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Abstract. An ever increasing amount of geospatial data generated by mobile
devices and social media applications becomes available and presents us with
applications and also research challenges. The scope of this work is to discover
persistent and meaningful knowledge from user-generated location-based “sto-
ries” as reported by Twitter data. We propose a novel methodology that converts
geocoded tweets into a mixed geosemantic network-of-interest (NOI). It does
so by introducing a novel network construction algorithm on segmented input
data based on discovered mobility types. The generated network layers are then
combined into a single network. This segmentation addresses also the challenges
imposed by noisy, low-sampling rate “social media” trajectories. An experimen-
tal evaluation assesses the quality of the algorithms by constructing networks for
London and New York. The results show that this method is robust and provides
accurate and interesting results that allow us to discover transportation hubs and
critical transportation infrastructure.

1 Introduction

An important resource in today’s mapping efforts, especially for use in mobile navi-
gation devices, is an accurate collection of point-of-interest (POI) data. However, by
only considering isolated locations in current datasets, the essential aspect of how these
POIs are connected is overlooked. The objective of this work is to take the concept of
POIs to the next level by computing Networks of Interest (NOIs) that encode different
types of connectivity between POIs and capture peoples type of movement and behav-
ior while visiting these POIs. This new concept of NOIs has a wide array of application
potential, including traffic planning, geomarketing, urban planning, and the creation of
sophisticated location-based services, including personalized travel guides and recom-
mendation systems. Currently, the only datasets that consider connectivity of locations
are road networks, which connect intersection nodes by means of road links purely on
a geometric basis. POIs however, encode both geometric and semantic information and
it is not obvious how to create meaningful links and networks between them. We pro-
pose to capture, both, geometric and semantic information in one NOI by analyzing
social media in the form of spatial check-in data. We use the concept of check-in as
a generic term for users actively volunteering their presence at a specific location. Ex-
isting road maps and POIs encode mostly geometric information and consist of street
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maps, but may also include subway maps, bus maps, and hiking trail maps. To com-
plement this dataset, geometric trajectories consist of geo-referenced trajectory data,
such as GPS tracking data obtained from people moving on a road network. This type
of data is assumed to have a relatively high sampling rate. Typical examples include
vehicle tracking data sampled every 10 or 30 seconds. Such datasets are constructed
using map construction (cf. [1], [2] for surveys).

In this work, we will use behavioral trajectories as a data source. They are obtained
from social media in the form of spatial check-in data, such as geocoded tweets from
Twitter. Similar to GPS tracking, the user contributes a position sample by checking
in at a specific location. Compared to geometric trajectories, such check-in data result
in very low-sampling rate trajectories that when collected for many users provide for
a less dense, but semantically richer “movement network” layer. The main challenge
arises from the fact that trajectories composed from geocoded tweets differ technically
and semantically from raw GPS-based type of trajectories. Unlike trajectories obtained
from GPS devices in typical tracking applications, such data are typically quite sparse
since individuals tend to publish their positions only at specific occasions. However, we
advocate that by combining and analyzing time and location of such data, it is possible
to construct event-based trajectories, which can then be used to analyze user mobility
and to extract visiting patterns of places. The expectation towards behavioral trajec-
tories is that by integrating them into a Network of Interest, the resulting dataset will
go beyond a homogeneous transportation network and will provide us with a means to
construct an actual depiction of human interest and motion dependent on user context
and independent of transportation means. As early maps were traces of people’s move-
ments in the world, i.e., view representations of people’s experiences, NOIs try to fuse
different qualities of such trace datasets obtained through intentional (e.g., social me-
dia, Web logs) or unintentional efforts (e.g., routes from their daily commutes, check-in
data) to provide for a consequent modern map equivalent.

Specifically, in this paper we address the challenge of extracting a geosemantic NOI
from noisy, low-sampled geocoded tweets. To do so, we introduce a new NOI con-
struction algorithm that segments the input dataset based on sampling rate and move-
ment characteristics and then infers the respective network layers. To fuse the semantic
and geometric network layer into a NOI, we introduce a semantics-based algorithm
that takes position samples (check-ins) to create network hubs. A detailed experimen-
tal evaluation uses two real-world datasets of geocoded tweets and discusses the NOI
construction results in terms of quality and significance.

