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Davide Bresolin, Emilio Muñoz-Velasco, and Guido Sciavicco

1 Department of Computer Science and Engineering
University of Bologna, Italy
davide.bresolin@unibo.it

2 Department of Applied Mathematics
University of Malaga, Spain

emilio@ctima.uma.es
3 Department of Information, Engineering and Communications

University of Murcia, Spain
guido@um.es

Abstract. Interval temporal logics provide a natural framework for
temporal reasoning about interval structures over linearly ordered do-
mains, where intervals are taken as the primitive ontological entities. The
most influential propositional interval-based logic is probably Halpern
and Shoham’s Modal Logic of Time Intervals, a.k.a. HS. While most
studies focused on the computational properties of the syntactic frag-
ments that arise by considering only a subset of the set of modalities,
the fragments that are obtained by weakening the propositional side have
received very scarce attention. Here, we approach this problem by con-
sidering various sub-propositional fragments of HS, such as the so-called
Horn, Krom, and core fragment. We prove that the Horn fragment of
HS is undecidable on every interesting class of linearly ordered sets, and
we briefly discuss the difficulties that arise when considering the other
fragments.

1 Introduction

Most temporal logics proposed in the literature assume a point-based model of
time, and they have been successfully applied in a variety of fields. However, a
number of relevant application domains, such as planning and synthesis of con-
trollers, are characterized by advanced features that are neglected or dealt with
in an unsatisfactory way by point-based formalisms. Interval temporal logics pro-
vide a natural framework for temporal reasoning about interval structures over
linearly (or partially) ordered domains. They take time intervals as the primi-
tive ontological entities and define truth of formulas relative to time intervals,
rather than time points; their modalities correspond to various relations between

� The authors acknowledge the support from the Italian GNCS Project “Automata,
games and temporal logics for verification and synthesis of safety-critical systems”
(D. Bresolin), the Spanish Project TIN12-39353-C04-01 (E. Muñoz-Velasco), and
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E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 122–136, 2014.
c© Springer International Publishing Switzerland 2014



Sub-Propositional Fragments of HS 123

pairs of intervals. Applications of interval-based reasoning systems range from
hardware and real-time system verification to natural language processing, from
constraint satisfaction to planning [1, 11, 20, 23].

The well-known logic HS [16] features a set of modalities that make it pos-
sible to express all Allen’s interval relations [1]. HS is highly undecidable over
most classes of linear orders, and this result motivated the search for (syntac-
tic) HS fragments offering a good balance between expressiveness and decid-
ability/complexity. The few decidable fragments that have been found present
complexities that range from NP-complete (in very simple cases) to NExpTime-
complete, to ExpSpace-complete, to non-primitive recursive [5, 6, 8, 10, 17–19].
While the classification of fragments of HS in terms of the allowed modal opera-
tors can be considered almost completed, sub-propositional fragments of HS have
received very scarce attention in the literature. Three propositional restrictions
are often mentioned in the context of propositional, first-order, and modal logics,
namely the Horn, Krom, and core fragments. They are all based on the clausal
form of formulas, i.e., implications of the type (λ1∧. . .∧λn) → (λn+1∨. . .∨λn+m)
and define a particular fragment by limiting the applicability of Boolean oper-
ators and the number of literals in the clauses. In the case of modal logics,
the restriction to Horn and core clauses can be separated into two cases, that
basically differ from each other on the role played by existential modalities (di-
amonds). In the classical version, one may freely use both existential (diamond)
and universal (box) modalities in positive literals [13, 14, 22], while in Artale’s
et. al. version [3] the use of existential modalities is restricted to obtain bet-
ter computational properties. This duality does not affect the Krom fragment,
since the existential modalities can be recovered using only boxes (preserving
the satisfiability).

In this paper, we consider the five expressively different sub-propositional
fragments of HS that emerge from the above discussion, and we prove that
the Horn fragment of HS is undecidable under very weak assumptions of the
underlying linear order (in fact, it is undecidable in any class of linear orders
where full HS is). While inspired by existing work, our proof, which is the main
contribution of this paper, necessarily differs from previous ones due to the
limited expressive power of the Horn fragment. We conclude the paper by briefly
discussing the reasons that make the Krom and core fragments more difficult to
deal with.

