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Abstract. We study the problem of placing guard towers on a terrain such that
the terrain can be seen from at least one tower. This problem is important in many
applications, and has an extensive history in the literature (known as, e.g., mul-
tiple observer siting). In this paper, we consider the problem on polyhedral ter-
rains, and we allow the guards to see only a fixed fraction of the terrain, rather
than everything. We experimentally evaluate how the number of required guards
relates to the fraction of the terrain that can be covered. In addition, we introduce
the concept of dominated guards, which can be used to preprocess the potential
guard locations and speed up the subsequent computations.

1 Introduction

Terrains are a key concept in Geographic Information Science. They are the topic of
interest in may different problems, ranging from determining how water flows along a
terrain [16,22] to computing valleys and ridges [19]. We study the problem of guard-
ing a terrain; that is, we wish to place a small number of guards such that they can
together can see the terrain. The applications for this problem are numerous. Consider
for example protecting the border of a country, placing watchtowers to protect against
forest fires [6], or determining where to place base stations for a telecommunication
network [8,24]. See also Floriani and Magillo [11] for an extensive treatment of the
subject.

There are two standard representations for terrain data. We can store a terrain as a
digital elevation model (DEM), which is a two-dimensional grid with height values, or
as a polyhedral terrain: a planar subdivision—usually a triangulation—in which each
vertex has an associated height. Heights are linearly interpolated in the interior of a
face. This yields a polyhedral surface in R

3.
For grid-based terrains, guarding is well-studied. Franklin et al. [12] present a greedy

approach, Kim et al. [18] investigate heuristics for placing guards, and Zhang and Lu [20]
use improved simulated annealing to determine where to place the guards. However, grid
terrains are less suited for visibility problems than polyhedral terrains [4,23]. Further-
more, polyhedral terrains allow a more compact representation of the data, which may
allow us to avoid heuristics when working in external memory [21].

Informally speaking, the viewshed of a guard is the part of the terrain that it can see.
An example is shown in Fig. 1. Computing viewsheds of guards at fixed locations is
itself useful in many applications, e.g. bird behavioral studies [3,5]. There are efficient
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algorithms to compute the viewshed for a given guard [17], and even computing the
part of the terrain visible by a set of guards can be done efficiently [14]. Unfortunately,
it is NP-hard to determine where to place a minimum number of guards such that they
can together see the entire terrain [7]. Moreover, Eidenbenz et al. [10] showed that there
is no polynomial time algorithm that can approximate the number of guards required
to cover the whole terrain consisting of n triangles within a factor O(ln(n)) of the
optimum unless some complexity classes collapse, which is very unlikely.

Partial Covers. The digital model of the terrain that we work with is often imprecise,
and even if we have the true heights for all points on the terrain, there other factors,
such as vegetation, that impact visibility. So, instead of requiring that the guards see the
entire terrain it may be sufficient if they see a large portion of the terrain. This raises the
question if we can efficiently solve or approximate this so-called ε-guarding problem.

To define the ε-guarding problem precisely, we need some definitions. A guard g is
a point (tower) at height h above a polyhedral terrain T . It can see, or cover, a point
p ∈ T , if the open ended line segment gp lies entirely above the terrain. We also say
that p is visible from g. The maximal set of points on T that is visible from g, denoted
V(g), is the viewshed of g. The viewshed of a set of guards G is the maximal set of
points on T visible from at least one guard in G, that is, V(G) =

⋃
g∈G V(g). We can

measure the size �T ′� of a part T ′ of T , and thus the size of a viewshed, in two ways.
Either we consider the area of T ′, or we consider the number of terrain vertices in T ′.
Our algorithms can be used in both cases—only the running time changes through a
different viewshed computation.

Definition 1 (ε-cover, ε-Guarding Problem). Given a polyhedral terrain T , a height
h, and a value ε > 0, an ε-cover of T is a set of guards G that can together see at least
a fraction of (1− ε) of the terrain, i.e., a set of guards for which �V(G)� ≥ (1− ε) �T �.
In the ε-guarding problem, the goal is to find a minimum sized ε-cover.

