
Replicated Convergent Data Containers

Tobias Herb and Odej Kao

Technical University Berlin, Germany
{tobias.herb,odej.kao}@tu-berlin.de

Abstract. Managing replicated data in distributed systems that is
concurrently accessed by multiple sites is a complex task, because con-
sistency must be ensured. In this paper, we present the Replicated Con-
vergent Data Containers (RCDCs) - a set of distributed data structures
that coordinate replicated data and allow for optimistic inserts, updates
and deletes in a lock-free, non-blocking fashion. It is crucial that contin-
uous data harmonization among containers takes place over time. This
is achieved by a synchronization mechanism that is based on a tech-
nique called Operational Transformation (OT) which continously rec-
onciles diverging containers. A generic architecture is placed on top of
this underlying synchronization mechanism that allows to realize a mul-
titude of different RCDCs. Two container specializations are presented:
(a) the linear container that organizes data in an ordered sequence, (b)
the hierarchical container that organizes the data in an n-ary tree.

1 Introduction

Managing data in distributed systems that is concurrently accessed and modified
by multiple processes is a complex task, e.g. in a groupware software where mul-
tiple clients try to edit the same document. The main problem consists in main-
taining the consistency and integrity of the data without loss of performance. A
common solution to that challange is to serialize all concurrent write accesses, so
that at any time only one process perform its modifications. In order to improve
the overall throughput, there exist advanced transactional techniques that allow
simultaneous access for non-conflicting modifications. The disadvantages of this
approach are despite well-developed techniques the need for continuous access
to the remote data storage and the resultant high access latency. We present
in this paper an approach for optimistic data synchronization where we pursue
the idea of embeddeding and organizing replicated data in abstractions similar
to collections that are well known from programming. We call these structures
Replicated Convergent Data Containers (RCDCs). The container abstractions
offer a common interface where data can be inserted, retrieved, updated and
deleted in a lock-free, non-blocking fashion. It is crucial that consistency among
the replicas is established and a continuous harmonization takes place over time.
This is achieved by a synchronization mechanism that is based on a technique
called Operational Transformation (OT). This mechanism continously reconciles
diverging container states in background by exchanging and transforming con-
tainer modification operations. The key requirement that enforces the use of OT

Y. Ait Ameur et al. (Eds.): MEDI 2014, LNCS 8748, pp. 238–249, 2014.
c© Springer International Publishing Switzerland 2014



Replicated Convergent Data Containers 239

XYZ 

O2:=del(2) O1:=ins(0,‘A‘) 

O1‘:=T(O1, O2)=ins(0,‘A‘) O2‘:=T(O2, O1)=del(3) 

S1 
XYZ 

AXYZ XY 

AXY AXY 

S2 

Fig. 1. simple OT scenario

server path 

client path 

[0,0] 

[1,0] 

[2,0] 

[0,1] 

[1,1] 

[2,1] 

[2,2] 

[1,2] 

[0,2] 

Fig. 2. client/server
paths in state-space

is to preserve the internal arrangement of data, which means that not only data
itself but also the structure within the container is synchronized. This is relevant
in cases where not only the data elements themselves but also the arrangement
of the data within the container is important. A generic architecture is placed on
top of this underlying synchronization mechanism that allows to realize a mul-
titude of different RCDCs. Two container specializations are presented: (a) the
linear container that organizes data in an ordered sequence, (b) the hierarchical
container that organizes the data in an n-ary tree.

1.1 Contributions

The contributions of this paper are the following:

– We propose the novel concept of syncable data containers that enable lock-
free, non-blocking modifications.

– We provide a simple ”topological” classification of different container types.
A abstract architecture is derived on the basis of this classification.

– We present the linear container type and its embedding in our overall ar-
chitecture. In addition, we introduce a stable iterator allowing container
traversals while updated.

– Finally we present the hierarchical container organizing items in a tree struc-
ture. We show the associated transformations are designed and how to safely
delete in hierarchical structures.

2 Preliminaries

This section gives a basic introduction to the theoretical framework of opera-
tional transformation (OT) that solve the challenge of consistency maintenance
of distributed replicas.

