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Abstract. Possibility theory is applied to introduce and reason about the funda-
mental notion of a key for uncertain data. Uncertainty is modeled qualitatively by
assigning to tuples of data a degree of possibility with which they occur in a re-
lation, and assigning to keys a degree of certainty which says to which tuples the
key applies. The associated implication problem is characterized axiomatically
and algorithmically. It is shown how sets of possibilistic keys can be visualized
as possibilistic Armstrong relations, and how they can be discovered from given
possibilistic relations. It is also shown how possibilistic keys can be used to clean
dirty data by revising the belief in possibility degrees of tuples.
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1 Introduction

Background. The notion of a key is fundamental for understanding the structure and
semantics of data. For relational databases, keys were already introduced in Codd’s
seminal paper [10]. Here, a key is a set of attributes that holds on a relation if there are no
two different tuples in the relation that have matching values on all the attributes of the
key. Keys uniquely identify tuples of data, and have therefore significant applications
in data cleaning, integration, modeling, processing, and retrieval.
Motivation. Relational databases were developed for applications with certain data,
such as accounting, inventory and payroll. Modern applications, such as information
extraction, radio-frequency identification (RFID) and scientific data management, data
cleaning and financial risk assessment produce large volumes of uncertain data. For
instance, RFID is used to track movements of endangered species of animals, such as
Grizzly Bears. For such an application it is desirable to associate degrees of possibility
(p-degrees) with which tuples occur in a relation. Here, p-degrees represent the trust in
the RFID readings, which can be derived from the strength, or precision of the devices
that send and receive the signals. Table 1 shows a possibilistic relation (p-relation),
where each tuple is associated with an element of a finite scale of p-degrees: α1 >
. . . > αk+1. The top degree α1 is reserved for tuples that are ‘fully possible’, the
bottom degree αk+1 for tuples that are ‘impossible’ to occur. Intermediate degrees can
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be used, such as ‘quite possible’ (α2), ‘medium possible’ (α3) and ‘somewhat possible’
(α4) when some linguistic interpretation is preferred.

The p-degrees enable us to express keys with different degrees of certainty. For ex-
ample, to express that it is ‘somewhat possible’ that the same grizzly is in different
zones within an hour we declare the key {time,rfid} to be ‘quite certain’, stipulating
that no two distinct tuples are at least ‘medium possible’ and have matching values on
time and rfid. Similarly, to say that it is ‘quite possible’ that different grizzlies are in the
same zone at the same time we declare the key {zone,time} to be ‘somewhat certain’,
stipulating that no two distinct tuples are at least ‘quite possible’ and have matching val-
ues on zone and time. We apply possibility theory to establish possibilistic keys (PKs)
as a fundamental notion to identify tuples of uncertain data.

Table 1. A Possibilistic Relation and Its Nested Chain of Possible Worlds

Possibilistic Relation

zone time rfid object p-degree
Z0 10am H0 Grizzly α1

Z1 10am H1 Grizzly α1

Z1 12pm H2 Grizzly α1

Z3 1pm H2 Grizzly α1

Z3 1pm H3 Grizzly α2

Z3 3pm H3 Grizzly α3

Z4 3pm H3 Grizzly α4

Worlds of Possibilistic Relation

Contributions. (1) In Section 2 we point out the lack of qualitative approaches to con-
straints on uncertain data. (2) We define a semantics for keys on uncertain relations
in Section 3. Here, uncertainty is modeled qualitatively by degrees of possibility. The
degrees bring forward a nested chain of possible worlds, with each being a classical
relation that has some possibility. Hence, the more possible the smaller a relation is,
and the more keys can identify tuples uniquely. For example, the possible worlds of the
p-relation from Table 1 are shown in Figure 1. The key {time,rfid} is satisfied by r3 but
not by r4, and {zone,time} is satisfied by r1 but not by r2. (3) In Section 4 we estab-
lish axiomatic and linear-time algorithmic characterizations for the implication problem
of PKs. (4) We show in Section 5 how to visualize PK sets as a single Armstrong p-
relation. That is, for any given PK set Σ we compute a p-relation that satisfies any given
PK ϕ if and only if ϕ is implied by Σ. While the problem of finding an Armstrong p-
relation is precisely exponential, our output p-relation is always at most quadratic in the
size of a minimum-sized Armstrong p-relation. (5) Using hypergraph transversals, we
show in Section 5 how to discover the PKs that hold on a given p-relation. Visualiza-
tion and discovery provide a communication framework for data engineers and domain
experts to jointly acquire the set of PKs that are semantically meaningful for a given
application. (6) In Section 6 we apply PKs to clean dirty data, and to query processing
in Section 7. (7) In Section 8 we conclude and briefly discuss future work.
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2 Related Work

