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Abstract. This paper defines the Field data type for big spatial data. Most big
spatial data sets provide information about properties of reality in continuous
way, which leads to their representation as fields. We develop a generic data type
for fields that can represent different types of spatiotemporal data, such as tra-
jectories, time series, remote sensing and, climate data. To assess its power of
generality, we show how to represent existing algebras for spatial data with the
Fields data type. The paper also argues that array databases are the best support
for processing big spatial data and shows how to use the Fields data type with
array databases.

1 Introduction

One of the biggest changes in Geoinformatics in recent years arises from technologies
that produce lots of data. Earth observation and navigation satellites, mobile devices,
social networks, and smart sensors create large data sets with space and time references.
Big spatial data enables real-time applications, such as tracking environmental changes,
detecting health hazards, analyzing traffic, and managing emergencies. Big data sets
allow researchers to ask new scientific questions, which is both an opportunity and a
challenge [2]. However, there are currently no appropriate conceptual models for big
spatial data. Lacking sound guidance, we risk building improvised and incompatible
application, with much effort wasted.

A model for big spatial data should consider the nature of the data, which are records
of measurements and events in space-time. Sensors measure properties of nature, such
as temperature, soil moisture, and land surface reflectance, and human events, such as
locations of people and cars. Since these sensors observe the world in real-time, we take
big spatial data to be records of continuous phenomena.

The terms fields and coverages describe real-world phenomena that vary continu-
ously in space and time [5,10,26]. Despite the abstract nature of the concept, most work
on fields deals with concrete data structures (e.g., triangulations, cells, and contours).
The OGC definition for coverages—“digital spatial information representing space-time
varying phenomena” [25]-is similar to the definition of the Fields data type. Since
OGC'’s coverages focus on describing operations on concrete spatial representations,
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they add complexity and reduce generality [24,25]. Big spatial data, however, needs an
inclusive model that starts with the measurements (i.e., the data collected) and builds
on top of them a generic scheme for space-time analyses. The lack of such a high-level
model is a serious impediment in analyses of large, complex, and diverse data sets. To
avoid makeshift approaches, one needs a wide-ranging, yet simple model for fields at a
higher abstraction level than implementation-specific solutions.

Early work on spatial data modeling viewed fields as four-dimensional functions
f(z,y, z,t) that describe positions in space-time [15,21]. This approach was later re-
fined with geo-atoms, the minimal form common to all geographic information and a
basis for modeling spatial phenomena [16]. A geo-atom combines a position in space-
time and a property, expressed as a tuple [x, Z, z(x)], where X is a position in spacetime,
Z is a property, and z(x) is the value of the property at that position. To represent fields,
we take the idea of geo-atoms one step further and consider how one observes reality.
Since one will never have complete information about external reality, one needs to
make inferences about positions in space-time for which there are no observations [22].
Thus, field representations have to combine observed and inferred measures of a phe-
nomenon. One needs to put together observations of properties of reality with a proce-
dure that estimates values of these properties at non-observed positions [8].

This paper defines fields as sets of geo-atoms {[x,Z, z(x)|} that are observations of
a property Z in an space-time extent, and an estimator function that estimates values of
this property in non-observed locations of this extent. A field has a space-time extent,
a set of positions inside this extent, and a set of values observed or estimated for each
position. We define a Field data type based on abstract specifications, following a line
of research in Geoinformatics that considers formal definitions precede reliable system
implementation [13,12,31].

Although the Field data type is not specific for dealing with big spatial data, it is par-
ticularly relevant for handling large data sets. Contemporary object-relational data mod-
els are built around layers, which slice the geographic reality in a particular area. The
use of layers as a basis for spatial data organization comes from how data is organized in
thematic and topographic maps. When applied to big spatial data, the organizing prin-
ciple of geographic layers breaks down, however. Instead of a set of static spatial layers
(each with its legend), big spatiotemporal data sets store information about changes in
space and time. Conceiving such information as fields captures their inherent nature
better than the traditional layer-oriented view.

