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Abstract. The paper presents a speaker detection system based on
phoneme specific hidden Markov model in combination with Gaussian
mixture model. Our motivation stems from the fact that the phoneme
specific HMM system can model temporal variations and provides pos-
sibility to ponder the scores of specific phonemes as well as efficient
pruning. The performance of the system has been evaluated on speech
database which contains utterances in Serbian from 250 speakers (10 of
them being the target speakers). The proposed model is compared to a
system based on Gaussian mixture model - universal background model,
and showed a significant improvement in detection performance.
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1 Introduction

Nowadays, when the amount of available multimedia data is huge and rapidly
growing, it is becoming vital to classify such data automatically, in order to speed
up data search. One of the interesting areas in this process is automatic speaker
detection and indexing in audio stream, which corresponds to the task of speaker
recognition. Traditionally, there are two basic approaches in speaker recognition:
verification and identification. Speaker verification (or speaker authentication)
is a binary decision problem, determining whether or not an unknown voice
belongs to the particular (claimed) speaker. Speaker identification is the task of
choosing an unknown speaker from the predefined set of speakers, who has the
voice closest to the unknown voice. Speaker detection is the task of detecting
one or more specific speakers (target speakers) in an audio stream [1]. If the
number of target speakers is negligible compared to the total number of speakers
presented in the data, the detection task is similar to the verification task, i.e.
the task is to decide whether the speech segment belongs to the one of target
speakers. On the other hand, if only target speakers are included in the data to
be searched, or if they represent the majority, the detection task can be treated
as an identification task [1].

The paper investigates the use of phoneme models in a speaker detection
task. Previous experiments showed that the best system based on Gaussian mix-
ture models (GMMs) outperforms the systems based on Hidden Markov models
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(HMMs), due to the ability of the GMM to better exploit the training data
and a poor HMM parameters estimation [2]. While identical front ends were
used, no gain in performance was achieved by the use of temporal information
captured in the HMMs. Nonetheless, the HMM based systems that incorporate
the knowledge about phonemes or phoneme classes outperform the conventional
GMM based systems [3], especially in case where there is channel mismatch be-
tween training and testing data. Individual phonemes carry various amounts of
speaker discriminating capability, and they each show different levels of perfor-
mance, depending on the level of adaptation used to build the phoneme-specific
target models [4]. Unlike the phoneme-based systems, the conventional speaker
detection as well as speaker recognition systems rely on short-term spectral and
prosodic features extracted from speech, e.g. [5-7]. These features are often un-
able to capture long-term speaker characteristic, even when they are expanded
with their first and second order derivatives [8].

GMM in combination with universal background model (GMM-UBM) is a ref-
erent speaker identification system used in this paper. It has become a dominant
modeling approach in speaker recognition applications [9]. The proposed HMM-
GMM system uses phonetic information for creating the model of a speaker. Our
motivation stems from the fact that the HMM system allows standard prun-
ing procedures (pruning is more efficient in case of phonetic models) and the
possibility to ponder the specific phonemes. This is an important advantage,
having in mind the differences in reliability of log-likelihood rates for different
phonemes (e.g. the log likelihood rates for vowels are much more reliable than the
log-likelihood rates for plosives). We combine short-term spectral features with
phoneme information, using the continuous speech recognition system described
in [10], in order to improve the accuracy of our speaker identification system.
Hidden Markov model toolkit (HTK) is used for speaker adaptation [11], while
the rest of the system was built from scratch. The results are provided for both
context-dependent and context independent phonetic models.

The paper is organized as follows. Section 2 provides the detailed description
of the referent and proposed HMM-GMM system, as well as database used for
performance evaluation. Section 3 gives the results of our experiments. Section
4 contains conclusions based on considerations from the previous sections.

2 Experimental Setup

All of the systems analyzed in this paper have the same front-end. Our feature
vectors include 12 Mel-frequency cepstral coefficients, normalized energy and
their first and second order derivatives, which are extracted on 30 ms frames
with a 10 ms shift.

The referent system is GMM-UBM model where both the target speaker
model and the universal background model (UBM) are based on GMMs with
diagonal covariance matrices. The UBM is trained using the EM algorithm and
the speech data from a large number of speakers (in this paper more than 400
speakers and 12 hours of speech). Maximum likelihood linear regression (MLLR)
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[11] of the mean vectors is used to adapt the UBM for a target speaker. In the
recognition phase, models for silence and noise are used to remove non-speech
segments from the test sequence. The remaining speech frames are used in scor-
ing procedures, where the logarithm of likelihood ratio of the target model and
the UBM is computed for each frame. The final score for a test utterance is
calculated by averaging the log-likelihood ratios on some portion of the best
scored frames. There are 2 variants of a system based on the GMM-UBM used
in this paper, which differ only in the number of Gaussians. The one contain-
ing 400 Gaussians will be referred as “GMM 400” and the other containing 800
Gaussians will be referred as “GMM 800”.

The main difference between the proposed HMM-GMM system and the base-
line system is in the way of modeling target speaker, i.e. in the proposed model
each phoneme is represented with one or more HMMs. The number of HMM
states is proportional to the average duration of the phoneme instances in the
training set, and the number of Gaussians per state is estimated using the cross-
validation procedure described in [13]. Since each phoneme corresponds to many
phones, three different phoneme modeling units have been examined: mono-
phones, biphones and triphones. The monophone model is the most general one,
since it includes many phonemes which can be acoustically significantly differ-
ent. In order to reduce these within-class variations, context dependent models
(biphones and triphones) are introduced. Specifically, triphone model takes into
consideration both (left and right) contexts, and biphone model takes only closer
one. In case of triphone models, tree based clustering procedure was used to tie
similar states, such that the total number of states is 1000. Low decoding com-
putational complexity is the main reason for this small number of different HMM
states in a model. It is important to note that a set of phoneme specific HMMs
was built for each gender separately, in order to improve phoneme recognition
accuracy.

