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Abstract. Planning is the model-based approach to autonomous behav-
ior where a predictive model of actions and sensors is used to generate
the behavior for achieving given goals. The main challenges in plan-
ning are computational as all models, whether featuring uncertainty and
feedback or not, are intractable in the worst case when represented in
compact form. Classical planning refers to the simplest form of plan-
ning where goals are to be achieved by applying deterministic actions to
a fully known initial situation. In this invited paper, I review the infer-
ences performed by classical planners that enable them to deal with large
problems, and the transformations that have been developed for using
these planners to deal with non-classical features such as soft goals, hid-
den goals to be recognized, planning with incomplete information and
sensing, and multiagent nested beliefs.

1 Introduction

At the center of the problem of intelligent behavior is the problem of selecting
the action to do next. In AI, three different approaches have been used to address
this problem. In the programming-based approach, the controller that prescribes
the action to do next is given by a programmer, usually in a suitable high-level
language. In this approach, the problem is solved by the programmer in his
head, and the solution is expressed as a high-level program in behavior-based
languages, hierarchical task-networks, rules, or languages such as Golog [1,2]. In
the learning-based approach, the controller is not given by a programmer but is
induced from experience: the agent’s own experience, in reinforcement learning,
or the experience of a ‘teacher’ in supervised learning schemes [3]. Finally, in the
model-based approach, the controller is not learned but is derived automatically
from a model of the actions, sensors, and goals.

Planning is the model-based approach to action selection where different types
of models are used to make precise the different types of agents, environments,
and controllers [4,5]. Classical planning is the simplest form of planning, con-
cerned with the achievement of goals in deterministic environments whose initial
state is fully known. POMDP planning, on the other hand, allows for stochastic
actions in partially observable environments. The main challenges in planning

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 33–47, 2014.
© Springer International Publishing Switzerland 2014

http://www.dtic.upf.edu/~hgeffner


34 H. Geffner

are computational, as all the models, whether accommodating feedback and un-
certainty or not, are intractable in the worst case when models are represented
in compact form.

In this paper, I review the inferences performed by classical planners that
enable them to deal with large problems, and the transformations that have been
developed for using these planners to deal with non-classical features such as soft
goals, hidden goals to be recognized, planning with incomplete information and
sensing, and multiagent nested beliefs.

2 Planning Models

A wide range of models used in planning can be understood as variations of a
basic state model featuring

– a finite and discrete state space S,
– a known initial state s0 ∈ S,
– a set SG ⊆ S of goal states,
– a set A(s) ⊆ A of actions applicable in each state s ∈ S,
– a deterministic state transition function f(a, s), a ∈ A(s), and
– positive action costs c(a, s).

This is the model underlying classical planning where it also normally assumed
that action costs c(a, s) do not depend on the state, and hence c(a, s) = c(a).
A solution or plan in this model is a sequence of applicable actions that map
the initial state into a goal state. More precisely, a plan π = a0, . . . , an−1 must
generate a state sequence s0, . . . , sn such that ai ∈ A(si), si+1 = f(ai, si), and
sn ∈ SG, for i = 0, . . . , n− 1. The cost of the plan is the sum of the action costs
c(ai, si), and a plan is optimal if it has minimum cost over all plans.

A classical plan a0, . . . , an represents an open-loop controller where the action
to be done at time step i depends on the step index i. The solution of models
that accommodate uncertainty and feedback, on the other hand, produce closed-
loop controllers where the action to be done at step i depends on the actions
and observations collected up to that point. These models can be obtained by
relaxing some of the assumptions in the classical model.

In the model for conformant planning, the initial state s0 is not known and it
is replaced by a set S0 of possible initial states. Likewise, in non-deterministic
conformant planning, the state transition function f(a, s) is replaced by a non-
deterministic transition function F (a, s) that denotes the set of states that are
possible after doing an action a in the state s. A conformant plan is an ac-
tion sequence that must achieve the goal for any possible initial state and state
transition.