The application of possibilistic logic to keys empowers applications to reason qualita-
tively about the uniqueness of tuples consisting of uncertain data. Data cleaning, data
fusion and uncertain databases are thus primary impact areas. Section 6 illustrates how
possibilistic keys can clean dirty data by revising the beliefs in p-degrees of tuples.
Possibilistic keys are soft constraints that data shall satisfy after their integration from
different sources. In this sense, data engineers can apply possibilistic keys as a means
to impose solutions to the correlation problem, which aims to establish whether some
information pertains to the same object or different ones [21]. For example, by declar-
ing the key {time,rfid} on tuples that are at least medium possible, information about
the same grizzly (rfid) at the same time is only recorded once in tuples that are at least
medium possible (e.g. come from sufficiently trusted sources), while the key may be
violated when tuples are present that are only somewhat possible.

Work on quantitative approaches to reason about uncertain data is huge, foremost
probability theory [37]. The only study of keys on probabilistic databases we are aware
of is [28], which is exclusively focused on query optimization. Qualitative approaches
to uncertain data deal with either query languages or extensions of functional dependen-
cies (FDs), with surveys found in [6,7] for example. Qualitative approaches to identify
tuples of uncertain data have not been studied yet to the best of our knowledge. In par-
ticular, the notion of a possibilistic key is new. The only paper that considers schema de-
sign for uncertain databases is [35]. The authors develop an “FD theory for data models
whose basic construct for uncertainty is alternatives” [35]. Their work is fundamentally
different from our approach. Keys and FDs have also been included in description logic
research [8,29,39], but have not been investigated yet for uncertain data.

Our contributions extend results on keys from classical relations, covered by the
special case of two possibility degrees where k = 1. These include results on the impli-
cation problem [1,12], Armstrong relations [2,18,23,30] and the discovery of keys from
relations [27,31], as well as data cleaning [4,9]. Keys have also been considered in
other data models, including incomplete relations [24,38] and XML data [25,26]. Note
that Armstrong relations are also an AI tool to acquire and reason about conditional
independencies [20,32].

Possibilistic logic is a well-established tool for reasoning about uncertainty [13,16]
with numerous applications in artificial intelligence [15], including approximate rea-
soning [40], non-monotonic reasoning [19], qualitative reasoning [36], belief revision
[14,22,33], soft constraint satisfaction problems [5], decision-making under uncertainty
[34], pattern classification and preferences [3]. Our results show that possibilistic logic
is an AI framework that is suitable to extend the classical notion of a key from certain
to uncertain data.

3 Possibilistic Keys

In this section we extend the classical relational model of data to model uncertain data
qualitatively.
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A relation schema, denoted by R, is a finite non-empty set of attributes. Each at-
tribute a ∈ R has a domain dom(a) of values. A tuple t over R is an element of the
Cartesian product

∏
a∈R dom(a) of the attributes’ domains. For X ⊆ R we denote by

t(X) the projection of t on X . A relation over R is a finite set r of tuples over R. As
example we use the relation schema TRACKING with attributes zone, time, rfid, object
from before. Tuples either belong or do not belong to a relation. For example, we cannot
express that we have less confidence for the Grizzly identified by rfid value H3 to be in
zone Z3 at 1pm than for the Grizzly identified by H2.

We model uncertain relations by assigning to each tuple some degree of possibility
with which the tuple occurs in a relation. Formally, we have a scale of possibility, that
is, a finite strict linear order S = (S,<) with k + 1 elements, denoted by α1 > · · · >
αk > αk+1. The elements αi ∈ S are called possibility degrees, or p-degrees. The top
p-degree α1 is reserved for tuples that are ‘fully possible’ to occur in a relation, while
the bottom p-degree αk+1 is reserved for tuples that are ‘impossible’ to occur. Humans
like to use simple scales in everyday life to communicate, compare, or rank. Simple
means to classify items qualitatively, rather than quantitatively by putting a precise
value on it. Classical relations use two p-degrees, that is k = 1.

A possibilistic relation schema (R,S), or p-relation schema, consists of a relation
schema R and a possibility scale S. A possibilistic relation, or p-relation, over (R,S)
consists of a relation r over R, and a function Possr that assigns to each tuple t ∈ r a p-
degree Possr(t) ∈ S. Table 1 shows a p-relation over (TRACKING,S = {α1, . . . , α5}).

