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Abstract. Linear cartograms visualize travel times between locations, usually by
deforming the underlying map such that Euclidean distance corresponds to travel
time. We introduce an alternative model, where the map and the locations remain
fixed, but edges are drawn as sinusoid curves. Now the travel time over a road
corresponds to the length of the curve. Of course the curves might intersect if
not placed carefully. We study the corresponding algorithmic problem and show
that suitable placements can be computed efficiently. However, the problem of
placing as many curves as possible in an ideal, centered position is NP-hard. We
introduce three heuristics to optimize the number of centered curves and show
how to create animated visualizations.

1 Introduction

Most people depend on maps for navigation. Regular maps, however, do not ensure
that time and distance correlate equally across the map. A village just on the other
side of a mountain range might be hours away, whereas a city miles away is only five
minutes driving. Temporal conditions, such as traffic jams or roads blocks, can make
these effects even more pronounced.

To counteract this, visual cues are used to display (relative) travel times, commonly
using colors (see Fig. 1 (a)). Size, however, is a better means to visualize numerical
attributes [1]. As an alternative to color, length could also be used to show travel time
on stretches of road. As a visual variable, length has a better association to quantity than
color. “Relative lengths” of stretches are immediately quantified, whereas “relative col-
ors” do not have a clear interpretation. These observations have led to the development
of linear cartograms [2–5].

Linear cartograms try to display time more clearly by distorting the base map. Two
types of linear cartograms exist: centered and non-centered. The former has a “center”
location and only distances to this location correspond to actual travel time. The latter
type attempts to have all pairs of locations at travel-time-proportional distances, which
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Fig. 1. Expected travel times in the Netherlands during morning rush hour. (a) Color coding. (b)
Linear cartogram. (c) Linear cartogram with fixed vertex positions.

is generally not possible without error. By distorting the map, linear cartograms give
a more intuitive sense as to what is nearby, in time, on the map. The distortion of the
map, however, can make recognition and usage of the cartogram harder [6]. Items on the
map might be far removed from their position on the base map, making it hard to find
specific items (see Fig. 1 (b), which was computed with the method described in [7]).

We introduce an alternative model that is well suited to visualize travel times on road
networks. Instead of distorting the base map, we keep the locations fixed and “distort”
only the edges. We do so by using sinusoid curves (see Fig. 1 (c)). Our approach has the
advantage that the base map remains undistorted, while length can still be used to quan-
tify and visualize travel time. The resulting maps create a dramatic effect and can also
be used in animations, where an increased travel time (delay) is shown by an increased
amplitude or frequency. Of course the curves might intersect if not placed carefully. We
study the algorithmic problem of generating crossing-free linear cartograms according
to our new model.

Related Work. In addition to the results on linear cartograms [2–5], several other pa-
pers are also related. Weights of edges (but for very different applications) can also be
visualized by the width [8]. When drawing planar graphs with fat edges, the occupation
of space by these edges is the main concern. Drawing edges with curves (e.g., [9]) has
received considerable attention. Lately, more specifically, the use of circular arcs for
edges has received attention (e.g., [10]), in particular the creation of Lombardi draw-
ings [11]. The use of regular sinusoid curves to indicate relative length was recently
introduced by Nielsen et al. [12] for the visualization of connectivity graphs in genome
sequencing. Lastly we note the topic of map labeling, where a suitable position of each
label must be found among a set of candidate positions (see [13] for a survey). In par-
ticular the edge labeling version studied in [14, 15] is closely related (see Section 4).

Organization. Section 2 explains the model used to find suitable curves, and how to
fit cubic Bézier splines. Section 3 discusses the optimal placement of curves, but also
shows the restrictions of this approach. In Section 4 we prove that under a mild re-
alistic input assumption, a non-overlapping choice of placement of the curves can be
computed in O(n log n) time, if such a placement exists. We also study the problem
of maximizing the centered curve positions under the condition that all curves can be
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placed, which is NP-hard (Section 5). Section 6 discusses a heuristic approach to com-
pute a solution maximizing the edges in centered position. In Section 7 we show how
our techniques can be applied to create animations of time-dependent data such as traf-
fic conditions. Finally, in Section 8 we discuss the advantages and disadvantages of the
proposed method and look at possibilities for future work.