Our Contribution. In Section 2, we generalize Eidenbenz et al.’s [10] result and show
that the same lower bound holds for ε-guarding problem for any ε ≤ 1 − 1/nx with
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Fig. 1. The viewshed V(gi) for each guard gi , and the viewshed V({g1, g2, g3})
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x < 1. Next, we make two main observations in this paper, which we experimentally
validate. In Section 3 we analyze a practical approach to compute an ε-cover: a greedy
algorithm that simply places the guard that covers the largest possible unguarded area,
and continues to place more guards until a desired fraction of the terrain is covered. By
using ideas from the approximation techniques known for the so-called SET-COVER

problem [15] we show that the number of required guards can be related to the opti-
mal number of guards required to cover the whole terrain. We also implemented the
approach, and show that in real-world terrains, the number of required guards to cover
95% of a mountainous region of roughly 150km2 is typically less than 20.

In Section 4, we introduce the concept of dominating guards: a potential guard tower
dominates another potential guard tower if it can see at least the same part of the terrain.
Since dominated guards are never necessary in an optimal solution, the computation of a
good set of guards can be sped up by precomputing and deleting the dominated guards.
We can also relax the concept and say a guard is dominated if another guard sees al-
most everything it sees. We show experimentally that in real-world terrains, computing
dominated guards typically reduces the problem size by 15-40%, depending on the res-
olution of the terrain. For the relaxed version, this percentage drops drastically, reducing
the problem size to as little as 10% of the original, but comes at the cost of potentially
not allowing every solution anymore. However, we show that in practice, the greedy
approach still finds a solution of the same size as without preprocessing.

The idea of reducing a problem’s input size by transforming it to another instance,
while preserving theoretical guarantees on the solution, is common in theoretical com-
puter science. Agarwal et al. [1] introduce the concept of core-sets: a subset P ′ of a
set of objects P (classically, points in a d-dimensional space) with the property that for
some function f that one is interested in, f(P ′) differs from f(P ) by at most a factor
(1− ε). A related concept in complexity theory is kernalization [9].

2 Lower Bound

In this section we show a lower bound on the computational complexity of the ε-
guarding problem. We first focus on the case where we measure viewsheds and terrain
sizes �T ′� with respect to the number of visible terrain vertices. Eidenbenz et al. [10]
have shown in Lemmata 6 and 7, which are part of the proof of the non-approximability
result for guarding-terrain problem, that an instance I for the so-called SET-COVER

problem can be transformed into an instance I ′ for the guarding problem such I has
a solution of size k if and only if I ′ has a solution of size k + 4. Because of this and
because optimal solutions of the SET-COVER problem can be of arbitrarily large size
k we only need to show a lower bound for the so-called α-weak SET-COVER problem
and obtain the same lower bound for the ε-guarding problem where ε = 1− α.

Definition 2. Given a number 0 ≤ α ≤ 1 and a tuple (U, C), where U is a finite set
called universe and C is a collection of subsets of U with

⋃
X∈C X ⊆ U , an α-weak set

cover for (U, C) is a collection S ⊆ C such that the union of all sets in S contains at
least α|U | elements. In the special case α = 1, we also call S a set cover for (U, C).
The size of S is its cardinality. In the (α-weak) SET-COVER problem, we have to find
an (α-weak) set cover of minimal size.
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Lemma 1. The α-weak SET-COVER problem has no polynomial-time approximation
algorithm of ratio c lnn unless P = NP, where n is the size of the universe, α ≥ 1/nd

with d < 1, and c > 0 is an appropriately chosen constant.