2 HS: Syntax and Semantics

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair
[x, y], where a, b ∈ D and a < b. In this paper, we assume the strict seman-
tics, that is, we exclude point intervals and only consider strict intervals. The
adoption of the strict semantics instead of the non-strict semantics, which in-
cludes point intervals, conforms to the definition of interval adopted by Allen
in [1], but differs from the one given by Halpern and Shoham in [16]. It has
at least two strong motivations: first, a number of representation paradoxes
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Fig. 1. Allen’s interval relations and the corresponding HS modalities

arise when the non-strict semantics is adopted, due to the presence of point
intervals, as pointed out in [1]; second, when point intervals are included there
seems to be no intuitive semantics for interval relations that makes them both
pairwise disjoint and jointly exhaustive. It should be observed that, from the
decidability/undecidability/complexity point of view, no differences have ever
been found between the two semantic choices; there are no reasons to suspect
that sub-propositional strict and non-strict HS restrictions might behave in a
different way. If we exclude the identity relation, there are 12 different relations
between two strict intervals in a linear order, often called Allen’s relations [1]:
the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends),
RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that is,
RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations
playing the role of the accessibility relations. Thus, we associate a universal
modality [X ] and an existential modality 〈X〉 with each Allen relation RX . For
eachX ∈ {A,L,B,E,D,O}, the transposes of the modalities [X ] and 〈X〉 are the
modalities [X] and 〈X〉, corresponding to the inverse relationRX of RX . Halpern
and Shoham’s logic HS [16] is a multi-modal logic with formulas built from a
finite, non-empty set AP of atomic propositions (also referred to as proposition
letters), the classical propositional connectives, and a pair of modalities for each
Allen relation:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈X〉ϕ | [X ]ϕ | 〈X〉ϕ | [X]ϕ, (1)

where p ∈ AP and X ∈ {A,L,B,E,D,O}. The (strict) semantics of HS is given
in terms of interval models M = 〈I(D), V 〉, where D is a linear order, I(D) is the
set of all (strict) intervals over D, and V is a valuation function V : AP 	→ 2I(D),
which assigns to each atomic proposition p ∈ AP the set of intervals V (p) on
which p holds. The truth of a formula on a given interval [x, y] in an interval
model M is defined by structural induction on formulas as follows:

– M, [x, y] � p if and only if [x, y] ∈ V (p);
– Boolean connectives are dealt with in the standard way;
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– M, [x, y] � 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]
and M, [x′, y′] � ψ;

– M, [x, y] � [X ]ψ if and only if for every [x′, y′] such that [x, y]RX [x′, y′] we
have that M, [x′, y′] � ψ;

– M, [x, y] � 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]
and M, [x′, y′] � ψ;

– M, [x, y] � [X ]ψ if and only if for every [x′, y′] such that [x, y]RX [x′, y′] we
have that M, [x′, y′] � ψ.

Formulas of HS can be interpreted over different classes of interval models,
built from different classes of linear orders. Among others, we mention the fol-
lowing important classes of linear orders:
(i) the class of all linear orders Lin;
(ii) the class of dense linear orders Den, that is, those in which for every pair

of distinct points there exists at least one point in between them (e.g., Q
and R);

(iii) the class of strongly discrete linear orders Dis, that is, those in which there
is a finite number of elements between any two distinct elements;

(iv) the class of weakly discrete linear orders WDis, where every element, apart
from the greatest element—if it exists—has an immediate successor, and
every element, other than the least element—if it exists—has an immediate
predecessor (this class includes, e.g., Z+ Z);

(v) the class of finite linear orders Fin, that is, those having only finitely many
points.

It is important to observe that all classes mentioned above, except Fin, share the
common characteristic that possess at least one linear order with an infinitely
ascending sequence of points (infinite chain).

3 Sub-propositional Fragments of HS

A syntactical fragment of HS can be defined by restricting the grammar (1) either
by limiting the set of modalities that are included in the language, by limiting
nesting of temporal modalities, or by restricting the application of boolean oper-
ators. While the first choice (limiting the set of modalities) has been extensively
explored, the other two choices has received much scarcer attention. One of the
very few examples is [9], where a NP-complete fragment of the temporal logic
CDT (which includes HS) has been identified by limiting the nesting of temporal
modalities. Here, we study restrictions of interval-based temporal logics along a
different line: we limit the applicability of Boolean operators.

To enter into the details we need to start by defining the clausal form of HS-
formulas. Clausal forms of modal logics, such as K, can be found, e.g., in [21].
In the context of temporal logics, such as Linear Temporal Logic (LTL), clausal
forms [15] have been extensively explored for its applications in automated rea-
soning. No clausal forms for pure interval-based temporal logics have been pro-
posed so far, to the best of our knowledge. We first introduce the notion of
positive temporal literals, given by the following grammar:
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Fig. 2. Relative expressive power between sub-propositional restrictions and their de-
cidability status for HS

λ ::= ⊥ | p | 〈X〉⊥ | [X ]⊥ | 〈X〉p | [X ]p | [U ]p, (2)

where [X ] and 〈X〉 HS modalities, and [U ] is the universal modality, that can
be defined in HS in several ways, such as:

[U ]ϕ = [A][A][A]ϕ ∧ [A][A]ϕ ∧ [A][A][A]ϕ. (3)

An HS-formula is said to be in clausal form if and only if it can be written
following the grammar:

ϕ ::= λ | ¬λ | [U ](¬λ1 ∨ . . . ∨ ¬λn ∨ λn+1 ∨ . . . ∨ λn+m) | ϕ ∧ ϕ. (4)

Every HS-formula can be transformed into an equi-satisfiable conjunction of
HS-clauses; this transformation is rather standard.