2.1 Operational Transformation

Operational Transformation (OT) is a theoretical framework for concurrency
control that enables consistency maintenance of replicated data objects in a



240 T. Herb and O. Kao

[0,0] 

[1,0] 

[2,0] 

[0,1] 

[1,1] 

[2,1] 

[2,2] 

[1,2] 

[0,2] 

OA1 OB1 

OB2 OB1‘ 

[0,0] 

[1,0] 

[2,0] 

[0,1] 

[1,1] 

[2,1] 

[2,2] 

[1,2] 

[0,2] 

OA1 OB1 

OB2 OB1‘ 

OB2‘ 

OA1‘ 

[0,0] 

[1,0] 

[2,0] 

[0,1] 

[1,1] 

[2,1] 

[2,2] 

[1,2] 

[0,2] 

OA1 OB1 

OB2 OB1‘ 

OB2‘ 

OA1‘ 

OA1‘‘ 

SB path 

SA path 
A B C 

Fig. 3. multistep divergence in client/server processing

distributed environment [13]. Each site is allowed to modify any part at any time
of the replica by applying operations on it. The operations are instantaneously
executed without being blocked or delayed and stored in a history buffer (HB).
After local execution the operation is propagated to the remote sites. Operations
arriving from remote sites must be transformed along all concurrent operations
that reside in the HB. Concurrent operations in the HB are determined via
Lamport- or vector clocks [5,8] attached to the operations. The transformation
”includes” the effects of the HB operations in the remote operation. This can
be well illustrated by a simple text editing scenario (see figure 1). A character
sequenceXY Z is replicated on two sites. Site S1 inserts character A at position 1
(O1), resulting in local state AXY Z. Site S2 deletes the character Y at position
2 (O2), resulting in state XZ. The operations are locally executed, stored in the
HB and then exchanged, respectively. By applying OT the position-parameter
of the incoming operation is adjusted according to the (concurrent) operations
in HB. On site S1 the position of the incoming delete operation is incremented
in respect to the insert operation on the lower position. On site S2 the local
delete operation has no influence on the incoming insert operation, because the
deletion takes place behind the insert. The essence of keeping the distributed
replicas coherent with OT is the application of the transformation function on
pairs of concurrent operations that are processed in different order on different
sites. This kind of transformation is called inclusion transformation (IT) in OT
theory [13]. It owns the general signature: T (Ox, Oy) = {O′

x, O
′
y}. The function

produces adapted pairs of the input operations, in a sense that the resulting
operations take the ”effect” of each other into account. It must be noted that
transformation function can only be applied on pairs of concurrent operations
which originate from the same state. The general interaction between two sites
can be well visualized with a so-called two-dimensional state space graph (see
figure 2). As operations are processed, the two sites walk down the state space.
If they process the operations in the same order, then they take the same path
through the state space. If client and server process different operations, then
their paths begin to diverge. In the illustrated scenario both sites move to state
[1,1] together since both processes first executes the operation of site 1 and
thereafter operation of site 2. At state [1,1] they execute different operations,
moving to [2,1] and [1,2], respectively. To reach again a common state, both



Replicated Convergent Data Containers 241

sites transform the remote operation against the buffered operation and executes
it. The transformation can be applied because both originate from state [1,1].
To guarantee sound transformations, must convergence property of the function
between all possible combinations of available operations must be ensured, the so
called TP1-property [3]: Ox ◦O′

y ≡ Oy ◦O′
x. If the two sites (SA and SB) diverge

more than one step, we can not directly apply the transformation function,
because these operations have no common origin. The state space diagram in
figure 3 depicts such a situation: SA and SB begin to diverge at state [0,0],
where SA executes the local operation OA1 and SB executes subsequently OB1

and OB2 (A). SA receives the operation OB1 and is able to transform it against
its local operation OA1 to obtain the adapted server operation O′

B1. The first
transformation step works, because OA1 and OB1 were generated at same state
[0,0]. When SA receives the second server operation, the transformation of OB2

against OA1 does not work, because they were generated in different states.
At this point the transformed local operation O′

A1 of the first transformation
process T (OA1, OB1) = {O′

A1, O
′
B1} is required, because this operation bridges

the gap between client state and server state. The remote operation OB2 must
be transformed against O′

A1 to retrieve a correct adapted operation O′
B2 (B).

