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Abstract. Given a spatial network and a collection of activities (e.g., pedestrian
fatality reports, crime reports), Significant Route Discovery (SRD) finds all short-
est paths in the spatial network where the concentration of activities is unusually
high (i.e., statistically significant). SRD is important for societal applications in
transportation safety, public safety, or public health such as finding routes with
significant concentrations of accidents, crimes, or diseases. SRD is challenging
because 1) there are a potentially large number of candidate routes (∼ 1016) in
a given dataset with millions of activities or road network nodes and 2) signifi-
cance testing does not obey the monotonicity property. Previous work focused on
finding circular areas of concentration, limiting its usefulness for finding signifi-
cant linear routes on a network. SaTScan may miss many significant routes since
a large fraction of the area bounded by circles for activities on a path will be
empty. This paper proposes a novel algorithm for discovering statistically signif-
icant routes. To improve performance, the proposed algorithm features algorith-
mic refinements that prune unlikely paths and speeds up Monte Carlo simulation.
We present a case study comparing the proposed statistically significant network-
based analysis (i.e., shortest paths) to a statistically significant geometry-based
analysis (e.g., circles) on pedestrian fatality data. Experimental results on real
data show that the proposed algorithm, with our algorithmic refinements, yields
substantial computational savings without reducing result quality.

1 Introduction

Significant Route Discovery (SRD) has important societal applications in transportation
safety, public safety, or public health such as finding routes with significant concentra-
tions of accidents, crimes, or diseases. In transportation safety, domain experts attribute
pedestrian fatalities largely to the design of streets, which have been engineered for
speeding traffic with little or no provision for people on foot, in wheelchairs, or on
bicycles [1]. In urban areas, more than 56% of the pedestrian fatalities in the US (2007-
2008) occurred on arterial roads [1]. Figure 1(a) shows an example of a pedestrian at
risk on a road without proper sidewalks. This lack of basic infrastructure can be lethal.
Figure 1(b) shows a map of pedestrian fatalities that occurred on Orlando roads from
2000 - 2009. Transportation planners and engineers need tools to assist them in identify-
ing which frequently used road segments/stretches pose significant risks for pedestrians
and consequently should be redesigned.
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(a) (b)

Fig. 1. (a) Pedestrian at risk on a road without proper sidewalks [1] (b) Pedestrian fatalities oc-
curring on arterials in Orlando, FL [2]. A large fraction of the bounding circles (e.g., C1, C2) of
significant routes are empty.

Informally, the Significant Route Discovery (SRD) problem can be defined as fol-
lows: given a spatial network, a collection of activities (e.g., pedestrian fatality reports,
crime reports), and a likelihood threshold θ, find all shortest paths in the spatial network
where the concentration of activities is unusually high (i.e., statistically significant) and
the likelihood exceeds θ. Depending on the domain, an activity may be the location of a
pedestrian fatality, a carjacking, a train accident, etc. Figures 2(a) and 2(b) illustrate an
input and output example of SRD, respectively. The input consists of seven nodes, six
edges (with edge weights set to 1 for illustration purposes, shown as the second num-
ber on each edge), twenty activities (shown as the first number in red on each edge),
and θ = 2, indicating that we are interested in shortest paths whose likelihood exceeds
θ = 2. The output contains two shortest paths, 〈N1, N2, N3〉 and 〈N6, N5, N7〉 that are
at least twice as likely to have pedestrian fatalities.

(a) Input (b) Output

Fig. 2. Example of Significant Route Discovery

SRD is challenging due to the potentially large number of candidate routes (∼ 1016)
in a given dataset with millions of activities or road network nodes. For large roadmaps
such as the 100 million road-segments in the US, this results in prohibitive shortest
path computation times. Additionally, significance testing does not obey the mono-
tonicity property, meaning that there is no ordering between the likelihood of a path
and its super-paths, or vice-versa. In other metrics such as activity count, for example,
a path will always have less than or equal to the number of activities of its super-paths,
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a property which may be exploited for computational speedup. However, this prop-
erty does not hold for significance testing. Furthermore, depending on the method used
to determine statistical significance, computation times may also be impacted (e.g.,
m = 1000 Monte Carlo simulations may be required to calculate statistical signifi-
cance).

Related Work and their Limitations. Dividing spatial data into statistically significant
groups is an important task in many domains (e.g., transportation planning, public
health, epidemiology, climate science, etc.). Previous methods for this type of parti-
tioning have generally been geometry-based [3–6] or network-based [7–10].