In contingent planning or partially observable planning, a sensor model O(a, s)
is assumed that maps the current state s and last action a into a set of possible
observation tokens that provide partial information about the true but possibly
hidden state s. Contingent plans can be expressed in many forms, for example,
as a function (policy) mapping beliefs into actions, where a belief represents a
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set of states that are deemed as possible. The initial belief state is given by the
set of states S0 that are initially possible, and the successor belief states can be
obtained from the actions performed and the observations gathered, using the
transition and sensor functions F (·, ·) and O(·, ·).

Partial Observable Markov Decision Processes (POMDPS) are contingent
planning models where uncertainty about the initial situation, the next system
state, and the possible token to be observed, are not represented by sets but
by probability distributions. Beliefs in POMDPs are thus not sets of states but
probability distributions over states. Markov Decision Processes are POMDPs
where the states are fully observable.

Classical, conformant, contingent, MDP, and POMDP planners accept a com-
pact description of the corresponding models and produce the solutions (con-
trollers) automatically. On-line planners, on the other hand, produce the action
to be done next in the current situation. The basic language for modeling clas-
sical planning problems is STRIPS, where a problem is a tuple P = 〈F, I,O,G〉
in which F is a set of atoms, I ⊆ F and G ⊆ F represent the initial and goal
situations, and O is a set of actions a with preconditions, add, and delete ef-
fects, all part of F . The PDDL language provides a standard syntax for STRIPS
and a number of extensions. Similar languages are used to describe the other
planning models in compact form. In all cases, a problem involves a number of
variables, boolean or not, and the states correspond to the possible valuations
of such variables.

3 Classical Planning

A classical planning problem P can be mapped into a path-finding problem over a
graph S(P ) where the nodes are the states, the initial node and target nodes are
the initial and goal states respectively, and a directed edge between two nodes
denotes the existence of an action that maps one state into the other. Classical
planning problems can thus be solved in theory by path-finding algorithms such
as Dijkstra’s, but not in practice, as the size of the graph is exponential in the
number of problem variables. Current classical planners such as LAMA [6] thus
appeal to three ideas for scaling up: automatically derived heuristic functions
for guiding the search [7,8], the inference of implicit goals in the problems called
landmarks [9], and a structural criterion for distinguishing the applicable actions
that are more likely to be relevant called the helpful actions [10].

Heuristic functions have been used in AI since the 60s for making graph search
goal-directed. An heuristic function h(s) in planning provides a quick but ap-
proximate estimate of the cost of solving the problem from the state s. The new
development in planning in the 90s was a way for deriving informed heuristic val-
ues effectively from STRIPS encodings. Basically, if P (s) is the classical planning
problem with initial state s, and P+(s) is the delete-free relaxation of P (s); i.e.,
the STRIPS problem that results from dropping the “delete lists”, the heuristic
h(s) is set to the cost of a relaxed plan for P (s); namely a plan for the relaxation
P+(s) [10]. While computing an optimal plan for the delete-free problem P+(s)
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remains NP-hard, computing one possibly non-optimal plan for P+(s) is easy.
This is because delete-free problems are fully decomposable, and hence, a plan π
that achieves p from s can be appended to a plan π′ that achieves p′ from s to
yield a plan that achieves both p′ and p.

As a result, a simple polynomial iterative procedure can be used to compute
relaxed plans for achieving each of the atoms in the problem. Basically, an atom p
is reachable in 0 steps with relaxed plan π(p, s) = {} if p ∈ s (p is true in s), while
an atom p is reachable in i + 1 steps with relaxed plan π(p1, s), . . . , π(pn, s), ap
if p not reachable in i steps or less from s, and there is an action ap that adds p
with preconditions p1, . . . , pn reachable from s in no more than i steps.