To achieve consistency between SA and SB, the site SB only needs to transform
successively the incoming operation OA1 against OB1, OB2 (resulting O′′

A1) and
execute it (C).

2.2 Control Algorithm

We use a client/server based OT control algorithm that controls transformation
(including multistep divergence). This algorithm has both client and server parts
which drive the transformation of operations. The presented algorithm is derived
from the Jupiter algorithm [9] and follows the descriptions of [14]. The server
maintains a unique operation history for all clients. This implies the restriction
on incoming client operations, which have to be parented at some point on the
server path (in state space). The server only needs to transform all incoming
client operations from this point against the concurrent operations lying on the
server path. In return, the client needs to keep track of the server state and is
responsible for the transformation of the local operations into the server space
(insofar known to the client). The tracing of the servers path on the client site
is called inferred server path [14]. To keep the inferred server path valid during
interaction, every transmitted client operation have to be acknowledged by the
server.

3 Replicated Data Containers

This work presents a new kind of data structures which automates data syn-
chronization among multiple processes in a distributed system. We call our data
structures syncable data containers. The containers are replicated on all sites in
the system. Each site can (optimistically) modify any part at any time of the



242 T. Herb and O. Kao

container. The underlying OT framework hereby ensures convergence among the
container instances. In this approach the data synchronization is achieved by a
two-party synchronization protocol. Each site synchronizes only with the server.
The server serializes and transforms all changes and propagates them further to
the other replicas (see control algorithm). The containers with their lock-free,
non-blocking property allow highly interactive application scenarios. For exam-
ple is it relatively easy to build realtime collaborative application on top of these
data structures. A key aspect that must be observed is the convergence behavior
of these containers. Due to the optimistic modifications and the continous back-
ground reconcilation, cannot be guaranteed that all container instances have a
consistent view on the data at any time. Our set of data containers provide an
eventual consistency model [11] and are therefore not suitable for consistency
critical applications. The core abstraction of these container types is similar to
the data collections in general purpose programming languages (e.g. Java Col-
lections Framework [1]). The containers manage a group of data objects. These
objects are called data items and represent the basic unit that is controlled by the
container. A data item itself can be atomic (i.e. primtive type) or any arbitrary
composite types. Our data containers stores the data items in an organized way
that is amenable to the underlying synchronization mechanism. Two different
containers types are presented in this work, the linear container that implements
a finite ordered sequence of data items, similar to an abstract list data type [7].
The second type is the hierarchical container that organizes the contained data
items in a hierarchical structure.

3.1 Topological Classes

Data collections in programming languages are always specialized according to
the way how contained elments are organized, e.g. lists, trees and graphs. The
notion of so called topological classes is introduced to make this distinction of
the organizational structure more general and abstract. We define three gen-
eral topological classes. The classification is based on restrictions of the linkage
among data items. (1) Unrestricted: The unrestricted topology has no limita-
tions on the item linkage and can represent arbitrary graphs. (2) Hierarchical:
Every data item can have only one predecessor (or parent), but any number of
successors (or childs). (3) Linear: Data items can have only one predecessor
and one successor. The idea behind this classification scheme is to build for each
topological class a basic container type that is able to embed and organize the
contained data items according to the given topology.

3.2 Architecture

We derive on the basis of the topological classification an abstract architecture
that defines the common implementation structure for different data container
types. All types are built up of three main components:



Replicated Convergent Data Containers 243

Data Model: The data model defines the internal representation of a data
container and defines how operations provided by the Operation Model interact
with this internal representations. There are no specific assumptions or restric-
tions how a data model has to be designed, i.e. it can contain arbitrary complex
logic and representations of the contained data items.

