
Eduardo Fermé
João Leite (Eds.)

 123

LN
AI

 8
76

1

14th European Conference, JELIA 2014
Funchal, Madeira, Portugal, September 24–26, 2014
Proceedings

Logics in
Artificial Intelligence

Lecture Notes in Artificial Intelligence 8761

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Eduardo Fermé João Leite (Eds.)

Logics in
Artificial Intelligence
14th European Conference, JELIA 2014
Funchal, Madeira, Portugal, September 24-26, 2014
Proceedings

13

Volume Editors

Eduardo Fermé
University of Madeira
Funchal, Madeira, Portugal
E-mail: ferme@uma.pt

João Leite
CENTRIA, Universidade Nova de Lisboa
Caparica, Portugal
E-mail: jleite@fct.unl.pt

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11557-3 e-ISBN 978-3-319-11558-0
DOI 10.1007/978-3-319-11558-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: Applied for

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

These are the proceedings of the 14th European Conference on Logics in Artificial
Intelligence (JELIA 2014) held during September 24–26, 2014 in Funchal, in the
beautiful island of Madeira, Portugal, and organized by the University of Madeira
and the Centre for Artificial Intelligence (CENTRIA) of the New University of
Lisbon.

The European Conference on Logics in Artificial Intelligence (or Journées Eu-
ropéennes sur la Logique en Intelligence Artificielle - JELIA) began back in 1988,
as a workshop, in response to the need for a European forum for the discussion of
emerging work in this field. Since then, JELIA has been organised biennially, with
proceedings published in the Springer-Verlag series Lecture Notes in Artificial
Intelligence. Previous meetings took place in Roscoff, France (1988), Amster-

dam, the Netherlands (1990), Berlin, Germany (1992), York, UK (1994), Évora,
Portugal (1996), Dagstuhl, Germany (1998), Málaga, Spain (2000), Cosenza,
Italy (2002), Lisbon, Portugal (2004), Liverpool, UK (2006), Dresden, Germany
(2008), Helsinki, Finland (2010) and Toulouse, France (2012).

The aim of JELIA is to bring together active researchers interested in all
aspects concerning the use of logics in artificial intelligence to discuss current
research, results, problems, and applications of both theoretical and practical
nature. JELIA strives to foster links and facilitate cross-fertilization of ideas
among researchers from various disciplines, among researchers from academia
and industry, and between theoreticians and practitioners.

The increasing interest in this forum, its international level with growing par-
ticipation of researchers from outside Europe, and the overall technical quality,
have turned JELIA into a major biennial forum for the discussion of logic-based
approaches to artificial intelligence.

For the 2014 edition of JELIA, authors were invited to submit papers pre-
senting original and unpublished research in all areas related to the use of logics
in artificial intelligence.

There were 121 submissions, each reviewed by at least three Program Com-
mittee members. The committee decided to accept 32 full papers. An additional
12 submissions were accepted for a poster session and short presentation. The
program also includes 4 invited talks - by Diego Calvanese, Agata Ciabattoni,
Hector Geffner and Anthony Hunter - and is complemented by 5 system descrip-
tions (3 full and 2 short).

In his invited talk titled “Query Answering over Description Logic Ontolo-
gies”, Diego Calvanese (Free University of Bozen-Bolzano, Italy) overviewed the
main results and techniques developed in the last years for answering (unions of)
conjunctive queries over DL ontologies, ranging from tableaux algorithms and
techniques based on automata on infinite trees for expressive DLs, to rewriting
based approaches for lightweight DLs.

VI Preface

In her invited talk titled “Tools for the Investigation of Substructural and
Paraconsistent Logics”, Agata Ciabattoni (Vienna University of Technology, Aus-
tria), described her group’s tools introducing sequent-style calculi for large classes
of logics and using them to prove various results about these logics in a uniform
and automated way. For the case studies of substructural and of paraconsistent
logics the introduced calculi are used to prove standard completeness, decidabil-
ity, and to provide new semantic foundations using non-deterministic matrices.

In his invited talk titled “How to Solve a Non-classical Planning Problem
with a Classical Planner: the Power of Transformations”, Hector Geffner (Uni-
versitat Pompeu Fabra in Barcelona, Spain) reviewed the inferences performed
by classical planners that enable them to deal with large problems, and the
transformations that have been developed for using these planners to deal with
non-classical features such as soft goals, hidden goals to be recognized, planning
with incomplete information and sensing, and multiagent nested beliefs.

In his invited talk titled“Towards Argument-based Persuasion Technologies”,
Anthony Hunter (University College London, United Kingdom), addressed per-
suasion systems, or systems that enter into dialogues with users to persuade
them to undertake some action - mental or physical - or to not do some action,
reviewing computational models of argument developed for modelling persua-
sion dialogues, in particular for handling their inherent uncertainty. Anthony
Hunter’s invited talk was generously supported by the European Network for
Social Intelligence (SINTELNET).

We would like to thank the authors of all the submitted papers, the members
of the Program Committee and the additional experts who helped during the
reviewing process, for contributing and ensuring the high scientific quality of
JELIA 2014.

We would also like to acknowledge the support of the University of Madeira,
the Center for Artificial Intelligence (CENTRIA), the Portuguese Association for
Artificial Intelligence (APPIA), Fundação para a Ciência e Tecnologia (FCT),
the Artificial Intelligence Journal, DTIM, Springer, and EasyChair.

Finally, a word of gratitude to Mauŕıcio Reis and his local team for taking
care of the local organization of the JELIA 2014.

July 2014 Eduardo Fermé
João Leite

Organization

Conference Chair

Eduardo Fermé University of Madeira - CENTRIA, Portugal

Program Co-chairs

Eduardo Fermé University of Madeira - CENTRIA, Portugal
João Leite CENTRIA, New University of Lisbon, Portugal

Program Committee

Natasha Alechina University of Nottingham, UK
José Júlio Alferes CENTRIA, New University of Lisbon, Portugal
Leila Amgoud IRIT-CNRS, University of Toulouse, France
Carlos Areces National University of Córdoba, Argentina
Franz Baader TU Dresden, Germany
Pietro Baroni University of Brescia, Italy
Peter Baumgartner NICTA, Australia
Salem Benferhat CRIL-CNRS, University of Artois, Lens, France
Philippe Besnard IRIT-CNRS, University of Toulouse, France
Alexander Bochman Holon Institute of Technology, Israel
Richard Booth University of Luxembourg, Luxembourg
Gerhard Brewka University of Leipzig, Germany
Jan Broersen Utrecht University, The Netherlands
Pedro Cabalar University of Corunna, Spain
Walter Carnielli State University of Campinas, Brazil
Carlos Damásio CENTRIA, New University of Lisbon, Portugal
Mehdi Dastani Utrecht University, The Netherlands
James Delgrande Simon Fraser University, Canada
Marc Denecker Catholic University of Leuven, Belgium
Didier Dubois IRIT-CNRS, University of Toulouse, France
Paul Dunne University of Liverpool, UK
Ulle Endriss University of Amsterdam, The Netherlands
Wolfgang Faber University of Huddersfield, UK
Luis Farinas Del Cerro IRIT-CNRS, University of Toulouse, France
Michael Fink Vienna University of Technology, Austria
Michael Fisher University of Liverpool, UK
Laura Giordano University of Eastern Piedmont, Italy

VIII Organization

Lluis Godo IIIA - CSIC, Spain
Valentin Goranko Technical University of Denmark, Denmark
Andreas Herzig IRIT-CNRS, University of Toulouse, France
Pascal Hitzler Wright State University, USA
Tomi Janhunen Aalto University, Finland
Tommi Junttila Aalto University, Finland
Gabriele Kern-Isberner TU Dortmund, Germany
Sébastien Konieczny CRIL-CNRS, University of Artois, Lens, France
Roman Kontchakov Birkbeck College, UK
Jérôme Lang LAMSADE-CNRS, University

of Paris-Dauphine, France
Joohyung Lee Arizona State University, USA
Maurizio Lenzerini University of Rome “La Sapienza”, Italy
Nicola Leone University of Calabria, Italy
Vladimir Lifschitz University of Texas, USA
Emiliano Lorini IRIT-CNRS, University of Toulouse, France
Carsten Lutz University of Bremen, Germany
Ines Lynce University of Lisbon, Portugal
Pierre Marquis CRIL-CNRS, University of Artois, Lens, France
Jérôme Mengin IRIT-CNRS, University of Toulouse, France
George Metcalfe University of Bern, Switzerland
Thomas Meyer CSIR Meraka Institute and University

of KwaZulu-Natal, South Africa
Lúıs Moniz Pereira CENTRIA, New University of Lisbon, Portugal
Angelo Montanari University of Udine, Italy
Manuel Ojeda-Aciego University of Malaga, Spain
Magdalena Ortiz Vienna University of Technology, Austria
Jeff Z. Pan University of Aberdeen, UK
David Pearce Technical University of Madrid, Spain
André Platzer Carnegie Mellon University, USA
Henri Prade IRIT-CNRS, University of Toulouse, France
Mauricio Reis University of Madeira, Portugal
Jussi Rintanen Aalto University, Finland
Sebastian Rudolph TU Dresden, Germany
Vladislav Ryzhikov Free University of Bozen-Bolzano, Italy
Torsten Schaub University of Potsdam, Germany
Steven Schockaert Cardiff University, UK
Terrance Swift CENTRIA, New University of Lisbon, Portugal
Michael Thielscher The University of New South Wales, Australia
Mirek Truszczynski University of Kentucky, USA
Wiebe Van Der Hoek University of Liverpool, UK
Leon van der Torre University of Luxembourg, Luxembourg
Toby Walsh NICTA, Australia
Mary-Anne Williams University of Technology, Australia
Frank Wolter University of Liverpool, UK

Organization IX

Stefan Woltran Vienna University of Technology, Austria
Michael Wooldridge University of Oxford, UK
Michael Zakharyaschev Birkbeck College, UK

Local Organising Committee Co-chairs

Eduardo Fermé University of Madeira - CENTRIA, Portugal
Mauricio Reis University of Madeira - CENTRIA, Portugal

Local Organizing Committee

Yuri Almeida University of Madeira, Portugal
Maite Costa University of Madeira, Portugal
José Serina University of Madeira, Portugal
Tatiana Severim University of Madeira, Portugal
Verónica Sousa University of Madeira, Portugal

Additional Reviewers

Alsinet, Teresa
Alviano, Mario
Andres, Benjamin
Aucher, Guillaume
Baioletti, Marco
Bartholomew, Michael
Baumann, Ringo
Baumgartner, Alexander
Bernardini, Sara
Blondeel, Marjon
Bogaerts, Bart
Botoeva, Elena
Burrieza, Alfredo
Carral, David
Casini, Giovanni
Combi, Carlo
Dasseville, Ingmar
Dennis, Louise
Devriendt, Jo
Dodaro, Carmine
Dovier, Agostino
Duijf, Hein
Dvorak, Wolfgang

Ebtekar, Aram
Fandinno, Jorge
Fichte, Johannes Klaus
Garcia, Jhonatan
Gebser, Martin
Gliozzi, Valentina
Gonçalves, Ricardo
Grandi, Umberto
Greco, Gianluigi
Green, Todd
Gutiérrez Basulto, Vı́ctor
Hustadt, Ullrich
Inoue, Katsumi
Jansen, Joachim
Jensen, Martin Holm
Jung, Jean Christoph
Klarman, Szymon
Knobbout, Max
Kramdi, Seifeddine
Lagniez, Jean Marie
Lam, Ho-Pun
Linsbichler, Thomas
Lippmann, Marcel

X Organization

Lisitsa, Alexei
Ma, Yue
Mailly, Jean-Guy
Manna, Marco
Marchioni, Enrico
Markey, Nicolas
Martelli, Alberto
Mutharaju, Raghava
Muñoz-Velasco, Emilio
Nguyen, Hoang Nga
Nouioua, Farid
Oikarinen, Emilia
Ostrowski, Max
Pardo, Pere
Polberg, Sylwia
Porello, Daniele
Rajaratnam, David
Redl, Christoph
Ren, Yuan
Rens, Gavin
Ricca, Francesco
Ringeissen, Christophe
Rollon, Emma
Romero, Javier

Rümmele, Stefan
Salhi, Yakoub
Saptawijaya, Ari
Schmid, Ute
Schneider, Thomas
Sciavicco, Guido
Sengupta, Kunal
Stepanova, Daria
Strass, Hannes
Studer, Thomas
Testerink, Bas
Toman, David
Tsarkov, Dmitry
Uridia, Levan
Valverde, Agustin
Van Hertum, Pieter
Vesic, Srdjan
Wang, Cong
Wang, Yi
Wang, Yisong
Wang, Zhe
Zawadzki, Erik
Zhao, Yuting
Zhou, Yi

Table of Contents

Invited Talks

Query Answering over Description Logic Ontologies 1
Diego Calvanese

Tools for the Investigation of Substructural and Paraconsistent
Logics . 18

Agata Ciabattoni and Lara Spendier

Non-classical Planning with a Classical Planner: The Power of
Transformations . 33

Hector Geffner

Opportunities for Argument-Centric Persuasion in Behaviour Change . . . 48
Anthony Hunter

Description Logics

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point
Semantics . 62

Stefan Borgwardt, José A. Leyva Galano, and Rafael Peñaloza

Tight Complexity Bounds for Reasoning in the Description Logic
BEL . 77

İsmail İlkan Ceylan and Rafael Peñaloza

Relevant Closure: A New Form of Defeasible Reasoning for Description
Logics . 92

Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé

Error-Tolerant Reasoning in the Description Logic EL 107
Michel Ludwig and Rafael Peñaloza

Automated Reasoning

Sub-propositional Fragments of the Interval Temporal Logic of Allen’s
Relations . 122

Davide Bresolin, Emilio Muñoz-Velasco, and Guido Sciavicco

SAT Modulo Graphs: Acyclicity . 137
Martin Gebser, Tomi Janhunen, and Jussi Rintanen

XII Table of Contents

Enumerating Prime Implicants of Propositional Formulae in
Conjunctive Normal Form . 152

Said Jabbour, Joao Marques-Silva, Lakhdar Sais, and Yakoub Salhi

Improving the Normalization of Weight Rules in Answer Set
Programs . 166

Jori Bomanson, Martin Gebser, and Tomi Janhunen

Logics for Uncertain Reasoning

Logical Foundations of Possibilistic Keys . 181
Henning Koehler, Uwe Leck, Sebastian Link, and Henri Prade

Possibilistic Boolean Games: Strategic Reasoning under Incomplete
Information . 196

Sofie De Clercq, Steven Schockaert, Martine De Cock, and Ann Nowé

LEG Networks for Ranking Functions . 210
Christian Eichhorn and Gabriele Kern-Isberner

Logics for Approximating Implication Problems of Saturated
Conditional Independence . 224

Henning Koehler and Sebastian Link

Non-Classical Logics

Finitary S5-Theories . 239
Tran Cao Son, Enrico Pontelli, Chitta Baral, and Gregory Gelfond

Efficient Program Transformers for Translating LCC to PDL 253
Pere Pardo, Enrique Sarrión-Morillo, Fernando Soler-Toscano, and
Fernando R. Velázquez-Quesada

On the Expressiveness of the Interval Logic of Allen’s Relations over
Finite and Discrete Linear Orders . 267

Luca Aceto, Dario Della Monica, Anna Ingólfsdóttir,
Angelo Montanari, and Guido Sciavicco

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents:
A Preliminary Report . 282

Dimitris Askounis, Costas D. Koutras, Christos Moyzes, and
Yorgos Zikos

Answer-Set Programming

A Complexity Assessment for Queries Involving Sufficient and
Necessary Causes . 297

Pedro Cabalar, Jorge Fandiño, and Michael Fink

Table of Contents XIII

Inductive Learning of Answer Set Programs . 311
Mark Law, Alessandra Russo, and Krysia Broda

Stable Models of Fuzzy Propositional Formulas . 326
Joohyung Lee and Yi Wang

A Free Logic for Stable Models with Partial Intensional Functions 340
Pedro Cabalar, Luis Fariñas del Cerro, David Pearce, and
Agustin Valverde

Belief Revision

Constructive Models for Contraction with Intransitive Plausibility
Indifference . 355

Pavlos Peppas and Mary-Anne Williams

Four Floors for the Theory of Theory Change: The Case of Imperfect
Discrimination . 368

Hans Rott

Revisiting Postulates for Inconsistency Measures . 383
Philippe Besnard

A Translation-Based Approach for Revision of Argumentation
Frameworks . 397

Sylvie Coste-Marquis, Sébastien Konieczny, Jean-Guy Mailly, and
Pierre Marquis

Dealing with Inconsistency in ASP and DL

Preserving Strong Equivalence while Forgetting . 412
Matthias Knorr and José Julio Alferes

Computing Repairs for Inconsistent DL-programs over EL Ontologies . . . 426
Thomas Eiter, Michael Fink, and Daria Stepanova

A Prioritized Assertional-Based Revision for DL-Lite Knowledge
Bases . 442

Salem Benferhat, Zied Bouraoui, Odile Papini, and Eric Würbel

Modular Paracoherent Answer Sets . 457
Giovanni Amendola, Thomas Eiter, and Nicola Leone

Reason about Actions and Causality

Action Theories over Generalized Databases with Equality
Constraints . 472

Fabio Patrizi and Stavros Vassos

XIV Table of Contents

A Dynamic View of Active Integrity Constraints . 486
Guillaume Feuillade and Andreas Herzig

Similarity Orders from Causal Equations . 500
Johannes Marti and Riccardo Pinosio

Verification of Context-Sensitive Knowledge and Action Bases 514
Diego Calvanese, İsmail İlkan Ceylan, Marco Montali, and
Ario Santoso

System Descriptions

System aspmt2smt: Computing ASPMT Theories by SMT Solvers 529
Michael Bartholomew and Joohyung Lee

A Library of Anti-unification Algorithms . 543
Alexander Baumgartner and Temur Kutsia

The D-FLAT System for Dynamic Programming on Tree
Decompositions . 558

Michael Abseher, Bernhard Bliem, Günther Charwat,
Frederico Dusberger, Markus Hecher, and Stefan Woltran

Short System Descriptions

ACUOS: A System for Modular ACU Generalization with Subtyping
and Inheritance . 573

Maŕıa Alpuente, Santiago Escobar, Javier Espert, and José Meseguer

Drawing Euler Diagrams from Region Connection Calculus
Specifications with Local Search . 582

François Schwarzentruber and Jin-Kao Hao

Short Papers

Probabilistic Abstract Dialectical Frameworks . 591
Sylwia Polberg and Dragan Doder

Argumentative Aggregation of Individual Opinions 600
Cosmina Croitoru

Measuring Dissimilarity between Judgment Sets . 609
Marija Slavkovik and Thomas Ågotnes

Exploiting Answer Set Programming for Handling Information
Diffusion in a Multi-Social-Network Scenario . 618

Giuseppe Marra, Francesco Ricca, Giorgio Terracina, and
Domenico Ursino

Table of Contents XV

Reasoning about Dynamic Normative Systems . 628
Max Knobbout, Mehdi Dastani, and John-Jules Ch. Meyer

A Modal Logic of Knowledge, Belief, and Estimation 637
Costas D. Koutras, Christos Moyzes, and Yorgos Zikos

A Logic for Belief Contraction . 647
Konstantinos Georgatos

Logic Foundations of the OCL Modelling Language 657
Enrico Franconi, Alessandro Mosca, Xavier Oriol,
Guillem Rull, and Ernest Teniente

Constraint-Based Algorithm for Computing Temporal Invariants 665
Jussi Rintanen

Answer Set Solver Backdoors . 674
Emilia Oikarinen and Matti Järvisalo

Incremental SAT-Based Method with Native Boolean Cardinality
Handling for the Hamiltonian Cycle Problem . 684

Takehide Soh, Daniel Le Berre, Stéphanie Roussel,
Mutsunori Banbara, and Naoyuki Tamura

Revisiting Reductants in the Multi-adjoint Logic Programming
Framework . 694

Pascual Julián-Iranzo, Jesús Medina, and Manuel Ojeda-Aciego

Author Index . 703

Query Answering over Description Logic Ontologies

Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano
calvanese@inf.unibz.it

Abstract. Description Logics (DLs) provide the formal foundation for ontology
languages, and they have been advocated as formalisms for modeling the domain
of interest in various settings, including the Semantic Web, data and information
integration, and ontology-based data access. An important requirement there is the
ability to answer complex database-like queries, while taking into account both ex-
tensional and intensional domain knowledge. The task of answering queries has
been investigated intensively in the last years for a variety of DLs, and consider-
ing both data complexity, i.e., the complexity measured in the size of the exten-
sional information only, and combined complexity. On the one hand, it has been
shown to be in general (exponentially) more difficult than the standard reasoning
tasks of concept satisfiability and subsumption; on the other hand a broad range
of techniques have been developed. We overview here some of the key techniques
developed in the last years for query answering over DL ontologies, ranging from
rewriting based approaches for lightweight DLs, to tableaux algorithms, and tech-
niques based on automata on infinite trees for very expressive DLs. The associated
results, accompanied by matching lower bounds, have contributed to shaping the
computational complexity picture for ontology-based query answering.

1 Introduction

Description Logics [4] (DLs) are a class of logics that are particularly well suited for
representing structured knowledge. They have been developed starting from the early
1980s in order to formalize early days knowledge representation formalisms, such as
Semantic Networks and Frames, which lacked not only well understood computational
properties, but despite their name even a formal semantics. Since then DLs have evolved
into a large collection of variants that, in their various forms, subsume essentially all
class-based representation formalisms used in Databases, Artificial Intelligence, and
Software Engineering. DLs follow the quite common approach used in knowledge rep-
resentation of modeling the domain of interest in terms of concepts, which denote sets
of objects, and relations between objects belonging to certain concepts. We consider
here “traditional” DLs, which are equipped only with binary relations, called roles, but
many variants of DLs allowing for the use of relations of arbitrary arity have also been
considered in the literature [47,15,14]. Starting from atomic concepts and roles, com-
plex expressions can be constructed inductively by means of suitable concept and role
forming operators. Such expressions are then used in an ontology to assert knowledge
about the domain, both at the intensional level, in the TBox of the ontology, and at the
extensional level, in the ABox of the ontology. Typically, the TBox consists of a set

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014

2 D. Calvanese

of inclusion assertions between concepts and between roles, where each such assertion
states that the set of instances of one concept/role is included in the set of instance of an-
other concept/role. The ABox instead contains facts about individual domain elements,
asserting that some individual belongs to a concept, or that some pair of individuals is
related by a role.

A distinguishing feature of DLs is the fact that quantification is restricted by the
syntax of the logic (which is variable-free) to be guarded. A consequence is that DL
concept expressions essentially can only be used to represent properties that are en-
coded by starting from an instance of the concept and following the roles in a tree-like
navigation. Formally, this aspect is captured by the fact that DLs (in general) satisfy
some form of tree-model property: if an ontology is satisfiable, then it admits a model
that is constituted by a collection1 of structures that are essentially2 tree-shaped (when
viewing objects as nodes, and relations between objects as edges connecting them). On
the one hand, the tree-model property, which DLs share with modal logics and with
many variants of program logics [50], accounts for many of the good computational
properties of DLs, which, despite being first-order formalism, admit decidable and in
many cases efficient inference. On the other hand, the restriction that is at the basis of
the tree-model property brings about an intrinsic limitation in expressive power. This
makes it impossible in DLs to express inter-relationships between objects that would
correspond to following different navigation paths across the data. E.g., in a DL one
could not express a concept denoting those individuals for which the house in which
they live is located in the same city as the company in which they work. While this kind
of restriction is considered acceptable when encoding knowledge at the intensional level
in a TBox, it makes DLs not well-suited as a formalism for expressing queries, where
in general one is interested in complex inter-relationships between objects.

For this reason, since the late 1990s, researchers have studied the setting where infor-
mation needs expressed over knowledge encoded in an ontology are formulated not only
in terms of concept or role expressions, but also in terms of more complex queries in
the style of those used in databases [35,15]. In such a setting, where the presence of an
ontology accounts for incomplete information, query answering is a form of logical im-
plication, as opposed to model checking, which can be seen as the logical counterpart
of query evaluation. For this reason, answering arbitrary (domain independent) FOL
queries (corresponding to the core of SQL) over an ontology turns out to be immedi-
ately undecidable. Just consider evaluating the query q(x) = A(x)∧ϕ over the ontology
with an empty TBox and whose ABox just contains A(c), where ϕ is an arbitrary FOL
formula in which A does not appear; then c is in the answer to the query iff ϕ is valid.

This motivates why in the context of DLs, restricted classes of queries have been con-
sidered, which still allow for expressing sufficiently complex interrelationships between
data, but do not incur in the computational problems caused by arbitrary FOL queries.
A prominent such class of queries are conjunctive queries (CQs) [22], corresponding

1 The ABox accounts for an arbitrary graph-shaped but finite portion of the model, and each
object interpreting an individual of the ABox can be seen as the root of a possibly infinite tree
originating from that object.

2 Depending on the constructs of the DL, we might have to account for multiple role-labeled
edges between nodes, or for special edges that point back to the ABox part.

Query Answering over Description Logic Ontologies 3

to select-project-join SQL queries, and unions thereof (UCQs). Such queries account
for the most common type of queries used in the relational setting, and also have found
applications in other settings of incomplete information, such as data integration and
data exchange [34,25]. DLs, as opposed to relational databases, allow one to represent
knowledge in which the underlying data has a rather loose structure, such as the one
encountered nowadays in graph databases. Indeed, in the setting of DLs, it became of
interest to consider also more flexible mechanisms for querying such kind of data, as
the one offered by variants of regular path queries [10,1], which allow one to retrieve
pairs of objects connected by a path in the data that matches a regular expression over
the set of roles (i.e., edge labels in the graph).

In the following, we discuss the challenges that arise when addressing the problem of
answering queries over DL ontologies. Given the large amount of parameters that char-
acterize the problem, and the variety of results that have been obtained in the area, our
aim is not to be comprehensive, and we refer to [40,38] for recent overviews of query
answering in ontologies. Instead, we aim at illustrating three different types of tech-
niques that have been introduced in the literature, and that aimed at addressing different
requirements for the problem of query answering over DL ontologies. After introducing
in Section 2 some technical preliminaries on DLs and queries that are necessary for the
subsequent development, we first illustrate in Section 3 a technique for efficient query
answering in lightweight DLs that lends itself for an efficient implementation. Then,
in Section 4 we present an adaptation of tableaux algorithms traditionally adopted for
DL inference towards query answering in expressive DLs. The technique allows one
to obtain optimal complexity bounds in terms of data complexity, i.e., when the com-
plexity of the problem is measured in terms of the size of the ABox only. Finally, in
Section 5, we present an approach based on automata on infinite trees, that leads to
decidability and optimal complexity results (thought not in data complexity) for DLs
and query languages that are among the most expressive ones for which decidability of
query answering has been established so far.

2 Description Logic Ontologies and Queries

In DLs, the domain of interest is modeled by means of concepts, denoting classes of
objects, and roles (i.e., binary relationships), denoting binary relations between objects.

Syntax of Description Logics. Arbitrary concepts and roles are obtained starting from
atomic ones by applying suitable concept and role forming constructs, where the set of
allowed constructs characterizes each specific DL. We introduce here the quite expres-
sive DL ALCOIQHbselfreg , abbreviated simply as DL, which is a super-language of the
various DLs that we consider in this work3. Specifically, DL is an expressive DL in
which concepts and roles are formed according to the following syntax:

C,C′ −→ A | C � C′ | ∀R.C | ¬C | � nS.C | {a} | ∃S.Self
P −→ p | p−

S, S′ −→ P | S ∩ S′ | S \ S′ | S ∪ S′

R,R′ −→ T | S | R ∪R′ | R ◦R′ | R∗ | id(C)

3 DL is equivalent to the DL ZOIQ [20].

4 D. Calvanese

where A denotes an atomic concept, p an atomic role, S, S′ simple roles, C, C′ ar-
bitrary concepts, and R, R′ arbitrary roles, and a an individual. DL is obtained from
the basic DL languageAL (attributive language) [4], in which one can express concept
intersection C � C′ and value restriction ∀R.C, by adding several concept and role
forming constructs, each indicated by a letter or a sub/super-script in the name of the
DL. Such constructs are negation ¬C of arbitrary concepts (indicated by the letter C
in ALCOIQHbselfreg), qualified number restrictions � nS.C (indicated by Q), nomi-
nals {a} (indicated by O), inverse roles p− (indicated by I), boolean combinations of
atomic and inverse roles (indicated by b), the self-construct (indicated by the superscript
self), and regular expressions over roles (indicated by the subscript reg). We can also ex-
press the top concept
 as an abbreviation for A�¬A, for some concept A, the bottom
concept ⊥ as ¬
, union C1 � C2 as ¬(¬C1 � ¬C2), and qualified existential quantifi-
cation on roles ∃R.C as ¬∀R.¬C. We observe that, in order to preserve decidability of
inference, number restrictions are applied only to simple roles, i.e., atomic roles p, their
inverses p−, or boolean combinations thereof (see, e.g., [5,11] for the consequences of
using more complex roles in number restrictions).

As in most DLs, a DL ontology is a pair O = 〈T ,A〉, where T , the TBox, is a
finite set of intensional assertions, and A, the ABox, is a finite set of extensional (or,
membership) assertions. Here we consider TBoxes consisting only of inclusion asser-
tions between concepts and between simple roles4. An inclusion assertion has the form
C � C′, with C and C′ arbitrary DL concepts, or S � S′, with S and S′ simple roles.
Intuitively, it states that, in every model of the TBox, each instance of the left-hand side
expression is also an instance of the right-hand side expression. We note that the letter
H in the name of ALCOIQHbselfreg accounts for the presence in the logic of role inclu-
sions, by means of which one can express role hierarchies. The ABox consists of a set
of extensional assertions, which are used to make statements about individuals. Each
such assertion has the form A(a), p(a, b), a ≈ b, or a �≈ b, with A and p respectively
an atomic concept and an atomic role occurring in T , and a, b individuals.

Semantics of Description Logics. We now turn to the semantics ofDL, which is given
in terms of interpretations. An interpretation I = (ΔI , ·I) consists of a non-empty in-
terpretation domain ΔI and an interpretation function ·I , which assigns to each concept
C a subset CI of ΔI , to each role R a binary relation RI over ΔI , and to each individ-
ual a an element aI ∈ ΔI , in such a way that the conditions specified in Figure 1 are
satisfied5. Unless stated otherwise, we don’t make here the unique name assumption,
i.e., we allow different individuals to be interpreted as the same domain element.

The semantics of a DL ontologyO = 〈T ,A〉 is the set of models of O, i.e., the set
of interpretations satisfying all assertions in T and A. It remains to specify when an
interpretation satisfies an assertion. An interpretation I satisfies an inclusion assertion
C � C′ (resp., R � R′), if CI ⊆ C′I (resp., RI ⊆ R′I), a membership assertion

4 The DLs underlying the Web Ontology Language OWL 2, standardized by the W3C [7], fea-
ture additional kinds of TBox assertions, which allow one to state, e.g., the symmetry, reflex-
ivity, or transitivity of a role. We do not consider such kinds of assertions here.

5 We have used “◦” to denote concatenation of binary relations, and “∗” to denote the reflexive-
transitive closure of a binary relation.

Query Answering over Description Logic Ontologies 5

AI ⊆ ΔI

(C � C′)I = CI ∩ C′I

(∀R.C)I = { o | ∀o′. (o, o′) ∈ RI → o′ ∈ CI }
¬CI = ΔI \ CI

(� nR.C)I = { o | �{o′ ∈ CI | (o, o′) ∈ RI} ≤ n }
{a}I = {aI}

∃S.SelfI = { o | (o, o) ∈ SI}

pI ⊆ ΔI ×ΔI

(p−)I = {(o, o′) |(o′, o) ∈ P I}
(S ∩ S′)I = SI ∩ S′I

(S \ S′)I = SI \ S′I

(T)I = ΔI ×ΔI

(R ∪R′)I = RI ∪R′I

(R ◦ R′)I = RI ◦R′I

(R∗)I = (RI)∗

Fig. 1. Interpretation of DL concepts and roles

A(a) (resp., p(a, b)) if aI ∈ AI (resp., (aI , bI) ∈ pI), an assertion of the form a ≈ b
if aI = bI , and an assertion of the form a �≈ b if aI �= bI .

The basic reasoning task in DL is that of logical implication, i.e., checking whether
a TBox or ABox assertion is implied by an ontology, i.e., holds in every model of
the ontology. All other ontology-level inference tasks, such as checking whether an
ontology is satisfiable (i.e., admits a model), or whether a concept is satisfiable with
respect to an ontology, can easily be reduced to logical implication. Like in many other
expressive DLs, reasoning in DL, is decidable in deterministic exponential time, and
actually EXPTIME-complete, see, e.g., [4].

We consider here various sub-languages of DL. The logics ALC[O][I][Q]H[bselfreg]
are obtained fromDL by possibly dropping some of theO, I, andQ constructs, or all of
boolean combinations, regular expressions over roles, and the self-construct. Moreover,
in the lightweight DL DL-LiteR [13], inclusion assertions have one of the forms:

B � B′ B � ¬B′ P � P ′ P � ¬P ′

Here, roles P , P ′ are either an atomic role p or the inverse p− of an atomic role, and
basic concepts B, B′ are constructed according to the following syntax:

B,B′ −→ A | ∃P

where we use ∃P as an abbreviation for ∃P .
. Intuitively, a basic concept denotes
either an atomic concept A, or the projection of a role p on its first component (∃p) or
second component (∃p−). Despite its simplicity, DL-Lite is able to capture the essential
features of most conceptual modeling formalisms, such as UML Class Diagrams or
Entity-Relationship schemata (see, e.g., [12]).

Queries. We introduce now positive two-way regular path queries (P2RPQs), which
are a quite general class of queries that subsumes most of the query formalisms that
have been considered in the context of query answering under incomplete information.
A P2RPQ q(�x) has the form ∃�y.ϕ, where �x and �y are tuples of variables and ϕ is a
formula built using ∧ and ∨ from atoms of the form C(v) and R(v, v′), where v, v′ are
variables from �x, from �y, or individuals, C is a (possibly complex) concept, and R is a
(possibly complex) DL role. We call �x the answer (or distinguished) variables, and �y

6 D. Calvanese

the existential variables of q. A Boolean query is one where �x is the empty tuple 〈〉, i.e.,
all variables in the query are existential ones.

A P2RPQ consisting of a single role atom is a two-way regular path query (2RPQ),
while one consisting of a conjunction of role atoms is a conjunctive 2RPQ (C2RPQ).
When we do not allow for the use of inverse roles, we obtain the one-way variants of the
above query languages, i.e., PRPQs/CRPQs/RPQs. When we further restrict P2RPQs
so as to forbid the use of regular expressions in role atoms, we obtain the class of posi-
tive queries (PQs), and when we forbid also the use of disjunction, we obtain the well
known class of conjunctive queries (CQs) [22,2]. A unions of CQs (UCQs) is a disjunc-
tion of CQs with the same answer variables. We observe that the possibility of using
regular role expressions in the query atoms of (P/C)(2)RPQs significantly increases the
expressive power of the query language, since it allows one to express complex navi-
gations in the models of the given ontology, similar to those possible with (C)(2)RPQs
studied in the setting of graph databases [26,16,17,18].

Given a P2RPQ q(�x) = ∃�y.ϕ and an interpretation I, let π be a total function from
the variables and individuals occurring in q to ΔI such that π(a) = aI for each indi-
vidual a occurring in q. We write I, π |= C(v) if π(v) ∈ CI , and I, π |= R(v, v′)
if (π(v), π(v′)) ∈ RI . Let γ be the Boolean expression obtained from ϕ by replacing
each atom α in ϕ with true, if I, π |= α, and with false otherwise. If γ evaluates to
true, we say that π is a match for q in I, denoted I, π |= q. When there is some match
for q in I, we also say that q can be mapped to I.6 The answers to q(�x) in I, is the
set ans(q, I) = {π(�x) | I, π |= q} of tuples of elements of ΔI to which the answer
variables of q can be mapped by some match for q in I. Given an ontology O and a
query q(�x), a certain answer to q over O is a tuple �a of individuals in O such that
�aI ∈ ans(q, I), for every model I of O. Note that, while an answer to a query over
an interpretation I is a set of elements of ΔI , a certain answer is a tuple of individuals
appearing in O. We denote with cert(q,O) the set of certain answers to q overO.

For a Boolean query q(), we say that I satisfies q(), written I |= q(), if there is some
match for q() in I. We have that cert(q(),O) is either the empty tuple of individuals
〈〉 (representing true), when I |= q() for every model I of O, or the empty set ∅
(representing false). In the former case, i.e., when cert(q,O) = {〈〉}, we say that O
entails q, denotedO |= q.

Query evaluation consists in computing, given an ontologyO and a P2RPQ q(�x), the
set cert(q,O) of certain answers. The corresponding decision problem is the recogni-
tion problem for query answering, in which one wants to check whether a given a tuple
�a of individuals is in cert(q,O). When q is a Boolean query, the corresponding task is
query entailment, which consists in verifying whether O |= q. In fact, the recognition
problem for query answering can be straightforwardly reduced to query entailment by
considering the Boolean query obtained by substituting the distinguished variables of
the query with the given tuple of individuals.

6 When we view the query q as a relational structure in which the variables snd constants are the
domain elements, then a match for q in an interpretation I is actually a homomorphism from
q to I (cf. [22] for the case of CQs).

Query Answering over Description Logic Ontologies 7

3 Query Answering by Rewriting in Lightweight DLs

We illustrate now the approach to query answering based on query rewriting, which was
first introduced for answering UCQs over DL-Lite ontologies through the PerfectRef
algorithm [13], and then extended to several other DLs [41,42,44,32], including also
more expressive members of the DL-Lite family [3]. Such DLs share with DL-Lite some
crucial properties that are necessary to make a rewriting based approach efficient. We
illustrate now the approach for the case of UCQs over DL-LiteR ontologies. We first
recall that, in the case where the ontology is unsatisfiable, the answer to any UCQ is the
set of all tuples of individuals appearing in the ontology. Therefore, we focus for now
on the case where the ontology is satisfiable, and come back to satisfiability afterwards.

The key idea at the basis of the rewriting approach is to strictly separate the process-
ing done with respect to the intensional level of the ontology (i.e., the TBox) from the
processing done by taking into account the extensional level (i.e., the ABox, or data):
(1) the query is processed and rewritten into a new query, based on the inclusion asser-
tions in the TBox; (2) the TBox is discarded and the rewritten query is evaluated over
the ABox, as if the ABox was a simple relational structure/database. More precisely,
given a UCQ q over O = 〈T ,A〉, the positive inclusion assertions of T , i.e., those
inclusion assertions that contain no negation in the right-hand side, are compiled into q,
thus obtaining a new query q′. Such new query q′ is then evaluated over A, thus essen-
tially reducing query answering to query evaluation over a database instance. Since the
size of q′ does not depend on the ABox, the data complexity of the whole query answer-
ing algorithm is the same as the data complexity of evaluating q′. A crucial property
for DL-Lite is that, in the case where q is a UCQ, the query q′ is also a UCQ. Hence,
the data complexity of the whole query answering algorithm is in AC0, which is the
complexity of evaluating a FOL query over a relational database.

Canonical Model. The rewriting based approach relies in an essential way on the
canonical model property, which holds for DL-Lite and for the horn variants of many
other DLs [33,24]. Such property ensures that every satisfiable ontology O admits a
canonical model that is the least constrained model among all models of O, and that
can be homomorphically embedded in all other models. This in turn implies that the
canonical model correctly represents all the models ofO with respect to the problem of
answering positive queries (and in particular, UCQs). In other words, for every UCQ q,
we have that cert(q,O) is contained in the result of the evaluation of q over the canon-
ical model7. Intuitively, the canonical model for a DL-Lite ontology O = 〈T ,A〉 con-
tains the ABox A, and in addition might contain existentially implied objects, whose
existence is enforced by the TBox assertions with ∃P in the right-hand side. For ex-
ample, if the TBox contains an assertion Student � ∃attends, expressing that every
student should attend something (presumably a course), and the ABox contains the fact
Student(john), then the canonical model will contain a fact attends(john, on), where on
is a newly introduced object.

7 Note that, since the domain of the canonical model contains the individuals of the ABox, hence
the evaluation of a query over such model can indeed return a set of individuals.

8 D. Calvanese

A1 � A2 . . . , A2(x), . . . � . . . , A1(x), . . .
∃p � A . . . , A(x), . . . � . . . , p(x,), . . .

∃p− � . . . , A(x), . . . � . . . , p(, x), . . .
A � ∃p . . . , p(x,), . . . � . . . , A(x), . . .
A � ∃p− . . . , p(, x), . . . � . . . , A(x), . . .

∃p1 � ∃p2 . . . , p2(x,), . . . � . . . , p1(x,), . . .
p1 � p2 . . . , p2(x, y), . . . � . . . , p1(x, y), . . .

· · ·

Fig. 2. Rewriting of query atoms in DL-LiteR

First-Order Rewritability. We point out that the canonical model is in general infinite,
hence it cannot be effectively computed in order to solve the query answering problem
by actually evaluating the input query q over it. Instead, each CQ qi in q is rewritten into
a UCQ ri in such a way that, whenever qi has a match in some portion of the canonical
model, then there will be a CQ among those in ri that has a corresponding match in the
ABox part of the canonical model. Informally, the rewriting algorithm initializes a set
r of CQs with the CQs in the input query q, and processes each yet unprocessed query
ri in r by adding to r also all rewritings of ri. For each atom α in ri, it checks whether
α can be rewritten by using one of the positive inclusions in the TBox, and if so, adds
to r the CQ obtained from ri by rewriting α. The rewriting of an atom uses a positive
inclusion assertion as rewriting rule, applied from right to left, to compile away the
knowledge represented by the positive inclusion itself. For example, using the inclusion
A1 � A2, an atom of the form A2(x) is rewritten to A1(x). Alternatively, we can
consider this rewriting step as the application of standard resolution between the query
and the inclusion A1 � A2, viewed as the (implicitly universally quantified) formula
A1(x)→ A2(x). Other significant cases of rewritings of atoms are depicted in Figure 2,
where each inclusion assertion in the left-most column accounts for rewriting the atom
to the left of� into the atom to the right of it. We have used “ ” to denote a variable that
occurs only once in the CQ (counting also occurrences in the head of the CQ). Besides
rewriting atoms, a further processing step applied to ri is to consider each pair of atoms
α1, α2 occurring in the body of ri that unify, and replace them with a single atom,
also applying the most general unifier to the whole of ri. In this way, variables that in ri
occur multiple times, might be replaced by an “ ”, and hence inclusion assertions might
become applicable that were not so before the atom-unification step (cf. the rewriting
rules in Figure 2 requiring the presence of “ ”).

The above presented rewriting technique realized through PerfectRef, allows us
to establish that answering UCQs over satisfiable DL-LiteR ontologies is first-order
rewritable, i.e., the problem of computing certain answers over a satisfiable ontology
can be reduced to the problem of evaluating a FOL query over the ABox of the ontology
viewed as a database (with complete information). Specifically, let rew(q, T) denote the
UCQ obtained as the result of applying PerfectRef to a UCQ q and DL-LiteR TBox T .
Then, for every ABox A such that 〈T ,A〉 is satisfiable, we have that

cert(q, 〈T ,A〉) = ans(rew(q, T),A)

Query Answering over Description Logic Ontologies 9

where ans(rew(q, T),A) denotes the evaluation of the UCQ rew(q, T) over the ABox
A viewed as a database (i.e., a first-order structure).

Ontology Satisfiability. The rewriting of a UCQ q with respect to a TBox T computed
by PerfectRef depends only on the set of positive inclusion assertions in T , while dis-
jointness assertions (i.e., inclusion assertions containing a negated basic concept on the
right-hand side) do not play any role in such a process. Indeed, the proof of correctness
of PerfectRef [13], which is based on the canonical model property of DL-LiteR, shows
that these kinds of assertions have to be considered only when verifying the ontology sat-
isfiability. Once satisfiability is established, they can be ignored in the query rewriting
phase. In fact, unsatisfiability of a DL-LiteR ontology is due to the presence of disjoint-
ness assertions and their interaction with positive inclusions. Such interaction can itself
be captured by constructing a Boolean UCQ encoding the violation of disjointness asser-
tions, rewriting such a UCQ with respect to the positive inclusions, and checking whether
its evaluation over the ABox returns true. This in turn shows that also the problem of
checking satisfiability of a DL-LiteR ontology is first-order rewritable [13].

Complexity of Query Evaluation. Summarizing the above results, and considering
that evaluating a FOL query (and hence a UCQ) over a database is in AC0 in data com-
plexity, one obtains that answering UCQs over DL-LiteR ontologies has the same data
complexity as evaluating UCQs in plain databases. By analyzing the overall rewriting-
based query answering technique, and by exploiting a correspondence between the DL-
Lite family and FOL with unary predicates [3], we are able obtain also tight complexity
bounds in the size of the TBox (schema complexity) and of the overall input (combined
complexity).

Theorem 1 ([13,3]). Answering UCQs over DL-LiteR ontologies is in AC0 in data
complexity, NLOGSPACE-complete in schema complexity, and NP-complete in com-
bined complexity.

While the above results sound very encouraging from the theoretical point of view,
there still remain significant challenges to be addressed to make rewriting based tech-
niques effective also in real world scenarios, where the TBox and/or the data underly-
ing the ABox are very large, and/or queries have a large number of atoms. Indeed, also
in the case where one admits rewritings expressed in languages different from UCQs
(e.g., arbitrary FOL queries, or non-recursive Datalog), it has recently been shown that
the smallest rewritings can grow exponentially with the size of the query [28]. This
has led to an intensive and sustained effort aimed at developing techniques to improve
query answering over ontologies, such as alternative rewriting techniques [42,46], tech-
niques combining rewriting with partial materialization of the extensional level [31],
and various optimization techniques that take into account also extensional constraints
on the underlying data, or a mapping layer to relational data sources, i.e., the so-called
Ontology-Based Data Access (OBDA) setting [43,45]

4 Data Complexity for Query Entailment in Expressive DLs

When a DL contains (explicit or implicit) forms of disjunction, there is no single model
representing all possible models for the purpose of query answering. Hence, approaches

10 D. Calvanese

that exploit the canonical model property, e.g., those based on query rewriting, are not
directly applicable in this case. We illustrate now an alternative query answering tech-
nique that builds upon the tableaux-based techniques that have proved very successful
for reasoning in expressive DLs [6,30,29,37].

Tableaux Algorithms for Ontology Reasoning. We illustrate first the idea underlying
the use of tableaux algorithms for checking satisfiability of a DL ontologyO = 〈T ,A〉,
and show then how this approach can be adapted for query entailment. The tableaux al-
gorithm tries to build a model ofO by starting from the assertions inA, and completing
them according to what is required by T . In doing so it builds non-deterministically a
forest-shaped relational structure (hence, the algorithm actually maintains a set of struc-
tures), that we call here completion forest. The structure is forest-shaped, since each
individual in the ABox A is the root of a tree generated by applying tableaux-style ex-
pansion rules to the facts in the completion forest. Essentially, each rule is associated
to one of the constructs of the DL, has a precondition, expressed as one or more facts
to which the rule is applied, and possibly comes with additional conditions related to
applicability of the rule, or to blocking (necessary to ensure termination). As the result
of the rule application, the set of facts in the completion forest is expanded, or more in
general, changed, possibly by introducing new individuals. To deal, e.g., with incom-
pleteness caused by the presence of disjunction, or with at-most restrictions that might
require the identification of individuals, some of the rules are non-deterministic, and
cause the generation of more than one new completion forest from the current one.

When no more rules can be applied, and no obvious contradiction (called a clash)
is present in the current completion forest, the algorithm terminates, and the clash-free
completion forest witnesses a model of the ontology O (soundness of the algorithm).
Instead, when each of the non-deterministically generated completion forests contains
a clash, it means thatO does not admit any model, hence is unsatisfiable (completeness
of the algorithm). In order to avoid infinite repetition of rule application, and hence
ensure termination of the algorithm, suitable blocking conditions need to be applied.
Intuitively, the nodes of a completion forest are labeled with sets of concepts, and a rule
application is considered blocked for a node x if in the tree there is a predecessor of
x labeled in a way that is “compatible” with x. The precise notion of “compatibility”
between two nodes depends on the constructs of the considered DL, and might also
involve looking at pairs of adjacent nodes, rather than at single nodes, see, e.g., [6].

Tableaux Algorithms for Query Entailment. As shown for the first time in [35] for
the system CARIN, tableaux algorithms can be adapted to deal also with query entail-
ment. We illustrate here the approach presented in [39] for entailment of a PQ q in an
ontologyO expressed in one of ALCOIH, ALCOQH, or ALCIQH. As for the case
of satisfiability, the technique makes use of completion forests, each of which is meant
to capture a set of models of the ontology O. Actually, at each step of the algorithm,
each of the models ofO is represented by one of the completion forests in the set main-
tained non-deterministically by the algorithm. More specifically, when a tableaux rule
is applied to a completion forest F , each of the models represented by F is preserved
in one of the completion forests generated as a result of the rule application. There-
fore, checking whether O |= q equals checking whether F |= q, for each completion

Query Answering over Description Logic Ontologies 11

forest F . The crux of the correctness of the technique lies in the fact that, for largely
enough expanded F , one can check whether F |= q effectively via a syntactic mapping
of the variables in q to the nodes in F . Thus, to witness that O �|= q, it is sufficient to
(non-deterministically) construct a large enough forest F to which q cannot be mapped.

As customary with tableaux-style algorithms, the algorithm makes use of suitable
blocking conditions on the rules to ensure termination of forest expansion. The blocking
conditions adopted forALCOIH, ALCOQH, andALCIQH are inspired by those in
[35] for CARIN, but are able handle on the one hand nominals present inALCOIH and
ALCOQH, and on the other hand the fact thatALCIQH does not have the finite model
property. Lack of this property means that reasoning with respect to arbitrary models
is different from reasoning with respect to finite models only, and implies that O �|= q
might hold, but this might be witnessed only by an infinite model. As a consequence,
expansion forests cannot be considered themselves as models ofO, but rather are finite
representations of possibly infinite structures obtained by unraveling the completion
forest. A further complication comes from the fact that in the blocking conditions of the
tableaux rules it is not sufficient anymore to consider single nodes (or pairs of adjacent
nodes) as for satisfiability [6]. Instead, one needs to search in the completion forest for
the repetition of subtrees, whose depth depends on the number of atoms in the query q.
This leads to an additional exponential blowup in the computational complexity of the
algorithm with respect to the tableaux algorithms for satisfiability in the same logics.

We also note that [39] presents a single algorithm for checking query entailment in
ALCOIH, ALCOQH, and ALCIQH, which includes tableaux rules for all of the
constructs in the three logics. However, due to the subtle interaction between nominals,
inverse roles, and number restrictions, termination of the algorithm is guaranteed only
for TBoxes expressed in ALCOIH, ALCOQH, or ALCIQH.

Complexity of Query Entailment. Interestingly, while the above described tableaux
algorithm for checking O |= q is not computationally optimal in combined com-
plexity, a careful analysis shows that the construction of completion forests, and the
check whether q can be mapped to each such forest, can both be carried out by a non-
deterministic algorithm that runs in polynomial time in the size of the ABox (and the
number of individuals appearing in nominals). Hence, the overall algorithm is coNP
in data complexity. This is also computationally optimal, since checking query entail-
ment for CQs over an ontology whose TBox contains a single assertion of the form
A1 � A2 � A3 is already coNP-hard in data complexity [14].

Theorem 2 ([39]). Given an ALCOIH, ALCOQH, or ALCIQH ontology O and a
PQ q, deciding whether O |= q is:

– in coN3EXPTIME in combined complexity.

– in coN2EXPTIME in combined complexity for a fixed q (under the assumption that
numbers appearing in number restrictions are encoded in unary).

– coNP-complete in data complexity.

12 D. Calvanese

5 Query Entailment in Very Expressive DLs

We address now query entailment for the case where the ontology and/or the query may
contain roles built as regular expressions over direct and inverse roles, or their Boolean
combinations.

Automata Techniques for Reasoning over Ontologies. For many very expressive DLs,
including those which allow for the use of regular expressions over roles, the standard
reasoning task of checking concept satisfiability (possibly with respect to a TBox) is
naturally solvable by tree-automata, thanks to the tree model property of such logics:
each satisfiable concept C has a tree-shaped model [50,52] in which nodes are labeled
with sets of concepts, and adjacent nodes in the tree are connected by one or more
roles. Intuitively, such a tree-shaped model is obtained by unraveling an arbitrary model,
introducing new nodes in the tree whenever the same node is encountered multiple
times during the unraveling. Hence, one can construct a tree-automaton that accepts a
tree representing a tree-shaped model, by naturally encoding in the transition function
of the automaton the conditions that the DL constructs impose on adjacent nodes of
the model/tree. Checking for the existence of a model amounts to checking for non-
emptiness of the tree-automaton. A crucial observation is that, even for those logics
that have the finite model property, the unraveling process produces an infinite tree, so
that we need to resort to automata on infinite trees [48].

When also an ABox A is present this approach fails, since the assertions in A may
arbitrarily connect individuals, and thus destroy the tree-structure. On the other hand,
while a satisfiable DL ontology O = 〈A, T 〉 may lack a tree-shaped model, it always
has a forest-shaped canonical model, in which the individuals in A can be arbitrarily
connected, but each individual is the root of a tree-shaped model of T . This property
is usually sufficient to adapt algorithms for concept satisfiability so as to decide also
ontology satisfiability. In particular, automata-based algorithms have been adapted, e.g.,
using the pre-completion technique [49], in which after a reasoning step on the ABox,
automata are used to verify the existence of a tree-shaped model rooted at each ABox
individual.

Automata Techniques for Query Entailment. However, a pre-completion based ap-
proach would not lend itself well for query entailment, where one needs to account also
for the interaction between the variables in query atoms and the ABox individuals to
which these variables have to be mapped. This holds especially in the case where the
query itself might contain atoms that are regular expressions over roles, as in RPQs
and their extensions. Therefore, we discuss here briefly a different approach to query
entailment for very expressive DLs and queries, based on the idea of representing forest-
shaped interpretations directly as trees in which the root is a dummy node, and all in-
dividuals appearing in the ABox and in nominals form the children of the root. From
each of these first-level nodes, a possibly infinite tree departs. Adopting this kind of rep-
resentation allows us to deal in a uniform way using tree automata both with the TBox
and ABox constituting the ontology, and with the query [19,20,21].

Specifically, we illustrate an approach to check query entailment O |= q, that is ap-
plicable when q is a P2RPQs and O is an ontology expressed in any sublanguage of

Query Answering over Description Logic Ontologies 13

DL in which only two of the three constructs of nominals (O), inverse roles (I), and
number restrictions (Q) are present [20]. We use DL− to denote such a logic. To de-
cide whether O |= q, it is sufficient to decide whether O has a tree-shaped (canonical)
model in which q has no match. To check this using tree automata, we build an automa-
ton AO�|=q that accepts all trees that represent a model of O in which q has no match.
Roughly speaking, AO�|=q is obtained by intersecting two automata:

– AO , which is a tree automaton that accepts the trees representing a model of O.
We make use of two-way alternating tree automata [51]: on the one hand, such au-
tomata can traverse a tree both downwards and upwards, which turns out to be con-
venient to deal with inverse roles; on the other hand, such automata are alternating,
which means that they are equipped both with ∧-transitions and with ∨-transitions,
which allows one to naturally encode in the transition function of the automaton
the structural conditions imposed by concept and role expressions.

– A¬q , which accepts the trees representing an interpretation that admits no match
for q. To obtain A¬q , we first construct an automaton Aq that accepts a tree T if
and only if q has a match in the interpretation represented by T . To construct Aq,
we need to treat the existential variables appearing in q as additional concept sym-
bols, and represent them explicitly in the tree accepted by the automaton. Then, to
construct A¬q, we need to project away such additional symbols, before comple-
menting the automaton, which results in an (inevitable) exponential blowup.

Hence, deciding query entailment reduces to checking whether AO�|=q accepts the
empty language.

The details of the constructions of the above described automata are quite involved.
For the constructions, the proof of their correctness, and the computational complexity
analysis, we refer to [21] for the case when DL− does not include nominals (which
corresponds to the DL ZIQ of [20]), and to [20] for the cases when DL− includes
nominals (ZOI and ZOQ).

Theorem 3 ([19,21,20]). Given an DL− ontology O and a PQ q, deciding whether
O |= q is in 2EXPTIME in combined complexity (under the assumption that numbers
appearing in number restrictions are encoded in unary).

The above bound is tight, since query entailment is already 2EXPTIME-hard for the
following cases:

– CQs over ontologies expressed in ALCI [36] or ALCHreg [23];
– CRPQs or PQs over ontologies expressed in ALC [8].

Notice that the automata-theoretic approach above does not provide us any bound on
data complexity (that is better than the one for combined complexity). In fact, it remains
to be investigated whether in this approach it is possible to single out the contribution
coming from the ABox and the nominals in the construction of the automata and the
final emptiness check.

The above automata-based technique does also not work for the case of fullDL, i.e.,
when the logic contains both nominals, inverses, and number restrictions, since in such
a case the tree model property fails, and tree automata do not seem suitable anymore as

14 D. Calvanese

a technical tool. In fact, decidability of entailment for PQs over ALCOIQ ontologies
has been established in [27] using model theoretic arguments, which do not provide any
complexity upper bound. However, the problem is still open for logics including also
regular expressions over roles (or alternatively, transitive roles also in the query, in line
with what can be expressed in the Web Ontology Language OWL [7]).

Finally, we mention recent work that has considered the problem of query entailment
also over lightweight DLs, for variants of queries containing regular expressions [9],
and for their extension with nesting [8].

6 Conclusions

In this work, we have provided an overview of three prominent techniques that have
been used in recent years to address the challenging problem of query answering and
query entailment in DLs. Specifically, we have discussed: (1) a technique based on
query rewriting suitable for UCQs over lightweight DLs, which provides optimal com-
plexity bounds due to first-order rewritability; (2) a technique based on tableaux suitable
for PQs over expressive DLs, which provides optimal bounds in data complexity, but
not in combined complexity, and is not able to deal with regular expressions over roles
in the ontology or the query; (3) a technique based on automata on infinite trees, which
is able to deal with very expressive ontology and query languages containing regular ex-
pressions over roles, and provides optimal complexity bounds in combined complexity,
but not in data complexity.

The research on query answering and query entailment is still very active, and the
problem continues to provide challenges. On the one hand, from the theoretical point
of view several decidability and complexity questions are still open. On the other hand,
more work is required to implement query answering and query entailment algorithms
for the more expressive ontology and query languages. And both for lightweight and
for expressive languages, improvements in efficiency are needed, so at to make these
techniques usable in real world scenarios.

Acknowledgments. This work has been partially supported by the EU IP project Op-
tique (Scalable End-user Access to Big Data), grant agreement n. FP7-318338.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufmann (2000)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co.
(1995)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and rela-
tions. J. of Artificial Intelligence Research 36, 1–69 (2009)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

Query Answering over Description Logic Ontologies 15

5. Baader, F., Sattler, U.: Expressive number restrictions in description logics. J. of Logic and
Computation 9(3), 319–350 (1999)

6. Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Dyckhoff, R. (ed.)
TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 1–18. Springer, Heidelberg (2000)

7. Bao, J., et al.: OWL 2 Web Ontology Language document overview, W3C
Recommendation, World Wide Web Consortium, 2nd edn. (December 2012),
http://www.w3.org/TR/owl2-overview/

8. Bienvenu, M., Calvanese, D., Ortiz, M., Simkus, M.: Nested regular path queries in descrip-
tion logics. In: Proc. of the 14th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2014). AAAI Press (2014)

9. Bienvenu, M., Ortiz, M., Simkus, M.: Conjunctive regular path queries in lightweight de-
scription logics. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence, IJCAI 2013
(2013)

10. Buneman, P., Davidson, S., Hillebrand, G., Suciu, D.: A query language and optimization
technique for unstructured data. In: Proc. of the ACM SIGMOD Int. Conf. on Management
of Data, pp. 505–516 (1996)

11. Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, et al. (eds.) [4],
ch. 5, pp. 178–218

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.,
Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web.
LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

14. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. Artificial Intelligence 195, 335–360 (2013)

15. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment un-
der constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS 1998), pp. 149–158 (1998)

16. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Containment of conjunctive reg-
ular path queries with inverse. In: Proc. of the 7th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2000), pp. 176–185 (2000)

17. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Rewriting of regular expressions
and regular path queries. J. of Computer and System Sciences 64(3), 443–465 (2002)

18. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Reasoning on regular path
queries. SIGMOD Record 32(4), 83–92 (2003)

19. Calvanese, D., Eiter, T., Ortiz, M.: Answering regular path queries in expressive descrip-
tion logics: An automata-theoretic approach. In: Proc. of the 22nd AAAI Conf. on Artificial
Intelligence (AAAI 2007), pp. 391–396 (2007)

20. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description logics with
nominals. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp.
714–720 (2009)

21. Calvanese, D., Ortiz, M., Eiter, T.: Answering regular path queries in expressive description
logics via alternating tree-automata. Information and Computation 237, 12–55 (2014)

22. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational
data bases. In: Proc. of the 9th ACM Symp. on Theory of Computing (STOC 1977), pp.
77–90 (1977)

23. Eiter, T., Lutz, C., Ortiz, M., Šimkus, M.: Query answering in description logics with tran-
sitive roles. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp.
759–764 (2009)

http://www.w3.org/TR/owl2-overview/

16 D. Calvanese

24. Eiter, T., Ortiz, M., Simkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus
rules. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI 2012). AAAI Press
(2012)

25. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-
ing. Theoretical Computer Science 336(1), 89–124 (2005)

26. Florescu, D., Levy, A., Suciu, D.: Query containment for conjunctive queries with regular
expressions. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS 1998), pp. 139–148 (1998)

27. Glimm, B., Rudolph, S.: Nominals, inverses, counting, and conjunctive queries or: Why in-
finity is your friend. J. of Artificial Intelligence Research 39, 429–481 (2010)

28. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.:
The price of query rewriting in ontology-based data access. Artificial Intelligence 213, 42–59
(2014)

29. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc. of the 10th
Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp.
57–67 (2006)

30. Horrocks, I., Sattler, U.: A tableau decision procedure for SHOIQ. J. of Automated Rea-
soning 39(3), 249–276 (2007)

31. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR 2010), pp. 247–257 (2010)

32. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics. In: Der-
showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 333–347.
Springer, Heidelberg (2007)

33. Krötzsch, M., Rudolph, S., Hitzler, P.: Complexity boundaries for horn description logics. In:
Proc. of the 22nd AAAI Conf. on Artificial Intelligence (AAAI 2007), pp. 452–457 (2007)

34. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002), pp.
233–246 (2002)

35. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artifi-
cial Intelligence 104(1-2), 165–209 (1998)

36. Lutz, C.: Inverse roles make conjunctive queries hard. In: Proc. of the 20th Int. Workshop
on Description Logic (DL 2007). CEUR Electronic Workshop Proceedings, vol. 250, pp.
100–111 (2007), http://ceur-ws.org/

37. Lutz, C., Milicic, M.: A tableau algorithm for description logics with concrete domains and
general tboxes. J. of Automated Reasoning Special Issue on Automated Reasoning with An-
alytic Tableaux and Related Methods 38(1-3), 227–259 (2007)

38. Ortiz, M.: Ontology based query answering: The story so far. In: Proc. of the 7th Alberto
Mendelzon Int. Workshop on Foundations of Data Management (AMW 2013). CEUR Elec-
tronic Workshop Proceedings, vol. 1087 (2013), http://ceur-ws.org/

39. Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive descrip-
tion logics via tableaux. J. of Automated Reasoning 41(1), 61–98 (2008)

40. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In: Eiter, T.,
Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53. Springer, Heidel-
berg (2012)

41. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting techniques for
DL-lite. In: Proc. of the 22nd Int. Workshop on Description Logic (DL 2009). CEUR Elec-
tronic Workshop Proceedings, vol. 477 (2009), http://ceur-ws.org/

42. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic 8(2), 186–209 (2010)

http://ceur-ws.org/
http://ceur-ws.org/
http://ceur-ws.org/

Query Answering over Description Logic Ontologies 17

43. Rodriguez-Muro, M., Calvanese, D.: High performance query answering over DL-Lite on-
tologies. In: Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2012), pp. 308–318 (2012)

44. Rosati, R.: On conjunctive query answering in EL. In: Proc. of the 20th Int. Workshop on
Description Logic (DL 2007). CEUR Electronic Workshop Proceedings, vol. 250, pp. 451–
458 (2007), http://ceur-ws.org/

45. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In: Simperl, E.,
Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp.
360–374. Springer, Heidelberg (2012)

46. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proc. of
the 12th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2010),
pp. 290–300 (2010)

47. Schmolze, J.G.: Terminological knowledge representation systems supporting n-ary terms.
In: Proc. of the 1st Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR 1989), pp. 432–443 (1989)

48. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical
Computer Science, vol. B, ch. 4, pp. 133–192. Elsevier Science Publishers (1990)

49. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Represen-
tation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)

50. Vardi, M.Y.: Why is modal logic so robustly decidable. In: DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, vol. 31, pp. 149–184. American Mathematical
Society (1997)

51. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)

52. Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. of
Computer and System Sciences 32, 183–221 (1986)

http://ceur-ws.org/

Tools for the Investigation of Substructural

and Paraconsistent Logics�

Agata Ciabattoni and Lara Spendier

Vienna University of Technology, Austria

Abstract. We present an overview of the methods in [10,7,13] and their
implementation in the system TINC. This system introduces analytic
calculi for large classes of substructural and paraconsistent logics, which
it then uses to prove various results about the formalized logics.

1 Introduction

Logic is concerned with the study of reasoning and is the basis of applications
in various fields. Classical logic is not adequate for all of them; for instance, it is
ill-equipped to reason in presence of inconsistencies, inherently vague informa-
tion, or about resources. Driven in part by the rising demand of practitioners,
the last decades have witnessed an explosion of research on logics different from
classical logic, and the definition of many new logics. These are often described
in a declarative way within the framework due to Hilbert and Frege, which is
however extremely cumbersome when it comes to finding or analyzing proofs.
Moreover, a Hilbert-Frege system does not help answering useful questions about
the formalized logic and its corresponding algebraic structure, such as ‘Is the
logic decidable?’ or ‘Is the logic standard1 complete?’. Therefore providing an
algorithmic presentation of logics, in particular in the form of analytic calculi, is
essential both for understanding their mathematical properties and for develop-
ing potential applications. Analyticity is crucial as it means that proofs in these
calculi proceed by a step-wise decomposition of the formulas to be proved.

Since the introduction of Gentzen’s calculi LK and LJ for classical and in-
tuitionistic logic, the sequent calculus has been one of the most popular frame-
works for defining analytic calculi. Sequent calculi have been successfully used
for studying important properties of their formalized logics such as decidability,
complexity and interpolation; they have also proved useful for giving syntactic
proofs of algebraic properties for which, in particular cases, semantic methods
were not known, see e.g. [18]. These results all follow from the fundamental theo-
rem of cut-elimination, which implies the redundancy of the cut rule and makes
the calculi analytic. Despite the successful formalization of important logics,
many natural and useful logics do not fit comfortably into the sequent frame-
work. A huge range of extensions of the sequent calculus have been introduced

� Work supported by the FWF project START Y544-N23.
1 That is complete with respect to algebras based on truth values in [0, 1].

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 18–32, 2014.
c© Springer International Publishing Switzerland 2014

Tools for the Investigation of Substructural and Paraconsistent Logics 19

in the last few decades to define analytic calculi for logics apparently lacking a
(cut-free) sequent formalization.

In this paper we describe our tools (theory and implementation) for introduc-
ing analytic calculi for large classes of substructural and of paraconsistent logics
and using them to prove various results about these logics.

The idea to use computer supported tools for the investigation of logics has
already been around for more than two decades, see, e.g., [24]. In recent years,
several tools following this spirit of “logic engineering” have been introduced.
These aim at making theoretical results in logic more accessible to researchers
and practitioners who might not have deep knowledge about the logical theory,
e.g. [5,25,23]. An example of a “logic engineering” tool addressing the issue of
finding analytic calculi is the system MUltlog [5] which introduces such calculi
for the class of finite-valued logics.

Our system TINC (Tools for the Investigation of Non-Classical logics) is
created along the lines of MUltlog to cover a wider range of logics. It introduces
sequent-style calculi for large classes of propositional substructural, intermediate
and paraconsistent logics, which it then uses: (i) to check whether a substructural
logic is standard complete (and hence it is a fuzzy logic in the sense of [20,17])
and (ii) to extract non-deterministic finite-valued semantics for paraconsistent
and related logics and provide a uniform decidability proof for them. TINC
implements the theoretical results in [10,7,15,13], for which this paper provides
an overview and a non-technical description.

2 The System TINC

The system TINC, available at http://www.logic.at/tinc, takes as input a
logic specified via suitable Kripke models or Hilbert systems, returns (a paper
written in LATEX containing) an analytic calculus and states certain properties
of the logic. Currently, TINC includes the following tools which handle large
classes of substructural, paraconsistent and intermediate logics:

AxiomCalc transforms any suitable axiomatic extension of Full Lambek cal-
culus with exchange and weakening FLew (i.e., intuitionistic linear logic with
weakening) into a cut-free sequent or hypersequent calculus. Moreover, the tool
exploits the generated calculus by checking a sufficient condition for the standard
completeness of the input logic.

Paralyzer (PARAconsistent logics anaLYZER) transforms large classes of
Hilbert axioms defining paraconsistent (and related) logics into sequent calculus
rules. Moreover, it extracts non-deterministic, finite-valued semantics from the
obtained calculi which show the decidability of the logics and reveal whether
the calculi are analytic. Paralyzer also provides an encoding of the introduced
calculi for the proof-assistant Isabelle [27] that can be used for semi-automated
proof search within the considered logics.

Framinator (FRAMe condItioNs Automatically TO Rules) transforms frame
conditions expressed as classical first-order formulas within the class Π2 of the
arithmetical hierarchy (i.e. formulas of the form ∀x∃yP , for P quantifier free)
into cut-free labelled sequent calculi.

http://www.logic.at/tinc

20 A. Ciabattoni and L. Spendier

AxiomCalc implements in Prolog2 the results in [10,7], Paralyzer in [13] and
Framinator in [15]. The whole system consists of 34 files and around 5400 lines
of code (including documentation). The general structure of the implementation
is depicted in Figure 1 and is instantiated with specific methods for every tool.

Fig. 1. Design of TINC

checkInput checks whether the syntactic form of the input formulas is cor-
rect. The core component computeRules implements the algorithm(s) to ex-
tract Gentzen-style rules out of the input formulas. The component exploit,
which is not present in Framinator, implements methods that utilize the intro-
duced calculus to reason about the logic and establish properties of it. print-
Output contains everything that is related to presenting the results to the user.

The general idea behind the algorithm(s) implemented in computeRules
is to start with a suitable analytic Gentzen-style calculus for a base logic and
transform the Hilbert axioms or semantic conditions characterizing the logic at
hand (i.e. the input formulas) into suitable rules.

Notation: henceforth we will use ϕ, ψ, α, β for (metavariables for) formulas.
Γ,Δ,Σ,Λ will denote (metavariables for) multisets of formulas whereas Π will
always stand for either a formula or the empty set.

Following [10] (and its generalization to display calculi in [16], and to labelled
deductive systems in [15]) the key ingredients of the algorithm(s) are:

(1) the invertibility of the logical rules of the base calculus, and
(2) the following lemma, which allows formulas to change the side of the sequent

by moving from the rule conclusion to the rule premise. For instance, its
formulation for commutative (multiple-conclusion) sequent calculi is:

Lemma 1. The sequent Γ, ϕ⇒ ψ,Δ is interderivable with the rules (Γ ′ and
Δ′ are new metavariables):

Γ ′ ⇒ ϕ,Δ′

Γ, Γ ′ ⇒ ψ,Δ′, Δ and

Γ ′, ψ ⇒ Δ′

Γ, Γ ′, ϕ⇒ Δ′, Δ

by using cut and the identity axiom α⇒ α.

The transformation algorithm for substructural and for paraconsistent logics will
be explained in the next sections which also contain examples of the correspond-
ing tools AxiomCalc and Paralyzer.

2 We used swi-prolog by Jan Wielemaker http://www.swi-prolog.org.

http://www.swi-prolog.org

Tools for the Investigation of Substructural and Paraconsistent Logics 21

3 Substructural Logics

Substructural logics are obtained by dropping some of the structural rules from
Gentzen’s sequent calculus LJ. They encompass among many others classical,
intuitionistic, intermediate, fuzzy, linear and relevant logics. Substructural logics
are usually defined as axiomatic extensions of full Lambek calculus FL, that is
non-commutative intuitionistic linear logic.

In this section we give an overview of the theoretical results in [10,12] and their
use in the tool AxiomCalc focusing on substructural logics extending FLew, that
is FL with the rules for exchange and weakening. Connectives in these logics are
∧ (additive conjunction), · (multiplicative conjunction/fusion), ∨ (disjunction),
→ (implication) and the constants 1 and 0.

As usual, ¬ϕ is used as an abbreviation for ϕ→ 0.
In the following we refer to [22,11,18] for all concepts of universal algebra and

to [26] for sequent calculi.

3.1 From Axioms to Structural Rules

The algorithm in [10], which is the core of the implementation of AxiomCalc,
transforms large classes of axioms into structural sequent and hypersequent rules.

Which axioms can we handle? The axioms that belong to the classes N2 and
P3 of the substructural hierarchy – a syntactic classification of axioms overFLew
(or, equivalently, of algebraic equations over integral and commutative residuated
lattices) introduced in [10] for FLe (and in [12] for the non-commutative version).
The hierarchy is based on the polarity of the connectives of the base sequent
calculus for FLew; recall that a connective has positive (resp. negative) polarity
if its left (resp. right) logical rule is invertible, i.e., the conclusion implies the
premises, see [1]. The classes Pn and Nn contain axioms/equations with leading
positive (1, ∨, ·) and negative connectives (0, →, ∧).

Definition 1 (Substructural Hierarchy [10]). For n ≥ 0, the sets Pn,Nn

of formulas are defined as follows (P0, N0 contain all atomic formulas):

Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧ Nn+1 | 0

Intuition: the different classes are defined by alternating connectives of different
polarity. This accounts for the difficulty to deal with the corresponding axioms
proof theoretically (and, as shown in [12], with the preservation under suitable
order theoretic completions of the corresponding equations).

Example 1. Examples of Hilbert axioms within the classes N2 and P3 are

22 A. Ciabattoni and L. Spendier

Class Axiom Name
N2 ϕ→ ϕ · ϕ contraction

¬(ϕ ∧ ¬ϕ) weak contraction
ϕ · ϕ→ ϕ · ϕ · ϕ 3-contraction

P2 ϕ ∨ ¬ϕ excluded middle
(ϕ→ ψ) ∨ (ψ → ϕ) prelinearity

P3 ¬ϕ ∨ ¬¬ϕ weak excluded middle
¬(ϕ · ψ) ∨ (ϕ ∧ ψ → ϕ · ψ) weak nilpotent minimum

The procedure in [10] transforms each axiom within the class N2 into struc-
tural sequent calculus rules that preserve cut-elimination when added to the
calculus FLew for FLew (see below). These rules are however not powerful
enough to capture axioms beyond the class N2. Indeed, as shown in [10,12] they
can only formalize properties that are already valid in intuitionistic logic ([10])
and among them only those whose corresponding algebraic equations are closed
under the order theoretic completion known as Dedekind MacNeille3, in the con-
text of integral residuated lattices ([12]). These results ensure, for instance, that
no structural sequent rule can capture the prelinearity axiom (see Example 1),
which is present in all formalizations of Fuzzy Logic [20]. A structural rule for
this axiom was introduced in [2] using the hypersequent calculus – a simple and
natural generalization of Gentzen sequent calculus.

As proved in [10], and recalled below, the hypersequent calculus can indeed
deal with all the axioms within the class P3.

Definition 2. A hypersequent is a multiset of sequents written as Γ1 ⇒ Δ1 |
· · · | Γn ⇒ Δn where each Γi ⇒ Δi, i = 1, . . . , n, is a sequent, called compo-
nent of the hypersequent. If all components of a hypersequent contain at most
one formula in the succedent, the hypersequent is called single-conclusion, and
multiple-conclusion otherwise.

The intuitive interpretation of the symbol “|” is disjunctive. This is reflected
by the rules (EC) and (EW) (see Table 1), which are present in all hyperse-
quent calculi. The base hypersequent calculus we use is HFLew (see Table 1). Its
sequent version FLew is simply obtained by dropping the rules (EC) and (EW)
and removing the side hypersequent G everywhere.

Definition 3. Let r and r′ be two (hyper)sequent calculus rules. We say that
r and r′ are equivalent in a (hyper)sequent calculus S if the set of sequents
provable from the same (hyper)sequent assumptions in S ∪ {r} and in S ∪ {r′}
coincide. The definition naturally extends to sets of rules.

The algorithm in [10]: Following the idea sketched in Section 2, to transform
axioms in the class P3 into equivalent structural (hyper)sequent rules we use

(1) the invertible logical rules of the base calculus HFLew, that are (1, l), (∨, l),
(·, l), (0, r), (→, r) and (∧, r), and

(2) the following version of Lemma 1:

3 It is a generalization of Dedekind completion to ordered algebras, see e.g. [18].

Tools for the Investigation of Substructural and Paraconsistent Logics 23

G | ϕ⇒ ϕ
(init)

G | Γ ⇒ Π

G | 1, Γ ⇒ Π
(1, l)

G | ϕ,ψ, Γ ⇒ Π

G | ϕ · ψ, Γ ⇒ Π
(·, l)

G | Γ ⇒ ϕ G | Δ⇒ ψ

G | Γ,Δ⇒ ϕ · ψ
(·, r)

G |⇒ 1
(1, r)

G | Γ ⇒ Π

G | Γ, ϕ⇒ Π
(w, l)

G | ϕ, Γ ⇒ ψ

G | Γ ⇒ ϕ→ ψ
(→, r)

G | Γ ⇒ ϕ G | ψ,Δ⇒ Π

G | Γ, ϕ→ ψ,Δ⇒ Π
(→, l)

G | Γ ⇒
G | Γ ⇒ 0

(0, r)
G

G | Γ ⇒ Π
(EW)

G | Γ ⇒ ϕi

G | Γ ⇒ ϕ1 ∨ ϕ2

(∨, r)
G | Γ ⇒ ϕ G | ϕ,Δ⇒ Π

G | Γ,Δ⇒ Π
(cut)

G | Γ ⇒
G | Γ ⇒ ϕ

(w, r)
G | Γ ⇒ Π | Γ ⇒ Π

G | Γ ⇒ Π
(EC)

G | ϕ, Γ ⇒ Π G | ψ, Γ ⇒ Π

G | ϕ ∨ ψ, Γ ⇒ Π
(∨, l)

Table 1. Hypersequent calculus HFLew

Lemma 2. The hypersequent G | G′ | ϕ1, . . . , ϕn ⇒ ψ is equivalent to
(Γ1, . . . , Γn, Δ, Π are new metavariables)

G | Γ1 ⇒ ϕ1 · · · G | Γn ⇒ ϕn

G | G′ | Γ1, . . . , Γn ⇒ ψ and

G | ψ,Δ⇒ Π

G | G′ | ϕ1, . . . , ϕn, Δ⇒ Π

These two key ingredients are then integrated in the transformation procedure
as follows. Given any axiom ϕ ∈ N2 or ϕ ∈ P3:

(i) We start with the sequent⇒ ϕ if ϕ ∈ N2 or with hypersequents G |⇒ ϕ1 |
· · · |⇒ ϕn if ϕ ∈ P3 (and hence its normal form is a conjunction of formulas of
the form ϕ1∨· · ·∨ϕn with ϕ1, . . . , ϕn ∈ N2). By utilizing the invertibility of the
logical rules, we decompose ϕ as much as possible and obtain an equivalent set
of (hyper)sequent rules R without premises. As an example, consider the axiom
¬(ϕ · ψ) ∨ (ϕ ∧ ψ → ϕ · ψ) ∈ P3, contained in the fuzzy logic WNM [17]:

G |⇒ ¬(ϕ · ψ) |⇒ ϕ ∧ ψ → ϕ · ψ −→(i) G | ϕ, ψ ⇒| ϕ ∧ ψ ⇒ ϕ · ψ

(ii) We apply Lemma 2 to each r ∈ R to change side of the sequents of those
formulas that cannot be decomposed by logical rules in their current position;
continuing our example we move ϕ ∧ ψ and ϕ · ψ and get (Σ,Λ,Π are new
metavariables)

−→(ii)

G | Λ⇒ ϕ ∧ ψ G | Σ,ϕ · ψ ⇒ Π

G | ϕ, ψ ⇒| Λ,Σ ⇒ Π

(iii) We utilize again the invertibility of the logical rules to decompose the
compound formulas in the premises of each rule, resulting in a set of structural
(hyper)sequent rules Rs. In our case Rs contains:

−→(iii)

G | Λ⇒ ϕ G | Λ⇒ ψ G | Σ,ϕ, ψ ⇒ Π

G | ϕ, ψ ⇒| Λ,Σ ⇒ Π

24 A. Ciabattoni and L. Spendier

(iv) The final step is a completion procedure that transforms each r′ ∈ Rs

into an equivalent (hyper)sequent rule that preserves cut-elimination and the
subformula property once it is added to the base calculus:

(iv.a) Using Lemma 2 we replace all the metavariables in the rule conclusions
standing for formulas by new metavariables for multisets of formulas. Back
to our example we get (Γ and Δ are new):

−→(iv.a)

G | Λ ⇒ ϕ G | Λ⇒ ψ G | Σ,ϕ, ψ ⇒ Π G | Γ ⇒ ϕ G | Δ ⇒ ψ

G | Γ,Δ⇒| Λ,Σ ⇒ Π

(iv.b) We remove all the metavariables that appear in the premises and not
in the conclusion. When those variables appear on the left and on the
right hand side of different premises we close the obtained rules under all
possible applications of (cut). For the rule above we therefore get:

G | Γ,Λ,Σ ⇒ Π G | Σ,Λ, Λ ⇒ Π G | Σ,Γ,Δ ⇒ Π G | Σ,Λ,Δ⇒ Π

G | Γ,Δ ⇒| Λ,Σ ⇒ Π
(wnm)

Theorem 1 ([10]). Given any axiom ϕ ∈ N2 (ϕ ∈ P3), the rules generated by
the above algorithm are equivalent to ϕ in FLew and they preserve cut elimina-
tion when added to the sequent calculus FLew (hypersequent calculus HFLew).

The above algorithm is implemented in the tool AxiomCalc that, given an
input axiom, first determines the class in the hierarchy to which the axiom
belongs and, if it is within P3, it automates the Steps (i)-(iv) above.

Example 2. Figure 2 below shows how to use AxiomCalc to define an analytic
calculus for FLew extended with the axiom ϕ · ϕ→ ϕ · ϕ · ϕ ∈ N2.

3.2 An Application: Standard Completeness

The introduced calculi can be further utilized to check whether the corresponding
logics are standard complete, i.e. complete for algebras with a real unit interval
lattice reduct and hence whether they are fuzzy logics in the sense of [20,17]. The
check is done using a sufficient condition for a hypersequent calculus to admit
the elimination of the so-called density rule (below left is its Hilbert version and
below right its hypersequent version in single-conclusion calculi):

(A→ p) ∨ (p→ B) ∨ C

(A→ B) ∨ C
(density)

G | Γ ⇒ p | Σ, p⇒ Π

G | Γ,Σ ⇒ Π
(hdensity)

where p is a propositional variable not occurring in any instance of A, B, or C
(Γ,Σ and Π). Ignoring C, density can intuitively be read contrapositively as
saying (very roughly) “if A > B, then A > p and p > B for some p”; hence
the name “density”. The connection between the elimination of the density rule
and standard completeness is as follows: as shown in [22], adding density to
any axiomatic extension L of FLew with prelinearity (see Example 1) makes

Tools for the Investigation of Substructural and Paraconsistent Logics 25

Fig. 2. Above: Main screen of AxiomCalc with the input axiom; below: Output

the corresponding logic rational complete, i.e., complete with respect to a cor-
responding class of (a) linearly and (b) densely ordered algebras; (a) is due to
the prelinearity axiom, while (b) to the density rule. Hence by showing that the
addition of density does not enlarge the set of provable formulas (i.e. density is
an admissible or an eliminable rule) we get rational completeness for L. Stan-
dard completeness with respect to algebras with lattice reduct [0, 1] can then be
obtained in many cases by means of a Dedekind MacNeille-style completion.

A syntactic condition which guarantees the elimination of the density rule
from a suitable hypersequent calculus was introduced in [7]. Using this result a
uniform proof of standard completeness that applies to large classes of logics is
as follows: let L be the logic obtained by extending FLew with prelinearity and
with any (set of) axiom(s) within the class P3:

– We first introduce a hypersequent calculus HL for L;
– If HL satisfies the sufficient condition in [7] then L is rational complete,

and by [11] it is also standard complete being all algebraic equations cor-
responding to axioms within the class P3 closed under Dedekind-MacNeille
completion when applied to subdirectly irreducible algebras.

This general approach contrasts with the logic-specific techniques usually em-
ployed to prove standard completeness, e.g. [19,17]. Moreover, it allows the dis-
covery of new fuzzy logics in a completely automated way. The whole procedure
is implemented in AxiomCalc and is started by ticking the checkbox “Check for
Standard Completeness”, see Figure 2 above.

26 A. Ciabattoni and L. Spendier

4 Paraconsistent and Related Logics

Paraconsistent logics are logics suitable for reasoning in the presence of incon-
sistent information. The most important family of paraconsistent logics is that
of C-systems [8], where the notion of consistency is internalized in the object
language by a unary consistency operator ◦; ◦ϕ has the intuitive meaning of “ϕ
is consistent”. For many of these logics, finding an analytic calculus has been an
open problem.

In this section we give an overview of the theoretical results in [13] and their
use in Paralyzer. The logics we consider are paraconsistent (and other) logics
all obtained by extending the positive fragment of propositional classical logic
Cl+ (containing conjunction ∧, disjunction ∨ and implication ⊃) with finitely
many unary connectives from a set U ; these logics include the most well known
C-systems.

4.1 From Axioms to Logical Rules

The algorithm in [13], which is the core of the implementation of the tool Para-
lyzer, transforms axioms into logical sequent rules.

Which axioms can we handle? All axioms belonging to the set of formulas
Ax [13] that are (i) generated by the following grammar (where G is the initial
variable and U = {�1, . . . , �n}):
G = R1 | R2 | R3 R3 = (R3 � P1) | (P1 �R3) | � � p1
R1 = (R1 � P1) | (P1 �R1) | �p1 P1 = (P1 � P1) | �p1 | p1 | p2
R2 = (R2 � P2) | (P2 �R2) | �(p1 � p2) P2 = (P2 � P2) | �p1 | p1 | �p2 | p2
� = ∧ | ∨ |⊃ �, � = �1 | · · · | �n
and (ii) satisfy the following technical condition: some subformula �p1 of a

formula generated by R1 (the subformulas � � p1 or �(p1 � p2) of a formula
generated by R3 or R2, resp.) must not be contained in
(a) a positively4 occurring (sub)formula of the form ψ1 ∧ ψ2, and
(b) a negatively occurring (sub)formula of the form ψ1 ∨ ψ2 or ψ1 ⊃ ψ2.

Example 3. Examples of formulas in Ax are (� ∈ {∨,∧,⊃} and ¬, ◦ ∈ U):

(n1) p1 ∨ ¬p1 (n2) p1 ⊃ (¬p1 ⊃ p2)
(c) ¬¬p1 ⊃ p1 (e) p1 ⊃ ¬¬p1
(nl
∧) ¬(p1 ∧ p2) ⊃ (¬p1 ∨ ¬p2) (nr

∧) (¬p1 ∨ ¬p2) ⊃ ¬(p1 ∧ p2)
(nl
∨) ¬(p1 ∨ p2) ⊃ (¬p1 ∧ ¬p2) (nr

∨) (¬p1 ∧ ¬p2) ⊃ ¬(p1 ∨ p2)
(nl
⊃) ¬(p1 ⊃ p2) ⊃ (p1 ∧ ¬p2) (nr

⊃) (p1 ∧ ¬p2) ⊃ ¬(p1 ⊃ p2)
(b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) (r�) ◦(p1 � p2) ⊃ (◦p1 ∨ ◦p2)
(k) ◦p1 ∨ (p1 ∧ ¬p1) (i) ¬◦p1 ⊃ (p1 ∧ ¬p1)
(o1
�) ◦p1 ⊃ ◦(p1 � p2) (o2

�) ◦p2 ⊃ ◦(p1 � p2)
(a�) (◦p1 ∧ ◦p2) ⊃ ◦(p1 � p2) (a¬) ◦p1 ⊃ ◦¬p1

4 A subformula ϕ occurs negatively (positively, resp.) in ψ if there is an odd (even,
resp.) number of implications ⊃ in ψ having ϕ as a subformula of its antecedent.

Tools for the Investigation of Substructural and Paraconsistent Logics 27

Most C-systems (see, e.g., [8]) are obtained by employing suitable combinations
of the above axioms which express various properties of negation and of the
consistency operator ◦.

The algorithm in [13]: Following the idea sketched in Section 2, to transform
the axioms within Ax into equivalent logical sequent rules we use:

(1) The invertible logical rules of the base sequent calculus LK+ for Cl+ , which
is LK without negation (note that in LK+ all rules for connectives are
invertible), and

(2) Lemma 1.

The procedure to transform any ϕ ∈ Ax into equivalent rules (cf. Definition 3)
then works as follows:

(i) Starting from ⇒ ϕ, by utilizing the invertibility of the logical rules of
LK+as much as possible, ϕ is decomposed into its subformulas, thus obtaining
an equivalent set of rules R without premises.

As an example, let ϕ := p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2))) ∈ Ax:

⇒ p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) −→(i) p1 ⇒ ¬p1 ⊃ (◦p1 ⊃ p2)

−→(i) p1,¬p1 ⇒ ◦p1 ⊃ p2 −→(i) p1,¬p1, ◦p1 ⇒ p2

(ii) We remove all rules r ∈ R containing pi ⇒ pi for i ∈ {1, 2} in their
conclusion. Moreover, if a rule does not contain �(p1 � p2) with � ∈ U and
� ∈ {∨,∧,⊃}, we can safely remove all variables p2. In our example it gives:

−→(ii) p1,¬p1, ◦p1 ⇒

(iii) By using Lemma 1 all remaining formulas but one are moved to the
premises of each rule, changing the side of the sequent. The formula that remains
in the conclusion will be the one introduced by the rule and will be either of the
form �p1 (when ϕ was generated by R1), � � p1 or �(p1 � p2), resp. (when ϕ was
generated by R3 or R2, resp.) for any �, � ∈ U and � ∈ {∧,∨,⊃}.

Continuing our example (using weakening and contraction of LK+), we obtain

−→(iii)

Γ ⇒ Δ, p1 Γ ⇒ Δ,¬p1
◦p1, Γ ⇒ Δ or −→(iii)

Γ ⇒ Δ, p1 Γ ⇒ Δ, ◦p1
¬p1, Γ ⇒ Δ

Theorem 2 ([13]). Any axiom ϕ ∈ Ax can be transformed into sequent rules
equivalent in LK+ having the following form (�, �, ∗ ∈ U and � ∈ {∧,∨,⊃}):

unary-one rules binary rules unary-two rules

S1
Γ, �ϕ⇒ Δ

S2
Γ, �(ϕ1 � ϕ2)⇒ Δ

S1
Γ, � � ϕ⇒ Δ

S1
Γ ⇒ Δ, �ϕ

S2
Γ ⇒ Δ, �(ϕ1 � ϕ2)

S1
Γ ⇒ Δ, � � ϕ

28 A. Ciabattoni and L. Spendier

where S1 may contain premises of the form Γ, ϕ ⇒ Δ; Γ, ∗ϕ ⇒ Δ; Γ ⇒ Δ,ϕ;
and Γ ⇒ Δ, ∗ϕ, while S2 of the form Γ, ϕi ⇒ Δ; Γ, ∗ϕi ⇒ Δ; Γ ⇒ Δ,ϕi, and
Γ ⇒ Δ, ∗ϕi where i ∈ {1, 2}.

4.2 An Application: Non-deterministic Semantics

The introduced calculi, obtained by extending LK+ with the special rules de-
scribed in Theorem 2, are used to extract new semantics for the corresponding
logics using partial non-deterministic matrices (PNmatrices). These are a natural
generalization of the standard multi-valued matrices, which allow the truth-value
assigned to a complex formula to be chosen non-deterministically out of a given
(possibly5 empty) set of options.

Our semantics guarantee the decidability of the considered logics (Corollary 1)
and are used to check whether the defined calculi satisfy a generalized notion
of the subformula property (Theorem 4). Regarding the latter, note that the
addition of the new logical sequent rules to LK+ does not necessarily result in a
cut-free system (or in a system satisfying some form of subformula property). In
fact, checking whether this is the case requires a “global view” of the resulting
calculus, which takes into account the way in which all the rules of the calculus
mentioning the same connectives interact. This view is provided by our semantics
and, as shown in [6], it amounts to checking only whether the resulting PNmatrix
contains an empty set in the truth tables of the connectives.

Definition 4 ([6]). A partial non-deterministic matrix (PNmatrix) M for a
propositional language L consists of:
(1) A set VM of truth values.
(2) A subset DM ⊆ VM of designated truth values.
(3) A truth table �M : Vn

M → P (VM) for every n-ary connective � of L.

From sequent calculi to PNmatrices: Let G be sequent calculus obtained by
adding to LK+ any set R of unary-one, binary and unary-two rules with set U of
unary connectives. The truth values VM of the PNmatrix for G are tuples over
{0, 1} of size “# of unary connectives in U”+1; the tuples store the information
about the value of a formula ϕ and also of �ϕ for each � ∈ U . The matrix is then
constructed using the rules in R, which play different roles according to their
type. More precisely,

– unary-one rules reduce the set VM of truth values,

– unary-two rules determine the truth tables of the unary connectives, and

– binary rules determine the truth tables of the binary connectives.

We show below how to construct a PNmatrix out of a concrete sequent calculus
(see [6] for the general procedure and all technical details).

5 The possibility of having empty spots in the matrices make PNmatrices a general-
ization of non-deterministic matrices Nmatrices [4].

Tools for the Investigation of Substructural and Paraconsistent Logics 29

Let U = {�}, and consider the sequent calculus LK+ extended with the two
rules (equivalent to the axioms p1 ⊃ (�p1 ⊃ p2) and � � p1 ⊃ p1, respectively):

Γ ⇒ Δ,ϕ

Γ, �ϕ⇒ Δ
(ruo) and

Γ, ϕ⇒ Δ

Γ, � � ϕ⇒ Δ
(rut)

We first construct the set of truth values VM, starting with the set of all
possible truth values of size 2 (i.e. |{�}|+ 1):

{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}

Note that a tuple 〈x, y〉 stands for 〈ϕ : x, �ϕ : y〉, i.e., it says that x (resp. y)
is the value of ϕ (resp. of �ϕ).

As usual, we interpret formulas occurring on the right (left) hand side of a
sequent as taking the value 1 (0). Hence the rule (ruo) says that all tuples in
which ϕ takes the value 1 (in the rule premise ϕ occurs on the right hand side)
must also have that �ϕ takes the value 0. As 〈1, 1〉 does not satisfy this condition,
the set of truth values is reduced to

VM = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉}

The set of designated truth values DM contains all elements of VM where the
first element is 1; in our case DM = {〈1, 0〉}.

The truth table of the unary connective � is determined in two steps:
First, we set up the basic truth table for � where we assign to every tuple

u ∈ VM all tuples where ϕ coincides with �ϕ of u (see left table below), e.g.
u = 〈0, 0〉 has 〈0, 0〉, 〈0, 1〉 as possible values.

Then, we have to consider the rule (rut) which says that for every tuple u
in which ϕ takes the value 0 (in the rule premise, ϕ occurs on the left side) we
delete the assigned tuples not having 0 for � � ϕ. E.g., for u = 〈0, 0〉 we delete
the tuple 〈0, 1〉 as �ϕ takes 1 (we are in the truth table for the unary connective
�, and hence �ϕ corresponds to � � ϕ).

�

〈0, 0〉 {〈0, 0〉, 〈0, 1〉}
〈0, 1〉 {〈1, 0〉}
〈1, 0〉 {〈0, 0〉, 〈0, 1〉}

−→(rut)

�

〈0, 0〉 {〈0, 0〉}
〈0, 1〉 {〈1, 0〉}
〈1, 0〉 {〈0, 0〉, 〈0, 1〉}

Note that the PNmatrix for a calculus G can be automatically computed by
the tool Paralyzer (see Example 4).

Theorem 3 ([13]). Let G be the sequent calculus for the logic defined by ex-
tending Cl+ with any ϕ ∈ Ax, and M its associated PNmatrix, both obtained
by the procedures sketched above. A sequent is provable in G iff it is valid6 in
M.

6 That is it takes a designated truth value under all interpretations inM.

30 A. Ciabattoni and L. Spendier

As each logic characterized by a finite PNmatrix is decidable [6] we immedi-
ately have:

Corollary 1. All logics extending Cl+ with axioms in Ax are decidable.

The PNmatrix M is also used to check the analyticity of the corresponding
calculus G:

Theorem 4 ([13]). M does not contain empty sets in its truth tables iff when-
ever a sequent s is provable in G, s can be proved by using only its subformulas
and their extensions with unary connectives from U .

Example 4. Consider the axioms p1 ∨ ¬p1 and ◦p1 ⊃ ◦¬p1, which are given as
input (in a slightly adapted syntax) for Paralyzer, see Figure 3.

Fig. 3. Main screen of Paralyzer with the input axioms. Note that the user can choose
the base calculus between LK+(default option) and BK [3].

The computed rules and the associated PNmatrix are in Figure 4.

5 Future Research

The tools described in this paper provide automated support for the introduction
of analytic calculi and the investigation of interesting properties (standard com-
pleteness, non-deterministic semantics and decidability) for many substructural
and for many paraconsistent and related logics.

Many practical and theoretical issues are still to be addressed; among them
extending our results to new logics including first-order logics. In the substruc-
tural case the main challenge is to find the right formalism (and method) to
capture axioms beyond the level P3 of the substructural hierarchy.

Tools for the Investigation of Substructural and Paraconsistent Logics 31

Fig. 4. Left: output containing the equivalent sequent rules and VM of the PNmatrix.
Right: truth tables for the unary connectives.

For paraconsistent and related logics the introduction of analytic calculi could
be easily adapted to capture e.g. paraconsistent logics extending intuitionistic
logic, substructural paraconsistent logics or first-order logics; however the con-
struction of the corresponding PNmatrices would require a deeper investigation.
For the time being there is indeed no theory of PNmatrices for first-order logics,
intuitionistic logics or substructural logics (that in fact lack even a theory of
Nmatrices [4]). A step forward in this direction has been done in the recent work
[14] that generalizes the results described in Section 4 to axioms in Ax with a
possible nesting of unary connectives of any fixed depth. On a more practical
level, the encoding into the proof-assistant Isabelle [27] of the calculi computed
by Paralyzer allows us to find proofs of theorems in the considered logics in a
semi-automated way. The definition of automated deduction procedures is cur-
rently under investigation; following [21], a possible approach is to search for
suitable encodings of our calculi into SAT.

Finally, we plan to extend the system TINC with new tools that cover further
classes of interesting logics, e.g. modal logics defined by Hilbert axioms.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation 2(3), 297–347 (1992)

2. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Annals of Mathematics and Artificial Intelligence 4, 225–248 (1991)

3. Avron, A., Konikowska, B., Zamansky, A.: Cut-free sequent calculi for C-systems
with generalized finite-valued semantics. Journal of Logic and Computation 21(3),
517–540 (2013)

4. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic
and Computation 15(3), 241–261 (2005)

5. Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: MUltlog 1.0: Towards an expert
system for many-valued logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE
1996. LNCS, vol. 1104, pp. 226–230. Springer, Heidelberg (1996)

6. Baaz, M., Lahav, O., Zamansky, A.: Finite-valued semantics for canonical labelled
calculi. Journal of Automated Reasoning 51(4), 401–430 (2013)

32 A. Ciabattoni and L. Spendier

7. Baldi, P., Ciabattoni, A., Spendier, L.: Standard completeness for extensions of
MTL: An automated approach. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012.
LNCS, vol. 7456, pp. 154–167. Springer, Heidelberg (2012)

8. Carnielli, W.A., Marcos, J.: A taxonomy of C-systems. In: Carnielli, W.A.,
Coniglio, M.E., Ottaviano, I.D. (eds.) Paraconsistency: The Logical Way to the
Inconsistent, pp. 1–94 (2002)

9. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)
10. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical

logics. In: Proceedings of LICS 2008, pp. 229–240 (2008)
11. Ciabattoni, A., Galatos, N., Terui, K.: MacNeille Completions of FL-algebras. Al-

gebra Universalis 66(4), 405–420 (2011)
12. Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural

logics: cut-elimination and completions. Annals of Pure and Applied Logic 163(3),
266–290 (2012)

13. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the
investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.)
LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013)

14. Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Taming paraconsistent (and
other) logics: An algorithmic approach (submitted 2014)

15. Ciabattoni, A., Maffezioli, P., Spendier, L.: Hypersequent and labelled calculi for
intermediate logics. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX
2013. LNCS, vol. 8123, pp. 81–96. Springer, Heidelberg (2013)

16. Ciabattoni, A., Ramanayake, R.: Structural extensions of display calculi: A general
recipe. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS,
vol. 8071, pp. 81–95. Springer, Heidelberg (2013)

17. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic,
vol. 1. Studies in Logic, Mathematical Logic and Foundations, vol. 37. College
Publications (2011)

18. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An algebraic
glimpse at substructural logics. Studies in Logics and the Foundations of Mathe-
matics. Elsevier (2007)

19. Jenei, S., Montagna, F.: A proof of standard completeness for Esteva and Godo’s
MTL logic. Studia Logica 70(2), 183–192 (2002)

20. Hájek, P.: Metamathematics of Fuzzy Logic. Springer (1998)
21. Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent cal-

culi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI),
vol. 8562, pp. 76–90. Springer, Heidelberg (2014)

22. Metcalfe, G., Montagna, F.: Substructural fuzzy logics. Journal of Symbolic
Logic 7(3), 834–864 (2007)

23. Nigam, V., Pimentel, E., Reis, G.: An extended framework for specifying and rea-
soning about proof systems. Journal of Logic and Computation (accepted)

24. Ohlbach, H.J.: Computer support for the development and investigation of logics.
Logic Journal of the IGPL 4(1), 109–127 (1996)

25. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator
MetTeL2. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS,
vol. 7519, pp. 492–495. Springer, Heidelberg (2012)

26. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press (2000)

27. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008)

Non-classical Planning with a Classical Planner:

The Power of Transformations

Hector Geffner

ICREA & Universitat Pompeu Fabra
Roc Boronat 138, 08018 Barcelona, Spain

hector.geffner@upf.edu
http://www.dtic.upf.edu/˜hgeffner

Abstract. Planning is the model-based approach to autonomous behav-
ior where a predictive model of actions and sensors is used to generate
the behavior for achieving given goals. The main challenges in plan-
ning are computational as all models, whether featuring uncertainty and
feedback or not, are intractable in the worst case when represented in
compact form. Classical planning refers to the simplest form of plan-
ning where goals are to be achieved by applying deterministic actions to
a fully known initial situation. In this invited paper, I review the infer-
ences performed by classical planners that enable them to deal with large
problems, and the transformations that have been developed for using
these planners to deal with non-classical features such as soft goals, hid-
den goals to be recognized, planning with incomplete information and
sensing, and multiagent nested beliefs.

1 Introduction

At the center of the problem of intelligent behavior is the problem of selecting
the action to do next. In AI, three different approaches have been used to address
this problem. In the programming-based approach, the controller that prescribes
the action to do next is given by a programmer, usually in a suitable high-level
language. In this approach, the problem is solved by the programmer in his
head, and the solution is expressed as a high-level program in behavior-based
languages, hierarchical task-networks, rules, or languages such as Golog [1,2]. In
the learning-based approach, the controller is not given by a programmer but is
induced from experience: the agent’s own experience, in reinforcement learning,
or the experience of a ‘teacher’ in supervised learning schemes [3]. Finally, in the
model-based approach, the controller is not learned but is derived automatically
from a model of the actions, sensors, and goals.

Planning is the model-based approach to action selection where different types
of models are used to make precise the different types of agents, environments,
and controllers [4,5]. Classical planning is the simplest form of planning, con-
cerned with the achievement of goals in deterministic environments whose initial
state is fully known. POMDP planning, on the other hand, allows for stochastic
actions in partially observable environments. The main challenges in planning

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 33–47, 2014.
© Springer International Publishing Switzerland 2014

http://www.dtic.upf.edu/~hgeffner

34 H. Geffner

are computational, as all the models, whether accommodating feedback and un-
certainty or not, are intractable in the worst case when models are represented
in compact form.

In this paper, I review the inferences performed by classical planners that
enable them to deal with large problems, and the transformations that have been
developed for using these planners to deal with non-classical features such as soft
goals, hidden goals to be recognized, planning with incomplete information and
sensing, and multiagent nested beliefs.

2 Planning Models

A wide range of models used in planning can be understood as variations of a
basic state model featuring

– a finite and discrete state space S,
– a known initial state s0 ∈ S,
– a set SG ⊆ S of goal states,
– a set A(s) ⊆ A of actions applicable in each state s ∈ S,
– a deterministic state transition function f(a, s), a ∈ A(s), and
– positive action costs c(a, s).

This is the model underlying classical planning where it also normally assumed
that action costs c(a, s) do not depend on the state, and hence c(a, s) = c(a).
A solution or plan in this model is a sequence of applicable actions that map
the initial state into a goal state. More precisely, a plan π = a0, . . . , an−1 must
generate a state sequence s0, . . . , sn such that ai ∈ A(si), si+1 = f(ai, si), and
sn ∈ SG, for i = 0, . . . , n− 1. The cost of the plan is the sum of the action costs
c(ai, si), and a plan is optimal if it has minimum cost over all plans.

A classical plan a0, . . . , an represents an open-loop controller where the action
to be done at time step i depends on the step index i. The solution of models
that accommodate uncertainty and feedback, on the other hand, produce closed-
loop controllers where the action to be done at step i depends on the actions
and observations collected up to that point. These models can be obtained by
relaxing some of the assumptions in the classical model.

In the model for conformant planning, the initial state s0 is not known and it
is replaced by a set S0 of possible initial states. Likewise, in non-deterministic
conformant planning, the state transition function f(a, s) is replaced by a non-
deterministic transition function F (a, s) that denotes the set of states that are
possible after doing an action a in the state s. A conformant plan is an ac-
tion sequence that must achieve the goal for any possible initial state and state
transition.

In contingent planning or partially observable planning, a sensor model O(a, s)
is assumed that maps the current state s and last action a into a set of possible
observation tokens that provide partial information about the true but possibly
hidden state s. Contingent plans can be expressed in many forms, for example,
as a function (policy) mapping beliefs into actions, where a belief represents a

Non-classical planning with a classical planner 35

set of states that are deemed as possible. The initial belief state is given by the
set of states S0 that are initially possible, and the successor belief states can be
obtained from the actions performed and the observations gathered, using the
transition and sensor functions F (·, ·) and O(·, ·).

Partial Observable Markov Decision Processes (POMDPS) are contingent
planning models where uncertainty about the initial situation, the next system
state, and the possible token to be observed, are not represented by sets but
by probability distributions. Beliefs in POMDPs are thus not sets of states but
probability distributions over states. Markov Decision Processes are POMDPs
where the states are fully observable.

Classical, conformant, contingent, MDP, and POMDP planners accept a com-
pact description of the corresponding models and produce the solutions (con-
trollers) automatically. On-line planners, on the other hand, produce the action
to be done next in the current situation. The basic language for modeling clas-
sical planning problems is STRIPS, where a problem is a tuple P = 〈F, I,O,G〉
in which F is a set of atoms, I ⊆ F and G ⊆ F represent the initial and goal
situations, and O is a set of actions a with preconditions, add, and delete ef-
fects, all part of F . The PDDL language provides a standard syntax for STRIPS
and a number of extensions. Similar languages are used to describe the other
planning models in compact form. In all cases, a problem involves a number of
variables, boolean or not, and the states correspond to the possible valuations
of such variables.

3 Classical Planning

A classical planning problem P can be mapped into a path-finding problem over a
graph S(P) where the nodes are the states, the initial node and target nodes are
the initial and goal states respectively, and a directed edge between two nodes
denotes the existence of an action that maps one state into the other. Classical
planning problems can thus be solved in theory by path-finding algorithms such
as Dijkstra’s, but not in practice, as the size of the graph is exponential in the
number of problem variables. Current classical planners such as LAMA [6] thus
appeal to three ideas for scaling up: automatically derived heuristic functions
for guiding the search [7,8], the inference of implicit goals in the problems called
landmarks [9], and a structural criterion for distinguishing the applicable actions
that are more likely to be relevant called the helpful actions [10].

Heuristic functions have been used in AI since the 60s for making graph search
goal-directed. An heuristic function h(s) in planning provides a quick but ap-
proximate estimate of the cost of solving the problem from the state s. The new
development in planning in the 90s was a way for deriving informed heuristic val-
ues effectively from STRIPS encodings. Basically, if P (s) is the classical planning
problem with initial state s, and P+(s) is the delete-free relaxation of P (s); i.e.,
the STRIPS problem that results from dropping the “delete lists”, the heuristic
h(s) is set to the cost of a relaxed plan for P (s); namely a plan for the relaxation
P+(s) [10]. While computing an optimal plan for the delete-free problem P+(s)

36 H. Geffner

remains NP-hard, computing one possibly non-optimal plan for P+(s) is easy.
This is because delete-free problems are fully decomposable, and hence, a plan π
that achieves p from s can be appended to a plan π′ that achieves p′ from s to
yield a plan that achieves both p′ and p.

As a result, a simple polynomial iterative procedure can be used to compute
relaxed plans for achieving each of the atoms in the problem. Basically, an atom p
is reachable in 0 steps with relaxed plan π(p, s) = {} if p ∈ s (p is true in s), while
an atom p is reachable in i + 1 steps with relaxed plan π(p1, s), . . . , π(pn, s), ap
if p not reachable in i steps or less from s, and there is an action ap that adds p
with preconditions p1, . . . , pn reachable from s in no more than i steps.

It’s simple to prove that the procedure terminates in a number of steps
bounded by number of problem atoms (when there are no new reachable atoms),
and that if an atom p is reachable, π(p, s) is a relaxed plan for p from s; i.e. a
plan for p in the relaxation P+(s). Also if an atom p is not reachable from s,
there is no plan for p in the original problem P (s). The heuristic hFF(s) used in
the FF and LAMA planners is related to the number of different actions in the
relaxed plans π(Gi, s) for the problem goals Gi. The actions applicable in a state
s that are regarded as helpful are the actions that are relevant to these relaxed
plans; namely, those that add the precondition of an action in π(Gi, s) or a goal
Gi that is not true in s. Similarly, the landmarks in P (s) are identified with the
landmarks of the relaxation P+(s) which can be computed in low polynomial
time; indeed, p is a landmark in P+(s) and hence in P (s), iff the relaxed problem
P+(s) has no plans once the actions that add the atom p are excluded.

State-of-the-art classical planners make use of these three notions, heuristics,
landmarks, and helpful actions in different ways. For example, LAMA is a best-
first search planner that uses four queues [11]: two of these queues are ordered by
the hFF heuristic and two are ordered by the number of unachieved landmarks.
One queue for each heuristic is restricted to contain the children that result from
the application of helpful actions, and the best first search alternates among the
four queues. In this way, these planners tend to be robust and do not break down
due to the number of atoms or actions in the problem. In the last few years, the
SAT approach to classical planning [12], as pushed recently by Rintanen [13], has
closed the performance gap with heuristic search planners quite considerably too.

4 Beyond Classical Planning

Classical planners work reasonably well by now, meaning that they can accept
problems involving hundreds, and even thousand of actions and variables, often
producing plans very quickly.1 The sheer size of a problem is not an impediment
in itself for solving it. The model underlying classical planning is simple but
useful. Actions in planning can be activities or policies of any sort that can be
characterized deterministically in terms of pre and postconditions. While non-
deterministic effects are not accommodated, they can be handled sometimes in

1 My focus is on satisficing planning, not optimal planning. Satisficing planners search
for solutions that are good but not necessarily optimal.

Non-classical planning with a classical planner 37

a simple manner too. Some of the best planners in the MDP competitions held
so far, for example, are not MDP solvers, but classical planners that choose one
of the possible outcomes and replan from the current state when the system is
observed off its expected trajectory [14].

For dealing with non-classical planning models in a more general way, two
types of approaches have been pursued: a top-down approach, where native
solvers are developed for more expressive models, and a bottom-up approach,
where the power of classical planners is exploited by means of suitable transla-
tions [15]. MDP and POMDP planners are examples of native solvers for more
expressive models. A limitation of these planners in comparison with classical
planners is that inference is usually performed at the level of states and belief
states, rather than at the level of variables. Translation-based approaches, on
the other hand, leverage on classical planners for solving non-classical planning
problems by introducing suitable transformations.

5 Translations and Transformations

Transformations have been developed for dealing with soft goals, goal recognition,
incomplete information and sensing, and multiagent nested beliefs. The ideas
underlying these transformations are reviewed below. Other features addressed
in recent years using classical planners and transformations include temporally
extended goals [16,17,18,19], probabilistic conformant planning [20], and off-line
contingent planning [21,22].

5.1 Soft Goals and Rewards

Soft goals are used to express desirable outcomes that unlike standard hard
goals are subject to a cost-utility tradeoff [23]. We consider STRIPS problems
extended with positive action costs c(a) for each action a, and non-negative
rewards or utilities u(p) for every atom p. The soft-goals of the problem are the
atoms with positive utility. In the presence of soft goals, the target plans π are
the ones that maximize the utility measure u(π) given by the difference between
the total utility obtained by the plan and its cost; i.e., u(π) =

∑
p:π|=p u(p)−c(π)

where c(π) is the sum of the action costs in π, and the utility sum ranges over
the soft goals p that are true at the end of the plan.

A plan π for a problem with soft goals is optimal when no other plan π′ has
utility u(π′) higher than u(π). The International Planning Competition held in
2008 featured a net-benefit optimal track where the objective was to find u(π)
optimal plans [24]. Soft goal or net-benefit planning appears to be very different
than classical planning as it involves two interrelated problems: deciding which
soft goals to pursue and deciding how to achieve them. Indeed, most of the entries
in the competition developed native planners for solving these two interrelated
problems. More recently, it has been shown that problems P with soft goals can
be compiled into equivalent problems P ′ without soft goals that can be solved by
classical planners able to handle action costs only [25].

38 H. Geffner

A B C

D

EFH

J X

Fig. 1. Goal recognition: Where is the agent moving to?

The idea of the transformation is very simple. For soft-goals p associated with
individual atoms, one adds new atoms p′ that are made into hard goals in P ′ that
are achievable in one of two ways: by the new actions collect(p) with precondition
p and cost 0, or by the new actions forgo(p) with precondition p, that stands for
the negation of p, and cost equal to the utility u(p) of p. Additional bookkeeping
is needed in the translation so that these new actions can be done only after the
actions in the original problem.

The two problems P and P ′ are equivalent in the sense that there is a corre-
spondence between the plans for P and P ′, and corresponding plans are ranked
in the same way. More specifically, for any plan π for P , there is a plan π′ in P ′

that extends π with the end action and a set of collect and forgo actions whose
cost is c(π′) = −u(π) + α where α is a constant independent of both π and π′.
Finding an optimal (maximum utility) plan π for P is therefore equivalent to
finding an optimal (minimum cost) plan π′ for P ′. Interestingly, the cost-optimal
planners that entered the optimal sequential track of the 2008 IPC, fed with the
translations of the problems in the optimal net-benefit track, do significantly
better than the net-benefit planners that entered the latter [25].

5.2 Plan and Goal Recognition

The need to recognize the goals and plans of an agent from observations of
his behavior arises in a number of tasks. Goal recognition is like planning but
in reverse: while in planning the goal is given and a plan is sought; in plan
recognition, part of a plan is observed, and the agent goal is sought. Figure 1
shows a simple scenario of plan recognition where an agent is observed to move
up twice from cell X. The question is which is the most likely destination among
the possible targets A to J. Clearly, A, B and C appear to be more likely than
D, E or F. The reason is that the agent is moving away from these other targets,
while it’s not moving away from A, B, or C. The second question is whether B
can be regarded as more likely than A or C. It turns out that yes. If we adopt a
Bayesian formulation, the probability of an hypothesis H given the observation
Obs, P (H |Obs) is given by the formula P (H |Obs) = P (Obs|H)P (H)/P (Obs)

Non-classical planning with a classical planner 39

where P (Obs|H) represents how well the hypothesis H predicts the observation
Obs, P (H) stands for how likely is the hypothesis H a priori, and P (Obs), which
affects all hypotheses H equally, measures how surprising is the observation. In
our problem, the hypotheses are about the possible destinations of the agent,
and since there are no reasons to assume that one is more likely a priori than the
others, Bayes rule yields that P (H |Obs) should be proportional to the likelihood
P (Obs|H) that measures how well H predicts Obs. Going back to the figure, and
assuming that the agent is reasonably ‘rational’ and hence wants to achieve his
goals with least cost, it’s clear that A, B, and C predict Obs better than D, E,
F; and also that B predicts Obs better than A and C. This is because there is
a single optimal plan for B that is compatible with Obs, but there are many
optimal plans for A and for C, some of which are not compatible with Obs (as
when the agent moves first left or right, rather than up). We say that a plan π
is compatible with the observed action sequence Obs when the action sequence
Obs is embedded in the action sequence π; i.e. when Obs is π but with certain
actions in π omitted (not observed).

The reasoning above reduces goal recognition to Bayes’ rule and how well each
of the possible goals predicts the observed action sequence. Moreover, how well a
goal G predicts the sequence Obs turns out to depend on considerations having
to do with costs, and in particular, two cost measures: the cost of achieving G
through a plan compatible with the observed action sequence Obs, and the cost
of achieving G through a plan that is not compatible with Obs. We will denote
the first cost as cP (G + Obs) and the second as cP (G + Obs), where P along
with the observations Obs define the plan recognition problem. That is, P is
like a classical planning problem but with the actual goal hidden and replaced
by a set G of possible goals G, and a sequence of observed actions. The plan
recognition problem is about inferring the probability distribution P (G|Obs)
over the possible goals G ∈ G where each possible goal G can be a (conjunctive)
set of atoms.

The cost differences Δ(G,Obs) = cP (G + Obs) − cP (G + Obs) for each of
the possible goals G, which can range from −∞ to +∞, can be used to define
the likelihoods P (Obs|G), and hence, to obtain the goal posterior probabilities
P (G|Obs) when the goal priors P (G) are given. Clearly, the higher the cost
difference Δ(G,Obs), the better that G predicts Obs, and hence the higher the
likelihood P (Obs|G). The function used to map the Δ-costs into the P (O|G)
likelihoods is the sigmoid function, which follows from assuming that the agent
is not perfectly rational [26]. The costs cP (G + Obs) and cP (G + Obs) can be
computed by calling a classical planner over the two classical problems P (G +
Obs) and P (G + Obs) that are obtained from P , the hypothetical goal G, and
the observations. The result is that the goal posterior probabilities P (G|Obs)
can be computed through Bayes’ rule and 2× |G| calls to a classical planner.

5.3 Incomplete Information and Sensing

A (deterministic) conformant problem can be expressed as a tupleP = 〈F, I,O,G〉
whereF stands for the fluents or atoms in the problem,O for the actions, I is a set of

40 H. Geffner

1 2

1 1 1 2 3

1 1 1

1 2 1 1

1 1

1 2 2 2 2 2 1

1 2 2 2 1

1 1 2 3 3 1

P IT

P IT

Fig. 2. Example of instances solved by on-line partially observable planner LW1 using
linear translations and classical planners [27]. Left: Minesweeper instance where the star
marks the first cell opened and empty cells have 0 counts. Right: Wumpus instance
with 2 monsters and 2 pits. Positions of monsters, pits, and gold initially unknown.

clauses overF defining the initial situation, andG is a set of literals overF defining
the (conjunctive) goal.The difference to classical problems is the uncertainty in the
initial situation which is described by means of clauses. A clause is a disjunction of
one ormore literals, and a literal is an atom inF or its negation.We assume that the
actions are not purely STRIPS but can feature conditional effects and negation;
i.e., every action a is assumed to have a precondition given by a set of literals, and
a set of conditional effects a : C → C′ where C and C′ are sets (conjunctions) of
literals, meaning that the literals inC′ become true after the action a if the literals
in C were true when the action was done. The states associated with the problem
P are valuations over the atoms in F , and the set of possible initial states are the
states that satisfy the clauses in I.

A deterministic conformant problem P defines a conformant state model S(P)
which is like the state model for a classical problem with one difference: there
is no single initial state s0 but a set of possible initial states S0. A solution for
P , namely a conformant plan for P , is an action sequence that simultaneously
solves all the classical state models S ′(P) that result from replacing the set of
possible initial states S0 in S(P) by each one of the states s0 in S0.

From a computational point of view, conformant planning can be formulated
as a path-finding problem over a graph where the nodes in the graph do not
represent the states of the problem as in classical planning but belief states,
where a belief state is a set of states deemed possible at one point. An alternative
approach, however, is to map deterministic conformant planning into classical
ones [28]. The basic sound but incomplete translation removes the uncertainty
in the problem by replacing each literal L in the conformant problem P by two
literals KL and K¬L, to be read as ‘L is known to be true’ and ‘L is known
to be false’ respectively. If L is known to be true or known to be false in the
initial situation, then the translation will contain respectively KL or K¬L. On
the other hand, if L is not known, then both KL and K¬L will be initially false.

Non-classical planning with a classical planner 41

The result is that there is no uncertainty in the initial situation of the translation
which thus represents a classical planning problem.

More precisely, the basic translationK0 is such that if P = 〈F, I,O,G〉 is a de-
terministic conformant problem, the translation K0(P) is the classical planning
problem K0(P) = 〈F ′, I ′, O′, G′〉 where2

– F ′ = {KL,K¬L |L ∈ F}
– I ′ = {KL |L is a unit clause in I}
– G′ = {KL |L ∈ G}
– O′ = O but with each precondition L for a ∈ O replaced by KL, and each

effect a : C → L replaced by a : KC → KL and a : ¬K¬C → ¬K¬L.

The expressions KC and ¬K¬C for C = {L1, L2, . . .} are abbreviations for
the conjunctions {KL1,KL2, . . .} and {¬K¬L1,¬K¬L2, . . .} respectively. Re-
call that in a classical planning problem, atoms that are not part of the initial
situation are assumed to be initially false, so if KL is not part of I ′, KL will be
initially false in K0(P).

The only subtlety in this translation is that each conditional effect a : C → L
in P is mapped into two conditional effects in K0(P): a support effect a : KC →
KL that ensures that L is known to be true when the condition C is known to
be true, and a cancellation effect a : ¬K¬C → ¬K¬L that ensures that L is
possible when the condition C is possible.

The translation K0(P) is sound as every classical plan that solves K0(P) is
a conformant plan for P , but is incomplete, as not all conformant plans for P
are classical plans for K0(P). The meaning of the KL literals follows a similar
pattern: if a plan achieves KL in K0(P), then the same plan achieves L with
certainty in P , yet a plan may achieve L with certainty in P without making
the literal KL true in K0(P).

For completeness, the basic translation K0 is extended into a general transla-
tion scheme KT,M where T and M are two parameters: a set of tags t and a set
of merges m. A tag t ∈ T is a set (conjunction) of literals L from P whose truth
value in the initial situation is not known. The tags t are used to introduce a
new class of literals KL/t in the classical problem KT,M (P) that represent the
conditional statements: ‘if t is initially true, then L is true’. Likewise, a merge m
is a non-empty collection of tags t in T that stands for the Disjunctive Normal
Form (DNF) formula

∨
t∈m t. A merge m is valid when one of the tags t ∈ m

must be true in I; i.e., when I |=
∨

t∈m t. A merge m for a literal L translates
into a ’merge action’ with effects that capture a simple form of reasoning by
cases:

∧
t∈mKL/t −→ KL.

The parametric translation scheme KT,M is the basic translation K0 ‘condi-
tioned’ with the tags in T and extended with the actions that capture the merges
in M . If P = 〈F, I,O,G〉 is a deterministic conformant problem, then KT,M (P)
is the classical planning problem KT,M (P) = 〈F ′, I ′, O′, G′〉 where
2 A conditional effect a : C → C′ is assumed to be expressed as a collection of
conditional effects a : C → L, one for each literal L in C′. The symbol a stands for
the action associated with these effects.

42 H. Geffner

– F ′ = {KL/t,K¬L/t |L ∈ F and t ∈ T},
– I ′ = {KL/t | I, t |= L},
– G′ = {KL |L ∈ G},
– O′ = {a : KC/t→ KL/t, a : ¬K¬C/t→ ¬K¬L/t | a : C → L in P} ∪
{am,L :

[∧
t∈mKL/t

]
→ KL | L ∈ P,m ∈M}.

Two basic properties of the general translation scheme KT,M (P) are that it is
always sound (provided that merges are valid), and for suitable choice of the sets
of tags and merges T and M , it is complete. In particular, a complete instance
of the general translation KT,M (P) results when the sets of tags T is the set
S0 of possible initial states of P , and M = T . While the resulting translation
KS0(P) is exponential in the number of unknown atoms in the initial situation
in the worst case, there is an alternative choice of tags and merges, called the
Ki(P) translation, that is exponential in the non-negative integer i, and that
is complete for problems P that have a structural parameter w(P), called the
width of P , bounded by i. In problems defined over multivalued variables, this
width stands for the maximum number of variables all of which are relevant to
a variable appearing in an action precondition or goal [29]. It turns out that
many conformant problems have a bounded and small width, and hence such
problems can be efficiently solved by a classical planner after a low polynomial
translation [28]. The conformant plans are then obtained from the classical plans
by removing the ‘merge’ actions.

The translation-based approach, introduced initially for deterministic confor-
mant planning, has been extended to deterministic planning with sensing [30,31].
Examples of problems solved by the on-line partially observable planner LW1
[27] that uses linear translations for both action selection and belief tracking are
shown in Figure 2.

5.4 Finite-State Controllers

Finite-state controllers represent an action selection mechanism widely used in
video-games and mobile robotics. In comparison to plans and POMDP policies,
to be studied later, finite-state controllers have two advantages: they are often
extremely compact, and they are general, applying not just to one problem but to
many variations as well. As an illustration, Figure 3(a) depicts a simple problem
over a 1×5 grid where a robot, initially at one of the two leftmost positions, must
visit the rightmost position, marked B, and get back to A. Assuming that the
robot can observe the mark in the current cell if any, and that the actions Left and
Right deterministically move the robot one unit left and right respectively, the
problem can be solved by planners that sense and POMDP planners. A solution
to the problem, however, can also be expressed as the finite-state controller
shown on the right. Starting in the controller state q0, this controller selects the
action Right, whether A or no mark (‘−’) is observed, until observing B. Then
the controller selects the action Left, switches to state q1, and remains in this
state selecting the action Left as long as no mark is observed. Later, when a

Non-classical planning with a classical planner 43

A B
q0 q1

B/Left

−/Right
A/Right −/Left

(a) (b)

Fig. 3. (a) Agent initially in one of the two leftmost positions has to go to cell marked
B and back to A. The marks are observable. (b) A 2-state controller that solves the
problem and many variations of it. The circles are the controller states, and an edge
q → q′ labeled o/a means to perform action a when the observation is o in state q,
switching then to state q′. The initial controller state is q0.

mark is observed, no further actions are taken as the agent must be back at A,
having achieved the goal.

The finite-state controller displayed in the figure has two appealing features:
it is very compact (it involves two states only), and it is very general. Indeed,
the problem can be changed in a number of ways and the controller would still
work, driving the agent to the goal. For example, the size of the grid can be
changed from 1 × 5 to 1× n, the agent can be placed initially anywhere in the
grid (except at B), and the actions can be made non-deterministic by adding
‘noise’ so that the agent can move one or two steps at a time. The controller
would work for all these variations. This generality is well beyond the power of
plans or policies that are normally tied to a particular state space.

The benefits of finite-state controllers, however, come at a price: unlike plans,
they are usually not derived automatically but are written by hand; a task
that is non-trivial even in the simplest cases. Recently, however, the problem
of deriving compact and general finite-state controllers using planners has been
considered [32]. Once again, this is achieved by using classical planners over
suitable transformations. We sketch the main ideas below.

A finite-state controller CN with N controller states q0, . . . , qN−1 is fully char-

acterized by the tuples (q, o, a, q′) associated with the edges q
o/a→ q′ in the con-

troller graph. These edges and hence, these tuples, prescribe the action a to do
when the controller state is q and the observation is o, switching then to the
controller state q′ (which may be equal to q or not). A controller solves a prob-
lem P if starting in the distinguished controller state q0, all the executions that
are possible given the controller reach a goal state. The key question is how to
find the tuples (q, o, a, q′) that define such a controller. In [32], the problem P
is transformed into a problem P ′ whose actions are associated with each one
of the possible tuples (q, o, a, q′), and where extra fluents pq and po for keeping
track of the controller states and observations are introduced. The action 〈t〉
associated with the tuple t = (q, o, a, q′) behaves then very much like the action
a but with two differences: first, the atoms pq and po are added to the body of
each conditional effect, so that the resulting action 〈t〉 behaves like the original

44 H. Geffner

q0 q1
–C/Down

TB/Right

TC/Right
–B/Up
TB/Up –B/Down

Fig. 4. Left: Problem where a visual-mark (on the lower left cell) must be placed on
top of a green block whose location is not known, by moving the mark one cell at a
time, and observing what’s in the marked cell. Right: Finite-state controller obtained
with a classical planner from translation. The controller solves the problem and any
variation resulting from changes in either the number or configuration of blocks [32].

action a but only when the controller state is q and the observation is o; second,
the action makes the atom pq false and the atom pq′ true, in accordance with the
interpretation of the tuple (unless q = q′). Additional bookkeeping is required in
the transformed problem P ′ to prevent plans from executing actions 〈t〉 and 〈t′〉
when t = (q, o, a, q′), t′ = (q, o, a′, q′′), and a �= a′ or q′ �= q′′. The reason is that
no controller can include such pairs of tuples, as the action and new controller
state are always a function of the current controller state and observation. In-
terestingly, the transformation from P into P ′ eliminates sensing by making the
effects of the actions conditional on the current controller state and observation.
The result is that while P is a partially observable problem, P ′ is a conformant
problem, which as we have seen before, it can be transformed into a classical
problem P ′′. The actions 〈t〉 that solve such classical problem encode the tuples
that define the controller with up to N states that solves P .

As a further illustration of the power of these transformations, Figure 4, on
the left, shows a problem inspired in the use of deictic representations where
a visual-marker (the circle on the lower left) must be placed on top of a green
block by moving it one cell at a time. The location of the green block is not
known, and the observations are whether the cell currently marked contains a
green block (G), a non-green block (B), or neither (C), and whether this cell
is at the level of the table (T) or not (–). The compact and general controller
shown on the right has been computed by running a classical planner over a
translation obtained following the two steps above [32]. The controller solves the
problem shown and any variation resulting from changes in either the number
or configuration of blocks.

5.5 Planning with Other Agents in Mind

The muddy children puzzle is a common example used for illustrating the sub-
tleties that arise when reasoning about the beliefs of other agents. In the problem,
there are n children, k of whom have mud on their forehead. The children can see
which other children are muddy but can’t tell whether they are muddy or not.

Non-classical planning with a classical planner 45

The father comes and tells the children that at least one of them is muddy, and
then asks the children whether they know whether they are muddy or not. It’s
possible to show that if the children are good reasoners, those who are muddy
will know that they are muddy after the father repeats the question exactly k
times [33]. When k is greater than 1, the puzzle is that the children arrive to
this conclusion after expressing ignorance k − 1 times, and after (apparently)
not learning anything new from the parent (they can all see at least one muddy
child). A planning version of the problem can be constructed, for example, by
asking one of the children to find out whether he is muddy or not by selecting
another child X and asking him whether X knows whether he is muddy or not,
with everyone listening to the response. The shortest plan in that case is to ask
this question to the children seen to be muddy one by one.

The problem of characterizing the state of (nested) knowledge or beliefs in
a setting where agents are able to act on the world, observe the world, and
communicate their beliefs, has been studied in recent years in the area of dynamic
epistemic logics [34,35]. Recently, an expressive and meaningful fragment of this
logic has been identified where the methods for handling beliefs in the single
agent setting are used to compute linear plans akin to multiagent conformant
plans, using classical planners and a transformation that is quadratic in the
number of possible initial states [36]. The planning version of the muddy children
problem is an example of a problem that fits into this fragment. Similar methods
have been developed also for computing join plans in a logical version of the
multiagent planning models called Descentralized POMDPs [37].

6 Summary

Planning is the model-based approach to autonomous behavior where models
come in many forms depending on the presence of uncertainty, the form of the
feedback, and whether uncertainty is represented by means of sets or probability
distributions. All forms of planning are intractable in the worst case when prob-
lems are represented in compact form, including the simplest form of planning,
classical planning, where actions are deterministic and the initial state is fully
known. In spite of this, significant progress has been achieved in classical plan-
ning in the last two decades for scaling up. Like in other AI models and solvers,
the key is the exploitation of the problem structure by means of cost-effective
forms of inference. In classical planning, this inference takes mainly the form of
heuristics derived from the problem, landmarks that uncover implicit subgoals,
and a structural criterion for distinguishing the applicable actions that are more
likely to be relevant, called the helpful actions. Advances in classical planning
have been exploited for dealing with non-classical problems by means of suit-
able transformations. Even if sound and complete translations are worst-case
exponential, as in planning with incomplete information and sensing, compact
polynomial but incomplete transformations have been shown to be very power-
ful as well. We have briefly reviewed transformations for dealing with soft goals,
goal recognition, planning with incomplete information and sensing, and nested
multiagent beliefs.

46 H. Geffner

Acknowledgments. I have borrowed material from [15]. Some of the work
reviewed has been done in collaboration with students and colleagues. I also
thank João Leite and Eduardo Fermé for the invitation to talk at JELIA-2014.

References

1. Erol, K., Hendler, J., Nau, D.S.: HTN planning: Complexity and expressivity. In:
Proc. 12th Nat. Conf. on Artificial Intelligence, pp. 1123–1123 (1994)

2. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A logic
programming language for dynamic domains. J. of Logic Progr. 31, 59–83 (1997)

3. Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press (1998)
4. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn.
Prentice-Hall (2009)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and practice.
Morgan Kaufmann (2004)

6. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime plan-
ning with landmarks. Journal of Artificial Intelligence Research 39, 127–177 (2010)

7. McDermott, D.V.: Using regression-match graphs to control search in planning.
Artificial Intelligence 109(1-2), 111–159 (1999)

8. Bonet, B., Geffner, H.: Planning as heuristic search. Artificial Intelligence 129(1-2),
5–33 (2001)

9. Hoffmann, J., Porteous, J., Sebastia, L.: Ordered landmarks in planning. Journal
of Artificial Intelligence Research 22, 215–278 (2004)

10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

11. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence
Research 26, 191–246 (2006)

12. Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic, and
stochastic search. In: Proc. AAAI, pp. 1194–1201 (1996)

13. Rintanen, J.: Planning as satisfiability: Heuristics. Art. Int. 193, 45–86 (2012)
14. Yoon, S., Fern, A., Givan, R.: FF-replan: A baseline for probabilistic planning. In:

Proc. 17th Int. Conf. on Automated Planning and Scheduling, pp. 352–359 (2007)
15. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods in Auto-

mated Planning. Morgan & Claypool (2013)
16. Cresswell, S., Coddington, A.M.: Compilation of LTL goal formulas into PDDL.

In: Proc. 16th European Conf. on Artificial Intelligence, pp. 985–986 (2004)
17. Edelkamp, S.: On the compilation of plan constraints and preferences. In: Proc.