Definition 1. An HS-clause is said to be Bool if it can be obtained from (4); it
is said to be Horn if m ≤ 1; it is said to be Krom if n+m ≤ 2; finally, it is said
to be core if it is both Bool and Horn, that is, if n+m ≤ 2 and m ≤ 1.

Here, we follow the classical definition of modal clauses [14, 15, 21, 22]. In [3],
positive literals are defined restricting (2) by eliminating 〈X〉λ. As far as Bool
and Krom clauses are concerned, this elimination does not weaken the expressive
power; as a matter of fact, formulas of the type ϕ = 〈X〉ψ can be recovered by
introducing a new propositional letter pϕ, and by using the conjunction of clauses
¬[X ]pϕ ∧ [U ](pϕ ∨ ψ), which is clearly equi-satisfiable to ϕ. On the other hand,
this is not necessarily true for Horn and core clauses. If we denote the latter
fragments by Horn� and core�, respectively, the relative expressive power for
sub-propositional fragments of HS is as displayed in Fig. 2.

In this paper we prove that restricting to the Horn fragment of HS (HSHorn)
is not sufficient to recover decidability. The decidability/undecidability status of
the Horn�, Krom, and core� fragments is still an open problem. For the sake
of comparison, we mention here that for LTL, whose satisfiability problem is
PSpace-complete [25], the complexity does not change neither when we restrict
to the Horn fragment [12] nor to the Horn� fragment (Chen and Lin’s proof
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the use of diamond positive literal is not essential). In [3] it is proved that the
core� fragment of LTL is NP-hard and that the Krom fragment is NP, proving
that all remaining restrictions of LTL are, in fact, NP-complete. Finally, only
the Horn fragment of the modal logic K has been studied, and its complexity is
the same as in the case of full K [22], that is, PSpace-complete. Although the
Krom and the core restrictions of modal and temporal logics have not received
much attention in the literature, similar restrictions have been studied at least
in the context of Description Logics, both in the atemporal case [2], and in the
temporal one [4], justifying the interest in such sub-propositional limitations.

4 Undecidability of HSHorn in the Infinite Case

In this section, we assume that HSHorn is interpreted in any class of linearly
ordered sets that possesses at least one linear order with an infinite chain, there-
fore solving the cases Lin,Den,Dis, and WDis. In the next section, we show how
to modify the proof to deal with the case of Fin. Our construction adapts to
the restricted applicability of Boolean operators the ideas from both the original
undecidability proof for full HS [16], as well as the more recent undecidability
proofs for fragments of HS [7]. It is based on a reduction of the non-halting
problem of a deterministic Turing Machine on empty input [24].

A Turing Machine is defined as a tuple A = (Q,Σ, Γ, δ, q0, qf ), where Q is the
set of states, q0 (resp., qf ) is the initial (resp., final) state, Σ is the machine’s
alphabet that does not contain � (blank), Γ = Σ ∪ {�} is the tape alphabet,
and δ : Q × Γ → Q × Γ × {L,R} is the transition function (L,R represent the
possible moves on the machine’s tape: left, right). Even under the assumption
thatΣ = {0, 1} and that the input is empty, both the halting and the non-halting
problem for a deterministic Turing Machine are undecidable [24] (as a matter of
fact, the former is R.E.-complete, while the latter is Co-R.E.-complete).

Our reduction is based on the idea of representing the computation history
of A. A configuration represents the status of A at a given moment of the
computation, and includes the content of the tape, the position of the read-
ing head, and the current state. Elements of the tape will be placed over unit
intervals (or, simply, units), which we shall denote by u. We shall use the
propositional symbol ∗ to separate successive configurations, 0, 1,� to repre-
sent tape cells not under the machine’s head, and the propositional symbols
qc, with q ∈ Q \ {qf} and c ∈ {0, 1,�}, to represent the tape cell under
the head and the current (non-final) state of the machine. Let L be the set
{0, 1,�, ∗}∪ {qc | q ∈ Q \ {qf}∧ c ∈ {0, 1,�}}∪ {qf}, and consider the following
group of formulas.