2 Preliminaries on Fitting Curves

Problem Setting. We assume a planar graph with a fixed embedding is given, along
with the travel times for all edges. We compute a linear cartogram with the same topol-
ogy and embedding, where all edges are drawn as sinusoid curves whose lengths are
proportional to the specified travel times. For each edge e we define a region close to
e and draw a curve with the specified length inside that region. To avoid intersections
among the curves, we make sure that regions of different edges do not intersect. We con-
sider three possible placements of the regions: above the edge, centered, or below the
edge (see Fig. 2). When centered, the curve occupies a diamond-shaped region where
the edge is a diagonal of the diamond. In the other two positions, the curve occupies
a triangle-shaped region based on the edge. To minimize visual distortion we prefer to
place curves in the centered, diamond-shaped position. Reducing the problem solely to
the centered positions, however, is overly restrictive, as shown in Section 3.

We call the length of the diagonal of each region that is normal to its edge e the
width we. The width is directly determined by the length of the edge, the associated
travel time and the desired frequency. The two triangles and diamond of an edge induce
four parts the region could occupy, called zones (see Fig. 2 (d)). The vertex of a triangle
or diamond that is not part of the edge is called the apex. Any edge is associated with
four apices, one of each triangle and two of its diamond.

Different Shapes. We represent the distorted edges with C2-continuous cubic Bézier
splines. This type of curve is already commonly present in many maps (e.g., [16]) and
a continuous spline maintains continuity of edges. We fit the Bézier spline inside a
zone representing the widened edge. This zone can be represented by various shapes.
These shapes are not present in the final map and hardly influence the visual appearance
(see Fig. 3). However, since space around vertices is limited, tapering shapes, such as
triangles, are less likely to intersect at vertices and hence allow for a greater range of
feasible solutions. Non-uniform shapes, such as a rectangle in the center of an edge, are
also suitable.

we we

we
(a) (b) (c) (d)

Fig. 2. (a)–(c) The regions with width we for an edge e. (d) The zones and apices of e.
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(a) (b) (c)

Fig. 3. Different edge shapes for the Indian railroad network. Frequencies are exaggerated for
display purposes. (a) Triangles. (b) Rectangles. (c) Ellipsoids.

We study the algorithmic aspects of fitting curves using triangular and diamond-
shaped areas. Both the algorithm of Section 4 and the NP-hardness proof of Section 5
also hold for uniform rectangular shapes. Our algorithm does not work for ellipses,
however, in this case there is a trivial O(n2) algorithm.

Relating Width to Curve Length in the Triangle Model. One can fit a C2-continuous
sinusoid cubic Bézier spline such that the length of the fitted curve is (nearly) linearly
proportional to the width of the edge. The sinusoid spline starts and ends at the end-
points of the edge, so the number of oscillations is a multiple of one half. We let the
number of oscillations used depend on the edge length and the specified travel time and
we either keep the length of all oscillations (the frequency) or the edge width equal
across the network.

Each oscillation is represented by two cubic Bézier curves. The control points of
the Bézier curves are evenly distributed along the outer edge of the zone (Fig. 4 (a))
to ensure that the resulting spline uses the full available area. As the control points are
equally spaced and the tangents of two consecutive curves are aligned, the connection
between consecutive Bézier curves is C2-continuous. A degenerate case occurs when
two curves c1 and c2 connect at the apex p (Fig. 4 (b)). To keep the connection C2-
continuous, we select as the connection point the center of the third control point of c1
and the second of c2 (Fig. 4 (c)).

c1 c2 c1 c2

p p

(a) (b) (c)

Fig. 4. (a) A sinusoid curve that is fitted to a diamond-shaped area. (b) The spline is not C2-
continuous as the tangents of curve c1 and c2 do not line up. (c) The continuity is restored when
point p is moved down.
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Fig. 5. (a) Relation between the width of an edge and the length of the fitted spline for different
edge lengths. (b) Relation with the size of the area that is fitted.

The exact length of a cubic Bézier curve cannot be computed by a closed formula,
but it can be ε-approximated by regularly sampling the curve. In Fig. 5 (a) and 5 (b)
the relation between the width, respectively area, of a zone and the length of the fitted
Bézier spline is plotted for different edge lengths. We note that the relationship is nearly
linear.

