possible classification options of entities (e.g., park vs. garden vs.
grass).

Our study is build on OSM data. We will use notions typically used in the OSM
tagging scheme, such as: keys and values.

5 Hierarchical Consistency Analysis

Administrative boundaries are political geographic entities with a strict inherent struc-
ture, such as continents consist of countries, countries consisting of states and states
consisting of districts, etc. In OSM2 administrative boundaries are defined as subdivi-
sions of areas/territories/jurisdictions recognized by governments or other organiza-
tions for administrative purposes. Administrative boundaries range from large groups
of nation states right down to small administrative districts and suburbs, with an indi-
cation of this size/level of importance, given by tag “admin level” which takes a value
from 1 to 10. However, as countries can have different administrative partitioning, some
levels might not be applicable or the classification schema may not be sufficient. In this
case it can be extended to 11 levels (e.g., in Germany and Netherlands).

Typically, administrative boundaries around administrative Units U are structured
such that every administrative unit typically belongs to one administrative level of 1 to
11 (exceptions are, e.g., city states):

∀u ∈ Ui where 1 ≤ i ≤ 11 (1)

Each administrative unit where i > 1 is contained in an administrative unit of a
higher level; all together the contained units exhaustively cover the territory of the con-
taining unit:

∀ua ∈ Ui>1, ∃ub ∈ Uj>i : ua ⊂ ub (2)

Administrative units on one level can share borders but do not intersect each other:

∀Uj , Uk ⊂ Ui : Uj ∩ Uk = ∅ (3)

2 http://wiki.openstreetmap.org/wiki/Key:admin level#admin level

http://wiki.openstreetmap.org/wiki/Key:admin_level#admin_level
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However, there are exceptions from this strict hierarchy, such as exclaves, enclaves,
city states, or embassies. Still, the vast majority of administrative units follow a clear
and exhaustive hierarchical ordering. This allows checking the integrity of the available
administrative data in OSM by checking the following type of outliers:

– Duplication: in the case of duplication, entities belong to two or more different
administrative units. See Figure 2(a).

– Inconsistency: hierarchical inconsistency occurs when entities of higher adminis-
trative units are contained in units of lower levels or the same level. See Figure 2(b)

– Incorrect Values: incorrect values occur throughout the OSM data set, probably
due to the import from different classification schemes. Typically the value of ad-
min level tag is not a numerical value between 1–11.

(a) Duplication (b) Inconsistency

Fig. 2. Incorrect classification plausibility (Duplication & Inconsistency). In a) a part of Bremen
city is within Bremerhaven, in b) units on level 11 contain elements of level 8 and 9.

5.1 Consistency Analysis Results and Discussion

We applied the consistency rules on the complete OSM data set downloaded at January
20th, 2014. At the time of analysis, the OSM data contained 259,667 geographic enti-
ties classified as administrative units (admin level = value). 24,410 entities, thus about
10% of all administrative units contained problematic assignments, see Figure 3. We
identified 14,842 duplications, 9,305 inconsistencies and 263 incorrect values.

Figure 2(a) illustrates an example for duplication: a part of the administrative unit
representing Bremen city, is part of another unit representing Bremerhaven city. Fig-
ure 2(b) shows an instance of inconsistency: some administrative units of level 8 and 9
are contained by administrative units of level 11.

Of course, not all of the 24,410 detections represent wrong data, some cases al-
ready represent the mentioned special cases, some inconsistencies might be detected
due to incomplete presence of administrative hierarchies. However, a plausibility check
as sketched in Section 3 would draw the attention of the contributor towards potential
errors.



132 A. Loai Ali and F. Schmid

Fig. 3. Distribution of potentially incorrect hierarchical classification of administrative units

6 Classification Plausibility Analysis

When users contribute data to OSM, they have a large range of possibilities to classify
the data. In some cases classifying entities is not straightforward; depending on the per-
spective of the contributor different possible classes may be applicable. A water body
can still be a pond or already be a lake, the grass covered area can be a park, a garden,
meadow or grassland. In many cases there is no definite answer, especially as in OSM
there is no explicit classification system, just recommendations. However, utilizing spa-
tial data requires homogeneous handling of data of identical concepts. Only if the same
type of entities are identically classified, algorithms can access them properly for anal-
ysis, rendering, or reasoning. However, in many cases users contribute data with wrong
classifications either due to conceptual ambiguity or due to a different understanding of
the available concepts.