φ1 = 〈A〉u ∧ [U ](u→ 〈A〉u) u-chain exists
φ2 = 〈A〉Start ∧ [U ](Start → ¬〈A〉u) ∧ [U ](Start → ¬〈L〉u) no u in the past
φ3 = [U ](u→ ¬〈B〉u) ∧ [U ](u→ ¬〈E〉u) u-chain unique (1)
φ4 = [U ](u→ ¬〈D〉u) ∧ [U ](u→ ¬〈O〉u) u-chain unique (2)
φ5 =

∧
l∈L[U ](l → u) tape/state propositions and ∗ are units

φ6 =
∧

l,l′∈L,l �=l′ [U ](l → ¬l′) tape/state propositions and ∗ are unique
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Fig. 3. Configurations

Lemma 1. Suppose that M, [x, y] � φ1 ∧ . . . ∧ φ6, then there exists an infinite
sequence of points y = y0 < y1 < . . . such that:

1. for each i ≥ 0, M, [yi, yi+1] � u;
2. no other interval [z, t] satisfies u, unless z > yi for each i ≥ 0;
3. for each interval [z, t], if M, [z, t] � l and l ∈ L, then M, [z, t] � u;
4. for each l1, l2 ∈ L where l1 �= l2, M, [z, t] � l1 implies M, [z, t] �� l2.

Proof. Since M, [x, y] � 〈A〉u, there exists y′ > y such that [y, y′] satisfies u; let
us call y0 = y and y1 = y′. From the fact that M, [x, y] � [U ](u→ 〈A〉u) we can
easily conclude that the chain y0, y1, . . . exists (proving (1)). Consider now an
interval [z, t], such that z ≤ yi for some yi, M, [z, t] � u, but [z, t] �= [yj , yj+1] for
each j ≥ 0. We can assume w.l.o.g. that yi is the smallest point of the chain such
that z ≤ yi. Towards a contradiction, assume z = yi; this means that [z, t] is a
u-interval that starts or is started by the u-interval [yi, yi+1], which contradicts
φ3. Hence, z < yi, and we can distinguish between the following cases. If t > yi
then [z, t] either contains, is finished by, or overlaps the u-interval [yj , yj+1] in
contradiction with φ3 or φ4. If t ≤ yi and yi > y0 then [z, t] is contained in the
u-interval [yj−1, yj ], in contradiction with φ4. Finally, if yi = y0 then t ≤ y0 and
we have a contradiction with φ2 (proving (2)). Thanks to φ5 and φ6, if some
l ∈ L labels an interval, then it must be a u-interval (proving (3)), and such l is
unique (proving (4)). ��

Remark 1. Notice that Lemma 1 enables us to use a copy of N, represented by
the sequence y0, y1, . . . , embedded into the (not necessarily discrete) linearly
ordered set under consideration.

Configurations (denoted by Co) must be composed by unit intervals; there
must be an infinite sequence of them; and each one must be started and finished
by a unit labeled by ∗ (see Fig. 3). We use the proposition Cell to characterize
unit intervals containing a tape symbol (and not an ∗). Consider the following
formulas:

φ7 = 〈A〉Co ∧ [U ](Co → 〈B〉∗) ∧ [U ](Co → 〈E〉∗) configuration structure
φ8 = [U ](Co → 〈A〉Co) configuration sequence
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φ9 = [U ](Co → [B]¬Co) ∧ [U ](Co → [E]¬Co) configurations relations
φ10 = [U ](∗ → ¬Cell ) ∧ [U ](Cell → u) ∧ [U ]((〈D〉Co ∧ u) → Cell ) Cell iff ¬∗

Now, we have to make sure that the initial configuration is exactly as requested
by the problem, that is, empty tape with the machine in the initial state q0.
This implies that the first Co must be a sequence of three unit intervals labeled
respectively with ∗, q�0 , and ∗. In order to encode exactly this situation, we make
use of three new propositions N1, N2, and N3.

φ11 = 〈A〉N1 ∧ [U ](N1 → 〈A〉N2) ∧ [U ](N2 → 〈A〉N3) Ns’ position
φ12 = [U ](N1 → ∗) ∧ [U ](N2 → q�0 ) ∧ [U ](N3 → ∗) N1, N2, N3’s content

The length of successive configurations is controlled by the proposition Cr :

φ13 = [U ](Cell → 〈A〉Cr ) ∧ [U ](Cr → 〈A〉Cell ) all cells forward-corr to cell
φ14 = [U ](Cell ∧ 〈A〉Cell → 〈A〉Cr ) all cells, but the last, back-corr to cell
φ15 = [U ](Cr → [B]¬Cr ) ∧ [U ](Cr → [E]¬Cr ) correspondences relations (1)
φ16 = [U ](Cr → [D]¬Cr ) ∧ [U ](Cr → 〈A〉Cell ) correspondences relations (2)
φ17 = [U ](Co → [D]¬Cr ) ∧ [U ](Co → [E]¬Cr ) config./corr. (1)
φ18 = [U ](Co → [D]¬Cr ) ∧ [U ](Co → [E]¬Cr ) config./corr. (2)