To enroll target speaker adaptation based on MLLR is applied. Only mean
vectors are adapted, leaving variances unchanged. Gender dependent model with
higher likelihood on training data for a given speaker was used as an initial model
in the adaptation procedure. Both supervised and unsupervised adaptation pro-
cedures were performed, since the assumption was that besides audio data, their
transcriptions could also be known. The enrolment procedure consists of 3 adap-
tations, one (the first one) with global transformation and two with regression
tree based transformations [11]. The regression tree consists of 128 leaves and
about 1000 observations were used per each transformation matrix. In the case
of unsupervised adaptation, the procedure is almost the same as the previous
one, but it has an additional step in which phonetic (unfortunately erroneous)
transcriptions of training data are automatically generated using speech recog-
nition module. It is important to note that the speaker enrollment procedures
are the same for all HMM variations which differ in phoneme modeling units.

The decoding procedure is the same for all HMM-GMM variations. It starts
with Viterbi decoding with unconstrained language model (it allows transitions
from any phoneme, silence and noise model, into any phoneme, silence and noise
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model) followed by scoring with UBM system (in this case “GMM 400”). After
that, for each frame, the log-likelihood ratio of the target model and the UBM
is computed, and all non-speech segments, as well as segments corresponding to
the sequence of phonemes without any vowel are discarded from further scoring.

Besides capturing temporal information, as opposed to the baseline GMM-
UBM approach, additional motive for phonetic approach was the ability to as-
sign different weights to different groups of phonemes. Although we could not
completely rely on the phonetic recognition results, the system at least recog-
nized the correct group of phonemes (vowels, nasals, fricatives, stops...) which
turned out to be very useful. Assigning different weights to different groups
of phonemes improved the results significantly, compared to the average met-
ric computed over the whole utterance. Postprocessing performs one additional
task. It discards desired percentage of the worst scores from the results. Since
our tests were performed on recordings which included both target speaker and
imposter (or two imposters), it was perfectly reasonable to try this approach. All
the mentioned coeflicients (phoneme weights and percentage of utterance to be
discarded), were carefully trained and optimized in order to maximize accuracy.

The speech corpus used in this paper is based on the speech corpora described
in [14], where the utterances in original corpora are combined in the way that
each audio file contains utterances of two different speakers with minimum du-
ration of 30 s per speaker. On the other hand, the data intended for training
speaker specific model contains only 30 s of speech of a single speaker. The
database encompasses voices of 250 different speakers, where only 10 of them
are target speakers (7 male and 3 female). The test data contains about 15
hours of audio recordings split into about 160 files, but only 50 of them contains
voices of target speakers. The full spectrum speech data from “S7T0W100s120”,
“AN Books” and “AN Broadcast Speech” [14] is filtered and re-sampled to 8 kHz
to reproduce telephone channel data.

3 Experimental Results

Figure 1 shows detection error trade-off (DET) curves of the baseline systems.
Using 50 % of the best scoring frames resulted in performance gain for both
baseline systems. Since the difference in the performance between “GMM 800
top 50” and “GMM 400 top 50” is negligible, the GMM-UBM models with more
than 800 Gaussians were out of consideration. The “GMM 800 top 50” system
was used as the referent one for the all HMM-GMM-UBM systems. The speaker
scoring for both systems was performed only on the detected speech frames by
averaging log likelihood ratios in 2 variants. In the first variant all speech frames
were used (“all”) and in the second variant only 50 % of the best scoring frames
were used (“top 50”).

Figure 2 shows DET curves for HMM-GMM systems with different level of
phoneme model generalizations when both audio data and their transcriptions
are used in speaker adaptation . Using scores obtained on all valid speech frames
significantly deteriorates system performance, which was expected, since the test
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Fig. 2. DET curve for HMM-GMM systems if both audio data and their transcriptions
are used in speaker adaptation
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Fig. 5. DET curve for HMM-GMM-UBM systems if only audio data are used in speaker
adaptation, and the phoneme weights and percentage of utterance to be discarded are
optimized

utterances with target speaker voice include the voice of another speaker. Scores
on the frames belonging to imposter decrease the total score and in that way
mask the target speaker. One can see that the all HMM-GMM systems outper-
forms the baseline system (“GMM 800 top 50”). Since the test set has only 50
audio files containing target speaker, resolution of miss probability is 2 %, thus
DET curves for small values of miss probability are unreliable and should be
ignored in further analysis. Both HMM systems with context dependent models
outperform the system with monophones, but the number of Gaussians in mono-
phone model is significantly smaller (1716 compared to 14404 for biphones and
12732 for triphones), therefore there is no reliable explanation. Similar results
are obtained for the HMM-GMM systems if adaptation is based only on audio
data (see Fig. 3).

The performance of these systems in case of additional phoneme weighting and
automatic discarding of potential imposter frames are shown in Fig. 4 and Fig. 5.
One can see that the optimization procedure gives results that are comparable
with those obtained when 50 % of frames are discarded. We expected better
results, but small validation set used for the parameter (phoneme weights and
discard percent) estimation as well as evolutionary optimization procedure can
lead to these results.

4 Conclusions and Future Work

This paper presents a comparison between GMM-UBM and phoneme specific
HMM based speaker detection systems. The proposed HMM based systems
outperform GMM-UBM systems, since they use phonetic informations to filter
frames log-likelihood ratios (exclude unreliable frames or segments from scoring).
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Context dependent HMMs show a slightly better performances than the context
independent ones, which means that the longer matching between unknown se-
quence and mode reduce classification errors. The proposed model should be
tested on the larger database containing utterances in different languages.
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