In this work we exemplify our approach on analyzing classification plausibility of
entities, which are classified either as park or garden. We chose these classes as they
are good examples for classification ambiguity: within OSM, parks and gardens lack
a clear definition distinguishing them. Thus, contributions of these features mainly de-
pend on individual conceptualizations. Many entities are obviously not correctly classi-
fied when we inspected them with a commonsense understanding of parks and gardens.
Typically parks are public, accessible areas of a cultivated nature. Gardens, in contrast
are typically private areas also featured with cultivated nature. However, one large dif-
ference of both entities is not only their infrastructural containments, but also their size:
parks are usually significantly larger than gardens. As usual when it comes to geospatial
reality, we can observe everything such as large public gardens or small parks. How-
ever, the vast majority of gardens and parks follow this vague classification (see Fig-
ure 6 for a support of this statement), especially relative to entities in their surrounding
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(parks and gardens can have significantly different dimensions in different areas of the
world, usually correlated to the available territory in relation to the population). In the
following we analyzed entities classified with the tags leisure=park and leisure=garden.

6.1 Classification Learning to Ensure VGI Quality

Due to the large amount of data in OSM, it is possible to apply machine learning tech-
niques to tackle data quality issues. Machine learning algorithms can learn from existing
data and extract implicit knowledge to build a classifier. Then such a classifier can be
used for ensuring the quality as sketched in Figure 1, either during contribution or by
applying on already existing data. In our approach learning the classifier on the con-
tributed data is used to predict the correct class of an entity (i.e. park or garden in our
example). This is done in two steps: a learning or training step, and a validation step.

In the first step our system learns a classifier based on the properties of pre-classified
entities of a training set [23, 24]. In this work, the training set consists of entities rep-
resenting parks and gardens, Dtrain = (E1, E2, ..., En), where each Entity E is repre-
sented by a set of features (such as: size, location ...etc.) and is assigned to a class C (i.e.
park or garden), E = (F1, F2, ..., C). This step tries to identify a function, f(E) = C
to predict the class C of a given entity E.

In the second step the generated classifier is used for classification: we apply it on
a test set to measure the accuracy of the classifier. The test set only contains entities
not used for training. The classifier performance is evaluated according to classification
accuracy on the test entities [23, 24].

6.2 Experiments and Setup

As described previously, we focus on classification plausibility in case of similarly ap-
plicable classes, in our case parks (leisure = park) and gardens (leisure = garden). We
use data from Germany, the United Kingdom (UK), and Austria. According to [6, 9],
OSM data is of acceptable quality in Germany and the UK. In our study we use data
downloaded on December 20th, 2013.

We selected data from the ten densest (population/area) cities of each country. Fig-
ure 4 shows the selected cities and the present number of parks and gardens within each
city. We decided to use cities as spatial units, as they define graspable spatial regions.
In our experiments we follow the locality assumption of Tobler’s first law of geogra-
phy: different cities in the same country might have a closer understanding of parks
and gardens than cities of different countries. Thus, it will be more likely to produce
meaningful results if we apply a learned classifier from one city on the data of another
city in the same country. Learning areal properties in Hong Kong and applying them on
data of Perth/Australia might not be valid due to the size of the available territory. The
same holds for the idea of learning global parameters for parks and gardens — spatial
entities have a strong grounding in local culture and history of a particular country, ap-
plying global rules on local data will lead in many cases to wrong classifications due to
different local concepts.

In the following we learned the classifiers of 10 cities per country, and applied
them mutually to every other city. By assessing the classification accuracy, this method
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Fig. 4. Number of Parks and Gardens within the selected data set

allows identifying the most accurate classifiers for a city, and the identification of biased
classifiers due to biased or ambiguous classification practices within specific cities.