The remainder of this paper is organized as follows. Section 2 reviews related work
on spatiotemporal inference techniques. Sections 3 and 4 present our algorithms for
trajectory segmentation and re-association to build the NOI in a layered fashion. In
Section 5, we evaluate the quality of the NOI construction method. Finally, Section 6
concludes the paper and outlines future research directions.

2 Related Work

Various approaches have been proposed for using user-generated geospatial content to
extract useful knowledge, such as identifying travel sequences, interesting routes or
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socio-economic patterns. In the following, we present a review of the literature using a
categorization of the approaches according to the type of problem solved.

Several methods focus on sub-sequence extraction (routes) from moving object tra-
jectories by mining spatiotemporal movement patterns in tracking data. Kisilevich et
al. [3] present an automatic approach for mining semantically annotated travel se-
quences using geo-tagged photos by searching for sequence patterns of any length.
In [4], Chen et al. extract important routes between two locations by observing the trav-
eling behaviors of many users. Although, they mine a transfer network of important
routes, they accept that the distance between any two consecutive points in a trajectory
does not exceed 100m, which becomes unrealistic. Zheng et al. [5] use online pho-
tos from Flickr and Panoramio to analyze people’s travel patterns at a tour destination.
They extract important routes, but no transportation network. Asakura et al. [6] investi-
gate the topological characteristics of travel data, but they focus on identifying a simple
index of clustering tourist’s behavior. Mckercher and Lau [7] identify styles of tourists
and movement patterns within an urban destination. Our approach analyzes, both, traf-
fic patterns and topological characteristics of travel routes, while most existing work
focuses on traffic patterns only. Choudhury et. al [8] explore the construction of travel
itineraries from geo-tagged photos. In contrast, in this work an itinerary is defined as a
spatiotemporal movement trajectory of much finer granularity.

There also exist various methods based on trajectory clustering. The majority of
the proposed algorithms such as k-means [9], BIRCH [10] and DBSCAN [11] work
strictly with point data and do not take the temporal aspect into consideration. Several
approaches match some sequences by allowing some elements to be unmatched as in
the Longest Common Sub Sequence (LCSS) similarity measure [12]. However, our
goal in this work is rather to apply a trajectory clustering approach and also take into
consideration the temporal aspect of the data. Similarity measures for trajectories that
take the time and derived parameters, such as speed and direction, into account have
been proposed in [13]. This approach is close to ours with respect to the examined
aspects of temporal dimension, however, our method applies clustering techniques in
order to infer the connectivity of a NOI. In a previous work [14], we derived a connected
road network embedded in vehicle trajectories, while in [15] we inferred a hierarchical
road network based on different movement types. The current approach differs in that
it deals with uncertain social media check-in data by taking into account the spatial as
well as the temporal dimension to derive a NOI.

Characterized by its spatial and temporal dimension, geocoded tweets can be re-
garded as one kind of spatiotemporal data, which also connects this study to the knowl-
edge extraction-based techniques of the spatiotemporal data mining domain. Crandall
et. al [16] investigate ways to organize a large collection (∼ 35 million) of geo-tagged
photos and determine important locations of photos, such as cities, landmarks or sites,
from visual, textual and temporal features. Kalogerakis et. al [17] estimate the geo-
locations of a sequence of photos. Similarly, Rattenbury et. al [18] and Yanai et. al [19]
analyzed the spatiotemporal distribution of photo tags to reveal the inter-relation be-
tween word concepts (photo tags), geographical locations and events. Girardin et al. [20]
extract the presence and movements of tourists from cell phone network data and the
geo-referenced photos they generate. Similarly, [21] proposes a clustering algorithm of
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places and events using collections of geo-tagged photos. These approaches efficiently
deliver focal spatial data extractions from diverse data sources, while the aim of this
work is to also extract how this data is connected (links). In [22], Kling studies urban
dynamics based on user generated data from Twitter and Foursquare using a probabilis-
tic model. However, these dynamics have not been translated to a (transportation) graph
structure.

All these works target the extraction of some kind of knowledge and patterns from
photos or geo-referenced sources with textual and spatiotemporal metadata, while we
focus on mining transportation and mobility patterns from check-in data, such as geo-
coded tweets from Twitter.