It’s simple to prove that the procedure terminates in a number of steps
bounded by number of problem atoms (when there are no new reachable atoms),
and that if an atom p is reachable, π(p, s) is a relaxed plan for p from s; i.e. a
plan for p in the relaxation P+(s). Also if an atom p is not reachable from s,
there is no plan for p in the original problem P (s). The heuristic hFF(s) used in
the FF and LAMA planners is related to the number of different actions in the
relaxed plans π(Gi, s) for the problem goals Gi. The actions applicable in a state
s that are regarded as helpful are the actions that are relevant to these relaxed
plans; namely, those that add the precondition of an action in π(Gi, s) or a goal
Gi that is not true in s. Similarly, the landmarks in P (s) are identified with the
landmarks of the relaxation P+(s) which can be computed in low polynomial
time; indeed, p is a landmark in P+(s) and hence in P (s), iff the relaxed problem
P+(s) has no plans once the actions that add the atom p are excluded.

State-of-the-art classical planners make use of these three notions, heuristics,
landmarks, and helpful actions in different ways. For example, LAMA is a best-
first search planner that uses four queues [11]: two of these queues are ordered by
the hFF heuristic and two are ordered by the number of unachieved landmarks.
One queue for each heuristic is restricted to contain the children that result from
the application of helpful actions, and the best first search alternates among the
four queues. In this way, these planners tend to be robust and do not break down
due to the number of atoms or actions in the problem. In the last few years, the
SAT approach to classical planning [12], as pushed recently by Rintanen [13], has
closed the performance gap with heuristic search planners quite considerably too.

4 Beyond Classical Planning

Classical planners work reasonably well by now, meaning that they can accept
problems involving hundreds, and even thousand of actions and variables, often
producing plans very quickly.1 The sheer size of a problem is not an impediment
in itself for solving it. The model underlying classical planning is simple but
useful. Actions in planning can be activities or policies of any sort that can be
characterized deterministically in terms of pre and postconditions. While non-
deterministic effects are not accommodated, they can be handled sometimes in

1 My focus is on satisficing planning, not optimal planning. Satisficing planners search
for solutions that are good but not necessarily optimal.
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a simple manner too. Some of the best planners in the MDP competitions held
so far, for example, are not MDP solvers, but classical planners that choose one
of the possible outcomes and replan from the current state when the system is
observed off its expected trajectory [14].

For dealing with non-classical planning models in a more general way, two
types of approaches have been pursued: a top-down approach, where native
solvers are developed for more expressive models, and a bottom-up approach,
where the power of classical planners is exploited by means of suitable transla-
tions [15]. MDP and POMDP planners are examples of native solvers for more
expressive models. A limitation of these planners in comparison with classical
planners is that inference is usually performed at the level of states and belief
states, rather than at the level of variables. Translation-based approaches, on
the other hand, leverage on classical planners for solving non-classical planning
problems by introducing suitable transformations.

5 Translations and Transformations

Transformations have been developed for dealing with soft goals, goal recognition,
incomplete information and sensing, and multiagent nested beliefs. The ideas
underlying these transformations are reviewed below. Other features addressed
in recent years using classical planners and transformations include temporally
extended goals [16,17,18,19], probabilistic conformant planning [20], and off-line
contingent planning [21,22].

5.1 Soft Goals and Rewards

Soft goals are used to express desirable outcomes that unlike standard hard
goals are subject to a cost-utility tradeoff [23]. We consider STRIPS problems
extended with positive action costs c(a) for each action a, and non-negative
rewards or utilities u(p) for every atom p. The soft-goals of the problem are the
atoms with positive utility. In the presence of soft goals, the target plans π are
the ones that maximize the utility measure u(π) given by the difference between
the total utility obtained by the plan and its cost; i.e., u(π) =

∑
p:π|=p u(p)−c(π)

where c(π) is the sum of the action costs in π, and the utility sum ranges over
the soft goals p that are true at the end of the plan.

A plan π for a problem with soft goals is optimal when no other plan π′ has
utility u(π′) higher than u(π). The International Planning Competition held in
2008 featured a net-benefit optimal track where the objective was to find u(π)
optimal plans [24]. Soft goal or net-benefit planning appears to be very different
than classical planning as it involves two interrelated problems: deciding which
soft goals to pursue and deciding how to achieve them. Indeed, most of the entries
in the competition developed native planners for solving these two interrelated
problems. More recently, it has been shown that problems P with soft goals can
be compiled into equivalent problems P ′ without soft goals that can be solved by
classical planners able to handle action costs only [25].
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Fig. 1. Goal recognition: Where is the agent moving to?