16th Int. Conf. on Automated Planning and Scheduling, pp. 374–377 (2006)
18. Albarghouthi, A., Baier, J.A., McIlraith, S.A.: On the use of planning technology

for verification. In: Proc. ICAPS 2009 Workshop VV&PS (2009)
19. Patrizi, F., Lipovetzky, N., de Giacomo, G., Geffner, H.: Computing infinite plans

for LTL goals using a classical planner. In: Proc. 22nd Int. Joint Conf. on Artificial
Intelligence, pp. 2003–2008 (2011)

20. Taig, R., Brafman, R.: Compiling conformant probabilistic planning problems into
classical planning. In: Proc. ICAPS (2013)

21. Brafman, R., Shani, G.: A multi-path compilation approach to contingent planning.
In: Proc. AAAI (2012)

22. Palacios, H., Albore, A., Geffner, H.: Compiling contingent planning into classical
planning: New translations and results. In: Proc. ICAPS Workshop on Models and
Paradigms for Planning under Uncertainty (2014)

Non-classical planning with a classical planner 47

23. Smith, D.E.: Choosing objectives in over-subscription planning. In: Proc. 14th Int.
Conf. on Automated Planning and Scheduling, pp. 393–401 (2004)

24. Helmert, M., Do, M.B., Refanidis, I.: 2008 IPC Deterministic planning competition.
In: 6th IPC Booklet, ICAPS 2008 (2008)

25. Keyder, E., Geffner, H.: Soft goals can be compiled away. Journal of Artificial
Intelligence Research 36, 547–556 (2009)

26. Ramı́rez, M., Geffner, H.: Probabilistic plan recognition using off-the-shelf classical
planners. In: Proc. 24th Conf. on Artificial Intelligence, pp. 1121–1126 (2010)

27. Bonet, B., Geffner, H.: Flexible and scalable partially observable planning with
linear translations. In: Proc. AAAI (2014)

28. Palacios, H., Geffner, H.: Compiling uncertainty away in conformant planning prob-
lems with bounded width. JAIR 35, 623–675 (2009)

29. Bonet, B., Geffner, H.: Width and complexity of belief tracking in non-deterministic
conformant and contingent planning. In: Proc. 26nd Conf. on Artificial Intelligence,
pp. 1756–1762 (2012)

30. Albore, A., Palacios, H., Geffner, H.: A translation-based approach to contingent
planning. In: Proc. 21st Int. Joint Conf. on Artificial Intelligence, pp. 1623–1628
(2009)

31. Maliah, S., Brafman, R., Karpas, E., Shani, G.: Partially observable online contin-
gent planning using landmark heuristics. In: Proc. ICAPS (2014)

32. Bonet, B., Palacios, H., Geffner, H.: Automatic derivation of memoryless policies
and finite-state controllers using classical planners. In: Proc. ICAPS (2009)

33. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press (1995)

34. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer
(2007)

35. van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. In:
Logic and the Foundations of Game and Decision Theory (LOFT 7), pp. 87–117
(2008)

36. Kominis, F., Geffner, H.: Beliefs in multiagent planning: From one agent to many.
In: Proc. ICAPS Workshop on Distributed and Multi-Agent Planning (2014)

37. Brafman, R., Shani, G., Zilberstein, S.: Qualitative planning under partial observ-
ability in multi-agent domains. In: Proc. AAAI (2013)

Opportunities for Argument-Centric Persuasion

in Behaviour Change

Anthony Hunter

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

Abstract. The aim of behaviour change is to help people overcome spe-
cific behavioural problems in their everyday life (e.g. helping people to
decrease their calorie intake). In current persuasion technology for be-
haviour change, the emphasis is on helping people to explore their issues
(e.g. through questionnaires or game playing) or to remember to follow a
behaviour change plan (e.g. diaries and email reminders). So explicit ar-
gumentation with consideration of arguments and counterarguments are
not supported with existing persuasion technologies. With recent devel-
opments in computational models of argument, there is the opportunity
for argument-centric persuasion in behaviour change. In this paper, key
requirements for this will be presented, together with some discussion of
how computational models of argumentation can be harnessed.

1 Introduction

Persuasion is an activity that involves one party trying to induce another party
to believe something or to do something. It is an important and multifaceted
human facility. For some occupations, persuasion is paramount (for example in
sales, marketing, advertising, politics, etc). However, we are all confronted with
the need to persuade others on a regular basis in order to get our job done, or
to get our needs or wishes met.

Psychological studies show how there are many factors that can have a sub-
stantial influence on whether persuasion will be successful. For any given situ-
ation, these factors may include what we may describe as rational criteria such
as the merits of what we are being persuaded to believe or do, or the reliability
of the information that is being presented to us. But often, seemingly irrational
criteria may become important in the success of persuasion such as whether we
like the person who is trying to persuade us, or what our peers may think of
us [1]. When it comes to products and services, seemingly trivial factors such as
the type of packaging, the colour of a vendor’s logo, or a celebrity endorsement,
can make a big difference. Sales, marketing, advertising, politics certainly exploit
these seemingly irrational criteria.

As computing becomes involved in every sphere of life, so too is persuasion a
target for applying computer-based solutions. Persuasion technologies have come
out of developments in human-computer interaction research (see for example the
influential work by Fogg [2]) with a particular emphasis on addressing the need

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 48–61, 2014.
c© Springer International Publishing Switzerland 2014

Opportunities for Argument-Centric Persuasion in Behaviour Change 49

for systems to help people make positive changes to their behaviour, particularly
in healthcare and healthy life styles. Over the past 10 years, a wide variety of
systems have been developed to help users to control body weight [3], to reduce
fizzy drink consumption [4], to increase physical exercise [5], and to decrease
stress-related illness [6].

Many of these persuasion technologies for behaviour change are based on some
combination of questionnaires for finding out information from users, provision
of information for directing the users to better behaviour, computer games to
enable users to explore different scenarios concerning their behaviour, provision
of diaries for getting users to record ongoing behaviour, and messages to remind
the user to continue with the better behaviour. These systems tend to be heavily
scripted multi-media solutions and they are often packaged as websites and/or
apps for mobile devices.

Interestingly, argumentation is not central to the current manifestations of
persuasion technologies. The arguments for good behaviour seem either to be
assumed before the user accesses the persuasion technology (e.g. when using
diaries, or receiving email reminders), or arguments are provided implicitly in
the persuasion technology (e.g. through provision of information, or through
game playing). So explicit argumentation with consideration of arguments and
counterarguments are not supported with existing persuasion technologies.

This creates some interesting opportunities for artificial intelligence, using
computational models of argument, to develop persuasion technologies for be-
haviour change where arguments are central. This leads to an opportunity for
what we may call argument-centric persuasion for behaviour change. Computa-
tional models of argument are beginning to offer ways to formalize aspects of
persuasion, and with some adaptation and development, they have the potential
to be incorporated into valuable tools for changing behaviours.

In argument-centric persuasion technologies, a system enters into a dialogue
with a user to persuade them to undertake some action. An action might be
abstract such as believing something, or deciding something, or it might be a
physical action such as buying something, or eating something, or taking some
medicine, or it might be to not do some physical action such as not buying some-
thing, or not eating something, etc. The dialogue may involve steps where the
system finds out more about the users beliefs, intentions and desires, and where
the system offers arguments with the aim of changing the users beliefs, inten-
tions and desires. The system also needs to handle objections or doubts by the
user represented by counterarguments with the aim of providing a dialectically
winning position. To illustrate how a dialogue can lead to the presentation of an
appropriate context-sensitive argument consider the following example.

Example 1. The system moves are odd numbered, and the user moves are even
numbered: (1) Do you need a snack? (2) Yes. (3) What is available? (4) Cup
cake or salad. (5) Which do you prefer? (6) Cup cake. (7) Why? (8) I need a
sugar rush from the cup cake. (9) Why? (10) I need a sugar rush in order to
do some work. (11) The sugar rush from a cup cake is brief. So your need for a
sugar rush does not imply you need a cup cake. Do you agree? (12) Yes.

50 A. Hunter

In this paper, we will identify the requirements of argument-centric persuasion
as applied to behaviour change, review some of the key features of computational
models of argument, and then consider a simple case study to illustrate how
we might address behaviour change by harnessing a computational model of
argument.

2 Requirements for Argument-Centric Behaviour Change

There is increasing demand for tools to support behaviour change. Many people
need help in changing their behaviour on every day matters in some respect such
as promoting healthy life styles (eating more fruit and veg, exercise), weight man-
agement (e.g. addressing overweight, bulimia, anorexia), addiction management
(gambling, alcohol, drugs, etc), treatment compliance (e.g. self-management of
diabetes), personal financial (e.g. borrowing less, saving more), education (start-
ing or continuing with a course, studying properly), encouraging citizenship (e.g.
voting, recycling, contributing to charities), safe driving (e.g. not exceeding speed
limits, not texting while driving), addressing anti-social behaviour (e.g. aggres-
sive behaviour, vandalism), etc. Further applications may include automated
systems for responding to antisocial behaviour online (e.g. racism, sexism, etc).

In these behaviour change applications, the following are key requirements for
argument-centric persuasion technologies.

(Requirement 1) Goal orientation The system should aim to be successful
in its persuasion dialogue. This means that the system should aim for a
dialogue that concludes with the user being persuaded (as manifested for
example by the user agreeing to an intended action).

(Requirement 2) Context sensitivity The system should ask the user ques-
tions in order to take account of the user’s context and concerns. This may
include the user’s preferences, mood, desires, etc, at the time of the dialogue.
By understanding the user, the system is more likely to identify arguments
that will be successful in persuading the user.

(Requirement 3) Maintaining engagement The system should aim to min-
imize the chances that the user disengages from the dialogue. This means that
the system should try to avoid the user becoming bored, irritated, etc, by the
dialogue. So the system may have to trade a longer sequence of moves that
would be more likely to be convincing (if the user remained engaged) for a
shorter and more engaging sequence of moves.

(Requirement 4) Language sensitivity The system should use a language
in the dialogue (for instance, complexity, vocabulary, style, etc) that is ap-
propriate for the user in the current context. This may include consideration
of the user’s preferences, mood, desires, etc. It may also include the user’s
attitude to authority, expertise, etc. For instance, for persuading a teenager
to desist from anti-social behaviour, using the language of his/her music or
sports idols is more likely to be successful than the language of a school
teacher.

Opportunities for Argument-Centric Persuasion in Behaviour Change 51

(Requirement 5) Argument quality The system should present arguments
and counterarguments that are informative, relevant, and believable, to the
user. If the system presents uninformative, irrelevant, or unbelievable ar-
guments (from the perspective of the user), the probability of successful
persuasion is reduced, and it may alienate the user.

(Requirement 6) Effort minimization The system should aim to minimize
the effort involved on the part of the user. This means that the user should
not be asked unnecessary questions or presented unnecessary claims, or ar-
guments/counterarguments, etc.

In argument-centric persuasion for behaviour change the system enters into
a dialogue with the user. In the short-term, we may envisage that this dialogue
involves limited kinds of interaction in order for the user to offer specific kinds of
information to the system, or for the system to ask specific queries of the user.
The allowed dialogues moves are specified for the particular application. The
dialogues between the system and the user are restricted to the moves specified
at the interface (i.e. the graphical user interface) at each step of the dialogue.
The user can initiate a dialogue, and then the system manages the dialogue by
asking queries of the user, where the allowed answers are given by a menu, and
by positing arguments. For instance, for a weight management application that
is intended to help the user decrease calorie consumption, the kinds of queries
and posits that can be made by the system might be the following.

– Query for contextual information. For example, for the query, “How many
cakes have you eaten today”, the menu of answers could have “0”, “1”, “2”,
“3”, “4”, and “more than 4”, and for the query, “Which of the following
best describe how you feel today”, the menu of answers could have “very
hungry”, “moderately hungry”, “not hungry”, and “full”.

– Query for preferences over options. For example, for the query, “Which would
you prefer to eat as a snack now”, the menu of answers could have “Prefer
cup cake to carrot”, “Prefer carrot to cup cake”, and “Indifferent between
cup cake and carrot”.

– Rebuttals with explanation. For example, suppose the user has chosen the
reply “Prefer cup cake to carrot”, the system could rebut this by saying
“Remember your plan to lose weight therefore prefer carrot to cup cake”.

– Undercuts with explanation. For example, suppose the user has chosen “Pre-
fer cup cake to carrot” because “Cup cake gives a sugar rush and I need this
to work late” (i.e. the user has selected “Cup cake gives a sugar rush and I
need this to work late” from the menu of answers), the system could under-
cut this by saying “The sugar rush from a cup cake is brief, and so it will
not help you to work late”.

So we can adopt some intuitive requirements for argument-centric behaviour
change, and we can impose some simple constraints on the mode of interaction
between the user and the system in order to render the approach viable in the
short-term. Obviously richer natural language interaction would be desirable,
but it is less feasible in the short-term.

52 A. Hunter

3 Computational Models of Argument

Computational models of argument reflect aspects of how humans use conflicting
information by constructing and analyzing arguments. Formalizations of argu-
mentation have been extensively studied, and some basic principles established.
We can group much of this work in four levels as follows.

Dialectical level. Dialectics is concerned with determining which arguments
win in some sense. In abstract argumentation, originally proposed in the
seminal work by Dung [7], arguments and counterarguments can be rep-
resented by a graph. Each node node denotes an argument, and each arc
denotes one argument attacking another argument. Dung then defined some
principled ways to identify extensions of an argument graph. Each extension
is a subset of arguments that together act as a coalition against attacks by
other arguments. An argument in an extension is, in a sense, an acceptable
argument.

Logical level. At the dialectic level, arguments are atomic. They are assumed
to exist, but there is no mechanism for constructing them. Furthermore, they
cannot be divided or combined. To address this, the logical level provides a
way to construct arguments from knowledge. At the logical level, an argu-
ment is normally defined as a pair 〈Φ, α〉 where Φ is a minimal consistent
subset of the knowledgebase (a set of formulae) that entails α (a formula).
Here, Φ is called the support, and α is the claim, of the argument. Hence,
starting with a set of formulae, arguments and counterarguments can be
generated, where a counterargument (an argument that attacks another ar-
gument) either rebuts (i.e. negates the claim of the argument) or undercuts
(i.e. negates the support of the argument). A range of options for structured
argumentation at the logic level have been investigated (see [8,9,10,11] for
tutorial reviews of some of the key proposals).

Dialogue level. Dialogical argumentation involves agents exchangingarguments
in activities such as discussion, debate, persuasion, and negotiation. Dialogue
games arenowa commonapproach to characterizingargumentation-basedagent
dialogues (e.g. [12,13,14,15,16,17,18,19,20,21,22]).Dialoguegames arenormally
made up of a set of communicative acts calledmoves, and a protocol specifying
which moves can be made at each step of the dialogue. Dialogical argumenta-
tion canbeviewedas incorporating logic-basedargumentation, but inaddition,
dialogical argumentation involves representing andmanaging the locutions ex-
changed between the agents involved in the argumentation. The emphasis of
the dialogical view is on the interactions between the agents, and on the pro-
cess of building up, and analyzing, the set of arguments until the agents reach
a conclusion.

Rhetorical level. Normally argumentation is undertaken with some wider con-
text of goals for the agents involved, and so individual arguments are presented
with some wider aim. For instance, if an agent is trying to persuade another
agent to do something, then it is likely that some rhetorical device is harnessed
and this will affect the nature of the arguments used (e.g. a politician may re-
fer to investing in the future of the nation’s children as a way of persuading

Opportunities for Argument-Centric Persuasion in Behaviour Change 53

colleagues to vote for an increase in taxation). Aspects of the rhetorical level
include believability of arguments from the perspective of the audience [23],
impact of arguments from the perspective of the audience [24], use of threats
and rewards [25], appropriateness of advocates [26], and values of the audience
[27,28,29].

There are a number of proposals that formalize aspects of persuasion. Most
are aimed at providing protocols for dialogues (for a review see [30]). Forms of
correctness (e.g. the dialogue system has the same extensions under particular
dialectical semantics as using the agent’s knowledgebases) have been shown for
a variety of systems (e.g. [31,13,15,32]). However, strategies for persuasion, in
particular taking into account beliefs of the opponent are under-developed.

There are a number of proposals for using probability theory in argumentation
(e.g. [33,34,35,36,37,38,39]). For abstract argumentation, the epistemic approach
involves assigning a probability value to each argument that denotes the degree
to which it is believed [36,38,39]. An epistemic extension is then the set of argu-
ments that have a probability value greater than 0.5. The justification approach
involves a probability distribution over the subgraphs of the argument graph G
[37,38]. The probability that a set of arguments Γ is an extension (according to
a particular dialectical semantics S such as grounded, preferred, etc) is the sum
of the probability assigned to each subgraph G′ of G for which Γ is an extension
of G′ (according the dialectical semantics S).

Probabilistic models of the opponent have been used in some strategies [40,41]
allowing the selection of moves for an agent based on what it believes the other
agent believes. Utility theory has also been considered in argumentation (for
example [42,43,44,45]) though none of these represents the uncertainty of moves
made by each agent in argumentation. One approach that combines probabil-
ity theory and utility theory (using decision theory) has been used in [46] to
identify outcomes with maximum expected utility where outcomes are specified
as particular arguments being included or excluded from extensions. Strategies
in argumentation have also been analyzed using game theory [47,48,49], though
these are more concerned with issues of manipulation, rather than persuasion.

So there is a range of formal systems for generating and comparing arguments
and counterarguments, and for undertaking this within the context of a dialogue.

4 A Simple Case Study

In order to illustrate how we can adapt computational models of argument for
argument-centric persuasion for behaviour change, we will consider a simple case
study for helping a user to decrease his or her calorie intake for weight manage-
ment. Background knowledge for this application could for example be compiled
empirically by monitoring behavioural change sessions with counsellors [50].

Computational models of argument normally consider two or more agents
who exchange moves according to some protocol (which specifies what moves
are necessary or permissible at each stage of a dialogue). These agents are equal

54 A. Hunter

participants in the dialogue, and there is no restriction in the range of arguments
and counterarguments that they can make. For behaviour change, we have an
asymmetric situation where one agent (the system) provides the queries, the
arguments and the counterarguments, and the other agent (the user) replies to
queries. In order to allow the user to make a counterargument, the counterargu-
ment will also be generated by the system, and presented to the user in a query.
The user either agrees or disagrees with it as a reply. For example, if the system
has made an argument such as “You should eat salad because it is good for you”,
the user could be queried as to whether it subscribes to the counterargument
“Do you refuse to eat salad because you think it is boring to eat?”. As we will
see later, the replies made by the user are restricted to those available by a menu
of answers generated by the system.

So we require a set of statements that can be used in the dialogues. Each state-
ment is atomic and cannot be divided into substatements. Each is represented
by a sentence of English (a sy-sentence) as illustrated next.

s0 = “User needs a meal” s1 = “The best choice is a burger”

s2 = “The best choice is fish” s3 = “User needs to slim for fun run”

s4 = “User needs to slim to be healthy” s5 = “Fun run training uses lots of energy”

s6 = “User needs occassional treats” s7 = “User has eaten 10 burgers this week”

s8 = “User wants a burger” s9 = “User wants fish”

s10 = “Options are a burger or fish” s11 = “System has failed to persuade user”

s12 = “User agrees with argument a1” s13 = “User disagrees with argument a1”

s14 = “User agrees with argument a2” s15 = “User disagrees with argument a2”

s16 = “User agrees with argument a5” s17 = “User disagrees with argument a5”

s18 = “User agrees with argument a4” s19 = “User disagrees with argument a4”

We also require a set of queries. Each query is atomic and cannot be divided
into subqueries. Each is represented by a sentence of English (a wh-sentence) as
illustrated next.

q0 =“Do you need a meal?”
q1 =“What are the options?”
q2 =“What do you prefer?”
q3 =“Do you agree with argument a1?”
q4 =“Do you agree with argument a2?”
q5 =“Why do you disagree with argument a1?”
q6 =“Why do you disagree with argument a2?”
q7 =“Do you agree with argument a5?”
q8 =“Do you agree with argument a4?”

In order to generate arguments, we require a logic. For our case study, we use
a simple implicational logic. For this, we require a set of literals, and a set of
rules of the form α1 ∧ . . .∧αm → β1 ∧ . . .∧ βn where α1, . . . , αm and β1, . . . , βn

are literals. Each literal is either a statement or an atom of the form ok(rulei)
where the index i is a number. For our example, the following are rules.

Opportunities for Argument-Centric Persuasion in Behaviour Change 55

s3 ∧ ok(rule1)→ s2 ∧ ¬s1
s4 ∧ ok(rule2)→ s2 ∧ ¬s1
s5 ∧ ok(rule3)→ ¬ok(rule1)
s6 ∧ ok(rule4)→ ¬ok(rule2)
s7 ∧ ok(rule5)→ ¬ok(rule4)

Using the simple implicational logic, an argument is a tuple 〈Φ, α〉 where Φ
contains one or more rules, and some literals, such that α can be obtained from
Φ using modus ponens (but no other proof rule), and no subset of Φ entails α
using modus ponens. An argument 〈Φ, α〉 attacks an argument 〈Ψ, β〉 iff there is
a literal γ ∈ Ψ such that {α, γ} is inconsistent according to classical logic. For
our case study, the arguments and attacks are given in Figure 1.

a1 = 〈{s3, ok(rule1), s3 ∧ ok(rule1)→ s2 ∧ ¬s1}, s2 ∧ ¬s1〉

a2 = 〈{s4, ok(rule2), s3 ∧ ok(rule2)→ s2 ∧ ¬s1}, s2 ∧ ¬s1〉

a3 = 〈{s5, ok(rule3), s5 ∧ ok(rule3)→ ¬ok(rule1)},¬ok(rule1)〉

a4 = 〈{s6, ok(rule4), s6 ∧ ok(rule4)→ ¬ok(rule2)},¬ok(rule2)〉

a5 = 〈{s7, ok(rule5), s7 ∧ ok(rule5)→ ¬ok(rule4)},¬ok(rule4)〉

Fig. 1. The argument graph for the running example. Here there are two arguments
for the goal of the persuasion (namely a1 and a2).

The system can make four types of dialogue move: (1) Ask(q) where q is a
query; (2) Posit(a) where a is an argument; (3) Attack(a, a′) where a and a′

are arguments; and (4) Claim(s) where s is a statement. The user can only make
one kind of move which is Reply(s) where s is a statement. An execution is a
sequence of states where each state is a set of dialogue moves (as illustrated in
Table 1).

The protocol is specified using a set dialogue rules. For each dialogue rule, the
antecedent specifies when the rule can fire (i.e. the preconditions of the rule),
and the consequent specifies the moves that follow from the firing of the rule
(i.e. the postconditions of the rule).

For the conditions of dialogue rules, there are five types of predicate: Start
which only holds in the initial state of the dialogue; Asked(q) which holds when
the previous state has the move Ask(q); Replied(s) which holds if the previous
state has the move Reply(s); Know(a) which holds if the system can use its
knowledgebase together with the statements s which occur in moves Reply(s)
in previous states to obtain the argument a; and Ucut(a, a′) which holds it a is
an argument that attacks argument a′.

56 A. Hunter

Table 1. An execution of the dialogue rules for the running example

Step Moves

0 {Ask(q0)}
1 {Reply(s0)}
2 {Ask(q1)}
3 {Reply(s10)}
4 {Ask(q2)}
5 {Reply(s8)}
6 {Posit(a2), Ask(q4)}
7 {Reply(s14)}
8 {Claim(s2)}

A dialogue rule is of the form α1 ∨ . . . ∨ αm ⇒ β1 ∨ . . . ∨ βn where each
αi ∈ {α1, . . . , αm} is a conjunction of conditions (where conditions are of the
form Start, Asked(q), Replied(s), Said(s), Know(a), and Ucut(a, a′)), and each
βi in {β1, . . . , βn} is a conjunction of moves. An example of a protocol containing
a number of dialogue rules is given in Figure 2. By editing the dialogue rules,
different protocols (and hence different state models) can be obtained.

A dialogue rule fires if the conditions α1, . . . , αm hold in the current state. If
it fires, then one of β1, . . . , βn gives the moves for the next state. In this way,
the dialogue rules are executable. The choice of which βi in β1, . . . , βn to use for
the next state is non-deterministic. If the dialogue rule is a system dialogue rule,
then the system chooses, otherwise the user chooses. An execution terminates
when there are no more moves that can be made by either the user or the system.
The set of all executions for a protocol can be arranged as a state model as in
Figure 3.

We now consider the user model (i.e. the model of the user which reflects the
estimated uncertainty about what the user knows and believes). The first kind of
uncertainty to consider is perceptual uncertainty which is the uncertainty about
which arguments and attacks the user is aware of. The second kind of uncertainty
is epistemic uncertainty which is uncertainty about which arguments and attacks
the user believes.

From the system perspective, perceptual uncertainty concerns what argu-
ments and attacks the user might start with. For instance, returning to Example
1, the system might not know if the user is aware of the fact the sugar rush from
a cup cake is brief, and hence whether the user is aware of arguments based on it.
We assume that once the system has told the user about an argument or attack,
the user is aware of it, and hence that uncertainty falls to zero. Then from the
system perspective, epistemic uncertainty concerns which arguments or attacks
the user chooses to ignore because they do not believe them. Recent develop-
ments in probabilistic argumentation (e.g. [35,36,37,38,39] offer possibilities for
capturing perceptual and epistemic uncertainty in user models. Furthermore,
there are a number of possibilities for adapting recent proposals for strategies
based on uncertain opponent models (e.g. [51,40,41,46]) that may provide ap-
propriate strategies for argument-centric persuasion for behaviour change.

Opportunities for Argument-Centric Persuasion in Behaviour Change 57

r0 = Start ⇒ Ask(q0)
r1 = Replied(s0)⇒ Ask(q1)
r2 = Replied(s10)⇒ Ask(q2)
r3 = Replied(s8)⇒ (Posit(a1) ∧ Ask(q3)) ∨ (Posit(a2) ∧ Ask(q4))
r4 = Replied(s9) ∨ Replied(s12) ∨ Replied(s14) ∨ Replied(s16)⇒ Claim(s2)
r5 = Replied(s13)⇒ Ask(q5)
r6 = Replied(s15)⇒ Ask(q6)
r7 = Replied(s5) ∧ Know(a3) ∧ Ucut(a3, a1)⇒ (Posit(a3) ∧ Attack(a3, a1) ∧ Claim(s1))
r8 = Replied(s6) ∧ Know(a4) ∧ Ucut(a4, a3)⇒ (Posit(a4) ∧ Attack(a4, a1) ∧ Ask(q8))
r9 = Replied(s18) ∧ Know(a5) ∧ Ucut(a5, a4) ⇒ (Posit(a5) ∧ Attack(a5, a4) ∧ Ask(q7))
r10 = Replied(s17)⇒ Claim(s11)
r11 = Asked(q0)⇒ Reply(s0)
r12 = Asked(q1)⇒ Reply(s10)
r13 = Asked(q2)⇒ Reply(s8) ∨ Reply(s9)
r14 = Asked(q3)⇒ Reply(s12) ∨ Reply(s13)
r15 = Asked(q4)⇒ Reply(s14) ∨ Reply(s15)
r16 = Asked(q5)⇒ Reply(s5)
r17 = Asked(q6)⇒ Reply(s6)
r18 = Asked(q7)⇒ Reply(s16) ∨ Reply(s17)
r19 = Asked(q8)⇒ Reply(s18)

Fig. 2. Protocol for the running example. Rules r0 to r10 are for the system for querying
the user, for presenting arguments and counterarguments, and for making claims. Rules
r11 to r18 are for the user to respond to queries. The first state is obtained using r0.

Any dialogue that is generated by the protocol in this simple case study (i.e.
Figure 3) involves few moves. However, for practical applications, the protocol
would be substantially larger, and so some dialogues are potentially long. Long
dialogues are much less likely to be followed by the user to the intended termi-
nation. Rather, the user will drop out, with the probability of dropping rising
as the dialogue progresses. To address this problem, the user model can be used
to determine what moves can be made by the system that are more likely to be
successful with a smaller number of moves. This is a topic that hitherto has not
been address in computational models of argument, though it does appear that
it could be addressed using adaptation of probabilistic techniques for dialogical
argumentation (as such as proposed in [40,41,46]).

In conclusion, we may be able to harness and adapt a number of established
ideas in computational models of argument (at the dialectical, logical, and di-
alogue levels) to formalism the persuasion dialogues for behaviour change. Di-
alogue rules provide a flexible framework for specifying protocols. These can
be easily changed whilst leaving the underlying algorithm for their execution
unchanged. This idea of state-based execution of rules comes from a proposal
for using executable logic for dialogical argumentation systems [52,53]. Develop-
ment of intelligent strategies based on opponent modelling does require further
research, but there are promising proposals that could be further developed.

58 A. Hunter

Start Ask(q0) Reply(s0) Ask(q1) Reply(s10)

Ask(q2)

Reply(s8) Reply(s9)

Posit(a1), Ask(q3) Posit(a2), Ask(q4)

Reply(s12) Reply(s13) Reply(s15) Reply(s14)

Ask(q5) Ask(q6)

Reply(s5) Reply(s6)

Posit(a3),
Attack(a3, a1),

Claim(s1)

Posit(a4),
Attack(a4, a1),

Ask(q8)

Reply(s18)

Posit(a5),
Attack(a5, a4),

Ask(q7)
Reply(s17)

Reply(s16)Claim(s11)

Claim(s2)

Fig. 3. State model for the protocol given in Figure 2. start gives the starting state.
Each terminal state is a state without an exiting arc. Each state contains the moves
that are made at that step of the dialogue. So multiple moves in a state means that
multiple moves are made by the agent at that step in the dialogue. The Reply moves
are made by the user. All other moves are made by the system.

Opportunities for Argument-Centric Persuasion in Behaviour Change 59

5 Discussions

There are many situations where bringing about behaviour change is potentially
of great benefit. By making argumentation central to the persuasion, we may
be able to deliver technology that is more persuasive and more useful than ex-
isting approaches to persuasion technologies. This is a valuable opportunity for
the application of computational models of argument. Computational models of
argument offer theories for understanding argumentation, and technologies for
participating in argumentation, for the dialectical, logical, and dialogical levels.
With recent developments in user modelling (based on probabilistic argumenta-
tion), and strategies for argumentation, there is progress in the rhetorical level.
Taken together, these offer a range of possibilities for designing and implement-
ing argument-centric persuasion technology for behaviour change.

References

1. Cialdini, R.: Influence: The Psychology of Persuasion. HarperCollins (1984)
2. Fogg, B.: Persuasive computers. In: Proceedings of the SIGCHI Conference on
Human Factors in Computings Systems, CHI, pp. 225–232 (1998)

3. Lehto, T., Oinas-Kukkonen, H.: Persuasive features in six weight loss websites: A
qualitative evaluation. In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PER-
SUASIVE 2010. LNCS, vol. 6137, pp. 162–173. Springer, Heidelberg (2010)

4. Langrial, S., Oinas-Kukkonen, H.: Less fizzy drinks: A multi-method study of per-
suasive reminders. In: Bang, M., Ragnemalm, E.L. (eds.) PERSUASIVE 2012.
LNCS, vol. 7284, pp. 256–261. Springer, Heidelberg (2012)

5. Zwinderman, M.J., Shirzad, A., Ma, X., Bajracharya, P., Sandberg, H., Kaptein,
M.C.: Phone row: A smartphone game designed to persuade people to engage in
moderate-intensity physical activity. In: Bang, M., Ragnemalm, E.L. (eds.) PER-
SUASIVE 2012. LNCS, vol. 7284, pp. 55–66. Springer, Heidelberg (2012)

6. Kaipainen, K., Mattila, E., Kinnunen, M., Korhonen, I.: Facilitation of goal-setting
and follow-up in internet intervention for health and wellness. In: Ploug, T., Hasle,
P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS, vol. 6137, pp. 238–249.
Springer, Heidelberg (2010)

7. Dung, P.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming, and n-person games. Artificial Intelligence 77,
321–357 (1995)

8. Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments:
A tutorial. Argument and Computation 5(1), 5–30 (2014)

9. Modgil, S., Prakken, H.: The aspic+ framework for structured argumentation: A
tutorial. Argument and Computation 5(1), 31–62 (2014)

10. Toni, F.: A tutorial on assumption-based argumentation. Arument and Computa-
tion 5(1), 89–117 (2014)

11. Garcia, A., Simari, G.: Defeasible logic programming: Delp-servers, contextual
queries, and explanations for answers. Argument and Computation 5(1), 63–88
(2014)

12. Amgoud, L.,Maudet, N., Parsons, S.: Arguments, dialogue and negotiation. In:Four-
teenth European Conference on Artifcial Intelligence (ECAI 2000), pp. 338–342. IOS
Press (2000)

60 A. Hunter

13. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agents and Multi-
Agent Systems 19(2), 173–209 (2009)

14. Dignum, F., Dunin-Keplicz, B., Verbrugge, R.: Dialogue in team formation.
In: Dignum, F.P.M., Greaves, M. (eds.) Agent Communication. LNCS (LNAI),
vol. 1916, pp. 264–280. Springer, Heidelberg (2000)

15. Fan, X., Toni, F.: Assumption-based argumentation dialogues. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 198–203
(2011)

16. Hamblin, C.: Mathematical models of dialogue. Theoria 37, 567–583 (1971)

17. Mackenzie, J.: Question begging in non-cumulative systems. Journal of Philosoph-
ical Logic 8, 117–133 (1979)

18. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dia-
logues between autonomous agents. Journal of Logic, Language and Information 11,
315–334 (2002)

19. McBurney, P., van Eijk, R., Parsons, S., Amgoud, L.: A dialogue-game protocol
for agent purchase negotiations. Journal of Autonomous Agents and Multi-Agent
Systems 7, 235–273 (2003)

20. Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity of some formal
inter-agent dialogues. J. of Logic and Comp. 13(3), 347–376 (2003)

21. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. of
Logic and Comp. 15(6), 1009–1040 (2005)

22. Walton, D., Krabbe, E.: Commitment in Dialogue: Basic Concepts of Interpersonal
Reasoning. SUNY Press (1995)

23. Hunter, A.: Making argumentation more believable. In: Proceedings of AAAI 2004,
pp. 269–274. MIT Press (2004)

24. Hunter, A.: Towards higher impact argumentation. In: Proceedings of AAAI 2004,
pp. 275–280. MIT Press (2004)

25. Amgoud, L., Prade, H.: Formal handling of threats and rewards in a negotiation
dialogue. In: Proceedings of AAMAS, pp. 529–536 (2005)

26. Hunter, A.: Reasoning about the appropriateness of proponents for arguments. In:
Proceedings of AAAI, pp. 89–94 (2008)

27. Bench-Capon, T.: Persuasion in practical argument using value based argumenta-
tionframeworks. Journal of Logic and Computation 13(3), 429–448 (2003)

28. Bench-Capon, T., Doutre, S., Dunne, P.: Audiences in argumentation frameworks.
Artificial Intelligence 171(1), 42–71 (2007)

29. Oren, N., Atkinson, K., Li, H.: Group persuasion through uncertain audience mod-
elling. In: Proceedings of the International Comference on Computational Models
of Argument (COMMA 2012), pp. 350–357 (2012)

30. Prakken, H.: Formal sytems for persuasion dialogue. Knowledge Engineering Re-
view 21(2), 163–188 (2006)

31. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Jour-
nal of Logic and Computation 15(6), 1009–1040 (2005)

32. Caminada, M., Podlaszewski, M.: Grounded semantics as persuasion dialogue. In:
Computational Models of Argument (COMMA 2012), pp. 478–485 (2012)

33. Haenni, R.: Cost-bounded argumentation. International Journal of Approximate
Reasoning 26(2), 101–127 (2001)

34. Dung, P., Thang, P.: Towards (probabilistic) argumentation for jury-based dispute
resolution. In: Computational Models of Argument (COMMA 2010), pp. 171–182.
IOS Press (2010)

Opportunities for Argument-Centric Persuasion in Behaviour Change 61

35. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Mod-
gil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16.
Springer, Heidelberg (2012)

36. Thimm, M.: A probabilistic semantics for abstract argumentation. In: Proceedings
of the European Conference on Artificial Intelligence (ECAI 2012), pp. 750–755
(2012)

37. Hunter, A.: Some foundations for probabilistic argumentation. In: Proceedings of
the International Comference on Computational Models of Argument (COMMA
2012), pp. 117–128 (2012)

38. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments.
International Journal of Approximate Reasoning 54(1), 47–81 (2013)

39. Hunter, A., Thimm, M.: Probabilistic argumentation with incomplete information.
In: Proceedings of ECAI (in press, 2014)

40. Rienstra, T., Thimm, M., Oren, N.: Opponent models with uncertainty for strategic
argumentation. In: Proceedings of IJCAI 2013. IJCAI/AAAI (2013)

41. Hunter, A.: Modelling uncertainty in persuasion. In: Liu, W., Subrahmanian, V.S.,
Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 57–70. Springer, Heidelberg
(2013)

42. Rahwan, I., Larson, K.: Pareto optimality in abstract argumentation. In: Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008).
AAAI Press (2008)

43. Riveret, R., Prakken, H., Rotolo, A., Sartor, G.: Heuristics in argumentation:
A game theory investigation. In: Computational Models of Argument (COMMA
2008). Frontiers in Artificial Intelligence and Applications, vol. 172, pp. 324–335.
IOS Press (2008)

44. Matt, P.-A., Toni, F.: A game-theoretic measure of argument strength for abstract
argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008)

45. Oren, N., Norman, T.J.: Arguing using opponent models. In: McBurney, P., Rah-
wan, I., Parsons, S., Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057,
pp. 160–174. Springer, Heidelberg (2010)

46. Hunter, A., Thimm, M.: Probabilistic argument graphs for argumentation lotteries.
In: Computational Models of Argument (COMMA 2014). IOS Press (2014)

47. Rahwan, I., Larson, K.: Mechanism design for abstract argumentation. In: Pro-
ceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), pp. 1031–1038. IFAAMAS (2008)

48. Rahwan, I., Larson, K., Tohmé, F.: A characterisation of strategy-proofness for
grounded argumentation semantics. In: Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI 2009), pp. 251–256 (2009)

49. Fan, X., Toni, F.: Mechanism design for argumentation-based persuasion. In: Com-
putational Models of Argument (COMMA 2012), pp. 322–333 (2012)

50. Narita, T., Kitamura, Y.: Persuasive conversational agent with persuasion tactics.
In: Ploug, T., Hasle, P., Oinas-Kukkonen, H. (eds.) PERSUASIVE 2010. LNCS,
vol. 6137, pp. 15–26. Springer, Heidelberg (2010)

51. Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., McBurney, P.: Opponent mod-
elling in persuasion dialogues. In: Proceedings of IJCAI (2013)

52. Black, E., Hunter, A.: Executable logic for dialogical argumentation. In: European
Conf. on Artificial Intelligence (ECAI 2012), pp. 15–20. IOS Press (2012)

53. Hunter, A.: Analysis of dialogical argumentation via finite state machines. In: Liu,
W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS (LNAI), vol. 8078,
pp. 1–14. Springer, Heidelberg (2013)

The Fuzzy Description Logic G-FL0

with Greatest Fixed-Point Semantics�

Stefan Borgwardt1, José A. Leyva Galano1, and Rafael Peñaloza1,2

1 Theoretical Computer Science, TU Dresden, Germany
2 Center for Advancing Electronics Dresden, Germany

{stefborg,penaloza}@tcs.inf.tu-dresden.de
jleyva1@gmail.com

Abstract. We study the fuzzy extension of the Description Logic FL0

with semantics based on the Gödel t-norm. We show that subsumption
w.r.t. a finite set of primitive definitions, using greatest fixed-point se-
mantics, can be characterized by a relation on weighted automata. We
use this result to provide tight complexity bounds for reasoning in this
logic, showing that it is PSpace-complete. If the definitions do not con-
tain cycles, subsumption becomes co-NP-complete.

1 Introduction

Description logics (DLs) are used to describe the knowledge of an application
domain in a formally well-defined manner [3]. The basic building blocks are
concepts that intuitively describe a set of elements of the domain, and roles,
which model binary relations over the domain. The expressivity of DLs is given
by a set of constructors that are used to build complex concepts from so-called
concept names, and is usually chosen to end up in decidable fragments of first-
order predicate logic.

Knowledge about domain-specific terminology can be expressed by different
kinds of axioms. For example, the concept definition

Father
.
= Human �Male � ∃hasChild.

is used to determine the extension of the concept name Father in terms of other
concept names (Human, Male) and roles (hasChild). In contrast, a primitive con-
cept definition like

Human � Mammal � Biped

only bounds the interpretation of a concept name from above. Sometimes, one
restricts (primitive) definitions to be acyclic, which means that the definition of
a concept name cannot use itself (directly or indirectly via other definitions). In
general concept inclusions (GCIs) such as

∀hasParent.Human � Human

� Partially supported by the DFG under grant BA 1122/17-1, in the research train-
ing group 1763 (QuantLA), and the Cluster of Excellence ‘Center for Advancing
Electronics Dresden’.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 62–76, 2014.
c© Springer International Publishing Switzerland 2014

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 63

one can relate arbitrary complex expressions. These axioms are collected into
so-called TBoxes, which can be either acyclic (containing acyclic definitions),
cyclic (containing possibly cyclic definitions), or general (containing GCIs). To
interpret cyclic TBoxes, several competing semantics have been proposed [19].

Different DLs vary in the choice of constructors allowed for building complex
concepts. For example, the small DL EL uses the constructors top (
), conjunc-
tion (�), and existential restriction (∃r.C for a role r and a concept C). We
consider here mainly FL0, which has top, conjunctions, and value restrictions
(∀r.C). The DL ALC combines all the above constructors with negation (¬C).

Fuzzy description logics have been introduced as extensions of classical DLs
capable of representing and reasoning with vague or imprecise knowledge. The
main idea behind these logics is to allow for a set of truth degrees, beyond the
standard true and false; usually, the real interval [0, 1] is considered. In this way,
one can allow fuzzy concepts like Tall to assign an arbitrary degree of tallness to
each individual, instead of simply classifying them into tall and not tall. Based
on Mathematical Fuzzy Logic [13], a so-called t-norm defines the interpretation
of conjunctions, and determines the semantics of the other constructors as well.
The three main continuous t-norms are Gödel (G), Łukasiewicz (Ł), and Prod-
uct (Π). The Zadeh semantics is another popular choice that is based on fuzzy
set theory [25].

The area of fuzzy DLs recently experienced a shift, when it was shown that
reasoning with GCIs easily becomes undecidable [4,7,9]. To guarantee decidabil-
ity in fuzzy DLs, one can (i) restrict the semantics to consider finitely many truth
degrees [8]; (ii) allow only acyclic or unfoldable TBoxes [5,22]; or (iii) restrict to
Zadeh or Gödel semantics [6,17,20,21].

In the cases where the Gödel t-norm is used, the complexity of reasoning is
typically the same as for its classical version, as shown for subsumption w.r.t.
GCIs in G-EL, which is polynomial [17,20], and G-ALC, ExpTime-complete [6].
This latter result implies that subsumption in G-FL0 with general TBoxes is also
ExpTime-complete since it is ExpTime-hard already in classical FL0 [2]. On
the other hand, if TBoxes are restricted to contain only (cyclic) definitions, then
deciding subsumption in classical FL0 under the greatest fixed-point semantics is
known to be PSpace-complete [1]. For acyclic TBoxes, the complexity reduces to
co-NP-complete [18]. In this paper, we analyze reasoning in the Gödel extension
of this logic.

Consider the cyclic definition of a tall person with only tall offspring (Toto):

Toto � Person � Tall � ∀hasChild.Toto

Choosing greatest fixed-point semantics is very natural in this setting, as it
requires to always assign the largest possible degree for an individual to belong
to Toto. Otherwise, Toto could simply assign degree 0 to all individuals, which
is clearly not the intended meaning.

We show that the PSpace-upper bound for reasoning in the classical case also
applies to this fuzzy DL. To prove this, we characterize the greatest fixed-point
semantics of G-FL0 by means of [0, 1]-weighted automata. We then show that

64 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

reasoning with these automata can be reduced to a linear number of inclusion
tests between unweighted automata, which can be solved using only polynomial
space [11]. For the case of acyclic TBoxes, our reduction yields acyclic automata
and thus implies a co-NP upper bound, again matching the complexity of rea-
soning in classical FL0.

2 Preliminaries

We first introduce some basic notions of lattice theory, which we use later to
define the greatest fixed-point semantics in our fuzzy DL. For a more compre-
hensive overview on the topic, refer to [12]. Afterwards, we introduce fuzzy logics
based on Gödel semantics, which are studied in more detail in [10,13,16].

2.1 Lattices, Operators, and Fixed-Points

A lattice is an algebraic structure (L,∨,∧) with two commutative, associative
and idempotent binary operations ∨ (supremum) and ∧ (infimum) that dis-
tribute over each other. It is complete if suprema and infima of arbitrary subsets
S ⊆ L, denoted by

∨
x∈S x and

∧
x∈S x respectively, exist. In this case, the

lattice is bounded by the greatest element 1 :=
∨

x∈L x and the least element
0 :=

∧
x∈L x. Lattices induce a natural partial ordering on the elements of L

where x ≤ y iff x ∧ y = x.
One common complete lattice used in fuzzy logics (see e.g. [10,13]) is the

interval [0, 1] with the usual order on the real numbers. Other complete lattices
can be constructed as follows. Given a complete lattice L and a set S, the set LS

of all functions f : S → L is also a complete lattice, if infimum and supremum
are defined component-wise. More precisely, for any two f1, f2 ∈ LS, we define
f1 ∨ f2 for all x ∈ S as (f1 ∨ f2)(x) := f1(x) ∨ f2(x). If we similarly define the
infimum, we obtain a lattice with the order f1 ≤ f2 iff f1(x) ≤ f2(x) holds for
all x ∈ S. It is easy to verify that infinite infima and suprema can then also
be computed component-wise. We are particularly interested in operators on
complete lattices L and their properties.

Definition 1 (fixed-point). Let L be a complete lattice. A fixed-point of an
operator T : L → L is an element x ∈ L such that T (x) = x. It is the greatest
fixed-point of T if for any fixed-point y of T we have y ≤ x.

The operator T is monotone if for all x, y ∈ L, x ≤ y implies T (x) ≤ T (y).
It is downward ω-continuous if for every decreasing chain x0 ≥ x1 ≥ x2 ≥ . . .
in L we have T (

∧
i≥0 xi) =

∧
i≥0 T (xi).

If it exists, the greatest fixed-point of T is unique and denoted by gfp(T).
It is easy to verify that every downward ω-continuous operator is also mono-

tone. By a fundamental result from [24], every monotone operator T has a great-
est fixed-point. If T is downward ω-continuous, then gfp(T) corresponds to the
infimum of the decreasing chain 1 ≥ T (1) ≥ T (T (1)) ≥ · · · ≥ T i(1) ≥ . . . [15].

Proposition 2. If L is a complete lattice and T a downward ω-continuous op-
erator on L, then gfp(T) =

∧
i≥0 T

i(1).

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 65

2.2 Gödel Fuzzy Logic

Our fuzzy DL is based on the well-known Gödel semantics for fuzzy logics,
which is one of the main t-norm-based semantics used in Mathematical Fuzzy
Logic [10,13] over the standard interval [0, 1]. The Gödel t-norm is the binary
minimum operator on [0, 1]. For consistency, we use the lattice-theoretic notation
∧ instead of min. An important property of this operator is that it preserves
arbitrary infima and suprema on [0, 1], i.e.

∧
i∈I(xi ∧ x) =

(∧
i∈I xi

)
∧ x and∨

i∈I(xi ∧ x) =
(∨

i∈I xi

)
∧ x for any index set I and elements x, xi ∈ [0, 1] for

all i ∈ I. In particular, this means that the Gödel t-norm is monotone in both
arguments. The residuum of the Gödel t-norm is the binary operator ⇒G on
[0, 1] defined for all x, y ∈ [0, 1] by

x⇒G y :=

{
1 if x ≤ y,
y otherwise.

It is a fundamental property of a t-norm and its residuum that for all values
x, y, z ∈ [0, 1], x∧ y ≤ z iff y ≤ x⇒G z. As with the Gödel t-norm, its residuum
preserves arbitrary infima in its second component. However, in the first com-
ponent the order on [0, 1] is reversed.

Proposition 3. For any index set I and values x, xi ∈ [0, 1], i ∈ I, we have

x⇒G

(∧
i∈I

xi

)
=

∧
i∈I

(x⇒G xi) and
(∨

i∈I
xi

)
⇒G x =

∧
i∈I

(xi ⇒G x).

This shows that the residuum is monotone in the second argument and antitone
in the first argument. The following reformulation of nested residua in terms of
infima will also prove useful.

Proposition 4. For all values x, x1, . . . , xn ∈ [0, 1], we have(
(x1 ∧ · · · ∧ xn)⇒G x

)
=

(
x1 ⇒G . . . (xn ⇒G x) . . .

)
.

Proof. Both values are either x or 1, and they are 1 iff one of the operands xi,
1 ≤ i ≤ n, is smaller than or equal to x. ��

3 Fuzzy FL0

The fuzzy description logic G-FL0 has the same syntax as classical FL0. The
difference lies in the interpretation of G-FL0-concepts.

Definition 5 (syntax). Let NC and NR be two non-empty, disjoint sets of con-
cept names and role names, respectively. Concepts are built from concept names
using the constructors
 (top), C�D (conjunction), and ∀r.C (value restriction
for r ∈ NR).

A (primitive concept) definition is of the form 〈A � C ≥ p〉, where A ∈ NC, C
is a concept, and p ∈ [0, 1]. A (cyclic) TBox is a finite set of definitions. Given
a TBox T , a concept name is defined if it appears on the left-hand side of a
definition in T , and primitive otherwise.

66 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

In contrast to the treatment of classical FL0 in [1], we permit several primitive
definitions instead of only one (full) definition of the form 〈A .

= C1�· · ·�Cn ≥ p〉
for each concept name. This allows us to specify fuzzy degrees pi for each of the
conjuncts Ci independently. An acyclic TBox is a finite set of definitions without
cyclic dependencies between the defined concept names.

We use the expression ∀w.C with w = r1r2 . . . rn ∈ N∗R to abbreviate the
concept ∀r1.∀r2. . . . ∀rn.C. We also allow w = ε, in which case ∀w.C is simply C.
We denote the set of concept names occurring in the TBox T by NTC , the set
of defined concept names in NTC by NTD , and the set of primitive concept names
in NTC by NTP . Likewise, we collect all role names occurring in T into the set NTR .

Definition 6 (semantics). An interpretation is a pair I = (ΔI , ·I), where
ΔI is a non-empty set, called the domain of I, and the interpretation func-
tion ·I maps every concept name A to a fuzzy set AI : ΔI → [0, 1] and every
role name r to a fuzzy binary relation rI : ΔI × ΔI → [0, 1]. This function is
extended to concepts by setting
I(x) := 1, (C �D)I(x) := CI(x)∧DI(x), and
(∀r.C)I(x) :=

∧
y∈ΔI(rI(x, y)⇒G CI(y)) for all x ∈ ΔI .

The interpretation I satisfies (or is a model of) the definition 〈A � C ≥ p〉
if AI(x) ⇒G CI(x) ≥ p holds for all x ∈ ΔI . It satisfies (or is a model of) a
TBox if it satisfies all its definitions.

For an interpretation I = (Δ, ·I), w = r1r2 . . . rn ∈ N∗R, and elements x0, xn ∈ Δ,
we set wI(x0, xn) :=

∨
x1,...,xn−1∈Δ(r

I
1 (x0, x1)∧· · ·∧rIn(xn−1, xn)), and can thus

treat ∀w.C like an ordinary value restriction with

(∀w.C)I(x0) :=
∧

xn∈Δ
(wI(x0, xn)⇒G CI(xn))

=
∧

x1,...,xn∈Δ

((
rI1 (x0, x1) ∧ · · · ∧ rIn(xn−1, xn)

)
⇒G CI(xn)

)
=

∧
x1,...,xn∈Δ

(
rI1 (x0, x1)⇒G . . . (rIn(xn−1, xn)⇒G CI(xn)) . . .

)
= (∀r1. . . .∀rn.C)I(x0)

for all x0 ∈ Δ (see Propositions 3 and 4).
It is convenient to consider TBoxes in normal form. The TBox T is in normal

form if all definitions in T are of the form 〈A � ∀w.B ≥ p〉, where A,B ∈ NC,
w ∈ N∗R, and p ∈ [0, 1], and there are no two definitions 〈A � ∀w.B ≥ p〉,
〈A � ∀w.B ≥ p′〉 with p �= p′. Every TBox can be transformed into an equivalent
TBox in normal form, as follows. First, we distribute the value restrictions over
the conjunctions.

Lemma 7. For every r ∈ NR, concepts C,D, and interpretation I = (Δ, ·I), it
holds that (∀r.(C �D))I = (∀r.C � ∀r.D)I .

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 67

Proof. For every x ∈ Δ, we have

(∀r.(C �D))I(x) =
∧
y∈Δ

(
rI(x, y)⇒G (CI(y) ∧DI(y))

)
=

∧
y∈Δ

(
(rI(x, y)⇒G CI(y)) ∧ (rI(x, y)⇒G DI(y))

)
=

(∧
y∈Δ

(rI(x, y)⇒G CI(y))
)
∧
(∧

y∈Δ
(rI(x, y)⇒G DI(y))

)
= (∀r.C � ∀r.D)I(x)

by Proposition 3. ��

Thus, we can equivalently write the right-hand sides of the definitions in T in the
form ∀w1.B1�· · ·�∀wn.Bn, where wi ∈ N∗R and Bi ∈ NC∪{
}, 1 ≤ i ≤ n. Since
∀r.
 is equivalent to
, we can remove all conjuncts of the form ∀w.
 from
this representation. After this transformation, all the definitions in the TBox
are of the form 〈A � ∀w1.B1 � · · · � ∀wn.Bn ≥ p〉 with Bi ∈ NC, 1 ≤ i ≤ n, or
〈A �
 ≥ p〉. The latter axioms are tautologies, and can hence be removed from
the TBox without affecting the semantics.

It follows from Proposition 3 that an interpretation I satisfies the definition
〈A � ∀w1.B1 � · · · � ∀wn.Bn ≥ p〉 iff it satisfies 〈A � ∀wi.Bi ≥ p〉, 1 ≤ i ≤ n.
Thus, the former axiom can be equivalently replaced by the latter set of axioms.

After these steps, the TBox contains only axioms of the form 〈A � ∀w.B ≥ p〉
with A,B ∈ NC, satisfying the first condition of the definition of normal form.
Suppose now that T contains the axioms 〈A � ∀w.B ≥ p〉 and 〈A � ∀w.B ≥ p′〉
with p > p′. Then T is equivalent to the TBox T \ {〈A � ∀w.B ≥ p′〉}, i.e. the
weaker axiom can be removed. It is clear that all of these transformations can
be done in polynomial time in the size of the original TBox.

Concept definitions can be seen as a restriction of the interpretation of the
defined concepts, depending on the interpretation of the primitive concepts. We
use this intuition and consider greatest fixed-point semantics. The following con-
struction is based on the classical notions from [1].

A primitive interpretation is a pair J = (Δ, ·J) as in Definition 6, except that
·J is only defined on NR and NTP . Given such a J , we use functions f ∈ ([0, 1]Δ)N

T
D

to describe the interpretation of the remaining (defined) concept names. Recall
that these functions form a complete lattice. In the following, we use the ab-
breviation LTJ := ([0, 1]Δ)N

T
D for this lattice. Given a primitive interpretation J

and a function f ∈ LTJ , the induced interpretation IJ,f has the same domain
as J and extends the interpretation function of J to the defined concepts names
A ∈ NTD by taking AIJ,f := f(A). The interpretation of the remaining concept
names, i.e. those that do not occur in T , is fixed to 0.

We can describe the effect that the axioms in T have on LTJ by the operator
T TJ : LTJ → LTJ , which is defined as follows for all f ∈ LTJ , A ∈ NTD , and x ∈ Δ:

T TJ (f)(A)(x) :=
∧

〈A�C≥p〉∈T
(p⇒G CIJ,f (x)).

68 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

This operator computes new values of the defined concept names according to
the old interpretation IJ,f and their definitions in T .

We are interested in using the greatest fixed-point of T TJ , for some primitive
interpretation J , to define a new semantics for TBoxes T in G-FL0. Before being
able to do this, we have to ensure that such a fixed-point exists.

Lemma 8. Given a TBox T and a primitive interpretation J = (Δ, ·J), the
operator T TJ on LTJ is downward ω-continuous.

Proof. Consider a decreasing chain f0 ≥ f1 ≥ f2 ≥ . . . of functions in LTJ . We
use the abbreviations f :=

∧
i≥0 fi, I := IJ,f , and Ii := IJ,fi for all i ≥ 0, and

have to show that T TJ (f) =
∧

i≥0 T
T
J (fi) holds.

First, we prove by induction on the structure of C that CI =
∧

i≥0 C
Ii holds

for all concepts C built from NTR and NTC , where
∧

is defined as usual over the
complete lattice [0, 1]Δ.

For A ∈ NTP , by the definition of IJ,f and IJ,fi we have AI = AJ = AIi for
all i ≥ 0, and thus AI = AJ =

∧
i≥0 A

Ii . For A ∈ NTD , we have

AI = f(A) =
(∧

i≥0

fi

)
(A) =

∧
i≥0

fi(A) =
∧
i≥0

AIi

by the definition of IJ,f and IJ,fi and the component-wise ordering on the
complete lattice LTJ .

For concepts of the form C �D, by the induction hypothesis and associativity
of ∧ we have

(C�D)I = CI ∧DI =
(∧

i≥0

CIi
)
∧
(∧

i≥0

DIi
)
=

∧
i≥0

(CIi ∧DIi) =
∧
i≥0

(C �D)Ii .

Consider now a value restriction ∀r.C. Using Proposition 3 we get for all x ∈ Δ,

(∀r.C)I(x) =
∧
y∈Δ

(rI(x, y)⇒G CI(y))

=
∧
y∈Δ

(
rI(x, y)⇒G

(∧
i≥0

CIi(y)
))

=
∧
y∈Δ

∧
i≥0

(rIi(x, y)⇒G CIi(y)) =
(∧

i≥0

(∀r.C)Ii
)
(x)

by the induction hypothesis and the component-wise ordering on [0, 1]Δ.
Using this, we can now prove the actual claim of the lemma. For all A ∈ NTD

and all x ∈ Δ, we get, using again Proposition 3 and the previous claim,

T TJ (f)(A)(x) =
∧

〈A�C≥p〉∈T
(p⇒G CI(x))

=
∧

〈A�C≥p〉∈T

(
p⇒G

(∧
i≥0

CIi(x)
))

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 69

=
∧

〈A�C≥p〉∈T

∧
i≥0

(p⇒G CIi(x)) =
(∧

i≥0

T TJ (fi)
)
(A)(x)

by the definition of T TJ and the component-wise ordering on LTJ . ��

By Proposition 2, we know that gfp(T TJ) exists and is equal to
∧

i≥0(T
T
J)i(1),

where 1 is the greatest element of the lattice LTJ that maps all defined concept
names to
J . In the following, we denote by gfpT (J) the interpretation IJ,f for
f := gfp(T TJ). Note that I := gfpT (J) is actually a model of T since for every
〈A � C ≥ p〉 ∈ T and every x ∈ Δ we have

AI(x) = f(A)(x) = T TJ (f)(A)(x) =
∧

〈A�C′≥p′〉∈T
(p′ ⇒G C′I(x)) ≤ p⇒G CI(x),

and thus p ∧ AI(x) ≤ CI(x), which is equivalent to p ≤ AI(x)⇒G CI(x).
We can now define the reasoning problem in G-FL0 that we want to solve.

Definition 9 (gfp-subsumption). An interpretation I is a gfp-model of a
TBox T if there is a primitive interpretation J such that I = gfpT (J). Given
A,B ∈ NC and p ∈ [0, 1], A is gfp-subsumed by B to degree p w.r.t. T (written
T |=gfp 〈A � B ≥ p〉), if for every gfp-model I of T and every x ∈ ΔI we have
AI(x)⇒G BI(x) ≥ p. The best gfp-subsumption degree of A and B w.r.t. T is
the supremum over all p such that T |=gfp 〈A � B ≥ p〉.

Let now T be a TBox and T ′ the result of transforming T into normal form as
described before. It is easy to verify that the operators T TJ and T T

′

J coincide, and
therefore the gfp-models of T are the same as those of T ′. To solve the problem
of deciding gfp-subsumptions, it thus suffices to consider TBoxes in normal form.

4 Characterizing Subsumption Using Finite Automata

To decide gfp-subsumption between concept names, we employ an automata-
based approach following [1]. However, here we use weighted automata.

Definition 10 (WWA). A weighted automaton with word transitions (WWA)
is a tuple A = (Σ,Q, q0,wt, qf), where Σ is a finite alphabet of input symbols,
Q is a finite set of states, q0 ∈ Q is the initial state, wt : Q × Σ∗ × Q → [0, 1]
is the transition weight function with the property that its support

supp(wt) := {(q, w, q′) ∈ Q×Σ∗ ×Q | wt(q, w, q′) > 0}

is finite, and qf ∈ Q is the final state.
A finite path in A is a sequence π = q0w1q1w2 . . . wnqn, where qi ∈ Q

and wi ∈ Σ∗ for all i ∈ {1, . . . , n}, and qn = qf . Its label is the finite word
�(π) := w1w2 . . . wn. The weight of π is wt(π) :=

∧n
i=1 wt(qi−1, wi, qi). The

set of all finite paths with label w in A is denoted paths(A, w). The behavior
‖A‖ : Σ∗ → [0, 1] of A is defined by ‖A‖(w) :=

∨
π∈paths(A,w) wt(π) for w ∈ Σ∗.

70 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

If the image of the transition weight function is included in {0, 1}, then we
have a classical finite automaton with word transitions (WA). In this case, wt is
usually described as a subset of Q × Σ∗ × Q and the behavior is characterized
by the set L(A), called the language of A, of all words whose behavior is 1.
The inclusion problem for WA is to decide, given two such automata A and A′,
whether L(A) ⊆ L(A′). This problem is known to be PSpace-complete [11].

Our goal is to describe the restrictions imposed by a G-FL0 TBox T using a
WWA. For the rest of this paper, we assume w.l.o.g. that T is in normal form.

Definition 11 (automata ATA,B). For concept names A,B ∈ NTC , the WWA
ATA,B = (NR,N

T
C , A,wtT , B) is defined by the transition weight function

wtT (A
′, w,B′) :=

{
p if 〈A′ � ∀w.B′ ≥ p〉 ∈ T ,
0 otherwise.

For a TBox T and A,A′, B,B′ ∈ NTC , the automata ATA,B and ATA′,B′ differ only
in their initial and final states; their states and transition weight function are
identical. Since T is in normal form, for any A′, B′ ∈ NTC and w ∈ N∗R, there
is at most one axiom 〈A′ � ∀w.B′ ≥ p〉 in T , and hence the transition weight
function is well-defined. This function has finite support since T is finite.

We now characterize the gfp-models of T by properties of the automata ATA,B.

Lemma 12. For every gfp-model I = (Δ, ·I) of T , x ∈ Δ, and A ∈ NTC ,

AI(x) =
∧

B∈NT
P

∧
w∈N∗

R

(
‖ATA,B‖(w)⇒G (∀w.B)I(x)

)
.

Proof. If A is primitive, then the empty path π = A ∈ paths(ATA,A, ε) has
weight wtT (π) = 1, and hence ‖ATA,A‖(ε) = 1. We also have (∀ε.A)I(x) = AI(x);
thus, AI(x) = (1 ⇒G AI(x)) ≥

∧
B∈NT

P

∧
w∈N∗

R

(
‖ATA,B‖(w) ⇒G (∀w.B)I(x)

)
.

Let now B ∈ NTP and w ∈ N∗R such that A �= B or w �= ε. Since A is primitive,
by Definition 11 any finite path π in ATA,B with �(π) = w must have weight 0;
i.e. ‖ATA,B‖(w) = 0, and thus 0 ⇒G (∀w.B)I(x) = 1 ≥ AI(x). This shows that
the whole infimum is equal to AI(x).

Consider now the case that A ∈ NTD . Since I is a gfp-model of T , there is a
primitive interpretation J such that I = gfpT (J); let f := gfp(T TJ). Thus, we
have AI = f(A) = T TJ (f)(A) =

∧
i≥0(T

T
J)i(1)(A) for all A ∈ NTD .

[≤] By Proposition 3 it suffices to show that for all x ∈ Δ, A ∈ NTD , B ∈ NTP ,
and all finite non-empty paths π in ATA,B it holds that

AI(x) ≤ wtT (π)⇒G (∀w.B)I(x), (1)

where w := �(π). This obviously holds for wtT (π) = 0, and thus it remains to
show this for paths with positive weight. Let π = Aw1A1w2 . . . wnAn, where
Ai ∈ NTC and wi ∈ N∗R for all i ∈ {1, . . . , n} and An = B is the only primitive

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 71

concept name in this path. We prove (1) by induction on n. For n = 1, we have
π = Aw1B and wtT (A,w1, B) = wtT (π) > 0, and thus T contains the definition
〈A � ∀w1.B ≥ p〉, with p := wtT (A,w1, B). By the definition of T TJ , we obtain

AI(x) = T TJ (f)(A)(x) ≤ p⇒G (∀w1.B)I(x) = wtT (π)⇒G (∀w.B)I (x).

For n > 1, consider the subpath π′ = A1w2 . . . wnB in ATA1,B
with the label

�(π′) = w′ := w2 . . . wn. For all y ∈ Δ, the induction hypothesis yields that
AI1 (y) ≤ wtT (π

′) ⇒G (∀w′.B)I(y). Again, p := wtT (A,w1, A1) ≥ wtT (π) > 0,
and thus T contains the definition 〈A � ∀w1.A1 ≥ p〉. By the definitions of T TJ ,
wtT (π), wI , and Propositions 3 and 4, we have

AI(x) = T TJ (f)(A)(x)

≤ p⇒G (∀w1.A1)
I(x)

=
∧
y∈Δ

(
p⇒G (wI1 (x, y)⇒G AI1 (y))

)
≤

∧
y∈Δ

(
p⇒G

(
wI1 (x, y)⇒G

(
wtT (π

′)⇒G (∀w′.B)I(y)
)))

=
(
p ∧ wtT (π

′)
)
⇒G

(∧
y∈Δ

(
wI1 (x, y)⇒G (∀w′.B)I(y)

))
= wtT (π)⇒G (∀w.B)I(x).

[≥] We show by induction on i that for all x ∈ Δ, A ∈ NTD , and i ≥ 0, it holds

(T TJ)i(1)(A)(x) ≥
∧

B∈NT
P

∧
w∈N∗

R

(
‖ATA,B‖(w)⇒G (∀w.B)I(x)

)
. (2)

For i = 0, we have (T TJ)0(1)(A)(x) = 1(A)(x) = 1, which obviously satisfies (2).
For i > 0, by Proposition 3 we obtain

(T TJ)i(1)(A)(x) = T TJ ((T TJ)i−1(1))(A)(x)

=
∧

〈A�∀w′.A′≥p〉∈T
(p⇒G (∀w′.A′)Ii−1(x)), (3)

where Ii−1 := IJ ,(TT
J)i−1(1). Consider now any definition 〈A � ∀w′.A′ ≥ p〉 ∈ T .

Then π′ = Aw′A′ is a finite path in ATA,A′ with label w′ and weight p.
If A′ is a primitive concept name, then we have

p⇒G (∀w′.A′)Ii−1(x) ≥ ‖ATA,A′‖(w′)⇒G (∀w′.A′)I(x)

by the definition of ‖ATA,A′‖(w′) and the fact that the interpretation of ∀w′.A′
under Ii−1 and I only depends on J . If A′ is defined, then we similarly get

p⇒G (∀w′.A′)Ii−1(x)

=
∧
y∈Δ

(
p⇒G

(
w′J (x, y)⇒G A′Ii−1(y)

))

72 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

≥
∧
y∈Δ

∧
B∈NT

P

∧
w∈N∗

R

(
p⇒G

(
w′I(x, y)⇒G (‖ATA′,B‖(w)⇒G (∀w.B)I(y))

))
=

∧
B∈NT

P

∧
w∈N∗

R

((
p ∧ ‖ATA′,B‖(w)

)
⇒G

(∧
y∈Δ

(
w′I(x, y)⇒G (∀w.B)I(y)

)))
=

∧
B∈NT

P

∧
w∈N∗

R

((∨
π∈paths(AT

A′,B ,w)

(wtT (π
′) ∧ wtT (π))

)
⇒G (∀w′w.B)I(x)

)
≥

∧
B∈NT

P

∧
w∈N∗

R

(
‖ATA,B‖(w′w)⇒G (∀w′w.B)I(x)

)
by the induction hypothesis, Propositions 3 and 4, and the definition of ‖ATA,B‖.

In both cases, p⇒G (∀w′.A′)Ii−1(x) is an upper bound for the infimum in (2),
and thus by (3) the same is true for (T TJ)i(1)(A)(x). ��
This allows us to prove gfp-subsumptions by comparing the behavior of WWA.

Lemma 13. Let A,B ∈ NTC and p ∈ [0, 1]. Then T |=gfp 〈A � B ≥ p〉 iff for all
C ∈ NTP and w ∈ N∗R it holds that p ∧ ‖ATB,C‖(w) ≤ ‖ATA,C‖(w).

Proof. Assume that there exist C ∈ NTP and w = r1 . . . rn ∈ N∗R such that
p∧‖ATB,C‖(w) > ‖ATA,C‖(w). We define the primitive interpretation J = (Δ, ·J)
where Δ := {x0, . . . , xn}, and for all D ∈ NTP and r ∈ NR, the interpretation
function is given by

DJ (x) :=

{
‖ATA,C‖(w) if D = C and x = xn,
1 otherwise; and

rJ (x, y) :=

{
1 if x = xi−1, y = xi, and r = ri for some i ∈ {1, . . . , n},
0 otherwise.

Consider now the gfp-model I := gfpT (J) of T . By construction, for all pairs
(w′, D) ∈ N∗R × NTP \ {(w,C)} we have (∀w′.D)I(x0) = 1. Moreover, we know
that (∀w.C)I(x0) is equal to ‖ATA,C‖(w), and thus strictly smaller than p and
‖ATB,C‖(w). By Lemma 12, all this implies that

AI(x0) = ‖ATA,C‖(w)⇒G (∀w.C)I(x0) = 1 and

BI(x0) = ‖ATB,C‖(w)⇒G (∀w.C)I(x0) = (∀w.C)I(x0).

Thus AI(x0)⇒G BI(x0) = (∀w.C)I(x0) < p, and T �|=gfp 〈A � B ≥ p〉.
Conversely, assume that there are a primitive interpretation J = (Δ, ·J) and

an element x ∈ Δ such that AI(x) ⇒G BI(x) < p, where I := gfpT (J). Thus,
we have p ∧ AI(x) > BI(x), which implies by Lemma 12 the existence of a
C ∈ NTP and a w ∈ N∗R with p ∧ AI(x) > ‖ATB,C‖(w)⇒G (∀w.C)I(x). Again by
Lemma 12, this shows that

p ∧ ‖ATB,C‖(w) > AI(x)⇒G (∀w.C)I(x)

≥
(
‖ATA,C‖(w)⇒G (∀w.C)I(x)

)
⇒G (∀w.C)I(x).

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 73

In particular, the latter value cannot be 1, and thus it is equal to (∀w.C)I (x).
But this can only be the case if ‖ATA,C‖(w) ≤ (∀w.C)I(x). To summarize, we
obtain p ∧ ‖ATB,C‖(w) > (∀w.C)I(x) ≥ ‖ATA,C‖(w), as desired. ��
Denote by VT := {0, 1} ∪ {p ∈ [0, 1] | 〈A � ∀w.B ≥ p〉 ∈ T } the set of
all values appearing in T , together with 0 and 1. Since wtT has finite sup-
port and takes only values from VT , p ∧ ‖ATB,C‖(w) > ‖ATA,C‖(w) holds iff
p′ ∧ ‖ATB,C‖(w) > ‖ATA,C‖(w), where p′ is the smallest element of VT such that
p′ ≥ p. This shows that it suffices to be able to check gfp-subsumptions for the
values in VT . We now show how to do this by simulating ATB,C and ATA,C by
polynomially many unweighted automata.

Definition 14 (automata A≥p). Given a WWA A = (Σ,Q, q0,wt, qf) and a
value p ∈ [0, 1], the WA A≥p = (Σ,Q, q0,wt≥p, qf) is given by the transition
relation wt≥p := {(q, w, q′) ∈ Q×Σ∗ ×Q | wt(q, w, q′) ≥ p}.
The language of this automaton has an obvious relation to the behavior of the
original WWA.

Lemma 15. Let A be a WWA over the alphabet Σ and p ∈ [0, 1]. Then we have
L(A≥p) = {w ∈ Σ∗ | ‖A‖(w) ≥ p}.
Proof. We have w ∈ L(A≥p) iff there is a finite path π = q0w1q1 . . . wnqn in A
with label w such that wt(qi−1, wi, qi) ≥ p holds for all i ∈ {1, . . . , n}. The latter
condition is equivalent to the fact that wt(π) ≥ p. Thus, w ∈ L(A≥p) implies
that ‖A‖(w) ≥ p. Conversely, since wt has finite support, there are only finitely
many possible weights for any finite path in A, and thus ‖A‖(w) ≥ p also implies
that there exists a π ∈ paths(A, w) with wt(π) ≥ p, and thus w ∈ L(A≥p). ��
We thus obtain the following characterization of gfp-subsumption.

Lemma 16. Let A,B ∈ NTC and p ∈ VT . Then T |=gfp 〈A � B ≥ p〉 iff for all
C ∈ NTP and p′ ∈ VT with p′ ≤ p it holds that L((ATB,C)≥p′) ⊆ L((ATA,C)≥p′).

Proof. Assume that we have T |=gfp 〈A � B ≥ p〉 and consider any C ∈ NTP ,
w ∈ N∗R, and p′ ∈ VT ∩ [0, p] with w ∈ L((ATB,C)≥p′). By Lemma 15, we obtain
‖ATB,C‖(w) ≥ p′, and by Lemma 13 we know that ‖ATA,C‖ ≥ p∧‖ATB,C‖(w) ≥ p′.
Thus, w ∈ L((ATA,C)≥p′).

Conversely, assume that T |=gfp 〈A � B ≥ p〉 does not hold. Then by
Lemma 13 there are C ∈ NTP and w ∈ N∗R such that p∧‖ATB,C‖(w) > ‖ATA,C‖(w).
For the value p′ := p ∧ ‖ATB,C‖(w) ∈ VT ∩ [0, p], we have ‖ATB,C‖(w) ≥ p′, but
‖ATA,C‖(w) < p′, and thus L((ATB,C)≥p′) � L((ATA,C)≥p′) by Lemma 15. ��

Since the automata (ATA,C)≥p′ correspond to those from [1] simulating subsump-
tion in the (classical) TBoxes T≥p′ := {A′ � C′ | 〈A′ � C′ ≥ q〉 ∈ T , q ≥ p′},
we have shown that gfp-subsumption in G-FL0 can be reduced to polynomially
many subsumption tests in FL0. The detour through WWA was necessary to
account for the differences between the gfp-models of T and those of T≥p′ .

A direct consequence of this reduction is that gfp-subsumption between con-
cept names in G-FL0 remains in the same complexity class as for classical FL0.

74 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

Theorem 17. In G-FL0 with cyclic TBoxes, deciding gfp-subsumption between
concept names is PSpace-complete.

Proof. By the reductions above, it suffices to decide the language inclusions
L((ATB,C)≥p) ⊆ L((ATA,C)≥p) for all C ∈ NTP and p ∈ VT . These polynomially
many inclusion tests for WA can be done in polynomial space [11]. The problem
is PSpace-hard since gfp-subsumption in classical FL0 is PSpace-hard [1]. ��

To compute the best gfp-subsumption degree between A and B, we have to check
the above inclusions for increasing values p ∈ VT . The largest p for which these
checks succeed is the requested degree.

In the case of an acyclic TBox T , it is easy to verify that the automata
(ATB,C)≥p constructed above are in fact acyclic. Since inclusion between acyclic
automata can be decided in co-NP [11], we again obtain the same complexity
as in the classical case.

Corollary 18. In G-FL0 with acyclic TBoxes, deciding gfp-subsumption be-
tween concept names is co-NP-complete.

5 Conclusions

We have studied the complexity of reasoning in G-FL0 w.r.t. primitive concept
definitions under greatest fixed-point semantics. Specifically, we have shown that
gfp-subsumption between concept names can be reduced to a comparison of the
behavior of weighted automata with word transitions. The latter can be solved
by a polynomial number of inclusion tests on unweighted automata, and thus
gfp-subsumption is PSpace-complete for this logic, just as in the classical case.
The same reduction yields co-NP-completeness in the case of acyclic TBoxes.

In fuzzy DLs, reasoning is often restricted to so-called witnessed models [14].
Intuitively, they guarantee that the semantics of value restrictions can be com-
puted as minima instead of possibly infinite infima. As our reduction does not
make use of this property and the model constructed in the proof of Lemma 13
is witnessed, our results hold under both witnessed and general semantics.

These complexity results are consistent with previous work on extensions of
description logics with Gödel semantics. Indeed, such extensions of EL [17,20]
and ALC [6] have been shown to preserve the complexity of their classical coun-
terpart. Since reasoning in both FL0 and in G-ALC w.r.t. general TBoxes is
ExpTime-complete, so is deciding subsumption in G-FL0 w.r.t. general TBoxes.

We expect our results to generalize easily to any other set of truth degrees that
form a total order. However, the arguments used in this paper fail for arbitrary
lattices, where incomparable truth degrees might exist [8,23]. Studying these
two cases in detail is a task for future work. We also plan to consider fuzzy
extensions of FL0 with semantics based on non-idempotent t-norms, such as the
Łukasiewicz or product t-norms [13].

The Fuzzy Description Logic G-FL0 with Greatest Fixed-Point Semantics 75

References

1. Baader, F.: Using automata theory for characterizing the semantics of termino-
logical cycles. Annals of Mathematics and Artificial Intelligence 18(2), 175–219
(1996)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI
2005), pp. 364–369. Professional Book Center (2005)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

4. Baader, F., Peñaloza, R.: On the undecidability of fuzzy description logics with
GCIs and product t-norm. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS
2011. LNCS (LNAI), vol. 6989, pp. 55–70. Springer, Heidelberg (2011)

5. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Sets and Systems 160(23), 3382–3402 (2009)

6. Borgwardt, S., Distel, F., Peñaloza, R.: Decidable Gödel description logics without
the finitely-valued model property. In: Proc. of the 14th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR 2014). AAAI Press (to appear,
2014)

7. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Brewka,
G., Eiter, T., McIlraith, S.A. (eds.) Proc. of the 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2012), pp. 232–242. AAAI Press
(2012)

8. Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description
logics. Journal on Data Semantics 2(1), 1–19 (2013)

9. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under
Łukasiewicz t-norm. Information Sciences 227, 1–21 (2013)

10. Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic,
Studies in Logic, pp. 37–38. College Publications (2011)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser (2003)
13. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (2001)
14. Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets and Sys-

tems 154(1), 1–15 (2005)
15. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)
16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, Studia

Logica Library. Springer (2000)
17. Mailis, T., Stoilos, G., Simou, N., Stamou, G.B., Kollias, S.: Tractable reasoning

with vague knowledge using fuzzy EL++. Journal of Intelligent Information Sys-
tems 39(2), 399–440 (2012)

18. Nebel, B.: Terminological reasoning is inherently intractable. Artificial Intelli-
gence 43(2), 235–249 (1990)

19. Nebel, B.: Terminological cycles: Semantics and computational properties. In:
Sowa, J. (ed.) Principles of Semantic Networks, pp. 331–362. Morgan Kaufmann
(1991)

20. Stoilos, G., Stamou, G.B., Pan, J.Z.: Classifying fuzzy subsumption in fuzzy-EL+.
In: Baader, F., Lutz, C., Motik, B. (eds.) Proc. of the 2008 Int. Workshop on
Description Logics (DL 2008). CEUR Workshop Proceedings, vol. 353 (2008)

76 S. Borgwardt, J.A.L. Galano, and R. Peñaloza

21. Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions in
fuzzy description logics. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P.
(eds.) Proc. of the 17th Eur. Conf. on Artificial Intelligence (ECAI 2006), pp.
457–461. IOS Press (2006)

22. Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research 14, 137–166 (2001)

23. Straccia, U.: Description logics over lattices. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 14(1), 1–16 (2006)

24. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

25. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

Tight Complexity Bounds for Reasoning in the

Description Logic BEL

İsmail İlkan Ceylan1,� and Rafael Peñaloza1,2,��

1 Theoretical Computer Science, TU Dresden, Germany
2 Center for Advancing Electronics Dresden, Germany

{ceylan,penaloza}@tcs.inf.tu-dresden.de

Abstract. Recently, Bayesian extensions of Description Logics, and in
particular the logic BEL, were introduced as a means of representing
certain knowledge that depends on an uncertain context. In this paper
we introduce a novel structure, called proof structure, that encodes the
contextual information required to deduce subsumption relations from
a BEL knowledge base. Using this structure, we show that probabilis-
tic reasoning in BEL can be reduced in polynomial time to standard
Bayesian network inferences, thus obtaining tight complexity bounds for
reasoning in BEL.

1 Introduction

Description Logics (DLs) [2] are a family of knowledge representation formalisms
that are characterized by their clear syntax, and formal, unambiguous semantics.
DLs have been successfully employed for creating large knowledge bases, repre-
senting real application domains, prominently from the life sciences. Examples
of such knowledge bases are Snomed CT, Galen, or the Gene Ontology.

A prominent missing feature of classical DLs is the capacity of specifying a
context in which a portion of the knowledge holds. For instance, the behaviour
of a system may depend on factors that are extrogenous to the domain, such
as the weather conditions. For that reason, approaches for handling contexts in
DLs have been studied; see e.g. [13,14]. Since the specific context in which the
ontology is being applied (e.g., the weather) may be uncertain, it is important to
adapt context-based reasoning to consider also a probabilistic distribution over
the contexts. Recently, BEL [7] and other probabilistic extensions of DLs [8]
were introduced to describe certain knowledge that depends on an uncertain
context, which is described by a Bayesian network (BN). Using these logics, one
can represent knowledge that holds e.g., when it rains. Interestingly, reasoning
in BEL can be decoupled between the logical part, and BN inferences. However,
despite the logical component of this logic being decidable in polynomial time,
the best known algorithm for probabilistic reasoning in BEL runs in exponential
time.
� Supported by DFG within the Research Training Group “RoSI” (GRK 1907).

�� Partially supported by DFG within the Cluster of Excellence ‘cfAED’.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 77–91, 2014.
c© Springer International Publishing Switzerland 2014

78 İ.İ. Ceylan and R. Peñaloza

We use a novel structure, called the proof structure, to reduce probabilistic
reasoning for a BEL knowledge base to probabilistic inferences in a BN. Briefly,
a proof structure describes all contexts that entail the wanted consequence. The
BN can then be used to compute the probability of these contexts, which yields
the probability of the entailment. Since this reduction can be done in polynomial
time, it provides tight upper bounds for the complexity of reasoning in BEL.

2 EL and Proof Structures

EL is a light-weight DL that allows for polynomial-time reasoning. It is based on
concepts and roles, corresponding to unary and binary predicates from first-order
logic, respectively. EL concepts are built inductively from disjoint, countably
infinite sets NC and NR of concept names and role names, and applying the
syntax rule C ::= A |
 | C � C | ∃r.C, where A ∈ NC and r ∈ NR.

The semantics of EL is given by interpretations I = (ΔI , ·I) where ΔI is a
non-empty domain and ·I is an interpretation function that maps every A ∈ NC

to a set AI ⊆ ΔI and every role name r to a binary relation rI ⊆ ΔI × ΔI .
The interpretation function ·I is extended to EL concepts by defining
I := ΔI ,
(C �D)I := CI ∩DI , and (∃r.C)I := {d ∈ ΔI | ∃e : (d, e) ∈ rI ∧ e ∈ CI}. The
knowledge of a domain is represented through a set of axioms restricting the
interpretation of the concepts.

Definition 1 (TBox). A general concept inclusion (GCI) is an expression of
the form C � D, where C, D are concepts. A TBox T is a finite set of GCIs.
The signature of T (sig(T)) is the set of concept and role names appearing in
T . An interpretation I satisfies the GCI C � D iff CI ⊆ DI ; I is a model of
the TBox T iff it satisfies all the GCIs in T .

The main reasoning service in EL is deciding the subsumption relations between
concepts based on their semantic definitions. A concept C is subsumed by D
w.r.t. the TBox T (T |= C � D) iff CI ⊆ DI for all models I of T .

It has been shown that subsumption can be decided in EL by a comple-
tion algorithm in polynomial time [1]. This algorithm requires the TBox to be
in normal form; i.e., where all axioms in the TBox are of one of the forms
A � B | A �B � C | A � ∃r.B | ∃r.B � A. It is well known that every TBox
can be transformed into an equivalent one in normal form of linear size [1,5]; for
the rest of this paper, we assume that T is a TBox in normal form.

We are interested in deriving the subsumption relations in normal form that
follow from T ; we call the set of all these subsumption relations the normalised
logical closure of T . This closure can be computed by an exhaustive application
of the deduction rules from Table 1. Each rule maps a set of premises S to its
consequence α; such a rule is applicable to a TBox T if S ⊆ T but α /∈ T . In
that case, its application adds α to T . It is easy to see that these rules produce
the normalised logical closure of the input TBox. Moreover, the deduction rules
introduce only GCIs in normal form, and do not change the signature. Hence, if
n = |sig(T)|, the logical closure of T is found after at most n3 rule applications.

Tight Complexity Bounds for Reasoning in BEL 79

Table 1. Deduction rules for EL
�→ Premises (S) Result (α) �→ Premises (S) Result (α)

1 〈A � B〉, 〈B � C〉 〈A � C〉 7 〈A � ∃r.B〉, 〈∃r.B � C〉 〈A � C〉
2 〈A � ∃r.B〉, 〈B � C〉 〈A � ∃r.C〉 8 〈A � B � C〉, 〈C � X〉 〈A � B � X〉
3 〈A � ∃r.B〉, 〈C � A〉 〈C � ∃r.B〉 9 〈A � B � C〉, 〈X � A〉 〈X �B � C〉
4 〈∃r.A � B〉, 〈B � C〉 〈∃r.A � C〉 10 〈A � B � C〉, 〈X � B〉 〈A �X � C〉
5 〈∃r.A � B〉, 〈C � A〉 〈∃r.C � B〉 11 〈X �X � C〉 〈X � C〉
6 〈∃r.A � B〉, 〈B � ∃r.C〉 〈A � C〉

We will later associate a probability to the GCIs in the TBox T , and will be
interested in computing the probability of a subsumption. It will then be useful
to be able not only to derive the GCI, but also all the sub-TBoxes of T from
which it follows. Therefore, we store the traces of the deduction rules using a
directed hypergraph. A directed hypergraph is a tuple H = (V,E) where V is
a non-empty set of vertices and E is a set of directed hyper-edges of the form
e = (S, v) where S ⊆ V and v ∈ V . Given S ⊆ V and v ∈ V , a path from S
to v in H of length n is a sequence of hyper-edges (S1, v1), (S2, v2), . . . , (Sn, vn)
where vn = v and Si ⊆ S ∪ {vj | 0 < j < i} for all i, 1 ≤ i ≤ n.

Given a TBox T in normal form, we build the hypergraph HT = (VT , ET),
where VT is the set of all GCIs in normal form that follow from T over the same
signature and ET = {(S, α) | S �→ α, S ⊆ VT }, with �→ the deduction relation
defined in Table 1. We call this hypergraph the proof structure of T . From the
soundness and completeness of the deduction rules, we get the following lemma.

Lemma 2. Let T be a TBox in normal form, HT = (VT , ET) its proof struc-
ture, O ⊆ T , and C � D ∈ VT . There is a path from O to C � D in HT iff
O |= C � D.

HT is a compact representation of all the possible derivations of a GCI from
the GCIs in T [3,4]. Traversing this hypergraph backwards from a GCI α being
entailed by T , one constructs all proofs for α; hence the name “proof structure.”
Since |VT | ≤ |sig(T)|3, it suffices to consider paths of length at most |sig(T)|3.

Clearly, the proof structure HT can be cyclic. To simplify the process of
finding the causes of a GCI being entailed, we build an unfolded version of this
hypergraph by making different copies of each node. In this case, nodes are pairs
of axioms and labels, where the latter indicates to which level the nodes belong in
the hypergraph. Given a set of axioms S, and i ≥ 0, Si := {(α, i) | α ∈ S} denotes
the i-labeled set of GCIs in S. Let n := |sig(T)|3, we define the setsWi, 0 ≤ i ≤ n
inductively by setting W0 := {(α, 0) | α ∈ T } and for all i, 0 ≤ i < n

Wi+1 := {(α, i+ 1) | Si ⊆Wi, S �→ α} ∪ {(α, i+ 1) | (α, i) ∈Wi}.

For each i, 0 ≤ i ≤ n, Wi contains all the GCIs that can be derived by at most i
applications of the deduction rules from Table 1. The unfolded proof structure of
T is the hypergraphHu

T = (WT , FT), whereWT :=
⋃n

i=0 Wi and FT :=
⋃n

i=1 Fi,

Fi+1 := {(Si, (α, i+ 1)) | Si ⊆Wi, S �→ α} ∪ {({(α, i)}, (α, i+ 1)) | (α, i)∈Wi}.

80 İ.İ. Ceylan and R. Peñaloza

Algorithm 1. Construction of the pruned proof structure

Input: TBox T
Output: H = (W,F) pruned proof structure for T
1: V0 ← T , E0 ← ∅, i ← 0
2: do
3: i← i+ 1
4: Vi := Vi−1 ∪ {α | S �→ α, S ⊆ Vi−1}
5: Ei = {(S, α) | S �→ α, S ⊆ Vi−1}
6: while Vi �= Vi−1 or Ei �= Ei−1

7: W := {(α, k) | α ∈ Vk, 0 ≤ k ≤ i}
8: E := {(S, (α, k)) | (S, α) ∈ Ek, 0 ≤ k ≤ i}∪{({(α, k)}, (α, k+1)) | α ∈ Vk, 0≤k < i}
9: return (W,E)

The following is a simple consequence of our constructions and Lemma 2.

Theorem 3. Let T be a TBox, and HT = (VT , ET) and Hu
T = (WT , FT) the

proof structure and unfolded proof structure of T , respectively. Then,

1. for all C � D ∈ VT and all O ⊆ T , O |= C � D iff there is a path from
{(α, 0) | α ∈ O} to (C � D,n) in Hu

T , and
2. (S, α) ∈ ET iff (Sn−1, (α, n)) ∈ FT .

The unfolded proof structure of a TBox T is thus guaranteed to contain the
information of all possible causes for a GCI to follow from T . Moreover, this
hypergraph is acyclic, and has polynomially many nodes, on the size of T , by
construction. Yet, this hypergraph may contain many redundant nodes. Indeed,
it can be the case that all the simple paths in HT starting from a subset of T
are of length k < n. In that case, Wi = Wi+1 and Fi = Fi+1 hold for all i ≥ k,
modulo the second component. It thus suffices to consider the sub-hypergraph
of Hu

T that contains only the nodes
⋃k

i=0 Wi. Algorithm 1 describes a method
for computing this pruned hypergraph. In the worst case, this algorithm will
produce the whole unfolded proof structure of T , but will stop the unfolding
procedure earlier if possible. The do-while loop is executed at most |sig(T)|3
times, and each of these loops requires at most |sig(T)|3 steps.

Lemma 4. Algorithm 1 terminates in time polynomial on the size of T .

We briefly illustrate the execution of Algorithm 1 on a simple TBox.

Example 5. Consider the EL TBox T = {A � B,B � C,B � D,C � D}. The
first levels of the unfolded proof structure of T are shown in Figure 1.1 The
first level V0 of this hypergraph contains a representative for each axiom in T .
To construct the second level, we first copy all the GCIs in V0 to V1, and add a
hyperedge joining the equivalent GCIs (represented by dashed lines in Figure 1).
Then, we apply all possible deduction rules to the elements of V0, and add a

1 For the illustrations we drop the second component of the nodes, but visually make
the level information explicit.

Tight Complexity Bounds for Reasoning in BEL 81

A � B B � C B � D C � D

A � B A � C B � C A � D B � D C � D

A � D.

Fig. 1. The first levels of an unfolded proof structure and the paths to 〈A � D〉

hyperedge from the premises at level V0 to the conclusion at level V1 (continuous
lines). This procedure is repeated at each subsequent level. Notice that the set of
GCIs at each level is monotonically increasing. Additionally, for each GCI, the
in-degree of each representative monotonically increases throughout the levels.

In the next section, we recall BEL, a probabilistic extension of EL based on
Bayesian networks [7], and use the construction of the (unfolded) proof structure
to provide tight complexity bounds for reasoning in this logic.

3 The Bayesian Description Logic BEL
The probabilistic Description Logic BEL extends EL by associating every GCI
in a TBox with a probabilistic context. The joint probability distribution of the
contexts is encoded in a Bayesian network [12]. A Bayesian network (BN) is
a pair B = (G,Φ), where G = (V,E) is a finite directed acyclic graph (DAG)
whose nodes represent Boolean random variables,2 and Φ contains, for every
node x ∈ V , a conditional probability distribution PB(x | π(x)) of x given its
parents π(x). If V is the set of nodes in G, we say that B is a BN over V .

Intuitively, G = (V,E) encodes a series of conditional independence assump-
tions between the random variables: every variable x ∈ V is conditionally inde-
pendent of its non-descendants given its parents. Thus, every BN B defines a
unique joint probability distribution over V where PB(V) =

∏
x∈V PB(x | π(x)).

As with classical DLs, the main building blocks in BEL are concepts, which are
syntactically built as EL concepts. The domain knowledge is encoded by a gen-
eralization of TBoxes, where axioms are annotated with a context, defined by a
set of literals belonging to a BN.

Definition 6 (KB). Let V be a finite set of Boolean variables. A V -literal is
an expression of the form x or ¬x, where x ∈ V ; a V -context is a consistent set
of V -literals.

A V -restricted general concept inclusion (V -GCI) is of the form 〈C � D : κ〉
where C and D are BEL concepts and κ is a V -context. A V -TBox is a finite

2 In their general form, BNs allow for arbitrary discrete random variables. We restrict
w.l.o.g. to Boolean variables for ease of presentation.

82 İ.İ. Ceylan and R. Peñaloza

set of V -GCIs. A BEL knowledge base (KB) over V is a pair K = (B, T) where
B is a BN over V and T is a V -TBox.3

The semantics of BEL extends the semantics of EL by additionally evaluating
the random variables from the BN. Given a finite set of Boolean variables V , a
V -interpretation is a tuple I = (ΔI , ·I ,VI) where ΔI is a non-empty set called
the domain, VI : V → {0, 1} is a valuation of the variables in V , and ·I is an
interpretation function that maps every concept name A to a set AI ⊆ ΔI and
every role name r to a binary relation rI ⊆ ΔI ×ΔI .

The interpretation function ·I is extended to arbitrary BEL concepts as in
EL and the valuation VI is extended to contexts by defining, for every x ∈ V ,
VI(¬x) = 1 − VI(x), and for every context κ, VI(κ) = min	∈κ VI(�), where
VI(∅) := 1. Intuitively, a context κ can be thought as a conjunction of literals,
which is evaluated to 1 iff each literal is evaluated to 1.

The V -interpretation I is a model of the V -GCI 〈C � D : κ〉, denoted as
I |= 〈C � D : κ〉, iff (i) VI(κ) = 0, or (ii) CI ⊆ DI . It is a model of the V -TBox
T iff it is a model of all the V -GCIs in T . The idea is that the restriction
C � D is only required to hold whenever the context κ is satisfied. Thus, any
interpretation that violates the context trivially satisfies the whole V -GCI.

Example 7. Let V0 = {x, y, z}, and consider the V0-TBox

T0 := {〈A � C : {x, y}〉 , 〈A � B : {¬x}〉 , 〈B � C : {¬x}〉}.

The V0-interpretation I0 = ({d}, ·I0 ,V0) with V0({x,¬y, z}) = 1, AI0 = {d}, and
BI0 = CI0 = ∅ is a model of T0, but is not a model of the V0-GCI 〈A � B : {x}〉,
since V0({x}) = 1 but AI0 �⊆ BI0 .

A V -TBox T is in normal form if for each V -GCI 〈α : κ〉 ∈ T , α is an EL GCI
in normal form. A BEL KB K = (T ,B) is in normal form if T is in normal form.
As for EL, every BEL KB can be transformed into an equivalent one in normal
form in polynomial time [6]. Thus, we consider only BEL KBs in normal form
in the following. The DL EL is a special case of BEL in which all V -GCIs are
of the form 〈C � D : ∅〉. Notice that every valuation satisfies the empty context
∅; thus, a V -interpretation I satisfies the V -GCI 〈C � D : ∅〉 iff CI ⊆ DI . We
say that T entails 〈C � D : ∅〉 (T |= C � D), if every model of T is also
a model of 〈C � D : ∅〉. For a valuation W of the variables in V , we define
the TBox containing all axioms that must be satisfied in any V -interpretation
I = (ΔI , ·I ,VI) with VI =W .

Definition 8 (restriction). Let K = (B, T) be a BEL KB. The restriction of
T to a valuation W of the variables in V is the V -TBox

TW := {〈C � D : ∅〉 | 〈C � D : κ〉 ∈ T ,W(κ) = 1}.

To handle the probabilistic knowledge provided by the BN, we extend the seman-
tics of BEL through multiple-world interpretations. A V -interpretation describes

3 Unless stated otherwise, we assume that K is over V in the rest of the paper.

Tight Complexity Bounds for Reasoning in BEL 83

a possible world; by assigning a probabilistic distribution over these interpreta-
tions, we describe the required probabilities, which should be consistent with the
BN provided in the knowledge base.

Definition 9 (probabilistic model). A probabilistic interpretation is a pair
P = (I, PI), where I is a set of V -interpretations and PI is a probability distri-
bution over I such that PI(I) > 0 only for finitely many interpretations I ∈ I.
P is a model of the TBox T if every I ∈ I is a model of T . P is consistent with
the BN B if for every possible valuation W of the variables in V it holds that∑

I∈I,VI=W

PI(I) = PB(W).

P is a model of the KB (B, T) iff it is a model of T and consistent with B.

One simple consequence of this semantics is that probabilistic models preserve
the probability distribution of B for contexts; the probability of a context κ is
the sum of the probabilities of all valuations that extend κ.

3.1 Contextual Subsumption

Just as in classical DLs, we want to extract the information that is implicitly
encoded in a BEL KB. In particular, we are interested in solving different rea-
soning tasks for this logic. One of the fundamental reasoning problems in EL
is subsumption: is a concept C always interpreted as a subconcept of D? This
problem is extended to also consider the contexts in BEL.
Definition 10 (contextual subsumption). Let K = (T ,B) be a BEL KB,
C,D be two BEL concepts, and κ a V -context. C is contextually subsumed by
D in κ w.r.t. K , denoted 〈C �K D : κ〉, if every probabilistic model of K is also
a model of {〈C � D : κ〉}.
Contextual subsumption depends only on the contexts, and not on their associ-
ated probabilities. It was shown in [7] that contextual subsumption is coNP-hard,
even if considering only the empty context. To show that the problem is in fact
coNP-complete, we use the following lemma also shown in [7].

Lemma 11. Let K = (B, T) be a KB. Then 〈C �K D : κ〉 iff for every valuation
W with W(κ) = 1, it holds that TW |= C � D.

Using this lemma, it is easy to see that contextual subsumption is in coNP: to
decide that the subsumption does not hold, we simply guess a valuation W and
verify in polynomial time that W(κ) = 1 and TW �|= C � D.

Corollary 12. Contextual subsumption is coNP-complete.

In BEL one might be interested in finding the probability with which such a
consequence holds, or given a subsumption relation, computing the most prob-
able context in which it holds. For the rest of this section, we formally define
these reasoning tasks, and provide a method for solving them based on Bayesian
networks inferences.

84 İ.İ. Ceylan and R. Peñaloza

x

y

z

x

0.7 y

x 1
¬x 0.5z

x y 0.3
x ¬y 0.1
¬x y 0
¬x ¬y 0.9

Fig. 2. A simple BN

3.2 Probabilistic Subsumption

We generalize subsumption between concepts to consider also the probabilities
provided by the BN.

Definition 13 (p-subsumption). Let K = (T ,B) be a BEL KB, C,D two
BEL concepts, and κ a V -context. For a probabilistic interpretation P = (I, PI),
we define P (〈C �P D : κ〉) :=

∑
I∈I,I|=〈C�D:κ〉 PI(I). The probability of the

V -GCI 〈C � D : κ〉 w.r.t. K is defined as

P (〈C �K D : κ〉) := inf
P|=K

P (〈C �P D : κ〉).

We say that C is p-subsumed by D in κ, for p ∈ (0, 1] if P (〈C �K D : κ〉) ≥ p.

Proposition 14 ([7]). Let K = (B, T) be a KB. Then

P (〈C �K D : κ〉) = 1− PB(κ) +
∑

TW |=C�D
W(κ)=1

PB(W).

Example 15. Consider the KB K0 = (B0, T0), where B0 is the BN from Figure 2
and T0 the V0-TBox from Example 7. It follows that P (〈A �K0 C : {x, y}〉) = 1
from the first V -GCI in T and P (〈A �K0 C : {¬x}〉) = 1 from the others since
any model of K0 needs to satisfy the V -GCIs asserted in T by definition. Notice
that A � C does not hold in context {x,¬y}, but P (〈A �K0 C : {x,¬y}〉) = 1.
Since this describes all contexts, we conclude P (〈A �K0 C : ∅〉) = 1.

Deciding p-subsumption We show that deciding p-subsumption can be re-
duced to deciding the D-PR problem over a Bayesian network. Given a BN
B = (G,Φ) over V and a V -context κ, the D-PR problem consists on deciding
whether PB(κ) > p. This problem is known to be PP-complete [9,22].

Let K = (T ,B) be an arbitrary but fixed BEL KB. From the labelled V -TBox
T , we construct the EL TBox T ′ := {α | 〈α : κ〉 ∈ T }. T ′ contains the same
axioms as T , but ignores the contextual information encoded in their labels. Let
now Hu

T be the (pruned) unraveled proof structure for T ′. By construction, Hu
T

is a directed acyclic hypergraph. Our goal is to transform this hypergraph into
a DAG and construct a BN, from which all the p-subsumption relations can be
read through standard BN inferences. We explain this construction in two steps.

Tight Complexity Bounds for Reasoning in BEL 85

Algorithm 2. Construction of a DAG from a hypergraph

Input: H = (V,E) directed acyclic hypergraph
Output: G = (V ′, E′) directed acyclic graph
1: V ′ ← V , i, j ← 0
2: for each v ∈ V do
3: S ← {S | (S, v) ∈ E}, j ← i
4: for each S ∈ S do
5: V ′ ← V ′ ∪ {∧i}, E′ ← E′ ∪ {(u,∧i) | u ∈ S}
6: if i > j then
7: V ′ ← V ′ ∪ {∨i}, E′ ← E′ ∪ {(∧i,∨i)}
8: i← i+ 1

9: if i = j + 1 then � If the GCI has only one explanation
10: E′ ← E′ ∪ {(∧j , v)}
11: else
12: E′ ← E′ ∪ {(∨k,∨k+1) | j < k < i− 1} ∪ {(∨i−1, v), (∧j ,∨j+1)}
13: return G = (V ′, E′)

From Hypergraph to DAG Hypergraphs generalize graphs by allowing edges to
connect many vertices. These hyperedges can be seen as an encoding of a formula
in disjunctive normal form. An edge (S, v) expresses that if all the elements
in S can be reached, then v is also reachable; we see this as an implication:∧

w∈S w ⇒ v. Several edges sharing the same head (S1, v), (S2, v), . . . , (Sk, v) in

the hypergraph can be described through the implication
∨k

i=1(
∧

w∈Si
w) ⇒ v.

We can thus rewrite any directed acyclic hypergraph into a DAG by introducing
auxiliary conjunctive and disjunctive nodes (see Figure 3); the proper semantics
of these nodes will be guaranteed by the conditional probability distribution
defined later. Since the space needed for describing the conditional probability
tables in a BN is exponential on the number of parents of the node, we ensure
that all the nodes in this DAG have at most two parent nodes.

Algorithm 2 constructs such a DAG from a directed hypergraph. The algo-
rithm adds a new node ∧i for each hyperedge (S, v) in the input hypergraph H ,
and connects it with all the nodes in S. If there are k hyperedges that lead to a
single node v, it creates k − 1 nodes ∨i. These are used to represent the binary
disjunctions among all the hyperedges leading to v. The algorithm runs in poly-
nomial time on the size of H , and if H is acyclic, the resulting graph G is acyclic
too. Moreover, all the nodes v ∈ V that existed in the input hypergraph have
at most one parent node after the translation; every ∨i node has exactly two
parents, and the number of parents of a node ∧i is given by the set S from the
hyperedge (S, v) ∈ E that generated it. In particular, if the input hypergraph is
the unraveled proof structure for a TBox T , then the size of the generated graph
G is polynomial on the size of T , and each node has at most two parent nodes.

From DAG to BN The next step is to build a BN that preserves the probabilistic
entailments of a BEL KB. Let K = (T ,B) be such a KB, with B = (G,Φ), and
let GT be the DAG obtained from the unraveled proof structure of T using

86 İ.İ. Ceylan and R. Peñaloza

x

y

z

x

0.7

y

x 1
¬x 0.5

z

x y 0.3
x ¬y 0.1
¬x y 0
¬x ¬y 0.9

A � B

B � C

C � D

B � D

x

¬x ∧ y

z

y

∧i

∧i′

∧i′′

. . .

. . .

∨i′

(A � B) ∧ (B � D)

A � B

A � C

B � C

A � D

B � D

C � D

∧j

∧j′′

∧j′

. . .

∨j

(∧j) ∨ (∧j′′)

∨j′

A � D ∨j′

Fig. 3. A portion of the constructed BN

Algorithm 2. Recall that the nodes of GT are either (i) pairs of the form (α, i),
where α is a GCI in normal form built from the signature of T , or (ii) an
auxiliary disjunction (∨i) or conjunction (∧i) node introduced by Algorithm 2.
Moreover, (α, 0) is a node of GT iff there is a context κ with 〈α : κ〉 ∈ T . We
assume w.l.o.g. that for node (α, 0) there is exactly one such context. If there
were more than one, then we could extend the BN B with an additional variable
which describes the disjunctions of these contexts, similarly to the construction
of Algorithm 2. Similarly, we assume w.l.o.g. that each context κ appearing in T
contains at most two literals, which is a restriction that can be easily removed
by introducing auxiliary nodes as before. For a context κ, let var(κ) denote the
set of all variables appearing in κ. We construct a new BN BK as follows.

Let G = (V,E) and GT = (VT , ET). Construct the graph GK = (VK, EK),
where VK := V ∪ VT and EK := E ∪ ET ∪ {(x, (α, 0)) | 〈α : κ〉 ∈ T , x ∈ var(κ)}.
Clearly, GK is a DAG. We now need only to define the conditional probability
tables for the nodes in VT given their parents in GK; notice that the structure
of the graph G remains unchanged for the construction of GK. For every node
(α, 0) ∈ VT , there is a κ such that 〈α : κ〉 ∈ T ; the parents of (α, 0) in GK
are then var(κ) ⊆ V . The conditional probability of (α, 0) given its parents is
defined, for every valuation V of var(κ) as PB((α, 0) = true | V) = V(κ); that
is, the probability of (α, 0) being true given a valuation of its parents is 1 if the
valuation makes the context κ true; otherwise, it is 0. Each auxiliary node has
at most two parents. The conditional probability of a conjunction node ∧i being
true is 1 iff all parents are true, and the conditional probability of a disjunction
node ∨i being true is 1 iff at least one parent is true. Finally, every (α, i) with
i > 0 has exactly one parent node v; (α, i) is true with probability 1 iff v is true.

Example 16. Consider the BEL KB K = (T ,B0) over V = {x, y, z} where

T = {〈A � B : {x}〉 , 〈B � C : {¬x, y}〉 , 〈C � D : {z}〉 , 〈B � D : {y}〉}.

The BN obtained from this KB is depicted in Figure 3. The DAG obtained from
the unraveled proof structure of T appears on the right, while the left part shows

Tight Complexity Bounds for Reasoning in BEL 87

the original BN B0. The gray arrows depict the connection between these two
DAGs, which is given by the labels in the V -GCIs in T . The gray boxes denote
the conditional probability of the different nodes given their parents.

Suppose that we are interested in P (〈A �K D : ∅〉). From the unraveled proof
structure, we can see that A � D can be deduced either using the axioms A � B,
B � C, C � D, or through the two axioms A � B, B � D. The probability of
any of these combinations of axioms to appear is given by B0 and the contextual
connection to the axioms at the lower level of the proof structure. Thus, to
deduce P (〈A �K D : ∅〉) we need only to compute the probability of the node
(A � D,n), where n is the last level.

From the properties of proof structures and Theorem 3 we have that

PBK((α, n) | κ) =
∑
V(κ)=1

PBK((α, n) | V)PBK(V) =
∑
TW |=α
W(κ)=1

PBK(W).

which yields the following result.

Theorem 17. Let K = (T ,B) be a BEL KB, C,D two BEL concepts, κ a
V -context and n = |sig(T)|3. For a V -GCI 〈C � D : κ〉, the following holds:
P (〈C �K D : κ〉) = 1− PB(κ) + PBK((C � D,n) | κ).

This theorem states that we can reduce the problem of p-subsumption w.r.t. the
BEL KB K to a probabilistic inference in the BN BK. Notice that the size of
BK is polynomial on the size of K. This means that p-subsumption is at most
as hard as deciding D-PR problems over the BN BK which is in PP [22]. Since
p-subsumption is also PP-hard [7], we get the following.

Theorem 18. Deciding p-subsumption is PP-complete in the size of the KB.

3.3 Most Likely Context

Finding the most likely context for a consequence can be seen as the dual of
computing the probability of this consequence. Intuitively, we are interested in
finding the most likely explanation for an event; if a consequence holds, we want
to find the context for which this consequence is most likely to occur.

Definition 19 (most likely context). Let K = (B, T) be a KB, C,D two
BEL concepts. A V -context κ is a most likely context (mlc) for C � D if
(i) 〈C �K D : κ〉 and (ii) for all contexts κ′ with 〈C �K D : κ′〉, PB(κ) ≥ PB(κ

′).

Computing all most likely contexts can be done in exponential time. Moreover,
it is not possible to lower this bound since a GCI may have exponentially many
mlcs. Here we are interested in finding one most likely context, or more precisely,
on its associated decision problem: given a context κ, decide whether κ is an mlc
for C � D w.r.t. K. This problem is clearly in coNPPP: to show that κ is not a
mlc, we can guess a V -context κ′, and check with a PP oracle that 〈C �K D : κ′〉
and PB(κ

′) > p hold, using the construction from Section 3.2.

88 İ.İ. Ceylan and R. Peñaloza

To show that it is also coNPPP-hard, we provide a reduction from D-MAP,
which corresponds to finding a valuation that maximizes the probability of an
event. Formally, the D-MAP problem consists of deciding, given a BN B over V ,
a set Q ⊆ V a V -context κ, and p > 0, whether there exists a valuation λ of the
variables in Q such that PB(κ ∪ λ) > p.

Let B = ((V,E), Φ) be a BN, κ a V -context, Q = {x1, . . . , xk} ⊆ V , and
p > 0. Define V ′ = V � {x+, x− | x ∈ Q} � {z}, where � denotes the disjoint
union, and E′ = E ∪ {(x, x+), (x, x−) | x ∈ Q}. We construct B′ = ((V ′, E′), Φ′)
where Φ′ contains PB′(v | π(v)) = PB(v | π(x)) for all v ∈ V , and PB′(z) = p,
PB′(x+ | x) = 1, PB′(x+ | ¬x) = 0, PB′(x− | x) = 0, and PB′(x− | ¬x) = 1 for all
x ∈ Q. Let now

T = {
〈
Ai−1 � Ai : x

+
i

〉
,
〈
Ai−1 � Ai : x

−
i

〉
| 1 ≤ i ≤ k} ∪

{〈Ak � B : κ〉 , 〈A0 � B : z〉},

and K = (B′, T). It is easy to see that for any V ′-context κ′, if 〈A0 �K B : κ〉
and z /∈ κ′, then κ ⊆ κ′ and for every x ∈ Q, {x+, x−} ∩ κ′ �= ∅. Moreover, by
construction PB(z) = p and PB(x

+, x−) = 0 for all x ∈ Q.

Theorem 20. Let B be a BN over V , κ a V -context, Q ⊆ V , p > 0 and K the
KB built as described above. There is a valuation λ of the variables in Q such
that PB(λ ∪ κ) > p iff {z} is not an mlc for A0 � B w.r.t. K.

From this theorem, and the upper bound described above, we obtain a tight
complexity bound for deciding a most likely context.

Corollary 21. Deciding whether κ is a most likely context is coNPPP-complete.

If the context κ is a complete valuation, then the complexity of this problem
reduces to NP-complete. This is an immediate result of applying the standard
chain rule for exact inference, which is in PTime, and reducing the most probable
explanation (D-MPE) problem in BNs, which is NP-complete [23].

4 Related Work

The amount of work combining DLs with probabilities is too vast to enumerate
here. We mention only the work that relates the closest to our approach, and
refer the interested reader to a thorough, although slightly outdated survey [17].

An early attempt for combining BNs and DLs was P-Classic [16], which ex-
tends Classic through probability distributions over the interpretation domain.
In the same line, in PR-OWL [10] the probabilistic component is interpreted by
providing individuals with a probability distribution. As many others in the
literature, these approaches differ from our multiple-world semantics, in which
we consider a probability distribution over a set of classical DL interpretations.

Tight Complexity Bounds for Reasoning in BEL 89

Other probabilistic extensions of EL are [18] and [19]. The former introduces
probabilities as a concept constructor, while in the latter the probabilities of
axioms, which are always assumed to be independent, are implicitly encoded
through a weighting function, which is interpreted with a log-linear model. Thus,
both formalisms differ greatly from our approach.

DISPONTE [21] considers a multiple-world semantics. The main difference
with our approach is that in DISPONTE, all probabilities are assumed to be
independent, while we provide a joint probability distribution through the BN.
Another minor difference is that BEL allows for classical consequences whereas
DISPONTE does not. Closest to our approach is perhaps the Bayesian extension
of DL-Lite called BDL-Lite [11]. Abstracting from the different logical compo-
nent, BDL-Lite looks almost identical to BEL. There is, however, a subtle but
important difference. In our approach, an interpretation I satisfies a V -GCI
〈C � D : κ〉 if VI(κ) = 1 implies CI ⊆ DI . In [11], the authors employ a closed-
world assumption over the contexts, where this implication is substituted for an
equivalence; i.e., VI(κ) = 0 also implies CI �⊆ DI . The use of such semantics
can easily produce inconsistent KBs, which is impossible in BEL.

5 Conclusions

We studied the probabilistic DL BEL, which extends EL with uncertain contexts
based on a BN. Given BEL KB K, we construct in polynomial time a BN BK
that encodes all the probabilistic and logical knowledge of K w.r.t. the signature
of the KB. This construction is based on the proof structure, a hypergraph
representation of all the traces of any consequence derivation. As a result, we
obtain that (i) deciding p-subsumption in BEL can be reduced to exact inference
in BK and (ii) one most likely context can be found by computing a valuation
of a subset of the variables in BK that maximizes the probability of an event.
These provide tight complexity bounds for both of the reasoning problems.

While the construction is polynomial on the input KB, the obtained DAG
might not preserve all the desired properties of the original BN. For instance, it is
known that the efficiency of the BN inference engines depends on the treewidth of
the underlying DAG [20]; however, the proof structure used by our construction
may increase the treewidth of the graph. One direction of future research will
be to try to optimize the reduction by bounding the treewidth and reducing the
ammount of nodes added to the graph.

Finally, it should be clear that our construction does not depend on the chosen
DL EL, but rather on the fact that a simple polynomial-time consequence-based
method can be used to reason with it. It should thus be a simple task to generalize
the approach to other consequence-based methods, e.g. [24]. It would also be
interesting to generalize the probabilistic component to consider other kinds of
probabilistic graphical models [15].

90 İ.İ. Ceylan and R. Peñaloza

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005.
Morgan Kaufmann (2005)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

3. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. of Automated
Reasoning 45(2), 91–129 (2010)

4. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Suntisrivaraporn, B.: Pinpointing
in the description logic EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI
2007. LNCS (LNAI), vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

5. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: Proc. ECAI 2004, pp. 298–302. IOS
Press (2004)

6. Ceylan, İ.İ.: Context-Sensitive Bayesian Description Logics. Master’s thesis, Dres-
den University of Technology, Germany (2013)

7. Ceylan, İ.İ., Peñaloza, R.: The Bayesian Description Logic BEL. In: Demri, S., Ka-
pur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 480–494.
Springer, Heidelberg (2014)

8. Ceylan, İ.İ., Peñaloza, R.: Bayesian Description Logics. In: Bienvenu, M., Ortiz,
M., Rosati, R., Simkus, M. (eds.) Proceedings of the 27th International Workshop
on Description Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193, pp.
447–458. CEUR-WS (2014)

9. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks (research note). Artif. Intel. 42(2-3), 393–405 (1990)

10. da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A Bayesian ontology lan-
guage for the semantic web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey,
K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007.
LNCS (LNAI), vol. 5327, pp. 88–107. Springer, Heidelberg (2008)

11. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with Bayesian de-
scription logics. In: Greco, S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI),
vol. 5291, pp. 146–159. Springer, Heidelberg (2008)

12. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009)

13. Homola, M., Serafini, L.: Contextualized knowledge repositories for the semantic
web. In: Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 12 (2012)

14. Klarman, S., Gutiérrez-Basulto, V.: ALCALC: A context description logic. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 208–220. Springer,
Heidelberg (2010)

15. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press (2009)

16. Koller, D., Levy, A.Y., Pfeffer, A.: P-classic: A tractable probablistic description
logic. In: Proc. 14th National Conference on Artificial Intelligence (AAAI 1997),
pp. 390–397. AAAI Press (1997)

17. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. J. of Web Semantics 6(4), 291–308 (2008)

18. Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty.
In: Lin, F., Sattler, U., Truszczynski, M. (eds.) KR. AAAI Press (2010)

Tight Complexity Bounds for Reasoning in BEL 91

19. Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-linear description logics. In:
Walsh, T. (ed.) IJCAI, pp. 2153–2158. IJCAI/AAAI (2011)

20. Pan, H., McMichael, D., Lendjel, M.: Inference algorithms in Bayesian networks
and the probanet system. Digital Signal Processing 8(4), 231–243 (1998)

21. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Epistemic and statistical probabilistic
ontologies. In: Proc. 8th Int. Workshop on Uncertainty Reasoning for the Semantic
Web (URSW 2012), vol. 900, pp. 3–14. CEUR-WS (2012)

22. Roth, D.: On the hardness of approximate reasoning. Artif. Intel. 82(1-2), 273–302
(1996)

23. Shimony, E.S.: Finding MAPs for belief networks is NP-hard. Artif. Intell. 68(2),
399–410 (1994)

24. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond horn
ontologies. In: Proc. IJCAI 2011, pp. 1093–1098. IJCAI/AAAI (2011)

Relevant Closure:
A New Form of Defeasible Reasoning for Description

Logics

Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortjé

Centre for Artificial Intelligence Research (CSIR Meraka and UKZN), South Africa
{gcasini,tmeyer,kmoodley,rnortje}@csir.co.za

Abstract. Among the various proposals for defeasible reasoning for description
logics, Rational Closure, a procedure originally defined for propositional logic,
turns out to have a number of desirable properties. Not only it is computationally
feasible, but it can also be implemented using existing classical reasoners. One
of its drawbacks is that it can be seen as too weak from the inferential point of
view. To overcome this limitation we introduce in this paper two extensions of
Rational Closure: Basic Relevant Closure and Minimal Relevant Closure. As the
names suggest, both rely on defining a version of relevance. Our formalisation
of relevance in this context is based on the notion of a justification (a minimal
subset of sentences implying a given sentence). This is, to our knowledge, the
first proposal for defining defeasibility in terms of justifications—a notion that
is well-established in the area of ontology debugging. Both Basic and Minimal
Relevant Closure increase the inferential power of Rational Closure, giving back
intuitive conclusions that cannot be obtained from Rational Closure. We anal-
yse the properties and present algorithms for both Basic and Minimal Relevant
Closure, and provide experimental results for both Basic Relevant Closure and
Minimal Relevant Closure, comparing it with Rational Closure.

1 Introduction

Description logics, or DLs [1], are central to many modern AI applications because they
provide the logical foundations of formal ontologies. The past 20 years have witnessed
many attempts to introduce defeasibility in a DL setting, ranging from preferential ap-
proaches [8,9,12,18,28] to circumscription [4,5,6,30], amongst others [2,15].

Preferential extensions of DLs based on the KLM approach [23,25] are particularly
promising for two reasons. Firstly, it provides a formal analysis of defeasible proper-
ties, which plays a central role in assessing how intuitive the obtained results are. And
secondly, it allows for decision problems to be reduced to classical entailment check-
ing, sometimes without blowing up the computational complexity with respect to the
underlying classical case. The main disadvantage of the KLM approach is that the its
best known form of inferential closure, Rational Closure [25], can be seen as too weak
from an inferential point of view. For example, it does not support the inheritance of
defeasible properties. Suppose we know that mammalian and avian red blood cells are
vertebrate red blood cells (MRBC � VRBC, ARBC � VRBC), that vertebrate red
blood cells normally have a cell membrane (VRBC �∼ ∃hasCM.
), that vertebrate red

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 92–106, 2014.
c© Springer International Publishing Switzerland 2014

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 93

blood cells normally have a nucleus (VRBC �∼ ∃hasN.
), but that mammalian red blood
cells normally don’t (MRBC �∼ ¬∃hasN.
). Rational Closure allows us to conclude that
avian vertebrate red blood cells normally have a cell membrane (ARBC �∼ ∃hasCM.
),
but not so for mammalian red blood cells (MRBC �∼ ∃hasCM.
). Informally, the for-
mer can be concluded because avian red blood cells are a normal type of vertebrate red
blood cell, while the latter can’t because mammalian red blood cells are an abnormal
type of vertebrate red blood cell.

In this paper we propose two new forms of defeasible reasoning to overcome this
limitation. Both rely on the formalisation of a version of relevance. In resolving con-
flicts between sets of defeasible statements, we focus only on those that are relevant
to the conflict, thereby ensuring that statements not involved in the conflict are guar-
anteed to be retained. For example, we regard VRBC �∼ ∃hasCM.
 as irrelevant to
the conflict between the three statements MRBC � VRBC, VRBC �∼ ∃hasN.
, and
MRBC �∼ ¬∃hasN.
. As we shall see, this ensures that we can conclude, from both our
new forms of defeasible reasoning, that MRBC �∼ ∃hasCM.
.

The formal versions of relevance we employ are based on the notion of a justification
– a minimal set of sentences responsible for a conflict [21]. We regard any sentence
occurring in some justification as potentially relevant for resolving the conflict. All
other sentences are deemed to be irrelevant to the conflict. Both Basic and Minimal
Relevant Closure are based on the use of justifications. The difference between the two
proposals is related to the way in which the relevant statements are chosen from among
the potentially relevant ones.

Here we focus on the DL ALC, although our definitions of Basic and Minimal Rel-
evant Closure are applicable to any DL. The rest of the paper is structured as follows.
First, we outline the DL ALC and how it can be extended to represent defeasible infor-
mation. Then we discuss existing approaches to defeasible reasoning for DLs, with a
focus on Rational Closure. This is followed by presentations of our proposals for Basic
Relevant Closure and Minimal Relevant Closure. We then consider the formal prop-
erties of our proposals, after which we present experimental results, comparing both
Basic Relevant Closure and Minimal Relevant Closure with Rational Closure. Finally,
we discuss related work and conclude with some indications of future work.

2 ALC with Defeasible Subsumption

The language of the description logicALC is built up from a finite set of concept names
NC and a finite set of role names NR. The set of complex concepts (denoted by L) is
built in the usual way according to the rule:

C ::= A | � | ⊥ | ¬C | C � C | C � C | ∃r.C | ∀r.C

The semantics of ALC is the standard Tarskian semantics based on interpretations I
of the form I := 〈ΔI , ·I〉, where the domain ΔI is a non-empty set and ·I is an
interpretation function mapping concept names A in NC to subsets AI of ΔI and role
names r in NR to binary relations rI over ΔI ×ΔI .

Given C,D ∈ L, C � D is a (classical) subsumption. An ALC TBox T is a finite
set of classical subsumptions. An interpretation I satisfies C � D iff CI ⊆ DI .

94 G. Casini et al.

Entailment of C � D by T is defined in the standard (Tarskian) way. For more details
on DLs the reader is referred to the Description Logic Handbook [1].

For ALC with defeasible subsumption, or ALC(�∼), we also allow defeasible sub-
sumptions of the form C �∼D, collected in a defeasible TBox, or DBox (a finite set
of defeasible subsumptions) . The semantics for ALC(�∼) is obtained by augmenting
every classical interpretation with an ordering on its domain [8,18]. A ranked interpre-
tation is a structureR = 〈ΔR, ·R,≺R〉, where 〈ΔR, ·R〉 is a DL interpretation and≺R
is a modular ordering on ΔR satisfying the smoothness condition (for every C ∈ L,
if CR �= ∅ then min≺R(CR) �= ∅), and where ≺R is modular iff there is a ranking
function rk : X −→ N s.t. for every x, y ∈ ΔR, x ≺R y iff rk(x) < rk(y). A defea-
sible subsumption C �∼D is satisfied in R iff min≺R(C

R) ⊆ DR. Intuitively C �∼D
is satisfied by R whenever the most normal Cs are also Ds. It is easy to see that every
ranked interpretationR satisfies C � D iff R satisfies C � ¬D �∼⊥. That is, classical
information can “masquerade” as defeasible information.

3 Reasoning with Defeasible Knowledge Bases

From a KR perspective it is important to obtain an appropriate form of defeasible en-
tailment for ALC(�∼). We shall deal with (defeasible) knowledge bases K = 〈T ,D〉,
where T is a (classical) finite TBox andD a finite DBox. Given such a KB, the goal is to
determine what (classical and defeasible) subsumption statements ought to follow from
it. An obvious first attempt is to use the standard Tarskian notion of entailment applied
to ranked interpretations:K preferentially entails C �∼D iff every ranked interpretation
satisfying all elements of K also satisfies C �∼D. However, it is known that this con-
struction (known as Preferential Entailment) suffers from a number of drawbacks [25].
Firstly, it is monotonic—if C �∼D is in the Preferential Entailment of K, then it is also
in the Preferential Entailment of every K′ = 〈T ′,D′〉 such that T ⊆ T ′ and D ⊆ D′.
Secondly it is inferentially too weak—it does not support the inheritance of defeasi-
ble properties. An alternative to Preferential Entailment, first proposed by Lehmann
et al. for the propositional case [25], and adapted to the DL case by Giordano et al.
[17,16] and Britz et al. [9], is that of Rational Closure. It is inferentially stronger than
Preferential Entailment, is not monotonic, and has (limited) support for the inheritance
of defeasible properties. An elegant semantic description of Rational Closure was re-
cently provided by Giordano et al. for both the propositional case [19] and forALC(�∼)
[17,16]. Our focus here is on an algorithm for Rational Closure for ALC(�∼), initially
proposed by Casini and Straccia [12] and subsequently refined and implemented by
Britz et al. [7]. A useful feature of the algorithm is that it reduces Rational Closure for
ALC(�∼) to classical entailment checking forALC. Below we define Rational Closure
and present the algorithm.

C ∈ L is said to be exceptional for a knowledge base K iff
 �∼ ¬C is preferentially
entailed byK. Exceptionality checking can be reduced to classical entailment checking.

Proposition 1. Britz et al. [7]: For a KB K = 〈T ,D〉, let D = {¬D � E | D �∼E ∈
D}. For every C ∈ L,
 �∼ ¬C is preferentially entailed by K iff T |=

�
D � ¬C.

Exceptionality is used to build up a sequence of exceptionality sets E0, E1, . . ., and
from this, an exceptionality ranking of concepts and defeasible subsumptions. Let

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 95

ET (D) := {C �∼D ∈ D | T |=
�
D � ¬C}. Let E0 := D, and for i > 0, let

Ei := ET (Ei−1). It is easy to see that there is a smallest n such that En = En+1. The
rank rK(C) of C ∈ L is the smallest number r such that C is not exceptional for Er. If
C is exceptional for all Ei (for i ≥ 0) then rK(C) = ∞. The rank rK(C �∼D) of any
C �∼D is the rank rK(C) of its antecedent C.

Definition 1. Lehmann et al. [25], Britz et al. [9]: C �∼D is in the Rational Closure of
K iff rK(C) < rK(C � ¬D) or rK(C) =∞.

Having defeasible subsumptions with infinite rank in the DBox is problematic from an
algorithmic point of view because it does not allow for a clear separation of classical in-
formation (in the TBox T) and defeasible information (in the DBox D) in a knowledge
base K.

Definition 2. A knowledge base K = 〈T ,D〉 is well-separated iff rK(C �∼D) �=∞ for
every C �∼D ∈ D.

We will frequently assume knowledge bases to be well-separated. It is worth pointing
out that this assumption is not a restriction of any kind, since every knowledge base can
be converted into a well-separated one, as shown by Britz et al. [7].

Below we present a high-level version of the algorithm for Rational Closure imple-
mented by Casini et al. [11]. It takes as input a well-separated KB K = 〈T ,D〉 and a
query C �∼D, and returns true iff the query is in the Rational Closure of K. It also as-
sumes the existence of a partition procedure which computes the ranks of the subsump-
tions in D and partitions D into n equivalence classes according to rank: i = 0, . . . n,
Di := {C �∼D | rK(C) = i}. Note that, because K is well-separated, none of the
elements of D will have infinite rank. The partition procedure performs at most a poly-
nomial number of classical entailment checks to compute the ranks. The remaining part
of the algorithm performs a linear number of classical entailment checks (in the size
of D).

Algorithm 1. Rational Closure
Input: A well-separated KB 〈T ,D〉 and a query C �∼ D
Output: true iff C �∼ D is in the Rational Closure of 〈T ,D〉

1 (D0, . . . ,Dn, n) := partition(D);
2 i := 0; D′ := D;
3 while T |=

�
D′ � ¬C and D′ �= ∅ do

4 D′ := D′ \ Di; i := i+ 1;

5 return T |= D′ � C � D;

Informally, the algorithm keeps on removing defeasible subsumptions fromD, start-
ing with the lowest rank, and proceeding rank by rank, until it finds the first DBox D′
for which C is no longer exceptional. C �∼D is then taken to be in the Rational Closure
of K iff T |= D′ � C � D. Observe that, since every classical subsumption C � D
can be rewritten as a defeasible subsumption C � ¬D �∼⊥, Algorithm 1 is, indirectly,
able to deal with classical queries (of the form C � D) as well. The same holds for the
other algorithms defined in this paper.

96 G. Casini et al.

To see how the algorithm works, consider the following example, which we use as a
running example in the rest of the paper.

Example 1. We know that both avian red blood cells and mammalian red blood cells
are vertebrate red blood cells, and that vertebrate red blood cells normally have a cell
membrane. We also know that vertebrate red blood cells normally have a nucleus, but
that mammalian red blood cells normally don’t. We can represent this information in
the KB K1 = 〈T 1,D1〉 with T 1 = {ARBC � VRBC,MRBC � VRBC} and D1 =
{VRBC �∼ ∃hasCM.
, VRBC �∼ ∃hasN.
, MRBC �∼ ¬∃hasN.
}.

We get D1
0 = {VRBC �∼ ∃hasN.
, VRBC �∼ ∃hasCM.
}, and D1

1 = {MRBC �∼
¬∃hasN.
}. Given the query ARBC �∼ hasCM.
, D′ = D1 in line 5, from which it fol-
lows that the query is in the Rational Closure ofK1. Given the queryMRBC �∼ hasCM.
,
however, we get D′ = D1

1 in line 5, and so this query is not in the Rational Closure
of K1. An analysis of the latter query turns out to be very instructive for our pur-
poses here. Observe that, to obtain D′, the algorithm removes all elements of D1

0 =
{VRBC �∼ ∃hasN.
, VRBC �∼ ∃hasCM.
} from D1. Informally, the motivation for the
removal of VRBC �∼ ∃hasN.
 is easy to explain: together with MRBC � VRBC and
MRBC �∼ ¬∃hasN.
 it is responsible for MRBC being exceptional. It is less clear, in-
tuitively, why the defeasible subsumption VRBC �∼ ∃hasCM.
 has to be removed. One
could make the case that since it plays no part in the exceptionality of MRBC, it should
be retained. As we shall discuss in the next section, this argument forms the basis of an
approach to defeasible reasoning based on the relevance of defeasible subsumptions.

4 Relevant Closure

Here we outline our proposal for a version of defeasible reasoning based on relevance.
The principle is an obvious abstraction of the argument outlined at the end of the pre-
vious section—identify those defeasible subsumptions deemed to be relevant w.r.t. a
given query, and consider only these ones as being eligible for removal during the ex-
ecution of the Rational Closure algorithm. More precisely, suppose we have identified
R ⊆ D as the defeasible subsumptions relevant to the query C �∼D. First we ensure
that all elements of D that are not relevant to the query are not eligible for removal dur-
ing execution of the Rational Closure algorithm. For R ⊆ D let RelK(R) := 〈R,R−〉,
where R− = D\R. That is, R− is the set of all the defeasible subsumptions that are not
eligible for removal since they are not relevant w.r.t. the query C �∼D. Then we apply
a variant of Algorithm 1 (the Rational Closure algorithm) to K in which the elements
of R− are not allowed to be eliminated. The basic algorithm for Relevant Closure is
outlined below (Algorithm 2). Note that, as in the case of Algorithm 1, we assume that
the knowledge base is well-separated. We say that a defeasible subsumption C �∼D is
in the Relevant Closure of (a well-separated) K w.r.t. a set of relevant defeasible sub-
sumptions R iff the Relevant Closure algorithm (Algorithm 2) returns true, with K,
C �∼D, and RelK(R) as input.

For Example 1, an appropriate choice for R would be the set {VRBC �∼ ∃hasN.
,
MRBC �∼ ¬∃hasN.
} since these are the two defeasible subsumptions responsible for
MRBC being exceptional (w.r.t.K). IfR = {VRBC �∼ ∃hasN.
,MRBC �∼ ¬∃hasN.
}

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 97

Algorithm 2. Relevant Closure
Input: A well-separated KB 〈T ,D〉, a query C �∼ D, and the partition

RelK(R) = 〈R,R−〉
Output: true iff C �∼ D is in the Relevant Closure of 〈T ,D〉

1 (D0, . . . ,Dn, n) := partition(D);
2 i := 0; R′ := R;

3 while T |=
�

R− �
�

R′ � ¬C and R′ �= ∅ do
4 R′ := R′ \ (Di ∩R); i := i+ 1;

5 return T |=
�

R− �
�

R′ � C � D;

and R− = {VRBC �∼ ∃hasCM.
} (that is, it is information not eligible for removal), it
is easy to see that we can derive MRBC �∼ hasCM.
, since {ARBC � VRBC,MRBC �
VRBC} |= (¬VRBC � hasCM.
)� (¬MRBC� ¬∃hasN.
)�MRBC � hasCM.
.

4.1 Basic Relevant Closure

The explanation above still leaves open the question of how to define relevance w.r.t.
a query. The key insight in doing so, is to associate relevance with the subsumptions
responsible for making the antecedent of a query exceptional. We shall refer to such
sets of subsumptions as justifications.

Definition 3. For K = 〈T ,D〉, J ⊆ D, and C ∈ L, J is a C-justification w.r.t. K iff
C is exceptional for 〈T ,J 〉 (i.e.
 �∼ ¬C is in the Preferential Entailment of 〈T ,J 〉)
and for every J ′ ⊂ J , C is not exceptional for J ′.

The choice of the term justification is not accidental, since it closely mirrors the notion
of a justification for classical DLs, where a justification for a sentence α is a minimal set
implying α [21]; it corresponds to the notion of kernel, used a lot in base-revision lit-
erature [20]. Given the correspondence between exceptionality and classical entailment
in Proposition 1, the link is even closer.

Corollary 1. J is a C-justification w.r.t. K = 〈T ,D〉 iff J ⊆ D, T |= J � ¬C, and
for every J ′ ⊂ J , T �|= J ′ � ¬C.

This places us in a position to define our first relevance-based version of defeasible
reasoning. We identify relevance for a query C �∼D with all subsumptions occurring
in some C-justification for K. For C ∈ L, and a KB K, let JK(C) = {J | J is a
C-justification w.r.t. K}.

Definition 4. C �∼D is in the Basic Relevant Closure of K iff it is in the Relevant Clo-
sure of K w.r.t.

⋃
JK(C).

For Example 1, J = {VRBC �∼ ∃hasN.
, MRBC �∼ ¬∃hasN.
} is the one MRBC-
justification for D1, and MRBC �∼ hasCM.
 is in the Basic Relevant Closure of K1 as
seen above, since the axiom VRBC �∼ ∃hasCM.
 is not in any MRBC-justification and
is therefore deemed to be irrelevant w.r.t. the query.

98 G. Casini et al.

To summarise, unlike Rational Closure, Basic Relevant Closure ensures that the de-
feasible property of having a cell membrane is inherited by mammalian red blood cells
from vertebrate red blood cells, even though mammalian red blood cells are abnormal
vertebrate red blood cells (in the sense of not having a nucleus).

4.2 Minimal Relevant Closure

Although Basic Relevant Closure is inferentially stronger than Rational Closure, it can
still be viewed as inferentially too weak, since it views all subsumptions occurring in
some C-justifications as relevant, and therefore eligible for removal. In particular, it
does not make proper use of the ranks of the subsumptions in a DBox. In this section
we strengthen the notion of relevance by identifying it with the subsumptions of lowest
rank occurring in every C-justification (instead of all subsumptions occurring in some
C-justification).

Definition 5. For J ⊆ D, let J Kmin := {D �∼E | rK(D) ≤ rK(F) for every F �∼G ∈
J }. For C ∈ L, let J Kmin(C) :=

⋃
J∈JK(C) J Kmin.

The intuition can be explained as follows. To make an antecedent C non-exceptional
w.r.t. K, it is necessary to remove at least one element of every C-justification from
D. At the same time, the ranking of subsumptions provides guidance on which sub-
sumptions ought to be removed first (subsumptions with lower ranks are removed first).
Combining this, the subsumptions eligible for removal are taken to be precisely those
that occur as the lowest ranked subsumptions in some C-justification.

Definition 6. C �∼D is in the Minimal Relevant Closure of K iff it is in the Relevant
Closure of K w.r.t.

⋃
J Dmin(C).

To see how Minimal Relevant Closure differs from Basic Relevant Closure, we extend
Example 1 as follows.

Example 2. In addition to the information in Example 1, we also know that mammalian
sickle cells are mammalian red blood cells, that mammalian red blood cells normally
have a bioconcave shape, but that mammalian sickle cells normally do not (they nor-
mally have a crescent shape). We represent this new information as T 2 = {MSC �
MRBC} and D2 = {MRBC �∼ ∃hasS.BC, MSC �∼ ¬∃hasS.BC}.