After a brief discussion on generic programming and generic types in Section 2, we
introduce the Field data type (Section 3). We show how to use the Field data type to
represent time series, sensor networks, trajectories, collections of satellite images, and
climate data, sharing common operations. Section 4 shows how to implement existing
spatiotemporal algebras using the Field data type. Section 5 discusses the nature of big
spatial data; we make a case for array databases as the best current support for handling
these data sets. Section 6 shows how to use the Field data type in connection with array
databases for processing large spatial data. The paper closes with a discussion of a road
map for making the Field data type a tool for developing new types of GIS applications.
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2 Generic Programming and Generic Types

The design of the Field data type is based on the ideas of generic programming. Generic
programming uses abstract data types, which are formal tools that allow an objective
evaluation of computer representations [3]. Abstract data type definitions have an ex-
ternally viewable set of operations and a set of axioms applicable to them [17]. The
operations are generic, so they work for different data structures and different imple-
mentations.

Generic programming is well-suited for building GIS [9]. Most spatial algorithms
can be designed to be independent of spatial data structure, relying instead on basic
properties that most of them provide. To find the mean value of an attribute in a spatial
data set, it is irrelevant whether the data structure is a TIN, a grid, or a set of polygons.
All one needs is to get from one data item to the next, and to compare two items. Even
algorithms that depend on spatial properties can be expressed in an abstract form. One
can define the local mean of a data set using an abstract definition of neighborhood,
leaving the details to the implementation phase.

To define an abstract data type, we use the following notation. Type definitions and
operations use amonospaced font. Type names are capitalized (e.g., Integer). Sets
of instances of a type are included in curly braces, for instance, {Integer} is a set of
variables of type Integer. We write an ordered pair of variables of types A and B as
(TypeA, TypeB).

Generic types are indicated by T:GenericType where T is a placeholder for a
concrete type. The notation I : Ttem defines a generic type of items, where the concrete
type can be, for example, Integer or Real. Types that use other generic types are
written as CompositeType [T:GenericTypel,so Stack[I:Item] definesa
composite type Stack that handles instances of the generic type I:Item.

To associate concrete types to a generic type, we write T:GenericType |
ConcreteTypelA, ConcreteTypeB. To point out that one can replace the
generic type I:Item by concrete types Integer and Real, we write I:Item |
Integer, Real.

Names of functions and operators begin with a lowercase letter. Examples are top,
pop, and new. Function signatures point out their input types and the output type.
The notation (TypeA x TypeB — TypeC) describes a function where TypeA and
TypeB are the types of the input and TypecC is the type of the output. A factorial
function has (Integer — Integer) as a signature. Functions can use generic types.
A generic sum functionhas T: Ttem x I:Item — I:Item as a signature.

Consider a stack, a last-in, first-out data structure, whose specification is given in
Fig. 1. It has three fundamental operations: push, pop, and top. The push opera-
tion adds an item to the top of the stack, pop removes the item from the top of the
stack, while top returns the element at the top of the stack, without changing the stack.
The Stack data type is defined independently of the data structures and algorithms that
implement it. This specification provides support for implementing stacks of different
concrete types (e.g., stacks of integers, stack of strings, or stacks of any other user-
defined type including stacks of stacks).
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Type Stack [I] uses I:Item

Functions
new: Stack
push: I x Stack — Stack[I]
pop: Stack[I] — Stack[I]
isEmpty: Stack[I] — Boolean
top: Stack[I] — I
Variables
s: Stack
i: Item
Axioms
isEmpty (new ()) = true
isEmpty (push(i, s)) = false
top (new ()) = error
top (push (i, s)) = i
pop (push (i, s)) = s

Fig. 1. Abstract specification of the data type stack

3 Fields as Generic Types

What is in common between a time series of rainfall in Miinster, the trajectory of a car
in Highway 61, a satellite image of the Amazon, and a model of the Earth’s climate?
They share the same inherent structure. They all have a space-time extent, within which
one measures values of a phenomenon, providing observations of reality. Within this
extent, one can also compute the values of these phenomena at non-observed positions.
We thus conceptualize these data sets as fields, made of sets of geo-atoms {[x, Z, z(x)|}
that are observations of a property Z in an space-time extent, and an estimator function
that estimates values of this property in non-observed locations of this extent.

