
Preserving Strong Equivalence while Forgetting

Matthias Knorr and José Julio Alferes

CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. A variety of proposals for forgetting in logic programs under different
semantics have emerged that satisfy differing sets of properties considered de-
sirable. Despite the achieved progress in devising approaches that capture an in-
creasing number of these properties, the idea that the result of forgetting should
preserve the meaning of the initial program for the remaining, non-forgotten,
atoms, has not yet been captured. In particular, the existing proposals may not
preserve dependency relations between such atoms that are given by the struc-
ture of the program. In logic programs, these relations are captured by strong
equivalence, but, preserving strong equivalence of two different programs while
forgetting does not suffice. Rather, strong equivalence relativized to the remain-
ing atoms should be preserved between the original program and the one that
results from forgetting. In this paper, we overcome this deficiency by formaliz-
ing the property that captures this maintenance of relations while forgetting, and
at the same time a general semantic definition for such a forgetting for arbitrary
logic programs. Then, we study forgetting for normal programs under the well-
founded semantics, and for programs with double negation under the answer set
semantics. In both cases, we focus on efficient syntax-based algorithms that only
manipulate the rules in which changes are effectively necessary.

1 Introduction

Removing or hiding information that is no longer needed in a knowledge base, also
known as forgetting or variable elimination [12], is important in Knowledge Represen-
tation and Reasoning (KRR). This is witnessed by the recent amount of work developed
for different logical formalisms [20,9,16,13,21,2] and for Logic Programming (LP) in
particular [6,15,14,1], and has been applied, e.g., in cognitive robotics, ontologies, and
resolving conflicts.

For LP, these approaches are commonly introduced together with a number of desir-
able properties that justify design rationales and allow comparisons between different
approaches. Yet, the property that the result of forgetting should preserve all the se-
mantic dependencies contained in the original program, for all but the atom(s) to be
forgotten, has not been considered.

Example 1. Consider a part of a taxonomy including professors, university staff, and
persons with properties assigned to them, represented in rules:1

person(X)← ustaff(X) ustaff(X)← professor(X)

1 As usual, rules with variables stand for the set of ground rules obtained by replacing the vari-
ables by constants in all possible ways.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 412–425, 2014.
c© Springer International Publishing Switzerland 2014



Preserving Strong Equivalence while Forgetting 413

Consider that professor(mary) is part of the program. Then, clearly, person(mary)
is derivable. Now suppose that we want to forget about the class university staff, e.g.,
because there are no longer specific properties attached to it. In this case, it should
still be derivable that every professor is also a person, i.e., in the result of forgetting
(all ground instances of) ustaff(X) from this program, person(mary) should still be
derivable. This is indeed the case for most existing approaches of forgetting.

Now consider that university staff that are not professors must use the punch clock,
and staff that do not have to use the punch clock have flexible schedules:

flexible(X)← ustaff(X), not punchClock(X)

punchClock(X)← ustaff(X), not professor(X)

Suppose that professor(mary), ustaff(peter) and person(john) is the only infor-
mation about these three individuals contained in the program. Then, we expect to de-
rive that flexible(mary) and punchClock(peter) hold. Now suppose that we want
to forget about punchClock(X) from the program, then the derivation that professors
have flexible schedules should not be lost. If we learn later that john is a professor, then
we would expect to be able to derive that he also has a flexible schedule, while peter
still does not. However, none of the existing proposals for forgetting in logic programs
satisfies the desired behavior (see related work in Section 6).

Strong equivalence [10] has been introduced in LP to semantically capture the de-
pendency relations between atoms expressed in logic programs, and has been used, e.g.,
in program optimization. Two programs P and Q are strongly equivalent if, for all pro-
grams R, P ∪ R and Q ∪ R are equivalent, i.e., they have the same models. However,
preserving strong equivalence between programs to which the same forgetting is ap-
plied is not sufficient as it does not say much about how similar the output is to the
original program [6,1]. Neither would considering strong equivalence between a pro-
gram and its result of forgetting work, simply because, in general, this does not hold
for all programs R: consider P with two rules a ← not b and b ← not c, then adding
just c ← to P allows us to derive a, but adding c ← and b ← does not, and there is no
program Q over a and c (and without b) that allows us to obtain the same result.

Instead, strong equivalence restricted to programs R over the remaining, non-for-
gotten, atoms should be preserved between the original program and the one that results
from forgetting. Relativized strong equivalence (RSE) [5,17] was introduced to relax
strong equivalence when certain internal atoms are no longer allowed to be part of R
and thus captures our idea, yet no related notion of forgetting exists.

Most approaches for forgetting in LP also provide methods on how to obtain the
result of forgetting, and often these methods rely on computing models and then deter-
mining a representation of the result of forgetting. Thus, the complexity of computing
such a result usually corresponds to that of computing models in the considered class of
logic programs, but additionally, the resulting program may be exponential in the size
of the original program (see [14], and the syntactic transformation in [6]). We argue
that computing the result of forgetting should in general not need to change any rules
other than those containing the atoms to be forgotten. Therefore, we focus on syntax-
based algorithms that manipulate precisely these rules without the need to compute any
models. As argued in [6], such kind of algorithms are also of benefit for applications.