To answer the query of whether mammalian sickle cells don’t have a nucleus (that is,
whether MSC �∼ ¬∃hasN.
) given a KB K2 = 〈T ,D〉, with T = T 1 ∪ T 2 and D =
D1∪D2, note that there are two MSC-justifications forK: J 1 = {MRBC �∼ ¬∃hasN.
,
VRBC �∼ ∃hasN.
}, and J 2 = {MRBC �∼ ∃hasS.BC, MSC �∼ ¬∃hasS.BC}. Therefore
MSC �∼ ¬∃hasN.
 is in the Basic Relevant Closure of K2 iff it is in the Relevant Clo-
sure of K w.r.t. R, where R consists of all of D except for the only irrelevant axiom
VRBC �∼ ∃hasCM.
 (the only axiom that does not appear in any MSC-justification).
It turns out that MSC �∼ ¬∃hasN.
 is not in the Basic Relevant Closure of K2 since
MRBC �∼ ¬∃hasN.
 is viewed as relevant w.r.t. the query.

To check if MSC �∼ ¬∃hasN.
 is in the Minimal Relevant Closure, note that J 1
min =

{VRBC �∼ ∃hasN.
}, and J 2
min = {MRBC �∼ ∃hasS.BC}. Thus, MSC �∼ ¬∃hasN.
 is

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 99

in the Minimal Relevant Closure of K iff it is in the Relevant Closure of K w.r.t. R,
where R consists of everything in D except for the defeasible subsumptions in the set
{VRBC �∼ ∃hasCM.
,MRBC �∼ ¬∃hasN.
,MSC �∼ ¬∃hasS.BC}. And this is the case,
since MRBC �∼ ¬∃hasN.
 is now deemed to be irrelevant w.r.t. the query.

To summarise, unlike the case for Rational Closure and Basic Relevant Closure,
using Minimal Relevant Closure we can conclude that mammalian sickle cells nor-
mally don’t have a nucleus. The main reason is that, although Minimal Relevant Clo-
sure recognises that mammalian sickle cells are abnormal mammalian red blood cells,
the information that mammalian red bloods cells do not have a nucleus is deemed to be
irrelevant to this abnormality, which means that this defeasible property of mammalian
red blood cells are inherited by mammalian sickle cells.

5 Properties of Relevant Closure

The previous sections contain a number of examples showing that both Basic and Min-
imal Relevant Closure provide better results than Rational Closure. The purpose of this
section is to provide a more systematic evaluation. We commence by showing that Min-
imal Relevant Closure is inferentially stronger than Basic Relevant Closure which, in
turn, is inferentially stronger than Rational Closure.

Proposition 2. If C �∼D is in the Rational Closure of a knowledge base K, then it is
in the Basic Relevant Closure of K (the converse does not always hold). If C �∼D is in
the Basic Relevant Closure of K, then it is in the Minimal Relevant Closure of K (the
converse does not always hold).

It is known that Rational Closure and Preferential Entailment are equivalent w.r.t.
the classical subsumptions they contain. The next result shows that this result extends
to Basic and Minimal Relevant Closure as well.

Proposition 3. C � D is in the Minimal Relevant Closure of a knowledge base K, iff
it is in the Basic Relevant Closure of K, iff it is in the Rational Closure of K (iff it is in
the Preferential Entailment of K).

One of the reasons Proposition 3 is important is that it ensures that Basic and Minimal
Relevant Closure are proper generalisations of classical entailment: If K = 〈T ,D〉 is
reduced to classical subsumptions—that is, if K is well-separated and D = ∅—then
Minimal and Basic Relevant Closure coincide with classical entailment.

From a practical point of view, one of the main advantages of both Basic and Mini-
mal Relevant Closure is that, as for Rational Closure, their computation can be reduced
to a sequence of classical entailment checks, thereby making it possible to employ ex-
isting optimised classical DL reasoners for this purpose. Below we provide high-level
algorithms for both versions based on this principle.

The algorithm for Basic Relevant Closure takes as input a well-separated KB K =
〈T ,D〉, a query C �∼D, and uses the partition procedure which partitions the elements
of D according to ranks. It also assumes the existence of a justifications procedure
which takes as input a DBox K, a concept C, and returns the m C-justifications w.r.t.
K. It returns true iff the query is in the Basic Relevant Closure of K.

100 G. Casini et al.

Algorithm 3. Basic Relevant Closure
Input: A well-separated K = 〈T ,D〉 and a query C �∼ D
Output: true iff C �∼ D is in the Basic Relevant Closure of K

1 (D0, . . . ,Dn, n) := partition(D);
2 (J1, . . . ,Jm,m) := justifications(K,C);
3 J :=

⋃j=m
j=1 Jj ; i := 0; D′ := D; X := ∅;

4 while X ∩ Jj = ∅ for some j = 1, . . . ,m and D′ �= ∅ do
5 D′ := D′ \ (J ∩ Di);
6 X := X ∪ (J ∩ Di); i := i+ 1;

7 return T |= D′ � C � D;

In terms of computational complexity, the big difference between Algorithm 1 and
Algorithm 3 is that the latter needs to compute all C-justifications which can involve an
exponential number of classical entailment checks [21]. This is in contrast to Algorithm
1 which needs to perform at most a polynomial number of entailment checks. But, since
entailment checking for ALC is EXPTIME-complete, computing the Basic Relevant
Closure is EXPTIME-complete as well. From a practical perspective, Horridge [21]
has shown that computing justifications is frequently feasible even for large ontologies.
We address this issue again in the sections on experimental results and future work.

Next we provide a high-level algorithm for computing Minimal Relevant Closure.
Like Algorithm 3, it takes as input a well-separated KB K = 〈T ,D〉 and a query

Algorithm 4. Minimal Relevant Closure
Input: A well-separated K = 〈T ,D〉 and a query C �∼ D
Output: true iff C �∼ D is in the Minimal Relevant Closure of K

1 (D0, . . . ,Dn, n) := partition(D);
2 (J1, . . . ,Jm,m) := justifications(K,C);
3 for j := 1 to m do
4 k := min(D0, . . . , Dn,Jj);
5 Mj := Jj ∩ Dk;

6 M :=
⋃j=m

j=1 Mj ; i := 0; D′ := D; X := ∅;
7 while X ∩Mj = ∅ for some j = 1, . . . ,m and D′ �= ∅ do
8 D′ := D′ \ (M∩Di);
9 X := X ∪ (M∩Di); i := i+ 1;

10 return T |= D′ � C � D;

C �∼D, uses the partition procedure which partitions the elements of D according to
ranks, and uses the justifications procedure which takes as input K, a concept C, and
returns the m C-justifications w.r.t. K. In addition, it assumes the existence of a min
procedure which takes as input the partitioned version of D and any subset of D, say
Y , and returns the smallest j such that Y ∩ Dj �= ∅.

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 101

Since the only real difference between Algorithm 3 and Algorithm 4 is the use of the
min procedure, which does not involve any classical entailment check, it follows easily
that computing the Minimal Relevant Closure is EXPTIME-complete as well.

To conclude this section we evaluate Basic and Minimal Relevant Closure against the
KLM properties of Kraus et al. [23] for rational preferential consequence, translated to
DLs.

(Cons) � � �∼⊥ (Ref) C �∼ C

(LLE)
|= C ≡ D, C �∼ E

D �∼ E
(And)

C �∼ D, C �∼ E

C �∼ D �E

(Or)
C �∼ E, D �∼ E

C �D �∼ E
(RW)

C �∼ D, |= D � E

C �∼ E

(CM)
C �∼ D, C �∼ E

C �D �∼ E
(RM)

C �∼ E, C � �∼ ¬D
C �D �∼ E

With the exceptions of Cons, these have been discussed at length in the literature for
both the propositional and the DL cases [23,25,24,18] and we shall not do so here.
Semantically, Cons corresponds to the requirement that ranked interpretations have non-
empty domains. Although these are actually properties of the defeasible subsumption
relation �∼ , they can be viewed as properties of a closure operator as well. That is, we
would say that Basic Relevant Closure satisfies the property Ref, for example, whenever
C �∼ C is in the Basic Relevant Closure of D for every DBox D and every C ∈ L.

Proposition 4. Both Basic Relevant Closure and Minimal Relevant Closure satisfy the
properties Cons, Ref, LLE, And, and RW, and do not satisfy Or, CM, and RM.

While Basic Relevant Closure and Minimal Relevant Closure are inferentially stronger
than Rational Closure, and behave well in terms of the examples discussed, their failure
to satisfy the formal properties Or, CM and RM is a drawback. We are currently inves-
tigating refinements of both Basic Relevant Closure and Minimal Relevant Closure that
will satisfy these properties.

6 Experimental Results

In this section we report on preliminary experiments to determine the practical perfor-
mance of Basic and Minimal Relevant Closure relative to Rational Closure. Our algo-
rithms were implemented and applied to the generated dataset employed by Casini et al.
[11]. The DBoxes are binned according to percentage defeasibility (ratio of the number
of defeasible vs. classical subsumptions) in increments of 10 from 10 to 100, and vary
uniformly in size between 150 and 5150 axioms. In addition to the generated DBoxes,
we randomly generated a set of DBox queries using terms in their signatures. The task
is then to check whether a query is in the Basic (resp. Minimal) Relevant Closure of
the DBox and plot its performance relative to Rational Closure. The rankings of each
DBox were precomputed because determining the ranking can be viewed as an offline
process, and is not the central interest here. Experiments were performed on an Intel
Core i7 machine with 4GB of memory allocated to the JVM (Java Virtual Machine).
The underlying classical DL reasoning implementation used in our algorithm is Her-
miT (http://www.hermit-reasoner.com). As a preliminary optimisation we prune away

102 G. Casini et al.

axioms from the rankings that are irrelevant to the query according to the notion of
entailment preserving modules [14]

Results: Overall, the Basic and Minimal Relevant Closure took around one order of
magnitude longer to compute than Rational Closure (see Figure 1).

Fig. 1. Average query execution performance of Basic Relevant Closure (in red) vs. Rational
Closure (in blue) over the dataset.

The reason for this discrepancy in performance is attributable to the relatively large
number of classical entailment checks required to compute the justifications (see Fig-
ure 2) for Basic and Minimal Relevant Closure. Rational Closure, on the other hand,
does not require to compute justifications and therefore in general is significantly faster.
Another contributing factor to this is that HermiT is not optimised for entailment checks
of the form found in Algorithms 3 and 4.

As expected, the performance of Basic (and Minimal) Relevant Closure drastically
degrades when it has to compute a large number of justifications. We found that 8% of
queries could not be computed in reasonable time. We introduced a timeout of 7000ms,
which is one order of magnitude longer than that of the worst case query answering
times for Rational Closure (700ms). The timeout accounts, to some extent, for the num-
ber of justifications being more or less constant. Despite this, we observe that an average
query answering time of 100 milliseconds is promising as an initial result, especially
since our algorithms are not highly optimised.

Since the practical feasibility of Basic and Minimal Relevant Closure relies on the jus-
tificatory structure of the DBoxes, we plan to investigate the prevalence of justifications

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 103

Fig. 2. Average number of justifications computed for query answering using Basic Relevant
Closure

in real-world ontologies. This investigation could reveal the usefulness of these forms
of reasoning in such contexts.

Finally, given the minor differences between the algorithms for Basic and Minimal
Relevant Closure it is not surprising that the latter behaves very similarly to the former
from a performance perspective.

7 Related Work

The semantic underpinnings of our work has its roots in the propositional approach
to defeasible reasoning advocated by Lehmann and colleagues [23,25,24] and trans-
ported to the DL setting by Britz et al. [8,9] and Giordano et al. [18,17,16]. From an
algorithmic perspective, Giordano et al. [18] present a tableau calculus for computing
Preferential Entailment which relies on KLM-style rules. To our knowledge, this has
not been implemented yet. Our work builds on that of Casini and Straccia [12] who
describe an algorithm for computing (a slightly different version of) Rational Closure
for ALC , and Britz et al. [7], who refined the Casini-Straccia algorithm to correspond
exactly to Rational Closure, and implemented the refined algorithm. Their accompa-
nying experimental results showed that enriching DLs with defeasible subsumption is
practically feasible.

Strongly related to our work as well is the approach to defeasible reasoning known as
Lexicographic Closure, first proposed by Lehmann [24] for the propositional case, and
extended to the DL case by Casini and Straccia [13]. Lukasiewicz [26] also proposed
a method that, as a special case, corresponds to a version of Lexicographic Closure.
Below we present a description of Lexicographic Closure for ALC(�∼) (space consid-
erations prevent a more detailed description).

LetK = 〈T ,D〉 be a KB withD partitioned intoD0, . . . ,Dn. ForD′ ⊆ D, let kDi =
|Di ∩ D′|. Let ≺ be the lexicographic order on sequences of natural numbers of length
n + 2. For D′,D′′ ⊆ D, let D′ � D′′ iff [kD

′

0 , . . . , kD
′

n , kD
′

∞] ≺ [kD
′′

0 , . . . , kD
′′

n , kD
′′

∞].
For D′ ⊆ D and C ∈ L, D′ is a basis for C w.r.t. K iff T �|= D′ � ¬C and D′ is
maximal w.r.t. the ordering �.

Definition 7. For C,D ∈ L, C �∼D is in the Lexicographic Closure of K = 〈T ,D〉 iff
for every basis D′ for C w.r.t. K, T |=

�
D′ � C � D.

104 G. Casini et al.

Lexicographic Closure corresponds to what Lehmann [24] refers to presumptive rea-
soning and describes as the reading intended by Reiter’s Default Logic [29]. It satisfies
all the KLM properties, and is known to be inferentially stronger than Rational Closure.
It turns out to be stronger than Minimal Relevant Closure (and Basic Relevant Closure)
as well.

Proposition 5. If C �∼D is in the Minimal Relevant Closure of D, then it is in the
Lexicographic Closure of D. The converse does not hold.

Lexicographic Closure is a powerful form of defeasible reasoning and is certainly worth
further investigation in the context of DLs. At present, we are not aware of any imple-
mentation of Lexicographic Closure, though.

More generally, other proposals for defeasible reasoning include default-style rules
in description logics [3,27], approaches based on circumscription for DLs [6,5,4,30],
and approaches that combines an explicit knowledge operator with negation as failure
[22,15]. To our knowledge, the formal properties of the consequence relation of these
systems have not been investigated in detail, and none of them have been implemented.

8 Conclusion and Future Work

In this paper we proposed a new approach to defeasible reasoning for DLs based on the
relevance of subsumptions to a query. We instantiated the approach with two versions of
relevance-based defeasible reasoning—Basic Relevant Closure and Minimal Relevant
Closure. We showed that both versions overcome some of the limitations of Ratio-
nal Closure, the best known version of KLM-style defeasible reasoning. We presented
experimental results based on an implementation of both Basic Relevant Closure and
Minimal Relevant Closure, and compared it with existing results for Rational Closure.
The results indicate that both Basic Relevant Closure and Minimal Relevant Closure
are only slightly more expensive to compute than Rational Closure.

The relevance-based reasoning proposed in this paper is, to our knowledge, the first
attempt to define a form of defeasible reasoning on the use of justifications—a notion
on which the area of ontology debugging is based. An obvious extension to the current
work is the investigation of relevance-based reasoning other than Basic and Minimal
Relevant Closure. We are currently investigating a version that is inferentially stronger
than Minimal Relevant Closure.

Here the focus was on defeasible reasoning for DBoxes without reference to ABox
assertions. The incorporation of defeasible ABox reasoning into both forms of Relevant
Closure presented here is similar to existing approaches for Rational Closure [17,16,10]
and is left as future work.

Finally, there are two ways to deal with the computational burden associated with
Relevant Closure in comparison with Rational Closure. Firstly, there is the option of
optimised versions of the current implementations. Secondly, there is the possibility of
developing efficient algorithms for approximating Basic or Minimal Relevant Closure,
that are guaranteed to be at least as strong as Rational Closure, inferentially speaking.
We are pursuing both options.

Relevant Closure: A New Form of Defeasible Reasoning for Description Logics 105

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation and Applications, 2nd edn. Cambridge University
Press (2007)

2. Baader, F., Hollunder, B.: How to prefer more specific defaults in terminological default
logic. In: Proceedings of IJCAI, pp. 669–674. Morgan Kaufmann Publishers (1993)

3. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation
formalisms. Journal of Automated Reasoning, 306–317 (1995)

4. Bonatti, P., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs. JAIR 42,
719–764 (2011)

5. Bonatti, P., Faella, M., Sauro, L.: On the complexity of EL with defeasible inclusions. In:
Proceedings of IJCAI, pp. 762–767 (2011)

6. Bonatti, P., Lutz, C., Wolter, F.: The complexity of circumscription in description logic.
JAIR 35, 717–773 (2009)

7. Britz, K., Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Ordered interpretations and en-
tailment for defeasible description logics. Technical report, CAIR, CSIR Meraka and UKZN,
South Africa (2013)

8. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Lang, J., Brewka,
G. (eds.) Proceedings of KR, pp. 476–484. AAAI Press/MIT Press (2008)

9. Britz, K., Meyer, T., Varzinczak, I.: Semantic foundation for preferential description logics.
In: Wang, D., Reynolds, M. (eds.) AI 2011. LNCS (LNAI), vol. 7106, pp. 491–500. Springer,
Heidelberg (2011)

10. Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Nonmonotonic reasoning in description
logics: Rational closure for the Abox. In: Proceedings of DL, pp. 600–615 (2013)

11. Casini, G., Meyer, T., Moodley, K., Varzinczak, I.: Towards practical defeasible reasoning
for description logics. In: Proceedings of DL, pp. 587–599 (2013)

12. Casini, G., Straccia, U.: Rational closure for defeasible description logics. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 77–90. Springer, Heidelberg
(2010)

13. Casini, G., Straccia, U.: Lexicographic closure for defeasible description logics. In: Proc. of
Australasian Ontology Workshop (2012)

14. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. JAIR 31, 273–318 (2008)

15. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. TOCL 3(2), 177–225 (2002)

16. Giordano, L., Gliozzi, V., Olivetti, N.: Minimal model semantics and rational closure in de-
scription logics. In: Proceedings of DL (2013)

17. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Rational Closure in Description Logics
of Typicality. In: IAF (2013)

18. Giordano, L., Olivetti, N., Gliozzi, V., Pozzato, G.L.: ALC + T : A preferential extension of
description logics. Fundamenta Informaticae 96(3), 341–372 (2009)

19. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: A minimal model semantics for non-
monotonic reasoning. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS,
vol. 7519, pp. 228–241. Springer, Heidelberg (2012)

20. Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database Updating.
Kluwer Academic Publishers (1999)

21. Horridge, M.: Justification based explanation in ontologies. The University of Manchester
(2011)

106 G. Casini et al.

22. Ke, P., Sattler, U.: Next Steps for Description Logics of Minimal Knowledge and Negation
as Failure. In: Proceedings of DL (2008)

23. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence 44, 167–207 (1990)

24. Lehmann, D.: Another perspective on default reasoning. Annals of Mathematics and Artifi-
cial Intelligence 15(1), 61–82 (1995)

25. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intel-
ligence 55, 1–60 (1992)

26. Lukasiewicz, T.: Expressive probabilistic description logics. Artificial Intelligence 172(6-7),
852–883 (2008)

27. Padgham, L., Zhang, T.: A terminological logic with defaults: A definition and an application.
In: Proceedings of IJCAI, pp. 662–668. Morgan Kaufmann (1994)

28. Quantz, J.: A preference semantics for defaults in terminological logics. In: Proceedings of
KR, pp. 294–305 (1992)

29. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)
30. Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local closed world semantics: Grounded circum-

scription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 617–632. Springer,
Heidelberg (2011)

Error-Tolerant Reasoning

in the Description Logic EL�

Michel Ludwig and Rafael Peñaloza

Theoretical Computer Science, TU Dresden, Germany
Center for Advancing Electronics Dresden

{michel,penaloza}@tcs.inf.tu-dresden.de

Abstract. Developing and maintaining ontologies is an expensive and
error-prone task. After an error is detected, users may have to wait for
a long time before a corrected version of the ontology is available. In
the meantime, one might still want to derive meaningful knowledge from
the ontology, while avoiding the known errors. We study error-tolerant
reasoning tasks in the description logic EL. While these problems are in-
tractable, we propose methods for improving the reasoning times by pre-
compiling information about the known errors and using proof-theoretic
techniques for computing justifications. A prototypical implementation
shows that our approach is feasible for large ontologies used in practice.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
that have been successfully used to model many application domains, specifically
in the bio-medical areas. They are also the logical formalism underlying the stan-
dard ontology language for the semantic web OWL 2 [32]. As a consequence, more
and larger ontologies are being built using these formalisms. Ontology engineer-
ing is expensive and error-prone; the combination of knowledge from multiple
experts, and misunderstandings between them and the knowledge engineers may
lead to subtle errors that are hard to detect. For example, several iterations of
Snomed CT [14,31] classified amputation of finger as a subclass of amputation
of hand [7, 8].

Since domain knowledge is needed for correcting an unwanted consequence,
and its causes might not be obvious, it can take long before a corrected version
of an ontology is released. For example, new versions of Snomed are released
every six months; one should then expect to wait at least that amount of time
before an error is resolved. During that time, users should still be able to derive
meaningful consequences from the ontology, while avoiding the known errors.

A related problem is inconsistency-tolerant reasoning, based on consistent
query answering from databases [1, 9], where the goal is to obtain meaningful
consequences from an inconsistent ontology O. Inconsistency is clearly an un-
wanted consequence from an ontology, but it is not the only one; for instance,

� Partially supported by DFG within the Cluster of Excellence ‘cfAED’.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 107–121, 2014.
c© Springer International Publishing Switzerland 2014

108 M. Ludwig and R. Peñaloza

while Snomed is consistent, we would still like to avoid the erroneous subclass
relationship between amputation of finger and amputation of hand. We gener-
alize the idea of inconsistency-tolerant reasoning to error-tolerant reasoning in
which other unwanted consequences, beyond inconsistency, are considered.

We focus mainly on two kinds of error-tolerant semantics; namely brave and
cautious semantics. Intuitively, cautious semantics refer to consequences that
follow from all the possible repairs of O; this guarantees that, however the on-
tology is repaired, the consequence will still follow. For some consequences, one
might only be interested in guaranteeing that it follows from at least one repair;
this defines the brave semantics. As usual in inconsistency-tolerant reasoning, the
repairs are maximal subontologies of O that do not entail the unwanted conse-
quence. Notice that brave semantics are not closed under entailment; e.g., the
conjunction of two brave consequences is not necessarily a brave consequence it-
self. However, brave consequences are still useful, e.g. to guarantee that a wanted
consequence can still be derived from at least one repair (i.e., that it might still
hold after the ontology is repaired) among other cases. We also consider the
IAR semantics, proposed in [22] as a means to efficiently approximate cautious
reasoning; see also [11, 30].

In this paper, we focus on subsumption between concepts w.r.t. a TBox in EL,
which is known to be polynomial [13]. As every EL TBox is consistent, consider-
ing inconsistency-tolerant semantics makes no sense in this setting. On the other
hand, Snomed CT and other large-scale ontologies are written in tractable ex-
tensions of this logic, and being able to handle errors written in them is a relevant
problem for knowledge representation and ontology development.

We show that error-tolerant reasoning in EL is hard. More precisely, brave
semantics is NP-complete, and cautious and IAR semantics are coNP-complete.
These results are similar to the complexity of inconsistency-tolerant semantics
in inexpressive logics [10,30]. We also show that hardness does not depend only
on the number of repairs: there exist errors with polynomially many repairs, for
which error-tolerant reasoning requires super-polynomial time (unless P = NP).

To improve the time needed for error-tolerant reasoning, we propose to pre-
compute the information on the causes of the error. We first annotate every ax-
iom with the repairs to which it belongs. We then use a proof-theoretic approach,
coupled with this annotated ontology, to derive error-tolerant consequences. We
demonstrate the practical applicability of our approach for brave and cautious
reasoning by applying a prototype-implementation on large ontologies used in
practice. An extended version of this paper containing all proofs and details can
be found in [25].

2 Preliminaries

We first briefly recall the DL EL. Given two disjoint and countably infinite sets
NC and NR of concept-, and role-names, respectively, concepts are constructed
by C ::= A | C � C | ∃r.C, where A ∈ NC and r ∈ NR. A TBox is a finite set of
general concept inclusions (GCIs) of the form C � D, where C,D are concepts.

Error-Tolerant Reasoning in the Description Logic EL 109

Table 1. Syntax and semantics of EL

Syntax Semantics

� ΔI

C �D CI ∩DI

∃r.C {x ∈ ΔI | ∃y ∈ ΔI : (x, y) ∈ rI ∧ y ∈ CI}

The TBox is in normal form if all its GCIs are of the form A � ∃r.B, ∃r.A � B,
or A1 � . . . �An � B with n ≥ 1 and A,A1, . . . , An, B ∈ NC ∪ {
}.

The semantics of EL is defined through interpretations I = (ΔI , ·I), whereΔI
is a non-empty domain and ·I maps each A ∈ NC to a set AI ⊆ ΔI and every
r ∈ NR to a binary relation rI over ΔI . This mapping is extended to arbitrary
concepts as shown in Table 1. The interpretation I is a model of the TBox
T if CI ⊆ DI for every C � D ∈ T . The main reasoning problem is to decide
subsumption [2,13]: C is subsumed by D w.r.t. T (denoted C �T D) if CI ⊆ DI

holds for every model I of T . HL is the sublogic of EL that does not allow
existential restrictions; it is a syntactic variant of Horn logic: every Horn clause
can be seen as an HL GCI. An HL TBox is a core TBox if all its axioms are of
the form A � B with A,B ∈ NC.

Error-tolerant reasoning refers to the task of deriving meaningful consequences
from a TBox that is known to contain errors. In the scope of this paper, an
erroneous consequence refers to an error in a subsumption relation. If the TBox
T entails an unwanted subsumption C �T D, then we are interested in finding
the ways in which this consequence can be avoided. To define error-tolerant
reasoning formally, we need the notion of a repair.

Definition 1 (repair). Let T be an EL TBox and C �T D. A repair of T w.r.t.
C � D is a maximal (w.r.t. set inclusion) subset R ⊆ T such that C ��R D.
The set of all repairs of T w.r.t. C � D is denoted by RepT (C � D).

We will usually consider a fixed TBox T , and hence say that R is a repair w.r.t.
C � D, or even simply a repair, if the consequence is clear from the context.

Example 2. The repairs of T = {A � ∃r.X, ∃r.X � B,A � Y , Y � B,A � B′}
w.r.t. the consequence A � B are the sets Ri := T \ Si, 1 ≤ i ≤ 4, where
S1 = {A � ∃r.X,A � Y }, S2 = {A � ∃r.X, Y � B}, S3 = {∃r.X � B,A � Y },
and S4 = {∃r.X � B, Y � B}.

The number of repairs w.r.t. a consequence may be exponential, even for core
TBoxes [28]. Each of these repairs is a potential way of avoiding the unwanted
consequence; however, it is impossible to know a priori which is the best one
to use for further reasoning tasks. One common approach is to be cautious and
consider only those consequences that follow from all repairs. Alternatively, one
can consider brave consequences: those that follow from at least one repair.

Definition 3 (cautious, brave). Let T be an EL TBox, C �T D, and C′, D′

be two EL concepts. C′ is bravely subsumed by D′ w.r.t. T and C � D if there

110 M. Ludwig and R. Peñaloza

is a repair R ∈ RepT (C � D) such that C′ �R D′; C′ is cautiously subsumed
by D′ w.r.t. T and C � D if for every repair R ∈ RepT (C � D) it holds that
C′ �R D′. If T or C � D are clear from the context, we usually omit them.

Example 4. Let T ,R1, . . .R4 be as in Example 2. A is bravely but not cautiously
subsumed by Y �B′ w.r.t. T and A � B since A �R2 Y �B′ but A ��R1 Y �B′.

In the context of inconsistency-tolerant reasoning, other kinds of semantics which
have better computational properties have been proposed [11, 22, 30]. Among
these are the so-called IAR semantics, which consider the consequences that
follow from the intersection of all repairs. Formally, C′ is IAR subsumed by D′

w.r.t. T and C � D if C′ �Q D′, where Q :=
⋂
R∈RepT (C�D)R.

Example 5. Let T and R1, . . . ,R4 be as in Example 2. Then A is IAR subsumed
by B′ w.r.t. T and A � B as A � B′ ∈

⋂4
i=1Ri.

A notion dual to repairs is that of MinAs, or justifications [7, 18]. A MinA for
C �T D is a minimal (w.r.t. set inclusion) subset M of T such that C �M D.
We denote as MinAT (C � D) the set of all MinAs for C �T D. There is a close
connection between repairs and MinAs for error-tolerant reasoning.

Theorem 6. Let T be an EL TBox, C,C′, D,D′ concepts with C �T D. Then

1. C′ is cautiously subsumed by D′ w.r.t. T and C � D iff for every repair
R ∈ RepT (C � D) there is an M′ ∈ MinAT (C

′ � D′) with M′ ⊆ R; and
2. C′ is bravely subsumed by D′ w.r.t. T and C � D iff there is a repair
R ∈ RepT (C � D) and a MinA M′ ∈ MinAT (C

′ � D′) with M′ ⊆ R.

This theorem will be useful for developing a more efficient error-tolerant reason-
ing algorithm. Before describing this algorithm in detail, we study the complexity
of this kind of reasoning.

3 Complexity

We show that deciding cautious and IAR subsumptions is intractable already for
core TBoxes. Deciding brave subsumptions is intractable for EL, but tractable for
HL. We first prove the latter claim using directed hypergraphs, which generalize
graphs by connecting sets of nodes, rather than just nodes.

A directed hypergraph is a pair G = (V , E), where V is a non-empty set of
nodes, and E is a set of directed hyperedges e = (S, S′), with S, S′ ⊆ V . Given
S, T ⊆ V , a path from S to T in G is a set of hyperedges {(Si, Ti) ∈ E | 1 ≤ i ≤ n}
such that for every 1 ≤ i ≤ n, Si ⊆ S ∪

⋃n−1
j=1 Tj , and T ⊆

⋃n
i=1 Ti hold. The

reachability problem in hypergraphs consists in deciding the existence of a path
from S to T in G. This problem is decidable in polynomial time on |V| [16].

Recall that HL concepts are conjunctions of concept names; we can represent
C = A1 � · · · �Am as its set of conjuncts SC = {A1, . . . , Am}. Each GCI C � D
yields a directed hyperedge (SC , SD) and every HL-TBox T forms a directed
hypergraph GT . Then C �T D iff there is a path from SC to SD in GT .

Error-Tolerant Reasoning in the Description Logic EL 111

Theorem 7. Brave subsumption in HL can be decided in polynomial time on
the size of the TBox.

Proof. Let T be an HL TBox, and C,C′, D,D′ be HL concepts. C′ is bravely
subsumed by D′ w.r.t. T and C � D iff there is a path from SC′ to SD′ in GT
that does not contain any path from SC to SD. If no such path exists, then
(i) every path from SC′ to SD′ passes through SD, and (ii) every path from SC′

to SD passes through SC . We need to verify whether any of these two statements
is violated. The existence of a path that does not pass through a given set is
decidable in polynomial time.

However, for EL this problem is NP-complete. To prove this we adapt an idea
from [27] for reducing the NP-hard more minimal valuations (mmv) problem [7,
15]: deciding, for a monotone Boolean formula ϕ and a set V of minimal valua-
tions satisfying ϕ, if there are other minimal valuations V /∈V satisfying ϕ.

Theorem 8. Brave subsumption in EL is NP-complete.

We now show that the cautious and IAR semantics are intractable already for
core TBoxes. This is a consequence of the intractability of the following problem.

Definition 9 (axiom relevance). The axiom relevance problem consists in
deciding, given a core TBox T , A � B ∈ T , and A0 �T B0, whether there is a
repair R of T w.r.t. A0 � B0 such that A � B /∈ R.

Lemma 10. Axiom relevance is NP-hard.

Proof. We reduce the NP-hard path-via-node problem [21]: given a directed
graph G = (V , E) and nodes s, t,m ∈ V , decide if there is a simple path from s
to t in G that goes through m. Given an instance of the path-via-node problem,
we introduce a concept name Av for every v ∈ (V \ {m})∪ {m1,m2}, and build
the core TBox

T := {Av � Aw | (v, w) ∈ E , v, w �= m} ∪ {Av � Am1 | (v,m) ∈ E , v �= m} ∪
{Am2 � Av | (m, v) ∈ E , v �= m} ∪ {Am1 � Am2}.

There is a simple path from s to t in G through m iff there is a repair R of T
w.r.t. As � At with Am1 � Am2 /∈ R.

Theorem 11. Cautious subsumption and IAR subsumption w.r.t. core, HL or
EL TBoxes are coNP-complete.

Proof. If C is not cautiously subsumed by D, we can guess a set R and verify in
polynomial time thatR is a repair and C ��R D. If C is not IAR subsumed by D,
we can guess a set Q ⊆ T , and for every GCI Ci � Di /∈ Q a set Ri such that
Ci � Di /∈ Ri. Verifying that each Ri is a repair and C ��Q D is polynomial.
Thus both problems are in coNP. To show hardness, for a GCI C � D ∈ T ,
there is a repair R such that C � D /∈ R iff C ��R D iff C is neither cautiously
nor IAR subsumed by D. By Lemma 10 both problems are coNP-hard.

112 M. Ludwig and R. Peñaloza

Algorithm 1. Repairs entailing C′ � D′

Input: Unwanted consequence C �T D, concepts C′, D′

Output: R ⊆ RepT (C � D): repairs entailing C′ � D′

R ← RepT (C � D)
for each R ∈ RepT (C � D) do

if C′ ��R D′ then
R ← R \ {R}

return R

The hardness of error-tolerant reasoning is usually attributed to the fact that
there can exist exponentially many repairs for a given consequence. However,
this argument is incomplete. For instance, brave reasoning remains polynomial
in HL, although consequences may have exponentially many repairs already in
this logic. We show now that cautious and brave subsumption are also hard on
the number of repairs ; i.e., they are not what we call repair-polynomial.

Definition 12 (repair-polynomial). An error-tolerant problem w.r.t. a TBox
T and a consequence C � D is repair-polynomial if it can be solved by an
algorithm that runs in polynomial time on the size of both T and RepT (C � D).

Theorem 13. Unless P = NP, cautious and brave subsumption of C′ by D′

w.r.t. T and C � D in EL are not repair-polynomial.

The proof adapts the construction from Theorem 8 to reduce the problem of
enumerating maximal valuations that falsify a formula to deciding cautious sub-
sumption. The number of repairs obtained from the reduction is polynomial on
the number of maximal valuations that falsify the formula. Since this enumer-
ation cannot be solved in time polynomial on the number of maximal falsifiers,
cautious reasoning can also not be performed in time polynomial on the number
of repairs. An analogous argument is used for brave reasoning. All the details can
be found in [25]. Thus, error-tolerant reasoning is hard even if only polynomi-
ally many repairs exist; i.e., there are cases where |RepT (C � D)| is polynomial
on |T |, but brave and cautious reasoning require super-polynomial time. The cul-
prit for hardness is not the number of repairs per se, but rather the relationships
among these repairs.

We now propose a method for improving the reasoning times, by precomputing
the set of all repairs, and using this information effectively.

4 Precompiling Repairs

A näıve solution for deciding brave or cautious subsumptions would be to first
enumerate all repairs and then check which of them entail the relation (the set
R in Algorithm 1). C′ is then bravely or cautiously subsumed by D′ iff R �= ∅
or R = RepT (C � D), respectively. Each test C′ �R D′ requires polynomial
time on |R| ≤ |T | [13], and exactly |RepT (C � D)| such tests are performed.

Error-Tolerant Reasoning in the Description Logic EL 113

The for loop in the algorithm thus needs polynomial time on the sizes of T
and RepT (C � D). From Theorem 13 it follows that the first step, namely the
computation of all the repairs, must be expensive. In particular, these repairs
cannot be enumerated in output-polynomial time; i.e., in time polynomial on
the input and the output [17].

Corollary 14. The set of repairs for an EL TBox T w.r.t. C � D cannot be
enumerated in output polynomial time, unless P = NP.

For any given error, one would usually try to decide whether several brave or
cautious consequences hold. It thus makes sense to improve the execution time
of each of these individual reasoning tasks by avoiding a repetition of the first,
expensive, step.

The set of repairs can be computed in exponential time on the size of T ; this
bound cannot be improved in general since (i) there might exist exponentially
many such repairs, and (ii) they cannot be enumerated in output polynomial
time. However, this set only needs to be computed once, when the error is found,
and can then be used to improve the reasoning time for all subsequent subsump-
tion relations. Once RepT (C � D) is known, Algorithm 1 computesR, and hence
decides brave and cautious reasoning, in time polynomial on |T |·|RepT (C � D)|.
It is important to notice that this does not violate the result that cautious and
brave reasoning are not repair-polynomial. The main difference is that this vari-
ant of Algorithm 1 does not need to compute the repairs; they are already given.

Clearly, Algorithm 1 does more than merely deciding cautious and brave con-
sequences. Indeed, it computes the set of all repairs that entail C′ � D′. This
information can be used to decide more complex reasoning tasks. For instance,
one may be interested in knowing whether the consequence follows from most,
or at least k repairs, to mention just two possible inferences. IAR semantics can
also be decided in polynomial time on T and RepT (C � D): simply compute
Q =

⋂
R∈RepT (C�D)R, and test whether C′ �Q D′ holds. The first step needs

polynomial time on RepT (C � D) while the second is polynomial on Q ⊆ T .
As we have seen, precompiling the set of repairs already yields an improve-

ment on the time required for deciding error-tolerant subsumption relations.
However, there are some obvious drawbacks to this idea. In particular, storing
and maintaining a possibly exponential set of TBoxes can be a challenge for
the knowledge engineer. Moreover, this method does not scale well for handling
multiple errors that are found at different time points. When a new error is de-
tected, the repairs of all the TBoxes need to be computed, potentially causing
the introduction of redundant TBoxes that must later be removed. We improve
on this solution by structuring all the repairs into a single labelled TBox.

Let RepT (C � D) = {R1, . . . ,Rn}. We label every GCI E � F ∈ T with
lab(E � F) = {i | E � F ∈ Ri}. Conversely, for every subset I ⊆ {1, . . . , n} we
define the TBox TI = {E � F ∈ T | lab(E � F) = I}. A set I is a component if
TI �= ∅. Every axiom belongs to exactly one component and hence the number of
components is bounded by |T |. One can represent these components using only
polynomial space and all repairs can be read from them via a directed acyclic

114 M. Ludwig and R. Peñaloza

Algorithm 2. Decide cautious and brave subsumption

Input: Labelled TBox T , concepts C′, D′

procedure is-brave(T , C′, D′)
for each M∈ MinAT (C

′ � D′) do
if lab(M) �= ∅ then

return true
return false

procedure is-cautious(T , C′, D′)
ν ← ∅
for each M∈ MinAT (C

′ � D′) do
ν ← ν ∪ lab(M)
if ν = {1, . . . , n} then

return true
return false

graph expressing dependencies between components. For simplicity we keep the
representation as subsets of {1, . . . , n}.

The labelled TBox has full information on the repairs, and on their relation-
ship with each other. For S ⊆ T , lab(S) :=

⋂
E�F∈S lab(E � F) yields all

repairs containing S. If M is a MinA for C′ � D′, lab(M) is a set of repairs
entailing this subsumption. Moreover, ν(C′ � D′) :=

⋃
M∈MinAT (C′�D′) lab(M)

is the set of all repairs entailing C′ � D′. Thus, C′ is bravely subsumed by D′ iff
ν(C′ � D′) �= ∅ and is cautiously subsumed iff ν(C′ � D′) = {1, . . . , n} (recall
Theorem 6).

The set ν(C′ � D′) corresponds to the so-called boundary for the subsumption
C′ � D′ w.r.t. the labelled TBox T [4]. Several methods for computing the
boundary exist. Since we are only interested in deciding whether this boundary
is empty or equal to {1, . . . , n}, we can optimize the algorithm to stop once
this decision is made. This optimized method is described in Algorithm 2. The
algorithm first computes all MinAs for C′ �T D′, and their labels iteratively. If
one of this labels is not empty, then the subsumption is a brave consequence; the
procedure is-brave then returns true. Alternatively, is-cautious accumulates
the union of all these labels in a set ν until this set contains all repairs, at which
point it returns true.

The main difference between Algorithm 1 and Algorithm 2 is that the former
iterates over the set of repairs of the unwanted consequences, while the latter
iterates over MinAT (C

′ � D′). Typically, consequences have a small number
of MinAs, which only contain a few axioms, while repairs are usually large and
numerous. Thus, although Algorithm 2 has the overhead of computing the MinAs
for the wanted consequence, it then requires less and cheaper iterations. As
confirmed by our experimental results, this approach does show an advantage in
practice.

Using the labelled TBox, it is also possible to decide IAR semantics through
one subsumption test, and hence in polynomial time on the size of T , regardless
of the number of repairs.

Error-Tolerant Reasoning in the Description Logic EL 115

Table 2. Metrics of the ontologies used in the experiments

Ontology #axioms #conc. names #role names

GALEN-OWL 45 499 23 136 404
NCI 159 805 104 087 92
SNOMED 369 194 310 013 58

Theorem 15. Let n = |RepT (C � D)|. Then C′ is IAR-subsumed by D′ iff
C′ �TJ D′, where J = {1, . . . , n}.

This shows that precompiling all repairs into a labelled ontology can help reduc-
ing the overall complexity and execution time of reasoning. Next, we exploit the
fact that the number of MinAs for consequences in ontologies used in practice
is relatively small and compute them using a saturation-based approach.

5 Implementation and Experiments

We ran two separate series of experiments. The goal of the first series was to in-
vestigate the feasibility of error-tolerant reasoning in practice. We implemented
a prototype tool in Java that checks whether a concept subsumption C � D is
brave or cautious w.r.t. a given TBox T and a consequence C′ � D′. The tool
uses Theorem 6 and the duality between MinAs and repairs, i.e. the repairs for
C′ � D′ w.r.t T can be obtained from the MinAs for C′ � D′ w.r.t T by con-
secutively removing the minimal hitting sets [29] of the MinAs from T . The tool
first computes all the MinAs for both inclusions C � D and C′ � D′ w.r.t. T ,
and then verifies whether some inclusions between the MinAs for C � D and
C′ � D′ hold to check for brave or cautious subsumptions. Note that the inclu-
sion conditions only depend on the MinAs for the wanted consequence C � D
and the erroneous subsumption C′ � D′ and not on the repairs of C′ � D′.
Consequently, the repairs for C′ � D′ do not have to be explicitly computed
in our tool. For the computation of the MinAs we used a saturation-based ap-
proach based on a consequence-based calculus [19]. More details regarding the
computation of MinAs can be found in [24].

We selected three ontologies that are expressed mainly in EL and are typically
considered to pose different challenges to DL reasoners. These are the January
2009 international release of Snomed CT, version 13.11d of the NCI thesaurus,1

and the GALEN-OWL ontology.2 All non-EL axioms (including axioms involving
roles only, e.g. role inclusion axioms) were first removed from the ontologies. The
number of axioms, concept names, and role names in the resulting ontologies is
shown in Table 2.

For every ontology T we selected a number of inclusion chains of the form
A1 �T A2 �T A3 �T A4, which were then grouped into

1 http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
2 http://owl.cs.manchester.ac.uk/research/co-ode/

http://evs.nci.nih.gov/ftp1/NCI_Thesaurus
http://owl.cs.manchester.ac.uk/research/co-ode/

116 M. Ludwig and R. Peñaloza

Table 3. Experimental results obtained for checking brave and cautious subsumption

ontology type #succ. comp. #brave #cautious avg. #MinAs max #MinAs avg. time (s)

GALEN I 498 / 500 495 39 1.707 | 1.663 4 | 4 335.680
II 500 / 500 268 48 2.068 | 1.388 6 | 2 331.823

NCI I 26 / 26 26 2 1.269 | 1.154 2 | 3 13.465
II 36 / 36 16 8 3.111 | 1.111 7 | 3 15.338

SNOMED I 302 / 500 296 17 1.652 | 1.656 42 | 12 161.471
II 314 / 500 154 34 3.908 | 1.879 54 | 54 150.566

– Type I inclusions, where A2 �T A4 was set as the unwanted consequence,
and

– Type II inclusions, where A2 �T A3 was the unwanted consequence.

For the NCI and Snomed CT ontologies we chose inclusions A2 � A4 (for
Type I) and A2 � A3 (for Type II) that were not entailed by the consecutive
version of the considered ontology, i.e. those that can be considered to be “mis-
takes” fixed in the consecutive release (the July 2009 international release of
Snomed CT and version 13.12e of the NCI Thesaurus). 500 inclusions of each
type were found for Snomed CT, but only 26 Type-I inclusions and 36 Type-II
inclusions were detected in the case of NCI. For the GALEN-OWL ontology 500
inclusions chains of each type were chosen at random. For every Type-I chain,
we then used our tool to check whether the inclusion A1 � A3 is a brave or
cautious consequence w.r.t. A2 � A4. Similarly, for every Type-II inclusion we
checked whether A1 � A4 is a brave or cautious consequence w.r.t. A2 � A3.

All experiments were conducted on a PC with an Intel Xeon E5-2640 CPU
running at 2.50GHz. An execution timeout of 30 CPU minutes was imposed
on each problem in this experiment series. The results obtained are shown in
Table 3. The first two columns indicate the ontology that was used and the
inclusion type. The next three columns show the number of successful computa-
tions within the time limit, and the number of brave and cautious subsumptions,
respectively. The average and the maximal number of MinAs over the considered
set of inclusions are shown in the next two columns. The left-hand side of each
of these columns refers to the MinAs obtained for the consequence for which its
brave or cautious entailment status should be checked, and the right-hand side
refers to the unwanted consequence. The last column shows the average CPU
time needed for the computations over each considered set of inclusions. All time
values shown indicate total computation times.

The number of successful computations was the lowest for the experiments
involving Snomed, whereas no timeouts were incurred for NCI. Moreover, the
highest average number of MinAs was found for Type-II inclusions for Snomed
with a maximal number of 54. GALEN-OWL required the longest computation
times, which could be a consequence of the fact that the (full) GALEN ontology
is generally seen as being difficult to classify by DL reasoners. The shortest
computation times were reported for experiments involving NCI. It is important
to notice, however, that the standard deviations of the computation times for
GALEN and Snomed were quite high. This indicates a large variation between
problem instances; for example, some instances relating to GALEN required less

Error-Tolerant Reasoning in the Description Logic EL 117

than 9 seconds, and over one third of the experiments finished in sixty seconds or
less. All the successful computations required at most 11 GiB of main memory.

In a second series of experiments we evaluated the advantages of performing
precompilation when deciding several brave and cautious entailments w.r.t. an
unwanted consequence. We therefore implemented a slightly improved version of
Algorithm 1 which iterates over all the repairs for the unwanted consequence and
determines whether a consequence that should be checked is brave or cautious
by using the conditions from Definition 3. The implemented algorithm stops as
quickly as possible, e.g. when a non-entailing repair has been found, we conclude
immediately that the consequence is not cautious. The computation of the re-
pairs is implemented by making use of the duality between MinAs and repairs
(via the minimal hitting sets of the MinAs) as described above. The minimal
hitting sets were computed using the Boolean algebraic algorithm from [23]. In
the following we refer to this improved algorithm as the näıve approach. We used
the reasoner ELK [20] to check whether a given inclusion follows from a repair.
In particular, the incremental classification feature offered by ELK allowed us to
further reduce reasoning times. When switching from a repair R to the next R′,
the knowledge about removed (R \R′) and added axioms (R′ \ R) was utilised
by ELK to (potentially) avoid a complete reclassification.

Algorithm 2 was implemented in a straightforward way. The computation of
the repairs for the unwanted consequence was implemented analogously to the
näıve algorithm. Note that unlike with the näıve algorithm, all the MinAs for
the wanted consequences had to be computed.

For comparing the performance of the näıve approach (Algorithm 1) against
Algorithm 2 in practice, we selected 226 inclusions between concept names from
Snomed having more than 10 MinAs, with a maximum number of 223. For each
inclusion A � B we randomly chose five inclusions A′i � B′i entailed by Snomed,
and tested whether A′i � B′i is a brave or cautious subsumption w.r.t. A � B
for every i ∈ {1, . . . , 5} using the näıve approach and Algorithm 2. In this series
of experiments we allowed each problem instance to run for at most 3600 CPU
seconds, and 3 GiB of heap memory (with 16 GiB of main memory in total)
were allocated to the Java VM. Each problem instance was run three times, and
the best result was recorded.

The results obtained are depicted in Figure 1. The problem instances A � B
are sorted ascendingly along the x-axis according to the number of repairs for
A � B. The required computation times for each problem instance (computing
all repairs for the unwanted consequence and checking whether the five sub-
sumptions are brave or cautious entailments w.r.t. the unwanted consequence)
are shown along the y-axis on the left-hand side of the graph. If no corresponding
y-value is shown for a given problem instance, the computation either timed out
or ran out of memory in all three calls. The number of repairs for the unwanted
consequences appears on the right-hand side.

One can see that a relatively small number of repairs can lead to several thou-
sands (up to over 14 millions) of repairs. Also, if the number of repairs remains
small, i.e. below 400, the näıve approach performs fairly well, even outperforming

118 M. Ludwig and R. Peñaloza

102

103

104

105

106

107

500

1,000

1,500

2,000

2,500

3,000

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

precompilation näıve # repairs

Fig. 1. Comparison of approaches for error-tolerant reasoning

500 1,000 1,500 2,000 2,500 3,000 3,500

500

1,000

1,500

2,000

2,500

3,000

3,500

Näıve computation time (s)

P
re
co
m
p
il
a
ti
o
n
co
m
p
u
ta
ti
o
n
ti
m
e
(s
)

37

45

55

67

81

99

122

148

181

N
u
m
b
er

o
f
re
p
a
ir
s

Fig. 2. Comparative performance according to the number of repairs

the precompilation approach on a few problem instances. For larger number of
repairs, however, none of the computations for the näıve approach succeeded.
The time required to perform reasoning with ELK outweighs the computation
times of all the MinAs for the precompilation approach. In total 118 instances
could be solved by at least one run of the precompilation approach, whereas only
42 computations finished when the näıve approach was used. Figure 2 shows the
comparative behaviour of the two approaches over the 22 instances that suc-
ceeded in both methods. The tone of each point depicts the number of repairs
of the unwanted consequence, as shown on the scale on the right. In the figure,
points below the diagonal line correspond to instances where the precompilation
approach performed better than the näıve approach. As it can be seen, the pre-
compilation approach typically outperforms the näıve one, even in these simple
cases, although there exist instances where the opposite behaviour is observed.
However, there are also 20 instances where only the näıve approach succeeded.
In our experiments the computation of the MinAs was typically the most time
consuming part; the computation of the repairs once all the MinAs were available
could be done fairly quickly.

Error-Tolerant Reasoning in the Description Logic EL 119

6 Conclusions

We introduced error-tolerant reasoning inspired by inconsistency-tolerant se-
mantics from DLs and consistent query answering over inconsistent databases.
The main difference is that we allow for a general notion of error beyond incon-
sistency. We studied brave, cautious, and IAR reasoning, which depend on the
class of repairs from which a consequence can be derived. Although we focused
on subsumption w.r.t. EL TBoxes, these notions can be easily extended to any
kind of monotonic consequences from a logical language.

Our results show that error-tolerant reasoning is hard in general for EL, al-
though brave reasoning remains polynomial for some of its sublogics. Interest-
ingly, IAR semantics, introduced to regain tractability of inconsistency-tolerant
query answering in light-weight DLs, is coNP-hard, even for the basic logic
HL with core axioms. Moreover, the number of repairs is not the only culprit
for hardness of these tasks: for both brave and cautious reasoning there is no
polynomial-time algorithm on the size of T and the number of repairs that can
solve these problems unless P = NP.

To overcome the complexity issues, we propose to compile the repairs into
a labelled ontology. While the compilation step may require exponential time,
after its execution IAR semantics can be decided in polynomial time, and brave
and cautious semantics become repair-polynomial. Surprisingly, the idea of pre-
computing the set of all repairs to improve the efficiency of reasoning seems to
have been overlooked by the inconsistency-tolerant reasoning community.

To investigate the feasibility of error-tolerant reasoning in practice, we de-
veloped prototype tools based on computing all MinAs, and annotating axioms
with the repairs they belong to. Our experiments show that despite their theo-
retical complexity, brave and cautious reasoning can be performed successfully
in many practical cases, even for large ontologies. Our saturation-based proce-
dure can detect a large number of MinAs for some consequences in a fairly short
amount of time. We plan to study optimizations that can help us reduce the
reasoning times further. A deeper analysis of our experimental results will be
a first step in this direction. There is a close connection between error-tolerant
reasoning and axiom-pinpointing [6, 7]; our labelled ontology method also re-
lates to context-based reasoning [4]. Techniques developed for those areas, like
e.g. automata-based pinpointing methods [5], could be useful in this setting.

It is known that for some inexpressive DLs, all MinAs can be enumerated in
output-polynomial time [26,27]; the complexity of enumerating their repairs has
not, to the best of our knowledge, been studied. We will investigate if enumer-
ating repairs is also output-polynomial in those logics, and hence error-tolerant
reasoning is repair-polynomial.

We will study the benefits of using labelled axioms for ontology contrac-
tion [12] and ontology evolution. Contraction operations can be simulated by
modifying axiom labels, and minimal insertion operations add a labelled axiom.
We will also extend our algorithms to more expressive logics. A full implemen-
tation and testing of these approaches is under development.

120 M. Ludwig and R. Peñaloza

References

1. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the 18th ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems (PODS 1999), pp. 68–79. ACM (1999)

2. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI 2003), pp. 325–330. Morgan Kaufmann
(2003)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

4. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and
consequences of semantic web ontologies. Journal of Web Semantics 12-13, 22–40
(2012), available at http://dx.doi.org/10.1016/j.websem.2011.11.006

5. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. Journal of Auto-
mated Reasoning 45(2), 91–129 (2010)

6. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation 20(1), 5–34 (2010)

7. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI),
vol. 4667, pp. 52–67. Springer, Heidelberg (2007)

8. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Proceedings of the 3rd Knowledge Represen-
tation in Medicine (KR-MED 2008): Representing and Sharing Knowledge Using
SNOMED, vol. 410, CEUR-WS (2008)

9. Bertossi, L.: Database repairing and consistent query answering. Synthesis Lectures
on Data Management 3(5), 1–121 (2011)

10. Bienvenu, M.: On the complexity of consistent query answering in the presence
of simple ontologies. In: Proceedings of the 26th Natonal Conference on Artificial
Intelligence, AAAI 2012 (2012)

11. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Rossi, F. (ed.) Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI 2013). AAAI Press
(2013)

12. Booth, R., Meyer, T., Varzinczak, I.J.: First steps in EL contraction. In: Proceed-
ings of the 2009 Workshop on Automated Reasoning About Context and Ontology
Evolution, ARCOE 2009 (2009)

13. Brandt, S.: Polynomial time reasoning in a description logic with existential restric-
tions, GCI axioms, and - what else? In: de Mántaras, R.L., Saitta, L. (eds.) Pro-
ceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004).
pp. 298–302. IOS Press (2004)

14. Cote, R., Rothwell, D., Palotay, J., Beckett, R., Brochu, L.: The systematized
nomenclature of human and veterinary medicine. Tech. rep., SNOMED Interna-
tional, Northfield, IL: College of American Pathologists (1993)

15. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. Tech. Rep. CD-TR 91/16, Christian Doppler Laboratory for
Expert Systems, TU Vienna (1991)

16. Gallo, G., Longo, G., Pallottino, S.: Directed hypergraphs and applications. Dis-
crete Applied Mathematics 42(2), 177–201 (1993)

Error-Tolerant Reasoning in the Description Logic EL 121

17. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal
independent sets. Information Processing Letters 27(3), 119–123 (1988)

18. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 267–280. Springer, Heidelberg (2007)

19. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In:
Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence (IJCAI 2009), pp. 2040–2045 (2009)

20. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK: From polynomial
procedures to efficient reasoning with EL ontologies. Journal of Automated Rea-
soning 53, 1–61 (2014)

21. Lapaugh, A.S., Papadimitriou, C.H.: The even-path problem for graphs and di-
graphs. Networks 14(4), 507–513 (1984),
http://dx.doi.org/10.1002/net.3230140403

22. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010)

23. Lin, L., Jiang, Y.: The computation of hitting sets: Review and new algorithms.
Information Processing Letters 86(4), 177–184 (2003)

24. Ludwig, M.: Just: A tool for computing justifications w.r.t. EL ontologies. In: Pro-
ceedings of the 3rd International Workshop on OWL Reasoner Evaluation, ORE
2014 (2014)

25. Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic EL.
LTCS-Report 14-11, Chair of Automata Theory, Institute of Theoretical Com-
puter Science, Technische Universität Dresden, Dresden, Germany (2014), see
http://lat.inf.tu-dresden.de/research/reports.html.

26. Peñaloza, R., Sertkaya, B.: Complexity of axiom pinpointing in the DL-Lite family
of description logics. In: Coelho, H., Studer, R., Wooldridge, M. (eds.) Proceedings
of the 19th European Conference on Artificial Intelligence (ECAI 2010). Frontiers
in Artificial Intelligence and Applications, vol. 215, pp. 29–34. IOS Press (2010)

27. Peñaloza, R., Sertkaya, B.: On the complexity of axiom pinpointing in the EL family
of description logics. In: Lin, F., Sattler, U., Truszczynski, M. (eds.) Proceedings of
the Twelfth International Conference on Principles of Knowledge Representation
and Reasoning (KR 2010). AAAI Press (2010)

28. Peñaloza, R.: Axiom-Pinpointing in Description Logics and Beyond. Ph.D. thesis,
Dresden University of Technology, Germany (2009)

29. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

30. Rosati, R.: On the complexity of dealing with inconsistency in description logic on-
tologies. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), pp. 1057–1062. AAAI Press (2011)

31. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with SNOMED-RT. Journal of the American
Medical Informatics Association (2000); fall Symposium Special Issue

32. W3C OWL Working Group: OWL 2 web ontology language document overview.
W3C Recommendation (2009), http://www.w3.org/TR/owl2-overview/

http://dx.doi.org/10.1002/net.3230140403
http://lat.inf.tu-dresden.de/research/reports.html
http://www.w3.org/TR/owl2-overview/

Sub-propositional Fragments of the Interval

Temporal Logic of Allen’s Relations�

Davide Bresolin, Emilio Muñoz-Velasco, and Guido Sciavicco

1 Department of Computer Science and Engineering
University of Bologna, Italy
davide.bresolin@unibo.it

2 Department of Applied Mathematics
University of Malaga, Spain

emilio@ctima.uma.es
3 Department of Information, Engineering and Communications

University of Murcia, Spain
guido@um.es

Abstract. Interval temporal logics provide a natural framework for
temporal reasoning about interval structures over linearly ordered do-
mains, where intervals are taken as the primitive ontological entities. The
most influential propositional interval-based logic is probably Halpern
and Shoham’s Modal Logic of Time Intervals, a.k.a. HS. While most
studies focused on the computational properties of the syntactic frag-
ments that arise by considering only a subset of the set of modalities,
the fragments that are obtained by weakening the propositional side have
received very scarce attention. Here, we approach this problem by con-
sidering various sub-propositional fragments of HS, such as the so-called
Horn, Krom, and core fragment. We prove that the Horn fragment of
HS is undecidable on every interesting class of linearly ordered sets, and
we briefly discuss the difficulties that arise when considering the other
fragments.

1 Introduction

Most temporal logics proposed in the literature assume a point-based model of
time, and they have been successfully applied in a variety of fields. However, a
number of relevant application domains, such as planning and synthesis of con-
trollers, are characterized by advanced features that are neglected or dealt with
in an unsatisfactory way by point-based formalisms. Interval temporal logics pro-
vide a natural framework for temporal reasoning about interval structures over
linearly (or partially) ordered domains. They take time intervals as the primi-
tive ontological entities and define truth of formulas relative to time intervals,
rather than time points; their modalities correspond to various relations between

� The authors acknowledge the support from the Italian GNCS Project “Automata,
games and temporal logics for verification and synthesis of safety-critical systems”
(D. Bresolin), the Spanish Project TIN12-39353-C04-01 (E. Muñoz-Velasco), and
the Spanish fellowship program ‘Ramon y Cajal’ RYC-2011-07821 (G. Sciavicco).

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 122–136, 2014.
c© Springer International Publishing Switzerland 2014

Sub-Propositional Fragments of HS 123

pairs of intervals. Applications of interval-based reasoning systems range from
hardware and real-time system verification to natural language processing, from
constraint satisfaction to planning [1, 11, 20, 23].

The well-known logic HS [16] features a set of modalities that make it pos-
sible to express all Allen’s interval relations [1]. HS is highly undecidable over
most classes of linear orders, and this result motivated the search for (syntac-
tic) HS fragments offering a good balance between expressiveness and decid-
ability/complexity. The few decidable fragments that have been found present
complexities that range from NP-complete (in very simple cases) to NExpTime-
complete, to ExpSpace-complete, to non-primitive recursive [5, 6, 8, 10, 17–19].
While the classification of fragments of HS in terms of the allowed modal opera-
tors can be considered almost completed, sub-propositional fragments of HS have
received very scarce attention in the literature. Three propositional restrictions
are often mentioned in the context of propositional, first-order, and modal logics,
namely the Horn, Krom, and core fragments. They are all based on the clausal
form of formulas, i.e., implications of the type (λ1∧. . .∧λn)→ (λn+1∨. . .∨λn+m)
and define a particular fragment by limiting the applicability of Boolean oper-
ators and the number of literals in the clauses. In the case of modal logics,
the restriction to Horn and core clauses can be separated into two cases, that
basically differ from each other on the role played by existential modalities (di-
amonds). In the classical version, one may freely use both existential (diamond)
and universal (box) modalities in positive literals [13, 14, 22], while in Artale’s
et. al. version [3] the use of existential modalities is restricted to obtain bet-
ter computational properties. This duality does not affect the Krom fragment,
since the existential modalities can be recovered using only boxes (preserving
the satisfiability).

In this paper, we consider the five expressively different sub-propositional
fragments of HS that emerge from the above discussion, and we prove that
the Horn fragment of HS is undecidable under very weak assumptions of the
underlying linear order (in fact, it is undecidable in any class of linear orders
where full HS is). While inspired by existing work, our proof, which is the main
contribution of this paper, necessarily differs from previous ones due to the
limited expressive power of the Horn fragment. We conclude the paper by briefly
discussing the reasons that make the Krom and core fragments more difficult to
deal with.

2 HS: Syntax and Semantics

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair
[x, y], where a, b ∈ D and a < b. In this paper, we assume the strict seman-
tics, that is, we exclude point intervals and only consider strict intervals. The
adoption of the strict semantics instead of the non-strict semantics, which in-
cludes point intervals, conforms to the definition of interval adopted by Allen
in [1], but differs from the one given by Halpern and Shoham in [16]. It has
at least two strong motivations: first, a number of representation paradoxes

124 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

[x, y]RA[x
′, y′]⇔ y = x′

[x, y]RL[x
′, y′]⇔ y < x′

[x, y]RB[x
′, y′]⇔ x = x′, y′ < y

[x, y]RE[x
′, y′]⇔ y = y′, x < x′

[x, y]RD[x
′, y′]⇔ x < x′, y′ < y

[x, y]RO[x
′, y′]⇔ x < x′ < y < y′

x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities

arise when the non-strict semantics is adopted, due to the presence of point
intervals, as pointed out in [1]; second, when point intervals are included there
seems to be no intuitive semantics for interval relations that makes them both
pairwise disjoint and jointly exhaustive. It should be observed that, from the
decidability/undecidability/complexity point of view, no differences have ever
been found between the two semantic choices; there are no reasons to suspect
that sub-propositional strict and non-strict HS restrictions might behave in a
different way. If we exclude the identity relation, there are 12 different relations
between two strict intervals in a linear order, often called Allen’s relations [1]:
the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends),
RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that is,
RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations
playing the role of the accessibility relations. Thus, we associate a universal
modality [X] and an existential modality 〈X〉 with each Allen relation RX . For
eachX ∈ {A,L,B,E,D,O}, the transposes of the modalities [X] and 〈X〉 are the
modalities [X] and 〈X〉, corresponding to the inverse relationRX of RX . Halpern
and Shoham’s logic HS [16] is a multi-modal logic with formulas built from a
finite, non-empty set AP of atomic propositions (also referred to as proposition
letters), the classical propositional connectives, and a pair of modalities for each
Allen relation:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈X〉ϕ | [X]ϕ | 〈X〉ϕ | [X]ϕ, (1)

where p ∈ AP and X ∈ {A,L,B,E,D,O}. The (strict) semantics of HS is given
in terms of interval models M = 〈I(D), V 〉, where D is a linear order, I(D) is the
set of all (strict) intervals over D, and V is a valuation function V : AP �→ 2I(D),
which assigns to each atomic proposition p ∈ AP the set of intervals V (p) on
which p holds. The truth of a formula on a given interval [x, y] in an interval
model M is defined by structural induction on formulas as follows:

– M, [x, y] � p if and only if [x, y] ∈ V (p);
– Boolean connectives are dealt with in the standard way;

Sub-Propositional Fragments of HS 125

– M, [x, y] � 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]
and M, [x′, y′] � ψ;

– M, [x, y] � [X]ψ if and only if for every [x′, y′] such that [x, y]RX [x′, y′] we
have that M, [x′, y′] � ψ;

– M, [x, y] � 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]
and M, [x′, y′] � ψ;

– M, [x, y] � [X]ψ if and only if for every [x′, y′] such that [x, y]RX [x′, y′] we
have that M, [x′, y′] � ψ.

Formulas of HS can be interpreted over different classes of interval models,
built from different classes of linear orders. Among others, we mention the fol-
lowing important classes of linear orders:
(i) the class of all linear orders Lin;
(ii) the class of dense linear orders Den, that is, those in which for every pair

of distinct points there exists at least one point in between them (e.g., Q
and R);

(iii) the class of strongly discrete linear orders Dis, that is, those in which there
is a finite number of elements between any two distinct elements;

(iv) the class of weakly discrete linear orders WDis, where every element, apart
from the greatest element—if it exists—has an immediate successor, and
every element, other than the least element—if it exists—has an immediate
predecessor (this class includes, e.g., Z+ Z);

(v) the class of finite linear orders Fin, that is, those having only finitely many
points.

It is important to observe that all classes mentioned above, except Fin, share the
common characteristic that possess at least one linear order with an infinitely
ascending sequence of points (infinite chain).

3 Sub-propositional Fragments of HS

A syntactical fragment of HS can be defined by restricting the grammar (1) either
by limiting the set of modalities that are included in the language, by limiting
nesting of temporal modalities, or by restricting the application of boolean oper-
ators. While the first choice (limiting the set of modalities) has been extensively
explored, the other two choices has received much scarcer attention. One of the
very few examples is [9], where a NP-complete fragment of the temporal logic
CDT (which includes HS) has been identified by limiting the nesting of temporal
modalities. Here, we study restrictions of interval-based temporal logics along a
different line: we limit the applicability of Boolean operators.

To enter into the details we need to start by defining the clausal form of HS-
formulas. Clausal forms of modal logics, such as K, can be found, e.g., in [21].
In the context of temporal logics, such as Linear Temporal Logic (LTL), clausal
forms [15] have been extensively explored for its applications in automated rea-
soning. No clausal forms for pure interval-based temporal logics have been pro-
posed so far, to the best of our knowledge. We first introduce the notion of
positive temporal literals, given by the following grammar:

126 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

Bool

Horn Krom

Horn�

core�

core

Undecidable

Unknown

Fig. 2. Relative expressive power between sub-propositional restrictions and their de-
cidability status for HS

λ ::= ⊥ | p | 〈X〉⊥ | [X]⊥ | 〈X〉p | [X]p | [U]p, (2)

where [X] and 〈X〉 HS modalities, and [U] is the universal modality, that can
be defined in HS in several ways, such as:

[U]ϕ = [A][A][A]ϕ ∧ [A][A]ϕ ∧ [A][A][A]ϕ. (3)

An HS-formula is said to be in clausal form if and only if it can be written
following the grammar:

ϕ ::= λ | ¬λ | [U](¬λ1 ∨ . . . ∨ ¬λn ∨ λn+1 ∨ . . . ∨ λn+m) | ϕ ∧ ϕ. (4)

Every HS-formula can be transformed into an equi-satisfiable conjunction of
HS-clauses; this transformation is rather standard.

Definition 1. An HS-clause is said to be Bool if it can be obtained from (4); it
is said to be Horn if m ≤ 1; it is said to be Krom if n+m ≤ 2; finally, it is said
to be core if it is both Bool and Horn, that is, if n+m ≤ 2 and m ≤ 1.

Here, we follow the classical definition of modal clauses [14, 15, 21, 22]. In [3],
positive literals are defined restricting (2) by eliminating 〈X〉λ. As far as Bool
and Krom clauses are concerned, this elimination does not weaken the expressive
power; as a matter of fact, formulas of the type ϕ = 〈X〉ψ can be recovered by
introducing a new propositional letter pϕ, and by using the conjunction of clauses
¬[X]pϕ ∧ [U](pϕ ∨ ψ), which is clearly equi-satisfiable to ϕ. On the other hand,
this is not necessarily true for Horn and core clauses. If we denote the latter
fragments by Horn� and core�, respectively, the relative expressive power for
sub-propositional fragments of HS is as displayed in Fig. 2.

In this paper we prove that restricting to the Horn fragment of HS (HSHorn)
is not sufficient to recover decidability. The decidability/undecidability status of
the Horn�, Krom, and core� fragments is still an open problem. For the sake
of comparison, we mention here that for LTL, whose satisfiability problem is
PSpace-complete [25], the complexity does not change neither when we restrict
to the Horn fragment [12] nor to the Horn� fragment (Chen and Lin’s proof

Sub-Propositional Fragments of HS 127

the use of diamond positive literal is not essential). In [3] it is proved that the
core� fragment of LTL is NP-hard and that the Krom fragment is NP, proving
that all remaining restrictions of LTL are, in fact, NP-complete. Finally, only
the Horn fragment of the modal logic K has been studied, and its complexity is
the same as in the case of full K [22], that is, PSpace-complete. Although the
Krom and the core restrictions of modal and temporal logics have not received
much attention in the literature, similar restrictions have been studied at least
in the context of Description Logics, both in the atemporal case [2], and in the
temporal one [4], justifying the interest in such sub-propositional limitations.

4 Undecidability of HSHorn in the Infinite Case

In this section, we assume that HSHorn is interpreted in any class of linearly
ordered sets that possesses at least one linear order with an infinite chain, there-
fore solving the cases Lin,Den,Dis, and WDis. In the next section, we show how
to modify the proof to deal with the case of Fin. Our construction adapts to
the restricted applicability of Boolean operators the ideas from both the original
undecidability proof for full HS [16], as well as the more recent undecidability
proofs for fragments of HS [7]. It is based on a reduction of the non-halting
problem of a deterministic Turing Machine on empty input [24].

A Turing Machine is defined as a tuple A = (Q,Σ, Γ, δ, q0, qf), where Q is the
set of states, q0 (resp., qf) is the initial (resp., final) state, Σ is the machine’s
alphabet that does not contain � (blank), Γ = Σ ∪ {�} is the tape alphabet,
and δ : Q × Γ → Q × Γ × {L,R} is the transition function (L,R represent the
possible moves on the machine’s tape: left, right). Even under the assumption
thatΣ = {0, 1} and that the input is empty, both the halting and the non-halting
problem for a deterministic Turing Machine are undecidable [24] (as a matter of
fact, the former is R.E.-complete, while the latter is Co-R.E.-complete).

Our reduction is based on the idea of representing the computation history
of A. A configuration represents the status of A at a given moment of the
computation, and includes the content of the tape, the position of the read-
ing head, and the current state. Elements of the tape will be placed over unit
intervals (or, simply, units), which we shall denote by u. We shall use the
propositional symbol ∗ to separate successive configurations, 0, 1,� to repre-
sent tape cells not under the machine’s head, and the propositional symbols
qc, with q ∈ Q \ {qf} and c ∈ {0, 1,�}, to represent the tape cell under
the head and the current (non-final) state of the machine. Let L be the set
{0, 1,�, ∗}∪ {qc | q ∈ Q \ {qf}∧ c ∈ {0, 1,�}}∪ {qf}, and consider the following
group of formulas.

φ1 = 〈A〉u ∧ [U](u→ 〈A〉u) u-chain exists
φ2 = 〈A〉Start ∧ [U](Start → ¬〈A〉u) ∧ [U](Start → ¬〈L〉u) no u in the past
φ3 = [U](u→ ¬〈B〉u) ∧ [U](u→ ¬〈E〉u) u-chain unique (1)
φ4 = [U](u→ ¬〈D〉u) ∧ [U](u→ ¬〈O〉u) u-chain unique (2)
φ5 =

∧
l∈L[U](l → u) tape/state propositions and ∗ are units

φ6 =
∧

l,l′∈L,l �=l′ [U](l → ¬l′) tape/state propositions and ∗ are unique

128 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

. . .

Co Co Co Co . . .

∗
u

q�0
Cell
u

∗
u

∗
u

Cell
u

Cell
u

∗
u

∗
u

Cell
u

Cell
u

Cell
u

∗
u

∗
u

Cell
u

Cr Cr

Cr

Cr

Cr

Cr . . .

Fig. 3. Configurations

Lemma 1. Suppose that M, [x, y] � φ1 ∧ . . . ∧ φ6, then there exists an infinite
sequence of points y = y0 < y1 < . . . such that:

1. for each i ≥ 0, M, [yi, yi+1] � u;
2. no other interval [z, t] satisfies u, unless z > yi for each i ≥ 0;
3. for each interval [z, t], if M, [z, t] � l and l ∈ L, then M, [z, t] � u;
4. for each l1, l2 ∈ L where l1 �= l2, M, [z, t] � l1 implies M, [z, t] �� l2.

Proof. Since M, [x, y] � 〈A〉u, there exists y′ > y such that [y, y′] satisfies u; let
us call y0 = y and y1 = y′. From the fact that M, [x, y] � [U](u→ 〈A〉u) we can
easily conclude that the chain y0, y1, . . . exists (proving (1)). Consider now an
interval [z, t], such that z ≤ yi for some yi, M, [z, t] � u, but [z, t] �= [yj , yj+1] for
each j ≥ 0. We can assume w.l.o.g. that yi is the smallest point of the chain such
that z ≤ yi. Towards a contradiction, assume z = yi; this means that [z, t] is a
u-interval that starts or is started by the u-interval [yi, yi+1], which contradicts
φ3. Hence, z < yi, and we can distinguish between the following cases. If t > yi
then [z, t] either contains, is finished by, or overlaps the u-interval [yj , yj+1] in
contradiction with φ3 or φ4. If t ≤ yi and yi > y0 then [z, t] is contained in the
u-interval [yj−1, yj], in contradiction with φ4. Finally, if yi = y0 then t ≤ y0 and
we have a contradiction with φ2 (proving (2)). Thanks to φ5 and φ6, if some
l ∈ L labels an interval, then it must be a u-interval (proving (3)), and such l is
unique (proving (4)). ��

Remark 1. Notice that Lemma 1 enables us to use a copy of N, represented by
the sequence y0, y1, . . . , embedded into the (not necessarily discrete) linearly
ordered set under consideration.

Configurations (denoted by Co) must be composed by unit intervals; there
must be an infinite sequence of them; and each one must be started and finished
by a unit labeled by ∗ (see Fig. 3). We use the proposition Cell to characterize
unit intervals containing a tape symbol (and not an ∗). Consider the following
formulas:

φ7 = 〈A〉Co ∧ [U](Co → 〈B〉∗) ∧ [U](Co → 〈E〉∗) configuration structure
φ8 = [U](Co → 〈A〉Co) configuration sequence

Sub-Propositional Fragments of HS 129

φ9 = [U](Co → [B]¬Co) ∧ [U](Co → [E]¬Co) configurations relations
φ10 = [U](∗ → ¬Cell) ∧ [U](Cell → u) ∧ [U]((〈D〉Co ∧ u)→ Cell) Cell iff ¬∗

Now, we have to make sure that the initial configuration is exactly as requested
by the problem, that is, empty tape with the machine in the initial state q0.
This implies that the first Co must be a sequence of three unit intervals labeled
respectively with ∗, q�0 , and ∗. In order to encode exactly this situation, we make
use of three new propositions N1, N2, and N3.

φ11 = 〈A〉N1 ∧ [U](N1 → 〈A〉N2) ∧ [U](N2 → 〈A〉N3) Ns’ position
φ12 = [U](N1 → ∗) ∧ [U](N2 → q�0) ∧ [U](N3 → ∗) N1, N2, N3’s content

The length of successive configurations is controlled by the proposition Cr :

φ13 = [U](Cell → 〈A〉Cr) ∧ [U](Cr → 〈A〉Cell) all cells forward-corr to cell
φ14 = [U](Cell ∧ 〈A〉Cell → 〈A〉Cr) all cells, but the last, back-corr to cell
φ15 = [U](Cr → [B]¬Cr) ∧ [U](Cr → [E]¬Cr) correspondences relations (1)
φ16 = [U](Cr → [D]¬Cr) ∧ [U](Cr → 〈A〉Cell) correspondences relations (2)
φ17 = [U](Co → [D]¬Cr) ∧ [U](Co → [E]¬Cr) config./corr. (1)
φ18 = [U](Co → [D]¬Cr) ∧ [U](Co → [E]¬Cr) config./corr. (2)

Lemma 2. Suppose that M, [x, y] � φ1 ∧ . . . ∧ φ18, and consider the infinite
sequence y0, y1, . . ., where y = y0, whose existence is guaranteed by Lemma 1.
Then, there exists an infinite sequence of indexes k0, k1, . . ., such that y0 = yk0

and:

1. M, [y0, y1] � ∗, M, [y1, y2] � q�0 , and M, [y2, y3] � ∗;
2. for each i ≥ 0, M, [yki , yk(i+1)

] � Co;
3. for each i ≥ 0, M, [yki , y(ki+1)] � ∗, M, [y(k(i+1)−1), yk(i+1)

] � ∗;
4. for each i ≥ 0, j ≥ 1, M, [y(ki+j), y(ki+j+1)] � Cell ∧ ¬∗;
5. for each i ≥ 0, j ≥ 2, M, [y(ki+j), y(k(i+1)+j−1)] � Cr;
6. k1 − k0 = 3 and, for every i > 1, 0 ≤ (ki − k(i−1))− (k(i−1) − k(i−2)) ≤ 1;
7. no other interval [z, t] satisfies Co nor Cr, unless z > yi for each i ≥ 0.

Proof. Since M, [x, y] � φ11 ∧φ12, the first three units of the chain y0, y1, . . . are
determined, and are, in this order, ∗, q�0 , and ∗ (proving (1)).

Now, let us call yk0 = y0. The fact that a chain of Co-intervals starts at
yk0 is guaranteed by φ7 and φ8. We prove (2)–(6) by induction on the index
i. For the base case, we need to prove that the Co-interval [yk0 , t] is such that
t = y3. Suppose, for the sake of contradiction, that t < y3; in this case, we have
a contradiction with φ7 and with Lemma 1. If, on the other hand, t > y3, then
the Co-interval [yk0 , t] strictly contains ∗ by (1), and this is in contradiction with
φ10. Therefore, t = y3, and we can set yk1 = y3. It remains to be shown that (5)
holds for the base case. We know that [yk1 , t] = [y3, t] is a Co-interval for some
t, that [y3, y4] is a ∗-interval, and that [y4, y5] is a Cell -interval (by φ7, φ10).
We also know that [y2, z] is a Cr -interval for some z by φ13. We want to prove
z = y4. By φ13 we deduce that z ≥ y4. Suppose, by the sake of contradiction,
that z > y4. Let us analyze the content of [y5, y6]. If it is ∗, then z ≥ y6, and
by φ7 and φ10, [y3, y6] is a Co-interval, which either ends or is strictly contained

130 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

in the Cr -interval [y2, z], a contradiction with φ18. If it is Cell , by φ14, [s, y4]
must be a Cr -interval for some s. It happens that s ≥ y2 contradicts φ15 or
φ16, and that s < y2 contradicts φ16 or Lemma 1. Therefore, s cannot be placed
anywhere, and z = y4. Thus (5) holds in the base case.

For the inductive case, assume (2)–(6) hold up to i − 1: we prove that (2)–
(6) hold for i. By induction hypothesis, [yk(i−1)

, yki] is a Co-interval for which
(2)–(6) hold. By φ8, [yki , t] is a Co-interval for some t. Assume that (ki − 1)−
(k(i−1) + 1) = n, that is, assume that the Co-interval [yk(i−1)

, yki] has precisely
n (non-∗) cells. Since [y(ki−1), y(ki+n)] is a Cr -interval by (5) applied on i − 1,
then [y(ki+n), y(ki+n+1)] is a Cell -interval, and [y(ki+n+1), y(ki+n+2)] is either ∗-
interval or a Cell -interval. In the first case, we let yk(i+1)

= y(ki+n+2) (proving (6)
on i); in the second case, [y(ki+n+2), y(ki+n+3)] must be a ∗-interval (otherwise,
we apply the same argument as in the base case, showing that there would be
a Cr -interval whose starting point cannot be placed anywhere), and therefore
we let yk(i+1)

= y(ki+n+3) (again, proving (6) on i). This argument also proves
(2)–(4) for i. It remains to be proved that (5) holds the inductive case. To this
end, we proceed, again, by induction on j, starting with the base case j = 2.
By φ13, [y(ki+2), z] is a Cr -interval. From φ17 we know z > yk(i+1)

. Observe that
[yk(i+1)

, t] is a Co-interval for some t; from φ18 we know that z < t. Towards
a contradiction, assume z > yk(i+1)+1. Thanks to φ13, the point z must start a
cell, so that we can assume w.l.g. that [yk(i+1)+2, yk(i+1)+3] is a cell. Then, by φ14,
[s, yk(i+1)+1] must be a Cr -interval for some s, and by the same argument that we
used before, we can prove that s cannot be placed anywhere. Thus, z = yk(i+1)+1

(proving (5)) in the base case. Now, it is easy to see that the inductive case
proceeds in the same way; we can then conclude that (5) holds for each j > 2.

Finally, suppose that M, [z, t] � Co, z ≤ yi for some i, and [z, t] �= [yki , yki+1]
for each i. If z < y0, then, by φ7, z must start some u-interval, which is in
contradiction with Lemma 1. Otherwise, [z, t] is a Co-interval either contained,
or started by, or ended by another Co-interval, which is in contradiction with
φ9. A similar reasoning applies for Cr -intervals (proving (7)). ��

The above two lemmas help us to set the underlying structure which we can
now use to ensure the correct behaviour of A. We are left with the problem of
encoding the transition function δ. To this end, we enrich our language with
a new set of propositional letters Lt = {(l1, l2, l3) | ∀i(1 ≤ i ≤ 3 → li ∈ L)}
(=L×L×L). Each proposition in Lt represents the content of three consecutive
u-intervals; in this way, we have all information needed to encode δ at each
step by reading only one proposition. We proceed as follows: first, the value of
three successive cells is encoded in the correct triple from Lt and placed over
a Cr -interval; second, this information is used to label the cells of the next
configuration (see Fig 4) by taking into account the transition function δ. In
the encoding of δ, we treat as special cases the situations in which: (i) the
head is at the last cell of the segment of the tape currently shown and the
head must be moved to the right and, (ii) the head is at the first cell of the
tape and the head must be moved to the left. Consider the following formulas,

Sub-Propositional Fragments of HS 131

yki yki+2yki+1

Co Co

c1 qc c3 c1 c′ q′c3

Cr ∧ (c1, qc, c3)
δ(q, c) = (q′, c′, R)

Fig. 4. An example of transition

where c, c′, c1, c2, c3 ∈ {0, 1,�, ∗} and q, q′ ∈ Q (by a little abuse of notation, we
assume that all symbols qcf are equal to qf).

φ19 =
∧

l1,l2,l3∈L,l2 �=∗[U]((〈A〉l1 ∧ l2 ∧ 〈A〉l3)→ 〈A〉(l1, l2, l3)) info transfer

φ20 =
∧

l1,l2,l3∈L[U]((l1, l2, l3)→ Cr) triple structure

φ21 =
∧

(c1,c2,c3)∈Lt [U]((c1, c2, c3)→ 〈A〉c2) far from the head

φ22 =
∧δ(q,c)=(q′,c′,R)

(c1,qc,c3)∈Lt [U]((c1, q
c, c3)→ 〈A〉c′) rightwards (1)

φ23 =
∧δ(q,c)=(q′,c′,R)

(qc,c2,c3)∈Lt,c2 �=∗[U]((qc, c2, c3)→ 〈A〉q′c2) rightwards (2)

φ24 =
∧δ(q,c)=(q′,c′,R)

(c1,c2,qc)∈Lt [U]((c1, c2, q
c)→ 〈A〉c2)) rightwards (3)

φ25 =
∧δ(q,c)=(q′,c′,R)

(c1,qc,∗)∈Lt [U]((c1, q
c, ∗)→ 〈A〉N q′,c′) last cell (1)

φ26 =
∧

Nq′,c′ ([U](N q′,c′ → c′) ∧ [U](N q′,c′ → 〈A〉q′�)) last cell (2)

φ27 =
∧δ(q,c)=(q′,c′,L)

(c1,qc,c3)∈Lt,c1 �=∗[U]((c1, q
c, c3)→ 〈A〉c′) leftwards (1)

φ28 =
∧δ(q,c)=(q′,c′,L)

(qc,c2,c3)∈Lt [U]((qc, c2, c3)→ 〈A〉c2) leftwards (2)

φ29 =
∧δ(q,c)=(q′,c′,L)

(c1,c2,qc)∈Lt,c2 �=∗[U]((c1, c2, q
c)→ 〈A〉q′c2) leftwards (3)

φ30 =
∧δ(q,c)=(q′,c′,L)

(∗,qc,c3)∈Lt [U]((∗, qc, c3)→ 〈A〉q′c′) first cell (2)

We can now prove that our construction works as designed. For a Turing Machine
A, we denote by C any A-configuration, univocally determined by the content
of the (interesting prefix of the) tape, the position of the reading head, and the
state. An A-configuration can be seen as the semantical counterpart of a Co-
interval in our construction. An A-configuration is said to be initial if its state
is q0, and final if its state is qf and for any two A-configurations C,C′, we say
that C′ is the successor of C if and only if C′ is obtained by C after exactly
one application of δ. Finally, a Co-interval [yki , yki+1] is said to be coherent if
and only if the following two conditions apply: (i) there exists exactly one u-
interval [y(ki+j), y(ki+j+1)] labeled by a symbol of the type qd, where q ∈ Q and
d ∈ {0, 1,�}; (ii) every other interval [y(ki+h), y(ki+h+1)] labeled with Cell is also
labeled by a symbol d ∈ {0, 1,�}. The following lemma allows us to determine
the link between A-configurations and Co-intervals.

132 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

Lemma 3. Suppose that M, [x, y] � φ1∧ . . .∧φ30, consider the infinite sequence
y0, y1, . . ., where y = y0, whose existence is guaranteed by Lemma 1, and the
sequence k0, k1, . . . of indexes whose existence is guaranteed by Lemma 2. Then:

1. the Co-interval [yk0 , yk1] represents the initial A-configuration when the Tur-
ing Machine A has an empty input;

2. the Co-interval [yki+1 , yki+2] is coherent for each i ≥ 0;
3. the A-configuration represented by the Co-interval [yki , yki+1] is the successor

of the A-configuration represented by the Co-interval [yki−1 , yki], for each
i > 0.

Proof. The content of the interval [yk0 , yk1] is set as in Lemma 2, proving its
coherence and its status of initial configuration (proving (1)). Points (2) and
(3) must be proved together, and by induction; the base case is, as a matter of
fact, a consequence of (1) (notice that at the base case, (3) is trivially satisfied).
Consider, now, an index i > 0 and the A-configuration C represented by the Co-
interval [yki−1 , yki]. Assume that the state in C is q, and that the head is reading
c �= ∗. There are several cases to be considered, depending on the movement
required by δ, the relative position of the j-th cell (j ≥ 1) currently read by the
head (labeled, by hypothesis, with qc), and the content c of its adjacent cell.

(a) δ(q, c) = (q′, c′, R) and the (j+1)-th unit is not ∗. By φ19 and φ20, the unique
Cr -interval [y(ki−1+j+1), y(ki+j)] is also labeled by (c1, q

c, c2) for some c1, c2.
As a consequence, by φ22, the j-th unit of [yki , yki+1] is labeled by c′. Now,
if j > 1, then the (j − 1)-th unit is a cell, and, by φ19 and φ20, the Cr -
interval [y(ki−1+j), y(ki+j−1)] is labeled by (c3, c1, q

c) (for some c3); therefore
φ24 applies, meaning that the (j − 1)-th unit of [yki+1 , yki+2] is labeled by
c1. Similarly, the value of the (j + 1)-th cell (which cannot be ∗), is set by
φ23. Now, by the coherence of [yki−1 , yki] (inductive hypothesis), every unit
strictly before the (j − 1)-th (excluding the 0-th unit) is a cell, as well as
every unit strictly after the (j + 1)-th (excluding the last one). In the case
of j = 1, it is clear by Lemma 2, that the first unit of [yki+1 , yki+2] is labeled
by ∗, and the rest of the proof is similar to the case j > 1. Therefore, by φ19

and φ20, their corresponding Cr -intervals are labeled by triples that do not
include qc for any c, and thanks to φ21 their corresponding units in the Co-
interval [yki , yki+1] are cells (and their content, which is preserved, cannot
be qc for any c). Thus, [yki , yk(i+1)

] is a coherent A-configuration, and its
content is obtained by exactly one application of δ (proving (2) and (3) in
this case).

(b) δ(q, c) = (q′, c′, R) and the (j + 1)-th unit is ∗. The content of the j-th unit
of the i-th Co-interval is determined by φ25 and φ26. In particular, the j-th
unit of the i-th Cr -interval is labeled by N q′,c′ , which implies that it is also
labeled by c′ (and therefore it is a cell), and that the (j + 1)-th cell must
exist and must be labeled by q′�. The content of the remaining cells, and
therefore the coherence of the the i-th Co-interval can be then deduced by
applying the same argument as before (proving (2) and (3) in this case).

Sub-Propositional Fragments of HS 133

(c) δ(q, c) = (q′, c′, L) and the (j − 1)-th unit is not ∗. In this case, one can
proceed as in case (a), only applying φ27, φ28, and φ29.

(d) δ(q, c) = (q′, c′, L) and the (j − 1)-th unit is ∗. In this case, one can proceed
as in case (a). The requirement φ30 plays a major role here: by definition,
when δ demands a movement leftwards while the head is on the first cell,
the head should not move.

��

The construction is now completed.

Theorem 1. Let A be a deterministic Turing Machine. Then, A diverges on
empty input if and only if the HSHorn -formula

NotHalts = φ1 ∧ . . . ∧ φ30 ∧ ¬〈L〉qf

is satisfiable on a model with an infinite chain.

Proof. If the formula φ1 ∧ . . . ∧ φ30 ∧ ¬〈L〉qf is satisfiable, using Lemmas 1–3,
we get the desired construction for proving that the Turing Machine A has an
infinite computation on empty input. Conversely, if A does not halt on empty
input, it is a straightforward exercise to prove the satisfiability of the formula
NotHalts. ��

Corollary 1. The satisfiability problem for HSHorn over Lin, Dis, WDis, and
Den is undecidable.

5 Undecidability of HSHorn in the Finite Case

When we restrict our attention to the class Fin, the reduction of the non-halting
problem for deterministic Turing machines can no longer be carried out, since we
cannot represent an infinite computation on a structure with a finite number of
points. Nevertheless, undecidability of HSHorn can be proved by a reduction of
the halting problem for deterministic Turing machines. In this case the formula
must represent a finite computation reaching the final state qf , and, thus, can
be satisfied by a finite model. This can be achieved by very small changes in the
formulas we used in the previous section, which we briefly summarize here.

First of all, the u-chain now becomes finite, and its encoding can be simplified
by exploiting the strong discreteness of the model. Hence, formulas φ1 – φ4 must
be replaced by the following two formulas:

ψ1 = [A]⊥ ∧ 〈A〉u ∧ [U]((u ∧ 〈A〉
)→ 〈A〉u) u-chain exists
ψ2 = [U](u→ [B]⊥) u is of length 1

Similarly, the chain of Co-intervals must be finite, and hence φ8 must be changed:

ψ8 = [U]((Co ∧ 〈A〉
)→ 〈A〉Co) configuration sequence

The structure of Cr -intervals requires a little more attention: now, it is no longer
true that every cell of each configuration starts a Cr -interval, but only those

134 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

cells that are not in the last configuration. This can be achieved by adding a
new proposition Cont and replacing φ13 with:

ψ13a = [U]((Co ∧ 〈A〉
)→ Cont) mark the non-last Co
ψ13b = [U]((Cell ∧ 〈D〉Cont)→ 〈A〉Cr) forward-corr to cell

All other formulas remains unchanged.

Theorem 2. Let A be a deterministic Turing Machine. Then, A converges on
empty input if and only if the HSHorn -formula

Halts = ψ1∧ψ2∧φ5∧. . .∧φ7∧ψ8∧φ9∧. . .∧φ12∧ψ13a∧ψ13b∧φ14∧. . .∧φ30∧〈L〉qf
is satisfiable on a finite model.

Corollary 2. The satisfiability problem for HSHorn over Fin is undecidable.

6 Conclusions

Sub-propositional fragments of classical and modal logics, such as the Horn and
Krom fragments, have been extensively studied. The generally high complexity
of the (few) decidable interval-based temporal logics justifies a certain interest
in exploring the sub-propositional fragments of HS in search of languages that
present a better computational behaviour, and yet are, expressiveness-wise, suit-
able for some applications. In this paper we proved a first negative result in this
sense, by showing that HS is still undecidable when its Horn fragment is consid-
ered. This result has been obtained under very weak assumptions on the class
of models in which the logic is interpreted; as a matter of fact, we proved that
HSHorn is undecidable on every meaningful class of linearly ordered set (precisely
as full HS is).

Despite this initial result, we believe that sub-propositional fragments of in-
terval temporal logics deserves further study. On one hand, we plan to consider
the Horn� fragments of decidable interval logics such as AA and BBLL, to under-
stand whether or not their satisfiability problem present a better computational
behaviour; initial analysis in this sense suggest that this could be the case. On
the other hand, the decidability of the satisfiability problem is still an open issue
for HSKrom , HScore , as well as for HSHorn� and HScore� (the weaker definitions
of the Horn and core fragments considered in [3]). In this respect, it is worth
to observe that in our construction of the formula NotHalts only three clauses,
namely φ10, φ14, and φ19, are not core. We are pretty confident that the first
two formulas, φ10 and φ14, can be rewritten in the core fragment. The last one,
though, presents more difficulties. In addition, the construction makes an ex-
tensive use of diamond modalities, and hence seems not be applicable to the
fragments HSHorn� and HScore� , suggesting that they may even be decidable.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

Sub-Propositional Fragments of HS 135

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-lite in the light
of first-order logic. In: Proc. of the 22nd AAAI Conference on Artificial Intelligence,
pp. 361–366 (2007)

3. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of
clausal fragments of LTL. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.)
LPAR-19 2013. LNCS, vol. 8312, pp. 35–52. Springer, Heidelberg (2013)

4. Artale, A., Ryzhikov, V., Kontchakov, R., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. ACM Transaction on
Computational Logic (TOCL) (To appear)

5. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Decid-
able and undecidable fragments of Halpern and Shoham’s interval temporal logic:
towards a complete classification. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 590–604. Springer, Heidelberg (2008)

6. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark
side of interval temporal logic: sharpening the undecidability border. In: Proc. of
the 18th International Symposium on Temporal Representation and Reasoning
(TIME), pp. 131–138. IEEE Comp. Society Press (2011)

7. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval
temporal logics over strongly discrete linear orders: the complete picture. In: Proc.
of the 4th International Symposium on Games, Automata, Logics, and Formal
Verification (GANDALF). EPTCS, vol. 96, pp. 155–169 (2012)

8. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision proce-
dures for the logics of subinterval structures over dense orderings. Journal of Logic
and Computation 20(1), 133–166 (2010)

9. Bresolin, D., Monica, D.D., Montanari, A., Sciavicco, G.: The light side of interval
temporal logic: the Bernays-Schönfinkel fragment of CDT. Annals of Mathematics
and Artificial Intelligence 71(1-3), 11–39 (2014)

10. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about
Halpern and Shoham’s interval logic? the maximal fragment ABBL. In: Proc. of
the 26th IEEE Symposium on Logic in Computer Science (LICS), pp. 387–396.
IEEE Computer Society (2011)

11. Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. EATCS: Monographs in Theoretical Computer Science. Springer (2004)

12. Chen, C., Lin, I.: The computational complexity of satisfiability of temporal Horn
formulas in propositional linear-time temporal logic. Information Processing Let-
ters 3(45), 131–136 (1993)

13. Chen, C., Lin, I.: The computational complexity of the satisfiability of modal Horn
clauses for modal propositional logics. Theoretical Computer Science 129(1), 95–
121 (1994)

14. Fariñas Del Cerro, L., Penttonen, M.: A note on the complexity of the satisfiability
of modal Horn clauses. Journal of Logic Programming 4(1), 1–10 (1987)

15. Fisher, M.: A resolution method for temporal logic. In: Proc. of the 12th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 99–104. Morgan
Kaufman (1991)

16. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of
the ACM 38(4), 935–962 (1991)

17. Marcinkowski, J., Michaliszyn, J.: The ultimate undecidability result for the
Halpern-Shoham logic. In: Proc. of the 26th IEEE Symposium on Logic in Com-
puter Science (LICS), pp. 377–386. IEEE Comp. Society Press (2011)

136 D. Bresolin, E. Muñoz-Velasco, and G. Sciavicco

18. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of Halpern
and Shoham’s modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS,
vol. 6199, pp. 345–356. Springer, Heidelberg (2010)

19. Montanari, A., Puppis, G., Sala, P., Sciavicco, G.: Decidability of the interval
temporal logic ABB on natural numbers. In: Proc. of the 27th Symposium on The-
oretical Aspects of Computer Science (STACS), pp. 597–608. Inria Nancy Grand
Est & Loria (2010)

20. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept.
of Computer Science, Stanford University, Stanford, CA (1983)

21. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. Journal of Algo-
rithms 62(3-4), 117–134 (2007)

22. Nguyen, L.: On the complexity of fragments of modal logics. Advances in Modal
Logic 5, 318–330 (2004)

23. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelli-
gence 166(1-2), 1–36 (2005)

24. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997)

25. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logic. Journal
of the ACM 32, 733–749 (1985)

SAT Modulo Graphs: Acyclicity

Martin Gebser�, Tomi Janhunen, and Jussi Rintanen��

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science

Aalto University, FI-00076 AALTO, Finland

Abstract. Acyclicity is a recurring property of solutions to many important com-
binatorial problems. In this work we study embeddings of specialized acyclicity
constraints in the satisfiability problem of the classical propositional logic (SAT).
We propose an embedding of directed graphs in SAT, with arcs labelled with
propositional variables, and an extended SAT problem in which all clauses have
to be satisfied and the subgraph consisting of arcs labelled true is acyclic. We
devise a constraint propagator for the acyclicity constraint and show how it can
be incorporated in off-the-shelf SAT solvers. We show that all existing encodings
of acyclicity constraints in SAT are either prohibitively large or do not sanction
all inferences made by the constraint propagator. Our experiments demonstrate
the advantages of our solver over other approaches for handling acyclicity.

1 Introduction

SAT, the satisfiability problem of the propositional logic, has emerged as a powerful
framework for solving combinatorial problems in AI and other areas of computer sci-
ence. For many applications the basic SAT problem is sufficient, including AI planning
and related state-space search problems [13], but a number of important applications in-
volves the expression of constraints that cannot be effectively encoded as sets of clauses.
For this reason, various extensions of SAT have been proposed, including SAT + linear
arithmetics in the SAT modulo Theories (SMT) framework [25,1]. Other instantiations
of the SMT framework are possible, including bit vectors and arrays.

In this work, we consider extensions of SAT with graphs, initially focusing on satis-
fying an acyclicity constraint. Examples of combinatorial problems that involve acyclic
graphs can be found in diverse areas. In machine learning, the structure learning prob-
lem for Bayesian networks is reducible to a MAXSAT problem and a main part of
the reduction is about guaranteeing the acyclicity of resulting networks [4]. Acyclicity
is implicit in inductive definitions (well-foundedness), and SAT solvers with efficient
support for acyclicity constraints could be used in reasoning with logical languages
that support inductive definitions [5]. Another closely related application is answer set
programming, with which we have already experimented by using the technology pre-
sented in this paper [8]. Reasoning with physical networked systems – such as utility
networks (power, water, communications) and transportation networks – often involves
acyclicity and other graph constraints.

� Also affiliated with the University of Potsdam, Germany.
�� Also affiliated with Griffith University, Brisbane, Australia.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 137–151, 2014.
c© Springer International Publishing Switzerland 2014

138 M. Gebser, T. Janhunen, and J. Rintanen

Reductions of acyclicity constraints to CNF SAT are known [4,21], but, as we will
show later, they either have prohibitively large size or sanction weak inferences. This
motivates looking into specialized propagators for acyclicity. We believe the same to
hold for many other graph problems, suggesting a wider framework of SAT modulo
Graphs which could be viewed as an instantiation of the SMT framework. In com-
parison to many SMT theories, reasoning with many graph properties has a low over-
head, enabling a tighter integration with SAT solvers than what is generally possible.
For example, it turns out that running full acyclicity tests in every search node of a
SAT solver is in general very feasible. We use ACYC-SAT to denote our SAT modulo
Graphs framework instantiated with the acyclicity constraint.

Acyclicity constraints are expressible in SMT with linear arithmetics and, in partic-
ular, the fragment known as difference logic [15], which extends propositional logic by
simple difference constraints of the form x − y ≥ k. However, when the full general-
ity of such constraints is not needed, the approach proposed in this paper can provide
a simpler and more efficient reasoning framework. Moreover, we anticipate future ex-
tensions of the framework to cover other types of graph-related constraints that are not
naturally and efficiently expressible in SMT with linear arithmetics.

Our research makes a number of new contributions. First, we present a propagator
for the acyclicity constraint and propose an implementation inside the CDCL algorithm
for SAT. We believe that the simplicity and efficiency of this propagator provides a sig-
nificant advantage over alternative ways of reasoning with acyclicity. Our experiments
will illustrate that substantial performance advantage can be gained this way. Second,
our contribution can be viewed as initiating the study of graph-based constraints in the
SMT framework [25,1]. Earlier, SMT has been used most notably with theories for lin-
ear arithmetic and bit vectors. Concepts related to graphs, although important in many
applications, have not been offered specialized support in the SMT framework.

The structure of the paper is as follows. First in Section 2 we propose an extension
of the SAT problem for handling graphs and acyclicity constraints for them. In Sec-
tion 3 we give some examples of the use of acyclicity constraints. Section 4 shows how
a leading algorithm for solving the SAT problem can be extended with the acyclicity
constraints. In Section 5 we present and evaluate alternatives to specialized acyclicity
constraints, which is reduction of acyclicity to sets of clauses. Section 6 characterizes
SAT modulo acyclicity in terms of a fragment of difference logic. In Section 7 we
show that our implementation of acyclicity constraints generally and sometimes dra-
matically outperforms alternative approaches, including CNF encodings and difference
logic solvers. Section 8 discusses related work and Section 9 concludes the paper.

2 Extending SAT with Acyclicity

We propose an extension of the standard SAT problem with acyclicity constraints. In
addition to a set of clauses, the extended satisfiability problem includes a directed graph
and a mapping from the arcs of the graph to propositional variables. A problem instance
is satisfied if all clauses are satisfied, and there is no cycle in the graph such that for
every arc in the cycle the corresponding propositional variable is true.

SAT Modulo Graphs: Acyclicity 139

Definition 1. An ACYC-SAT problem is a tuple 〈X,C,N,A, l〉 where

1. X is a finite set of propositional variables,
2. C is a set of clauses over X ,
3. G = 〈N,A〉 is a directed graph with a finite set of nodes N and arcs A ⊆ N ×N ,

and
4. l : A → X is a labeling that assigns a propositional variable l(n, n′) to every arc

(n, n′) in the graph.

Definition 2. A solution to an ACYC-SAT problem 〈X,C,N,A, l〉 is a valuation v :
X → {0, 1} such that all clauses in C are true under v, and the subgraph 〈N,A1〉 of
〈N,A〉 such that A1 = {(n, n′) ∈ A | v(l(n, n′)) = 1} is acyclic, that is, there is no
non-empty directed path in 〈N,A1〉 from any node back to itself.

A number of other graph problems could be handled in the same framework, in some
cases with small modifications to our algorithms, including s-t-reachability, a node be-
ing on a simple path between two other nodes, connectivity, and so on. These and other
graph properties show up in main applications of SAT solving, including verification
(model-checking), control and diagnosis of networked systems. Our experiments sug-
gest that explicit support for them may substantially improve the effectiveness of SAT-
based methods in these applications.

3 Examples

Acyclicity shows up explicitly or implicitly in many types of graph problems. As shown
in Section 5, best known encodings of acyclicity as clausal constraints in SAT have a
trade-off between size and propagation strength. Next we illustrate how acyclicity can
benefit also encodings of problems that do not explicitly appeal to acyclicity.

Example 1 (Hamiltonian cycles). Encoding of Hamiltonian cycles for directed graphs
uses propositional variables for every arc, marking the arc either true or false, and con-
sists of the following constraints, which we will explain in more detail below.

– Every node has exactly one incoming arc.
– Every node has exactly one outgoing arc.
– There is no cycle in the graph formed by all incoming arcs of all nodes except one

node (an arbitrarily chosen “starting node”).

Given a directed graph 〈N,A〉 and a starting node ns ∈ N , let an be propositional
variables for arcs (n, ns) ∈ A, expressing that (n, ns) belongs to a Hamiltonian cycle,
while arc variables an,n

′
represent the same for arcs (n, n′) ∈ A to the remaining nodes

n′ ∈ N \ {ns}. Then, given any arc (n, n′) ∈ A, we use the following notation for the
propositional variable expressing Hamiltonian cycle containment.

αn,n′
=

{
an if n′ = ns

an,n
′

if n′ �= ns

Moreover, for any node y ∈ N , let x1, . . . , xm and z1, . . . , zn denote the nodes xi or
zj such that (xi, y) ∈ A or (y, zj) ∈ A, respectively. Using the auxiliary propositions

140 M. Gebser, T. Janhunen, and J. Rintanen

py,0, . . . , py,m and qy,0, . . . , qy,n to represent that some incoming arc (xi′ , y) or some
outgoing arc (y, zj′) with i′ ≤ i or j′ ≤ j belongs to a Hamiltonian cycle, the following
formulas state that exactly one incoming and one outgoing arc must be picked for y.

¬py,0 ¬py,i−1 ∨ ¬αxi,y py,i−1 ∨ αxi,y ↔ py,i py,m

¬qy,0 ¬qy,j−1 ∨ ¬αy,zj qy,j−1 ∨ αy,zj ↔ qy,j qy,n

Given such formulas for each node y ∈ N , models M such that the graph 〈N, {(n, n′) |
an,n

′ ∈M}〉 is acyclic correspond to Hamiltonian cycles. ��

The size of the above encoding is linear in the number of both arcs and nodes.

Example 2 (s-t reachability). Our encoding of s-t reachability for undirected graphs
uses propositional variables for marking each node as reachable or unreachable, and
arc variables an,n

′
as well as an

′,n for every edge {n, n′} in the graph. The encoding
uses the following constraints.

– The starting node ns is reachable.
– A node n′ is reachable if and only if it is the starting node or there is another node

n so that the variable an,n
′

for the arc n→ n′ is true and n is reachable.
– The graph corresponding to the arc variables is acyclic.

Given an undirected graph 〈N,E〉, this approach can be formulated in terms of the
clauses rn

′ →
∨
{n,n′}∈E an,n

′
for each node n′ ∈ N \ {ns}, two clauses an,n

′ → rn

and an
′,n → rn

′
per edge {n, n′} ∈ E, and the unit clause rnt asserting that the target

node nt must be reached. By requiring G = 〈N, {(n, n′) | an,n′ ∈ M}〉 to be acyclic
for a model M , any path in G must trace back to the starting node ns. In particular, this
applies for the mandatory path to nt. ��

Also this encoding is linear in the number of both edges and nodes. In many practical
problems the degrees of nodes are bounded, small, or grow far slower than the number
of nodes. In all of these cases the specialized acyclicity constraint leads to far smaller
encodings than the use of clausal encodings (Section 5). Both encodings are easily
adaptable to both directed and undirected graphs.

4 Acyclicity in SAT Solvers

The conflict-driven clause learning algorithm (CDCL) [16,18,17] is a leading system-
atic general-purpose algorithm for solving the SAT problem. The algorithm assigns
truth-values to propositional variables, interleaved with calls to a propagator (infer-
ence rules), until an inconsistency (the empty clause) is inferred. The reasons for the
inconsistency are analyzed, and a clause representing the assignments that led to the
inconsistency is computed and added to the clause database (learned). Then the lat-
est assignments are undone until the newly learned clause has exactly one unassigned
variable, and the process of interleaved propagation and assignments resumes. Unsatis-
fiability is reported when learning the empty clause, and satisfiability is reported when
all variables get assigned without obtaining a contradiction. The main propagation rule

SAT Modulo Graphs: Acyclicity 141

1: PROCEDURE propagator(x);
2: let ns → ne be the arc corresponding to variable x;
3: traverse graph forwards from ne, visiting nodes n
4: mark n;
5: IF n = ns THEN

6: let x1, . . . , xk be variables for arcs on path ne −→ ns;
7: initialize clause learning with ¬x ∨ ¬x1 ∨ · · · ∨ ¬xk;
8: RETURN reporting contradiction;
9: traverse graph backwards from ns, visiting nodes n

10: FOR EACH unassigned arc n′ → n with n′ marked DO

11: let x′ be the variable for arc n′ → n;
12: let P1 be the set of variables for arcs on path ne −→ n′;
13: let P2 be the set of variables for arcs on path n −→ ns;
14: let c = ¬x ∨ ¬x′ ∨

∨
y∈P1

¬y ∨
∨

y∈P2
¬y;

15: push ¬x′ in the propagation queue with c as the reason;

Fig. 1. Propagator for acyclicity that is based on two depth-first traversals, one forwards from the
end node of the added arc, and the other backwards from the starting node of the arc

in CDCL and other systematic SAT algorithms is Unit Propagation (UP) which infers
l from l ∨ l1 ∨ · · · ∨ lk and complements l1, . . . , lk, and detects inconsistencies when
all literals in a clause are false. Next we describe a propagator for acyclicity when the
presence of arcs in the graph is indicated by propositional variables assigned true.

4.1 Propagator for Acyclicity

We consider the arcs of a graph to be either enabled, disabled, or possible, if the corre-
sponding propositional variable is respectively assigned true, false, or unassigned.

When a propositional variable for an arc (ns, ne) is set true, we can infer new facts.
Assume that the graph contains a cycle n1, n2, . . . , nk, n1 and all arcs except (ni, ni+1)
for some i ∈ {1, . . . , k − 1} (or (nk, n1)) are now enabled and (ni, ni+1) is possible.
Hence we conclude that (ni, ni+1) (or (nk, n1)) should be disabled, and therefore the
corresponding propositional variable must be false, because otherwise there would be a
cycle in the graph.

The above reasoning can be implemented by two depth-first traversals of the graph,
formalized as the procedure in Figure 1. The first traversal identifies all nodes that can
be reached from ne through a path of enabled arcs. The second traversal identifies all
nodes from which ns can be reached through enabled arcs. Now, any arc from the
former set of nodes to the latter has to be disabled and the corresponding propositional
variables set false. There may be 0 or more such arcs. During the first traversal we also
detect whether we can reach ns from ne, detecting a new cycle. If this is the case, we act
as if the clause set had a clause stating that at least one of the arcs has to be disabled, and
then run the CDCL learning algorithm starting as if this clause had just been falsified.

When an arc is disabled, no reasoning is required.
The amount of graph traversal can be reduced by observing that any cycle must be

completely contained in a strongly connected component (SCC) of the graph. Hence
when detecting cycles or inferring new literals, it is unnecessary to follow any arc from

142 M. Gebser, T. Janhunen, and J. Rintanen

one SCC to another. SCCs can be recognized as a preprocessing step in linear time [24],
and each node could be labeled with the index of its SCC.

4.2 Integration in a CDCL Implementation

The integration of the acyclicity constraint in the CDCL algorithm is straightforward:
whenever a propositional variable x corresponding to an arc is set true, call the proce-
dure propagator(x) (from Section 4.1), possibly adding new literals in the propagation
queue, and report inconsistency if a cycle has emerged.

When a cycle has emerged, the CDCL clause learning process is initiated with a
clause consisting of the negations of the propositional variables involved in the detected
cycle. We call this clause the cycle clause. The cycle clause itself does not need to be
added in the clause database.

When an almost-cycle has emerged, the corresponding cycle clause is added in the
clause database, and the negation of the remaining unassigned arc variable is added in
the propagation queue with the new cycle clause as its reason.

4.3 Preprocessing with Logical Simplifications

The use of non-clausal constraints impacts the use of preprocessors designed for stan-
dard CNF SAT problems. Standard preprocessors only look at the clause set, and not
being aware of the non-clausal acyclicity constraint render some preprocessing methods
incorrect. For example, variable elimination methods [22] and eliminating pure literals
are incorrect in this context. Both can be made correct by leaving the arc variables – the
only class of variables involved in the acyclicity constraint – out of consideration.

Preprocessing techniques that are monotone, that is, their results remain correct even
if the preprocessing is only applied to a subset of the clauses, are directly applicable
in our setting. Examples of monotone preprocessing techniques are unit propagation
look-ahead (also known as failed literals) and subsumption.

5 Comparison to Clausal Encodings

We compare the SAT algorithm extended with a built-in propagator for the acyclicity
constraint to explicit encodings of the constraint we are aware of. Of particular interest
are the size of the encodings, which determines how large or complicated graphs can be
handled in practice, and the propagation properties of the encodings, which determine
how well the encodings can prune search spaces. The following propagation properties
are of interest.

INC
Is inconsistency (a cycle) detected with UP after all arcs forming
a cycle are enabled?

BACK For an enabled path n1, . . . , nk, is arc (nk, n1) disabled by UP?

SAT Modulo Graphs: Acyclicity 143

5.1 Explicit Enumeration of Cycles

The simplest encoding of acyclicity enumerates all possible cycles, and forbids enabling
all arcs in each cycle. This leads to cycle clauses ¬a1 ∨ · · · ∨ ¬an where a1, . . . , an
are variables for every arc in a cycle. The size of this encoding is in the worst case
exponential in the number of nodes in the graph, and therefore in general impractical.
We are not aware of prior uses of this encoding in any application. However, earlier
works have – similarly to our propagator in Section 4.1 – generated some form of cycle
clauses on-demand after detecting cycles by means external to the SAT solver [14].

This encoding propagates well. Every cycle is detected as soon as it emerges, so we
have INC. When all but one arc in a potential cycle has been enabled, the remaining arc
is disabled by unit propagation, so we have BACK.

5.2 Transitive Closure

In this encoding [21,4], variables tx,y indicate that (x, y) belongs to the transitive clo-
sure of the relation corresponding to the underlying graph, that is, there is a (non-empty)
directed path from x to y in the graph. Variables ax,y for arcs (x, y) imply tx,y, and
transitivity is expressed by ax,y ∧ ty,z → tx,z. Cycles are forbidden by ax,y → ¬ty,x.
This encoding is O(NM) size (for N nodes and M arcs), with O(N2) variables. The
encoding satisfies both INC and BACK, but it is often impractical [21], especially for
complete graphs with its prohibitiveO(N3) size.

5.3 Topological Sorting with Indices

In this encoding, each node n in the graph is (nondeterministically) assigned an integer
index I(n) (typically encoded as a binary number with logN propositional variables).
For each arc (n1, n2) there is a formula saying that if the arc is enabled, then I(n1) <
I(n2). While this encoding is very compact, the need to nondeterministically choose
the indexing makes its propagation properties weak: even when all arcs are enabled
or disabled, the indexing still has to be chosen before anything can be inferred about
acyclicity. Hence this encoding satisfies neither of the propagation properties.

5.4 Tree Reduction

In this encoding [2] (which can be viewed as an efficient specialization of a SAT en-
coding of linear arithmetic constraints by Tamura et al. [23]), first the leaves (nodes
without children) are identified and “removed”, and the process is repeated until for
acyclic graphs all nodes are guaranteed to be “removed”. Essentially, we are assigning
each node n an index I(n) that is the maximum length of a path from n to a leaf node.
We have to consider paths up to length N − 1. The encoding states that for each node
n, I(n) = k iff for all children n0 of n we have I(n0) < k and for at least one child n0

we have I(n0) = k − 1. Finally, unit clauses state that I(n) < N for every node n.
The number of clauses needed for each node is proportional to N times the number

of arcs going out from it. Hence the total number of clauses is at most the product of
the number of nodes and the number of arcs.

144 M. Gebser, T. Janhunen, and J. Rintanen

Violation of the acyclicity requirement is detected by unit propagation. Hence we
have INC. The number of unit propagation steps is bounded by the size of the encoding.
However, this encoding does not have the BACK property because leaf nodes are not
recognized before all their outgoing arcs have been disabled. Hence no unit propagation
takes place, and there is nothing else that could recognize the potential cycle.

5.5 Summary of Encoding Properties

The properties of the above encodings are summarized as follows.

encoding size propagation
Enumerative O(vv) INC, BACK
Transitive Closure O(ev) INC, BACK
Tree Reduction O(ev) INC
Topological Sort O(v log v + e log v) -

The most compact encodings have the weakest propagation properties. The only
encodings that have both of the important properties have a quadratic or an exponential
size and are therefore impractical for graphs larger than some tens or hundreds of nodes.
In contrast, by using a specialized propagator for acyclicity both of the propagation
properties are satisfied, with linear time and space worst-case complexities.

6 Relation to Difference Logic

In this section, we provide a detailed analysis of the relationship between ACYC-SAT
and integer difference logic (IDL) [15]. This logic is an extension of propositional logic
by simple difference constraints of the form x − y ≥ k where x and y are integer
variables and k is a constant. To streamline the forthcoming analysis, we assume a
clausal representation rather than full propositional syntax. Moreover, the expressive
power of the language can be further constrained by assuming particular values for the
constant k. For our purposes, setting k = 1 is obvious as this amounts to constraints
of the form x > y. In what follows, we compare SAT modulo acyclicity with an IDL
fragment, denoted by IDL(1), based on formulas of the form

l1 ∨ . . . ∨ lm ∨ (x1 > y1) ∨ . . . ∨ (xn > yn) (1)

where l1 ∨ . . . ∨ lm is a propositional clause and x1 > y1, . . . , xn > yn difference
constraints. Such formulas can express disequality, since x �= y is equivalent to (x >
y) ∨ (y > x). As we shall see, equality x = y is not modularly expressible using
formulas of the form (1). To this end, it is essential that difference constraints may not
be negated, since the formula ¬(x > y) is equivalent to x ≤ y, i.e., one half of equality.

Next we will establish linear, faithful, and modular translations between IDL(1) and
ACYC-SAT. By linearity we mean transformation in linear time. For faithfulness, we
identify integer variables used in IDL with nodes in ACYC-SAT and insist on a rel-
atively tight correspondence of models. Finally, modularity means that the translation

SAT Modulo Graphs: Acyclicity 145

is feasible one expression at a time. An LFM-translation from a logic to another pos-
sesses all the three properties of linearity, faithfulness and modularity, and, if such a
translation exists, we take this as an indication that the former can be straightforwardly
expressed in the latter. Analogous frameworks based on polynomial translations have
been used when ranking non-monotonic logics and logic programs on the basis of ex-
pressive power [11,12].

Given a directed acyclic graph G = 〈N,A〉 and a node n ∈ N , we define the
elimination rank of n in G, denoted by erG(n), by setting erG(n) = 0 for any root
node n and erG(n) = i for any non-root node n that becomes a root once all nodes
n′ ∈ N with erG(n

′) < i have been eliminated from G.

Proposition 1. There is an LFM-translation from ACYC-SAT to IDL(1).

Proof sketch. An ACYC-SAT problem 〈X,C,N,A, l〉 conforming to Definition 1 can
be linear-time translated into TIDL(C,A, l) = C∪{¬l(x, y)∨(x > y) | (x, y) ∈ A}. If
v is a solution to the problem, a satisfying assignment v′ for TIDL(C,A, l) is obtained
by setting v′(p) = v(p) for atomic propositions p and v′(x) = er〈N,A′〉(x) where
A′ = {(x, y) ∈ A | v(l(x, y)) = 1}. On the other hand, if v′ is a satisfying assignment
for TIDL(C,A, l), then a solution v can be extracted by setting v(p) = v′(p) for atomic
propositions p and v(l(x, y)) = 1 iff v′(x) > v′(y) for (x, y) ∈ A. The translation
TIDL is modular since clauses in C and arcs in A can be translated one-by-one. ��

Proposition 2. There is an LFM-translation from IDL(1) to ACYC-SAT.

Proof sketch. Let S be a set of formulas of the form (1) based on sets of propositional
and integer variables X and V , respectively. The linear-time translation into ACYC-
SAT is 〈X,C, V,A, l〉 where A is the set of arcs (x, y) for which x > y appears in S, l
is a labeling which assigns a new atom l(x, y) to every (x, y) ∈ A, and C = TACYC(S)
contains a clause l1 ∨ . . . ∨ lm ∨ l(x1, y1) ∨ . . . ∨ l(xn, yn) for each extended clause
(1) in S. The correspondence between solutions v to 〈X,C, V,A, l〉 and assignments v
satisfying S is the same as in Proposition 1. The translation TACYC is also modular as
extended clauses can be translated independently of each other. ��

The expressive power of extended clauses (1) can be increased by allowing difference
constraints of the form x − y ≥ 0, or equivalently, of the form x ≥ y. As discussed
above, this amounts to negating difference constraints in (1) but we rather preserve the
positive form of difference constraints and allow x ≥ y in extended clauses.

Theorem 1 (Intranslatability). There is no faithful and modular generalization of the
translation TACYC from IDL(1) to IDL(0,1).

Proof. The constraint x > y is translated by TACYC into a unit clause l(x, y) and an
arc (x, y) labeled by l(x, y). This constraint is inconsistent with y ≥ x in IDL(0,1).
Let us then assume a faithful and modular generalization of TACYC, which means
TACYC(y ≥ x) should be independent of the respective translations of any other ex-
tended clauses. It is clear by the faithfulness of TACYC that TACYC(y ≥ x) must be
consistent as y ≥ x is satisfiable in IDL(0,1). Let v satisfy TACYC(y ≥ x) modulo
acyclicity. Since v should be excluded in the presence of TACYC(x > y), i.e., the unit
clause l(x, y), and subject to the semantics of SAT modulo acyclicity, we have that

146 M. Gebser, T. Janhunen, and J. Rintanen

1. v(l(x, y)) = 0 or
2. v(l(y, v1) ∧ . . . ∧ l(vn, x)) = 1 for new atoms labeling arcs (y, v1), . . . , (vn, x)

that form a path in the graph where n ≥ 0 and v1, . . . , vn are potential new (and
necessarily local) integer variables used in the translation of y ≥ x.

If n = 0, then the second item reduces to v(l(y, x)) = 1. Due to the second item and
the acyclicity property enforced in ACYC-SAT, v(l(x, y)) = 1 is not feasible. Thus
v(l(x, y)) = 0 is necessary and since v was arbitrary, the translation TACYC(y ≥ x)
must entail ¬l(x, y). This reflects the fact that ¬(x > y) is equivalent to y ≥ x.

The translation TACYC(x ≥ y) entails ¬l(y, x) by symmetry. Together, translations
TACYC(y ≥ x) and TACYC(x ≥ y) are consistent with l(y, z) and l(z, x), i.e., the
modular translations TACYC(y > z) and TACYC(z > x). This is because z is different
from x and y, TACYC(y ≥ x) can only refer to l(x, y) and l(y, x), and thus adding
l(y, z) and l(z, x) as unit clauses cannot interfere with consistency. Moreover, the se-
lected arcs (y, z) and (z, x) do not create a cycle. A contradiction, since the theory
{y ≥ x, x ≥ y, y > z, z > x} in IDL(0,1) is inconsistent. ��

Theorem 1 shows formally that the expressive power of IDL(0,1) strictly exceeds that
of IDL(1). This result, however, does not exclude the possibility for non-modular gener-
alizations that, e.g., entirely embed difference constraints into clauses. But, on the other
hand, achieving linearity may become a challenge due to interdependencies of integer
variables. For instance, the transformation in [9] incurs a further logarithmic factor. To
conclude the analysis in this section, we have identified a simple fragment of IDL that
characterizes the expressive power of ACYC-SAT. This provides further insights into
why an efficient implementation of the acyclicity extension can be expected.

7 Experimental Evaluation

We have implemented the acyclicity constraint propagator inside the MiniSAT solver,
and then adapted it to the MiniSAT-based Glucose solver. We also extended the solvers’
parsers with capabilities for reading graphs along with a SAT instance. All this is less
than 500 lines of C++ code. Although our implementation does not try to amortize the
costs of consecutive acyclicity tests, the propagator accounts only for a fraction of the
total SAT solver runtime even with problem instances that intensively refer to graphs.

We empirically evaluated the performance of ACYC-SAT solvers on the Hamiltonian
cycle problem as well as finding a directed acyclic graph, forest, or tree, subject to XOR-
constraints over arcs. The problems and respective graph sizes in terms of nodes are
indicated in the first two columns of Table 1. Per problem and graph size, we considered
100 (randomly generated) instances, that is, planar graphs in case of the Hamiltonian
cycle problem or, otherwise, XOR-constraints to be fulfilled by a directed acyclic graph,
forest, or tree, respectively. All experiments were run on a cluster of Linux machines,
using a timeout of 3600 seconds per instance.

The evaluation includes our ACYC-SAT solvers Glucose-INC, Glucose-BACK,
MiniSAT-INC, and MiniSAT-BACK, where the suffix INC indicates acyclicity prop-
agation by detecting and denying cycles (using only the forwards traversal in Figure 1)

SAT Modulo Graphs: Acyclicity 147

Table 1. Comparison between solvers for ACYC-SAT, SAT, ASP, and SMT on Hamiltonian cycle
and directed acyclic graph problems

Problem Size G
lu

co
se

-I
N

C

G
lu

co
se

-B
A

C
K

M
in

iS
A

T-
IN

C

M
in

iS
A

T-
B

A
C

K

G
lu

co
se

-S
A

T

M
in

iS
A

T-
SA

T

L
in

ge
lin

g-
SA

T

C
la

sp
-S

A
T

C
la

sp
-A

SP

Z
3-

SM
T

Hamilton
100 0.21 0.07 0.03 0.04 224.14 275.00 2419.63 2600.90 0.95 2.45
150 0.13 0.15 0.10 0.12 3440.00 3172.54 3536.02 — 20.16 50.64

Acyclic

25 0.08 0.05 0.05 0.03 2406.60 2934.30 1.61 1282.49 0.12 0.29
50 2.34 0.28 1.64 0.29 3147.91 2988.30 17.09 — 0.76 7.61
75 682.86 8.09 856.47 4.76 3241.00 3276.92 99.60 — 282.01 167.74

100 2180.98 964.28 2172.01 647.13 3170.48 3176.70 2760.52 1984.10 831.33 2278.63

Forest

25 0.59 0.64 0.75 0.72 118.70 139.88 3.10 3.59 4.09 4.54
50 301.46 304.44 466.56 498.00 1165.53 1438.49 667.24 1125.86 1039.26 1205.63
75 909.15 1006.73 1011.05 920.43 2597.99 2708.27 1019.68 1470.12 1501.76 1755.28

100 1349.29 1418.25 1271.86 1269.47 2882.20 2853.03 2131.73 2597.71 1632.94 2690.67

Tree

25 0.80 0.74 0.67 0.83 72.93 6.12 3.17 4.12 4.37 4.75
50 301.81 315.83 564.05 544.43 815.09 1230.09 685.38 1126.76 1193.09 1208.36
75 947.61 999.07 976.40 1025.02 2646.64 2749.26 1044.51 1633.95 1495.32 1726.56

100 1348.91 1414.68 1330.81 1224.28 2882.36 2861.33 2239.12 2621.82 1995.19 2538.20

and BACK expresses that arc variables are also falsified to prevent cycles (using the en-
tire propagator(x) routine in Figure 1). We compared our solvers to their base versions
Glucose-SAT (3.0) and MiniSAT-SAT (2.2.0), run with plain SAT encodings based on
Tree Reduction (cf. Section 5). Notably, for a graph with N nodes, the maximum length
I(n) = k from a node n to a leaf node is represented in terms of propositions for
I(n) ≤ k, . . . , I(n) ≤ N − 1, thus exploiting the order encoding approach [23]. Fur-
thermore, we have included Lingeling (ats-57807c8-131016) as an example of a SAT
solver with a good performance that is unrelated to MiniSAT and Glucose. These SAT
solvers are complemented by the combined SAT and Answer Set Programming (ASP)
solver Clasp (3.0.4), run as Clasp-SAT on SAT encodings or as Clasp-ASP on more
compact ASP encodings of Tree Reduction of size O(e). The ASP formalism includes
an (implicit) acyclicity test which enables more compact encodings than with SAT. Sim-
ilarly, difference logic, supported by Z3-SMT (4.3.2), allows for compact encodings of
acyclicity constraints as described in Section 6 (see [19] for relations to ASP).

Table 1 gives average runtimes taking timeouts as 3600 seconds, while indicating
timeouts in all runs by “—” as well as the minimum average runtime per row in bold-
face. The advantage of our ACYC-SAT solvers clearly shows on the Hamiltonian cycle
instances, where the requirement of exactly one incoming and outgoing arc per node
along with the global acyclicity condition (excluding the incoming arc of a fixed start-
ing node) permit a very compact encoding. Given that all instances are solved easily, the
efforts of Glucose-BACK and MiniSAT-BACK to falsify arc variables result in small
overhead compared to Glucose-INC and MiniSAT-INC which merely check acyclicity.
In fact, the higher average runtime of Glucose-INC on instances with 100 nodes is due
to a single outlier, taking longer than the other 99 instances together. On the other hand,
all four plain SAT solvers suffer from less compact encodings, leading to significantly
higher runtimes and plenty of timeouts. The latter can also be observed in comparison
to Clasp-ASP and Z3-SMT, whose average runtimes are still two orders of magnitude
higher than the ones of our ACYC-SAT solvers.

148 M. Gebser, T. Janhunen, and J. Rintanen

Considering the problem of finding a directed acyclic graph subject to XOR con-
straints, the extended propagation of Glucose-BACK and MiniSAT-BACK pays off and
significantly reduces the amount of the search needed in comparison to Glucose-INC
and MiniSAT-INC. Advantages over Clasp-ASP and Z3-SMT still amount to one order
of magnitude in average runtime. In general, plain SAT solvers have again the most
difficulties. The exceptionally good performance of Lingeling-SAT on instances up to
size 75 is mostly due to its preprocessing and inprocessing techniques, not shared by
the other three SAT solvers. Differences in SAT solver engines become also apparent
when comparing Clasp-SAT which fails on instances with 50 or 75 nodes but solves
more instances of size 100 than Lingeling-SAT. Finally, the problems of finding a for-
est or tree fulfilling XOR-constraints add further restrictions on directed acyclic graphs
in question. Therefore, these problems are harder for our ACYC-SAT solvers, and side
constraints seem to dominate over differences in acyclicity propagation. Nevertheless,
the acyclicity extensions of both Glucose and MiniSAT still have a significant edge over
the other solvers.

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

Z
3

Glucose-INC

Number of decisions

 1000

 10000

 100000

 1e+06

 1e+07

 1000 10000 100000 1e+06 1e+07

Z
3

Glucose-BACK

Number of decisions

Fig. 2. Decisions for Z3 vs. Glucose-BACK and Glucose-INC on Acyclic instances from Table 1

8 Related Work

The way we integrate graph constraints in the SAT framework is highly analogous
to the SMT framework [25,1]. Typical implementations of difference logic in SMT
solvers [3,15,20] involve graph-based algorithms. Rather than finding values to integer
variables and then checking the inequalities, the satisfiability of a set of difference con-
strains can be decided by checking the existence of a negative-weight loop in the cor-
responding weighted graph using standard algorithms. The SAT modulo Graphs frame-
work proposed in this paper exploits graph algorithms in the implementation but also
suggests using graphs explicitly as a core concept in modeling. Reasoning techniques
proposed in [15] include a counterpart to our rule that infers that an arc that would
complete a cycle must be disabled. Based on an experimental comparison between our

SAT Modulo Graphs: Acyclicity 149

solvers and Z3, we believe that Z3 performs similar inferences (but were not able to
confirm this by inspecting its source code): numbers of decisions and conflicts in the
search performed by Z3 are comparable to our Glucose-BACK solver, and significantly
lower than with our Glucose-INC solver, as shown in Figure 2 which plots the numbers
of decisions for these solvers and all of the Acyclic instances. Plots for conflicts are
similar. Z3 runtimes are about 15 times higher than those of Glucose-BACK for small
instances, and more for bigger ones, which must be due to the far higher overhead of
difference logic.

Constraints on graphs have earlier been of some interest in the automated reasoning
and constraint programming communities. The works closest to ours are the following.
Hoffmann and van Beek have recently presented an acyclicity constraint specialized for
the Bayesian network learning problem, in an unpublished work [10]. Dooms et al. [6,7]
have proposed the CP(Graph) domain for constraint programming, in which variables
have graphs as values and constraints express relations between different graphs.

9 Conclusion

We have presented a constraint propagator for a graph acyclicity constraint and its im-
plementation in a SAT solver. In some important classes of SAT applications it is critical
to express the acyclicity constraint compactly and to exploit it maximally to achieve ef-
ficient SAT solving. Such applications include Bayesian network learning, answer set
programming, and reasoning about networked systems that are kept in an acyclic con-
figuration, for example many electricity networks.

Our experiments show good scalability of our solvers in comparison to competing
frameworks, including difference logic, and often dramatic improvements over acyclic-
ity constraints encoded in the standard clausal SAT problem are apparent.

We are in the process of integrating acyclicity constraints in MAXSAT solvers, to be
able to experiment with structure learning for Bayesian networks which is reducible to
the weighted partial MAXSAT problem [4].

Future work includes addressing other important graph constraints, stemming from
applications involving systems such as utility networks (power, water, telecommunica-
tions) and transportation. Graph constraints arising in these applications include reach-
ability (one node is reachable from another), connectivity, and simple paths (a node is
on a simple path between two given nodes). Similarly to acyclicity, these constraints do
not appear to be expressible as clauses so that compactness (size less than quadratic)
and strong propagations are both achieved, and unlike acyclicity, their expression in
frameworks such as difference logic or ASP is not straightforward.

Acknowledgments. The support from the Finnish Center of Excellence in Compu-
tational Inference Research (COIN) funded by the Academy of Finland (under grant
#251170) is gratefully acknowledged.

References

1. Audemard, G., Bertoli, P.G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based ap-
proach for solving formulas over Boolean and linear mathematical propositions. In: Voronkov,
A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)

150 M. Gebser, T. Janhunen, and J. Rintanen

2. Corander, J., Janhunen, T., Rintanen, J., Nyman, H., Pensar, J.: Learning chordal Markov
networks by constraint satisfaction. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahra-
mani, Z., Weinberger, K. (eds.) Advances in Neural Information Processing Systems 26,
pp. 1349–1357 (2014)

3. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg
(2006)

4. Cussens, J.: Bayesian network learning by compiling to weighted MAX-SAT. In: Proceed-
ings of the Conference on Uncertainty in Artificial Intelligence, pp. 105–112. AUAI Press
(2008)

5. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM Transac-
tions on Computational Logic 9(2), 14:1–14:52 (2008)

6. Dooms, G., Deville, Y., Dupont, P.E.: Cp(graph): Introducing a graph computation domain
in constraint programming. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 211–225.
Springer, Heidelberg (2005)

7. Dooms, G., Katriel, I.: The minimum spanning tree constraint. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 152–166. Springer, Heidelberg (2006)

8. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo acyclicity.
In: Proceedings of the 21st European Conference on Artificial Intelligence, ECAI 2014. IOS
Press (2014)

9. Heljanko, K., Keinänen, M., Lange, M., Niemelä, I.: Solving parity games by a reduction to
SAT. Journal for Computer and System Sciences 78(2), 430–440 (2012)

10. Hoffmann, H.F., van Beek, P.: A global acyclicity constraint for Bayesian network structure
learning (September 2013) (unpublished manuscript in the Doctoral Program of the Interna-
tional Conference on Principles and Practice of Constraint Programming)

11. Janhunen, T.: Evaluating the effect of semi-normality on the expressiveness of defaults. Ar-
tificial Intelligence 144(1-2), 233–250 (2003)

12. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)

13. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic
search. In: Proceedings of the 13th National Conference on Artificial Intelligence and the 8th
Innovative Applications of Artificial Intelligence Conference, pp. 1194–1201. AAAI Press
(1996)

14. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence Journal 157(1), 115–137 (2004)

15. Mahfoudh, M., Niebert, P., Asarin, E., Maler, O.: A satisfiability checker for difference logic.
In: Proceedings of SAT 2002 – Theory and Applications of Satisfiability Testing, vol. 2,
pp. 222–230 (2002)

16. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A new search algorithm for satisfiability. In:
1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996. Di-
gest of Technical Papers, pp. 220–227 (1996)

17. Mitchell, D.G.: A SAT solver primer. EATCS Bulletin 85, 112–133 (2005)
18. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an

efficient SAT solver. In: Proceedings of the 38th ACM/IEEE Design Automation Conference
(DAC 2001), pp. 530–535. ACM Press (2001)

19. Niemelä, I.: Stable models and difference logic. Annals of Mathematics and Artificial Intel-
ligence 53(1-4), 313–329 (2008)

20. Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its applica-
tion to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 321–334. Springer, Heidelberg (2005)

SAT Modulo Graphs: Acyclicity 151

21. Rintanen, J., Heljanko, K., Niemelä, I.: Parallel encodings of classical planning as satisfia-
bility. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 307–319.
Springer, Heidelberg (2004)

22. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution for
preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

23. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2), 254–272 (2009)

24. Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM Journal on Comput-
ing 1(2), 146–160 (1972)

25. Wolfman, S.A., Weld, D.S.: The LPSAT engine & its application to resource planning. In:
Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 310–315.
Morgan Kaufmann Publishers (1999)

Enumerating Prime Implicants of Propositional

Formulae in Conjunctive Normal Form

Said Jabbour1, Joao Marques-Silva2, Lakhdar Sais1, and Yakoub Salhi1

1 CRIL, Université d’Artois & CNRS, Lens, France
{jabbour,sais,salhi}@cril.fr

2 CASL, University College Dublin, Ireland
jpms@ucd.ie

Abstract. In this paper, a new approach for enumerating the set prime
implicants (PI) of a Boolean formula in conjunctive normal form (CNF)
is proposed. It is based on an encoding of the input formula as a new
one whose models correspond to the set of prime implicants of the orig-
inal theory. This first PI enumeration approach is then enhanced by an
original use of the boolean functions or gates usually involved in many
CNF instances encoding real-world problems. Experimental evaluation
on several classes of CNF instances shows the feasibility of our proposed
framework.