Operation Model: All container types have a common set of basic opera-
tions. This set defines the so called CRUD operations: A Create operation to
create (or add) new data items, a Retrieve operation to read/get data items,
an Update operation to update existing data items and a Delete operation to
remove data items. These basic operations, except Retrieve, are used by the un-
derlying OT system for synchronization. Retrieve is purely local operation and
does not change any state of the container or of the contained elements. That is
why read operations in general must not be propagated over the network. The
signatures of create, update, delete operations are container type independent
defined as:

create(C) : Γ ×Θ ×N → Γ

update(U) : Γ ×Θ ×Δ → Γ

delete(D) : Γ ×Θ → Γ

Γ is the type of the container instance on operations are applied. Θ is a container
type dependent parameter that determines access to data elements. This access
parameter selects the data item on which or next to it (that depends on the
operation type) the operation is performed. Containers of different topological
classes require therefore different representations for the access parameter type.
For example elements in a linear container can be simply accessed by an posi-
tional index. For more complex topologies must the access parameter describe a
path (see hierarchical container). N is the new data items that is inserted in the
container. The parameter Δ occuring in update operation is a map that contains
the (attributes) updates that are performed on the selected data item.

Transformation Model: The transformation model contains the set of trans-
formation functions for all possible operations combinations in the operation
model. This results in a 3× 3 matrix where each element represents a transfor-
mation function of two concurrent operations:

⎡
⎣
T (CL, CR) T (CL, UR) T (CL, DR)
T (UL, CR) T (UL, UR) T (UL, DR)
T (DL, CR) T (DL, UR) T (DL, DR)

⎤
⎦

L - Local, R - Remote
The transformation of operations is specific to the underlying topology, because
the transformation functions adapt the access parameters Θ of the concurrent
local and remote operations. The exact properties of such a transformation are
discussed in the OT section.



244 T. Herb and O. Kao

3.3 Conflicting Operations

In some transformation cases occur conflicts, that must be explicitly resolved. A
conflicting transformation is a transformation where the effect of one operation
loose its original intention or the operation gets completely lost. This situation
occurs either if two concurrent operations modify the same element (or rather
the operations relate to the same position) or if one operation modifies an ele-
ment and the other operation deletes the element. For example the concurrent
insertion of two data items at the same position lead to a conflict, because it
must determined if either the local or the remote insertion have precedence and
takes place at the specified position. The matrix below identifies all possible
conflict cases for our CRUD operation model:

⎛
⎝

C U D

C X − −
U − X X
D − X −

⎞
⎠

The solving of conflicts is in general application dependent [11]. In systems where
such conflicts (⇔ lost updates) rarely happen or the data is not critical predefined
mechanisms can be applied. In other scenarios the decision should be passed to
an external decider that has more knowledge to manually resolve the conflict. As
a result of these considerations the conflict-solver logic must be separated from
the transformation model to preserve the freedom to hook in domain specific
behavior. All conflict cases of the transformation function are delegated to an
external handler where the application specific behavior can be defined. If no
domain specific conflict handler is provided, then default strategies are applied.
The default strategy combines two simple tactics. First, an operation precedence
for the different conflict generating operations is defined. Operations with higher
precedence win against operations with lower precedence in conflict situations.
The conflict solver replaces the operation with lower priority with no-op (no-
operation), for example delete-operations win over update-operations. If two
operations of the same precedence are in conflict, a last-writer win strategy
(LWW) is applied. LWW means that in the client case the local operation always
wins against the incoming remote operation. For the server side in turn means
that the incoming operation always wins against ’local’ operation. In the case
of concurrent update operations targeting the same data item does only exist
a conflict if the delta sets (attribute changes) of the update operations are not
disjoint: Δ(UL) ∩Δ(UR) �= ∅.

4 Linear Container

The linear container organizes the contained data items in an ordered sequence.
It can be regarded as a distributed list collection. The contained data items are
managed by positional access and can be created, retrieved, updated and deleted
(see CRUD operation model) at any time. Beyond this basic functionality a



Replicated Convergent Data Containers 245

stable iterator [4] exists that allows to iterate over the content while the container
is concurrently modified. These stable iterators will be discussed in detail in the
next section. Due to the way the container organizes the containing data items by
their numerical position, the access parameter Θ of the corresponding operation
model is an simple integer index. This index determines the position in the
sequence where the operation is applied. The associated linear transformations
for this type are well known from collaborative text editing and can be taken
for example from [9]. A common way to implement the underlying data model
that supports the positional access would be to use internally a linked list or
a growable array. This whole attachment of operation model, transformation
model and OT algorithm can be seen as a kind of proxy on top of a normal list
collection that extends the data structure to distributed, lock-free, non-blocking
synchronization.