Geometry-based techniques [3, 4, 6] partition spatial data using geometric shapes
(e.g., circles, rectangles). This is useful in domains such as public health, where find-
ing spatial clusters with a higher density of disease is of interest for understanding the
distribution and spread of diseases, outbreak detection, etc. Kulldorff, et al proposed
a spatial scan statistics framework for disease outbreak detection [3]. The spatial scan
statistic employs a likelihood ratio test where the null hypothesis is the probability that
disease inside a region is the same as outside, and the alternate hypothesis is that there
is a higher probability of disease inside than outside. All the spatial regions, represented
by a circle or ellipsoid in the spatial framework, are enumerated and the one that max-
imizes the likelihood ratio is identified as a candidate. However, if we apply SaTScan
to a road network, many significant routes may be missed since a large fraction of the
area bounded by circles for activities on a path will be empty, as shown in Figure 1(b).
Furthermore, geometry-based techniques may not be appropriate for modeling linear
clusters, which are formed when the underlying generator of the phenomena is inher-
ently linear (e.g., pedestrian fatalities, railroad accidents, etcetera).

Network-based techniques [7–10], on the other hand, leverage the underlying spatial
network when partitioning spatial data. For example, Linear Intersecting Paths (LIP) [9]
and Constrained Minimum Spanning Trees (CMST) [7] utilize a subgraph (e.g., a path
or tree) to discover statistically significant groups.

(a) (b) (c)

Fig. 3. Example (a) Input, (b) Output of Linear Intersecting Paths (LIP) [9], (c) Output of Con-
strained Minimum Spanning Trees (CMST) [7] (Best in color)

In LIP [9], one anomalous sub-component of a set of connected paths that inter-
sect each other is discovered. The connected paths are based on locations in the spatial
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network with the highest percentage of activities, specified by the user. Hence the like-
lihood ratio is only evaluated on a portion of the graph specified by this percentage,
not the entire spatial network. Figure 3 shows an example input and output of LIP.
The user-specified percentage is 30%, which means all the candidates will have paths
containing edge 〈N1, N2〉 since this edge has six activities (out of a possible 20 activi-
ties). Examples of possible candidates are 〈N1, N2, N3〉, 〈N1, N2, N5〉, 〈N2, N1, N4〉,
〈N1, N2, N5, N7〉, etc. The output is 〈N1, N2, N3〉, since it has the highest likelihood
(Section 2 details how the likelihood ratio is calculated). However, in addition to return-
ing only one statistically significant component, the results of this approach are sensitive
to the percentage of the network selected. If the percentage is too high, the number of
candidates may be highly restricted, which could result in not identifying statistically
significant regions of interest. If the percentage is too low, LIP may be computationally
prohibitive due to the large number of candidates.

CMST [7] finds one statistically significant tree in the spatial network. Figure 3(c)
shows an example of this approach. Here the output is 〈N1, N2, N3〉, since this tree has
the highest likelihood. However, in addition to returning only one statistically signifi-
cant tree, the size of the tree is restricted, which could result in not identifying statisti-
cally significant regions of interest.

In contrast to previous methods, the proposed approach finds multiple statistically
significant routes in the spatial network.

Contributions. Our contributions are summarized as follows:

– We introduce the problem of significant route discovery using shortest paths.
– We propose the Smart Significant Route Miner (SmartSRM) algorithm with algo-

rithmic refinements that improve performance by pruning unlikely paths and speed-
ing up Monte Carlo simulation. SmartSRM finds multiple significant routes in the
spatial network.

– We present a case study comparing the proposed significant network-based anal-
ysis (i.e., shortest paths) to a significant geometry-based analysis (e.g., circles) on
pedestrian fatality data.

– Experimental results on real data show that the proposed algorithm, with our re-
finements, yields substantial computational savings over a naı̈ve approach without
reducing result quality.

Scope and Outline of the Paper. This work focuses on finding significant discrete activ-
ity events (e.g., pedestrian fatalities, crime reports) associated with a point on a network.
This does not imply that all activities must necessarily be associated with a point in a
street. In addition, other network properties such as GPS trajectories and traffic den-
sities of road networks [11] are not considered. In this work, it is assumed that the
number of activities on the road network is fixed and does not change over time. A
dynamically changing number of activities is presently beyond the scope of this re-
search, as are techniques that do not explore statistical significance (e.g., DBScan [12],
K-Means [13], KMR [14], and Maximum Subgraph Finding [15]). Furthermore, resolv-
ing activity hotspots to the sub-arc level requires a dynamic segmentation data model
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(currently not explored) that will introduce additional nodes and may create a compu-
tational bottleneck. Finally, modeling stochastic route choice (where one or several of
the edge attributes are not deterministic [16]) also falls outside the scope of this paper.