3 Optimal Assignment of Centered Curves

To minimize the distortion introduced by lengthening edges, curves should preferably
be centered on the edge they represent. Here we explore the effect of placing all curves
in their centered region. We assume that edge length and travel time (the desired edge
length) are given as input variables. This leaves two variables that can be used to fit
curves of the correct length: edge width (amplitude) and curve frequency.

To minimize the number of visual variables in the map, we fix either the frequency or
the edge width in the network. This directly determines a function relating the required
curve length to the opposing variable. When fitting curves, there should be no overlap
between different curves, and thus regions.

By fixing a uniform edge width across the network, the length of a curve is directly
related to the number of oscillations on the edge. Using basic geometry we can compute
the maximum edge width that still allows a non-overlapping solution. A solution with
a maximum width has a minimum frequency, which may be preferable to distinguish
oscillations (see Fig. 6 (a)). Any solution with a smaller width can be obtained through
scaling.

Instead of fixing the edge width, we can also fix the curve frequency for all edges.
This directly implies an edge width for all edges, though a too low frequency may
cause overlap between regions. To prevent overlap, we compute the minimum feasible
uniform frequency (see Fig. 6 (c)). As frequency maintains the relative edge widths, we
can apply similar geometry as before.
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(c)

(a)

(d)

(b)

Fig. 6. Expected travel times on the main highway network in the USA. The dense area in the
East of the USA overly restricts the results in the rest of the map. Placement regions are indicated
in the insets. Bottleneck regions are indicated in red. (a) Using equal edge widths. (b) Using equal
frequency.

Critical areas with a high edge density are often restricted to only a small section
of the map. The high edge density in combination with a high likelihood of delays,
however, can cause the minimum frequency for the entire map to be highly constrained.
We can add flexibility to the solution by also using the two outer triangular regions
to place the curve, instead of only the centered diamond. This allows solutions with a
lower minimum frequency, but changes the problem into an assignment problem which
we discuss in the next section.

4 Efficiently Computing Placements of Curves

xi

yi

¬xi

¬yi

Fig. 7. Assignment of vari-
ables to the zones of an edge

For each edge we have three candidate regions, a dia-
mond and two triangles, and we must choose one per
edge so that the choices do not intersect. Essentially the
same problem was studied by Poon et al. [14] for rec-
tilinear map labeling. They showed that the problem of
selecting non-overlapping regions can be transformed to
a 2-satisfiability (2-SAT) instance. In a 2-SAT instance a
Boolean formula is given that contains a conjunction of



24 K. Buchin et al.

disjunctions, where each disjunction consists of two Boolean variables or their negation.
An example of such a formula would be (¬a ∨ b) ∧ (¬c ∨ ¬b) ∧ (a ∨ ¬c). Each dis-
junction consists of at most two variables or their negation, but variables can be present
multiple times in the formula.

For each edge ei we use two Boolean variables xi and yi, where xi = TRUE if we use
the one triangle and yi = TRUE if we use the other triangle. Hence, xi = yi = FALSE

means we use the diamond (see Fig. 7). To enforce the use of one of the three options,
we add (¬xi ∨¬yi). Moreover, to ensure that we never choose intersecting triangles or
diamonds of two different edges, we make corresponding 2-SAT clauses representing
this requirement. The conjunction of all 2-SAT clauses gives a 2-SAT formula that is
satisfiable if and only if there is a choice of regions, one per edge.

Satisfiability of 2-SAT formulas can be tested in time linear in their length [17]. The
values of the Boolean variables show which placement to take for each edge. There can
be quadratically many pairs of intersecting regions, so in the worst case the formula has
quadratic length. This leads to a straightforward quadratic time solution using standard
techniques. An improvement to O(n4/3 polylogn) time is possible using advanced and
rather impractical techniques [15] (see also [10]).

4.1 Reduced Time Algorithm

We show that O(n log n) time can be achieved under a very mild realistic input assump-
tion: for each edge, the apices of its triangles and diamond have angles at least β, for
some constant β > 0. That is, regions may not be arbitrarily wide compared to their
edge length. The improvement is based on computing an equivalent 2-SAT formula that
has only linear length and that can be constructed in O(n log n) time. More precisely,
the 2-SAT formula has O(n/β2) clauses and is constructed in O((n log n)/β) time. An
overview is given in Algorithm 1.

