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Chapter 5
Hawkes Point Processes for Social  
Media Analytics

Amir Hassan Zadeh and Ramesh Sharda

Abstract Online social networks (OSNs) produce a huge volume of content and 
clickstream data over time as a result of continuous social interactions between users. 
Because these social interactions are not fully observable, the mining of such social 
streams is more complex than traditional data streams. Stochastic point processes, 
as a promising approach, have recently received significant research attention in 
social network analysis, in attempts to discover latent network structure of online 
social networks and particularly understand human interactions and behavior within 
the social networks. The objective of this paper is to provide a tutorial to the point 
process framework and its implementation in social media analytics. It begins by 
providing a quick overview of the history of Hawkes point processes as the most 
widely used classes of point process models. We identify various capabilities and 
attributes of the Hawkes point processes and build a bridge between the theory and 
practice of point processes in social network analytics. Then the paper includes a 
brief description of some current research projects that demonstrate the potential of 
the proposed framework. We also conclude with a discussion of some research 
opportunities in online social network and clickstream point process data.

Keywords Point process • Hawkes process • Self-exciting • Mutual-exciting  
• Online social networks • Twitter • Online content • Stream mining

5.1  Introduction

During the past few years, millions of people and organizations have used online 
social networks applications (Facebook, Twitter, YouTube, Google+, etc.) as a part 
of their daily online activities (Guy et al. 2010). As a result of continuous social 
interactions between participants over these websites, these platforms have generated, 
and will continue to generate, enormous amount of data over time. Understanding 
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rules and structures governing human interactions and collective behavior is a  
challenging task in the field of social network analysis. This paper is concerned with 
the latent networks that cannot fully be observed in online social networks, but have 
to be analyzed for different purposes. For example, videos on YouTube are watched 
thousands of times; tweets on Twitter are retweeted, replied and marked as favorite 
many times by followers; Wikipedia pages are edited quite frequently by contribu-
tors; online advertisements or brand posts on Facebook are clicked on by users 
resulting in popping a web page up from which a purchase may be completed. The 
common thing among these examples is that activities on one piece of information 
are likely to cause follow-up activities on itself and other related content. How can
we elucidate such interactions and similarities, unravel them from massive unstruc-
tured data that generate throughout the days and leverage them for businesses pur-
poses? Numerous approaches have been proposed to address this problem in
different ways. Point processes are one of these approaches that have recently 
received substantial attention in social and behavioral sciences due to their ability to 
resemble the dynamics of social interactions and discover hidden patterns and 
implicit network structure within the underlying social structures. On the other 
hand, the availability of time-stamped and geo-located data collected by various
data technologies over these platforms have made it possible to treat this data like 
point process data, work with point process models and study the spatial-temporal
properties of the dynamic social networks.

In this paper, we consider a class of point process models capable of resembling 
the temporal pattern of social interactions and specifying the temporal dependencies 
of the interaction events with a branching structure within online social networks. 
Hawke’s self-exciting and mutual-exciting point process (Hawkes 1971) and Ogata’s 
ETAS (Epidemic Type After shock Sequences) model (Ogata 1988), an extension of 
Hawkes process, are very flexible frameworks which best suited for highly dynamic 
networks. The Hawkes process model was first designed to model the branching 
structure of earthquakes. It implemented the idea that an earthquake can trigger after-
shocks. Later, the Ogata’s point process model was developed to implement the idea 
that aftershocks sequences have an epidemic behavior, i.e. a large earthquake induces 
more aftershocks than small earthquakes do. An earthquake with a large magnitude 
triggering aftershocks is analogous to the activity of an influential user on a content 
causing follow-up activities by other users on his/her network of followers. Therefore,
adapting a point process framework similar to the Hawkes’ self-exciting and mutual-
exciting point process and ETAS model can be beneficial to analysis that we wish to 
perform within online social networks.

To the best of our knowledge, there are relatively few studies in literature that 
have used the point process framework to study dynamic online social networks 
(Crane and Sornette 2008; Lawrence and Michael 2010; Steeg and Galstyan 2012; 
Hassan Zadeh and Sharda 2014a, b; Yang and Zhao 2013). Building upon these 
studies, this paper provides a tutorial for a point process framework and its imple-
mentation to social media analytics. We first briefly provide a quick overview of the 
point process, then present self and mutually exciting or Hawkes processes in detail. 
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This section basically reviews the statistical theory underlying the Hawkes point 
process approach. In Sect. 5.4, we briefly review some of the applications of the 
Hawkes process across various areas of research including applications not only in 
seismology and finance, but also in healthcare and bioinformatics, social networks, 
social media, sociology, criminology and terrorism. We then explain some current 
research projects that demonstrate the usefullness of the Hawkes point process and 
how the point processes framework is mapped out, to some extent, in online social 
networks. The final section presents a general conclusion of this paper.