1 Introduction

The problem of enumerating prime implicants (PIs) of Boolean functions is an
important research topic from the early days of computer science. It was used in
the context of boolean function minimization by Quine [29,28] and McCluskey
[23]. This first application of the prime implicant canonical form is important as
it allows to reduce digital circuit size and cost while improving the computing
speed (e.g. [34]). In addition to digital circuit analysis and optimisation, PIs
have found several other application domains including fault tree analysis [6,11],
bioinformatics [1], databases [10], model based diagnosis [8], knowledge represen-
tation and reasoning [4]. The computation of prime implicants is also important
in many subfields of artificial intelligence such us knowledge compilation [3,7],
automated and non-monotonic reasoning [14], multi-agent systems [33].

Unfortunately, the problem of generating all prime implicants of a given
propositional theory is a highly complex task. First, the number of prime impli-
cants of a given theory can be exponential in the size of the theory, while finding
just one prime implicant is an NP-hard task. Consequently, enumerating all PIs
cannot be done in polynomial total time unless P=NP [16]. Despite this com-
putational bottleneck, several techniques have been proposed in the literature.
Many of these PI enumeration techniques are based on some adaptation of the
well-known search paradigm, namely branch and bound/backtrack search pro-
cedures. Additionally, most of these techniques consider propositional formulae
in conjunctive normal form (CNF), the standard representation of propositional
knowledge bases. One can cite two related adaptations of the well-known DPLL

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 152–165, 2014.
c© Springer International Publishing Switzerland 2014

Enumerating Prime Implicants of Propositional Formulae 153

procedure for prime implicants generation [5,32,30] or the modification of mod-
ern SAT solvers for computing one prime implicant [9]. Concurrently, almost
simultaneously, a 0-1 integer linear programming (ILP) formulation [21,19] was
proposed for computing minimum-size prime implicant improving the formula-
tion given in [27]. In addition, a new algorithm for solving ILP was developed,
built on top of a CDCL SAT solver. In [26], Palopoli et al. formulated two
algorithms for PIs computation. The first one (called Enumerative Prime Im-
plicants/Feasible Solutions - EPI/FS) search for a feasible solution of the linear
program and then extract a prime implicant from it. The second variant, called
EPI/OS, is obtained by simply adding a suitable minimization function to the
ILP formulation.

In contrast to PI enumeration based on an adaptation of DPLL-like procedure
(e.g. [5,32]) and ILP based formulations [21,27], in this paper, we first propose
an original approach that rewrite the CNF formula Φ as a new CNF formula Φ′

such that the prime implicants of Φ correspond the models of the new CNF Φ′.
In this way, prime implicant enumeration is reduced to the problem of finding
all models of a CNF formula. Such correspondence, allows us to benefit from
the recent and continuous advances in practical SAT solving at least for finding
one prime implicant. From the ILP formulation mentioned above [21,27], our PI
enumeration encoding borrows only the idea of literal renaming. As such renam-
ing substantially increases the number of variables and clauses, in our second
contribution, an enhanced encoding is derived thanks to the structural knowl-
edge recovered from the CNF formula. Indeed, by exploiting Boolean functions
encoded in the formula, our new encoding allows significant reductions in the
number of variables and clauses. Surprisingly, despite the numerous studies on
this issue, to the best of our knowledge, there is no available PI enumeration
tool. To compare our proposed approach, an additional PI enumeration algo-
rithm is implemented, which is based on adapting previous work (see Section
5). More precisely, the CNF formula Φ is encoded as a partial MaxSAT formula
ΦP using a reformulation of the previous mentioned 0-1 ILP model. Thanks to
the correspondence between minimal correction subsets (MCSs) of ΦP and the
prime implicants of Φ, we exploit the MCSs enumeration tool proposed recently
in [22].

The paper is organized as follows. After some preliminary definitions and nec-
essary notations, our SAT-based encoding of PI enumeration problem is provided
in Section 3. Then, we describe in Section 4 our structure-based enhancement of
PI enumeration. Then, an alternative approach for PIs generation is discussed
in Section 5. An extensive experimental evaluation of our proposed approaches
is provided (Section 6) before concluding.

2 Preliminary Definitions and Notations

We first introduce the satisfiability problem (SAT) and some necessary notations.
SAT corresponds to the problem of deciding if a formula of propositional classical
logic is consistent or not. It is one of the most studied NP-complete decision
problem.

154 S. Jabbour et al.

We consider the conjunctive normal form (CNF) representation for proposi-
tional formulas. A CNF formula Φ is a conjunction of clauses, where a clause is
a disjunction of literals. A literal is a positive (p) or negated (¬p) propositional
variable. The two literals p and ¬p are called complementary. We denote by l̄
the complementary literal of l, i.e., if l = p then l̄ = ¬p and if l = ¬p then
l̄ = p. For a set of literals L, L̄ is defined as {l̄ | l ∈ L}. A CNF formula can also
be seen as a set of clauses, and a clause as a set of literals. Let us recall that
any propositional formula can be translated to CNF using linear Tseitin’s en-
coding [35]. We denote by V ar(Φ) (respectively Lit(Φ)) the set of propositional
variables (respectively literals) occurring in Φ.

Φ|x denotes the formula obtained from Φ by assigning x the truth-value true.
Formally Φ|x = {c | c ∈ Φ, {x,¬x}∩c = ∅}∪{c\{¬x} | c ∈ Φ,¬x ∈ c} (that is: the
clauses containing x are therefore satisfied and removed; and those containing
¬x are simplified). Φ∗ denotes the formula Φ closed under unit propagation (UP
closure), defined recursively as follows: (1) Φ∗ = Φ if Φ does not contain any unit
clause, (2) Φ∗ =⊥ if Φ contains two unit-clauses {x} and {¬x}, (3) otherwise,
Φ∗ = (Φ|x)∗ where x is the literal appearing in a unit clause of Φ. The set of
unit propagated literals by applying UP closure on Φ is denoted UP (Φ).

An interpretation B of a propositional formula Φ is a function which associates
a value B(p) ∈ {0, 1} (0 corresponds to false and 1 to true) to the variables
p ∈ V ar(Φ). An interpretation B of Φ is alternatively represented by a set of
literals, i.e., B =

⋃
x∈V ar(Φ) f(x), where f(x) = x (respectively f(x) = ¬x), if

B(x) = true (respectively B(x) = false). A model or an implicant of a formula Φ
is an interpretation B that satisfies the formula, noted B � Φ. The SAT problem
consists in deciding if a given formula admits a model or not.

An implicant B of Φ is called a prime implicant (in short PI), iff for all literals
l ∈ B, B\{l} �� Φ. We define PI(Φ) as the disjunction of all prime implicant of Φ.
Obviously, PI(Φ) is logically equivalent to Φ, while its size might be exponential
in the worst case.

3 SAT-Based Encoding of PI Enumeration Problem

In this section, we describe our SAT-based encoding of the prime implicant
enumeration problem. The idea consists in reformulating the PI enumeration
problem of a given CNF Φ as the model enumeration problem of a CNF Φ′.

Our encoding borrows the idea of literals renaming used in the ILP formu-
lations proposed in [27,19,20]. Let Φ be a CNF formula. We associate to each
element l of Lit(Φ) a propositional variable xl. We define the CNF formula ΦR

as the formula obtained from Φ by renaming each literal l in Lit(Φ) by its corre-
sponding propositional variable xl, and by adding the following binary clauses:∧

p∈V ar(Φ)

¬xp ∨ ¬x¬p (1)

One can easily see that Φ and ΦR are equisatisfiable.

Enumerating Prime Implicants of Propositional Formulae 155

Example 1. Let us consider the following CNF formula: Φ = (p∨¬q ∨ r)∧ (¬p∨
¬r) ∧ (q ∨¬r). Then, we have ΦR = (xp ∨ x¬q ∨ xr)∧ (x¬p ∨ x¬r)∧ (xq ∨ x¬r)∧
(¬xp ∨ ¬x¬p) ∧ (¬xq ∨ ¬x¬q) ∧ (¬xr ∨ ¬x¬r). As we can see, the formula ΦR is
a conjunction of two monotone CNF formulae.

We now propose a new constraint in order to establish a bijection between prime
implicants of a CNF formula and the models of the resulting CNF formula. This
additional formula M(ΦR) is defined as follows:

M(ΦR) =
∧

l∈Lit(Φ)

xl → ¬Cl(ΦR, xl) (2)

where Cl(ΦR, xl) corresponds to the restriction of ΦR to the clauses containing
xl without the latter, i.e., Cl(ΦR, xl) ≡

∧
c∈ΦR,xl∈c c \ {xl}.

For instance, if we consider again the formula Φ given in Example 1, M(ΦR)
corresponds to the the following formula: (xp → ¬(x¬q ∨ xr))∧ (x¬p → ¬x¬r)∧
(xq → ¬x¬r) ∧ (x¬q → ¬(xp ∨ xr)) ∧ (xr → ¬(xp ∨ x¬q)) ∧ (x¬r → (xq ∧ x¬p)).

Theorem 1. If B is a model of the formula ΦR∧M(ΦR), then the set of literals
IB = {l ∈ Lit(Φ) | B(xl) = 1} is a prime implicant of Φ.

Proof. Using the fact that ΦR is nothing else than a renaming of the literals of
Φ, we have IB is an implicant of Φ. Assume now that IB is not a prime implicant
of Φ. Then, there exists l0 ∈ I such that IB \ {l0} is an implicant of Φ. Let B′
be a Boolean interpretation of ΦR ∧M(ΦR) defined as follows:

B′(xl) =

{
B(xl) if l �= l0
0 otherwise

Clearly, we have B′(xl0) = B′(x¬l0) = 0. Indeed, B′(xl0) = 0 (see the definition
of B′). Let us show that B′(x¬l0) = 0. By definition, we have B′(x¬l0) = B(x¬l0)
because ¬l0 �= l0. As l0 ∈ IB, we have B(xl0) = 1. Also, as IB is an im-
plicant of Φ, then it satisfies the binary clause (¬xl0 ∨ ¬x¬l0) (see formula
(1). Consequently, we deduce that B(¬x¬l0) = 1 i.e. B(x¬l0) = 0. Finally,
B′(x¬l0) = 0. Using the formula M(ΦR), B(xl0 → ¬Cl(ΦR, xl0)) = 1 holds.
Hence, we have B(Cl(ΦR, xl0)) = 0, since B(xl0) = 1 because l0 ∈ IB. Since B′
is obtained from B by setting the truth value of xl0 to 0 (B′(xl0) = 0), then
B(Cl(ΦR, xl0)) = B′(Cl(ΦR, xl0)) = 0. We then obtain that B′ is not a model of
ΦR and we get a contradiction with IB \ {l0} is an implicant of Φ. Therefore, I
is a prime implicant of Φ.

Theorem 2. Let I be a prime implicant of Φ and B a Boolean interpretation of
ΦR ∧M(ΦR) defined as follows:

B(xl) =

{
1 if l ∈ I
0 otherwise

Then, B is a model of ΦR ∧M(ΦR).

156 S. Jabbour et al.

Proof. Clearly, B is a model of ΦR because I is a prime implicant of Φ. We now
show that B is also a model ofM(ΦR). Let l be a literal in Lit(Φ). If B(xl) = 0
then B(xl → ¬Cl(ΦR, xl)) = 1 holds. Otherwise, we have B(xl) = 1 and l ∈ I. If
B(Cl(ΦR, xl)) = 1 then I \ {l} is an implicant of Φ and we get a contradiction.
Therefore, B(Cl(ΦR, xl)) = 0 holds. Consequently, B is a model of M(ΦR) and
then of ΦR ∧M(ΦR).

Corollary 1. The number of prime implicants of Φ is equal to the number of
models of ΦR ∧M(ΦR).

Proof. For all B1 and B2 two different models of ΦR ∧M(ΦR), IB1 �= IB2 holds.
Thus, using Theorem 1, we obtain that the number of prime implicants of Φ is
greater than or equal to the number of models of ΦR ∧M(ΦR). Moreover, using
Theorem 2, the number of prime implicants of Φ is smaller than or equal to the
number of models of ΦR ∧M(ΦR). Therefore, the number of prime implicants
of Φ is equal to the number of models of ΦR ∧M(ΦR).

4 Structure-Based Enhancement of PI Enumeration

CNF formulae encoding real words problems usually involve a large fraction of
clauses encoding different kind of boolean functions or gates. These Boolean func-
tions result from the problem specification itself or introduced during the CNF
transformation using the well-known Tseitin extension principle [35]. Tseitin’s
encoding consists in introducing fresh variables to represent sub-formulae in
order to represent their truth values. For example, given a Boolean formula,
containing the variables a and b, and v a fresh variable, one can add the defini-
tion v ↔ a ∨ b (called extension) to the formula while preserving satisfiability.
Tseitin’s extension principle is at the basis of the linear transformation of general
Boolean formulae into CNF.

Boolean functions express strong relationships between variables, the goal of
this section is to show how such variable dependencies can be exploited in the
context of prime impliquant generation.

Let us first introduce some formal definitions and notations about Boolean
functions or gates.

A Boolean function or Gate is an expression of the form l′ = f(l1, . . . , ln),
where l′, l1, . . . , ln are literals and f is a logical connective among {∧,∨,⇔}.
It allows us to express that the truth value of l′ is determined by f(l1, . . . , ln).
According to f , a Boolean gate can be defined as a conjunction of clauses as
follows:

1. l′ = ∧(l1, . . . , ln) represents the set of clauses {¬l1 ∨ · · · ∨ ¬ln ∨ l′,¬l′ ∨
l1, . . . ,¬l′ ∨ ln};

2. l′ = ∨(l1, . . . , ln) represents the set of clauses {¬l′ ∨ l1 ∨ · · · ∨ ln,¬l1 ∨
l′, . . . ,¬ln ∨ l′};

3. l′ =⇔ (l1, . . . , ln) represents the following equivalence chain (also called
biconditional formula) (l′ ⇔ l1 ⇔, . . . ,⇔ ln).

Enumerating Prime Implicants of Propositional Formulae 157

Let us note that the Boolean functions using the connective ∧ (∧-gates) and
those using ∨ (∨-gates) are dual. Indeed, any Boolean gate l′ = ∧(l1, . . . , ln)
(resp. l′ = ∨(l1, . . . , ln)) is equivalent to ¬l′ = ∨(¬l1, . . . ,¬ln) (resp. ¬l′ =
∧(¬l1, . . . ,¬ln)). It is also important to note that for the third Boolean function
(equivalence chain), its equivalent representation in CNF leads to a huge number
of clauses (2n clauses).

In general, we say that an expression l′ = f(l1, . . . , ln) is a gate of a CNF
formula Φ if it is a logical consequence of Φ. Unfortunately, this deduction prob-
lem is Co-NP Complete. However, several recent contributions addressed the
issue of recovering Boolean functions from CNF formulae (e.g. [25,15,31,13,2]).
In [25], a polynomial and syntactical approach, which recovers only Boolean
functions implicitly present in the CNF formula. Another detection technique
is proposed by Roy et al. in [31]. It operates by translating the gate matching
problem into one of recognizing sub hypergraph isomorphism. This approach is
clearly intractable. In [15], a new technique based on deduction restricted to
unit propagation process is proposed. It extends the syntactical approach [25]
and allows the detection of some hidden Boolean functions.

Given a formula CNF Φ, we can use two different methods for detecting
Boolean functions encoded by the clauses of Φ.
The first detection method, called syntactical method, is a pattern matching
approach that allows us to detect the Boolean functions that appear directly in
the structure of the CNF formula [25].

Example 2. Let Φ ⊇ {(y ∨ ¬x1 ∨ ¬x2 ∨ ¬x3), (¬y ∨ x1), (¬y ∨ x2), (¬y ∨ x3)}.

In this example, we can detect syntactically the function y = ∧(x1, x2, x3).

The second method is a semantic detection approach where the functions are
detected using Unit Propagation (UP) [15]. Indeed, this method allows us to
detect hidden Boolean functions linearly in the size of the CNF.

Example 3. Let Φ ⊇ {(y∨¬x1∨¬x2∨¬x3), (¬y∨x1), (¬x1∨x4), (¬x4∨x2), (¬x2∨
x5), (¬x4 ∨ ¬x5 ∨ x3)}.

In this example, UP (Φ∧y) = {x1, x4, x2, x5, x3} the set of unit propagated (UP)
literals and we have the clause c = (y ∨¬x1 ∨¬x2 ∨¬x3) ∈ Φ which is such that
c\{y} ⊂ UP (Φ ∧ y). So, we can discover the Boolean function y = ∧(x1, x2, x3),
that the above syntactical method does not help us to discover.

In our implementation, we exploit the semantic or UP-based approach pro-
posed in [15]. Consequently, the boolean function of the form l′ =⇔ (l1, . . . , ln)
is not considered in our experiments.

Let us now describe how these Boolean functions can be used to improve the
PI enumeration CNF encoding.

Proposition 1. Let Φ be a CNF formula and l′ = f(l1, . . . , ln) a gate of Φ.
then, for every prime implicant I, we have either l′ ∈ I or ¬l′ ∈ I.

158 S. Jabbour et al.

Proof. Assume that there exists a prime implicant I such that both l′ /∈ I
and ¬l′ /∈ I hold. Consider I ′ an extension of I which is obtained by assign-
ing truth values to all the literals l1, . . . , ln and without assigning any truth
value to l′. Thus, we have either I ′(f(l1, . . . , ln)) = 0 or I ′(f(l1, . . . , ln)) = 1. If
I ′(f(l1, . . . , ln)) = 0 then I ′∪{l′} is a counter-model of Φ and we get a contradic-
tion. Otherwise, I ′∪{¬l′} is a counter-model of Φ and we also get contradiction.

Let Φ be a CNF formula and {l1 = e1, . . . , ln = en} a set of its gates.
Using Proposition 1, we know that it is not necessary to associate in our en-
coding fresh propositional variables (of the form xl) to the literals in S =
{l1, . . . , ln,¬l1, . . . ,¬ln}. In this case, ΦR is obtained by renaming only the lit-
erals in Lit(Φ) \ S and by redefining the formula (1) as follows:∧

p∈V ar(Φ)\S
¬xp ∨ ¬x¬p (3)

We also redefine (2) as follows:

M(ΦR) =
∧

l∈Lit(Φ)\S
xl → ¬Cl(ΦR, xl) (4)

Proposition 2. Let Φ be a CNF formula and l′ = ∧(l1, . . . , ln) a gate of Φ.
then, for every prime implicant I, we have either {l′, l1, . . . , ln} ⊆ I or ¬l′ ∈ I.

Proof. In the same way as the proof of Proposition 1.

Using Proposition 2, one can reduce the formula M(ΦR). Indeed, given a
Boolean gate l′ = ∧(l1, . . . , ln) of Φ, every formula of the form xl → ¬Cl(ΦR, xl)
where l ∈ {l1, . . . , ln} can be reduced as follows:

(l′ ∨ (xl → ¬Cl(ΦR, xl, l
′))) (5)

where ¬Cl(ΦR, xl, l
′) corresponds to the formula

∧
c∈ΦR,¬l′ /∈c,xl∈c c\{xl, l

′}. This
redefinition comes from the fact that if l′ is in a prime implicant I then l1, . . . , ln
are also in I. Thus, it is not necessary to reduce a model by removing literals in
{l1,¬l1, . . . , ln,¬ln} when l′ is true.

In the same way, we have also the following proposition:

Proposition 3. Let Φ be a CNF formula and l′ =⇔ (l1, . . . , ln) a gate of Φ.
then, for every prime implicant I and every l ∈ {l′, l1, . . . , ln}, we have either
l ∈ I or ¬l ∈ I.

Using Proposition 3, we know that it is not necessary to associate in our en-
coding fresh propositional variables (of the form xl) to the literals appearing in
the equivalence chains. Other related well known XOR constraints of the form
(l1⊕, . . . ,⊕ln) can be exploited in the same way. Their detection can be done
using a pattern matching approach [25]. In this paper, the integration to our
encoding of these specific Boolean functions is left as an interesting perspective.

Enumerating Prime Implicants of Propositional Formulae 159

5 Prime Implicant Enumeration: Alternative Approaches

As mentioned in the introduction, to the best of our knowledge, there is no
available PI enumeration tool. To compare our proposed approach, we discuss
an alternative that will be used in our comparative experimental evaluation
(Section 6).

mcsls. One can envision a number of alternative approaches for enumerating
prime implicants, by exploiting the 0-1 ILP model for computing a minimum
size prime implicant [19]. Given a CNF formula Φ, let Φi denote the 0-1 ILP
model associated with Φ:

minimize
∑

l∈Lit(Φ)

xl subject to

∑
l∈c

xl � 1 for c ∈ Φ (6)

xp + x¬p � 1 for p ∈ V ar(Φ) (7)

This model can be re-formulated as a partial MaxSAT formula [17] ΦP . A
simple observation is that any minimal correction subset (MCS) of ΦP is a prime
implicant of Φ. Therefore, a tool capable of enumerating the MCSes ΦP can be
used for enumerating the prime implicants of Φ. A number of approaches have
been proposed in recent years for enumerating MCSes [18,24,22]. These either
use MaxSAT [18,24] or dedicated algorithms [22], with recent results indicating
that the dedicated algorithms outperform MaxSAT-based solutions.

6 Experiments

In this section, we present an experimental evaluation of our approach which
consists in enumerating prime implicants of a CNF formula. As described above,
our transformation allows to translate the problem of enumerating prime im-
plicants of a formula Φ to that of enumerating models of a new formula Φ′. In
this context, we use a modified version of MiniSAT [12] solver to enumerate the
models of Φ′. Each time a model is found a prime implicant is extracted and
the clause representing the negation of the model is added to seek for the next
model until Φ′ becomes unsatisfiable.

In order to evaluate the performances of our approach, we consider a compar-
ison with the prime implicants enumerator (mcsls described in Section 5.

All the experimental results presented in this section have been obtained with
a Quad-core Intel Xeon X5550 (2.66GHz, 32 GB RAM) cluster. Our experiments
are conducted on benchmarks coming from 2012 MaxSAT Evaluation1. More
precisely, we consider the enumeration of prime implicants of the hard parts of
partial MaxSAT instances.

1 MaxSAT Evaluations: http://www.maxsat.udl.cat

http://www.maxsat.udl.cat

160 S. Jabbour et al.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000 1e+06

#V
ar

s
(T

ra
ns

.)

#Vars (Orig.)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10 100 1000 10000 100000 1e+06 1e+07

#C
ls

 (
T

ra
ns

.)

#Cls (Orig.)

Fig. 1. Size of the Encoding With Boolean Gates

Let us first illustrate the size of our encoding enhanced with Boolean functions
(or gates). In the scatter plot of Figure 1 (left hand side), each dot (x, y) repre-
sents the number of variables x of the original (Orig.) formula and the number of
variables y of new formula (Trans.) respectively. As we can see, except for some
few instances, the resulting encoding is, in general, of reasonable size (in many
cases, the number of variables does not exceed ten times the original one). The
same observation can be made on the number of clauses (see Figure 1 - right
hand side).

Figure 2 shows the size of the encoding with and without using Boolean gates.
As we can see, exploiting Boolean functions allows us to improve the encoding
both in the number of variables and clauses. All the dots are below the diagonal.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 100 1000 10000 100000 1e+06 1e+07

#V
ar

s
w

ith
 B

G
 (

T
ra

ns
.)

#Vars without BG (Trans.)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 100 1000 10000 100000 1e+06 1e+07 1e+08

#C
ls

 w
ith

 B
G

 (
T

ra
ns

.)

#Cls without BG (Trans.)

Fig. 2. Size of the Encoding With and Without Boolean Gates

On a representative sample of instances, Table 6 highlights some characteris-
tics of the original formula and of those obtained using our encodings. In column
1, 2 and 3, we report respectively the name of the instance, its number of vari-
ables (#vars) and clauses (#cls). Columns 4 and 5 provide the increasing factor

Enumerating Prime Implicants of Propositional Formulae 161

of the number of variables (×#vars) and clauses (×#cls) of the encoding with-
out using Boolean Gates (PI-Encoding). In column 6, we provide the number of
Boolean functions or Gates (#bg) detected from the original instance. The two
last columns show the increasing factor of the number of variables and clauses ob-
tained using our enhanced encoding (with Boolean gates - PI-Encoding+BG).

We ran the two prime implicant enumerators, primp (our encoding without
Boolean gates), mcsls (see Section 5) on the set of the 497 instances taken from
the 2012 MaxSAT evaluation. In the first experiment, we limit the size of the
output (number of prime implicants) to 10000 PIs and we compare the time
needed for each approach to output this number of PIs or all PIs of the formula
whenever it does not exceed 10000 PIs (with a time out of 1 hour). Figure 3,
provides a comparison between mcsls and our primp approach. One can see that
the majority of the dots are under the diagonal which illustrates the ability of
primp to efficiently generate prime implicants compared to mcsls.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

pr
im

p

mcsls

Fig. 3. mcls vs primp: CPU Time Needed to Compute � 10000 PIs

For a deeper analysis, we ran primp and mcsls with a time limit fixed to 1
hour. We compare the number of prime implicants found by each PIs enumerator.
In Figure 4, each dot (x, y) represents the number of prime implicants found
by mcsls (x) and primp (y). This experiment confirms the efficiency of our
approach. Indeed, the enumerator primp outperforms mcsls. Note that primp is
able to generate 10 times more prime implicants than mcsls on several instances.

In our last experiment, we evaluate our encoding enhanced with Boolean gates.
Figure 5, compares primp encoding (with and without Boolean gates) in terms
of CPU time (in seconds) needed to generate the first 10000 PIs, under a time
out of 1 hour. Note that the CPU time (seconds) includes the time needed for
recovering Boolean gates from the CNF formula. The results demonstrate that
exploiting Boolean functions makes significant improvements. Indeed, most of
the dots are above the diagonal. Dots that are near the diagonal correspond to
instances that involve a marginal number of Boolean functions.

162 S. Jabbour et al.

Table 1. Size of the Encoding: Highlighting Results

Original Instance PI-Encoding PI-Encoding+BG

instances #vars #cls ×(#vars) ×(#cls) #bg ×(#vars) ×(#cls)
normalized-f20c10b 020 area delay 4427 12489 3,89 6,46 2193 1,86 1,90
normalized-f20c10b 014 area delay 5256 15392 4,12 6,89 2537 1,86 1,97
normalized-fir09 area partials 5060 20159 6,11 22,60 4569 1,33 2,03
normalized-f20c10b 025 area delay 16199 117003 16,81 11,41 8329 14,20 6,52
normalized-fir04 area delay 741 1898 4,07 9,19 475 1,81 2,86
normalized-fir01 area opers 194 289 3,62 7,91 86 2,07 3,45
normalized-f20c10b 003 area delay 7343 22350 3,88 6,49 3292 1,80 1,80
normalized-fir05 area partials 556 1526 4,91 28,42 338 2,96 11,59
normalized-fir10 area partials 2091 7242 5,67 18,11 1618 2,21 4,63
normalized-m100 100 30 30.r 100 100 32,00 903,00 0 32,00 903,00
normalized-m50 100 70 70.r 100 50 37,00 4905,00 0 37,00 4905,00
normalized-max1024.pi 1317 936 5,97 49,08 0 5,97 49,08
normalized-m100 100 90 90.r 100 100 92,00 8103,00 0 92,00 8103,00
15tree801posib 39079 150154 6,46 6,79 35034 1,46 1,44
15tree201posib 38599 150827 6,64 6,89 34896 1,47 1,44
10tree515p 6738 25655 6,63 6,60 6241 1,42 1,40
15tree901p 38016 153438 6,92 7,01 35793 1,32 1,28
10tree315p 6666 25415 6,70 6,66 6147 1,44 1,42
normalized-s3-3-3-3pb 1124 2784 7,66 9,16 225 5,91 7,01
normalized-s3-3-3-2pb 1252 3112 7,71 9,20 267 5,94 7,04
normalized-hanoi4 1436 5388 4,94 4,13 550 2,81 2,28
normalized-ssa7552-159 2726 4323 2,51 3,79 2310 1,14 1,15
normalized-ii32e5 1044 12158 28,98 74,61 0 28,98 74,61
normalized-ii16b2 2152 17197 7,29 11,30 0 7,29 11,30
normalized-par32-2-c 2606 6509 7,56 8,89 372 6,92 8,12
normalized-ii32e3 660 5350 24,61 89,88 0 24,61 89,88
normalized-par32-4-c 2666 6659 7,57 8,90 372 6,95 8,14
normalized-ii32b2 522 2819 16,29 85,54 0 16,29 85,54
normalized-ii16b1 3456 26520 6,72 10,79 0 6,72 10,79
splitedReads 158.matrix 16983 41604 9,35 11,22 0 9,35 11,22
splitedReads 0.matrix 12962 41160 11,53 10,94 0 11,53 10,94
SU3 simp-genos.haps.72 6988 128835 30,75 6,14 1 30,75 6,14
simp-ibd 50.02 2763 41068 25,33 6,58 0 25,33 6,58
simp-ibd 50.04 3065 51631 29,10 6,69 0 29,10 6,69
simp-ibd 50.07 2917 45563 27,38 6,90 5 27,32 6,89
simp-test chr10 JPT 75 474 3045 12,43 6,85 0 12,43 6,85
1knt .5pti .g.wcnf.t 2236 2120121 2,00 1,00 0 2,00 1,00
2knt .5pti .g.wcnf.t 2184 2019521 2,00 1,00 0 2,00 1,00
6ebx .1era .g.wcnf.t 1666 1187871 2,00 1,00 0 2,00 1,00
3ebx .1era .g.wcnf.t 2548 2767158 2,00 1,00 0 2,00 1,00

Enumerating Prime Implicants of Propositional Formulae 163

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1000 10000 100000 1e+06

pr
im

p

mcsls

Fig. 4. mcsls vs primp : Number of Generated PIs in less than 1 hour

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

pr
im

p
w

ith
ou

t B
G

primp with BG

Fig. 5. primp with/without Boolean gates: CPU Time Needed to Compute � 10000
PIs

7 Conclusion and Future Works

In this paper, we propose a new approach for enumerating the set of prime
implicants (PIs) of a Boolean formula in conjunctive normal form (CNF). It re-
formulates the original PI generation problem as a model generation problem of
a new CNF formula. We also propose an essential interesting improvement of the
encoding using Boolean functions recovered from the original formula. A compar-
ative evaluation of our approach with an other alternative based PI generation
method show significant improvements on several classes of CNF instances. This
work open several issues for future research. We first plan to study how other
interesting Boolean functions such as equivalence chain and XOR constraints
can be recognized and integrated in our framework. Exploiting other structural
properties (e.g. monotone literals) might lead to further improvements. To be
exhaustive, we also plan to implement several other alternatives for computing
prime implicants.

164 S. Jabbour et al.

References

1. Acuña, V., Milreu, P.V., Cottret, L., Marchetti-Spaccamela, A., Stougie, L.,
Sagot, M.-F.: Algorithms and complexity of enumerating minimal precursor sets
in genome-wide metabolic networks. Bioinformatics 28(19), 2474–2483 (2012)

2. Audemard, G., Säıs, L.: Circuit based encoding of CNF formula. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 16–21. Springer,
Heidelberg (2007)

3. Boufkhad, Y., Gregoire, E., Marquis, P., Sais, L.: Tractable cover compilations. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-
gence (IJCAI 1997), pp. 122–127 (1997)

4. Cadoli, M., Donini, F.M.: A survey on knowledge compilation. AI Commun. 10(3-4),
137–150 (1997)

5. Castell, T.: Computation of prime implicates and prime implicants by a variant of
the Davis and Putnam procedure. In: ICTAI, pp. 428–429 (1996)

6. Coudert, O., Madre, J.: Fault tree analysis: 1020 prime implicants and beyond. In:
Reliability and Maintainability Symposium, pp. 240–245 (January 1993)

7. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res.
(JAIR) 17, 229–264 (2002)

8. de Kleer, J., Mackworth, A.K., Reiter, R.: Characterizing diagnoses. In: Proceed-
ings of the 8th National Conference on Artificial Intelligence (AAAI 1990), pp.
324–330 (1990)

9. Déharbe, D., Fontaine, P., Berre, D.L., Mazure, B.: Computing prime implicants.
In: FMCAD, pp. 46–52 (2013)

10. del Val, A.: Tractable databases: How to make propositional unit resolution com-
plete through compilation. In: Proceedings of the 4th International Conference
on Principles of Knowledge Representation and Reasoning (KR 1994), Bonn,
Germany, May 24-27, pp. 551–561 (1994)

11. Dutuit, Y., Rauzy, A.: Exact and truncated computations of prime implicants of
coherent and non-coherent fault trees within Aralia. Reliability Engineering and
System Safety 58(2), 127–144 (1997)

12. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

13. Fu, Z., Malik, S.: Extracting logic circuit structure from conjunctive normal form de-
scriptions. In: 20th International Conference on VLSI Design (VLSI Design 2007),
Sixth International Conference on Embedded Systems (ICES 2007), Bangalore,
India, January 6-10, pp. 37–42 (2007)

14. Ginsberg, M.: A circumscriptive theorem prover. In: Reinfrank, M., Ginsberg, M.L.,
de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346,
pp. 100–114. Springer, Heidelberg (1988)

15. Grégoire, É., Ostrowski, R., Mazure, B., Säıs, L.: Automatic extraction of func-
tional dependencies. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 122–132. Springer, Heidelberg (2005)

16. Gurvich, V., Khachiyan, L.: On generating the irredundant conjunctive and dis-
junctive normal forms of monotone boolean functions. Discrete Applied Mathe-
matics 96-97(1), 363–373 (1999)

17. Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT evaluations:
Contributed instances. JSAT 4(2-4), 239–250 (2008)

18. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

Enumerating Prime Implicants of Propositional Formulae 165

19. Manquinho, V.M., Flores, P., Marques-Silva, J., Oliveira, A.L.: Prime implicant
computation using satisfiability algorithms. In: Proc. of the IEEE International
Conference on Tools with Artificial Intelligence, pp. 232–239 (1997)

20. Manquinho, V.M., Oliveira, A.L., Marques-Silva, J.: Models and algorithms for
computing minimum-size prime implicants. In: Proc. International Workshop on
Boolean Problems, IWBP 1998 (1998)

21. Marques-Silva, J.: On computing minimum size prime implicants. In: International
Workshop on Logic Synthesis (1997)

22. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI (2013)

23. McCluskey Jr., E.J.: Minimization of boolean functions. Bell System Technical
Journal 35(6), 1417–1444 (1956)

24. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS, vol. 7857, pp. 86–101. Springer,
Heidelberg (2013)

25. Ostrowski, R., Grégoire, É., Mazure, B., Säıs, L.: Recovering and exploiting struc-
tural knowledge from CNF formulas. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 185–199. Springer, Heidelberg (2002)

26. Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumeration of prime
implicants. Artificial Intelligence 111(1-2), 41–72 (1999)

27. Pizzuti, C.: Computing prime implicants by integer programming. In: Proceedings
of the 8th International Conference on Tools with Artificial Intelligence, ICTAI,
pp. 332–336. IEEE Computer Society, Washington, DC (1996)

28. Quine, W.: On cores and prime implicants of truth functions. American Mathe-
matical Monthly, 755–760 (1959)

29. Quine, W.V.: The problem of simplifying truth functions. The American Mathe-
matical Monthly 59(8), 521–531 (1952)

30. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31–45. Springer,
Heidelberg (2004)

31. Roy, J.A., Markov, I.L., Bertacco, V.: Restoring circuit structure from SAT in-
stances. In: IWLS, Temecula Creek, CA, pp. 361–368 (June 2004)

32. Schrag, R.: Compilation for critically constrained knowledge bases. In: Proceedings
of the Thirteenth National Conference on Artificial Intelligence and Eighth Inno-
vative Applications of Artificial Intelligence Conference (AAAI 1996), pp. 510–515
(1996)

33. Slavkovik, M., Agotnes, T.: A judgment set similarity measure based on prime
implicants. In: Proceedings of the 13th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2014 (to appear, 2014)

34. Tison, P.: Generalized consensus theory and applications to the minimization of
boolean circuits. IEEE Transactions on Computers 16(4), 446–456 (1967)

35. Tseitin, G.: On the complexity of derivations in the propositional calculus. In: Sle-
senko, H. (ed.) Structures in Constructives Mathematics and Mathematical Logic,
Part II, pp. 115–125 (1968)

Improving the Normalization of Weight Rules
in Answer Set Programs�

Jori Bomanson, Martin Gebser��, and Tomi Janhunen

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science

Aalto University, FI-00076 AALTO, Finland

Abstract. Cardinality and weight rules are important primitives in answer set
programming. In this context, normalization means the translation of such rules
back into normal rules, e.g., for the sake of boosting the search for answers sets.
For instance, the normalization of cardinality rules can be based on Boolean cir-
cuits that effectively sort or select greatest elements amongst Boolean values. In
this paper, we develop further constructions for the normalization of weight rules
and adapt techniques that have been previously used to translate pseudo-Boolean
constraints into the propositional satisfiability (SAT) problem. In particular, we
consider mixed-radix numbers as an efficient way to represent and encode in-
teger weights involved in a weight rule and propose a heuristic for selecting a
suitable base. Moreover, we incorporate a scheme for structure sharing in the
normalization procedure. In the experimental part, we study the effect of normal-
izing weight rules on compactness and search performance measured in terms of
program size, search time, and number of conflicts.

1 Introduction

Cardinality and weight rules [38] are important primitives in answer set programming
(ASP) [11]. They enable more compact problem encodings compared to normal rules,
which formed the first syntax when the stable model semantics of rules was originally
proposed [22]. Stable models are also called answer sets, and the basic intuition of
ASP is to capture the solutions of the problem being solved as answer sets of a re-
spective logic program. There are two mainstream approaches to computing answer
sets for a logic program given as input. The first is represented by native answer set
solvers [3,15,21,29,38], which have direct implementations of extended rule types in
their data structures. The alternative, translation-based approach aims at transforming
rules into other kinds of constraints and using off-the-shelf solver technology such as
satisfiability (SAT) [9] solvers and their extensions for the actual search for answer sets
(see, e.g., [23,26,28,32,34]). Regardless of the approach to compute answer sets, the
normalization [10,26] of cardinality and weight rules becomes an interesting issue. In
this context, this means translating extended rules back into normal rules, e.g., in order

� The support from the Finnish Centre of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.

�� Also affiliated with the University of Potsdam, Germany

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 166–180, 2014.
c© Springer International Publishing Switzerland 2014

Improving the Normalization of Weight Rules in Answer Set Programs 167

to boost the search for answers sets. Normalization is also unavoidable if cardinality
and weight constraints are not directly expressible in the language fragment supported
by a back-end solver.

Intuitively, a cardinality rule with a head atom a, literals l1, . . . , ln in the body, and
a bound 1 ≤ k ≤ n allows the derivation of a if at least k literals out of l1, . . . , ln can
be satisfied by other rules. Existing approaches to normalize cardinality rules exploit
translations based on binary decision diagrams [16] as well as Boolean circuits that
effectively sort n Boolean values or select k greatest elements amongst them [5]. The
normalization schemes developed in [26] and [10] introduce of the order of k× (n−k)
or n × (log2 k)

2 rules, respectively. The latter scheme is typically more compact and,
as suggested by the experimental results in [10], also possibly faster when computing
answer sets. Weight rules are similar to cardinality rules but each literal li in the body is
assigned a positive (integer) weight wi and, typically, we have that k '

∑n
i=1 wi. The

sum of the weights associated with satisfied literals matters when it comes to checking
the bound k ≥ 0 and deriving the head atom a. Literals with different weights bring
about extra complexity and obvious asymmetry to the normalization of weight rules.
Nevertheless, since cardinality rules form a special case of weight rules (wi = 1 for
each li), it is to be expected that normalization schemes developed for cardinality rules
provide relevant primitives for the normalization of weight rules. Indeed, by introducing
suitable auxiliary atoms, a number of rules polynomial in n, log2 k, and log2(

∑n
i=1 wi)

will be sufficient.
The goal of this paper is to develop further constructions needed in the normalization

of weight rules. A natural idea is to adapt techniques that have been previously used to
translate pseudo-Boolean constraints into SAT. In particular, the sum of weights associ-
ated with satisfied literals is calculated stepwise as in the approach of [16]. In the purely
binary case, this means summing up the bits constituting weights, so either 0 or 1, for
satisfied literals, while propagating carry bits in increasing order of significance. This is
also feasible with merger and sorter programs developed in [10], as they provide carry
bits in a natural way. Since sorter programs consist of merger programs, we use the
latter as basic primitives in this paper.

It is also possible to go beyond the base 2 and introduce mixed-radix bases to encode
integer weights so that the number of digits to be summed gets smaller. In this paper,
we propose a heuristic for selecting a suitable base rather than doing a complete search
over all alternatives [12]. Moreover, to simplify the check for the bound k, we adopt
the idea from [7] and initialize the weight sum calculation with a preselected tare. As
a consequence, to perform the check it suffices to produce the most significant digit of
the sum. Finally, we incorporate a mechanism for structure sharing in the normalization,
which composes merger programs in a bottom-up fashion and shares structure whenever
possible, while trying to maximize such possibilities.

The paper is organized as follows. Section 2 provides an account of the syntax and
semantics of weight constraint programs, as well as a summary of principles for sim-
plifying weight rules before normalization. The basic primitives for the normalization
of weight rules, i.e., the merger programs discussed above, are introduced in Section 3,
together with sorter programs built on top. The normalizations themselves are then de-
veloped in Section 4, where several schemes arise since mixed-radix bases and structure

168 J. Bomanson, M. Gebser, and T. Janhunen

sharing are used. An experimental evaluation is carried out in Section 5, studying the
effects of the new normalization schemes using the state-of-the-art ASP solver CLASP

as back end. Related work and conclusions are discussed in Sections 6 and 7.

2 Preliminaries

In what follows, we briefly introduce the syntactic fragments of ASP addressed in this
paper, namely normal logic programs (NLPs) and weight constraint programs (WCPs).
Afterwards, we introduce mixed-radix notation for encoding finite domain numbers.

Normal logic programs are defined as finite sets of normal rules of the form

a← l1, . . . , ln. (1)

where a is a propositional atom (or an atom for short) and each li is a literal. Literals are
either positive or negative, i.e., simply atoms ‘b’ or their default negations ‘not c’, re-
spectively. Intuitively, the head atom a can be derived by the rule (1) whenever positive
literals in the body are derivable by other rules in a program but none of the negative
literals’ atoms is derivable. A weight rule allows for a more versatile rule body:

a← k ≤ [l1 = w1, . . . , ln = wn]. (2)

Each body literal li in (2) is assigned a weight wi. The weight wi is charged if li = b
is positive and b can be derived or li = not c is negative and c cannot be derived. The
head a is derived if the sum of satisfied literals’ weights is at least k. Also note that
cardinality rules addressed in [10] are obtained as a special case of (2) when wi = 1
for 1 ≤ i ≤ n, and it is customary to omit weights then. Weight constraint programs P
are defined as finite sets of normal and/or weight rules. A program P is called positive
if no negative literals appear in the bodies of its rules.

To introduce the answer set semantics of WCPs, we write At(P) for the signature of
a WCP P , i.e., a set of atoms to which all atoms occurring in P belong to. A positive
literal a ∈ At(P) is satisfied in an interpretation I ⊆ At(P) of P , denoted I |= a, iff
a ∈ I . A negative literal ‘not a’ is satisfied in I , denoted I |= not a, iff a �∈ I . The
body of (1) is satisfied in I iff I |= l1, . . . , I |= ln. Similarly, the body of (2), which
contains the weighted literals l1 = w1, . . . , ln = wn, is satisfied in I iff the weight sum∑

1≤i≤n, I|=li
wi ≥ k. (3)

A rule (1), or alternatively (2), is satisfied in I iff the satisfaction of the body in I
implies a ∈ I . An interpretation I ⊆ At(P) is a (classical) model of a program P ,
denoted I |= P , iff I |= r for every rule r ∈ P . A model M |= P is ⊆-minimal iff
there is no M ′ |= P such that M ′ ⊂M . Any positive program P is guaranteed to have
a unique minimal model, the least model denoted by LM(P).

For a WCP P and an interpretation M ⊆ At(P), the reduct of P with respect
to M , denoted by PM , contains (i) a positive rule a ← b1, . . . , bn for each normal
rule a ← b1, . . . , bn, not c1, . . . , not cm of P such that M �|= c1, . . . ,M �|= cm [22]
and (ii) a weight rule a ← k′ ≤ [b1 = w1, . . . , bn = wn] for each weight rule

Improving the Normalization of Weight Rules in Answer Set Programs 169

a ← k ≤ [b1 = w1, . . . , bn = wn, not c1 = wn+1, . . . , not cm = wn+m] of P , where
k′ = max{0, k−

∑
1≤i≤m, ci /∈M wn+i} is the new lower bound [38]. Given that PM is

positive by definition, an interpretation M ⊆ At(P) of a WCP P is defined as a stable
model of P iff M = LM(PM) [22,38]. The set of stable models, also called answer
sets, of a WCP P is denoted by SM(P).

Example 1. Consider a WCP P consisting of the following three rules:

a← 5 ≤ [b = 4, not c = 2]. b← 1 ≤ [not d = 1]. c← 2 ≤ [a = 1, c = 2].

Given M1 = {a, b}, the reduct PM1 consists of a ← 3 ≤ [b = 4], b ← 0 ≤ [], and
c ← 2 ≤ [a = 1, c = 2]. As LM(PM1) = {a, b} = M1, M1 is a stable model of P .
But M2 = {a, b, c} is not stable because LM(PM2) = {b} �= M2. �

Since the body of a weight rule (2) can be satisfied by particular subsets of literals,
it is to be expected that the normalization of the rule can become a complex operation
in the worst case. Thus it makes sense to simplify weight rules before the actual nor-
malization is performed. In the following, we provide a summary of useful principles
in this respect. Some of them yield normal rules as by-product of simplification.

1. Simplify weights: if the weights w1, . . . , wn in (2) have a greatest common divisor
(GCD) d > 1, replace them by w1/d, . . . , wn/d and the bound k by)k/d*.

2. Normalize directly: if the sum s =
∑n

i=1 wi ≥ k but s−wi < k for each 1 ≤ i ≤ n,
all body literals are necessary to reach the bound, and (2) can be rewritten as a
normal rule (1) by dropping the weights and the bound altogether.

3. Remove inapplicable rules: if
∑n

i=1 wi < k, remove the rule (2) altogether.
4. Remove dominating literals: if the body of (2) contains a literal li with wi ≥ k, add

a normal rule a← li and remove li = wi from the body.

Example 2. Let us reconsider the weight rules from Example 1. The weights of the first
rule have the GCD d = 2, and the division yields a ← 3 ≤ [b = 2, not c = 1], which
can be directly normalized as a ← b, not c. Similarly, the second rule can be directly
normalized as b ← not d. The third rule has a dominating literal c = 2, which yields
a normal rule c ← c. Such a tautological rule can be removed immediately. Since the
remainder c ← 2 ≤ [a = 1] is inapplicable, only two normal rules a ← b, not c and
b← notd are left, and it is easy to see that {a, b} is their unique stable model. �

A mixed-radix base B is a sequence b1, . . . , bm of positive integers. Special cases of
such include the binary and decimal bases, 〈2, 2, . . .〉 and 〈10, 10, . . .〉. In this paper, we
deal with finite-length mixed-radix bases only and refer to them simply as bases. The
radices b1, . . . , bm are indexed from the least significant, b1, to the most significant,
bm, and we denote the integer at a given radix position i by B(i) = bi. The length m is
accessed with |B|. We define the ith place value of B as Π(i) =

∏i−1
j=1 B(j). By wi

B ,
we refer to the ith digit of an integer w in B. A mixed-radix literal H in base B is a
sequence of sequences of literals H = H1, . . . , H|B|, where each Hi = hi,1, . . . , hi,ni

captures the ith digit of the encoded value. Any such literal digit Hi represents a
unary digit vM (Hi) ∈ {0, . . . , ni} given by the satisfied literals hi,1, . . . , hi,j for
0 ≤ j ≤ ni in a model M . In turn, we write vM (H) for the value of H calculated

170 J. Bomanson, M. Gebser, and T. Janhunen

Merger6,5

Sorter6 Sorter5

Fig. 1. A recursively constructed merge-sorter on the left, a corresponding unrolled merge-sorter
on the top right, and an alternative merge-sorter on the bottom right. On the left and top right, in-
puts are split approximately in halves. On the bottom right, mergers are mainly laid-out for some
power of two many inputs. Other splitting approaches are possible and investigated in Section 4.

as
∑|B|

i=1 (vM (Hi)×Π(i)). Finally, we distinguish unique mixed-radix literals with
ni = B(i) − 1 for 1 ≤ i ≤ |B|, which represent each value uniquely, whereas non-
unique mixed-radix literals can generally express a value by several combinations of
digits. In the sequel, we make explicit when uniqueness is expected.

3 Merger and Sorter Programs

Sorting operations for, e.g., the normalization of cardinality rules are compactly im-
plementable with the well known merge-sorting scheme, illustrated in Figure 1, where
an input sequence of literals is recursively split in halves, sorted, and the intermediate
results merged. Due to the ordered inputs, merging can be implemented in n2 rules [7]
without introducing any auxiliary atoms. A more efficient alternative that has been suc-
cessfully applied in ASP [10] is Batcher’s odd-even merger [8], which requires of the
order of n× log2 n atoms and rules. Furthermore, the variety of options for primitives
has been leveraged in practice by parametrizing the decision of when to apply which
scheme [1]. For simplicity, we below abbreviate sequences of literals by capital letters.
For instance, letting L be b, not c, we write a ← 2 ≤ [L, notd] as a shorthand for
a ← 2 ≤ [b, not c, not d]. The basic building blocks used in this work are mergers,
and in the following we specify the behavior required by them. To this end, we rely on
visible strong equivalence [10,27], denoted by P ≡vs P

′ for two programs P and P ′.

Definition 1. Given three sequences H1 = h1, . . . , hn, H2 = hn+1, . . . , hn+m, and
S = s1, . . . , sn+m of atoms, we call any NLP P a merger program, also referred to by
Merger(H1, H2, S), if P ∪ Q ≡vs {sk ← k ≤ [H1, H2]. | 1 ≤ k ≤ n +m} ∪ Q for
Q = {hi ← hi+1. | 1 ≤ i < n+m, i �= n}.

The role of Q in the above definition is to deny interpretations in which H1 or H2 is un-
ordered and does not correspond to a unary digit, as presupposed for merging. In order
to drop this restriction, a merge-sorter can be conceived as a binary tree with mergers

Improving the Normalization of Weight Rules in Answer Set Programs 171

as inner nodes and literals as leaves, as shown on the right in Figure 1. Starting from
trivial sequences at the lowest level, successive merging then yields a sorted output.

Definition 2. Given a sequence L = l1, . . . , ln of literals and a sequence S = s1, . . . ,
sn of atoms, we call any NLP P a sorter program, also referred to by Sorter(L, S), if
P ≡vs {sk ← k ≤ [L]. | 1 ≤ k ≤ n}.

Compared to a merger program, a sorter program does not build on preconditions and
derives a unary digit representation for an arbitrary sequence of input literals.

4 Normalizing Weight Rules

In this section, we extend the translation of [7] to normalize WCPs into NLPs. To this
end, we decompose normalization into parallel sorting tasks and a sequence of merging
tasks. For the former subtasks, we generalize sorting to weight sorting.

Example 3. Let us consider a WCP P composed of the single rule

a← 6 ≤ [b = 2, c = 4, d = 3, e = 3, f = 1, g = 4].

The NLP realization of Sorter17(〈b, b, c, c, c, c, d, d, d, e, e, e, f,
g, g, g, g〉, 〈s1, . . . , s17〉) displayed in Figure 2, augmented with
the rule a ← s6, gives a plausible yet unnecessarily large nor-
malization of P . This scheme, implemented via merge-sorting
without simplifications by calling lp2normal2 -ws -r (cf.
Section 5), results in 116 rules. Omitting the -r flag enables
simplifications and reduces the number of rules to 53. For com-
parison, the translation described in the sequel leads to 16 rules
only. While outcomes like this may seem to discourage unary
weight sorting, it still permits compact constructions for rules
with small weights and, in particular, cardinality rules. �

4
3
3
1
4

2

=

=

=
=
=

Sorter17

=
d
e
f
g

b
c

Fig. 2: Weight sorting

Returning to the general translation, we now describe the first constituent, addressing
the calculation of a digit-wise sum of satisfied input weights in a chosen mixed-radix
base B. Given a sequence L = l1, . . . , ln of literals and a sequence W = w1, . . . , wn

of weights, we below write L = W as a shorthand for l1 = w1, . . . , ln = wn. Similarly,
L = W i

B abbreviates l1 = (w1)
i
B , . . . , ln = (wn)

i
B for 1 ≤ i ≤ |B|, associating the

literals in L with the ith digits of their weights in B. Moreover, we refer to a program
for weight sorting, such as Sorter17 in Example 3, by WSorter.

Definition 3. Given a sequence L = W of weighted literals and a mixed-radix base B,
a digit-wise sorter into the non-unique mixed-radix literal H is the program

WDigitwiseSorterB(L = W,H) =
⋃|B|

i=1WSorter(L = W i
B, Hi). (4)

Equation (4) reveals the substeps of decomposing an input expression L = W into
digit-wise bucket expressions L = W i

B , which are then subject to weight sorting. The
result is a potentially non-unique mixed-radix literal H encoding the weight sum. An
example of a digit-wise sorter is shown in Figure 3.

172 J. Bomanson, M. Gebser, and T. Janhunen

13
7
1
11
19
19
10
13
6
13
3
4

0× 12 3× 6 3× 3
5× 1

=
=
=
=
=
=
=
=
=
=
=
=

not
not
not
not
not

Sorter5 Sorter6 Sorter4 Sorter11

b
c
d
e
f
g
h
i
j
k
l
m

1001B
101B
1B

112B
1101B
1101B
111B
1001B
100B
1001B
10B
11B

Fig. 3. Structure of a WDigitwiseSorterB program for the weighted literals displayed on the left
in base B = 3, 2, 2, 10. Filled markers designate derivations stemming from the input literals c,
d, e, not j, not l, and notm, satisfied in some interpretation M . From right to left, the sorters
yield multiples of Π(1) = 1, Π(2) = 3, Π(3) = 6, and Π(4) = 12. The output mixed-radix
literal H represents vM (H) = 0× 12+ 3× 6+ 3× 3+ 5× 1 = 7+1+11+ 6+3+4 = 32.

The second part of the translation incorporates carries from less to more significant
digits in order to derive the weight sum uniquely and accurately. In the following, we
denote the sequence sd, s2d, . . . , sd�n/d�, involving every dth element of a literal digit
S = s1, . . . , sn, by S/d.

Definition 4. Given a mixed-radix literal H = H1, . . . , H|B| in base B, a carry merger
into the sequence S = S1, . . . , S|B| of literal digits, where S1 = H1, is the program

WCarryMergerB(H,S) =
⋃|B|

i=2Merger(Si−1/B(i− 1), Hi, Si). (5)

The intended purpose of the program in (5) is to produce the last digit S|B| of S, while
S1, . . . , S|B|−1 are intermediate results. The role of each merger is to combine carries
from Si−1 with the unary input digit Hi at position i. To account for the significance
gap B(i−1) between Si−1 and Hi, the former is divided by B(i−1) in order to extract
the carry. An example carry merger is shown in Figure 4.

The digit-wise sorter and carry merger fit together to form a normal program to sub-
stitute for a weight rule. To this end, we follow the approach of [7] and first determine a
tare t by which both sides of the inequality in (3) are offset. The benefit is that only the
most significant digit in B of a weight sum is required for checking the lower bound k.
This goal is met by the selection t = ()k/Π(|B|)* ×Π(|B|))− k. Equipped with this
choice for the tare t, we define the following program for weight rule normalization.

Improving the Normalization of Weight Rules in Answer Set Programs 173

Merger6,3

Merger4,3

Merger5,4

0× 12 3× 6 3× 3

1× 3

2× 6

5× 1

2× 12

4× 3

5× 6

2× 12

Fig. 4. Structure of a WCarryMergerB program for deriving a unique, most significant literal
digit S|B| from digit-wise sums Hi in Figure 3. Each merger for 1 < i ≤ |B| combines Hi with
carries, extracted from an intermediate literal digit Si−1 by means of the division Si−1/B(i−1).
For instance, in view of B(1) = 3, every third bit of S1 = H1 is used as carry for deriving S2.

Definition 5. Given a weight rule a ← k ≤ [L = W] and a mixed-radix base B, a
weight sorting network is the program

WSortingNetworkB,k(L = W,a) = WDigitwiseSorterB([L = W,
 = t], H)

∪ WCarryMergerB(H,S)

∪ {a← S|B|,�k/Π(|B|)�. }.
(6)

In the above, the symbol
 stands for an arbitrary fact, and H and S for auxiliary
(hidden) mixed-radix literals capturing the outputs of the utilized subprograms. In view
of the tare t, the last rule in (6) merely propagates the truth value of a single output
bit from the most significant literal digit S|B| to the original head atom a. Definition 5
readily leads to a weight rule normalization once a base B is picked, and we can then
substitute a weight rule (2) with WSortingNetworkB,k([l1 = w1, . . . , ln = wn], a).

The so far presented translation is an ASP variant of the Global Polynomial Watch-
dog [7] encoding, modified to use mixed-radix bases. In what follows, we describe two
novel additions to the translation. We give a heuristic for base selection, which is differ-
ent from the more or less exhaustive methods in [12,16]. Also, we provide a structure
sharing approach to compress the digit-wise sorter component of the translation.

We perform mixed-radix base selection for a weight rule (2) by choosing radices
one by one from the least to the most significant position. The choices are guided by
heuristic estimates of the resulting translation size. In the following, we assume, for
simplicity, that max{w1, . . . , wn} ≤ k ≤

∑n
j=1 wj , as guaranteed for example by the

simplifications described in Section 2. Furthermore, the order of the size of sorters and

174 J. Bomanson, M. Gebser, and T. Janhunen

Algorithm 1. Plan Structure Sharing
1: function PLAN(L =W,B)

2: let C ← {[l(w1)
i
B

1 , . . . , l
(wn)iB
n] | 1 ≤ i ≤ |B|}

3: while ∃S ∈ C : ∃x, y ∈ S : x �= y

4: let (x, y)← argmax
x,y∈

⋃
C

∑
S∈C

{
#S(x)×#S(y) if x �= y

(#S(x)× (#S(x)− 1))/2 if x = y

5: let z ← [x, y]
6: for each S ∈ C
7: let j ← min{#S(x),#S(y)}

8: update S ←
{
(S \ [xj , yj]) ∪ [zj] if x �= y

(S \ [x2�j/2�]) ∪ [z�j/2�] if x = y

9: return C

mergers used as primitives is denoted by z(n) = n×(log2 n)
2. To select the ith radix bi,

we consider B = b1, . . . , bi−1,∞. Then, in terms of kiB , W i
B = (w1)

i
B, . . . , (wn)

i
B ,

and s =
∑n

j=1

(
(wj)

i
B mod b

)
, we pick

bi ← argmax
b is prime, b≤max

{2,(w1)
i
B ,...,(wn)

i
B}

(
z(s) + z

(
n/2 + min

{
)s/b* ,

⌊
kiB/b

⌋}
+ 1

)
+ z (3/4× n)× log2(1/(2× n× b)×

∑n
j=1(wj)

i
B)

)
.

The idea of the three addends is to generously estimate the size of primitives directly
entailed by the choice of a prime b, the size of immediately following components,
and the size of the entire remaining structure. Radices are picked until

∏i
j=1 bj >

max{w1, . . . , wn}, after which the selection finishes with the base B = b1, . . . , bi−1,

)(
∑n

j=1 wj)/
∏i−1

j=1 bi*+1. In Section 5, we compare the effect of heuristically chosen
mixed-radix bases with binary bases having bj = 2 for 1 ≤ j < i.

The digit-wise sorter in (4) consists of sorters that, when implemented via merge-
sorting, form a forest of mergers on a common set of leaves. The mergers, i.e., inner
nodes of the forest, produce sorted sequences based on bucket expressions. This paves
the way for structure sharing. Namely, many of these mergers may coincide in terms of
their output, and consequently parts of the combined subprograms that would otherwise
be replicated can be reused instead. Respective savings are for instance achievable by
structural hashing [16].

Our approach advances sharing, taking into account that there is a large degree of
freedom in how a single merge-sorter is constructed. In fact, we may choose to split a
sequence of input bits at various positions, not only in the middle, as shown on the right
in Figure 1. Choices regarding such partitions generally lead to different amounts of
reusable, coinciding structure. To this end, we propose Algorithm 1 to greedily ex-
pand opportunities for structure sharing. Thereby, we denote a multiset S on a set
X = {x1, . . . , xn} of ground elements with respective multiplicities i1, . . . , in by
[xi1

1 , . . . , xin
n]. The multiplicity ij of xj ∈ X is referred to by #S(xj), and xj is

said to have ij occurrenes in S. The superscript ij can be omitted from x
ij
j if ij = 1.

Furthermore, we write x ∈ S iff x ∈ X and #S(x) > 0. At the beginning of the

Improving the Normalization of Weight Rules in Answer Set Programs 175

algorithm, the bucket expressions L = W i
B are gathered into a collection C of multi-

sets, where the literals L = l1, . . . , ln form the common ground elements and the digits
W i

B = (w1)
i
B , . . . , (wn)

i
B give the multiplicities for 1 ≤ i ≤ |B|. Then, iteratively,

pairs (x, y) of elements with heuristically maximal joint occurrences in C are selected
to form new multisets z replacing common occurrences of (x, y) in each S ∈ C. The
introduced multisets z are in the sequel handled like regular ground elements, and the
algorithm proceeds until every S ∈ C consists of a single multiset. The resulting collec-
tion C will generally comprise nested multisets, which we interpret as a directed acyclic
graph, intuitively consisting of a number of overlaid trees with the literals l1, . . . , ln as
leaves, multisets z as roots, and inner nodes giving rise to mergers.

Example 4. Considering the weighted literals a = 9, b = 3, c = 7, d = 2, e = 5, f = 4
and the base B = 2, 2, 9, Algorithm 1 yields the following merge-sorter structure:

C ← {[a, b, c, e], [b, c, d], [a2, c, e, f]},
C ← {[[a, e], b, c], [b, c, d], [a, [a, e], c, f]},
C ← {[[a, e], [b, c]], [[b, c], d], [a, [a, e], c, f]},

...

C ← {[[[a, e], [b, c]]], [[[b, c], d]], [[[a, [a, e]], [c, f]]]}. �

5 Experiments

The weight rule normalization techniques described in the previous section are imple-
mented in the translation tool LP2NORMAL2 (v. 1.10).1 In order to evaluate the effects
of normalization, we ran LP2NORMAL2 together with the back-end ASP solver CLASP

(v. 3.0.4) [21] on benchmarks stemming from five different domains: Bayesian network
structure learning [14,25], chordal Markov network learning [13], the Fastfood logis-
tics problem [10], and the Incremental scheduling and Nomystery planning tasks from
the 4th ASP Competition [4]. The first two domains originally deal with optimization,
and we devised satisfiable as well as unsatisfiable decision versions by picking the ob-
jective value of an optimum or its decrement (below indicated by the suffixes “Find”
and “Prove”) as upper bound on solution cost. The other three domains comprise gen-
uine decision problems in which weight constraints restrict the cost of solutions. All
experiments were run sequentially on a Linux machine with Intel Xeon E5-4650 CPUs,
imposing a CPU time limit of 20 minutes and a memory limit of 3GB RAM per run.

Table 1 provides runtimes in seconds, numbers of constraints, and conflicts reported
by CLASP, summing over all instances of a benchmark class and in total, for different
weight rule implementations. In the native configuration, weight rules are not normal-
ized but handled internally by CLASP [20]. Different translations by LP2NORMAL2 in
the third to sixth column vary in the use of mixed-radix or binary bases as well as
the exploitation of structure sharing. Furthermore, results for the Sequential Weight
Counter (SWC) normalization scheme, used before in ASP [18] as well as SAT [24],

1 Available with benchmarks at http://research.ics.aalto.fi/software/asp.

http://research.ics.aalto.fi/software/asp

176 J. Bomanson, M. Gebser, and T. Janhunen

Table 1. Sums of runtimes, numbers of constraints, and conflicts encountered by CLASP

Instances Mixed Binary
↓ Benchmark Native Shared Independent Shared Independent SWC

11 Bayes-Find 202 30 164 246 165 1,721
Constraints 34,165 347,450 417,768 325,033 353,381 4,948,058
Conflicts 12,277,288 181,957 822,390 1,056,764 868,056 616,930

11 Bayes-Prove 1,391 492 1,316 631 890 2,587
Constraints 34,165 344,637 414,967 322,212 350,596 4,947,717
Conflicts 52,773,713 1,393,935 3,293,955 1,933,103 3,165,312 1,459,105

11 Markov-Find 2,426 2,770 1,845 2,682 2,966 5,224
Constraints 1,580,164 2,176,067 2,296,063 2,309,147 2,436,769 36,699,300
Conflicts 1,771,663 1,276,599 1,092,467 1,130,776 1,178,797 318,771

11 Markov-Prove 2,251 3,294 3,428 3,255 3,229 5,402
Constraints 1,580,164 2,182,157 2,302,171 2,307,991 2,435,603 36,694,525
Conflicts 1,806,525 1,788,800 1,720,270 1,521,272 1,452,042 317,555

38 Fastfood 10,277 12,843 14,156 13,756 13,479 17,867
Constraints 928,390 2,880,725 3,640,856 2,826,606 3,667,538 11,860,656
Conflicts 122,423,130 47,566,085 42,794,938 44,148,615 49,035,512 8,940,612

12 Inc-Scheduling 257 1,340 1,330 1,481 1,581
Constraints 2,304,166 7,161,226 8,166,527 7,274,513 8,570,210
Conflicts 82,790 127,628 134,987 218,224 173,849

15 Nomystery 4,907 4,236 3,332 4,290 3,512 4,739
Constraints 845,321 1,678,580 2,330,329 1,725,458 2,459,603 5,115,156
Conflicts 10,765,572 3,216,072 2,161,566 3,207,353 2,092,378 2,047,501

109 Summary 21,715 25,009 25,576 26,345 25,827
Constraints 7,306,535 16,770,842 19,568,681 17,090,960 20,273,700
Conflicts 201,900,681 55,551,076 52,020,573 53,216,107 57,965,946

109 Summary 21,715 24,758 26,611 26,524 26,063
without 7,306,535 17,279,805 21,632,440 17,665,922 22,358,451
simplification 201,900,681 52,264,536 46,809,044 56,247,153 51,814,629

are included for comparison. All normalization approaches make use of the weight rule
simplifications described in Section 2. The last three rows, however, give accumulated
results obtained without simplifications. The summaries exclude the SWC scheme,
which works well on “small” weight rules but leads to significant size increases on large
ones, as it exceeds the time and memory limits on Incremental scheduling instances.

Considering the benchmark classes in Table 1, normalization has a tremendous ef-
fect on the search performance of CLASP for the Bayesian network problems. Although
the number of constraints increases roughly by a factor of 10, CLASP encounters about
two orders of magnitude fewer conflicts on satisfiable as well as unsatisfiable instances
(indicated by “Find” or “Prove”). In particular, we observe advantages due to using
mixed-radix bases along with structure sharing. On the Markov network instances, the
size increase but also the reduction of conflicts by applying the normalization schemes
presented in Section 4 are modest. As a consequence, the runtimes stay roughly the
same as with native weight rule handling by CLASP. Interestingly, the SWC scheme is

Improving the Normalization of Weight Rules in Answer Set Programs 177

able to significantly reduce the number of conflicts, yet the enormous size outweighs
these gains. The Fastfood instances exhibit similar effects, that is, all normalization ap-
proaches lead to a reduction of conflicts, but the increased representation size inhibits
runtime improvements. Unlike with the other problems, normalizations even deteriorate
search in Incremental scheduling, and the additional atoms and constraints they intro-
duce increase the number of conflicts. With the SWC scheme, the resulting problem
size is even prohibitive here. These observations emphasize that the effects of normal-
ization are problem-specific and that care is needed in deciding whether to normal-
ize or not. In fact, normalizations turn again out to be helpful on Nomystery planning
instances. Somewhat surprisingly, both with mixed-radix and binary bases, the omis-
sion of structure sharing leads to runtime improvements. Given the heuristic nature of
structure sharing, it can bring about side-effects, so that it makes sense to keep such
techniques optional.

In total, we conclude that the normalization approaches presented in Section 4 are
practicable and at eye level with the native handling by CLASP. Although the problem
size increases, the additional structure provided by the introduced atoms sometimes
boosts search in terms of fewer conflicts, and the basic format of clausal constraints
also makes them cheaper to propagate than weight rules handled natively. Advanced
techniques like using mixed-radix instead of binary bases as well as structure sharing
further improve the solving performance of CLASP on normalized inputs. Finally, taking
into account that ASP grounders like GRINGO [19] do not themselves “clean up” ground
rules before outputting them, the last three rows in Table 1 also indicate a benefit in
terms of numbers of constraints due to simplifying weight rules a priori.

6 Related Work

Extended rule types were introduced in the late 90’s [37], at the time when the paradigm
of ASP itself was shaping up [30,33,35]. The treatment of weight rules varies from
solver to solver. Native solvers like CLASP [20], DLV [17], IDP [41], SMODELS [38],
and WASP2 [3] (where respective support is envisaged as future work) have internal data
structures to handle weight rules. On the other hand, the CMODELS system [23] relies on
translation [18] (to nested rules [31]). However, the systematic study of normalization
approaches for extended rules was initiated with the LP2NORMAL system [26]. New
schemes for the normalization of cardinality rules were introduced in [10], and this
paper presents the respective generalizations to weight rules.

Weight rules are closely related to pseudo-Boolean constraints [36], and their nor-
malization parallels translations of pseudo-Boolean constraints into plain SAT. The lat-
ter include adder circuits [16,40], binary decision diagrams [2,6,16,24,39], and sorting
networks [7,16]. The normalization techniques presented in this paper can be under-
stood as ASP adaptions and extensions of the Global Polynomial Watchdog [7] en-
coding of pseudo-Boolean constraints. Techniques for using mixed-radix bases [12,16]
and structure sharing [2,16] have also been proposed in the context of SAT translation
approaches. However, classical satisfiability equivalence between pseudo-Boolean con-
straints and their translations into SAT does not immediately carry forward to weight
rules, for which other notions, such as visible strong equivalence [27], are needed to

178 J. Bomanson, M. Gebser, and T. Janhunen

account for the stable model semantics. Boolean circuits based on monotone operators
yield normalization schemes that preserve stable models in the sense of visible strong
equivalence. In particular, this applies to the merger and sorter programs from [10].

7 Conclusions

We presented new ways to normalize weight rules, frequently arising in ASP appli-
cations. To this end, we exploit existing translations from pseudo-Boolean constraints
into SAT and adapt them for the purpose of transforming weight rules. At the technical
level, we use merger and sorter programs from [10] as basic primitives. The normaliza-
tion schemes based on them combine a number ideas, viz. mixed-radix bases, structure
sharing, and tares for simplified bound checking. Such a combination is novel both in
the context of ASP as well as pseudo-Boolean satisfiability.

Normalization is an important task in translation-based ASP and, in particular, if a
back-end solver does not support cardinality and weight constraints. Our preliminary ex-
periments suggest that normalization does not deteriorate solver performance although
the internal representations of logic programs are likely to grow. The decision versions
of hard optimization problems exhibit that normalization can even boost the search for
answer sets by offering suitable branch points for the underlying branch&bound algo-
rithm. It is also clear that normalization pays off when a rule under consideration forms
a corner case (cf. Section 2). For a broad-scale empirical assessment, we have submitted
a number of systems exploiting normalization techniques developed in this paper to the
5th ASP Competition (ASPCOMP 2014).

As regards future work, there is a quest for selective normalization techniques that
select a scheme on the fly or decide not to normalize, given the characteristics of a
weight rule under consideration and suitable heuristics. The current implementation of
LP2NORMAL2 already contains such an automatic mode.

References

1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A parametric approach for
smaller and better encodings of cardinality constraints. In: Schulte, C. (ed.) CP 2013. LNCS,
vol. 8124, pp. 80–96. Springer, Heidelberg (2013)

2. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Mayer-Eichberger, V.: A
new look at BDDs for pseudo-Boolean constraints. Journal of Artificial Intelligence Re-
search 45, 443–480 (2012)

3. Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on WASP 2.0. In: NMR 2014 (2014)
4. Alviano, M., et al.: The fourth answer set programming competition: Preliminary report. In:

Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 42–53. Springer, Heidel-
berg (2013)

5. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: A
theoretical and empirical study. Constraints 16(2), 195–221 (2011)

6. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo Boolean constraints to SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2(1-4), 191–200 (2006)

7. Bailleux, O., Boufkhad, Y., Roussel, O.: New encodings of pseudo-Boolean constraints into
CNF. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 181–194. Springer, Heidelberg
(2009)

Improving the Normalization of Weight Rules in Answer Set Programs 179

8. Batcher, K.: Sorting networks and their applications. In: AFIPS 1968, pp. 307–314. ACM
(1968)

9. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS
(2009)

10. Bomanson, J., Janhunen, T.: Normalizing cardinality rules using merging and sorting con-
structions. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 187–199.
Springer, Heidelberg (2013)

11. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

12. Codish, M., Fekete, Y., Fuhs, C., Schneider-Kamp, P.: Optimal base encodings for pseudo-
Boolean constraints. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605,
pp. 189–204. Springer, Heidelberg (2011)

13. Corander, J., Janhunen, T., Rintanen, J., Nyman, H., Pensar, J.: Learning chordal Markov
networks by constraint satisfaction. In: Advances in Neural Information Processing Systems
26, NIPS 2013, pp. 1349–1357 (2013)

14. Cussens, J.: Bayesian network learning with cutting planes. In: UAI 2011, pp. 153–160.
AUAI (2011)

15. De Cat, B., Bogaerts, B., Bruynooghe, M., Denecker, M.: Predicate logic as a modelling
language: The IDP system. CoRR abs/1401.6312 (2014)

16. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2(1-4), 1–26 (2006)

17. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6),
545–580 (2008)

18. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5(1-2), 45–74 (2005)

19. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam answer set solving collection. AI Communications 24(2), 107–124
(2011)

20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight con-
straint rules in conflict-driven ASP solvers. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009.
LNCS, vol. 5649, pp. 250–264. Springer, Heidelberg (2009)

21. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187, 52–89 (2012)

22. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP
1988, pp. 1070–1080. MIT (1988)

23. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

24. Hölldobler, S., Manthey, N., Steinke, P.: A compact encoding of pseudo-Boolean constraints
into SAT. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS, vol. 7526, pp. 107–118. Springer,
Heidelberg (2012)

25. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network structure
using LP relaxations. In: AISTATS 2010, pp. 358–365. JMLR (2010)

26. Janhunen, T., Niemelä, I.: Compact translations of non-disjunctive answer set programs
to propositional clauses. In: Balduccini, M., Son, T.C. (eds.) Gelfond Festschrift. LNCS
(LNAI), vol. 6565, pp. 111–130. Springer, Heidelberg (2011)

27. Janhunen, T., Niemelä, I.: Applying visible strong equivalence in answer-set program trans-
formations. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Lifschitz Festschrift. LNCS,
vol. 7265, pp. 363–379. Springer, Heidelberg (2012)

180 J. Bomanson, M. Gebser, and T. Janhunen

28. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to differ-
ence logic. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp.
142–154. Springer, Heidelberg (2009)

29. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

30. Lifschitz, V.: Answer set planning. In: ICLP 1999, pp. 23–37. MIT (1999)
31. Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Annals of Mathe-

matics and Artificial Intelligence 25(3-4), 369–389 (1999)
32. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-

cial Intelligence 157(1-2), 115–137 (2004)
33. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.

In: The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398. Springer (1999)
34. Nguyen, M., Janhunen, T., Niemelä, I.: Translating answer-set programs into bit-vector logic.

In: Tompits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP 2011. LNCS (LNAI), vol. 7773, pp. 95–113. Springer, Heidelberg (2013)

35. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

36. Roussel, O., Manquinho, V.: Pseudo-Boolean and cardinality constraints. In: Handbook of
Satisfiability, pp. 695–733. IOS (2009)

37. Simons, P.: Extending the stable model semantics with more expressive rules. In: Gelfond,
M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 305–316.
Springer, Heidelberg (1999)

38. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

39. Tamura, N., Banbara, M., Soh, T.: PBSugar: Compiling pseudo-Boolean constraints to SAT
with order encoding. In: PoS 2013 (2013)

40. Warners, J.: A linear-time transformation of linear inequalities into conjunctive normal form.
Information Processing Letters 68(2), 63–69 (1998)

41. Wittocx, J., Denecker, M., Bruynooghe, M.: Constraint propagation for first-order logic and
inductive definitions. ACM Transactions on Computational Logic 14(3), 17:1–17:45 (2013)

Logical Foundations of Possibilistic Keys

Henning Koehler1, Uwe Leck2, Sebastian Link3, and Henri Prade4

1 School of Engineering & Advanced Technology, Massey University, New Zealand
2 University of Wisconsin-Superior, Superior, WI, U.S.A.

3 Department of Computer Science, University of Auckland, New Zealand
4 IRIT, CNRS and Université de Toulouse III, France

h.koehler@massey.ac.nz,uleck@uwsuper.edu,
s.link@auckland.ac.nz, prade@irit.fr

Abstract. Possibility theory is applied to introduce and reason about the funda-
mental notion of a key for uncertain data. Uncertainty is modeled qualitatively by
assigning to tuples of data a degree of possibility with which they occur in a re-
lation, and assigning to keys a degree of certainty which says to which tuples the
key applies. The associated implication problem is characterized axiomatically
and algorithmically. It is shown how sets of possibilistic keys can be visualized
as possibilistic Armstrong relations, and how they can be discovered from given
possibilistic relations. It is also shown how possibilistic keys can be used to clean
dirty data by revising the belief in possibility degrees of tuples.

Keywords: Armstrong relation, Axiomatization, Database, Data cleaning, Data
mining, Implication, Key, Possibility theory, Query processing, Uncertain Data.

1 Introduction

Background. The notion of a key is fundamental for understanding the structure and
semantics of data. For relational databases, keys were already introduced in Codd’s
seminal paper [10]. Here, a key is a set of attributes that holds on a relation if there are no
two different tuples in the relation that have matching values on all the attributes of the
key. Keys uniquely identify tuples of data, and have therefore significant applications
in data cleaning, integration, modeling, processing, and retrieval.
Motivation. Relational databases were developed for applications with certain data,
such as accounting, inventory and payroll. Modern applications, such as information
extraction, radio-frequency identification (RFID) and scientific data management, data
cleaning and financial risk assessment produce large volumes of uncertain data. For
instance, RFID is used to track movements of endangered species of animals, such as
Grizzly Bears. For such an application it is desirable to associate degrees of possibility
(p-degrees) with which tuples occur in a relation. Here, p-degrees represent the trust in
the RFID readings, which can be derived from the strength, or precision of the devices
that send and receive the signals. Table 1 shows a possibilistic relation (p-relation),
where each tuple is associated with an element of a finite scale of p-degrees: α1 >
. . . > αk+1. The top degree α1 is reserved for tuples that are ‘fully possible’, the
bottom degree αk+1 for tuples that are ‘impossible’ to occur. Intermediate degrees can

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 181–195, 2014.
c© Springer International Publishing Switzerland 2014

182 H. Koehler et al.

be used, such as ‘quite possible’ (α2), ‘medium possible’ (α3) and ‘somewhat possible’
(α4) when some linguistic interpretation is preferred.

The p-degrees enable us to express keys with different degrees of certainty. For ex-
ample, to express that it is ‘somewhat possible’ that the same grizzly is in different
zones within an hour we declare the key {time,rfid} to be ‘quite certain’, stipulating
that no two distinct tuples are at least ‘medium possible’ and have matching values on
time and rfid. Similarly, to say that it is ‘quite possible’ that different grizzlies are in the
same zone at the same time we declare the key {zone,time} to be ‘somewhat certain’,
stipulating that no two distinct tuples are at least ‘quite possible’ and have matching val-
ues on zone and time. We apply possibility theory to establish possibilistic keys (PKs)
as a fundamental notion to identify tuples of uncertain data.

Table 1. A Possibilistic Relation and Its Nested Chain of Possible Worlds

Possibilistic Relation

zone time rfid object p-degree
Z0 10am H0 Grizzly α1

Z1 10am H1 Grizzly α1

Z1 12pm H2 Grizzly α1

Z3 1pm H2 Grizzly α1

Z3 1pm H3 Grizzly α2

Z3 3pm H3 Grizzly α3

Z4 3pm H3 Grizzly α4

Worlds of Possibilistic Relation

Contributions. (1) In Section 2 we point out the lack of qualitative approaches to con-
straints on uncertain data. (2) We define a semantics for keys on uncertain relations
in Section 3. Here, uncertainty is modeled qualitatively by degrees of possibility. The
degrees bring forward a nested chain of possible worlds, with each being a classical
relation that has some possibility. Hence, the more possible the smaller a relation is,
and the more keys can identify tuples uniquely. For example, the possible worlds of the
p-relation from Table 1 are shown in Figure 1. The key {time,rfid} is satisfied by r3 but
not by r4, and {zone,time} is satisfied by r1 but not by r2. (3) In Section 4 we estab-
lish axiomatic and linear-time algorithmic characterizations for the implication problem
of PKs. (4) We show in Section 5 how to visualize PK sets as a single Armstrong p-
relation. That is, for any given PK set Σ we compute a p-relation that satisfies any given
PK ϕ if and only if ϕ is implied by Σ. While the problem of finding an Armstrong p-
relation is precisely exponential, our output p-relation is always at most quadratic in the
size of a minimum-sized Armstrong p-relation. (5) Using hypergraph transversals, we
show in Section 5 how to discover the PKs that hold on a given p-relation. Visualiza-
tion and discovery provide a communication framework for data engineers and domain
experts to jointly acquire the set of PKs that are semantically meaningful for a given
application. (6) In Section 6 we apply PKs to clean dirty data, and to query processing
in Section 7. (7) In Section 8 we conclude and briefly discuss future work.

Logical Foundations of Possibilistic Keys 183

2 Related Work

The application of possibilistic logic to keys empowers applications to reason qualita-
tively about the uniqueness of tuples consisting of uncertain data. Data cleaning, data
fusion and uncertain databases are thus primary impact areas. Section 6 illustrates how
possibilistic keys can clean dirty data by revising the beliefs in p-degrees of tuples.
Possibilistic keys are soft constraints that data shall satisfy after their integration from
different sources. In this sense, data engineers can apply possibilistic keys as a means
to impose solutions to the correlation problem, which aims to establish whether some
information pertains to the same object or different ones [21]. For example, by declar-
ing the key {time,rfid} on tuples that are at least medium possible, information about
the same grizzly (rfid) at the same time is only recorded once in tuples that are at least
medium possible (e.g. come from sufficiently trusted sources), while the key may be
violated when tuples are present that are only somewhat possible.

Work on quantitative approaches to reason about uncertain data is huge, foremost
probability theory [37]. The only study of keys on probabilistic databases we are aware
of is [28], which is exclusively focused on query optimization. Qualitative approaches
to uncertain data deal with either query languages or extensions of functional dependen-
cies (FDs), with surveys found in [6,7] for example. Qualitative approaches to identify
tuples of uncertain data have not been studied yet to the best of our knowledge. In par-
ticular, the notion of a possibilistic key is new. The only paper that considers schema de-
sign for uncertain databases is [35]. The authors develop an “FD theory for data models
whose basic construct for uncertainty is alternatives” [35]. Their work is fundamentally
different from our approach. Keys and FDs have also been included in description logic
research [8,29,39], but have not been investigated yet for uncertain data.

Our contributions extend results on keys from classical relations, covered by the
special case of two possibility degrees where k = 1. These include results on the impli-
cation problem [1,12], Armstrong relations [2,18,23,30] and the discovery of keys from
relations [27,31], as well as data cleaning [4,9]. Keys have also been considered in
other data models, including incomplete relations [24,38] and XML data [25,26]. Note
that Armstrong relations are also an AI tool to acquire and reason about conditional
independencies [20,32].

Possibilistic logic is a well-established tool for reasoning about uncertainty [13,16]
with numerous applications in artificial intelligence [15], including approximate rea-
soning [40], non-monotonic reasoning [19], qualitative reasoning [36], belief revision
[14,22,33], soft constraint satisfaction problems [5], decision-making under uncertainty
[34], pattern classification and preferences [3]. Our results show that possibilistic logic
is an AI framework that is suitable to extend the classical notion of a key from certain
to uncertain data.

3 Possibilistic Keys

In this section we extend the classical relational model of data to model uncertain data
qualitatively.

184 H. Koehler et al.

A relation schema, denoted by R, is a finite non-empty set of attributes. Each at-
tribute a ∈ R has a domain dom(a) of values. A tuple t over R is an element of the
Cartesian product

∏
a∈R dom(a) of the attributes’ domains. For X ⊆ R we denote by

t(X) the projection of t on X . A relation over R is a finite set r of tuples over R. As
example we use the relation schema TRACKING with attributes zone, time, rfid, object
from before. Tuples either belong or do not belong to a relation. For example, we cannot
express that we have less confidence for the Grizzly identified by rfid value H3 to be in
zone Z3 at 1pm than for the Grizzly identified by H2.

We model uncertain relations by assigning to each tuple some degree of possibility
with which the tuple occurs in a relation. Formally, we have a scale of possibility, that
is, a finite strict linear order S = (S,<) with k + 1 elements, denoted by α1 > · · · >
αk > αk+1. The elements αi ∈ S are called possibility degrees, or p-degrees. The top
p-degree α1 is reserved for tuples that are ‘fully possible’ to occur in a relation, while
the bottom p-degree αk+1 is reserved for tuples that are ‘impossible’ to occur. Humans
like to use simple scales in everyday life to communicate, compare, or rank. Simple
means to classify items qualitatively, rather than quantitatively by putting a precise
value on it. Classical relations use two p-degrees, that is k = 1.

A possibilistic relation schema (R,S), or p-relation schema, consists of a relation
schema R and a possibility scale S. A possibilistic relation, or p-relation, over (R,S)
consists of a relation r over R, and a function Possr that assigns to each tuple t ∈ r a p-
degree Possr(t) ∈ S. Table 1 shows a p-relation over (TRACKING,S = {α1, . . . , α5}).

P-relations enjoy a possible world semantics. For i = 1, . . . , k let ri consist of all
tuples in r that have p-degree at least αi, that is, ri = {t ∈ r | Possr(t) ≥ αi}. Indeed,
we have r1 ⊆ r2 ⊆ · · · ⊆ rk. The possibility distribution πr for this linear chain of
possible worlds is defined by πr(ri) = αi. Note that rk+1 is not a possible world, since
its possibility π(rk+1) = αk+1 means ‘impossible’. Vice versa, the possibility Possr(t)
of a tuple t ∈ r is the maximum possibility max{αi | t ∈ ri} of a world to which t
belongs. If t /∈ rk, then Possr(t) = αk+1. Every tuple that is ‘fully possible’ occurs in
every possible world, and is therefore also ‘fully certain’. Hence, relations are a special
case of uncertain relations. Figure 1 shows the possible worlds r1 � r2 � r3 � r4 of
the p-relation of Table 1.

We introduce possibilistic keys, or PKs, as keys with some degree of certainty. As
keys are fundamental to applications with certain data, PKs will serve a similar role
for application with uncertain data. A key K ⊆ R is satisfied by a relation r over R,
denoted by |=r K , if there are no distinct tuples t, t′ ∈ r with matching values on all
the attributes in K . For example, the key {time, object} is not satisfied by any relation
r1, . . . , r4. The key {zone, time} is satisfied by r1, but not by r2. The key {zone, rfid}
is satisfied by r2, but not by r3. The key {time, rfid} is satisfied by r3, but not by r4.
The key {zone, time, rfid} is satisfied by r4.

The p-degrees of tuples result in degrees of certainty with which keys hold. Since
{zone, time, rfid} holds in every possible world, it is fully certain to hold on r. As
{time, rfid} is only violated in a somewhat possible world r4, it is quite certain to hold
on r. Since the smallest relation that violates {zone, rfid} is the medium possible world
r3, it is medium certain to hold on r. As the smallest relation that violates {zone, time}

Logical Foundations of Possibilistic Keys 185

is the quite possible world r2, it is somewhat certain to hold on r. Since {time, object}
is violated in the fully possible world r1, it is not certain at all to hold on r.

Similar to a scale S of p-degrees for tuples we use a scale ST of certainty degrees,
or c-degrees, for keys. We use subscripted versions of the Greek letter β to denote c-
degrees. Formally, the correspondence between p-degrees in S and the c-degrees in ST

can be defined by the mapping αi �→ βk+2−i for i = 1, . . . , k+ 1. Hence, the certainty
Cr(K) with which the key K holds on the uncertain relation r is either the top degree β1

if K is satisfied by rk, or the minimum amongst the c-degrees βk+2−i that correspond
to possible worlds ri in which K is violated, that is,

Cr(K) =

{
β1 , if rk satisfies K
min{βk+2−i |�|=ri K} , otherwise

.

We can now define the semantics of possibilistic keys.

Definition 1. Let (R,S) denote a p-relation schema. A possibilistic key (PK) over
(R,S) is an expression (K,β) where K ⊆ R and β ∈ ST . A p-relation (r,Possr)
over (R,S) satisfies the PK (K,β) if and only if Cr(K) ≥ β. ��

Example 1. The p-relation from Table 1 satisfies the PK set Σ consisting of

– ({zone, time, rfid}, β1),
– ({time, rfid}, β2),
– ({zone, rfid}, β3), and
– ({zone, time}, β4).

It violates the PK ({zone, rfid}, β2) since Cr({zone, rfid}) = β3 < β2.

4 Reasoning Tools

First, we establish a strong correspondence between the implication of PKs and keys.
Let Σ ∪ {ϕ} denote a set of PKs over (R,S). We say Σ implies ϕ, denoted by Σ |= ϕ,
if every p-relation (r,Possr) over (R,S) that satisfies every PK in Σ also satisfies ϕ.
We use Σ∗ = {ϕ | Σ |= ϕ} to denote the semantic closure of Σ.

Example 2. Let Σ be as in Example 1, and ϕ = ({zone, rfid, object}, β2). Then Σ does
not imply ϕ as the following p-relation witnesses:

zone time rfid object Poss. degree
Z0 10am H0 Grizzly α1

Z0 3pm H0 Grizzly α3

4.1 The Magic of β-Cuts

For a PK set Σ over (R,S) with |S| = k + 1 and c-degree β ∈ ST where β > βk+1,
let Σβ = {K | (K,β′) ∈ Σ and β′ ≥ β} be the β-cut of Σ.

Theorem 1. Let Σ ∪ {(K,β)} be a PK set over (R,S) where β > βk+1. Then Σ |=
(K,β) if and only if Σβ |= K .

186 H. Koehler et al.

Proof. Suppose (r,Possr) is some p-relation over (R,S) that satisfies Σ, but violates
(K,β). In particular, Cr(K) < β implies that there is some relation ri that violates K
and where βk+2−i < β. Let K ′ ∈ Σβ , where (K ′, β′) ∈ Σ. Since r satisfies (K,β′) ∈
Σ we have Cr(K

′) ≥ β′ ≥ β. If ri violated K ′, then β > βk+2−i ≥ Cr(K
′) ≥ β, a

contradiction. Hence, ri satisfies Σβ and violates K .
Let r′ denote some relation that satisfies Σβ and violates K , w.l.o.g. r′ = {t, t′}.

Let r be the p-relation over (R,S) that consists of r′ and where Possr′(t) = α1 and
Possr′(t′) = αi, such that βk+1−i = β. Then r violates (K,β) since Cr(K) = βk+2−i,
as ri = r′ is the smallest relation that violates K , and βk+2−i < βk+1−i = β. For
(K ′, β′) ∈ Σ we distinguish two cases. If ri satisfies K ′, then Cr(K

′) = β1 ≥ β. If ri
violates K ′, then K ′ /∈ Σβ , i.e., β′ < β = βk+1−i. Therefore, β′ ≤ βk+2−i = Cr(K

′)
as ri = r′ is the smallest relation that violates K ′. We conclude that Cr(K

′) ≥ β′.
Consequently, (r,Possr) is a p-relation that satisfies Σ and violates (K,β). ��

Example 3. Let Σ ∪ {ϕ} be as in Example 2. Theorem 1 says that Σβ2 does not imply
({zone, rfid, object}, β2). The possible world r3 of the p-relation from Example 2:

zone time rfid object
Z0 10am H0 Grizzly
Z0 3pm H0 Grizzly

satisfies the key {time, rfid} that implies both keys in Σβ2 . However, r3 violates the key
{zone, rfid, object}.

4.2 Axiomatic Characterization

We determine the semantic closure by applying inference rules of the form

premise

conclusion
condition .

For a set R of inference rules let Σ +R ϕ denote the inference of ϕ from Σ by R. That
is, there is some sequence σ1, . . . , σn such that σn = ϕ and every σi is an element of
Σ or is the conclusion that results from an application of an inference rule in R to some
premises in {σ1, . . . , σi−1}. Let Σ+

R = {ϕ | Σ +R ϕ} be the syntactic closure of Σ
under inferences by R. R is sound (complete) if for every set Σ over every (R,S) we
have Σ+

R ⊆ Σ∗ (Σ∗ ⊆ Σ+
R). The (finite) set R is a (finite) axiomatization if R is both

sound and complete.
For the set K from Table 2 the attribute sets K,K ′ are subsets of a given R, and β, β′

belong to a given ST . In particular, βk+1 denotes the bottom certainty degree.

Theorem 2. The set K forms a finite axiomatization for the implication problem of PKs.

Proof. The soundness proof is straightforward and omitted. For completeness, we apply
Theorem 1 and the fact that K′ axiomatizes key implication. Let (R,S) be a p-relation
schema with |S| = k + 1, and Σ ∪ {(K,β)} a PK set such that Σ |= (K,β). We show
that Σ +K (K,β) holds.

For Σ |= (K,βk+1) we have Σ +K (K,βk+1) by applying B. Let now β < βk+1.
From Σ |= (K,β) we conclude Σβ |= K by Theorem 1. Since K′ is complete for key

Logical Foundations of Possibilistic Keys 187

Table 2. Axiomatization K′ = {T ′,S ′} of Keys and K = {T ,S ,B,W} of Possibilistic Keys

R
(top, T ′)

K

K ∪K′
(superkey, S ′)

(R, β) (K,βk+1)
(top, T) (bottom, B)

(K, β)

(K ∪K′, β)

(K,β)

(K, β′)
β′ ≤ β

(superkey, S) (weakening, W)

implication, Σβ +K′ K holds. Let Σβ
β = {(K ′, β) | K ′ ∈ Σβ}. Thus, the inference

of K from Σβ using K′ can be turned into an inference of (K,β) from Σβ
β by K,

simply by adding β to each key in the inference. Hence, whenever T ′ or S ′ is applied,
one applies instead T or S, respectively. Consequently, Σβ

β +K (K,β). The definition

of Σβ
β ensures that every PK in Σβ

β can be inferred from Σ by applying W . Hence,

Σβ
β +K (K,β) means that Σ +K (K,β). ��

4.3 Algorithmic Characterization

While K enables us to enumerate all PKs implied by a PK set Σ, in practice it often
suffices to decide whether a given PK ϕ is implied by Σ. Enumerating all implied PKs
and checking whether ϕ is among them is neither efficient nor makes good use of ϕ.

Theorem 3. Let Σ ∪ {(K,β)} denote a set of PKs over (R,S) with |S| = k+1. Then
Σ implies (K,β) if and only if β = βk+1, or K = R, or there is some (K ′, β′) ∈ Σ
such that K ′ ⊆ K and β′ ≥ β.

Proof. Theorem 1 shows for i = 1, . . . , k that Σ implies (K,βi) if and only if Σβ

implies K . It is easy to observe from the axiomatization K′ of keys that Σβ implies K
if and only if R = K , or there is some K ′ ∈ Σβ such that K ′ ⊆ K holds. As Σ implies
(K,βk+1), the theorem follows. ��
Corollary 1. An instance Σ |= ϕ of the implication problem can be decided in time
O(||Σ ∪ {ϕ}||) where ||Σ|| denotes the total number of symbol occurrences in Σ. ��

5 Acquisition Tools

New applications benefit from the ability of data engineers to acquire the PKs that
are semantically meaningful in the domain of the application. For that purpose, data
engineers communicate with domain experts. Now we establish two major tools that
help data engineers to effectively communicate with domain experts. We follow the
framework in Figure 1. Here, data engineers use our algorithm to visualize abstract PK
sets Σ in form of some Armstrong p-relation rΣ , which is then inspected jointly with
domain experts. Domain experts may change rΣ or supply entirely new data samples
to the engineers. For that case we establish an algorithm that computes the set of PKs
that hold in the data sample.

188 H. Koehler et al.

Fig. 1. Acquisition Framework for Possibilistic Keys

5.1 Structure and Computation of Visualizations

A p-relation (r,Possr) over (R,S) is Armstrong for a PK set Σ if and only if for all
PKs ϕ over (R,S), (r,Possr) satisfies ϕ if and only if Σ |= ϕ. The maximum c-degree
β by which a PK (K,β) is implied by Σ can ‘simply be read-off’ as the c-degree
Cr(K) of any Armstrong p-relation (r,Possr) for Σ. Our first aim is to characterize
the structure of Armstrong p-relations. We recall two notions from relational databases.
The agree set of two tuples t, t′ over R is the set ag(t, t′) = {a ∈ R | t(a) = t′(a)} of
attributes on which t and t′ have matching values. The agree set of a relation is the set
ag(r) = {ag(t, t′) | t, t′ ∈ r ∧ t �= t′}. Let Σ denote a set of keys over relation schema
R. An anti-key of R with respect to Σ is a subset A ⊆ R such that Σ does not imply
the key A over R and for all a ∈ R−A, Σ implies the key A∪ {a} over R. We denote
by Σ−1 the set of all anti-keys of R with respect to Σ.

Theorem 4. Let Σ denote a set of PKs, and let (r,Possr) denote a p-relation over
(R,S) with |S| = k + 1. Then (r,Possr) is Armstrong for Σ if and only if for all
i = 1, . . . , k, the relation rk+1−i is Armstrong for Σβi . That is, for all i = 1, . . . , k,
Σ−1

βi
⊆ ag(rk+1−i), and for all K ∈ Σβi and for all X ∈ ag(rk+1−i), K �⊆ X .

Proof. (r,Possr) is Armstrong for Σ if and only if for all i = 1, . . . , k, for all K ⊆ R,
|=(r,Possr) (K,βi) iff Σ |= (K,βi). However, |=(r,Possr) (K,βi) iff |=rk+1−i

K , and
Σ |= (K,βi) iff Σβi |= K . Therefore, (r,Possr) is Armstrong for Σ if and only if for
all i = 1, . . . , k, rk+1−i is an Armstrong relation for Σβi . The second statement follows
straight from the well-known result that a relation r is Armstrong for a set Σ of keys if
and only if Σ−1 ⊆ ag(r) and for all K ∈ Σ and all X ∈ ag(r), K �⊆ X [11]. ��

Theorem 4 shows that Algorithm 1 computes an Armstrong p-relation for input Σ.
The algorithm computes for i = 1, . . . , k the set Σ−1

βi
incrementally. Starting with a

tuple of p-degree α1, for i = k, . . . , 1, each A ∈ Σ−1
βi

is realized as an agree set by
introducing a tuple that agrees with the previous tuple on A and has p-degree αk+1−i,
as long as A did not already occur for some larger i.

Example 4. We apply Algorithm 1 to the set Σ from Example 1. Using the first letters
of each attribute we obtain

Logical Foundations of Possibilistic Keys 189

Algorithm 1. Visualize
Input: R, {β1, . . . , βk}, Σ
Output: Possibilistic Armstrong Relation (r,Possr) for Σ
1: Σ−1

0 ← {R − {a} | a ∈ R};
2: for i = 1, . . . , k do � Compute Σ−1

βi
incrementally

3: Σi ← {K | (K,βj) ∈ Σ and j ≤ i},
4: Σ−1

i ← ANTIKEYS(R,Σi, Σ
−1
i−1),

5: end for
6: for all a ∈ R do
7: t0(a)← ca,0; � ca,i are fresh constants
8: end for
9: j ← 0; r ← {t0}; Possr(t0)← α1; Σ0 ← ∅;

10: for i = k downto 1 do
11: for all A ∈ Σ−1

i −Σ0 do
12: j ← j + 1;
13: for all a ∈ R do � New tuple with agree set A
14: if a ∈ A then tj(a)← tj−1(a);
15: else tj(a)← ca,j ;
16: end if
17: end for
18: Possr(tj)← αk+1−i; � and p-degree αk+1−i

19: r ← r ∪ {tj};
20: end for
21: Σ0 ← Σ0 ∪Σ−1

i ;
22: end for
23: return (r,Possr);

Subroutine ANTIKEYS(R,Σ,Σ−1)
Input: R, Σ set of keys in Σi, Σ−1 set of anti-keys in Σ−1

i−1

Output: Σ−1 set of anti-keys for Σβi

24: for all K ∈ Σ, A ∈ Σ−1 with K ⊆ A do
25: Σ−1 ← (Σ−1 − {A}) ∪

⋃
a∈K{A− {a}};

26: end for
27: Σ−1 ← {A | ∀B ∈ Σ−1 − {A}(A �⊆ B)};
28: return Σ−1;

– Σ1 = {ztr} and Σ−1
β1

= {zto, tro, zro}
– Σ2 = {tr} and Σ−1

β2
= {zto, zro}

– Σ3 = {zr} and Σ−1
β3

= {zto, ro, zo}, and

– Σ4 = {zt} and Σ−1
β4

= {to, zo, ro} .

Anti-keys are underlined when they are realized as agree sets of tuples in the possi-
bilistic Armstrong relation:

190 H. Koehler et al.

zone time rfid object Poss. degree
cz,0 ct,0 cR,0 co,0 α1

cz,1 ct,0 cR,1 co,0 α1

cz,1 ct,2 cR,2 co,0 α1

cz,3 ct,3 cR,2 co,0 α1

cz,3 ct,3 cR,4 co,0 α2

cz,3 ct,5 cR,4 co,0 α3

cz,6 ct,5 cR,4 co,0 α4

Fitting substitution yields the p-relation from Table 1.

Theorem 5. Algorithm 1 computes an Armstrong p-relation for Σ whose size is at most
quadratic in that of a minimum-sized Armstrong p-relation for Σ.

Proof. The soundness of Algorithm 1 follows from Theorem 4, which also shows that
for Σ−1 =

⋃k
i=1 Σ

−1
i we have |Σ−1| ≤ ag(r) ≤

(|r|
2

)
. The inequalities establish the

lower bound in 1
2 ·

√
1 + 8 · |Σ−1| ≤ |r| ≤ |Σ−1|+ 1. The upper bound follows from

Algorithm 1. Hence, the p-relation computed by Algorithm 1 is at most quadratic in the
size of a minimum-sized Armstrong p-relation for Σ. ��

Finding Armstrong p-relations is precisely exponential. That means that there is an
algorithm for computing an Armstrong p-relation whose running time is exponential
in the size of Σ, and that there is some set Σ in which the number of tuples in each
minimum-sized Armstrong p-relation for Σ is exponential thus, an exponential amount
of time is required in this case simply to write down the p-relation.

Theorem 6. Finding an Armstrong p-relation for a PK set Σ is precisely exponential
in the size of Σ.

Proof. Algorithm 1 computes an Armstrong p-relation for Σ in time at most expo-
nential in its size. Some PK sets Σ have only Armstrong p-relations with exponen-
tially many tuples in the size of Σ. For R = {a1, . . . , a2n}, S = {α1, α2} and
Σ = {({a1, a2}, β1), . . . , ({a2n−1, a2n}, β1)} with size 2 · n, Σ−1 consists of the
2n anti-keys

⋃n
j=1 Xj where Xj ∈ {a2j−1, a2j}. ��

Armstrong p-relations for some other PK sets Σ′ only require a number of tuples that
is logarithmic in the size of Σ′. Such a set Σ′ is given by the 2n PKs (

⋃n
j=1 Xj, β1)

where Xj ∈ {a2j−1, a2j}. In fact, Algorithm 1 computes an Armstrong p-relation for
Σ′ with n+ 1 tuples.

5.2 Discovery

Given a p-relation we may ask for which set Σ it is Armstrong. Algorithm 2 computes
a cover Σ of the set of PKs satisfied by a given p-relation. A cover of some PK set Θ is
a PK set Σ where Σ∗ = Θ∗. A hypergraph (V,E) consists of a vertex set V and a set
E of subsets of V , called hyperedges. A set T ⊆ V is a transversal of (V,E) if for all
H ∈ E, T ∩H �= ∅ holds. A transversal T of (V,E) is minimal if there is no transversal

Logical Foundations of Possibilistic Keys 191

T ′ of (V,E) such that T ′ � T [17]. Algorithm 2 computes the minimal transversals of
the hypergraph that has the underlying attributes as vertex set and minimal disagree sets
of tuples from world ri as hyperedges. These form a cover of the set of keys that hold on
ri. The corresponding PKs thus hold with c-degree at least βk+1−i. Using Theorem 3
we select PKs not implied by the other PKs as output.

Algorithm 2. Discover
Input: (r, Possr) over (R, {β1, . . . , βk+1})
Output: Cover Σ of PKs that are satisfied by (r, Possr)
1: for i = 1, . . . , k do
2: dis-ag(ri)← min{X ⊆ R | ∃t, t′ ∈ ri∀a ∈ R(t(a) �= t′(a)↔ a ∈ X)};
3: Hi ← (R, dis-ag(ri));
4: Σi ← {(K, βk+1−i) | K ∈ Tr(Hi)};
5: end for
6: Σ ←

⋃k
i=1 Σi;

7: Σ ← {(K, β) ∈ Σ | ¬∃(K′, β′) ∈ Σ(K′ ⊆ K ∧ β′ > β)};
8: return Σ;

Example 5. We apply Algorithm 2 to the p-relation from Table 1. Using the first letters
of each attribute we obtain

– dis-ag(r1) = {zr, tr, zt} and
Σ1 = {(zr, β4), (tr, β4), (zt, β4)}

– dis-ag(r2) = {zt, r} and Σ2 = {(zr, β3), (tr, β3)}
– dis-ag(r3) = {t, r} and Σ3 = {(tr, β2)}, and
– dis-ag(r4) = {z, t, r} and Σ3 = {(ztr, β1)} .

A coverΣ for the PKs that hold on the p-relation consists of (ztr, β1), (tr, β2), (zr, β3),
and (zt, β4).

Theorem 7. Algorithm 2 computes a cover of the set of PKs that are satisfied by the
given p-relation r in time O(m + n2) where m := |R|2 × |rk|2 × |dis-ag(rk)| and
n :=

∏
X∈dis-ag(rk)

|X |.

Proof. The soundness follows from the result that the keys of a relation are the minimal
transversals of the disagree sets in the relation [11,31], and Theorem 3. The collection
dis-ag(ri) is computed in time O(m). The set of all minimal transversals for the sim-
ple hypergraphHi is computed in time O(n2). Algorithm 2 can compute the minimal
hypergraphs incrementally with additional disagree sets discovered from tuples with
lower p-degrees. ��

6 Data Cleaning

In this section we illustrate an application of possibilistic keys for data cleaning pur-
poses. The classical data cleaning problem can be stated as follows: Given a relation r
and a set Σ of keys, find a relation r′ ⊆ r of maximum cardinality such that r′ satisfies
Σ. For example, the relation r

192 H. Koehler et al.

r
zone time rfid object Possr Poss′r
Z3 1pm H2 Grizzly α1 α1

Z3 1pm H3 Grizzly α1 α2

Z3 3pm H3 Grizzly α1 α3

Z4 3pm H3 Grizzly α1 α4

violates the set Σ = {zt, zr, tr} of keys. Solutions to the classical data cleaning prob-
lem would be the relations r1 consisting of the first and third tuple, r2 consisting of the
first and last tuple, and r3 consisting of the second and last tuple. Each solution requires
us to remove at least two tuples from the relation. In this sense, classical data cleaning
removes valuable information from the given relation.

We now introduce possibilistic data cleaning as a means to minimize the removal of
tuples from a p-relation. For this purpose, we exploit the c-degrees of PKs to “reduce”
the given p-degrees of tuples such that all PKs will be satisfied.

Given two p-relations r1 = (r′,Possr′) and r2 = (r,Possr) we say that r1 is a p-
subrelation of r2, denoted by r1 ⊆p r2, if and only if r′i ⊆ ri for i = 1, . . . , k. The
p-subset relationship is simply the partial order of functions induced by the ordering on
p-degrees, that is, r1 ⊆p r2 if and only if Possr′(t) ≤ Possr(t) holds for all tuples t. The
p-cardinality of the p-relation (r,Possr) is the mapping C : αi �→ |ri| for i = 1, . . . , k.
We compare p-cardinalities with respect to the lexicographical order, that is,

C1 <L C2 :⇔ ∃αi.
C1(αi) < C2(αi) ∧
C1(αj) = C2(αj) ∀αj < αi

The possibilistic data cleaning problem is: Given a p-relation r and set Σ of PKs, find
a p-subrelation r′ ⊆p r of maximal p-cardinality so that Σ holds on r′.

A point that is perhaps controversial in our problem definition is the use of the lexi-
cographic order <L in defining our target function to optimize. We chose this lineariza-
tion of the natural partial order between p-cardinalities over other candidates for two
reasons. Firstly, by maximizing |r′k| = |r′|, the number of tuples completely “lost”
during data cleaning is minimized. Secondly, it will allow us to develop more efficient
algorithms for computing it.

For example, the p-relation (r,Possr) violates the PK set

Σ = {(zt, β4), (zr, β3), (tr, β1)}.

However, if we change the p-degree of the second tuple to α2, the p-degree of the
third tuple to α3, and the p-degree of the last tuple to α4, then the resulting p-relation
(r,Poss′r) satisfies Σ. Note that none of the p-degrees had to be set to the bottom degree
α5. That is, every tuple in the cleaned p-relation (r,Poss′r) is at least somewhat possible
to occur.

7 Query Processing

We demonstrate the benefit of PKs on query processing. Therefore, we add the attribute
p-degree to the relation schema TRACKING with attributes zone, time, rfid, object.

Logical Foundations of Possibilistic Keys 193

Suppose we are interested in finding out which grizzly bears have been tracked in
which zone, but we are only interested in answers that come from ‘certain’ or ‘quite
possible’ tuples in the database. A user might enter the following SQL query:

SELECT DISTINCT zone, rfid, p-degree
FROM TRACKING

WHERE p-degree = α1 OR p-degree = α2

ORDER BY p-degree ASC

zone rfid p-degree
Z0 H0 α1

Z1 H1 α1

Z1 H2 α1

Z3 H2 α1

Z3 H3 α2

which removes duplicate answers, and orders them with decreasing p-degree. When
applied to the p-relation from Table 1, the query returns the answers on the right.

Firstly, our framework allows users to ask such queries - having available the p-
degrees of tuples. Secondly, answers can be ordered according to the p-degree a huge
benefit for users. Thirdly, the example shows how our framework can be embedded
with standard technology, here SQL. Finally, recall our PK ({zone, rfid}, β3) which
holds on the set of tuples that have p-degree α1 or α2. Consequently, the query answers
satisfy the key {zone, rfid} and the DISTINCT clause becomes superfluous. A query
optimizer, capable of reasoning about PKs, can remove the DISTINCT clause from the
input query without affecting its output. This optimization saves response time when
answering queries, as duplicate elimination is an expensive operation and therefore not
executed by default in SQL databases. PKs, and the ability to reason about them, have
therefore direct applications to query processing.

8 Conclusion and Future Work

Possibilistic keys have been introduced to efficiently identify tuples of uncertain data.
Uncertainty is modeled qualitatively by applying the AI framework of possibilistic logic
to the fundamental database concept of keys. Tools were established to efficiently rea-
son about possibilistic keys, to visualize and discover them effectively. Together, these
tools can be used by data engineers to acquire the possibilistic keys that are semantically
meaningful for a given application domain. It was further illustrated how possibilistic
keys can be used to clean dirty data and enhance query processing. The results show
that possibilistic keys can benefit applications with uncertain data, very much in the
same way that keys benefit applications with certain data. It is future work to imple-
ment our algorithms in the form of a design tool, to apply possibility theory to other
classes of popular database concepts, and to find efficient solutions to the possibilistic
data cleaning problem we introduced.

Acknowledgement. This research is supported by the Marsden fund council from Gov-
ernment funding, administered by the Royal Society of New Zealand.

References

1. Armstrong, W.W.: Dependency structures of data base relationships. In: IFIP Congress, pp.
580–583 (1974)

2. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong relations for
functional dependencies. J. ACM 31(1), 30–46 (1984)

194 H. Koehler et al.

3. Benferhat, S., Dubois, D., Prade, H.: Towards a possibilistic logic handling of preferences.
Appl. Intell. 14(3), 303–317 (2001)

4. Beskales, G., Ilyas, I.F., Golab, L.: Sampling the repairs of functional dependency violations
under hard constraints. PVLDB 3(1) (2010)

5. Bistarelli, S., Codognet, P., Rossi, F.: Abstracting soft constraints: Framework, properties,
examples. Artif. Intell. 139(2), 175–211 (2002)

6. Bosc, P., Dubois, D., Prade, H.: Fuzzy functional dependencies – an overview and a critical
discussion. In: Proc. of the 3rd IEEE Inter. Conf. on Fuzzy Systems (FUZZ-IEEE 1994),
Orlando, FL, June 26-29, pp. 325–330 (1994)

7. Bosc, P., Pivert, O.: On the impact of regular functional dependencies when moving to a
possibilistic database framework. Fuzzy Sets and Systems 140(1), 207–227 (2003)

8. Calvanese, D., De Giacomo, G., Lenzerini, M.: Keys for free in description logics. In: Baader,
F., Sattler, U. (eds.) Proceedings of the 2000 International Workshop on Description Logics
(DL 2000), Aachen, Germany, August 17-19. CEUR Workshop Proceedings, vol. 33, pp.
79–88. CEUR-WS.org (2000)

9. Chu, X., Ilyas, I.F., Papotti, P.: Holistic data cleaning: Putting violations into context. In:
Jensen, C.S., Jermaine, C.M., Zhou, X. (eds.) 29th IEEE International Conference on Data
Engineering, ICDE 2013, Brisbane, Australia, April 8-12, pp. 458–469. IEEE Computer So-
ciety (2013)

10. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377–387 (1970)

11. Demetrovics, J., Katona, G.O.H.: Extremal combinatorial problems of database models. In:
Biskup, J., Demetrovics, J., Paredaens, J., Thalheim, B. (eds.) MFDBS 1987. LNCS, vol. 305,
pp. 99–127. Springer, Heidelberg (1988)

12. Diederich, J., Milton, J.: New methods and fast algorithms for database normalization. ACM
Trans. Database Syst. 13(3), 339–365 (1988)

13. Dubois, D., Lang, J., Prade, H.: Automated reasoning using possibilistic logic: Semantics,
belief revision, and variable certainty weights. IEEE Trans. Knowl. Data Eng. 6(1), 64–71
(1994)

14. Dubois, D., Prade, H.: Epistemic entrenchment and possibilistic logic. Artif. Intell. 50(2),
223–239 (1991)

15. Dubois, D., Prade, H.: Fuzzy set and possibility theory-based methods in artificial intelli-
gence. Artif. Intell. 148(1-2), 1–9 (2003)

16. Dubois, D., Prade, H., Schockaert, S.: Stable models in generalized possibilistic logic. In:
Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14. AAAI Press (2012)

17. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related prob-
lems. SIAM J. Comput. 24(6), 1278–1304 (1995)

18. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
19. Gärdenfors, P., Makinson, D.: Nonmonotonic inference based on expectations. Artif. In-

tell. 65(2), 197–245 (1994)
20. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic

independence. Inf. Comput. 91(1), 128–141 (1991)
21. Grabisch, M., Prade, H.: The correlation problem in sensor fusion in a possibilistic frame-

work. Int. J. Intell. Syst. 16(11), 1273–1283 (2001)
22. Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17(2), 157–170

(1988)
23. Hartmann, S., Kirchberg, M., Link, S.: Design by example for SQL table definitions with

functional dependencies. VLDB J 21(1), 121–144 (2012)

Logical Foundations of Possibilistic Keys 195

24. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete relations. Com-
put. J. 54(7), 1166–1180 (2011)

25. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment. ACM Trans.
Database Syst. 34(2) (2009)

26. Hartmann, S., Link, S.: Numerical constraints on XML data. Inf. Comput. 208(5), 521–544
(2010)

27. Heise, A., Quiane-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., Naumann, F.: Scalable discovery of
unique column combinations. PVLDB 7(4), 301–312 (2013)

28. Jha, A.K., Rastogi, V., Suciu, D.: Query evaluation with soft-key constraints. In: Lenzerini,
M., Lembo, D. (eds.) Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2008, Vancouver, BC, Canada, June
9-11, pp. 119–128. ACM (2008)

29. Lutz, C., Areces, C., Horrocks, I., Sattler, U.: Keys, nominals, and concrete domains. J. Artif.
Intell. Res. (JAIR) 23, 667–726 (2005)

30. Mannila, H., Räihä, K.J.: Design by example: An application of Armstrong relations. J. Com-
put. Syst. Sci. 33(2), 126–141 (1986)

31. Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from relations.
Data Knowl. Eng. 12(1), 83–99 (1994)

32. Niepert, M., Gyssens, M., Sayrafi, B., Gucht, D.V.: On the conditional independence impli-
cation problem: A lattice-theoretic approach. Artif. Intell. 202, 29–51 (2013)

33. Qi, G., Wang, K.: Conflict-based belief revision operators in possibilistic logic. In: Hoff-
mann, J., Selman, B. (eds.) Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, Toronto, Ontario, Canada, July 22-26. AAAI Press (2012)

34. Sabbadin, R., Fargier, H., Lang, J.: Towards qualitative approaches to multi-stage decision
making. Int. J. Approx. Reasoning 19(3-4), 441–471 (1998)

35. Sarma, A.D., Ullman, J.D., Widom, J.: Schema design for uncertain databases. In: Arenas,
M., Bertossi, L.E. (eds.) Proceedings of the 3rd Alberto Mendelzon International Workshop
on Foundations of Data Management, Arequipa, Peru, May 12-15. CEUR Workshop Pro-
ceedings, vol. 450. CEUR-WS.org (2009)

36. Shen, Q., Leitch, R.: Fuzzy qualitative simulation. IEEE Transactions on Systems, Man, and
Cybernetics 23(4), 1038–1061 (1993)

37. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers (2011)

38. Thalheim, B.: On semantic issues connected with keys in relational databases permitting null
values. Elektronische Informationsverarbeitung und Kybernetik 25(1/2), 11–20 (1989)

39. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class citizens in
description logics. J. Autom. Reasoning 40(2-3), 117–132 (2008)

40. Zadeh, L.A.: Approximate reasoning based on fuzzy logic. In: Buchanan, B.G. (ed.) Pro-
ceedings of the Sixth International Joint Conference on Artificial Intelligence, IJCAI 1979,
Tokyo, Japan, August 20-23, vol. 2, pp. 1004–1010. William Kaufmann (1979)

Possibilistic Boolean Games: Strategic Reasoning
under Incomplete Information

Sofie De Clercq1, Steven Schockaert2, Martine De Cock1,3, and Ann Nowé4

1 Dept. of Applied Math., CS & Stats, Ghent University, Ghent, Belgium
{SofieR.DeClercq,Martine.DeCock}@ugent.be

2 School of Computer Science & Informatics, Cardiff University, Cardiff, UK
S.Schockaert@cs.cardiff.ac.uk

3 Center for Data Science, University of Washington Tacoma, USA
MDeCock@uw.edu

4 Computational Modeling Lab, Vrije Universiteit Brussel, Brussels, Belgium
ANowe@vub.ac.be

Abstract. Boolean games offer a compact alternative to normal-form games, by
encoding the goal of each agent as a propositional formula. In this paper, we
show how this framework can be naturally extended to model situations in which
agents are uncertain about other agents’ goals. We first use uncertainty measures
from possibility theory to semantically define (solution concepts to) Boolean
games with incomplete information. Then we present a syntactic characteriza-
tion of these semantics, which can readily be implemented, and we characterize
the computational complexity.

1 Introduction

Boolean games (BGs) are games in which the agents’ goals are formalized using propo-
sitional formulas [12]. The atomic propositional variables occurring in these goals are
called the action variables, since each of them is controlled by one agent. Originally,
BGs were introduced with binary preferences, i.e. the goal of an agent is a single propo-
sitional formula and the utility of an agent is 1 if its goal is satisfied and 0 otherwise [12].
Various suggestions have been made in the literature to overcome this limitation of ex-
pressiveness. One approach is the introduction of costs on the action variables [10].
Another suggestion is a generalization of the BG framework towards compact prefer-
ence relations on the set of outcomes, e.g. by using a prioritized goal base per agent [4].
Recently, the limitation has also been overcome by replacing the classical two-valued
logic for representing the goals by many-valued Łukasiewicz logic [13]. This extension
allows many degrees to which a goal can be satisfied, as opposed to the sole distinction
between satisfaction or non-satisfaction. In this paper, we consider a variant of BGs
with prioritized goal bases. An agent is most eager to achieve the goal with the highest
priority. If this goal cannot be achieved, the agent will settle with the satisfaction of the
goal with the second-highest priority, etc.

Example 1. Bob and Alice are going out. Alice – agent 1 – controls action variable a,
and Bob – agent 2 – controls b. Setting their action variable to true corresponds to at-
tending a sports game; setting it to false corresponds to going to the theatre. Bob and

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 196–209, 2014.
c© Springer International Publishing Switzerland 2014

Possibilistic Boolean Games 197

Alice’s first priority is to go out together. If they do not go out together, Bob prefers
a sports game, whereas Alice prefers the theatre. This can be represented with a prefer-
ence ordering over the outcomes per agent or with a pay-off matrix:

(a, b) =1 (¬a,¬b) >1 (¬a, b) >1 (a,¬b)
(a, b) =2 (¬a,¬b) >2 (¬a, b) >2 (a,¬b)

Bob \ Alice a ¬a
b (2, 2) (1, 1)
¬b (0, 0) (2, 2)

There are 2 pure Nash equilibria – outcomes such that no one has an incentive to devi-
ate: attending a sports game together and going to the theatre together.

Our aim in this paper is to propose an extension to the BG framework in which agents
can be uncertain about other agents’ goals. An important concern is that the resulting
framework should still enable a compact and intuitive representation of games, as these
are the main strengths of BGs. We therefore introduce a compact syntactic framework,
which we prove to correspond to an intuitive semantic framework. Using our extended
BG framework, we aim to determine rational behaviour for agents which are uncertain
about the other agents’ goals.

Although uncertainty in game theory has been studied extensively (see e.g. [14]), the
literature on BGs with incomplete information is currently limited. Uncertainty can be
either epistemic or stochastic of nature. The former is caused by incomplete knowledge
about the game, whereas the latter is e.g. caused by actions which do not always have
the same effect on the outcome. This paper concerns epistemic uncertainty. To the best
of our knowledge, the existing work on BGs with uncertainty also falls in the category
of epistemic uncertainty. However, in contrast to our work, the uncertainty is not re-
lated to the goals. Grant et al. [11] incorporate uncertainty in the BG framework by
introducing a set of environment variables outside the control of any agent. Each agent
has some (possibly incorrect) belief about the value of the environment variables. The
focus of [11] is to manipulate the BGs by making announcements about the true value
of some environment variables, in order to create a stable solution if there were none
without the announcements. Ågotnes et al. [2] address uncertainty in BGs by extending
the framework of BGs with a set of observable action variables for every agent, i.e.
every agent can only observe the values assigned to a particular subset of action vari-
ables. As a result, agents are not able to distinguish between some strategy profiles, if
these profiles only differ in action variables that are not observable to that agent. Three
notions of verifiable equilibria are investigated, capturing respectively strategy profiles
for which all agents know that they might be pure Nash equilibria (PNEs), strategy pro-
files for which all agents know that they are PNEs and strategy profiles for which it is
common knowledge that they are PNEs, i.e. all agents know that they are PNEs and
all agents know that all agents know that they are PNEs etc. The same authors have
extended this framework to epistemic BGs [1], in which the logical language for de-
scribing goals is broadened to a multi-agent epistemic modal logic. Note, however, that
agents are still completely aware of each others’ goals in this framework.

In this paper, we study BGs with incomplete information, considering agents which
have their own beliefs about the goals of other agents. Although probability theory is
often used to model uncertainty in game theory [14], a possibilistic logic approach pro-
vides a simple and elegant mechanism for modeling partial ignorance, which is closely
related to the notion of epistemic entrenchment [8]. Being based on ranking formulas

198 S. De Clercq et al.

(at the syntactic level) or possible worlds (at the semantic level), possibilistic logic has
the advantage of staying close to classical logic. As a result, we will be able to introduce
methods for solving possibilistic BGs that are entirely similar to methods for solving
standard BGs.

Example 2. Consider again the scenario of Example 1, but assume that Bob and Alice
are unaware of each other’s goals. If Bob’s knowledge of Alice’s goal is correct, but
Alice thinks that Bob does not want to join her to the theatre, then, based on their
beliefs, attending a sports game together is a ‘better’ solution than going to the theatre
together. Indeed, Alice believes that Bob will not agree to go to the theatre together, but
they both believe that the other will agree to attend a sports game together.

The paper is structured as follows. First, we briefly recall possibility theory and BGs.
In Section 3, we construct the framework of BGs with uncertainty, both from an intuitive
semantic and a compact syntactic point of view. Moreover, we show that the proposed
semantic and syntactic definitions are equivalent, and we characterise the complexity of
the associated decision problems.

2 Preliminaries

In this section, we recall possibilistic logic and Boolean games. As usual, the logical
language LΦ associated with a finite set of atomic propositional variables (atoms) Φ
contains the following formulas:

– every propositional variable of Φ,
– the logical constants ⊥ and
, and
– the formulas ¬ϕ, ϕ→ ψ, ϕ↔ ψ, ϕ ∧ ψ and ϕ ∨ ψ for every ϕ, ψ ∈ LΦ.

An interpretation of Φ is defined as a subset ω of Φ, with the convention that all atoms
in ω are interpreted as true (
) and all atoms in Φ \ ω are interpreted as false (⊥). An
interpretation can be extended to LΦ in the usual way. If a formula ϕ ∈ LΦ is true in an
interpretation ω, we denote this as ω |= ϕ.

2.1 Possibilistic Logic

Possibilistic logic (see e.g. [9] for a more comprehensive overview) is a popular tool to
encode and reason about uncertain information in an intuitive and compact way.

Definition 1 (Possibility Distribution). Let Ω be a finite universe. A possibility distri-
bution on Ω is a mapping π : Ω → [0, 1].

In possibilistic logic, given a logical language LΦ, the set of interpretations of Φ is
used as the universe of a possibility distribution. If π(ω) = 1, ω is considered to be
completely possible, whereas π(ω) = 0 corresponds to ω being completely impossible.
Available information encodes which worlds cannot be excluded based on available
knowledge. Therefore, smaller possibility degrees are more specific, as they rule out
more possible worlds. A possibility distribution such that π(ω) = 1 for every ω ∈ Ω

Possibilistic Boolean Games 199

thus corresponds to a state of complete ignorance. Note that a possibility distribution is
not the same as a probability distribution, since we do not require that

∑
ω∈Ω π(ω) = 1.

An ordering≤ on all possibility distributions on Ω can be defined as π1 ≤ π2 iff it holds
that π1(ω) ≤ π2(ω), ∀ω ∈ Ω, assuming the natural ordering on [0, 1]. We say that π1

is at least as specific as π2 when π1 ≤ π2. The maximal elements w.r.t.≤ are called the
least specific possibility distributions. A possibility and necessity measure are induced
by a possibility distribution in the following way.

Definition 2 (Possibility and Necessity Measure). Given a possibility distribution π
in a universe Ω, the possibility Π(A) and necessity N(A) that an event A ⊆ Ω occurs
is defined as:

Π(A) = sup
ω∈A

π(ω); N(A) = inf
ω/∈A

(1− π(ω))

In possibilistic logic, we abbreviate N({ω ∈ Ω |ω |= ϕ}) as N(ϕ) for a formula ϕ.

Definition 3 (Possibilistic Knowledge Base). Let Φ be a set of atoms. A finite set
{(ϕ1, α1), . . . , (ϕm, αm)} of pairs of the form (ϕi, αi), with ϕi ∈ LΦ and αi ∈]0, 1],
is a possibilistic knowledge base (KB). It encodes a possibility distribution, namely the
least specific possibility distribution satisfying the constraints N(ϕi) ≥ αi.

The possibility distribution πK encoded by a KB K is well-defined because there is a
unique least specific possibility distribution which satisfies the constraints of K [7].

The necessity measure N satisfies the property N(p ∧ q) = min(N(p), N(q)). The
following inference rules are associated with possibilistic logic:

– (¬p ∨ q, α); (p ∨ r, β) + (q ∨ r,min(α, β)) (resolution rule),
– if p entails q classically, then (p, α) + (q, α) (formula weakening),
– for β ≤ α, (p, α) + (p, β) (weight weakening),
– (p, α); (p, β) + (p,max(α, β)) (weight fusion).

The axioms consist of all propositional axioms with weight 1. These inference rules
and axioms are sound and complete in the following sense [7]: it holds that K + (ϕ, α)
iff N(ϕ) ≥ α for the necessity measure N induced by πK. Another useful property is
K + (ϕ, α) iff Kα + ϕ (in the classical sense) [9], with Kα = {ϕ | (ϕ, β) ∈ K, β ≥ α}
the α-cut of K.

2.2 Boolean Games

We use a generalization of the notion of Boolean games [5] by allowing agents to have
non-dichotomous utilities. This approach is a variant of the BGs with prioritized goal
bases considered in [4]. Our notation is based on [2].

Definition 4 (Boolean Game [4]). A Boolean game (BG) is a tuple G = (Φ1, . . . , Φn,
Γ1, . . . , Γn). The set of agents {1, . . . , n} is denoted as N . For every i ∈ N , Φi is
a finite set of propositional variables, disjoint with Φj , ∀j �= i. We denoteΦ =

⋃
i∈N Φi.

For every i ∈ N , Γi = {γ1
i ; . . . ; γ

p
i } is i’s prioritized goal base. The formula γj

i ∈ LΦ

is agent i’s goal of priority j. We assume that the number of priority levels p is fixed for
all agents.

200 S. De Clercq et al.

The set Φ contains all action variables. Agent i can set the variables under its control,
i.e. those in Φi, to true or false. Note that every variable is controlled by exactly one
agent. By convention, priority numbers are ordered from high priority (level 1) to low
priority (level p). Definition 4 corresponds to a particular case of generalized BGs [4], in
which the preference relation is total for every agent. The results presented in this paper
can easily be generalized to accommodate for partially ordered preference relations.
However, as modeling preferences is not the focus of this paper, we prefer the simpler
setting of Definition 4, for clarity.

Definition 5 (Strategy Profile [2]). For each agent i ∈ N , an interpretation of Φi is
called a strategy of i. An n-tuple ν = (ν1, . . . , νn), with νi a strategy of agent i, is
called a strategy profile or outcome of G.

Because {Φ1, . . . , Φn} is a partition of Φ and νi ⊆ Φi, ∀i ∈ N , we also (ab)use the
set notation

⋃
i∈N νi ⊆ Φ for a strategy profile ν = (ν1, . . . , νn). We denote the set

of all strategy profiles as V . With ν−i we denote the projection of the strategy profile
ν = (ν1, . . . , νn) on Φ−i = Φ \ Φi, i.e. ν−i = (ν1, . . . , νi−1, νi+1, . . . , νn). If ν′i is
a strategy of agent i, then (ν−i, ν

′
i) is a shorthand for (ν1, . . . , νi−1, ν

′
i, νi+1, . . . , νn).

The utility for every agent i follows naturally from the satisfaction of its goals.

Definition 6 (Utility Function). For each i ∈ N and ν ∈ V , the utility for ν is defined
as ui(ν) = p+ 1−min{k | 1 ≤ k ≤ p,ν |= γk

i }, with min ∅ = p+ 1 by convention.

Note that the specific utility values do not matter since the solution concepts that we will
discuss in this paper are qualitative; only the preference ordering ≥i on V induced by
the utility function ui is relevant: ν ≥i ν

′ iff ui(ν) ≥ ui(ν
′), ∀ν,ν ′ ∈ V . A common

qualitative solution concept in game theory is the notion of pure Nash equilibrium.

Definition 7 (Pure Nash Equilibrium). A strategy profile ν = (ν1, . . . , νn) for a
BG G is a pure Nash equilibrium (PNE) iff for every agent i ∈ N , νi is a best response
(BR) to ν−i, i.e. ui(ν) ≥ ui(ν−i, ν

′
i), ∀ν′i ⊆ Φi.

Example 1 (continued). Recall the scenario of Example 1. Alice and Bob’s goal bases
can be written as Γ1 = {a ↔ b;¬a} and Γ2 = {a ↔ b; b}. This encoding naturally
captures the fact that e.g. Bob’s first priority is to go out with Alice and his second
priority is to attend a sports game. Both agents have utility 2 in the PNEs {a, b} and ∅.

3 Boolean Games with Incomplete Information

3.1 Semantic Approach

Consider a set of agents N , controlling the action variables in Φ1, . . . , Φn, who are un-
certain about each other’s goals. Let us denote the set of possible goal bases with p levels
as G = {{γ1; . . . ; γp} | ∀k ∈ {1, . . . , p} : γk ∈ LΦ in conjunctive normal form and
(k �= p ⇒ γk |= γk+1)}. Note that any formula can be transformed into an equivalent
formula in conjunctive normal form (CNF) and that any goal base {γ1; . . . ; γp} violat-
ing the condition γk |= γk+1, ∀k �= p can be transformed into a semantically equiva-
lent goal base which does satisfy the property, namely {γ1; γ1 ∨ γ2; . . . ;

∨p
m=1 γ

m}.

Possibilistic Boolean Games 201

Moreover, all agents have the same set of possible goal bases. Let us define BG(Φ1, . . . ,
Φn) = {(Φ1, . . . , Φn, Γ1, . . . , Γn) | Γ1, . . . , Γn ∈ G} as the set of all possible BGs,
given the considered partition of action variables. When the partitionΦ1, . . . , Φn is clear
from the context, we abbreviate BG(Φ1, . . . , Φn) as BG. The knowledge of an agent i
about the goals of the other agents can be captured by a possibility distribution πi over
BG, encoding i’s beliefs about what is the actual game being played.

Example 2. Recall the scenario of Example 1. Suppose Bob has perfect knowledge of
Alice’s preferences, then π2 : BG → {0, 1} maps every BG to 0, except the BGs with
the preference orderings of Example 1, i.e. the actual game being played is the only one
considered possible by Bob. Suppose Alice is certain that Bob wants to attend a sports
game together, or attend the game on his own if attending it together is not possible.
Then π1 : BG → {0, 1} maps all BGs to 0, except those with the preference orderings

{a, b} =1 ∅ >1 {b} >1 {a}
{a, b} >2 {b} >2 ∅ =2 {a}

Bob \ Alice a ¬a
b (2, 2) (1, 1)
¬b (0, 0) (0, 2)

Our first aim is to determine to which degree a specific strategy profile ν is neces-
sarily/possibly a PNE according to agent i. Intuitively, it is possible to degree λ that a
strategy profile ν is a PNE according to i iff there exists a BG G ∈ BG such that ν is a
PNE in G and such that i considers it possible to degree λ that G is the real game being
played, i.e.

Πi({G ∈ BG |ν is a PNE in G}) = λ

Similarly, it is certain to degree λ that a strategy profile ν is a PNE according to i iff
for every G ∈ BG such that ν is no PNE, it holds that i considers it possible to degree
at most 1− λ that G is the real game being played, i.e.