4.1 Iterators

Another important aspect is the traversal over the container content. Data items
are continously created, updated and deleted by the user or control algorithm
process which usually leads to an invalidation of an concurrent iteration process.
We propose the idea of so-called transformable cursors that allows iterations over
the original container while being modified. A transformable cursor is pointer to a
concrete data item consisting in the case of the linear container of a simple index.
This index participates in the OT transformations and is transposed according
to the local and remote changes. It keeps always the positional reference to the
assigned data item as long as this data item is not deleted. If the referenced
item is deleted, the cursor points to the up moving successor item. The cursor
additionally provides an advance function that let the cursor manually move on
to the successor item. It must be ensured that transformation call for the cursor
and the advance-call are well synchronized to keep the cursor position consistent.

5 Hierarchical Container

This section presents the concept of an hierarchical container that organizes data
items in a n-ary tree arrangement. Arbitrary many child items can be attached
to each item. Items with a linked subtree are called nodes else they are called
leafs. The deletion of a node thus deletes all linked sub-items, comparable to
the deletion of a folder in a filesystem. The synchronization of delete operations
is more complex in the case of the hierarchical topology because concurrent
operations may exist that refer to items belonging to the attached subtree of
the deleted node. We later introduce the exact deletion algorithm that is used
to keep the containers synchronized. The container organizes the hierarchical
structure by nested lists. For each item, a ordered collection is maintained that
keeps references to the associated child items. Access to a data item is carried out
via its root path (path from root to node). Paths are realized as so-called access
vectors, where each element is an index in the associated child-list reffering to



246 T. Herb and O. Kao

Insert2

[0] [1]

[0] [1]

[2][2]

Insert2

[0] [1]

[0] [1]

(1) (2)

Insert1

Insert1

Fig. 4. create-create

[2]

Insert

[0] [1]

[0] [1]

Delete

[2]

Insert

[0] [1]

[0] [1]

Delete Insert

[0] [0]

[0] [1]

Delete

[1]

Insert

[0] [1]

[0] [1]

Delete

[2]

(1) (2) (3) (4)

Fig. 5. create-delete

the subjacent item. Thereby corresponds the number of elements to the tree-level
of the selected item. The access parameter Θ of the operation is thus bound to
an access vector of type N

X
0 where X is the tree-level of the referenced item.

The create-operation handles the access vector slightly differently compared to
the update- and delete-operation. The elements a0...an−1 of the access vector[
a0 ... an−1 an

]T
are interpreted as the path from the root to the target item

and the last element an as position in the target child-list where the new item is
inserted. Update and delete interpret all elements a0...an as path to the target
item. In the hierarchical container all concurrent operations do not necessarily
have to influence each other. Operations become in general effect-dependent
and need to be transformed, if either an operation has an impact along the access
path of a concurrent operation or the operations refer to the same target node.
The first case requires the adaption of the relevant index in the access vector
of the affected operation. The second case equates to the linear transformation.
To capture the relationship of concurrent hierarchical operations formally is the
following relation introduced:

Definition 1 Effect Dependence
Operations OX and OY are effect dependent OX � OY iff:
(i) The access path of OX is part of the access path of OY or vice versa or

they are equal:

(a) Θ(OX ) ⊂ Θ(OY )
(b) Θ(OX) ⊃ Θ(OY )
(c) Θ(OX) ≡ Θ(OY )

(ii) If (a) or (b) and the positional reference of the shallow access path is less
than or equal to the corresponding component of the deeper access path of
the concurrent operation.

On basis of the effect dependence relation, the possible transformation cases of
the underlying operation model are derived. For lack of space we do focus only
on the transformations related to the create- and delete-operations.