Lemma 2. Suppose that M, [x, y] � φ1 ∧ . . . ∧ φ18, and consider the infinite
sequence y0, y1, . . ., where y = y0, whose existence is guaranteed by Lemma 1.
Then, there exists an infinite sequence of indexes k0, k1, . . ., such that y0 = yk0

and:

1. M, [y0, y1] � ∗, M, [y1, y2] � q�0 , and M, [y2, y3] � ∗;
2. for each i ≥ 0, M, [yki , yk(i+1)

] � Co;
3. for each i ≥ 0, M, [yki , y(ki+1)] � ∗, M, [y(k(i+1)−1), yk(i+1)

] � ∗;
4. for each i ≥ 0, j ≥ 1, M, [y(ki+j), y(ki+j+1)] � Cell ∧ ¬∗;
5. for each i ≥ 0, j ≥ 2, M, [y(ki+j), y(k(i+1)+j−1)] � Cr;
6. k1 − k0 = 3 and, for every i > 1, 0 ≤ (ki − k(i−1))− (k(i−1) − k(i−2)) ≤ 1;
7. no other interval [z, t] satisfies Co nor Cr, unless z > yi for each i ≥ 0.

Proof. Since M, [x, y] � φ11 ∧φ12, the first three units of the chain y0, y1, . . . are
determined, and are, in this order, ∗, q�0 , and ∗ (proving (1)).

Now, let us call yk0 = y0. The fact that a chain of Co-intervals starts at
yk0 is guaranteed by φ7 and φ8. We prove (2)–(6) by induction on the index
i. For the base case, we need to prove that the Co-interval [yk0 , t] is such that
t = y3. Suppose, for the sake of contradiction, that t < y3; in this case, we have
a contradiction with φ7 and with Lemma 1. If, on the other hand, t > y3, then
the Co-interval [yk0 , t] strictly contains ∗ by (1), and this is in contradiction with
φ10. Therefore, t = y3, and we can set yk1 = y3. It remains to be shown that (5)
holds for the base case. We know that [yk1 , t] = [y3, t] is a Co-interval for some
t, that [y3, y4] is a ∗-interval, and that [y4, y5] is a Cell -interval (by φ7, φ10).
We also know that [y2, z] is a Cr -interval for some z by φ13. We want to prove
z = y4. By φ13 we deduce that z ≥ y4. Suppose, by the sake of contradiction,
that z > y4. Let us analyze the content of [y5, y6]. If it is ∗, then z ≥ y6, and
by φ7 and φ10, [y3, y6] is a Co-interval, which either ends or is strictly contained
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in the Cr -interval [y2, z], a contradiction with φ18. If it is Cell , by φ14, [s, y4]
must be a Cr -interval for some s. It happens that s ≥ y2 contradicts φ15 or
φ16, and that s < y2 contradicts φ16 or Lemma 1. Therefore, s cannot be placed
anywhere, and z = y4. Thus (5) holds in the base case.

For the inductive case, assume (2)–(6) hold up to i − 1: we prove that (2)–
(6) hold for i. By induction hypothesis, [yk(i−1)

, yki ] is a Co-interval for which
(2)–(6) hold. By φ8, [yki , t] is a Co-interval for some t. Assume that (ki − 1)−
(k(i−1) + 1) = n, that is, assume that the Co-interval [yk(i−1)

, yki ] has precisely
n (non-∗) cells. Since [y(ki−1), y(ki+n)] is a Cr -interval by (5) applied on i − 1,
then [y(ki+n), y(ki+n+1)] is a Cell -interval, and [y(ki+n+1), y(ki+n+2)] is either ∗-
interval or a Cell -interval. In the first case, we let yk(i+1)

= y(ki+n+2) (proving (6)
on i); in the second case, [y(ki+n+2), y(ki+n+3)] must be a ∗-interval (otherwise,
we apply the same argument as in the base case, showing that there would be
a Cr -interval whose starting point cannot be placed anywhere), and therefore
we let yk(i+1)

= y(ki+n+3) (again, proving (6) on i). This argument also proves
(2)–(4) for i. It remains to be proved that (5) holds the inductive case. To this
end, we proceed, again, by induction on j, starting with the base case j = 2.
By φ13, [y(ki+2), z] is a Cr -interval. From φ17 we know z > yk(i+1)

. Observe that
[yk(i+1)

, t] is a Co-interval for some t; from φ18 we know that z < t. Towards
a contradiction, assume z > yk(i+1)+1. Thanks to φ13, the point z must start a
cell, so that we can assume w.l.g. that [yk(i+1)+2, yk(i+1)+3] is a cell. Then, by φ14,
[s, yk(i+1)+1] must be a Cr -interval for some s, and by the same argument that we
used before, we can prove that s cannot be placed anywhere. Thus, z = yk(i+1)+1

(proving (5)) in the base case. Now, it is easy to see that the inductive case
proceeds in the same way; we can then conclude that (5) holds for each j > 2.

