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Abstract. This paper deals with automatic optimization of free decoding para-
meters. We propose using a Simplified Simultaneous Perturbation Stochastic 
Approximation algorithm to optimize these parameters. This method provides a 
significant reduction in computational and labor costs. We also demonstrate that 
the proposed method successfully copes with the optimization of parameters for 
a specific target real-time factor, for all the databases we tested. 
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1 Introduction 

The balance of accuracy and speed of automatic speech recognition depends on the 
solution of a number of related tasks, such as: 

─ optimization of the acoustic model; 
─ optimization of the language model; 
─ optimization of a large set of free decoding parameters. 

Optimization of both the acoustic model and the language model in automatic 
speech recognition for large vocabularies is a well-known task [1]. In contrast, the 
problem of optimizing free decoding parameters is still often solved manually or by 
using grid search (i.e. searching for values in a grid with a specified step). The task is 
complicated by the fact that each parameter can have a different impact on the accu-
racy of speech recognition and/or the expected decoding time. Moreover, each new 
domain requires searching for new optimal decoding parameters every time we 
change the training data. Lastly, changing hardware configuration also requires ad-
justment of optimal decoding parameters. 
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Typically, the search for optimal decoding parameters that satisfy the constraints of 
the real-time factor and at the same time provide high recognition accuracy is a very 
time-consuming task. 

In this paper, we present a Simplified Simultaneous Perturbation Stochastic  
Approximation for optimizing free decoding parameters. The proposed method signif-
icantly reduces computational costs in compared to [2], and the reduction is even 
greater compared to grid search. In contrast to [3] and [4], Simplified SPSA takes into 
account the real-time factor, which is of vital importance for the design of an ASR 
system. The proposed method also requires lower computational costs than [1] and [2] 
for finding the optimal accuracy corresponding to a specific real-time factor. We in-
troduce a penalty function, which is used to achieve a balance between recognition 
accuracy and decoding time. Then we demonstrate that this method provides robust 
and fast results. We present results obtained on three speech databases comprising 
spontaneous and read speech. 

2 Simultaneous Perturbation Stochastic Approximation (SPSA) 

Let us start by describing the standard form of the SPSA algorithm [5]. We denote the 
vector of free decoding parameters as ߠ. Let ߠ෠௞ denote the estimate for ߠ at the ݇th 
iteration. Then the algorithm has the standard form: 

෠௞ାଵߠ  ൌ ෠௞ߠ − ܽ௞ ො݃௞ሺߠ෠௞ሻ (1) 

where ො݃௞ሺ·ሻ is an estimate for the gradient at the ݇th iteration. The gain sequence ܽ௞ 
satisfies certain well-known conditions [6], these conditions are necessary for the 
convergence of the algorithm. ܽ௞ is calculated as: 

 ܽ௞ ൌ ܽ/ሺܣ + ݇ + 1ሻఈ  (2) 

In order to determine the “simultaneous perturbation” we perturb each ߠ෠௞ with a 
vector of mutually independent, mean-zero random variables ∆௞ satisfying the condi-
tions given in [6]. Usually, ∆௞  is taken as symmetrically Bernoulli distributed. A 
positive scalar is calculated as follows: 

 ܿ௞ ൌ ܿ/ሺ݇ + 1ሻఊ (3) 

This positive scalar and mean-zero random variables are multiplied to obtain two 
new parameter tuples: 

෠௞ାߠ  ൌ ෠௞ߠ + ܿ௞∆௞ (4) 

෠௞ିߠ  ൌ ෠௞ߠ − ܿ௞∆௞ (5) 

Using (2) and (3) gain sequences ܽ௞ and ܿ௞, SPSA and Kiefer-Wolfowitz finite-
difference-based SA (FDSA) [7] achieve the same level of statistical accuracy for a 
given number of iterations, but SPSA requires ݌ times fewer measurements of the 
loss function (݌ is a number of free decoding parameters that are being optimized). 
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The estimate of the gradient ො݃௞ሺ·ሻ is calculated from the values of the loss func-
tion ܮሺ·ሻ, as: 

 ො݃௞൫ߠ෠௞൯ ൌ
ێێۏ
ێێێ
෠௞ା൯ߠ൫ܮۍ − ෠௞ିߠሺܮ ሻ 2ܿ௞∆௞ଵ൘

෠௞ା൯ߠ൫ܮڭ − ෠௞ିߠሺܮ ሻ 2ܿ௞∆௞௣൘ ۑۑے
ۑۑۑ
ې
 (6) 

The values of the non negative coefficients ܽ, ܿ, ,ܣ  can be chosen according ߛ and ߙ
to the guidelines given in [6]. 

3 Simplified SPSA 

The standard algorithm is designed so that ܽ௞ and ܿ௞ decrease with increasing ݇. If ܽ௞ causes a deterioration of the objective value, the optimal solution must stay at ߠ෠௞ 
and at the next iteration obtain the estimation of the loss function with a new ܽ௞ ac-
cording to (2). Without an appropriate step size, the optimal solution will stay at ߠ෠௞ 
forever, which significantly slows down the rate of convergence of the algorithm [8]. 
This problem is illustrated in Fig. 1. The optimal solution is obviously located at ߠ෠௞ା. 
But the standard step size provides transition to ߠ෠௞ାଵ, where we are faced with the 
problem described above. If we assume that the ߠ෠௞ା point is obtained using an appro-
priate step size, then we can take ߠ෠௞ା as the outcome of the current iteration. 