The update-operation has no impact on access paths and for the accompanying
conflict cases the presented conflict handling can be applied. The create-create
transformation consists of two essential cases, presuming the conditions of effect
dependence are fulfilled (see figure 4). (1) If a create-operation targets an item
at deeper level in the hierarchy than another concurrent create-operation and
the target index (the components of the access vector) of the second operation is
less than or equal to the index of the first operation, then an index transposition



Replicated Convergent Data Containers 247

[2][0] [1]

[0] [1]

Delete

[2][0] [1]

[0] [1]

Delete

[0] [0]

[0] [1]

Delete

[1]

(1) (2) (3)

Delete Delete Delete

Fig. 6. delete-delete

VD 

PD PD PD 

OO 

C1 C2 C3 S 

VD 

Fig. 7. bulk-delete
scenario

at the corresponding component of first operation must take place to get obtain
the correct access vector. (2) If both operations target the same node then
both indices have to be adapted. For the create-delete transformation four
different cases are considered (see figure 5). (1) The delete-operation removes
an item along the access path of the create-operation. (2) The opposite case is
a create-operation that inserts a new item along the access path of a concurrent
delete-operation. (3) If a (local) delete operation removes a node that lies on the
access path of a (remote) create-operation then the create-operation has no effect
and can be transformed to no-operation. (4) If both operations target the same
node then both indices have to be adapted as in the linear transformation cases.
The delete-create transformation is symmetric and must not considered further.
The delete-delete transformation is the last combination that is considered
here (see figure 6). (1) The delete-operation removes an item along the access
path of the second delete-operation. (2) If a (local) delete operation removes a
node that lies on the access path of a (remote) delete-operation then the delete-
operation has no effect and can be transformed to no-operation, because the
effect is already included in the upper delete-operation. (3) If both operations
target the same node then both indices have to be adapted.

5.1 Bulk Deletes

The deletion of a data item in the hierarchical container as well leads to the dele-
tion of all child data items that are contained in the connected subtree, we call
this a bulk delete. This results in additional problems, because concurrent oper-
ations (generated by other processes) may still buzz around in the system that
target these deleted items. The problem is solved by lifting the local deletion to a
system-wide coordinated process which ensures that no more concurrent opera-
tions are in the system that operate on these deleted items. The actual removing
of the data items is deffered until all concurrent operations were carried out. Our
algorithm handles the bulk delete by dividing the process into two phases, the so-
called virtual delete phase and physical delete phase. In the virtual delete phase
all data items (the delete target + linked subtree) are marked as deleted and
removed form the index -mapping, preventing the generation of new operations
that target deleted items. All deleted marked items are stored under a unique



248 T. Herb and O. Kao

deletion-key in an additional index structure. The delete-operation is propa-
gated, together with the deletion-key, to all replicated containers. On receipt of
the delete-operation are also all data items marked as deleted and removed from
the index -mapping. Additionally is a vdel-operation (virtual-delete) containing
the deletion-key appended to the local transmit buffer of that container. This
vdel-operation marks the boundary between all possible concurrent operations
that still may target the deleted items and the subsequent operations (following
the vdel-operation) that respect the deletion. Concurrent operations that target
deleted items do lead to a conflict. Conflicts can be either explicitly handled
by the process according to specific application semantics or default strategies
can applied (see Conflicts), e.g. operations on deleted items are transformed to
no-operation. The OT server collects all vdel-operations and acknowledges them
all at once. On receipt of the vdel-acknowledge are all as deleted marked items
for that deletion-key physically deleted and removed from the delete-index.

6 Related Work

Modern web technologies for data management [2] do support automatic and
manual synchronization of data on multiple clients and server-side. But these
approaches do not allow optimistic insertions and deletions on ordered sequence
of data items. An alternative to the OT approach is Operation Commutativity
(OC). In OC does all operations commute when they are concurrent. This ap-
proach does not need a explicit concurrency control compared to OT [6]. Shapiro
et al. introduced the Commutative Replicated Data Types (CRDTs) [12]. They
developed a shared sequential data structure, where concurrent operations can
be executed in an arbitrary order on different sites. A further approach pre-
sented by Hyun-Gul Roh et al. in [10] is also based on operation commutativity.
They developed the so-called Replicated Abstract Data Types (RADTs), a set of
replicated linear data structures: replicated fixed-size array (RFAs), replicated
hash tables (RHTs) and replicated growable array (RGAs). They exploit the
commutativity of the operations with a principle called precedence transitivity
(PT). PT allows to derive a unique order of concurrent operations.

