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Abstract. We present a short overview of the portion of our work in the analy-
sis of biological, acoustic, sonar and radar signals, with particular emphasis on 
the feature extraction using modified Kanade-Shi-Tomasi procedure and the 
application of Kalman filters. Developed methodology is illustrated with  
several examples. 
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1 Introduction 

Feature detection and extraction has been a prominent topic in signal processing from 
its very beginnings. Our interest in this area has started in late eighties with the for-
mulation of initial problems related to brain functionality, especially in detection of 
specific cognitive activities. The first success was related to detection of imagined 
tones in early nineties using rather meagre acquisition resources, see [2, 3]. Later our 
interest varied from integration of digital imaging devices with optical microscopic 
systems, feature extraction based on photo morphology, various standard and non-
standard applications of Fourier spectroscopy, as well as analysis of different causali-
ty criteria used in contemporary study of brain functionality. 

The body of the related work is rather staggering. Due to the very limited space, 
we are unable to offer due credit to the research that had significant impact on our 
work. References [1-8] are pointers to our work where the reader can found detailed 
presentation of the research topics that we have deal with during the last quarter of the 
century, while the rest of the references [9-21] contain work of some of our col-
leagues and collaborators and can be also used as nice reference resources. 

The paper offers an overview of the part of our work published in [7] related to ex-
traction of the dot-like objects from heavily contaminated signals. We present two 
extraction methods that are based on the Kanade-Shi-Tomasi procedure and the so 
called bank of Kalman filters. Though all testing is carried out on digital images, we 
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believe that the offered methodology can be successfully applied in detection and 
extraction of any kind of features that are both narrow in band and frequency. Related 
to speech recognition, the offered methods may yield some promising result in auto-
mated extraction of some specific sound patterns from the signals with lots of back-
ground noise and artefacts. 

2 Feature Extraction Based on Intensity Discrimination 

In this section we will present the first of the two methods that we have used for the 
efficient extraction and recognition of dot-like objects with the diameter not greater 
than 10 pixels. Both methods can be applied to matrices and vectors, which can be 
used to handle short frequency pulses and spectral features that are stable and narrow 
in frequency.  

The first of the mentioned two recognition/extraction procedures for small objects 
is based on intensity discrimination of considered pixels. The method itself is an 
adaptation of the procedure for the extraction of the characteristic features from a 
bitmap image developed by Shi, Tomasi and Kanade (see [15, 17]).  

As an input we have a simple monochrome (0 = white, 255 = black) bitmap (ma-
trix)  of a fixed format (here presented with 400 400  pixel resolution). The 
components of  can be signal amplitude values, or e.g. spectrogram intensities, and 
will be denoted by , . Here  indicates the corresponding row and  indicates 
the corresponding column. Spatial -wise and -wise differences  and  are  
defined by 

 
, , , , , .  (1) 

The matrix  of sums of spatial square differences is defined by 

 ∑  ∑ , (2) 

where  is the width of the integration window (the best results are obtained 
with values between 2 and 4), while  and  are the indices corresponding to the 
indices  and  such that the formula (2) is defined. Hence, all so called inner pix-
els, i.e. pixels for which  and  are definable, are included in the computation. 
The more compact form of the matrix  is given by 

 . (3) 

Consequently, the eigenvalues of  are given by 

 , . (4) 

Moreover, for each inner pixel with coordinates (x, y) we define ,  by 
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Finally, for the given lower255) we define 
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Fig. 6. Construction of Kalman filters 
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developed for image processing and are suitable for morphologic investigations. 
These algorithms also offer possibility of localization and extraction of important 
features, as well as determination of their topological and geometrical characteristic 
invariants. Those invariants are often crucial for the representation and to classifica-
tion the by application of subtle similarity measures. Small object recognition in cases 
of heavy contamination by noise of mainly random nature is successfully performed 
in rather general circumstances. Due to a modest complexity, all are real time appli-
cable, even without the enhanced hardware. 
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