The paper is organized as follows: Section 2 presents the basic concepts and problem
statement of SRD. Section 3 presents both the Naı̈ve and Smart Significant Route Miner
algorithms to solve SRD. Section 4 presents a case study comparing the proposed sig-
nificant network-based output (i.e., shortest paths) to a significant geometry-based out-
put (e.g., circles) on pedestrian fatality data. The experimental evaluation is covered in
Section 5. Section 6 presents a discussion. Section 7 concludes the paper and previews
future work.

2 Basic Concepts and Problem Statement

This section introduces several key concepts in SRD and presents a formal problem
statement.

2.1 Basic Concepts

We define our basic concepts as follows:

Definition 1. A spatial network G = (N,E) consists of a node set N and an edge
set E, where each element u in N is associated with a pair of real numbers (x, y)
representing the spatial location of the node in a Euclidean plane [17]. Edge set E is a
subset of the cross product N ×N . Each element e = (u, v) in E is an edge that joins
node u to node v.

Figure 2(a) shows an example of a spatial network where circles represent nodes and
lines represent edges. A road network is an example of a spatial network where nodes
represent street intersections and edges represent streets.

Definition 2. An activity set A is a collection of activities. An activity a ∈ A is an
object of interest associated with only one edge e ∈ E.

In transportation planning, an activity may be the location of a pedestrian fatality; in
crime analysis, an activity may be the location of a theft. Each edge in Figure 2(a) is
associated with a number of activities (e.g., edge 〈N1, N2〉 has 6 activities).

Definition 3. The activity coverage inside a path, ap, is the number of activities on p.
The activity coverage outside p is |A| − ap, where |A| is the total number of activities
in the spatial network, G.

For example, in Figure 2(a), the activity coverage inside path 〈N1, N2, N3〉 is 11
whereas the activity coverage outside 〈N1, N2, N3〉 is 20− 11 = 9.

Definition 4. The weight inside a path, wp, is the sum of weights of all edges in p.
The weight outside p is |W | − wp, where |W | is sum of weights of all edges in G.
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In Figure 2(a), the weight inside 〈N1, N2, N3〉 is 2 whereas the weight outside
〈N1, N2, N3〉 is 7− 2 = 5.

Definition 5. The likelihood ratio of path p, λp =
ap÷wp

(|A|−ap)÷(|W |−wp)
[3, 10].

The likelihood ratio of path p, λp, is the ratio of the activity density inside path p to the
activity density outside p. Activity density may be estimated in different ways across
different domains. In transportation planning, activity density inside p may be estimated
using ap

VMT , where VMT is vehicle miles traveled (i.e., the total number of miles driven
by all vehicles within a given time period and geographic area). Path weight may also
be used to estimate activity density [10]. In Figure 2(a), λ〈N1,N2,N3〉 =

11÷2
9÷5 = 3.05.

Definition 6. An active edge is an edge e ∈ E that has 1 or more activities. An active
node is a node u joined by an active edge. An inactive node is a node that is not joined
by any active edges.

Edges 〈N1, N2〉 and 〈N2, N3〉 in Figure 2(a) are active edges because they each have at
least one activity, and nodes N1, N2, N3, N5, N6, and N7 are all active nodes because
they are all joined by active edges. By contrast, Node N4 is an inactive node because it
is not joined by any active edges.

Definition 7. A super-path of path p is any path sp that contains p, where sp is a
subset of G. A sub-path is a path making up part of the super-path.

For example, in Figure 2(a), 〈N1, N2, N5, N6〉 and 〈N1, N2, N5, N7〉 are super-paths
of 〈N1, N2, N5〉. Conversely, 〈N1, N2, N5〉 is a sub-path of 〈N1, N2, N5, N6〉.

2.2 Problem Statement

The problem of Significant Route Discovery (SRD) can be expressed as follows:

Given.

1. A spatial network G = (N,E) with activity count function a(u, v) ≥ 0 and weight
function w(u, v) > 0 for each edge e = (u, v) ∈ E (e.g., network distance),

2. A likelihood ratio (λ) threshold, θ,
3. A p-value,
4. m, indicating the number of Monte Carlo simulations

Find. All routes r ∈ R with λr ≥ θ and a p-value significance level

Objective. Computational efficiency

Constraints.