Overall, what sets this work aside is that social media data is used as a tracking data
source. We use it not only to extract features or knowledge patterns of human activities,
but a complete Network of Interest.

3 NOI Layer Construction

As explained in Section 1, our goal is to extract a Network of Interestthat captures
interesting information about user movement behaviors based on social media tracking
data. User check-in data are tuples of the form U = 〈u, x, y, t〉, denoting that the user
u was at location (x, y) at time t. These data are organized into trajectories, which
represent the sequence of locations a user has visited. Typically, multiple trajectories
are produced for each user by splitting the whole sequence of check-ins, e.g., on a
daily basis. Hence, each resulting trajectory is an ordered list of spatiotemporal points
T = {p0, . . . , pn} with pi = 〈xi, yi, ti〉 and xi, yi ∈ R, ti ∈ R+ for i = 0, 1, . . . , n
and t0 < t1 < t2 < . . . < tn.

The goal is to construct a Network of Interest that reveals the movement behavior
of users. This Network of Interest is a directed graph G = (V,E), where the ver-
tices V indicate important locations and the edges E important links between them
according to observed user movements. In particular, we are interested in two aspects
of the Network of Interest. A geometric NOI aspect provides a representation of how
users actually move across various locations, thus preserving the actual geometry of the
movement, while a semantic NOI aspect represents the qualitative aspect of the network
by identifying significant locations and links between them. In our approach, we treat
these two aspects as different layers of the same Network of Interest. In the following,
we describe the steps for constructing these layers and fusing them to produce the final
Network of Interest.

3.1 Segmentation of Trajectories

Behavioral trajectories, as in our case derived from geocoded tweets, contain data to
construct both the geometric and the semantic layer of a Network of Interest. Concep-
tually, users tweet when they stroll around in the city as well as when they commute in
the morning. While all these tweets will result in behavioral trajectories, some of them
depict actual movement paths, while others simply are tweets sent throughout the day.
In what follows, we try to separate our input data into two subsets and to extract the
trajectories corresponding to the respective layer.
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A main challenge when inferring a movement network from check-in data is that
this data is very heterogeneous in terms of their sampling rate, i.e., often being very
sparse. However, even the sparse subsets of the data are helpful in identifying significant
locations, whereas the denser subsets can be used to capture more fine grained patterns
of user movement.

For this purpose, we analyze the trajectories and group them into subsets with dif-
ferent temporal characteristics. In our approach, we treat these two aspects by applying
a (i) mean speed threshold to capture the user movement under an urban transportation
mode and by applying (ii) a sampling rate threshold to identify “abstract” and “con-
crete” movement. This allows us to treat each subset separately later on in the network
construction phase. The “abstract” type of movement corresponds to the semantic NOI
aspect and the “concrete” corresponds to the geometric NOI aspect.

Users with frequent check-ins, i.e., a high sampling rate, provide us with the means
to derive a geometric NOI layer, while low sampling rates only allow us to reason about
abstract movement, i.e., derive a semantic NOI layer.

Notice that typically the same individual, within one daily trajectory may have
recorded their data using different sampling rates. In this case, the trajectory needs to
be segmented according to the frequency of user position samples. A simple process for
achieving this separation is the following. First, a duration and a speed (length divided
by duration) is recorded for each segment of a trajectory. Each segment is assigned a
corresponding duration type of movement. Focusing on urban transportation, we use
a mean speed to filter out trajectories and then the duration between samples to deter-
mine “abstract” and “concrete” movement. Figure 1a shows the trajectories classified
to different sampling rates using the example of geocoded tweets for London. Using a
heatmap coloring schema, concrete and abstract movements are shown in blue and red,
respectively.

The process is outlined in Algorithm 1. For each line segment Lj of each trajec-
tory T , we compute a duration and a mean speed value (Algorithm 1, Lines 6-7), and
the segment is then assigned to the corresponding segmented set of trajectories TG, TS

according to the min and max time interval (Lines 9-13). The algorithm produces seg-
mented sets of trajectories (Lines 10 and 13) based on the corresponding time interval
attributes.