P-relations enjoy a possible world semantics. For i = 1, . . . , k let ri consist of all
tuples in r that have p-degree at least αi, that is, ri = {t ∈ r | Possr(t) ≥ αi}. Indeed,
we have r1 ⊆ r2 ⊆ · · · ⊆ rk. The possibility distribution πr for this linear chain of
possible worlds is defined by πr(ri) = αi. Note that rk+1 is not a possible world, since
its possibility π(rk+1) = αk+1 means ‘impossible’. Vice versa, the possibility Possr(t)
of a tuple t ∈ r is the maximum possibility max{αi | t ∈ ri} of a world to which t
belongs. If t /∈ rk, then Possr(t) = αk+1. Every tuple that is ‘fully possible’ occurs in
every possible world, and is therefore also ‘fully certain’. Hence, relations are a special
case of uncertain relations. Figure 1 shows the possible worlds r1 � r2 � r3 � r4 of
the p-relation of Table 1.

We introduce possibilistic keys, or PKs, as keys with some degree of certainty. As
keys are fundamental to applications with certain data, PKs will serve a similar role
for application with uncertain data. A key K ⊆ R is satisfied by a relation r over R,
denoted by |=r K , if there are no distinct tuples t, t′ ∈ r with matching values on all
the attributes in K . For example, the key {time, object} is not satisfied by any relation
r1, . . . , r4. The key {zone, time} is satisfied by r1, but not by r2. The key {zone, rfid}
is satisfied by r2, but not by r3. The key {time, rfid} is satisfied by r3, but not by r4.
The key {zone, time, rfid} is satisfied by r4.

The p-degrees of tuples result in degrees of certainty with which keys hold. Since
{zone, time, rfid} holds in every possible world, it is fully certain to hold on r. As
{time, rfid} is only violated in a somewhat possible world r4, it is quite certain to hold
on r. Since the smallest relation that violates {zone, rfid} is the medium possible world
r3, it is medium certain to hold on r. As the smallest relation that violates {zone, time}
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is the quite possible world r2, it is somewhat certain to hold on r. Since {time, object}
is violated in the fully possible world r1, it is not certain at all to hold on r.

Similar to a scale S of p-degrees for tuples we use a scale ST of certainty degrees,
or c-degrees, for keys. We use subscripted versions of the Greek letter β to denote c-
degrees. Formally, the correspondence between p-degrees in S and the c-degrees in ST

can be defined by the mapping αi �→ βk+2−i for i = 1, . . . , k+ 1. Hence, the certainty
Cr(K) with which the keyK holds on the uncertain relation r is either the top degree β1

if K is satisfied by rk, or the minimum amongst the c-degrees βk+2−i that correspond
to possible worlds ri in which K is violated, that is,

Cr(K) =

{
β1 , if rk satisfies K
min{βk+2−i |�|=ri K} , otherwise

.

We can now define the semantics of possibilistic keys.

Definition 1. Let (R,S) denote a p-relation schema. A possibilistic key (PK) over
(R,S) is an expression (K,β) where K ⊆ R and β ∈ ST . A p-relation (r,Possr)
over (R,S) satisfies the PK (K,β) if and only if Cr(K) ≥ β. �	

Example 1. The p-relation from Table 1 satisfies the PK set Σ consisting of

– ({zone, time, rfid}, β1),
– ({time, rfid}, β2),
– ({zone, rfid}, β3), and
– ({zone, time}, β4).

It violates the PK ({zone, rfid}, β2) since Cr({zone, rfid}) = β3 < β2.

4 Reasoning Tools

First, we establish a strong correspondence between the implication of PKs and keys.
Let Σ ∪ {ϕ} denote a set of PKs over (R,S). We say Σ implies ϕ, denoted by Σ |= ϕ,
if every p-relation (r,Possr) over (R,S) that satisfies every PK in Σ also satisfies ϕ.
We use Σ∗ = {ϕ | Σ |= ϕ} to denote the semantic closure of Σ.

Example 2. Let Σ be as in Example 1, and ϕ = ({zone, rfid, object}, β2). Then Σ does
not imply ϕ as the following p-relation witnesses:

zone time rfid object Poss. degree
Z0 10am H0 Grizzly α1

Z0 3pm H0 Grizzly α3

4.1 The Magic of β-Cuts

For a PK set Σ over (R,S) with |S| = k + 1 and c-degree β ∈ ST where β > βk+1,
let Σβ = {K | (K,β′) ∈ Σ and β′ ≥ β} be the β-cut of Σ.