The idea of the transformation is very simple. For soft-goals p associated with
individual atoms, one adds new atoms p′ that are made into hard goals in P ′ that
are achievable in one of two ways: by the new actions collect(p) with precondition
p and cost 0, or by the new actions forgo(p) with precondition p, that stands for
the negation of p, and cost equal to the utility u(p) of p. Additional bookkeeping
is needed in the translation so that these new actions can be done only after the
actions in the original problem.

The two problems P and P ′ are equivalent in the sense that there is a corre-
spondence between the plans for P and P ′, and corresponding plans are ranked
in the same way. More specifically, for any plan π for P , there is a plan π′ in P ′

that extends π with the end action and a set of collect and forgo actions whose
cost is c(π′) = −u(π) + α where α is a constant independent of both π and π′.
Finding an optimal (maximum utility) plan π for P is therefore equivalent to
finding an optimal (minimum cost) plan π′ for P ′. Interestingly, the cost-optimal
planners that entered the optimal sequential track of the 2008 IPC, fed with the
translations of the problems in the optimal net-benefit track, do significantly
better than the net-benefit planners that entered the latter [25].

5.2 Plan and Goal Recognition

The need to recognize the goals and plans of an agent from observations of
his behavior arises in a number of tasks. Goal recognition is like planning but
in reverse: while in planning the goal is given and a plan is sought; in plan
recognition, part of a plan is observed, and the agent goal is sought. Figure 1
shows a simple scenario of plan recognition where an agent is observed to move
up twice from cell X. The question is which is the most likely destination among
the possible targets A to J. Clearly, A, B and C appear to be more likely than
D, E or F. The reason is that the agent is moving away from these other targets,
while it’s not moving away from A, B, or C. The second question is whether B
can be regarded as more likely than A or C. It turns out that yes. If we adopt a
Bayesian formulation, the probability of an hypothesis H given the observation
Obs, P (H |Obs) is given by the formula P (H |Obs) = P (Obs|H)P (H)/P (Obs)
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where P (Obs|H) represents how well the hypothesis H predicts the observation
Obs, P (H) stands for how likely is the hypothesis H a priori, and P (Obs), which
affects all hypotheses H equally, measures how surprising is the observation. In
our problem, the hypotheses are about the possible destinations of the agent,
and since there are no reasons to assume that one is more likely a priori than the
others, Bayes rule yields that P (H |Obs) should be proportional to the likelihood
P (Obs|H) that measures how well H predicts Obs. Going back to the figure, and
assuming that the agent is reasonably ‘rational’ and hence wants to achieve his
goals with least cost, it’s clear that A, B, and C predict Obs better than D, E,
F; and also that B predicts Obs better than A and C. This is because there is
a single optimal plan for B that is compatible with Obs, but there are many
optimal plans for A and for C, some of which are not compatible with Obs (as
when the agent moves first left or right, rather than up). We say that a plan π
is compatible with the observed action sequence Obs when the action sequence
Obs is embedded in the action sequence π; i.e. when Obs is π but with certain
actions in π omitted (not observed).

The reasoning above reduces goal recognition to Bayes’ rule and how well each
of the possible goals predicts the observed action sequence. Moreover, how well a
goal G predicts the sequence Obs turns out to depend on considerations having
to do with costs, and in particular, two cost measures: the cost of achieving G
through a plan compatible with the observed action sequence Obs, and the cost
of achieving G through a plan that is not compatible with Obs. We will denote
the first cost as cP (G + Obs) and the second as cP (G + Obs), where P along
with the observations Obs define the plan recognition problem. That is, P is
like a classical planning problem but with the actual goal hidden and replaced
by a set G of possible goals G, and a sequence of observed actions. The plan
recognition problem is about inferring the probability distribution P (G|Obs)
over the possible goals G ∈ G where each possible goal G can be a (conjunctive)
set of atoms.