5.2  Point Processes

A point process is a type of random process or a stochastic mechanism that can generate 
times and spaces of events of a point pattern which we may observe. For instance, the 
occurrence of an earthquake, fire, neuronal spikes, crime or new thread, content and 
conversation on social media might be regarded as a point process in both time and 
geographical space (or in even more general dimensions) if every single point is 
recorded and mapped according to its position either in time or space or both. Point 
process models have long been used for describing such real-world phenomena occur-
ring at random locations and/or times (Schoenberg et al. 2010). Temporal Point pro-
cess models are closely rooted in survival analysis which deals with the durations of 
time between consecutive events. However, point process models focus on times of 
events that may appear on the timeline (Rathbun et al. 2006).

A point process can be viewed in terms of a list of times t1, t2, … , tn at which cor-
responding events 1, 2,…, n occur (Daley 2006; Daley and Vere-Jones 2003a, b). 
Intuitively, a point process is characterized by its conditional intensity λ(t) which 
represents the mean spontaneous rate at which events are expected to occur given 
the history of the process up to time t (Ogata 1988). In particular, a version of the 
conditional intensity may be given by the process
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where Ht denotes the history of events prior to time t, and the expectation represents 
the number of events N[t, t + Δt] occurring between time t and t + Δt. The Poisson 
process is the prototype of a point process that yields random events in space or time 
where two consecutive events are independent. In other words, a point process is 
classified as a Poisson process if events occurring at two different times are statisti-
cally independent of one another, meaning that an event at time t1 neither increases 
nor decreases the probability of an event occurring at any subsequent time. A Poisson 
process is governed by a single parameter or Poisson intensity. Although Poisson 
processes have many nice properties which make them particularly well suited for 
special purposes, they cannot capture interaction effects between events. In the next 
section, we turn our attention to a more general point process rather than the 
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stationary Poisson process known as Hawkes process. Very useful sources of 
theoretical discussions and empirical applications of various types of point pro-
cesses can be found in the textbooks (Daley 2006; Daley and Vere-Jones 2003a, b).

5.3  Hawkes Point Processes

The origin of Hawkes point process goes back to the seventies when Hawkes was 
looking for a mathematical model that describes earthquake occurrences. Hawkes 
(1971) introduced a new class of point process to model earthquake occurrences. 
What was new in his perspective in contrast to other concurrent approaches was a 
concrete and mathematically traceable point process model with inclusions of 
branching, self-exciting and self-similarity behaviors (Liniger 2009). The Hawkes 
process originally states that when an event occurs, it will increase the chance of 
occurrence of some future events. Over the past few years, Hawkes process models 
have received significant attentions from researchers, especially in seismology 
research in terms of theoretical and empirical implications. Though, there exists 
several equivalent forms in literature in which Hawkes point process can be defined, 
standard Hawkes process can be defined as a temporal point process with long 
memory, branching effect and self-exciting properties. Hawkes process is originally
characterized by its associated conditional intensity process which allows us to 
describe the underlying dynamics of the process in a convenient way. The intensity 
λ(t) at a given time t corresponds to the chance of occurrence of an event between 
time t and t + Δt given the history of the process up to time t. Let X= {(ti, mi)} to be 
a marked point process on the timeline, where ti ⊆R is an event of the point process
and mi ⊆ M denotes the corresponding mark. The conditional intensity function of 
the standard Hawkes process is assumed to be of the form
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Where μ(t) denotes an immigrant intensity function. Function α (κ) represents total 
offspring intensity and function β(t, κ) is a density function on [0, ∞). This function 
is also called normalized offspring intensity which is allowed to depend on the 
mark m. They are conditional on past events and marks given by history of the 
process i.e. H t mt i i t ti
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Now, we turn our attention to multivariate marked Hawkes process. In this 