Proof. Alon, Moshkovitz, and Safra [2] showed that, for an appropriately chosen con-
stant c′′ > 0, there is no polynomial-time approximation algorithm of ratio c′ ln |U ′|
for the SET-COVER problem with universe U ′ unless P = NP. Since we can figure
out in polynomial time if a set-cover instance has no solution, there can not exist a
polynomial-time approximation of approximation ratio c′ ln |U ′| for the SET-COVER

problem restricted to solvable instances.
We now show the lemma by a reduction from the SET-COVER problem to the α-

weak SET-COVER problem. Let (U ′, C′) be a solvable SET-COVER instance. Take k =
�1/α�, U = U ′ ∪ {x1, . . . , xk|U ′|} where x1, . . . , xk|U ′| are new elements, and C =
C′ ∪ {{x1}, . . . , {xd|U ′|}}.

Note that each solution of the set-cover instance (U ′, C′) is also a solution for the α-
weak-set-cover instance (U, C). For the reverse direction, assume that there is a solution
S ⊆ C for the α-weak-set-cover instance, and let V :=

⋃
X∈S X be the elements

covered by S. Intuitively speaking, for each element of U ′ that is not covered, there is
an element of U \U ′ covered by the solution. More exactly, |U ′ \V | ≤ |(U \U ′)∩V |.
To obtain a solution S ′ for the set-cover instance (U ′, C′) from S, for each u ∈ U ′ \ V ,
we replace a set in S ∩ (C \ C′) by a set C′ ∈ C′ with u ∈ C′. Note that set C′ must
exist since (U ′, C′) has a solution.

To sum up, each solution of (U ′, C′) can be turned into a solution of the same size for
(U, C) and vice versa. Then (U, C) has no polynomial-time approximation algorithm of
ratio c′ ln |U ′| = c′ ln(|U |/(k + 1)) ≤ c′ ln(n/(2nd)) ≤ c′(1 − d) ln(n/2) ≤ c lnn if
c is chosen appropriately. �

Corollary 1. The ε-guarding problem has no polynomial-time approximation algo-
rithm of ratio c lnn where n is the size of the universe, i.e., the number of the terrain
vertices, c > 0 is an appropriately chosen constant, and ε = 1 − α ≤ 1 − 1/nd with
d < 1.

If we want to measure terrain sizes �T ′� with respect to the visible area, we can
first decompose the terrain into maximal regions such that each region is visible from
the same set of guards. We then take the size of the universe to be the number of such
regions. If we have m ≤ n (potential) guards, there are at least Ω(m2n2) and at most
O(m3n2) such regions, and they can easily be computed in polynomial-time [14]. Thus,
also in the case with terrain sizes measured by the visible area, we obtain a Ω(lnn)
lower bound on the approximation ratio of an ε-cover, for small enough ε.

Note that, if ε = 1 − 1/nx with x = 1, we need to see one vertex of the terrain to
solve the vertex viewsheds ε-guarding problem. Clearly, such a solution can be found
easily.
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3 Greedy Approach

3.1 Algorithm and Analysis

Consider the following simple and straightforward algorithm GREEDYGUARD that
given a terrain T , a parameter ε, and a set of potential guard locations P , computes
an ε-cover of V(P). So, when the guards in P can together see the entire terrain T ,
GREEDYGUARD computes an ε-cover of T .

Algorithm. GREEDYGUARD(T , ε,P)
1. Compute the viewsheds for all guards in P .
2. Let G = ∅ and R = P .
3. while �V(G)� ≤ (1− ε) �V(P)� and R �= ∅ do
4. Select a guard g ∈ R that maximizes the size �V(g) \ V(G)�, i.e., the size of the region

it can cover but is not covered by G yet.
5. Remove g from R and add it to G.
6. return G

We now show that the selected set of guards G has size at most O(k/ε), where k is
the number of guards required in an optimal solution to cover V(P).

Lemma 2. Let T be a terrain, let P be a set of potential guard locations, and let
ε ∈ (0, 1]. GREEDYGUARD computes an ε-cover of T ′ = V(P) of at most O(k/ε)
guards, where k is the size of an optimal 0-cover of T ′.