The cost differences Δ(G,Obs) = cP (G + Obs) − cP (G + Obs) for each of
the possible goals G, which can range from −∞ to +∞, can be used to define
the likelihoods P (Obs|G), and hence, to obtain the goal posterior probabilities
P (G|Obs) when the goal priors P (G) are given. Clearly, the higher the cost
difference Δ(G,Obs), the better that G predicts Obs, and hence the higher the
likelihood P (Obs|G). The function used to map the Δ-costs into the P (O|G)
likelihoods is the sigmoid function, which follows from assuming that the agent
is not perfectly rational [26]. The costs cP (G + Obs) and cP (G + Obs) can be
computed by calling a classical planner over the two classical problems P (G +
Obs) and P (G + Obs) that are obtained from P , the hypothetical goal G, and
the observations. The result is that the goal posterior probabilities P (G|Obs)
can be computed through Bayes’ rule and 2× |G| calls to a classical planner.

5.3 Incomplete Information and Sensing

A (deterministic) conformant problem can be expressed as a tupleP = 〈F, I,O,G〉
whereF stands for the fluents or atoms in the problem,O for the actions, I is a set of
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Fig. 2. Example of instances solved by on-line partially observable planner LW1 using
linear translations and classical planners [27]. Left: Minesweeper instance where the star
marks the first cell opened and empty cells have 0 counts. Right: Wumpus instance
with 2 monsters and 2 pits. Positions of monsters, pits, and gold initially unknown.

clauses overF defining the initial situation, andG is a set of literals overF defining
the (conjunctive) goal.The difference to classical problems is the uncertainty in the
initial situation which is described by means of clauses. A clause is a disjunction of
one ormore literals, and a literal is an atom inF or its negation.We assume that the
actions are not purely STRIPS but can feature conditional effects and negation;
i.e., every action a is assumed to have a precondition given by a set of literals, and
a set of conditional effects a : C → C′ where C and C′ are sets (conjunctions) of
literals, meaning that the literals inC′ become true after the action a if the literals
in C were true when the action was done. The states associated with the problem
P are valuations over the atoms in F , and the set of possible initial states are the
states that satisfy the clauses in I.

A deterministic conformant problem P defines a conformant state model S(P )
which is like the state model for a classical problem with one difference: there
is no single initial state s0 but a set of possible initial states S0. A solution for
P , namely a conformant plan for P , is an action sequence that simultaneously
solves all the classical state models S ′(P ) that result from replacing the set of
possible initial states S0 in S(P ) by each one of the states s0 in S0.

From a computational point of view, conformant planning can be formulated
as a path-finding problem over a graph where the nodes in the graph do not
represent the states of the problem as in classical planning but belief states,
where a belief state is a set of states deemed possible at one point. An alternative
approach, however, is to map deterministic conformant planning into classical
ones [28]. The basic sound but incomplete translation removes the uncertainty
in the problem by replacing each literal L in the conformant problem P by two
literals KL and K¬L, to be read as ‘L is known to be true’ and ‘L is known
to be false’ respectively. If L is known to be true or known to be false in the
initial situation, then the translation will contain respectively KL or K¬L. On
the other hand, if L is not known, then both KL and K¬L will be initially false.
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The result is that there is no uncertainty in the initial situation of the translation
which thus represents a classical planning problem.

More precisely, the basic translationK0 is such that if P = 〈F, I,O,G〉 is a de-
terministic conformant problem, the translation K0(P ) is the classical planning
problem K0(P ) = 〈F ′, I ′, O′, G′〉 where2

– F ′ = {KL,K¬L |L ∈ F}
– I ′ = {KL |L is a unit clause in I}
– G′ = {KL |L ∈ G}
– O′ = O but with each precondition L for a ∈ O replaced by KL, and each

effect a : C → L replaced by a : KC → KL and a : ¬K¬C → ¬K¬L.
The expressions KC and ¬K¬C for C = {L1, L2, . . .} are abbreviations for

the conjunctions {KL1,KL2, . . .} and {¬K¬L1,¬K¬L2, . . .} respectively. Re-
call that in a classical planning problem, atoms that are not part of the initial
situation are assumed to be initially false, so if KL is not part of I ′, KL will be
initially false in K0(P ).