Algorithm 1. Compute area arrangement(S, k)

1: Create 2π/β trapezoidal decompositions based on the edges.
2: Mark all zones that are intersected by an edge.
3: Create the arrangement of the valid zones.
4: Detect all overlaps between zones.
5: Generate the corresponding 2-SAT formula.

We first observe that if any edge e intersects any zone of a different edge e′, then that
zone cannot be used. Hence one or both Boolean variables of e′ must be set a certain
way to make the formula satisfiable. After finding and removing these zones, we build
the arrangement of the remaining zones and show that it has complexity O(n/β2),
implying that there will be at most that many clauses in the Boolean formula.

To determine all zones that intersect some edge, we use a number of fixed-direction
ray shooting data structures in the set of edges (edges are disjoint since our input is
planar). A fixed-direction ray shooting structure is simply a trapezoidal decomposition
preprocessed for planar point location; it can be built in O(n logn) time and supports
queries in O(log n) time. We choose a set D of δ = O(1/β) equal-spaced directions,
ensuring that every apex of a triangle or diamond has a direction in D that points to its
inside. For each direction in D we build a ray-shooting structure for that direction.
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We perform δ ray-shooting queries from each endpoint p of each edge. Whenever the
ray hits some edge e, we test if any zone of e contains p, and if so, we remove that zone.
Then we perform another 4n ray-shooting queries, one for each apex of each edge. The
direction of a ray r is toward the defining edge e. If r does not hit e as the first edge,
then we can remove that zone of e. Together all ray-shooting queries identify all zones
that cannot be used in a solution. This step takes O((n log n)/β) time in total.

We build the arrangement of all remaining zones to find intersecting pairs effi-
ciently [18]. Vertices in the arrangement are either from the remaining zones or in-
tersection points of remaining zones of different edges. The latter give rise to a clause
to be included in the 2-SAT formula. We can show with a packing argument that the
arrangement of the remaining zones has complexity O(n/β2) (see Section 4.2). Hence,
we add at most a linear number of clauses to the 2-SAT formula.

Theorem 1. Let E be a set of n disjoint edges in the plane, each with an isosceles
triangle to one side, an isosceles triangle to the other side, and a diamond with the
edge as its diagonal. If the apices of the triangles and diamond have an angle at least
β > 0, then we can find in O((n log n)/β + n/β2) time a choice of a triangle or
diamond for each edge in E such that choices of different edges do not intersect.

4.2 Packing Argument

We assume that all edges have at least an angle β at their apex and that β integrally
divides 2π. If this is not the case we can set β to be the largest value smaller than β
that does. We show that this requirement restricts the total number of overlaps possible
between remaining zones. Recall that no remaining zone intersects an edge.

Lemma 1. Let set S be a set of isosceles triangles inter-
secting an isosceles triangle T , where each element s ∈ S
has the same length sides as T . The total area that can
be covered by S is bounded by O(‖e‖2), where ‖e‖ is the
length of a side of T .

Proof. As all triangles considered are isosceles triangles,
we know that if the sides have length ‖e‖, the length of
the base is bounded by 2 ∗ ‖e‖. All points that can be cov-
ered by the intersecting triangles of T lie within a rectan-
gle with sides proportional in e (see Fig. 8). Hence, the
maximum area covered by intersecting isosceles triangles
is bounded by O(‖e‖2). ��

‖e‖

‖e‖

≤ 2 ∗ ‖e‖

‖e‖ ‖e‖≤ ‖e‖

e

Fig. 8. The maximum area
that can be covered is
bounded by O(‖e‖2)

Lemma 2. The number of remaining, larger isosceles triangles intersecting an isosce-
les triangle T with sides of length e is bounded by O(1/β2).