3.2 Geometric Layer Construction

To construct the geometric NOI layer we use frequently sampled trajectories. The sam-
pling rate threshold was established through experimentation. In the examples of Sec-
tion 5, the sampling rate threshold was set to 5min. I.e., for the construction of the
geometric layer the duration in between position samples of trajectory dataset is less
than 5min (cf. Table 1), approximately covering 57% of the original tweets collection.

The geometric NOI layer construction approach follows a modified map construction
approach (e.g., [14,15]) by (i) initially clustering position samples to derive network
nodes, (ii) linking nodes by using the trajectory data and (iii) refining the link geometry.

To derive network nodes we employ the DBSCAN clustering algorithm [11] using
a distance threshold and a minimum number of samples threshold parameter. We re-
visit the segmented trajectories to identify how the network nodes are connected by
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(a) Twitter trajectories(“slow”: blue, “fast”: red)

(b) Respective OSM network

Fig. 1. Twitter Trajectories and OSM Network London (bounding box: [51.18N, 0.85W],[51.80N,
0.86E])
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Algorithm 1. Segmentation of Trajectories
Input: A set of trajectories T
Output: Two sets of segmented trajectories TG, TS

1 begin
2 /*Trajectories segmentation according to time intervals*/

3 Vmax � maximum mean speed
4 foreach (Ti ∈ T ) do
5 foreach (Lj ∈ Ti) do
6 t(Lj)← δt(P [i − 1], P [i])� Time interval

7 v(Lj)← δx(P [i−1],P [i])
δt(P [i−1],P [i]) � Mean speed

8 if v(Lj) ≤ Vmax then
9 if t(Lj) ≤ Tmin then

10 TG ← Lj

11 end
12 else if t(Lj) ≥ Tmin and t(Lj) ≤ Tmax then
13 TS ← Lj

14 end
15 end
16 end
17 end
18 end

creating links. The links represent clustered trajectories as two nodes can be connected
by different trajectories. For each link (i) a weight is derived representing the number of
the trajectories comprising the link and also (ii) a length representing the Euclidean dis-
tance between the nodes that constitute the link. In addition to this, we apply a reduction
step to simplify the constructed network. The intuition is that due to varying sampling
rates, links between nodes might exhibit redundancy. This reduction step eliminates re-
dundant links by substituting longer links with links of more detailed geometries. We
reconstruct links of longer duration by using links of shorter duration if their geome-
tries are similar. We achieve this by using the degree of constructed nodes. Starting with
nodes of a higher degree of incoming links, i.e., significant nodes, for such a node, we
sort all incident links based on descending duration order. We then reconstruct those,
which temporally and spatially cover other links that can be reached in less time. Fig-
ure 2a gives an example by showing in dark gray links before reduction, and in light
gray a portion of the underlying OSM transportation network. Figure 2b shows then in
dark gray the resulting links after applying the reduction step. Part of the larger geom-
etry has been substituted with a more detailed geometry.
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(a) before reduction (b) after reduction

Fig. 2. Network Reduction Example - constructed network is shown in dark gray and the road
network in light gray

3.3 Semantic Layer Construction

To construct the Semantic NOI layer, we rely on trajectories exhibiting low sampling
rates (using approximately 19% of the original tweets collection), i.e., potentially cover
large distances in between position samples making it difficult to reconstruct the actual
movement (cf. Table 1). By initially applying the DBSCAN clustering algorithm (see
Table 1 for parameter details), we extract a set of nodes that correspond to the hubs of
the semantic layer. Performing a linear scan of the trajectories reveals the respective
portions that connect the sets of nodes. For each link sample (i) a weight is derived
representing the number of the trajectories comprising a link. At this step, we do not
apply any reduction method as the geometries of the semantic layer are less accurate.
Overall, this layer allows us to extract a network with less spatial accuracy but of greater
semantic value.

4 NOI Construction and Layer Fusion

The final part of the Network of Interest construction process consists of (i) the extrac-
tion of hubs, i.e., significant locations that user frequently visits, and (ii) the fusion of
the layers, i.e., the geometric and the semantic layer to produce the integrated network.

4.1 Network Hubs

Hubs are POIs that users frequently depart from and arrive at. In particular, specific
indicators for hubs are (i) number of constituting position samples, (ii) stemming from
many different users, (iii) over extended periods of time.