Proof. Consider the guards g1, .., g� picked, in that order, by the greedy algorithm, and
let ρi denote the fraction of T ′ that remains uncovered by the first i guards, that is,
ρi = �Ri� / �T ′�, where Ri = T ′ \

⋃i
j=1 V(gi).

The greedy algorithm stops once the fraction of T ′ that remains uncovered is at most
ε. That is, ρ� ≤ ε. We claim that this is the case for � = ck/ε, for some c ∈ R.

For any i, with 0 ≤ i < �, the remaining part Ri of T ′ can be covered with k
guards. So, there is a guard, say g∗ ∈ P , that covers at least �Ri� /k. It follows the
next guard gi+1 picked by the greedy algorithm covers at least that much. Thus, we
have ρi+1 �T ′� = �Ri+1� ≤ �Ri� − �Ri� /k = ρi �T ′� − ρi �T ′� /k, and therefore
ρi+1 ≤ ρi − ρi/k = ρi(1 − 1

k ). It follows that ρi ≤ (1− 1
k )

i.
We thus have to show that ρ� ≤ (1− 1

k )
� ≤ ε. In case k = 1 this is trivially true. In

case k ≥ 2, we have that (1 − 1
k )

k ≤ 1
e . So, we have to show that

(

1− 1

k

)�

=

(

1− 1

k

)ck/ε

=

((

1− 1

k

)k
)c/ε

≤ (1/e)c/ε = 1/(ec/ε) ≤ ε.

Using basic calculus we can reduce 1/(ec/ε) ≤ ε to ε ln(1/ε) ≤ c. This holds for all
c ≥ 1

e . The lemma follows. �
We now analyze the running time of this algorithm. If we are in the case where terrain

sizes are measured by the number of terrain vertices, it is easy to compute the viewshed
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of a guard g in O(n2) time by simply checking if the line segment between g and each
terrain vertex lies above the terrain. Thus, if we are given m potential guards in P , this
takes O(mn2) time in total. From Lemma 2 it follows that the algorithm selects at most
O(k/ε) guards. Finding a guard g ∈ R that maximizes �V(g) \ V(G)� takes O(mn)
time, so selecting all O(k/ε) guards takes O(kmn/ε) time in total. Thus, our algorithm
can be implemented in O(mn2 + kmn/ε) time.

We can improve on this by preprocessing our terrain for visibility queries. In
O(nα(n) log n) time, where α is the extremely slow growing inverse of Ackermann’s
function, we construct a data structure that can answer visibility queries from a fixed
viewpoint in O(log n) time [7]. Using this data structure we can compute all viewsheds
in O(mnα(n) log n+mn logn) = O(mnα(n) log n) time. Thus, we conclude:

Theorem 1. Let T be a terrain, let P be a set of potential guard locations, and let
ε ∈ (0, 1]. GREEDYGUARD computes an ε-cover of T ′ = V(P) of at most O(k/ε)
guards in O(mnα(n) log n + kmn/ε) time, where k is the size of an optimal 0-cover
of T ′, and m is the number of potential guards in P .

We remark that the GREEDYGUARD algorithm is essentially the well-known greedy
algorithm for the SET-COVER problem. Hence, our results immediately transfer to the
SET-COVER problem as well. Indeed, when we compute the required guards/sets by
our algorithm to completely cover the terrain, we get only an O(log n) approximation.
The same applies if we compare our solution to an optimal ε-cover. However, in our
approach we simultaneously approximate the amount of terrain covered, and the num-
ber of guards required. This allows us to find a decent approximation ratio. We further
remark that the minimum number of guards required for an ε-cover may differ signifi-
cantly from the minimum number of guards to completely cover the terrain.