Finally, suppose that M, [z, t] � Co, z ≤ yi for some i, and [z, t] �= [yki , yki+1 ]
for each i. If z < y0, then, by φ7, z must start some u-interval, which is in
contradiction with Lemma 1. Otherwise, [z, t] is a Co-interval either contained,
or started by, or ended by another Co-interval, which is in contradiction with
φ9. A similar reasoning applies for Cr -intervals (proving (7)). ��

The above two lemmas help us to set the underlying structure which we can
now use to ensure the correct behaviour of A. We are left with the problem of
encoding the transition function δ. To this end, we enrich our language with
a new set of propositional letters Lt = {(l1, l2, l3) | ∀i(1 ≤ i ≤ 3 → li ∈ L)}
(=L×L×L). Each proposition in Lt represents the content of three consecutive
u-intervals; in this way, we have all information needed to encode δ at each
step by reading only one proposition. We proceed as follows: first, the value of
three successive cells is encoded in the correct triple from Lt and placed over
a Cr -interval; second, this information is used to label the cells of the next
configuration (see Fig 4) by taking into account the transition function δ. In
the encoding of δ, we treat as special cases the situations in which: (i) the
head is at the last cell of the segment of the tape currently shown and the
head must be moved to the right and, (ii) the head is at the first cell of the
tape and the head must be moved to the left. Consider the following formulas,
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yki yki+2yki+1

Co Co

c1 qc c3 c1 c′ q′c3

Cr ∧ (c1, q
c, c3)

δ(q, c) = (q′, c′, R)

Fig. 4. An example of transition

where c, c′, c1, c2, c3 ∈ {0, 1,�, ∗} and q, q′ ∈ Q (by a little abuse of notation, we
assume that all symbols qcf are equal to qf ).

φ19 =
∧

l1,l2,l3∈L,l2 �=∗[U ]((〈A〉l1 ∧ l2 ∧ 〈A〉l3) → 〈A〉(l1, l2, l3)) info transfer

φ20 =
∧

l1,l2,l3∈L[U ]((l1, l2, l3) → Cr ) triple structure

φ21 =
∧

(c1,c2,c3)∈Lt [U ]((c1, c2, c3) → 〈A〉c2) far from the head

φ22 =
∧δ(q,c)=(q′,c′,R)

(c1,qc,c3)∈Lt [U ]((c1, q
c, c3) → 〈A〉c′) rightwards (1)

φ23 =
∧δ(q,c)=(q′,c′,R)

(qc,c2,c3)∈Lt,c2 �=∗[U ]((qc, c2, c3) → 〈A〉q′c2) rightwards (2)

φ24 =
∧δ(q,c)=(q′,c′,R)

(c1,c2,qc)∈Lt [U ]((c1, c2, q
c) → 〈A〉c2)) rightwards (3)

φ25 =
∧δ(q,c)=(q′,c′,R)

(c1,qc,∗)∈Lt [U ]((c1, q
c, ∗) → 〈A〉N q′,c′) last cell (1)

φ26 =
∧

Nq′,c′ ([U ](N q′,c′ → c′) ∧ [U ](N q′,c′ → 〈A〉q′�)) last cell (2)

φ27 =
∧δ(q,c)=(q′,c′,L)

(c1,qc,c3)∈Lt,c1 �=∗[U ]((c1, q
c, c3) → 〈A〉c′) leftwards (1)

φ28 =
∧δ(q,c)=(q′,c′,L)

(qc,c2,c3)∈Lt [U ]((qc, c2, c3) → 〈A〉c2) leftwards (2)

φ29 =
∧δ(q,c)=(q′,c′,L)

(c1,c2,qc)∈Lt,c2 �=∗[U ]((c1, c2, q
c) → 〈A〉q′c2) leftwards (3)

φ30 =
∧δ(q,c)=(q′,c′,L)

(∗,qc,c3)∈Lt [U ]((∗, qc, c3) → 〈A〉q′c′ ) first cell (2)