Ni({G ∈ BG |ν is a PNE in G}) = λ

Using the previously introduced degrees, we can define measures which offer a way
to distinguish between multiple equilibria, motivated by Schellings’ notion of focal
points [15]. An equilibrium is a focal point if, for some reason other than its utility,
it stands out from the other equilibria. In our case, the reason can be that agents have
a higher certainty that the outcome is actually a PNE, using the degrees to which a
strategy profile is necessarily a PNE. Note that there might not exist an outcome which
every agent believes is necessarily a PNE, even when the (unknown) game being played
has one or more PNEs. In such cases, the degree to which various strategy profiles are
possibly a PNE could be used to guide decisions.

Definition 8. Given the possibility measures Πi for every i, the degree to which all
agents find it possible that the strategy profile ν is a PNE is

poss(ν) = min
i∈N

Πi({G ∈ BG |ν is a PNE in G})

Similarly, given the necessity measures Ni for every i, the degree to which all agents
find it necessary that ν is a PNE is defined as

nec(ν) = min
i∈N

Ni({G ∈ BG |ν is a PNE in G})

202 S. De Clercq et al.

3.2 Syntactic Approach

While the concepts from Section 3.1 define useful notions w.r.t. the possibility or ne-
cessity that agents play best responses or that strategy profiles are PNEs, they cannot be
applied in practice, since the number of BGs in BG is exponential. In this section, we
present a syntactic counterpart which will allow for a more compact representation of
the agents knowledge about the game being played.

Definition 9 (Goal-Knowledge Base). Agent i’s knowledge about the goals of agent j
is encoded in a goal knowledge base Kj

i of i w.r.t. j containing formulas of the form
(ϕ → gkj , λ), (ϕ ← gkj , λ) or (ϕ ↔ gkj , λ), where 1 ≤ k ≤ p, ϕ ∈ LΦ, λ ∈]0, 1] and

gkj a new atom, encoding j’s goal of priority k. A goal-KB Kj
i is goal-consistent, i.e.

for every ϕ, ψ ∈ LΦ such that (ϕ→ gkj , λ) ∈ K
j
i and (ψ ← gkj , λ) ∈ K

j
i , it holds that

ϕ |= ψ classically. Moreover, Kj
i contains {(gkj → gk+1

j , 1) | 1 ≤ k ≤ p− 1}.

A goal-KBKj
i captures the knowledge of agent i about the goal base of agent j. In our

examples, the formulas {(gkj → gk+1
j , 1) | 1 ≤ k ≤ p − 1}, which belong to Kj

i by
definition, are not explicitly mentioned. These formulas express that, if agent j’s utility
is at least p + 1 − k, it is at least p − k. Furthermore, the information that we like to
express in Kj

i exists of necessary and/or sufficient conditions for the utility of agent j.
For instance, agent i might believe that with certainty λ, ϕ is a sufficient condition for
satisfying the goal with priority k, i.e. achieving a utility of at least p + 1 − k. This is
encoded as (ϕ → gkj , λ) ∈ K

j
i . Similarly, agent i might believe with certainty λ that ϕ

is a necessary condition for achieving the goal with priority k, i.e. (ϕ ← gkj , λ) ∈ K
j
i .

These types can be combined as (ϕ ↔ gkj , λ) ∈ K
j
i . Note how adding the atoms gkj to

the language allows us to explicitly encode what an agent knows about the goal of an-
other agent. This is inspired by the approach from [16] for merging conflicting sources,
where similarly additional atoms are introduced to encode knowledge about the un-
known meaning of vague properties, in the form of necessary and sufficient conditions.

Example 4. Recall the scenario of Example 1. Suppose Bob has a good idea of what
Alice’s goal base looks like: K1

2 = {((a ↔ b) ↔ g11 , 0.9), (((a ↔ b) ∨ ¬a) ↔
g21 , 0.6)}. He is very certain that Alice’s first priority is to go out together and rather
certain that she prefers the theatre in case they do not go out together. Although Alice
is very certain that Bob will be pleased if they attend a sports game together, she is
only a little certain whether Bob would be just as pleased if they attend the cultural
event together. She knows Bob prefers to go a sports game as a second priority. Her
knowledge of Bob’s goal base can be captured by K2

1 = {((a ∧ b) → g12 , 0.8), ((¬a ∧
¬b)→ g12 , 0.3), (b→ g22 , 1)}.

It is natural to assume that Ki
i = {(gki ↔

∨k
m=1 γ

m
i , 1) | k ∈ {1, . . . , p}}, i.e. every

agent knows its own goal base and the corresponding utility. However, this assumption
is not necessary for the results in this paper. By requiring goal-consistency, we ensure
that the knowledge base Kj

i only encodes beliefs about the goal of agent j. Without
this assumption, it could be possible to derive from Kj

i formulas of the form ϕ → ψ,
encoding dependencies between the action variables of other agents. Such dependencies

Possibilistic Boolean Games 203

could be useful for modeling suspected collusion, which we will not consider in this
paper. However, we do not demand that the beliefs of an agent are correct, i.e. we do
not assume that each agent considers the actual game possible.

Definition 10 (BG with Incomplete Information). A Boolean game with incomplete
information (BGI) is a tuple G = (Φ1, . . . , Φn, Γ1, . . . , Γn, K1, . . . ,Kn) with Φ1, . . . ,
Φn, Γ1, . . . , Γn as before and Ki = {K1

i , . . . ,Kn
i }, where Kj

i is a goal-KB of i w.r.t. j.

Let us now consider how to compute the necessity and possibility that agent j plays
a best response (BR) in the strategy profile ν according to agent i. First note that each
ν ∈ V corresponds unambiguously to a formula ϕν in LΦ in the following way:

ϕν =
∧
{p | p ∈ ν} ∧

∧
{¬p | p ∈ Φ \ ν}

We also introduce the following notations:

ϕν−j =
∧
{p | p ∈ ν ∩ (Φ \ Φj)} ∧

∧
{¬p | p ∈ (Φ \ Φj) \ ν}

ϕνj =
∧
{p | p ∈ νj ∩ Φj} ∧

∧
{¬p | p ∈ Φj \ νj}

Note that ϕν−j is equivalent with
∨
{ϕ(ν−j ,ν′

j)
| ν′j ⊆ Φj}.

Agent j plays a BR in the strategy profile ν iff for every alternative strategy ν′j ⊆ Φj

it holds that uj(ν) ≥ uj(ν−j , ν
′
j). Essentially this boils down to the fact that, for

some k ∈ {0, . . . , p}, uj(ν) ≥ k and ∀ν′j ⊆ Φj : uj(ν−j, ν
′
j) ≤ k. Note that for

k = 0, the first condition is always fulfilled. Similarly, for k = p, the second condition
becomes trivial. Similarly, agent j plays no BR in ν iff there exists a ν′j ⊆ Φj such
that uj(ν) < uj(ν−j, ν

′
j). This means that, for all k ∈ {0, . . . , p}, uj(ν) < k or

∃ν′j ⊆ Φj : uj(ν−j , ν
′
j) > k. The possibility of agent j playing a BR is dual to the

necessity of agent j playing no BR. These insights motivate the following definition.

Definition 11. Let i, j ∈ N be two agents in a BGI G and let ν be a strategy profile of
G. We denote gp+1

j =
 and g0j = ⊥ for every j. We say that j plays a BR in ν with
necessity λ according to i, written BRn

i (j,ν) = λ, iff λ is the greatest value in [0, 1]
for which there exists some k ∈ {0, . . . , p} such that the following two conditions are
satisfied:

1. Kj
i + (ϕν → gk+1

j , λ)

2. Kj
i + ((ϕν−j

∧ ¬ϕνj)→ ¬gkj , λ)

Let λ∗ be the smallest value greater than 1 − λ which occurs in Kj
i . Agent i believes

it is possible to degree λ that agent j plays a BR in ν, written BRp
i (j,ν) = λ, iff λ

is the greatest value in]0, 1] for which there exists some k ∈ {0, . . . , p} such that the
following two conditions are satisfied:

1. Kj
i � (ϕν → ¬gk+1

j , λ∗)

2. ∀ν′j ⊆ Φj : Kj
i � (ϕ(ν−j ,ν′

j)
→ gkj , λ

∗)

If no such λ exists, then BRp
i (j,ν) = 0.

Importantly, the syntax in Definition 11 allows to express the certainty or possibililty
that an agent plays a BR, from the point of view of another agent. This forms an im-
portant base from which to define interesting solution concepts or measures in BGIs.

204 S. De Clercq et al.

In this paper, we introduce the following measures that respectively reflect to what de-
gree all agents believe it is necessary and possible that ν is a PNE.

Definition 12. Let G be a BGI. For every strategy profile ν, we define the measures
PNEn and PNEp as:

PNEn(ν) = min
i∈N

min
j∈N

BRn
i (j,ν), PNEp(ν) = min

i∈N
min
j∈N

BRp
i (j,ν)

If we assume that all agents know their own goal, then BRn
i (i,ν) = BRp

i (i,ν) = 0 if ν
is not a PNE. Consequently, if ν is not a PNE, then we have PNEn(ν) = PNEp(ν) = 0.
Note that the measures from Definition 12 induce a total ordering on V , so there always
exists a ν ∈ V such that PNEn or PNEp is maximal.

Example 4 (continued). Let G be the BGI with the aformentioned goal-KBs and as-
sume that Bob and Alice know their own goals. It can be computed that

∅ {a} {b} {a, b}
minj∈N BRn

1 (j, .) 0.3 0 0 0.8

minj∈N BRn
2 (j, .) 0.9 0 0 0.9

PNEn(.) 0.3 0 0 0.8

The strategy profile {a, b} has the highest value for PNEn. Note that if Bob had the
‘dual’ beliefs of Alice, i.e. K1

2 = {((¬a ∧ ¬b)→ g11, 0.8), ((a ∧ b)→ g11, 0.3), (¬a→
g21 , 1)}, then ∅ and {a, b} both had value 0.3 for PNEn.

In [6], we showed that many solution concepts for BGs can be found by using a reduc-
tion to answer set programming. The concepts in this section, such as PNEn, can be
computed using a a straightforward generalization of the idea in [6].

3.3 Soundness and Completeness

In this section, we show that the solution concepts for BGIs that were introduced in Sec-
tion 3.2 indeed correspond to their semantic counterparts from Section 3.1. The classical
theory {γk

j ↔ gkj | k ∈ {1, . . . , p}} associated with the goal base Γj = {γ1
j ; . . . ; γ

p
j } ∈

G is denoted as Tj . A possibility distribution πj
i on G can be associated with Kj

i in the
following natural way, inspired by [3], with max ∅ = 0:

πj
i (Γj) = 1−max{αl | (ϕl, αl) ∈ Kj

i , Tj �|= ϕl} (1)

Intuitively, the higher the certainty of the formulas violated by Γj , the lower the pos-
sibility of Γj being the real goal base of agent j according to agent i. Note that if we
make the reasonable assumption that an agent knows its own goals, then πi

i maps all
elements of G to 0 except the real goal base of i, which is mapped to 1. Given the BGI
G and using the possibility distributions on G for every j, we can define a possibility
distribution πG

i on the set of possible BGs BG:

πG
i (G

′) = min
j∈N

πj
i (Γ

G′

j)

with ΓG′

j the goal base of agent j in the BG G′. This possibility distribution is the
natural semantic counterpart of the BGI G. We now show that these possibility distri-
butions πG

i allow us to interpret the solution concepts that have been defined syntac-
tically in Section 3.2 as instances of the semantically defined solution concepts from

Possibilistic Boolean Games 205

Section 3.1. This is formalized in the following proposition and corollary. We use the
notation brj(ν, Γj) for the propositional variable corresponding to “agent j with goal
base Γj plays a best response in ν”.

Proposition 1. For every ν ∈ V , i, j ∈ N and λ ∈]0, 1], it holds that

BRn
i (j,ν) ≥ λ⇔ ∀Γj ∈ G : ¬brj(ν, Γj)⇒ πj

i (Γj) ≤ 1− λ (2)

BRp
i (j,ν) ≥ λ⇔ ∃Γj ∈ G : brj(ν, Γj) ∧ πj

i (Γj) ≥ λ (3)

Corollary 1. Let us denote the possibility and necessity measure associated with πG
i

as ΠG
i and NG

i . For every ν ∈ V it holds that

NG
i ({G′ ∈ BG |ν is a PNE in G′}) = min

j∈N
BRn

i (j,ν) (4)

ΠG
i ({G′ ∈ BG |ν is a PNE in G′}) = min

j∈N
BRp

i (j,ν) (5)

Consequently, it holds that:

necG({G′ ∈ BG |ν is a PNE in G′}) = PNEn(ν)

possG({G′ ∈ BG |ν is a PNE in G′}) = PNEp(ν)

Before we prove Proposition 1 and Corollary 1, a lemma is stated which deals with the
construction of specific goal bases in G, given the knowledge about these goal bases.

Lemma 1. Given a goal-KBKj
i , there exists a goal base Γj ∈ G such that πj

i (Γj) = 1.

Proof (Sketch). It is easily verified that the goal base Γj = (γ1
j ; . . . ; γ

p
j) with γk

j the

CNF of
∨
{ϕ |ϕ ∈ LΦ, ∃λ > 0 : Kj

i + (ϕ→ gkj , λ)} meets the condition πj
i (Γj) = 1.

Note that the construction of Γj relies on the (constraint) syntax of the formulas in Kj
i .

We now prove Proposition 1.
⇒ of (2) We prove this by contraposition. Suppose there exists a Γj ∈ G such that j

plays no BR in ν given Γj and πj
i (Γj) > 1 − λ. Taking (1) into account, the latter im-

plies that ∀(ϕl, αl) ∈ Kj
i : Tj �|= ϕl ⇒ αl < λ. By definition 11, BRn

i (j,ν) ≥ λ

implies that there exists a k′ ∈ {0, . . . , p} such that Kj
i + (ϕν → gk

′+1
j , λ) and

Kj
i + ((ϕν−j

∧ ¬ϕνj) → ¬gk′

j , λ). It follows that Tj |= ϕν → gk
′+1

j and Tj |=
(ϕν−j

∧ ¬ϕνj) → ¬gk′

j . Consequently, by definition of Tj , if k′ ∈ {1, . . . , p − 1}, it

holds that Tj |= ϕν → γk′+1
j and Tj |= (ϕν−j

∧ ¬ϕνj) → ¬γk′

j . This means that

j does play a BR in ν since the goal γk′+1
j is satisfied in ν and for every alternative

strategy of j, γk′

j is not satisfied. If k′ = p or k′ = 0 then j’s utility is resp. 0 or p for
every alternative strategy of j. In any case, agent j with goal base Γj plays a BR in ν.

⇐ of (2) Suppose that BRn
i (j,ν) < λ, i.e. for every k ∈ {0, . . . , p} either Kj

i �

(ϕν → gk+1
j , λ) or Kj

i � ((ϕν−j
∧ ¬ϕνj) → ¬gkj , λ). Let k′ be the greatest index for

206 S. De Clercq et al.

which Kj
i � (ϕν → gk

′

j , λ). Note that k′ ≥ 1 since g0j = ⊥. Construct a goal base
Γj = (γ1

j ; . . . ; γ
p
j) with γk

j defined as the CNF of the formula∨
{ϕ |ϕ ∈ LΦ,Kj

i + (ϕ→ gkj , λ)} ∨ (
∧
{ϕ |ϕ ∈ LΦ,Kj

i + (ϕ← gkj , λ)} ∧ ¬ϕν)

for k ≤ k′, and γk
j defined as the CNF of the formula∨

{ϕ |ϕ ∈ LΦ,Kj
i + (ϕ→ gkj , λ)} ∨ (

∧
{ϕ |ϕ ∈ LΦ, ϕ �=
,Kj

i + (ϕ← gkj , λ)})

for k > k′. One can straightforwardly check that Γj ∈ G and πj
i (Γj) > 1 − λ by

checking that for every formula (ϕ, α) ∈ Kj
i with α ≥ λ, it holds that Tj |= ϕ.

Moreover, one can verify that j does not play a BR in ν with the constructed Γj (note
that this would not be guaranteed by the goal base constructed in the proof of Lemma 1).
⇒ of (3) Analogous to the proof of “⇐ of (2)”.

⇐ of (3) We prove directly that BRp
i (j,ν) ≥ λ, i.e. ∃k ∈ {0, . . . , p} such that Kj

i �

(ϕν → ¬gk+1
j , λ∗) and ∀ν′j : Kj

i � (ϕ(ν−j ,ν′
j)
→ gkj , λ

∗). By assumption, there

exists a Γj such that j plays a BR in ν and πj
i (Γj) ≥ λ. The former means that for

some k′ ∈ {0, . . . , p}, Tj |= ϕν → γj
k′+1 and ∀ν′j : Tj |= ϕ(ν−j ,ν′

j)
→ ¬γj

k′ . Since

Tj |= γj
l ↔ glj , it then holds that Tj |= ϕν → gk

′+1
j . Since by definition ϕν �|= ⊥,

Tj �|= ⊥ and Tj �|= ¬ϕν , it follows that Tj �|= ϕν → ¬gk
′+1

j . The assumption that

πj
i (Γj) ≥ λ implies that ∀(ϕl, αl) ∈ Kj

i : Tj �|= ϕl ⇒ αl ≤ 1− λ. It follows that Kj
i �

(ϕν → ¬gk
′+1

j , λ∗). Analogously, we can prove that ∀ν′j : Tj |= ϕ(ν−j ,ν′
j)
→ ¬γj

k′

implies that ∀ν′j : K
j
i � (ϕ(ν−j ,ν′

j)
→ gk

′

j , λ∗).
We now prove (4) of Corollary 1. The proof of (5) is analogous and the rest of

Corollary 1 follows immediately.
Proof of (4) By definition, minj∈N BRn

i (j,ν) ≥ λ iff BRn
i (j,ν) ≥ λ for every j ∈

N . We proved that the latter is equivalent with ∀Γj ∈ G : j no BR in ν ⇒ πj
i (Γj) ≤ 1−

λ. We first prove that this implies that for all G′ ∈ BG it holds that πG
i (G

′) ≤ 1−λ if ν
is no PNE in G′. By definition, this means that NG

i ({G′ ∈ BG |ν is a PNE in G′}) ≥ λ.
Take an arbitrary G′ such that ν is no PNE in G′. Then there exists some j who plays
no BR in ν if its goal base is ΓG′

j . By assumption, this implies πj
i (Γ

G′

j) ≤ 1−λ, which
implies πG

i (G′) ≤ 1 − λ by definition. We now prove the opposite direction. Take an
arbitrary j and Γj such that j plays no BR in ν with the goal base of j equal to Γj .
Using Lemma 1, we can construct a G′ ∈ BG such that ΓG′

j = Γj and πi
j′(Γ

G′

j′) = 1
for every j′ �= j. Obviously ν is no PNE in G′ since j plays no BR. By assumption and
definition of NG

i , it holds that πG
i (G

′) ≤ 1 − λ. Since πi
j′(Γ

j′

G′) = 1 for every j′ �= j,

it follows that πj
i (Γj) ≤ 1 − λ. Due to Proposition 1, we proved that BRn

i (j,ν) ≥ λ.
Since j is arbitrary, it follows that minj∈N BRn

i (j,ν) ≥ λ.

Example 5. Recall the scenario of Example 2. We define the BGI G. Since Bob has
perfect knowledge of Alice’s preferences, his goal-KB can be modeled as K1

2 = K1
1 =

{((a ↔ b) ↔ g11 , 1), (((a ↔ b) ∨ ¬a) ↔ g21 , 1)}. Alice is certain that Bob wants to
attend a sports game together, or attend the game on his own if attending it together is
not possible. This can be captured by the goal-KB K2

1 = {((a ∧ b) ↔ g12 , 1), (b ↔
g22 , 1)}. It is easy to see that πG

1 and πG
2 correspond to the possibility distributions

Possibilistic Boolean Games 207

π1 and π2 described in Example 2. Despite Alice’s incorrect beliefs, Bob and Alice
are both certain that attending a sports game together is a PNE, since necG({G′ ∈
BG | {a, b} is a PNE in G′}) = PNEn({a, b}) = 1. Contrary to Alice, Bob knows that
going to the theatre together is a PNE as well.

An interesting question is how the agents’ beliefs can influence the proposals they
can make in e.g. bargaining protocols. Suppose for instance that Alice wants to make
Bob a suggestion, then based on her beliefs, it would be rational to suggest to attend
a sports game together. Bob would then rationally agree, based on his beliefs. How-
ever, if Bob were to make a proposal, he can choose between two rational suggestions:
attending a sports game together or going to the theatre together. If he would do the lat-
ter, Alice would know that her beliefs are incorrect, assuming Bob behaves rationally.
In future research, we will investigate these strategical interactions and how they al-
low agents to revise their beliefs. Other research possibilities lie in manipulating BGIs
through communication, for instance through announcements, as investigated for BGs
with environment variables [11]. Another option is to extend the BGI framework, al-
lowing agents to also reason about the beliefs of other agents, although this is likely to
lead to an increase in computational complexity.

4 Decision Problems

The decision problems associated with BGIs and the PNEx measures are investigated.

Proposition 2. Let G be a BGI and λ ∈]0, 1]. The following decision problems are
ΣP

2 -complete:

1. Does there exist a strategy profile ν with PNEn(ν) ≥ λ?
2. Does there exist a strategy profile ν with PNEp(ν) ≥ λ?

Proof. Hardness of 1 and 2 Both problems are ΣP
2 -hard since they contain the ΣP

2 -
complete problem to decide whether a BG has a PNE as a special case. Indeed, when
G is a BG, we can construct a BGI in which all agents have complete knowledge of
each others goals. Then PNEn(ν) and PNEp(ν) coincide and take values in {0, 1},
depending on whether ν is a PNE or not. Consequently, G has a PNE iff there exists a
ν with PNEn(ν) = PNEp(ν) ≥ λ.
Completeness of 1 We can decide the problem by first guessing a strategy profile ν.

Checking whether PNEn(ν) ≥ λ means checking whether BRn
i (j,ν) ≥ λ for every

i, j ∈ N . The latter involves checking possibilistic entailments, which can be done in
constant time using an NP-oracle. Therefore, the decision problem is ΣP

2 -complete.
Completeness of 2 We can decide the problem by first guessing a strategy profile ν.

Checking whether PNEp(ν) ≥ λ means checking whether BRp
i (j,ν) ≥ λ for ev-

ery i, j ∈ N . To see that the latter can be reduced to checking a polynomial number
of possibilistic entailments, we need to rewrite the condition that ∀ν′j ⊆ Φj : Kj

i �
(ϕ(ν−j ,ν′

j)
→ gkj , λ

∗). To this end, we define Kk, for every k ∈ {1, . . . , p}, as the

KB Kj
i in which all formulas defining necessary and/or sufficient conditions for gkj are

preserved; all formulas with necessary conditions for glj (l ≥ k) are translated into nec-
essary conditions for gkj by replacing (ϕ → glj , α) by (ϕ → gkj , α); all formulas with

208 S. De Clercq et al.

sufficient conditions for glj (l ≤ k) are translated into sufficient conditions for gkj by
replacing (ϕ← glj , α) by (ϕ← gkj , α); all other formulas are deleted. Then it holds

∀ν′j ⊆ Φj : Kj
i � (ϕ(ν−j ,ν′

j)
→ gkj , λ

∗)

⇔ ∀ν′j ⊆ Φj : Kk � (ϕ(ν−j ,ν′
j)
→ gkj , λ

∗)

⇔ ∀ν′j ⊆ Φj : Kk
1−λ � ϕ(ν−j ,ν′

j)
→ gkj

⇔ ∀ν′j ⊆ Φj : Kk
1−λ and ϕ(ν−j ,ν′

j)
and ¬gkj are consistent

⇔ ∀ν′j ⊆ Φj : K′k1−λ and ϕν′
j

are consistent

where K′k1−λ is obtaind from Kk
1−λ by replacing each occurrence of gk by ⊥ and each

occurrence of p ∈ Φ\Φj by its truth value (
 or⊥) in ν. The last condition is equivalent
with K′k1−λ being a tautology, which can be checked with a SAT-solver, i.e. in constant
time with an NP-oracle.

The result of Proposition 2 shows that the complexity for the introduced measures does
not increase compared to PNEs of BGs, since deciding whether a BG has a PNE is also
ΣP

2 -complete. Moreover, given the experimental results reported in [6] for standard
BGs, it seems plausible that a reduction to answer set programming would support an
efficient computation of solutions for medium sized games.

5 Conclusion

We introduced the first BG framework that allows agents to be uncertain about the other
agents’ goals. We have argued that such a scenario can naturally be modeled by associ-
ating with each agent a possibility distribution over the universe of all possible games
(given the considered partition of action variables). While this allows us to define a
variety of solution concepts in a natural way, this semantic approach is not useful in
practice, due to the exponential size of these possibility distributions. Therefore, we
also proposed a syntactic counterpart, which avoids exponential representations by re-
lying on standard possibilistic logic inference, and can be implemented by reduction
to answer set programming. Our main result is that this syntactic characterization in-
deed corresponds to the intended semantic definitions. We furthermore showed that the
computational complexity of reasoning with our Boolean games with incomplete infor-
mation remains at the second level of the polynomial hierarchy. The present framework
leads to several interesting avenues for future work. First, the approach could be gener-
alized for taking into account prior beliefs about the likely behaviour of other players
(e.g. for modeling collusion) and/or for modeling situations where agents may be un-
certain about the actions that are being played by other agents. Moreover, it seems of
interest to analyse the effect of adding communication to the framework, by allowing
agents to strategically ask questions or make proposals to each other in order to reduce
uncertainty or as part of a bargaining process.

Possibilistic Boolean Games 209

References

1. Ågotnes, T., Harrenstein, P., van der Hoek, W., Wooldridge, M.: Boolean games with epis-
temic goals. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI. LNCS, vol. 8196, pp. 1–14.
Springer, Heidelberg (2013)

2. Ågotnes, T., Harrenstein, P., van der Hoek, W., Wooldridge, M.: Verifiable equilibria in
Boolean games. In: Proc. IJCAI 2013, pp. 689–695 (2013)

3. Benferhat, S., Kaci, S.: Logical representation and fusion of prioritized information based
on guaranteed possibility measures: Application to the distance-based merging of classical
bases. Artificial Intelligence 148, 291–333 (2003)

4. Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Compact preference representation for
Boolean games. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp.
41–50. Springer, Heidelberg (2006)

5. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J., Zanuttini, B.: Boolean games revisited. In:
Proc. ECAI 2006, pp. 265–269. ACM (2006)

6. De Clercq, S., Bauters, K., Schockaert, S., De Cock, M., Nowé, A.: Using answer set pro-
gramming for solving Boolean games. In: Proc. KR 2014, pp. 602–605 (2014)

7. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic for Artificial
Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press (1994)

8. Dubois, D., Prade, H.: Epistemic entrenchment and possibilistic logic. Artificial Intelli-
gence 50(2), 223–239 (1991)

9. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets
and Systems 144, 3–23 (2004)

10. Dunne, P., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative Boolean games. In:
Proc. AAMAS 2008, vol. 2, pp. 1015–1022. IFAAMAS (2008)

11. Grant, J., Kraus, S., Wooldridge, M., Zuckerman, I.: Manipulating Boolean games through
communication. In: Proc. IJCAI 2011, pp. 210–215 (2011)

12. Harrenstein, P., van der Hoek, W., Meyer, J.J., Witteveen, C.: Boolean games. In: Proc. TARK
2001, pp. 287–298. MKP Inc. (2001)

13. Marchioni, E., Wooldridge, M.: Łukasiewicz games. In: Proc. AAMAS 2014, pp. 837–844
(2014)

14. Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
15. Schelling, T.: The strategy of conflict. Oxford University Press (1960)
16. Schockaert, S., Prade, H.: Solving conflicts in information merging by a flexible interpreta-

tion of atomic propositions. Artificial Intelligence 175(11), 1815–1855 (2011)

LEG Networks for Ranking Functions

Christian Eichhorn and Gabriele Kern-Isberner

Lehrstuhl Informatik 1, Technische Universität Dortmund, Dortmund, Germany
{christian.eichhorn,gabriele.kern-isberner}@cs.tu-dortmund.de

Abstract. When using representations of plausibility for semantical frameworks,
the storing capacity needed is usually exponentially in the number of variables.
Therefore, network-based approaches that decompose the semantical space have
proven to be fruitful in environments with probabilistic information. For appli-
cations where a more qualitative information is preferable to quantitative in-
formation, ordinal conditional functions (OCF) offer a convenient methodology.
Here, Bayesian-like networks have been proposed for ranking functions, so called
OCF-networks. These networks not only suffer from similar problems as Bayesi-
an networks, in particular, allowing only restricted classes of conditional relation-
ships, it also has been found recently that problems with admissibility may arise.
In this paper we propose LEG networks for ranking functions, also carrying over
an idea from probabilistics. OCF-LEG networks can be built for any conditional
knowledge base and filled by local OCF that can be found by inductive reasoning.
A global OCF is set up from the local ones, and it is shown that the global OCF
is admissible with respect to the underlying knowledge base.

1 Introduction

Network-based approaches are very common in the field of probability theory, in
particular, Bayesian networks [13] are used to (compactly) store the joint probability
distribution of a set of variables under assumptions of conditional independence thus
yielding the possibility to save only local probability information and calculate a global
distribution by means of decomposition. For applications in which the information to
be handled is a degree of plausibility or implausibility, ordinal conditional functions
(OCF) [15], also known as ranking functions, offer a likewise satisfactory but essen-
tially qualitative framework. It has been shown that Bayesian-style networks with local
ranking tables instead of local tables of probabilities [6,3,8], so called OCF-networks,
share the properties of local storing, decomposition and conditional independence with
classical (that is, probabilistic) Bayesian networks. However, if an OCF-network has to
be constructed from a knowledge base, the conditionals are restricted to a certain lim-
ited language; as an additional drawback, recent work [5] shows that the admissibility
of the global ranking function with respect to the given knowledge base may be lost.
The less well-known approach of networks of local event groups (LEG networks [10])
looks promising to overcome these deficiencies as there are algorithms to construct (es-
pecially the hypertree component of) a probabilistic LEG network from a knowledge
base containing arbitrary conditionals [12].

In this paper we present an adaption of the LEG approach for ranking functions that
is able to preserve the advantages of the probabilistic approach, i.e., decomposability,

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 210–223, 2014.
c© Springer International Publishing Switzerland 2014

LEG Networks for Ranking Functions 211

local representation of knowledge, and allowing general forms of knowledge bases,
while still ensuring admissibility of the resulting global ranking function to the given
knowledge bases. We prove that for LEGs that form hypertrees, the ranking variant of
the consistency condition [10] is sufficient to guarantee that there is a global ranking
function such that the local ranking functions of the LEGs which can be obtained by
inductive reasoning like system Z [14] and c-representations [7], are marginal functions
of this global function. Therefore, OCF-LEG networks provide a methodology to induc-
tively compose an OCF for a knowledge base from local ranking functions. The LEG
approach regards conditionals as undirected connections between variables and com-
bines the variables jointly occurring in a conditional in the same hyperedge. This allows
for generating the network component of OCF-LEG networks with arbitrary condi-
tionals, which overcomes the language restriction of OCF-networks, replacing directed
(usually viewed as cause-and-effect) connections between variables by unordered sets
of variables that are connected by the respective conditionals. Doing so, also the strong
acyclicity needed for OCF-networks is no longer necessary, while nonetheless acyclic-
ity with respect to the hyperedges is needed, that is, we have to guarantee that the
network is a hypertree. Nevertheless, OCF-LEG networks induce a conditional inde-
pendence of neighbouring hyperedges in the network given their intersections, even
without the strong assumptions needed for the Bayesian-style OCF-networks.

With this approach, an OCF-LEG network can be constructed inductively, generat-
ing both the local ranking functions as well as the network component from a (con-
sistent) conditional knowledge base that can be divided into a set of local knowledge
bases. These local computations reduce the number of affected conditionals as well as
the number of affected variables significantly, both crucial factors of the computational
complexity for either of the inductive approaches. Moreover, this switch from a global
to a local perspective allows local inferences inside of the LEGs that coincide with
global inferences, thanks to having full admissibility with respect to the given knowl-
edge bases with this approach.

This paper is organised as follows: After the introduction in Section 1 and the for-
mal preliminaries in Section 2 we briefly recall Spohn’s ranking functions and two
approaches to inductive reasoning, c-representations and System Z, in Section 3. Sec-
tion 4 recalls OCF-networks as closest related work, and the necessary details for hy-
pergraphs. In Section 5 we define OCF-LEG networks and prove their formal properties
the algorithmic construction of which is the subject of Section 6. We conclude in Sect. 7.

2 Preliminaries

Let Σ = {V1, . . . , Vn} be a finite set of propositional variables. We denote by L the
logical language of Σ under closure of conjunction (∧), disjunction (∨) and negation
(¬) together with the symbol of tautology (
) and contradiction (⊥). Let φ, ψ be for-
mulas in L. We abbreviate conjunction by juxtaposition (that is, φ∧ψ is abbreviated as
φψ) and negation by overlining (that is, ¬φ is abbreviated as φ). A literal is a variable
interpreted to true or false , we write vi to denote the interpretation of Vi to true, vi
to denote the interpretation of Vi to false and v̇i to denote a fixed interpretation of Vi.
For a set A = {A,B,C} ⊆ Σ, a denotes a complete conjunction a = ȧḃċ. For φ ∈ L

212 C. Eichhorn and G. Kern-Isberner

we write Vi�−φ if v̇i appears in φ. Interpretations, or possible worlds, are also defined
in the usual way; the set of all possible worlds is denoted by Ω. We often use the 1-1
association between worlds and complete conjunctions, that is, conjunctions of literals
where every variable Vi ∈ Σ appears exactly once.

For a system {Σ1, . . . Σm} of subsets Σi ⊆ Σ for all 1 ≤ i ≤ m, we denote by
Ωi the local (possible) worlds, that is, complete conjunctions of literals over Σi. To
differentiate between possible worlds and local possible worlds we mark local possible
worlds with a superscript such that ωi ∈ Ωi. To denote the projection of a possible
world ω ∈ Ω onto a subset Σi, we write Σi(ω) =

∧
V ∈Σi

ω|=v̇
v̇ with

∧
V ∈Σi

ω|=v̇
v̇ ∈ Ωi.

especially, ∅(ω) =
 for all ω ∈ Ω. A conditional (ψ|φ) represents the defeasible
rule “if φ then usually / normally ψ” with the trivalent evaluation �(ψ|φ)�ω = true iff
ω |= φψ (verification / acceptance), �(ψ|φ)�ω = false iff ω |= φψ (falsification / refu-
tation) and �(ψ|φ)�ω = undefined iff ω |= φ (non-applicability) [4,7]. The language of
all conditionals over L is denoted by (L | L). A conditional (φ|
) encodes a plausible
proposition.

Let Γ = 〈V , E〉 be a directed, acyclic graph (DAG) with vertices V = {V1, . . . , Vn}
and edges E ⊆ V × V . We define the parents of a vertex V , pa(V), as the direct
predecessors of V (that is, pa(V) = {V ′|(V ′, V) ∈ E}) and the descendants of V ,
desc(V), as the set of vertices V ′ for which there is a path from V to V ′ in E . The set
of non-descendants of V is the set of all vertices that are neither the parents nor the
descendants of V , nor V itself, so nd(V) = V \ (desc(V) ∪ {V } ∪ pa(V)).

3 OCF and Inductive Reasoning

An ordinal conditional function (OCF), also known as ranking function is a function
that assigns to each world a rank of disbelief or implausibility, that is, the higher the
rank of a world is, the less plausible this world is.

Definition 1 (Ranking function (OCF, [15])). An ordinal conditional function (also
called OCF or ranking function) κ is a function κ : Ω → N0 ∪ {∞} such that the set
{ω |κ(ω) = 0} is not empty, i.e., there have to be worlds that are maximally plausible.

The rank of a formula φ ∈ L is defined to be the minimal rank of all worlds that
satisfy φ, κ(φ) = min{κ(ω) |ω |= φ}, which implies κ(⊥) = ∞ and κ(
) = 0.
The rank of a conditional (ψ|φ) ∈ (L|L) is defined by κ(ψ|φ) = κ(φψ) − κ(φ). With
the rank ∞, ranking functions allow us to encode strict knowledge: Let A ∈ L be a
formula, then κ(A) =∞ states that A is maximally / absolutely disbelieved, and hence
A is maximally / absolutely believed. The same holds for conditionals, where (A|
)
encodes the conditional fact “normally, A holds”, but if κ(A|
) = ∞, this becomes a
strict fact.

Definition 2 (Marginal ranking function). Let κ : Σ → N0∪{∞} be a ranking func-
tion. The marginal ranking function κ′ obtained from κ on Σ′ ⊆ Σ with corresponding
models ω′ ∈ Ω′ is defined by κ′(ω′) := κ(ω′) = min{κ(ω)|ω |= ω′}.

LEG Networks for Ranking Functions 213

Table 1. Car-start ranking function

ω h b f s h b f s h b f s h b f s h b f s h b f s h b f s h b f s

κ(ω) 2 3 4 3 2 1 2 1

ω h b f s h b f s h b f s h b f s h b f s h b f s h b f s h b f s

κ(ω) 0 1 2 1 2 1 2 1

Example 1 (Car start problem). As a running example we use the car start problem
from [6,3] which deals with the question whether a given car will start (S): We know
that a car usually will start (s) if the battery (B) is charged (b), otherwise it usually
will not start (s). We also know that a car usually will start (s) if the fuel tank (F)
is sufficiently filled (f), otherwise it usually will not start. Additionally, we know that
if the battery is charged and the fuel tank is empty, the car usually will not start and
if the battery is discharged and the fuel tank is filled, the car usually will not start. If
the headlights (H) have been left switched on overnight (h), the battery will usually
be empty, the other way round if we have switched the headlights off (h), the battery
usually will remain charged. Usually, we will switch off the headlights overnight and
usually, the fueltank is filled. This is formalised in the knowledge base

Δ =

{
(s|b), (s|b), (s|f), (s|f), (s|bf),
(s|bf), (h|
), (f |
), (b|h), (b|h)

}
. (1)

Table 1 shows an OCF for this example. Here, the world where the headlights have been
switched off, the battery is charged, the fuel-tank is full and the car starts is the most
plausible world (κ(hbfs) = 0), whereas the world where the headlights have been left
switched on, the battery is charged, the fuel-tank is empty and the car starts is the most
implausible one (κ(hbf s) = 4).

Ranking functions are connected with knowledge bases by the notion of admissibility,
ensuring that a ranking function accepts the conditionals given in the knowledge base.

Definition 3 (Acceptance / admissibility). A ranking function κ accepts a conditional
(ψ|φ) ∈ (L|L) iff its verification is ranked more plausible than its refutation, in symbols
κ |= (ψ|φ), if and only if κ(φψ) < κ(φψ). κ is admissible with respect to Δ (accepts
Δ) if and only if it accepts all conditionals in Δ, formally κ |= Δ iff κ |= (ψi|φi) for
all 1 ≤ i ≤ n.

Example 2. In the running car-start example (Example 1), the ranking function of Ta-
ble 1 accepts Δ as given in (1), for instance, we have κ(bf s) = 1 < 2 = κ(bf s) hence
κ |= (s|bf).

Ranking functions induce a plausibility based preference relation on worlds: a world
is κ-preferred to another if it is (strictly) more plausible with respect to κ, formally
ω ≤κ ω′ (ω <κ ω′) if and only if κ(ω) ≤ κ(ω′) (κ(ω) < κ(ω′)) and by thus induce
an inference relation based on preferential models (confer [11,15]). Since here we con-
centrate on the conceptual design of OCF-LEG networks, inference with OCFs will not

214 C. Eichhorn and G. Kern-Isberner

be discussed further, cf., e.g., [9] for a discussion of (inductive) inference mechanisms
using ranking semantics.

In this context, given a finite knowledge base, methods of inductive reasoning are able
to generate a ranking function that accepts the knowledge base. We recall the approach of
c-representations [7] which are part of a general principled framework for nonmonotonic
reasoning and belief revision. C-representations make use of individual falsification im-
pacts for the conditionals in the knowledge base which are chosen so as to ensure that
the resulting ranking function is admissible with respect to the knowledge base.

Definition 4 (c-representation [7]). A c-representation of a conditional knowledge
base Δ = {(ψ1|φ1), . . . , (ψn|φn)} ⊆ (L | L) is an OCF of the form

κc
Δ(ω) =

n∑
i=1,ω|=AiBi

κ−i , κ−i ∈ N0 (2)

where the values κ−i ∈ N0 are impact values for falsifying conditionals and have to be
chosen to make κc

Δ Δ-admissible, that is for all 1 ≤ i ≤ n it holds that κc
Δ |= (Bi|Ai).

This is the case iff

κ−i > min
ω|=AiBi

{ ∑
i�=j,ω|=AjBj

κ−j

}
− min
ω|=AiBi

{ ∑
i�=j,ω|=AjBj

κ−j

}
. (3)

A minimal c-representation is obtained by choosing κ−i minimally for all 1 ≤ i ≤ n.

Minimal c-representations rank worlds as plausible as possible while still maintain-
ing the admissibility with respect to the knowledge base and following the schema
(2) which ensures that each conditional in Δ has an impact that is independent of the
respective possible world. Note that because of the inequalities, there is no unique so-
lution for the system (3) for a knowledge base [7,1]; rather, c-representations provide
a schema for inductive, model-based reasoning. Nonetheless, each c-representation li-
censes for high qualitative inference as, for example, shown in [9]. To include strict
knowledge into the approach of c-representations, Definition 4 can be extended by al-
lowing κ−i =∞; however, we focus on conditionals as plausible rules here.

Example 3. We demonstrate c-representations with the running example (Example 1)
enumerating the conditionals in the ordering of the knowledge base in (1), that is
r1 = (s|b), r2 = (s|b), and so forth. The verification/falsification behaviour of the
knowledge base is shown in Table 2. This leads to the minimal falsification penalties,
κ−6 = κ−9 = 2, κ−3 = κ−4 = κ−8 = 1 and κ−1 = κ−2 = κ−5 = 0. which yield the ranking
function κc

Δ shown in Table 1.

Another approach to generate a ranking function that is admissible with respect to
the given knowledge base is the well known System Z [14]. Both approaches induce
inferences that satisfy all major postulates of nonmonotonic logics, however, system Z
suffers from the so-called drowning problem [6] whereas c-representations do not.

Note that there are connections between ranking functions, possibilistics [2] and
Dempster-Shafer theory [15], so techniques and results presented here may be relevant
for those frameworks; a more thorough elaboration of this is left for future work.

LEG Networks for Ranking Functions 215

Table 2. Verification/falsification behaviour for Example 3

ω h b f s h b f s h b f s h b f s

verifies r1,r3,r8 r8 r1 r4,r5
falsifies r7,r9 r1,r3,r7,r9 r4,r5,r7,r8,r9 r1,r8,r7,r9

ω h b f s h b f s h b f s h b f s

verifies r3,r8,r9 r2,r6,r8,r9 r9 r2,r4,r9
falsifies r2,r6,r7 r3,r7 r2,r4,r8,r7 r8,r7

ω h b f s h b f s h b f s h b f s

verifies r1,r3,r7,r8,r10 r8,r7,r10 r1,r7,r10 r4,r5,r7,r10
falsifies — r1,r3 r4,r5,r8 r1,r8

ω h b f s h b f s h b f s h b f s

verifies r3,r8,r7 r2,r6,r8,r7 r7 r2,r4,r7
falsifies r2,r6,r10 r3,r10 r2,r4,r8,r10 r8,r10

4 Related Networks and Hypergraphs

To date, only few works have addressed how graph-based representations can be used
for OCF. A prominent approach in this area are OCF-networks [6,3]. This network
approach resembles Bayes networks by decomposing global to local information, with
the difference that local and global belief are ranking values instead of probabilities.
Similar to Bayes networks, OCF-networks provide a stratification of the global function
into local ranking values defined by the structure of the graph. Like probabilities and
following the definition of ranking functions, the local ranking values are normalised.
The following definition summarises this approach.

Definition 5 (OCF-network). [6,3] A directed acyclic graph (DAG) Γ = 〈Σ, E〉 over
a set of propositional atoms Σ is an OCF-network if each vertex V ∈ Σ is annotated
with a table of local rankings κV (V | pa(V)) with (local) ranking values specified for
every configuration of V and pa(V). According to the definition of ranking functions
the local rankings must be normalised, i.e., minv̇{κ(v̇| pa(V))} = 0 for every configu-
ration of pa(V).

The local ranking information in Γ can be used to define a global ranking function
κ over Σ by applying the idea of stratification [6]: A function κ is stratified relative to
an OCF-network Γ if and only if

κ(ω) =
∑

κV (V (ω)| pa(V)(ω)), (4)

for every world ω. Although OCF-networks provide an efficient way of decomposing
global ranking functions, this approach has some deficiencies with respect to general
requirements of knowledge representation: Firstly, the algorithm to construct the graph

216 C. Eichhorn and G. Kern-Isberner

component from knowledge bases [6] restricts the language of the conditionals to con-
ditionals where the conclusion is a literal and the premise is a conjunction of literals (so
called single-elementary conditionals). Even worse, recent work [5] shows that when
the local ranking tables are computed from partitions of the knowledge base using meth-
ods of inductive reasoning it cannot be guaranteed that the global ranking function is
admissible with respect to the global knowledge base. This occurs due to the weakness
of the min-function inherent to the OCF framework and is independent from the used
inductive approach.

Before we transfer the approach of LEG networks [10] from an epistemic state rep-
resented as (local) probability functions to an approach where the (local) beliefs are
formalised as ranking functions, we recall the structure of hypertrees set up on subsets
of a propositional alphabet underlying this approach. Hypertrees and the more general
hypergraphs leave more room for flexible knowledge representation of conditionals than
DAGs, in particular, they do not impose a rigid acyclic structure onto conditionals. We
will see that using hypergraphs instead of DAGs overcomes the language restrictions
and guarantees admissibility of the generated global ranking function with respect to
the knowledge base used to set it up.

Definition 6 (Hypergraph, Hypertree [12,13]). Let S by a system of subsets of a
propositional alphabet Σ such that

⋃
Σ′∈S Σ′ = Σ. Then 〈Σ,S〉 is a hypergraph.

〈Σ,S〉 is a hypertree if and only if there is an enumeration of S = {Σ1, . . . , Σm} such
that for all 1 ≤ i ≤ m, there is a j < i, such that

Si = Σi ∩ (Σ1 ∪ . . . ∪Σi−1) ⊆ Σj . (5)

(5) is called Running Intersection Property (RIP). Note that S1 = ∅ and (5) is vacuous
for the case i = 1. We call S = {S1, . . . , Sm} the separators of S and define by
R = {R1, . . . ,Rm} the set of residues with Ri = Σi \ Si, 1 ≤ i ≤ m.

Example 4. We illustrate Definition 6 with the car-start example (Example 1). We dis-
tribute our car-starting alphabet into the sets Σ1 = {H,B} and Σ2 = {B,F, S}. This
gives us the set of local worlds Ω1 = {hb, hb, hb, h b} for Σ1 and the local worlds
Ω2 = {bfs , bf s , bf s , bf s , bfs , bf s , b f s , b f s} for Σ2. On these sets and for this enu-
meration, we obtain S1 = ∅, R1 = Σ1 \ ∅ = Σ1, S2 = {B} and R2 = Σ2 \ {B} =
{F, S}. It is S2 = {B} ⊆ {H,B} = Σ1, so the system {Σ1, Σ2} satisfies the RIP, and
therefore, 〈Σ, {Σ1, Σ2}〉 is a hypertree.

5 OCF-LEG Network

In the previous section we recalled hypergraphs which form the network part of OCF-
LEG networks. Ranking functions as local or global OCFs have been characterised
in Section 3. With these two components we define OCF-LEG networks analogous
to probabilistic LEG networks [10]. LEG networks nicely combine the advantages of
Markov and Bayes networks: They provide local undirected components (Markov but
not Bayes) with a clear conditional semantics (Bayes but not Markov).

LEG Networks for Ranking Functions 217

Definition 7 (OCF-LEG network). Let Σ1, . . . , Σm be a set of covering subsets over
an alphabet Σ such that Σi ⊆ Σ, 1 ≤ i ≤ m and Σ =

⋃m
i=1 Σi. Let κ1, . . . , κm be

ranking functions κi : Ωi → N∞0 , 1 ≤ i ≤ m. We call a tuple 〈Σi, κi〉 of a subset
Σi ⊆ Σ with a ranking function κi on Ωi a local event group (LEG). The system
〈(Σ1, κ1), . . . , (Σm, κm)〉, abbreviated as 〈(Σi, κi)〉mi=1, is a ranking network of local
event groups (OCF-LEG network) iff there is a global function κ on Ω with

κ(ωi) = κi(ω
i) (6)

for all ωi ∈ Ωi and all 1 ≤ i ≤ n, that is, κi are the marginals of κ on Ωi.

For a system 〈(Σi, κi)〉mi=1 to have a global ranking function as defined above, the
following consistency condition (7) has to be fulfilled.

Proposition 1 (Consistency condition). There is a global ordinal conditional function
κ : Ω → N0 ∪ {∞} for the system 〈(Σi, κi)〉mi=1 only if

κi((Σi ∩Σj)(ω)) = κj((Σi ∩Σj)(ω)) (7)

for all pairs 1 ≤ i, j ≤ m and all worlds ω ∈ Ω.

Proof. If the ranking functions of the system 〈(Σi, κi)〉mi=1 would violate the consis-
tency condition (7) then there would be a pair of 1 ≤ i, j ≤ m with the property
κi((Σi ∩ Σj)(ω)) �= κj((Σi ∩ Σj)(ω)). By Definition 7, a global OCF κ satisfies
κ(ωi) = κi(ω

i) and hence the above would lead to κ((Σi∩Σj)(ω)) �= κ((Σi∩Σj)(ω))
which is a direct contradiction. ��

On the other hand, Example 5 shows that the consistency condition (7) is not sufficient
to guarantee the existence of a global OCF.

Example 5. Let Σ = {A,B,C} with Σ1 = {A,B}, Σ2 = {A,C} and Σ3 = {B,C}.
Let κ1(ab) = κ1(ab) = κ1(a b) = 0, κ1(ab) = 1, κ2(ac) = κ2(ac) = κ2(a c) = 0,
κ2(ac) = 1, κ3(bc) = κ1(bc) = κ1(b c) = 0, κ3(bc) = 1. The local κ1, κ2 and κ3

satisfy the consistency condition (7) as can be checked easily. Assume there would be a
global κ satisfying κ(ωi) = κi(ω

i) then κ2(ac) = 1 = κ(ac) = min{κ(abc), κ(abc)}
and κ1(ab) = 0 = κ(ab) = min{κ(abc), κ(abc)}. The first equation implies that
both κ(abc) �= 0 and κ(abc) �= 0, so by the second we obtain that κ(abc) = 0. But
then κ(bc) = min{κ(abc), κ(abc)} = 0 �= 1 = κ3(bc), and we see that according to
Definition 7, κ can be no global OCF for 〈(Σ1, κ1), (Σ2, κ2), (Σ3, κ3)〉 in contradiction
to the assumption. Hence even if κ1, κ2 and κ3 satisfy the consistency condition, there
is no global ranking function.

However, if in addition to (7), we presuppose that the system of subsets of Σ forms a
hypertree on Σ, then the existence of a global ranking function can be ensured. This is
captured formally with the following theorem.

Theorem 1. Let Σ1, . . . , Σm be a set of covering subsets Σi ⊆ Σ with separators
S1, . . . , Sm for all 1 ≤ i ≤ m such that the RIP is satisfied, that is, 〈Σ, {Σ1, . . . , Σm}〉

218 C. Eichhorn and G. Kern-Isberner

is a hypertree according to Definition 6. Let κ1, . . . , κm be a set of OCFs on Ω1,. . . ,Ωm,
respectively, that satisfy the consistency condition (7). Then the function

κ(ω) =

m∑
i=1

κi(Σi(ω))−
m∑
i=1

κi(Si(ω)) (8)

is a global ranking function for the system 〈(Σi, κi)〉mi=1, that is, κ(ωi) = κi(ω
i) for

all ωi ∈ Ωi, for all 1 ≤ i ≤ m.

Since Σi = Ri ∪ Si with residue Ri, Equation. (8) is equivalent to

κ(ω) =
m∑
i=1

κi(Ri(ω)|Si(ω)). (9)

Proof. First, we prove that the local ranking functions are marginals of the global one,
i.e., κ(ωh) = κh(ω

h) for all 1 ≤ h ≤ m and all ωh ∈ Ωh. Let ωh ∈ Ωh be arbitrary,
but fixed.

With ω |= ωh and ωh = rhsh, where rh is a configuration of the variables of
Rh and sh is a configuration of the variables in Sh, the constraint of the min-term
fixes the configuration of Sh to sh. 〈(Σi, κi)〉mi=1 is a hypertree on Σ, therefore the
RIP guarantees that there are sets Σk, k < h with Sh ⊆ Σk, we choose such a set
Σk.From the consistency condition (7) we obtain κh(sh) = κk(sh). Additionally,Σk =
(Σk\Sh)∪Sh and hence for the local ranking function we have κk(Σk(ω))−κh(sh) =
κk((Σk \ Sh)(ω)|sh). Here, we set the propositional variables in (Σk \ Sh), which, in
general, is not the residue Rk, to a configuration r̂k, such that κk(r̂k|sh) = 0, which
is equivalent to κk(r̂ksh)− κh(sh) = 0.This step fixes ωk = r̂ksh and therefore the
propositional variables in Sk to a configuration sk such that ωk |= sk. We iterate this
procedure, obtaining a sequence (k1, . . . , kp) of indices in {1, . . . ,m} (with k1 = k
and kp = 1) such that Sh ⊆ Σk1 , Sk1 ⊆ Σk2 ,. . . ,Skp−1 ⊆ Σ1, that is, Σk1 ,. . . ,Σkp

are the ancestors (anc(Σh)) of Σh = Σk0 . For each kl, l ≥ 1, a configuration ωkl of
the variables in Σkl

is chosen that ωkl = r̂kl
skl−1

with r̂kl
referring to the variables in

Σkl
\ Skl−1

and κkl
(r̂kl

|skl−1
) = 0, hence κkl

(ωkl) − κkl
(skl−1

) = 0. Since Skl−1
⊆

(Σkl−1
∩Σkl

) and due to (7), we have κkl−1
(Skl−1

) = κkl
(Skl−1

).
For the remaining Σi, from Σ1 we move downwards through the hypertree (that

is, in ascending order of the indices i), until we reach the first Σj �∈ anc(Σh). By
the RIP, Sj is contained in one of the ancestors of Σh or Σh itself, and hence the
outcomes of these variables have already been set to sj . We choose a configuration
rj of Rj such that κj(rj |sj) = 0, as above, hence κj(ω

j)- κj(sj) = 0. We proceed
downwards through the tree in this way, meeting all Σj �∈ anc(Σh)∪{Σh}, and choose
configurations of ωj = rjsj of the variables in all these Σj such that κj(rj |sj) = 0.
In this way, we obtain a (global) world ω0 with ω0 |= ωh = rhsh for the selected Σh,
ω0 |= ωkl = r̂kl

skl−1
for its ancestors, and ω0 |= ωj = rjsj for the remaining Σj ,

such that κkl
(ωkl) = κkl−1

(skl−1
), 1 ≤ l ≤ p, and κj(ω

j) = κj(sj) for the remaining
Σj . We rearrange the sum for κ(ωh) :

LEG Networks for Ranking Functions 219

κ(ωh) = min
ω|=ωh

{
κh(ω

h)− κh(sh)

+

p∑
l=1

(
κkl

(Σi(ω
kl))− κkl

(skl
)
)
+

∑
i

Σi /∈(anc(Σh)∪{Σh})

(
κi(ω

i)− κi(si)
)}

≤ κh(ω
h) + min

ω=ω0

{p−1∑
l=0

(
κkl+1

(ωkl+1)− κkl
(skl

)
)︸ ︷︷ ︸

=0

−κ1(
)

+
∑
i

Σi /∈(anc(Σh)∪{Σh})

(
κi(ω

i)− κi(si)
)︸ ︷︷ ︸

=0

}
= κh(ω

h),

since κ1(
) = 0. Conversely, for each ωh ∈ Ωh we have

κ(ωh) =κh(ω
h)+ min

ω|=ωh

{ p∑
l=0

(
κkl+1

(Σkl+1
(ω))κkl

(Skl
(ω))

)︸ ︷︷ ︸
≥0

− κ1(
)︸ ︷︷ ︸
= 0

+
∑
i

Σi /∈(anc(Σh)∪{Σh})

(κi(Σi(ω))− κi(Si(ω)))︸ ︷︷ ︸
≥0

}

It holds that κkl+1
(Σkl+1

(ω)) − κkl
(Skl

(ω)) ≥ 0, since we have κkl
(Skl

(ω)) =
κkl+1

(Skl+1
(ω)) and Skl

⊆ Σkl+1
, hence κkl+1

(Skl
(ω)) ≤ κkl+1

(Σkl+1
(ω)). Therefore

we obtain κ(ωh) ≥ κh(ω
h) and altogether,κ(ωh) = κh(ω

h), as required. As each local
κh is a ranking function, it follows immediately that {ω|κ(ω) = 0} �= ∅, i.e., κ is a
ranking function. ��

We illustrate Theorem 1 with the running example.

Example 6. We extend Example 4, so let Σ1 = {H,B} and Σ2 = {B,F, S} with
S1 = ∅, R1 = Σ1, S2 = {B} and R2 = Σ2 \ {B} = {F, S}. Clearly, the RIP holds
with S2 ⊆ Σ1. Let κ1 and κ2 be as shown in Table 3. These local ranking functions
satisfy the consistency condition (7) on Σ1 ∩ Σ2 = {B}: it is κ1(b) = 0 = κ2(b) and
κ1(b) = 1 = κ2(b). Table 4 illustrates the calculation of the global OCF κ according to
Equation (8), which coincides with the one from Table 1. There we verify that κ is an
OCF with κ(hbfs) = 0, it is easily checked that κ coincides with κ1 and κ2.

Theorem 1 now ensures that the system 〈Σi, κi〉mi=1 forms an OCF-LEG network
under the given preconditions.

Corollary 1. Let 〈Σ, 〈Σi, κi〉mi=1〉 be a covering hypertree on an alphabet Σ with local
OCFs κi, κj that satisfy the consistency condition (7) for all pairs 1 ≤ i, j ≤ m. Then
〈Σi, κi〉mi=1 is an OCF-LEG network with a global ranking function κ according to
Form. (8). Moreover, local inferences coincide with global ones, i.e., if φ, ψ are formulas
all of which atoms are contained in the same Σi, then κ |= (ψ|φ) iff κi |= (ψ|φ).
Furthermore, conditional independencies between parent and child subsets in the hy-
pertree (given the connecting separator) can be observed which can be proved with
techniques similar to those which are used for Theorem 1.

220 C. Eichhorn and G. Kern-Isberner

Table 3. Local OCFs for the car-start example

ω1 b h b h b h b h

κ1(ω
1) 2 0 1 1

ω2 b f s b f s b f s b f s b f s b f s b f s b f s

κ2(ω
2) 0 1 2 1 2 1 2 1

Table 4. Calculating a global OCF κ for Example 6

ω h b f s h b f s h b f s h b f s h b f s h b f s h b f s h b f s

κ1(Σ1(ω)) 2 2 2 2 1 1 1 1
+ κ2(Σ2(ω)) 0 1 2 1 2 1 2 1
− κ2(S2(ω)) 0 0 0 0 1 1 1 1

= κ(ω) 2 3 4 3 2 1 2 1

ω h b f s h b f s h b f s h b f s h b f s h b f s h b f s h b f s

κ1(Σ1(ω)) 0 0 0 0 1 1 1 1
+ κ2(Σ2(ω)) 0 1 2 1 2 1 2 1
− κ2(S2(ω)) 0 0 0 0 1 1 1 1

= κ(ω) 0 1 2 1 2 1 2 1

Proposition 2. Let 〈Σi, κi〉mi=1 be an OCF-LEG network with a global ranking func-
tion according to formula (8). Let Σi be a child of Σj in the hypertree with appertaining
separator Si as defined in Definition 7. Then the sets Σi \ Si and Σj \ Si are condition-
ally independent given the separator Si, formally (Σi \ Si) |= κ (Σj \ Si) | Si.

6 Inductively Generating an OCF-LEG Network

In the previous section we showed that a global ranking function can be built up from
local ranking functions on a hypertree structure. However, in application scenarios we
assume it to be more likely that a user of a reasoning system may be able to spec-
ify general dependencies between events than that he specifies a hypertree of events
with appropriate ranking functions. Therefore in this section we show how to use a
given knowledge base for generating an OCF-LEG network by making use of ideas
from [12,13].

Let Δ = {(ψ1|φ1), . . . , (ψn|φn)} ⊆ (L | L) be a knowledge base. As a first step of
the generation process, we set up S = {Σ′, Σ′′, . . .} such that Σ′ = {V | V �− (ψ|φ)}
for each (ψ|φ) ∈ Δ, that is, every set Σ′ is associated with a conditional (φ|ψ) by in-
cluding all literals in the premise or conclusion of the conditional. Using the techniques
from [12,13], we obtain a covering hypertree 〈Σ, C〉 of S such that C = {C1, . . . ,Cm}
satisfies the RIP. We use C to cover Δ by subsets Δi ⊆ Δ for every Ci ∈ C such that
for all (ψ|φ) ∈ Δ we have (ψ|φ) ∈ Δi if and only if V ∈ Ci for all V �−φψ. Note that

LEG Networks for Ranking Functions 221

Fig. 1. Hypergraph of the car-start example (Ex. 7)

by this a conditional may be an element of several subsets. We illustrate this procedure
by the introductory example:

Example 7. We use the running example (Example 1) to show the generation of a hy-
pertree from a knowledge base. The variable set is Σ = {B,F,H, S}, together with the
knowledge base we obtain the covering subsets {B,S}, {S, F}, {B,F, S}, {H},{F}
and {B,H} which is visualised by the hypergraph in Figure 1. Via the techniques of
junction graph and cut-graph we obtain the cliques C1 = {H,B} and C2 = {B,F, S}.
S2 = C1 ∩ C2 = {B} ⊆ C1, so the RIP is satisfied and so 〈Σ, {C1,C2}〉 is a hyper-
tree. The knowledge base is divided into Δ1 = {(h|
), (b|h), (b|h)} because H ∈ C1

and {H,B} ⊆ C1 and Δ2 = {(s|b),(s|b),(s|f),(s|f),(s|bf), (s|bf), (f |
)}, because
{S,B} ⊆ C2, {S, F} ⊆ C2 and {B,F, S} ⊆ C2.

Note that this approach differs from the graph-generation approach of [6] in two major
points: On the one hand, the approach in [6] generates a directed acyclic graph from
the knowledge base, whereas here a (at this point, undirected) hypergraph is created1.
On the other, the approach of [6] is restricted to a special subset of the language of
conditionals, whereas this approach can be applied to sets of conditionals which are not
restricted with respect to their logical language.

Now we generate the local ranking functions by means of inductive reasoning, that is,
we instantiate an inductive reasoning approach with the sets Δi and the local alphabet
Σi for each 1 ≤ i ≤ m. We choose c-representations here, because they provide a
versatile schema of Δi-models allowing for high-quality inference. We have to ensure
that the system 〈(Σi, κi)〉mi=1 satisfies the consistency condition (7). The global ranking
function is obtained from 〈(Σi, κi)〉mi=1 by Equation (8) and according to Theorem 1,
〈(Σi, κi)〉mi=1 is an OCF-LEG network.

Example 8. We continue Example 7 to illustrate this step in the OCF-LEG network
generation. Here Δ is divided into the two subsets Δ1 = {(h|
), (b|h), (b|h)} and
Δ2 = {(s|b), (s|b), (s|f), (s|f), (s|bf), (s|bf), (f |
)}. We assume the conditionals in
Δ1 and Δ2 to be enumerated in the presented ordering. For computing local minimal
c-representations, let κ−1,i denote the falsification impacts of Δ1 and κ−2,i denote the
falsification impacts of Δ2. According to Definition 4 and especially the system of
inequations (3) we obtain κ−1,1 = 1, κ−1,2 = 1 and κ−1,3 = 1 as falsification factors
for the minimal c-representation of Δ1 and κ−2,1 = 0, κ−2,2 = 0, κ−2,3 = 1, κ−2,4 = 1,
κ−2,5 = 0, κ−2,6 = 2 and κ−2,7 = 1 as falsification factors for the minimal c-representation
of Δ2. From these values, with Equation (2) we obtain the local OCFs from Example 6.
The consistency condition (7) is satisfied, becauseΣ1∩Σ2 = {B} and we have κ1(b) =
0 = κ2(b) and κ1(b) = 1 = κ2(b). These c-representations are combined to the global
OCF κ by Equation (8) according to Theorem 1 in Table 4.

1 Note that OCF-networks [6,3,5] make use of the graph generation approach of [6].

222 C. Eichhorn and G. Kern-Isberner

The main results of the paper are summarised in the following theorem which follows
directly from Theorem 1.

Theorem 2. Let Δ = {(ψ1|φ1), . . . , (ψn|φn)} ⊆ (L | L) be a conditional knowledge
base. Let Δ1,. . . ,Δm be a covering system of subsets of Δ which are based on a hy-
pertree 〈Σ, {C1, . . . ,Cm}〉 which is obtained by the procedure described above. Let
κ1,. . . ,κm be ranking functions κi |= Δi resulting from an inductive reasoning ap-
proach on Δi for all 1 ≤ i ≤ m that satisfy the consistency condition (7). Let κ be the
global ranking function obtained by Equation (8) on the system 〈(Σi, κi)〉mi=1. Then the
global ranking function is admissible with respect to Δ, that is, κ |= Δ.

In contrast to OCF-networks, the procedure for generating OCF-LEG networks ac-
cepts arbitrary conditionals (ψ|φ) ∈ (L|L) and thereby overcomes the language re-
striction of OCF-networks. Also, Theorem 2 shows that the generated global ranking
function is admissible to the generating knowledge base, so this approach outperforms
OCF-networks with respect to basic requirements of inductive reasoning. Note that we
used the inductive reasoning approach c-representations as a proof of concept, only. The
OCF-LEG formalism is independent from any inductive method, so also System Z [14]
can be used. The time complexity of inductive semantical approaches depends on the
size of the knowledge base and the size of the underlying propositional alphabet. The
time complexity of System Z is O(|Δ|2) SAT instances [6]. Switching from a global
to local views reduces the number of SAT instances from the global |Δ| to the sum
of cardinalities of the local knowledge bases. Since we also switch from the global to
(possibly quite smaller) local alphabets, the time-complexity of the SAT instances is re-
duced significantly. Therefore we expect an overall notably reduced computation time
for the inductive generation of an OCF that is admissible with respect to Δ.

7 Conclusion

In this paper we introduced OCF-LEG networks as a qualitative variant of LEG net-
works. We showed that a hypertree with local ranking functions is an OCF-LEG net-
work if the local OCFs satisfy the defined consistency condition, so that a global ranking
function exists for which the local OCFs are marginals. Recalling the hypertree genera-
tion algorithm and combining it with c-representations as an approach for inductive rea-
soning we were able to present an algorithm which accepts any consistent knowledge
base as input without any restrictions to the language of conditionals, as it is the case
for OCF-networks. We proved that a global ranking function of an OCF-LEG network
is always admissible to the generating knowledge base. As part of our ongoing work
we plan to implement OCF-LEG networks, investigate ways to ensure the consistency
condition to be satisfied and extend the OCF-LEG approach to weighted conditionals.

Acknowledgment. We thank the anonymous referees for their valuable hints that hel-
ped us improving the paper. This work was supported by Grant KI 1413/5 − 1 to
Gabriele Kern-Isberner from the Deutsche Forschungsgemeinschaft (DFG) as part of
the priority program “New Frameworks of Rationality” (SPP 1516). Christian Eichhorn
is supported by this grant.

LEG Networks for Ranking Functions 223

References

1. Beierle, C., Hermsen, R., Kern-Isberner, G.: Observations on the Minimality of Ranking
Functions for Qualitative Conditional Knowledge Bases and their Computation. In: Proceed-
ings of the 27th International FLAIRS Conference, FLAIRS’27 (2014)

2. Benferhat, S., Dubois, D., Garcia, L., Prade, H.: On the transformation between possibilistic
logic bases and possibilistic causal networks. International Journal of Approximate Reason-
ing 9(2), 135–173 (2002)

3. Benferhat, S., Tabia, K.: Belief Change in OCF-Based Networks in Presence of Sequences
of Observations and Interventions: Application to Alert Correlation. In: Zhang, B.-T., Orgun,
M.A. (eds.) PRICAI 2010. LNCS, vol. 6230, pp. 14–26. Springer, Heidelberg (2010)

4. de Finetti, B.: Theory of Probability, vol. 1, 2. John Wiley and Sons, New York (1974)
5. Eichhorn, C., Kern-Isberner, G.: Using inductive reasoning for completing OCF-networks

(2013) (submitted)
6. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and

causal modeling. Artificial Intelligence 84(1-2), 57–112 (1996)
7. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS

(LNAI), vol. 2087. Springer, Heidelberg (2001)
8. Kern-Isberner, G., Eichhorn, C.: Intensional combination of rankings for OCF-networks.

In: Boonthum-Denecke, C., Youngblood, M. (eds.) Proceedings of the 26th International
FLAIRS Conference FLAIRS-2013, pp. 615–620. AAAI Press (2013)

9. Kern-Isberner, G., Eichhorn, C.: Structural inference from conditional knowledge bases. In:
Unterhuber, M., Schurz, G. (eds.) Studia Logica Special Issue Logic and Probability: Reason-
ing in Uncertain Environments, vol. 102 (4), Springer Science+Business Media, Dordrecht
(2014)

10. Lemmer, J.F.: Efficient minimum information updating for bayesian inferencing in expert
systems. In: Proc. of the National Conference on Artificial Intelligence, AAAI 1982 (1982)

11. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M., Hogger, C.J.,
Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming,
vol. 3, pp. 35–110. Oxford University Press, Inc., New York (1994)

12. Meyer, C.-H.: Korrektes Schließen bei unvollständiger Information: Anwendung des Prinzips
der maximalen Entropie in einem probabilistischen Expertensystem. 41. Peter Lang Publish-
ing, Inc. (1998)

13. Pearl, J.: Probabilistic reasoning in intelligent systems – networks of plausible inference.
Morgan Kaufmann (1989)

14. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to nonmono-
tonic reasoning. In: Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning
About Knowledge, TARK 1990, pp. 121–135. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1990)

15. Spohn, W.: The Laws of Belief: Ranking Theory and Its Philosophical Applications. Oxford
University Press (2012)

Logics for Approximating Implication Problems

of Saturated Conditional Independence

Henning Koehler1 and Sebastian Link2

1 School of Engineering & Advanced Technology, Massey University, New Zealand
2 Department of Computer Science, University of Auckland, New Zealand

h.koehler@massey.ac.nz, s.link@auckland.ac.nz

Abstract. Random variables are declared complete whenever they must
not admit missing data. Intuitively, the larger the set of complete random
variables the closer the implication of saturated conditional independence
statements is approximated. Two different notions of implication are
studied. In the classical notion, a statement is implied jointly by a set of
statements, the fixed set of random variables and its subset of complete
random variables. For the notion of pure implication the set of random
variables is left undetermined. A first axiomatization for the classical
notion is established that distinguishes purely implied from classically
implied statements. Axiomatic, algorithmic and logical characterizations
of pure implication are established. The latter appeal to applications in
which the existence of random variables is uncertain, for example, when
statements are integrated from different sources, when random variables
are unknown or when they shall remain hidden.

Keywords: Approximation, Conditional Independence, Implication,
Missing Data, Unknown Random Variable, S-3 Logics.

1 Introduction

The concept of conditional independence (CI) is important for capturing struc-
tural aspects of probability distributions, for dealing with knowledge and un-
certainty in artificial intelligence, and for learning and reasoning in intelligent
systems [5,14,24]. Application areas include natural language processing, speech
processing, computer vision, robotics, computational biology, and error-control
coding [10,14,23]. Central to these applications is the implication problem, which
is to decide for an arbitrary set V of random variables, and an arbitrary set
Σ ∪{ϕ} of CI statements over V , whether every probability model that satisfies
every element in Σ also satisfies ϕ. Indeed, non-implied CI statements represent
new opportunities to construct complex probability models with polynomially
many parameters and to efficiently organize distributed probability computa-
tions [9]. An algorithm for deciding the implication problem can also test the
consistency of independence and dependence statements collected from differ-
ent sources; which is particularly important as these statements often introduce
non-linear constraints resulting in unfeasible CSP instances [9,23]. While the

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 224–238, 2014.
c© Springer International Publishing Switzerland 2014

Logics for Approximating Implication Problems 225

decidability of the implication problem for CI statements relative to discrete
probability measures remains open, it is not axiomatizable by a finite set of
Horn rules [30] and already coNP -complete for stable CI statements [22]. The
important subclass of saturated CI (SCI) statements, in which all given random
variables occur, form a foundation for Markov networks [14]. In fact, graph sep-
aration and SCI statements enjoy the same axioms [9], and their implication
problem is decidable in almost linear time [8]. The results have been carried
over to the presence of missing data [20]. Here, conditional independence is not
judged on conditions that carry missing data. The findings complement the rec-
ognized need to reveal missing data and to explain where they come from, e.g.
[4,6,7,15,21,25,28,32]. In a simple health example, m(etastatic cancer) causes a
b(rain tumor) resulting in a c(oma) or severe h(eadaches). The independence
between ch and m, given b, is formalized as the SCI statement I(ch,m|b) over
V = {b, c, h,m}. With missing data present, I(ch,m|b) and I(h, c|bm) together
do not V -imply I(cm, h|b) as the probability model M :

Probability model M
m b h c P
− true true true 0.5
− true false false 0.5

Probability model M ′

m b h c e P
true true true − true 0.5
true true false − false 0.5

Here, M satisfies I(h, c|bm) as the condition bm involves missing data, repre-
sented by −. Random variables can be declared complete in which case − is
not part of their domain [20]. The ability to specify a set C ⊆ V of complete
random variables provides us with a mechanism to not only control the occur-
rences of missing data, but also to approximate the classical implication of SCI
statements, where no missing data occurs [20]. For example, if m ∈ C, then
I(ch,m|b) and I(h, c|bm) together do (V,C)-imply I(cm, h|b).

Most research on the implication problem of SCI statements assumes that
the underlying set V of random variables is fixed. However, this assumption is
impractical in an “open” world. For examples, not knowing all random variables
should not prevent us from declaring some independence statements; and even if
we know all random variables, we may not want to disclose all of them; or when
independence statements are integrated from different sources. Instead, we may
want to state that given b, m is independent from the set of remaining random
variables, no matter what they are. This statement could be written as I(m|b).
The intriguing point is the difference between I(h|b) and I(cm|b) when V is left
undetermined. For C = {m}, I(cm|b) is C-implied by I(m|b) and I(c|bm), while
I(h|b) is not. In fact, the model M ′ above satisfies I(m|b) and I(c|bm), but does
not satisfy I(m|b). Note that I(m|b) and I(c|bm) together (V,C)-imply I(h|b) for
the fixed set V = {b, c, h,m}, but I(m|b) and I(c|bm) together do not C-imply
I(h|b) when the set of random variables is left undetermined.

The example illustrates the need to distinguish between classical and pure
implication. The pure C-implication problem is to decide for every given finite
set Σ ∪ {ϕ} of SCI statements and every given finite set C of complete random
variables, whether every probability model π that i) involves at least the random
variables in Σ ∪ {ϕ} and C, and ii) satisfies Σ, also satisfies ϕ.

226 H. Koehler and S. Link

Contribution. In Section 2 we show that the only existing axiomatization ZV

for (V,C)-implication cannot distinguish between purely C-implied and (V,C)-
implied SCI statements. That is, there are purely C-implied statements for which
every inference by ZV applies the V -symmetry rule; giving incorrectly the impres-
sion that the pure C-implication of an SCI statement depends on V . In Section 3
we establish a finite axiomatization CV such that every purely C-implied state-
ment can be inferred without the V -symmetry rule; and every (V,C)-implied
statement can be inferred with only a single application of the V -symmetry
rule, which occurs in the last step of the inference. In Section 4 we establish a
finite axiomatization C for pure C-implication. As C results from CV by removal
of the symmetry rule, the symmetry rule is only necessary to infer SCI state-
ments that are (V,C)- but not C-implied. In Section 5, pure C-implication is
characterized by (V,C)-implication where V involves random variables that do
not occur in any of the given statements. This result is exploited in Section 6 to
characterize pure C-implication logically by a propositional fragment in Cadoli
and Schaerf’s S-3 logics, and by multivalued database dependencies for missing
data and by an almost linear-time algorithm in Section 7. Section 8 illustrates
how our contribution complements related work. We conclude in Section 9.

2 Implication in Fixed Sets of Random Variables

The semantics of CI statements in the presence of missing data is summarized
[20]. A definition is then given that embodies the ability of an axiomatization to
separate (V,C)-implied SCI statements from purely C-implied ones. The existing
axiomatization ZV for (V,C)-implication [20] does not have this ability.

We denote by V a countably infinite set of distinct symbols {v1, v2, . . .} of
random variables. A domain mapping is a mapping that associates a set, dom(vi),
with each random variable vi of a finite set V ⊆ V. This set is called the
domain of vi and each of its elements is a data value of vi. We assume that each
domain dom(vi) contains the element −, which we call the marker. Although
we use the element − like any other data value, we prefer to think of − as
a marker, denoting that no information is currently available about the data
value of vi. The interpretation of this marker as no information means that
a data value does either not exist (known as a structural zero in statistics,
and the null marker inapplicable in databases), or a data value exists but is
currently unknown (known as a sampling zero in statistics, and the null marker
applicable in databases). The disadvantage of using this interpretation is a loss in
knowledge when representing data values known to not exist, or known to exist
but currently unknown. One advantage of this interpretation is its simplicity. As
another advantage one can represent missing data values, even if it is unknown
whether they do not exist, or exist but are currently unknown. Strictly speaking,
we shall call such random variables incomplete as their data values may be
missing. Complete random variables were introduced in [20] to gain control over
the occurrences of missing data values. If a random variable v ∈ V is declared
to be complete, then − /∈ dom(v). For a given V we use C to denote the set

Logics for Approximating Implication Problems 227

of random variables in V that are complete. Complete random variables were
shown to provide an effective means to not just control the degree of uncertainty,
but also to soundly approximate classical reasoning about saturated conditional
probabilistic independence [20]. For X = {v1, . . . , vk} ⊆ V we say that a is an
assignment of X , if a ∈ dom(v1)× · · · × dom(vk). For an assignment a of X we
write a(y) for the projection of a onto Y ⊆ X . We say that a = (a1, . . . , ak) is
X-complete, if ai �= − for all i = 1, . . . , k.

A probability model over (V,C) is a pair (dom, P) where dom is a domain map-
ping that maps each v ∈ V to a finite domain dom(v), and P :

∏
v∈V dom(v)→

[0, 1] is a probability distribution having the Cartesian product of these domains
as its sample space. Note that − /∈ dom(v) whenever v ∈ C.

The expression I(Y, Z|X) where X,Y and Z are disjoint subsets of V is called
a conditional independence (CI) statement over (V,C). The set X is called the
condition of I(Y, Z|X). If XY Z = V , we call I(Y, Z|X) a saturated CI (SCI)
statement. Let (dom, P) be a probability model over (V,C). A CI statement
I(Y, Z|X) is said to hold for (dom, P) if for every complete assignment x of X ,
and for every assignment y, z of Y and Z, respectively,

P (x,y, z) · P (x) = P (x,y) · P (x, z). (1)

Equivalently, (dom, P) is said to satisfy I(Y, Z|X) [20]. The satisfaction of
I(Y, Z|X) requires Equation 1 to hold for complete assignments x of X only.
The reason is that the independence between y and z is conditional on x. In-
deed, in case there is no information about x, then there should not be any
requirement on the independence between y and z.

The interactions of SCI statements have been formalized by the following
notion of semantic implication. LetΣ∪{ϕ} be a set of SCI statements over (V,C).
We say that Σ (V,C)-implies ϕ, denoted by Σ |=(V,C) ϕ, if every probability
model over (V,C) that satisfies every SCI statement σ ∈ Σ also satisfies ϕ. The
(V,C)-implication problem is the following problem.

PROBLEM: (V,C)-implication problem
INPUT: Set V of random variables

Set C ⊆ V of complete random variables
Set Σ ∪ {ϕ} of SCI statements over V

OUTPUT: Yes, if Σ |=(V,C) ϕ; No, otherwise

For Σ we let Σ∗(V,C) = {ϕ | Σ |=(V,C) ϕ} be the semantic closure of Σ, i.e., the

set of all SCI statements (V,C)-implied by Σ. In order to determine the (V,C)-
implied SCI statements we use a syntactic approach by applying inference rules.

These inference rules have the form
premises

conclusion
condition and inference rules

without any premises are called axioms. An inference rule is called (V,C)-sound,
if the premises of the rule (V,C)-imply the conclusion of the rule whenever the
condition is satisfied. We let Σ +R ϕ denote the inference of ϕ from Σ by the
set R of inference rules. That is, there is some sequence γ = [σ1, . . . , σn] of SCI
statements such that σn = ϕ and every σi is an element of Σ or results from

228 H. Koehler and S. Link

Table 1. Axiomatization Z = {T ′,S ′,R′,W ′} of (V,C)-implication

I(∅, V −X | X)
I(Y,Z | X)
I(Z, Y | X)

(saturated trivial independence, T ′) (symmetry, S ′)

I(Y RS,ZT | X) I(RZ,ST | XY)

I(Z,RSTY | X) Y ⊆ C
I(Y,ZT | X)
I(Y,Z | XT)

(restricted weak contraction, R′) (weak union, W ′)

Table 2. Axiomatization ZV = {T ,SV ,R,W} of (V,C)-implication

I(∅ | X)
I(Y | X)

I(V −XY | X)
(saturated trivial independence, T) (V -symmetry, SV)

I(Y RS | X) I(RZ | XY)

I(Z − S | X) Y ⊆ C
I(Y | X)

I(Y − T | XT)
(restricted weak contraction, R) (weak union, W)

an application of an inference rule in R to some elements in {σ1, . . . , σi−1}. For
Σ, let Σ+

R = {ϕ | Σ +R ϕ} be its syntactic closure under inferences by R.
A set R of inference rules is said to be (V,C)-sound ((V,C)-complete) for the
(V,C)-implication of SCI statements, if for every V , every C ⊆ V , and for every
set Σ of SCI statements over (V,C), we have Σ+

R ⊆ Σ∗(V,C) (Σ
∗
(V,C) ⊆ Σ+

R). The

(finite) set R is said to be a (finite) axiomatization for the (V,C)-implication of
SCI statements if R is both (V,C)-sound and (V,C)-complete.

Table 1 contains the set Z = {T ′,S ′,R′,W ′} of inference rules that form a
finite axiomatization for the (V,C)-implication of SCI statements [20].

Motivated by the introductory remarks we now write I(Y |X) instead of writ-
ing I(Y, V −XY |X) for an SCI statement over (V,C). It is first shown that the
system ZV = {T ,S,R,W} from Table 2 forms a finite axiomatization for the
(V,C)-implication of such SCI statements.

Proposition 1. ZV is a finite axiomatization for the (V,C)-implication of SCI
statements.

Proof. Let V ⊆ V be a finite set of random variables and C ⊆ V . Let Σ =
{I(Y1|X1), . . . , I(Yn|Xn)} and ϕ = I(Y |X) be a (set of) SCI statement(s) over
(V,C). We can show by an induction over the inference length that Σ +ZV ϕ if
and only if Σ′ = {I(Y1, V − X1Y1|X1), . . . , I(Yn, V − XnYn|Xn)} +Z I(Y, V −
XY |X). Hence, the (V,C)-soundness ((V,C)-completeness) of ZV follows from
the (V,C)-soundness ((V,C)-completeness) of Z [20].

Logics for Approximating Implication Problems 229

Example 1. Consider Σ = {I(m|b), I(c|bm)}, ϕ = I(h|b) and ϕ′ = I(cm|b) as a
(set of) SCI statement(s) over (V = {b, c, h,m}, C = {m}). Then Σ |=(V,C) ϕ
and Σ |=(V,C) ϕ

′ as we can show, for example, by the following inference:

I(c|bm)

I(m|b) SV : I(s|bm)

R : I(h|b) m∈C

SV : I(cm|b)

.

However, since the V -symmetry rule is applied in each inference it is not clear
whether ϕ or ϕ′ is C-implied by Σ alone, that is, whether it is true that for all
V ′, that include at least b, c, h,m, it holds that Σ |=(V ′,C) ϕ and Σ |=(V ′,C) ϕ

′,
respectively. In fact, the introduction shows that Σ does not C-imply ϕ.

The last example motivates the following ability of an inference system: First
infer all purely C-implied statements without any application of the symme-
try rule, and subsequently, apply the V -symmetry rule once to some of these
statements to infer all (V,C)-implied statements that do depend on V .

Definition 1. Let SV denote a set of inference rules that is (V,C)-sound for
the (V,C)-implication of SCI statements, and in which the V -symmetry rule
SV is the only inference rule dependent on V . We say that SV is conscious of
pure C-implication, if for every V , every C ⊆ V , and every set Σ ∪ {ϕ} of SCI
statements over (V,C) such that ϕ is (V,C)-implied by Σ there is some inference
of ϕ from Σ by SV such that the V -symmetry rule SV is applied at most once,
and, if it is applied, then it is applied in the last step of the inference only.

This raises the question if ZV is conscious of pure C-implication.

Theorem 1. ZV is not conscious of pure C-implication.

Proof. Let V = {b, c, h,m}, C = {m} and Σ = {I(m|b), I(c|bm)}. One can
show that I(h|b) /∈ Σ+

{T ,W,R}. Moreover, for all Y such that h ∈ Y , I(Y |b) /∈
Σ+
{T ,W,R}. However, I(h|b) ∈ Σ+

ZV
as shown in Example 1. Consequently, in any

inference of I(h|b) from Σ by ZV the V -symmetry rule SV must be applied at
least once, but is not just applied in the last step as h ∈ V − {b, c,m}.

As a consequence of Theorem 1 it is natural to ask whether there is any
axiomatization that is conscious of pure C-implication.

3 Gaining Consciousness

Theorem 1 has shown that axiomatizations are, in general, not conscious of pure
C-implication. We will now establish a finite conscious axiomatization for the
(V,C)-implication of SCI statements. For this purpose, we consider two new
(V,C)-sound inference rules:

I(S | X) I(RZ | XY)

I(S ∩ Z | X)

Y⊆C,
(RY)∩S=∅

I(Y RS | X) I(RZ | XY)

I(RSY Z | X)
Y⊆C

(restricted intersecting contraction, A) (restricted additive contraction, I)

230 H. Koehler and S. Link

Theorem 2. Let Σ be a set of SCI statements over V . For every inference γ
from Σ by the system ZV = {T ,SV ,R,W} there is an inference ξ from Σ by
the system CV = {T ,SV ,R,W ,A, I} such that
1. γ and ξ infer the same SCI statement,
2. SV is applied at most once in ξ,
3. if SV is applied in ξ, then as the last rule.

Example 2. Recall Example 1 where V = {b, c, h,m}, C = {m}, Σ =
{I(m|b), I(c|bm)}, ϕ = I(h|b) and ϕ′ = I(cm|b) While the inference of ϕ from
Σ using ZV in Example 1 showed that Σ |=(V,C) ϕ and Σ |=(V,C) ϕ

′ hold, it did
leave open the question whether Σ purely C-implies ϕ′. Indeed, no inference of
ϕ′ from Σ by ZV can provide this insight by Theorem 1. However, using CV we
can obtain the following inference of ϕ′ from Σ:

I(m|b) I(c|bm)

A : I(cm|b) m∈C .

Indeed, the V -symmetry rule SV is unnecessary to infer ϕ′ from Σ.

Examples 1 and 2 indicate that the C = {m}-implication of I(cm|b) by
Σ = {I(m|b), I(c|bm)} does not depend on the fixed set V of random variables.
In what follows we will formalize the stronger notion of pure C-implication as
motivated in the introduction. Theorem 2 shows that the set C := CV −{SV } of
inference rules is nearly complete for the (V,C)-implication of SCI statements.

Theorem 3. Let Σ ∪ {I(Y |X)} be a set of SCI statements over the set V ⊇
C of random variables. Then I(Y |X) ∈ Σ+

CV
if and only if I(Y |X) ∈ Σ+

C or

I(V −XY |X) ∈ Σ+
C .

Theorem 3 indicates that C can infer every C-implied SCI statement that is
independent from the set V of incomplete random variables. Another interpreta-
tion of Theorem 3 is the following. In using C to infer (V,C)-implied statements,
the fixation of V can be deferred until the last step of an inference.

4 Pure Implication

We formalize the notion of pure C-implication as motivated in the introduction.
The set C of inference rules is shown to form a finite axiomatization for pure
C-implication. This enables us to distinguish between (V,C)-implied and purely
C-implied statements. Pure C-implication can be applied whenever it is more
convenient to use than (V,C)-implication. For example, when there is uncer-
tainty about additional random variables that may be required in the future,
when some variables are unknown, or when some variables shall remain hidden.

A probability model is a quadruple (V,C, dom, P) where V = {v1, . . . , vn} ⊆ V
is a finite set of random variables, C ⊆ V , dom is a domain mapping that maps
each vi to a finite domain dom(vi), and P : dom(v1)× · · · × dom(vn)→ [0, 1] is

Logics for Approximating Implication Problems 231

a probability distribution having the Cartesian product of these domains as its
sample space. Note that − /∈ dom(vi) whenever vi ∈ C. The expression I(Y |X)
where X and Y are finite, disjoint subsets of V is called a saturated conditional
independence (SCI) statement. We say that the SCI statement I(Y |X) holds
for (V,C, dom, P) if XY ⊆ V and for every complete assignment x of X , every
assignment y of Y , and every assignment z of V −XY , respectively,

P (x,y, z) · P (x) = P (x,y) · P (x, z).

Equivalently, (V,C, dom, P) is said to satisfy I(Y |X). For an SCI statement
σ = I(Y |X) let Vσ := XY , and for a finite set Σ of SCI statements let VΣ :=⋃

σ∈Σ Vσ denote the random variables that occur in it.

Definition 2. Let Σ ∪ {ϕ} be a finite set of SCI statements, and C a finite set
of complete random variables. We say that Σ purely C-implies ϕ, denoted by
Σ |=C ϕ, if and only if every probability model (V,C, dom, P) with VΣ∪{ϕ} ⊆ V
that satisfies every SCI statement σ ∈ Σ also satisfies ϕ.

In the definition of pure C-implication the set V of underlying random vari-
ables is left undetermined. The only requirement is that the SCI statements
must apply to the probability model. The pure C-implication problem for SCI
statements can be stated as follows.

PROBLEM: Pure C-Implication Problem
INPUT: Set Σ ∪ {ϕ} of SCI statements

Finite set C of complete random variables
OUTPUT: Yes, if Σ |=C ϕ; No, otherwise

Pure C-implication is stronger than (V,C)-implication.

Proposition 2. Let Σ ∪ {ϕ} be a finite set of SCI statements and C a finite
set of complete random variables, such that VΣ∪{ϕ} ∪ C ⊆ V . If Σ |=C ϕ, then
Σ |=(V,C) ϕ, but the other direction may fail.

Proof. The first statement follows directly from the definitions of pure C-
implication and (V,C)-implication. For the other direction, let V = {b, c, h,m},
C = ∅, Σ = {I(ch|b)} and let ϕ be I(m|b). Clearly, Σ (V,C)-implies ϕ. However,
Σ does not purely C-imply ϕ as the example from the introduction shows. ��

Soundness and completeness for pure C-implication are defined as their corre-
sponding notions in the context of some fixed set V by dropping the reference to
V . While saturated triviality axiom T , weak union rule W , and restricted weak
contraction rule R are all C-sound, the V -symmetry rule SV is (V,C)-sound but
not C-sound.

Theorem 4. The set C = {T ,W ,R,A, I} forms a finite axiomatization for the
pure C-implication of SCI statements.

Example 3. Recall Example 2 where V = {b, c, h,m}, C = {m} and Σ consists
of the two SCI statements I(m|b) and I(c|bm). The inference of I(cm|b) from
Σ by CV in Example 2 is actually an inference by C. Hence, I(cm|b) is purely
C-implied by Σ, as one would expect intuitively.

232 H. Koehler and S. Link

5 Classical and Pure Implication

Instances Σ |=C ϕ of the pure C-implication problem can be characterized by
the instance Σ |=(V,C) ϕ of the (V,C)-implication problem for any set V of
random variables that properly contains VΣ∪{ϕ}. Note that C ⊆ V follows from
the fact that we talk about (V,C)-implication.

Theorem 5. Let Σ ∪ {ϕ} be a set of SCI statements. Then the following are
equivalent:
1. Σ |=C ϕ
2. for some V ⊇ C such that VΣ∪{ϕ} ⊂ V , Σ |=(V,C) ϕ
3. for all V ⊇ C such that VΣ∪{ϕ} ⊂ V , Σ |=(V,C) ϕ

Proof. It is clear that 3. entails 2. Let ϕ = I(Y |X), and let V be any finite set
of random variables such that VΣ∪{ϕ} ⊂ V . If 2. holds, then Theorem 3 and
Theorem 4 show that 1. holds or Σ +C I(V −XY |X) holds. However, the latter
condition cannot hold as V −XY contains some random variable that does not
occur in VΣ . Hence, 2. entails 1. If 1. holds, then Theorem 3 and Theorem 4
show that 3. holds as well. ��

Example 4. For C = {m}, Σ = {I(m|b), I(c|bm)} purely C-implies I(cm|b)
as, for instance, Σ |=(V,C) I(cm|b) for V = {b, c, h,m}. However, Σ does not
purely C-imply I(h|b) as for V = {b, c, h,m, e}, Σ does not (V,C)-imply I(h|b)
as witnessed in the introduction.

In the following we apply Theorem 5 to establish characterizations of pure C-
implication in terms of logical formulae under S−3 logic, database dependencies,
and algorithmic solutions. For a finite set C of complete random variables, a
finite set Σ ∪ {ϕ} of SCI statements we write Vc = VΣ∪{ϕ} ∪ C ∪ {v0} for
some v0 /∈ VΣ∪{ϕ}, σc = I(Vc − XY, Y |X) for σ = I(Y |X) ∈ Σ ∪ {ϕ} and
Σc = {σc | σ ∈ Σ}. In particular, Σ |=C ϕ if and only if Σc |=Vc,C ϕc.

6 Logical Characterization of Pure Implication

We recall S-3 logics [16,27] and exploit them to establish a logical characteriza-
tion of the pure C-implication problem. S-3 logics were introduced as “a seman-
tically well-founded logical framework for sound approximate reasoning, which
is justifiable from the intuitive point of view, and to provide fast algorithms for
dealing with it even when using expressive languages”.

For a finite set L of propositional variables, let L∗ denote the propositional
language over L, generated from the unary connective ¬ (negation), and the
binary connectives ∧ (conjunction) and ∨ (disjunction). Elements of L∗ are also
called formulae of L, and usually denoted by ϕ′, ψ′ or their subscripted versions.
Sets of formulae are denoted by Σ′. We omit parentheses if this does not cause
ambiguity.

Let L	 denote the set of all literals over L, i.e., L	 = L ∪ {¬v′ | v′ ∈ L}.
Let S ⊆ L. An S-3 truth assignment of L is a total function ω : L	 → {F,T}

Logics for Approximating Implication Problems 233

that maps every propositional variable v′ ∈ S and its negation ¬v′ into opposite
truth values (ω(v′) = T if and only if ω(¬v′) = F), and that does not map both
a propositional variable v′ ∈ L−S and its negation ¬v′ into false (we must not
have ω(v′) = F = ω(¬v′) for any v′ ∈ L− S).

An S-3 truth assignment ω : L	 → {F,T} of L can be lifted to a total function
Ω : L∗ → {F,T}. This lifting has been defined as follows [27]. An arbitrary
formula ϕ′ in L∗ is firstly converted (in linear time in the size of the formula)
into its corresponding formula ϕ′N in Negation Normal Form (NNF) using the
following rewriting rules: ¬(ϕ′ ∧ ψ′) �→ (¬ϕ′ ∨ ¬ψ′), ¬(ϕ′ ∨ ψ′) �→ (¬ϕ′ ∧ ¬ψ′),
and ¬(¬ϕ′) �→ ϕ′. Therefore, negation in a formula in NNF occurs only at the
literal level. The rules for assigning truth values to NNF formulae are as follows:

– Ω(ϕ′) = ω(ϕ′), if ϕ′ ∈ L	,
– Ω(ϕ′ ∨ ψ′) = T if and only if Ω(ϕ′) = T or Ω(ψ′) = T,
– Ω(ϕ′ ∧ ψ′) = T if and only if Ω(ϕ′) = T and Ω(ψ′) = T.

An S-3 truth assignment ω is a model of a set Σ′ of L-formulae if and only if
Ω(σ′N) = T holds for every σ′ ∈ Σ′. We say that Σ′ S-3 implies an L-formula
ϕ′, denoted by Σ′ |=3

S ϕ′, if and only if every S-3 truth assignment that is a
model of Σ′ is also a model of ϕ′.
Equivalences. Let φ : Vc → Lc denote a bijection between a set Vc of random
variables and the set Lc = {v′ | v ∈ V } of propositional variables. In particular,
φ(C) = S ⊆ Lc. We extend φ to a mapping Φ from the set of SCI statements over
Vc to the set L∗c . For an SCI statement I(Y, Z | X) over Vc, let Φ(I(Y, Z | X))
denote ∨

v∈X
¬v′ ∨

(∧
v∈Y

v′

)
∨
(∧

v∈Z
v′

)
.

Disjunctions over zero disjuncts are F and conjunctions over zero conjuncts are
T. We will denote Φ(ϕc) = ϕ′c and Φ(Σc) = {Φ(σc) | σ ∈ Σc} = Σ′c.

In our example, for ϕc = I(ceh,m | b) we have ϕ′c = ¬b′ ∨ (c′ ∧ e′ ∧ h′) ∨m′,
and for Σc = {I(cem, h | b)} we have Σ′c = {¬b′ ∨ h′ ∨ (c′ ∧ e′ ∧m′)}.

It has been shown that for any set Σc ∪ {ϕc} of SCI statements over Vc there
is a probability model π = (dom, P) over (Vc, C) that satisfies Σc and violates
ϕc if and only if there is an S-3 interpretation ωπ over Lc that is an S-3 model
of Σ′c but not an S-3 model of ϕ′c [20]. For arbitrary probability models π it is
not obvious how to define the S-3 interpretation ωπ. However, if Σc does not
(Vc, C)-imply ϕc, then there is a special probability model π = (dom, {a1, a2})
over (Vc, C) that i) has two assignments a1, a2} of probability one half each,
ii) satisfies all SCI statements in Σc and iii) violates ϕc. Given such π, let ωπ

denote the following special S-3 interpretation of Lc [20]:

ωπ(v
′) =

{
T , if a1(v) = a2(v)
F , otherwise

, and

ωπ(¬v′) =
{
T , if a1(v) = − = a2(v) or a1(v) �= a2(v)
F , otherwise

.

234 H. Koehler and S. Link

From the results in [20] and Theorem 5 we obtain the following logical char-
acterization of pure implication.

Theorem 6. Let Σ ∪ {ϕ} be a finite set of SCI statements, C be a finite set of
complete random variables, Lc = {v′ | v ∈ VΣ∪{ϕ} ∪ C ∪ {v0}} and S = {v′ | v ∈
C}. Then Σ |=C ϕ if and only if Σ′c |=3

S ϕ′c.

Proof. Theorem 5 shows that Σ |=C ϕ if and only if Σc |=(Vc,C) ϕc for Vc =
VΣ∪{ϕ} ∪C ∪ {v0}. By [20, Thm.20], Σc |=(Vc,C) ϕc if and only if Σ′c |=3

S ϕ′c. ��

Example 5. Recall that Σ = {I(m | b), I(c|bm)} does not purely C = {m}-imply
ϕ = I(h | b) as the special probability model π defined by

m b h c e P
true true true − true 0.5
true true false − false 0.5

satisfies Σc, but violates ϕc. Any special S-3 interpretation where ωπ(m
′) =

T = ωπ(c
′), ωπ(¬b′) = ωπ(¬m′) = ωπ(h

′) = ωπ(e
′) = F is an S-3 model of

Σ′c = {¬b′ ∨m′ ∨ (c′ ∧ e′ ∧ h′),¬b′ ∨ ¬m′ ∨ c′ ∨ (e′ ∧ h′)}, but not an S-3 model
of ϕ′c = ¬b′ ∨ h′ ∨ (c′ ∧ e′ ∧m′).

7 Database and Algorithmic Characterization

Let A = {v̂1, v̂2, . . .} be an infinite set of distinct symbols, called attributes. A
relation schema is a finite non-empty subset R of A. Each attribute v̂ ∈ R has an
infinite domain dom(v̂). In order to encompass missing data values the domain
of each attribute contains the null marker −. The intention of − is to mean
“no information” [17]. A tuple over R is a function t : R →

⋃
v̂∈R dom(v̂) with

t(v̂) ∈ dom(v̂) for all v̂ ∈ R. For X ⊆ R let t(X) denote the restriction of t to X .
A relation r over R is a finite set of tuples over R. For a tuple t over R and a set
X ⊆ R, t is said to be X-total, if for all v̂ ∈ X , t(v̂) �= −. A relation over R is X-
total if every of its tuples is X-total. An R-total relation of R is said to be total.
The industry-standard SQL allows its users to declare attributes NOT NULL. A
null-free subschema (NFS) of R is a subset Rs ⊆ R. An R-relation satisfies an
NFS Rs over R if it is Rs-total. A multivalued dependency (MVD) over R is
a statement X � Y where X and Y are disjoint subsets of R [17]. The MVD
X � Y over R is satisfied by a relation r over R if and only if for all t1, t2 ∈ r the
following holds: if t1 and t2 are X-total and t1(X) = t2(X), then there is some
t ∈ r such that t(XY) = t1(XY) and t(X(R −XY)) = t2(X(R −XY)). Thus,
the relation r satisfies X � Y when every X-total value determines the set of
values on Y independently of the set of values on R − Y . For a set Σ̂ ∪ {ϕ̂} of
MVDs over R, Σ̂ (R,Rs)-implies ϕ̂, denoted by Σ̂ |=(R,Rs) ϕ̂, if and only if every

relation over R that satisfies the NFS Rs and all elements in Σ̂ also satisfies ϕ̂.
For a set Σc ∪ {ϕc} of SCI statements over Vc one may associate the set

Σ̂c ∪ {ϕ̂c} of MVDs over Rc := {v̂ | v ∈ Vc}, where σ̂c = X � Y for σc =
I(Z, Y |X) and Σ̂c = {σ̂c | σ ∈ Σc}.

Logics for Approximating Implication Problems 235

Theorem 7. Let Σ ∪{ϕ} be a finite set of SCI statement, and C a finite set of
complete random variables. Then Σ |=C ϕ if and only if Σ̂c |=(Rc,Rs

c)
ϕ̂c, where

Rc = {v̂|v ∈ Vc} and Rs
c = {v̂|v ∈ C}.

Proof. Theorem 5 shows that Σ |=C ϕ if and only if Σ′c |=3
S ϕ′c for S = {v′|v ∈

C}. By [11, Cor. 6.9], Σ′c |=3
S ϕ′c if and only if Σ̂c |=(Rc,Rs

c)
ϕ̂c.

[20, Cor. 28] shows that Σc |=(Vc,C) ϕc for ϕc = I(Z, Y |X) iff Σc[XC] |=(Vc,Vc)

ϕc, that is, when no domain contains the marker. Here, Σc[XC] := {I(V,W |U) |
I(V,W |U) ∈ Σc ∧ U ⊆ XC}. The independence basis IDepBΣc[XC](X) consists
of the minimal Y ⊆ Vc−X such that Σc[XC] |=(Vc,Vc) I(Z, Y |X). By Theorem 6

and [11, Cor. 6.9], Σ |=C ϕ iff ˆΣc[XC] |=(Rc,Rc) ϕ̂c, that is, every total relation

over Rc that satisfies ˆΣc[XC] also satisfies ϕ̂c. The latter problem has an efficient
algorithmic solution [8].

Theorem 8. Using the algorithm in [8], the pure implication problem Σ |=C

I(Y |X) can be decided in time O(|Σc|+min{kΣc[XC], log p̄Σc[XC]}× |Σc[XC]|).
Herein, |Σc| denotes the total number of random variables in Σc, kΣc[XC] de-
notes the cardinality of Σc[XC], and p̄Σc[XC] denotes the number of sets in
IDepBΣc[XC](X) that have non-empty intersection with Y .

8 Related Work

Dawid [5] first investigated fundamental properties of conditional independence,
leading to a claim that “rather than just being another useful tool in the statisti-
cian’s kitbag, conditional independence offers a new language for the expression
of statistical concepts and a framework for their study”. Geiger and Pearl [9,24]
have systematically investigated the implication problem for fragments of CI
statements over different probability models. In particular, they have established
an axiomatization of SCI statements by a finite set of Horn rules [9]. Studený [30]
showed that no axiomatization by a finite set of Horn rules exists for general CI
statements. Niepert et al. [22] established an axiomatization for stable CI state-
ments, which subsume SCI statements, and showed that their associated implica-
tion problem is coNP -complete. Independently, database theory has investigated
the concept of embedded multivalued dependencies (MVDs) whose implication
problem is undecidable [12] and not axiomatizable by a finite set of Horn rules
[29]. Studený also showed that the implication problem of embedded MVDs and
that of CI statements do not coincide [30]. In contrast, the implication problems
of MVDs, SCI statements and some fragement of Boolean propositional logic all
coincide [9,26,31]. These findings have been established for the notion of impli-
cation over fixed sets of random variables and the idealized case where all data
values are known. [3] differentiated between V -implication and pure implication
for SCI statements in which all random variables are complete, applying ideas
from database theory [1,18,2,19]. The equivalences between (V,C)-implication
of SCI statements, S-3 implication of a propositional fragment, and implication

236 H. Koehler and S. Link

Fig. 1. Summary of equivalences between pure implication problems

of multivalued dependencies in the presence of NOT NULL constraints were estab-
lished in [11,20]. The present article is the first to study pure C-implication of
SCI statements. It subsumes two special cases from previous research, where i)
all random variables are assumed to be complete [3], and ii) no random variable
is assumed to be complete [13]. In particular, the equivalences summarized in
Figure 1 complement the findings from [11,20] for implication in fixed universes.

9 Conclusion

Recently, probabilistic SCI statements were studied in a general framework in
which occurrences of missing data are controlled by declaring members of a sub-
set C of the set V of random variables to be complete. Axiomatic, algorithmic
and logical characterizations of the associated implication problem were general-
ized from the idealized special case in which all random variables are complete,
that is, where C = V . In this paper we investigated the difference between SCI
statements (V,C)-implied jointly by a given set of SCI statements and a fixed
set V , and those purely C-implied by a given set of SCI statements alone. It was
shown that the only known axiomatization ZV for (V,C)-implication cannot sep-
arate (V,C)-implied from purely C-implied SCI statements. An axiomatization
CV was established that can infer every purely C-implied SCI statement with-
out applications of the V -symmetry rule SV , and infer every (V,C)-implied SCI
statement with a single application of SV in the last step of the inference only.
The system C that results from CV by removing SV forms a finite axiomatization
for the stronger notion of pure C-implication. The pure C-implication problem
Σ |= ϕ was characterized by the (V,C)-implication problem Σ |=(V,C)ϕ for
sets V ⊇ C that properly contain the random variables that occur in Σ ∪ {ϕ}.
This result enabled us to characterize pure C-implication logically and algorith-
mically as well. Our results clarify the role of the V -symmetry rule SV as a pure
means to infer (V,C)-implied SCI statements. The notion of pure C-implication
is appealing when the existence of random variables is uncertain, for example,
when independence statements are integrated from different sources, when ran-
dom variables are unknown or shall remain hidden.

Acknowledgement. This research is supported by the Marsden fund council
from Government funding, administered by the Royal Society of New Zealand.

Logics for Approximating Implication Problems 237

References

1. Biskup, J.: Inferences of multivalued dependencies in fixed and undetermined uni-
verses. Theor. Comput. Sci. 10(1), 93–106 (1980)

2. Biskup, J., Link, S.: Appropriate inferences of data dependencies in relational
databases. Ann. Math. Artif. Intell. 63(3-4), 213–255 (2012)

3. Biskup, J., Hartmann, S., Link, S.: Probabilistic conditional independence under
schema certainty and uncertainty. In: Hüllermeier, E., Link, S., Fober, T., Seeger,
B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 365–378. Springer, Heidelberg (2012)

4. Chickering, D.M., Heckerman, D.: Efficient approximations for the marginal like-
lihood of Bayesian networks with hidden variables. Machine Learning 29(2-3),
181–212 (1997)

5. Dawid, A.P.: Conditional independence in statistical theory. Journal of the Royal
Statistical Society. Series B (Methodological) 41(1), 1–31 (1979)

6. Dempster, A., Laird, N.M., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society B 39, 1–39 (1977)

7. Friedman, N.: Learning belief networks in the presence of missing values and hid-
den variables. In: Fisher, D.H. (ed.) Proceedings of the Fourteenth International
Conference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July
8-12, pp. 125–133. Morgan Kaufmann (1997)

8. Galil, Z.: An almost linear-time algorithm for computing a dependency basis in a
relational database. J. ACM 29(1), 96–102 (1982)

9. Geiger, D., Pearl, J.: Logical and algorithmic properties of conditional indepen-
dence and graphical models. The Annals of Statistics 21(4), 2001–2021 (1993)

10. Halpern, J.Y.: Reasoning about uncertainty. MIT Press (2005)
11. Hartmann, S., Link, S.: The implication problem of data dependencies over SQL

table definitions: axiomatic, algorithmic and logical characterizations. ACM Trans.
Database Syst. 37(2), Article 13 (2012)

12. Herrmann, C.: On the undecidability of implications between embedded multival-
ued database dependencies. Inf. Comput. 122(2), 221–235 (1995)

13. Koehler, H., Link, S.: Saturated conditional independence with fixed and unde-
termined sets of incomplete random variables. In: Zhang, N.L., Tian, J. (eds.)
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence,
Quebec City, Quebec, Canada, July 23-27. AUAI Press (2013)

14. Koller, D., Friedman, N.: Probabilistic Graphical Models - Principles and Tech-
niques. MIT Press (2009)

15. Lauritzen, S.: The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis 19, 191–201 (1995)

16. Lenzerini, M., Schaerf, M.: The scientific legacy of Marco Cadoli in artificial intel-
ligence. Intelligenza Artificiale 7(1), 1–5 (2013)

17. Lien, E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
18. Link, S.: Charting the completeness frontier of inference systems for multivalued

dependencies. Acta Inf. 45(7-8), 565–591 (2008)
19. Link, S.: Characterizations of multivalued dependency implication over undeter-

mined universes. J. Comput. Syst. Sci. 78(4), 1026–1044 (2012)
20. Link, S.: Sound approximate reasoning about saturated conditional probabilistic

independence under controlled uncertainty. J. Applied Logic 11(3), 309–327 (2013)
21. Marlin, B.M., Zemel, R.S., Roweis, S.T., Slaney, M.: Recommender systems, miss-

ing data and statistical model estimation. In: Walsh, T. (ed.) Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011,
Barcelona, Catalonia, Spain, July 16-22, pp. 2686–2691. IJCAI/AAAI (2011)

238 H. Koehler and S. Link

22. Niepert, M., Van Gucht, D., Gyssens, M.: Logical and algorithmic properties of
stable conditional independence. Int. J. Approx. Reasoning 51(5), 531–543 (2010)

23. Niepert, M., Gyssens, M., Sayrafi, B., Gucht, D.V.: On the conditional indepen-
dence implication problem: A lattice-theoretic approach. Artif. Intell. 202, 29–51
(2013)

24. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Francisco (1988)

25. Saar-Tsechansky, M., Provost, F.J.: Handling missing values when applying clas-
sification models. Journal of Machine Learning Research 8, 1623–1657 (2007)

26. Sagiv, Y., Delobel, C., Parker Jr., D.S., Fagin, R.: An equivalence between rela-
tional database dependencies and a fragment of propositional logic. J. ACM 28(3),
435–453 (1981)

27. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artif. Intell. 74,
249–310 (1995)

28. Singh, M.: Learning bayesian networks from incomplete data. In: Kuipers, B., Web-
ber, B.L. (eds.) Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference,
AAAI 1997, IAAI 1997, Providence, Rhode Island, July 27-31, pp. 534–539. AAAI
Press/The MIT Press (1997)

29. Stott Parker Jr., D., Parsaye-Ghomi, K.: Inferences involving embedded multival-
ued dependencies and transitive dependencies. In: Chen, P.P., Sprowls, R.C. (eds.)
Proceedings of the 1980 ACM SIGMOD International Conference on Management
of Data, Santa Monica, California, May 14-16, pp. 52–57. ACM Press (1980)

30. Studený, M.: Conditional independence relations have no finite complete charac-
terization. In: Ámos Vı́̌sek, J. (ed.) Transactions of the 11th Prague Conference on
Information Theory, Statistical Decision Functions and Random Processes, Prague,
Czech Republic, August 27-31, 1990, pp. 377–396. Academia (1992)

31. Wong, S., Butz, C., Wu, D.: On the implication problem for probabilistic condi-
tional independency. IEEE Trans. Systems, Man, and Cybernetics, Part A: Systems
and Humans 30(6), 785–805 (2000)

32. Zhu, X., Zhang, S., Zhang, J., Zhang, C.: Cost-sensitive imputing missing values
with ordering. In: Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, Vancouver, British Columbia, Canada, July 22-26, pp. 1922–1923.
AAAI Press (2007)

Finitary S5-Theories

Tran Cao Son1, Enrico Pontelli1, Chitta Baral2, and Gregory Gelfond2

1 Computer Science Department, New Mexico State University
{tson,epontell}@cs.nmsu.edu

2 Department of Computer Science Engineering, Arizona State University
{chitta,gelfond.greg}@asu.edu

Abstract. The objective of this paper is to identify a class of epistemic logic
theories with group knowledge operators which have the fundamental property
of being characterized by a finite number of finite models (up to equivalence). We
specifically focus on S5-theories. We call this class of epistemic logic theories as
finitary S5-theories. Models of finitary S5-theories can be shown to be canonical
in that they do not contain two worlds with the same interpretation. When the
theory is pure, these models are minimal and differ from each other only in the
actual world. The paper presents an algorithm for computing all models of a
finitary S5-theory. Finitary S5-theories find applications in several contexts—in
particular, the paper discusses their use in epistemic multi-agent planning.

1 Introduction and Motivation

Epistemic logics [2, 7, 8, 10] are a branch of modal logic that is concerned with rep-
resenting and reasoning about the knowledge of collections of agents. These logics
allow us to represent and reason about the knowledge of an agent about the world, its
knowledge about other agents’ knowledge, group’s knowledge, common knowledge,
etc. The models of an epistemic theory are commonly given by pointed Kripke struc-
tures. Each pointed Kripke structure consists of a set of elements named worlds (also
known as points), a collection of binary relations between worlds (accessibility rela-
tions), a named valuation associated to each world, and an actual world—considered as
the “real state of the universe”. Models of an epistemic theory can be potentially infi-
nite. Indeed, one can easily create an infinite model of an epistemic theory from a finite
one, by cloning its whole structure (including the accessibility relations, the worlds,
etc.). Bisimulation (e.g., [2]) can be used to reduce the size of a model. It is possible to
show that, given a theory that employs a single modal operator and has a finite signature,
there are only finitely many models with the property that (a) all of them are finite and
bisimulation-based minimal; and (b) any model of the theory is bisimilar (and, hence,
equivalent) to one of those models. This is not true, however, for multimodal theories,
i.e., theories with multiple modal operators.

In this paper, we study the questions of when a multimodal propositional epistemic
theory can be characterized by finitely many finite models (up to equivalence), and how
to compute these models. The motivation for these questions is twofold.

First, the question arises in the research on using epistemic theories in Multi-Agent
Systems (MAS), in particular, in the development of the Dynamic Epistemic Logic (DEL)

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 239–252, 2014.
c© Springer International Publishing Switzerland 2014

240 T.C. Son et al.

[1, 3, 6, 11] for reasoning about effects of actions in MAS. This line of research has laid
the foundations for the study of the epistemic planning problem in multi-agent envi-
ronments [5, 12, 14]. Yet, the majority of the research in epistemic planning assumes
that the set of initial pointed Kripke structures is given, and it is either finite [12, 14] or
recursively enumerable [5]. This creates a gap between the rich literature in theoretical
investigation of epistemic planning (e.g., formalization, complexity results) and the very
modest developments in automated epistemic planning systems—that can benefit from
the state-of-the-art techniques developed for planning systems in single-agent environ-
ments. In particular, there is a plethora of planners for single-agent environments, that
perform exceptionally well in terms of scalability and efficiency;1 the majority of them
are heuristic forward-search planners. On the other hand, to the best of our knowledge,
the systems described in [12, 14] are the only epistemic multi-agent planning prototypes
available, that search for solutions using breath-first search and model checking.

The second research motivation comes from the observation that the S5-logic is the
de-facto standard logic for reasoning and planning with sensing actions in presence of
incomplete information for single-agent domains. The literature is scarce on methods
for computing models of S5 multimodal epistemic theories. Works such as [15, 16]
are exceptions, and they focus on the least models of a modal theory. Several papers,
instead, assume that such models are, somehow, given. For instance, after describing
the muddy-children story, the authors of [7] present a model of the theory without de-
tailing how should one construct such model and whether or not the theory has other
“interesting” models.

These observations show that, in order to be able to use epistemic logic as a specifi-
cation language in practical MAS applications, such as epistemic multi-agent planning,
the issue of how to compute the set of models of a theory must be addressed.

In this paper, we address this question by identifying a class of finitary S5-theories
with group and common knowledge operators, that can be characterized by finitely
many finite models. We prove that each model of a finitary S5-theory is equivalent to
one of these canonical models, and propose an effective algorithm for computing such
set of canonical models. We discuss a representation of finitary S5-theories suitable for
use with the algorithm. We also discuss the impact of these results in epistemic multi-
agent planning.

2 Preliminary: Epistemic Logic

Let us consider the epistemic logic with a set AG = {1, 2, . . . , n} of n agents; we will
adopt the notation used in [2, 7]. The “physical” state of the world is described by a
finite set P of propositions. The knowledge of the world of agent i is described by a
modal operator Ki; in particular, the knowledge of agents is encoded by knowledge
formulae (or formula) in a logic extended with these operators, and defined as follows.
• Atomic formulae: an atomic formula is built using the propositions in P and the

traditional propositional connectives ∨, ∧, →, ¬, etc. A literal is either an atom
f ∈ P or its negation ¬f .
 (resp. ⊥) denotes true (resp. false).

1 E.g., http://ipc.icaps-conference.org/ lists 27 participants in the 2011 Interna-
tional Planning Competition.

http://ipc.icaps-conference.org/

Finitary S5-Theories 241

• Knowledge formulae: a knowledge formula is a formula in one of the following
forms: (i) An atomic formula; (ii) A formula of the form Kiϕ, where ϕ is a knowl-
edge formula; (iii) A formula of the form ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2, ϕ1 → ϕ2, or ¬ϕ1,
where ϕ1, ϕ2 are knowledge formulae; (iv) A formula of the form Eαϕ or Cαϕ
where ϕ is a formula and ∅ �= α ⊆ AG.

Formulae of the form Eαϕ and Cαϕ are referred to as group formulae. Whenever
α = AG, we simply write Eϕ and Cϕ to denote Eαϕ and Cαϕ, respectively. When no
confusion is possible, we will talk about formula instead of knowledge formula. Let us
denote withLPAG the language of the knowledge formulae overP andAG. An epistemic
theory (or simply a theory) over the set of agents AG and propositions P is a set of
knowledge formulae in LPAG . To illustrate the language, we will use the well-known
Muddy Children problem as a running example. For simplicity of the presentation, let
us consider the case with two children.

[Muddy Children] A father says to his two children that at least one of them
has mud on the forehead. He then repeatedly asks “do you know whether you
are dirty?” The first time the two children answer “no.” The second time both
answer “yes.” The father and the children can see and hear each other, but no
child can see his own forehead.

Let AG = {1, 2}. Let mi denote that child i is muddy. Some formulae in LPAG are:
(i) mi (i is muddy); (ii) K1m1 (child 1 knows he is muddy); (iii) K1K2m2 (child 1
knows that child 2 knows that he is muddy); and (iv) C{1,2}(m1 ∨m2) (it is common
knowledge among the children that at least one is muddy).

The semantics of knowledge formulae relies on the notion of Kripke structures.

Definition 1 (Kripke Structure). A Kripke structure over AG = {1, . . . , n} and P is
a tuple 〈S, π,K1, . . . ,Kn〉, where S is a set of points, π is a function that associates
an interpretation of P to each element of S (i.e., π : S �→2P), and Ki ⊆ S × S for
1 ≤ i ≤ n. A pointed Kripke structure (or, pointed structure, for short) is a pair (M, s),
where M is a Kripke structure and s, called the actual world, belongs to the set of points
of M .

For readability, we use M [S], M [π], and M [i], to denote the components S, π, and Ki

of M , respectively. Using this notation, M [π](u) denotes the interpretation associated
to the point u.

Definition 2 (Satisfaction Relation). Given a formulaϕand a pointed structure (M, s):
• (M, s) |= ϕ if ϕ is an atomic formula and M [π](s) |= ϕ;
• (M, s) |= Kiϕ if for each t such that (s, t) ∈ Ki, (M, t) |= ϕ;
• (M, s) |= ¬ϕ if (M, s) �|= ϕ;
• (M, s) |= ϕ1 ∨ ϕ2 if (M, s) |= ϕ1 or (M, s) |= ϕ2;
• (M, s) |= ϕ1 ∧ ϕ2 if (M, s) |= ϕ1 and (M, s) |= ϕ2;
• (M, s) |= Eαϕ if (M, s) |= Kiϕ for every i ∈ α;
• (M, s) |= Cαϕ if (M, s) |= Ek

αϕ for every k ≥ 0 where E0
αϕ = ϕ and Ek+1

α =
Eα(E

k
αϕ).

M |= ϕ denotes the fact that (M, s) |= ϕ for each s ∈ M [S], while |= ϕ denotes the
fact that M |= ϕ for all Kripke structures M . We will often depict a Kripke structure

242 T.C. Son et al.

M as a directed labeled graph, with S as the set of nodes and with edges of the form
(s, i, t) iff (s, t) ∈ Ki. We say that un is reachable from u1 if there is a sequence of
edges (u1, i1, u2), (u2, i2, u3), . . . , (un−1, in−1, un) in M .

A Kripke structure denotes the possible “worlds” envisioned by the agents—and the
presence of multiple worlds denotes uncertainty and presence of different knowledge.
The relation (s1, s2) ∈ Ki indicates that the knowledge of agent i about the real state
of the world is insufficient to distinguish between the state described by point s1 and
the one described by point s2. For example, if (s1, s2) ∈ Ki, M [π](s1) |= ϕ and
M [π](s2) |= ¬ϕ, everything else being the same, then this will indicate that agent i
is uncertain about the truth of ϕ. Figure 1 displays a possible pointed structure for the

 s1:

 m1
 m2

 s2:

¬m1
 m2

 s4:

¬m1
¬m2

 s1:

 m1
 m2

 s3:

 m1
¬m2

1,2 1,2

22

1,2 1,2

1

1

Fig. 1. A possible pointed structure for the Muddy Children Domain

Muddy Children Domain. In Figure 1, a circle represents a point. The name and inter-
pretation of the points are written in the circle. Labeled edges between points denote
the knowledge relations of the structure. A double circle identifies the actual world.

Various axioms are used to characterize epistemic logic systems. We will focus on
the S5-logic that contains the following axioms for each agent i and formulae ϕ, ψ:

|= (Kiϕ ∧Ki(ϕ⇒ ψ))⇒ Kiψ (K)
|= Kiψ ⇒ ψ (T)
|= Kiψ ⇒ KiKiψ (4)
|= ¬Kiψ ⇒ Ki¬Kiψ (5)

A Kripke structure is said to be an S5-structure if it satisfies the properties K, T, 4, and
5. It can be shown that the relations Ki of S5-structures are reflexive, transitive, and
symmetric. A theory plus the K, T, 4, and 5 axioms is often referred to as an S5-theory.
In the rest of this paper, we will consider only S5-theories. A theory T is said to be
satisfiable (or consistent) if there exists a Kripke structure M and a point s ∈ M [S]
such that (M, s) |= ψ for every ψ ∈ T . In this case, (M, s) is referred to as a model
of T . Two pointed structures (M, s) and (M ′, s′) are equivalent if, for every formula
ϕ∈LPAG , (M, s) |= ϕ iff (M ′, s′) |= ϕ.

For simplicity of the presentation, we define

state(u) ≡
∧

f∈P, M [π](u)(f)=�
f ∧

∧
f∈P, M [π](u)(f)=⊥

¬f

Finitary S5-Theories 243

for u ∈ M [S]. Intuitively, state(u) is the formula representing the complete interpre-
tation associated to the point u in the structure M , i.e., M [π](u). We will often use
state(u) and M [π](u) interchangeably. We say that (M, s) is canonical if state(u) �≡
state(v) for every u, v ∈ M [S], u �= v. By ModsS5(T) we denote a set of S5-models
of a theory T such that: (a) there are no two equivalent models in ModsS5(T); and (b)
For each S5-model (M, s) of T , there exists a model (M ′, s′) in ModsS5(T) such that
(M, s) is equivalent to (M ′, s′).

3 Finitary S5-Theories: Definition and Properties

In this section, we define the notion of finitary S5-theories and show that a finitary
S5-theory can be characterized by finitely many finite models. We start with the spec-
ification of the types of formulae that we will consider. They are, in our observation,
sufficiently expressive for use in the specification of the description of the actual world
and the common knowledge among the agents. The allowed types of formulae are:

ϕ (1)

C(Kiϕ) (2)

C(Kiϕ ∨Ki¬ϕ) (3)

C(¬Kiϕ ∧ ¬Ki¬ϕ) (4)

where ϕ is an atomic formula. Intuitively, formulae of type (1) indicate properties that
are true in the actual world; formulae of type (2)-(3) indicate that all agents know that
agent i is aware of the truth value of ϕ; formulae of type (4) indicate that all agents
know that agent i is not aware of whether ϕ is true or false. Since our focus is on S5-
models of epistemic theories, it is easy to see that C(Kiϕ) can be simplified to C(ϕ).
We say that a formula of the form (1)-(4) is in disjunctive form if its formula ϕ is a
disjunction over literals from P . A complete clause over P is a disjunction of the form∨

p∈P p∗ where p∗ is either p or ¬p.

Example 1. In the muddy children story, the knowledge of the children after the father’s
announcement but before the children look at each other can be encoded by a theory T0

consisting of the following formulae:

C(K1(m1 ∨m2)) C(K2(m1 ∨m2))

C(¬K1m1 ∧ ¬K1¬m1) C(¬K1m2 ∧ ¬K1¬m2)

C(¬K2m1 ∧ ¬K2¬m1) C(¬K2m2 ∧ ¬K2¬m2)

These formulae indicate that both children are aware that at least one of them is muddy
(the formulas in the first row), but they are not aware of who among them is muddy;
these items are all common knowledge.

If we take into account the fact that each child can see the other, and each child
knows if the other one is muddy, then we need to add to T0 the following formulae:

C(K1m2 ∨K1¬m2) C(K2m1 ∨K2¬m1)

244 T.C. Son et al.

Definition 3 (Primitive Finitary S5-Theory). A theory T is said to be primitive fini-
tary S5 if
• Each formula in T is of the form (1)-(4); and
• For each complete clauseϕ overP and each agent i, T contains either (i) C(Kiϕ)

or (ii) C(Kiϕ ∨Ki¬ϕ) or (iii) C(¬Kiϕ ∧ ¬Ki¬ϕ).
T is said to be in disjunctive form if all statements in T are in disjunctive form.

The second condition of the above definition deserves some discussion. It requires that
T contains at least |AG| × 2|P| formulae and could be unmanageable for large P . This
condition is introduced for simplicity of initial analysis of finitary S5-theories. This
condition will be relaxed at the end of this section by replacing the requirement “T
contains” with “T entails.” For example, the theory T0 is not a primitive finitary S5-
theory; T0 is a finitary S5-theory (defined later) as it entails a primitive finitary S5-
theory T1.

Example 2. Let T1 be the theory consisting of:

C(Ki(m1 ∨m2))

C(¬Ki(m1 ∨ ¬m2) ∧ ¬Ki(¬(m1 ∨ ¬m2)))

C(¬Ki(¬m1 ∨m2) ∧ ¬Ki(¬(¬m1 ∨m2)))

C(¬Ki(¬m1 ∨ ¬m2) ∧ ¬Ki(¬(¬m1 ∨ ¬m2)))

where i = 1, 2. It is easy to see that T1 is a primitive finitary S5-theory—and it is
equivalent to T0 from Example 1.

Primitive finitary S5-theories can represent interesting properties.

Example 3. Consider the statement “it is common knowledge that none of the agents
knows anything.” The statement can be represented by the theory

T2 = {C(¬Kiω ∧ ¬Ki¬ω) | i ∈ AG, ω is a complete clause over P}.

We will show that a primitive finitary S5-theory can be characterized by finitely many
finite S5-models. The proof of this property relies on a series of lemmas. We will next
discuss these lemmas and provide proofs of the non-trivial ones. First, we observe that
points that are unreachable from the actual world in a pointed structure can be removed.

Lemma 1. Every S5-pointed structure (M, s) is equivalent to an S5-pointed structure
(M ′, s) such that every u ∈M ′[S] is reachable from s.

The next lemma studies the properties of an S5-pointed structure satisfying a formula
of the form (2) or (3).

Lemma 2. Let (M, s) be an S5-pointed structure such that every u ∈ M [S] is reach-
able from s. Let ψ be an atomic formula. Then,
• (M, s) |= C(ψ) iff M [π](u) |= ψ for every u ∈M [S].
• (M, s) |= C(Kiψ∨Ki¬ψ) iff for every pair (u, v) ∈M [i] it holds thatM [π](u) |=
ψ iff M [π](v) |= ψ.

Finitary S5-Theories 245

Because C(Kiψ) implies C(ψ) in an S5-pointed structure (M, s) the first item of
Lemma 2 shows thatψ is satisfied at every point in (M, s). The second item of Lemma 2
shows that every pair of points related by Ki either both satisfy or both do not satisfy
the formula ϕ in an S5-pointed structure (M, s) satisfying a formula of the form (3).

The next lemma shows that an S5-pointed structure satisfying a formula of the form
(4) must have at least one pair of points at which the value of the atomic formula men-
tioned in the formula differs. For a structure M and u, v ∈ M [S], M [π](u)(ψ) �=
M [π](v)(ψ) indicates that either (M [π](u) |= ψ and M [π](v) �|= ψ) or (M [π](u) �|= ψ
and M [π](v) |= ψ), i.e., the value of ψ at u is different from the value of ψ at v.

Lemma 3. Let (M, s) be an S5-pointed structure such that every u ∈ M [S] is reach-
able from s. Let ψ be an atomic formula. Then, (M, s) |= C(¬Kiψ ∧ ¬Ki¬ψ) iff
for every u ∈ M [S] there exists some v ∈ M [S] such that (u, v) ∈ M [i], and
M [π](u)(ψ) �= M [π](v)(ψ).

The proofs of Lemmas 1-3 follow from the definition of the satisfaction relation |= be-
tween a pointed structure and a formula and the fact that (M, s) |= C(ψ) iff (M,u) |=
ψ for every u reachable from s. For this reason, they are omitted.

We will now focus on models of primitive finitary S5-theories. Let M be a Kripke
structure. We define a relation∼ among points of M as follows. For each u, v ∈M [S],
u ∼ v iff state(u) ≡ state(v). Thus, u ∼ v indicates that the interpretations associated
to u and v are identical. It is easy to see that ∼ is an equivalence relation over M [S].
Let ũ denote the equivalence class of u with respect to the relation ∼ (i.e., ũ = [u]∼).

Lemma 4. Let (M, s) be an S5-model of a primitive finitary S5-theory such that every
u ∈ M [S] is reachable from s. Let ϕ be a complete clause and i ∈ AG. Given u ∈
M [S]:
• If (M,u) |= Kiϕ then (M, s) |= C(Kiϕ) or (M, s) |= C(Kiϕ ∨Ki¬ϕ);
• If (M,u) |= ¬Kiϕ then (M, s) |= C(¬Kiϕ ∧ ¬Ki¬ϕ).

The proof of Lemma 4 makes use of Lemmas 2-3 and the fact that (M, s) is an S5-
model of a primitive finitary S5-theory. The next lemma states a fundamental property
of models of primitive finitary S5-theories.

Lemma 5. Let (M, s) be an S5-model of a primitive finitary S5-theory such that every
u ∈ M [S] is reachable from s. Let u, v ∈ M [S] such that u ∼ v. Then, for every
i ∈ AG and x ∈ M [S] such that (u, x) ∈ M [i] there exists y ∈ M [S] such that
(v, y) ∈M [i] and x ∼ y.

Proof. Let K(p, i) = {q | q ∈ M [S], (p, q) ∈ M [i]}—i.e., the set of points immedi-
ately related to p via M [i]. We consider two cases:
• Case 1: K(u, i) ∩K(v, i) �= ∅. Since M [i] is an equivalent relation, we can con-

clude that K(u, i) = K(v, i) and the lemma is trivially proved (by taking x = y).
• Case 2: K(u, i) ∩K(v, i) = ∅. Let us assume that there exists some x ∈ K(u, i)

such that there exists no y ∈ K(v, i) with x ∼ y. This means that (M, y) |=
¬state(x) for each y ∈ K(v, i). In other words, (M, v) |= Ki(¬state(x)). As
¬state(x) is a complete clause, this implies that (by Lemma 4):

246 T.C. Son et al.

(M, s) |= C(Ki¬state(x)) or (M, s) |= C(Ki¬state(x) ∨Kistate(x)) (5)

On the other hand, (M,u) �|= Ki(¬state(x)), since x ∈ K(u, i) and (M,x) |=
state(x). This implies (M, s) |= C(¬Ki¬state(x)∧¬Kistate(x)) by Lemma 4.
This contradicts (5), proving the lemma. �

Lemma 5 shows that the points with the same interpretation have the same structure in
an S5-model of a primitive finitary S5-theory, i.e., the accessibility relations associated
to these points are identical. This indicates that we can group all such points into a
single one, producing an equivalent model that is obviously finite. Let us show that this
is indeed the case. Given a structure M , let M̃ be the structure constructed as follows:
• M̃ [S] = {ũ | u ∈M [S]}
• For every u ∈M [S] and f ∈ P , M̃ [π](ũ)(f) = M [π](u)(f)

• For each i ∈ AG, (ũ, ṽ) ∈ M̃ [i] if there exists (u′, v′) ∈M [i] such that u′ ∈ ũ and
v′ ∈ ṽ.

We call (M̃, s̃) the reduced pointed structure of (M, s) and prove that it is an S5-pointed
structure equivalent to (M, s):

Lemma 6. Let (M, s) be an S5-model of a primitive finitary S5-theory T such that
every u ∈ M [S] is reachable from s. Furthermore, let (M̃, s̃) be the reduced pointed
structure of (M, s). Then, (M̃, s̃) is a finite S5-model of T that is equivalent to (M, s).

Proof. The proof of this lemma relies on Lemmas 2-3 and 5. We prove some represen-
tative properties.
• (M̃, s̃) is S5. Reflexivity and symmetry are obvious. Let us prove transitivity: as-

sume that (ũ, ṽ) ∈ M̃ [i] and (ṽ, w̃) ∈ M̃ [i]. The former implies that there exists
(u1, v1) ∈ M [i] for some u1 ∈ ũ and v1 ∈ ṽ. The latter implies that there exists
(x1, w1) ∈M [i] for some x1 ∈ ṽ and w1 ∈ w̃. Since ∼ is an equivalence relation,
v1 ∼ x1. Lemma 5 implies that there exists some w2∼w1 such that (v1, w2)∈M [i]

which implies that, by transitivity of M [i], (u1, w2)∈M [i], so (ũ, w̃)∈M̃ [i], i.e.,
M̃ [i] is transitive.

• (M̃, s̃) is a model of T . We have that
(M, s) |= C(Kiψ ∨Ki¬ψ) iff
∀u, v ∈ M [S], (u, v) ∈ M [i] implies M [π](u) |= ψ iff M [π](v) |= ψ (by Lemma
2 w.r.t. (M, s)) iff
∀p̃, q̃ ∈ M̃ [S], u ∈ p̃ and v ∈ q̃, (p̃, q̃) ∈ M̃ [i] implies M̃ [π](p̃)|=ψ iff M̃ [π](q̃)|=ψ

(construction of (M̃, s̃)) iff
(M̃, s̃) |= C(Kiψ ∨Ki¬ψ) (by Lemma 2 w.r.t. (M̃, s̃)).
The proof for other statements is similar.

• (M̃, s̃) is equivalent to (M, s). This is done by induction over the number of K
operators in a formula. �

Let

μModsS5(T) =

{
(M̃, s̃)

| (M̃, s̃) is a reduced pointed structure
| of a S5-model (M, s) of T

}
Since each S5-model of T is equivalent to its reduced pointed structure, which has at
most 2|P| points, we have the next theorem.

Finitary S5-Theories 247

Theorem 1. For a consistent primitive finitary S5-theory T , μModsS5(T) is finite and
such that each (M, s) in μModsS5(T) is also finite.

This theorem shows that primitive finitary S5-theories have the desired properties that
we are looking for. The next theorem proves interesting properties of models of primi-
tive finitary S5-theories which are useful for computing μModsS5(T).