Theorem 1. Let Σ ∪ {(K,β)} be a PK set over (R,S) where β > βk+1. Then Σ |=
(K,β) if and only if Σβ |= K .



186 H. Koehler et al.

Proof. Suppose (r,Possr) is some p-relation over (R,S) that satisfies Σ, but violates
(K,β). In particular, Cr(K) < β implies that there is some relation ri that violates K
and where βk+2−i < β. Let K ′ ∈ Σβ , where (K ′, β′) ∈ Σ. Since r satisfies (K,β′) ∈
Σ we have Cr(K

′) ≥ β′ ≥ β. If ri violated K ′, then β > βk+2−i ≥ Cr(K
′) ≥ β, a

contradiction. Hence, ri satisfies Σβ and violates K .
Let r′ denote some relation that satisfies Σβ and violates K , w.l.o.g. r′ = {t, t′}.

Let r be the p-relation over (R,S) that consists of r′ and where Possr′(t) = α1 and
Possr′(t′) = αi, such that βk+1−i = β. Then r violates (K,β) since Cr(K) = βk+2−i,
as ri = r′ is the smallest relation that violates K , and βk+2−i < βk+1−i = β. For
(K ′, β′) ∈ Σ we distinguish two cases. If ri satisfies K ′, then Cr(K

′) = β1 ≥ β. If ri
violates K ′, then K ′ /∈ Σβ , i.e., β′ < β = βk+1−i. Therefore, β′ ≤ βk+2−i = Cr(K

′)
as ri = r′ is the smallest relation that violates K ′. We conclude that Cr(K

′) ≥ β′.
Consequently, (r,Possr) is a p-relation that satisfies Σ and violates (K,β). �	

Example 3. Let Σ ∪ {ϕ} be as in Example 2. Theorem 1 says that Σβ2 does not imply
({zone, rfid, object}, β2). The possible world r3 of the p-relation from Example 2:

zone time rfid object
Z0 10am H0 Grizzly
Z0 3pm H0 Grizzly

satisfies the key {time, rfid} that implies both keys in Σβ2 . However, r3 violates the key
{zone, rfid, object}.

4.2 Axiomatic Characterization

We determine the semantic closure by applying inference rules of the form

premise

conclusion
condition .

For a set R of inference rules let Σ �R ϕ denote the inference of ϕ from Σ by R. That
is, there is some sequence σ1, . . . , σn such that σn = ϕ and every σi is an element of
Σ or is the conclusion that results from an application of an inference rule in R to some
premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ �R ϕ} be the syntactic closure of Σ
under inferences by R. R is sound (complete) if for every set Σ over every (R,S) we
have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both

sound and complete.
For the set K from Table 2 the attribute sets K,K ′ are subsets of a given R, and β, β′

belong to a given ST . In particular, βk+1 denotes the bottom certainty degree.

Theorem 2. The set K forms a finite axiomatization for the implication problem of PKs.

Proof. The soundness proof is straightforward and omitted. For completeness, we apply
Theorem 1 and the fact that K′ axiomatizes key implication. Let (R,S) be a p-relation
schema with |S| = k + 1, and Σ ∪ {(K,β)} a PK set such that Σ |= (K,β). We show
that Σ �K (K,β) holds.

For Σ |= (K,βk+1) we have Σ �K (K,βk+1) by applying B. Let now β < βk+1.
From Σ |= (K,β) we conclude Σβ |= K by Theorem 1. Since K′ is complete for key
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Table 2. Axiomatization K′ = {T ′,S ′} of Keys and K = {T ,S ,B,W} of Possibilistic Keys

R
(top, T ′)

K

K ∪K′
(superkey, S ′)

(R, β) (K,βk+1)
(top, T ) (bottom, B)

(K, β)

(K ∪K′, β)

(K,β)

(K, β′)
β′ ≤ β

(superkey, S) (weakening,W)

implication, Σβ �K′ K holds. Let Σβ
β = {(K ′, β) | K ′ ∈ Σβ}. Thus, the inference

of K from Σβ using K′ can be turned into an inference of (K,β) from Σβ
β by K,

simply by adding β to each key in the inference. Hence, whenever T ′ or S ′ is applied,
one applies instead T or S, respectively. Consequently, Σβ

β �K (K,β). The definition

of Σβ
β ensures that every PK in Σβ

β can be inferred from Σ by applying W . Hence,

Σβ
β �K (K,β) means that Σ �K (K,β). �	

4.3 Algorithmic Characterization

While K enables us to enumerate all PKs implied by a PK set Σ, in practice it often
suffices to decide whether a given PK ϕ is implied by Σ. Enumerating all implied PKs
and checking whether ϕ is among them is neither efficient nor makes good use of ϕ.