article, we put the definition of Daley and Vere-Jones (2003) into the prospective
as the generalized closed form of the Hawkes point process. Let N(t) = [N1(t), …, Nd(t)] 
be a multivariate point process that is the superposition of several univariate point 
processes of different types {N1(t), …, Nd(t)}. Nj(t) : j = 1, …, d denotes the number 
of points or events type j in the interval [0, t). By definition, a multivariate marked 
Hawkes process is a class of d-dimensional point process which has d intensity 
processes given by:
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where the rate of event type (mark) j, λj(t), is determined by the accumulative self-
and mutual-excitement effects of the past occurrence of events of all types. Any one
event triggers an increase in the rate of the entire process including its associated 
intensity process and the other d-1 marked intensity processes. In other words, every 
event in one of the components increases the intensity of this and all other compo-
nents. The functions hkj are called transfer functions (also called response, reaction 
or decay or triggering function in the literature), which are density functions describ-
ing the waiting time (lag) distribution between excited and exciting events. These 
describe how fast the self- and mutual-excitement effects decay in time. The amount
of excitement depends on the magnitude of the mark (type) of the triggering event. 
The fact that a Hawkes process has an underlying clustering structure appears at 
parameter αkj which indicates the amount of excitation an event type k contributes to 
the time path of component j. These branching coefficients reflect the overall behav-
ior of the point process that Hawkes found in his paper (Hawkes and Oakes 1974) 
to be in the interval [0,1) as the necessary condition for existence.

The most commonly used form of the response function is an exponential decay 
distribution as follows:
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Based on the Hawkes process, intensity function specified in Eq. 5.2 and the density 
function specified in Eq. 5.3, the conditional intensity for the type-j point process 
can be written as:
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It indicates that if an event has occurred at time s, the intensity is increased at time 
t by amount of h(t − s). The functions gj(m) are so-called boost functions which are
a distinct feature of marked Hawkes point process describing the strength of the 
event. In other words, if an event type j with mark x occurs at time t, the effect of 
this event on the time path of the component j is proportional to gj(m). While the 
transfer and boost functions deal with the relative effects of an event, the branching 
coefficients imply the absolute influence of the event to the timeline (Steeg and 
Galstyan 2012).

As pointed out earlier, one of the nice properties of Hawkes point process is the 
ability to handle a branching structure which facilitates incorporating self-excitement,
self-excitation and self-similarity behaviors without even taking into consideration
the time and the location of the event. This is a different way of relating events to 
each other in the way as ancestors and offspring are linked together and allows us 
to bring the theory of branching processes to the context of point process.
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Hawkes point processes are commonly fitted with both parametric and non-
parametric estimation techniques. Based on the Hawkes process, intensity function 
written in Eq. 5.1, the likelihood function for any of the individual point process 
embedded in the entire process can be written as (Daley and Vere-Jones 2003)

 

L t H e
k

d

j

d N t

j n
k

t

t H dtk

k

T

j t

= ( )é

ë
ê
ê

ù

û
ú
ú

òé

ë
= = =

( ) - ( )

ÕÕ Õ
1 1 1

0

n

l

l
n

|
|

êê
ê
ê

ù

û

ú
ú
ú  

(5.5)

Numerical maximization algorithms such as the quasi-Newton method, the conjugate
gradient method, the simplex algorithm of Nelder and Mead and the simulated
annealing procedure are often implemented to compute maximum log-likelihood
estimation of Hawkes process models (Daley and Vere-Jones 2003) as there are no
analytically close-form solutions available. Veen and Schoenberg (2008) observed 
that the log-likelihood functions of branching processes of Hawkes type are com-
plex and extremely flat and numerically unstable due to the multidimensionality, 
incomplete data and hidden network of branching structure of the Hawkes process. 
They implemented the idea that Hawkes point process data can be viewed as an 
incomplete data problem in which the unobservable or latent variables ascertain 
whether an event belongs to a background event or whether it is a foreground event 
and was triggered by a preceding occurrence. Therefore, they investigated the 
expectation-maximization (EM) algorithm as an alternative parameter estimation to
estimate Hawkes process parameters and found that it is very efficient compared to 
traditional methods.

The Bayesian nonparametric inference can also be built as an alternative parameter 
estimation approach for Hawkes process. Rasmussen (2013) implemented an 
MCMC (Markov Chain Monte Carlo) algorithm i.e. Metropolis-within-Gibbs
algorithm, to perform posterior approximations. Usually, a nonparametric approach 
leads to a more accurate and robust estimation of parameters.