Finally, in case we measure the size of a viewshed by its area we can compute an
ε-cover of T ′ in O(n2(m logn+m4 + k4/ε4)) time using the results of Hurtado et al.
[14]. The O(n2m4) term originates from computing �V(P)� = �T ′�. If we know the
size of T ′ in advance, for example because T ′ = T , then we can improve these results
to O(n2(m logn+ k4/ε4)).

Experimental Evaluation

We experimentally evaluate results from the greedy algorithm on five terrain models
in California, obtained from the U.S. Geological Survey1 and shown in Table 1. Each
terrain model spans approximately 11.5km × 14km. For each terrain we have a coarse
and a fine version with approximately 1800 and 16 000 vertices, respectively. In all our
experiments we choose the set P of potential guards to be the set of vertices of the
terrain.

To keep the implementation of our algorithms simple, we consider only the case
where the size of the viewsheds is measured by the number of terrain vertices. For the
same reason we use the naive implementation for the point-to-point visibility rather
than building the data structure for visibility queries.

1 http://www.usgs.gov

http://www.usgs.gov
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Table 1. The terrains we use to evaluate our approach. The terrains are shaded by height: higher
vertices and faces are lighter.

terrain Hot Springs Quinn Peak Sphinx Lakes Split Mountain Wren Peak

coarse 1797 1787 1778 1769 1781
fine 16 197 16 087 16 017 15 895 16 065
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Fig. 2. The number of selected guards in G as a function of ε. The insets show the results for full
domain of ε.
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Fig. 3. A comparison between the number of
guards needed in the coarse and fine versions of
the Wren Peak terrain

We first investigate the number of
guards selected, that is, the size of the set
G, as a function of ε. For these results
we fix the height h of the guards on 15
meters. The results are shown in Fig. 2
and 3. For both the coarse and fine terrain
models we see that the required number
of guards rapidly increases when 1 − ε
approaches 1, that is, when we attempt to
cover almost the complete terrain. How-
ever, eleven guards are sufficient for an
0.05-cover on each coarse terrain model.
Generally speaking, the same number of
guards covers a smaller fraction of the
terrain in the fine terrain models than in
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the coarse terrain models, indicating that the added detail may be significant for visi-
bility studies. For the coarse terrain models eleven guards can cover at least 88% of the
terrain; for an 0.05-cover we need between nine and nineteen guards, depending on the
terrain.

Fig. 4 shows the locations of the guards placed by GREEDYGUARD for an 0.05-cover
on the coarse Wren Peak terrain (again for height h = 15m). The fraction of the terrain
covered by those guards is shown in Fig. 3.

The height of the guards influences the number of guards required, see Fig. 5. How-
ever, the differences are small. The height has a larger influence on the fine version of
the terrains. Even so, covering one of the terrains with guards at height 1m requires only
four more guards than guards at 30m.

Fig. 4. The ten guards placed by GREEDYGUARD for a 0.05-cover of the coarse Wren Peak
terrain (green). Each figure shows the vertices covered so far in blue, and the vertices that remain
uncovered in red. The newly selected guards are shown in yellow.
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Fig. 5. The number of required guards for an 0.05-cover as a function of the heights h
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4 Dominating Guards

4.1 Simple Domination

A guard g dominates another guard h if (and only if) the viewshed of h is contained in
the viewshed of g, that is, V(h) ⊆ V(g). We say g strictly dominates h if V(h) ⊂ V(g).
We now observe:

Observation 1. Let P be a set of potential guards. There is an optimal (minimum size)
ε-cover G of V(P) such that no guard in G is strictly covered by any guard in P .