This definition of fields is a generalization of the traditional view of fields as func-
tions that map elements of a bounded set of locations in space onto a value-set [14].
We extend this idea in two ways: (1) we consider different types of locations in space
and time and (2) we consider that the elements of the value-set can also be positions in
space-time. Thus, a field is a function whose domain is an extent of space-time, where
one can measure the values of a property in all positions inside the extent.

The key step in this conceptualization is the generic definition of the concepts of po-
sition and value, shown in Fig. 2. In a time series of rainfall, positions are time instants,
since space is fixed (the sensor’s location), while values are the precipitation counts. In
a remote sensing image, positions are samples in 2D space (the extent of the image),
since time is fixed (the moment of image acquisition), while values are attributes, such
as surface reflectance. Logistic and trajectory models record moving objects by taking
positions as time instances, while their values are the objects’ locations in space.

The generic type P:Position stands for positions in space-time. This type
is mapped onto concrete types that express different time and space cases. Some
non-exhaustive examples are Instant for time instants, 2DPoint and 3DPoint
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P:Position | Instant, 2DPoint, 3DPoint,

(2DPoint, Instant), (3DPoint, Instant)
V:Value }: Integer, Real, Boolean, String, P:Position
E:Extent }: [ (3DCube, Interval)], [(3DPolygon, Interval)]

Fig. 2. Building blocks for the Fields data type

for purely spatial positions, and pairs (2DPoint, Instant) and (3DPoint,
Instant) for space-time positions. The generic type V:Value stands for attribute
values. Concrete types linked to V:Value include Integer, Real, String, Boolean and
their combination. Values can also be associated to positions, as in the case of trajecto-
ries.

The formal description of a Field data type is shown in Fig. 3. Each field exists inside
an extent of space-time, represented by the type E : Extent, whose instances are sets
of 3D compact regions in space-time. Each field has an associated G:Estimator
function that enables estimating values at positions inside its extent. This allows a field
to infer measures at all positions inside the extent. The estimator function use the field’s
information and thus has a signature (F:Field x P:Position — V:Value).

The relationship between positions and extents is a key part of the model. All po-
sitions of a field are contained inside the extent. Thus, the possible concrete types for
the generic type Position are those that can be topologically evaluated as being part of
a space-time hypercube or a space-time polygon. The definition of an extent as a set
of space-time hypercubes also avoids the problems with null values. Thus, there are no
null values inside a field extent in this Field model.

The operations of the Field data type are:

New. Creates a new Field, given an extent and an estimator function.

Add. Adds one observation with a (position, value) pair to the Field.

Obs. Returns all observations associated to the Field.

Domain. Returns the full set of positions inside the Field’s extent. The actual result of
this operation depends on the Field’s granularity, but the operation can be defined
in a problem-independent way.

Extent. Returns the extent of the Field.

Value. Computes the value of a given position, using the estimator function. The
estimator ensures that a field will represent a continuous property inside its extent.

Subfield. Returns a subset of the original Field according to an extent. This function is
useful to retrieve part of a Field.

Filter. Returns a subset of the original Field that satisfies a restriction based on its
values. Examples include functions such as “values greater than the average.”
Map. Returns a new Field according to a function that maps values from the original
Field to the field to be created. Examples of map include unary functions such
as double and squareRoot. This function corresponds to a map in functional

programming.