1. Each route r ∈ R is a shortest path between its end-nodes,
2. ri ∈ R is not a subset of any rj ∈ R ∀ri, rj ∈ R where ri �= rj ,
3. Each route r ∈ R starts and ends with active nodes,
4. Correctness and completeness
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The spatial network input for SRD is defined in Definition 1. The θ input is a thresh-
old indicating the minimum desired likelihood ratio. The p-value input is the desired
level of statistical significance and m indicates the number of Monte Carlo simulations
for determining statistical significance. The output for SRD are all shortest paths meet-
ing the desired likelihood ratio and level of statistical significance. The shortest paths
returned are constrained so that they are not sub-paths of any other path in the output.
This constraint aims to improve solution quality by reducing redundancy in the paths
returned. The output is also constrained such that the shortest paths returned start and
end with active nodes. This constraint also aims to improve solution quality by ignoring
edges at the start and/or end of a path that do not have any activities.

Example. The network in Figure 2(a) can be viewed as a road network, composed of
streets (edges) and intersections (nodes). The aim is to find significant shortest paths
that meet the given likelihood threshold of 2. In other words, find shortest paths that
are twice as likely to have pedestrian fatalities. In a transportation planning scenario,
identifying such routes would guide street redesign efforts to reduce the risk of pedes-
trian fatalities (e.g., adding sidewalks, crosswalks, pedestrian refuges, street lighting,
etcetera). In Figure 2(b), routes 〈N1, N2, N3〉 and 〈N6, N5, N7〉 are returned since they
are shortest paths whose likelihood exceeds θ = 2, they start and end with active nodes,
and they are not sub-paths of any other path in the output.

In an alternative formulation of the problem, the spatial network may be modeled
with an activity count function a(u) ≥ 0 for each node. The idea is that activities may
also occur at nodes in addition to being distributed within network edges. In this way,
the current approach may be extended to capture activities at nodes (e.g., vehicle acci-
dents). If activities are modeled as counts at each node, this may alter the computational
structure. We plan to investigate this in future work.

3 Proposed Approach

First we describe a naı̈ve version of our miner, Naı̈ve Significant Route Miner
(Naı̈veSRM). Then we present our proposed Smart Significant Route Miner (Smart-
SRM) with its two algorithmic refinements, Likelihood Pruning and Monte Carlo
Speedup.

3.1 Naı̈ve Significant Route Miner (Naı̈veSRM) Algorithm

Algorithm 1 presents the pseudocode for the Naı̈veSRM approach. The basic idea be-
hind the algorithm is to find all statistically significant shortest paths in the spatial net-
work whose likelihood exceeds θ, under the constraints that the shortest paths returned
are a) not sub-paths of any other path in the output and b) both start and end with active
nodes. Algorithm 1 proceeds by calculating all shortest paths, P , in the spatial network
(Line 1). Line 2 evaluates each shortest path in P to determine if it meets the given
likelihood threshold θ to form a Candidates set. In line 3, the statistical significance
of each shortest path in Candidates is evaluated and the significant routes are stored
in SigRoutes. In order to assess statistical significance, all shortest paths in each of the
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Algorithm 1. Naı̈ve Significant Route Miner (Naı̈veSRM) Algorithm
Input:

1) A spatial network G = (N,E) with activity count function a(u, v) ≥ 0 and
weight function w(u, v) > 0 for each edge e = (u, v) ∈ E (e.g., network distance),
2) A likelihood ratio (λ) threshold, θ,
3) A p-value threshold,
4) m, indicating the number of Monte Carlo simulations

Output:
All routes r ∈ R with λr ≥ θ and p-value significance level

Algorithm:
1: {Step 1:} P ← calculate all-pairs shortest path in G
2: {Step 2:} Candidates ← paths in P starting and ending with active nodes having

λ ≥ θ
3: {Step 3:} SigRoutes ← significant paths in Candidates using m Monte Carlo

simulations
4: {Step 4:} return paths that are not sub-paths of any other path in SigRoutes

m simulated graphs are used to calculate the p-value. In line 4, all paths in SigRoutes
that are not sub-paths of any other path in SigRoutes are returned, and the algorithm
terminates. The purpose of returning significant routes that are not sub-paths of any
other path is to improve solution quality. For example, if 〈N1, N2〉 and 〈N1, N2, N3〉
are both found to be significant, only 〈N1, N2, N3〉 is returned.

Naı̈veSRM Example. Figure 4 shows an example execution trace of Naı̈veSRM. The
spatial network has 7 nodes, 6 edges, and 20 activities, represented by the first number
in red on each edge (e.g., edge 〈N1, N2〉 has six activities). The given likelihood ratio
threshold θ is set to 2 and the p-value is set to 0.05.

Fig. 4. Execution trace of Naı̈ve Significant Route Miner (Naı̈veSRM). Circles represent nodes
and lines represent edges (Best in color).