Proof. Define for each intersecting triangle an angle γ corresponding to the counter-
clockwise angle between its edge when encountered clockwise and the unit vector
(1, 0). We partition all intersecting triangles by the angle γ into of a set of intervals
[α, α + β], where α ∈ {i ∗ β : i is integral and 0 ≤ i ≤ 2π/β − 1}. We bound the
number of triangles within one interval by O(1/β).
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Within an interval, triangles cannot intersect. All triangles intersecting an edge have
been filtered out in the first step and their relative direction lies within an interval of
width β. All intersecting triangles are at least as large as T . We only look at the top
part of the intersecting triangles up to a length e along the sides. The total area covered
by all triangles within an interval [α, α + β] is at most as large as the area covered by
all intersecting triangles. By Lemma 1 this area is bounded by O(e2). As no triangles
overlap and each triangle has a size of at least θ(e2 ∗ β), there can be at most O(1/β)
triangles in a partition.

As each partition has O(1/β) intersecting triangles and there are O(1/β) partitions,
the number of triangles intersecting T is bounded by O(1/β2). ��
Lemma 3. When all areas are valid and have at least an angle β at their apex, the
number of overlapping pairs of areas is at most O(n/β2).

Proof. For each pair of overlapping outer areas, we count the overlap towards the
smaller triangle. By Lemma 2 it follows that the number of outer areas pairwise over-
lapping is bounded by O(1/β2) for each outer area. Thus, the total number of outer
areas pairwise overlapping is at most O(n/β2). As the number of overlaps for the outer
areas is bounded by O(n/β2), the same must hold for intersections with the inner area.
The total number of areas overlapping is bounded by O(n/β2). ��

5 NP-Hardness

The algorithm in Section 4 computes a valid choice of regions if one exists. It does not,
however, have any preference for what region is selected on an edge. Ideally we would
want to maximize the number of regions placed in a centered position, the diamonds.
Unfortunately, maximizing this number is NP-hard. We first prove that the problem is
NP-hard even if all edges have a uniform length. Our construction, however, requires
that some edges have a width to length ratio that is strictly larger than 1. We then prove
that the problem is NP-hard even if all edges have an arbitrarily small width to length
ratio. This, however, requires edges to have non-uniform lengths. Both versions of the
problem are reduced from planar maximum 2-SAT [19]. We describe the gadgets that
we use to encode variables, clauses, and wires between variables and clauses.

Bounded Length to Width Ratio. Fig. 9 illustrates the construction of the first version
of the problem. The variable gadget consists of four edges whose diamonds intersect in
a cycle (see Fig. 9 (a)). A variable gadget has two valid configurations, neither of which
uses diamonds (see Fig. 9 (c)). These configurations encode the TRUE and FALSE states
of the variable. The number of edges in a variable gadget can be increased to allow more
wires to connect.

The clause gadget consists of two parallel edges with overlapping diamonds (see
Fig. 9 (b)). The two incoming wires represent the two literals used in the clause. If a
literal in a clause is FALSE (resp. TRUE), we ensure that the last edge in the wire gad-
get must choose (resp. need not choose) a triangle region intersecting the clause gadget.
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b =True c =False

(a ∨ b) (b ∨ c)

in in
a =True

(a)

(b) (c)

Fig. 9. Gadgets for variables and clauses, and solution for the formula (a ∨ b) ∧ (b ∨ c)

(c)

in in

(a) (b)

Fig. 10. Gadgets for second version: (a) zoomed in on part of the variable, (b) variable, (c) clause

Consequently, the diamond of the corresponding edge in the clause gadget cannot (resp.
can) be selected (see Fig. 9 (c)). If both literals in a clause are TRUE, still only one of
the diamonds can be selected as they overlap. Hence, if a clause is satisfied, the clause
gadget can select one diamond; otherwise none.

The wire gadget consists of a sequence of edges with overlapping regions. Each
diamond of an edge intersects the triangles of the previous and next edge. A wire gadget
has two valid states: either all diamonds are selected or all triangles pointing from the
variable to the clause. We connect each wire to a clause-variable pair such that the
center regions of the wire can only be selected if the corresponding literal is TRUE.
For each wire gadget that we use, we introduce a counter-wire gadget. It has the same
length as the wire gadget and solely connects to the opposite assignment of the variable.
Therefore, the summed number of diamonds selected in a wire gadget and its counter-
wire gadget does not depend on the truth assignment.

Hence, maximizing the number of diamonds in the complete construction (see
Fig. 9 (c)) corresponds to maximizing the number of satisfied clauses.