Combine. Creates a new Field combining two fields with the same extent, according
to an operation to be applied for each element of the original Fields. Examples of
combine include binary functions such as sum and dif ference.
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Field [E, P, V, G] uses E:Extent, P:Position, V:Value, G:Estimator

Operations

new: E x G —» Field

add: Field x (P, V) — Field

obs: Field — {(p, V)}

domain: Field — {P}

extent: Field — E

value: Field x P —» V

subfield: Field x E — Field

filter: Field x (V — Bool) — Field

map: Field x (V — V) — Field

combine: Field x Field x (V x V — V) — Field
reduce: Field x (VX V —- V) — V

neigh: Field x P x (P x P — Bool) — Field
Variables

£, f1, f2: Field

g: Estimator

p: Position

e: Extent

v: Value

Functions

uf: (v — V) -- unary function on values
bf: (Vx V — V) -- binary function on values
ff: (V — Bool) -- filter function on values
nf: (P x P — Bool) -- neighborhood function on positions
Axioms

-- basic fields axioms: a field is dense relative to its extent
V p € extent(f) =— 3 value(f, p) = g(f, p)

V p ¢ extent(f) = wvalue(f, p) =0

-- axioms on operation behavior

V £, domain(f) C extent (f)
subfield(f, e) C f <= e C extent (f)
filter(f, ff) C £

obs (new(e, g)) =0
obs (add (new(e, g)), (p, Vv))) =

(p, V) <= p C e
subfield(f, extent(f)) = £
neigh (f, p, nf) C £, V p € extent (f)
value (map (f, uf), ) =

uf (value (f, p)), V p € extent (f)
value (combine(fl, f2, bf), p) =

bf (value (fl, p), value (f2, p)) +—

p € extent (fl) and p € extent (f2)
reduce (f, bf) =
bf (reduce (f1l, bf), reduce(f2, bf)) <=
fl = subfield (f,el) and f2 = subfield(f,e2) and
el Ne2 =0 and el U e2 = extent (f)

Fig. 3. Generic data type definition of Field
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Reduce. Returns a value that is a combination of all the values of some positions
the Field. Examples include statistical summary functions such as maximum,
minimum, and mean.

Neigh. Returns the neighborhood of a position inside a Field. It uses a function that
compares two positions and finds out whether they are neighbors. One example
of the function is a proximity matrix where each position is associated to all its
neighbors.

The Field definition is independent of granularity, which we take to be a problem-
dependent issue. Each concrete field will have its spatial and temporal granularity that
will determine how its operations are implemented. Temporal granularity will be repre-
sented by the concrete implementation of types Interval and Instant. The gran-
ularity of type Instant should be such that it is always possible to test whether an instant
is inside an interval.

The Fields data type distinguishes between the extent and the domain of a field. The
extent is the region of space-time where one is able to get a value for each position. The
domain of a field is the set of positions it contains, whose granularity depends on how
the field was constructed. For example, two fields may have the same extent and differ-
ent domains. For the same extent, one field may have a set of scattered positions as its
domain, while another may have its positions organized in a regular grid in space-time.
One can perform operations between these fields without changing their granularities,
since they adhere to the same operations.

4 Implementing Existing Algebras with the Fields Data Type

To show how to use the Fields data type, we consider how to express two existing
algebras for spatial data using it: Tomlin’s map algebra [30] and the STAlgebra [8].
Map Algebra is a set of procedures for handling continuous spatial distributions. It has
been generalized to temporal and multidimensional settings [11,4,23]. Tomlin defines
the following map algebra operations:

Local Functions: The value of a location in the output map is computed from the
values of the same location in one or more input maps.

Focal Functions: The value of a location in the output map is computed from the val-
ues of the neighborhood of the same location in the input map.

Zonal Functions: The value of a location in the output map is computed from the
values of a spatial neighborhood of the same location in an input map. This neigh-
borhood is a restriction on a second input map.

Fig. 4 shows how to express Tomlin’s map algebra functions with the Field data type.