414 M. Knorr and J.J. Alferes

In this paper, we introduce a new property that formalizes the idea of preserving
relativized strong equivalence while forgetting in LP and a new general definition of
forgetting for logic programs that, besides our new property, also satisfies a number of
other desired properties. We then study concrete cases of this new notion under the two
most-widely used semantics for LP. Namely, we consider forgetting from normal logic
programs under the well-founded semantics [7], and forgetting from programs with
double negation under the answer set semantics [8]. It turns out, that such forgetting is
not always possible in the latter case, so we subsequently study adequate restrictions
under which our approach can still be applied. The construction of the resulting pro-
gram, in both cases, is then achieved by applying syntactic transformations which do
not require the computation of models. We can show that computing the resulting pro-
gram is exponential in the number of rules that contain atoms to be forgotten and linear
in the remaining. We argue that on average this is at least competitive when compared
to computing models in P or NP (over the entire program), and certainly better than an
algorithm that, in addition to computing models, creates a program exponential in the
size of the entire given program.

2 Logic Programs

We start by recalling notions and notation of LPs. More precisely, we consider logic
programs with double negation, a subset of extended logic programs [11].

A logic program P , is a finite set of rules r of the form

a← b1, ..., bl, not c1, ..., not cm, not not d1, ..., not not dn

where a and all bh, ci, and dj , for 1 ≤ h ≤ l, 1 ≤ i ≤ m, and 1 ≤ j ≤ n, are
propositional atoms over a signature Σ. Alternatively, a may be the special logical
constant ⊥ representing an empty head. Given such a rule r, we distinguish the head
of r as H (r) = a, and the body of r, B(r) = B+(r) ∪ notB−(r) ∪ not notB−−(r),
where B+(r) = {b1, . . . , bl}, B−(r) = {c1, . . . , cm}, B−−(r) = {d1, . . . , dn}, and,
for a set A of atoms, notA = {not q: q ∈ A} and not notA = {not not q: q ∈ A}.

Logic programs of this general form include a number of special kinds of rules: if
m = n = 0, then we call r positive; if l = m = n = 0, then r is a fact; if a = ⊥, then r
is a constraint; and if a �= ⊥ and n = 0, we say r is normal. The classes of positive and
normal programs are defined as a finite set of positive and normal rules, respectively.

We now recall the answer set semantics [8] by first defining the least model of pos-
itive programs and then relying on a generalization of the reduct to nested programs, a
very general class of programs which admits double negation in the body [11].

Given a logic programP , BP is the set of all atoms appearing in P . An interpretation
for P is a set of atoms I ∈ BP , and is meant to represent all the atoms considered
true. A positive rule is satisfied in interpretation I if B+(r) ⊆ I implies a ∈ I . An
interpretation I is a model of a positive program P if I satisfies all rules r ∈ P , and I
is the least model of P if there is no model I ′ of P such that I ′ ⊂ I . The reduct of P
w.r.t. an interpretation I is defined as P I = {H (r) ← B+(r) : r ∈ P,B−(r) ∩ I =
∅,B−−(r) ⊆ I}. Then, an interpretation I is an answer set of P iff I is the least model
of P I . A program is called consistent if it has (at least) one answer set, and the set



Preserving Strong Equivalence while Forgetting 415

of all answer sets of P is denoted by Mas(P ). Determining whether a (propositional)
program has an answer set is NP-complete [4].2

We also consider the well-founded semantics [7] for normal programs. A 3-valued
interpretation I of a program P is defined as I = I+ ∪ not I− with I+ ∪ I− ⊆
BP and I+ ∩ I− = ∅; I+ and I− contain the atoms that are true and false in I ,
respectively; an atom p appearing neither in I+ nor in I− is undefined, and so is not p.
The computation of the well-founded model requires a consequence operator TP for
three-valued interpretations that derives true information. For a normal program P and
a three-valued interpretation I for P , we define TP (I) = {H (r) : r ∈ P,B(r) ⊆ I}.
The notion of unfounded set complements that by deriving false information. For a
normal program P and a three-valued interpretation I for P , we say that U ⊆ BP is an
unfounded set (of P ) w.r.t. I if each atom a ∈ U satisfies the following condition: for
each rule r ∈ P with H (r) = a at least one of the following holds: (Ui) not bh ∈ I for
some bh ∈ B+(r), or ci ∈ I for some ci ∈ B−(r); (Uii) bh ∈ U for some bh ∈ B+(r).
The greatest unfounded set UP (I) (ofP ) w.r.t. I always exists and leads to the definition
of operator WP (I), by setting WP (I) = TP (I) ∪ notUP (I). This operator WP is
monotonic, can be iterated by WP ↑ 0 = ∅, WP ↑ (n + 1) = WP (WP ↑ n) for
all n, and its least fixed point, which exactly corresponds to the well-founded model
Mwf (P ), is obtained for some finite n for propositional normal programs as considered
here. Determining Mwf (P ) of a (propositional) normal program is P-complete [4].