We can now prove that our construction works as designed. For a Turing Machine
A, we denote by C any A-configuration, univocally determined by the content
of the (interesting prefix of the) tape, the position of the reading head, and the
state. An A-configuration can be seen as the semantical counterpart of a Co-
interval in our construction. An A-configuration is said to be initial if its state
is q0, and final if its state is qf and for any two A-configurations C,C′, we say
that C′ is the successor of C if and only if C′ is obtained by C after exactly
one application of δ. Finally, a Co-interval [yki , yki+1 ] is said to be coherent if
and only if the following two conditions apply: (i) there exists exactly one u-
interval [y(ki+j), y(ki+j+1)] labeled by a symbol of the type qd, where q ∈ Q and
d ∈ {0, 1,�}; (ii) every other interval [y(ki+h), y(ki+h+1)] labeled with Cell is also
labeled by a symbol d ∈ {0, 1,�}. The following lemma allows us to determine
the link between A-configurations and Co-intervals.
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Lemma 3. Suppose that M, [x, y] � φ1∧ . . .∧φ30, consider the infinite sequence
y0, y1, . . ., where y = y0, whose existence is guaranteed by Lemma 1, and the
sequence k0, k1, . . . of indexes whose existence is guaranteed by Lemma 2. Then:

1. the Co-interval [yk0 , yk1 ] represents the initial A-configuration when the Tur-
ing Machine A has an empty input;

2. the Co-interval [yki+1 , yki+2 ] is coherent for each i ≥ 0;
3. the A-configuration represented by the Co-interval [yki , yki+1 ] is the successor

of the A-configuration represented by the Co-interval [yki−1 , yki ], for each
i > 0.

Proof. The content of the interval [yk0 , yk1 ] is set as in Lemma 2, proving its
coherence and its status of initial configuration (proving (1)). Points (2) and
(3) must be proved together, and by induction; the base case is, as a matter of
fact, a consequence of (1) (notice that at the base case, (3) is trivially satisfied).
Consider, now, an index i > 0 and the A-configuration C represented by the Co-
interval [yki−1 , yki ]. Assume that the state in C is q, and that the head is reading
c �= ∗. There are several cases to be considered, depending on the movement
required by δ, the relative position of the j-th cell (j ≥ 1) currently read by the
head (labeled, by hypothesis, with qc), and the content c of its adjacent cell.

(a) δ(q, c) = (q′, c′, R) and the (j+1)-th unit is not ∗. By φ19 and φ20, the unique
Cr -interval [y(ki−1+j+1), y(ki+j)] is also labeled by (c1, q

c, c2) for some c1, c2.
As a consequence, by φ22, the j-th unit of [yki , yki+1 ] is labeled by c′. Now,
if j > 1, then the (j − 1)-th unit is a cell, and, by φ19 and φ20, the Cr -
interval [y(ki−1+j), y(ki+j−1)] is labeled by (c3, c1, q

c) (for some c3); therefore
φ24 applies, meaning that the (j − 1)-th unit of [yki+1 , yki+2 ] is labeled by
c1. Similarly, the value of the (j + 1)-th cell (which cannot be ∗), is set by
φ23. Now, by the coherence of [yki−1 , yki ] (inductive hypothesis), every unit
strictly before the (j − 1)-th (excluding the 0-th unit) is a cell, as well as
every unit strictly after the (j + 1)-th (excluding the last one). In the case
of j = 1, it is clear by Lemma 2, that the first unit of [yki+1 , yki+2 ] is labeled
by ∗, and the rest of the proof is similar to the case j > 1. Therefore, by φ19
and φ20, their corresponding Cr -intervals are labeled by triples that do not
include qc for any c, and thanks to φ21 their corresponding units in the Co-
interval [yki , yki+1 ] are cells (and their content, which is preserved, cannot
be qc for any c). Thus, [yki , yk(i+1)

] is a coherent A-configuration, and its
content is obtained by exactly one application of δ (proving (2) and (3) in
this case).

(b) δ(q, c) = (q′, c′, R) and the (j + 1)-th unit is ∗. The content of the j-th unit
of the i-th Co-interval is determined by φ25 and φ26. In particular, the j-th
unit of the i-th Cr -interval is labeled by N q′,c′ , which implies that it is also
labeled by c′ (and therefore it is a cell), and that the (j + 1)-th cell must
exist and must be labeled by q′�. The content of the remaining cells, and
therefore the coherence of the the i-th Co-interval can be then deduced by
applying the same argument as before (proving (2) and (3) in this case).
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(c) δ(q, c) = (q′, c′, L) and the (j − 1)-th unit is not ∗. In this case, one can
proceed as in case (a), only applying φ27, φ28, and φ29.