Arbitrary Length to Width Ratio. Now, edges may have an arbitrary length to width
ratio, but also different lengths. Our NP-hardness construction is equal to the first ver-
sion but uses slightly different gadgets.
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α
γ we

2

we

2

Fig. 11. 2α < γ

The variable gadget is shown in Fig. 10 (b). Edges are
placed around a common vertex, such that consecutive dia-
monds intersect, while the triangles do not cross the neigh-
boring edges (see Fig. 10 (a)). This is always possible as the
angle γ of a triangle is smaller than the sum of the angles
of the two involved halves of the neighboring diamonds (2α)
(see Fig. 11). By interspersing long edges with short edges in
the gadget, we leave space for connecting wires.

The clause gadget is similar to the clause gadget in the first reduction, but rotated by
90 degrees and slightly shifted in opposite directions (see Fig. 10 (c)). As the two edges
in the clause gadget are shifted, we can always connect the wires to the clause.

Theorem 2. Let E be a set of n disjoint edges in the plane, each with an isosceles
triangle to one side, an isosceles triangle to the other side, and a diamond with the
edge as its diagonal. The problem of choosing a triangle or diamond for each edge in
E such that choices of different edges do not intersect and maximizing the number of
diamonds chosen is NP-hard.

6 Heuristics

Exactly computing the optimal setting that maximizes the number of regions in center
position is not feasible in polynomial time. Heuristics try to optimize the number of
centered edges, but give no optimality guarantee. Thus, they are able to reach polyno-
mial running-times. In this section we present several heuristics that aim to maximize
the number of centered edges.

First, note that if an edge intersects a zone of a different edge, this zone can never be
part of a solution. We remove these zones by setting the corresponding variables, thus
reducing the search space. Edges where the center zone does not intersect any other
zone, can safely be selected and are also set. The same holds for clusters of edges that
have non-overlapping center regions and only overlap the rest of the instance with their
off-center regions.

Second, note that it is never advantageous to set an edge to an off-center position.
Hence, we check only the effects of setting an edge to the center position. This may,
however, force other edges to be set off-center. We test three heuristics that attempt to
minimize the constrains placed on the solution space:

H1 Select the edge that invalidates the fewest regions among other edges.
H2 Select the edge that invalidates the fewest possible center regions.
H3 Select the edge that has the lowest ratio between option 2 and 1.

As selecting an area may have consequences that reach far across the network, we
cannot test the result of a selection locally. Instead we use the 2-SAT representation
of the input. The variables that correspond to the selected area are set and this infor-
mation is propagated across the 2-SAT formula. Subsequently simplifying the 2-SAT
formula prevents areas from being selected that would lead to invalid results. Using
this approach we can guarantee that we always obtain a valid solution for the problem,
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Table 1. Number of edges in center position for the different heuristics

Scenario (number of edges) Optimal H1 H2 H3

Los Angeles Highway Network (133) 128 128 128 128
Netherlands Highway Network (118) 105 105 105 105
India Railroad Network (148) 143 143 143 143
USA Main Highways (136) 118 118 118 118

Percentage of cases solved optimal (50 cases) - average error

Random square 11 (120) 100% - 0 66% - 1.2 80% - 1.2 88% - 1.0
Random square 13 (168) 100% - 0 70% - 1.0 76% - 1.0 86% - 1.0
Random square 15 (224) 100% - 0 77% - 1.2 86% - 1.0 93% - 1.3

Fig. 12. Random grid-based scenario of size
11 by 11

if one exists. Given the realistic input as-
sumptions discussed in Section 4.1, testing
the effect of setting an edge can be done
in O(n2) time, where n is the number of
edges. Hence, we obtain an algorithm for
all three heuristics that runs in O(n3) time.
As the expected input scenarios are rela-
tively small, this running time is reasonably
fast. By comparison, all heuristics solved
the test-scenarios within a few seconds, the
brute-force approach, however required up
to half a day to optimally solve a scenario.