Theorem 3. Let Σ ∪ {(K,β)} denote a set of PKs over (R,S) with |S| = k+1. Then
Σ implies (K,β) if and only if β = βk+1, or K = R, or there is some (K ′, β′) ∈ Σ
such that K ′ ⊆ K and β′ ≥ β.

Proof. Theorem 1 shows for i = 1, . . . , k that Σ implies (K,βi) if and only if Σβ

implies K . It is easy to observe from the axiomatization K′ of keys that Σβ implies K
if and only if R = K , or there is some K ′ ∈ Σβ such that K ′ ⊆ K holds. As Σ implies
(K,βk+1), the theorem follows. �	
Corollary 1. An instance Σ |= ϕ of the implication problem can be decided in time
O(||Σ ∪ {ϕ}||) where ||Σ|| denotes the total number of symbol occurrences in Σ. �	

5 Acquisition Tools

New applications benefit from the ability of data engineers to acquire the PKs that
are semantically meaningful in the domain of the application. For that purpose, data
engineers communicate with domain experts. Now we establish two major tools that
help data engineers to effectively communicate with domain experts. We follow the
framework in Figure 1. Here, data engineers use our algorithm to visualize abstract PK
sets Σ in form of some Armstrong p-relation rΣ , which is then inspected jointly with
domain experts. Domain experts may change rΣ or supply entirely new data samples
to the engineers. For that case we establish an algorithm that computes the set of PKs
that hold in the data sample.
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Fig. 1. Acquisition Framework for Possibilistic Keys

5.1 Structure and Computation of Visualizations

A p-relation (r,Possr) over (R,S) is Armstrong for a PK set Σ if and only if for all
PKs ϕ over (R,S), (r,Possr) satisfies ϕ if and only if Σ |= ϕ. The maximum c-degree
β by which a PK (K,β) is implied by Σ can ‘simply be read-off’ as the c-degree
Cr(K) of any Armstrong p-relation (r,Possr) for Σ. Our first aim is to characterize
the structure of Armstrong p-relations. We recall two notions from relational databases.
The agree set of two tuples t, t′ over R is the set ag(t, t′) = {a ∈ R | t(a) = t′(a)} of
attributes on which t and t′ have matching values. The agree set of a relation is the set
ag(r) = {ag(t, t′) | t, t′ ∈ r ∧ t �= t′}. Let Σ denote a set of keys over relation schema
R. An anti-key of R with respect to Σ is a subset A ⊆ R such that Σ does not imply
the key A over R and for all a ∈ R−A, Σ implies the key A∪ {a} over R. We denote
by Σ−1 the set of all anti-keys of R with respect to Σ.

Theorem 4. Let Σ denote a set of PKs, and let (r,Possr) denote a p-relation over
(R,S) with |S| = k + 1. Then (r,Possr) is Armstrong for Σ if and only if for all
i = 1, . . . , k, the relation rk+1−i is Armstrong for Σβi . That is, for all i = 1, . . . , k,
Σ−1

βi
⊆ ag(rk+1−i), and for all K ∈ Σβi and for all X ∈ ag(rk+1−i), K �⊆ X .

Proof. (r,Possr) is Armstrong for Σ if and only if for all i = 1, . . . , k, for all K ⊆ R,
|=(r,Possr) (K,βi) iff Σ |= (K,βi). However, |=(r,Possr) (K,βi) iff |=rk+1−i

K , and
Σ |= (K,βi) iff Σβi |= K . Therefore, (r,Possr) is Armstrong for Σ if and only if for
all i = 1, . . . , k, rk+1−i is an Armstrong relation for Σβi . The second statement follows
straight from the well-known result that a relation r is Armstrong for a set Σ of keys if
and only if Σ−1 ⊆ ag(r) and for all K ∈ Σ and all X ∈ ag(r), K �⊆ X [11]. �	

Theorem 4 shows that Algorithm 1 computes an Armstrong p-relation for input Σ.
The algorithm computes for i = 1, . . . , k the set Σ−1

βi
incrementally. Starting with a

tuple of p-degree α1, for i = k, . . . , 1, each A ∈ Σ−1
βi

is realized as an agree set by
introducing a tuple that agrees with the previous tuple on A and has p-degree αk+1−i,
as long as A did not already occur for some larger i.