The Network Hubs Inference algorithm takes as input the entire trajectory dataset
used in geometric and semantic layer construction (Algorithm 2, Line 9) and determines
the k-NNs of each position sample (Line 12), which are subsequently filtered according
to the number of users and the period of time covered (Lines 13-15). On these filtered
position samples, we apply the DBSCAN clustering algorithm using a distance thresh-
old and a minimum number of samples (Line 16). The centroids of the resulting clusters
are the candidate hubs (Line 17). A final filtering step is applied as follows. For each
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candidate hub, we also record two properties. A weight for the hub is derived as the total
number of nodes the hub was derived from, i.e., the size of the corresponding cluster. In
addition, we record the degree of each hub, i.e., the number of incoming and outgoing
edges of the cluster. A candidate hub is included in the output if both the following two
conditions hold: (a) both the in-degree and out-degree are above a specified threshold
and (b) the in-degree and out-degree do not differ significantly (threshold determined
by experimentation). These conditions are used to ensure that the identified hubs corre-
spond to places where a sufficiently large number of users frequently depart from and
arrive at (Lines 23-24).

Algorithm 2. Hub Inference
Input: A set of segmented trajectories TG, TS

Output: Network Hubs

1 begin
2 /*Clustering position samples of segmented trajectories to compute

network hubs*/

3 H∗ ← ∅� Candidate Hubs
4 H ← ∅� Hubs
5 dmax � proximity threshold
6 umin � min. number of users
7 hmin � min. number of time periods
8 degin , degout , degmin , ε
9 � position samples from combined trajectories

10 P ← UNION(TG ,TS )
11 � Samples→ Hubs
12 foreach (P [i ]) do
13 νi ← FINDNN(P [i ], dmax)
14 up ← COUNTUSERS(νi)
15 hp ← COUNTHOURS(νi)
16 if (up ≥ umin) and (hp ≥ hmin) then
17 C ← DBSCAN(νi, dmax)� Clusters
18 H∗ ← CENTROID(C )� Hub candidates
19 end
20 end
21 foreach H∗[i] do
22 degin ← GETINDEG(H∗[i])
23 degout ← GETOUTDEG(H∗[i])

24 if degin ≥ degmin and degout ≥ degmin and
∣
∣
∣
degin
degout

− 1
∣
∣
∣ ≤ ε then

25 H ← H∗[i]
26 end
27 end
28 end
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4.2 Layer Fusion

The final part of the process comprises the fusion of the geometric and semantic NOI
layers. We construct the NOI by starting with the semantic layer and merging the ge-
ometric layer onto it. The intuition for this is that the semantic layer corresponds to
a geometrically abstract but semantically richer user movement that contains relevant
transportation hubs. The geometric layer corresponds to a less semantic but more accu-
rate depiction of movement, i.e., fills in the gaps of the semantic layer. The fusion of
these layers should result in a comprehensive movement network.

The fusion task involves (i) finding hub correspondences among the different net-
work layers and (ii) introducing new links to the semantic layer for the uncommon
portions of the NOI.

Fig. 3. London - Fused Network

Using, both, layers and the hubs, we try to identify common nodes by spatial prox-
imity (Algorithm 3, Lines 11-13). Any node from the geometric layer that has not been
introduced yet since it is not connected to the semantic layer will be added (Lines 22-
23). The next step involves introducing new links for uncommon portions of the layered
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Algorithm 3. NOI Fusion
Input: Networks to be conflated S, G
Output: Network of Interest

1 begin
2 /*Network layers fusion to extract the final map*/

3 � edges and nodes of Semantic and Geometric layers
4 ES ← EDGES(S), NS ← NODES(S)
5 EG ← EDGES(G), NG ← NODES(G)
6 H � Hubs
7 HG � hubs ∩ geometric nodes
8 HS � hubs ∩ semantic nodes
9 HO � H −HG −HS

10 � Node alignment
11 foreach H [i] do
12 � finding Nearest Neighbors HG ← (H [i], NN(H [i], NG))
13 HS ← (H [i], NN(H [i], NS))

14 end
15 � Node alignment
16 foreach HG[i] do
17 HO ← (HG[i], 1-NN(HG[i], HS))
18 � Node insertion to semantic layer
19 foreach (HG[i] /∈ HO) do
20 Ei = ON(ES , HG[i])
21 if Ei �= NULL then
22 HS .add(HG[i])
23 ES .delete(Ei)

24 end
25 end
26 � Link insertion
27 foreach (HG[i] /∈ HS) do
28 HS .add(HG[i])� remaining nodes
29 foreach (EG[i] /∈ ES) do
30 ES .add(EG[i])� remaining links
31 end
32 end
33 end
34 end

network. Here links of the geometric layer are introduced by adding them to the seman-
tic layer (Lines 28-30). Typically this accounts for the cases of adding complete (local)
network portions.