In step 1 of Figure 4, all shortest paths in the given spatial network are calculated.
For example, the shortest path between nodes N1 and N3 is 〈N1, N2, N3〉. Next, in
step 2, the likelihood ratio, λ, for each shortest path is determined (see Definition 5)
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and those whose λ ≥ θ are stored as candidate solutions. In the figure, the five high-
lighted paths 〈N1, N2〉, 〈N1, N2, N3〉, 〈N2, N3〉, 〈N5, N7〉, and 〈N6, N5, N7〉 are all
candidates since their likelihood ratios meet or exceed the threshold of 2. In step 3,
the statistical significance of each candidate is calculated using Monte Carlo simula-
tions (discussed next). All five candidates meet the p-value threshold of 0.05. In step 4,
the paths among significant paths that are not sub-paths of any other path are returned.
In this example, paths 〈N1, N2, N3〉 and 〈N6, N5, N7〉 are returned. Paths 〈N1, N2〉,
〈N2, N3〉, and 〈N5, N7〉 were not returned (even though they met and exceeded the
likelihood and p-value thresholds) because they are each sub-paths of the two paths that
were returned.

Finding Significant Paths. Each shortest path in SRM is evaluated for statistical sig-
nificance using Monte Carlo simulations to determine whether or not it is truly anoma-
lous. Here the null hypothesis states that the paths identified by SRM are random or by
chance alone. The likelihood ratio is associated with a p-value to decide whether the
null hypothesis should be rejected in the hypothesis test. The p-value is the probability
of obtaining a value of a given likelihood ratio as equally or more extreme than that
observed by chance alone.

In the Monte Carlo simulations, each activity in the original graph G is randomly
associated with an edge so that the number of activities on each edge is shuffled, forming
a new graph Gs. Note that all the activities in G are present in Gs, with no activities
added or removed; the original activities in G are now shuffled so they may be on
different edges in Gs. We then compare the highest likelihood threshold λmaxGs of
randomized Gs with the highest λmaxG of original G. If the original one is smaller
(i.e., λmaxG < λmaxGs), then p = p+ 1. The above process repeats m times and after
it terminates, the p-value is subsequently p/m. Paths whose p-values are less than or
equal to the given p-value threshold are deemed statistically significant.

3.2 Smart Significant Route Miner (SmartSRM) Algorithm

Algorithm 2 presents the pseudocode for the proposed SmartSRM approach. The al-
gorithm features two key ideas for achieving computational savings while maintaining
result quality: Likelihood Pruning and Monte Carlo Speedup.

Likelihood Pruning: Likelihood pruning aims to avoid calculating all shortest paths
in G based on the given threshold θ. It is based on the idea that for each shortest path p,
it is possible to determine an upper bound likelihood ratio for the super-paths rooted at
p’s start node, without calculating those super-paths.

Definition 8. The upperbound likelihood ratio for path p, λ̂p =
âp÷ŵp

(|A|−âp)÷(|W |−ŵp)
,

where âp = ap + (|A| − at) (where at is the number of activities in the shortest path
tree rooted at p’s source node) and ŵp is the weight of the shortest super-path of p,
rooted at p’s start node.

The intuition behind the upper bound likelihood ratio for path p is that (1) the number
of activities on all of p’s super-paths rooted at p’s start node are bounded by the number
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of activities in the spatial network minus the number of activities in the current shortest
path tree rooted at the source node in p and (2) the weight of any super-path of p is at
least the weight of the closest edge to p plus p’s weight.

Algorithm 2. Smart Significant Route Miner (SmartSRM) Algorithm
Inputs and Outputs for SmartSRM are same as Naı̈veSRM
Algorithm:
{Step 1: Likelihood Pruning}

1: for each s ∈ active nodes in G do
2: Initialize D[v] ← inf; Pred[v]← ∅; Λ̂[v]← θ; a[v]← 0; at ← 0; D[s]← 0; PQ←

N
3: while PQ �= ∅ do
4: u ← node in PQ with smallest distance in D[]; P ← shortest path (s, u) in

Pred[]
5: at ← at+ number of activities on edge Pred[u]

6: if Λ̂[v] ≥ θ then
7: for each v adjacent to u do
8: sum ← D[u] + w(u, v)
9: if sum < D[v] then
10: D[v]← sum; update v’s position in PQ based on sum; Pred[v]← u
11: a[v]← a[u] + a(u, v); ŵ ← sum+ weight of closest neighbor w(u, v)

12: Λ̂[v]← calculate ˆλsv based on a[v], at and ŵ

13: {Step 2:} Candidates ← paths in P starting and ending with active nodes
having λ ≥ θ
{Step 3: Monte Carlo Speedup}