To implement a generic map algebra, the local unary and local binary functions are
mapped onto the map and combine operators, respectively. Local functions involving
three or more maps can be broken down into unary and binary functions. A focal func-
tion uses the functions neigh and reduce. The neigh function returns a field with
only those local values that are used by reduce to get a new value for the position in
the output field. The same combination implements zonal functions. The difference is
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Variables

f1, £2: Field -- input

f3: Field -- output

p, pl: Position

Functions

uf: (v:value — v:Value) -- unary function
bf: (v:Value x v:Value — v:Value) -- binary function
nf: (p:Position x p:Position — Bool) -- neighborhood function
Operators

localUnary (fl1, uf) = map (f1, uf)

localBinary (fl1, f2, bf) = combine (fl, £f2, bf)

focalFunction (f1, nf, bf) =
V p € domain (f3)
add(f3, (p, reduce (neigh (fl1, p, nf), bf)))
zonalFunction (fl1, f£f2, nf, bf) =
V p € domain (£f3)
add(f3, (p, reduce (subfield (f1,
extent (neigh (f2, p, nf), bf)))))

Fig. 4. A generic map algebra

that the neighborhood function is defined on a second field. The extent of the neigh-
borhood of the second field is used to extract a subfield of the first field. The function
reduce then produces a unique value that is the new value of the position in the output
field. The mapping is dimension-independent and can be used to implement not only
Tomlin’s 2D map algebra [30], but also a multidimensional map algebra [23] and a
temporal map algebra [11].

A second example is STAlgebra [8], which takes observations as its basic
building blocks. Based on Sinton’s view of the inherent nature of geographical
data [28], STAlgebra singles out different types for spatiotemporal data: Coverage,
CoverageSeries,TimeSeries,and Trajectories. Operations on these types
allow queries and inferences on space-time data. Instances of these types can be re-
lated to events. The mappings from the four spatiotemporal data types TimeSeries,
Trajectory, Coverage and CoverageSeries onto the Field type are as fol-
lows:

Time Series. A time series represents the variation of a property over time in a
fixed location. For example, a time series of rainfall has measured values of
precipitation counts at some controlled times (e.g., hourly) at the sensors’ loca-
tions. A TimeSeries type is mappedontoa Field[E:Extent, Instant,
V:Value, G:Estimator] where positions are time instants.

Trajectory. A trajectory represents how locations or boundaries of an ob-
ject evolve over time. For example, a trajectory of an animal, which
has a fixed identification, is composed of measured spatial locations at
controlled times (e.g., hourly). The Trajectory type of STAlgebra is
mapped to a Field[ (3DPolygon, Interval), Instant, 2DPoint,
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G:Estimator] or to a Field[ (3DPolygon,Interval), Instant,
3DPoint, G:Estimator], if the trajectory is taken in 2D or 3D space, re-
spectively.

Coverage. A coverage represents the variation of a property within a spatial extent
at a certain time. A remote sensing satellite image is an example of a coverage.
It has a fixed time, the moment of the image acquisition, and measured values
of surface reflectance at spatial locations. The Coverage type is mapped onto
a Field[E:Extent, 2DPoint, V:Value, G:Estimator] whose po-
sitions are 2D spatial locations.

CoverageSeries. A coverageseries represents a time-ordered set of coverages
that have the same boundary, as in the case of a sequence of remote
sensing images over the same region. The CoverageSeries type has
a fixed spatial extent and measured coverages at controlled times. It is
mapped onto a Field[E:Extent, (2DPoint, Instant), V:Value,
G:Estimator] whose positions have variable 2D spatial locations and times.
The field’s extent is composed of the coverage series’ spatial extent and an interval
that encloses all position instances.

5 Array Databases for Big Spatial Data

Big spatial data comes from many different sources and with different formats. Among
those sources are Earth Observation satellites, GPS-enabled mobile devices and social
media. For example, the LANDSAT data archive at the United States Geological Survey
has more than 5 million images of data of the Earth’s land surface, collected over 40
years, comprising about 1 PB of data. These data sets allow researchers to explore
big data sets for innovative applications. One example is the world’s first forest cover
change map from 2000 to 2012 at a spatial resolution of 30 meters [18].