Theorem 2. For a primitive finitary S5-theory T , every model (M, s) in μModsS5(T)
is canonical and |M [S]| is minimal among all models of T . Furthermore, for every
pair of models (M, s) and (W,w) in μModsS5(T), M and W are identical, up to the
names of the points.

The first conclusion is trivial as each reduced pointed structure of a model of T is a
canonical model of T . The next lemma proves the second conclusion.

Lemma 7. Let T be a primitive finitary S5-theory, (M, s) and (V,w) in μModsS5(T),
and let i ∈ AG.
• For each u ∈M [S] there exists some v ∈ V [S] such that state(u) ≡ state(v).
• If (u, p) ∈M [i] then there exists (v, q) ∈ V [i] such that state(u) ≡ state(v) and
state(p) ≡ state(q).

Proof. (Sketch) The proof of the first property is similar to the proof of Lemma 5, with
the minor modification that it refers to two structures and that both are models of T .
In fact, if u ∈ M [S] and there exists no v ∈ V [S] such that state(u) ≡ state(v)
then (V,w) |= C(Kk¬state(u)) and (M, s) �|= C(Kk¬state(u)) for k ∈ AG, a
contradiction. The proof of the second property uses a similar argument. �

To prove that the set of points of a model in μModsS5(T) is minimal, we use the
next lemma. We define:

F (T) = {ϕ | ϕ appears in a formula of the form (2) of T }.

Lemma 8. Let (M, s) be a canonical model of a primitive finitary S5-theory T . Then,
the set M [S] is exactly the set of interpretations of F (T) and each u ∈M [S] is reach-
able.

Proof. (Sketch) First, it follows directly from Lemma 2 and C(Kiψ) |= C(ψ) in an
S5-model that for each u ∈M [S], state(u) |= ϕ for every ϕ ∈ F (T). Second, because
T is primitive finitary, if there is some interpretation I of F (T) such that there exists
no u ∈ M [S] and state(u) = I or there exists u ∈ M [S] with state(u) = I and
u is not reachable from s then we can conclude that (M, s) |= C(¬I), and because
T is a primitive finitary, we have that ¬I ∈ F (T). This implies that I cannot be an
interpretation of F (T), a contradiction. Both properties prove the lemma. �

We are now ready to define the notion of a finitary S5-theory that allows for Theo-
rem 1 to extend to epistemic theories consisting of arbitrary formulae.

Definition 4 (Finitary S5-Theory). An epistemic theory T is a finitary S5-theory if
T |= H and H is a primitive finitary S5-theory. T is pure if T contains only formulae
of the form (1)-(4).

248 T.C. Son et al.

We have that T0 (Example 1) is a finitary S5-theory, since T0 |= T1 and T1 is a primitive
finitary S5-theory. Since a model of T is also a model of H if T |= H , the following
theorem holds.

Theorem 3. Every finitary S5-theory T has finitely many finite canonical models, up
to equivalence. If T is pure then these models are minimal and their structures are
identical up to the name of the points.

4 Computing All Models of Finitary S5-Theories

In this section, we present an algorithm for computing μModsS5(T) for a primitive
finitary S5-theory and discuss how this can be extended to arbitrary finitary S5-theories.
Lemma 8 shows that F (T) can be used to identify the set of points of canonical models
of T . Applying this lemma to T0 (Example 1), we know that for every canonical model
(M, s) of T0, M [S] = {s1, s2, s3} where state(s1) = m1 ∧m2, state(s2) = m1 ∧
¬m2, and state(s3) = ¬m1 ∧m2.

The next step is to determine the accessibility relations of i ∈ AG. We will rely on
Lemmas 2-3 and the following result:

Lemma 9. Let (M, s) be a canonical model of a consistent primitive finitary S5-theory
T and i ∈ AG. Assume that for each complete clause ϕ, if T �|= C(Kiϕ) then T �|=
C(Kiϕ ∨Ki¬ϕ). Then, (u, v) ∈M [i] for every pair u, v ∈M [S].

Proof. The proof of this lemma is by contradiction and uses an idea similar to that used
in the proof of Case 2 of Lemma 5. Since (M, s) is a canonical model, each u ∈M [S] is
reachable from s. Assume that there exists a pair u, v ∈M [S] such that (u, v) �∈M [i].
We have that (M,u) |= Ki¬state(v). As ¬state(v) is a complete clause, by Lemma 4:

(M, s) |= C(Ki¬state(v)) or (M, s) |= C(Ki¬state(v) ∨Kistate(v)) (6)

On the other hand, since (u, v) �∈M [i] and M is a S5-structure, we have that (M, v) �|=
Ki¬state(v). This, together with the assumption of the lemma, contradicts (6). ��

Algorithm 12 computes all canonical minimal models of a primitive finitary S5-theory.
Its correctness follows from the properties of an S5-model of primitive finitary S5-
theories discussed in Lemmas 2-3 and 7-9. This algorithm runs in polynomial time in
the size of T , which, unfortunately, is exponential in the size of P .

Note that, for the theory T2 in Example 3, Algorithm 1 returns the set of pointed
structures (M, s) such that M [S] is the set of all interpretations ofP , M [i] is a complete
graph on M [S], and s ∈M [S].

Fig. 2 shows one model of T1 returned by Algorithm 1. Since C(Ki(l1∨l2) ∨
Ki¬(l1∨l2)) �∈ T1 for every complete clause over {m1,m2} that is different from
m1 ∨ m2, there is a link labeled i between every pair of worlds of the model. Since
I(T1) is empty, μModsS5(T1) contains three models, which differ from each other
only in the actual world.

2 We assume that the theory is consistent.

Finitary S5-Theories 249

Algorithm 1. Model(T)

1. Input: A primitive finitary S5-theory T
2. Output: μModsS5(T)
3. Compute I(T) = {ϕ | ϕ appears in some (1) of T}
4. Compute F (T) = {ϕ | ϕ appears in some (2) of T}
5. Σ = {u | u is an interpretation satisfying F (T)}
6. Let M [S] = Σ, M [π](u) = u, and M [i] = {(u, v) | u, v ∈ Σ}
7. for each C(Kiϕ ∨Ki¬ϕ) in T do
8. remove (u, v) ∈ M [i] such that M [π](u)(ϕ) �=M [π](v)(ϕ)
9. end for

10. return {(M, s) | s satisfies I(T)}

 s1:

 m1
 m2

 s2:

¬m1
 m2

 s1:

 m1
 m2

 s3:

 m1
¬m2

1,2

1,2 1,2

1,2

1,2

1,2

Fig. 2. A model of the theory T1 in Example 2

The application of Algorithm 1 to an arbitrary finitary S5-theory T , where T |=
H for some primitive finitary S5-theory H , can be done in two steps: (a) Compute
μModsS5(H); and (b) Eliminate models from μModsS5(H) which are not a model
of T . Step (b) is necessary, since T can contain other formulae that are not entailed by
H .3 To accomplish (a), the following tasks need to be performed: (i) Verify that T is
finitary; (ii) Compute I(T) = {ψ | ψ is an atomic formula and T |= ψ} (Line 3) and
F (T) = {ϕ | T |= C(ϕ)} (Line 4); (iii) Test for entailment (Line 7); (iv) Eliminate
pointed structures that are not models of T (Line 10). Since these tasks are generally
computational expensive, it it naturally to seek ways to improve performance. In the
next section, we discuss a possible way to deal with (iv). We will next show that when
T is pure and in disjunctive form then the computation required in (i)-(iii) can be done
in polynomial time in the size of T .

Given a pure theory T in disjunctive form, Task (ii) can be done as described in
Lines 3 and 4 and does not require any additional computation. Given a pair (i, ϕ) of
an agent i and a complete clause ϕ, we would like to efficiently determine whether
T |= C(Kiϕ), T |= C(Kiϕ ∨Ki¬ϕ), or T |= C(¬Kiϕ ∧ ¬Ki¬ϕ) hold. This task
can be accomplished via a test for coverage defined as follows. We say that ϕ is covered
by a set W of disjunctions over P if ϕ ≡

∨
ψ∈W ψ. A pair (i, ϕ) is covered by T if

3 A consequence of this elimination is that canonical models of a non-pure finitary S5-theory
may not have the same structure and/or different set of worlds.

250 T.C. Son et al.

• T contains some statement C(Kkψ) (for some k ∈ AG) such that ψ |= ϕ; or
• ϕ is covered by some consistent set of disjunctions

W ⊆ {ψ | C(Kiψ ∨Ki¬ψ) ∈ T }.
Intuitively, if (i, ϕ) is covered by T then it is common knowledge that i knows the
truth value of ϕ. The first item implies that T |= C(Kiϕ), i.e., everyone knows ϕ.
The second item states that everyone knows that i knows ϕ—because (i) ϕ is cov-
ered by a set of disjunctions that are known by i, (ii) this is common knowledge, and
(iii) the axiom |= (Kψ1∨K¬ψ1) ∧ (Kψ2 ∨ K¬ψ2) ⇒ K((ψ1∨ψ2)∨K¬(ψ1∨ψ2)).
Thus, if ϕ is a complete clause and (i, ϕ) is not covered by T then T �|= C(Kiϕ) and
T �|=C(Kiϕ∨Ki¬ϕ). It is easy to see that checking whether (i, ϕ) is covered by T can
be done in polynomial time in the size of T when T is pure and in disjunctive form.

The above discussion shows that, when T is pure and in disjunctive form, Algo-
rithm 1 can compute all models of T , if it is finitary, without significant additional cost.
For example, T0 is pure and in disjunctive form and Algorithm 1 will return the same
set of models as if T1 is used as input.

5 Discussion

The previous sections focused on the development of the notion of a finitary S5-theory
and the computation of its models. We now discuss a potential use of finitary S5-theories
as a specification language. Specifically, we consider their use in the specification of
the initial set of pointed structures for epistemic multi-agent planning. Let us consider
a simple example concerning the Muddy Children Domain: “The father sees that his
two children are muddy. The children can see each other, hear the father, and truthfully
answer questions from the father but cannot talk to each other. They also know that
none of the children knows whether he is muddy or not. How can the father inform
his children that both of them are muddy without telling them the fact?” As we have
mentioned earlier, previous works in epistemic multi-agent planning assume that the set
of initial pointed structures is given, and these are assumed to be finite or enumerable.
However, a way to specify the set of initial pointed structures is not offered. Clearly,
finitary S5-theories can fill this need. Let us discuss some considerations in the use of
finitary S5-theories as a specification language.

The definition of a finitary S5-theory, by Definitions 3-4, calls for the test of entail-
ment (or the specification) of |AG| × 2|P| formulae. Clearly, this is not desirable. To
address this issue, let us observe that Algorithm 1 makes use of formulae of the form (4)
implicitly (Line 6), by assuming that all but those complete clauses entailed by F (T)
are unknown to agent i and that is common knowledge. This means that we could re-
duce the task of specifying T by assuming that its set of statements of the form (4)
is given implicitly, i.e., by representing the information that the agents do not know
implicitly. This idea is similar to the use of the Closed World Assumption to represent
incomplete information. This can be realized as follows. For a theory T and an agent
i ∈ AG, let

C(T, i) =
{
ϕ ϕ is a complete clause,T �|= C(Kiϕ), T �|= C(Kiϕ ∨Ki¬ϕ)

}
Let neg(T) =

⋃
i∈AG{C(¬Kiϕ ∧ ¬Ki¬ϕ) | ϕ ∈ C(T, i)}. The completion of T is

comp(T) = T ∪ neg(T).

Finitary S5-Theories 251

Given an arbitrary theory T , comp(T) is a finitary S5-theory; as such, it could be
used as the specification of a finitary S5-theory. If comp(T) is used and T is pure and
in disjunctive form, then the specification (of T) only requires statements of the form
(1)-(3). As such, finitary S5-theories can be used in a manner similar to how the con-
ventional PDDL problem specification describes the initial states—for epistemic multi-
agent planning. We expect that this can help bridging the gap between the development
of epistemic multi-agent planning systems and the research in reasoning about the ef-
fects of actions in multi-agent domains mentioned earlier since several approaches to
reasoning about actions and changes in multi-agent domains (e.g., [1, 3, 6, 11]) facilitate
the implementation of a forward search planner in multi-agent domains.

We close the section with a brief discussion on other potential uses of finitary S5-
theories. Finitary S5-theories are useful in applications where knowing that a property is
true/false is insufficient, e.g., knowing that a theorem is correct is good but knowing the
proof of the theorem (its witness) is necessary; knowing that a component of a system
malfunctions is a good step in diagnosis but knowing why this is the case is better;
knowing that a plan exists does not help if the sequence of actions is missing; etc.

6 Conclusion and Future Work

In this paper, we proposed the notion of finitary S5-theories and showed that a finitary
S5-theory has finitely many finite S5-models. We proved that models of primitive fini-
tary S5-theories share the same structure and have minimal size in terms of the number
of worlds. We presented an algorithm for computing all canonical S5-models of a fini-
tary S5-theory. We also argued that the algorithm runs in polynomial time in the size
of a pure finitary S5-theory in disjunctive form. We proposed the use of completion of
finitary S5-theories, enabling the implicit representation of negative knowledge, as a
specification language in applications like epistemic multi-agent planning.

As future work, we plan to expand this research in four directions. First, we will
experiment with the development of an epistemic multi-agent planner. Second, we will
investigate possible ways to relax the conditions imposed on finitary S5-theories, while
still maintaining its finiteness property. Third, we intend to investigate the relationships
between the notion of completion of finitary S5-theory and the logic of only knowing
for multi-agent systems developed by others (e.g., [13, 9]). Finally, we would like to
identify situations in which the S5-requirements can be lifted.

Acknowledgments. The research has been partially supported by NSF grants HRD-
1345232 and DGE-0947465. The authors would like to thank Guram Bezhanishvili and
Nguyen L. A for the useful discussions and suggestions.

References

[1] Baltag, A., Moss, L.: Logics for epistemic programs. Synthese (2004)
[2] van Benthem, J.: Modal Logic for Open Minds. Center for the Study of Language and

Information (2010)

252 T.C. Son et al.

[3] van Benthem, J., van Eijck, J., Kooi, B.P.: Logics of communication and change. Inf. Com-
put. 204(11), 1620–1662 (2006)

[4] Blackburn, P., Van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier
(2007)

[5] Bolander, T., Andersen, M.: Epistemic Planning for Single and Multi-Agent Systems. Jour-
nal of Applied Non-Classical Logics 21(1) (2011)

[6] van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2007)
[7] Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press

(1995)
[8] Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics:

Theory and Application. Elsevier (2003)
[9] Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. In: Shoham, Y. (ed.) Proceedings

of the Sixth Conference on Theoretical Aspects of Rationality and Knowledge, De Zeeuwse
Stromen, The Netherlands, pp. 251–265. Morgan Kaufmann (1996)

[10] Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics of knowl-
edge and belief. Artificial Intelligence 54, 319–379 (1992)

[11] Herzig, A., Lang, J., Marquis, P.: Action Progression and Revision in Multiagent Belief
Structures. In: Sixth Workshop on Nonmonotonic Reasoning, Action, and Change, NRAC
(2005)

[12] van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In:
Proceedings of The First International Joint Conference on Autonomous Agents & Multia-
gent Systems, AAMAS 2002, Bologna, Italy, pp. 1167–1174. ACM (2002)

[13] Lakemeyer, G., Levesque, H.J.: Only-knowing meets nonmonotonic modal logic. In:
Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14. AAAI Press (2012)

[14] Löwe, B., Pacuit, E., Witzel, A.: DEL planning and some tractable cases. In: van Ditmarsch,
H., Lang, J., Ju, S. (eds.) LORI 2011. LNCS, vol. 6953, pp. 179–192. Springer, Heidelberg
(2011)

[15] Nguyen, L.A.: Constructing the least models for positive modal logic programs. Fundam.
Inform. 42(1), 29–60 (2000)

[16] Nguyen, L.A.: Constructing finite least kripke models for positive logic programs in serial
regular grammar logics. Logic Journal of the IGPL 16(2), 175–193 (2008)

Efficient Program Transformers

for Translating LCC to PDL

Pere Pardo, Enrique Sarrión-Morillo,
Fernando Soler-Toscano, and Fernando R. Velázquez-Quesada

Grupo de Lógica, Lenguaje e Información, Universidad de Sevilla, Sevilla, Spain
{ppardo1,esarrion,fsoler,frvelazquezquesada}@us.es

Abstract. This work proposes an alternative definition of the so-called
program transformers, used to obtain reduction axioms in the Logic of
Communication and Change. Our proposal uses an elegant matrix treat-
ment of Brzozowski’s equational method instead of Kleene’s translation
from finite automata to regular expressions. The two alternatives are
shown to be equivalent, with Brzozowski’s method having the advantage
of being computationally more efficient.

Keywords: Logic of communication and change, propositional dynamic
logic, action model, program transformer, reduction axiom.

1 Introduction

Dynamic Epistemic Logic [10,4] (DEL) encompasses several logical frameworks
whose main aim is the study of different single- and multi-agent epistemic atti-
tudes and the way they change due to diverse epistemic actions. These frameworks
typically have twobuilding blocks: a ‘static’ component using some semanticmodel
to represent the notion to be studied (e.g., knowledge, belief), and a ‘dynamic’ com-
ponent using model operations to represent actions that affect such notion (e.g.,
announcements, belief revision).1

Among the diverse existing DEL frameworks, the Logic of Communication
and Change (LCC) of [5] stands as one of the most interesting. This framework,
consisting of a propositional dynamic logic [12] (PDL) interpreted epistemically
(its ‘static’ component) and the action models machinery [3,2] for representing
actions (its ‘dynamic’ component), allows us to model not only diverse epistemic
actions (e.g., public, private or secret announcements) but also factual changes.

A key feature of this logic is that it characterises an action model’s execution
via reduction axioms, i.e., via valid formulas that allow us to rewrite a formula
with dynamic modalities as an equivalent one without them, thus reducing LCC
to PDL and hence providing us with a compositional analysis for a wide range of

1 This form of representing the dynamics is different from other approaches as, e.g.,
epistemic temporal logic [11,15] (ETL), in which the static model already describes
not only the relevant notion but also all the possible ways it can change due to the
chosen epistemic action(s). See [6] for a comparison between DEL and ETL.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 253–266, 2014.
c© Springer International Publishing Switzerland 2014

254 P. Pardo et al.

informational events. Among the reduction axioms, the following one is crucial,
characterising the effect of an action model over epistemic PDL programs:

[U, ei][π]ϕ ↔
n−1∧
j=0

[TU
ij(π)][U, ej]ϕ

This axiom, presented in detail in what follows, is based on the correspondence
between action models and finite automata observed in [7]; its main component,
the so-called program transformer function TU

ij , follows Kleene’s translation from
finite automata to regular expressions [13].

The present work proposes an alternative definition of a program transformer
that uses a matrix treatment of Brzozowski’s equational method for obtaining an
expression representing the language accepted by a given finite automaton [8,9].
This alternative definition has the advantage of having a lower complexity, thus
allowing more efficient implementations of any LCC-based method. The paper
starts in Section 2 by recalling the LCC framework together with its reduction ax-
ioms and the definition of program transformers. Then Section 3 introduces this
paper’s proposal, used in Section 4 to define an alternative translation from LCC
to PDL. Section 5 comments on the computational complexity of this approach,
and Section 6 presents a summary and further research points.

2 Preliminaries: Logic of Communication and Change

Throughout this paper, let Var be a set of atoms and let Ag be a finite set of
agents. In brief, LCC is an extension of (an epistemic interpretation of) PDL with
formulas [U, e]ϕ read as “after any execution of e it holds that ϕ”. Basic PDL
modalities [a] are read as knowledge/belief for each agent a ∈ Ag; sequential
composition [a; b] is nested knowledge/belief ; non-deterministic choice [a ∪ b] or
[B] is group knowledge/belief, and iteration [B∗] and [B+] is common knowledge
and resp. belief among the group of agents B ⊆ Ag.

Definition 1 (Epistemic model). An epistemic model M = (W, 〈Ra〉a∈Ag, V)
is a triple where W �= ∅ is the set of worlds, Ra ⊆ (W ×W) is an epistemic
relation for each agent a ∈ Ag and V : Var→ ℘(W) is an atomic evaluation.

Definition 2 (Action model). For a given language L built upon Var and Ag,
an L action model is a tuple U = (E, 〈Ra〉a∈Ag, pre, sub) where E = {e0, . . . , en−1}
is a finite set of actions, Ra ⊆ (E×E) is a relation for each a ∈ Ag, pre : E→ L
is a map assigning a formula pre(e) to each action e ∈ E, and sub : (E×Var)→ L
is a map assigning a formula psub(e) to each atom p ∈ Var at each action e ∈ E.

Just as relation Ra describes agent a’s uncertainty about the situation, rela-
tion Ra describes the agent’s uncertainty about the executed action: eRaf indi-
cates that if e is the action that is actually taking place, then from a’s perspective
the actual action might be f. In Definition 3, the language LLCC and an LLCC

action model (an instance of the L action model of Definition 2) are defined
simultaneously.

Efficient Program Transformers for Translating LCC to PDL 255

Definition 3 (Language LLCC). The language LLCC extends that of PDL with
a clause [U, e]ϕ where U is an LLCC action model and e an action in it:

ϕ ::=
 | p | ¬ϕ | ϕ1 ∧ ϕ2 | [π]ϕ | [U, e]ϕ π ::= a |?ϕ | π1;π2 | π1 ∪ π2 | π∗

p ¬p p ¬p

e p!ab ¬p!ab

¬p p ¬p

p �→ ⊥ p �→ p p �→ p

p p ¬p

M

U

M ⊗ U

abc abcbc abc abcbc

abc abc abcc

abc abc abcc

Fig. 1. An illustration of update execution for 3 agents Ag = {a, b, c} and an atom
Var = {p}. The actual state or action are depicted in gray; the relations Ra,Ra, . . . are
depicted as arrows; actions are depicted with preconditions below, and postconditions
p �→ psub(·) above. (top) An initial model M (drawn twice) where agents b, c know that
agent a knows whether p; in fact agent a knows that p; (mid left) an action model U
for a public switch from p to ¬p; (mid right) a private announcement by a to b about
the truth-value of p; (bottom left) an updated modelM⊗U where it becomes common
knowledge that ¬p; (bottom right) an updated model where only c is ignorant of p.

Definition 4 (Semantics of LLCC). Let M = (W, 〈Ra〉a∈Ag, V) be an epistemic

model. The function �·�M , returning those worlds in W in which an LLCC formula
holds and those pairs in W ×W in which an LLCC program holds, is given by

���M = W �a�M = Ra

�p�M = V (p) �?ϕ�M = Id�ϕ�M

�¬ϕ�M = W \ �ϕ�M �π1;π2�
M = �π1�

M ◦ �π2�
M

�ϕ1 ∧ ϕ2�
M = �ϕ1�

M ∩ �ϕ2�
M �π1 ∪ π2�

M = �π1�
M ∪ �π2�

M

�[π]ϕ�M = {w ∈W | ∀v((w, v) ∈ �π�M ⇒ v ∈ �ϕ�M)} �π∗�M = (�π�M)∗

�[U, e]ϕ�M = {w ∈ W | w ∈ �pre(e)�M ⇒ (w, e) ∈ �ϕ�M⊗U}

where ◦ and ∗ are the composition and the reflexive transitive closure operator,
respectively, and M ⊗ U is the update execution defined next.

Definition 5 (Update execution). Let M and U be an epistemic model and
an action model, respectively, both over Var and Ag. The update execution of U
on M is an epistemic model (M ⊗ U) = (WM⊗U, 〈RM⊗U

a 〉a∈Ag, V M⊗U) given by

256 P. Pardo et al.

WM⊗U = { (w, e) ∈ W × E | w ∈ �pre(e)�M }
RM⊗U

a = { 〈(w, e), (v, f)〉 ∈WM⊗U ×WM⊗U | wRav and e Raf }
V M⊗U(p) = { (w, e) ∈ WM⊗U | w ∈ �psub(e)�M }

See Figure 1 for an illustration of different updates in an epistemic model.
In [5], the authors define program transformers TU

ij that provide a mapping

between LCC programs. These mappings TU
ij(π) are used to generate reduction

axioms (see Fig. 2) for the case [U, e][π]ϕ, and a translation from LCC to PDL.
A more detailed explanation of the role of the program transformers is given in
the next section.

Definition 6 (Program transformers [5]). Let U with E = {e0, . . . , en−1} be
an action model. The program transformer TU

ij (0 ≤ i, j ≤ n − 1) on the set of
LCC programs is defined as:

T U
ij(a) =

{
?pre(ei); a if eiRaej

?⊥ otherwise
T U
ij(?ϕ) =

{
?(pre(ei) ∧ [U, ei]ϕ) if i = j

?⊥ otherwise

T U
ij(π1;π2) =

⋃n−1
k=0 (T

U
ik(π1);T

U
kj(π2)) T U

ij(π1 ∪ π2) = T U
ij(π1) ∪ T U

ij(π2)

T U
ij(π

∗) = KU
ijn(π)

where KU
ijn is inductively defined as follows:

KU
ij0(π) =

{
?� ∪ T U

ij(π) if i = j

T U
ij(π) otherwise

KU
ij(k+1)(π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(KU

kkk(π))
∗ if i = k = j

(KU
kkk(π))

∗;KU
kjk(π) if i = k �= j

KU
ikk(π); (K

U
kkk(π))

∗ if i �= k = j

KU
ijk(π) ∪ (KU

ikk(π); (K
U
kkk(π))

∗;KU
kjk(π)) if i �= k �= j

(K) [π](ϕ → ψ)→ ([π]ϕ → [π]ψ) (top) [U, e]� ↔ �
(test) [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2) (atoms) [U, e]p ↔ (pre(e)→ psub(e))

(seq.) [π1;π2]ϕ ↔ [π1][π2]ϕ (neg.) [U, e]¬ϕ ↔ (pre(e)→ ¬[U, e]ϕ)
(choice) [π1 ∪ π2]ϕ ↔ [π1]ϕ ∧ [π2]ϕ (conj.) [U, e](ϕ1 ∧ ϕ2)↔ ([U, e]ϕ1 ∧ [U, e]ϕ2)

(mix) [π∗]ϕ ↔ ϕ ∧ [π][π∗]ϕ (prog.) [U, ei][π]ϕ ↔
∧n−1

j=0 [T
U
ij(π)][U, ej]ϕ

(ind.) ϕ ∧ [π∗](ϕ→ [π]ϕ))→ [π∗]ϕ (MP) From ϕ1 and ϕ1 → ϕ2, infer ϕ2

(Necπ) From ϕ, infer [π]ϕ. (NecU) From ϕ, infer [U, e]ϕ

Fig. 2. LCC calculus in [5] is that of PDL (left + MP + propositional calculus) plus
reduction axioms for [U, e] (right)

Efficient Program Transformers for Translating LCC to PDL 257

3 A Matrix Calculus for Program Transformation

Intuitively, a reduction axiom for [U, e] characterises a situation after any update
execution with U on e in terms of a situation before the update. For example, the
axiom (atoms) states that an atom p will be the case after any update execution
with U on e, i.e. [U, e]p, if and only if, before the update, the formula psub(e)

holds whenever pre(e) holds, pre(e) → psub(e). In the case of (prog.), the axiom
states that after any update execution with U on ei every π-path will end in a
ϕ-world, i.e. [U, ei][π]ϕ, if and only if, before the update, every TU

ij(π)-path ends
in a world that will satisfy ϕ after any update execution with U on ej where ej is

any action on U,
∧n−1

j=0 [T
U
ij(π)][U, ej]ϕ. Thus, the program transformer TU

ij takes
an LCC program π representing a path on M ⊗ U and returns an LCC program
TU
ij(π) representing a ‘matching’ path on M , taking additional care that such

path can be also reproduced in the action model U.
This paper proposes an alternative definition of program transformer that

focuses mainly on the case for the Kleene closure operator. For every program π
we define a matrix μU(π) whose cells are LCC programs. In this matrix, μU(π)[i, j]
(the cell in the ith row and jth column) corresponds to the transformation (i.e.
the path in M) of π from ei to ej (i.e. the path in M ⊗ U). The matrix μU(π)
can be interpreted as the adjacency matrix of a labelled directed graph whose
nodes are the actions in E and each edge from ei to ej is labelled with the
transformation of π from ei to ej .

Example 1. The following graph will be used to illustrate the creation of the
matrix μU(π∗) given μU(π). This is where our program transformers are sub-
stantially different from those in [5].

e0 e1 e2

S01

S10

S21

S11 S22

Suppose that the above graph represents the matrix μU(π), with labels Sij rep-
resenting the transformations of π from ei to ej (when there is no arrow between
two -equal or different- nodes, it is assumed that the corresponding program is
?⊥). In order to find the labels X ij for the transformations of π∗, and thus the
matrix μU(π∗), we follow an equational method first proposed by Brzozowski [8].
Observe, for example, how a π∗-path from e1 to e0 might start with S10 (an in-
stance of π from e1 to e0) and then continue with X00 (an instance of π∗ from e0
to e0), but it might also start with S11 (an instance of π from e1 to e1) and then
continue with X10 (an instance of π∗ from e1 to e0). In this case, these are the
only two possibilities, and they can be represented by the following equation:

X10 = (S10;X00) ∪ (S11;X10) (1)

The equations for X00 and X20 can be obtained in a similar way:

X00 = ?pre(e0) ∪ (S01;X10) (2)

X20 = (S22;X20) ∪ (S21;X10) (3)

258 P. Pardo et al.

This yields an equation system of LCC programs with X00, X10 and X20 as its
only variables. Observe how, in (2), ?pre(e0) indicates that a possible π∗-path
from e0 to e0 is to do nothing, but the transformation should check whether e0
is executable at the target state; hence the test ?pre(e0).

To solve the above system we proceed by substitution using properties of
Kleene algebra [14]. First, we can use (2) to replace X00 in (1):

X10 = (S10; (?pre(e0) ∪ (S01;X10))) ∪ (S11;X10)
= (S10; ?pre(e0)) ∪ (S10;S01;X10) ∪ (S11;X10)
= (S10; ?pre(e0)) ∪ (((S10;S01) ∪ S11);X10)
= ((S10;S01) ∪ S11)∗;S10; ?pre(e0)

(4)

The last equality in (4) uses Arden’s Theorem [1]: X = AX ∪ B ⇒ X = A∗B.
After solving these equations, each X00, X10 and X20 represents a transformed
π∗-label from e0, e1 and e2 to e0, respectively; similar processes produce labels
for π∗-paths to e1 and e2. The procedure is always the same, with a matrix
calculus similar to that in Chapter 3 of [9] allowing us to calculate all X ij in
parallel and thus avoiding repeating the process for each destination node.

Formally, given an action model U = (E,R, pre, sub) with |E| = n, we define a
function μU : Π → Mn×n where Π is the set of LCC programs and Mn×n the
class of n-square matrices. For each LCC program π, μU(π) is a n-square matrix
in which μU(π)[i, j] is a transformation of π from ei to ej in the sense of the
program transformers TU

ij(π) of [5] (with 0 ≤ i, j ≤ n− 1).

Definition 7. The recursive definition of μU(π) is as follows.

– Agents:

μU(a)[i, j] =

{
?pre(ei); a if eiRaej

?⊥ otherwise
(5)

– Test:

μU(?ϕ)[i, j] =

{
?(pre(ei) ∧ [U, ei]ϕ) if i = j

?⊥ otherwise
(6)

– Non-deterministic choice:

μU(π1 ∪ π2)[i, j] = ⊕{
μU(π1)[i, j], μU(π2)[i, j]

}
(7)

where2 ⊕Γ =

{⋃
(Γ \ {?⊥}) if ∅ �= Γ �= {?⊥}

?⊥ otherwise
(8)

– Sequential composition:

μU(π1;π2)[i, j] = ⊕{
μU(π1)[i, k]/ μU(π2)[k, j] | 0 ≤ k ≤ n− 1

}
(9)

2 Note that
⋃

Γ is a generalised non-deterministic choice of the elements in Γ .

Efficient Program Transformers for Translating LCC to PDL 259

where σ / ρ =

{
σ; ρ if σ �= ?⊥ �= ρ

?⊥ otherwise
(10)

– Kleene closure:
μU(π∗) = SU

0

(
μU(π) | AU

)
(11)

where
(
μU(π) | AU

)
is an n× 2n matrix obtained by augmenting μU(π) with

AU, an n× n matrix defined as

AU[i, j] =

{
?pre(ei) if i = j

?⊥ otherwise
(12)

Function SU
k (M | A), for 0 ≤ k < n, works over (M | A) to get a matrix

(M ′ | A′) and then calls SU
k+1(M

′ | A′). When k ≥ n, SU
k (M | A) returns

the right part of the augmented matrix (M | A), that is, A. Formally,

SU
k (M | A) =

{
A if k ≥ n

SU
k+1(Subsk(Ardk(M | A))) otherwise

(13)

with Ardk and Subsk functions from Mn×2n to Mn×2n that apply Arden’s
Theorem to row k, and a substitution to rows different than k, respectively,
that is,

Ardk(N)[i, j] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N [i, j] if i �= k

?⊥ if i = k = j

N [i, j] if i = k �= j and N [k, k] = ?⊥
N [k, k]∗ /N [i, j] otherwise

(14)

Subsk(N)[i, j] =

⎧⎪⎪⎨⎪⎪⎩
N [i, j] if i = k

?⊥ if i �= k = j

⊕{N [i, k]/N [k, j], N [i, j]} otherwise

(15)

The following propositions prove the semantic equivalence of ⊕Γ (8) and
σ / ρ (10) with standard PDL operators. Nevertheless, their syntactic definitions
remove many useless ?⊥ that appear during the transformation process, thus
reducing the length of the transformed programs.

Proposition 1. Given a set Γ of LCC programs, �⊕Γ �
M

= �
⋃

Γ �
M

for all
epistemic models M .

Proof. Take any epistemic model M . Equation (8) states that ⊕Γ is a non-
deterministic choice of the LCC programs in Γ that returns

⋃
Γ \ {?⊥} when Γ

is different from both ∅ and {?⊥}, and ?⊥ otherwise. In the first case, �⊕Γ �M =

�
⋃

Γ �
M

because �
⋃

Γ �
M

= �
⋃

Γ \ {?⊥}�M ; in the second, �⊕Γ �
M

= �
⋃

Γ �
M

because �
⋃
∅�

M
= �

⋃
{?⊥}�M = �?⊥�

M
= ∅.

260 P. Pardo et al.

Proposition 2. If σ and ρ are two LCC programs, then �σ; ρ�M = �σ/ ρ�M for
all epistemic models M .

Proof. Take any epistemic model M . Equation (10) states that σ/ρ differs from

σ; ρ only when either σ or else ρ is ?⊥. But �σ; ?⊥�
M

= �?⊥;σ�
M

= �?⊥; ?⊥�
M

=

�?⊥�M = ∅; hence, �σ; ρ�M = �σ / ρ�M .

Lemma 1. Let U = (E,R, pre, sub) be an action model with ei, ej ∈ E; let π be
an LCC program. For any epistemic model M ,

�TU
ij(π)�

M
= �μU(π)[i, j]�

M

Proof. By induction on the complexity of π. Let M be an epistemic model; then

(Base Cases: a and ?ϕ) Trivial: the definitions are identical for a and ?ϕ.

(Ind. Case π1 ∪ π2) Suppose (Ind. Hyp.) the claim holds for π1 and π2. Then

�TU
ij(π1 ∪ π2)�

M = �TU
ij(π1) ∪ TU

ij(π2)�
M (Def. 6)

= �TU
ij(π1)�

M ∪ �TU
ij(π2)�

M
(Def. of � · �M)

= �μU(π1)[i, j]�
M ∪ �μU(π2)[i, j]�

M (Ind. Hyp.)

= {μU(π1)[i, j] ∪ μU(π2)[i, j]}M (Def. of � · �M)

= �⊕{μU(π1)[i, j], μ
U(π2)[i, j]}�M (Prop. 1)

= �μU(π1 ∪ π2)[i, j]�
M

(Def. of μU(π1 ∪ π2) in (7))

(Ind. Case π1;π2) Suppose (Ind. Hyp.) the claim holds for π1 and π2. Then

�TU
ij(π1;π2)�

M = �
⋃n−1

k=0 (T
U
ik(π1);T

U
kj(π2))�

M (by Def. 6)

=
⋃n−1

k=0

(
�TU

ik(π1)�
M ◦ �TU

kj(π2)�
M
)

(by Def. of � · �M)

=
⋃n−1

k=0

(
�μU(π1)[i, k]�

M ◦ �μU(π2)[k, j]�
M
)

(Ind. Hyp.)

= �
⋃n−1

k=0

(
μU(π1)[i, k];μ

U(π2)[k, j]
)
�
M

(by Def. of � · �M)

= �
⋃n−1

k=0

(
μU(π1)[i, k]/ μU(π2)[k, j]

)
�
M

(Prop. 2)

= �⊕{μU(π1)[i, k]/ μU(π2)[k, j] | 0 ≤ k ≤ n− 1}�M (Prop. 1)

= �μU(π1;π2)[i, j]�
M

(by Def. of μU(π1;π2) in (9))

(Ind. Case π∗) Suppose (Ind. Hyp.) the claim holds for π and observe how

�π∗�
M

= �?⊥ ∪ (π;π∗)�
M

(which can be proved by PDL axioms). Now,

�TU
ij(π

∗)�
M

= �TU
ij(?
 ∪ π;π∗)�

M

= �TU
ij(?
)�

M ∪ �
⋃n−1

k=0 (T
U
ik(π);T

U
kj(π

∗))�M (by Def. 6)

Efficient Program Transformers for Translating LCC to PDL 261

= �TU
ij(?
)�

M∪
⋃n−1

k=0

(
�TU

ik(π)�
M ◦ �TU

kj(π
∗)�

M
)

(by Def. of � · �M)

= �TU
ij(?
)�

M ∪
⋃n−1

k=0

(
�μU(π)[i, k]�

M ◦ �TU
kj(π

∗)�
M
)

(Ind. Hyp.)

The last equality produces n2 relational equations. By abbreviating �TU
ij(π

∗)�
M

as X ij for every 0 ≤ i, j ≤ n− 1, we get

X ij = �TU
ij(?
)�

M ∪
n−1⋃
k=0

(
�μU(π)[i, k]�

M ◦ Xkj
)

(16)

Thus, it is enough to prove that �μU(π∗)[i, j]�
M

is a solution for X ij . This is
shown in the following three propositions about the functions building μU(π∗).

Proposition 3. Take Ω = (μU(π) | AU) (see (7)). Then,

X ij = �Ω[i, j + n]�
M ∪

n−1⋃
k=0

(
�Ω[i, k]�

M ◦ Xkj
)

(17)

Proof. It will be shown that the right-hand side (r.h.s.) of (16) and (17) coincide.
Their respective rightmost parts are equivalent since, for 0 ≤ k ≤ n−1, Ω[i, k] =
μU(π)[i, k] (recall that Ω is built by adding additional columns at the right of
the n first columns of μU(π), and the matrix’s indexes start from 0). For the
leftmost parts,

�TU
ij(?
)�

M =

{
�?(pre(ei) ∧ [U, ei]
)�M if i = j

�?⊥�M otherwise
(by Def. 6)

=

{
�?pre(ei)�

M
if i = j

�?⊥�
M

otherwise
(as [U, ei]
 is trivially true)

= �AU[i, j]�
M

= �Ω[i, j + n]�
M

(by (12) and Def. of Ω)

Proposition 4. For 0 ≤ k ≤ n− 1, if N is a matrix of size n× 2n with all cells
in columns 0, . . . , k − 1 equal to ?⊥, then Subsk(Ardk(N)) contains all cells in
columns 0, . . . , k equal to ?⊥.

Proof. Start with Ardk(N). Observe in (14) that the only modified cells are in
the kth row. Cell Ardk(N)[k, k] in the kth column is converted into ?⊥. With
respect to cells in columns from 0 to k− 1, if they were ?⊥, they continue being
?⊥: those cells N [i, j] do not change, if N [k, k] =?⊥, or otherwise are converted
by (14) intoN [k, k]∗/N [i, j] and, by (10), ifN [i, j] =?⊥, thenN [k, k]∗/N [i, j] =
?⊥.

Now, call N ′ the output of Ardk(N) and observe Subsk(N
′)’s definition (15):

the only cells that change are in rows different to k. With respect to any such
row i, the position in the kth column is made ?⊥. For cells in previous columns,
j < k, the last case in the definition returns⊕{N ′[i, k]/N ′[k, j], N ′[i, j]}. But as

262 P. Pardo et al.

N ′ is the result of Ardk(N), N ′[k, j] is ?⊥ (because, as argued above, Ardk(N)
works over the kth row and keeps the ?⊥ in columns before k). Also, N ′[i, j] =?⊥,
as columns j < k are filled with ?⊥. So ⊕{N ′[i, k]/ N ′[k, j], N ′[i, j]} becomes
⊕{N ′[i, k]/?⊥, ?⊥} and, by (8) and (10), it is ?⊥.
Proposition 5. Given an n×2n matrix N of LCC programs, the equations built
using (17), with Ω = Subsk(Ardk(N)), 0 ≤ k ≤ n − 1, are correct transforma-
tions of the equations built in the same way with Ω = N .

Proof. As argued in the proof of Proposition 4, Ardk(N) works only on the kth

row. If N [k, k] =?⊥, nothing is done, so according to (17) the equations for Xkj

(0 ≤ j ≤ n − 1) do not change. Otherwise, the kth row of N changes: all cells
N [k, j] with j �= k become N [k, k]∗/N [k, j], except N [k, k] which becomes ?⊥.
Then, for every 0 ≤ j ≤ n − 1, the equation for Xkj becomes (using index t

instead of k and removing �?⊥�
M ◦ Xkj from the union):

Xkj = �N [k, k]∗ /N [k, j + n]�M ∪
⋃

0≤t≤n−1
t�=k

(
�N [k, k]∗ /N [k, t]�M ◦ Xtj

)
By Proposition 2 and � · �M ’s definition, this can be rewritten as

Xkj = (�N [k, k]�
M
)∗ ◦ �N [k, j + n]�

M∪⋃
0≤t≤n−1

t�=k

(
(�N [k, k]�

M
)∗ ◦ �N [k, t]�

M ◦ Xtj
) (18)

which is an application of Arden’s Theorem [1] to the corresponding equation
for the original row in N :

Xkj = �N [k, j + n]�
M ∪

⋃
0≤t≤n−1

(
�N [k, t]�

M ◦ Xtj
)

(19)

Arden’s Theorem (which works on regular algebras, such as LCC programs) gives

X = A∗◦B as a solution for X = (A◦X)∪B. In (19), X is Xkj , A is �N [k, k]�
M
,

and B is the union of all terms in the r.h.s. of (19) except �N [k, k]�
M ◦ Xkj .

Besides Arden’s Theorem, from (19) to (18) we use ◦’s distribution over ∪.
Now denote by N ′ the output of Ardk(N). We move to Subsk(N

′) to show
that the equations obtained from it with (17) are correct transformations of
the equations built from N ′. The only modified cells in Subsk(N

′) are in rows
different to k, so it only affects equations for X ij with i �= k. According to (17),
if Ω = N ′, these equations are (using t instead of k):

X ij = �N ′[i, j + n]�
M ∪

n−1⋃
t=0

(
�N ′[i, t]�

M ◦ Xtj
)

(20)

The same equation for Ω = Subsk(N
′) becomes the following (we remove from

the union the term �?⊥�
M ◦ Xkj , as it is equivalent to ∅):

X ij = �⊕{N ′[i, k]/N ′[k, j + n], N ′[i, j + n]}�M∪⋃
0≤t≤n−1

t�=k

(
�⊕{N ′[i, k]/N ′[k, t], N ′[i, t]}�M ◦ Xtj

)
(21)

Efficient Program Transformers for Translating LCC to PDL 263

By using Propositions 1 and 2 and the properties of � ·�M , equation (21) becomes

X ij = (�N ′[i, k]�M ◦ �N ′[k, j + n]�M) ∪ �N ′[i, j + n]�M∪⋃
0≤t≤n−1

t�=k

(
((�N ′[i, k]�

M ◦ �N ′[k, t]�
M
) ∪ �N ′[i, t]�

M
) ◦ Xtj

)
(22)

But note that in the equation for Xkj , which is the same at N ′ and Subsk(N
′),

the kth row of N ′ is not changed by Subsk(N
′):

Xkj = �N ′[k, j + n]�
M ∪

⋃
0≤t≤n−1

t�=k

(
�N ′[k, t]�

M ◦ Xtj
)

(23)

We have eliminated the term �N ′[k, k]�
M ◦ Xkj in (23) because N ′ = Ardk(N)

and by (14), N ′[k, k] =?⊥, which produces �N ′[k, k]�M ◦ Xkj = ∅.
Observe that (22) can be obtained from (20) by replacing Xkj by the r.h.s.

of (23) and applying the distribution of ◦ over ∪. So the modified equation (21)
is equivalent to correct transformations of the original one (20).

The proof of the case π∗ in Lemma 1 can be finished now. Take the set of
relational equations given by (16). By (11), μU(π∗) operates by iterating calls to
SU
k (with k from 0 to n) with Ω = (μU(π) | AU) as the initial argument. Let M−1

be Ω and Mk the output of SU
k (Mk−1). By Proposition 3, (17) gives equations

equivalent to (16). By Proposition 5, the equations are correct for each successive
Mk (0 ≤ k ≤ n − 1). As the calls to SU

k are done iteratively with k from 0 to
n− 1, Proposition 4 guarantees that, in Mn−1, all cells in columns for 0 to n− 1
are equal to ?⊥. Thus, equations (17) for Mn−1 are:

X ij = �Mn−1[i, j + n]�
M

(24)

The rightmost union in (17) has disappeared (M [i, k] =?⊥ for 0 ≤ k ≤ n − 1,

and �?⊥�
M

= ∅). Now, by SU
k ’s definition in (13), Mn−1[i, j + n] = Mn[i, j] =

μU(π∗)[i, j], so X ij = �μU(π∗)[i, j]�
M
. Then, since X ij represents �TU

ij(π
∗)�

M
,

�TU
ij(π

∗)�
M

= �μU(π∗)[i, j]�
M

which completes the proof.

4 A New Translation and Axiom System for LCC

We can now define new translation functions t′, r′ as follows. Note that t′ and
r′ are defined as the translation functions t, r for formulas ϕ and programs π
proposed in [5],3 with the only exception of formulas of the form [U, ei][π]ϕ.

3 Two minor mistakes for the cases [π]ϕ and [U, e]p are corrected here w.r.t. [5]; namely,
these should respectively be t([U, e]p) = t(pre(e)) → t(psub(e)) and t([U, ei][π]ϕ) =∧n−1

j=0 [r(T
U
ij(π))]t([U, ej]ϕ).

264 P. Pardo et al.

t′(�) = � r′(a) = a

t′(p) = p r′(B) = B

t′(¬ϕ) = ¬t′(ϕ) r′(?ϕ) =?t′(ϕ)

t′(ϕ1 ∧ ϕ2) = t′(ϕ1) ∧ t′(ϕ2) r′(π1;π2) = r′(π1); r
′(π2)

t′([π]ϕ) = [r′(π)]t′(ϕ) r′(π1 ∪ π2) = r′(π1) ∪ r′(π2)

t′([U, e]�) = � r′(π∗) = (r′(π))∗

t′([U, e]p) = t′(pre(e))→ t′(psub(e))

t′([U, e]¬ϕ) = t′(pre(e))→ ¬t′([U, e]ϕ)
t′([U, e](ϕ1 ∧ ϕ2)) = t′([U, e]ϕ) ∧ t′([U, e]ϕ2)

t′([U, ei][π]ϕ) =
∧

0≤j≤n−1

μU(π)[i,j] �=?⊥
[r′(μU(π)[i, j])]t′([U, ej]ϕ)

t′([U, e][U′, e′]ϕ) = t′([U, e]t′([U′, e′]ϕ))

Corollary 1. The translation functions t′, r′ reduce the language of LCC to that
of PDL. This translation is correct.

Proof. The effective reduction from LCC to PDL is immediate by inspection. Its
correctness follows from that in [5], with Lemma 1 for the case [U, ei][π]ϕ.

Definition 8. We define a new axiom system for LCC by replacing the reduction
axiom for PDL programs with the following

[U, ei][π]ϕ ↔
∧

0≤j≤n−1

μU(π)[i,j] �=?⊥

[μU(π)[i, j]][U, ej]ϕ (programs)

Corollary 2. The axiom system for LCC from Def. 8 is sound and complete.

Proof. The only new axiom, that for PDL-programs, is sound by Lemma 1. For
completeness, the proof system for PDL is complete, and every LCC formula is
provably equivalent to a PDL formula using Corollary 1.

5 Complexity of the New Transformers

The original program transformers in [5] require exponential time due to the use
of Kleene’s method [13]. Moreover, the size of the transformed formulas of type
π∗ is also exponential because of the definition of KU

ijn (Def. 6). We analyse now

the complexity of computing μU(π) for the different kinds of programs π. We
assume typical data structures such as arrays (of dimensions 1 and 2) and hash
tables with their usual properties.

Agents. According to (5), computing μU(a)[i, j] requires to check whether eiRaej
and, in the affirmative case, to obtain ?pre(ei). The other operations can be
clearly done in constant time: returning ?pre(ei); a or ?⊥. First, eiRaej can be
checked in constant time if there is a bi-dimensional arrayMa with Ma[i, j] equal
to 1 iff eiRaej and 0 otherwise. Also, ?pre(ei) can be returned in constant time
if there is an array P with P [i] = pre(ei). So μU(a)[i, j] is computed in O(1).
Then, the whole matrix μU(a) can be computed in O(n2).

Efficient Program Transformers for Translating LCC to PDL 265

Test. Computing μU(?ϕ)[i, j] (see (6)) requires again to access pre(ei), which we
argued to be in O(1). The other operations (checking whether i = j, or returning
the corresponding value) are also clearly in O(1). So computing μU(?ϕ)[i, j] is
again in O(1) and μU(?ϕ) in O(n2).

Non-deterministic choice. Assume that μU(π1) and μU(π2) are given. Then, com-
puting μU(π1∪π2)[i, j] (see (7)) requires a constant number of operations: access
μU(π1)[i, j] and μU(π2)[i, j], check whether some of them is ?⊥ and return the
output. So computing the whole μU(π1 ∪ π2) is again in O(n2).

Sequential composition. Again, assume that μU(π1) and μU(π2) are given. Com-
puting μU(π1;π2)[i, j] (see (9)) requires to get n values μU(π1)[i, k]/μU(π2)[k, j].
Each of these values can be computed in O(1), as the required operations are
just to access both μU(π1)[i, k] and μU(π2)[k, j] and apply /. So the n values
of μU(π1)[i, k]/ μU(π2)[k, j] are computed in O(n). Also, ⊕ must be applied to
those values. It can be done by using a hash table where the different values
are stored while they are being generated: new values are only inserted if they
were not previously in. Assuming that the hash table is accessed in O(1), then
μU(π1;π2)[i, j] is computed in O(n). So μU(π1;π2) is computed in O(n3).

Kleene Closure. Again, we assume that μU(π) is given. Then, computing μU(π∗)
requires first to build (μU(π) | AU) and then n iterations of SU

k (see (11)). Note
that the size of (μU(π) | AU) is n× 2n and to build each cell requires a constant
number of operations. So building the initial matrix is in O(n2). Now, each one
of the n calls to SU

k is in O(n2): observe that Ardk (see (14)) only changes the
cells in row k and Subsk the cells in the other rows, and each cell can be modified
in constant time. So the n calls to SU

k are computed in O(n3).

In previous paragraphs we have supposed that the matrices for subprograms
were given. With that assumption, the greatest complexity to build μU(π) is
in O(n3). So, without the assumption, if g is the number of subprograms in π,
building μU(π) from scratch is in O(g · n3).

6 Summary and Future Work

In this work, we presented an alternative definition of the program transformers
used to obtain reduction axioms in LCC. The proposal uses a matrix treatment
of Brzozowski’s equational method in order to obtain a regular expression repre-
senting the language accepted by a finite automaton. While Brzozowski’s method
and that used in the original LCC paper [5] are equivalent, the first is computa-
tionally more efficient; moreover, the matrix treatment presented here is more
synthetic, simple and elegant, thus allowing a simpler implementation.

Towards future work, some definitions used by program transformers (partic-
ularly the / operation) can be modified to obtain even simpler expressions. For
example, σ / ρ might be defined as σ if σ �= ?
 = ρ and as ρ if σ = ?
. More-
over, the algorithm implementing Ardk and Subsk functions can be improved by
disregarding the N [i, j] elements with j < k or j > n+ k (being N [i, j] a n× 2n
matrix), since those are necessarily equal to ?⊥. These changes would provide a
more efficient translation, although the order of complexity would not be lower.

266 P. Pardo et al.

Acknowledgements. Weacknowledge support from the projectFFI2011-15945-
E (Ministerio deEconomı́a yCompetitividad, Spain).Wewould also like to express
our gratitude to the anonymous referees, and to Barteld Kooi for a helpful discus-
sion on the translation function.

References

1. Arden, D.N.: Delayed-logic and finite-state machines. In: SWCT (FOCS), pp. 133–
151. IEEE Computer Society (1961)

2. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004)

3. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements and common
knowledge and private suspicions. In: Gilboa, I. (ed.) TARK, pp. 43–56. Morgan
Kaufmann, San Francisco (1998)

4. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press (2011)

5. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.
Information and Computation 204(11), 1620–1662 (2006)

6. van Benthem, J., Gerbrandy, J., Hoshi, T., Pacuit, E.: Merging frameworks for
interaction. Journal of Philosophical Logic 38(5), 491–526 (2009)

7. van Benthem, J., Kooi, B.: Reduction axioms for epistemic actions. In: Schmidt,
R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic
(Number UMCS-04-09-01 in Technical Report Series), pp. 197–211. Department
of Computer Science, University of Manchester (2004)

8. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481–494 (1964)

9. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
10. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese

Library Series, vol. 337. Springer (2007)
11. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The

MIT Press, Cambridge (1995)
12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
13. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,

C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press,
Princeton (1956)

14. Kozen, D.: On kleene algebras and closed semirings. In: Rovan, B. (ed.) MFCS
1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990)

15. Parikh, R., Ramanujam, R.: A knowledge based semantics of messages. Journal of
Logic, Language and Information 12(4), 453–467 (2003)

On the Expressiveness of the Interval Logic of Allen’s
Relations Over Finite and Discrete Linear Orders

Luca Aceto1,2, Dario Della Monica1, Anna Ingólfsdóttir1,
Angelo Montanari3, and Guido Sciavicco4

1 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
{luca,dariodm,annai}@ru.is

2 Gran Sasso Science Institute, INFN, L’Aquila, Italy
3 Dept. of Mathematics and Computer Science, University of Udine, Italy

angelo.montanari@uniud.it
4 Dept. of Information Engineering and Communications, University of Murcia, Spain

guido@um.es

Abstract. Interval temporal logics take time intervals, instead of time instants, as
their primitive temporal entities. One of the most studied interval temporal logics
is Halpern and Shoham’s modal logic of time intervals HS, which associates a
modal operator with each binary relation between intervals over a linear order (the
so-called Allen’s interval relations). A complete classification of all HS fragments
with respect to their relative expressive power has been recently given for the
classes of all linear orders and of all dense linear orders. The cases of discrete
and finite linear orders turn out to be much more involved. In this paper, we make
a significant step towards solving the classification problem over those classes of
linear orders. First, we illustrate various non-trivial temporal properties that can
be expressed by HS fragments when interpreted over finite and discrete linear
orders; then, we provide a complete set of definabilities for the HS modalities
corresponding to the Allen’s relations meets, later, begins, finishes, and during,
as well as the ones corresponding to their inverse relations. The only missing
cases are those of the relations overlaps and overlapped by.

1 Introduction

Interval reasoning naturally arises in various fields of computer science and artificial
intelligence, ranging from hardware and real-time system verification to natural lan-
guage processing, from constraint satisfaction to planning [4,5,16,24,25,27]. Interval
temporal logics make it possible to reason about interval structures over linearly ordered
domains, where time intervals, rather than time instants, are the primitive ontological
entities. The distinctive features of interval temporal logics turn out to be useful in var-
ious application domains [8,13,23,24,27]. For instance, they allow one to model telic
statements, that is, statements that express goals or accomplishments, e.g., the state-
ment: ‘The airplane flew from Venice to Toronto’ [23]. Moreover, when we restrict
ourselves to discrete linear orders, such as, for instance, N or Z, some interval temporal
logics are expressive enough to constrain the length of intervals, thus allowing one to
specify safety properties involving quantitative conditions [23]. This is the case, for in-
stance, with the well-known ‘gas-burner’ example [27]. Temporal logics with interval-

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 267–281, 2014.
c© Springer International Publishing Switzerland 2014

268 L. Aceto et al.

based semantics have also been proposed as suitable formalisms for the specification
and verification of hardware [24] and of real-time systems [27].

The variety of binary relations between intervals in a linear order was first studied
by Allen [4], who investigated their use in systems for time management and planning.
In [18], Halpern and Shoham introduced and systematically analyzed the (full) logic of
Allen’s relations, called HS in this paper, that features one modality for each Allen rela-
tion. In particular, they showed that HS is highly undecidable over most classes of linear
orders. This result motivated the search for (syntactic) HS fragments offering a good
balance between expressiveness and decidability/complexity [6,7,11,12,14,20,22,23].
A comparative analysis of the expressive power of HS fragments is far from being triv-
ial, because some HS modalities are definable in terms of others, and thus syntactically
different fragments may turn out to be equally expressive. Moreover, the definability of
a specific modality in terms of other ones depends, in general, on the class of linear or-
ders over which the logic is interpreted, and the classification of the relative expressive
power of HS fragments with respect to a given class of linear orders cannot be directly
transferred to another class. More precisely, while definabilities do transfer from a class
C to all its proper sub-classes, there might be new definability relations that hold in
some sub-class of C, but not in C itself. Conversely, undefinabilities do transfer from a
class to all its proper super-classes, but not vice versa. Proving a specific undefinability
result amounts to providing a counterexample based on concrete linear orders from the
considered class. As a matter of fact, different assumptions on the underlying linear
orders give rise, in general, to different sets of definabilities [2,15].

Contribution. Many classes of linear orders are of practical interest, including the class
of all (resp., dense, discrete, finite) linear orders, as well as the particular linear order
on R (resp., Q, Z, and N). A precise characterization of the expressive power of all HS
fragments with respect to the class of all linear orders and that of all dense linear orders
has been given in [15] and [2], respectively. The classification of HS fragments over
the classes of discrete and finite linear orders presents a number of convoluted techni-
cal difficulties. In [14], which is an extended version of both [9] and [10], the authors
focus on strongly discrete linear orders, by characterizing and classifying all decidable
fragments of HS with respect to both complexity of the satisfiability problem and rel-
ative expressive power. In this paper, we make a significant step towards a complete
classification of the expressiveness of all (decidable and undecidable) fragments of HS
over finite and discrete linear orders, and in doing so we considerably extend the ex-
pressiveness results presented in [14]; in this respect, it is worth observing that, when
considering all the HS fragments (thus not only the decidable ones) the undefinabil-
ity results for the HS modalities presented in [14] must be generalized and extended.
This generalization presents a number of technical difficulties, which are targeted here.
Given the present contribution, the only missing piece of the expressiveness puzzle is
that of the definabilities for the modality corresponding to the Allen relation overlaps
(those for the inverse relation overlapped by would immediately follow by symmetry).

Structure of the Paper. In the next section, we introduce the logic HS. Then, in Sec-
tion 3, we introduce the notion of definability of a modality in an HS fragment, and we
present the main tool we use to prove our results. In order to provide the reader with

On the Expressiveness of HS over Finite and Discrete Orders 269

HS modalities

〈A〉
〈L〉
〈B〉
〈E〉
〈D〉
〈O〉

Allen’s relations

[x, y]RA[x
′, y′]⇔ y = x′

[x, y]RL[x
′, y′]⇔ y < x′

[x, y]RB [x
′, y′]⇔ x = x′, y′ < y

[x, y]RE [x
′, y′]⇔ y = y′, x < x′

[x, y]RD[x
′, y′]⇔ x < x′, y′ < y

[x, y]RO[x
′, y′]⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities

an idea of the expressive power of HS modalities, we also illustrate some meaningful
temporal properties, like counting and boundedness properties, which can be expressed
in HS fragments when interpreted over discrete linear orders. Then, as a warm-up, in
Section 4 we present a first, simple expressiveness result, by providing the complete
set of definabilities for the HS modalities 〈A〉, 〈L〉, 〈A〉, and 〈L〉, corresponding to
Allen’s relations meets and later, and their inverses met by and before, respectively.
Section 5 contains our main technical result, that is, a complete set of definabilities for
the HS modalities 〈D〉, 〈E〉, 〈B〉, 〈D〉, 〈E〉, and 〈B〉, corresponding to Allen’s relations
during, finishes, and begins, and their inverses contains, finished by, and begun by, re-
spectively. The proofs of the results in this section are rather difficult and much more
technically involved than the ones in Section 4. Therefore, we limit ourselves to giving
an overview of the proofs, and we refer the interested reader to [3] for the details.

2 Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair [a, b],
where a, b ∈ D and a ≤ b. An interval is called a point interval if a = b and a strict
interval if a < b. In this paper, we assume the strict semantics, that is, we exclude point
intervals and only consider strict intervals. The adoption of the strict semantics, exclud-
ing point intervals, instead of the non-strict semantics, which includes them, conforms
to the definition of interval adopted by Allen in [4]. If we exclude the identity relation,
there are 12 different relations between two strict intervals in a linear order, often called
Allen’s relations [4]: the six relations RA (adjacent to), RL (later than), RB (begins),
RE (ends), RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that
is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations play-
ing the role of the accessibility relations. Thus, we associate a modality 〈X〉 with
each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose of modal-
ity 〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of RX . Halpern
and Shoham’s logic HS [18] is a multi-modal logic with formulae built from a fi-
nite, non-empty set AP of atomic propositions (also referred to as proposition letters),

270 L. Aceto et al.

the propositional connectives∨ and ¬, and a modality for each Allen relation. With ev-
ery subset {RX1 , . . . , RXk

} of these relations, we associate the fragment X1X2 . . .Xk

of HS, whose formulae are defined by the grammar: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ |
. . . | 〈Xk〉ϕ, where p ∈ AP . The other propositional connectives and constants (e.g.,∧,
→, and
), as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the
standard way. We define the modal depth of a formula as the largest nesting of modal
operators in it. For a fragmentF = X1X2 . . .Xk and a modality 〈X〉, we write 〈X〉 ∈ F
if X ∈ {X1, . . . , Xk}. Given two fragmentsF1 andF2, we writeF1 ⊆ F2 if 〈X〉 ∈ F1

implies 〈X〉 ∈ F2, for every modality 〈X〉. Finally, for a fragment F = X1X2 . . .Xk

and a formula ϕ, we write ϕ ∈ F or, equivalently, we say that ϕ is an F -formula,
meaning that ϕ belongs to the language of F .

The (strict) semantics of HS is given in terms of interval models M = 〈I(D), V 〉,
where D is a linear order, I(D) is the set of all (strict) intervals over D, and V is a
valuation function V : AP �→ 2I(D), which assigns to each atomic proposition p ∈ AP
the set of intervals V (p) on which p holds. The truth of a formula on a given interval
[x, y] in an interval model M is defined by structural induction on formulae as follows:

– M, [x, y] � p if and only if [x, y] ∈ V (p), for each p ∈ AP;
– M, [x, y] � ¬ψ if and only if it is not the case that M, [x, y] � ψ;
– M, [x, y] � ϕ ∨ ψ if and only if M, [x, y] � ϕ or M, [x, y] � ψ;
– M, [x, y] � 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′] and

M, [x′, y′] � ψ, for each modality 〈X〉.
Formulae of HS can be interpreted over a class of interval models (built on a given

class of linear orders). Among others, we mention the following classes of (interval
models built on important classes of) linear orders: (i) the class of all linear orders Lin;
(ii) the class of (all) dense linear orders Den, that is, those in which for every pair of
distinct points there exists at least one point in between them (e.g., Q and R); (iii) the
class of (all) discrete linear orders Dis, that is, those in which every element, apart from
the greatest element, if it exists, has an immediate successor, and every element, other
than the least element, if it exists, has an immediate predecessor (e.g., N, Z, and Z+Z);
(iv) the class of (all) finite linear orders Fin, that is, those having only finitely many
points. A formula φ of HS is valid over a class C of linear orders, denoted by �C φ, if it
is true on every interval in every interval model belonging to C. Two formulae φ and ψ
are equivalent relative to the class C of linear orders, denoted by φ ≡C ψ, if �C φ↔ ψ.

3 Definability and Expressivenesss

Definition 1 (Definability). A modality 〈X〉 of HS is definable in an HS fragment F
relative to a class C of linear orders, denoted 〈X〉 �C F , if 〈X〉p ≡C ψ for some
F -formula ψ over the atomic proposition p, for any p ∈ AP . Then, the equivalence
〈X〉p ≡C ψ is called a definability equation for 〈X〉 in F relative to C. We write
〈X〉 �� CF if it is not the case that 〈X〉�C F .

As we have already noted, smaller classes of linear orders inherit the definabilities
holding for larger classes: if C1 and C2 are classes of linear orders such that C1 ⊂ C2,
then all definabilities holding for C2 are also valid for C1. However, more definabilities
can possibly hold for C1. On the other hand, undefinability results for C1 hold also for

On the Expressiveness of HS over Finite and Discrete Orders 271

C2. In the rest of the paper, we omit the class of linear orders when it is clear from
the context (e.g., we will simply write 〈X〉p ≡ ψ and 〈X〉 � F for 〈X〉p ≡C ψ and
〈X〉�C F , respectively).

It is known from [18] that, when the strict semantics is assumed, all HS modalities are
definable in the fragment containing modalities 〈A〉, 〈B〉, and 〈E〉, and their transposes
〈A〉, 〈B〉, and 〈E〉, while in the non-strict semantics, the four modalities 〈B〉, 〈E〉,
〈B〉, and 〈E〉 suffice, as shown in [26]. Given two HS fragments F1 and F2, we say
that F2 is at least as expressive as F1, denoted F1 0 F2, if each operator 〈X〉 ∈ F1

is definable in F2, and that F1 is strictly less expressive than F2, denoted F1 ≺ F2, if
F1 0 F2 holds butF2 0 F1 does not. The notions of expressively equivalent fragments
and expressively incomparable fragments can be defined likewise.

Definition 2 (Optimal definability). A definability 〈X〉�F is optimal if 〈X〉 ��F ′ for
each fragment F ′ such that F ′ ≺ F .

3.1 Proof Techniques to Disprove Definability

In order to show non-definability of a given modality in a certain fragment, we use the
standard notion of N-bisimulation [17,19,21], suitably adapted to our setting.

Definition 3. LetF be an HS-fragment. AnFN -bisimulation between two modelsM =
〈I(D), V 〉 and M ′ = 〈I(D′), V ′〉 over a set of proposition letters AP is a sequence of
N relations ZN , . . . , Z1 ⊆ I(D) × I(D′) such that: (i) for every ([x, y], [x′, y′]) ∈ Zh,
with N ≥ h ≥ 1, M, [x, y] � p if and only if M ′, [x′, y′] � p, for all p ∈ AP (local
condition); (ii) for every ([x, y], [x′, y′]) ∈ Zh, with N ≥ h > 1, if [x, y]RX [v, w] for
some [v, w] ∈ I(D) and some 〈X〉 ∈ F , then there exists ([v, w], [v′, w′]) ∈ Zh−1 such
that [x′, y′]RX [v′, w′] (forward condition); (iii) for every ([x, y], [x′, y′]) ∈ Zh, with
N ≥ h > 1, if [x′, y′]RX [v′, w′] for some [v′, w′] ∈ I(D′) and some 〈X〉 ∈ F , then
there exists ([v, w], [v′, w′]) ∈ Zh−1 such that [x, y]RX [v, w] (backward condition).

Given an FN -bisimulation, the truth of F -formulae of modal depth at most h − 1 is
invariant for pairs of intervals belonging to Zh, with N ≥ h ≥ 1 (see, e.g., [17]).
Thus, to prove that a modality 〈X〉 is not definable in F , it suffices to provide, for every
natural number N , a pair of models M and M ′, and an FN -bisimulation between them
for which there exists a pair ([x, y], [x′, y′]) ∈ ZN such that M, [x, y] � 〈X〉p and
M ′, [x′, y′] � ¬〈X〉p, for some p ∈ AP (in this case, we say that the FN -bisimulation
violates 〈X〉). To convince oneself that this is enough to ensure that 〈X〉 is not definable
by any F -formula of any modal depth, assume, towards a contradiction, that φ is an
F -formula of modal depth n such that 〈X〉p ≡ φ. Since, for each N , there is an FN -
bisimulation that violates 〈X〉, there exists, in particular, one such bisimulation for
N = n + 1. Let ([x, y], [x′, y′]) ∈ ZN be the pair of intervals that violates 〈X〉, that
is, M, [x, y] � 〈X〉p and M ′, [x′, y′] � ¬〈X〉p. Then, the truth value of φ over [x, y]
(in M) and [x′, y′] (in M ′) is the same, and this is in contradiction with the fact that
M, [x, y] � 〈X〉p and M ′, [x′, y′] � ¬〈X〉p. A result obtained following this argument
applies to all classes of linear orders that contain (as their elements) both structures
on which M and M ′ are based. Notice that, in some cases, it is convenient to define
FN -bisimulations between a model M and itself.

272 L. Aceto et al.

It is worth pointing out that the standard notion of F -bisimulation can be recovered
as a special case of FN -bisimulation. Formally, an F -bisimulation can be thought of as
an FN -bisimulation with N = 2 and Z1 = Z2. In the following, as is customary, we
will treatF -bisimulations as relations instead of sequences of two equal relations: if the
sequence Z2, Z1 is an F -bisimulation, with Z1 = Z2 = Z , then we will simply refer to
it as to the relation Z . It is important to notice that showing that two intervals are related
by an F -bisimulation (i.e., they are F -bisimilar) is stronger than showing that they are
related by a relation ZN , which belongs to a sequence ZN , . . . , Z1 corresponding to
an FN -bisimulation (i.e., the intervals are FN -bisimilar). Indeed, while in the latter
case we are only guaranteed invariance of F -formulae of modal depth at most N − 1,
in the former case the truth of F -formulae of any (possibly unbounded) modal depth
is preserved. This means that undefinability results obtained using F -bisimulations are
not restricted to the finitary logics we consider in this paper, but also apply to extensions
with infinite disjunctions and with fixed-point operators.

Since F -bisimulations are notationally easier to deal with than FN -bisimulations, it
is in principle more convenient to use the former, rather than the latter, when proving
an undefinability result. However, while in few cases (see Section 4) a proof based on
F -bisimulations is possible, this is not generally the case, because some modalities that
cannot be defined in fragments of HS can be expressed in their infinitary versions. In
those cases (see Section 5), we resort to a proof via FN -bisimulations.

For a given modality 〈X〉 and a given class C of linear orders, we shall identify
a set of definabilities for 〈X〉, and we shall prove its soundness, by showing that each
definability equation is valid in C, and its completeness, by arguing that each definability
is optimal and that there are no other optimal definabilities for 〈X〉 in C. Completeness
is proved by computing all maximal fragmentsF that cannot define 〈X〉 (in the attempt
of defining 〈X〉 in F , we can obviously use the set of known definabilities). For each
modality, such fragments are listed in the last column of Fig. 2. Depending on the
number of known definabilities, such a task can be time-consuming and error-prone, so
an automated procedure has been implemented to serve the purpose [1]. Then, for each
such F and each N ∈ N, we provide an FN -bisimulation that violates 〈X〉. Notice that
all the classes of linear orders we consider are (left/right) symmetric, namely, if a class
C contains a linear order D = 〈D,≺〉, then it also contains (a linear order isomorphic
to) its dual linear order Dd = 〈D,1〉, where1 is the inverse of≺. This implies that the
definabilities for 〈L〉, 〈A〉, 〈B〉, and 〈B〉 can be immediately deduced (and shown to be
sound and optimal) from those for 〈L〉, 〈A〉, 〈E〉, and 〈E〉, respectively.

Fig. 2 depicts the complete sets of optimal definabilities holding in Dis and Fin for
the modalities 〈L〉, 〈A〉, 〈D〉, 〈D〉, 〈E〉, and 〈E〉 (recall that those for 〈L〉, 〈A〉, 〈B〉,
and 〈B〉 follow by symmetry). Section 4 and Section 5 are devoted to proving complete-
ness of such sets. For all the modalities, but 〈A〉 and 〈A〉, soundness is an immediate
consequence of the corresponding soundness in Lin, shown in [15]. For lack of space,
we omit the proofs of the soundness of the definabilities for 〈A〉 and 〈A〉, which any-
way are quite straightforward. Finally, while it is known from [18] that 〈O〉�BE (resp.,
〈O〉 � BE), it is still an open problem whether this is the only optimal definability for
〈O〉 (resp., 〈O〉) in Dis and in Fin.

On the Expressiveness of HS over Finite and Discrete Orders 273

Modalities Equations Definabilities Maximal fragments not defining it

〈L〉 〈L〉p ≡ 〈A〉〈A〉p 〈L〉 � A
BDOALBEDO

BEDOALEDO

〈A〉 〈A〉p ≡ ϕ(p) ∨ 〈E〉ϕ(p)∗ 〈A〉� BE
LBDOALBEDO

LBEDOALEDO
∗ϕ(p) := [E]⊥ ∧ 〈B〉([E][E]⊥ ∧〈E〉(p ∨ 〈B〉p))

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉 � BE
ALBOALBEDO

ALEOALBEDO

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉 � BE
ALBEDOALBO

ALBEDOALEO

〈E〉 no definabilities ALBDOALBEDO

〈E〉 no definabilities ALBEDOALBDO

Fig. 2. Optimal definabilities in Dis and Fin. The last column contains the maximal fragments not
defining the modality under consideration.

3.2 Expressing Properties of a Model in HS Fragments

We give here a short account of meaningful temporal properties, such as counting and
(un)boundedness ones, which can be expressed in HS fragments, when they are in-
terpreted over discrete linear orders. The outcomes of such an analysis are summarized
in Fig. 3 (other properties can obviously be expressed as Boolean combinations of those
displayed). They demonstrate the expressiveness capabilities of HS modalities, which
are of interest by themselves. As an example, constraining the length of intervals is a
desirable ability of any formalism for representing and reasoning about temporal knowl-
edge over a discrete domain. In fact, most HS fragments have many chances to succeed
in practical applications, and thus it is definitely worth carrying out a taxonomic study
of their expressiveness. As we already pointed out, such a study presents various intri-
cacies. For instance, in some fragments, assuming the discreteness of the linear order
suffices to constrain the length of intervals (this is the case with the fragment E); other
fragments rely on additional assumptions (this is the case with the fragment DO, which
requires the linear order to be right-unbounded). This gives evidence of how expressive-
ness results can be affected by the specific class of linear orders under consideration.

Counting Properties. When the linear order is assumed to be discrete, some HS frag-
ments are powerful enough to constrain (to some extent) the length of an interval, that
is, the number of its points minus one. Let ∼∈ {<,≤,=,≥, >}. For every k ∈ N, we
define �∼k as a (pre-interpreted) atomic proposition which is true over all and only those
intervals whose length is ∼-related to k. Moreover, for a modality 〈X〉, we denote by
〈X〉kϕ the formula 〈X〉 . . . 〈X〉ϕ, with k occurrences of 〈X〉 before ϕ. Limiting our-
selves to a few examples, we highlight here the ability of some of the HS modalities to
express �∼k, for any k. It is well known that the fragments E and B can express �∼k,
for every k and ∼ (see, e.g., [18]). As an example, the formulae 〈E〉k
 and [E]k⊥
are equivalent to �>k and �≤k, respectively. The fragment D features limited counting
properties, as, for every k, 〈D〉k
 ∧ [D]k+1⊥ is true over intervals whose length is
either 2 · k + 1 or 2 · (k + 1) (notice that, as a particular instance, [D]⊥ is true over

274 L. Aceto et al.

Counting properties Right Unboundedness (∃r)

�>k ≡ 〈E〉k� 〈B〉�, 〈A〉�
�=k ≡ 〈E〉k−1� ∧ [E]k⊥ (‡) 〈O〉�, [B]〈L〉�
�>2·k ≡ 〈D〉k� (§) 〈D〉�, 〈E〉〈O〉�
�≤2·k ≡ [D]k⊥ (‡,§) [O]〈L〉�
�>1 ≡† 〈O〉� (�) [D]〈L〉�
�>2·k+1 ≡† 〈D〉k〈O〉�
�=2·(k+1) ≡† 〈D〉k〈O〉� ∧ [D]k+1⊥
†: only on right-unbounded domains; ‡: only on intervals longer than 1;
§: only on left-unbounded domains; �: only on intervals longer than 2.

Fig. 3. Expressiveness of HS modalities over discrete linear orders

intervals whose length is either 1 or 2). In a sense, it is not able to discriminate the
parity of an interval. The counting capabilities of the fragment O are limited as well:
it allows one to discriminate between unit intervals (intervals whose length is 1) and
non-unit intervals (which are longer than 1), provided that the underlying linear order
is right-unbounded, like Z or N (〈O〉 possesses the same capability, provided that the
underlying linear order is left-unbounded, like Z or Z−). However, quite interestingly,
by pairing 〈D〉 and 〈O〉, or, symmetrically, 〈D〉 and 〈O〉, it is possible to express �∼k

for every k and ∼ over right-unbounded linear order (left-unbounded linear orders if
〈O〉 is replaced by 〈O〉): it suffices to first use 〈D〉 to narrow the length down to k or
k + 1, and then 〈O〉 (or 〈O〉) to discriminate the parity.

(Un)boundedness Properties. Let us denote by ∃r (resp., ∃l) a (pre-interpreted) atomic
proposition that is true over all and only the intervals that have a point to their right
(resp., left). Various combinations of HS operators can express ∃r. Once again, while
in some cases we need to assume only the discreteness of the underlying linear order,
there are cases where the validity of the definability relies on additional assumptions.
For example, to impose that the current interval has a point to the right within the
fragment O, we can use 〈O〉
 only on non-unit intervals (otherwise, 〈O〉 has no effect).
Analogously, it is possible to express ∃l, possibly under analogous assumptions.

4 The Easy Cases

In this section, we prove the completeness of the set of definabilities for the modalities
〈L〉, 〈L〉, 〈A〉, and 〈A〉, thus strengthening a similar result presented in [14, Theorem 1].

Theorem 1. The sets of optimal definabilities for 〈L〉 and 〈A〉 (listed in Fig. 2), as well
as (by symmetry) those for 〈L〉 and 〈A〉, are complete for the classes Dis and Fin.

Proof. The results for 〈L〉 (and, symmetrically, for 〈L〉) immediately follow from [15],
as the completeness proof for 〈L〉 presented there used a bisimulation between models
based on finite linear orders. Notice that 〈L〉 � BE holds in Dis and Fin, as it does in

On the Expressiveness of HS over Finite and Discrete Orders 275

Lin. However, such a definability, which is optimal in Lin, is not optimal in Dis and Fin
(and thus it is not listed in Fig. 2), due to the fact that 〈A〉 � BE (which is not a sound
definability in Lin) holds over Dis. As a pleasing consequence, we can extend Venema’s
result from [26] concerning the expressive completeness of the fragment BEBE in the
non-strict semantics to the strict one under the discreteness assumption.

According to Fig. 2, 〈A〉 is definable in terms of BE, implying that the maximal frag-
ments not defining 〈A〉 are, as shown in the last column of Fig. 2, LBDOALBEDO and
LBEDOALEDO. Thus, proving that 〈A〉�BE is the only optimal definability amounts
to providing two bisimulations, namely an LBDOALBEDO- and an LBEDOALEDO-
bisimulation that violate 〈A〉. As for the first one, we consider two models M and M ′,
both based on the finite linear order {0, 1, 2}. We set V (p) = {[1, 2]}, V ′(p) = ∅, and
Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}. It is easy to verify that Z is an LBDOALBEDO-
bisimulation that violates 〈A〉, as M, [0, 1] � 〈A〉p and M ′, [0, 1] � ¬〈A〉p. As for
the second one, models and valuations are defined as before, but we take now Z =
{([0, 1], [0, 1])}. Once again, it is easy to see that Z is an LBEDOALEDO-bisimulation
that violates 〈A〉, as M, [0, 1] � 〈A〉p and M ′, [0, 1] � ¬〈A〉p. Since the result is based
on a finite linear order, it holds for both Dis and Fin. ��

5 The Hard Cases

In this section, we provide the completeness result for the modalities 〈D〉 and 〈D〉 (The-
orem 2), as well as for 〈E〉, 〈E〉, 〈B〉, and 〈B〉 (Theorem 3). Because of the technical
complexity of the proofs, we only provide proof sketches that explain the main ideas
behind them at a very intuitive level, and refer the interested reader to [3] for the details.

In the following, we let N>c = {x ∈ N | x > c} and Z<−c = {x ∈ Z | x < −c},
for each c ≥ 0. Moreover, N+ and Z− denote the sets N>0 and Z<−0, respectively.
As a preliminary step, we introduce the notion of equivalence up to a given threshold,
denoted by 2g

h , which is used in both proofs to “simulate density”, in a sense that
will be made clear later on. It is a series of equivalence relations over Z up to a certain
threshold, which is given by the value of the suitably defined threshold function g on h.

Definition 4 (2g
h). For any given function g : D → N, called threshold function,

where D can be any prefix of N+, that is, D = {1, . . . , N} for some N ∈ N, and for
every h ∈ D, we define the relation of equivalence up to g(h), denoted 2g

h, as follows.
For every pair of integers n1, n2 ∈ Z, n1 2g

h n2 if and only if one of the following
holds: (i) n1 = n2, (ii) n1, n2 > g(h), or (iii) n1, n2 < −g(h).

Theorem 2. The sets of optimal definabilities for 〈D〉 and 〈D〉 (listed in Fig. 2) are
complete for the classes Dis and Fin.

In order to prove the above theorem, we proceed as follows. According to Fig. 2,
〈D〉 is definable in terms of BE; thus there are two maximal fragments not defining
it, namely, ALBOALBEDO and ALEOALBEDO. First, we observe that it is possible
to define 〈D〉 in infinitary extensions of AB or AE, using, respectively, the following
formulae of unbounded modal depth:

〈D〉p ≡
{∨

k∈N(�=k ∧
∨

i<k−1(〈B〉(�=i ∧ 〈A〉(�<k−i ∧ p)))),∨
k∈N(�=k ∧

∨
i<k−1(〈E〉(�=i ∧ 〈A〉(�<k−i ∧ p)))),

276 L. Aceto et al.

where length constraints of the form �=k and �<k can be expressed using either 〈B〉
or 〈E〉 (see Section 3.2). It immediately follows that there exists no ALBOALBEDO-
bisimulation (resp., ALEOALBEDO-bisimulation) that violates 〈D〉, and thus we have
to resort to ALBOALBEDON -bisimulations (resp., ALEOALBEDON -bisimulations).
Besides, since the two fragments ALBOALBEDO and ALEOALBEDO are symmetric,
that is, they are indistinguishable over symmetric classes of linear orders, providing an
ALBOALBEDON -bisimulation that violates 〈D〉 suffices to prove the result. In what
follows, we build such an ALBOALBEDON -bisimulation.

To this end, we first define the function f : {1, . . . , N} → N as f(h) = h+1. Then,
we consider a bijection ξ from Z × N+ to Z<−k such that ξ(x, y) ≤ x − k for each
(x, y) ∈ Z×N+, and where k = 2 · f(N) + 4. It is not difficult to convince oneself of
the existence of such a function. Now, we define the function η : Z→ N+ as:

η(x) =

{
ȳ + x̄− x if x = ξ(x̄, ȳ) for some x̄, ȳ
k − 2 otherwise

Notice that if x = ξ(x̄, ȳ), then η(x) ≥ k + 1 holds, because ξ(x̄, ȳ) = x ≤ x̄− k and
ȳ ≥ 1. Thus, for each x, we have η(x) ≥ k − 2.

Proposition 1. There exist two integers x and x+ 1 such that η(x) ≥ η(x + 1) + 3.

Let δ(x, y) = y − x − η(x), for each interval [x, y] ∈ I(Z). The following lemma
will be useful in the proof of Lemma 2.

Lemma 1. The following statements hold.
a) For each interval [x, y] and each i ∈ Z, with −f(N)− 1 ≤ i ≤ f(N) + 1, there

exist x′ and x′′ such that x− x′ = |i| and δ(x′′, x) = i.
b) For each interval [x, y] and each i ∈ Z, with −f(N)− 1 ≤ i ≤ f(N) + 1, there

exists x′ < x such that δ(x′, y) = i.

We let M = 〈I(Z), V 〉, where the valuation V is as follows: [x, y] ∈ V (p) ⇔
δ(x, y) ≥ 0. Notice that M is parametric in N because k, used in the definitions of ξ
and η, depends on N . Notice also that the length of p-intervals is at least k − 2.

We introduce here a sequence of relations ZN , . . . , Z1. In Lemma 2, we will show
that it is an ALBOALBEDON -bisimulation that violates 〈D〉. To this end, it is conve-
nient to define the equivalence relations≡h

	 and ≡h
δ , for each h ∈ {1, . . . , N}, as

[x, y] ≡h
	 [w, z] if and only if y − x 2f

h z − w

[x, y] ≡h
δ [w, z] if and only if δ(x, y) 2f

h δ(w, z),

where 2f
h is an equivalence up to f(h). Intuitively,≡h

	 relates pairs of intervals whose
lengths coincide or are both larger than f(h); ≡h

δ relates intervals [x, y] and [w, z] such
that δ(x, y) = δ(w, z) or min{δ(x, y), δ(w, z)} > f(h) or max{δ(x, y), δ(w, z)} <
−f(h). Everything is set for the definition of the sequence of relations {Zh}1≤h≤N .

Definition 5. For each h ∈ {1, . . . , N}, the hth component Zh of the sequence of
relations ZN , . . . , Z1 is defined as:

[x, y]Zh[w, z]⇔ [x, y] ≡h
	 [w, z] and [x, y] ≡h

δ [w, z].

Since ≡h
	 and ≡h

δ are equivalence relations, so is Zh, for each h.

Lemma 2. The sequence of relationsZN , . . . , Z1 is an ALBOALBEDON -bisimulation
that violates 〈D〉.

On the Expressiveness of HS over Finite and Discrete Orders 277

Proof (sketch). We first show that ZN , . . . , Z1 is an ALBOALBEDON -bisimulation.
The local condition is trivially fulfilled, as [x,w]Zh[w, z] implies [x,w] ≡h

δ [w, z],
which, in turn, implies δ(x, y) ≥ 0 if and only if δ(w, z) ≥ 0, and thus M, [x, y] � p
if and only if M, [w, z] � p. To prove that the forward and the backward conditions
are fulfilled as well, the intuitive idea is to show that, for each pair ([x, y], [w, z]) of
Zh-related intervals and each modality 〈X〉 featured by the fragment ALBOALBEDO,
the set of equivalence classes (with respect to the relation Zh−1) reachable from [x, y]
using 〈X〉 is equal to the set of equivalence classes reachable from [w, z] using 〈X〉.
The more difficult cases are the ones corresponding to the modalities 〈A〉 and 〈E〉. To
cope with the former, it suffices to observe that from Lemma 1a it immediately follows
that every equivalence class is reachable from any interval [x′, y′], using the modality
〈A〉. Similarly, Lemma 1b can be used to deal with the modality 〈E〉.

To conclude the proof, consider [x, y] = [0, k−3] and [w, z], where z = w+η(w)−1
and w is such that η(w) ≥ η(w + 1) + 3 (the existence of such w is guaranteed by
Proposition 1). We show that ([x, y], [w, z]) ∈ ZN , M, [x, y] � ¬〈D〉p, and M, [w, z] �
〈D〉p. It is easy to see that both [x, y] ≡h

δ [w, z] and [x, y] ≡h
	 [w, z] hold. Thus,

we have that ([x, y], [w, z]) ∈ ZN . Moreover, since y − x < k − 2, it is clear, from
the definition of V , that none of its sub-interval satisfies p (because p-intervals are
long at least k − 2), and thus M, [x, y] � ¬〈D〉p holds. Contrarily, [w, z] is such that
M, [w, z] � 〈D〉p because the interval [w+1, z−1] satisfies p. To see the latter, observe
that δ(w + 1, z − 1) = z − 1− w − 1− η(w + 1) = η(w) − η(w + 1)− 3 ≥ 0. ��

The above proof makes use of a model based on Z, and thus it proves the result
for the class Dis. The whole construction can be adapted to deal with the class Fin as
well, by using a finite, “large enough” portion of Z, and then by taking special care of
the intervals that are “close” to the borders. Moreover, by observing that 〈D〉 and 〈D〉
behave in a very similar way when interpreted over classes of finite linear orders, it is
possible to use the same idea to prove the result for the modality 〈D〉 as well.

Theorem 3. There are no definabilities for 〈E〉 and 〈E〉 (as shown in Fig. 2), as well
as for their transposes 〈B〉 and 〈B〉, in the classes Dis and Fin.

Proof (sketch). We only give the sketch of the proof for the operators 〈E〉 and 〈E〉.
The result for 〈B〉 and 〈B〉 follows from a symmetric argument. According to Fig. 2,
there are no definabilities for 〈E〉 when the underlying structure is discrete, and there-
fore ALBDOALBEDO is the only maximal fragment not defining it. This is also true
on Lin and Den, but on Dis and Fin it is simply harder to prove. An indication of such
a difficulty comes from the analysis of the proofs presented in [15], where the den-
sity of the models involved plays a major role. Similarly to the case of Theorem 2,
〈E〉 is definable in an infinitary extension of the language AB by the formula 〈E〉p ≡∨

k∈N(�=k ∧
∨

i<k(〈B〉(�=i ∧ 〈A〉(�=k−i ∧ p))), since, as stated in Section 3.2, 〈B〉
can express �=k, for every k ∈ N. Thus, there exists no ALBDOALBEDO-bisimulation
that violates 〈E〉, and we need to find an ALBDOALBEDON -bisimulation.

Let D be a finite domain, e.g., an arbitrarily large prefix of N. We define a model
M based on it and an ALBDOALBEDON -bisimulation between M and itself that vi-
olates 〈E〉. Given N ∈ N, we make use of h ≤ N to refer to the hth component of
the N -bisimulation, also called in the following the hth step of the N -bisimulation.

278 L. Aceto et al.

p1

p2

pt
pfP (h)

pt−fP (h)+1 a− 0 a+

a+−t+1a−+t

a−+2t

a−+tfP (h)

A1 A2 AfP (h) At−fP (h)+1 AtP−
h Ph

P+
h

A−
h Ah

A+
hP R

Fig. 4. A graphical account of the ALBDOALBEDON -bisimulation that violates 〈E〉

Building the ALBDOALBEDON -bisimulation relies on a very technical construction
that allows us to “simulate density” over discrete models up to a certain threshold. To
this end, we will use monotonically increasing threshold functions, which are paramet-
ric in h and which characterize a notion of “long interval”, relative to a generic step
h of the N -bisimulation. Since such functions are monotonic, intervals that are “long”
at the step h of the N -bisimulation always contain intervals that are still “long” at the
step h− 1, despite being obviously shorter of the containing interval. We will also use
suitably defined equivalences up to a threshold (given by the aforementioned threshold
functions) to recognize when two intervals are “long enough” to be indistinguishable
by modal formulae in the fragment ALBDOALBEDO whose modal depth is less than
h ≤ N .

Now, we define the function f(h) = h+1, which will be used as threshold function,
and the function fP(h) =

∑h
i=1 f(i). Notice that both functions are monotonically

increasing. Moreover, we let t = 2(fP(1) +N + 4), a+ = t2

2 − 1, and a− = − t2

2 .
Finally, we consider a partition of D as in Fig. 5. Three subsets, from left to right,

are clearly identified: P = {p1, . . . , pt},R = {x ∈ D | pt < x < a−}, and A = {x ∈
D | a− ≤ x ≤ a+}, where we let pt = a− − t and, for each i < t, pi = pi+1 − 1. For
each h, we define further partitions of the subsets P and A, as follows:

P =
⋃⎧⎨⎩

P−h = {x | p1 ≤ x ≤ pfP(h)}
P+
h = {x | pt−fP(h)+1 ≤ x ≤ pt}
Ph = {x | pfP (h) < x < pt−fP (h)+1},

Ai = {x ∈ D | a− + (i− 1) · t ≤ x < a− + i · t},

A =
⋃⎧⎪⎨⎪⎩

A−h =
⋃fP(h)

i=1 Ai

A+
h =

⋃t
i=t−fP (h)+1Ai

Ah = A \ (A−h ∪ A+
h) =

⋃t−fP (h)
i=fP (h)+1Ai.

Roughly speaking, we can say that stepping from h+1 to h, the setsP−h+1,P+
h+1,A−h+1,

andA+
h+1 shrink, while the sets Ph+1 andAh+1 expand. Now, let M be a model based

on D described as above. The valuation V of M uses the function V : A → P :

V(y) =
{
p1 + i if y = a− + i, for each 0 ≤ i < t
V(y − t) if a− + t ≤ y ≤ a+,

V (p) = {[x, y] | y ∈ A implies x ≤ V(y)}.
In order to define an ALBDOALBEDON -bisimulation, we first define a sequence ZN ,
. . . , Z1, which is common to both cases 〈E〉 and 〈E〉, and then we show how to adjust
it to obtain our results. To characterize the generic hth component Zh of the sequence
ZN , . . . , Z1 we make use of an equivalence relation ≡h, parameterized by h, which is

On the Expressiveness of HS over Finite and Discrete Orders 279

defined as follows. Let us denote by x (resp., w) the nth element of Ai (resp., the mth
element of Aj), that is, x = ain and w = ajm. Then, we have:

x ≡h w iff

⎧⎪⎪⎨⎪⎪⎩
x = w or
x,w ∈ Ph or

x,w ∈ A and

{
i = j ∨ x,w ∈ Ah, and
m = n ∨ fP(h) < m,n < t− fP(h) + 1.

We can now define Zh as follows: for each 1 ≤ h ≤ N , ([x, y], [w, z]) ∈ Zh if and
only if: (a) x ≡h w and y ≡h z, (b) y−x 2f

h z−w, (c) if x,w ∈ P and y, z ∈ A, then
V(y)− x 2f

h V(z)− w, and (d) if x ∈ Ai and y ∈ Aj for some i, j ∈ {1, . . . , t}, then
w ∈ Ak and z ∈ A	 for some k, � ∈ {1, . . . , t} such that j− i 2f

h �− k. As a last step,
we define a new sequence of relations ZE

N , . . . , ZE
1 such that ZE

N ∪ ZN , . . . , ZE
1 ∪ Z1

is an ALBDOALBEDON -bisimulation (the proof is technically involved, so details are
omitted—see [3] for a fully-detailed account). Consider a point a = aim such that
i = m = t

2 , that is, a is the t
2 th point of the t

2 th sub-group of A. It holds that V(a) =
pm = p t

2
. Now, for each 1 ≤ h ≤ N , let ZE

h = {([V(a)−(N−h+1), a], [V(a)−(N−
h), a])}. It is possible to see that M, [V(a)− 1, a] � 〈E〉p, M, [V(a), a] � ¬〈E〉p, and
([V(a)−1, a], [V(a), a]) ∈ ZE

N . Thus,ZE
N∪ZN , . . . , ZE

1 ∪Z1 is anALBDOALBEDON -
bisimulation that violates 〈E〉.

To deal with the modality 〈E〉, a new sequence ZE
N , . . . , ZE

1 can be defined, fol-
lowing a similar technique, so that ZE

N ∪ ZN , . . . , ZE
1 ∪ Z1 is an ALBEDOALBDON -

bisimulation that violates 〈E〉. Since the proof only uses a finite linear order, the result
holds for both Dis and Fin. ��

6 Conclusions

In this paper we studied the expressiveness of fragments of the interval temporal logic
HS interpreted over both discrete and finite linear orders. A complete classification
of all such fragments with respect to their relative expressive power has been recently
given for the classes of all linear orders and all dense linear orders. The cases of discrete
and finite linear orders turn out to be much more involved. We provided a complete set
of definabilities for the modalities corresponding to the Allen’s relations meets, later,
begins, finishes, and during, plus their transposes. We leave open the problem of iden-
tifying the complete set of definabilities for the modalities corresponding to the Allen
relation overlaps and to its inverse overlapped by.

Acknowledgements. The authors acknowledge the support from the Spanish fellow-
ship program ‘Ramon y Cajal’ RYC-2011-07821 (G. Sciavicco), the project Processes
and Modal Logics (project nr. 100048021) of the Icelandic Research Fund (L. Aceto,
D. Della Monica, and A. Ingólfsdóttir), the project Decidability and Expressiveness for
Interval Temporal Logics (project nr. 130802-051) of the Icelandic Research Fund (D.
Della Monica), and the Italian GNCS project Automata, games, and temporal logics for
planning and synthesis of controllers in safety-critical systems (A. Montanari).

280 L. Aceto et al.

References

1. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: An algorithm
for enumerating maximal models of Horn theories with an application to modal logics. In:
McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp.
1–17. Springer, Heidelberg (2013)

2. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: A complete
classification of the expressiveness of interval logics of Allen’s relations over dense linear
orders. In: Proc. of the 20th TIME, pp. 65–72. IEEE Computer Society (2013)

3. Aceto, L., Della Monica, D., Ingólfsdóttir, A., Montanari, A., Sciavicco, G.: On the ex-
pressiveness of the interval logic of Allen’s relations over finite and discrete linear or-
ders (extended version) (2014), http://www.di.unisa.it/dottorandi/dario.
dellamonica/temp/expr_disc_ext.%pdf

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

5. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2),
123–154 (1984)

6. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Decidable and
undecidable fragments of Halpern and Shoham’s interval temporal logic: Towards a complete
classification. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI),
vol. 5330, pp. 590–604. Springer, Heidelberg (2008)

7. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of
interval temporal logic: Sharpening the undecidability border. In: Proc. of the 18th TIME,
pp. 131–138 (2011)

8. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Metric propo-
sitional neighborhood interval logics on natural numbers. Software and Systems Model-
ing 12(2), 245–264 (2013)

9. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval Temporal Log-
ics over finite linear orders: the complete picture. In: Proc. of the 20th ECAI, pp. 199–204
(2012)

10. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval Temporal
Logics over strongly discrete linear orders: the complete picture. In: Proc. of the 3rd Gan-
dALF, pp. 155–168 (2012)

11. Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision procedures for
the logics of subinterval structures over dense orderings. Journal of Logic and Computa-
tion 20(1), 133–166 (2010)

12. Bresolin, D., Montanari, A., Sala, P., Sciavicco, G.: What’s decidable about Halpern and
Shoham’s interval logic? The maximal fragment ABBL. In: Proc. of the 26th LICS, pp.
387–396 (2011)

13. Bresolin, D., Sala, P., Sciavicco, G.: On Begins, Meets, and Before. International Journal on
Foundations of Computer Science 23(3), 559–583 (2012)

14. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval temporal
logics over strongly discrete linear orders: Expressiveness and complexity. Theoretical Com-
puter Science (2014) (online first since April 2014)

15. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Expressiveness of the interval
logics of Allen’s relations on the class of all linear orders: Complete classification. In: Proc.
of the 22nd IJCAI, pp. 845–850 (July 2011)

16. Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: Interval temporal logics: a
journey. Bulletin of the European Association for Theoretical Computer Science 105, 73–99
(2011)

http://www.di.unisa.it/dottorandi/dario.dellamonica/temp/expr_disc_ext.%pdf
http://www.di.unisa.it/dottorandi/dario.dellamonica/temp/expr_disc_ext.%pdf

On the Expressiveness of HS over Finite and Discrete Orders 281

17. Goranko, V., Otto, M.: Model theory of modal logic. In: Blackburn, P., van Benthem,
J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic, pp. 249–329. Elsevier (2007)

18. Halpern, J., Shoham, Y.: A propositional modal logic of time intervals. Journal of the
ACM 38(4), 935–962 (1991)

19. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of
the ACM 32(1), 137–161 (1985)

20. Marcinkowski, J., Michaliszyn, J.: The ultimate undecidability result for the Halpern-
Shoham logic. In: Proc. of the 26th LICS, pp. 377–386. IEEE Computer Society (2011)

21. Milner, R.: A Calculus of Communicating Systems. Springer (1980)
22. Montanari, A., Puppis, G., Sala, P.: Maximal decidable fragments of Halpern and Shoham’s

modal logic of intervals. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 345–356. Springer, Heidelberg
(2010)

23. Montanari, A., Puppis, G., Sala, P., Sciavicco, G.: Decidability of the interval temporal logic
ABB over the natural numbers. In: Proc. of the 27th STACS, pp. 597–608 (2010)

24. Moszkowski, B.: Reasoning about digital circuits. Tech. rep. stan-cs-83-970, Dept. of Com-
puter Science, Stanford University (1983)

25. Pratt-Hartmann, I.: Temporal prepositions and their logic. Artificial Intelligence 166(1-2),
1–36 (2005)

26. Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame Journal
of Formal Logic 31(4), 529–547 (1990)

27. Zhou, C., Hansen, M.R.: Duration Calculus: A formal approach to real-time systems. EATCS
Monographs in Theoretical Computer Science. Springer (2004)

Only-Knowing à la Halpern-Moses
for Non-omniscient Rational Agents:

A Preliminary Report

Dimitris Askounis1, Costas D. Koutras2, Christos Moyzes3, and Yorgos Zikos3

1 Decision Support Systems Lab
School of Electrical and Comp. Engineering

National Technical University of Athens
9, Iroon Polytechniou Street, 15773 Athens, Greece

askous@epu.ntua.gr
2 Department of Informatics and Telecommunications

University of Peloponnese
end of Karaiskaki Street, 22 100 Tripolis, Greece

ckoutras@uop.gr
3 Graduate Programme in Logic, Algorithms and Computation (MPLA)

Department of Mathematics, University of Athens
Panepistimiopolis, 157 84 Ilissia, Greece
cmoyzes@yahoo.gr, zikos@sch.gr

Abstract. We investigate the minimal knowledge approach of Halpern-Moses
‘only knowing’ in the context of two syntactic variants of stable belief sets that
aim in avoiding the unreasonably perfect omniscient agent modelled in
R. Stalnaker’s original definition of a stable epistemic state. The ‘only know-
ing’ approach of J. Halpern and Y. Moses provides equivalent characterizations
of ‘honest’ formulas and characterizes the epistemic state of an agent that has
been told only a finite number of facts. The formal account of what it means for
an agent to ‘only know a’ is actually based on ‘minimal’ epistemic states and is
closely related to ground modal nonmonotonic logics. We examine here the be-
haviour of the HM-‘only knowing’ approach in the realm of the weak variants
of stable epistemic states introduced recently by relaxing the positive or negative
introspection context rules of Stalnaker’s definition, in a way reminiscent of the
work done in modal epistemic logic in response to the ‘logical omniscience’ prob-
lem. We define the ‘honest’ formulas - formulas which can be meaningfully ‘only
known’ - and characterize them in several ways, including model-theoretic char-
acterizations using impossible worlds. As expected, the generalized ‘only know-
ing’ approach lacks the simplicity and elegance shared by the approaches based
on Stalnaker’s stable sets (actually based on S5) but it is more realistic and can
be handily fine-tuned.

Keywords: Only-knowing, minimal knowledge, modal nonmonotonic logic.

1 Introduction

The notion of ‘only knowing’ introduced by J. Halpern and Y. Moses in [13] aims in
characterizing ‘the state of an agent that has been told only a finite number of facts’

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 282–296, 2014.
c© Springer International Publishing Switzerland 2014

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 283

[12, p. 79]. The idea is to obtain a meta-level formal account of the epistemic state
asserting the agent’s knowledge contains no more than the information conveyed by
some epistemic formula a (intuitively, the conjunction of the finite knowledge base),
which in turn, implies a description of the situation in which the agent ‘only knows a’.

The HM-‘only knowing’ approach is intuitively clear, mathematically interesting
and pioneered a stream of research on ‘minimal knowledge’ logics which are ‘of es-
sential importance for knowledge representation and inference’ [33]. The single-agent
approach of [13] is based on the notion of Stalnaker stable sets and is essentially an
S5-centered approach. Syntactically, it amounts in attempting to single out the ‘propo-
sitionally minimum’ stable belief set which contains a (if it exists); semantically - and
equivalently- it attempts to maximize the set of ‘possibilities’ (in terms of epistemi-
cally alternative states) in the relevant possible-worlds model. A subsequent paper by
J. Halpern ([12]) generalized ‘only knowing’ in the multi-agent setting, elaborating on
the question ‘what counts as a possibility in the multi-agent case’ and clarifying that
‘only knowing’ can be also (and perhaps more meaningfully) understood in the con-
text of KD45 situations (rather that S5 universal models). Of particular importance
in this approach is the logical characterization of the ‘honest’ formulas, the formulas
that can actually represent ‘all the agent knows’. The idea of ‘minimal knowledge’ has
been further investigated in AI; relevant results include the work of G. Schwarz and M.
Truszczyński [30], the recent approach of D. Pearce and L. Uridia [29], the results of
W. van der Hoek, J. Jaspars and E. Thijsse [33,16] and the work of Donini, Nardi and
Rosati on the relation of ‘minimal knowledge’ to ground modal nonmonotonic logics
[6]. Of related interest is the Only-Knowing approach of H. Levesque [25], which has
been also extended to the multi-agent setting by J. Halpern, G. Lakemeyer and V. Belle
[14,2] and has been also recently related to the McDermott & Doyle family of modal
nonmonotonic logics [24].

The original, single-agent HM-‘only knowing’ approach is strongly based on the
influential notion of stable belief sets, introduced by R. Stalnaker in the early ’80s [32]
as a formal representation of the epistemic state of an ideally rational agent, with full
introspective capabilities. Assuming a propositional language, endowed with a modal
operator �ϕ, interpreted as ‘ϕ is believed’, a set of formulas S is a stable set if it is
‘stable’ under classical inference and epistemic introspection:

(i) CnPC(S) ⊆ S

(ii) ϕ ∈ S implies �ϕ ∈ S

(iii) ϕ /∈ S implies ¬�ϕ ∈ S

This notion proved to be of major importance in modal nonmonotonic logics. The
syntactic definition of stable sets is very natural and intuitive and it quickly became
clear that they possess interesting properties while they do also admit simple and el-
egant semantic characterizations: they can be represented as the theories of universal
(S5) Kripke models, or alternatively, as the set of beliefs of an agent residing in a
KD45 situation (see [28, Chapt.8], [11]). It is not hard to see however, that Stalnaker’s
stable sets model an extremely perfect reasoner in a way reminiscent of the ‘logical
omniscience’ problem in classical epistemic logic. Actually, the situation in Stalnaker’s

284 D. Askounis et al.

stable sets is a bit more uncomfortable: all tautologies are known and a stable set is a
theory maximally consistent with provability in S5. This raises some important philo-
sophical and technical questions in modal nonmonotonic reasoning, observed in [11]
and partly addressed in the work of Marek, Schwarz and Truszczyński [27].

The ‘logical omniscience’ problem in epistemic logic is about the many different
facets of the unreasonably idealized nature of the account of knowledge and belief en-
coded in normal modal epistemic logics (see [10, Section 6], [15]). Two (out of several)
of the most striking appearances of the logical omniscience problem are that (because of
axiom K) the consequences of knowledge must be knowledge - an unrealistic assump-
tion - and that (because of the Rule of Necessitation) all valid formulas are known,
even if ‘it would take more symbols than there are atoms in the universe to write down’
[7, p. 407]. There exist several ways to deal with logical omniscience: syntactically, one
has to leave the realm of normal modal logics and drop at least axiom K and/or Rule
RN. Model-theoretically, this means that one should consider either impossible-worlds
models or Scott-Montague semantics (see Section 2)1.

In previous work [23,21] we have followed a similar approach for defining syntactic
variants of Stalnaker stable sets, aiming to describe the epistemic state of less idealized,
non-omniscient agents. By varying the context rules for positive and negative introspec-
tion we have derived three alternative notions of stable epistemic state. For the first one
(the RM-stable sets) we have proved an exact matching with a regular modal logic that
can be plausibly considered as the regular counterpart to S5 and a representation the-
orem with respect to possible worlds models allowing also for ‘impossible’ (‘queer’)
worlds where nothing is known and everything is epistemically possible. For all three
alternatives to Stalnaker stable sets, we have obtained representation theorems with re-
spect to Scott-Montague possible-words models [23,21].

In this paper, we employ these alternative non-omniscient epistemic states to define
an ‘only knowing’ approach for minimal knowledge à la Halpern & Moses, in a less
idealized setting. We prove that such a project is feasible by defining appropriate notions
of ‘honesty’ for our weak stable sets. Of course, as it has been shown in [21], leaving
the ‘perfect’ setting of the S5 Stalnaker stable sets and moving to the ‘wild’ world
of (say) ‘regular’ RM-stable sets, implies leaving behind many of the mathematically
elegant (but philosophically controversial) properties of Stalnaker stability. However,
as we show in this paper, the situation can be technically controlled through the device
of formulas like �
, ¬�
, �⊥, ¬�⊥ that allow us to ‘navigate’ through possible and
impossible worlds, ‘full’ or empty neighborhoods. On the other hand, the philosophical
discussion on the meaning (if any) of impossible worlds readily emerges; see Section 4.

2 Background Material

In this Section we briefly review the Modal Logic basics and establish notation and
terminology. For the basics of Modal Logic the reader is referred to the books [3,5,17]
and for the essentials of modal nonmonotonic logics to [28].

1 In [15] various approaches for dealing with ‘logical omniscience’ are considered: syntactic
approaches, accounts of awareness, algorithmic knowledge and impossible worlds.

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 285

Modal Logic. The language of propositional logic is L. We denote by L� a modal
propositional language whose operator �ϕ has the reading ‘ϕ is believed’. Sentence
symbols include
 (for truth) and⊥ (for falsity). Some of the important axioms in epis-
temic/doxastic logic are: K. (�ϕ∧�(ϕ ⊃ ψ)) ⊃ �ψ , T.�ϕ ⊃ ϕ (axiom of true, justi-
fied knowledge), D.�ϕ ⊃ ¬�¬ϕ or ¬(�ϕ∧�¬ϕ) (consistent belief), 4.�ϕ ⊃ ��ϕ
(positive introspection), 5.¬�ϕ ⊃ �¬�ϕ (negative introspection), w5. (ϕ ∧ ¬�ϕ) ⊃
�¬�ϕ (negative introspection limited to true facts), p5. (¬�ϕ ∧ ¬�¬ϕ) ⊃ �¬�ϕ
(negative introspection limited to possible facts). The axiom p5 has been investigated
in [22] and provides inspiration for the context rules employed in [23,21]. Modal log-
ics are sets of modal formulas containing classical propositional logic (i.e. containing
all tautologies in the augmented language L�) and closed under rules MP.ϕ,ϕ⊃ψ

ψ and
US (Uniform Substitution). The smallest modal logic is denoted as PC (propositional
calculus in the augmented language).

Normal Modal Logics. Normal are called those modal logics, which contain all in-
stances of axiom K and are closed under rule

RN.
ϕ

�ϕ

By KA1 . . .An we denote the normal modal logic axiomatized by axioms A1 to An.
Well-known epistemic logics comprise KT45 (S5) (a strong logic of knowledge) and
KD45 (a logic of consistent belief). Throughout our analysis in [23,21] we use the
notion of strong provability from a theory I . In the case of a normal modal logic Λ we
write I +RN

Λ ϕ iff there is a Hilbert-style proof, where each step of the proof is a formula,
which is a tautology in L�, or an instance of K, or an instance of an axiom of Λ, or a
member of I , or a result of applying MP or RN to formulas of previous steps.

Relational Possible-Worlds Models. Normal modal logics are interpreted over rela-
tional (Kripke) models: a Kripke model M = 〈W,R, V 〉 consists of a set of possible
worlds W and a binary relation between them R ⊆ W ×W : whenever wRv, we say
that world w ‘sees’ world v. The valuation V determines which propositional variables
are true inside each possible world. Within a world w, the propositional connectives (¬,
⊃, ∧, ∨) are interpreted classically, while �ϕ is true at w iff it is true in every world
‘seen’ by w, notation: (M, w � �ϕ iff (∀v ∈ W)(wRv ⇒ M, v � ϕ)). A logic Λ is
determined by a class of models iff it is sound and complete with respect to this class; it
is known that S5 is determined by the class of Kripke models with a universal relation,
while KD45 is determined by the class of models consisting of a world which ‘sees’ a
‘cluster’ (i.e. a universally connected subset) of worlds and which does not necessarily
‘see’ itself; every model of this class has the form 〈{w} ∪W, ({w} ∪W)×W,V 〉.
Logical Omniscience. Normal modal epistemic logics suffer from the so-called log-
ical omniscience problem, which can be partly attributed to axiom K and rule RN.
Because of the latter, all tautologies are known. Also, because of the axiom K, logical
consequences of knowledge constitute knowledge, something unreasonable in realistic
situations. Note however that axiom K and axioms as simple as N.�
 are unavoidable
in Kripke models and ubiquitous in normal modal logics. See [10, Section 6] for more
details on the logical omniscience problem.

286 D. Askounis et al.

Non-normal Modal Logics. A first step towards solving the logical omniscience prob-
lem is by defining regular modal logics which contain K, but substitute rule RN
for rule

RM.
ϕ ⊃ ψ

�ϕ ⊃ �ψ

We denote by KA1 . . .AnR the regular modal logic axiomatized by axioms A1 to An.
In this case (of a regular modal logic Λ) we use again a notion of strong provability,
where the application of RN in any step of the proof is replaced by RM, and we write
I +RM

Λ ϕ. There exist classes of logic weaker than regular, namely the monotonic and
classical systems of modal logic (see [5, Part III]).

Impossible Worlds. Regular modal logics are interpreted on a strange species of pos-
sible world models; we will call them q-models here (M = 〈W,N,R, V 〉) (see [31]
for details). We now have two kinds of worlds: normal worlds (N), which behave in
the way we described above and non-normal (also called queer or impossible) worlds
(W \ N), where nothing is known/believed (�ϕ is never true there) and everything is
consistent to our state of affairs (¬�¬ϕ is always true there). Within a world w, the
propositional connectives are interpreted classically and �ϕ is true at w iff w ∈ N and
(∀v ∈W)(wRv ⇒M, v � ϕ)). Note that, by definition, the validity of �
 eliminates
all queer worlds, while the validity of ¬�
 eliminates all normal worlds.

Scott-Montague Possible Worlds Models. Impossible worlds do not avoid the effect
of K: to be able to eliminate K we have to resort to the semantics introduced inde-
pendently by D. Scott and R. Montague, also called neighborhood semantics (minimal
models in [5]). Neighborhood structures are very flexible and they are considered to be
the standard semantic tool used to reason about non-normal modal logics. In this kind of
models, which we will call n-models for brevity, each world does not ‘see’ other worlds
but it is associated to a ‘neighborhood’ of sets of possible worlds: an n-model is a triple
N = 〈W,E, V 〉, where W is any set of worlds, E is any function assigning to any
world, its sets of ‘neighboring’ worlds (i.e. E : W → P(P(W))) and V is again a val-
uation. The interpretation of any formula is exactly as in Kripke models, except of the
formulas of the form �ϕ; such a formula is true at w iff the set of worlds where ϕ holds,
belong to the possible neighborhoods of w: V (ϕ) = {v ∈ W | N, v � ϕ} ∈ E(w).

The directed graph F = 〈W,R〉, underlying a (Kripke, q-, or n-) model, is called a
frame. The theory of a (Kripke, q- or n-) model M (denoted as Th(M)) is the set of all
formulas being true in every world of M. Having a q-model, we can define a provably
pointwise equivalent n-model.

Definition 1 ([31]). Let M = 〈W,N,R, V 〉 be a q-model and NM = 〈W,E, V 〉 the
n-model, where E(w) = {X ⊆ W | Rw ⊆ X}2, if w ∈ N , and E(w) = ∅, if
w ∈W \N . NM is called the equivalent n-model produced by M.

2 Rw = {v ∈ W | wRv}.

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 287

Regular Modal Logic S5′R. In previous work [21,23], we have investigated the regular
modal logic S5′R, where S5′R = KT4�B�R axiomatized by3:

4�. �ϕ ⊃ �(�
 ⊃ �ϕ)

B�. (ϕ ∧ �
) ⊃ �¬�¬ϕ
5�. (¬�ϕ ∧ �
) ⊃ �¬�ϕ

In particular, we have investigated the proof theory of S5′R with a notion of strong
provability from premises. The property of q-models which is relevant for S5′R is:

(Uq) (∀w ∈ N)(∀v ∈ W)wRv

We will call the q-models satisfying Uq universal. The following characterization of
S5′R has been derived.

Proposition 1 ([21,23]). S5′R is strongly complete with respect to all q-frames, for
which (Uq) holds.

Context-Dependent Introspection Rules and Stable Belief Sets. Working as in [21,23],
we consider the following context-dependent versions of the modal rules mentioned up
to this point: assuming a set S of modal formulas, we denote the rules

RNc.
ϕ ∈ S

�ϕ ∈ S
NIc.

ϕ /∈ S

¬�ϕ ∈ S

RMc.
ϕ ⊃ ψ ∈ S

�ϕ ⊃ �ψ ∈ S
REc.

ϕ ≡ ψ ∈ S

�ϕ ≡ �ψ ∈ S

Stalnaker stable sets [32] are closed under propositional reasoning (i), under rule
RNc (ii) and rule NIc (iii). The following theorem gathers some of their useful proper-
ties; see [28] for a proof.

Theorem 1. 1. A Stalnaker stable set is uniquely determined by its objective (non
modal) part.

2. If a set S is stable, then it is closed under strong S5 provability 4. In particular, it
contains every instance of K, T, 4, and 5.

3. A set S is stable iff it is the theory of a Kripke model with a universal accessibility
relation.

4. A set S is stable iff it is the set of formulas believed in a world w of a KD45-model,
i.e. S is stable iff there is a KD45-model M = 〈W,R, V 〉 and (∃w ∈ W)S =
{ϕ ∈ L� |M, w � �ϕ}.

3 We warn the reader that the names we have given to the axioms are not established in the
literature and the same holds for the logic S5′

R. The first of these axioms appears in [31]
under a different name.

4 i.e. S = {ϕ ∈ L� | S S5 ϕ}.

288 D. Askounis et al.

3 Only-knowing

A stable set is intended to capture the epistemic state of a rational agent with full intro-
spective capabilities. Being interested in the knowledge of an agent if ‘all she knows is
α’ it is only natural to consider the minimum among all stable sets that contain α. How-
ever, different Stalnaker stable sets cannot strictly include one another. Based on the fact
that stable sets are uniquely determined by their propositional part, J. Y. Halpern and Y.
Moses in [13] suggest that we consider the stable set with the minimum propositional part
among those that includeα (when it exists); they then show it is equal to the theory of the
largest S5 model, among those whose theory contains α. The existence of such sets or
theories depends on the honesty of formulaα. In [13], several intuitive notions of honesty
are provided, and proven equivalent in order to support the robustness of this approach to
only-knowing. Not every formula can be ‘only known’: the archetypical HM-dishonest
formula is �p ∨ �q; there can be no ‘minimal’ epistemic state containing this formula.
In this Section, we provide respective notions for ‘only knowing’ in the context of our
versions of stable sets introduced in [21,23]. The original definitions are:

Definition 2. A formula α is HM-honestS iff there exists a stable set Sα containing α
such that Sα ∩ L ⊆ S ∩ L for all stable sets S that contain α.

Definition 3. Let Mα be the union of all S5 models M such that α ∈ Th(M).
A formula α is HM-honestM iff α ∈ Th(Mα).

Definition 4. A formula α is HM-honestK iff whenever �α ⊃ �ϕ1 ∨ ... ∨ �ϕn is
S5-valid, where ϕ1, ..., ϕn ∈ L, then �α ⊃ ϕj is S5-valid for some 1 ≤ j ≤ n.

along with a definition of honesty (HM-honestD) of algorithmic nature.

3.1 Only-Knowing with RM-stable Sets

The first variant of a stable belief set is defined by substituting RMc for RNc in
Stalnaker’s definition.

Definition 5 ([23]). A theory S ⊆ L� is called RM-stable iff

(i) PC ⊆ S and S is closed under MP

(ii) S is closed under rule RMc.
ϕ⊃ψ ∈ S

�ϕ⊃�ψ ∈ S

(iii) S is closed under rule NIc.
ϕ /∈ S
¬�ϕ ∈ S

RM-stable sets seem peculiar when compared to Stalnaker stable sets. Yet, they appear
more familiar to eyes acquainted with regular modal logics. In particular, RM-stable
sets are not uniquely determined by their ‘objective’ part; rather, they are completely
‘governed’ by a set of formulas of modal depth 1, involving the formulas that character-
ize the normal and the ‘queer’ worlds. The following ‘disjunction’ properties are very
useful.

Theorem 2 ([21]). Let S ⊆ L� be a consistent RM-stable set. Then for any formulas
ϕi, ψj , θ:

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 289

(i) �ϕ1 ∨ ... ∨ �ϕk ∨ θ ∈ S iff (θ ∈ S) or (¬�
 ⊃ θ ∈ S and ϕi ∈ S for some
i ∈ {1, ..., k})

(ii) ¬�ϕ1 ∨ ... ∨ ¬�ϕk ∨ θ ∈ S iff (�
 ⊃ θ ∈ S) or
(ϕi /∈ S for some i ∈ {1, ..., k})

(iii) �ϕ1 ∨ ... ∨ �ϕk ∨ ¬�ψ1 ∨ ... ∨ ¬�ψm ∨ θ ∈ S iff (�
 ⊃ θ ∈ S) or
(ϕi ∈ S for some i ∈ {1, ..., k}) or (ψi /∈ S for some i ∈ {1, ...,m})

Theorem 3. An RM-stable set S is uniquely determined by its formulas in S∩Q, where

Q = L ∪ {�
 ⊃ ϕ | ϕ ∈ L} ∪ {¬�
 ⊃ ϕ | ϕ ∈ L}

PROOF. So let S1, S2 be two RM-stable sets and S1 ∩ Q = S2 ∩ Q. For an arbitrary
formula ϕ we prove ϕ ∈ S1 ⇔ ϕ ∈ S2 by induction on the modal depth of ϕ. Let ϕ be
of modal depth n. By propositional reasoning, we know that ϕ ≡ ϕ1 ∧ ... ∧ ϕk where
each ϕi is of the form �a1 ∨ ...∨�am ∨¬�b1 ∨ ...∨¬�bl ∨ψ, m, l ≥ 0, the ai’s and
bi’s are formulas of smaller modal depth and ψ is a purely propositional formula. Also,
for any RM-stable set S, ϕ ∈ S ⇔ ϕ1 ∈ S & ... & ϕk ∈ S.
Base Cases: n = 0. If ϕ is propositional the claim is evident.
n = 1. We have that a1, ..., am, b1, ..., bl, ψ are propositional.
(i) ϕi is �a1 ∨ ... ∨ �am ∨ ψ. By Theorem 2 (i) ϕi ∈ S1 ⇔ (ψ ∈ S1) or (¬�
 →
ψ ∈ S1 and aj ∈ S1 for some j ∈ {1, ...,m}) ⇔ (ψ ∈ S2) or (¬�
 → ψ ∈ S2 and
aj ∈ S2 for some j ∈ {1, ...,m})⇔ ϕi ∈ S2

(ii) ϕi is ¬�b1 ∨ ... ∨ ¬�bl ∨ ψ. By Theorem 2 (ii) ϕi ∈ S1 ⇔ (�
 → ψ ∈ S1) or
(bj /∈ S1 for some j ∈ {1, ..., l)})⇔ (�
 → ψ ∈ S2) or (bj /∈ S2)⇔ ϕi ∈ S2

(iii) ϕi is �a1 ∨ ... ∨ �am ∨ ¬�b1 ∨ ... ∨ ¬�bl ∨ ψ. By Theorem 2 (iii) ϕi ∈ S1 ⇔
(�
 → ψ ∈ S1) or (aj ∈ S1 for some j ∈ {1, ...,m}) or (bj /∈ S1 for some
j ∈ {1, ..., l})⇔ (�
 → ψ ∈ S2) or (aj ∈ S2 for some j ∈ {1, ...,m}) or (bj /∈ S2

for some j ∈ {1, ..., l})⇔ ϕi ∈ S2

Induction Step: Essentially the same, we can now use the induction hypothesis instead
of the initial assumptions.

The RM-stable sets stand to S5′R in very much the same way Stalnaker stable sets stand
to S5. The following representation theorem is also very useful.

Theorem 4 ([23]). Let S ⊆ L� be a consistent theory. S is RM-stable iff there is a
q-model M = 〈W,N,R, V 〉 satisfying property (Uq) s.t. Th(M) = S. (Figure 1)

Proviso. We explicitly state that for the purposes of the rest of this section, we refer to
consistent RM-stable sets that do not contain ¬�
. The second requirement is due
to technical reasons having to do with our third notion of ‘honesty’, based on a kind of
disjunction property.
The first notion of ‘honesty’ we introduce is based on our formal representation of
the agent’s epistemic state as an RM-stable set. We seek to define the ‘minimal’ epis-
temic state for a, assuming the agent ‘only knows a’. It is now recognized [33] that
minimality-via-stability depends on the background logic, and so is the case for our
notion of RM-stability.

290 D. Askounis et al.

�

�

�

�

�

�

�

�

W

N (cluster) � �
�
�
�
���������������

�

�

�
������

Fig. 1. The S5′R ‘universal’ q-model

Definition 6. Consider an RM-stable set S and set Q as

Q = L ∪ {�
 ⊃ ϕ | ϕ ∈ L} ∪ {¬�
 ⊃ ϕ | ϕ ∈ L}

A formula α is RM-honestS iff there exists an RM-stable set Sα containing α such that
Sα ∩Q ⊆ S ∩Q for all RM-stable sets S that contain α.

The second notion of ‘honesty’ (a form of ‘information order’ [33]) involves possible
(and, in our case, also impossible) worlds, and requires that an agent ‘only knowing
α’ has the maximum set of ‘possibilities’. In our case, ‘maximum’ means the union
of all models; as noted in [30], we seek for an inclusion-maximal preferred model,
and the formulas true in the maximum model are to be considered as autoepistemic
consequences of α. We need only consider the q-models in which each world is a truth
assignment, and it is not the case that there exist multiple copies of the same world
(assignment) in the ‘normal’ and the ‘queer’ part of the model. Having that in mind, the
union of the q-models consists of a normal part (the union of the normal parts) and a
queer part (the union of the queer parts of the models).

Definition 7. Let Mα be the union of all universal q-models M such that α ∈ Th(M).
A formula α is RM-honestM iff α ∈ Th(Mα).

We are now ready to prove that the two definitions of RM-honesty coincide.

Theorem 5. Let α ∈ L�.

1. α is RM-honestS ⇐⇒ α is RM-honestM
2. Sα = Th(Mα)

PROOF. First, we show that Th(Mα) ∩Q ⊆ S ∩Q for all RM-stable sets S such that
α ∈ S. Let θ ∈ Th(Mα)∩Q and S be such a set. By Theorem 4 there exists a universal
q-model M such that Th(M) = S

– Case 1: θ ∈ L. θ is true for all worlds/valuations of Ma, which include those of M.
Hence θ ∈ Th(M) ∩ L ⊆ S ∩Q.

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 291

– Case 2: θ = �
 ⊃ ϕ, for some ϕ ∈ L. Then ϕ is true for all the normal words of
Mα, which include those of M. Hence θ ∈ Th(M)∩ {�
 ⊃ ϕ|ϕ ∈ L} ⊆ S ∩Q.

– Case 3: θ = ¬�
 ⊃ ϕ, for some ϕ ∈ L. Essentially, the same argument. ϕ is true
for all the queer words of Ma, which include those of M. Hence

θ ∈ Th(M) ∩ {¬�
 ⊃ ϕ|ϕ ∈ L} ⊆ S ∩Q

(⇒) Since Th(Mα) is an RM-stable set (Theorem 4), and the RM-stable set with that
property is unique (Theorem 3), it follows that Th(Mα) = Sα and so α ∈ Th(Mα).

(⇐) It suffices to define Sα = Th(Mα).

The following syntactic definition of RM-honesty relies on the properties of S5′R.

Definition 8. A formula α is RM-honestK iff whenever (�
 ⊃ �α) ⊃ [�((�
 ⊃
ϕ1) ∧ (¬�
 ⊃ ψ1))] ∨ ... ∨ [�((�
 ⊃ ϕn) ∧ (¬�
 ⊃ ψn))] ∨ ¬�
 is S5′R-valid,
where ϕ1, ..., ϕn, ψ1, ..., ψn ∈ L, then (�
 ⊃ �α) ⊃ (�
 ⊃ ϕj) ∧ (¬�
 ⊃ ψj) is
S5′R-valid for some 1 ≤ j ≤ n.

With the following theorem all three notions of honesty provided are proven equivalent.

Theorem 6. Let α ∈ L�.

1. α is RM-honest
S
=⇒ α is RM-honestK

2. α is RM-honestK =⇒ α is RM-honestM

PROOF. (1) Suppose a formula (�
 ⊃ �α) ⊃ [�((�
 ⊃ ϕ1) ∧ (¬�
 ⊃ ψ1))] ∨
... ∨ [�((�
 ⊃ ϕn) ∧ (¬�
 ⊃ ψn))] ∨ ¬�
 is S5′R-valid, thus, every RM-stable set
containingα must also contain �
 ⊃ �α and consequently [�((�
 ⊃ ϕ1)∧(¬�
 ⊃
ψ1))] ∨ ... ∨ [�((�
 ⊃ ϕn) ∧ (¬�
 ⊃ ψn))] ∨ ¬�
. By Theorem 2 (iii) it must also
contain (�
 ⊃ ϕj) ∧ (¬�
 ⊃ ψj) for some j. Given that α is RM-honestS, Sα is
an RM-stable set containing α, so let (�
 ⊃ ϕj) ∧ (¬�
 ⊃ ψj) ∈ Sα. Obviously
(�
 ⊃ ϕj) ∈ Sα and (¬�
 ⊃ ψj) ∈ Sα. These formulas belong to Sα ∩ Q so by
definition of RM-honest

S
they exist in every RM-stable set containing α. It follows that

(�
 ⊃ �α) ⊃ (�
 ⊃ ϕj) ∧ (¬�
 ⊃ ψj) is S5′R-valid.
(2) α involves a finite number of primitive propositions, say p1, ..., pn. We need only
consider models, whose worlds/valuations are the ones available for p1, ..., pn, so there
are at most a finite number of q-models. Now supposeα is not RM-honestM, that is there
is no maximum model of α, only a finite number of maximals, say M1, ...,Mk. With a
finite number of primitive propositions we can fully describe each world with a formula
(its valuation conjuncted with �
 or ¬�
 for being normal or queer, respectively).
Since these models are different, each Mi has a world wi, described by the formula
gi, not existing in Mi+1(modk). It is obvious that ¬gi ∈ Th(Mi+1(modk)). Also ¬gi
is of the form ¬(P ∧ �
) or ¬(P ∧ ¬�
), P propositional (conjunction of literals),
so ¬gi ∈ Q and consequently ¬gi ≡ (�
 ⊃ ¬gi) ∧ (¬�
 ⊃ ¬gi) ∈ Th(M′) for
any M′ ⊆ Mi+1(modk). These M′ over all i cover all q-models in which α is valid,
so we have that (�
 ⊃ �α) ⊃ [�((�
 ⊃ ϕ1) ∧ (¬�
 ⊃ ψ1))] ∨ ... ∨ [�((�
 ⊃
ϕn)∧(¬�
 ⊃ ψn))]∨¬�
 is an S5′R-valid formula. Since α is RM-honestK we have
that (�
 ⊃ �α) ⊃ (�
 ⊃ ¬gi)∧(¬�
 ⊃ ¬gi) is S5′R-valid for some i ∈ {1, ..., k}.
But Mi, wi |= a ∧ gi ∧ (�
 ∨ ¬�
). A contradiction.

292 D. Askounis et al.

A natural question is whether RM-honesty implies HM-honesty or vice versa. The
archetypical HM-dishonest formula �p ∨ �q is RM-dishonest too; if there was a max-
imum universal q-model for which �p ∨ �q was valid, that q-model would have zero
queer worlds i.e. it would be an S5 model. However, as the following two examples
show, neither of the aforementioned implications hold.

Proposition 2. RM-honesty � HM-honesty.

PROOF. We prove that ��
 ⊃ (�p ∨ �q) is RM-honest but HM-dishonest. Consider
the largest universal q-model possible, that is its normal and queer parts each, are a
copy of all possible truth assignments. The formula ��
 ⊃ (�p ∨ �q) is valid in this
maximum model, because ¬��
 is valid. Therefore the formula in question is RM-
honest. On the other hand, assume the formula is HM-honest i.e. there exists a minimum
(wrt to propositional formulas) stable set S than contains it. ��
 is also contained in
all stable sets, because
 is contained in all stable sets. Consequently (�p ∨ �q) ∈ S
and S is minimum i.e. (�p ∨�q) is HM-honest. We derive a contradiction.

Proposition 3. HM-honesty � RM-honesty.

PROOF. We prove that �
 ⊃ (�(¬�
 ⊃ p) ∨ �(¬�
 ⊃ q)) is HM-honest but
RM-dishonest. Consider the largest S5 model possible, that is its worlds are all possible
truth assignments. The formula in question is valid in this maximum model therefore
it is HM-honest. Next, consider universal q-models M1,M2 such that M1,M2 contain
some normal world, say w, the queer part of M1 consists of all valuations that make
p true, and the queer part of M2 consists of all valuations that make q true. It is easy
to see that �
 ⊃ (�(¬�
 ⊃ p) ∨ �(¬�
 ⊃ q)) is valid in both models but not in
M1 ∪M2.

3.2 Only-Knowing with REp-Stable Sets

The following definition introduces another notion of stability.

Definition 9 ([21,23]). S is called REp-stable iff
(i) PC ⊆ S and S is closed under MP

(ii) �
 ∈ S

(iii) S is closed under rule REc.
ϕ≡ψ ∈ S

�ϕ≡�ψ ∈ S

(iii) S is closed under NIc−p.
ϕ/∈S and ¬ϕ/∈S

¬�ϕ∈S

The following theorems are useful for understanding the structure of REp-stable sets.

Theorem 7 ([21]). Let S ⊆ L� be a consistent theory. S is REp-stable iff there is an
n-model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W)(E(w) = {W} or E(w) =
{∅,W}).

Theorem 8 ([21]). Let S be an REp-stable set. Then S is uniquely determined by its
formulas in S ∩Q, where

Q = L ∪ {�⊥ ⊃ ϕ | ϕ ∈ L} ∪ {¬�⊥ ⊃ ϕ | ϕ ∈ L}

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 293

Having proven Theorem 8 we can see a pattern emerging when we try to extend
our results for REp-stable sets. Syntactically, we know which part of these stable sets
uniquely determines them. Semantically, our representation theorem 7, show us that
the models involved also have two kinds of worlds, which can be distinguished by
some formula (�
 in the case of RM-stable sets, �⊥ in the case of REp-stable sets).
Thus we can repeat the definitions and proofs of the previous section, with only a few
changes. The exception is the ones involving the validity in some logic, as we have no
corresponding characterization for REp-stable sets. Finally, we only require our REp-
stable sets to be consistent.

Definition 10. Consider an REp-stable set S and Q as in Theorem 8. A formula α is
REp-honestS iff there exists an REp-stable set Sα containing α such that Sα ∩ Q ⊆
S ∩Q for all REp-stable sets S that contain α.

Definition 11. Let Mα be the union of all n-models M as in Theorem 7 such that
α ∈ Th(M). A formula α is REp-honestM iff α ∈ Th(Mα).

Theorem 9. Let α ∈ L�.
(i) α is REp-honest

S
⇐⇒ α is REp-honestM.

(ii) Sα = Th(Mα).

PROOF. First, we show that Th(Mα) ∩Q ⊆ S ∩Q for all REp-stable sets S such that
α ∈ S. Let θ ∈ Th(Mα) ∩ Q and S be such a set. There exists an n-model M as in
Theorem 7, such that Th(M) = S.

– Case 1: θ ∈ L. θ is true for all worlds/valuations of Ma, which include those of M.
Hence θ ∈ Th(M) ∩ L ⊆ S ∩Q

– Case 2: θ = �⊥ ⊃ ϕ, for some ϕ ∈ L. Then ϕ is true for all words w of Mα, such
that E(w) = {W,∅}, which include those of M. Hence θ ∈ Th(M) ∩ {�⊥ ⊃
ϕ|ϕ ∈ L} ⊆ S ∩Q

– Case 3: θ = ¬�⊥ ⊃ ϕ, for some ϕ ∈ L. Essentially, the same argument. ϕ is true
for all words w of Ma such that E(w) = W , which include those of M. Hence
θ ∈ Th(M) ∩ {¬�⊥ ⊃ ϕ|ϕ ∈ L} ⊆ S ∩Q

(⇒) Since Th(Mα) is an REp-stable set (Theorem 7), and the REp-stable with that
property is unique (Theorem 8), it follows that Th(Mα) = Sα and so α ∈ Th(Mα).

(⇐) It suffices to define Sα = Th(Mα).