Example 4. We apply Algorithm 1 to the set Σ from Example 1. Using the first letters
of each attribute we obtain



Logical Foundations of Possibilistic Keys 189

Algorithm 1. Visualize
Input: R, {β1, . . . , βk}, Σ
Output: Possibilistic Armstrong Relation (r,Possr) for Σ
1: Σ−1

0 ← {R − {a} | a ∈ R};
2: for i = 1, . . . , k do � Compute Σ−1

βi
incrementally

3: Σi ← {K | (K,βj) ∈ Σ and j ≤ i},
4: Σ−1

i ← ANTIKEYS(R,Σi, Σ
−1
i−1),

5: end for
6: for all a ∈ R do
7: t0(a)← ca,0; � ca,i are fresh constants
8: end for
9: j ← 0; r ← {t0}; Possr(t0)← α1; Σ0 ← ∅;

10: for i = k downto 1 do
11: for all A ∈ Σ−1

i −Σ0 do
12: j ← j + 1;
13: for all a ∈ R do � New tuple with agree set A
14: if a ∈ A then tj(a)← tj−1(a);
15: else tj(a)← ca,j ;
16: end if
17: end for
18: Possr(tj)← αk+1−i; � and p-degree αk+1−i

19: r ← r ∪ {tj};
20: end for
21: Σ0 ← Σ0 ∪Σ−1

i ;
22: end for
23: return (r,Possr);

Subroutine ANTIKEYS(R,Σ,Σ−1)
Input: R, Σ set of keys in Σi, Σ−1 set of anti-keys in Σ−1

i−1

Output: Σ−1 set of anti-keys for Σβi

24: for all K ∈ Σ, A ∈ Σ−1 with K ⊆ A do
25: Σ−1 ← (Σ−1 − {A}) ∪

⋃
a∈K{A− {a}};

26: end for
27: Σ−1 ← {A | ∀B ∈ Σ−1 − {A}(A 	⊆ B)};
28: return Σ−1;

– Σ1 = {ztr} and Σ−1
β1

= {zto, tro, zro}
– Σ2 = {tr} and Σ−1

β2
= {zto, zro}

– Σ3 = {zr} and Σ−1
β3

= {zto, ro, zo}, and

– Σ4 = {zt} and Σ−1
β4

= {to, zo, ro} .

Anti-keys are underlined when they are realized as agree sets of tuples in the possi-
bilistic Armstrong relation:
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zone time rfid object Poss. degree
cz,0 ct,0 cR,0 co,0 α1

cz,1 ct,0 cR,1 co,0 α1

cz,1 ct,2 cR,2 co,0 α1

cz,3 ct,3 cR,2 co,0 α1

cz,3 ct,3 cR,4 co,0 α2

cz,3 ct,5 cR,4 co,0 α3

cz,6 ct,5 cR,4 co,0 α4

Fitting substitution yields the p-relation from Table 1.

Theorem 5. Algorithm 1 computes an Armstrong p-relation for Σ whose size is at most
quadratic in that of a minimum-sized Armstrong p-relation for Σ.

Proof. The soundness of Algorithm 1 follows from Theorem 4, which also shows that
for Σ−1 =

⋃k
i=1 Σ

−1
i we have |Σ−1| ≤ ag(r) ≤

(|r|
2

)
. The inequalities establish the

lower bound in 1
2 ·

√
1 + 8 · |Σ−1| ≤ |r| ≤ |Σ−1|+ 1. The upper bound follows from

Algorithm 1. Hence, the p-relation computed by Algorithm 1 is at most quadratic in the
size of a minimum-sized Armstrong p-relation for Σ. �	

Finding Armstrong p-relations is precisely exponential. That means that there is an
algorithm for computing an Armstrong p-relation whose running time is exponential
in the size of Σ, and that there is some set Σ in which the number of tuples in each
minimum-sized Armstrong p-relation for Σ is exponential thus, an exponential amount
of time is required in this case simply to write down the p-relation.

Theorem 6. Finding an Armstrong p-relation for a PK set Σ is precisely exponential
in the size of Σ.