14: λmaxG ← highest likelihood ratio in G
15: for each simulation1....simulationm do
16: Gs ← assign activities in G to random edges
17: λmaxGsi

← 0

18: for each shortest path p ∈ Gs do
19: if λp > λmaxGsi

then

20: λmaxGsi
← λp; pmaxr ← pmaxr + 1

21: if pmaxr/N ≤ p-value threshold then return ∅
22: if λp > λmaxG then break

23: for each route r ∈ Candidates do
24: if λmaxGsi

> λmaxG then pr ← pr + 1

25: for each route r ∈ Candidates do
26: if pr/N ≤ p-value threshold then SigRoutes ← r

27: {Step 4:} return paths that are not sub-paths of any other path in SigRoutes

Lines 1-12 of Algorithm 2 shows the pseudocode for likelihood pruning, which is
similar to Dijkstra’s algorithm [18] with a few exceptions: (1) the shortest paths from
a single active node to all destinations are calculated for all active nodes in the spatial
network, (2) if the upper bound likelihood ratio for path 〈s...u〉 is below the given like-
lihood threshold θ, u’s neighbors are not visited (line 6), and (3) upperbound statistics
are calculated and updated each time the weight from source s to a node v is updated
(lines 9-12).

Likelihood Pruning Example. Figure 5(a) illustrates the basic idea behind likelihood
pruning. In this example, we have set the likelihood threshold to θ = 5, indicating that
we are interested in paths that are five times as likely to have pedestrian fatalities. Dur-
ing the algorithm’s execution, at some point the source node becomes N1, and the short-
est path between N1 and every other active node in the spatial network is calculated.
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When the shortest path between N1 and N5 is calculated, the upper bound likelihood
ratio for path 〈N1, N2, N5〉 is determined to be 4, since based on Definition 8, the cal-
culation would be (6+(20−11))÷3

(20−((6+(20−11))÷(7−3) , where âp = 6 + (20− 11) = 15 and ŵp =

2+1 = 3. We can, therefore, avoid calculating the shortest paths 〈N1, N2, N5, N6〉 and
〈N1, N2, N5, N7〉 for θ = 5.

(a) (b)

Fig. 5. (a) Example of Likelihood Pruning. Since we know the upper-bound likelihood
for 〈N1, N2, N5〉 is 4, we can avoid calculating the shortest paths 〈N1, N2, N5, N6〉 and
〈N1, N2, N5, N7〉 for θ = 5. (b) Example of Monte Carlo Speedup. (Best in color).

Monte Carlo Speedup: Monte Carlo speedup aims to calculate the p-value without
considering all shortest paths in each simulated graph. The basic idea is that once a
shortest path in the simulated graph is found to have a higher likelihood ratio than the
maximum likelihood ratio in the original graph, the simulation immediately ends with
the p-value being incremented. In other words, there is no reason to keep looking at all
shortest paths in the simulated graph if we find one that already beats the maximum
likelihood ratio in the original graph. Additionally, Monte Carlo speedup stops all sim-
ulations the moment p out of m simulations are found where the simulated likelihood
ratio beats the original maximum likelihood ratio. In other words, there is no reason
to execute all m simulations if we find that the p-value threshold will not be met. The
pseudocode for Monte Carlo speedup is presented in Lines 14-26 of Algorithm 2.

Monte Carlo Speedup Example. Figure 5(b) illustrates one of the basic ideas behind
Monte Carlo speedup. In this example, the graph on the left is the original graph G
whereas the graph on the right, Gs, represents one simulation with the activities shuf-
fled. In Gs, instead of looking at all 42 shortest paths, we can stop and increment p the
moment a path that has a likelihood higher than the maximum likelihood in G is found.
In this case, that path would be 〈N1, N2〉 (on the right of the figure), with a likelihood
ratio of 4.

SmartSRM uses filter and refine techniques (e.g., Likelihood Ratio pruning and
Monte Carlo speedup) to achieve computational savings. Filter and refine techniques
may not change worst case complexity but they can reduce runtime. Likelihood Ratio
pruning creates a boundary via the upperbound likelihood ratio such that not all desti-
nations are visited from each source node. Some of the destinations are pruned because
the shortest paths to them will never meet the likelihood ratio threshold. Monte Carlo
speedup avoids generating all shortest paths in cases where a shortest path in the simu-
lated dataset has a higher likelihood ratio than the shortest paths in the original dataset.
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Monte Carlo speedup also terminates early if the p-value threshold will not be met based
on the number of times the maximum likelihood ratio in the simulated dataset beats the
maximum likelihood ratio in the original dataset.