To assess the goodness-of-fit of the fitted conditional intensity, Q-Q plots of the
residual process and the durations (the time intervals between the events of residual 
process) are drawn. The so-called compensator process is used to perform
Kolmogorov- Smirnov (K-S) test to assess the reliability of each model as to the
extent to which the model fits the data. This criterion provides useful information of 
the absolute goodness-of-fit of candidate models. Furthermore, the relative ability
of each model to describe the data is measured by computing the Akaike informa-
tion criteria (AIC) (Akaike 1992). The Akaike statistic provides germane numerical 
comparisons of the global fit of competing models.

When it comes to the simulation of the point process, the thinning method of 
Ogata (2006) is often used for the simulation of a point process with the estimated 
intensity function. This method calculates an upper process for the intensity func-
tion which is used to simulate a frequency rate on each mark for the time of the next 
possible event. Then, the ratio of this rate to the upper bound is compared with a 
uniform distribution to decide whether the simulated occurrence time is accepted or 
not (Møller and Rasmussen 2005; Harte 2010). This method is also used for the 
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purpose of prediction. The probability distribution of the time to the next possible 
event is obtained empirically by simulation outcomes. Based on the in-sample and
out-sample performance measures, such as mean absolute error (MAE) (Hyndman
and Koehler 2006), the predictive performance of the model can be assessed.

5.4  Hawkes Process Modeling Applications

As mentioned earlier, Hawkes process models have long been used in seismology 
to recognize similar clustering patterns in earthquake occurrences and to predict 
subsequent earthquakes, or aftershocks (Adamopoulos 1976; Ogata and Vere-Jones
1984; Ogata 1988; Ogata 1999; Veen and Schoenberg 2008; Wang et al. 2012). 
In the past few years, point process models have attracted the attentions of researchers 
from various areas ranging from finance, healthcare and bioinformatics, social 
networks, to even sociology, criminology and terrorism.

5.4.1  Finance

Starting with papers (Bowsher 2003; Engle and Lunde 2003; Bowsher 2007; Carlsson 
et al. 2007), Hawkes point process showed the potential to be applicable to a wide 
variety of problems in economics, finance and insurance. Bowsher (2003, 2007), 
Engle and Lunde (2003) and later, Bauwens and Hautsch (2009) showed that Hawkes 
process is able to capture some of the typical characteristics of financial time series. 
They used Hawkes process models to study the high-frequency price dynamics of
financial assets. They proposed mutually exciting or bivariate Hawkes processes as 
models for the arrival times of trades and succeeding quotes in stock markets and 
observed that changes in price of a given asset may lead to subsequent quote revi-
sions. Their model helps sellers and buyers determine their pricing strategies by tak-
ing into consideration the past prices and trades to decide what price and quote to 
post. In another study, Hawkes processes have also been proposed as models for the 
arrival process of buy and sell orders (Carlsson et al. 2007). Bacry et al. (2012a, b) 
developed multivariate Hawkes process models associated with positive and negative 
jumps of the asset prices. Their model captures upward and downward changes of 
prices of assets. Zheng et al. (2014) also extended previous Hawkes process models 
and proposed a multivariate Hawkes process to describe the  dynamics of the bid and 
ask price of a financial asset.

Another area of finance where Hawkes processes have received significant atten-
tions is risk management and portfolio credit risk analytics. Giesecke and Tomecek 
(2005), Giesecke et al. (2011) and Errais et al. (2010) revealed that Hawkes pro-
cesses can also model the credit risk process. They observed that Hawkes processes 
with exponential transfer function (markov-type Hawkes process) is consistent with
the theory of affine jump-diffusion processes in portfolio credit risk and can analyze
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price processes for certain credit derivatives. Later, Dassios and Zhao (2012) 
presented a new point process as a generalization of the cox process with short noise 
intensity and Hawkes process with exponential decay which combines both self-
excited (endogenous) and externally excited (exogenous) factors of the underlying 
system. They used it to model the credit risk process with the arrival of claims and 
assumed that bankruptcy is caused by primarily a number of bad events such as 
credit rating downgrades by rating agencies (endogenous factors) and also other bad 
news on the company front such as bad corporate financial reports (exogenous fac-
tors). Their model is capable of capturing additional aspects of the risk, particularly 
during the economic downturn which involves plethora of bad economic events. 
In the same line of research, Chavez-Demoulin and McGill (2012) used Hawkes 
process models featured by a Pareto distribution for the marks to estimate intraday 
value-at-risk as one of the important metrics used by market participants engaged in
high-frequency trading. In another study, Herrera (2013) applied a marked self-exciting
point process model to arrival times of extreme events to estimate value-at-risk in oil
markets. These are some among many applications of Hawkes process in finance and 
other related areas which demonstrate that Hawkes processes have some of the typical 
characteristics of financial time series.