 

Fig. 1. The search process of the standard SPSA 

According to the assumption above, SPSA takes the following form: 

෠௞ାଵߠ  ൌ ൞ߠ෠௞ା, ෠௞ା൯ߠ൫ܮ ݂݅ ൏ ෠௞ିߠ൫ܮ ൯ ܽ݊݀ ܮ൫ߠ෠௞ା൯ ൏ ෠௞ିߠ;෠௞൯ߠ൫ܮ , ෠௞ିߠ൫ܮ ݂݅ ൯ ൏ ෠௞ିߠ൫ܮ ݀݊ܽ ෠௞ା൯ߠ൫ܮ ൯ ൏ ,෠௞ߠ;෠௞൯ߠ൫ܮ .ݏ݁ݏܽܿ ݎ݄݁ݐ݋ ݈݈ܽ ݊݅  (7) 

L
(%

)

θ

݇+෠ߠ෠݇ߠ ෠݇+1ߠ݇−෠ߠ



 Simplified Simultaneous Perturbation Stochastic Approximation for the Optimization 405 

 

Moreover, if the parameter vector did not change at the current iteration, it means 
that the algorithm is close to the optimal point. In order to increase the convergence 
rate, it is necessary to reduce the coefficient ܿ௞ using the equation ܿ ൌ ܿ/1.5. 

The initial value of the parameter ܿ  must be chosen so that the coefficient ܿ௞ 
could converge to a certain minimum value in an expected number of iterations, giv-
ing the distance between the vectors of parameters ߠ෠௞ା and ߠ෠௞ି  such that หܮ൫ߠ෠௞ା൯ ෠௞ିߠሺܮ− ሻห ൐ 0. 

To take the decoding speed into account, we will calculate the loss function, pena-
lizing it by the corresponding value of RTF (real-time factor). Then the loss function 
takes the form: 

ሺ·ሻܮ  ൌ ሺ·ሻܮ +  (8) ܨܴܶ

This function provides the tradeoff between the real-time factor and the accuracy of 
speech recognition. 

The algorithm obtains an optimal solution, but this solution does not satisfy the de-
sired real-time factor. We propose increasing/decreasing the parameters stepwise to 
change the speed of automatic speech recognition, in order to achieve the desired real-
time factor. The step size and a set of parameters are specific for each decoder.  

4 Setup 

For the experiments we used three databases: 

─ Database A: recordings of read speech prepared by a collaborating speaker, the 
topic is sports, 1:06h, 5257 words, maximum accuracy obtained by manual para-
meter tuning is 92.505 at RTF= 0.357; 

─ Database B: recordings of telephone conversations (spontaneous speech), 0:49h, 
2828 words, maximum accuracy obtained by manual parameter tuning is 62.694 at 
RTF= 0.253; 

─ Database C: recordings of internet broadcasts, webinars and podcasts, 0:40h, 3013 
words, maximum accuracy obtained by manual parameter tuning is 62.297 at 
RTF= 0.864. 

For each of these databases we have a corresponding language and acoustic model 
[9,10]. We are tuning the following parameters: 

─ max_hyp_num – maximal number of hypotheses; 
─ thr_common – common threshold; 
─ lm_scale –factor of the weight of any edge of the graph; 
─ wd_add –addition to the weight of the edge of the graph. 

Speech recognition was carried out by the ASR system developed at Speech Tech-
nology Center Ltd. All experiments were performed on a workstation with an Intel 
Core i5 Desktop Processor with 4 physical cores, and 32 GB of RAM. 
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5 Experiment 

We performed several tests for each of the databases with different target real-time 
factors. Table 1 shows the results obtained by the algorithm, and further improved by 
selecting the parameters that affect the decoding speed. 

Table 1. Accuracy and real-time factor results on all databases, for the Simplified SPSA 

database objective 
RTF 

initial indica-
tors 

output indicators #iterations #runs 
of de-
coder Acc RTF Acc RTF 

A 0.1 91.021 0.115 92.505 0.090 22 42 
A 0.3 92.581 0.154 23 43 
A 0.5 92.619 0.321 25 45 
B 0.1 50.636 0.309 60.962 0.074 22 42 
B 0.2 62.023 0.178 21 41 
B 0.3 62.553 0.273 22 42 
C 0.5 47.063 0.823 60.438 0.499 25 45 
C 0.7 61.401 0.679 25 45 
C 0.9 61.998 0.892 26 46 

 
In all the tests for all the databases the proposed method showed high efficiency. It 

managed to approach to the optimal values obtained manually, and sometimes 
exceeded them. All the results are within the confidence interval. Figures 2 and 3 
show the results for databases A and C. We can see that a considerable improvement 
of Acc and RTF occurs already at the early iterations. After the twentieth iteration, the 
algorithm is aimed at selecting a specific target real-time factor. 

6 Conclusions 

In this paper, we demonstrated an effective method of optimizing free decoding  
parameters, which enabled us to obtain the optimum for a specific target real-time 
factor. The method can be applied to finding the optimal parameters for a specific 
target factor for all the databases we tested. All our results are within the confidence 
interval so they can be considered optimal. In practice, this approach allows us to 
obtain the parameters better than by grid search, and at the same time at a lower  
computational cost.  

We are confident that the proposed method can be used for other decoders to  
optimize free decoding parameters in terms of a specific target real-time factor. To do 
that, it is necessary to form the parameter vector, and the subset of parameters that 
influence the speed of speech recognition. 
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Fig. 2. Optimization runs on the database A 
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Fig. 3. Optimization runs on the database C 
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