(d) δ(q, c) = (q′, c′, L) and the (j − 1)-th unit is ∗. In this case, one can proceed
as in case (a). The requirement φ30 plays a major role here: by definition,
when δ demands a movement leftwards while the head is on the first cell,
the head should not move.

��
The construction is now completed.

Theorem 1. Let A be a deterministic Turing Machine. Then, A diverges on
empty input if and only if the HSHorn -formula

NotHalts = φ1 ∧ . . . ∧ φ30 ∧ ¬〈L〉qf
is satisfiable on a model with an infinite chain.

Proof. If the formula φ1 ∧ . . . ∧ φ30 ∧ ¬〈L〉qf is satisfiable, using Lemmas 1–3,
we get the desired construction for proving that the Turing Machine A has an
infinite computation on empty input. Conversely, if A does not halt on empty
input, it is a straightforward exercise to prove the satisfiability of the formula
NotHalts. ��
Corollary 1. The satisfiability problem for HSHorn over Lin, Dis, WDis, and
Den is undecidable.

5 Undecidability of HSHorn in the Finite Case

When we restrict our attention to the class Fin, the reduction of the non-halting
problem for deterministic Turing machines can no longer be carried out, since we
cannot represent an infinite computation on a structure with a finite number of
points. Nevertheless, undecidability of HSHorn can be proved by a reduction of
the halting problem for deterministic Turing machines. In this case the formula
must represent a finite computation reaching the final state qf , and, thus, can
be satisfied by a finite model. This can be achieved by very small changes in the
formulas we used in the previous section, which we briefly summarize here.

First of all, the u-chain now becomes finite, and its encoding can be simplified
by exploiting the strong discreteness of the model. Hence, formulas φ1 – φ4 must
be replaced by the following two formulas:

ψ1 = [A]⊥ ∧ 〈A〉u ∧ [U ]((u ∧ 〈A〉�) → 〈A〉u) u-chain exists
ψ2 = [U ](u→ [B]⊥) u is of length 1

Similarly, the chain of Co-intervals must be finite, and hence φ8 must be changed:

ψ8 = [U ]((Co ∧ 〈A〉�) → 〈A〉Co) configuration sequence

The structure of Cr -intervals requires a little more attention: now, it is no longer
true that every cell of each configuration starts a Cr -interval, but only those
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cells that are not in the last configuration. This can be achieved by adding a
new proposition Cont and replacing φ13 with:

ψ13a = [U ]((Co ∧ 〈A〉�) → Cont) mark the non-last Co
ψ13b = [U ]((Cell ∧ 〈D〉Cont) → 〈A〉Cr ) forward-corr to cell

All other formulas remains unchanged.

Theorem 2. Let A be a deterministic Turing Machine. Then, A converges on
empty input if and only if the HSHorn -formula

Halts = ψ1∧ψ2∧φ5∧. . .∧φ7∧ψ8∧φ9∧. . .∧φ12∧ψ13a∧ψ13b∧φ14∧. . .∧φ30∧〈L〉qf
is satisfiable on a finite model.

Corollary 2. The satisfiability problem for HSHorn over Fin is undecidable.

6 Conclusions

Sub-propositional fragments of classical and modal logics, such as the Horn and
Krom fragments, have been extensively studied. The generally high complexity
of the (few) decidable interval-based temporal logics justifies a certain interest
in exploring the sub-propositional fragments of HS in search of languages that
present a better computational behaviour, and yet are, expressiveness-wise, suit-
able for some applications. In this paper we proved a first negative result in this
sense, by showing that HS is still undecidable when its Horn fragment is consid-
ered. This result has been obtained under very weak assumptions on the class
of models in which the logic is interpreted; as a matter of fact, we proved that
HSHorn is undecidable on every meaningful class of linearly ordered set (precisely
as full HS is).

Despite this initial result, we believe that sub-propositional fragments of in-
terval temporal logics deserves further study. On one hand, we plan to consider
the Horn� fragments of decidable interval logics such as AA and BBLL, to under-
stand whether or not their satisfiability problem present a better computational
behaviour; initial analysis in this sense suggest that this could be the case. On
the other hand, the decidability of the satisfiability problem is still an open issue
for HSKrom , HScore , as well as for HSHorn� and HScore� (the weaker definitions
of the Horn and core fragments considered in [3]). In this respect, it is worth
to observe that in our construction of the formula NotHalts only three clauses,
namely φ10, φ14, and φ19, are not core. We are pretty confident that the first
two formulas, φ10 and φ14, can be rewritten in the core fragment. The last one,
though, presents more difficulties. In addition, the construction makes an ex-
tensive use of diamond modalities, and hence seems not be applicable to the
fragments HSHorn� and HScore� , suggesting that they may even be decidable.
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