The only subtlety in this translation is that each conditional effect a : C → L
in P is mapped into two conditional effects in K0(P ): a support effect a : KC →
KL that ensures that L is known to be true when the condition C is known to
be true, and a cancellation effect a : ¬K¬C → ¬K¬L that ensures that L is
possible when the condition C is possible.

The translation K0(P ) is sound as every classical plan that solves K0(P ) is
a conformant plan for P , but is incomplete, as not all conformant plans for P
are classical plans for K0(P ). The meaning of the KL literals follows a similar
pattern: if a plan achieves KL in K0(P ), then the same plan achieves L with
certainty in P , yet a plan may achieve L with certainty in P without making
the literal KL true in K0(P ).

For completeness, the basic translation K0 is extended into a general transla-
tion scheme KT,M where T and M are two parameters: a set of tags t and a set
of merges m. A tag t ∈ T is a set (conjunction) of literals L from P whose truth
value in the initial situation is not known. The tags t are used to introduce a
new class of literals KL/t in the classical problem KT,M (P ) that represent the
conditional statements: ‘if t is initially true, then L is true’. Likewise, a merge m
is a non-empty collection of tags t in T that stands for the Disjunctive Normal
Form (DNF) formula

∨
t∈m t. A merge m is valid when one of the tags t ∈ m

must be true in I; i.e., when I |= ∨
t∈m t. A merge m for a literal L translates

into a ’merge action’ with effects that capture a simple form of reasoning by
cases:

∧
t∈mKL/t −→ KL.

The parametric translation scheme KT,M is the basic translation K0 ‘condi-
tioned’ with the tags in T and extended with the actions that capture the merges
in M . If P = 〈F, I,O,G〉 is a deterministic conformant problem, then KT,M (P )
is the classical planning problem KT,M (P ) = 〈F ′, I ′, O′, G′〉 where
2 A conditional effect a : C → C′ is assumed to be expressed as a collection of
conditional effects a : C → L, one for each literal L in C′. The symbol a stands for
the action associated with these effects.
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– F ′ = {KL/t,K¬L/t |L ∈ F and t ∈ T},
– I ′ = {KL/t | I, t |= L},
– G′ = {KL |L ∈ G},
– O′ = {a : KC/t → KL/t, a : ¬K¬C/t → ¬K¬L/t | a : C → L in P} ∪

{am,L :
[∧

t∈mKL/t
] → KL | L ∈ P,m ∈ M}.

Two basic properties of the general translation scheme KT,M (P ) are that it is
always sound (provided that merges are valid), and for suitable choice of the sets
of tags and merges T and M , it is complete. In particular, a complete instance
of the general translation KT,M (P ) results when the sets of tags T is the set
S0 of possible initial states of P , and M = T . While the resulting translation
KS0(P ) is exponential in the number of unknown atoms in the initial situation
in the worst case, there is an alternative choice of tags and merges, called the
Ki(P ) translation, that is exponential in the non-negative integer i, and that
is complete for problems P that have a structural parameter w(P ), called the
width of P , bounded by i. In problems defined over multivalued variables, this
width stands for the maximum number of variables all of which are relevant to
a variable appearing in an action precondition or goal [29]. It turns out that
many conformant problems have a bounded and small width, and hence such
problems can be efficiently solved by a classical planner after a low polynomial
translation [28]. The conformant plans are then obtained from the classical plans
by removing the ‘merge’ actions.

The translation-based approach, introduced initially for deterministic confor-
mant planning, has been extended to deterministic planning with sensing [30,31].
Examples of problems solved by the on-line partially observable planner LW1
[27] that uses linear translations for both action selection and belief tracking are
shown in Figure 2.

