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Abstract. Parametric speech modeling is a key issue in various processing ap-
plications such as text to speech synthesis, voice morphing, voice conversion 
and other. Building an adequate parametric model is a complicated problem 
considering time-varying nature of speech. This paper gives an overview of 
tools for instantaneous harmonic analysis and shows how it can be applied to 
stationary, frequency-modulated and quasiperiodic signals in order to extract 
and manipulate instantaneous pitch, excitation and spectrum envelope. 
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1 Introduction 

There are many speech processing applications that require parametric representation 
of the signal. One of the most popular multipurpose approaches for flexible speech 
processing is hybrid stochastic/deterministic parameterization [1,2]. According to it 
the signal is decomposed into two parts of different nature: stochastic part (unvoiced 
speech) can be modeled as a random process with given power spectral density, while 
deterministic part (voiced speech) is a quasiperiodic signal that can be represented 
using harmonic modeling. The harmonic model assumes that the signal is a sum of 
sines with slowly varying parameters. 

In this paper we briefly describe some methods for harmonic parameters estimation 
that can be applied for speech analysis. To be consistent with term ‘instantaneous’ it 
is assumed that the signal is a continuous function  that can be represented as a 
sum of P harmonic components with instantaneous amplitude , frequency 

 and phase  [3]: 

cos , 
where 0  and 0,  (for discrete-time signals π 
corresponds to the Nyquist frequency). In speech processing it is assumed that fre-
quency trajectories of separate harmonics are close to integer multiplies of pitch  
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(or fundamental frequency), i.e. . Since parameters of the model vary 
slowly it is possible to assume that each component is narrow-band. 

An alternative to instantaneous modeling is frame-based modeling, i.e. when  
harmonic parameters are assumed to be stationary over whole analysis frame. The 
simplest way to show the difference between these two approaches is to extend the 
modeling signal beyond analysis window as shown in figure 1. In frame-based model-
ing analysis frame is repeated while in the other case the signal is extended according 
to the parameters corresponding to a specified moment of time. 

 

 

Fig. 1. Signal extension using frame-based and instantaneous modeling 

An issue of frame-based approach is aliasing that emerges during synthesis stage. 
A classical overlap and add method applied in different speech processing sys-
tems [4,5] reduces amount of aliasing noise by using concatenation windows. Howev-
er this effect is not avoided completely because the method cannot ensure that each 
harmonic is a narrow-band component. Instantaneous harmonic modeling allows 
filtering and manipulating of each harmonic and therefore can be theoretically more 
beneficial for voiced speech synthesis. 

The present work gives a review of recent approaches to instantaneous harmonic 
analysis of voiced speech. Despite that we consider input signal as a continues-time 
function all the analysis techniques presented in the paper can be applied to discrete-
time signals as well. We also present some approaches to pitch and spectral envelope 
extraction based on the harmonic model. 

2 Estimation of Instantaneous Harmonic Parameters of Speech 

2.1 The Fourier and Hilbert Transform 

Most of the analysis techniques require separation of individual harmonics before 
extraction of instantaneous components. A combination of the Fourier and Hilbert 
transform can do both separation and extraction. Let us assume that harmonic  
components do not intersect in frequency domain and therefore can be separated by 
narrow-band filtering. A good practical approach is to use linear phase filters that can 
be implemented as a filter bank. Let  and  are normalized frequencies from 
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range 0,  that specify bottom and top edges of a pass-band. Then continuous im-
pulse response of the correspondent filter  can be derived as follows: 

, 1  1
 

0 0 . 
Substituting  and  with center frequency  and wideness of the pass-

band 2 ∆ i.e. ∆ and ∆ the equation becomes: 

, ∆ ∆ ∆
 

2 sin ∆ . 
If the output of the filter is a one periodic component with time-varying parameters 

then it can be written in the following way: 

, , , 
where A  is instantaneous amplitude,  – instantaneous phase and  – 
instantaneous frequency. Considering that ,  is a complex analytical signal its 
parameters can be calculated directly using the following equations: , arctan , , 
where  and  are real and imaginary parts of ,  respectively. 