Finally, given a set of atoms V with V ⊆ Σ, two programs P1 and P2 are strongly
equivalent relative to V under semantics S, denoted P1 ≡V

S P2, iff MS(P1 ∪ R) =
MS(P2 ∪ R) for all programs R over signature V . This notion is generalized from
answer sets [17,5] to arbitrary semantics S and captures as special cases that P1 and
P2 are equivalent and strongly equivalent, denoted P1 ≡S P2 and P1 ≡s

S P2, by
considering V = ∅ and V = Σ, respectively.

3 Forgetting with Strong Persistence

In previous work [6,18,15,14,1], a number of desirable properties for forgetting in logic
programs has been investigated under both answer set and well-founded semantics.
Before we introduce our new property, we generalize several properties presented in
[14] to arbitrary classes of logic programs and arbitrary semantics.

For that purpose, we define that, given interpretation I under semantics S and a set
of atoms V , I‖V represents the part of I without elements from V . E.g., for the answer
set semantics, I‖V represents I \V and for the well-founded semantics I \ (V ∪not V ).
For sets of interpretations I, we also define I‖V = {I‖V : I ∈ I}.

Now, let C be a class of logic programs over a signature Σ, P and P ′ programs in C,
S a semantics for C, V ⊆ BP , and f(P, V ) abstractly denote a program resulting from
forgetting about V from P . Note that, in general f(P, V ) does not determine a syntac-
tically unique program but rather one representative of a class of (strongly) equivalent
programs (depending on the considered notion of forgetting, e.g., in most notions, a
result {q ←} would also represent {q ←; q ← q}). Some properties about f(P, V ) are:

2 More precisely, this result coincides with the one first established for normal programs in [4].



416 M. Knorr and J.J. Alferes

(E) Existence w.r.t. C: if P is in C, then f(P, V ) is expressible in C.
(IR) Irrelevance: f(P, V ) ≡s

S P ′ for some P ′ that does not contain any v ∈ V
(SE) Strong Equivalence: If P ≡s

S P ′, then f(P, V ) ≡s
S f(P ′, V ).

(CP) Consequence Persistence: MS(f(P, V )) = MS(P )‖V .

There are three further properties presented in [14], but it is shown that two of them
conflict with the others in the case of answer set semantics. Moreover, all three require
an additional entailment relation over logic programs, defined over HT logic for answer
set semantics in [14], which is non-standard since entailment in LP is usually considered
only for (sets of) atoms. Since the choice of this entailment relation for each semantics
affects whether these properties hold or not, we leave such a study for future work.

As motivated in the introduction, none of the existing definitions of forgetting en-
sures that the result of forgetting really semantically resembles the original program if
we ignore the atom(s) to be forgotten. This is why we introduce a new property that can
be considered a generalization of (CP), i.e., consequence persistence but under (rela-
tivized) strong equivalence, hence the name strong persistence.

(SP) Strong Persistence: MS(f(P, V ) ∪R) = MS(P ∪R)‖V for all programs R over
signature Σ \ V .

The definition of (SP) strongly resembles that of relativized strong equivalence. The
only essential technical difference is that we have to omit the elements in V from the
models of P ∪R. This also clarifies that, even though both notions are strongly related,
they are not identical nor is one a special case of the other.

Given that none of the existing approaches on forgetting for logic programs satisfy
(SP), we introduce a new general definition of forgetting in LP.

Definition 1. Let C be a class of logic programs, and S a semantics for C. A result of
strong S-forgetting about V ∈ BP from P ∈ C, denoted FS(P, V ), is a program s.t.

(1) all v ∈ V do not appear in FS(P, V ), and
(2) MS(FS(P, V ) ∪R) = MS(P ∪R)‖V for all programs R over signature Σ \ V .

Due to its generality, this notion of forgetting naturally satisfies (SP) for any class
of programs and any semantics, but also several other of the previously introduced
properties, namely (IR), (SE), and (CP).

Proposition 1. Let C be a class of logic programs, and S a semantics for C. Then strong
S-forgetting satisfies (IR), (SE), (CP), and (SP).

Whether our definition of forgetting also satisfies (E) depends on the concrete class
of programs and semantics and, in the following sections, we answer this question for
the well-founded semantics of normal programs, and the answer set semantics of pro-
grams with double negation.

4 Strong WF-Forgetting for Normal Programs

We first consider strong wf-forgetting, in which the considered class of logic programs is
normal programs and the semantics the well-founded semantics. We start by providing



Preserving Strong Equivalence while Forgetting 417

an algorithm (Alg. 1) that computes a result that satisfies Def. 1 for the simpler case of
forgetting a single atom p from a normal program P , denoted Fwf (P, p). Here and in
the following, we abuse notation, and represent the singleton set {p} simply by p.

Before we discuss Alg. 1, we need to introduce one additional notion, namely that
of a wf-dual w.r.t. a program P and an atom p, that is useful when substituting not p in
rules in P while forgetting about p from P . For that, given a literal l, the complementary
literal, l̄, is defined as p̄ = not p and not p = p.