5.4.2  Healthcare and Bioinformatics

Point process models have also been successfully applied in the analysis of a variety 
of problems in bioinformatics and healthcare domain. In neurosciences, the spikes 
are the major components that elicit from real-time information processing in the
brain. Brillinger (1975, 1988) and Brillinger et al. (1976) was the first one who 
proposed the Hawkes process in the field of neurophysiology as a model for neural 
activity in networks of neurons for understanding the mechanisms of what causes a 
neuron to spike. They used Hawkes point processes as a tool for identifying the rela-
tion between connectivity and spike train correlations in small neural networks. 
Dahlhaus et al. (1997) used Hawkes processes as a tool for identifying direct and 
indirect synaptic connections in relatively large neural networks. However, in the 
following years (till 2010), the literature disregarded the linear Hawkes models per-
haps due to nonlinear aspects in spike trains, focusing instead on non-linear point
process-type models such as the generalized linear models (GLMs), and related
multiplicative models (Cardanobile and Rotter 2010) while not offering the same 
mathematical exposure and simplicity as Hawkes process does. Krumin (2010), 
Pernice et al. (2011) and Reynaud-Bouret et al. (2013) used Hawkes process models 
as a tool for spike train analysis for relating neural spiking activity to spiking his-
tory, neural ensemble and exogenous effects. They analyzed effects of different con-
nectivity patterns on correlation structure of neuronal activities and observed that 
the Hawkes process framework is capable of capturing the dynamics of the spike 
trains in a linear manner as Hawkes process counterparts.

Recently, Hawkes process has been has been used as an analytical model in
human physical activity and health. Paraschiv-Ionescu (2013) proposed Hawkes 
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process as a model for understanding human physical activity patterns in health and 
disease, particularly physical behavior in chronic pain. The central question in their 
research was how chronic pain affects individuals’ daily life and movement. They 
studied the interactions between chronic pain and regular physical activity and 
observed that Hawkes process is able to capture the temporal dynamics of human 
activity patterns between periods and events. They concluded that Hawkes process 
can improve the clinical understanding of chronic pain behaviors by quantifying the 
complex dynamics of various human activities.

In the area of disease epidemiology, Meyer (2009) and Kim (2011) used Hawkes’ 
self-exciting point process and Ogata’s ETAS (Epidemic-Type After shock
Sequences) models to study the spread of infectious disease like flu virus during an 
epidemic or pandemic. They demonstrated that Hawkes process type models can 
incorporate spatial and temporal dependencies of outbreaks by specifying a branch-
ing structure among the outbreaks in order to predict future occurrences of infec-
tious disease and epidemics.

5.4.3  Sociology, Criminology and Terrorism

Hawkes process has been used in many other areas even in sociology, criminology 
and terrorism. Very recently, several works addressed the potential of the Hawkes-
type models to understand and predict future patterns of violent events and security 
threats. The fact that some crimes, such as burglary and gang violence tend to hap-
pen close to each other in both time and space and spread through local environ-
ments contagiously, Mohler et al. (2011), Alexey et al. (2011), Hegemann et al. 
(2013) and Mohler (2013) took advantage of multidimensionality of Hawkes process 
across time and space as it was implemented in seismology research, studied the 
behaviors and rivalries of street gangs and observed that Hawkes process and territo-
rial street gangs exhibit similar behavioral characteristics. They used this model to 
determine the future urban crime hotspots. Porter and White (2012) and Mohler
(2013) used Hawkes-type process models to detect terrorist activities and determine
the probability of a terrorist attack occurring in a day, location and the severity of the 
attack. In similar works, the temporal patterns of violent civilization deaths from 
the Iraq and Afghan conflicts were explored using self-exciting point processes
(Erik et al. 2010; Lewis et al. 2012; Zammit-Mangion et al. 2012).