In our study we applied a straightforward approach to distinguish between parks
and gardens: we compared their size. Size is not probably enough to reliably distin-
guish between gardens and parks, especially if we consider other related classes such as
meadows or grassland. When we have a closer look into how the classes are populated,
we can see that the distribution can be rather clear, as it is, e.g., the case in Birmingham
(see Figure 5(a)). There are also places with a less clear separation, e.g., the case of
London (see Figure 5(b)), where parks and gardens seem to have a large conceptual
overlap. However, our intention behind choosing the area is to detect incorrect classi-
fication at a very early point of contribution, when no other features are yet provided.
Confronted with an “early-warning,” users can reconsider the class they selected and
modify it if required. However, especially a review of the existing data, as suggested in
Section 3, can be fed by such a classifier. Figure 6 shows the mean areas of parks and
gardens. It clearly shows that the areas per class are generally distinct and can be used
to distinguish between entities of the two classes.

Feature Selection. The areas of each class have a specific distribution in each city.
Figure 6 shows that parks are more likely to be large (i.e., tens of thousands to millions
sqm), while gardens are more likely to cover rather smaller areas (i.e., a few sqm to a
few thousands sqm). Although there are rare cases (i.e. Royal Botanic Gardens in the
UK about one million sqm, however, they can be considered to be parks) corrupting
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Fig. 5. Distribution of parks and gardens areas in London and Birmingham

the distribution; the majority of entities follow a common distribution. This distribution
might also be similar in other cities, even if the data does not reflect it. By learning
these distributions, we can distinguish between parks and gardens, and apply the learned
classifiers to other cities and check the existing data or to guide contributors during the
contribution process.

Classifier Training. Building a classifier basically can be done using Eager Learning
(EL) or Lazy Learning (LL). In EL a training set is used to build a complete classi-
fier before receiving any test entities. Bayesian classification, support vector machines
(SVM), neural network (NN), and decision trees are examples for EL algorithms. In
LL, generalization beyond the training data is delayed until a query is made to the sys-
tem. K-nearest neighbors (KNN) and case based reasoning (CBR) are examples of lazy
learning [23, 24]. In OSM a set of pre-classified entities is already stored, and the clas-
sification process is performed on new entities at contribution time. The new entity is
classified based on similarity to existing entities. Hence, it is a good idea to follow the
lazy learning paradigm to develop a classifier.

We decided to use KNN [25, 26] for building a classifier. KNN classifies entities
based on closest training examples. It works as follows: the unclassified entity is classi-
fied by checking the K nearest classified neighbors. The similarity between the unclas-
sified entity and the training set is calculated by a similarity measure, such as Euclidean
distance.

Classifier Validation. During the validation process we use independent data sets for
training and testing or we use the same data set for mutually applied classifiers (with
this method, we evaluate if a classifier from a different city can be applied to another
city). In the latter case, we use K-fold cross validation (CV) [27] to show the validity
of our classification. In CV a training set is divided into K disjointed equal sets, where
each set has roughly the same class distribution. Then the classifier is trained K times3,
and each time a different set is used as a test set. Afterwards the performance of the

3 5 and 10 are recommended values for K.
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Fig. 6. Mean area size of parks and gardens for the selected data set

classifier is measured as the average of developed classifiers [27]. We build classifiers
for each city in a country. The results can be inspected in Tables 1, 2 and 3. The rows of
the tables represent the accuracies of different classifiers for the data of each city as a
test set. These classifiers were generated based on the data of other cities as training sets
and are represented in the columns. The last column “Class. Acc.” shows the average
classification accuracy of parks and gardens within each city based on the top three
classifiers (italic red values).