Definition 2. Let P be a normal program, p ∈ BP , and R all the n rules in P of the
form p ← lj1, . . . , ljmj where n ≥ 1, 1 ≤ j ≤ n, mj ≥ 1 for all j. The wf-dual
w.r.t. P and p, denoted Dwf (P, p), is the set of all possible sets {l̄1k1 , . . . , l̄nkn} with
1 ≤ k1 ≤ m1, . . . , 1 ≤ kn ≤ mn.

The wf-dual w.r.t. P and p can be understood as a set of conjunctions that, building
on the rules in P with head p and non-empty body, can be used to replace not p, but
preserve its truth value. Consider P containing two rules p ← s and p ← not q, not r.
Then Dwf(P, p) = {{not s, q}, {not s, r}} and, e.g., not p is true if one of the two
conjuncts is true, false if both conjuncts are false, and undefined otherwise. This is
what we apply in Alg. 1 whose details we explain next.

First, P ′ is initialized with P from which all rules whose head appears in the (posi-
tive) body are removed right away (line 1). This is known as elimination of tautologies
TAUT [3]. Then, new rules are introduced by substituting occurrences of p in the bod-
ies (of rules r) with the bodies of rules r1 whose head is p, in a way similar to wGPPE
[3] (lines 3-12). This includes a special case if not p appears in the body of r1 (lines
5-7). I.e., with such a rule alone, p would be undefined, which is why not p is replaced
with the negation of the rule head of r. Subsequently, all rules with p in the body can
be removed (line 13). Next, new rules are introduced in which all not p in rule bod-
ies (apart from those with rule head p – line 14 – since those will be eliminated at the
end) are substituted by the wf-duals (lines 14-28), unless one of the two special cases
applies. Namely, either there is no rule with head p in which case not p can simply be
omitted in such a rule body (lines 15-16) or there is a fact for p, in which case none of
the rules with not p is considered any further for substitution (line 17). The application
of the wf-duals again includes a special case to handle potential undefinedness due to
the presence of H (r) or p in the wf-dual (lines 20-22). Finally, rules containing p (in
the head) or not p in the body can be removed (line 29).

Example 2. Consider the following normal program P to illustrate Alg. 1:

r1 : r ← p r2 : q ← not p r3 : p← not p, t r4 : p← not s

The program Fwf (P, p) returned by Alg. 1 is

r′1 : r ← not r, t r′2 : r ← not s r′3 : q ← not q, s r′4 : q ← not t, s

where r′1 and r′2 are obtained from r1 in combination with r3 (by lines 5-7) and r4
(by lines 8-10), respectively, while r′3 and r′4 are obtained from r2, the duals over r3
and r4, and lines 20-22 and 22-25 respectively. It can be verified that Mwf (P

′) =
Mwf (P )‖{p} = {r, not q, not s, not t}, i.e., (2) of Def. 1 holds for R = ∅. In fact,



418 M. Knorr and J.J. Alferes

input : Normal program P and p ∈ BP

output: Normal program P ′ = Fwf (P, p)

1 P ′ := P \ {r ∈ P : H (r) ∩ B+(r) �= ∅};
2 R1 := {r ∈ P ′ : H (r) = p};
3 for r ∈ P ′ s.t. p ∈ B(r) do
4 for r1 ∈ R1 do
5 if not p ∈ B(r1) then
6 P ′ := P ′ ∪ {H (r)← (B(r) \ {p}) ∪ ({notH (r)} ∪ (B(r1) \ {not p}))};
7 end
8 else
9 P ′ := P ′ ∪ {H (r)← (B(r) \ {p}) ∪ B(r1)};

10 end
11 end
12 end
13 P ′ := P ′ \ {r ∈ P ′ : p ∈ B(r)};
14 R2 := {r ∈ P ′ : not p ∈ B(r),H (r) �= p};
15 if R1 = ∅ then
16 P ′ := P ′ ∪ {H (r)← B(r)′ : r ∈ R2,B(r)′ = B(r) \ {not p}};
17 else if {p←} �⊆ R1 then
18 for r ∈ R2 do
19 for D ∈ Dwf (P, p) do
20 if (H (r) ∈ D) or (p ∈ D) then
21 P ′ := P ′ ∪ {H (r)←

(B(r) \ {not p}) ∪ ((D\{H (r), p}) ∪ {notH (r)})};
22 end
23 else
24 P ′ :=P ′∪{H (r)←B(r)\{not p}∪D};
25 end
26 end
27 end
28 end
29 P ′ := P ′ \ (R1 ∪ R2);

Algorithm 1. Strong wf-forgetting for a single atom p

it holds for arbitrary programs R over Σ \ {p}, e.g., for R = {s ← r}, we have
Mwf (P

′ ∪R) = Mwf (P ∪R)‖{p} = {not t}.

Example 3. Consider only the rules and facts explicitly given in Ex. 1 as P . The re-
sult of Fwf (P, V ) with V = {punchClock(X) | X ∈ {mary, peter, john}} con-
tains precisely three instances of flexible(X) ← ustaff(X), professor(X). Thus,
flexible(mary) is derivable right away, and if professor(john) is added later, then
flexible(john) becomes derivable as well.