5.4.4  Social Network Analysis

Recently, there has been a growing interest to use Hawkes point process models for
social network analysis. Crane and Sornette (2008) and Lawrence and Michael
(2010) developed a family of self-exciting point processes to explore the dynamics
of viewing behavior on YouTube. They demonstrated that a Hawkes process with a 
power law response function exhibits similar characteristics of the viral process of 
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a video on YouTube. These characteristics were classified by a combination of 
motivational factors (endogenous/exogenous) of user interactions and the ability
of viewers to influence others to respond across the network (critical/subcritical).
In another study, Lawrence and Michael (2010) used mutually exciting Hawkes 
process models to understand rules governing collective behaviors and interactions 
between contributors over Wikipedia. Blundell (2012), Halpin and Boeck (2013) 
and Masuda (2013) used Hawkes process models to model dyadic and reciprocal 
interaction within e-mail and conversation networks. Golosovsky (2012) studied the 
growth patterns of the citation networks and observed that the citation process can-
not be a memoryless Markov chain; instead it is consistent with self-exciting point
process, since there is an extensive correlation and temporal dependency between 
the present, recent and past citation rates of a paper. Very recently, Xu et al. (2014) 
used mutual-exciting Hawkes process to study the dynamic interactions and effect
of various types of online advertisements clicks (display, search, purchase) on pur-
chase conversion. Also, Hassan Zadeh and Sharda (2014a, b) and Yang and Zha 
(2013) built different Hawkes’ self- and mutual exciting point process models to
investigate the effect of viral diffusion processes on popularity of contents on online 
social networks.

In summary, Hawkes process has been successfully used in many areas ranging 
from seismology, finance, medicine, social networks to even criminology and ter-
rorism. Hawkes process models have still this potential to apply to wide variety of 
other problems to study events or behaviors of interest. Next section outlines two of 
our previous research projects to demonstrate the capability of Hawkes point 
process and how point processes models are actually formulated, mapped out and 
operationalized to some extent in Twitter.

5.5  Hawkes Process Applications in Social Media

Over the past few years, big brands have started taking social media seriously, and 
social media marketing has been an inevitable part of their marketing plan. As more 
and more major brands have established their communities within online social 
networks (OSNs), understanding the behavior of the fans on these platforms became 
important to the marketers and online content providers in order to enable better 
organization of online activities, and effective execution of successful marketing 
campaigns. The central question in our previous works has been to determine the 
popularity growth patterns of a brand’s tweet by analyzing the time-series path of its
subsequent activities (i.e. retweets, replies and marks as favorite). Understanding 
this type of information spreading in social media platforms would potentially 
allow marketers to predict which trends or ideas will become popular, how fast 
they will become popular, how much impression a tweet will receive, how long it 
will be popular, and how often they should tweet. Drawing inspiration from 
Hawkes process models, we built a self-exciting process model, Ogata’s ETAS model
and Hawkes mutual-exciting model respectively in order to implement our ideas.
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An activity on tweet causing follow-up activities by other users on their network
of followers is analogous to an earthquake triggering aftershocks. Second, an earth-
quake with a large magnitude triggering more aftershocks is analogous to the activity 
of an influential user on a tweet, inducing more follow-up activities by other users
on his/her network of followers; Third, excitation and interaction effects among
different types of users’ activities (retweets, replies, favorites) is something that 
needs to be more thoroughly investigated.

The data we crawled from Twitter contained a corpus of an individual brand post 
tweet, its subsequent activities (retweets, replies, and marks as favorite), along with 
their timestamps, user IDs and number of followers of the user who contributes to 
the tweet stream. We took into consideration the timestamp of events, the number of 
followers and the index or mark attached to it specifying event type “retweet”, 
“reply”, and “mark as favorite”.

To apply a self-exciting Hawkes process model, we aggregated all users’ activities
into one single stream of information irrespective to the types of events. As men-
tioned earlier, self-exciting point process is a simple case of multivariate marked
Hawkes point process which is actually a univariate point process, and therefore 
there is only one intensity process. It indeed ignores the exciting effects among 
different types of users’ activities on a brand’s tweet.

To apply an ETAS model, we assumed that the content popularity can be a joint 
probability function of time and the number of followers. We focused more on 
incorporating the number of followers as an influential metric into the predictive 
model of the content popularity, explicitly looking at the impact of influential users 
on their followers to persuade them to contribute to brand post popularity.

The main difference between these two models is that ETAS model is a Bayesian 
version of self-exciting process model with a dependent mark that treats the number
of followers as a mark. Both formulations essentially lead to the same model. 
However, ETAS model leads us to a more accurate estimation of parameters due to 
the underlying Bayesian inference.