Classifier Assessment. Depending on just one training and test set might result in bi-
ased classifiers. Furthermore, we aim to detect possible incorrect classifications based
on the similarity between cities within the same country. Thus, we build mutual clas-
sifiers between cities at the same country. One challenge is to assess the classifier per-
formance. The accuracy of a classifier applied on a given test set is expressed by the
percentage of correctly classified entities (please see the next section for a deeper dis-
cussion on the measurability of the results). However, in some cases accuracies are
biased due to overfitting or underfitting [23, 24]. A reason can be unbalanced popula-
tion of the training or the test set. This happens for instance when the classifiers created
from Liverpool or Manchester are applied on the Birmingham data (see Table 2). The
Receiver Operation Characteristics (ROC) curve is a useful measure to asses the perfor-
mance of classifiers. The ROC curve represents the relative trade-off between benefits
and costs of the classifier. In particular the Area Under the ROC Curve (AUC) is a use-
ful measure to asses a classifier. The closer the value of a AUC is to 1, the higher its
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Table 1. Classification accuracy for parks and gardens of cities in Germany
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Berlin 80.43 76.78 76.23 72.25 74.07 82.03 56.44 79.38 78.94 82.2 75.23
Bremen 71.93 72.28 70.18 70.18 69.12 72.28 59.30 72.98 71.23 71.93 71.70
Dortmund 54.14 55.79 83.31 82.26 82.41 32.93 76.84 81.05 76.84 32.93 82.26
Dusseldorf 43.59 59.08 85.74 91.38 91.18 19.69 86.36 87.28 78.26 19.69 89.95
Essen 77.44 71.95 79.27 79.88 82.32 75.00 66.16 80.49 78.35 75.00 80.69
Frankfurt 89.68 79.13 75.00 62.39 65.37 92.66 47.94 78.67 78.21 92.89 88.07
Hamburg 54.15 55.87 59.03 61.27 61.76 51.69 61.06 58.97 57.90 51.79 61.36
Cologne 78.13 79.09 81.49 80.05 80.05 77.16 66.35 80.53 80.29 77.16 80.13
Munchen 72.50 71.02 79.37 77.90 79.17 69.16 62.48 78.49 78.88 69.25 78.65
Stuttgart 93.58 74.33 80.75 65.24 67.38 94.65 54.01 74.33 78.61 94.65 76.11

Table 2. Classification accuracy for parks and gardens of cities in the UK
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Birmingham 99.73 0.99 70.03 92.65 90.79 92.67 0.94 69.27 1.29 94.73 92.73
Bradford 59.49 84.81 73.42 54.43 67.09 70.25 84.81 74.68 81.65 68.99 72.78
Bristol 72.73 79.55 78.64 67.27 75.91 79.09 79.55 76.82 79.55 81.82 78.03
Edinburgh 65.23 44.44 59.14 59.32 63.26 63.26 44.62 59.50 51.61 60.75 60.63
Glasgow 74.30 45.55 67.18 70.23 69.72 73.03 45.80 67.94 61.07 69.97 71.76
Leeds 75.96 57.87 72.34 70.43 77.45 75.96 58.09 73.40 58.94 77.66 77.02
Liverpool 86.05 89.53 88.37 80.23 87.21 89.53 89.53 87.21 89.53 90.70 87.60
London 68.26 64.88 72.51 66.77 72.02 72.22 65.05 73.03 68.12 72.83 72.63
Manchester 67.38 92.20 80.85 63.83 73.05 78.01 92.20 79.43 91.49 79.43 73.29
Sheffield 71.55 72.41 78.88 70.26 74.14 77.59 72.41 73.71 73.71 78.02 75.72

performance. Good classifiers should have AUC value between 0.5 and 1 [28]. Tables 1,
2, and 3 represent the accuracies of the generated classifiers, while AUC measures are
dropped due to space restrictions. A combination of accuracy and AUC is used to deter-
mine the classification accuracy of parks and gardens for each city. We select the three
top classifiers with the highest AUC measures (italic red values), and neglect biased
classifiers with AUC less than or equal 0.5 (blue values). The classification accuracy is
measured on the basis of the average accuracy.
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Table 3. Classification accuracy for parks and gardens of cities in Austria
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Dornbirn 100 84.62 84.62 84.62 23.08 53.85 84.62 76.92 15.38 76.92 82.05
Graz 63.06 77.71 64.33 77.71 31.85 68.15 77.71 74.52 35.03 60.51 51.59
Innsbruck 80.19 66.04 83.02 66.04 52.83 50.94 66.04 66.98 47.17 47.17 67.30
Klagenfurt 72.13 73.77 70.49 70.49 31.15 62.30 73.77 75.41 47.54 49.18 65.57
Linz 41.52 34.66 43.32 34.66 62.09 37.91 34.66 38.63 61.01 40.07 48.01
Salzburg 56.60 67.92 59.43 67.92 39.62 70.75 67.92 64.15 42.45 58.49 60.38
St. Pölten 100 100 100 100 25.00 80.00 100 95.00 30.00 55.00 X
Vienna 59.39 70.36 58.45 70.36 38.93 62.10 70.36 68.28 37.50 61.86 65.69
Vilach 34.29 31.43 34.29 31.43 68.57 48.57 31.43 31.43 77.14 22.86 59.02
Wels 56.25 56.25 56.25 56.25 31.25 56.25 56.25 50.00 50.00 37.50 56.25