As an informal use case test, we tested
our heuristics on three scenarios based on
real-life data. These scenarios are relatively
easy to solve due to the inherent uneven dis-
tribution of dense areas. In Los Angeles, for
example, nearly 90% of the center regions do not intersect any other edge. To test the
behavior of the heuristic in more complex situations we also compute solutions for sev-
eral more complex, randomly-generated scenarios. Each random scenario consists of a
grid of vertices of size m by m, where all odd columns and rows are connected by edges
(see Fig. 12). Edges are attributed a random width in the range (0, 10) and then scaled
to the largest size that allows a solution. For comparisons, we compute the optimum
solution using a brute-force approach. We create 50 random scenarios of each type and
compute the percentage of scenarios solved to optimality by the heuristics, as well as
the average error when optimality is not reached, see Table 1.

For the real-life scenarios all heuristics are able to solve the problem to optimality,
since the uneven distribution of density makes them considerably more tractable. Yet
even for the more complex, artificial scenarios we manage high accuracy, which is
probably caused by the geometry of the problem. The center position of an edge is
likely to least constrain the rest of the problem and complex constructions that favor
other allocations are less likely to occur in practice.
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15:00 15:15

15:30 15:45

Fig. 13. By interpolating the control points of the curve we can generate fluent transitions in both
frequency and amplitude. A fraction of the LA dataset is shown.

7 Animating Time-Dependent Data

When the distorted edge length to be displayed changes over time, for example due to
traffic conditions, an animation of these changes may give more intuitive information
on the underlying processes. Our linear cartograms are very suitable for animations.
Here we describe how to use the heuristics from the previous section to create animated
data. Further results can be found online1.

Once more, we first look at the fixed width version and then investigate the fixed
frequency version. For animated data, however, the fixed frequency approach appears
to be less suitable. There is an increased computational requirement to maintain legal
solutions and if the algorithm is run online, we can not guarantee a single consistent
frequency across the network.

Fixed Width. Given an input graph we can compute either the maximum edge-width
that allows a feasible solution or the maximum edge-width that allows all edges to be
centered (see Section 3). As this width is independent of the delay along the edges, it can
be computed beforehand and is maintained throughout the animation. All future steps
solely alter the frequency along edges. We apply a fluent transition between different
states by linearly interpolating the control points of the curves. Additional oscillations
are introduced by adding degenerate curves, having all control points at either endpoint
of the edge, before interpolating (see Fig. 13).

1 http://www.win.tue.nl/˜agoethem/linear cartograms/, May, 2014

http://www.win.tue.nl/~agoethem/linear_cartograms/
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A disadvantage of fixed edge-widths is that the frequency on some edges may be-
come too high. In extreme cases, increasing the frequency can cause problems with
visualization.

Fixed Frequency. An alternative to fixed edge-width is using a fixed frequency. We as-
sume, for now, that in each situation a valid configuration exists. Over time the data, and
thus the width of edges, will change. If the changes are significant this may cause the
current configuration to become invalid. While we can compute a valid configuration,
a large change in configuration will create overly complex animations. The number of
changes in the selected zones should be minimized. To minimize zone changes we, once
more, make use of the heuristics described in Section 6. Instead of the center position,
the number of edges that maintain their “current” position is maximized.

If the width of the edges is significantly increased, no valid configuration may exist
anymore. To obtain a feasible solution the curve frequency must be increased. Increas-
ing the global frequency, however, creates a large overall change. This risks a visual
disconnection between two consecutive states and causes undue attention to be drawn
to areas without any significant change. Instead, we increase the frequency of only
the invalidating edges. To maintain visual balance, all invalidating edges are set at the
same frequency, which is the minimal frequency that generates a feasible solution. As
a consequence, at any moment during the animation we display at most two discrete
frequencies. A different approach would be to compute the minimum frequency that
satisfies all steps beforehand. However, overly increasing the frequency to suit the most
restricting time step may reduce visual clarity in less constricted time steps and prevents
the algorithm from being run online.

8 Discussion

We introduced a new type of linear cartogram where edges are drawn as sinusoid curves
such that their length corresponds to travel time. We assumed that the regions occupied
by these curves are triangular or diamond-shaped, and that the curves areC2-continuous
cubic Bézier splines. However, our approach applies to other visual styles as well (e.g.,
a piecewise linear curve zigzagging in the middle of an edge). The extension to using
more than three regions per edge is straightforward, similar to [14]. Interestingly, our
improvement under the realistic input assumption can also be used to speed up the line
labeling problem in [15].