In Hassan Zadeh and Sharda (2014a), we observed that incorporating the number 
of followers into the predictive model of popularity of content presumably provides 
better results. In behavioral terms, it confirmed our hypothesis that the greater the 
number of followers per event, the greater the influence.

Also, in the follow-up paper (Hassan Zadeh and Sharda 2014b), we imple-
mented the idea of excitation effects between different types of activities. To 
apply the mutual-exciting Hawkes model, we separated the dynamics of different
types of activities that a given tweet receives over its lifetime in order to measure 
the  popularity of a given online content. This type of Hawkes model includes the 
exciting effects among different types of users’ activities on a brand’s tweet into 
the predictive model. There were three point processes associated with each indi-
vidual event type category (i.e. retweets, replies and favorites). It allowed us to 
capture the interacting effects between a stream of events from one to another. 
Our findings determined that incorporating the type of events into the predictive 
model of the brand post popularity provides a better understanding of such 
phenomena.
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Several interesting managerial implications were derived from the mathematical 
models of Hawkes point process presented in previous research regarding the effects 
of different types (retweet, reply and favorite) of user activities on the popularity of 
the online content. For example, our model revealed that there are significant excit-
ing effects between the same type of user activities as well as exciting effects 
between different types of user activities. Our model parameters indicated that 
retweeting is more likely to excite the other two types of events. This is consistent 
with the observed data as retweet action is more powerful. Furthermore, we con-
cluded that it is more likely for users to behave like their friends and create the same 
type of event. For instance, once a brand’s post receives “replies” multiple times, it 
can indicate origination of a conversation thread, and followers reply to the post 
rather than retweeting. Also, the mathematical model confirmed that users may use 
“mark as favorite” button to bookmark a tweet that contains subject matter they 
found interesting but they do not feel like broadcasting to the universe. By marking 
a tweet as favorite, users just take an action, have it saved and later refer back to it 
as needed.

Also, our model’s parameters suggested that past retweets and replies visible in 
the timeline are more likely to excite a user to mark the tweet as favorite than being 
excited by itself. In behavioral terms, it is seldom that users check their friends’ 
favorite tweets and decide to retweet, reply or favorite them.

As seen above, Hawkes process offers a powerful modeling method in social 
network analysis and has flexibility that can be applied to various kinds of time-
dependent data to study events or behaviors of interest occurring in social media 
streams. There are several research opportunities in line with this research. Hawkes 
process-based analysis can be done in the context of Facebook, LinkedIn and other
social media to study how the formation of relationships and interactions on Twitter 
is different than other social media platforms. Understanding which types of con-
tents are appealing to audience and how users respond to various stimuli like videos, 
contests, applications or posts are something that can be more thoroughly investi-
gated with the help of sentiment analysis tools. Also, many applications on social 
media involve more than a single type of event. It may be useful to treat repeated 
events of a single type (univariate) on multiple contents with multiple types as form-
ing a multivariate point pattern.

In summary, recently there has been a growing interest to use Hawkes point pro-
cess models for social network analysis. One of the convincing reasons for growing 
this interest is that Hawke process models offer a natural and traceable way of mod-
eling time dependencies between events that are arisen as a result of branching, 
self-exciting and self-similarity behaviors in social networks. The underlying self-
and mutual exciting mechanism in Hawkes process models is consistent with the 
structure observed in social networks. It leads to a nice representation that combines 
both branching process and conditional intensity representations in one solid model.

The reader should note that in this paper the terms “activity”, “event” and “point” 
are used interchangeably. The term “activity” is used frequently in the context of 
online social network analysis; however the terms “event” and “point” are often 
used in the context of stochastic point processes.
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5.6  Conclusion

This paper provides an introduction to the Hawkes point process as a very powerful 
and versatile tool for modeling and understanding social media traffic. These models 
are used to structure spatial and temporal dependencies between events that are arisen 
as a result of branching, self-exciting and self-similarity behaviors. It allows us to
unravel implicit network structure that cannot fully be observed in online social net-
works, but have to be analyzed for different purposes in a natural, concrete and trace-
able computational way. Hawkes process models can be potentially applied to any kind 
of intensive time-stamped data to study events or behaviors of interest. Two of our
previous research papers demonstrate the potential of the Hawkes processes in order to 
understand the dynamics of human interactions and collective behaviors on social 
media. Such analysis is fundamental to be able to predict how organization’s social 
media campaign will evolve and grow to achieve the objectives of the campaign.
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