Proof. Let G∗ be an optimal ε-cover of V(P). Let h be any guard h ∈ G∗ that is strictly
dominated by another potential guard g ∈ P . Replace h by g. Repeat this procedure
until there are no more guards that satisfy the criterion. Note that this process terminates
since strict domination defines a partial order on P (a guard g can only strictly dominate
a guard h if �V(g)� > �V(h)�). Let G be the set of guards we obtain. Clearly, G contains
at most the same number of guards as G∗, and since we have that V(G∗) ⊆ V(G), G is
also an ε-cover of V(P). �

It now follows that we never have to choose a guard that is strictly dominated by
another guard. Hence, when finding an ε-cover of the terrain, we can simply ignore all
dominated guards. Although there is no useful theoretical lower bound on the number
of dominated guards, we will see that for the terrains considered here, we can discard
between 10% and 40% of the potential guards, depending on the resolution of the ter-
rain.

Experimental Evaluation
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Fig. 6. The percentage of the potential guards
that are dominated by another guard as a func-
tion of their height

In Fig. 6 shows the percentage of the po-
tential guards that is dominated as a func-
tion of the height h, and Fig. 7 shows
the dominating and dominated potential
guards for h = 15m. For the coarse
terrains, between forty and fifty percent
of the potential guards are dominated by
another potential guard, and can thus be
discarded. For the fine terrains the per-
centage of dominated vertices is lower:
between eight and twenty percent. Sur-
prisingly, the percentage of dominated
vertices in the fine Hot Springs terrain is
well over twenty percent. This behavior
differs from the coarse Hot Springs ter-
rain, where the percentage of dominated guards is comparable to the other terrains.

The height at which we place the guards only mildly influences the number of domi-
nated vertices. One might expect that the number of dominated vertices increases mono-
tonically as the height grows (since the individual viewsheds grow when the height
increases). However, for the heights considered this is not the case: the number of dom-
inated vertices increases at first, but then slightly decreases.
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Fig. 7. Dominating potential guards in blue and the potential guards they dominate in red on the
Wren Peak terrain. On the left the coarse model and on the right the fine model.

V(h)V(h)

V(g)

(a) (b)
δδ

g h

Fig. 8. (a) The red guard g δ-dominates the blue guard h if and only if the fraction of V(h) that
is not covered by g (the hatched area) is at most δ. (b) A cross section of a terrain in which all
potential guards are δ-dominated by an other guard.

4.2 δ-Domination

Since it is sufficient if the guards cover a fraction of 1−ε of the terrain, we can consider
slightly relaxing the definition of domination. Instead of requiring that guard g should
see everything that h sees, it may be sufficient if g sees a large enough portion of h.
More formally, guard g δ-dominates guard h if (and only if) the fraction of V(h) that
is not covered by g is at most δ, that is, if and only if �V(h) \ V(g)� / �V(h)� ≤ δ. See
Fig. 8(a) and 9.
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Fig. 9. Three guards on a fine grained Wren Peak terrain (left). The blue guard 0.02-dominates
the red and green guards (guards are delineated in white). Only very few vertices in the red and
green viewsheds are not visible from the blue guard (right).

In this setting we can no longer just discard all guards that are δ-dominated, as
shown in Fig. 8(b). For small values of ε, the set G = {g, h} is the only optimal solu-
tion. However, guard g δ-dominates h, and vice versa. Thus, we cannot remove them
both. Instead, we extend the notion of δ-domination to sets of guards: a set of guards
G δ-dominates a set of guards H if for every guard in H there is a guard in G that
δ-dominates it. We now wish to find a minimum size set of guards that δ-dominate P .
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Fig. 10. The percentage of potential guards in P
for which there is an other potential guard that
δ-dominates it

It turns out that computing such a min-
imum size set is NP-hard as well [13].
However, we can easily find a maximal
set D with a simple greedy algorithm.
Unfortunately, we cannot provide a good
lower bound on the fraction of the terrain
that is visible from D, so instead we eval-
uate δ-domination experimentally.