Proof. Algorithm 1 computes an Armstrong p-relation for Σ in time at most expo-
nential in its size. Some PK sets Σ have only Armstrong p-relations with exponen-
tially many tuples in the size of Σ. For R = {a1, . . . , a2n}, S = {α1, α2} and
Σ = {({a1, a2}, β1), . . . , ({a2n−1, a2n}, β1)} with size 2 · n, Σ−1 consists of the
2n anti-keys

⋃n
j=1 Xj where Xj ∈ {a2j−1, a2j}. �	

Armstrong p-relations for some other PK sets Σ′ only require a number of tuples that
is logarithmic in the size of Σ′. Such a set Σ′ is given by the 2n PKs (

⋃n
j=1 Xj, β1)

where Xj ∈ {a2j−1, a2j}. In fact, Algorithm 1 computes an Armstrong p-relation for
Σ′ with n+ 1 tuples.

5.2 Discovery

Given a p-relation we may ask for which set Σ it is Armstrong. Algorithm 2 computes
a cover Σ of the set of PKs satisfied by a given p-relation. A cover of some PK set Θ is
a PK set Σ where Σ∗ = Θ∗. A hypergraph (V,E) consists of a vertex set V and a set
E of subsets of V , called hyperedges. A set T ⊆ V is a transversal of (V,E) if for all
H ∈ E, T ∩H �= ∅ holds. A transversal T of (V,E) is minimal if there is no transversal



Logical Foundations of Possibilistic Keys 191

T ′ of (V,E) such that T ′ � T [17]. Algorithm 2 computes the minimal transversals of
the hypergraph that has the underlying attributes as vertex set and minimal disagree sets
of tuples from world ri as hyperedges. These form a cover of the set of keys that hold on
ri. The corresponding PKs thus hold with c-degree at least βk+1−i. Using Theorem 3
we select PKs not implied by the other PKs as output.

Algorithm 2. Discover
Input: (r, Possr) over (R, {β1, . . . , βk+1})
Output: Cover Σ of PKs that are satisfied by (r, Possr)
1: for i = 1, . . . , k do
2: dis-ag(ri)← min{X ⊆ R | ∃t, t′ ∈ ri∀a ∈ R(t(a) 	= t′(a)↔ a ∈ X)};
3: Hi ← (R, dis-ag(ri));
4: Σi ← {(K, βk+1−i) | K ∈ Tr(Hi)};
5: end for
6: Σ ←

⋃k
i=1 Σi;

7: Σ ← {(K, β) ∈ Σ | ¬∃(K′, β′) ∈ Σ(K′ ⊆ K ∧ β′ > β)};
8: return Σ;

Example 5. We apply Algorithm 2 to the p-relation from Table 1. Using the first letters
of each attribute we obtain

– dis-ag(r1) = {zr, tr, zt} and
Σ1 = {(zr, β4), (tr, β4), (zt, β4)}

– dis-ag(r2) = {zt, r} and Σ2 = {(zr, β3), (tr, β3)}
– dis-ag(r3) = {t, r} and Σ3 = {(tr, β2)}, and
– dis-ag(r4) = {z, t, r} and Σ3 = {(ztr, β1)} .

A coverΣ for the PKs that hold on the p-relation consists of (ztr, β1), (tr, β2), (zr, β3),
and (zt, β4).

Theorem 7. Algorithm 2 computes a cover of the set of PKs that are satisfied by the
given p-relation r in time O(m + n2) where m := |R|2 × |rk|2 × |dis-ag(rk)| and
n :=

∏
X∈dis-ag(rk)

|X |.

Proof. The soundness follows from the result that the keys of a relation are the minimal
transversals of the disagree sets in the relation [11,31], and Theorem 3. The collection
dis-ag(ri) is computed in time O(m). The set of all minimal transversals for the sim-
ple hypergraph Hi is computed in time O(n2). Algorithm 2 can compute the minimal
hypergraphs incrementally with additional disagree sets discovered from tuples with
lower p-degrees. �	

6 Data Cleaning

In this section we illustrate an application of possibilistic keys for data cleaning pur-
poses. The classical data cleaning problem can be stated as follows: Given a relation r
and a set Σ of keys, find a relation r′ ⊆ r of maximum cardinality such that r′ satisfies
Σ. For example, the relation r
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r
zone time rfid object Possr Poss′r
Z3 1pm H2 Grizzly α1 α1

Z3 1pm H3 Grizzly α1 α2

Z3 3pm H3 Grizzly α1 α3

Z4 3pm H3 Grizzly α1 α4

violates the set Σ = {zt, zr, tr} of keys. Solutions to the classical data cleaning prob-
lem would be the relations r1 consisting of the first and third tuple, r2 consisting of the
first and last tuple, and r3 consisting of the second and last tuple. Each solution requires
us to remove at least two tuples from the relation. In this sense, classical data cleaning
removes valuable information from the given relation.