The challenge for handling big spatial data is to design a programming model that
can be scaled up to petabyte data sets. Currently, most scientific data analysis methods
for Earth observation data are file-based. Earth observation data providers offer data to
their users as individual files. Scientific and application users download scenes one by
one. For large-scale analyses, users need to obtain hundreds or even thousands of files.
To analyze such large data sets, a program has to open each file, extract the relevant
data and then move to the next file. The program can only begin its analysis when all
the relevant data has been gathered in memory or in intermediate files. Data analysis on
large datasets organized as individual files will run slower and slower as data volumes
increase. This practice has put severe limits on the scientific uses of Earth Observation
data.

To overcome these limitations, there is a need for a new type of information system
that manages large Earth Observation data sets in an efficient way and allows remote
access for data analysis and exploration. It should also allows existing spatial (image
processing) and temporal (time series analysis) methods to be applied to large data sets,
as well as enabling development and testing of new methods for space-time analyses of
big data. After analyzing alternatives, such as MapReduce [7], we consider that array
databases offer the best current solution for big spatial data handling. Array databases
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offer a model of programming that suits many of tasks for analysis of spatiotemporal
data.

Array databases organize data as a collection of arrays, instead of tables used in
object-relational DBMSs. Arrays are multidimensional and uniform, as each array cell
holds the same user-defined number of attributes. Attributes can be of any primitive
data type such as integers, floats, strings or date and time types. To achieve scalability,
array databases strive for efficiency of data retrieval of individual cells. Examples of
array databases include RasDaMan [1] and SciDB [29].

Array databases have no semantics, making no distinction between spatial and tem-
poral indexes. Thus, to be used in spatial applications, one needs to extend them with
types and operations that are specific for spatiotemporal data. That is where the Fields
data type is particularly useful.

6 Fields Operations in Array Databases

This section shows how to map the fields data type onto the array database SciDB [29].
SciDB splits big arrays into chunks that are distributed among different servers; each
server controls a local data storage. One of the instances in the cluster is the coordina-
tor, responsible for mediating client communications and for orchestrating query execu-
tions. The other instances, called workers, participate in query processing. SciDB takes
advantage of the underlying array data model to provide an efficient storage mechanism
based on chunks and vertical partitions. Compared to object-relational databases, the
SciDB solution provides significant performance gains. Benchmarks comparing object-
relational databases and array databases for big scientific data have shown gains in
performance of up to three orders of magnitude in favor of SciDB [6,27].

SciDB provides two query languages: an Array Query Language (AQL) that resem-
bles SQL and an Array Functional Language (AFL) closely related to functional pro-
gramming. There are two categories of functions:

Scalar Functions. Algebraic, comparison and temporal functions, that operate over
scalar values.

Aggregates. Functions that operate on array level, like average, standard deviation,
maximum and minimum values.

Natively, SciDB already supports some of the operations of the Fields data type. The
operations of the Fields data type currently available in SciDB are described in Table 1.
We tested these operations using arrays of different sizes, as discussed below.

Table 1. Fields model mapped onto SciDB

Field op signature SciDB op
map Field x (v:Value — v:Value) apply
subfield Field x e:Extent — Field subarray
filter Field x (v:Value — Bool) filter
reduce Field x (v:Value x v:Value — v:Value) aggregate
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Our evaluation used a set of images from the MODIS sensor, which flies onboard
NASA’s Terra and Aqua remote sensing satellites. The MODIS instruments capture
data in 36 spectral bands. Together the instruments image the entire Earth every 1 to
2 days. They are designed to provide measurements in large-scale global dynamics,
including changes in the Earth’s cloud cover, radiation budget, and processes occurring
in the oceans, on land, and in the lower atmosphere [20].