The computational costs of Naı̈veSRM and SmartSRM stem from 1) the cost of
calculating all pair shortest paths and 2) the cost of assessing statistical significance for
all shortest paths in the spatial network. For Naı̈veSRM, the total cost is (N2logN ×
Cλp) + (m × N2logN × Cλp), where N is the set of nodes, N2logN is the cost
of calculating shortest paths in the spatial network, Cλp is the cost of calculating the
likelihood ratio of path p, and m is the number of Monte Carlo simulations.

For SmartSRM, the total cost is ((N × rλ̂)
2logN×Cλp)+(m× (N2logN × rm)×

Cλp), where N is the set of nodes, (N × rλ̂)
2logN is the cost of calculating shortest

paths for a set of shortest paths that is a superset of all paths in G with λp ≥ θ, rλ̂ (whose
value is between 0 and 1) is the ratio of shortest paths with λp ≥ θ to all shortest paths,
Cλp is the cost of calculating the likelihood ratio of path p, m is the number of Monte
Carlo simulations, and rm (whose value is between 0 and 1) is the ratio of shortest paths
calculated before finding a path whose likelihood beats the maximum likelihood in the
original graph to all shortest paths.

In summary, SmartSRM may only consider a fraction of the paths considered by
Naı̈veSRM, both in calculating all pair shortest paths and assessing statistical signifi-
cance for all shortest paths in the spatial network.

4 Case Study

We conducted a qualitative evaluation of SmartSRM, comparing its analysis with the
analysis of SaTScan [19] (continuous Poisson process) on a real pedestrian fatality data
set [2], shown in Figure 6(a). As noted earlier, SaTScan discovers areas of significant
activity that are represented as circles on the spatial network while SmartSRM discovers
significant shortest paths. The input consisted of 43 pedestrian fatalities (represented as
dots) in Orlando, Florida occurring between 2000 and 2009. For each edge (portion of
road) in the network, fatality count was aggregated, yielding overall activity, and weight
was the actual road network distance. The maps were prepared using QGIS’ Open Lay-
ers plugin [20], and the road network was from the US Census Bureaus TIGER/Line
Shapefiles [21].

(a) Input (b) SaTScan (c) SRM

Fig. 6. Comparing SmartSRM and SaTScan’s output for a p-value threshold of 0.15 and θ = 1.75
on pedestrian fatality data from Orlando, FL [2] (Best in color)
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When evaluating the techniques, we consider the outputs of circles vs. shortest paths.
While p-value thresholds of 0.05 or lower are often desired, we used a p-value threshold
of 0.15 because the circles chosen by SaTScan had high p-values for this dataset. As
noted earlier, pedestrian fatalities usually occur on streets, particularly along arterial
roadways [1]. Thus this activity can be said to have a linear generator. However, the
results generated by SaTScan do not capture this. From Figure 6(b), it is clear that the
circle-based output is meant for areas, not streets. In contrast, the shortest paths detected
by SmartSRM fully capture the significant activities on the arterial roads (some of the
paths in Figure 6(c) are overlapping). Furthermore, the paths in the figure make sense
in this context due to the inherently linear nature of the activities.

5 Experimental Evaluation

The goal of our experiments was to evaluate the scalability of the proposed approach
by varying and observing the effect of three workload parameters: nodes, likelihood
ratio threshold θ, and p-value threshold. All experiments were performed on a Mac Pro
with a 2 x Xeon Quad Core 2.26 GHz processor and 16 GB RAM. For each workload
experiment we compared Naı̈ve Significant Route Miner (Naı̈veSRM) and our Smart
Significant Route Miner (SmartSRM).

5.1 Experiment Data Set

Our experiments were performed on real-world data obtained from the Fatality Analysis
Reporting System (FARS) encyclopedia [2]. The dataset contained geospatial and tem-
poral data describing 487 pedestrian fatalities in Orange County, FL (which includes
Orlando), from 2001 to 2011. For each edge (portion of road) in the network, fatality
count was aggregated, yielding overall activity, and weight was the actual road network
distance. The road network was obtained from the US Census Bureau’s TIGER/Line
Shapefiles [21].

5.2 Experimental Results

Effect of the Number of Nodes. We varied the number of nodes from 500 to 2500, which
is akin to varying the number of shortest paths (routes) from 250, 000 to 6, 250, 000
(since there are

(
n
2

)
shortest paths in the spatial network). We set the p-value threshold to

0.05, the number of Monte Carlo simulations to 100, and the likelihood ratio threshold
θ to 20. Figure 7(a) gives the execution times. As can be seen, SmartSRM is faster.
Computational savings increases as the number of nodes increases due to Likelihood
Pruning and Monte Carlo Speedup.