Experimental Evaluation

In Fig. 10 we can see the percentage
of the guards for which there is another
guard that δ-dominates it (for h = 15
meters). This figure shows that on the
fine terrains and δ ≥ 0.05 for practically
every vertex there is another vertex that
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Fig. 11. The fraction of T that it still coverable with a minimal set D of δ-dominating guards

δ-dominates it. For the coarse terrains we need slightly higher values of δ. This is to be
expected, since the vertices, and thus the locations for the potential guards, are spread
further apart than in the coarse terrains. Even so, we note that for δ = 0.05 already 90%
of the potential guards are δ-dominated by another guard.

As noted before, we can no longer remove all guards that are δ-dominated, so instead
consider a minimal size set D of δ-dominating guards. Fig. 11 shows the percentage of
the terrain that is still coverable by D (again for h = 15 meters). For values of δ up
to 0.2—so 20% of the viewshed of a guard h may not be visible from a guard g that
δ-dominates it—a minimal set D of δ-dominating guards can still see more than 99%
of the terrain.

5 The Greedy Approach with δ-Domination

We can now use the δ-domination to limit the number of potential guards we have
to consider when computing an ε-cover. As a preprocessing step we determine which
guards are δ-dominated, so we can discard some of the potential guards. We then use the
greedy algorithm from Section 3 to compute an ε-cover on the remaining guards. More
specifically, consider the following algorithm DOMINATINGGUARD, that computes an
ε-cover using the δ-domination, if possible. When the fraction of the terrain δ̂ that is
no longer visible from D is larger than ε we (obviously) cannot obtain an ε-cover any
more.

Algorithm. DOMINATINGGUARD(T , ε, δ,P)
1. Compute the viewsheds for all guards in P .
2. Compute a minimal set of guards D that δ-dominates P .
3. Let δ̂ = �V(D)� / �V(P)� be the fraction of V(P) covered by D.
4. Let γ = (ε− δ)/(1− δ̂) and let T̂ = V(D).
5. return GREEDYGUARD(T̂ , γ,D)
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We note, however, that the terrain can be preprocessed by removing δ-dominated
vertices, irrespective of the algorithm used to then place the guards. Since the data size
can be reduced drastically, it may also be feasible to use more computation-intensive
solutions than the simple greedy heuristic presented in this study.

Experimental Evaluation

We choose ε = 0.05 and h = 15m and run DOMINATINGGUARD for various values of
δ. Fig. 12 shows the number of guards in the set D, as a function of δ. The number of
potential guards to be given to the greedy algorithm rapidly decreases when δ increases.
On the fine grained terrains and for δ ≥ 0.04 we can discard well over 90% of all
potential guard locations due to the δ-domination. For the coarse terrains this number
is roughly 80%.

We observed that the number of guards selected is independent of δ: for all values the
algorithm returns the same number of guards. Hence, removing δ-dominated potential
guards does not seem to affect the final solution.

6 Concluding Remarks

We investigated practical approaches to compute an ε-cover of a polyhedral terrain T ;
that is, a set of guards that together can see at least a fraction 1 − ε of the terrain.
We showed that, for any ε of interest, no constant-approximation algorithm exists to
compute an ε-cover. In addition, we provided a theoretical analysis of a straightfor-
ward greedy algorithm to compute an ε-cover. This analysis shows that we need at
most O(k/ε) guards, where k is the minimum number of guards required to completely
cover the terrain. Through experiments we show the algorithm gives a reasonable num-
ber of guards in practice. Furthermore, we introduced the notions of dominated and
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Fig. 12. The percentage of guards that we can discard in step two of DOMINATINGGUARD. When
the selected minimal set of dominating guards no longer cover at least 1 − ε of the terrain the
algorithm does not yield a solution.
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δ-dominated guards. Our experiments show that these can greatly reduce the number of
potential guard locations we have to consider.

In our experiments we use viewsheds that only consider the vertices of the terrain.
It would be very interesting to see if we obtain equally good numbers for viewsheds
that also incorporate the (interior of) the faces of the terrain. A different direction of
future work entails a theoretical investigation of the concept of δ-domination. For our
current definition, we cannot state any theoretical guarantees, though it performs well
in practice.
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