5.4 Finite-State Controllers

Finite-state controllers represent an action selection mechanism widely used in
video-games and mobile robotics. In comparison to plans and POMDP policies,
to be studied later, finite-state controllers have two advantages: they are often
extremely compact, and they are general, applying not just to one problem but to
many variations as well. As an illustration, Figure 3(a) depicts a simple problem
over a 1×5 grid where a robot, initially at one of the two leftmost positions, must
visit the rightmost position, marked B, and get back to A. Assuming that the
robot can observe the mark in the current cell if any, and that the actions Left and
Right deterministically move the robot one unit left and right respectively, the
problem can be solved by planners that sense and POMDP planners. A solution
to the problem, however, can also be expressed as the finite-state controller
shown on the right. Starting in the controller state q0, this controller selects the
action Right, whether A or no mark (‘−’) is observed, until observing B. Then
the controller selects the action Left, switches to state q1, and remains in this
state selecting the action Left as long as no mark is observed. Later, when a
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A B
q0 q1

B/Left

−/Right
A/Right −/Left

(a) (b)

Fig. 3. (a) Agent initially in one of the two leftmost positions has to go to cell marked
B and back to A. The marks are observable. (b) A 2-state controller that solves the
problem and many variations of it. The circles are the controller states, and an edge
q → q′ labeled o/a means to perform action a when the observation is o in state q,
switching then to state q′. The initial controller state is q0.

mark is observed, no further actions are taken as the agent must be back at A,
having achieved the goal.

The finite-state controller displayed in the figure has two appealing features:
it is very compact (it involves two states only), and it is very general. Indeed,
the problem can be changed in a number of ways and the controller would still
work, driving the agent to the goal. For example, the size of the grid can be
changed from 1 × 5 to 1× n, the agent can be placed initially anywhere in the
grid (except at B), and the actions can be made non-deterministic by adding
‘noise’ so that the agent can move one or two steps at a time. The controller
would work for all these variations. This generality is well beyond the power of
plans or policies that are normally tied to a particular state space.

The benefits of finite-state controllers, however, come at a price: unlike plans,
they are usually not derived automatically but are written by hand; a task
that is non-trivial even in the simplest cases. Recently, however, the problem
of deriving compact and general finite-state controllers using planners has been
considered [32]. Once again, this is achieved by using classical planners over
suitable transformations. We sketch the main ideas below.

A finite-state controller CN with N controller states q0, . . . , qN−1 is fully char-

acterized by the tuples (q, o, a, q′) associated with the edges q
o/a→ q′ in the con-

troller graph. These edges and hence, these tuples, prescribe the action a to do
when the controller state is q and the observation is o, switching then to the
controller state q′ (which may be equal to q or not). A controller solves a prob-
lem P if starting in the distinguished controller state q0, all the executions that
are possible given the controller reach a goal state. The key question is how to
find the tuples (q, o, a, q′) that define such a controller. In [32], the problem P
is transformed into a problem P ′ whose actions are associated with each one
of the possible tuples (q, o, a, q′), and where extra fluents pq and po for keeping
track of the controller states and observations are introduced. The action 〈t〉
associated with the tuple t = (q, o, a, q′) behaves then very much like the action
a but with two differences: first, the atoms pq and po are added to the body of
each conditional effect, so that the resulting action 〈t〉 behaves like the original
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q0 q1
–C/Down

TB/Right

TC/Right
–B/Up
TB/Up –B/Down

Fig. 4. Left: Problem where a visual-mark (on the lower left cell) must be placed on
top of a green block whose location is not known, by moving the mark one cell at a
time, and observing what’s in the marked cell. Right: Finite-state controller obtained
with a classical planner from translation. The controller solves the problem and any
variation resulting from changes in either the number or configuration of blocks [32].