We can show that Alg. 1 always returns a result P ′ that corresponds to Fwf (P, p).

Theorem 1. Given a normal program P and p ∈ BP , Alg. 1 computes Fwf (P, p).



Preserving Strong Equivalence while Forgetting 419

Alg. 1 can be generalized to arbitrary sets V ∈ BP using the following property
applicable to strong S-forgetting for arbitrary classes C of programs and semantics S
for C.

Theorem 2. Let C be a class of logic programs, S a semantics for C, P ∈ C, and
V1, V2 ⊆ BP . Then, for all P ′ ∈ C, P ′ is FS(P, V1 ∪ V2) iff P ′ is FS(FS(P, V1), V2).

Thus, Alg. 1 allows us to compute strong wf-forgetting about one atom, and Thm. 2
ensures that we can forget a set of atoms by simply forgetting each atom one after the
other in any chosen order. This also guarantees that (E) holds for strong wf-forgetting.

Proposition 2. Strong wf-forgetting for normal programs satisfies (E).

The computational complexity of Alg. 1 is as follows.

Theorem 3. Given a normal program P and p ∈ BP , computing Fwf (P, p) is in EX-
PTIME in the number of rules containing occurrences of p and linear in the remaining
rules.

We would like to point out that this worst-case exponential is indeed limited to the wf-
duals w.r.t. P and p, i.e., to the number of rules n1 whose head is p and the number
of body literals in these rules. In fact, any of the transformations in Alg. 1 (apart from
the linear one in line 1) only affects rules in which p occurs. Since it is reasonable to
assume that, in large programs, the atom to be forgotten does on average appear only in
a small fraction of the rules, we argue that this considerably relativizes the high worst-
case complexity, in the sense that an exponential on a small fraction of the input may
be preferable to a polynomial over all rules as in [1].

5 Strong AS-Forgetting for Programs with Double Negation

We now present strong as-forgetting under the answer set semantics. Similar to [15,14],
strong as-forgetting for normal programs does not satisfy (E). Consider p← not q and
q ← not p whose answer sets are {p} and {q}. The result of strong as-forgetting about
q should have two answer sets {} and {p}, and there is no normal program where an
answer set is a subset of another. That is why we consider logic programs with double
negation where one single rule p← not not p suffices as such result of forgetting.3

Unfortunately, due to such rules, strong as-forgetting under the answer set semantics
for programs with double negation is not always possible.

Example 4. Consider the following program P from which we want to forget about p:

p← not not p q ← p r ← not p

Strong as-forgetting requires to find a program over {q, r} that satisfies condition (2) of
Def. 1. Note first that P itself has two answer sets {p, q} and {r} and that adding either
q or r as facts to P simply adds the atom to both answer sets, i.e., P ∪ {q} has two

3 Applicability of ASP solvers to such programs is ensured by (linear) transformations cf. [6].



420 M. Knorr and J.J. Alferes

input : Program P with double negation
output: Program P ′ = NF (P ) in normal form

1 P ′ := P \ {r ∈ P : H (r) ∩ B+(r) �= ∅};
2 P ′ := P ′ \ {r ∈ P : B+(r) ∩ B−(r) �= ∅};
3 P ′ := P ′ \ {r ∈ P : B−(r) ∩ B−−(r) �= ∅});
4 R′ := {r ∈ P ′ : B+(r) ∩ B−−(r) �= ∅};
5 P ′ := (P ′ \ R′) ∪ {H (r)← B(r)′ : r ∈ R′,B(r)′ = B(r) \ {not not q : q ∈
(B+(r) ∩ B−−(r))}};

6 R′′ := {r ∈ P ′ : H (r) ∩ B−(r) �= ∅};
7 P ′ := (P ′ \ R′′) ∪ {⊥ ← B(r) : r ∈ R′′};
8 R′′′ := {r ∈ P ′ : H (r) = B−−(r),B+(r) ∪ B−(r) = ∅};
9 for r ∈ R′′′ do

10 if ⊥ ← H (r) or ⊥ ← not notH (r) then
11 P ′ := P ′ \ r;
12 end
13 if ⊥ ← notH (r) then
14 P ′ :=(P ′\ (r∪{⊥←notH (r)})) ∪ {H (r)←};
15 end
16 end

Algorithm 2. Computing a normal form of P

answer sets {p, q} and {q, r} and P ∪ {r} has two answer sets {p, q, r} and {r}. We
thus require that P ′ = Fas(P, p) has two answer sets {q} and {r}, and that P ′ ∪ {q}
and P ′∪{r} also both have two answer sets, namely {q} and {q, r}, and {r} and {q, r}
respectively. Such a program P ′ does not exist over {q, r} since (a) it is required to be
symmetric in q and r, (b) we have to ensure that precisely only one of q and r is true
in each answer set of P ′, but (c) adding either of the two explicitly, must not avoid the
existence of an answer set that contains the other and in which both atoms are true.

In the following, we investigate conditions under which strong as-forgetting can still be
applied focusing again on syntactic transformations (as in the previous section), in the
sense that computing the result of forgetting about V ∈ BP in P only uses the rules r
with H (r) ∈ V to replace (possibly negated) occurrences of V in the bodies of rules.