Results Discussion. Our results show that the cities in Germany and the UK have a
classification accuracy from 70% to 90% for parks and gardens (see Tables 1 and 2).
This means, according to our generated classifiers and their mutual application in other
cities, about 10% to 30% of all analyzed entities within each city might be incorrectly
classified. In Austria (see Table 3) we achieve poorer results. This might be due to the
relative low number of entities in the available data set, or to already existing classi-
fication problems. In some of the cities, e.g., St. Pölten only one class of entities is
available or predominant and causes the classifier to be highly biased and practically
unusable (see Figure 4 and Table 3).

Of course, the classification results have to be interpreted with care. In none of the
selected data sets, we had a qualified reference data set of known good quality. We
selected the data sets as they were, and tried to identify two size classes within them: one
for gardens and one for parks. In most cities we could identify good classifiers, however,
their accuracies are not verifiable to full extend. As we have no clear ground truth,
we cannot claim the correctness of the classifiers. With our approach we were able to
identify a large set of entities worth looking at again. All samples we inspected showed
clear evidence for entities that have been classified in an inappropriate way: “parks”
around residential buildings in residential areas, as well as “gardens” with typical park
facilities such as ways, playgrounds, or larger water bodies.

Although these samples were randomly chosen, they showed indicators for the va-
lidity of our approach. There are other evidences about that our results point in the
right direction. In April 2014 we reviewed all entities that were detected as outliers
in this paper. Of the originally 24,410 detected conflicts of the hierarchy consistency
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analysis (see Section 5) 10,635 entities had been already corrected or removed by the
OSM community. Thus, in about 40% our approach pointed to entities identified as in-
correct by crowdsourcing reviewers. The classification plausibility analysis resulted in
2,023 problematic entities in Germany, 2,516 in the UK, and 1,062 in Austria. About
8% of the German entities, 8% of the UK entities, and 11% of the Austrian entities
have been revised since then. It is necessary to state that they have been revised without
explicitly pointing to them. An appropriate infrastructure, e.g., a website or a gami-
fied entity checker, can help to point users to the detected entities and revise them if
necessary.

Also, the developed a very simple classifiers. If we want to successfully distinguish
more than two classes, we need to consider more features than just size, thus we have
to learn, e.g., typically contained or surrounding features of entities. By applying the
approach as discussed in Section 3, we can select the detected entities and present them
in a crowdsourcing manner to volunteers for inspection. The potentially re-classified
entities could be used for rebuilding the classifier with clearer evidence.

7 Conclusion and Future Work

In this work we propose a new approach to manage the quality of VGI data during
contribution, and on the existing data set manually or automatically. We presented two
approaches to tackle VGI quality. We mainly focused on the problem of potentially
wrong classifications that might lead to heterogeneous data quality. We developed two
methods to tackle hierarchical consistency and classification issues based on ambiguity
of potential entity classes.

With our first method, constraint based checking of hierarchical elements, we are
able to detect all inconsistencies in the existing OpenStreetMap data set. With our
second method, we can identify potentially wrong areal classifications in the Open-
StreetMap data set by learning classifiers of different entity classes. The results show
that we can identify a large number of existing problems in OSM data with both ap-
proaches. These detected conflicts could be presented to voluntary users to validate
the entities’ class, potentially based on suggestions generated along with it. For more
complex classifiers being able to detect multiple possible classes, like, e.g., the “green
areas” on a map (parks, gardens, meadow, grassland, scrub, etc.) we need to develop
meaningful classifiers considering sets of features to be learned. We also need to think
about appropriate ways to implement the proposed quality assurance methods, e.g., by
means of gamification of user-based validation of the detect problematic data.
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