4 Conclusions

In this paper, we have provided results which exhibit that it is completely feasible to
transfer the enterprise of ‘minimal knowledge’ approaches to the area of non-normal
(in particular, regular) modal logics. We have defined notions of ‘honesty’ and HM-
‘only knowing’ in the realm of stable epistemic states strongly connected to non-normal
modal logics with impossible worlds or Scott-Montague semantics. Other approaches
to ‘honesty’ and ‘only knowing’ exist: see [16,33,20]. However, we claim that our work

294 D. Askounis et al.

further contributes in two important directions, with a philosophical and a technical in-
terest. We bring ‘impossible’ worlds in the field of ‘minimal knowledge’ logics. This is,
of course, something that requires justification. Given the intuitive appeal of relational,
possible-worlds, epistemic semantics (where an alternative epistemic state implies epis-
temic indistinguishability), it is difficult to explain at the first place what does a ‘queer’
world represent. However, despite the (empiricist) philosophical objections against the
‘impossible’, it goes back to Hegel5 that ‘... one of the fundamental prejudices of logic
as hitherto understood .. is that the contradictory cannot be imagined or thought ...’. It
is also conceivable that impossible worlds represent contradictory states of affairs in ap-
plications of Epistemic Logic in CS, where a processor can receive highly contradictory
information from trusted sources.

Even more interesting, is the implicit adoption of the proof-theoretic machinery of
regular (and other non-normal) modal logics in our investigations for modal nonmono-
tonic reasoning. Modal NMR has been dominated hitherto by the McDermott and Doyle
paradigm, seeking for solutions T of the equation

T = CnΛ(I ∪ {¬�ϕ | ϕ /∈ T })

parameterized by the underlying monotonic modal logic Λ. The strong provability no-
tion involved in this approach, in particular Rule RN, actually suffices for providing
stable solutions in this equation and importing S5 in the agent’s expansion, indepen-
dently of the logic Λ adopted. It was found by Marek, Schwarz and Truszczyński that
there exist whole intervals in the lattice of (monotonic) modal logics that generate the
same nonmonotonic logic [27] and actually, those intervals often include subnormal
modal logics (containing the minimum set of axioms needed, the rest is left to rule
RN) unknown hitherto to modal logicians. It seems quite natural then to consider no-
tions of strong provability not involving RN and ask to what kind of logics do they
lead. It is however necessary to define and investigate the geography of candidate ex-
pansions, that is, the nature and behaviour of the epistemic states that will replace the
Stalnaker stable sets. We have made the first steps in this direction, firstly by identi-
fying variants of stable belief sets - in relation to regular logics with strong provability
from premises - and now, by transferring the HM-‘only knowing’ approach to the ‘wild’
world of RM-stable and REp-stable belief sets. In a related direction, it should be noted
that there exist recent proposals for dealing with logical omniscience [1,18] and it very
much worth considering whether (and how) some of these ideas may be grafted into
modal nonmonotonic logics.

Obviously, much remains to be done in this direction and we do hope that interesting
results will emerge.

Acknowledgments. We wish to thank the anonymous JELIA 2014 referees for their
constructive comments, important suggestions and useful pointers to similar results,
whose relation with our approach is certainly worth investigating.

5 See the ‘Stanford Encyclopedia of Philosophy’ entry on ‘Impossible Worlds’.

Only-Knowing à la Halpern-Moses for Non-omniscient Rational Agents 295

References

1. Ågotnes, T., Alechina, N.: The dynamics of syntactic knowledge. Journal of Logic and Com-
putation 17(1), 83–116 (2007)

2. Belle, V., Lakemeyer, G.: Multi-agent only-knowing revisited. In: Lin, et al. (eds.) [26]
3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical

Computer Science, vol. 53. Cambridge University Press (2001)
4. Brewka, G., Eiter, T., McIlraith, S.A. (eds.): Principles of Knowledge Representation and

Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, Rome, Italy,
June 10-14, 2012. AAAI Press (2012)

5. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press (1980)
6. Donini, F.M., Nardi, D., Rosati, R.: Ground nonmonotonic modal logics. Journal of Logic

and Computation 7(4), 523–548 (1997)
7. Fitting, M.C.: Basic Modal Logic. In: Gabbay, et al. (eds.) [8], vol. 1, pp. 368–448 (1993)
8. Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.): Handbook of Logic in Artificial Intelli-

gence and Logic Programming. Oxford University Press (1993)
9. Gabbay, D.M., Woods, J.: Logic and the Modalities in the Twentieth Century. Handbook of

the History of Logic, vol. 7. North-Holland (2006)
10. Gochet, P., Gribomont, P.: Epistemic logic. In: Gabbay, Woods (eds.) [9], vol. 7, pp. 99–195

(2006)
11. Halpern, J.: A critical reexamination of default logic, autoepistemic logic and only-

knowing. Computational Intelligence 13(1), 144–163 (1993); A preliminary version appears
in Mundici, D., Gottlob, G., Leitsch, A. (eds.): KGC 1993. LNCS, vol. 713, pp. 144–163.
Springer, Heidelberg (1993)

12. Halpern, J.: A theory of knowledge and ignorance for many agents. Journal of Logic and
Computation 7(1), 79–108 (1997)

13. Halpern, J., Moses, Y.: Towards a theory of knowledge and ignorance: Preliminary report in
Apt, K. (ed.) Logics and Models of Concurrent Systems. Springer (1985)

14. Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. Journal of Logic and Computa-
tion 11(1), 41–70 (2001)

15. Halpern, J.Y., Pucella, R.: Dealing with logical omniscience: Expressiveness and pragmatics.
Artificial Intelligence 175(1), 220–235 (2011)

16. van der Hoek, W., Jaspars, J., Thijsse, E.: Honesty in partial logic. Studia Logica 56(3),
323–360 (1996)

17. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)
18. Jago, M.: Logics for Resource-Bounded Agents. PhD thesis, University of Nottingham

(2006)
19. Janhunen, T., Niemelä, I. (eds.): JELIA 2010. LNCS, vol. 6341. Springer, Heidelberg (2010)
20. Jaspars, J.: A generalization of stability and its application to circumscription of positive

introspective knowledge. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M.
(eds.) CSL 1990. LNCS, vol. 533, pp. 289–299. Springer, Heidelberg (1991)

21. Koutras, C.D., Moyzes, C., Zikos, Y.: Syntactic reconstructions of stable belief sets. Techni-
cal report, Graduate Programme in Algorithms and Computation (2014)

22. Koutras, C.D., Zikos, Y.: On a modal epistemic axiom emerging from McDermott-Doyle
logics. Fundamenta Informaticae 96(1-2), 111–125 (2009)

23. Koutras, C.D., Zikos, Y.: Stable belief sets revisited. In: Janhunen, Niemelä (eds.) [19], pp.
221–233

24. Lakemeyer, G., Levesque, H.J.: Only-knowing meets nonmonotonic modal logic. In:
Brewka, et al. (eds.) [4]

25. Levesque, H.J.: All I Know: A study in autoepistemic logic. Artificial Intelligence 42(2-3),
263–309 (1990)

296 D. Askounis et al.

26. Lin, F., Sattler, U., Truszczynski, M. (eds.): Principles of Knowledge Representation and
Reasoning: Proceedings of the Twelfth International Conference, KR 2010, Toronto, Ontario,
Canada, May 9-13. AAAI Press (2010)

27. Marek, V.W., Schwarz, G.F., Truszczyński, M.: Modal non-monotonic logics:
Ranges,characterization, computation. Journal of the ACM 40, 963–990 (1993)

28. Marek, V.W., Truszczyński, M.: Nonmonotonic Logic: Context-dependent Reasoning.
Springer (1993)

29. Pearce, D., Uridia, L.: An approach to minimal belief via objective belief. In: Walsh (ed.)
[34], pp. 1045–1050

30. Schwarz, G.F., Truszczyński, M.: Minimal knowledge problem: a new approach. Artificial
Intelligence 67, 113–141 (1994)

31. Segerberg, K.: An essay in Clasical Modal Logic. Filosofiska Studies, Uppsala (1971)
32. Stalnaker, R.: A note on non-monotonic modal logic. Artificial Intelligence 64, 183–196

(1993) (Revised version of the unpublished note originally circulated in 1980)
33. van der Hoek, W., Jaspars, J., Thijsse, E.: Persistence and minimality in epistemic logic.

Annals of Mathematics and Artificial Intelligence 27(1-4), 25–47 (1999)
34. Walsh, T. (ed.): Proceedings of the 22nd International Joint Conference on Artificial Intelli-

gence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16-22. IJCAI/AAAI (2011)

A Complexity Assessment for Queries Involving
Sufficient and Necessary Causes�

Pedro Cabalar1, Jorge Fandiño1, and Michael Fink2

1 Department of Computer Science
University of Corunna, Spain

{cabalar,jorge.fandino}@udc.es
2 Vienna University of Technology,

Institute for Information Systems
Vienna, Austria

fink@kr.tuwien.ac.at

Abstract. In this work, we revisit a recently proposed multi-valued semantics
for logic programs where each true atom in a stable model is associated with
a set of expressions (or causal justifications) involving rule labels. For positive
programs, these causal justifications correspond to the possible alternative proofs
of the atom that further satisfy some kind of minimality or lack of redundancy.
This information can be queried for different purposes such as debugging, pro-
gram design, diagnosis or causal explanation. Unfortunately, in the worst case,
the number of causal justifications for an atom can be exponential with respect
to the program size, so that computing the complete causal model may become
intractable in the general case. However, we may instead just be interested in
querying whether some particular set of rules are involved in the atom derivation,
either as a sufficient cause (they provide one of the alternative proofs) or as a nec-
essary cause (they are mandatorily used in all proofs). In this paper, we formally
define sufficient and necessary causation for this setting and provide precise com-
plexity characterizations of the associated decision problems, showing that they
remain within the first two levels of the polynomial hierarchy.

1 Introduction

An important challenge in Knowledge Representation (KR) and Reasoning is not only
deriving conclusions from a given theory or knowledge base, but also providing expla-
nations for their derivation. This is particularly interesting in KR areas related to causal
reasoning. For instance, in diagnosis scenarios, when discrepancies between observa-
tions and predictions are found, we may be interested not only in exhibiting a set of
malfunctioning components, but also the way in which these breakdowns have eventu-
ally caused each discrepancy. Another example is legal reasoning, where determining a
legal responsibility usually involves finding out which agent (or agents) have eventually
caused a given result – checking whether the agent is involved in the explanation for

� This research was partially supported by Spanish MEC project TIN2009-14562-C05-04, by
Xunta de Galicia, Spain, grant GPC2014/070 and program INCITE 2011, Inditex-University
of Corunna 2013 grants, as well as by the Austrian Science Fund (FWF) project P24090.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 297–310, 2014.
c© Springer International Publishing Switzerland 2014

298 P. Cabalar, J. Fandiño, and M. Fink

that result is as important as the result occurrence itself. There are, however, different
degrees in which a set of events or actions A may be “involved” in the explanation for
some effect B. In some cases, A may suffice to explain B. In other cases, A alone cannot
guarantee B, but is indispensable in any explanation for the latter, i.e., it is necessary
for B. Let us illustrate these ideas with an example.

Example 1. An alarm is connected to three switches as depicted in Figure 1(a). Each
switch is operated by a different person and, at a given moment, they all accidentally
close the switches. We want to analyse the responsibility for firing a false alarm.

sw1

sw3

sw2
alarm

(a)

sw1

sw3

sw2
sw4

b

c

d

alarm

(b)

Fig. 1. A pair of circuits connecting switches and an alarm

Analysing the circuit, we find two explanations for the alarm: moving down sw1 and
sw3 together suffices to fire the alarm, and the same happens for sw2 and sw3. However,
had sw3 not been moved down, the alarm would have not been fired. That means that
closing sw3 is a necessary cause to fire the alarm, pointing out that the operator for that
switch has, somehow, a higher degree of responsibility. Consider now the elaboration
depicted in Figure 1(b) with a fourth switch and its corresponding person in charge,
and suppose again that all persons close their respective switches. The set of events
{sw1,sw3,sw4} obviously suffice to fire the alarm, since {sw1,sw3} are still sufficient
for that purpose. However, sw4 is irrelevant, and so, it does not constitute an actual
cause, whereas {sw1,sw3} is a sufficient cause since nothing can be removed from it
without ceasing to be a sufficient explanation.

Until now, we have made explanations in terms of actions, ignoring their connection
to their effects through chains of intermediate events. Suppose that we want to reflect,
for instance, the causal relation between the switch movements and the facts represent-
ing that there is current at wire points b, c or d in Figure 1(b). To this aim, we will need
to represent each explanation not just as a set of events, but as an ordered arrangement
of them instead. For instance, the final effect for sw1 is that the current reaches point d
and the complete explanation for that effect would be now the sequence sw1 ·b·d. This,
together with the action of closing sw3, is a sufficient cause for alarm. Similarly, the
joint occurrence of sw2·c·d and sw3 constitutes a second, alternative sufficient cause. A
useful way of depicting explanations is by means of directed graphs with vertices repre-
senting events and edges representing causal connections among them. Figure 2 shows
three sufficient explanations G1, G2 and G3 for alarm corresponding to the circuit in

A Complexity Assessment for Queries Involving Sufficient and Necessary Causes 299

sw1

��

sw3

��

sw2

��

sw3

��

sw2

��

sw4

��

sw3

��

b

��

c

��

c

��

b

��

d

��

d

��

d

��
alarm alarm alarm

G1 G2 G3

Fig. 2. Sufficient explanations for the alarm firing in Figure 1(b). G1 and G2 are causes.

Figure 1(b). The first two explanations G1 and G2 are sufficient causes, whereas G3 is
not a cause, since we can “remove” sw4 and b and still get the sufficient explanation G2.

In this paper, we provide a formal definition for the three1 different types of causal
relations introduced above, that is sufficient explanation, sufficient cause and necessary
cause, and study how these causal assertions can be derived from a representation in
the form of a labelled logic program. To this aim, we use a recently proposed causal
approach [1] that provides a multi-valued extension of the stable model semantics [2].
In this approach, each true atom in a stable model is associated an expression involving
rule labels, called its causal justification, that has a direct relation to sets of causal
graphs as those in Figure 2. We summarise our contributions as follows.

– We formally define the concepts of sufficient explanation, sufficient cause and nec-
essary cause for some atom (cf. Section 3).

– We show that the number of possible sufficient causes for an atom can be, in the
worst case, exponential with respect to the program size. Despite this fact, proving
exact complexity characterisations (cf. Section 4 and see Figure 3) of the asso-
ciated decision problems, we establish that sufficient queries are not harder than
traditional (brave or cautious) reasoning tasks under the stable model semantics.

positive
programs

with negation
(brave)

with negation
(cautions)

sufficient explanation P NP coNP
sufficient cause P NP coNP
necessary cause coNP Σ P

2 coNP

Fig. 3. Completeness results for deciding different types of causation in causal logic programs

1 We leave the study of actual causation (that is, events that are needed for some sufficient
cause) for future work.

300 P. Cabalar, J. Fandiño, and M. Fink

2 Background

In this section, we recall several definitions and notation from [1]. A signature is a pair
〈At,Lb〉 of sets that respectively represent atoms (or propositions) and rule labels.

The syntax is defined as follows. As usual, a literal is defined as an atom p (positive
literal) or its default negation not p (negative literal). In this paper, we will concentrate
on programs without disjunction in the head (leaving its treatment for future work).

Definition 1 (Causal logic program). Given a signature 〈At,Lb〉, a (causal) logic pro-
gram P is a set of rules of the form:

t : H ← B1, . . . ,Bn, (1)

where t ∈ Lb∪{1}, H is an atom (the head) and B1, . . . ,Bn are literals (the body). �

For any rule R of the form (1) we define label(R) def= t. We denote by head(R) def= H its
head, and by body(R) def= {B1, . . . ,Bn} its body. When n = 0 we say that the rule is a
fact and omit the symbol ‘←.’ When t ∈ Lb we say that the rule is labelled; otherwise
t = 1 and we omit both t and ‘:’. By these conventions, for instance, an unlabelled fact
p is actually an abbreviation of (1 : p ←). A logic program P is positive if it contains
no default negation.

The semantics relies on assigning, to each atom, a causal term defined as follows.

Definition 2 (Causal values). A (causal) term, t, over a set of labels Lb, is recursively
defined as one of the following expressions t ::= l | ∏S | ∑S | t1 · t2 | (t1) where l ∈ Lb,
t1, t2 are, in turn, causal terms and S is a (possibly empty and possible infinite) set of
causal terms. When S is finite and non-empty, S = {t1, . . . , tn} we write ∏S simply as
t1 ∗ · · · ∗ tn and ∑S as t1 + · · ·+ tn. Causal values are the equivalence classes of causal
terms under the axiomatic identities of distributive lattices plus those in Figure 4. The
set of causal values is denoted by VLb. �

Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

l · l = l

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c · (d ∗e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Transitivity

c ·d · e = (c ·d)∗ (d · e)
with d �= 1

Fig. 4. Properties of the ‘·’ operator (c,d,e are terms without ‘+’ and l is a label)

We assume that ‘·’ has hieger priotity than ‘∗’, and its turn ‘∗’ has higher priority than
‘+’. When S = /0, we denote, as usual ∏S by 1 and ∑S by 0. These values are the iden-
tities for the product and the addition, respectively. All three operations, ‘∗’, ‘+’ and
‘·’ are associative. Furthermore, ‘∗’ and ‘+’ are commutative and they hold the usual
absorption and distributive laws with respect to infinite sums and products of any com-
pletely distributive lattice. The behaviour of the ‘·’ operator is more specific from this

A Complexity Assessment for Queries Involving Sufficient and Necessary Causes 301

approach and is captured by the properties shown in Figure 4. Note that distributivity
with respect to the product and transitivity are applicable to terms c, d, e without sums
(this means that the empty sum, 0, is not allowed either) and idempotence is only appli-
cable to atomic labels. As usual for lattices, we define an order relation ≤ as follows:

t ≤ u iff (t ∗ u = t) iff (t + u = u)

By the identity properties of + and ∗, this immediately means that 1 is the top element
and 0 the bottom element of this order relation.

Given a signature 〈At,Lb〉 a causal interpretation is a mapping I : At −→ VLb as-
signing a causal term to each atom. We denote the set of causal interpretations by I.
For interpretations I and J we say that I ≤ J whether I(p)≤ J(p) for each atom p ∈ At.
Hence, there is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that maps
each atom p to 0 (resp. 1). The value assigned to a negative literal not p by an interpre-
tation I is defined as: I(not p) def= 1 if I(p) = 0; and I(not p) def= 0 otherwise.

We define next a simple variation of the standard Gelfond and Lifschitz’ program
reduct [2]. The reduct of program P with respect to a causal interpretation I, in symbols
PI , is the result of: (1) removing from P all rules R, s.t. I(B) �= 0 for some negative
literal B ∈ body(R); and (2) removing all negative literals from the remaining rules.

Definition 3 (Causal model). Given a positive causal logic program P, a causal in-
terpretation I is a causal stable model, in symbols I |= P, if and only if I is the ≤-least
interpretation such that (

I(B1)∗ . . .∗ I(Bn)
)
· t ≤ I(H)

for each rule R ∈ P of the form (1). An interpretation I is a causal stable model of any
program P iff I is a causal stable model of PI. �

Definition 4 (Direct consequences). Given a positive logic program P over signature
〈At,Lb〉, the operator of direct consequences is a function TP : I −→ I such that, for
any causal interpretation I and any atom p ∈ At:

TP(I)(p) def= ∑
{ (

I(B1)∗ . . .∗ I(Bn)
)
· t | (t : p← B1, . . . ,Bn) ∈ P

}
Theorem 1 (From Theorem 2 in [1]). Let P be a (possibly infinite) positive logic
program with n causal rules. Then, (i) lfp(TP) is the least model of the program P, and
(ii) lfp(TP) = TP ↑ ω (0) = TP ↑ n (0). �

3 Query Language

In order to characterise the different types of causation, we must begin first by a formal
description of causal explanations. In particular, an explanation will have the form of a
particular kind of graph involving rule labels, as defined below.

Definition 5 (Explanation or Causal graph). Given a set of labels Lb, an explanation
or causal graph (c-graph) G is a transitively and reflexively closed directed graph with a
set of vertices V ⊆ Lb and a set of edges E ⊆V ×V. The set of causal graphs is denoted
by CLb. A c-graph is cyclic if contains a (non-reflexive) cycle, acyclic otherwise. �

302 P. Cabalar, J. Fandiño, and M. Fink

Imposing reflexivity is not essential, but is more convenient for obtaining simpler defini-
tions. Transitivity, however, is crucial for defining an adequate ordering relation among
explanations with the simple use of the subgraph relation. To see why, let us consider
again the graphs G2 and G3 in Figure 2. As we explained in the introduction, G3 is a
sufficient explanation for alarm but is not a sufficient cause because G2 is also sufficient
and somehow “smaller.” In fact, G2 can be obtained by “removing” b and sw4 from G3

while respecting the rest of causal dependence relations. However, G2 is not a subgraph
of G3 since the edge (c,d) is not present in the latter. To capture this idea of being
smaller as a result of “removing parts” we must use instead the transitive closures: the
transitive closure of G2 is indeed a subgraph of the transitive closure of G3.

For any c-graph G we define an associated causal term term(G) as follows:

term(G) def= ∏{ v1 · v2
∣∣ (v1,v2) is an edge of G }

Definition 6 (sufficient explanation, sufficient cause, necessary cause). Given an in-
terpretation I and an atom p we say that a c-graph G is

– a sufficient explanation for p iff term(G)≤ I(p)
– a sufficient cause of p iff it is a subgraph-minimal sufficient explanation for p
– a necessary cause of p iff it is a subgraph of all sufficient causes of p and I(p) �= 0.�

Example 2 (Ex. 1 continued). A possible representation of the circuit in Figure 1(b) is
the logic program P1 containing the following causal rules:

alarm : alarm(T) ← down(sw3,T), current(c,T)

b : current(b,T) ← down(sw1,T)

c : current(c,T) ← down(sw2,T)

d : current(d,T) ← current(b,T)

d : current(d,T) ← current(c,T)

down(X ,T) ← m(X ,d,T)

up(X ,T) ← m(X ,u,T)

plus the corresponding inertia rules for atoms up and down (we consider that the rest of
the fluents are non-inertial, and so, false by default):

up(X ,T+1)← up(X ,T),not down(X ,T+1) down(X ,T+1)← down(X ,T),not up(X ,T+1)

where X is any switch number X ∈ {1,2,3,4} and T is a natural number representing a
time instant. Atoms m(X ,D,T) represent the action of moving switch X up ‘u’ or down
‘d’ at time instant T . Consider now a story where, initially, all switches are up, then sw1

and sw2 are closed in Situation 1, then sw3 is closed at 3 and finally sw4 closed at 4.
The following set of facts, added to P1, captures this scenario:

up(sws,0) for s ∈ {1,2,3}
sw1 : m(sw1,d,1) sw2 : m(sw2,d,1) sw3 : m(sw3,d,3) sw4 : m(sw4,d,4)

In the least model I of P1, I(alarm) = (sw1·b·d ∗sw3) ·alarm+(sw2·c·d ∗sw3) ·alarm.
The correspondence between the left and right operands in the addition above with c-
graphs G1 and G2 in Figure 2 is easy to see. For instance sw1 ·b·d corresponds to the
left branch of G1, sw3 to the right one and alarm is its root. In fact, it can be shown, by
successive application of algebraic equivalences in Figure 4, that

A Complexity Assessment for Queries Involving Sufficient and Necessary Causes 303

term(G1) = (sw1 ·b·d ∗ sw3) ·alarm and term(G2) = (sw2 ·c·d ∗ sw3) ·alarm

In other words, I(alarm) = term(G1)+term(G2) in the only causal stable model. Now,
it is also easy to see, by idempotence of addition, that term(G1)+ I(alarm) = I(alarm)
which implies that term(G1)≤ I(alarm). According to Definition 6, this means that G1

is, as we mentioned in the introduction, a sufficient explanation for alarm. Furthermore,
no subgraph of G1 is a sufficient explanation for p and consequently G1 is also a suffi-
cient cause of p. By a similar observation, G2 is also a sufficient cause of p and it can
be checked that, apart from G1 and G2, no other c-graph is a sufficient cause of p. �

In the previous example, the causal term for alarm obtained in the unique stable
model of the program was equal to the sum of all terms associated with its suffi-
cient causes. In fact, this constitutes a general property, as stated below.

Theorem 2. Given an interpretation I and an atom p, the following holds:

– I(p) = ∑
{

term(G)
∣∣ G is a sufficient cause of p

}
, and

– any c-graph G is a necessary cause of p (Def. 6) iff I(p)≤ term(G) and I(p) �= 0. �

Finally, for a program with negation and its possible stable models, we define, as
usual, cautious and brave versions of the three types of explanations defined before.

Definition 7. Given a causal logic program P, an explanation of any type (sufficient
explanation, sufficient cause or necessary cause) for an atom p is further said to be
brave (resp. cautious) if it constitutes an explanation of that same type for p in some
(resp. every) stable model of P. �

4 Complexity Assessment

The table in Figure 3 summarizes our complexity assessment (completeness results).
Each row represents a query type – sufficient explanation, sufficient cause and necessary
cause. The first column contains results for positive programs (unique stable model),
whereas the second and the third columns respectively show the results for brave and
cautions reasoning for programs with negation. Note that for sufficient queries the com-
plexity is the same as for checking the truth of an atom in standard stable model seman-
tics. Subesequently, we establish these results formally, starting with membership.

In order to check whether a c-graph G is, for instance, a brave (resp. cautious) suf-
ficient cause of a given atom p for a program P we can begin computing the standard
(non-causal) stable models of P. Since the causal reduct removes negations depend-
ing on whether negated atoms are 0 or different from 0 and there exists a one-to-one
correspondence between causal stable models and standard stable models (see [1] for
more details), we can build the reduct PJ using each non-causal stable model J and then
proceed to compute its least causal model iterating the direct consequences operator
for that reduct, TPJ . Due to [1, Theorem 6], there is a 1-to-1 correspondence between
least causal models obtained in this way and causal stable models of the program. Now
it would remain to check whether term(G) ≤ I(p) in some (resp. every) causal stable
model I. Unfortunately, comparing two arbitrary causal terms t and t ′ is not an easy task

304 P. Cabalar, J. Fandiño, and M. Fink

(in fact it is coNP-hard). A naive approach for that comparison would be rewriting t and
t ′ in a normal form where ‘·’ and products are not in the scope of additions, something
that can be always achieved by applying distributive laws of ‘·’ and ‘∗’ with respect to
‘+’. Once in that normal form, comparison is more or less straightforward (Σti ≤ Σt ′j iff
for each term ti there is some t ′j ≥ ti, and comparing terms just containing products and
‘·’ is a simple task). However, applying distributivity may easily blow up complexity.
Consider the positive program P2 consisting of the rules:

a : p1

c : q1

b : p1

d : q1

mi : pi ← pi−1, qi−1 for i ∈ {2, . . . ,n}
ni : qi ← pi−1, qi−1 for i ∈ {2, . . . ,n}

It is easy to see that the interpretations of atoms p1 and q1 in the least causal model I of
P2 are a+ b and c+ d, respectively. The interpretation for p2 corresponds to:

I(p2) = (I(p1)∗ I(q1)) ·m2 = ((a+ b)∗ (c+ d)) ·m2

= (a ∗ c) ·m2 + (a ∗ d) ·m2 + (b ∗ c) ·m2 + (b ∗ d) ·m2

This addition cannot be further simplified. Thus, by Theorem 2, the four summands
above are sufficient causes for p2. Analogously, I(q2) can also be expressed as a sum of
four sufficient causes – we just replace m2 by n2 in I(p2). But then, I(p3) corresponds
to (I(p2) ∗ I(q2)) ·m3 and, applying distributivity, this yields a sum of 4× 4 sufficient
causes. In the general case, each atom pn or qn has 22n−1

sufficient causes so that ex-
panding the complete causal value into this additive normal form becomes intractable.

Program P2 also reveals another issue. Even if distributivity is not applied, the causal
terms directly obtained by the TPJ operator for p2 and q2 require 4 operators, the causal
terms for p3 and q3 require 10, I(p3) = ((a+ b) ∗ (c+ d)) ·m2 ∗ ((a+ b) ∗ (c+ d)) ·
n2

)
·m3 and, in general, the terms for pn or qn would require 2n + 2n−1− 2 operators.

However, an interesting observation is that subterm (a1 + b1)∗ (c1 + d1) occurs twice in
I(p3) above, and the same happens for I(q3). This subterm will occur four times in the
causal terms for atoms p4 and q4. Avoiding repetitions will allow us computing the least
model of TPJ in polynomial time (and thus, using a polynomial number of operators to
represent it).

·
le f t�����
���

��

right ����
���

���

∗

�����
���

��

����
���

��� m3

· le f t

����
���

���right

		���
���

�� ·le f t

�����
���

�� right

����
���

���

m2 ∗
�����

���
�

����
���

�� n2

+

�����
�

		

	 +

�����
�

a b c d

Fig. 5. The t-graph associated to I(p3) in program P2

A Complexity Assessment for Queries Involving Sufficient and Necessary Causes 305

Definition 8 (Term and interpretation graph). Given a set of labels Lb, a term graph
(t-graph) T̃ = 〈V,E, fV , fE ,vr〉 is a rooted, connected and labelled directed graph with
a set of vertices V , edges E, root vr ∈V and label functions fV : V −→ Lb∪{1,+,∗, ·}
and fE : E −→ {le f t,right} such that

1. all leafs are labelled with unitary causes (a label in Lb or 1),
2. all non-leaf nodes are labelled with operators
3. for any vertex labelled with the application operator ‘·’ there are exactly two out-

going edges labelled ‘le f t’ and ‘right’ being the target for the latter a leaf node.
The rest of edges in the graph are unlabelled. �

Each vertex in a t-graph T̃ represents a corresponding causal term as follows:

termT̃ (v) = fV (v) for any leaf v in T̃

termT̃ (v)
def= ∑{ term(v′)

∣∣ (v,v′) ∈ E } if fV (v) = +

termT̃ (v)
def= ∏{ term(v′)

∣∣ (v,v′) ∈ E } if fV (v) = ∗
termT̃ (v)

def= termT̃ (u) · termT̃ (w) if fV (v) = · and fE(v,u) = le f t

and fE(v,w) = right

The term associated to a t-graph T̃ is the term associated with its root vertex vr. As an
example, Figure 5 represents the t-graph corresponding to I(p3) in the last example.
We also extend these notions to interpretations. For an interpretation I, a term inter-
pretation (t-interpretation) Ĩ is just a function mapping each atom p ∈ A to a t-graph
T̃ such that I(p) = term(Ĩ(p)) for any atom p. We can now compute the least model
of a positive program by iterating, a new direct consequences operator T̃P defined as
T̃P(Ĩ)(p) def= 〈Vp,Ep, fV,p, fE,p,vp〉 where:

Vp
def=

⋃
{ VĨ(R) ∪{vp}

∣∣ R ∈ P, head(R) = p }
Ep

def=
⋃
{ EĨ(R)∪{(vp,vR)}

∣∣ R ∈ P, head(R) = p }
VĨ(R)

def=
⋃{

VĨ(q)

∣∣ q ∈ body(R)
}
∪
{

vR,wR,vl
}

EĨ(R)
def=

⋃{
EĨ(q)∪{(wR,vĨ(q))}

∣∣ q ∈ body(R)
}
∪
{
(vR,wR)),(vR,wl)

}

fV,p(v)
def=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+ if v = vp

· if v = vR

∗ if v = wR

label(R) if v = wl

fV,Ĩ(q)(v) if v ∈VĨ(q)

fE,p(e)
def=

⎧⎪⎨⎪⎩
le f t if e = (vR,wl)

right if e = (vR,wR)

fE,Ĩ(q)(e) if e ∈ EĨ(q)

and, for any atom q, VĨ(q), EĨ(q), fV,Ĩ(q), fE,Ĩ(q), vĨ(q) are respectively the set of vertices,
edges, the label functions of vertices and edges and the root of the t-graph Ĩ(q).

Theorem 3. Let P be a positive logic program with n rules, and let I be its least model.
Then I(p) = term(T̃P ↑ n (0̃)(p)) for all atoms p. Moreover, T̃P ↑ n (0̃)(p) is computable
in polynomial time with respect to the size of P. �

306 P. Cabalar, J. Fandiño, and M. Fink

Theorem 3 builds on a polynomial time computable procedure to obtain the least model
of a positive program P. We exploit now the fact that the term associated to a c-graph
has no sums to define a boolean function sufficient(G, T̃ ,v, l) that can be recursively
computed as follows:

(1)
∨{ sufficient(G, T̃ ,vi, l)

∣∣ (v,vi) ∈ E } aa if fV (v) = +
(2)

∧{ sufficient(G, T̃ ,vi, l)
∣∣ (v,vi) ∈ E } if fV (v) = ∗

(3) sufficient(G, T̃ ,vl , lr) if fV (v) = ·, fE(v,vl) = le f t,
fE(v,vr) = right, fV (vr) = lr and
(lr, l) ∈ G

(4) true if fV (v) = l′ ∈ Lb, l �= 1 and (l′, l) ∈ G
(5) sufficient(G, T̃ ,vl , l) if fV (v) = ·, fE(v,vl) = le f t,

fE(v,vr) = right and fV (vr) = 1
(6) true if fV (v) = 1 and l = 1
(7) true if fV (v) = 1, l �= 1 and (l, l) ∈ G
(8) true if fV (v) = l′ ∈ Lb, l = 1 and (l′, l′) ∈ G
(9) f alse otherwise

sufficient(G, T̃ ,v, l) computes whether, for a c-graph G, it holds that term(G)≤ t·l where
t is the term associated with the subgraph of T̃ whose root is v. Note that cases 5-8
only perform the necessary simplifications when some vertex is 1. Then, if we define
sufficient(G, T̃) def= sufficient(G, T̃ ,root(T̃),1), the following result holds:

Theorem 4. Given an interpretation I and a t-interpretation Ĩ, a causal graph G is a
sufficient explanation for an atom p with respect to I iff sufficient(G, Ĩ(p)) = true. �

Corollary 1. Given a positive causal logic program P, a causal graph G, and an atom
p, deciding whether G is a sufficient explanation for p with respect to its least model is
feasible in polynomial time. �

In order to decide whether an acyclic causal graph is a sufficient cause, we recall
that the transitive reduction of a directed graph G is another graph that preserves the
reachability relation of G with a minimal set of edges. Deciding whether a c-graph G is
a sufficient cause of some atom p in the least model of a program P can be done by:
1. checking whether G is a sufficient explanation for p
2. computing the transitive reduction GR of G
3. computing the set SR of graphs obtained from GR by removing one of its edges
4. computing the set S obtained from the transitive closures of all graphs in SR

5. checking for every causal graph G′ in S that it is not a sufficient explanantion for p.

Theorem 5. Given a positive logic program P, an acyclic causal graph G, and an atom
p, deciding whether G is a sufficient cause of p with respect to its least model is feasible
in polynomial time. �

We consider now sufficient explanation and sufficient cause queries for programs
with negation using the following nondeterministic procedure:
1. guessing a set of atoms J
2. checking whether J is the least classical model of the reduct PJ (ignoring labels)
3. checking whether G is a sufficient explanation for (resp. cause of) p w.r.t. PJ

A Complexity Assessment for Queries Involving Sufficient and Necessary Causes 307

This will succeed for some (resp. all) sets J iff G is a sufficient explanation for/cause of
p with respect to some (resp. all) causal stable model(s) of P. Consequently we have the
following membership results for brave (resp. cautions) sufficient explanations/causes:

Theorem 6. Given a program P, deciding whether a c-graph G is a brave (resp. cau-
tious) sufficient explanation is in NP (resp. in coNP). Deciding whether it is a sufficient
cause of an atom p is in NP (resp in coNP) when it G is acyclic. �

In a similar way, we can decide whether G is a necessary cause as follows:

1. guess a set of atoms J and a causal graph G′

2. check whether J is the least classical model of the reduct of PJ (ignoring labels)
3. succeed if J does not contain p
4. check whether G′ is a sufficient explanation of p w.r.t. PJ

5. check whether G is not a subgraph of G′

This procedure succeeds iff G is not a cautious necessary cause of p with respect to
program P yielding the following result:

Theorem 7. Given a causal logic program P, deciding whether a c-graph G is a cau-
tious necessary cause of an atom p is in coNP. �

Finally, we can check brave necessary causation for an atom p by:

1. non-deterministically guessing a set of atoms J,
2. checking whether J is the least classical model of the reduct PJ (ignoring labels)
3. checking with an NP-oracle (Theorem 7) whether G is necessary for p w.r.t. PJ

This will succeed iff G is necessary for p with respect to some stable model of pro-
gram P. Hence, the problem can be decided non-deterministically in polynomial time
with an NP-oracle (NPNP = ΣP

2):

Theorem 8. Given a causal logic program P, deciding whether a c-graph G is a brave
necessary cause of an atom p is in ΣP

2 . �

Turning to hardness, first note that any standard logic program is also an unlabelled
causal logic program and an atom p is true in the former iff the empty c-graph (causal
term 1) is a sufficient explanation (resp. a sufficient cause) for p. Therfore, the following
result trivially follows:

Theorem 9. Given a causal logic program P, deciding whether a c-graph G is a brave
(resp. cautious) sufficient explanation or sufficient cause of some atom p is NP-complete
(resp coNP-complete). Furthermore, P-hardness holds when P is positive. �

Let us next turn to the complexity results for necessary cause decision problems and
show that they are tight too. First, we show that deciding whether a c-graph G is a brave
necessary cause of some atom is ΣP

2 -hard by constructing a log-space reduction of de-
ciding the truth of any quantified boolean formula of form ϕ = ∃y1, . . . ,yn∀x1, . . . ,xm ρ ,
where ρ = ψ1∨ . . .∨ψr and each ψi = Li1∧Li2 ∧Li3 is a conjunction of three literals
Li j over atoms y1, . . . ,yn,x1, . . . ,xm, to a causal logic program Pϕ as follows:

308 P. Cabalar, J. Fandiño, and M. Fink

xk : xk for each k ∈ {1, . . . ,m}
t : t

xk : ψi ← t if Li j = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← xk if Li j = xk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

ρ ← ψ1, . . . , ψr

yk ← not yk for each k ∈ {1, . . . ,n}
yk ← not yk for each k ∈ {1, . . . ,n}

f : ψi ← yk, t if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
f : ψi ← yk, t if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

ψi ← yk if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}
ψi ← yk if Li j = yk for each i ∈ {1, . . . ,r}, j ∈ {1,2,3}

Obviously this transformation can be done using logarithmic space. Moreover, it can
be shown that ϕ is true if and only if the c-graph Gt f formed by the edge (t, f) is a
necessary cause of atom ρ . To wit, first observe that I(ψi) =σI(Li1)+σI(Li2)+σI(Li3),
for any causal stable model I of Pϕ , and therefore

I(ρ) =∑
{

σI(L1 j1)∗ . . .∗σI(Lr jr)
∣∣ ji ∈ {1,2,3}

}
where

σI(xk) = t · xk

σI(xk) = xk · f

σI(yk) = t · f if I |= yk

σI(yk) = t · f if I �|= yk

σI(yk) = 1 if I �|= yk

σI(yk) = 1 if I |= yk

The value assigned to atom ρ corresponds to the conjunctive normal form of for-
mula ρ , replacing

∧
by ∑, ∨ by ∗ and Li ji by σI(Li ji). Clearly, ∀x1, . . . ,xm ρ is true

if and only if all disjunctions of its conjunctive normal form are valid. The latter is
the case for a disjunction if it contains an existential variable yk assigned to true or
two complementary literals of an universal variable xk. Intuitively, every causal stable
model I encodes an assignment to the existential variables y1, . . . ,yn. If some yk is as-
signed to true, then σI(yk) = t · f . Thus, with every disjunction L1 j1∨ . . .∨ yk ∨ . . .Lr jr
containing variable yk, the value σI(L1 j1)∗ . . .∗ t · f ∗ . . .σI(Lr jr) is associated, which
is obviously smaller than t · f . The same also applies to every disjunction contain-
ing the literal yk when yk is assigned to false. Moreover, disjunctions of the form of
L1 j1∨ . . .∨ xk∨ . . .∨ xk ∨ . . .∨Lr jr , i.e., containing complementary literals over an uni-
versal variable, are assigned a causal term σI(L1 j1)∗ . . .∗ t ·xk ∗ . . .∗ xk· f ∗ . . .∗σI(Lr jr),
which also is smaller than t · f . As a consequence, formula ϕ is true if and only if
there exists some causal stable model I (corresponding to an assignment on variables
y1, . . . ,yn) such that I(p)≤ t· f (i.e., formula ∀x1, . . . ,xm ρ is true under this assignment).
The latter is equivalent to deciding whether the causal graph Gt f is a brave necessary
cause of p (cf. Theorem 2).

Finally note that, for n = 0, i.e., when there are no existentially quantified variables,
deciding whether ϕ is true is coNP-hard and Pϕ becomes positive. Therefore:

Theorem 10. Given a program P, a c-graph G, and an atom p, deciding whether there
exists a causal stable model of P such that G is a necessary cause of p is ΣP

2 -complete
(coNP-complete when P is positive). �

A Complexity Assessment for Queries Involving Sufficient and Necessary Causes 309

It is worth to mention that, concerning causal queries, natural problems usually
involve acyclic causal graphs. Indeed, for sufficient causal queries we are imposing
acyclicity, since otherwise the complexity raises from NP-complete to Σ2

P-complete for
brave reasoning and from polynomial to coNP-complete when the program is positive2.
Note also that, at a first sight, the coNP result for cautious reasoning about necessary
causes may seem surprising, as brave reasoning is Σ2

P. The reason for this is that cau-
tious reasoning (“‘for all models ...”) and necessary causation (“for all sufficient causes
...”), are universal properties and, while these two sources of complexity are not inde-
pendent, a witnessing (polynomially checkable) counter-example to their conjunction
can be found.

5 Related Work and Conclusions

In this work, we have revisited a recent proposal for causal semantics in logic pro-
gramming [1] that assigns a causal explanation to each true atom in a stable model,
providing formal definitions for three different causal relationships: being a “sufficient
explanation”, being a “sufficient cause” and being a “necessary cause”. We have shown
that, while obtaining the complete causal explanation of an atom has exponential cost,
querying whether some cause of p is of any of these three types remains within the first
two levels of the polynomial hierarchy (see Figure 3). Although these results could be
reasonable or sometimes even expected, their real significance is that they affirm the
adequacy of the causal semantics proposed. In fact, this complexity study has led us to
disregard a weaker approach previously considered in [3] where causal explanations did
not guarantee transitivity, since this lack actually yielded higher complexity bounds.

The types of causation defined in the current paper are directly inspired by Hall’s
classification [4]. In that paper, a sufficient explanation is just called “being sufficient”
whereas a sufficient cause is said to be “minimally sufficient.” There are also other re-
lated works on explanations for logic programs as provided by approaches to debugging
in ASP [5,6,7,8], approaches for justifications [9,10,11] or provenance and causality in
datalog and databases [12,13,14]. Apart from establishing formal comparisons to these
approaches, future work will be focused on three different directions. The next imme-
diate step is implementing the query language to allow queries for positive programs
and brave and cautious reasoning for programs with negation. A second line of research
is completing the query language and the complexity assessment for actual causation.
An actual cause, in the sense of Mackie [15] can be easily defined in this setting as
any cause (or causal graph) that is stronger than (i.e., it is a subgraph of) some suffi-
cient cause. This concept can be sometimes convenient since, in order to query if some
graph is a sufficient cause, we must provide its complete description, including inter-
mediate events, while for actual causation, we could just check if a partial description
of that cause is involved in one of the sufficient explanations. Finally, our most chal-
lenging goal is incorporating this type of causal relationships as a new type of literals
in program bodies. This would allow representing problems of the form “if sw3 was a
necessary cause for alarm then operator for sw3 must be penalized” directly as logic
program rules.

2 We omit the proofs because of space limitations.

310 P. Cabalar, J. Fandiño, and M. Fink

References

1. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of logic programs. In: Proc.
of the 30th Intl. Conf. on Logic Programming (ICLP 2014) (to appear, 2014)

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski,
R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth International Conference
and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge (1988)

3. Cabalar, P., Fandinno, J.: An algebra of causal chains. In: Proc. of the 6th Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP 2013) (2013)

4. Hall, N.: Two concepts of causality, pp. 181–276 (2004)
5. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: Meta-programming technique for debugging

answer-set programs. In: Proc. of the 23rd Conf. on Artificial Inteligence (AAAI 2008),
448–453 (2008)

6. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming 9(1), 1–56 (2009)

7. Schulz, C., Sergot, M., Toni, F.: Argumentation-based answer set justification. In: Proc. of
the 11th Intl. Symposium on Logical Formalizations of Commonsense Reasoning (Common-
sense 2013) (2013)

8. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic programming. In:
Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 530–542. Springer,
Heidelberg (2013)

9. Pereira, L.M., Aparı́cio, J.N., Alferes, J.J.: Derivation procedures for extended stable models.
In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference
on Artificial Intelligence, pp. 863–869. Morgan Kaufmann (1991)

10. Denecker, M., De Schreye, D.: Justification semantics: A unifiying framework for the seman-
tics of logic programs. In: Proc. of the Logic Programming and Nonmonotonic Reasoning
Workshop, pp. 365–379 (1993)

11. Vennekens, J.: Actual causation in cp-logic. TPLP 11(4-5), 647–662 (2011)
12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the

Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pp. 31–40. ACM (2007)

13. Green, T.J.: Containment of conjunctive queries on annotated relations. Theory of Computing
Systems 49(2), 429–459 (2011)

14. Meliou, A., Gatterbauer, W., Halpern, J.Y., Koch, C., Moore, K.F., Suciu, D.: Causality in
databases. IEEE Data Eng. Bull. 33(EPFL-ARTICLE-165841), 59–67 (2010)

15. Mackie, J.L.: Causes and Conditions, vol. 2 (1965)

Inductive Learning of Answer Set Programs

Mark Law, Alessandra Russo�, and Krysia Broda

Department of Computing, Imperial College London, United Kingdom
{mark.law09,a.russo,k.broda}@imperial.ac.uk

Abstract. Existing work on Inductive Logic Programming (ILP) has
focused mainly on the learning of definite programs or normal logic pro-
grams. In this paper, we aim to push the computational boundary to
a wider class of programs: Answer Set Programs. We propose a new
paradigm for ILP that integrates existing notions of brave and cautious
semantics within a unifying learning framework whose inductive solu-
tions are Answer Set Programs and examples are partial interpretations
We present an algorithm that is sound and complete with respect to
our new notion of inductive solutions. We demonstrate its applicabil-
ity by discussing a prototype implementation, called ILASP (Inductive
Learning of Answer Set Programs), and evaluate its use in the context of
planning. In particular, we show how ILASP can be used to learn agent’s
knowledge about the environment. Solutions of the learned ASP program
provide plans for the agent to travel through the given environment.

Keywords: Inductive Reasoning, Learning Answer Set Programs, Non-
monotonic Inductive Logic Programming.

1 Introduction

For more than two decades, Inductive Logic Programming (ILP) [10] has been
an area of much interest. Significant advances have been made both on new algo-
rithms and systems (e.g. [15,8,1,11,12]) and proposals of new logical frameworks
for inductive learning (e.g. [13,16]). In most of these approaches an inductive
learning task is defined as the search for an hypothesis that, together with a
given background knowledge, explains a set of observations (i.e. examples). Ob-
servations are usually grouped into positive (E+) and negative (E−) examples,
and an inductive solution is defined as an hypothesis H that is consistent with
the background knowledge B and that, together with B, entails the positive ex-
amples (B∪H |= e for every e ∈ E+) and does not entail the negative examples.

As stated in [16], this semantic view of inductive learning may be too “strong”.
When B ∪ H accepts more than one (minimal) model, it restricts solutions to
be only those hypotheses H for which the given observations are true in the
intersection of all models of B ∪H . Both Brave Induction [16] and Induction of
Stable Models [13] applied induction to the stable model semantics [6] such that
in situations when B ∪ H has more than one stable model, it is just necessary
to guarantee that each example is true in at least one stable model of B ∪ H .

� This research is partially funded by the 7th Framework EU-FET project 600792
“ALLOW Ensembles”, and the EPSRC project EP/K033522/1 “Privacy Dynamics”.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 311–325, 2014.
c© Springer International Publishing Switzerland 2014

312 M. Law, A. Russo, and K. Broda

Their notion of examples is, however, very specific: in [16] there is only one
example defined as a conjunction of atoms, and in [13] examples are partial
interpretations. When B ∪H has multiple stable models, literals may be true in
all models, some of, or none of them, and sometimes only a specified number of a
particular set of literals should be true. Neither Brave Induction, nor Induction
of Stable Models, is able to express through examples that a literal should be
true in all/no stable models. To allow for hypotheses that are ASP programs, a
more expressive notion of examples and inductive solution is therefore needed.

1 3
4 1

2
4 1 2

(a)
1 1
3 1

2
3

(b)
1 2

4

1
2

1
3

(c)
1 4 2 3
3 2 4 1
2 1 3 4
4 3 1 2

(d)

Fig. 1. (a) valid partial grid; (b/c) invalid partial grids; (d) valid complete grid

Consider a simplified version of a sudoku game where the grid includes only
sixteen cells. Let us assume that basic definitions of cell, same row, same col
and same block (true only for two different cells in the same row/column/block)
are given as background knowledgeB expressed as an ASP program, and that the
task is to learn an hypothesis H such that the Answer Sets of B ∪H correspond
to the valid sudoku grids. A possible hypothesis would be the ASP program:

1 { value(1, C), value(2, C), value(3, C), value(4, C) } 1 :- cell(C).

:- value(V, C1), value(V, C2), same_col(C1, C2).

:- value(V, C1), value(V, C2), same_row(C1, C2).

:- value(V, C1), value(V, C2), same_block(C1, C2).

To learn this program, single literal examples such as value(1, cell(1, 1)) would
not be enough, as value(1, cell(1, 1)) being valid depends on the values of the
other cells. Examples should therefore be (partial) grids, e.g. Figure 1(a), and
the learned hypothesis, H , should be such that for every example E, B ∪ H
has an Answer Set corresponding to a complete grid that extends E. It is
not sufficient to consider only (positive) examples of what should be an An-
swer Set of B ∪ H : no matter how many examples we give, the hypothesis
0{value(1, C), value(2, C), value(3, C), value(4, C)}4 ← cell(C) will always be
in the solution space. Each valid sudoku board would be an Answer Set of this
hypothesis; however, this is also true for invalid boards, such as those in Figure 1
(b) and (c). What is needed is the use of negative examples. In the sudoku game,
negative examples would be invalid partial boards (e.g., Figure 1 (b) and (c)).

In Section 3 we propose a new paradigm for inductive learning, called Learn-
ing from (partial) Answer Sets. Our approach integrates notions of brave and
cautious semantics within a unifying learning framework whose inductive solu-
tions are ASP programs and both positive and negative examples are (partial)
interpretations. Inductive solutions are ASP programs that together with a given
background knowledge B have at least one Answer Set extending each positive
example (this could be a different Answer Set for each example), and no Answer

Inductive Learning of Answer Set Programs 313

Set which extends any negative example. The use of negative examples is what
differentiates our approach from Brave Induction or Induction of Stable Mod-
els. In fact, neither of these two existing approaches would be able to learn the
three constraints for the sudoku problem, but our approach can solve any Brave
Induction or Induction of Stable Models task. In addition, in our framework
negative examples drive the learning of constraints, or the learning of bounds on
aggregates. In Section 4 we present our algorithm, ILASP, and argue its sound-
ness and completeness with respect to our new notion of inductive learning. In
Section 5 we investigate its applicability to a planning problem. We conclude the
paper with a review of the related work and a discussion of future directions.

2 Background

We assume the following subset of the ASP language. A literal can be either an
atom p or its default negation not p (often called negation as failure). A normal
rule is of the form h ← b1, . . . , bn, not c1, . . .not cm where h is called the head,
b1, . . . , bn, not c1, . . .not cm (collectively) is called the body, and all h, bi, and cj
are atoms. A constraint is of the form ← b1, . . . , bn, not c1, . . . not cm. A choice
rule is an expression of the form l{h1, . . . , hm}u ← b1, . . . , bn, not c1, . . .not cm
where the head l{h1, . . . , hm}u is called an aggregate. In an aggregate l and u
are integers and hi, for 1 ≤ i ≤ m, are atoms. A variable V occurring in a rule R
is said to be safe if V occurs in at least one positive literal in the body of R; for
example, X is not safe in the rules p(X)← q(Y), not r(Y); or p← q, not r(X).

An Answer Set Program P is a finite set of normal rules, constraints and choice
rules. Given an ASP program P , the Herbrand Base of P , denoted asHBP , is the
set of all ground (variable free) atoms that can be formed from the predicates and
constants that appear in P . When P includes only normal rules, a set A ⊆ HBP

is an Answer Set of P iff it is the minimal model of the reduct PA (constructed
from the grounding of P by removing any rule whose body contains a literal
not ci where ci ∈ A, and removing any negative literals in the remaining rules).
An Answer Set satisfies a ground constraint ← b1, . . . , bn, not c1, . . . not cm if
{b1, . . . , bn} �⊆ A or A ∩ {c1, . . . cm} �= ∅. Informally, given a ground choice
rule l{h1, . . . , hm}u← b1, . . . , bn, not c1, . . . not cm if the body is satisfied by A,
then the rule has the effect of generating all Answer Sets in which l ≤ |A ∩
{h1, . . . , hm}| ≤ u. For a formal definition of the semantics of choice rules, the
reader is referred to [5]. Throughout the paper we will denote with AS(P) the
set of all Answer Sets of P .

Definition 1. A partial interpretation E is a pair E = 〈Einc, Eexc〉 of sets of
ground atoms, called the inclusions and exclusions respectively. An Answer Set
A extends 〈Einc, Eexc〉 if and only if (Einc ⊆ A) ∧ (Eexc ∩A = ∅).

A partial interpretation E is bravely entailed by a program P if and only if there
exists an Answer Set A ∈ AS(P) such that A extends E. E is cautiously entailed
by P if and only if every Answer Set A ∈ AS(P) extends E.

314 M. Law, A. Russo, and K. Broda

3 Learning from Answer Sets

In this section we formalize our new paradigm of Learning from (partial) Answer
Sets. We assume background knowledge and hypotheses to be ASP programs
expressed using the ASP language defined in Section 2.

In an ILP task, the expressivity of the hypothesis space is defined by the
language bias of the task, often characterised by mode declarations [11]. A lan-
guage bias can be defined as a pair of sets of mode declarations 〈Mh,Mb〉, where
Mh (resp. Mb) are called the head (resp. body) mode declarations. Each mode
declaration mh ∈ Mh (resp. mb ∈ Mb) is a literal whose abstracted arguments
are either v or c. Informally, an atom is said to be compatible with a mode
declaration m if each instance of v in m is replaced by a variable, and every
c by a constant. Given a language bias M = 〈Mh,Mb〉, a rule of the form
h← b1, . . . , bn, not c1, . . .not cm is in the search space SM if and only if (i) h is
empty; or h is an atom compatible with a mode declaration in Mh; or h is an
aggregate l{h1, ...hk}u such that 0 ≤ l ≤ u ≤ k and ∀i ∈ [1, k] hi are compatible
with mode declarations in Mh; (ii) ∀i ∈ [1, n], ∀j ∈ [1,m] bi and cj are compat-
ible with mode declarations in Mb, and finally (iii) all variables in the rule are
safe. Each rule R in SM is given a unique identifier Rid.

Example 1. Let M be the mode declarations 〈{value(c, v)}, {cell(v), value(v, v),
same block(v, v), same row(v, v), same col(v, v)}〉. Then the following are inSM :
value(1, C)← cell(C); 1{value(1, C), value(2, C)}2← cell(C);← value(X,C1),
value(X,C2), same block(C1, C2); whereas the following are not: value(C) ←
cell(C); cell(C)← cell(C);← value(1, C1), value(1, C2), same block(C1, C2).1

Definition 2. A Learning fromAnswer Sets task is a tuple T = 〈B,SM , E+, E−〉
where B is the background knowledge, SM is the search space defined by a language
biasM ,E+ and E− are sets of partial interpretations called, respectively, the posi-
tive and negative examples. An hypothesis H is an inductive solution of T (written
H ∈ ILPLAS(T)) if and only if:

1. H ⊆ SM

2. ∀e+ ∈ E+ ∃A ∈ AS(B ∪H) such that A extends e+

3. ∀e− ∈ E− � ∃A ∈ AS(B ∪H) such that A extends e−

Note that this definition combines properties of both the brave and cautious
semantics: the positive examples must each be bravely entailed; whereas the
negation of each negative example must be cautiously entailed.

Example 2. Let B = {p← r}, M = 〈{q, r}, {p, r}〉, E+={〈{p}, {q}〉, 〈{q}, {p}〉}
and E− = {〈∅, {p, q}〉, 〈{p, q}, ∅〉}. An inductive solution is the ASP program H
given by H = {q ←not r; r←not q}. The Answer Sets of B ∪H are {p, r} and
{q}. The former extends the first positive example, the latter extends the second
positive example and clearly neither of them extend any negative examples.

1 Here, and in the rest of the paper, we use ; as a delimiter in sets of rules.

Inductive Learning of Answer Set Programs 315

The following example shows that our learning setting, with the search space as
defined in example 1, can learn the sudoku problem described in the introduction.

Example 3. Consider again the sudoku problem, with SM as described in exam-
ple 1, B containing the definitions of same row, same col, same block and cell.
Let the examples be as follows:

E+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈{value(cell(1, 1), 1),
value(cell(1, 2), 2),
value(cell(1, 3), 3),
value(cell(1, 4), 4),
value(cell(2, 3), 2)
}, ∅〉

E− =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

〈{value(cell(1, 1), 1),
value(cell(1, 3), 1)}, ∅〉

〈{value(cell(1, 1), 1),
value(cell(3, 1), 1)}, ∅〉

〈{value(cell(1, 1), 1),
value(cell(2, 2), 1)}, ∅〉

Let l{value(C, 1), value(C, 2), value(C, 3), value(C, 4)}ube denoted by agg(l, u).
The hypothesisH1 = {agg(1, 1)← cell(C)} is not an inductive solution, whereas
H2 = {agg(1, 1) ← cell(C);← value(V,C1), value(V,C2), same col(C1, C2);
← value(V,C1), value(V,C2), same row(C1, C2);← value(V,C1), value(V,C2),
same block(C1, C2)} is an inductive solution. This shows that our learning task
can incentivise the learning of constraints. With the examples as they are, if we
takeH3 to be constructed from H2 by replacing agg(1, 1) with agg(0, 1), then H3

is still an inductive solution. Adding the negative example 〈∅, {value(cell(1, 1), 1),
value(cell(1, 1), 2), value(cell(1, 1), 3), value(cell(1, 1), 4), }〉, this is no longer the
case. H2 is an inductive solution, whereas H3 is not. This shows that ILPLAS is
able to incentivise learning bounds on aggregates.

It is common practice in ILP to search for “optimal” hypotheses. This is usually
defined in terms of the number of literals in the hypothesis. This does not apply
well to hypotheses that include aggregates: the length of 1{p, q}1 (exactly one
of p and q is true) would be the same as the length of 0{p, q}2 (none, either or
both of p and q is true), but clearly they do not represent similar concepts. To
calculate the length of an aggregate we convert it to disjunctive normal form,
as this takes into account both the number of Answer Sets that the aggregate
generates and the number of literals it uses. For example, 0{p, q}2 is considered
as (p∧ q)∨ (p∧not q)∨ (not p∧ q)∨ (not p∧not q), which has length 8, whereas
1{p, q}1 is considered as (p ∧ not q) ∨ (not p ∧ q), which has length 4.

Definition 3. Given an hypothesis H, the length of the hypothesis, |H |, is the
number of literals that appear in HD, where HD is constructed from H by con-
verting all aggregates in H to disjunctive normal form.

Given an ILPLAS learning task T =〈B,SM , E+, E−〉, we denote with ILP ∗LAS(T)
the set of all optimal inductive solutions of T , where optimality is defined in terms
of the length of the hypotheses. We will also denote with ILPn

LAS(T) the set of all
inductive solutions of T which have length n.

316 M. Law, A. Russo, and K. Broda

4 Algorithm

In this section we describe our algorithm ILASP (Inductive Learning of Answer
Set Programs) and state its soundness and completeness results. Due to space
limitation, proofs have been omitted from the paper but they are available in [9].

Our algorithm works by encoding our ILPLAS task into an ASP program. It
makes use of two main concepts: positive solutions and violating solutions. Pos-
itive solutions are those hypotheses that, added to the background knowledge,
have Answer Sets which extend each positive example. But some positive solu-
tions may still cover negative examples; we call these the violating solutions. The
underlying idea of our algorithm is to compute every violating solution of a given
length, and then use these to generate a set of constraints which, when added
to our task program, eliminate the violating solutions. Theorem 1 shows that
the remaining positive solutions are indeed the inductive solutions of the given
ILPLAS task. ILASP uses the ASP solver clingo[4] to compute these solutions.

Definition 4. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task. An hypothesis
H ∈ positive solns(T) iff H ⊆ SM and ∀e+ ∈ E+ ∃A ∈ AS(B ∪ H) such
that A extends e+. A positive solution H ∈ violating solns(T) iff ∃e− ∈ E−

∃A ∈ AS(B ∪ H) such that A extends e−. We write positive solnsn(T) and
violating solnsn(T) to denote the positive and violating solutions of length n.

Example 4. Consider the ILPLAS task T =〈B,SM , E+, E−〉 where B={q ← r},
E+ = {〈{p}, ∅〉, 〈{q}, ∅〉}, E− = {〈{p, q}, ∅〉} and SM is given by the following
rules {p; r; p ← r; p ← not r; r ← not p}2. The hypotheses H1 = {p; r},
H2 = {p ← r; r} and H3 = {p ← not r; r ← not p} are among the positive
solutions of T . Each of the first two hypotheses (together with the background
knowledge) has one Answer Set: {p; q; r}. This extends the negative example in
T , and so both hypotheses are violating solutions of T . Note that the positive
solutions which are also violating solutions are not inductive solutions, whereas
the third positive solution, which is not a violating solution is an inductive
solution of T . This is a general property proven by Theorem 1.

Theorem 1. Let T = 〈B,SM , E+, E−〉 be an ILPLAS learning task. Then
ILPLAS(T)=positive solns(T)\violating solns(T).

One method to find all inductive solutions of an ILPLAS learning task T would
be to generate all positive inductive solutions of T , add each solution, in turn,
to the background knowledge in T and solve the resulting program to check
whether it accepts Answer Sets that extend any negative examples, i.e. whether
it is a violating solution of T . As, in practice, this would be inefficient, we in-
stead generate the violating solutions first and use these to constrain our search
for positive solutions. Inspired by the technique in [2], we encode our ILPASP

learning task as an ASP program whose Answer Sets will provide our positive
solutions. But, differently from [2], our encoding uses a meta-level approach that

2 In subsequent examples we will refer to these rules in SM with their Rid a to e.

Inductive Learning of Answer Set Programs 317

allows us to reason about multiple Answer Sets of B∪H , as in our notion of pos-
itive solution there might be multiple positive examples that may be extended
by different Answer Sets of B ∪H .

Specifically, our definition of a positive solution H requires that each positive
example e+ ∈ E+ has an Answer Set of B ∪ H that extends it. We use the
atom e(A, e+id) to represent that a literal A is in the Answer Set that extends
the positive example e+ (with unique identifier e+id). For each e+ ∈ E+, the
ground fact ex(e+id). Each rule R in the background knowledge and in the given
hypothesis space SM , is rewritten in a meta-level form by replacing each atom
A that appears in R with the atom e(A,X) and adding ex(X) to the body of
the rule. In this way the evaluation of the rules (in B ∪ H) can explicitly refer
to specific Answer Sets that extend a specific positive example and guide the
search accordingly. In the case of negative examples, for an hypothesis H to be
a violating solution, it is only necessary that B ∪H cover one negative example.
We therefore use only the fact ex(neg) to represent any negative example. We
use a predicate active(Rid), added to the body of each rule R∈SM , where Rid

is a unique identifier for R. Rules not chosen for the hypothesis will have this
condition evaluated to false (and the rule will be vacuously satisfied). Formally,
given an Answer Set A, the function meta−1(A) = {R ∈ SM : active(Rid) ∈ A}.

Definition 5. Let T =〈B,SM , E+, E−〉 be an ILPLAS learning task and n ∈ N.
Let Rid be a unique identifier for each rule R∈SM and let e+id be a unique iden-
tifier for each positive example e+ ∈E+. The learning task T is represented as
the ASP task program T n

meta = meta(B)∪meta(SM)∪meta(E+)∪meta(E−)∪
meta(Aux, n) where each of these five “meta” components are as follows:

1. meta(B) is generated from B by replacing every atom A with the atom
e(A,X), and by adding the condition ex(X) to the body of each rule.

2. meta(SM) is generated from SM by replacing every atom A with the atom
e(A,X), and by adding the two conditions active(Rid) and ex(X) to the body
of the rule R that matches the correct rule identifier Rid.

3. meta(E+) includes for each ex+ = 〈{li1, . . . , lih}, {le1, . . . , lek}〉 ∈ E+ the

rules:

⎧⎨⎩
ex(ex+

id); ← not covered(ex+
id);

covered(e+id)← e(li1, ex
+
id), . . . , e(lih, ex

+
id),

not e(le1, ex
+
id), . . . ,not e(lek, ex

+
id)

4. meta(E−) includes for each e−=〈{li1, . . . , lih}, {le1, . . . , lek}〉∈E− the rule:
violating ← e(li1, neg), . . . , e(lih, neg), not e(le1, neg), . . . ,not e(lek, neg)

5. meta(Aux, n) includes the ground facts length(Rid, |R|) for every rule R∈
SM and the rule n #sum{active(R) = X : length(R,X)}n to impose that
the total length of the (active) hypothesis has to be n.

Example 5. Recall the task T in Example 4. T 3
meta is as follows:

1. meta(B)={e(q,X)← e(r,X), ex(X)}
2. meta(SM)={e(p,X)← active(a), ex(X); e(r,X)← active(b), ex(X);

e(p,X)← e(r,X), active(c), ex(X); e(p,X)← not e(r,X), active(d), ex(X);
e(r,X)← not e(p,X), active(e), ex(X)}

318 M. Law, A. Russo, and K. Broda

3. meta(E+)={covered(1)← e(p, 1); covered(2)← e(q, 2);
← not covered(1);← not covered(2); ex(1); ex(2)}

4. meta(E−)={violating← e(p, neg), e(q, neg)}
5. meta(Aux, 3)={length(a, 1); length(b, 1); length(c, 2); length(d, 2);

length(e, 2); 3 #sum{active(R) = X : length(R,X)}3}

Proposition 1. Let T =〈B,SM , E+, E−〉 be an ILPLAS task and n∈N . Then
H∈positive solnsn(T) if and only if ∃A∈AS(T n

meta) such that H=meta−1(A).

But as stated in Theorem 1, to compute our inductive solution we need also
to compute the violating solutions. The same ASP encoding described in Def-
inition 5 can be used to generate all the violating solutions. Specifically, given
a length n, the ASP program T n

meta ∪ {← not violating; ex(neg)} will have
Answer Sets that include active(Rid) of hypotheses R ∈ SM that are violating
solutions. This is captured by Proposition 2.

Proposition 2. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task and n ∈ N .
Let P be the ASP program T n

meta ∪ {← not violating; ex(neg)}. Then H ∈
violating solnsn(T) if and only if ∃A ∈ AS(P) such that H=meta−1(A).

The main idea of our learning algorithm, called ILASP, is to compute first all
violating solutions of a given ILPLAS learning task T by solving the ASP pro-
gram T n

meta ∪{← not violating; ex(neg)}. Then to convert these solutions into
constraints3 and again to solve T n

meta, augmented this time with these new con-
straints. The Answer Sets of this second step will provide all the inductive solu-
tions of T . This is formally described in Algorithm 1.

Algorithm 1. ILASP

procedure ILASP(T)
solutions = []
for n = 0; solutions.empty; n++ do

vs = AS(Tn
meta ∪ {← not violating; ex(neg)})

ps = AS(Tn
meta ∪ {constraint(meta−1(V)) : V ∈ vs})

solutions = {meta−1(A) : A ∈ ps}
end for
return solutions

end procedure

We denote with ILPn
LAS(T) the set of all inductive solutions of length n. Propo-

sition 3 states that the Answer Sets of the ASP task program augmented with
constraint(H), for each violating solutionH , correspond exactly to the inductive
solutions of length n of the original learning task.

Proposition 3. Let T = 〈B,SM , E+, E−〉 be an ILPLAS task and n ∈ N . Let
P = T n

meta ∪ {constraint(V) : V ∈ violating solnsn(T)}. Then a hypothesis
H ∈ ILPn

LAS(T) if and only if ∃A ∈ AS(P) such that H = meta−1(A).

3 constraint({R1, . . . , Rh}) denotes the rule ← active(Rid1), . . . , active(Ridh), where
Rid1,. . .Ridh are the unique identifiers of rules R1, . . . , Rh in H .

Inductive Learning of Answer Set Programs 319

The following theorem states that ILASP is sound and complete with respect
to the notion of optimal4 inductive solutions in ILP ∗LAS(T). ILASP (T) denotes
the set of hypotheses computed by ILASP for a given ILPLAS task T .

Theorem 2. Let T be any ILPLAS learning task such that there is at least one
inductive solution. Then ILASP (T) = ILP ∗LAS(T).

Proof. At each step through the for loop (fix n to be any natural number): let
H be an hypothesis of length n and P = T n

meta ∪ {← not violating; ex(neg)}.
By Prop. 2, H ∈ violating solnsn(T) iff ∃A ∈ AS(P) st H = meta−1(A).
⇒ H ∈ violating solnsn(T) iff ∃A ∈ vs st H = meta−1(A).
⇒ violating solnsn(T) = {meta−1(A) : A ∈ vs}

ps = AS(T n
meta ∪ {constraint(meta−1(V)) : V ∈ vs})

⇒ ps = AS(T n
meta ∪ {constraint(V) : V ∈ violating solnsn(T)})

⇒ H ∈ ILPn
LAS(T) iff ∃A ∈ ps st H = meta−1(A) by Proposition 3.

⇒ ILPn
LAS(T) = {meta−1(A) : A ∈ ps} = solutions

As ILASP (T) returns ILPn
LAS(T) for the first n for which it is non-empty,

ILASP (T) = ILP ∗LAS(T). ��

We are currently working to improve ILASP’s scalability. In general there could
be many violating solutions before the first inductive solution; for example, with
the sudoku problem, the first positive solution is H1 from example 3 which has
length 17; however, the first inductive solution is not until H2 at length 26. There
are many thousands of violating solutions between lengths 17 and 26 (many of
these are constructed by adding rules to H1). By restricting the search space
so that the only permitted aggregates are those of the form agg(l, u) for some l
and u (see example 3), our implementation was able to find the correct solution.
In current work we are exploring techniques to make ILASP more efficient and
more scalable. One possibility is to keep a set of full Answer Sets which extend
negative examples. When we find a violating solution, we add an Answer Set to
this set and rule out further solutions which accept this Answer Set. This set is
likely to be much smaller than the set of violating solutions.

5 Application to a Planning Problem

In this section we apply our approach to a planning problem where an agent is
in a room at a given position and attempts to get to a target position. Figure 2
gives a graphical representation of the room and the legend describes its main
features. The challenge in this planning problem is that although the agent has
complete knowledge of the grid map, it does not know the meaning of the various
cell features. For instance, it knows which cells are locked, but not that to go
through a locked cell it must first visit the key to that cell. The agent’s goal is
to learn the definition of valid move to allow it to reach the target position.

4 Note that the optimality – hypotheses with shortest length – is guaranteed by the
incremental property of our algorithm.

320 M. Law, A. Russo, and K. Broda

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

X

X

E

S

L
X,X

L
6,7

L
2,4

L
9,6

L
8,X

L
3,X

L
3,5

L
9,X

K
7,6

K
8,6

K
4,7

K
8,2

K
1,X

K
3,5

S

E

L
8,X

K
4,7

The agent starts here

The agent is aiming to end here

This cell starts off as being locked Cell

This is the key for the locked cell (4, 7)

This is a link cell which

allows the agent to move to (8, X)

Fig. 2. Cells with diagonal lines are locked and the agent must visit the corresponding
key before it can enter these cells. Link cells allow the agent to jump to the indicated
destination cell. The thick black lines represent walls.

The planning problem is modelled as follows. At each step an oracle informs
the agent on which cells it could move to next, called the valid moves. If the
agent, using its current knowledge, infers valid moves that are different from that
suggested by the oracle then the agent learns an updated hypothesis; otherwise
it plans a path to the target position, using its current hypothesis, and selects as
its next move the first move in the plan. By using ASP optimisation, the agent
can even plan for the optimal (shortest) plan.5 In what follows we show three
scenarios illustrating three different learning outcomes. In the first scenario, the
agent learns just the concept of valid move; in the second scenario, part of the
existing background knowledge is removed and the agent has to also learn a new
concept that does not appear in the examples or in the background knowledge,
showing the ability of ILPLAS to support predicate invention [11]. Finally, in
the third scenario, the environment is non deterministic, causing the agent to
learn a non deterministic notion of valid move.

Scenario 1: In this simplest scenario, the agent is given the grid map, encoded
as facts, together with the history of the cells it has been at from the start and
the notions of adjacent cells, visited cell and unlocked cell (given below).

unlocked(C, T) :- visited_cell(Key, T), key(C, Key).

unlocked(C, T) :- cell(C), not locked(C), time(T).

The task is for the agent to learn the rules:

valid_move(C1, T) :- agent_at(C2, T), not wall(C1, C2),

adjacent(C1, C2), unlocked(C1, T).

valid_move(C1, T) :- agent_at(C2, T), link(C2, C1), unlocked(C1, T).

We denote with VMoracle the set of valid move/2 facts that the oracle generates
and with VMagent the set of valid move/2 facts that the agent infers at a given
time using its current knowledge and hypothesis. When VMoracle and VMagent

differ, the agent uses our ILASP algorithm to find a new hypothesis such that

5 If the agent cannot generate, with its current knowledge, a plan to reach the target
position, then optimality is defined in terms of exploration of the map.

Inductive Learning of Answer Set Programs 321

VMagent and VMoracle are once again equal. The background knowledge consists
of the definitions of adjacent, unlocked, visited cell and of the history of the
cells the agent has been at from the start. In this simple scenario the target
program has only one Answer Set, thus only one positive example is necessary.
In particular, at each learning step, the positive example is given by every valid
move in VMoracle that does not appear in VMagent. These are the moves the
agent did not realise were possible, hence it needs to learn. The negative examples
are constructed from the moves that are in VMagent but not in VMoracle. These
are the moves the agent wrongly thought were possible and that the new learned
hypothesis should no longer cover. The first few sets of examples are shown in
example 6. Note that the learning task does not take into account the complete
history of the valid moves. So it is possible that the new hypothesis wrongly
classifies as invalid a move made at an earlier step. If VMoracle is still different
to VMagent, the examples are again updated and a new hypothesis is learned.

Example 6. At the first step VMoracle = {(9, 1), (10, 2)}, but given the agent’s
initial hypothesis, ∅, VMagent = ∅. The examples are therefore:

E+ =

{
〈{valid move(cell(9, 1), 1),
valid move(cell(10, 2), 1)}, ∅〉

E− = ∅

ILASP returns the hypothesis valid move(C, T) ← unlocked(C, T). VMagent

and VMoracle are still not equal as VMagent now contains too many moves. The
agent therefore extends its examples to:

E+ =

⎧⎨⎩
〈{valid move(cell(9, 1), 1),
valid move(cell(10, 2), 1)
}, ∅〉

E− =

⎧⎨⎩
〈{valid move(cell(8, 1), 1)}, ∅〉,
〈{valid move(cell(7, 1), 1)}, ∅〉,

. . .

The new hypothesis is valid move(C, T) ← adjacent(C,C2), agent at(C2, T).
VMagent and VMoracle are now equal, and so the agent makes it’s first move (to
(9, 1)). VMoracle and VMagent are equal until the agent reaches (8, 1). VMagent

now has (7, 1) where VMoracle does not. The previous example set is augmented
with the new negative example 〈{valid move(cell(7, 1), 3)}, ∅〉. As shown in Ta-
ble 1, ILASP is able to generate the correct solution in 6 learning steps; however,
in this scenario it only had to learn a single predicate. Next we investigate what
happens when ILASP needs to learn an unseen predicate.

Scenario 2: This scenario differs from the previous one in that the agent is
not given the definition of unlocked cell. The language bias of this learning task
is therefore augmented with a new predicate, called extra/2 added to both Mh

and Mb. We expected the agent to learn the previous hypothesis along with the
definition of unlocked; however, the agent learned the shorter hypothesis:

extra(C,T) :- agent_at(C1, V1), link(C1,C).

extra(C,T) :- adjacent(C,C1), agent_at(C1, T), not wall(C,C1).

valid_move(C, T) :- extra(C,T), not locked(C).

valid_move(C, T) :- extra(C,T), key(C1,C), visited_cell(C1,T).

So far, due to the deterministic environment the agent has learned programs with
only one Answer Set. The next scenario explores a non-deterministic setting.

322 M. Law, A. Russo, and K. Broda

Table 1. Results for the first scenario. Each row shows the path the agent took while
it believed a particular hypothesis ((1..3, 2) abbreviates (1, 2), (2, 2), (3, 2)) .

Path Hypotheses (With variables renamed for readability)

(10, 1)
(10, 1) valid move(C, T) ← unlocked(C, T).
(10..8, 1) valid move(C, T) ← adjacent(C,C2), agent at(C2, T).
(8, 1..4), (7..6, 4) valid move(C, T) ← not wall(C,C2), adjacent(C,C2), agent at(C2, T).

(6, 4..7), (5, 7)
valid move(C, T) ← not wall(C,C2), adjacent(C,C2), agent at(C2, T).
valid move(C, T) ←link(C,C2), agent at(C2, T).

(5, 7..8), (2..3, 4),
(3, 3)

valid move(C, T) ← not wall(C,C2), unlocked(C,T),
adjacent(C,C2), agent at(C2, T).

valid move(C, T) ←link(C,C2), agent at(C2, T).

(3, 3), (2..3, 3),
(3, 5), (2, 5..6),
(1, 6..7) (1, 8..5),
(3..1, 10)

valid move(C, T) ← not wall(C,C2), unlocked(C,T),
adjacent(C,C2), agent at(C2, T).

valid move(C, T) ←link(C,C2), unlocked(C, T), agent at(C2, T).

Scenario 3: We now further complicate matters for our agent by removing the
guarantee that the set of valid moves it has is always inferable given its history.
The change to the scenario is that link is given an extra argument: the flipped
destination cell (if the destination cell is (X,Y), the flipped cell is (Y,X)). Now
whenever the agent lands on a link cell, the oracle decides (randomly) whether
to give the destination cell, or the flipped cell as a valid move. In the first
two scenarios we restricted the search space to hypotheses without aggregates,
whereas here we allow aggregates, which extends the search space to include
many more rules. As a consequence, to overcome the scalability issues discussed
in the previous section, we needed to make a small addition to the background
knowledge that combines the concepts of adjacent and wall into a new concept
joined(C1, C2) ← adjacent(C1, C2), not wall. In this scenario, in addition to
the set of valid moves, the oracle also gives to the agent a second set of potentially
valid moves (the union of all sets of valid moves the oracle could have given).

The fact that the environment is non-deterministic changes the learning task
slightly. We can no longer encode every invalid move proposed by the agent at
a particular time as a negative example. This is because, had the oracle made
a different choice, the move might have been a valid one. If an invalid move
appears in the set of potentially valid moves, then it is instead added to the
exclusion set of the positive example at that time. This means that it cannot
occur in the Answer Set extending this positive example, but could well appear
in other Answer Sets of the program. The agent was able to learn the rules:

1 {valid_move(C, T); valid_move(FC, T)} 1 :-

unlocked(C, T), link(C2, C, FC), agent_at(C2, T).

valid_move(C, T) :- unlocked(C, T), joined(C, C2), agent_at(C2, T).

6 Related Work

In this section we review the related work. We reformulate (but preserve the
meaning of) some learning tasks to allow for easier comparison with our own.

Inductive Learning of Answer Set Programs 323

The goal of traditional ILP has been to learn Prolog style logic programs.
Usually this is restricted to learning definite programs (with no negation as
failure). The learning task of these traditional ILP systems is equivalent to a
Learning from Answer Sets task with a single positive example (and no nega-
tive examples) and with the search space restricted to definite logic programs.
But learning more general ASP programs rather Prolog programs has the clear
advantage that the ASP representation is completely declaratvie. In Prolog, we
would have to learn a procedure for constructing valid sudoku boards, whereas
in ASP we only learned the rules of sudoku.

Induction of Stable Models [13] extends the definition of ILP to the stable
model semantics. An Induction of Stable Models task is a tuple 〈B,SM , E〉 where
B is the background knowledge, SM is the search space and E is a set of partial
interpretations. H ∈ ILPsm〈B,M,E〉 iff (i) H ⊆ SM ; and (ii) ∀O ∈ E : ∃A ∈
AS(B∪H) such that A extends O. This is a special case of ILPLAS: with no neg-
ative examples. For any B,SM , E: ILPsm〈B,SM , E〉 = ILPLAS〈B,SM , E, ∅〉.
However, negative examples are needed to learn Answer Set programs in prac-
tice, as otherwise there is no concept of what should not be in an Answer Set. In
our planning, for instance, no negative examples would give the optimal solution
0{valid move(C, T)}1← cell(C), time(T) (at any time for each cell C, we may
or may not be allowed to move to C). This does cover our positive examples,
but it is not specific enough to be useful for planning.

Brave Induction[16] finds an hypothesis which covers a single observation
O. A Brave Induction task, when defined in the context of ASP, is a tuple
〈B,SM , O〉 where B is the background knowledge, SM the search space and O
is a set of atoms. H ∈ ILPb〈B,M,O〉 iff (i) H ⊆ SM ; and (ii) ∃A ∈ AS(B ∪H)
such that O ⊆ A. For any B,M,O, the Brave Induction task ILPb〈B,M,O〉 =
ILPLAS〈B,M, {〈O, ∅〉}, ∅〉. ASPAL [2] uses ASP as a solver to compute a so-
lution to a standard ILP Task. ASPAL’s learning task, similarly to that of
XHAIL [14], is between Brave Induction and Induction of Stable Models. It
has a single positive example which is a partial interpretation. ASPAL’s method
of using an ASP solver to search for the inductive solutions to an ILP task in-
spired our own. Our method conducts the search in multiple stages however, as
we not only require the brave entailment of the positive examples, but also the
cautious entailment of the negation of our negative examples. The search spaces
in ASPAL and XHAIL did not include aggregates or constraints.

In [3], De Raedt defines Learning from Partial Interpretations. Under ILPLFPI

an example E (a partial interpretation) is covered by a hypothesis H iff there
is a model of B ∪ H , which extends E. Unlike ILPLAS, as this definition uses
models, H covers an example E iff B∪H ∪E is consistent. Another approach is
Learning from Interpretation Transitions [7]. The examples here are pairs of in-
terpretations 〈I, J〉 such that J must equal TB∪H(I). This task can be mapped
to an ILPLAS task by replacing every atom h in the head of rules in B and
SM or occuring in J with the new atom tp(h), representing that h ∈ TB∪H(I).
Each Ii ∈ {I1, . . . , In} would then be put in the background knowledge with a

324 M. Law, A. Russo, and K. Broda

condition egi in the body (supported by a choice rule 1{eg1, . . . , egn}1) and egi
would be added to each Ji which then become the positive examples.

7 Conclusion and Future Work

We have presented a new paradigm for ILP that allows the learning of ASP
programs. We have designed and implemented an algorithm which is able to
compute inductive solutions, and have shown how it can be used in a planning
problem.

There are two avenues of future work: improving the efficiency of our algo-
rithm; and learning a larger subset of the language of ASP. In particular we
believe that learning optimisation statements in ASP will facilitate many more
applications, as most of ASP’s applications involve optimisation.

References

1. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search.
In: ICLP (Technical Communications), pp. 54–63 (2010)

2. Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set pro-
gramming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011.
LNCS, vol. 7207, pp. 91–97. Springer, Heidelberg (2012)

3. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1),
187–201 (1997)

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam answer set solving collection. AI Communications 24(2),
107–124 (2011)

5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

6. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, vol. 88, pp. 1070–1080 (1988)

7. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Ma-
chine Learning 94(1), 51–79 (2014)

8. Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn
theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 169–181. Springer, Heidelberg (2009)

9. Law, M., Russo, A., Broda, K.: Proofs for inductive learning of answer set pro-
grams, https://www.doc.ic.ac.uk/~ml1909/ILASP_Proofs.pdf

10. Muggleton, S.: Inductive logic programming. New Generation Computing 8(4),
295–318 (1991)

11. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan,
A.: Ilp turns 20. Machine Learning 86(1), 3–23 (2012)

12. Muggleton, S., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog:
Predicate invention revisited. In: Proceedings of the Twenty-Third International
Joint Conference on Artificial Intelligence, pp. 1551–1557. AAAI Press (2013)

13. Otero, R.: Induction of stable models. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001.
LNCS (LNAI), vol. 2157, pp. 193–205. Springer, Heidelberg (2001)

https://www.doc.ic.ac.uk/~ml1909/ILASP_Proofs.pdf

Inductive Learning of Answer Set Programs 325

14. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied
Logic 7(3), 329–340 (2009)

15. Ray, O., Broda, K., Russo, A.: A hybrid abductive inductive proof procedure. Logic
Journal of IGPL 12(5), 371–397 (2004)

16. Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from
incomplete information. Machine Learning 76(1), 3–35 (2009)

Stable Models of Fuzzy Propositional Formulas

Joohyung Lee and Yi Wang

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
{joolee,ywang485}@asu.edu

Abstract. We introduce the stable model semantics for fuzzy propositional for-
mulas, which generalizes both fuzzy propositional logic and the stable model
semantics of Boolean propositional formulas. Combining the advantages of both
formalisms, the introduced language allows highly configurable default reasoning
involving fuzzy truth values. We show that several properties of Boolean stable
models are naturally extended to this formalism, and discuss how it is related to
other approaches to combining fuzzy logic and the stable model semantics.

1 Introduction

Answer set programming (ASP) [1] is a widely applied declarative programming
paradigm for the design and implementation of knowledge intensive applications. One
of the attractive features of ASP is its capability to model the nonmonotonic aspect of
knowledge. However, as its mathematical basis, the stable model semantics, is restricted
to Boolean values, it is too rigid to represent imprecise and vague information. Fuzzy
logic, as a form of many-valued logic, can handle vague information by interpreting
propositions with a truth degree in the interval of real numbers [0, 1]. The availability
of various fuzzy operators gives the user great flexibility in combining truth degrees.
However, the semantics of fuzzy logic is monotonic and is not flexible enough to handle
default reasoning as allowed in answer set programming.

Both the stable model semantics and fuzzy logic are generalizations of classical
propositional logic in different ways. While they do not subsume each other, it is clear
that many real-world problems require both their strengths. This led to the body of work
on combining fuzzy logic and the stable model semantics, known as fuzzy answer set
programming (e.g., [2–9]). However, most work considers simple rule forms and do not
allow connectives nested arbitrarily as in fuzzy logic.

Unlike existing work on fuzzy answer set semantics, in this paper, we extend the gen-
eral stable model semantics from [10] to many-valued propositional formulas. The syn-
tax of this language is the same as the syntax of fuzzy propositional logic. The seman-
tics, on the other hand, distinguishes stable models from non-stable models. The lan-
guage is a proper generalization of both fuzzy propositional logic and Boolean propo-
sitional formulas under the stable model semantics. This generalization is not simply a
pure theoretical pursuit, but has practical use in conveniently modeling defaults involv-
ing fuzzy truth values in dynamic domains. For example, consider modeling dynamics
of trust in social network. People trust each other in different degrees under some nor-
mal assumptions. If person A trusts person B, then A tends to trust person C whom
B trusts to a degree which is positively correlated to the degree to which A trusts B

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 326–339, 2014.
c© Springer International Publishing Switzerland 2014

Stable Models of Fuzzy Propositional Formulas 327

and the degree to which B trusts C. By default, the trust degrees would not change, but
may decrease when a conflict arises between people. Modeling such a domain requires
expressing defaults involving fuzzy truth values. We demonstrate that such examples
can be conveniently modelled in our proposed language by taking advantage of its gen-
erality over the existing approaches to fuzzy ASP.

The paper is organized as follows. Section 2 reviews the syntax and the semantics of
fuzzy propositional logic we discuss in the paper, as well as the stable model semantics
of classical propositional formulas. Section 3 presents the stable model semantics of
fuzzy propositional formulas along with examples, including the above trust example
in the proposed language. Section 4 relates our fuzzy stable model semantics to the
Boolean stable model semantics, and Section 5 relates it to other approaches to fuzzy
ASP. Section 6 shows that several well-known properties of the Boolean stable model
semantics can be easily extended to our fuzzy stable model semantics. Section 7 dis-
cusses other related work.

2 Preliminaries

2.1 Review: Stable Models of Classical Propositional Formulas

We review the definition of a stable model from [10] by limiting attention to the syntax
of propositional formulas. Instead of defining stable models in terms of second-order
logic as in [10] , we express the same concept using auxiliary atoms that do not belong
to the original signature. This slight reformulation will simplify our efforts in extend-
ing the stable model semantics to fuzzy propositional formulas without resorting to
“second-order fuzzy logic.”

Let σ be a classical propositional signature, let p = (p1, . . . , pn) be a list of distinct
atoms belonging to σ, and let q = (q1, . . . , qn) be a list of new, distinct propositional
atoms not belonging to σ. For two interpretations I and J of σ that agree on all atoms
in σ \ p, I ∪ Jp

q denotes the interpretation of σ ∪ q that

– agrees with I on all atoms in σ, and
– for each atom qi ∈ q, (I ∪ Jp

q)(qi) = J(pi).1

For any classical propositional formula F of signature σ, F ∗(q) is a classical propo-
sitional formula of signature σ ∪ q that is defined recursively as follows:

– p∗i = qi for each pi ∈ p;
– F ∗ = F for any atom F �∈ p;
– ⊥∗ = ⊥;
∗ =
;
– (¬F)∗ = ¬F ;
– (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G).

Let I and J be two interpretations of σ, and let p be a subset of σ. We say J ≤p I if

1 I(p) denotes the truth value of p under I . We identify a list with a set if there is no confusion.

328 J. Lee and Y. Wang

– J and I agree on all atoms not in p, and
– for all p ∈ p, if J |= p, then I |= p.

We say J <p I if J ≤p I and J �= I .

Definition 1. An interpretation I is a stable model of F relative to p (denoted I |=
SM[F ;p])

– if I |= F , and
– there is no interpretation J such that J <p I and I ∪ Jp

q |= F ∗(q).

Example 1. Consider a logic program

p← not q, q ← not p

which is understood as an alternative notation for propositional formula F1 = (¬q →
p)∧ (¬p→ q). F ∗1 (u, v) is (¬q → u) ∧ (¬q → p) ∧ (¬p→ v) ∧ (¬p→ q). We check
that I1 = {p} (that is, p is TRUE and q is FALSE) 2 is a stable model of F1 (relative to
{p, q}): I1 satisfies F1, and ∅ is the only interpretation J such that J <pq I1. However,
I1∪Jpq

uv = {p} does not satisfy F ∗1 (u, v) because it does not satisfy the first conjunctive
term of F ∗1 (u, v). Similarly, we can check that {q} is another stable model of F1.

2.2 Review: Fuzzy Logic

Let σ be a fuzzy propositional signature, which is a set of symbols called fuzzy atoms.
In addition, we assume the presence of a set C of fuzzy conjunction symbols, a set D
of fuzzy disjunction symbols, a set N of fuzzy negation symbols, and a set I of fuzzy
implication symbols.

A fuzzy (propositional) formula of σ is defined recursively as follows.

– every fuzzy atom p ∈ σ is a fuzzy formula;
– every numeric constant c where c is a real number in [0, 1] is a fuzzy formula;
– if F is a fuzzy formula, then ¬F is a fuzzy formula, where ¬ ∈ N;
– if F and G are fuzzy formulas, then F ⊗G, F ⊕G and F → G are fuzzy formulas,

where ⊗ ∈ C, ⊕ ∈ D, and→ ∈ I.

The models of a fuzzy formula are defined as follows [11]. The fuzzy truth values
are the real numbers in the range [0, 1]. A fuzzy interpretation I of σ is a mapping from
σ into [0, 1].

The fuzzy operators are functions mapping one or a pair of truth values into a truth
value. Among the operators, ¬ denotes a function from [0, 1] into [0, 1]; ⊗, ⊕, and
→ denote functions from [0, 1] × [0, 1] into [0, 1]. The actual mapping performed by
each operator can be defined in many different ways, but all of them satisfy the follow-
ing conditions, which imply that the operators are generalizations of the corresponding
classical propositional connectives:3

2 We identify a propositional interpretation with the set of atoms that are true in it.
3 We say that a function f of arity n is increasing in its i-th argument (1 ≤ i ≤ n) if
f(arg1, . . . , argi, . . . , argn) ≤ f(arg1, . . . , arg

′
i, . . . , argn) for all arguments such that

argi ≤ arg′i; f is said to be increasing if it is increasing in all its arguments. The definition of
decreasing is similar.

Stable Models of Fuzzy Propositional Formulas 329

– a fuzzy negation ¬ is decreasing, and satisfies ¬(0) = 1 and ¬(1) = 0;
– a fuzzy conjunction⊗ is increasing, commutative, associative, and⊗(1, x) = x for

all x ∈ [0, 1];
– a fuzzy disjunction ⊕ is increasing, commutative, associative, and ⊕(0, x) = x for

all x ∈ [0, 1];
– a fuzzy implication→ is decreasing in its first argument and increasing in its second

argument; and→ (1, x) = x and→ (0, 0) = 1 for all x ∈ [0, 1].

Figure 1 lists some specific fuzzy operators that we use in this paper.

Symbol Name Definition
⊗l Łukasiewicz t-norm ⊗l(x, y) = max (x+ y − 1, 0)
⊕l Łukasiewicz t-conorm ⊕l(x, y) = min (x+ y, 1)

⊗m minimum t-norm ⊗m(x, y) = min (x, y)
⊕m maximum t-conorm ⊕m(x, y) = max (x, y)

⊗p product t-norm ⊗p(x, y) = x · y
⊕p product t-conorm ⊕p(x, y) = x+ y − x · y
¬s standard negator ¬s(x) = 1− x

→r the residual implicator of ⊗m →r (x, y) =

{
1 if x ≤ y

y otherwise
→s the S-implicator induced by ¬s and ⊕m →s (x, y) = max (1− x, y)

Fig. 1. Some t-norms, t-conorms, negator, and implicators

The truth value of a fuzzy formula F under I , denoted F I , is defined recursively as
follows:

– for any atom p ∈ σ, pI = I(p);
– for any numeric constant c, cI = c;
– (¬F)I = ¬(F I);
– (F ⊗G)I = ⊗(F I , GI); (F ⊕G)I = ⊕(F I , GI); (F → G)I =→(F I , GI).

(For simplicity, we identify the symbols for the fuzzy operators with the truth value
functions represented by them.)

Definition 2. We say that a fuzzy interpretation I satisfies a fuzzy formula F w.r.t. a
threshold y ∈ [0, 1] if F I ≥ y, and denote it by I |=y F . We call I a fuzzy y-model
of F .

We often omit the threshold y when it is 1.

3 Definition and Examples

We extend the notion of J <p I in Section 2.1 as follows. For any two fuzzy inter-
pretations J and I of the same signature σ and any subset p of σ, we say J ≤p I
if

330 J. Lee and Y. Wang

– J and I agree on all fuzzy atoms not in p, and
– for all p ∈ p, pJ ≤ pI .

We say J <p I if J ≤p I and J �= I .
As before, we assume a list q = (q1, . . . , qn) of new, distinct fuzzy atoms that

corresponds to p = (p1, . . . , pn), and define I ∪ Jp
q in the same way. That is, when I

and J agree on all atoms in σ \ p, I ∪ Jp
q denotes the interpretation of σ ∪ q that

– agrees with I on all atoms in σ, and
– for each qi ∈ q, (I ∪ Jp

q)(qi) = J(pi).

The definition of F ∗ is also extended in a straightforward way: For any fuzzy for-
mula F of signature σ, F ∗(q) is defined as follows.

– p∗i = qi for each pi ∈ p;
– F ∗ = F for any atom F �∈ p;
– c∗ = c for any numeric constant c;
– (¬F)∗ = ¬F ;
– (F ⊗G)∗ = F ∗ ⊗G∗; (F ⊕G)∗ = F ∗ ⊕G∗;
– (F → G)∗ = (F ∗ → G∗)⊗m (F → G). 4

Definition 3. A fuzzy interpretation I is a fuzzy y-stable model of F relative to p (de-
noted I |=y SM[F ;p]) if

– I |=y F , and
– there is no fuzzy interpretation J such that J <p I and I ∪ Jp

q |=y F ∗(q).

We often omit the threshold y when it is 1, and omit p if it contains all atoms in σ.
Clearly, when p is empty, Definition 3 reduces to the definition of a fuzzy model in

Definition 2 because there is no J such that J <∅ I .
Also, Definition 3 is very similar to the definition of a stable model for classical

propositional formulas in Definition 1. The main difference is that simply in the latter,
atoms may have various degrees of truth, and accordingly the notion of J <p I is more
general. The precise relationship between the definitions is discussed in Section 4.

Example 2. Consider the fuzzy formula F = ¬sp →r q and the interpretation I =
{(p, 0), (q, 0.6)}. F ∗(u, v) is

((¬sp)∗ →r q∗)⊗m (¬s p→r q) = (¬sp→r v)⊗m (¬sp→r q).

I |=0.6 SM[F ; p, q]. First, it is easy to see that I |=0.6 F , as

F I =→r ((¬sp)I , qI) =→r (1− pI , qI) =→r (1, 0.6) = 0.6.

Suppose there exists J <pq I such that I ∪ Jpq
uv |=0.6 F , i.e.,

F ∗(u, v)I∪J
pq
uv = min

(
→r (¬s(pI), vI∪J

pq
uv),→r (¬s(pI), qI)

)
= min

(
→r (1, qJ), 0.6

)
= min

(
qJ , 0.6

)
≥ 0.6.

4 Note the use of ⊗m here; the value of ”conjunction” of (F ∗ → G∗) and (F → G) needs not
be smaller than the value of (F ∗ → G∗) and the value of (F → G). It turns out that ⊗m is
the only t-norm that satisfies this property.

Stable Models of Fuzzy Propositional Formulas 331

So qJ ≥ 0.6. This contradicts the assumption that J <pq I . Therefore, such J does not
exist, and I is a 0.6-stable model of F .

Example 3. p and ¬s¬sp have the same fuzzy models, but their stable models are dif-
ferent. This is similar to the fact that p and ¬¬p have different stable models according
to the semantics from [10].

Clearly, any interpretation I = {(p, y)}, where y is any positive real number in [0, 1],
is a y-stable model of p relative to {p}. On the other hand, I = {(p, y)} is not a y-stable
model of F = ¬s¬sp relative to {p}. Formula F ∗(u) is ¬s¬sF , and although I |=y F ,
we have I ∪ Jp

u |=y F ∗(u) regardless of any J .

Example 4. Let F1 = p→s p andF2 = ¬sp⊕mp. Their fuzzy models are the same, but
their stable models are not. This is similar to the relation between p→ p and¬p∨p in the
Boolean stable model semantics. Indeed, observe thatF ∗1 (u) = (p→s p)⊗m (u→s u)
and F ∗2 (u) = ¬sp⊕m u.

The interpretation I = {(p, 1)} is not a 1-stable model of F1 relative to p, as wit-
nessed by J = {(p, 0)}. However, I is a 1-stable model of F2 relative to p: for any J ,

F ∗2 (u)
I∪Jp

u = max
(
1− pI , pJ

)
= max

(
0, pJ

)
= pJ .

So, for I ∪ Jp
u to satisfy F ∗2 (u) to degree 1, pJ should be 1. Consequently, it is not

possible to have J <p I .

The following example illustrates how the commonsense law of inertia involving
fuzzy truth values can be represented.

Example 5. Let σ be {p, np, q, nq} and let F be F1 ⊗m F2, where F1 represents that p
and np are complementary, i.e., the sum of their truth values is 1:

F1 = ¬s(p⊗l np)⊗m ¬s¬s(p⊕l np).

F2 represents that by default p has the truth value of q, and np has the truth value of nq:

F2 = ((q ⊗m ¬s¬sp)→r p)⊗m ((nq ⊗m ¬s¬snp)→r np).

Let p = {p, np} and u = {u, nu}. F ∗(u) is

¬s(p⊗l np)⊗m ¬s¬s(p⊕l np)
⊗m((q ⊗m ¬s¬sp)→r u)⊗m ((q ⊗m ¬s¬sp)→r p)
⊗m((nq ⊗m ¬s¬snp)→r nu)⊗m ((nq ⊗m ¬s¬snp)→r np).

One can check that interpretation I1 = {(p, x), (np, 1− x), (q, x), (nq, 1 − x)} (x is
any value in [0, 1]) is a 1-stable model of F relative to (p, np); interpretation I2 =
{(p, y), (np, 1− y), (q, x), (nq, 1 − x)}, where y �= x, is not.

On the other hand, if we conjoinF with (y →r p)⊗m(1− y →r np), the default be-
havior is overridden: I1 is not a 1-stable model of F ⊗m (y →r p)⊗m (1− y →r np)
relative to (p, np), but I2 is.

This behavior is useful in expressing the commonsense law of inertia involving fuzzy
values. Suppose q represents some fluent at time t, and p represents the fluent at time
t+1. Then F states that, “by default, the fluent retains the previous value.” The default
value is overridden if there is an action that sets p to a different value.

332 J. Lee and Y. Wang

Example 6. The trust example in the introduction can be formalized in the fuzzy sta-
ble model semantics as follows. Below x, y, z are schematic variables ranging over
people, and t is a schematic variable ranging over time steps. Trust(x, y, t) is a fuzzy
atom representing that “x trusts y at time t.” Similarly, Distrust(x, y, t) is a fuzzy atom
representing that “x distrusts y at time t.”

The trust relation is reflexive:

F1 = Trust(x, x, t).

The trust and distrust degrees are complementary, i.e., their sum is 1 (similar to
Example 5):

F2 = ¬s(Trust(x, y, t)⊗l Distrust(x, y, t)),
F3 = ¬s¬s(Trust(x, y, t)⊕l Distrust(x, y, t)).

Initially, if x trusts y to degree d1 and y trusts z to degree d2, then x trusts z to degree
d1 × d2; further the initial distrust degree is 1 minus the initial trust degree.

F4 = Trust(x, y, 0)⊗p Trust(y, z, 0)→r Trust(x, z, 0),
F5 = ¬sTrust(x, y, 0)→r Distrust(x, y, 0).

The inertia assumption (similar to Example 5):

F6 = Trust(x, y, t)⊗m ¬s¬sTrust(x, y, t+1)→r Trust(x, y, t+1),
F7 = Distrust(x, y, t)⊗m ¬s¬sDistrust(x, y, t+1)→r Distrust(x, y, t+1).

A conflict increases the distrust degree by the conflict degree:

F8 = Conflict(x, y, t)⊕l Distrust(x, y, t)→r Distrust(x, y, t+1),
F9 = ¬s(Conflict(x, y, t)⊕l Distrust(x, y, t))→r Trust(x, y, t+1).

Let FTW be F1 ⊗m F2 ⊗m · · · ⊗m F9. Suppose we have the formula FFact =
Fact1 ⊗m Fact2 that gives the initial trust degree.

Fact1 = 0.8→r Trust(Alice,Bob, 0),
Fact2 = 0.7→r Trust(Bob,Carol, 0).

Although there is no fact about how much Alice trusts Carol, any 1-stable model of
FTW ⊗m FFact assigns value 0.56 to the atom Trust(Alice,Carol, 0). On the other
hand, the 1-stable model assigns value 0 to Trust(Alice,David, 0) due to the closed
world assumption under the stable model semantics.

When we conjoin FTW ⊗ FFact with 0.2 → Conflict(Alice,Carol, 0), the 1-stable
model of FTW ⊗m FFact⊗m (0.2→ Conflict(Alice,Carol, 0)) manifests that the trust
degree between Alice and Carol decreases to 0.36 at time 1. More generally, if we
have more actions that change the trust degree in various ways, by specifying the entire
history of actions, we can determine the evolution of the trust distribution among all
the participants. Useful decisions can be made based on this information. For example,
Alice may decide not to share her personal pictures to those whom she trusts less than
degree 0.48.

Note that this example, like Example 5, uses nested connectives, such as ¬s¬s, that
are not available in previous fuzzy ASP semantics, such as [2, 3].

Stable Models of Fuzzy Propositional Formulas 333

4 Relation to Boolean-Valued Stable Models

The Boolean stable model semantics in Section 2.1 can be embedded into the fuzzy
stable model semantics as follows:

For any classical propositional formulaF , define F fuzzy to be the fuzzy propositional
formula obtained fromF by replacing⊥with 0,
with 1,¬with¬s,∧with⊗m,∨with
⊕m, and→with→s. We identify the signature of F fuzzy with the signature of F . Also,
for any interpretation I , we define the corresponding fuzzy interpretation I fuzzy as

– I fuzzy (p) = 1 if I(p) = TRUE;
– I fuzzy (p) = 0 otherwise.

The following theorem tells us that the Boolean-valued stable model semantics can
be viewed as a special case of the fuzzy stable model semantics.

Theorem 1. For any classical propositional formula F and any classical propositional
interpretation I , I is a stable model of F relative to p iff I fuzzy is a 1-stable model of
F fuzzy relative to p.

Example 7. Let F be the classical propositional formula ¬p → q. F has only one
stable model I = {q}. Clearly I fuzzy = {(p, 0), (q, 1)} is a 1-stable model of F fuzzy =
¬sp→s q.

Theorem 1 does not hold for an arbitrary choice of operators, as illustrated by the
following example.

Example 8. Let F be the classical propositional formula p ∨ p. Classical interpretation
I = {p} is a stable model of F . However, I fuzzy = {(p, 1)} is not a stable model of
F ′ = p⊕l p because there is J = {(p, 0.5)} such that I ∪ Jp

q |=1 q ⊕l q.

However, one direction of Theorem 1 holds for arbitrary choice of fuzzy operators.

Theorem 2. For any classical propositional formula F , let F fuzzy
1 be the fuzzy formula

obtained from F by replacing ⊥ with 0,
 with 1, ¬ with any fuzzy negation symbol,
∧ with any fuzzy conjunction symbol, ∨ with any fuzzy disjunction symbol, and→ with
any fuzzy implication symbol. For any classical propositional interpretation I , if I fuzzy

is a 1-stable model of F fuzzy
1 relative to p, then I is a stable model of F relative to p.

5 Relation to Other Approaches to Fuzzy ASP

5.1 Relation to Stable Models of Normal FASP Programs

A normal FASP program is a finite set of rules of the form

a ← b1 ⊗ . . .⊗ bm ⊗ ¬bm+1 ⊗ . . .⊗ ¬bn,

where n ≥ m ≥ 0, a, b1, . . . , bn are fuzzy atoms or numeric constants in [0, 1], and ⊗
is any fuzzy conjunction. We identify the rule with the fuzzy implication

b1 ⊗ . . .⊗ bm ⊗ ¬sbm+1 ⊗ . . .⊗ ¬sbn →r a.

334 J. Lee and Y. Wang

We say that a fuzzy interpretation I of signature σ satisfies a rule R if RI = 1. I
satisfies an FASP program Π if I satisfies every rule in Π .

According to [2], an interpretation I is a fuzzy answer set of a normal FASP program
Π if I satisfies Π , and no interpretation J such that J <σ I satisfies the reduct of Π
w.r.t. I , which is the program obtained from Π by replacing each negative literal ¬b
with the constant for 1− bI .

Theorem 3. For any normal FASP program Π = {r1, . . . , rn}, let F be the fuzzy
formula r1⊗m . . .⊗m rn. An interpretation I is a fuzzy answer set of Π in the sense of
[2] if and only if I is a 1-stable model of F .

Example 9. Let Π be the following program

p← ¬q, q ← ¬p.

The answer sets of Π according to [2] are {(p, x), (q, 1 − x)}, where x is any value in
[0, 1]: the corresponding fuzzy formula F is (¬sq →r p)⊗m (¬sp→r q); F ∗(u, v) is

F ⊗m ((¬sq →r u)⊗m (¬sp→r v)).

One can check that the 1-stable models of F are also {(p, x), (q, 1 − x)}, where x ∈
[0, 1].

5.2 Relation to Fuzzy Equilibrium Logic

Like the fuzzy stable model semantics introduced in this paper, fuzzy equilibrium logic
[12] generalizes fuzzy ASP programs to arbitrary propositional formulas, but its defini-
tion is quite complex as it is based on a pair of intervals and considers strong negation
as one of the primary connectives. Nonetheless we show that fuzzy equilibrium logic
is essentially equivalent to the fuzzy stable model semantics where the threshold is re-
stricted to 1 and all atoms are subject to minimization.

Review: Fuzzy Equilibrium Logic. We first review the definition of fuzzy equilibrium
logic from [12]. The syntax is the same as the one we reviewed in Section 2.2 except
that a new connective∼ (strong negation) may appear in front of atoms.5 For any fuzzy
propositional signature σ, a (fuzzy N5) valuation is a mapping from {h, t}×σ to subin-
tervals of [0, 1] such that V (t, a) ⊆ V (h, a) for each atom a ∈ σ. For V (w, a) = [u, v],
where w ∈ {h, t}, we write V −(w, a) to denote the lower bound u and V +(w, a) to
denote the upper bound v. The truth value of a fuzzy formula under V is defined as
follows.

– V (w, c) = [c, c] for any numeric constant c;
– V (w,∼ a) = [1− V +(w, a), 1 − V −(w, a)], where ∼ is the symbol for strong

negation;
– V (w,F ⊗G) = [V −(w,F) ⊗ V −(w,G), V +(w,F)⊗ V +(w,G)]; 6

5 The definition from [12] allows strong negation in front of any formulas. We restrict its occur-
rence only in front of atoms as usual in answer set programs.

6 For readability, we write the infix notation (x" y) in place of "(x, y).

Stable Models of Fuzzy Propositional Formulas 335

– V (w,F ⊕G) = [V −(w,F) ⊕ V −(w,G), V +(w,F)⊕ V +(w,G)];
– V (h,¬F) = [1− V −(t, F), 1− V −(h, F)];
– V (t,¬F) = [1− V −(t, F), 1− V −(t, F)];
– V (h, F → G) = [min(V −(h, F)→ V −(h,G), V −(t, F)→ V −(t, G)),

V −(h, F)→ V +(h,G)];
– V (t, F → G) = [V −(t, F)→ V −(t, G), V −(t, F)→ V +(t, G)].

A valuation V is a (fuzzy N5) model of a formulaF if V −(h, F) = 1, which implies
V +(h, F) = V −(t, F) = V +(t, F) = 1. For two valuations V and V ′, we say V ′ 0 V
if V ′(t, a) = V (t, a) and V (h, a) ⊆ V ′(h, a) for all atoms a. We say V ′ ≺ V if V ′ 0 V
and V ′ �= V . We say that a model V of F is h-minimal if there is no model V ′ of F
such that V ′ ≺ V . An h-minimal fuzzy N5 model V of F is a fuzzy equilibrium model
of F if V (h, a) = V (t, a) for all atoms a.

In the Absence of Strong Negation. We first establish the correspondence between
fuzzy stable models and fuzzy equilibrium models in the absence of strong negation.
As in [12], we assume that the fuzzy negation ¬ is ¬s.

For any valuation V , we define a fuzzy interpretation IV as pIV = V −(h, p) for each
atom p ∈ σ.

Theorem 4. Let F be a fuzzy propositional formula of σ that contains no strong nega-
tion.

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V −(h, p) = V −(t, p),
V +(h, p) = V +(t, p) = 1 for all atoms p in σ and IV is a 1-stable model of F
relative to σ.

(b) An interpretation I of σ is a 1-stable model of F relative to σ iff I = IV for some
fuzzy equilibrium model V of F .

In the Presence of Strong Negation. In this section we extend the relationship between
fuzzy equilibrium logic and our stable model semantics by allowing strong negation.
This is done by simulating strong negation by new atoms in our semantics.

Let σ denote the signature. For a fuzzy formula F over σ that may contain strong
negation, define F ′ over σ ∪{np | p ∈ σ} as the formula obtained from F by replacing
all strong negations of atom∼p with a new atom np. The transformation nneg(F) (“no
strong negation”) is defined as nneg(F) = F ′ ⊗m

⊗
m

p∈σ
¬s(p⊗l np).

For any valuation V of σ, we define the interpretation IV of σ ∪ {np | p ∈ σ} as{
pIV = V −(h, p) for each p ∈ σ ;

npIV = 1− V +(h, p) for each np /∈ σ .

Theorem 5. For any fuzzy formula F of signature σ that may contain strong negation,

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V (h, p) = V (t, p) for all
atoms p in σ and IV is a 1-stable model of nneg(F) relative to σ ∪ {np | p ∈ σ}.

(b) An interpretation I of σ ∪ {np | p ∈ σ} is a 1-stable model of nneg(F) relative to
σ ∪ {np | p ∈ σ} iff I = IV for some fuzzy equilibrium model V of F .

336 J. Lee and Y. Wang

Example 10. For fuzzy formula F = (0.2 →r p) ⊗m (0.3→r np), formula nneg(F)
is

(0.2→r p)⊗m (0.3→r np)⊗m ¬s(p⊗l np).

One can check that the valuation V defined as V (w, p) = [0.2, 0.7] is the only equilib-
rium model of F , and the interpretation IV = {(p, 0.2), (np, 0.3)} is the only 1-stable
model of nneg(F).

This idea of eliminating strong negation in favor of new atoms was used in Example 5
and 6.

6 Properties of Fuzzy Stable Models

In this section, we show that several well-known properties of the Boolean stable model
semantics can be naturally extended to the fuzzy stable model semantics.

6.1 Alternative Definition of F ∗

Proposition 1. For any fuzzy formulas F , G and any fuzzy interpretations I , J such
that J ≤p I ,

– I ∪ Jp
q |=y ¬F ∗(q) ⊗m ¬F iff I ∪ Jp

q |=y ¬F .
– I ∪ Jp

q |=y (F ∗ ⊗G∗)(q) ⊗m (F ⊗G) iff I ∪ Jp
q |=y (F ∗ ⊗G∗)(q).

– I ∪ Jp
q |=y (F ∗ ⊕G∗)(q) ⊗m (F ⊕G) iff I ∪ Jp

q |=y (F ∗ ⊕G∗)(q).

This proposition tells us that F ∗ in Section 3 can be equivalently defined by treating
the fuzzy operators in the uniform way without affecting stable models.

– (¬F)∗ = ¬F ∗ ⊗m ¬F ;
– (F /G)∗ = (F ∗ /G∗)⊗m (F /G) for any binary operator/.

6.2 Theorem on Constraints

In answer set programming, constraints—rules with ⊥ in the head—play an important
role in view of the fact that adding a constraint eliminates the stable models that “vio-
late” the constraint. The following theorem is the counterpart of Theorem 3 from [10]
for fuzzy propositional formulas.

Theorem 6. For any fuzzy formulas F and G, I is a 1-stable model of F ⊗ ¬G (relative
to p) if and only if I is a 1-stable model of F (relative to p) and I |=1 ¬G.

Example 11. Consider F = (¬sp→r q)⊗m (¬sq →r p)⊗m ¬sp. Formula F has only
one 1-stable model I = {(p, 0), (q, 1)}, which is the only 1-stable model of
(¬sp→r q)⊗m (¬sq →r p) that satisfies ¬sp to degree 1.

If we consider a more general y-stable model, then only one direction holds.

Theorem 7. For any fuzzy formulas F and G, if I is a y-stable model of F ⊗ ¬G
(relative to p), then I is a y-stable model of F (relative to p) and I |=y ¬G.

Example 12. The other direction, that is, “if I is a y-stable model of F and I |=y ¬G,
then I is a y-stable model of F ⊗¬G,” does not hold in general. For example, consider
F = G = p and ⊗ to be ⊗l, and interpretation I = {(p, 0.4)}. Clearly I is a 0.4-stable
model of p and I |=0.4 ¬p, but I is not a 0.4-stable model of p ⊗l ¬p. In fact, I is not
even a 0.4-model of the formula.

Stable Models of Fuzzy Propositional Formulas 337

6.3 Theorem on Choice Formulas

In the Boolean stable model semantics, formulas of the form p ∨ ¬p are called choice
formulas, and adding them to the program makes atoms p exempt from minimiza-
tion. Choice formulas have been shown to be useful in composing a program in the
“Generate-and-Test” method. This section shows their counterpart in the fuzzy stable
model semantics.

For any fuzzy atom p, Choice(p) stands for p ⊕l ¬sp. For any list p = (p1, . . . pn)
of fuzzy atoms, Choice(p) stands for Choice(p1)⊗ . . . ⊗ Choice(pn), where ⊗ is any
fuzzy conjunction.

The following proposition tells that choice formulas are tautological.

Proposition 2. For any fuzzy interpretation I and any list p of fuzzy atoms, I|=1

Choice(p).

Theorem 8 is an extension of Theorem 2 from [10].

Theorem 8. (a) If I is a y-stable model of F relative to p ∪ q, then I is a y-stable
model of F relative to p.

(b) I is a 1-stable model of F relative to p iff I is a 1-stable model of F ⊗ Choice(q)
relative to p ∪ q.

Theorem 8 (b) does not hold for arbitrary threshold y (i.e., if “1−” is replaced with
“y−”). For example, consider F = ¬s¬sq and I = {(q, 0.5)}. Clearly I is a 0.5-model
of F , and thus I is a 0.5-stable model of F relative to ∅. However, I is not a 0.5-stable
model of F ⊗m Choice(q) = ¬s¬sq ⊗m (q ⊕l ¬sq) relative to ∅ ∪ {q}, as witnessed
by J = {(q, 0)}.

Since the 1-stable models of F relative to ∅ are the models of F , it follows from
Theorem 8 (b) that the 1-stable models of F ⊗ Choice(σ) relative to σ are exactly the
1-models of F .

Corollary 1. Let F be a fuzzy formula of a finite signature σ. I is a 1-model of F iff I
is a 1-stable model of F ⊗ Choice(σ) relative to σ.

Example 13. Consider the fuzzy formula F = ¬sp →r q. Although any interpretation
I that satisfies 1 − pI ≤ qI is a 1-model of F , among them only {(p, 0), (q, 1)} is a
1-stable model of F . However, we check that all 1-models of F are exactly the 1-stable
models of G = F ⊗m Choice(p)⊗m Choice(q): G∗(u, v) is

(¬sp→r q)⊗m (¬sp→r v)⊗m (u⊕l ¬sp)⊗m (v ⊕l ¬sq)

and for K = I ∪ Jpq
uv ,

G∗(u, v)K = 1⊗m ((1− pK)→r vK)⊗m (uK ⊕l (1− pK))⊗m (vK ⊕l (1− qK)).

So, for K to satisfy G∗(u, v) to degree 1, uK should be at least pK and vK should be at
least qK . So there does not exist J <pq I such that I ∪ Jpq

uv |=1 G∗(u, v), from which
it follows that I is a 1-stable model of G.

338 J. Lee and Y. Wang

7 Other Related Work

Several approaches to incorporating fuzziness into the answer set programming frame-
work have been proposed. In this paper, we have formally compared our approach to
[12] and [2]. Most of them consider the specific syntax where each formula is of the rule
form h← B where h is an atom and B is a formula [4–7]. Among them, [4–6] allow B
to be any arbitrary formula corresponding to an increasing function whose arguments
are the atoms appearing in the formula. [7] allows B to correspond to either an increas-
ing function or a decreasing function. [9] considers the normal program syntax, i.e.,
each rule is of the form l0 ← l1⊗ . . .⊗ lm⊗not lm+1⊗ . . .⊗ not ln, where each li is
an atom or the strong negation of an atom. In terms of semantics, most of the previous
works rely on the notion of immediate consequence operator and relate the fixpoint of
this operator to the minimal model of a positive program7. Similar to the approach [2]
has adopted, the answer set of a positive program is defined as its minimal model, while
an answer set of a non-positive program is defined in terms of the minimal model of
the reduct, which is a positive program obtained based on the normal program and the
specific interpretation being checked. [8] has proposed a semantics based on the notion
of unfounded set.

It is worth noting that some of the related works have discussed the so-called resid-
uated programs [4–6, 9], where each rule h ← B is assigned a weight θ, and a rule is
satisfied by an interpretation I if I(h ← B) ≥ θ. According to [5], this class of pro-
grams is able to capture many other logic programming paradigms, such as possibilis-
tic logic programming, hybrid probabilistic logic programming, generalized annotated
logic programming. Furthermore, as shown in [5], a weighted rule (h ← B, θ) can be
simulated by h← B ⊗ θ, where (⊗,←) forms an adjoint pair.

It is well known in the Boolean stable model semantics that strong negation can
be represented in terms of new atoms [10]. Our adaptation in the fuzzy stable model
semantics is similar to the method from [9], in which the consistency of an interpretation
is guaranteed by imposing the extra restriction I(∼p) ≤∼I(p) for all atom p. Strong
negation and consistency have also been studied in [13, 14].

8 Conclusion

We introduced a stable model semantics for fuzzy propositional formulas, which gen-
eralizes both the Boolean stable model semantics and fuzzy propositional logic. The
syntax is the same as the syntax of fuzzy propositional logic, but the semantics defines
stable models instead of models. The formalism allows highly configurable default rea-
soning involving fuzzy truth values. Our semantics, when we restrict threshold to be 1
and assume all atoms to be subject to minimization, is essentially equivalent to fuzzy
equilibrium logic, but is much simpler. To the best of our knowledge, our representation
of the commonsense law of inertia involving fuzzy values is new. The representation
uses nested fuzzy operators, which are not available in other fuzzy ASP semantics for a
restricted syntax.

7 We call a program positive if it does not contain any default negation.

Stable Models of Fuzzy Propositional Formulas 339

We showed that several traditional results in answer set programming can be natu-
rally extended to this formalism, and expect that more results can be carried over. Future
work includes implementing this language using mixed integer programming solvers or
bilevel programming solvers [15].

Acknowledgements. We are grateful to Joseph Babb, Michael Bartholomew, Enrico
Marchioni, and the anonymous referees for their useful comments and discussions re-
lated to this paper. This work was partially supported by the National Science Founda-
tion under Grant IIS-1319794 and by the South Korea IT R&D program MKE/KIAT
2010-TD-300404-001.

References

1. Lifschitz, V.: What is answer set programming? In: Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 1594–1597. MIT Press (2008)

2. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the
semantic web. In: Eiter, T., Franconi, E., Hodgson, R., Stephens, S. (eds.) RuleML, pp.
89–96. IEEE Computer Society (2006)

3. Janssen, J., Vermeir, D., Schockaert, S., Cock, M.D.: Reducing fuzzy answer set program-
ming to model finding in fuzzy logics. TPLP 12(6), 811–842 (2012)

4. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370 (2001)
5. Viegas Damásio, C., Moniz Pereira, L.: Monotonic and residuated logic programs. In: Ben-

ferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759.
Springer, Heidelberg (2001)

6. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Multi-adjoint logic programming with continuous
semantics. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI),
vol. 2173, pp. 351–364. Springer, Heidelberg (2001)

7. Viegas Damásio, C., Moniz Pereira, L.: Antitonic logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–392. Springer,
Heidelberg (2001)

8. Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: An introduction to fuzzy answer set pro-
gramming. Ann. Math. Artif. Intell. 50(3-4), 363–388 (2007)

9. Madrid, N., Ojeda-Aciego, M.: Towards a fuzzy answer set semantics for residuated logic
programs. In: Web Intelligence/IAT Workshops, pp. 260–264. IEEE (2008)

10. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelli-
gence 175, 236–263 (2011)

11. Hajek, P.: Mathematics of Fuzzy Logic. Kluwer (1998)
12. Schockaert, S., Janssen, J., Vermeir, D.: Fuzzy equilibrium logic: Declarative problem solv-

ing in continuous domains. ACM Trans. Comput. Log. 13(4), 33 (2012)
13. Madrid, N., Ojeda-Aciego, M.: Measuring inconsistency in fuzzy answer set semantics.

IEEE T. Fuzzy Systems 19(4), 605–622 (2011)
14. Madrid, N., Ojeda-Aciego, M.: On coherence and consistence in fuzzy answer set semantics

for residuated logic programs. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) WILF 2009.
LNCS, vol. 5571, pp. 60–67. Springer, Heidelberg (2009)

15. Alviano, M., Peñaloza, R.: Fuzzy answer sets approximations. TPLP 13(4-5), 753–767
(2013)

A Free Logic for Stable Models with Partial

Intensional Functions�

Pedro Cabalar1, Luis Fariñas del Cerro2, David Pearce3, and Agustin Valverde4

1 Department of Computer Science
University of Corunna, Spain

cabalar@udc.es
2 University of Toulouse IRIT, CNRS, France

farinas@irit.fr
3 Universidad Politécnica de Madrid, Spain

david.pearce@upm.es
4 Universidad de Málaga, Spain

a valverde@ctima.uma.es

Abstract. In this paper we provide a new logical characterisation of
stable models with partial functions that consists in a free-logic exten-
sion of Quantified Equilibrium Logic (QEL). In so-called “free” logics,
terms may denote objects that are outside the domain of quantification,
something that can be immediately used to capture partial functions. We
show that this feature can be naturally accommodated in the monotonic
basis of QEL (the logic of Quantified Here-and-There, QHT) by allowing
variable quantification domains that depend on the world where the for-
mula is being interpreted. The paper provides two main contributions: (i)
a correspondence with Cabalar’s semantics for stable models with partial
functions; and (ii) a Gentzen system for free QHT, the monotonic basis
of free QEL.

1 Introduction: Functions in ASP

Answer Set Programming (ASP) [21,22,5] constitutes nowadays one of the most
popular paradigms for practical Knowledge Representation (KR) and problem
solving, being regularly present in mainstream conferences on KR and Artifi-
cial Intelligence (AI). This popularity can be attributed not only to its practical
applicability, with available state-of-the-art solvers1 and an increasing number
of applications, but also to its robust formal basis, relying on the stable model
semantics for logic programs [15]. Although stable models were originally de-
fined for propositional logic programs, their logical characterisation in terms of
Equilibrium Logic [23] paved the way for their extension to more general
syntactic classes. In particular, the first-order extension of this logic, Quantified

� This research was partially supported by: European French-Spanish Lab IREP; MEC
project TIN2012-39353-C04; Junta de Andalućıa project TIC115; Xunta de Galicia,
Spain, grant GPC2013/070; and Universidad de Málaga, Campus de Excelencia In-
ternacional Andalućıa Tech.

1 See, for instance the report from the fourth ASP Competition [1].

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 340–354, 2014.
c© Springer International Publishing Switzerland 2014

A Free Logic for Stable Models with Partial Intensional Functions 341

Equilibrium Logic (QEL) [24], allows the definition of stable models for any arbi-
trary first-order theory [13] and became a powerful theoretical tool for analysing
fundamental properties such as strong equivalence [19], safety [9], interpolation [14]
or synonymy [25], being in this way a salient, successful case of Logics in AI.

The extension of stable models to an arbitrary first-order syntax has brought
into focus a feature traditionally excluded from ASP: the treatment of functions.
Although most ASP solvers are propositional, their input language allows the
use of variables that, in an initial grounding phase, are replaced by their possible
ground instantiations, under the assumption (inherited from logic programming)
of an Herbrand domain. Due to grounding limitations, ASP has traditionally
forbidden the use of functions because the simple introduction of one function
symbol makes the Herbrand universe infinite. This distinctive difference between
ASP and Prolog has been overcome with DLV-complex [11], a tool that allows
the grounding of ASP programs with arbitrarily nested Herbrand functions that
satisfy a given property of being finitely-ground [10] (although checking that
property is undecidable).

Apart from Herbrand functions, a less explored possibility that has recently
attracted attention is the use of evaluable functions in ASP. While an Her-
brand function is expected to act as a syntactic constructor for defining objects
in the universe, such as a tuple or a list, an evaluable function is expected
to behave with its usual mathematical meaning, that is, as an operator2 that
returns a value, as, for instance, the standard arithmetic operations for inte-
ger numbers. Dealing with evaluable functions may have two main advantages.
First, from the KR perspective, the use of nested functions usually allows a
more compact and natural reading, avoiding the introduction of auxiliary vari-
ables that may become a potential source of error. To give an example, saying
that X is a patrilineal great grandfather of Y could be naturally represented
as X = father(father(father(Y))) whereas in predicate notation, we would
need a rule body of the form father(Y, Z), father(Z, T), father(T,X) whose
meaning is not so easily recognisable at a first sight, apart from requiring two
extra auxiliary variables. Second, evaluable functions can be computationally
exploited both at the grounding phase, reducing the ground program size, and
at the solving phase, avoiding an overload of constraints.

An immediate interpretation for evaluable functions in ASP was already pro-
vided by QEL, since this logic was not necessarily restricted to Herbrand func-
tions. As shown in [20], QEL semantics for evaluable functions3 can be exploited
for a more efficient grounding on scenarios with functional dependences, if we
replace propositional ASP solvers by a CSP tool as a backend. Unfortunately,
the other potential advantage of using functions, namely, their adequacy for a
flexible KR, is not achieved by this approach. In particular, functions in QEL
are somehow asymmetrical with respect to predicates, since they do not allow

2 This distinction between constructors and operators is, in fact, part of the motivation
from the area of Functional Logic Programming [16].

3 Although Lin and Wang’s approach was independently established, its correspon-
dence to QEL was proven in [7].

342 P. Cabalar et al.

non-monotonic reasoning (NMR). A reasonable requirement for a functional se-
mantics is that replacing all predicates by Boolean functions should have no
particular effect on the results excepting the minor changes in notation – each
atom p(X) would be replaced by the expression p(X) = true. However, predi-
cates in ASP are intensional : we can just provide the rules for which they hold,
assuming that anything else is false. Furthermore, thanks to default negation, we
can further specify default rules for a predicate that are applied in the absence of
exceptions. As an example, a graph can be described by merely asserting a fact
edge(i, j) for each edge, while remaining atoms for that predicate will be false
by default. Moreover, we can inductively define a reachability predicate with the
pair of rules:

reach(X,Y)← edge(X,Y) reach(X,Y)← edge(X,Z), reach(Z, Y)

something that is well-known to be non-representable in classical first-order logic.
Unfortunately, under QEL semantics, functions behave “classically” and there
is no way of defining a function default value without resorting to predicate-
based representations. In our example, if we replace predicates edge and reach
by Boolean functions, the stable models we obtain correspond to the classical
models of the original predicate-based theory.

1.1 Approaches to Intensional Functions

Although the idea of default values for functions is not new [8], Lifschitz sug-
gested the name intensional functions [18] to refer to evaluable functions that
allow NMR features analogous to those obtained with intensional predicates.
There currently exist two different ways of understanding intensional functions.
On the one hand, Bartholomew and Lee introduced a variant [3] (we will call
BL semantics) that repairs some counterintuitive features of Lifschitz’s approach.
Like the latter, BL semantics exclusively deals with total functions defining their
“stability” in terms of value uniqueness among values stemming from possible
models. On the other hand, a previous definition4 by Cabalar [7] considers in-
stead a minimal-information criterion for partial functions. To understand the
difference, take the example formula:

father(abel) = adam (1)

assuming abel and adam are Herbrand-constants. Under Cabalar’s semantics this
formula has a unique stable model where abel’s father is adam and adam’s father,
in turn, is left undefined by default. Notice how this interpretation is aligned to
the idea of minimal information from predicate-based representations. If we just
had a predicate fact father(abel, adam) the unique stable model would satisfy
¬∃x father(adam, x) underlining that adam’s father is undefined. In this sense,
Cabalar’s semantics can be seen as a “conversion” of predicate-based ASP into

4 As shown in [4], the recent approach by Balduccini [2] for logic programs with partial
functions is actually equivalent to Cabalar’s semantics.

A Free Logic for Stable Models with Partial Intensional Functions 343

functional notation whose main advantage is nesting functions: for instance, we
can conclude that Abel’s grandfather father(father(abel)) = father(adam) is
also undefined.

Under BL semantics, however, (1) has no stable models since the value of
father(adam) is not uniquely defined – in principle, with those two persons in
the domain, the possibilities are father(adam) = abel or father(adam) = adam
himself. In this way, the intuition behind BL intensional functions is clearly
different from predicate-based ASP and relies on an idea of selecting a function
value when there is no other way to vary that value. This idea was captured
in [4] and [12] defining in the latter a flexible extension of QEL together with a
Gentzen calculus for the “flexible” version of its monotonic basis, the so-called
logic of Quantified Here-and-There (QHT).

Apart from their different understandings for functions, one important dif-
ference in the behaviour of BL and Cabalar’s semantics has to do with the
treatment of nested functions. In particular, Cabalar’s semantics satisfies:

ϕ(f(x)) ≡ ∃y (f(x) = y ∧ ϕ(y)) (2)

for any term f(x) occurring in formula ϕ, where x is free in ϕ and y is not
free in ϕ. As a result, nested functions can be safely “unfolded” until all atoms
involving functions eventually have the form f(t) = t′ where t and t′ are function-
free terms. This syntactic form is called c-plain in [4] and there it was shown
that both BL and Cabalar’s semantics coincide for this form of theory, under
the assumption of total functions.5 Unfortunately, the unfolding transformation
(2) is not safe in BL semantics and the question whether any theory can be
equivalently reduced to c-plain form under BL is still unanswered.

1.2 Contribution of the Paper

Although, as explained above, Cabalar’s semantics seems a promising alternative
for interpreting intensional functions, there was no axiomatisation for this logic
yet, and so its properties could only be proved at a semantic level. In this paper,
we consider an equivalent reformulation of Cabalar’s semantics in terms of a free-
logic extension of Quantified Equilibrium Logic (QEL). The term “free” logic
refers to a family of formalisms where syntactic terms may denote objects that
are outside the domain of quantification, something that can be used to capture
partial functions.6 We show that this feature can be naturally accommodated
in the monotonic basis of QEL (the logic of Quantified Here-and-There, QHT)

5 In fact, as explained in [4], the difference total/partial between the two semantics is
not essential. In Cabalar’s semantics, any function can always be forced to be total
by adding an axiom ¬¬∃y f(x) = y. In BL semantics, we can always define a special
constant none to represent the fact that the function has no value. A comparison
like none = none would become true, but under c-plain syntax, such comparisons
never occur.

6 A useful reference is [26] that presents various approaches to free logic over intu-
itionistic logic.

344 P. Cabalar et al.

by allowing variable quantification domains that depend on the world where
the formula is being interpreted. Apart from capturing Cabalar’s semantics, this
free-logic characterisation also opens new possibilities for interpreting partial
intensional functions that will be explored in the future.

The main contributions of the paper are as follows. First, in Section 2 we
describe the free quantified logic of here-and-there, FHT, the monotonic basis
of free QEL. In Section 3 we then show that FHT-models are equivalent to the
semantics of Cabalar’s partial functions. And in Section 4 we present a Gentzen
calculus for FHT with corresponding completeness theorems.

2 The Free (Quantified) Here-and-There logic

We consider a first-order language with signature Σ = 〈C,F, P ∪ {=}〉, where
C is the set of constants (or 0-ary functions), F is the set of function symbols
and P is the set of predicate symbols. We assume that each predicate p ∈ P has
an associated arity, an integer denoting the number of arguments arity(p) ≥ 0.
Similarly, each function f ∈ F is associated with an arity(f) > 0.

First-order formulas are built up in the usual way, with the same syntax of
classical predicate calculus with equality =. Formally, we assume a countably
infinite set of variables, the constant ⊥, the connectives, ‘∨’, ‘∧’, ‘→’, ‘∃’, ‘∀’
and auxiliary parentheses. Negation is defined by ¬ϕ def

= ϕ → ⊥ and double

implication is denoted by ϕ↔ψ
def
= (ϕ→ ψ)∧(ψ → ϕ). We use letters x, y, z and

their capital versions to denote variables, τ to denote terms, c to denote constants
and d objects in the domain. Overlined letters like x, τ , c, d, . . . represent tuples
(in this case of variables, terms, constants, and objects respectively). An atom
like τ = τ ′ is called an equality atom, whereas an atom like p(τ1, . . . , τn) with
n ≥ 0 for any predicate p different from equality is called apredicate atom. We
denote by At(C,F, P), or At for short, the set of ground predicate atoms over
the language. We also write Terms(C,F) to stand for the set of ground terms
formed with constants in C and functions in F .

We will be exclusively interested in closed formulas or sentences, that is, those
where each variable is bound by some quantifier. For the sake of readability,
however, we will sometimes allow free variables, but as an abbreviation for their
universal quantification. A set of sentences is called a theory.

Kripke semantics for intermediate logics relies on the idea of possible worlds
with an accessibility relation ≤ among them that, at least, satisfies reflexivity
and transitivity. The simplest case of intermediate logic strictly below classical
logic is known as the Logic of Here-and-There (HT) [17] where only two worlds
are considered, h (“here”) and t (“there”), so that h ≤ t. Apart from being
reflexive and transitive, the relation ≤ in intermediate logics must also satisfy an
important property called persistence or inheritance so that any accessible world
w′ ≥ w must have at least as much information (true assertions) as the current
one w. In the propositional case, this implies that the true atoms in w are a subset
of those in w′. In the first-order case, this is naturally extrapolated so that the
extent of any predicate p(x) in w is a subset of its extent in w′. For instance, in

A Free Logic for Stable Models with Partial Intensional Functions 345

HT we could have {p(0), p(1)} true in world h and {p(0), p(1), p(2), p(3)} true in
world t. When thinking of logic programs, it is somehow natural that all worlds
share a common domain, normally the Herbrand Universe, that in our example
would correspond to {0, 1, 2, 3}.When this happens, we say that the intermediate
logic has a static domain. This was, in fact, the choice taken in the original
definition of Quantified Here-and-There with Static domains [24], or SQHT for
short, where worlds h and t shared the same universe. In a more general setting,
however, each world w could have its own domain Dw provided that, for any
accessible world w′ ≥ w, we guarantee that the domain has at least as many
objects as in w, that is, Dw ⊆ Dw′ . In our example a possible situation could be,
for instance, Dh = {0, 1, 2} and Dt = {0, 1, 2, 3}. This immediately introduces a
way of representing the idea of undefined elements : for instance, 3 is undefined
in world h but becomes defined in world t whereas 4 is undefined in both worlds.
Using non-static domains has immediate consequences for quantification and
functional terms, since there may exist elements that cannot be denoted in the
current world, but that become denotable in an accessible world instead. To be
more precise, we use the Meinongiam approach for free semantics in intuitionistic
logic [6,26], in which an outer domain D ⊇ Dt is considered. This is exactly the
semantic structure we introduce next for defining the Free logic of Quantified
Here-and-There, or FHT for short.