action a but only when the controller state is q and the observation is o; second,
the action makes the atom pq false and the atom pq′ true, in accordance with the
interpretation of the tuple (unless q = q′). Additional bookkeeping is required in
the transformed problem P ′ to prevent plans from executing actions 〈t〉 and 〈t′〉
when t = (q, o, a, q′), t′ = (q, o, a′, q′′), and a 	= a′ or q′ 	= q′′. The reason is that
no controller can include such pairs of tuples, as the action and new controller
state are always a function of the current controller state and observation. In-
terestingly, the transformation from P into P ′ eliminates sensing by making the
effects of the actions conditional on the current controller state and observation.
The result is that while P is a partially observable problem, P ′ is a conformant
problem, which as we have seen before, it can be transformed into a classical
problem P ′′. The actions 〈t〉 that solve such classical problem encode the tuples
that define the controller with up to N states that solves P .

As a further illustration of the power of these transformations, Figure 4, on
the left, shows a problem inspired in the use of deictic representations where
a visual-marker (the circle on the lower left) must be placed on top of a green
block by moving it one cell at a time. The location of the green block is not
known, and the observations are whether the cell currently marked contains a
green block (G), a non-green block (B), or neither (C), and whether this cell
is at the level of the table (T) or not (–). The compact and general controller
shown on the right has been computed by running a classical planner over a
translation obtained following the two steps above [32]. The controller solves the
problem shown and any variation resulting from changes in either the number
or configuration of blocks.

5.5 Planning with Other Agents in Mind

The muddy children puzzle is a common example used for illustrating the sub-
tleties that arise when reasoning about the beliefs of other agents. In the problem,
there are n children, k of whom have mud on their forehead. The children can see
which other children are muddy but can’t tell whether they are muddy or not.
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The father comes and tells the children that at least one of them is muddy, and
then asks the children whether they know whether they are muddy or not. It’s
possible to show that if the children are good reasoners, those who are muddy
will know that they are muddy after the father repeats the question exactly k
times [33]. When k is greater than 1, the puzzle is that the children arrive to
this conclusion after expressing ignorance k − 1 times, and after (apparently)
not learning anything new from the parent (they can all see at least one muddy
child). A planning version of the problem can be constructed, for example, by
asking one of the children to find out whether he is muddy or not by selecting
another child X and asking him whether X knows whether he is muddy or not,
with everyone listening to the response. The shortest plan in that case is to ask
this question to the children seen to be muddy one by one.

The problem of characterizing the state of (nested) knowledge or beliefs in
a setting where agents are able to act on the world, observe the world, and
communicate their beliefs, has been studied in recent years in the area of dynamic
epistemic logics [34,35]. Recently, an expressive and meaningful fragment of this
logic has been identified where the methods for handling beliefs in the single
agent setting are used to compute linear plans akin to multiagent conformant
plans, using classical planners and a transformation that is quadratic in the
number of possible initial states [36]. The planning version of the muddy children
problem is an example of a problem that fits into this fragment. Similar methods
have been developed also for computing join plans in a logical version of the
multiagent planning models called Descentralized POMDPs [37].

6 Summary

Planning is the model-based approach to autonomous behavior where models
come in many forms depending on the presence of uncertainty, the form of the
feedback, and whether uncertainty is represented by means of sets or probability
distributions. All forms of planning are intractable in the worst case when prob-
lems are represented in compact form, including the simplest form of planning,
classical planning, where actions are deterministic and the initial state is fully
known. In spite of this, significant progress has been achieved in classical plan-
ning in the last two decades for scaling up. Like in other AI models and solvers,
the key is the exploitation of the problem structure by means of cost-effective
forms of inference. In classical planning, this inference takes mainly the form of
heuristics derived from the problem, landmarks that uncover implicit subgoals,
and a structural criterion for distinguishing the applicable actions that are more
likely to be relevant, called the helpful actions. Advances in classical planning
have been exploited for dealing with non-classical problems by means of suit-
able transformations. Even if sound and complete translations are worst-case
exponential, as in planning with incomplete information and sensing, compact
polynomial but incomplete transformations have been shown to be very power-
ful as well. We have briefly reviewed transformations for dealing with soft goals,
goal recognition, planning with incomplete information and sensing, and nested
multiagent beliefs.
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