We start by introducing a normal form that simplifies the presentation and the cases
to consider in such an algorithm, and, as a byproduct, reduces the size of the pro-
gram. Formally, a logic program P with double negation is in normal form if: for every
p ∈ BP and each rule r ∈ P , at most one of p, not p, and not not p occurs in B(r); if
H (r) = p, then neither p nor not p occur in B(r) and; if r = p ← not not p, then no
constraint containing only p, not p, or not not p in its body occurs in P . This normal
form NF (P ) can be computed using Alg. 2 in linear time. It first applies some general
program transformations including TAUT and CONTRA [3] (lines 1-7), and then han-
dles the case that simplifies p← not not p in combination with constraints (lines 8-16).
The algorithm is correct, and NF (P ) is strongly equivalent to the original program:

Proposition 3. LetP be a logic program with double negation. Alg. 2computesNF (P ),
and P and NF (P ) are strongly equivalent.



Preserving Strong Equivalence while Forgetting 421

With such a normal form in place, we proceed to introduce a notion that indicates
whether a certain atom p can be forgotten syntactically from a given program P .

Definition 3. Let P be a logic program with double negation in normal form and p ∈
BP . We call P p-forgettable if a) there is no r ∈ P with H (r) ∩ B−−(r) �= ∅ or b)
p← in P , or c) there is no rule r with H (r) �= p and p ∈ B+(r) ∪ B−(r) ∪ B−−(r).

Case a) describes the kind of rule which in general conflicts with the existence of the
result of strong as-forgetting (cf. also Ex. 4), while the cases b) and c) indicate excep-
tions under which rules described in a) are not problematic. Note that any normal logic
program P is p-forgettable for any p ∈ BP , and that rules matching case a) are allowed
for all other atoms except the one to be forgotten.

Checking whether a program is p-forgettable is easy. So given a p-forgettable pro-
gram P in normal form, we now introduce Alg. 3 for forgetting about a single atom p
from P , denoted Fas(P, p).

For that purpose, we introduce some further notation. First, we introduce a function
N that applies a number of negation symbols to elements of a rule body by defin-
ing, for all p ∈ BP and for x ∈ {p, not p, not not p}, N 0(x) = x, N 1(p) = not p,
N 1(not p) = not not p, and N 1(not not p) = not p, N 2(p) = N 2(not not p) =
not not p and N 2(not p) = not p, and N 3 = N 1. Also, for a rule body S, N i(S) =
{N i(s) : s ∈ S}. We also adapt the notion of dual to strong as-forgetting.

Definition 4. Let P be a logic program, p ∈ BP , and R all n ≥ 1 rules in P of
the form p ← lj1, . . . , ljmj where 1 ≤ j ≤ n, mj ≥ 1 for all j. The as-dual w.r.t.
P and p, denoted Das(P, p), is the set of all possible sets {N 1(l1k1), ...,N

1(lnkn)},
1 ≤ k1 ≤ m1, ..., 1 ≤ kn ≤ mn.

Unlike the wf-dual, the as-dual contains only negated and double negated atoms.
We can now describe Alg. 3. First, P ′ and four disjoint sets of rules are initialized,

in each of which p appears in the rules in a different form (lines 1-5). Then, the special
case of existing a fact p is treated directly by introducing rules in which occurrences
of p and not not p in all rules in R0 and R2 (whose head is not p) are omitted (lines
6-9). Alternatively, if there is no fact p, then new rules are introduced by substituting all
such occurrences of p and not not p in a way similar to wGPPE [3] (lines 11-15), i.e., p
and not not p are adequately replaced by the rule bodies in R. Next, the replacement of
not p is treated, by simply canceling these if there is no rule with head p (lines 16-17)
and using the as-dual otherwise (lines 18-24). Note that, unlike the previous section, no
special case is necessary for handling potential occurrences of p of any form because
P is p-forgettable and in normal form. Finally, all rules containing occurrences of p,
not p, and not not p are removed (line 26). Note that the steps introducing substitutions
for p, not p, and not not p in the bodies also handle constraints. Thus, it may happen
that the result contains a rule ⊥ ← which makes the resulting program permanently
inconsistent and cannot be removed. This has similarly been observed in [14].

Example 5. Consider the following program P to illustrate Algs. 2 and 3.

r1 : q ← not p r3 : p← r, not not r r5 : p← not not p, not r, not not r

r2 : p← not t r4 : s← not not p



422 M. Knorr and J.J. Alferes

input : p-forgettable P in normal form and p ∈ BP

output: Program P ′ = Fas(P, p)

1 R := {r ∈ P : H (r) = p};
2 R0 := {r ∈ P : p ∈ B(r)};
3 R1 := {r ∈ P : not p ∈ B(r)};
4 R2 := {r ∈ P : not not p ∈ B(r),H (r) �= p};
5 P ′ := P ;
6 if {p←} ⊆ R then
7 for r ∈ Ri s.t. i = 0 or i = 2 do
8 P ′ := P ′ ∪ {H (r)← (B(r) \ {N i(p)})};
9 end