We used the MODISO09 land product with three spectral bands (visible, near infrared,
and quality). Each MODIS09 image is available for download at the NASA website as
a tile covering 4,800 x 4,800 pixels in the Earth’s surface at 250 meters x 250 meters
ground resolution. We then combined more than ten years of data (544 time steps) of the
22 MODIS images that cover Brazil, giving a total of 11,968 images that were merged
into an array of 2.75x 10! (275 billion) cells. Each cell contains three values, one for
each band. This array was then loaded into SciDB for our experiment.

We first used the SciDB subarray function to select subsets of the large array for
evaluation purposes. For each subarray, we used the SciDB apply function to calculate
the enhanced vegetation index [19] associated to each cell and stored the results in a new
subarray. Next, we used the £i1lter operation to select from each resulting subarray
those cells whose red value was greater than 100 and stored the results. Finally, we
used the aggregate function to calculate the average of the one attribute of each
subarray and store the results. Fig. 5 shows the test results as the average of 5 runs for
the following number of cells: 46 * 10242, 46 x 20482, 46 * 30722, 46 * 40962, 46 *
51202, 46 * 61442, 46 + 71682, 46 * 81922, 46 * 92162, 46 * 102402, 46 x 112642, 46 *
122882, 46 * 133122, 46 * 143362.

These results were obtained in a single Ubuntu server, having 1 Intel Xeon 2.00 GHz
CPU, with 24 cores and 132 GB memory. The performance results are satisfactory,

SciDB performance for Fields operations
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since the processing time grew roughly linearly with array size. With a bigger server
configuration, we can expect better results. These results have given us confidence that
combining the Fields data type with array database is viable and likely to produce good
results. As part of later work, we will implement the whole Fields data type in SciDB,
making it a suitable environment for processing large spatial data.

Although array databases currently offer the most promising approach for handling
big spatial data sets, they do not yet offer all of the support required by spatial ap-
plications. Most spatial applications need to combine field data sets with information
about spatial objects, such as cities and farms. Also, array databases treat all dimensions
equally. Therefore, developers of spatial applications need to provide additional support
to use array databases effectively. This is a promising new research area that can lead
to spatial information infrastructures that will make good use of large data sets.

7 Conclusions

This paper defined the Field abstract data type for representing continuous spatiotem-
poral data. The motivation was to provide a sound basis for applications that deal with
big spatial data sets. These data sets can come for many different sources and have
many purposes, yet they share common features: in all of them, one measures values
at positions in space-time. The underlying conceptual view is that these data sets are
measures of continuous phenomena, thus leading to fields. We showed that the Fields
data type can represent data sets, such as maps, remote sensing images, trajectories of
moving objects, and time series.

We also considered the problem of how to implement the Field data type opera-
tions in an environment suitable for handling large spatial data and argued that array
databases are currently the best approach available. Some of the operations of the Field
data type are already available in the open source array database SciDB, and our ex-
periments showed that the performance of SciDB is encouraging. Given the results so
far, we will implement the full set of the Field data type operations directly in SciDB to
provide a full features of Field data type in array databases.

We anticipate that the combination of the Field data type and array databases can
bring about a disruptive change in spatial information infrastructures. Consider the case
of Earth Observation data. Currently, remote sensing data is retrieved from the data
archives on a scene-by-scene basis and most applications use only one temporal in-
stance per geographical reference. In an advanced infrastructure, researchers and in-
stitutions will break the image-as-a-snapshot paradigm, as entire collections of image
data will be archived as single spatiotemporal arrays. Users will be able to develop
algorithms that can span seamless partitions in space, time, and spectral dimensions,
and arbitrary combinations of those. These algorithms will provide new insights into
changes in the landscape.

We believe that the combination of simple, yet powerful data types with new tech-
nologies for spatial data management will bring about large changes in the use of spa-
tial information, especially for data that promotes the public good. Data management
of large data sets will be done in petascale centers. Users will have the means to per-
form analysis and queries on these data sets. Petascale centers that promote open data
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policies and open data analysis will get large benefits from increased awareness of the
value of spatial information for society.
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