To get an impulse response with finite length it is possible to use window 
tion : 

, 2 sin ∆ . 
The method that has been shortly described above applies Hilbert transform to each 

subband signal. If the filters are uniform (which is generally the case for quasi period-
ic signals) in real-life applications analysis routine can be implemented very efficient-
ly using fast Fourier transform (FFT). That makes this approach very popular for 
speech processing applications [6,7]. 

The accuracy of harmonic separation significantly degrades in case of pitch modula-
tions. The technique requires long analysis window that results in spectral smoothing 
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when frequencies of harmonics change too fast. One of possible solutions to the prob-
lem is to use the filter with frequency-modulated impulse response: 

, 2 sin ∆ , , 
where ,  and  – the instant of harmonic parameters extrac-

tion. In real-life applications required trajectory of center pass-band frequency  
can be estimated from pitch contour. Direct recalculation of impulse response for each 
estimation instant and each subband is computationally inefficient. Another way to 
get a similar effect of improving frequency resolution for pitch-modulated signals is 
to use time-warping. A warping function is applied to the input signal: , 0 , 
which adaptively warps time axis of the signal and eliminates pitch modulations [8,9]. 
Since pitch becomes constant it is possible now to apply an efficient FFT-based anal-
ysis scheme that has been described above. 

2.2 Energy Separation Algorithm and Prony's Method 

Energy Separation Algorithm 
The Hilbert transform that has been used in the previous subsection for harmonic 
parameters extraction is not the only one possible option. Another popular approach is 
the energy separation algorithm (ESA) [10] which is based on the nonlinear differen-
tial Teager-Kaiser Energy Operator (TEO) [11]: Ψ , 
where / . 

According to ESA two TEO's outputs are separated into amplitude modulation and 
frequency modulation components. As shown in [12] the third-order energy operator Υ , 
where / , can be used for estimating damping factor. 

Considering that for a periodical signal with constant amplitude and frequency cos  the following equations are true: Ψ , Ψ , 
instantaneous frequency and absolute value of amplitude can be obtained as follows: ΨΨ , 



28 A. Petrovsky and E. Azarov 

 

| | ΨΨ . 
These equations constitute energy separation algorithm for continuous signals. 

Prony's Method for Continuous-Time Signals 
Despite the fact that Prony's method is originally intended for discrete-time data it is 
possible to apply it to continuous-time signals as well. Let us consider a continuous 
signal  which can be represented as a sum of damped complex exponents: 

, 
where p is the number of exponents,  is an initial complex amplitude 
and  is a time-dependent damped complex exponent with damping 
factor  and normalized angular frequency . Then let us introduce a time shift  
and obtain n-th order derivatives of  [13]: 

, 
where  denotes order of derivative, 

, | | . 
According to the equation for any fixed moment of time  series of deriva-

tives , , , … ,  can be represented as a sum of damped complex exponents with 
initial complex amplitudes , damping factors ln| | and normalized an-
gular frequencies arg . The required parameters of the model  and  can be 
found using original Prony's method as it is briefly summarized below. 

In order to estimate exact model parameters 2  complex samples of the sequence 
are required. The solution is obtained using the following system of equations: …

… . 

The required exponents , , … ,  are estimated as roots of the polynomial 

 

with complex coefficients  which are the solution of the system 
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…
…  

and 1. Each damping factor  and frequency  are calculated using the 
following equations: Re , Im . 

Using the extracted values of , , … ,  the initial system is solved with respect 
to , , … , . From each of these parameters initial amplitude  and phase  
are calculated as: | |, arctan ImRe . 
For real-valued signals the solution gives pairs of complex conjugate exponents. In 
order to identify parameters of b real-valued sinusoids we should calculate 4 1 
derivatives. 

Considering  as a single real-valued damped sinusoid it is possible to identify 
its parameters using its actual value and three derivatives. Using the equations that 
have been given above we can formulate the following estimation algorithm. 

1) Calculate three derivatives of the signal: , , ; 
2) Calculate coefficients of the polynomial: ΥΨ , ΨΨ ; 
3) Calculate roots of the polynomial: 

, 12 4 Υ2Ψ Υ4Ψ ΨΨ ; 
4) Calculate initial complex amplitude: 

12 ; 
5) Calculate required parameters of the sinusoid: 
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Re Υ2Ψ , 
Im ΨΨ Υ4Ψ , 

2| |, arctan ImRe . 
Note that the resulting equation for damping factor is exactly the same as given 

in [12] and the equation for frequency can be derived from the case of cosine with 
exponential amplitude discussed in [10]. The equations show how ESA and Prony's 
method are connected in the case of one real-valued sinusoid. 