10 else
11 for r ∈ Ri s.t. i = 0 or i = 2 do
12 for r1 ∈ R do
13 P ′ := P ′ ∪ {H (r)← (B(r) \ {N i(p)}) ∪ N i(B(r1))};
14 end
15 end
16 if R = ∅ then
17 P ′ := P ′ ∪ {H (r)← B(r)′ : r ∈ R1,B(r)′ = B(r) \ {not p}};
18 else
19 for r ∈ R1 do
20 for D1 ∈ Das(P, p) do
21 P ′ :=P ′∪{H (r)←B(r)\{not p}∪D1};
22 end
23 end
24 end
25 end
26 P ′ := P ′ \ (R ∪ R0 ∪ R1 ∪ R2);

Algorithm 3. Strong as-forgetting for a single atom p

Since P is clearly not in the normal form (r3, r5), we first apply Alg. 2 and obtain P ′.

r1 : q ← not p r2 : p← not t r′3 : p← r r4 : s← not not p

Rule r3 is simplified to r′3 according to lines 4-5 (of Alg. 2), and rule r5 can simply be
omitted due to line 3 (Alg. 2). Note that the resulting program is not only in the normal
form, but also p-forgettable. It can then be verified that Alg. 3 returns the following
program P ′′ when forgetting about p from P ′ (and thus from P ).

r′′1 : q ← not not t, not r r′′2 : s← not t r′′3 : s← not not r

The rule r′′1 can be obtained from r1 and the as-dual over r2 and r′3 (lines 18-24), while
the rules r′′2 and r′′3 result from r4 in combination with r2 and r′3, respectively (lines 11-
15). It can be verified that Mas(P

′′ ∪R) = Mas(P ∪R) holds for all R over Σ \ {p}.
For example, for R = ∅, we obtain Mas(P

′′) = Mas(P ) = {{s}}, and if we consider
R1 = {t← not not t}, then Mas(P ∪R1) = Mas(P

′′ ∪R1) = {{q, t}, {s}}.



Preserving Strong Equivalence while Forgetting 423

Example 6. Consider only the rules and facts explicitly given in Ex. 1 as P . The result
of Fas(P, V ) with V = {punchClock(X) | X ∈ {mary, peter, john}} contains pre-
cisely three instances of flexible(X) ← ustaff(X), not not professor(X). Thus,
again, flexible(mary) is derivable right away, and if professor(john) is added later,
then flexible(john) becomes derivable as well.

As expected, Alg. 3 always returns a result corresponding to Fas(P, p).

Theorem 4. Given a p-forgettable program P in normal form and p ∈ BP , Alg. 3
computes Fas(P, p).

For the generalization to forgetting sets of atoms V , we can simply rely on Thm. 2
provided, of course, that the program is in normal form, which can easily be ensured
by applying Alg. 2 after each step of forgetting, and that it is p-forgettable for each
p ∈ V . If the latter is indeed the case, then we simply forget a set of atoms by forgetting
one atom after the other. Note that Thm. 2 also allows us to forget atoms in any order.
So, if one p ∈ V is not p-forgettable immediately, then we may delay it and forget
another atom q first which is q-forgettable at that time, thereby potentially modifying the
program such that it becomes p-forgettable after q has been forgotten, by, e.g., reducing
some rule to a fact for p or canceling a rule with head p and p ∈ B−−(r). In this sense,
whenever strong as-forgetting is applicable, then it ensures that (E) holds.

Proposition 4. Strong as-forgetting for programs with double negation satisfies (E).

Under the same assumption, we can determine the complexity of strong as-forgetting.

Theorem 5. Given a program P and p ∈ BP , computing Fas(P, p) is in EXPTIME in
the number of rules containing occurrences of p and linear in the remaining rules.

This result for computing Fas(P, p) is identical to that of computing Fwf (P, p) as ob-
tained in Thm. 3. Indeed, the exponential can be traced to the as-duals, and an argument
such as the one following Thm. 3 can be applied.

6 Related Work and Conclusions

We have proposed a new property for forgetting propositional variables, called strong
persistence (SP), that guarantees that the semantic dependencies between the extant
propositional variables are kept. Since none of the existing approaches for forgetting in
LP obeys this (SP), we have introduced a new abstract definition of forgetting, which
is closely related to (SP) and naturally satisfies a number of other properties previously
studied in the literature. We have also studied this new notion of forgetting for the cases
of well-founded semantics for normal programs and answer set semantics for programs
with double negation, and focused on efficient syntax-based algorithms that effectively
only touch the rules in which atoms to be forgotten appear.

Considering the related work, the only other forgetting for the well-founded seman-
tics is [1] which does neither satisfy (SP) nor (SE). Indeed, consider the following P
which is a simplification of Ex. 1 (with obvious abbreviations):

flx(m)← not pC(m) pC(m)← not prof(m) prof(m)

flx(j)← not pC(j) pC(j)← not prof(j)



424 M. Knorr and J.J. Alferes

Even after forgetting about {pC(m), pC(j)}, flx(m) should hold, and if prof(j) is
later added, then flx(j) should hold as well. All three algorithms in [1] return only an
instance of a rule with head flx(X), viz., flx(m)←. So, adding prof(j) cannot yield
the desired result. An advantage of [1] is that the size of the program always shrinks
while forgetting. Also, computing the result is in PTIME, but over the entire program.