We now introduce possibilistic data cleaning as a means to minimize the removal of
tuples from a p-relation. For this purpose, we exploit the c-degrees of PKs to “reduce”
the given p-degrees of tuples such that all PKs will be satisfied.

Given two p-relations r1 = (r′,Possr′) and r2 = (r,Possr) we say that r1 is a p-
subrelation of r2, denoted by r1 ⊆p r2, if and only if r′i ⊆ ri for i = 1, . . . , k. The
p-subset relationship is simply the partial order of functions induced by the ordering on
p-degrees, that is, r1 ⊆p r2 if and only if Possr′(t) ≤ Possr(t) holds for all tuples t. The
p-cardinality of the p-relation (r,Possr) is the mapping C : αi �→ |ri| for i = 1, . . . , k.
We compare p-cardinalities with respect to the lexicographical order, that is,

C1 <L C2 :⇔ ∃αi.
C1(αi) < C2(αi) ∧
C1(αj) = C2(αj) ∀αj < αi

The possibilistic data cleaning problem is: Given a p-relation r and set Σ of PKs, find
a p-subrelation r′ ⊆p r of maximal p-cardinality so that Σ holds on r′.

A point that is perhaps controversial in our problem definition is the use of the lexi-
cographic order <L in defining our target function to optimize. We chose this lineariza-
tion of the natural partial order between p-cardinalities over other candidates for two
reasons. Firstly, by maximizing |r′k| = |r′|, the number of tuples completely “lost”
during data cleaning is minimized. Secondly, it will allow us to develop more efficient
algorithms for computing it.

For example, the p-relation (r,Possr) violates the PK set

Σ = {(zt, β4), (zr, β3), (tr, β1)}.

However, if we change the p-degree of the second tuple to α2, the p-degree of the
third tuple to α3, and the p-degree of the last tuple to α4, then the resulting p-relation
(r,Poss′r) satisfies Σ. Note that none of the p-degrees had to be set to the bottom degree
α5. That is, every tuple in the cleaned p-relation (r,Poss′r) is at least somewhat possible
to occur.

7 Query Processing

We demonstrate the benefit of PKs on query processing. Therefore, we add the attribute
p-degree to the relation schema TRACKING with attributes zone, time, rfid, object.
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Suppose we are interested in finding out which grizzly bears have been tracked in
which zone, but we are only interested in answers that come from ‘certain’ or ‘quite
possible’ tuples in the database. A user might enter the following SQL query:

SELECT DISTINCT zone, rfid, p-degree
FROM TRACKING

WHERE p-degree = α1 OR p-degree = α2

ORDER BY p-degree ASC

zone rfid p-degree
Z0 H0 α1

Z1 H1 α1

Z1 H2 α1

Z3 H2 α1

Z3 H3 α2

which removes duplicate answers, and orders them with decreasing p-degree. When
applied to the p-relation from Table 1, the query returns the answers on the right.

Firstly, our framework allows users to ask such queries - having available the p-
degrees of tuples. Secondly, answers can be ordered according to the p-degree a huge
benefit for users. Thirdly, the example shows how our framework can be embedded
with standard technology, here SQL. Finally, recall our PK ({zone, rfid}, β3) which
holds on the set of tuples that have p-degree α1 or α2. Consequently, the query answers
satisfy the key {zone, rfid} and the DISTINCT clause becomes superfluous. A query
optimizer, capable of reasoning about PKs, can remove the DISTINCT clause from the
input query without affecting its output. This optimization saves response time when
answering queries, as duplicate elimination is an expensive operation and therefore not
executed by default in SQL databases. PKs, and the ability to reason about them, have
therefore direct applications to query processing.

8 Conclusion and Future Work

Possibilistic keys have been introduced to efficiently identify tuples of uncertain data.
Uncertainty is modeled qualitatively by applying the AI framework of possibilistic logic
to the fundamental database concept of keys. Tools were established to efficiently rea-
son about possibilistic keys, to visualize and discover them effectively. Together, these
tools can be used by data engineers to acquire the possibilistic keys that are semantically
meaningful for a given application domain. It was further illustrated how possibilistic
keys can be used to clean dirty data and enhance query processing. The results show
that possibilistic keys can benefit applications with uncertain data, very much in the
same way that keys benefit applications with certain data. It is future work to imple-
ment our algorithms in the form of a design tool, to apply possibility theory to other
classes of popular database concepts, and to find efficient solutions to the possibilistic
data cleaning problem we introduced.
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