7 Conclusion and Outlook

We presented an approach for distributed data containers that coordinate repli-
cated data and allow for optimistic inserts, updates and deletes in a lock-free,
non-blocking fashion. The required synchronization mechanism responsible for
reconcilation of diverging containers is based on Operational Transformation.
We developed a generalized architecture on top of this synchronization mecha-
nism to support structures with different topologies like linear and hierarchi-
cal containers. In general can these sort of convergent data containers be used
to efficiently build a wide range of applications with realtime collaborative fea-
tures. The major advantage of our approach is the unified architecture consisting
of common components which massively simplifies the development of multiple



Replicated Convergent Data Containers 249

RCDCs with different properties and behaviour. An important next step is to
extend the containers for offline capability. Changes should be made locally
without beeing conntected to the system, when a connection is restored are the
local changes reintegrated in the global state. This enables the data to be (asyn-
chronously) available and workable at anytime and at anyplace, which makes it
especially interesting for mobile environments.

References

1. The collections framework @MISC, http://docs.oracle.com/javase/7/
docs/technotes/guides/collections/

2. Granite data services @MISC, https://www.granitedataservices.com/
3. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD

Rec. 18(2), 399–407 (1989), http://doi.acm.org/10.1145/66926.66963
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

5. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978),
http://doi.acm.org/10.1145/359545.359563

6. Letia, M., Preguiça, N., Shapiro, M.: Consistency without concurrency control in
large, dynamic systems. SIGOPS Oper. Syst. Rev. 44(2), 29–34 (2010),
http://doi.acm.org/10.1145/1773912.1773921

7. Liskov, B., Zilles, S.: Programming with abstract data types. In: Proceedings of
the ACM SIGPLAN Symposium on Very High Level Languages, pp. 50–59. ACM,
New York (1974), http://doi.acm.org/10.1145/800233.807045

8. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms, pp. 215–226. North-Holland (1988)

9. Nichols, D.A., Curtis, P., Dixon, M., Lamping, J.: High-latency, low-bandwidth
windowing in the jupiter collaboration system. In: Proceedings of the 8th Annual
ACM Symposium on User Interface and Software Technology, UIST 1995, pp. 111–
120. ACM, New York (1995),
http://doi.acm.org/10.1145/215585.215706

10. Roh, H.G., Jeon, M., Kim, J.S., Lee, J.: Replicated abstract data types: Building
blocks for collaborative applications. J. Parallel Distrib. Comput. 71(3), 354–368
(2011), http://dx.doi.org/10.1016/j.jpdc.2010.12.006

11. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005), http://doi.acm.org/10.1145/1057977.1057980

12. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

13. Sun, C., Ellis, C.: Operational transformation in real-time group editors: Issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work, CSCW 1998, pp. 59–68. ACM, New York
(1998), http://doi.acm.org/10.1145/289444.289469

14. Wang, D., Mah, A., Lassen, S.: Google wave operational transformation type
@MISC (2010), http://wave-protocol.googlecode.com/hg/
whitepapers/operational-transform/operational-transform.html

http://docs.oracle.com/javase/7/docs/technotes/guides/collections/
http://docs.oracle.com/javase/7/docs/technotes/guides/collections/
https://www.granitedataservices.com/
http://doi.acm.org/10.1145/66926.66963
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/1773912.1773921
http://doi.acm.org/10.1145/800233.807045
http://doi.acm.org/10.1145/215585.215706
http://dx.doi.org/10.1016/j.jpdc.2010.12.006
http://doi.acm.org/10.1145/1057977.1057980
http://doi.acm.org/10.1145/289444.289469
http://wave-protocol.googlecode.com/hg/whitepapers/operational-transform/operational-transform.html
http://wave-protocol.googlecode.com/hg/whitepapers/operational-transform/operational-transform.html

	Replicated Convergent Data Containers
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Operational Transformation
	2.2 Control Algorithm

	3 Replicated Data Containers
	3.1 Topological Classes
	3.2 Architecture
	3.3 Conflicting Operations

	4 Linear Container
	4.1 Iterators

	5 Hierarchical Container
	5.1 Bulk Deletes

	6 Related Work
	7 Conclusion and Outlook
	References