3 Estimation of Pitch and Spectral Envelope from 
Instantaneous Harmonic Parameters 

In this section we show how high-level speech characteristics such as pitch and spec-
tral envelope can be estimated from instantaneous harmonic parameters. 

3.1 Instantaneous Pitch Estimation 

The most popular approach for period candidate generating is autocorrelation-based 
functions such as normalized cross-correlation function (NCCF). Let  be a dis-
crete-time speech signal, z – step size in samples and n – window size. The NCCF ,  of K samples length at lag k and analysis frame x is defined as [14]: , ∑ , 0, 1;  ;  0, 1, 
where ∑ . Instantaneous parameters of harmonic model give a spec-
tral representation of the current instant  that can be utilized in order to estimate 
momentary autocorrelation function , ∆ . Using the Wiener-Khintchine theo-
rem: 

, ∆ 12 cos ∆ . 
, ∆  corresponds to the autocorrelation function calculated on infinite  

window of periodic signal generated with specified harmonic parameters. As far as 
analysis window is infinite there is no difference between autocorrelation and cross-
correlation functions. Considering this fact it is possible to propose the instantaneous 
version of NCCF , ∆  in the following form: 
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, ∆ ∑ cos ∆∑ . 
Unlike original time-domain NCCF lag ∆  does not need to be an integer, valid 

values can be produced for any desired frequency. Function , ∆  is immune 
to any rapid frequency modulations in the neighborhood of t provided that estimated 
instantaneous harmonic parameters are accurate enough. This period candidate gene-
rating function has been used in instantaneous pitch estimator [15], based on the har-
monic model. 

3.2 Estimation of Instantaneous Spectral Envelope 

Let us use conventional linear-prediction (LP) technique for spectral envelope estima-
tion of continuous-time signal . We assume that harmonic model of the signal is 
specified by the correspondent set of time-varying parameters. LP model approx-
imates given signal sample  as a linear combination of the  past samples that 
leads to the following equality: 

, 
where , , …,  are prediction coefficients,  is a normalized excitation and 

 is the gain of the excitation [16]. The prediction error  is defined as the differ-
ence between the source and predicted samples: 

̃ . 
The basic problem of LP is to find the set of predictor coefficients that minimize 

the mean-square prediction error. Let us consider a harmonic signal with constant 
amplitudes and constant frequencies of components. The relative residual energy can 
be evaluated as the following sum: 

A 1 cos sin . 
In order to minimize  it is possible to use the basic minimization approach by 

finding partial derivatives with respect to variables  and then solving the system of 
linear equations. Eventually the following system can be derived: ∑ | | , 

where 1,2, … ,  and ∑ A cos , 0 . 
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It is known that LP spectral representation tends to model individual harmonic 
components instead of the spectral envelope when the order of prediction becomes 
high. Using derived transformation system it is possible to represent exactly the speci-
fied envelope as a high-order filter by using amplitude and frequency vectors of infi-
nite dimension. 

The spectral envelope can be considered as a continuous function of frequency 
, specified on the interval 0, . Then the matrix elements  can be derived 

as the following integral: 

cos . 
If  contain discontinues in points , , … , , then the equation can 
be expressed as: 

cos,
, , 

where 0, , , … , , . 
Continuous spectral envelope can be estimated from amplitude and frequency vec-

tors using linear interpolation. Single segments of the envelope  ,  1 1 are described by linear equations of the form . Pa-
rameters  and  are estimated from adjacent values of frequency and amplitudes. 
Finally elements of the required system can be derived in the following way: 

, , 
where , cos sin sincos sin sin 00. 

The presented technique is compared to original LP in [17] where was shown that 
it provides much more accurate envelope estimation compared to conventional time-
domain method such as autocorrelation and covariance. 

4 Conclusions 

A short review of techniques for instantaneous harmonic analysis has been given in 
the paper. The techniques can be applied to voiced speech in order to extract time-
varying parameters of each harmonic. The extracted parameters can be used for in-
stantaneous pitch and envelope estimation. 
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