The optimization problem of maximizing the number of edges that use the centered
region is NP-hard. Hence we introduced several heuristics and showed that they work
efficiently in practice. Finally, we discussed how to create animations based on time-
dependent data. The results give a clear and concise representation of the data without
compromising the integrity of the map.

The benefit of our method over traditional edge coloring lies in the comparison of
different paths through the network. As length is additional, in contrast to color, it is
simpler to compare the required time investment of different paths. This observation,
however, hinges on two key aspects. Firstly, the perceived distance between two points
in a network should equal the sum of the edge lengths. Research into the distance-
similarity metaphor [20] appears to indicate that in a network indeed edge length is
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used as a measure of distance. Secondly, users should be able to accurately estimate
the length of a regular sinusoid curve. When the frequency is fixed across the network,
the edge area, instead of edge width, is related to the length of an edge. It is unclear if
users intuitively will compare the size of the described areas and, therefore, are able to
accurately compare the length of different edges. For a fixed edge width the comparison
appears to be more intuitive, inherently turning into a symbolization for density on the
edges.

While a formal user evaluation was not the main goal of this paper, for future work
we recommend further exploration of the effects of this new method. To validate the
applicability the perceived length of both types of regular sinusoid curves should be in-
vestigated. We note that our method is not restricted to using the exact length. Overem-
phasizing or underemphasizing edge length to compensate for the perceived length can
easily be integrated in the method. Furthermore, a more complete and systematically se-
lected dataset should be evaluated to explore the possible interplay effects with different
scenarios.

From an algorithmic perspective for future work it would be interesting to see if a
polynomial-time approximation algorithm would be possible maximizing the number of
edges in center position. The problem, however, appears to be quite hard as choices can
have consequences that reach far across the network. In contrast to many map-labeling
problems, we require that all edges select an option, causing choices to propagate along
the network. Another direction for future work is to determine if there are restrictions
under which we can solve the problem optimally. All real-life scenarios investigated
were solved near optimal by the heuristics introduced. If we could show that (most)
real-life scenarios adhere to stricter input restrictions, the problem might not be NP-
hard under those restrictions.

Acknowledgments. The authors would like to thank all reviewers for their extensive
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of graphs. Journal of Graph Algorithms and Applications 16(1), 37–83 (2012)

12. Nielsen, C., Jackman, S., Birol, I., Jones, S.: Abyss-explorer: visualizing genome sequence
assemblies. IEEE Transactions on Visualization and Computer Graphics 15(6), 881–888
(2009)

13. Wolff, A., Strijk, T.: The map labeling bibliography (2009),
http://liinwww.ira.uka.de/bibliography/
Theory/map.labeling.html

14. Poon, C.K., Zhu, B., Chin, F.: A polynomial time solution for labeling a rectilinear map.
Information Processing Letters 65(4), 201–207 (1998)

15. Strijk, T., van Kreveld, M.: Labeling a rectilinear map more efficiently. Information Process-
ing Letters 69(1), 25–30 (1999)

16. Saux, E., Daniel, M.: Data reduction of polygonal curves using B-splines. Computer-Aided
Design 31(8), 507–515 (1999)

17. Aspvall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)

18. Halperin, D.: Arrangements. In: Handbook of Discrete and Computational Geometry. Chap-
man & Hall/CRC (2004)

19. Guibas, L., Hershberger, J., Mitchell, J., Snoeyink, J.: Approximating polygons and subdivi-
sions with minimum-link paths. International Journal of Computational Geometry & Appli-
cations 3(4), 383–415 (1993)

20. Fabrikant, S., Montello, D., Ruocco, M., Middleton, R.: The distance–similarity metaphor
in network-display spatializations. Cartography and Geographic Information Science 31(4),
237–252 (2004)

http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html
http://liinwww.ira.uka.de/bibliography/Theory/map.labeling.html

	Travel-Time Maps: Linear Cartograms with Fixed Vertex Locations
	1 Introduction
	2 Preliminaries on Fitting Curves
	3 Optimal Assignment of Centered Curves
	4 Efficiently Computing Placements of Curves
	4.1 Reduced Time Algorithm
	4.2 Packing Argument

	5 NP-Hardness
	6 Heuristics
	7 Animating Time-Dependent Data
	8 Discussion
	References