120 S. Karagiorgou, D. Pfoser, and D. Skoutas

A result of applying this conflation algorithm to network layers is shown in Fig-
ure 3. Indicated are the circled hub correspondences between the semantic, the geomet-
ric layer, and the resulting fused Network of Interest

5 Experimental Evaluation

An assessment of the quality of a Network of Interest is a challenging task as there is no
ground-truth data. In the case of map-construction algorithms, an existing road network
can be used. However, a NOI represents a geosemantic construct containing aspects of
both, regular transportation networks (roads, public transport, etc), but also the overall
movement sentiment of users in a city. For the following evaluation, we will use a
combination of existing POI datasets and (public) transportation networks to assess
the constructed NOIs. Before giving details of the experimental results and constructed
NOIs, we first describe the characteristics of the datasets used and our overall evaluation
methodology.

5.1 Experimental Setup

We conduct experiments on two real-world datasets comprising geocoded tweets re-
trieved for London and New York City over a period of 60 days using the Twitter Public
Stream API. Data from London covers the period of December 2012 to January 2013.
The New York as collected from November 2013 to December 2013. To focus on tra-
jectories of active users, we kept only the trajectories of the top 200 most active users
with respect to geotweets for each city. Moreover, we only consider trajectories that
consist of at least 5 geotweets. Figure 1a visualizes the movements of 200 Twitter users
during the course of a single day in London. Notice that some very prominent areas,
such as highways, can be distinguished visually even before any processing of the data
takes place.

Through experimentation, we established the parameters for the various steps of the
algorithm as summarized in Table 1. To compare the generated network, we consider
as ground-truth data the corresponding public transportation network obtained from
OSM [23]. What follows is a brief description of the trajectories collected from the
geocoded tweets, as well as the networks obtained from OSM.

In London, the actual public transportation network consists of 27,021 links (edges)
and 47,575 nodes (vertices) and has a length of 21,287km. It covers an area of 420km
× 118km including the metropolitan area of London. The geocoded tweets cover a
great portion of this network, specifically an area of 365km × 104km, and have a total
combined length of 256,400km (Figure 1a). The dataset consists of 463 trajectories
with a median length of 7.4km. The median sampling rate, i.e., rate at which a user
geotweets, is 12min, while the median speed is 37km/h.

For New York the actual public transportation network consists of 84,367 links
and 75,070 nodes and has a length of 9,846km. It covers an area of 105km × 85km.
The geocoded tweets consist of 37,962 trajectories, with a median length of 2.9km and
total length of 214,090km, covering an area of 92km × 74km largely overlapping with
the public transportation network. The median sampling rate is 8min, while the median
speed is 22km/h.
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Table 1. Parameter Summary
Algorithm Value
Segmentation of Trajectories
Mean Speed 10km/h
Time Interval 5, 60min
Geometric NOI
Distance Threshold 100m
Minimum Number of Samples 2
Semantic NOI
Distance Threshold 300m
Minimum Number of Samples 2
Extraction of Hubs
Minimum Number of Samples 10
Minimum Number of Users 2
Minimum Number of Time Periods 10
Distance Threshold 300m
Layer Fusion
Distance Threshold 50m

5.2 Visual Comparison

A first and quick overview of the quality of the inferred Network of Interest can be
obtained by visual inspection, i.e., by comparing it to the ground-truth public trans-
portation network and looking for similarities and differences.

Figure 4 visualizes the NOIs of the cities of London (Figure 4a) and New York
(Figure 4b). In each case, the constructed network is visualized using black lines, while
the ground-truth network is shown using light gray lines. As evident, especially for the
case of New York, the constructed NOI lines up with the transportation network and
identifies major hubs.