Effect of the Likelihood Ratio Threshold θ. The p-value was set to 0.05, the number
of Monte Carlo simulations was set to 100, and the number of nodes was set to 1000.
Figure 7(b) gives the execution times. Again, SmartSRM beats the naı̈ve algorithm.
Computational savings increases as the likelihood ratio increases due to Likelihood
Pruning and Monte Carlo Speedup.
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Fig. 7. Scalability of SRM with increasing (a) number of nodes, (b) likelihood ratio threshold θ,
and (c) P-value Threshold

Effect of the P-value. The number of nodes was set to 1000, the likelihood ratio thresh-
old θ was set to 20, and the number of Monte Carlo simulations was set to 100.
Figure 7(c) gives the execution times. As can be seen, SmartSRM is faster. Com-
putational savings increases as the p-value increases due to Likelihood Pruning and
Monte Carlo Speedup.

In summary, the experiments uniformly show that SmartSRM is much better (2-
3 times faster) than the naı̈ve approach. This is because SmartSRM prunes unlikely
paths and speeds up Monte Carlo simulation.

6 Discussion

Non-Statistically Significant Techniques. Our work focuses on partitioning techniques
that consider statistical significance. There are a myriad of other techniques that divide
data into groups but that do not consider statistical significance including DBScan [12],
K-Means [13], KMR [14], and Maximum Subgraph Finding [15]. However, statistical
significance is important for determining the probability that an effect is not due to just
chance alone. Post-processing the output of these techniques for statistical significance
will not guarantee completeness as some of the clusters returned may not be statistically
significant. For example, the algorithm from our previous work [14] on summarizing
activities using routes may return routes that are not statistically significant. Figure 8(a)
shows an example where DBScan [12] returns 7 chance clusters on a complete spatial
randomness dataset.

Alternative network footprints. Summarizing significant network footprints of activities
may be done using significant subgraphs, significant paths, significant shortest paths,
etc. Each representation entails a tradeoff between fidelity and computational scalabil-
ity. For example, subgraphs may offer accurate significant network footprints but their
calculation may be computationally intensive due to their exponential number. As an
initial step, we have selected shortest paths to summarize significant network footprints
of activities. While shortest paths may lose some fidelity, they offer computational scal-
ability because their number is bounded (i.e.,

(
n
2

)
, where n is the number of nodes). The

union of shortest paths may also be used to represent other network footprints.
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(a) (b)

Fig. 8. (a) Colored dots are part of chance clusters identified by DBScan [12] on a complete
spatial randomness dataset (b) Example of Dynamic Segmentation (Best in color)

Dynamic Segmentation. Resolving statistically significant routes to the sub-arc level
requires a dynamic segmentation data model. In dynamic segmentation, the original
nodes and edges in a statically segmented network (e.g., Figure 2(a)) are replaced by
new nodes formed at the locations of activities, with new edges connecting these loca-
tions. Figure 8(b) shows an example where edge 〈N1, N2〉 from Figure 2(a) has been
dynamically segmented. As can be seen, the six activities on the original edge form six
new nodes in the network, with new edges connecting these nodes. Dynamic segmen-
tation has the potential to improve result quality in significant route discovery. This is
because each segment in the dynamically segmented network structure corresponds to
the locations of activities so the likelihood ratios of candidate routes are more precise.
However, dynamic segmentation has the potential to introduce many new nodes in the
spatial network, which could be computationally prohibitive for datasets with a large
number of activities. Future research is needed to investigate this tradeoff.

7 Conclusion

This work explored the problem of significant route discovery in relation to important
application domains such as preventing pedestrian fatalities and crime analysis. We
proposed a Smart Significant Route Miner (SmartSRM) algorithm that discovers statis-
tically significant shortest paths in a spatial network. SmartSRM uses Likelihood Prun-
ing and Monte Carlo Speedup to enhance its performance and scalability. We presented
a case study comparing SmartSRM with SaTScan on pedestrian fatality data. Experi-
mental evaluation using real-world data indicated that the algorithmic refinements uti-
lized by SmartSRM yielded substantial computational savings without sacrificing result
quality.

In future work, we plan to explore other types of data that may not be associated with
a point in a street (e.g., aggregated pedestrian fatality data at the zip code level). The
present research is centered on finding high concentrations of activities whose counts
and locations are deterministic. However, future work is needed to investigate attributes
that may not be deterministic such as delay when moving between nodes, capacity
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constraints, etc. We will also generalize significant route discovery for all paths and
explore additional spatial constraints (e.g., nearest neighbors). Finally, incorporating
time and dynamic segmentation into SRD will be explored.
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