Regarding answer set semantics, several proposals exist, and we consider the same
program P from above for comparison. The work in [19], which is based on syntactic
transformations, returns only prof(m) for strong forgetting, and, additionally, the facts
flx(m) and flx(j) for weak forgetting. So neither of them satisfies (SP) nor actually
(SE) or (CP). The proposal in [6] satisfies (CP), but not (SE), nor (SP), since in the
considered example, flx(m) would persist as a fact, but no rule with flx(j) would
be part of the result of forgetting, thus loosing the semantic relation that intuitively
says that professors have flexible schedules. In [15], a correspondence based on strong
equivalence via HT models [10] is established between a program and its result of
forgetting, so (SE) is satisfied, but not (CP). Also, the result is not always expressible
as a logic program. The recent work in [14] further remedies that, thus satisfying both
(CP) and (SE), but not (SP). In fact, since flx(m) is part of the only answer set of
P , its derivation persists, but, again, no rule with head flx(j) is contained in the result
of this forgetting. Finally, the three previous approaches have a worst case complexity
of at least coNP on the entire program. But, as indicated for the syntactic transformation
of [6] and for [14], the resulting program is in general of exponential size over the entire
given program, whereas our approach is exponential only over the rules containing
the atom(s) to be forgotten, and linear over the remainder, and does not require any
additional model computation.

In terms of future work, we want to investigate the remaining properties presented in
[14], including appropriate entailment relations for each semantics. The latter are most
likely related to HT logics, which may also give rise to study the semantical relations,
e.g., to the proposal in [14], which is based on this logic. Another topic to consider is
the extension to other classes of programs and different semantics, e.g., disjunction in
rules under answer set semantics, though we conjecture that efficient syntactic methods
as investigated here cannot be used effectively for this class of programs and there is
no clear counterpart for the well-founded semantics. Finally, we intend to implement
our approach to allow testing its efficiency. In that regard, the normal programs result-
ing from forgetting under the well-founded semantics can be readily used, e.g., in XSB
Prolog, while in the case of programs with double negation under answer set seman-
tics, the applicability of ASP solvers to the results can be ensured based on (linear)
transformations following ideas on N-acyclicity [6].

Acknowledgments. Matthias Knorr and José J. Alferes were partially supported by
Fundação para a Ciência e a Tecnologia under project “ERRO – Efficient Reasoning
with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010) and Matthias Knorr also
by FCT grant SFRH/BPD/86970/2012.



Preserving Strong Equivalence while Forgetting 425

References

1. Alferes, J.J., Knorr, M., Wang, K.: Forgetting under the well-founded semantics. In: Cabalar,
P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 36–41. Springer, Heidelberg (2013)

2. Antoniou, G., Eiter, T., Wang, K.: Forgetting for defeasible logic. In: Bjørner, N., Voronkov,
A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 77–91. Springer, Heidelberg (2012)

3. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation. J.
Log. Program. 40(1), 1–46 (1999)

4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Comput. Surv. 33(3), 374–425 (2001)

5. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM Trans. Comput. Log. 8(3) (2007)

6. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell. 172(14),
1644–1672 (2008)

7. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM 38(3), 620–650 (1991)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3-4), 365–385 (1991)

9. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison and mod-
ule extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–1141 (2010)

10. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.
Comput. Log. 2(4), 526–541 (2001)

11. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif.
Intell. 25(3-4), 369–389 (1999)

12. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on Relevance, pp.
154–159 (1994)

13. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive de-
scription logics. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, pp. 989–995.
IJCAI/AAAI (2011)

14. Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In: Rossi,
F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, IJCAI/AAAI (2013)

15. Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Forgetting in logic programs under strong equiv-
alence. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, pp.
643–647. AAAI Press (2012)

16. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in DL-Lite. Ann.
Math. Artif. Intell. 58(1-2), 117–151 (2010)

17. Woltran, S.: Characterizations for relativized notions of equivalence in answer set program-
ming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 161–173.
Springer, Heidelberg (2004)

18. Wong, K.S.: Forgetting in Logic Programs. Ph.D. thesis, The University of New South Wales
(2009)

19. Zhang, Y., Foo, N.Y.: Solving logic program conflict through strong and weak forgettings.
Artif. Intell. 170(8-9), 739–778 (2006)

20. Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artif. Intell.
173(16-17), 1525–1537 (2009)

21. Zhou, Y., Zhang, Y.: Bounded forgetting. In: Burgard, W., Roth, D. (eds.) Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11. AAAI Press (2011)


	Preserving Strong Equivalence while Forgetting
	1 Introduction
	2 Logic Programs
	3 Forgetting with Strong Persistence
	4 Strong WF-Forgetting for Normal Programs
	5 Strong AS-Forgetting for Programs with Double Negation
	6 Related Work and Conclusions
	References