5.3 Quantitative Evaluation

For a more systematic and quantitative assessment of NOIs, we devise two means, (i)
comparing the constructed NOI to the geometry of a respective transportation network
and (ii) comparing the nodes of our NOI with a POI dataset to discover semantics in
terms of their type. This approach allows us to assess the similarity with respect to
the ground-truth network and to draw conclusions not only with respect to the spatial
accuracy of the result, but also the semantics of the nodes.

To compare networks we select all the nodes of the constructed network and identify
corresponding nodes in the ground-truth network by means of nearest-neighbor queries.
Using the OSM public transport data, we select for every hub of the Network of Interest
the nearest node in the OSM data. If the inferred nodes are close to the actual trans-
portation network nodes, then the constructed NOI closely relates to the transportation
network.

To discover the type of transportation a hub represents, e.g., bus, metro, tram and
railway, we again use OSM data. We apply reverse geocoding (identify POIs based on
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(a) London (bounding box: [50.60N, 0.50W],[52.00N, 1.25E])

(b) New York (bounding box: [40.54N, 74.10W],[40.92N, 73.70W])

Fig. 4. Networks of Interest
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coordinates) to relate OSM POIs to NOI locations. This then allows us to identify public
transportation nodes in our generated Network of Interest. The results are summarized
in Figure 5, which shows the degree of a node, i.e., the number of incoming and outgo-
ing links. In this case, we use the degree as an indicator for the importance of the node
and the fact that high-degree nodes were identified as transportation nodes allows us to
reason about the type of network we constructed. Identified transportation nodes (i.e.
bus, metro, etc) have higher degrees (> 20) when compared to other nodes with lower
degree (< 5).

In this experimentation, (i) nearest-neighbor queries evaluate the spatial accuracy of
the NOI, while (ii) the reverse geocoding assesses the semantics of the hubs. The higher

Table 2. Evaluation Summary

Nearest Neighbor Statistics Reverse Geocoding Statistics
Found Total Ratio % Found Total Ratio %

London 1389 1562 89 964 1562 62
New York 1423 1649 86 873 1649 53

(a) London

(b) New York

Fig. 5. Hubs Statistics
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the number of correctly constructed nodes, the higher also the quality of the network.
As shown in Table 2, transportation nodes are inferred with high accuracy. 89% of the
extracted hubs in London and 86% in New York are identified as transportation nodes
in the OSM ground-truth network. In the case of the reverse geocoding test, the ratios
are a bit lower due to the fact that the reverse geocoding service returns only POIs that
are located exactly or very closely to specific coordinates.

An overall sentiment of our experimentation could be that the network construction
process results in a Network of Interest that captures certain aspects of a public trans-
portation network. A core problem in such experimentation is that using social media
as a tracking data source to construct a network has the inherent challenge that no actual
ground-truth data is available to assess the quality of the result. Using in our case a pub-
lic transportation network allows us to show some similarities, however, the constructed
NOI could not be completely mapped (explained) by it as it represents a more complex
network whose characteristics cannot be captured by a single existing network dataset.
These concerns are also issues we want to address in future work.

6 Conclusions

Social media applications and their data have been used in a wide range of data mining
applications. However, to the best of our knowledge this work is the first to construct
a geosemantic Network of Interest using social media as a tracking data source. The
NOI construction algorithm is based on segmenting geocoded tweets and constructing
two separate network layers. A geometric and a semantic layer of a NOI are derived
and using network hubs, these layers are then fused to generate a Network of Interest.
Performing an experimental evaluation using two large-scale datasets, the algorithm
produces NOIs of considerable accuracy, which identify important transportation hubs
and capture portions of the respective public transport networks.

The directions for future work are to refine the NOI construction process and scal-
ing the algorithms and to use it for larger datasets and more complex NOIs. Here, we
will also have the opportunity to identify temporal aspects of the NOIs, e.g., transporta-
tion routes to and from the city, temporal variations, as well as characteristics of the
NOI graph itself (connected components). We are also in the process of applying the
proposed methods to mobile phone tracking data, a dataset that is “in between” GPS
tracking data and check-in data in terms of positional accuracy and sampling rate.
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