Given a function σ and a tuple of terms τ = τ1, . . . , τn we write σ(τ) to stand
for the tuple σ(τ1), . . . , σ(τn).

Definition 1 (FHT-interpretation). An FHT-interpretation M , is a tu-
ple M = 〈Dh, Dt, D,≡, I, σ〉 verifying the following conditions.

(F1) Dh ⊆ Dt ⊆ D are a triple of increasing domains.
(F2) ≡ is an equivalence relation on Dt, such that:

(a) There is no pair of elements d �= d′ from Dh such that d ≡ d′;
(b) For all d ∈ Dt, there exists d′ ∈ Dh such that d ≡ d′.

σ : Terms(C ∪D,F)→ D, the interpretation for terms, is a mapping recursively
defined and verifying:

(F3) σ(d) = d if d ∈ D.
(F4) For any world w ∈ {h, t}, if σ(τ) ∈ Dw then σ(τ ′) ∈ Dw for each subterm

τ ′ of τ .
(F5) If di ≡ d′i for every i, then σ(f(d1, . . . , dn)) ≡ σ(f(d′1, . . . , d

′
n)).

I is an interpretation for predicates that assigns to each predicate p with arity n
at each world w ∈ {h, t} a set of tuples of elements I(p, w) following the rules:

(F6) I(p, w) ⊆ Dn
w

(F7) if d, d′ ∈ Dt, d ≡ d′, and (. . . , d, . . .) ∈ I(p, t), then (. . . , d′, . . .) ∈ I(p, t)
(F8) I(p, h) ⊆ I(p, t). �

Condition (F1) is standard for dynamic domains in intermediate logics – as
we explained before, they must contain an increasing set of elements to satisfy

346 P. Cabalar et al.

the inheritance condition. Condition (F2) is necessary for capturing Cabalar’s
treatment of the equality predicate. While in the h world, an equality atom
τ1 = τ2 will just be interpreted by checking whether σ(τ1) and σ(τ2) coincide,
in the t world we will use instead a separate equivalence relation ‘≡’ among
elements in Dt. In this way, two different elements d �= d′ can be equivalent
d ≡ d′ and so, they can be interpreted as “equal” in the t world. Given some
d ∈ Dt, we write [d] to represent its ≡-equivalence class. However, (F2) specifies
two strong restrictions: (a) says that if these two different elements d �= d′ are in
Dh they cannot become equivalent in Dt. Intuitively, this will mean that if we
have two defined terms in h with a different value, they must remain defined and
different (equality is false) in world t. On the other hand, (b) means that all the
elements we use in Dt \Dh must have some “purpose” with respect to Dh. More
formally, any d ∈ Dt \Dh must be equivalent to some element in Dh ⊆ Dt. This
restriction allows us to capture an important condition in Cabalar’s semantics:
if a function is defined in world h, its value is maintained in world t. We will
see an example of this, once the satisfaction of formulas is defined. Since the ≡
relation must behave as a kind of equality, it must additionally satisfy (F5) and
(F7), so that replacement of equivalent terms preserves function values and truth
for predicates. Conditions (F4) and (F6) mean that evaluation of predicates and
terms at world w is “fixed” to elements in that world w, even through subterms.
Notice that the expanded language includes a constant for each object in D and
that (F3) evaluates any object constant to itself; for simplicity we do not make
a notational difference between the domain element and its name. (F8) is the
usual condition of persistence for predicate atoms from here to there.

We define when a FHT-interpretation M = 〈Dh, Dt, D,≡, I, σ〉 satisfies a
formula ϕ at world w ∈ {h, t}, written M,w |= ϕ, recursively as follows:

– M,w �|= ⊥
– M,w |= p(τ) iff σ(τ) ∈ I(p, w).
– M,h |= τ1 = τ2 iff σ(τ1) = σ(τ2) ∈ Dh.
– M, t |= τ1 = τ2 iff σ(τ1), σ(τ2) ∈ Dt and σ(τ1) ≡ σ(τ2).
– M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ,
– M,w |= ϕ ∨ ψ iff M,w |= ϕ or M,w |= ψ,
– M,h |= ϕ→ ψ iff M, t |= ϕ→ ψ and M,h �|= ϕ or M,h |= ψ,
– M, t |= ϕ→ ψ iff, M, t �|= ϕ or M, t |= ψ,
– M,w |= ∀x ϕ(x) iff M,w |= ϕ(d) for all d ∈ Dw.
– M,w |= ∃x ϕ(x) iff M,w |= ϕ(d) for some d ∈ Dw.

The concepts of validity, equivalence and semantic consequence are defined as
usual. To understand how these definitions work for undefined functions, let us
extend our Biblical genealogy example.

Example 1. Assume we have the Herbrand constants adam, cain, abel and take
the following situation that is compatible with Cabalar’s semantics. Suppose
that M,w |= father(abel) = adam in worlds w ∈ {h, t}, whereas father(cain)
is undefined in world h, M,h |= ¬∃xfather(cain) = x taking value adam in
world t, M, t |= father(cain) = adam. Besides, in both worlds, we still have

A Free Logic for Stable Models with Partial Intensional Functions 347

father(adam) undefined. To represent this situation in FHT we would fix Dh =
{abel, cain, adam}, Dt = Dh ∪ {cf} and D = Dh ∪ {af} with cf ≡ adam where
cf and af are unnamed elements that respectively stand for “Cain’s father” and
“Adam’s father.” Then σ(father(abel)) = adam ∈ Dh, σ(father(cain)) = cf ∈
Dt \Dh but cf ≡ adam and, finally, σ(father(adam)) = af ∈ D \Dt. �

To define equilibrium models, we say that an interpretation M = 〈Dh, Dt, D,
≡, I, σ〉 is smaller than M ′ = 〈D′h, D′t, D′,≡′, I ′, σ′〉, written M ≤ M ′, when D \
Dt = D′ \ D′t (elements that represent functions undefined both here and there
must coincide in both interpretations), I(p, t) = I ′(p, t) and I(p, h) ⊆ I ′(p, h)
for every predicate p, and finally, for every τ , one of these three cases holds: (1)
σ(τ) �∈ Dt and σ′(τ) �∈ D′t; or (2) σ(τ) = σ′(τ) ∈ Dh ∩D′h; or (3) σ(τ) ∈ Dt \Dh,
σ′(τ) ∈ D′h ∩ Dh, σ(τ) ≡ σ′(τ). Then a model M of a theory Γ is said to be an
equilibrium model iff there is no other modelM ′ �= M ,M ′ ≤M of Γ .

3 Relation to Cabalar’s Partial Functions

In this section we recall the basic definitions from Cabalar’s extension [7] of
SQHT for dealing with partial functions. The main idea of this semantics re-
lies on keeping a static domain D, common for both worlds h and t, but the
interpretation of terms may map now to a special object u �∈ D that stands for
“undefined.” Let us denote this variant as SQHTu and recall7 next its main
semantic definitions.

Definition 2 (SQHTu-interpretation). A SQHTu-interpretation is a tuple
M = 〈D, I, σh, σt〉 where σw with w ∈ {h, t} are functions σw : Terms(C ∪
D,F) → D ∪ {u} with u some new element u �∈ D (standing for “undefined”)
and satisfying:

(U1) σw(d) = d for all d ∈ D.
(U2) The mappings σw are recursive and verify σw(f(τ)) = u if σw(τi) = u for

some τi in τ .
(U3) σh(τ) = σt(τ) or σh(τ) = u for all τ ∈ Terms(C ∪D,F).

and I is an interpretation for predicates satisfying:

(U4) I(p, w) ⊆ Dn, if arity(p) = n, and
(U5) I(p, h) ⊆ I(p, t). �

An interpretation M = 〈D, I, σh, σt〉 is total iff σh = σt and I(p, h) = I(p, t)
for every predicate p. We say that M = 〈D, I, σh, σt〉 is smaller than M ′ =
〈D, I ′, σ′h, σ

′
t〉, written M ≤M ′, when I(p, t) = I ′(p, t) and I(p, h) ⊆ I ′(p, h) for

every predicate p, σt = σ′t, and σh(τ) = u or σh(τ) = σ′h(τ) for every term τ .

7 For simplicity, we omit the distinction between Herbrand and non-Herbrand func-
tions made in the original definition of [7].

348 P. Cabalar et al.

Definition 3 (Equilibrium model). A total SQHTu interpretation M is an
equilibrium model of a theory Γ iff M,h |= α for all α ∈ Γ and there is no
strictly smaller M ′ < M such that M ′, h |= α for all α ∈ Γ .

The satisfaction relation in SQHTu, written |=u, is defined as follows.

– M,w |=u p(τ) iff σw(τ) ∈ I(p, w);
– M,w |=u τ1 = τ2 iff σw(τ1) = σw(τ2) �= u;
– ⊥, ∧ and ∨ are interpreted as usual;
– M,h |=u ϕ→ ψ iff M, t |=u ϕ→ ψ and either M,h �|=u ϕ or M,h |=u ψ;
– M, t |=u ϕ→ ψ iff either M, t �|=u ϕ or M, t |=u ψ;
– M,w |=u ∀x ϕ(x) iff M,w |=u ϕ(d) for all d ∈ D;
– M,w |=u ∃x ϕ(x) iff M,w |=u ϕ(d) for some d ∈ D.

To prove equivalence between SQHT and FHT we will use the next observation.

Proposition 1. Let L1 and L2 be two different Kripke logics for a common
syntax and set of worlds W , and let c be a correspondence assigning an L2

interpretation M c to any L1 interpretation M . If c is such that, at any world
w ∈W , both M,w and M c, w satisfy the same set of formulas, then L2 ⊆ L1.

We provide next a pair of correspondences that satisfy the conditions in Propo-
sition 1: mapping ‘∗’ from SQHT interpretations into FHT interpretations, and
mapping ‘†’ in the opposite direction. In the sequel, if τ ∈ Terms(D ∪C,F), we
write τ(d1, . . . , dn) to indicate that d1, . . . , dn are the elements of D occurring in
τ . Given an FHT interpretation M = 〈Dh, Dt, D,≡, I, σ〉 and assuming u �∈ D,
we define an SQHTu interpretation M∗ = 〈D∗, I, σ∗h, σ∗t 〉 as:

– D∗
def
= Dt/≡

– If τ([d1], . . . , [dn]) ∈ Terms(D∗ ∪ C,F) with di ∈ Dh and σ(τ(d1, . . . , dn)) ∈
Dh, then σ∗h(τ([d1], . . . , [dn])) = [σ(τ(d1, . . . , dn))];
otherwise, σ∗h(τ([d1], . . . , [dn])) =u.

– If σ(τ(d1, . . . , dn)) ∈ Dt, then σ∗t (τ([d1], . . . , [dn])) = [σ(τ(d1, . . . , dn))];
otherwise, σ∗t (τ([d1], . . . , [dn])) = u.

– If di ∈ Dh for every i, ([d1], . . . , [dn]) ∈ I∗(p, h) iff (d1, . . . , dn) ∈ I(p, h).
– I∗(p, t) = {([d1], . . . , [dn]) | (d1, . . . , dn) ∈ I(p, t)}, if n = arity(p).

The mappings σw are well defined, because if d ≡ d′ and τ(d) is a term
containing d, then by condition (F5), σ(τ(d)) ≡ σ(τ(d′)). The interpretation I∗

is also well defined by conditions (F2) and (F6).
As an example, consider Dh = {0, 1, 2}, Dt = {0, 1, 2, 3} and D = N. Any σ

in an FHT-interpretation will assign σ(i) = i for any natural number i ∈ N.
Then σ∗h(i) = i for i ∈ {0, 1, 2} and σ∗h(i) = u for all the rest. Similarly σ∗t (i) = i
for i ∈ {0, 1, 2, 3} and σ∗t (i) = u otherwise.

Proposition 2. If M is an FHT-interpretation, then M∗ is a well-formed
SQHT-interpretation. �

A Free Logic for Stable Models with Partial Intensional Functions 349

Theorem 1. Let M be an FHT interpretation and α an arbitrary sentence.
Then M,w |= α iff M∗, w |=u α for any w ∈ {h, t}. �

Given an SQHTu-interpretation M = 〈D, I, σh, σt〉 we provide now the cor-
respondence for the other direction, defining the associated FHT-interpretation
M † = (Dh, Dt, D

†,≡, I†, σ) as follows:

– D† = Terms(D ∪ C,F)/ ≡h, where τ1 ≡h τ2 if either τ1 = τ2, or σh(τ1) =
σh(τ2) �= u.

– Dh = {[τ] | σh(τ) �= u}
– Dt = {[τ] | σt(τ) �= u}
– [τ1] ≡ [τ2] iff σt(τ1) = σt(τ2).
– σ([τ]) = [τ], σ(f([τ1], . . . , [τ2])) = [f(τ1, . . . , τ2)].
– I†(p, w) = {([τ1], . . . , [τn]) | (σw(τ1), . . . , σw(τn)) ∈ I(p, w)}, if n = arity(p).

The mapping σ is well defined, because if σh(τ1) = σh(τ
′
i) for every i, then,

by recursion, σh(f(τ1, . . . , τn)) = σh(f(τ
′
1, . . . , τ

′
n)). On the other hand, ≡ is well

defined: if σh(τ1) = σh(τ2) �= u, then σt(τ1) = σh(τ1) = σh(τ2) = σt(τ2).

Proposition 3. Let M = 〈D, I, σh, σt〉 be an SQHTu-interpretation. Then
M † = 〈Dh, Dt, D

†,≡, I†, σ〉 is a well-formed FHT-interpretation. �

Theorem 2. Let M be an SQHTu-interpretation and α an arbitrary sentence.
Then M,w |=u α iff M †, w |= α for any w ∈ {h, t}. �

4 Gentzen Calculus FHTG

In this section we introduce a Gentzen Calculus FHTG with multi-consequent
sequents of the form Γ + Δ where, Γ and Δ are sets of formulas (respectively
understood as a conjunction and a disjunction). The soundness of the system is
guaranteed if the rules preserve the following property: for a rule Γ0#Δ0

Γ1#Δ1
if M is

a countermodel of Γ0 + Δ0 then it is also a countermodel of Γ1 + Δ1; and M
is a countermodel of Γ + Δ if M |= ϕ for every ϕ ∈ Γ and M �|= ψ for every
ψ ∈ Δ. We begin by introducing the axioms and the rules of the basic system.

Axioms: Γ, ϕ + Δ,ϕ; Γ, ϕ,¬ϕ + Δ;

Rules for propositional connectives:

Γ, α, β Δ

Γ,α ∧ β Δ
(L-∧) Γ Δ,α Γ Δ,β

Γ Δ,α ∧ β
(R-∧)

Γ, α Δ Γ, β Δ

Γ,α ∨ β Δ
(L-∨) Γ Δ,α, β

Γ Δ,α ∨ β
(R-∨)

Γ,¬α Δ Γ Δ,α,¬β Γ, β Δ

Γ,α → β Δ
(L-→) Γ, α Δ,β Γ,¬β Δ,¬α

Γ Δ,α→ β
(R-→)

Γ,¬α,¬β Δ

Γ,¬(α ∨ β) Δ
(L-¬∨) Γ Δ,¬α Γ Δ,¬β

Γ Δ,¬(α ∨ β)
(R-¬∨)

350 P. Cabalar et al.

Γ,¬α Δ Γ,¬β Δ

Γ,¬(α ∧ β) Δ
(L-¬∧) Γ Δ,¬α,¬β

Γ Δ,¬(α ∧ β)
(R-¬∧)

Γ,¬β Δ,¬α
Γ,¬(α → β) Δ

(L-¬ →) Γ,¬α Δ Γ Δ,¬β
Γ Δ,¬(α → β)

(R-¬ →)

Γ Δ,¬α
Γ,¬¬α Δ

(L-¬¬) Γ,¬α Δ

Γ Δ,¬¬α (R-¬¬)

Rules for quantified formulas: The Gentzen system works over the domain V , a
denumerable set of variables (or parameters); that is, the introduction of quan-
tifiers is always made from variables, not from terms of the original language.
In the following rules, y is a fresh variable, i.e. a variable which does not occur
free in Γ ∪Δ and τ ∈ Terms(C ∪ V, F):

Γ, y = τ, ϕ(y) + Δ
Γ, ∃xϕ(x) + Δ

(R-∃), Γ, y = τ + Δ,ϕ(y)
Γ + Δ, ∀xϕ(x) (L-∀),

The atoms y = τ in the left-hand side introduce the elements y of the domainDh.
In the following rules, y may be any variable in V (not necessarily fresh), but
we also need to include the atom y = τ in the left-hand side.

Γ, y = τ, ϕ(y), ∀xϕ(x) + Δ
Γ, y = τ, ∀xϕ(x) + Δ

(R-∀), Γ, y = τ + Δ,ϕ(y), ∃xϕ(x)
Γ, y = τ + Δ, ∃xϕ(x) (L-∃)

Substitution rules: If τ1, τ2 are terms in T erms(C ∪ V, F):

Γ, τ1 = τ2, ϕ(τ1) + Δ
Γ, τ1 = τ2, ϕ(τ2) + Δ

;
Γ, τ1 = τ2 + Δ,ϕ(τ1)
Γ, τ1 = τ2 + Δ,ϕ(τ2)

;

Γ,¬ϕ(τ1) + Δ,¬(τ1 = τ2)
Γ,¬ϕ(τ2) + Δ,¬(τ1 = τ2)

;
Γ + Δ,¬(τ1 = τ2),¬ϕ(τ1)
Γ + Δ,¬(τ1 = τ2),¬ϕ(τ2)

;

Strictness rule (left side): The property (F4) for interpretations establishes the
strictness of the assignment mapping, i.e. if a term τ is defined, every subterm
τ ′ is also defined. The syntactic rule for this property is the following one:

Γ, x = τ, y = τ ′ + Δ
Γ, x = τ + Δ

(3)

The previous set of rules is basic for systems built to characterize free logics.
The rest of the rules are specific for our system.

Additional rule for equality: By (F2)-a, two distinct elements in Dh cannot be
equivalent in Dt. The property (F2)-a is syntactically characterized by the rule

Γ, x = y + Δ
Γ, x = y + Δ,¬(x = y)

(4)

On the other hand, by the property (F2)-b, every element of Dt, must be
equivalent to one from Dh. The atom ¬(y = τ) in the right-hand side introduces

A Free Logic for Stable Models with Partial Intensional Functions 351

the element y of the domain Dt, but does not determine any relation with Dh.
So, to comply with property (F2)-b, we need to modify the standard rules for
negated quantified formulas and strictness.

Rules for negated quantified formulas: In the following rules, y, z are fresh vari-
ables and τ ∈ Terms(C ∪ V, F):

Γ, z = τ,¬ϕ(y) + Δ,¬(y = τ)
Γ,¬∀xϕ(x) + Δ

(R-¬∀), Γ, z = τ + Δ,¬ϕ(y),¬(y = τ)
Γ + Δ,¬∃xϕ(x) (L-¬∃)

The literal ¬(y = τ) says that y is a new element of Dt equivalent to τ , and the
presence of the atom z = τ in the left-hand side says that τ is an element of Dh,
as required by property (F2)-b; if we drop the condition (F2)-b in our models,
these atoms in the left-hand sides of these rules must be also dropped.

In the following rules, y may be any variable in V (not necessarily fresh).

Γ,¬ϕ(y),¬∃xϕ(x) + Δ,¬(y = τ)
Γ,¬∃xϕ(x) + Δ,¬(y = τ)

(R-¬∃)

Γ + Δ,¬(y = τ),¬ϕ(y),¬∀xϕ(x)
Γ + Δ,¬(y = τ),¬∀xϕ(x) (L-¬∀)

Strictness rule (right side): Let τ ′ below be a subterm of τ and y, z fresh vari-
ables. We add the atom z = τ ′ in the left-hand side to comply with (F2)-b.

Γ, z = τ ′ + Δ,¬(x = τ),¬(y = τ ′)
Γ + Δ,¬(x = τ)

(5)

Auxiliary parameters elimination: As we have said, the quantifier rules only work
with variables and thus, to prove formulas involving terms, these terms must be
assigned to variables. This is done by auxiliary parameters elimination rules we
denote as (ParEl). In the following rules, α is either a predicate symbol or the
equality, every τi is a term in Terms(C ∪ V, F), and x, x1, . . . , xn are variables.

Γ, α(x1, . . . , xn), x1 = τ1, . . . , xn = τn + Δ
Γ,α(τ1, . . . , τn) + Δ

Γ, x1 = τ1, . . . , xn = τn + α(x1, . . . , xn), Δ Γ + Δ, ∃x(x = τi), i = 1..n
Γ + α(τ1, . . . , τn), Δ

Γ + ¬α(x1, . . . , xn),¬(x1 = τ1), . . . ,¬(xn = τn), Δ
Γ + ¬α(τ1, . . . , τn), Δ

Γ¬α(x1, . . . , xn) + ¬(x1 = τ1), . . . ,¬(xn = τn), Δ Γ,¬∃x(x = τi) + Δ, i = 1..n
Γ,¬α(τ1, . . . , τn) + Δ

Example 2. The inference p(a) + ∃x(x = a) is provable in FHT,

p(y), y = a + y = a, ∃x(x = a) (Axiom)
p(y), y = a + ∃x(x = a) (L-∃)

p(a) + ∃x(x = a) (ParEl)

352 P. Cabalar et al.

because the truth of the atom p(a) in a model requires that a is defined. This
is a consequence of the condition (F6), I(p, h) ⊆ Dh, and syntactically of the
auxiliary parameters elimination rules. However, the inference ¬p(a) + ∃x(x = a)
is not provable. If we try to construct a proof applying the rules upwards we can
deduce how to build a counterexample.

¬p(a) + ∃x(x = a)
y = y,¬p(y) + ¬(y = a), ∃x(x = a) ¬∃x(x = a) + ∃x(x = a)

y = y,¬p(y) + ¬(y = a), y = a, ∃x(x = a)

In the first step, we apply the parameter elimination rule; we would need to add
the atom y = y because y is a fresh variable and we need to define it as an
element of Dh. In the second step we apply R-∃; note that we would need the
presence of the atom y = y in the left-hand side to apply this rule. The sequent in
the left branch is not open and it can not be generated from other sequents (the
rule R-∃ has been applied using the unique parameter in the sequent). Moreover,
it is easy to construct a countermodel of this sequent,

Dh = {y}, Dt = {y, a}, y ≡ a, I(p, h) = I(p, t) = ∅

which also is a countermodel of ¬p(a) + ∃x(x = a).

Theorem 3 (Soundness). If Γ and Δ are lists of formulas such that Γ + Δ
is deducible in FHTG, and I is a model of Γ , then I is a model of a formula
ψ ∈ Δ. In particular, if Γ + ϕ, then Γ |= ϕ

As usual, the soundness proof consists in verifying that every rule preserves
the satisfiability of sequents.

Theorem 4 (Completeness). If Γ and Δ are lists of formulas such that for
every model I of Γ there exists ψ ∈ Δ such that I is a model of ψ, then Γ + Δ
is deducible in FHTG. In particular, if Γ |= ϕ, then Γ + ϕ.

5 Conclusions

We have provided an alternative characterisation of (the monotonic basis for)
Cabalar’s semantics for partial intensional functions based on free logic. This
characterisation allows us to establish a Gentzen calculus that can be used, for
instance, to check strong equivalence properties or make formal analysis for the-
ories involving partial functions. With respect to Cabalar’s original approach,
the current free-logic variant is more flexible: it can be modified in various ways
by relaxing some of the conditions we had to impose to capture Cabalar’s ap-
proach. Another interesting topic is the comparison to Flexible QHT and its
Gentzen calculus presented in [12] whose main differences rely on the treatment
of equality. We will study a formal comparison and explore the possibility of
capturing both Cabalar’s and BL functions in the same formal framework.

A Free Logic for Stable Models with Partial Intensional Functions 353

References

1. Alviano, M., et al.: The fourth answer set programming competition: Preliminary
report. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 42–53.
Springer, Heidelberg (2013)

2. Balduccini, M.: A “Conservative” approach to extending answer set programming
with non-herbrand functions. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.)
Correct Reasoning. LNCS, vol. 7265, pp. 24–39. Springer, Heidelberg (2012)

3. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In:
Proceedings of International Conference on Principles of Knowledge Representation
and Reasoning, KR 2012, pp. 2–12 (2012)

4. Bartholomew, M., Lee, J.: On the stable model semantics for intensional functions.
In: Proceedings of International Conference on Logic Programming, ICLP 2013
(2013)

5. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

6. Burge, T.: Truth and singular terms. Nous 8(4), 309–325 (1974)
7. Cabalar, P.: Functional answer set programming. Theory and Practice of Logic
Programming 10(2-3), 203–233 (2011)

8. Cabalar, P., Lorenzo, D.: Logic programs with functions and default values. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 294–306.
Springer, Heidelberg (2004)

9. Cabalar, P., Pearce, D., Valverde, A.: A revised concept of safety for general answer
set programs. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 58–70. Springer, Heidelberg (2009)

10. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory
and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

11. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: An ASP system with functions, lists,
and sets. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 483–489. Springer, Heidelberg (2009)

12. Farinãs del Cerro, L., Pearce, D., Valverde, A.: FQHT: The logic of stable models
for logic programs with intensional functions. In: Proceedings of International Joint
Conference on Artificial Intelligence, IJCAI 2013 (2013)

13. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the International Joint Conference on Artificial Intelligence (IJCAI 2007), pp.
372–379 (2007)

14. Gabbay, D.M., Pearce, D., Valverde, A.: Interpolable formulas in equilibrium logic
and answer set programming. Journal of Artificial Intelligence Research (JAIR) 42,
917–943 (2011)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. of the 5th Intl. Conf. on Logic Programming, pp. 1070–1080 (1988)

16. Hanus, M.: The integration of functions into logic programming: from theory to
practice. Journal of Logic Programming 19, 20, 583–628 (1994)

17. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse,
pp. 42–56 (1930)

18. Lifschitz, V.: Logic programs with intensional functions. In: Proceedings of Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
KR 2012 (2012)

354 P. Cabalar et al.

19. Lifschitz, V., Pearce, D.J., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007. LNCS (LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

20. Lin, F., Wang, Y.: Answer set programming with functions. In: Proc. of the 11th
Intl. Conf. on Principles of Knowledge Representation and Reasoning, KR 2008
(2008)

21. Marek, V., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp.
169–181. Springer (1999)

22. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

23. Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix,
J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216,
Springer, Heidelberg (1997)

24. Pearce, D.J., Valverde, A.: Towards a first order equilibrium logic for nonmonotonic
reasoning. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 147–160. Springer, Heidelberg (2004)

25. Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in
answer set programming. Journal of Computer and System Sciences 78(1), 86–104
(2012)

26. Posy, C.J.: A free IPC is a natural logic: Strong completeness for some intuitionistic
free logics. Topoi 1(1-2), 30–43 (1982)

Constructive Models for Contraction
with Intransitive Plausibility Indifference

Pavlos Peppas1,2 and Mary-Anne Williams1

1 The Centre for Quantum Computation and Intelligent Systems
Faculty of Engineering and Information Technology

University of Technology, Sydney, NSW 2007, Australia
pavlos.peppas@uts.edu.au, Mary-Anne@it.uts.edu.au

2 Dept of Business Administration
University of Patras, Patras, 265 00, Greece

Abstract. Plausibility rankings play a central role in modeling Belief Change,
and they take different forms depending on the type of belief change under con-
sideration: preorders on possible worlds, epistemic entrenchments, etc. A com-
mon feature of all these structures is that plausibility indifference is assumed to
be transitive. In a previous article, [7], we argued that this is not always the case,
and we introduced new sets of postulates for revision and contraction (weaker
variants of the classical AGM postulates), that are liberated from the indifference
transitivity assumption. Herein we complete the task by making the necessary
adjustments to the epistemic entrenchment and the partial meet models. In partic-
ular we lift the indifference transitivity assumption from both these two models,
and we establish representation results connecting the weaker models with the
weaker postulates for contraction introduced in [7].

1 Introduction

In the classical AGM framework for belief change, [2], constructive models are typ-
ically based on rankings representing comparative plausibility. These rankings take
different forms depending on the type of belief change under consideration, ranging
from preorders on possible worlds [4], to epistemic entrenchments [3], to ordering on
remainders [1]. The essence however in all those forms is the same: given the agent’s
initial belief set and the new epistemic input, plausibility rankings are used to deter-
mine the most plausible objects (worlds, sentences, or remainders respectively) among
the available alternatives. The selected objects are subsequently used to define the next
belief set.

An underlying assumption employed in the AGM framework, is that indifference
of comparative plausibility is transitive. Consider for example the faithful preorders
introduced in [4]. Comparative plausibility is modeled as a total preorder � on possible
worlds, with plausibility decreasing as one moves up in �. Suppose that two distinct
possible worlds w1,w2 are equally plausible (or implausible) relative to the agents’
initial belief state. Let us denote this by w1 � w2. Formally, w1 � w2 iff w1 ⊀ w2 and
w2 ⊀ w1, where� denotes the strict part of �. Suppose now that w2 is equally plausible

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 355–367, 2014.
c© Springer International Publishing Switzerland 2014

356 P. Peppas and M.-A. Williams

to a third world w3; i.e. w2 � w3. Since comparative plausibility is modeled as a total
preorder, we immediately conclude that w1 � w3.

Economists on the other hand are more cautious. It has long been acknowledged in
the area of preference modelling that transitivity is not always a natural property for
indifference of preference. The following quote from [5] illustrates the problem:

“Find a subject who prefers a cup of coffee with one cube of sugar to one with
five cubes (this should not be difficult). Now prepare 401 cups of coffee with
�1 � i�100� � x grams of sugar, i = 0, 1, � � � , 400, where x is the weight of one
cube of sugar. It is evident that he will be indifferent between cup i and cup
i� 1, for any i, but by choice he is not indifferent between i � 0 and i � 400.”

The above example, along with further arguments in [5], support the view that ratio-
nal agents tend to discriminate between two alternatives α, β only when their difference1

exceeds a certain threshold. In a recent paper we have argued that, for similar reasons,
plausibility indifference as used in the area of belief change, cannot always be assumed
to be transitive. Consider for example the following adaptation of the bald man paradox
reported in [7]:

“Suppose that our agent, Myrto, believes that her grandfather Speros, whom
she never met, had a full head of hair. It is therefore reasonable to assume
that the possible world w5000 in which her grandfather has 5000 hairs is more
plausible to Myrto than the world w50 in which Speros has only 50 hairs. On
the other hand, it is also reasonable to assume that Myrto is indifferent be-
tween worlds, like w4657 and w4656, which differ only in that Speros has a single
hair less in the latter. If indifference was transitive (as is the case in the AGM
framework), with 4050 applications of transitivity we would derive that Myrto
is indifferent between w5000 and w50, which of course is not true.”

Considerations like these led us to commence in [7] a research program of rebuilding
the AGM framework with the purpose of liberating it from the assumption of transitive
plausibility indifference. More precisely, our plan was to lift plausibility indifference
from all five major models of the AGM framework while preserving the representation
results connecting the models between them; namely, from the postulates for belief re-
vision, the postulates for belief contraction, the possible worlds model for revision, the
partial meet model for contraction, and the epistemic entrenchment model for contrac-
tion. In [7] we did so for three models (i.e. the postulates for revision and contraction,
as well as the possible worlds model). In this paper we complete the task by liberating
the remaining two models (i.e the epistemic entrenchment model and the partial meet
model).

More precisely, in [7] we altered Katsuno and Mendelzon’s possible worlds con-
structive model for revision, by replacing total preorders with semiorders2 We also
weakened the AGM postulates for revision and contraction accordingly. Representation

1 Or more accurately, the difference of their respective utilities.
2 Semiorders were introduced in [5], as a weakening of preorders to cater for intransitive indif-

ference.

Models for Contraction with Intransitive Indifference 357

results were provided proving the new postulates for revision to be sound and complete
with respect to the semiorders-based construction. Finally the Levi and Harper Identi-
ties were shown to survive the weakening of the AGM postulates.

In this paper we complete the reconstruction of the AGM framework by making
appropriate adjustments to the partial meet and the epistemic entrenchment models,
to liberate them from transitive indifference. Moreover we establish representation re-
sults connecting the adjusted models with the new postulates for contraction introduced
in [7].

The paper is structured as follows. In the next section we introduce the necessary
notation and terminology. Section 3 gives some background on semiorders, while Sec-
tion 4 reviews the new postulates and results presented in [7]. In Section 5 we introduce
weaker axioms for epistemic entrenchment, and study the relationship between these
weaker epistemic entrenchments (called semi-entrenchments) and semiorders on possi-
ble worlds. Section 6 contains our representation results connecting semi-entrenchments
with the contraction functions introduced in [7]. In Section 7 we repeat the same exer-
cise for the partial meet model. Finally, in the last section we discuss related works and
make some concluding remarks.

2 Formal Preliminaries

Throughout this paper we work with a finite set of propositional variables P. We de-
fine L to be the propositional language generated from P (using the standard boolean
connectives �,	,
,�,� and the special symbols ,�) and governed by classical
propositional logic.

For a set of sentences Γ of L, we denote by Cn�Γ� the set of all logical consequences
of Γ, i.e., Cn�Γ� � �x � L: Γ �� x�. We shall often write Cn�x1, . . . , xn�, for sentences
x1, . . ., xn, as an abbreviation of Cn��x1, . . . , xn��. For any two sentences x, y we shall
write x � y iff Cn�x� � Cn�y�.

A theory K of L is any set of sentences of L closed under ��, i.e., K = Cn�K�. We
shall denote the set of all theories of L by T . We define a possible world r (or simply a
world), to be a consistent set of literals such that for any propositional variables x � P,
either x � r or �x � r. We will often identify a world r with the conjunction of its
literals, leaving it to the context to resolve any ambiguity (for example in “�r”, r is a
sentence, whereas in “r � �x�”, r is a set of literals). We denote the set of all possible
worlds byM.

For a set of sentences Γ of L, �Γ� denotes the set of all possible worlds that entail Γ;
i.e. �Γ� = �r � M : r �� Γ�. Often we use the notation �x� for a sentence x � L, as an
abbreviation of ��x��. For a theory K and a set of sentences Γ of L, we denote by K�Γ
the closure under �� of K �Γ, i.e., K �Γ � Cn�K �Γ�. For a sentence x � L we often
write K � x as an abbreviation of K � �x�.

Finally, some definitions on binary relations. Let V be a nonempty set and R a binary
relation over V . For any subset S of V , by min�S ,R� we denote the set min�S ,R� =
�w � S : for all w� � S , w�Rw entails wRw��. The elements in min�S ,R� are called
minimal in S with respect to R (or simply minimal in S , when R is understood from the
context). Observe that if R is irreflexive and anti-symmetric, the above definition of min
is equivalent to: min�S ,R� = �w � S : there is no w� � S , such that w�Rw�.

358 P. Peppas and M.-A. Williams

Fig. 1. Semiorder with Intransitive Indifference

In a similar fashion we define the set max�S ,R�; i.e. max�S ,R� = �w � S : for all
w� � S , wRw� entails w�Rw�. We call the elements of max�S ,R� the maximal elements
of S with respect to R. Once again, if R is irreflexive and anti-symmetric, the above
definition of max is equivalent to max�S ,R� = �w � S : there is no w� � S , such that
wRw��.

We shall say that a binary R relation over V is a preorder iff R is reflexive and transi-
tive. Moreover, R is said to be total iff for all w,w� � V , wRw� or w�Rw.

3 Semiorders

Semiorders were introduced in [5] as a more natural alternative to total preorders for
modelling preference. In this section we briefly review the main definition and results
related to semiorders.

Given a finite set of choices V , a semiorder � in V is defined as a binary relation
over V that satisfies the following axioms, for any r1, r2, r3, r4 � V:

(SO1) r1 ⊀ r1.
(SO2) If r1 � r2 � r3 then r1 � r4 or r4 � r3.
(SO3) If r1 � r2 and r3 � r4 then r1 � r4 or r3 � r2.

For any two choices r1, r2 � V , we shall say that we are indifferent between r1 and
r2, denoted r1 � r2, iff r1 ⊀ r2 and r2 ⊀ r1. It is not hard to verify that with semiorders,
indifference is not in general transitive. Consider for example the semiorder� depicted
in Figure 1, where the arrows between alternatives indicate preference. It is easy to
verify that � satisfies (SO1) - (SO3). Moreover observe that r2 � r3, r3 � r4, and yet
r2 � r4.

A central result on semiorders that sheds light to their inner workings, relates to their
numerical representation. It has been shown, [10], [8], that every semiorder� in V can
be mapped to a utility function u : V �
 � such that for all r1, r2 � V , r1 � r2 iff
u�r2� � u�r1� � 1, and r1 � r2 iff �u�r2� � u�r1�� � 1. Intuitively this result says
that the agent differentiates between two alternatives r1 and r2 iff the difference in their
corresponding utilities exceeds a certain threshold (set to 1 in this case). For example,
the semiorder � of Figure 1 can be represented by the following utility function u:
u�r1� � 0, u�r2� � 1, u�r3� � 1.5, and u�r4� � 2.

Other useful facts about semiorders are summarised in the following lemma reported
in [7]:

Lemma 1. Let V be a nonempty set, � a semiorder in V, and S a nonempty subset of
V. Then,

Models for Contraction with Intransitive Indifference 359

(a) � is transitive.
(b) min�S ,�� � �.
(c) if r � S and r � min�S ,��, then there exists a r� � min�S ,�� such that

r�
� r.

As noted earlier, in order to lift transitivity for plausibility indifference, in [7] we
replaced total preorder with semiorders in Katsuno and Mendelzon’s possible-worlds
construction of a revision function [4]. More precisely, let K be a theory representing
the initial belief set of a rational agent. We shall say that a semiorder� inM is faithful
to K iff the following conditions are satisfied:

(i) If r � �K� then there is no r� �M such that r�
� r.

(ii) If r � �K� and r� � �M� �K�� then r � r�.

Intuitively, a semiorder � faithful to K represents a plausibility ranking on possible
worlds: the more plausible a world r is, the lower it appears in the ranking. Hence in
revising K by a sentence x, it is reasonable to assume that the resulting belief set K � x
is defined in terms of the most plausible x-worlds. This is precisely the construction
proposed in [4] – except that total preorders instead of semiorders were used – and it is
formally expressed by the following condition:

(AS) �K � x� � min��x�,��.

4 Weaker Postulates for Revision and Contraction

In the AGM framework, belief change is modelled as a function mapping a theory, rep-
resenting the initial belief set, and a sentence, representing the epistemic input, to a new
theory, that represents the next belief set. We shall call such functions change functions;
i.e. a change function is any function from T � L to T . Depending on the constraints
one places on change functions different types of belief change can be encoded. In par-
ticular, Alchourron, Gardenfors, and Makinson have introduced two sets of constraints
on change functions, known as the AGM postulates, to model revision and contraction
respectively (see [6]). As already mentioned, underlying these two sets of postulates is
the assumption that plausibility indifference is transitive. In [7] we weakened the AGM
postulates to lift the transitivity constraint. The resulting weaker postulates were num-
bered (A1) - (A10) for revision, and (B1) - (B10) for contraction. The postulates (A1)
- (A10) are omitted due to space limitations (see [7] for details). The postulates (B1) -
(B10) for contraction are listed below.

(B1) K x is a theory.
(B2) K x ! K.
(B3) If x � K then K x � K.
(B4) If ��� x then x � K x.
(B5) If x � K then K ! �K x� � x.
(B6) If x � y then K x � K y.
(B7) �K x� � �K y� ! K �x� y�.
(B8) K �x� y� ! �K x� � �K y�.

360 P. Peppas and M.-A. Williams

(B9) If K y � �K x� � �y then K x ! �K y� � �x.
(B10) If x	y � K x, and x	z � K x then K �x	y� ! K �x	z����x	y�.

The reader is referred to [7] for a discussion on these postulates. Herein, we shall only
mention that the two sets of postulates are indeed weaker versions of the corresponding
AGM postulates, and moreover they preserve the Levi and Harper Identities:

K x � �K � �x� � K (Harper Identity)
K � x � �K �x� � x (Levi Identity)

The following results have been established in [7]:

Theorem 1. Let K be a theory, � a revision function satisfying (A1) - (A10), and the
function induced from � via the Harper Identity. Then satisfies (B1) - (B10).

Theorem 2. Let K be a theory, a contraction function satisfying (B1) - (B10), and �
the function induced from via the Levi Identity. Then � satisfies (A1) - (A10).

In addition to the above theorems, another central representation result established in
[7] is the connection between the new postulates (A1) - (A10) and the functions induced
from semiorders via (AS):

Theorem 3. Let K be a theory and � a revision function satisfying (A1) - (A10). Then
there exists a semiorder � faithful to K, that satisfies (AS).

Theorem 4. Let K be a theory and � a semiorder faithful to K. The revision function
� induced from � via (AS), satisfies (A1) - (A10).

5 Semi-entrenchments

An epistemic entrenchment is a total preorder � on the sentences of L that was intro-
duced in [3] to model the degree of resistance a belief exhibits to change; i.e. x � y iff
y’s resistance to a change in its status is at least as strong as x’s resistance. To capture the
intended meaning of an epistemic entrenchment, the following axioms where proposed
in [3]:

(EE1) If x � y and y � z then x � z.
(EE2) If x �� y then x � y.
(EE3) x � x� y or y � x� y.
(EE4) When K is consistent, x � K iff x � y for all y � L.
(EE5) If y � x for all y � L, then �� x.

Given an epistemic entrenchment one can produce a contraction function that satis-
fies the AGM postulates by means of the following condition:

(C) y � K x iff y � K and either x � x	 y or �� x.

Models for Contraction with Intransitive Indifference 361

It was shown in [3] that any binary relation � over L satisfying (EE1) - (EE5) is
a total preorder; hence indifference is transitive for epistemic entrenchments. In this
section we shall weaken the axioms (EE1) - (EE5) to lift this constraint. Essentially we
replace epistemic entrenchments�with appropriately constrained semiorders" over L.
In particular, consider the following axioms, where x1, x2, x3, x4 are arbitrary sentences
of L:

(C1) If x1 �" x1.
(C2) If x1 " x2 " x3, then x1 " x4 or x4 " x3.
(C3) If x1 " x2 and x3 " x4, then x1 " x4 or x3 " x2.
(C4) If x1 " x2 and x2 �� x3, then x1 " x3.
(C5) If x1 �� x2 and x2 " x3, then x1 " x3.
(C6) x1 " x2 � x3 iff x1 " x2 and x1 " x3.
(C7) If x1 � x2 " x3 then x1 " x3 or x2 " x3.
(C8) Whenever K is consistent, x1 � K iff there is no x2 � L such that x2 " x1.
(C9) If x1 � K and x2 � K then x1 " x2.

(C10) If ��� x1 and �� x2, then x1 " x2.

Axioms (C1) - (C3) state that" is a semiorder (they are identical to (SO1) - (SO3)).
We note that, by Lemma 1, (C1) - (C3) entail (EE1).3 Axioms (C4) - (C5) are replacing
(EE2). What necessitated the replacement of (EE2) is mainly the fact that" corresponds
to the strict part of �. For similar reasons, (EE3) was replaced by (C6) - (C7), (EE4)
was replaced by (C8) - (C9), and (EE5) was replaced by (C10).

We define a semi-entrenchment relative to a theory K to be a binary relation " over
L that satisfies (C1) - (C10). We will prove that the change functions induced from
semi-entrenchments are precisely those satisfying the postulates (B1) - (B10). This is
the subject of the next section. In this section we will instead examine the relationship
between semi-entrenchments and semiorders on possible worlds.

Let K be a theory of L. Condition (FC) below shows how to construct a semi-
entrenchment " relative to K, from a semiorder � faithful to K; the reverse direction
is served by condition (CF). In the conditions (FC) and (CF) below, x, y are sentences,
and r, r� are possible worlds.

(FC) x " y iff ��� x and for every r� � ��y� there is an r � ��x� such that r � r�.
(CF) r � r� iff �r " �r�.

Theorem 5. Let K be a theory of L. If " is a semi-entrenchment relative to K, then
the binary relation � over M induced from " via (CF) is a semiorder faithful to K.
Conversely, if � is a semiorder faithful to K, then the binary relation " over L induced
from � via (FC) is a semi-entrenchment relative to K.

Proof.
(#)

Assume that" is a semi-entrenchment relative to K, and� is the binary relation over
M induced from " via (CF). Proving that � is a semi-order is quite straightforward.

3 Observe that although semiorders are transitive, the indifference relation induced by them is
not (necessarily) transitive – see the example in Figure 1.

362 P. Peppas and M.-A. Williams

In particular, (SO1) follows immediately from (C1). For (SO2), let r1, r2, r3 �M be
such that r1 � r2 � r3. Then by (CF), �r1 � �r2 � �r3. Consequently, by (C2), for
any world w �M we derive that �r1 " �w or �w " �r3. This again entails via (CF)
that r1 � w or w � r3. Finally for (SO3), assume that r1, r2, r3, r4 � M are such that
r1 � r2 and r3 � r4. By (CF), it follows that �r1 " �r2 and �r3 " �r4. Then by
(C3) we derive that �r1 " �r4 or �r3 " �r2, which again via (CF) entails r1 � r4 or
r3 � r2 as desired.

To complete the proof of the first part of Theorem 5 we need to show that � is also
faithful to K. If K is inconsistent, then this is trivially true. Assume therefore that K is
consistent. Let r be any world in �K�, and r� an arbitrary world inM. From r � �K� it
follows that �r � K. Then from (C8) it follows that �r� �" �r, and consequently from
(CF), r� ⊀ r. This proves condition (i) for faithfulness.

For condition (ii), consider any two worlds r, r� �M such that r � �K� and r� � �K�.
Clearly then, �r � K and �r� � K. Consequently from (C9), �r " �r� and therefore
by (CF), r � r� as desired.
($)

Assume that � is a semiorder faithful to K and let " be the binary relation over L
constructed from � via (FC). We will prove that " satisfies (C1) - (C10).

For (C1), consider any sentence x � L. If x is a tautology then by (FC), there is
no y � L such that x " y and consequently, x �" x. Assume therefore that ��� x.
Then ��x� � � and consequently from Lemma 1 we derive that min���x�,�� � �.
Therefore there is a world r � ��x� such that r� ⊀ r for all r� � ��x�. This entails that
x �" x as desired.

For (C2), assume that for some x1, x2, x3 � L, x1 " x2 " x3. Let y be an arbitrary
sentence in L. From (FC) it follows immediately that x1, x2 are not tautologies. If �� y,
then from ��� x1 and (FC) we derive immediately that x1 " y. Assume therefore that
��� y, and suppose that y �" x3. Consider now any world r � ��y�. Since y �" x3, it
follows that there is a r3 � ��x3� such that r ⊀ r3. On the other hand, from x2 " x3

we derive that for some r2 � ��x2�, r2 � r3. Similarly, from x1 " x2 we derive that for
some r1 � ��x1�, r1 � r2. Then from r ⊀ r3 and (SO2) we derive that r1 � r. Since r
was chosen as an arbitrary �y-world, from (FC) we derive x1 " y as desired.

For (C3), assume that for some x1, x2, x3, x4 � L, x1 " x2 and x3 " x4. Clearly then
x1, x3 are not tautologies. Suppose now that x3 �" x2. We will show that x1 " x4. From
x3 �" x2 it follows that there is an r2 � ��x2� such that for all r3 � ��x3�, r3 ⊀ r2.
Moreover from x1 " x2 we derive that for some r1 � ��x1�, r1 � r2. Finally, from
x3 " x4 we have that for every r4 � ��x4� there is an r�

3 � �x3� such that r�

3 � r4.
Since r�

3 ⊀ r2, from (SO3) we derive that r1 � r4, for all r4 � ��x4�. Hence x1 " x4 as
desired.

For (C4), assume that x �� y and z " x. Then ��� z, and for all r� � ��x� there is an
r � ��z� such that r � r�. Moreover, from x �� y we derive that ��y� ! ��x�. Hence,
clearly, for all r� � ��y� there is an r � ��z� such that r � r�. Consequently z " y as
desired.

For (C5), assume that x �� y and y " z. Then ��� y. From x �� y we derive that
��y� ! ��x�; moreover, since ��� y, x �� y entails that ��� x. On the other hand, from
y " z it follows that for all r� � ��z� there is an r � ��y� such that r � r�. Hence, since

Models for Contraction with Intransitive Indifference 363

��y� ! ��x�, for all r� � ��z� there is an r � ��x� such that r � r�. Consequently, since
��� x, x " z as desired.

For (C6), assume that for some x, y, z � L, x " y and x " z. Clearly by (FC), ��� x.
Let r� be any world in ���y� z��. Then r� � ��y� or r� � ��z�. In the first case, x " y
entails that there is an r � ��x� such that r � r�. Similarly in the later case, x " z
entails that for some r � ��x�, r � r�. Hence from (FC) we derive that x " y� z. This
proves the right-to-left direction of (C6). For the converse, assume that x " y� z. Then
by (FC), ��� x and for any world r� � ���y � z�� there is an r � ��x� such that r � r�.
Since ���y� z�� = ��y� � ��z�, from (FC) we then immediately derive that x " y and
x " z.

For (C7), assume that for some x, y, z � L, x � y " z. If at least one of x, y is a
tautology, then (C7) follows directly from (C5) (which we have already shown that it
holds). In particular, without loss of generality, assume that �� x. Then y �� x � y, and
since x� y " z, from (C5) we derive that y " z as desired. Assume therefore that ��� x
and ��� y, and suppose towards contradiction that x �" z and y �" z. Then by (FC), there
are r1, r2 � ��z� such that r3 ⊀ r1 for all r3 � ��x�, and r4 ⊀ r2 for all r4 � ��y�. On
the other hand, since x� y " z, by (FC) we derive that there exist r5, r6 � ��x� � ��y�
such that r5 � r1 and r6 � r2. From (SO3) it then follows that r5 � r2 or r6 � r1.
Let’s take the first case where r5 � r2. Since we have shown that no �y-world can be
smaller from r2 (wrt �) it follows that r5 � ��y�. However we have also assumed that
r5 � r1, and since no �x-world can be smaller from r1 (wrt �) it also follows that
r5 � ��x�. Clearly we have reached a contradiction, since r5 � ��x� � ��y�. With a
totally symmetric arguments we also derive a contradiction for the second case where
r6 � r1. This shows that x " z or y " z as desired.

For (C8), assume that K is consistent and let x be any sentence of L such that x � K.
Suppose towards contradiction that there is a y � L such that y " x. Since x � K, it
follows that ��x� � �K� � �. Let r� be any world in ��x� � �K�. From y " x and
(FC) we derive that there is an r � ��y� such that r � r�. This however contradicts
our assumption that � is faithful to K (since r� � �K�). Hence we have proved the
left-to-right direction of (C8). For the converse, assume that K is consistent and x � K.
Then �K� � ��x� = �. Moreover, since � is faithful to K, we derive that min�M,�
� � �K�, and consequently, min�M,��� ��x� = �. Since L is built from finitely many
propositional variables it follows that there is a z � L such that �z� � �K�. We will prove
the right-to-left direction of (C8) by showing that �z " x. Clearly by construction,
�z� � min�M,��. Moreover, since no �x-world is minimal wrt �, from Lemma 1.(c)
we derive that for all r� � ��x� there is an r � �z� such that r � r�. Also observe that
�z is not a tautology, for otherwise �K� = �z� � �, which contradicts our assumption
about the consistency of K. Hence by (FC) �z " x as desired.

For (C9), let x, y � L be such that x � K and y � K. Then ��x� � �K� � � and
��y� � �K� � �. Let r be any world in ��x� � �K� and r� any world in ��y�. Since �
is faithful to K it follows that r � r�. Moreover, since x � K, it follows that ��� x. Hence
by (FC), x " y as desired.

For (C10), let x, y � L be such that ��� x and �� y. Then ��y� � � and consequently
by (FC), x " y as desired.

364 P. Peppas and M.-A. Williams

The relationship between semi-entrenchments and faithful semiorders, as expressed
with (FC) and (CF), can be strengthened even further. The next two theorems below
show that (FC) and (CF) are interchangeable. The proofs are omitted due to space lim-
itations:

Theorem 6. Let K be a theory," a semi-entrenchment relative to K, and � the binary
relation overM induced from " via (CF). Then the binary relation "� over L induced
from � via (FC) is identical to ".

Theorem 7. Let K be a theory, � a semiorder faithful to K, and " the binary relation
over L induced from � via (FC). Then the binary relation �� overM induced from "
via (CF) is identical to �.

6 Semi-entrenchments and Belief Contraction

As alluded in the previous section, the functions induced from semi-entrenchments turn
out to be precisely those satisfying the postulates (B1) - (B10). We prove this result
utilising the (bidirectional) path already established in [7] and the previous section:
i.e., the path from contraction functions to revision functions, to faithful semiorders, to
semi-entrenchments.

Before using this path though we need to enhance it with Theorems 8, 9 below. The
two theorems essentially show that the inter-definability of revision and contraction
established in the AGM framework, survives the lifting of transitive indifference.

In particular, Theorem 8 below shows that if one starts with a contraction function
satisfying (B1) - (B10), then an application of the Levi Identity followed by an appli-
cation of the Harper Identity will take her back to the original function . The reverse
direction is treated by Theorem 9. Proofs of both theorems are omitted due to space
limitations:

Theorem 8. Let K be a theory, a contraction function satisfying (B1) - (B10), and
� the change function induced from via the Levi Identity. Moreover, let � be the
change function induced from � via the Harper Identify. Then = �.

Theorem 9. Let K be a theory, � a revision function satisfying (A1) - (A10), and the
change function induced from � via the Harper Identity. Moreover, let �� be the change
function induced from via the Levi Identify. Then � = ��.

Turning now to the promised representation result (Theorem 10 below), let us first
restate condition (C) using a semi-entenchment " instead of an epistemic entrench-
ment �:

(EC) y � K x iff y � K and either x " x	 y or �� x.

Theorem 10. Let K be a theory. If" is a semi-entrenchment relative to K then the func-
tion induced from " via (EC) satisfies (B1) - (B10). Conversely, if is a contraction
function satisfying (B1) - (B10), then there exists a semi-entrenchment " related to K
that satisfies (EC).

Models for Contraction with Intransitive Indifference 365

Proof.
(#)

Let " be a semi-entrenchment related to K and the function induced from " via
(EC). Let � be the binary relation induced from " via (CF). Then by Theorem 5, � is
a semiorder faithful to K. Moreover, by Theorem 6, " and � are also related via (FC).
Hence from the construction of we derive that y � K x iff y � K and either �� x or
for every r� � ��x��y� there is an r � ��x� such that r � r�.

Next observe that whenever x, y � L are such that for every r� � ��x��y� there is
an r � ��x� such that r � r�, it follows that min���x�,�� ! �y�. The converse is also
true. Combining the above it follows that

y � K x iff y � K and either �� x or min���x�,�� ! �y�

Let � be the revision function induced from�. By Theorem 4 it follows that � satis-
fies (A1) - (A10). Moreover, from the condition above and (AS) it follows that y � K x
iff y � K and either �� x or y � K � �x. Consequently, by (A1) and (A2), we derive
that K x = �K � �x� � K; i.e. is related to � via the Harper Identity. Therefore,
since � satisfies (A1) - (A10), it follows from Theorem 1 that satisfies (B1) - (B10)
as desired.
($)

Assume that is a function satisfying (B1) - (B10), and let � be the function induced
from via the Levi Identity. From Theorem 2 it follows that � satisfies (A1) - (A10),
and consequently there exists a semiorder� faithful to K satisfying (AS) (Theorem 3).
Let " be the binary relation induced from � via (FC). By Theorem 5, " is a semi-
entrenchment relative to K. Next we show that " also satisfies (EC).

Starting with the left-to-right direction of (EC), consider any two sentence x, y � L
and assume that y � K x. Clearly then by (B2), y � K. Hence, if �� x, then (the
left-to-right direction of) (EC) is trivially true. Assume therefore that ��� x. If �� x 	 y
then by (C10), x " x	 y and consequently (the left-to-right direction of) (EC) is again
true. Assume therefore that ��� x 	 y. From y � K x and the Levi Identity we derive
that y � K � �x and consequently by (AS), min���x�,�� ! �y�. This again entails
that for any world r� � ��x � �y� there exists a world r � ��x � y� such that r � r�.
Consequently by (FC), x	�y " x	 y.4 Since x �� x	�y, from (C5) we then derive
that x " x	 y as desired. We have thus proved the left-to-right direction of (EC).

For the opposite direction assume that x, y are arbitrary sentences in L such that y � K
and either x " x	 y or �� x. We will show that y � K x.

If �� x or if x � K then (B1), (B2), (B3), and (B5) entail that K x = K, from
which we trivially derive that y � K x. Assume therefore that x � K and ��� x. Hence
x " x 	 y. From (FC) we then derive that for all r� � ��x � �y� there is an r � ��x�
such that r � r�. This again entails that min���x�,�� ! �y�, and therefore by (AS),
y � K � �x. Let � be the function induced from � via the Harper Identity. Then, since

4 To apply condition (FC) we need to establish that ��� x��y, or equivalently that ��x�y� ��.
This however follows from our previous assumptions. In particular, we have assumed that ��� x,
and therefore by Lemma 1, min	��x�,�
 ��. Let r1 be any world in min	��x�,�
. Since, as
shown above, min	��x�,�
 � �y�, it follows that r1 � ��x � y�, and therefore ��x � y� ��
as desired.

366 P. Peppas and M.-A. Williams

y � K, from y � K � �x we derive that y � K � x. Consequently, from Theorem 8, we
derive y � K x as desired.

7 Semiorders in the Partial Meet Model

The only major model of the classical AGM framework we haven’t considered yet is
the partial meet model [1]. We do so in this section.

The partial meet model is a constructive model for contraction functions. Loosely
speaking, the construction of a contraction function via the partial meet model works
as follows. Given an initial belief set K and a sentence x to be withdrawn from K, one
considers all maximal subsets of K that fail to entail x. The “best” (i.e. most plausible)
such subsets are then intersected to produce the next belief set K x. If the selection of
the “best” subsets is based on a total preorder (over subsets of K), then the induced con-
traction functions coincide with those satisfying the AGM postulates for contraction.5

Herein we shall replace the total preorders of the partial meet model with semiorders
and prove soundness and completeness wrt the new postulates (B1) - (B10).

Let K be a theory and x a sentence in L. We shall say that a set of sentences H is a
x-remainder (of K) iff H is a maximal subset of K that fails to entail x (i.e. H ��� x). We
shall denote the set of all x-remainders of K by K � x; in the limiting case that x is a
tautology, we define K � x = �K�. The set of all remainders of K with respect to any
x � L is denoted RK ; i.e. RK =

�
�K � x : x � L�.

Consider now a semiorder % over RK representing the comparative plausibility of
remainders. As discussed earlier, for a theory K and a sentence x, the partial meet
model constructs K x by interesting the “best” remainders in K � x. This is formally
expressed by condition (PM) below:

(PM) K x =
�

max�K � x,%�

Our final representation result is Theorem 11 below, which shows that the functions
induced from semiorders over remainders via (PM), are precisely those satisfying the
axioms (B1) - (B10). The proof of the theorem is omitted due to space limitations.

Theorem 11. Let K be a theory. For any semiorder % in RK, the function induced
from % via (PM) satisfies (B1) - (B10). Conversely, for any contraction function
satisfying (B1) - (B10), there exists a semiorder % in RK that satisfies (PM).

8 Conclusion

Researchers in the preference modelling community have long argued in favor of semi
orders over total preorders for modelling preference. The main advantage of semiorders
is the intransitivity of indifference.

5 It should be noted that the preorders used in the selection of the “best” remainder, do not
need to be total for the partial meet model to match the AGM postulates for contraction; see
Theorem 4.16 in [2]. However, as shown by Theorem 4.17 in [2], imposing totality has no
effect on the properties of the induced contraction function. Hence we can assume the preorders
of the partial meet model to be total without damaging the connection with the AGM postulates
for contraction.

Models for Contraction with Intransitive Indifference 367

In a recent paper [7], we argued that for similar reasons, transitivity of plausibility
indifference is also too strong an assumption in the context of Belief Change.6 We
therefore lifted this assumption from the AGM postulates for revision and contraction,
as well as from the possible-models construction of Katsuno and Mendelzon. In this
paper we completed the task by lifting transitive indifference from the remaining two
major models of the AGM framework; namely, from the epistemic entrenchment model
and the partial meet model. Moreover we established representation results connecting
the weaker epistemic entrenchment and partial meet models, with the weaker axioms
for contraction introduced in [7]. To aid us with the proofs of the main representation
results, we established a number of auxiliary results connecting semiorders over worlds
with semiorders over remainders, and with semi-entrenchments; these auxiliary results
are also of interest in their own right.

We note that very recently, and for reasons other than those stated herein, Rott has
also considered weaker versions of the AGM postulates for contraction, as well as of
the partial meet and epistemic entrenchment models, [9]. However Rott’s weakening
is based on interval orders (on remainders) rather than semiorders. We recall that an
interval order is a binary relation � satisfying (SO1) and (SO3), but not necessarily
(SO2).

Acknowledgements. We are grateful to Abhaya Nayak, Maurice Pagnucco, Hans Rott,
and the anonymous reviewers for many valuable comments on this work.

References

1. Alchourron, C., Gardenfors, P., Makinson, D.: On the logic of theory change: Partial meet
functions for contraction and revision. Journal of Symbolic Logic 50, 510–530 (1985)

2. Gardenfors, P.: Knowledge in Flux. MIT Press (1988)
3. Gardenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic entrench-

ment. In: Proceedings of Theoretical Aspects of Reasoning about Knowledge, pp. 83–95.
Morgan-Kaufmann (1988)

4. Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52(3), 263–294 (1991)

5. Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24(2), 178–191
(1956)

6. Peppas, P.: Belief revision. In: Handbook of Knowledge Representation, pp. 317–359. Else-
vier Science (2008)

7. Peppas, P., Williams, M.A.: Belief change and semiorders. In: Proceedings of the 14th Inter-
national Conference on Principles of Knowledge Representation and Reasoning, KR 2014
(2014)

8. Rabinovitch, I.: The Scott-Suppes theorem on semiorders. Journal of Mathematical Psychol-
ogy 1 (1977)

9. Rott, H.: Three floors for the theory of theory change. In: The Logica Yearbook 2013 (2014)
10. Scott, D., Suppes, P.: Foundational aspects of theories of measurement. Journal of Symbolic

Logic 23(2) (1958)

6 It is worth noting that indifference between two choices is different from incomparability. A
study of this distinction in the context of Belief Revision is with pursuing.

Four Floors for the Theory of Theory Change:
The Case of Imperfect Discrimination

Hans Rott�

University of Regensburg, 93040 Regensburg, Germany
hans.rott@ur.de

http://www.uni-r.de/philosophie-rott

Abstract. The theory of theory change due to Alchourrón, Gärdenfors and
Makinson (“AGM”) has been widely known as being characterised by two pack-
ages of postulates. The basic package consists of six postulates and is very weak,
the full package adds two further postulates and is very strong. Revisiting two
classical constructions of theory contraction, viz., relational possible models con-
traction and entrenchment-based contraction on the one hand and tracing the idea
of imperfect discrimination of plausibilities on the other, I argue that four inter-
mediate levels can be distinguished that play important roles within the AGM
theory.

Keywords: Theory change, belief contraction, possible models, entrenchment,
interval orders, semiorders, exponentiated revision, AGM.

1 Introduction

The theory of theory change due to Alchourrón, Gärdenfors and Makinson (“AGM”)
has been widely known as being characterised by two packages of postulates. The basic
package consists of six postulates and is very weak, the full package adds two further
postulates and is very strong. In this paper, I will describe four intermediate levels
within the AGM theory that, I believe, have not been sufficiently recognised so far.
AGM created, to use this metaphor, a large hall building with a floor and a ceiling.1 I
argue that the space in between may be structured by fitting in four intermediate floors
that house some important incarnations of the theory of theory change. The first and the
second floor can be discerned within the original AGM modellings of the 1980s. The
third floor is motivated by a concern with what is called “Disjunctive rationality” in non-
monotonic reasoning. This rationality requirement will lead us to a consideration of the
idea of imperfect discrimination of differences in plausibility that can be modelled in
two ways: first, by interval orders that are in fact characteristic of the third floor; second,
by the more constrained semiorders which characterises the fourth floor, which is still
significantly “below” the full theory of AGM.

Interval orders and semiorders make room for the idea of nontransitive “indifference”
relations that are due to discrimination thresholds. The topic of imperfect discrimination

� I am grateful to Pavlos Peppas and Mary-Anne Williams for making available to me two ver-
sions of their (still unpublished) paper [20] and to three JELIA referees for helpful comments.

1 For the historical development of the AGM theory, see Fermé and Hansson [4].

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 368–382, 2014.
c© Springer International Publishing Switzerland 2014

http://www.uni-r.de/philosophie-rott

Four Floors for the Theory of Theory Change: Imperfect Discrimination 369

originated in psychology in 1860 (G.Th. Fechner) and in economics in the late 1930s
(N. Georgescu-Roegen, W.E. Armstrong). Seminal contributions to the understanding
of interval orders and semiorders were made by Luce [16], Scott and Suppes [29],
Roberts [21], Fishburn [5] and Mirkin [18]. For the theory of theory change, a choice-
theoretic analysis of these orders is needed for which Jamison and Lau [12, 13] and
Fishburn [6] are still the authoritative papers.2 To the best of my knowledge, interval
orders and semiorders have been recognised as relevant for the theory of theory change
only recently, by Rott [26] and Peppas and Williams [20], respectively. The present
paper, which is a sequel to [26], will complete and refine the insights gained in these
papers.

2 Preparation

2.1 The Classical Theory of AGM

We will work with a propositional object language L that has the usual n-ary truth-
functional operators ⊥ and � (n=0), ¬ (n=1), ∨, ∧, →, and ↔ (n=2). L is supposed
to be governed by a Tarskian consequence operation Cn that includes classical propo-
sitional logic, is reflexive, idempotent, monotonic, compact, and satisfies the deduc-
tion theorem. We write M
 φ for φ ∈ Cn(M), φ
 ψ for ψ ∈ Cn({φ}), φ �
 ψ for
Cn({φ}) = Cn({ψ}),
 φ for φ ∈ Cn(∅), and M
 N for N ⊆ Cn(M). By K and variants
like K′, K .− φ etc., we denote theories in L, i.e., subsets of L that are closed under Cn.
W denotes the set of models forL. [[φ]] (or [[M]]) is the set of models forL at which φ
is (all elements of M are) true,]]φ[[(or]]M[[) is the set of models at which φ (at least
one element of M) is false. For each model w, ŵ denotes the set of sentences true at w.

Theories are infinite sets, but some theories can be be partitioned into finitely many
equivalence classes with respect to Cn; such theories will be called logically finite.
If K is logically finite, then

∧
K denotes the conjunction of some representatives of

the equivalence classes within K.3 Every logically finite theory K has co-atoms, i.e.,
weakest non-tautological elements. The set of co-atoms of K is denoted by Coat(K),
and the set of co-atoms of K implied by φ is denoted by CoatK(φ). There is a bijective
mapping between the co-atoms and the non-models of K: if α ∈ CoatK(φ), then wα,
defined as the single element of]]α[[, is in]]φ[[; and conversely, if w ∈]]φ[[, then αw,
defined as ¬

∧
ŵ, is in CoatK(φ).4

We focus on the problem of theory contraction. Here the agent receives an input
consisting in a sentence φ to be contracted from her theory K, and then performs an
operation whose goal is to find a plausible outcome K .− φ that is a subset of the prior
theory that does not imply φ.

The AGM theory has most prominently been characterised by a collection of ratio-
nality postulates that came in two packages. A set of six postulates constitutes the basic

2 For further results, cf. Suppes, Krantz, Luce and Tversky [31, Ch. 16] and Aleskerov, Bouyssou
and Monjardet [3, sections 2.5–2.6 and 3.6].

3 Due to (K .−6) and a similar Extensionality axiom for entrenchment, it does not matter which
representatives of the equivalence classes with respect to Cn figure in the big conjunctions, so
there is no danger of failing well-definedness.

4 We presuppose here that φ ∈ K. Note that CoatK(
∧

K) = Coat(K).

370 H. Rott

theory, an extended set of eight postulates constitutes the full theory. These postulates
have become famous as the “AGM postulates” (sometimes also called the “Gärdenfors
postulates”):

(K .−1) if K is a theory, then K .− φ is a theory (Closure)

(K .−2) K .− φ ⊆ K (Inclusion)

(K .−3) if φ � K, then K .− φ = K (Vacuity)

(K .−4) if � φ, then φ � K .− φ (Success)

(K .−5) (K .− φ) ∪ {φ}
 K (Recovery)

(K .−6) if φ �
 ψ, then K .− φ = K .− ψ (Extensionality)

(K .−7) K .− φ ∩ K .− ψ ⊆ K .− (φ∧ψ) (Conjunctive overlap)

(K .−8) if φ � K .− (φ∧ψ), then K .− (φ∧ψ) ⊆ K .− φ (Conjunctive inclusion)

Justifications for these postulates are given in Gärdenfors [8, pp. 61–65]. Only the ad-
dition of the supplementary postulates (K .−7) and (K .−8) to the basic package made the
theory really interesting. But the space between the basic and the full theory is huge
and may be structured in various instructive ways. Two developments that both began
around 1990 have helped to make this clear. First, theories of non-monotonic reasoning
were introduced and rapidly developed in artificial intelligence research of the 1980s,
and bridges to the theory of theory change were soon discovered [10]. Most of the
widely discussed principles of non-monotonic reasoning translate into principles for
theory change that lie between the basic and the full AGM theory. Second, the theory
of theory change (as well as the theory of non-monotonic reasoning) was found to be
amenable to a systematic interpretation in terms of rational choice [15, 23, 24, 28],
and again, the most prominent principles of rational choice translate into principles for
theory change that lie between the basic and the full AGM theory.

Even though the postulates (K .−1)–(K .−8) are perhaps the most widely known part of
the AGM theory, it is not the postulates themselves that lend credibility and substance
to the AGM theory. The success of the AGM program can be explained only by the fact
that AGM at the same time developed three plausible constructive methods for theory
change and that these methods satisfy their postulates: partial meet contraction, safe
contraction and entrenchment-based contraction. The constructive methods served, as
it were, as a semantics for the postulates.

We now briefly describe two methods of theory contraction. We restrict the following
definitions to the contraction of K by a non-tautological φ (i.e., � φ); for tautological
sentences φ, K .− φ is usually put equal to K.

The possible models contraction of K by φ is based on a selection function (or choice
function) σ which is applied to the set of possible models that do not satisfy φ. In-
tuitively, σ selects the most plausible of these models. In contrast to possible worlds,
models are linguistically distinguishable: Any two models can be distinguished by some
sentence that is true in one but not in the other. Grove [11] showed that the idea of pos-
sible models contraction is equivalent to AGM’s idea of partial meet contraction.

Definition 1. The possible models contraction generated by a selection function σ on
W is defined as

K .− φ = {ψ ∈ K : ψ is true throughout σ(]]φ[[) }

Four Floors for the Theory of Theory Change: Imperfect Discrimination 371

The possible models contraction .− is relational if it is generated by a selection function
σ that is based on an acyclic binary relation ≺ on W, in such a way that for all φ,

σ(]]φ[[) = {w ∈]]φ[[: w ≺ v for no v ∈]]φ[[}

The latter equation defines the rationalisation of σ by ≺; we also say that σ is based
on maximisation with respect to ≺. Relations will play a central role in this paper, and
much depends on their properties. We begin with purely structural properties that apply
to relations of any kind.

Definition 2. (i) A strict partial order is an irreflexive and transitive (and, thus, asym-
metric) relation.
(ii) An interval order is a strict partial order that satisfies the

(Interval condition) If x < y and u < v, then either x < v or u < y.
(iii) A semiorder is an interval order that satisfies

(Semitransitivity) If x < y and y < v, then either x < u or u < v.
(iv) A strict partial order is modular (or almost connected, virtually connected, or neg-
atively transitive) iff it satisfies

(Modularity) If x < y, then either x < u or u < y.

It is easy to check that for asymmetric relations, modularity implies both the Interval
condition and Semitransitivity, and that for irreflexive relations, each of the Interval
condition and Semitransitivity in turn implies transitivity. The Interval condition and
Semitransitivity, however, are logically independent.

Epistemic entrenchment-based contraction, or simply entrenchment contraction, is
based on a binary relation < over the sentences in the language L. Here ψ < χ means
that ψ is less “entrenched”, or more easily given up, than χ.5 We distinguish between
three versions of the notion of entrenchment with increasing logical strength, intro-
duced and motivated in [25], [22] and [9], respectively. They are relations over beliefs
(expressible in L), and the relevant properties make reference to the contents of beliefs.

Definition 3. (i) A basic entrenchment relation is an irreflexive relation < over L that
satisfies

(Extensionality) If φ < ψ, φ �
 φ′ and ψ �
 ψ′, then φ′ < ψ′.

(Choice easy) If φ < ψ ∧ χ, then φ ∧ ψ < χ.
(Choice hard) If φ ∧ ψ < χ and φ ∧ χ < ψ, then φ < ψ ∧ χ.
(Maximality) If � φ, then φ < �.

(ii) A generalised entrenchment relation is a basic entrenchment relation that satisfies
(Continuing up) If φ < ψ and ψ
 χ, then φ < χ.

(Continuing down) If φ < ψ and χ
 φ, then χ < ψ.

(iii) A GM entrenchment relation is a generalised entrenchment relation that is modu-
lar and satisfies
(K-Minimality) If K is consistent, then φ is in K if and only if ⊥ < φ.

5 Each of ≺ and < can be interpreted as a doxastic preference relation.

372 H. Rott

The two Choice conditions are the hallmark of the notion of entrenchment. Notice that
basic entrenchment relations are not in general acyclic.6 It is easily verified that basic
entrenchment relations satisfy

(Conjunction down) If φ ∧ ψ < ψ, then φ < ψ.

and that basic entrenchment relations satisfying Continuing down also satisfy7

(Conjunction up) If φ < ψ and φ < χ, then φ < ψ ∧ χ.
Generalised entrenchment relations are transitive (and thus acyclic).8

Entrenchment-based contractions operate by directly comparing the entrenchment of
certain elements of K.

Definition 4. The entrenchment contraction generated by an entrenchment relation <
on L is defined as

K .− φ = {ψ ∈ K : φ < (φ ∨ ψ)}.

This construction has been standard within the full AGM theory since Gärdenfors [8]
and Gärdenfors and Makinson [9], but it can be used in the much more general context
of the basic AGM theory [25]. Though being somewhat unintuitive at first sight, it can
be justified by its perfect fit with the reconstruction of comparative entrenchments from
a reasoner’s contraction behaviour:

Definition 5. Assuming that a contraction function .− over K is given, the entrenchment
relation < over L revealed by .− is given by

φ < ψ iff ψ ∈ K .− (φ ∧ ψ) and � φ.

2.2 Exponentiated Theory Change

In a finite context, we are able to represent an arbitrarily changed theory K ∗ φ or K .− φ,
by a single sentence

∧
(K ∗ φ) or

∧
(K .− φ), respectively.

Now let ∗ and .− signify functions of belief change that take, for some given belief set
K, an input sentence φ and return revised and contracted belief sets K ∗ φ and K .− φ, re-
spectively. It is well known that the problem of theory revision is essentially equivalent
to that of theory contraction, in virtue of the Levi identity, K ∗ φ = Cn((K .− ¬φ) ∪ {φ}),
and the Harper identity, K .− φ = K∩K ∗¬φ. We will now introduce a new kind of belief
change operation and start with revisions.

Definition 6. The exponentiated revision functions ∗i and ∗≤i are given by simultaneous
recursion:

K ∗1 φ = K ∗ φ K ∗≤1 φ = K ∗ φ
K ∗i+1 φ = K ∗ (φ ∧ ¬

∧
(K ∗≤i φ)) K ∗≤(i+1) φ = (K ∗≤i φ) ∩ (K ∗i+1 φ)

6 See [25, pp. 268–269]. But they are asymmetric. Suppose for reductio that φ < ψ and ψ < φ.
Then by Extensionality and Choice easy, φ ∧ ψ ∧ φ < ψ and φ ∧ ψ ∧ ψ < φ. Thus by Choice
hard φ ∧ ψ < φ ∧ ψ, contradicting Irreflexivity.

7 See [24, Observation 61(v)–(vi)].
8 Suppose that φ < ψ and ψ < χ. Then by Continuing down φ ∧ χ < ψ and φ ∧ ψ < χ, and by

Choice hard φ < ψ ∧ χ, and thus by Continuing up φ < χ. [22, Lemma 4(v)].

Four Floors for the Theory of Theory Change: Imperfect Discrimination 373

∗1 and ∗≤1 are just identical to the AGM-style revision function that selects the best
(i.e., maximal) models satisfying φ. ∗2 proceeds by selecting the second-best models
satisfying φ. ∗≤2 proceeds by selecting of the union of the best and second-best such
models. And so on. Thus ∗i selects the ith-best worlds satisfying the input sentence, and
∗≤i takes the i best “layers” all together.9 In a similar way, we propose

Definition 7. The exponentiated contraction functions .−i and .−≤i are given by simul-
taneous recursion:

K .−1 φ = K .− φ K .−≤1 φ = K .− φ
K .−i+1 φ = K .− (φ ∨

∧
(K .−≤i φ)) K .−≤(i+1) φ = (K .−≤i φ) ∩ (K .−i+1 φ)

.−1 and .−≤1 are just identical to the AGM-style contraction function that adds to the
models of K the best (maximal) models falsifying φ. .−2 proceeds by adding the second-
best models falsifying φ. .−≤2 proceeds by selecting the union of the best and second-
best such models. And so on. Exponentiated belief change is, I believe, a new variation
on the classical AGM model that offers interesting perspectives for the qualitative mod-
elling of iterated belief change. But this is not the topic of the present paper.

[[K]]

]]φ[[

[[K]]

]]φ[[

K .−1 φ K .−≤1 φ

[[K]]

]]φ[[

[[K]]

]]φ[[

K .−2 φ K .−≤2 φ

[[K]]

]]φ[[

[[K]]

]]φ[[

K .−3 φ K .−≤3 φ

9 Notice that it makes sense to speak of layers here even if the relations ≺ and < are not modular,
i.e., do not encode full comparability. For the sake of simplicity, however, the systems-of-
spheres pictures below do presuppose full comparability.

374 H. Rott

[[K]]

]]φ[[

[[K]]

]]φ[[

K .−4 φ K .−≤4 φ

3 Four Intermediate Floors

3.1 Weakening the Full AGM Theory

All additional floors can be characterized by certain weakenings of the last postulate of
AGM. Consider the following list.

(K .−8c) If ψ ∈ K .− (φ ∧ ψ), then K .− (φ ∧ ψ) ⊆ K .− φ.
(K .−8r) K .− (φ ∧ ψ) ⊆ Cn(K .− φ ∪ K .− ψ).

(K .−8p) If φ ∈ K .− (φ ∧ ψ ∧ χ), then φ ∈ K .− (φ ∧ ψ) or φ ∈ K .− (φ ∧ χ).
(K .−8d) K .− (φ ∧ ψ) ⊆ K .− φ ∪ K .− ψ.

(K .−8s) If φ � K .− (φ ∧ ψ), then K .−≤2 (φ ∧ ψ) ⊆ K .− φ.10

Given the basic AGM postulates, these are all weakenings of (K .−8). (K .−8c) corre-
sponds to Cumulative monotony (also known as Cautious monotony) in non-monotonic
reasoning.11 (K .−8r) is logically independent of (K .−8c), even for a logically finite K and
in the presence of postulates (K .−1) – (K .−7).12 Given the basic postulates, (K .−8p)13 is
strictly stronger than (K .−8r), and (K .−8d) in turn is strictly stronger than (K .−8p).14

(K .−8d) corresponds to Disjunctive rationality in non-monotonic reasoning.15 Given the

10 The corresponding condition (K*8s) for revisions is slightly simpler: If ¬ψ � K ∗ φ, then
K ∗≤2 φ ⊆ K ∗ (φ ∧ ψ).

11 (K .−8c) plays a central role in [22]. The dual of (K .−8c) is (K .−7c): If ψ ∈ K .− (φ ∧ ψ), then
K .− φ ⊆ K .− (φ ∧ ψ). This is a weakening of (K .−7) and corresponds to the Cut condition in
non-monotonic reasoning.

12 Cf. [23, p. 1438]. (K .−8r) was called (K .−8vwd) in [24]; the letter ‘r’ stands for ‘relational’,
‘vwd’ for ‘very weak disjunctive’.

13 The letter ‘p’ stands for ‘preferential’ or ‘partial antitony’. The dual of (K .−8p), viz. (K .−7p): If
φ ∈ K .− (φ∧ψ), then φ ∈ K .− (φ∧ψ∧χ), is equivalent to (K .−7), given the basic postulates. On
the choice-theoretic interpretation of Rott [24], (K .−7p) and (K .−8p) correspond to Sen’s prop-
erty α and (a finite version of) Sen’s property γ, respectively. In a finitary context, properties
α and γ are necessary and jointly sufficient for the selection function to be “rationalisable” by
a preference relation. Cf. Sen [30] and Moulin [19].

14 For the former claim, see Theorem 2, parts (ii) and (v) of [27]. For the latter claim, see [26,
pp. 199–200].

15 See Rott [24, especially p. 104]. The condition (K .−8d) is equivalent with a seemingly stronger
one: K .− (φ ∧ ψ) ⊆ K .− φ or K .− (φ ∧ ψ) ⊆ K .− ψ. This condition is called the Covering
condition in [1] and Strong disjunctive rationality in [24].

Four Floors for the Theory of Theory Change: Imperfect Discrimination 375

basic postulates, (K .−8c) and (K .−8p) taken together imply (K .−8d); there is no analo-
gous implication starting from (K .−8c) and (K .−8r).16 (K .−8s) is logically independent
of (K .−8d), even given (K .−8r) and (K .−8c).

We keep the ground floor and the top floor as established by AGM, and identify the
following intermediate floors:

1st floor: basic AGM plus (K .−7) and (K .−8r)

2nd floor: basic AGM plus (K .−7), (K .−8c) and (K .−8r)

3rd floor: basic AGM plus (K .−7), (K .−8c) and (K .−8d)

4th floor: basic AGM plus (K .−7), (K .−8c), (K .−8d) and (K .−8s)
All these floors are above AGM’s ground floor and below AGM’s top floor, and floors
with higher numbers are above the ones with lower numbers. “Being above” is metaphor-
ical here for “being logically stronger”.

In the remainder of this paper I will explain why these levels are particularly natural
to add to the floor plan of AGM’s edifice—at least as long as one focusses on logically
finite theories.17 On each of the four floors, the results pertaining to contractions based
on possible models are restricted to the case of logically finite theories K; no such
restriction applies to entrenchment-based contractions.

3.2 The Ground Floor

The ground floor is constituted by the basic AGM theory. It is known that possible mod-
els contractions satisfy the basic postulates (K .−1)–(K .−6), and that every contraction
function satisfying these postulates can be represented as a possible models contraction
[1, 11]. The same representation result is valid for the basic entrenchment contractions
[25]. Notice that the contractions on the ground floor are relational, in a certain sense
(Definition 4), with respect to entrenchment relations< over the sentences ofL, but they
are not in general relational (in the sense of Definition 1) with respect to the plausibility
relations ≺ over the possible models for L.

3.3 The 1st Floor

For a logically finite theory K, the relational possible models contractions satisfy the
postulates (K .−1)–(K .−7) and (K .−8r), and every contraction function satisfying these
postulates can be represented as a relational possible models contraction (apply Grove’s
[11] connection to [23, Corollary 2]).

For entrenchment-based contractions, (K.−7) corresponds exactly to Continuing down,
while (K .−8r) corresponds exactly to the rather unintuitive

(EII−) If φ∧ψ < χ and � χ, then there are ξ and ρ such that χ �
 ξ ∧ ρ and φ∧ ρ < ξ
and ψ ∧ ξ < ρ.18

16 See Theorem 2, parts (iv) and (v), of [27].
17 (K .−8p) plays an auxiliary role in this architecture. It is interesting in itself only if (K .−8c) is not

satisfied (or, what comes to much the same thing, only if the underlying doxastic preference
relation is not transitive).

18 See [24, Observation 68] and [27, Theorem 2 and Lemma 10]. “Correspondence” here means
“correspondence via Definitions 4 and 5”.

376 H. Rott

Given Extensionality and Maximality, EII− is a weakening of

(EII) If φ ∧ ψ < χ, then either φ < χ or ψ < χ.19

The following lemma provides a slightly more accessible condition that is suitable for
characterising the first floor:

Lemma 1. Given the resources available on the first floor, EII− is equivalent to

(EII coat) If χ is a co-atom of K and φ ∧ ψ < χ, then either φ < χ or ψ < χ.

The proofs of all observations can be obtained from the author.20

3.4 The 2nd Floor

For a logically finite theory K, the transitively relational possible models contractions
satisfy the postulates (K .−1)–(K .−7), (K .−8c) and (K .−8r), and every contraction function
satisfying these postulates can be represented as a transitively relational possible models
contraction (apply again Grove’s [11] connection to [23, Corollary 2]).21

For entrenchment contractions, the new condition (K .−8c) corresponds exactly to
Continuing up. So the second floor is inhabited by generalised entrenchment relations
that satisfy EII−. Since we have Continuing up available now, EII− can be simplified
and strengthened to

(EII−o) If φ ∧ ψ < χ and � χ, then there are ξ and ρ such that χ �
 ξ ∧ ρ and φ < ξ
and ψ < ρ.

It is on this second floor where the entrenchments of all elements of a logically finite
theory are determined in a very natural way by the entrenchments of their co-atoms. We
have the following useful result [27, Lemma 18(viii)]:

(Coat) φ < ψ iff for all β in CoatK(ψ) there is an α in CoatK(φ) such that α < β.

This has the following consequences:22

19 To see this, put either ξ = χ and ρ = �, or ξ = � and ρ = χ.—Given Extensionality and
Choice hard, EII follows from Modularity.

20 On this first floor, we can link the reconstructive Definition 5 of entrenchment to the idea of
maximisation in the possible models approach and get the following chain: φ < ψ iff ψ ∈
K .− (φ ∧ ψ); iff all ≺-maximal models in]]φ ∧ ψ[[=]]φ[[∪]]ψ[[are in [[ψ]] ; iff for every w
in]]ψ[[there is a v in]]φ ∧ ψ[[such that w ≺ v; iff for all β in CoatK(ψ) there is an α in
CoatK(φ ∧ ψ) = CoatK(φ) ∪ CoatK (ψ) such that α < β. This not only connects the idea of
entrenchment with the ordering of the models, but also determines the entrenchments within
the whole of K through the entrenchments within the restricted set Coat(K).

21 Freund [7, Theorem 4.13] proved a very similar result for non-monotonic logics on logically
finite languages. Just the route of approaching this result was different. For AGM reinterpreted
via the Grove connection, all models are injective, then comes the relationality of selection
functions (1st floor), and last comes their transitive relationality (2nd floor). In Freund’s pos-
sible worlds models, everything is transitively relational (thus Preferential logic includes Cu-
mulative monotony, the analogue of (K .−8c)), but injectiveness comes only at the end.

22 Some of these observations were stated in [27, pp. 45–46].

Four Floors for the Theory of Theory Change: Imperfect Discrimination 377

Lemma 2. Suppose that an arbitrary relation < over a logically finite theory K satisfies
the constraint (Coat). Then

(i) < satisfies Extensionality, Choice easy, Continuing down, Continuing up and EII−o

over K.

(ii) If < is acyclic or transitive over the set Coat(K), then < is acyclic and transitive,
respectively, over the whole of K.

(iii) If < is transitive over Coat(K), then < also satisfies Choice hard over K.

(iv) If < satisfies the Interval condition or Semitransitivity over the set Coat(K), then
< satisfies the Interval condition and Semitransitivity, respectively, over the whole
of K.

(v) If φ < ψ, then none of the elements in CoatK(ψ) is <-minimal in CoatK(φ ∧ ψ); if
< is transitive, then the converse holds as well.23

3.5 The 3rd Floor

The new condition on the third floor is (K .−8d). A possible models contraction function
over a logically finite theory K satisfies (K .−8d) if and only if the selection function σ
on which it is based satisfies the following condition:24

(II+) Either σ(S) ⊆ σ(S ∪ S ′) or σ(S ′) ⊆ σ(S ∪ S ′).

Condition (II+) says that either all the best elements of S or all the best elements of S ′

are best elements of the union S ∪ S ′. One can now make the following

Observation 3. Every choice function over the set of subsets of a finite domain ratio-
nalisable by an irreflexive relation that satisfies the Interval condition satisfies (II+),
and conversely every such choice function satisfying (II+) can be rationalised by an
irreflexive relation that satisfies the Interval condition.25

So the possible models contractions living on the third floor are the ones that are based
on interval orders. Given the importance of interval orders for the modelling of prefer-
ences with imperfect discrimination [3, 5, 18], the introduction of a third level to our
floor plan appears to be justified.26

23 Having in mind the dualities made use of already by Alchourrón and Makinson [2, pp. 190–
191] and Grove [11], (v) in turn means: If φ < ψ then none of the models in]]ψ[[is minimal
in]]φ ∧ ψ[[(equivalently, all minimal models in]]φ ∧ ψ[[are in [[ψ]]); if < is transitive, then
the converse holds as well.

24 See [24, Observations 25 and 26]. Notice that (II+) guarantees that the rationalising acyclic
preference relation < is transitive. For suppose that x < y and y < u but not x < u. Then,
by maximisation, σ({x, y}) = {y} and σ({x, u}) = {x, u}, but σ({x, y, u}) = {u}, contradicting
(II+).—The semantic condition corresponding to the weaker postulate (K .−p) is: If σ(S ∪ S ′ ∪
S ′′) ∩ S = ∅, then σ(S ∪ S ′) ∩ S = ∅ or σ(S ∪ S ′′) ∩ S = ∅. The semantic condition
corresponding to (K .−wd) which is equivalent to (K .−p) (see [27, Theorem 2(ii)]) is: Either
σ(S) ∩ S ′ ⊆ σ(S ∪ S ′) or σ(S ′) ∩ S ⊆ σ(S ∪ S ′). The constraint on relations rationalising
such choice functions is: If x < y and u < v, then either x < v or u < y or x < u or u < x. Cf.
[26, pp. 201–202].

25 The proof of this observation is given in [26, p. 202].
26 David Makinson [17, p. 97] seemed to favour living on the 3rd floor when he concluded, to-

wards the end of his survey article on non-monotonic reasoning, that Disjunctive rationality

378 H. Rott

We read off (II+) from the idea of Disjunctive rationality. It provides a simple char-
acterisation of maximising choice based on interval orders (I have not seen it in the
literature). The commonly quoted choice condition characterising choice based on an
interval order is “Axiom 3” studied by Jamison and Lau [12, 13] and Fishburn [6]:

(JLF3) Either σ(S) ∩ S ′ ⊆ σ(S ′) or σ(S ′) ∩ S ⊆ σ(S).

JLF3 is sometimes called “functional asymmetry” [3]. If a finitary choice functionσ
satisfies Sen’s properties α and γ and Aizerman’s property (cf. Moulin [19]), then JLF3
is equivalent with (II+).

For entrenchment-based contractions, we have the following result:27

Observation 4. (K .−8d) corresponds exactly to

(EII+) If φ ∧ ψ < χ ∧ ξ and � χ and � ξ, then either φ < χ or ψ < ξ.

As the name indicates, EII+ is a strengthening of EII (given Extensionality, Maximality
and Irreflexivity): put ξ = χ. EII+ is almost as unintuitive as EII−. Fortunately, the sit-
uation is improved by the above-mentioned fact that given (K .−1)–(K .−7) and (K .−8c),
(K .−8p) is equivalent to (K .−8d). So we can substitute (K .−8p) for (K .−8d) in our charac-
terisation of the 3rd floor, and (K .−8p) corresponds exactly to the much nicer condition
EII for entrenchments.

Interestingly, instead of adding EII or EII+ to reach the third floor, one may equiva-
lently add the Interval condition for entrenchments:

Observation 5. Given the resources of the first floor, EII or EII+ are equivalent to the

(Interval condition) If φ < ψ and χ < ξ, then either φ < ξ or χ < ψ.

3.6 The 4th Floor

The new condition characteristic of the fourth floor is (K .−8s). It is unusual in that it
refers to the exponentiated contraction K .−≤2 φ. We pause a little in order to reassure
us of its meaning. Restricting our attention to the principal case in which � φ, what
does it mean precisely, in terms of the possible models approach, that ψ is in K .−≤2 φ? It
means that ψ is in K and φ is true in the ≺-maximal models of]]φ[[and it is true in the
≺-maximal models of]]φ[[−max≺(]]φ[[), i.e., those models that are dominated by, and
only by, ≺-maximal]]φ[[-models. So ψ has to cover not only the maximally plausible
models falsifying φ (as in Definition 1), but also the φ-falsifying models that are “just
below” the maximal ones.

What does it mean, in terms of entrenchment, that ψ is in K .−≤2 φ? We can reason as
follows:

is desirable but Rational monotony is too strong to insist upon. Makinson mentions the In-
terval condition as sufficient for Disjunctive rationality and conjectures that it characterises
Disjunctive rationality. Freund’s [7, p. 244] Filtering condition, which is suitable for the char-
acterisation of Disjunctive rationality in his framework, is weaker than the Interval condition.

27 See [24, Observations 35–36 and 51] and [27, Theorem 2].

Four Floors for the Theory of Theory Change: Imperfect Discrimination 379

ψ ∈ K .−≤2 φ iff [by Def .−≤2]
ψ ∈ K .− φ and ψ ∈ K .−2 φ = K .− (φ ∨

∧
(K .− φ)) iff [by Def 4]

ψ ∈ K .− φ and φ ∨
∧

(K .− φ) < φ ∨
∧

(K .− φ) ∨ ψ iff [by Def 4, Ext]
ψ ∈ K and φ < φ ∨ ψ and φ ∨

∧
(K .− φ) < φ ∨ ψ iff [by Cont down]

ψ ∈ K and φ ∨
∧

(K .− φ) < φ ∨ ψ iff [by Cont down and EII]
ψ ∈ K and there is a χ ∈ K .− φ such that φ ∨ χ < φ ∨ ψ iff [by Def 4]
ψ ∈ K and there is a χ ∈ K such that φ < φ ∨ χ and φ ∨ χ < φ ∨ ψ.

So forψ to be in K .−≤2 φ, φ∨ψ has to exceed in entrenchment not only φ (as in Definition
4), but also another sentence that is itself more entrenched than φ.28

For all logically finite theories K, a partial meet contraction function satisfies (K .−8s)
if and only if the selection function σ on which it is based satisfies the following con-
dition:

(IV−) If S ⊆ S ′ and σ(S ′) ∩ S � ∅, then σ(S) ⊆ σ(S ′) ∪ σ(S ′ \ σ(S ′)).

Condition (IV−) says that if some of the best elements in a bigger set S ′ are contained in
a subset S of S ′, then all the best elements of S are either best or second-best elements
of S ′. One can now make the following

Observation 6. Every choice function over the set of subsets of a finite domain ra-
tionalisable by an irreflexive relation that satisfies Semitransitivity satisfies (IV−), and
conversely every such choice function satisfying (IV−) can be rationalised by an irreflex-
ive relation that satisfies Semitransitivity.

So the possible models contractions living on the fourth floor are the ones that are based
on semiorders. Given the importance of semiorders for the modelling of preferences
with imperfect discrimination [3, 16, 21, 29], this justifies the introduction of a fourth
level to our floor plan.

(IV−) provides a simple and transparent characterisation of maximising choice based
on semiorders. The commonly quoted choice condition characterising choice based on
a semiorder, however, is “Axiom 5” studied by Jamison and Lau [12, 13] and Fishburn
[6]. It can be written in this way:

(JLF5) If S ⊆ S ′, S ∩ σ(S ′) = ∅ and S ′′ ∩ σ(S ′) � ∅, then σ(S ′′) ∩ S ⊆ σ(S).

The conditions JLF3 and JLF5 provide the basis for the first axiomatisation of theory
change determined by semiorders due to Peppas and Williams [20].29 I believe to have
improved upon this axiomatisation on two counts. First, JLF5 implies transitivity, and
JLF5 is in fact the source of transitivity both in Fishburn’s and in Peppas and Williams’s
papers. However, transitivity follows already from the Interval condition. So even if one
is not willing to acknowledge the second floor, transitivity should be obtained already on
the third floor, but JLF3 does not seem to be sufficient. Second, and more importantly,

28 However, the final condition cannot further be reduced to
ψ ∈ K and there is a χ ∈ K such that φ < χ and χ < φ ∨ ψ

Counterexample: Let W = {u, v,w,w′}, u ≺ v ≺ w ≺ w′, [[p]] = {v,w′}, [[q]] = {v,w,w′},
[[r]] = {u,w,w′}, and K = ŵ′. Then p < r and r < p ∨ q, but not q ∈ K .−≤2 p.

29 Peppas and Williams’s axiom B8 for belief contraction is (K .−8r); their axioms B9 and B10
correspond to JLF3 and JLF5, respectively.

380 H. Rott

it is very hard to gain an intuitive feeling for JLF5 or Peppas and Williams’s analogue
for belief revision theory. Exponentiated belief change, apart from being an interesting
idea in itself, offers a much better intuitive grasp of the effects of semitransitivity.

For entrenchment contractions on the fourth floor, we finally have the following re-
sult:

Observation 7. (K .−8s) corresponds exactly to

(Semitransitivity) If φ < ψ and ψ < χ, then either φ < ξ or ξ < χ.

3.7 The Top Floor

We will visit the top floor only briefly, because it is a very familiar venue. It houses the
full AGM theory which we take here as an ideal limit of rational involvement in theory
change. Terminologically, this is in line with the linguistic usage in non-monotonic
logics common since Kraus, Lehmann and Magidor’s [14] who called the analogue of
(K .−8) “Rational monotony”. In all classical AGM constructions for theory change, the
top floor is reached by adding Modularity to the conditions one had before, thus making
all models and sentences fully comparable and discriminable in terms of plausibility.30

Modularity corresponds to Sen’s property β+ which is stronger still than the choice
conditions considered in the last sections. I call it (IV), using the numbering of [23]:

(IV) If S ⊆ S ′ and σ(S ′) ∩ S � ∅, then σ(S) ⊆ σ(S ′)

4 Conclusion

The edifice of theory change built by AGM is like a big hall building that needs sign-
posts to intermediate floors in order to become more habitable. I have shown that one
can clearly and meaningfully identify four intermediate floors. At least the first and the
second floor have been there all along, in the structure of AGM’s original constructive
models. The third floor, motivated by a concern for Disjunctive rationality, has directed
our attention to the topic of imperfect discrimination of degrees of plausibility. A more
constrained way of addressing this topic—by semiorders rather than interval orders—
has led us to the fourth floor.

Bibliography

[1] Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510–530 (1985)

30 In the full AGM theory of the 1980s, partial meet and entrenchment contractions were defined
in terms of non-strict relations ≤ (and likewise �). The corresponding strict relation needs to be
defined as the converse of complement, i.e., by putting x < y iff not y ≤ x. A statement like x ≤
y in [1] or [9] thus has to be taken as meaning “x is less than or equal to or incomparable with
y” rather than “x is less than or equal to y” (which explains the marginal role of connectivity
and the starring role of transitivity in these papers).

Four Floors for the Theory of Theory Change: Imperfect Discrimination 381

[2] Alchourrón, C.E., Makinson, D.: Maps between some different kinds of contrac-
tion function: The finite case. Studia Logica 45, 187–198 (1986)

[3] Aleskerov, F., Bouyssou, D., Monjardet, B.: Utility Maximization, Choice and
Preference, 2nd edn. Studies in Economic Theory, vol. 16. Springer, Berlin (2007)

[4] Fermé, E., Hansson, S.O.: AGM 25 years: Twenty-five years of research in belief
change. Journal of Philosophical Logic 40(2), 295–331 (2011)

[5] Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. Jour-
nal of Mathematical Psychology 7, 144–149 (1970)

[6] Fishburn, P.C.: Semiorders and choice functions. Econometrica 43, 975–977
(1975)

[7] Freund, M.: Injective models and disjunctive relations. Journal of Logic and Com-
putation 3, 231–247 (1993)

[8] Gärdenfors, P.: Knowledge in Flux: Modeling the Dynamics of Epistemic States.
Bradford Books. MIT Press, Cambridge (1988)

[9] Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic
entrenchment. In: Vardi, M. (ed.) Proceedings of the Second Conference on Theo-
retical Aspects of Reasoning About Knowledge (TARK 1988), pp. 83–95. Morgan
Kaufmann, Los Altos (1988)

[10] Gärdenfors, P., Makinson, D.: Nonmonotonic inference based on expectations.
Artificial Intelligence 65, 197–245 (1994)

[11] Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17,
157–170 (1988)

[12] Jamison, D.T., Lau, L.J.: Semiorders and the theory of choice. Econometrica 41,
901–912 (1973)

[13] Jamison, D.T., Lau, L.J.: Semiorders and the theory of choice: A correction.
Econometrica 43, 979–980 (1975)

[14] Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)

[15] Lindström, S.: A semantic approach to nonmonotonic reasoning: Inference oper-
ations and choice. Tech. Rep. 1991:6, Department of Philosophy, University of
Uppsala (1991), ultimately published as Tech. Rep. No.1994:10

[16] Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24,
178–191 (1956)

[17] Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M.,
Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence
and Logic Programming, vol. 3, pp. 35–110. Oxford University Press, Oxford
(1994)

[18] Mirkin, B.G.: Description of some relations on the set of real-line intervals. Jour-
nal of Mathematical Psychology 9, 243–252 (1972)

[19] Moulin, H.: Choice functions over a finite set: A summary. Social Choice and
Welfare 2, 147–160 (1985)

[20] Peppas, P., Williams, M.A.: Belief change and semiorders. In: Principles of
Knowledge Representation and Reasoning: Proceedings of the Twelfth Interna-
tional Conference, KR 2014, Vienna, July 20-24 (2014)

[21] Roberts, F.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph
Theory, pp. 139–146. Academic Press, New York (1969)

382 H. Rott

[22] Rott, H.: Preferential belief change using generalized epistemic entrenchment.
Journal of Logic, Language and Information 1, 45–78 (1992)

[23] Rott, H.: Belief contraction in the context of the general theory of rational choice.
Journal of Symbolic Logic 58, 1426–1450 (1993)

[24] Rott, H.: Change, Choice and Inference: A Study in Belief Revision and Non-
monotonic Reasoning. Oxford University Press, Oxford (2001)

[25] Rott, H.: Basic entrenchment. Studia Logica 73, 257–280 (2003)
[26] Rott, H.: Three floors for the theory of theory change. In: Punčochář, V., Dančák,

M. (eds.) Logica Yearbook 2013, pp. 187–205. College Publications, London
(2014)

[27] Rott, H., Hansson, S.O.: Safe contraction revisited. In: Hansson, S.O. (ed.) David
Makinson on Classical Methods for Non-Classical Problems, pp. 35–70. Out-
standing Contributions to Logic. Springer, Dordrecht (2014)

[28] Schlechta, K. (ed.): Nonmonotonic Logics. LNCS (LNAI), vol. 1187. Springer,
Heidelberg (1997)

[29] Scott, D., Suppes, P.: Foundational aspects of theories of measurement. Journal of
Symbolic Logic 23, 113–128 (1958)

[30] Sen, A.K.: Choice functions and revealed preference. Review of Economic Studies
38, 307–317 (1971), Reprinted in A.K.S., Choice, Welfare and Measurement, pp.
41–53. Blackwell, Oxford (1982)

[31] Suppes, P., Krantz, D.H., Luce, R.D., Tversky, A.: Foundations of Measurement.
Geometrical, threshold and probabilistic representations, vol. 2. Academic Press,
New York (1989)

Revisiting Postulates for Inconsistency

Measures

Philippe Besnard

IRIT, CNRS, University of Toulouse, France
besnard@irit.fr

Abstract. Postulates for inconsistency measures are examined, the set
of postulates due to Hunter and Konieczny being the starting point.
Objections are raised against a few individual postulates. More general
shortcomings are discussed and a new series of postulates is introduced.

1 Introduction

Many inconsistency measures over knowledge bases have been proposed
[3,5,6,9,10,11,12,14,16]. The intuition is: the higher the amount of inconsistency
in the knowledge base, the greater the number returned by the inconsistency
measure (the range of an inconsistency measure is taken to be R+ ∪ {∞}, so
that the range is totally ordered and 0 is the least element).

An inconsistency measure is concerned with amount of inconsistency, it does
not take into account other aspects whether subject matter of contradiction,
source of information,. . . (of course, it is possible for example that a contra-
diction be more worrying than another —thus making more pressing to act [4]
about it— but this has nothing to do with amount of inconsistency).

In a couple of influential papers [7] [8], Hunter and Konieczny have introduced
postulates for inconsistency measures over knowledge bases. Such postulates are
meant for inconsistency measures that account for a raw amount of inconsistency:
e.g., an inconsistency measure I satisfying (Monotony) precludes I to be a ratio.

Hunter-Konieczny refer to a propositional language1 L for classical logic +.
Finite sequences over L are called belief bases. KL is comprised of all belief bases
over L, in set-theoretic form (i.e., a member of KL is an ordinary set2).

According to Hunter and Konieczny, a function I over belief bases is an incon-
sistency measure if it satisfies the following properties, ∀K,K ′ ∈ KL, ∀α, β ∈ L

- I(K) = 0 iff K �+ ⊥ (Consistency Null)
- I(K ∪K ′) ≥ I(K) (Monotony)
- If α is free3 for K then I(K ∪ {α}) = I(K) (Free Formula Independence)
- If α + β and α �+ ⊥ then I(K ∪ {α}) ≥ I(K ∪ {β}) (Dominance)

In this paper, we examine the HK set, namely (Consistency Null), (Monotony),
(Free Formula Independence), and (Dominance), ignoring the lesser properties

1 For simplicity, we use a language based on the complete set of connectives {¬,∧,∨}.
2 In the conclusion, we mention the case of multisets.
3 A formula ϕ is free for X iff Y ∪ {ϕ} ⊥ for no consistent subset Y of X.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 383–396, 2014.
c© Springer International Publishing Switzerland 2014

384 P. Besnard

mentioned either by Hunter-Konieczny themselves [8] (e.g., MI-separability) or
by Thimm [15] when he deals with probabilistic knowledge bases.

We start by arguing against (Free Formula Independence) and (Dominance)
in Section 2. We browse in Section 3 several consequences of HK postulates,
stressing the need for more general principles in each case. Section 4 is devoted
to a major principle, replacement of equivalent subsets. Throughout Section 5,
we introduce various postulates supplementing the original ones, ending with a
new axiomatization. Section 6 can be viewed as a kind of rejoinder backing both
(Free Formula Independence) and (Monotony) through the main new postulate.

2 Objections to HK Postulates

2.1 Objection to (Dominance)

In contrapositive form, (Dominance) says:

For α + β, if I(K ∪ {α}) < I(K ∪ {β}) then α + ⊥ (1)

although it makes sense that the left hand side holds without α + ⊥. An example
is as follows. Let K = {a ∧ b ∧ c ∧ · · · ∧ z}. Take β = ¬a ∨ (¬b ∧ ¬c ∧ · · · ∧ ¬z)
while α = ¬a. We may hold I(K ∪ {α}) < I(K ∪{β}) on the following grounds:

- The inconsistency in I(K ∪ {α}) is ¬a vs a.
- The inconsistency in I(K ∪ {β}) is either as above (i.e., ¬a vs a) or it is
¬b ∧ ¬c ∧ · · · ∧ ¬z vs b ∧ c ∧ · · · ∧ z that may be viewed as more inconsistent
than the case ¬a vs a, hence, {a∧b∧c∧· · ·∧z}∪{¬a∨(¬b∧¬c∧· · ·∧¬z)} can
be taken as more inconsistent overall than {a∧ b∧ c∧ · · · ∧ z} ∪ {¬a} thereby
violating (1) because α �+ ⊥ here.

2.2 Objection to (Free Formula Independence)

Unfolding the definition of a free formula, (Free Formula Independence) is:

I(K ∪ {α}) = I(K) if K ′ ∪ {α} + ⊥ for no consistent subset K ′ of K (2)

Consider K = {a ∧ c, b ∧ ¬c} and α = ¬a ∨ ¬b (no minimal inconsistent subset
is a singleton set, unlike an example [8] against (Free Formula Independence)).
Atoms a and b are compatible but a ∧ b is contradicted by α, hence K ∪ {α}
may be regarded as more inconsistent than K: (2) is failed.

3 Consequences of HK Postulates

Proposition 1. (Monotony) entails

- if I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) then I(K ∪ {α ∧ β}) ≥ I(K ∪ {β})
Proof. Assume I(K ∪ {α ∧ β}) = I(K ∪ {α, β}). According to (Monotony),
I(K ∪ {α, β}) ≥ I(K ∪ {β}. Hence the result.

So, if I conforms with adjunction (roughly speaking, it means identifying {α, β}
with {α ∧ β}) then I respects the idea that adding a conjunct cannot make the
amount of inconsistency decrease.

Revisiting Postulates for Inconsistency Measures 385

Notation. α ≡ β denotes that both α + β and β + α hold. Also, α ≡ β + γ is an
abbreviation for α ≡ β and β + γ (so, α ≡ β �+ γ means that α ≡ β and β �+ γ).

Proposition 2. (Free Formula Independence) entails

- if α ≡
 then I(K ∪ {α}) = I(K) (Tautology Independence)

Proof. A tautology is trivially a free formula for any K.

Unless β �+ ⊥, there is however no guarantee that the following holds:

- if α ≡
 then I(K ∪ {α ∧ β}) = I(K ∪ {β}) (
-conjunct Independence)

Proposition 3. (Dominance) entails

- I(K ∪ {α1, . . . , αn}) = I(K ∪ {β1, . . . , βn}) if αi ≡ βi �+ ⊥ for i = 1..n (Swap)

Proof. For i = 1..n, αi ≡ βi and (Dominance) can be applied in both directions.
I(K∪{β1, . . . , βi−1, αi, . . . , αn}) = I(K∪{β1, . . . , βi, αi+1, . . . , αn}) for i = 1..n.

Proposition 3 fails to guarantee that I is independent of any consistent subset of
the knowledge base being replaced by an equivalent (consistent) set of formulas:

- if K ′ �+ ⊥ and K ′ ≡ K ′′ then I(K ∪K ′) = I(K ∪K ′′) (Exchange)

Proposition 3 at least guarantees that any consistent formula of the knowledge
base can be replaced by an equivalent formula without altering the result of
the inconsistency measure. Of course, postulates for inconsistency measures are
expected not to entail I(K ∪ {α}) = I(K ∪ {β}) for α ≡ β such that α + ⊥.
However, some subcases are desirable such as I(K ∪ {α ∨ α}) = I(K ∪ {α}),
I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α}), and so on, in full generality (even for α + ⊥)
but Proposition 3 fails to ensure any of these.

Proposition 4. (Dominance) entails

- if α ∧ β �+ ⊥ then I(K ∪ {α ∧ β}) ≥ I(K ∪ {β})

Proof. Applying (Dominance) to the valid entailment α∧β + β yields the result.

Proposition 4 means that I respects the idea that adding a conjunct cannot make
the amount of inconsistency decrease, in the case of a consistent conjunction
(however, one really wonders why this is not guaranteed to hold in more cases?).

Proposition 5. Due to (Dominance) and (Monotony)

- For α ∈ K, if α �+ ⊥ and α + β then I(K ∪ {β}) = I(K)

Proof. I(K∪{α}) = I(K) as α ∈ K. By (Dominance), I(K∪{α}) ≥ I(K∪{β}).
Therefore, I(K) ≥ I(K ∪ {β}). The converse holds due to (Monotony).

Proposition 5 guarantees that a consequence of a consistent formula of the knowl-
edge base can be added without altering the result of the inconsistency measure.
What about a consequence of a consistent subset of the knowledge base? Indeed,
Proposition 5 is a special case of

386 P. Besnard

(An) For {α1, . . . , αn} ⊆ K, if {α1, . . . , αn} �+ ⊥ and {α1, . . . , αn} + β then
I(K ∪ {β}) = I(K)

That is, Proposition 5 guarantees (An) only for n = 1 but what is the rationale
for stopping there?

Example 1. Let K = {¬b, a∧b, b∧c}. Proposition 5 ensures that I(K∪{a, c}) =
I(K∪{a}) = I(K∪{c}) = I(K). Although a∧c behaves as a and c with respect
to all contradictions in K (i.e., a ∧ b vs ¬b and b ∧ c vs ¬b), HK postulates fail
to ensure I(K ∪ {a ∧ c}) = I(K).

4 Two Postulates for Replacement of Equivalent Subsets

4.1 Replacing Consistent Equivalent Subsets: The Value of
(Exchange)

To start with, (Exchange) is not a consequence of (Dominance) and (Monotony).
An example is K1 = {a ∧ c ∧ e, b ∧ d ∧ ¬e} and K2 = {a ∧ e, c ∧ e, b ∧ d ∧ ¬e}.
By (Exchange), I(K1) = I(K2) but HK postulates do not impose the equality.
Next are a few results displaying properties of (Exchange).

Proposition 6. The following items are pairwise equivalent:

- (Exchange)
- The family (An)n≥1

- If K ′ �+ ⊥ and K ′ ≡ K ′′ then I(K ∪K ′) = I((K \K ′) ∪K ′′)
- If K ′ �+ ⊥ and K ∩K ′ = ∅ and K ′ ≡ K ′′ then I(K ∪K ′) = I(K ∪K ′′)
- If {K1, . . . ,Kn} is a partition of K \K0 where K0 = {α ∈ K | α + ⊥} such
that Ki �+ ⊥ and K ′

i ≡ Ki for i = 1..n then I(K) = I(K0 ∪K ′
1 ∪ · · · ∪K ′

n)

Proof. Numbering the items (1)-(5) in the statement of Proposition 6, so that,
e.g., (Exchange) is (1), we will begin by proving (1)⇐ (2)⇐ (3). Thus, using the
obvious fact (3) ⇐ (1), the equivalence between each of (1), (2), (3) will follow.
Lastly, we will prove the equivalence of (4) with (1), and that of (5) with (3).

Assume (An) for all n ≥ 1 and K ′ ≡ K ′′ �+ ⊥. (i) Let K ′ = {α1, . . . , αm}.
Define the sequence 〈K ′

j〉j≥0 where K ′
0 = K ∪ K ′′ and K ′

j+1 = K ′
j ∪ {αj+1}.

Clearly, K ′′ �+ ⊥ and K ′′ + αj+1 and K ′′ ⊆ K ′
j. Then, (An) can be applied to

K ′
j and this gives I(K ′

j) = I(K ′
j ∪{αj+1}) = I(K ′

j+1). Overall, I(K ′
0) = I(K ′

m).
So, I(K ∪ K ′′) = I(K ∪ K ′ ∪ K ′′). (ii) Let K ′′ = {β1, . . . , βp}. Consider the
sequence 〈K ′′

j 〉j≥0 where K ′′
0 = K ∪ K ′ and K ′′

j+1 = K ′′
j ∪ {βj+1}. Clearly,

K ′ �+ ⊥ and K ′ + βj+1 and K ′ ⊆ K ′′
j . Hence, (An) can be applied to K ′′

j and
this gives I(K ′′

j) = I(K ′′
j ∪ {βj+1}) = I(K ′′

j+1). Overall, I(K ′′
0) = I(K ′′

p). So,
I(K∪K ′) = I(K∪K ′∪K ′′). Combining the equalities, I(K∪K ′) = I(K∪K ′′).
That is, the family (An)n≥1 entails (Exchange).

We now show that the family (An)n≥1 is entailed by the third item in the
statement of Proposition 6, denoted (Exchange′), which is:

If K ′ �+ ⊥ and K ′ ≡ K ′′ then I(K ∪K ′) = I((K \K ′) ∪K ′′).

Revisiting Postulates for Inconsistency Measures 387

Let {α1, . . . , αn} ⊆ K such that {α1, . . . , αn} �+ ⊥ and {α1, . . . , αn} + β. So,
{α1, . . . , αn} ≡ {α1, . . . , αn, β}. For K ′ = {α1, . . . , αn}, K ′′ = {α1, . . . , αn, β}
(Exchange′) gives I(K) = I((K \ {α1, . . . , αn}) ∪ {α1, . . . , αn, β} = I(K ∪ {β}).
By transitivity, we have thus shown that (Exchange) is entailed by (Exchange′).
Since the converse is obvious, the equivalence between (Exchange), (Exchange′)
and the family (An)n≥1 holds.

As to the fourth item in the statement of Proposition 6, it is trivially entailed
by (Exchange), it clearly entails (Exchange′), so it is equivalent with (Exchange).

Consider now (Exchange′′), the last item in the statement of Proposition 6:

If {K1, . . . ,Kn} is a partition of K \K0 where K0 = {α ∈ K | α + ⊥} such that
Ki �+ ⊥ and K ′

i ≡ Ki for i = 1..n then I(K) = I(K0 ∪K ′
1 ∪ · · · ∪K ′

n).

(i) Assume (Exchange′). We now prove (Exchange′′). Let {K1, . . . ,Kn} be a
partition of K \K0 satisfying the conditions of (Exchange′′). Trivially, I(K) =
I(K0 ∪K \K0) = I(K0 ∪K1 ∪ · · · ∪Kn). Then, Ki \Kn = Ki for i = 1..n− 1.
Applying (Exchange′) yields I(K0∪K1∪· · ·∪Kn) = I(K0∪K1∪· · ·∪K ′

n) hence
I(K) = I(K0 ∪ K1 ∪ · · · ∪ K ′

n). Applying (Exchange′) iteratively upon Kn−1,
Kn−2, . . . , K1 gives I(K) = I(K0 ∪K ′

1 ∪ · · · ∪K ′
n).

(ii) Assume (Exchange′′). We now prove (Exchange′). Let K ′ �+ ⊥ and K ′′ ≡ K ′.
Clearly, (K ∪K ′)0 = K0 and (K ∪K ′) \ (K ∪K ′)0 = (K \K0) ∪K ′. As each
formula in K \K0 is consistent, K \K0 can be partitioned into {K1, . . . ,Kn}
such that Ki �+ ⊥ for i = 1..n (take n = 0 in the case that K = K0). Then,
{K1\K ′, . . . ,Kn\K ′,K ′} is a partition of (K \K0)∪K ′ satisfying the conditions
in (Exchange′′). Now, I(K ∪ K ′) = I(K0 ∪ (K1 \ K ′) ∪ · · · ∪ (Kn \ K ′) ∪ K ′).
Applying (Exchange′′) with each Ki substituting itself and K ′′ substituting K ′,
we obtain I(K ∪ K ′) = I(K0 ∪ (K1 \ K ′) ∪ · · · ∪ (Kn \ K ′) ∪ K ′′). That is,
I(K ∪K ′) = I((K \K ′) ∪K ′′).

Proposition 7. (Exchange) entails (Swap).

Proof. Taking advantage of transitivity of equality, it will be sufficient to prove
I(K∪{β1, . . . , βi−1, αi, . . . , αn}) = I(K∪{β1, . . . , βi, αi+1, . . . , αn}) for i = 1..n.
Due to αi ≡ βi and βi �+ ⊥, it is the case that {αi} �+ ⊥ and {αi} ≡ {αi, βi}.
Therefore, (Exchange) can be applied to K ∪ {β1, . . . , βi−1, αi+1, . . . , αn} for
K ′ = {αi} and K ′′ = {βi}. As a consequence, I(K ∪ {β1, . . . , βi−1, αi, . . . , αn})
is equal to I(K ∪ {β1, . . . , βi−1, αi+1, . . . , αn} ∪ {βi}) and the latter is exactly
I(K ∪ {β1, . . . , βi, αi+1, . . . , αn}).

That (Exchange) entails (Swap) is natural. More surprisingly, (Exchange) also
entails (Tautology Independence) as the next result shows.

Proposition 8. (Exchange) entails (Tautology Independence).

Proof. The non-trivial case is α �∈ K. Apply (Exchange′) for K ′ = {α} and
K ′′ = ∅ so that I(K ∪ {α}) = I((K \ {α}) ∪ ∅) ensues. So, I(K ∪ {α}) = I(K).

388 P. Besnard

4.2 The Value of an Adjunction Postulate

In keeping with the meaning of the conjunction connective in classical logic,
consider a dedicated postulate in the form

- I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) (Adjunction Invariancy)

Proposition 9. (Adjunction Invariancy) entails

- I(K ∪ {α, β}) = I((K \ {α, β}) ∪ {α ∧ β}) (Disjoint Adjunction Invariancy)
- I(K) = I({

∧
K}) (Full Adjunction Invariancy)

where
∧

K denotes α1 ∧ . . . ∧ αn for any enumeration α1, . . . , αn of K.

Proof. Let K = {α1, . . . , αn}. Apply iteratively (Adjunction Invariancy) as
I({α1 ∧ . . . ∧ αi−1, αi, . . . , αn}) = I({α1 ∧ . . . ∧ αi, αi+1, . . . , αn}) for i = 2..n.

Proposition 10. Assuming I({α∧(β∧γ)}) = I({(α∧β)∧γ}) and I({α∧β}) =
I({β ∧ α}), (Disjoint Adjunction Invariancy) and (Full Adjunction Invariancy)
are equivalent.

Proof. Assume (Full Adjunction Invariancy). K ∪{α, β} = (K \ {α, β})∪{α, β}
yields I(K∪{α, β}) = I((K \{α, β})∪{α, β}). By (Full Adjunction Invariancy),
I((K \ {α, β}) ∪ {α, β}) = I({

∧
((K \ {α, β}) ∪ {α, β})}) and the latter can be

written I({γ1 ∧ . . .∧ γn ∧α∧β}) for some enumeration γ1, . . . , γn of K \ {α, β}.
I.e., I(K ∪{α, β}) = I({γ1 ∧ . . .∧γn ∧α∧β}). By (Full Adjunction Invariancy),
I((K \ {α, β})∪{α∧β}) = I({

∧
((K \ {α, β}) ∪ {α ∧ β})}) that can be written

I({γ1 ∧ . . .∧ γn ∧α∧ β}) for the same enumeration γ1, . . . , γn of K \ {α, β}. So,
I(K ∪{α, β}) = I((K \ {α, β})∪{α∧ β}). As to the converse, it is trivial to use
(Disjoint Adjunction Invariancy) iteratively to get (Full Adjunction Invariancy).

A counter-example to the purported equivalence of (Adjunction Invariancy) and
(Full Adjunction Invariancy) is as follows. Let K = {a, b,¬b ∧ ¬a}. Obviously,
I(K ∪ {a, b}) = I(K) since {a, b} ⊆ K. (Full Adjunction Invariancy) gives
I(K) = I({

∧
γ∈K γ}) i.e. I(K ∪ {a, b}) = I({

∧
γ∈K γ}) = I({a ∧ b ∧ ¬b ∧ ¬a}).

A different case of applying (Full Adjunction Invariancy) gives I(K ∪{a∧ b}) =
I({

∧
γ∈K∪{a∧b} γ}) = I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b}). However, HK postulates do

not provide grounds to infer I({a ∧ b ∧ ¬b ∧ ¬a}) = I({a ∧ b ∧ ¬b ∧ ¬a ∧ a ∧ b})
hence (Adjunction Invariancy) may fail here.

(Adjunction Invariancy) offers a natural equivalence between (Monotony) and
the principle which expresses that adding a conjunct cannot make the amount
of inconsistency decrease:

Proposition 11. Assuming (Consistency Null), (Adjunction Invariancy) yields
that (Monotony) is equivalent with

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α}) (Conjunction Dominance)

Proof. Assume (Monotony), an instance of which is I(K∪{α}) ≤ I(K∪{α, β}).
According to (Adjunction Invariancy), I(K ∪ {α, β}) = I(K ∪ {α ∧ β}). Hence,

Revisiting Postulates for Inconsistency Measures 389

I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}). That is, (Conjunction Dominance) holds.
Assume (Conjunction Dominance). First, consider K �= ∅. Let α ∈ K. Due to
(Conjunction Dominance), I(K∪{α}) ≤ I(K∪{α∧β}. (Adjunction Invariancy)
gives I(K ∪ {α, β}) = I(K ∪ {α ∧ β}). Hence, I(K ∪ {α}) ≤ I(K ∪ {α, β}). I.e.,
I(K) ≤ I(K∪{β}) since α ∈ K. For K ′ ∈ KL, it is enough to iterate this finitely
many times (one for every β in K ′ \K) in order to obtain I(K) ≤ I(K ∪K ′).
Now, consider K = ∅. By (Consistency Null), I(K) = 0 hence I(K) ≤ I(K∪K ′).

(Free Formula Independence) yields (Tautology Independence) by Proposition 2
although a more general principle (e.g., (
-conjunct Independence) or the like)
ensuring that I is independent of tautologies is to be expected. The next result
shows that (Adjunction Invariancy) is the way to get both postulates at once.

Proposition 12. Assuming (Consistency Null), (Adjunction Invariancy) yields
that (Tautology Independence) and (
-conjunct Independence) are equivalent.

Proof. For α ≡
, (Adjunction Invariancy) and (Tautology Independence) give
I(K ∪ {α ∧ β}) = I(K ∪ {α, β}) = I(K ∪ {β}). As to the converse, let β ∈ K.
Therefore, I(K) = I(K ∪ {β}) = I(K ∪{α∧β}) = I(K ∪{α, β}) = I(K ∪{α}).
The case K = ∅ is settled by means of (Consistency Null).

Lastly, (Adjunction Invariancy) provides for free various principles related to
(idempotence, commutativity, and associativity of) conjunction, as follows.

Proposition 13. (Adjunction Invariancy) entails

- I(K ∪ {α ∧ α}) = I(K ∪ {α})
- I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α})
- I(K ∪ {α ∧ (β ∧ γ)}) = I(K ∪ {(α ∧ β) ∧ γ})

Proof. (i) I(K ∪ {α ∧ α}) = I(K ∪ {α, α}) = I(K ∪ {α}). (ii) I(K ∪ {α ∧ β}) =
I(K ∪ {α, β}) = I(K ∪ {β, α}) = I(K ∪ {β ∧ α}). (iii) I(K ∪ {α ∧ (β ∧ γ)}) =
I(K ∪{α, β ∧γ}) = I(K ∪{α, β, γ}) = I(K ∪{α∧β, γ}) = I(K ∪{(α∧β)∧γ}).

(Adjunction Invariancy) and (Exchange) are two principles devoted to ensuring
that replacing a subset of the knowledge base with an equivalent subset does not
change the value given by the inconsistency measure. The contexts that these
two principles require for the replacement to be safe differ:

1. For K ′ �+ ⊥, (Exchange) is more general than (Adjunction Invariancy) since
(Exchange) guarantees I(K ∪ K ′) = I(K ∪ K ′′) for every K ′′ ≡ K ′ but
(Adjunction Invariancy) ensures it only for K ′′ = {

∧
K ′

i | Υ = {K ′
1, ..,K

′
n}}

where Υ ranges over the partitions of K ′.

2. For α + ⊥, (Adjunction Invariancy) is more general than (Exchange) because
(Adjunction Invariancy) guarantees I(K ∪ {α, β}) = I(K ∪ {α ∧ β}) but
(Exchange) does not guarantee it.

390 P. Besnard

5 Revisiting HK Postulates

5.1 Sticking with (Consistency Null) and (Monotony)

(Consistency Null) or a like postulate is indispensable because there seems to
be no way to have a sensible inconsistency measure that would not be able to
always discriminate between consistency and inconsistency.

(Monotony) is to be kept since contradictions in classical logic (and basically
all logics) are monotone [1] wrt. information: i.e., extra information cannot make
a contradiction vanish.

However, we will not retain (Monotony) as an explicit postulate, because it
ensues from the postulate to be introduced in Section 5.4.

5.2 Intended Postulates

In addition, both (Tautology Independence) and (
-conjunct Independence) are
due postulates. Even more generally, it would make no sense, when considering
how inconsistent a theory is, to take into account any inessential difference in
which a formula is written (for example, α∨ β instead of β ∨α). Define α′ to be
a prenormal form of α if α′ results from α by applying (possibly repeatedly) one
or more of these principles: commutativity, associativity and distribution for ∧
and ∨, De Morgan laws, double negation equivalence. Hence the next4 postulate:

- If β is a prenormal form of α then I(K ∪ {α}) = I(K ∪ {β}) (Rewriting)

As (Monotony) essentially means that extra information cannot make amount of
inconsistency decrease, the same idea must apply to conjunction because α ∧ β
cannot involve less information than α. Thus, another due postulate is:

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α}) (Conjunction Dominance)

Indeed, it does not matter whether α or β or both are inconsistent: it definitely
cannot be rational to hold that there is a case (even a single one) where extending
K with a conjunction would result in less inconsistency than extending K with
one of the conjuncts.

5.3 Taking Care of Disjunction

It is a delicate matter to assess how inconsistent a disjunction is, but bounds
can be set. Indeed, a disjunction expresses two alternative possibilities, so that
accrual across these would make little sense. That is, amount of inconsistency
in α ∨ β cannot exceed amount of inconsistency in either α or β, depending on
which one involves a higher amount of inconsistency. Hence the next postulate.

4 In sharp contrast to (Irrelevance of Syntax), i.e., I({α1, . . . , αn}) = I({β1, . . . , βn})
whenever αi ≡ βi for i = 1..n (see [15]), that allows for destructive transformation
from α to β when both are inconsistent, (Rewriting) takes care of inhibiting purely
deductive transformations (the most important one is presumably from α∧⊥ to ⊥).

Revisiting Postulates for Inconsistency Measures 391

- I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})) (Disjunct Maximality)

There are alternative formulations for (Disjunct Maximality), as follows.

Proposition 14. Assuming I(K∪{α∨β}) = I(K∪{β∨α}), it is the case that
(Disjunct Maximality) is equivalent with each of

- if I(K ∪ {α}) ≥ I(K ∪ {β}) then I(K ∪ {α}) ≥ I(K ∪ {α ∨ β})

- I(K ∪ {α ∨ β}) ≤ I(K ∪ {α}) or I(K ∪ {α ∨ β}) ≤ I(K ∪ {β})

Proof. Let us prove that (Disjunct Maximality) entails the first item. Assume
I(K ∪ {α}) ≥ I(K ∪ {β}). I.e., I(K ∪ {α}) = max(I(K ∪ {α}), I(K ∪ {β})).
Using (Disjunct Maximality), I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})),
i.e. I(K ∪ {α})) ≥ I(K ∪ {α ∨ β}). As to the converse direction, assume that if
I(K ∪ {α}) ≥ I(K ∪ {β}) then I(K ∪ {α}) ≥ I(K ∪ {α∨ β}). Consider the case
max(I(K ∪ {α}), I(K ∪ {β})) = I(K ∪ {α}). Hence, I(K ∪ {α}) ≥ I(K ∪ {β}).
According to the assumption, it follows that I(K ∪ {α}) ≥ I(K ∪ {α ∨ β}).
That is, max(I(K ∪ {α}), I(K ∪ {β})) ≥ I(K ∪ {α ∨ β}). Similarly, the case
max(I(K ∪ {α}), I(K ∪ {β})) = I(K ∪ {β}) gives I(K ∪ {β}) ≥ I(K ∪ {β ∨α}).
Then, I(K ∪ {β}) ≥ I(K ∪ {α ∨ β}) in view of the hypothesis in the statement
of Proposition 14. That is, max(I(K ∪ {α}), I(K ∪ {β})) ≥ I(K ∪ {α ∨ β}).
Combining both cases, (Disjunct Maximality) holds.
The equivalence of (Disjunct Maximality) with the last item is due to the fact
that the codomain of I is totally ordered.

Although it is quite unclear how to weigh inconsistencies out of a disjunction,
there is no reason to consider than both disjunct holding (whether tied together
by a conjunction or not) might decrease amount of inconsistency, which justifies

- I(K ∪ {α ∧ β}) ≥ I(K ∪ {α ∨ β}) (∧-over-∨ Dominance)

and its conjunction-free counterpart

- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
Proposition 15. Assuming I(K ∪ {α ∧ β}) = I(K ∪ {β ∧ α}), (Conjunction
Dominance) and (Disjunct Maximality) entail (∧-over-∨ Dominance).

Proof. Given I(K ∪ {α∧ β}) = I(K ∪ {β ∧α}), (Conjunction Dominance) gives
I(K ∪ {α ∧ β}) ≥ I(K ∪ {α}) and I(K ∪ {α ∧ β}) ≥ I(K ∪ {β}). Therefore,
max(I(K∪{α}), I(K∪{β})) ≤ I(K∪{α∧β}). In view of (Disjunct Maximality),
I(K ∪ {α∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})), and it accordingly follows that
I(K ∪ {α ∨ β}) ≤ I(K ∪ {α ∧ β}) holds.
Proposition 16. (Monotony) and (Disjunct Maximality) entail

- I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β})
Proof. I(K ∪ {α}) ≤ I(K ∪ {α, β}) and I(K ∪ {β}) ≤ I(K ∪ {α, β}) according
to (Monotony). Consequently, max(I(K ∪ {α}), I(K ∪ {β})) ≤ I(K ∪ {α, β}).
Due to (Disjunct Maximality), I(K ∪ {α∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})).
Therefore, I(K ∪ {α, β}) ≥ I(K ∪ {α ∨ β}).

392 P. Besnard

5.4 A Schematic Postulate

The next postulate we introduce is to be presented in two steps.

1. (Monotony) expresses that adding information cannot result in a decrease of
the amount of inconsistency in the knowledge base. Considering a notion of
primitive conflicts that underlies amount of inconsistency, (Monotony) is a
special case of a postulate stating that amount of inconsistency is monotone
with respect to the set of primitive conflicts C(K) of the knowledge base K:
If C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).
Clearly, I is to admit different postulates depending on what features are
required for primitive conflicts (see Table 1).

2. Keep in mind that an inconsistency measure refers to logical content of the
knowledge base, but does not depend upon other aspects whether subject
matter of contradiction, source of information,. . . Amount of inconsistency
is a quantity for which these other aspects are not taken into account. Now,
what characterizes logical content is uniform substitutivity. A postulate stat-
ing that instantiating cannot make the amount of inconsistency decrease is:
If σK = K ′ for some substitution σ then I(K) ≤ I(K ′).

(Substitutivity Dominance)

Combining these two ideas, we obtain the following postulate

- If C(σK) ⊆ C(K ′) for some substitution σ then I(K) ≤ I(K ′)
(Subsumption Orientation)

Fact 1. Every postulate of the form

- I(X) ≤ I(Y) for all X ∈ KL and Y ∈ KL such that condition CX,Y holds

or of the form

- I(X) = I(Y) for all X ∈ KL and Y ∈ KL such that condition CX,Y holds

is derived from (Subsumption Orientation) and from any property of C ensuring
that condition C holds.

Individual properties of C ensuring condition C for a number of postulates,
including all those previously mentioned in the paper, can be found in Table 1.
(Variant Equality) in Table 1 is named after the notion of a variant [2]:

- If σ and σ′ are substitutions s.t. σK = K ′ and σ′K ′ = K then I(K) = I(K ′)
(Variant Equality)

Also of interest is the following postulate, (Instance Low), which can be proven
to be equivalent with (Variant Equality) together with (Monotony).

- If σK ⊆ K ′ for some substitution σ then I(K) ≤ I(K ′) (Instance Low)

Revisiting Postulates for Inconsistency Measures 393

Table 1. Conditions for postulates derived from (Subsumption Orientation)

Specific property for C Specific postulate entailed by
(Subsumption Orientation)

No property needed (Variant Equality)

No property needed (Substitutivity Dominance)

C(K ∪ {α}) = C(K) for α ≡ � (Tautology Independence)

C(K ∪ {α ∧ β}) = C(K ∪ {β}) for α ≡ � (�-conjunct Independence)
C(K ∪ {α}) = C(K ∪ {α′}) for α′ prenormal form of α (Rewriting)

C(K) ⊆ C(K ∪ {α}) (Instance Low)

C(K) ⊆ C(K ∪ {α}) (Monotony)

C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α ∧ β}) (∧-over-∨ Dominance)
C(K ∪ {α}) ⊆ C(K ∪ {α ∧ β}) (Conjunction Dominance)

C(K ∪ {α, β}) = C(K ∪ {α ∧ β}) (Adjunction Invariancy)

C(K ∪ {α ∨ β}) ⊆ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Maximality)

C(K ∪ {α ∨ β}) ⊇ C(K ∪ {α}) or C(K ∪ {β}) (Disjunct Minimality)

C(K ∪K′) = C(K ∪K′′) for K′′ ≡ K′ � ⊥ (Exchange)

C(K ∪ {α1, ..., αn}) = C(K ∪ {β1, .., βn}) if αi ≡ βi � ⊥ (Swap)

C(K ∪ {β}) ⊆ C(K ∪ {α}) for α β and α � ⊥ (Dominance)

C(K ∪ {α}) = C(K) for α free for K (Free Formula Independence)

5.5 A New System of Postulates (Basic Version and Variants)

All the above actually suggests a new system of postulates, which consists simply
of (Consistency Null) and (Subsumption Orientation). The system is actually
parameterized by the properties imposed upon C in the latter. In the range thus
induced by C, a basic system emerges, which amounts to the following list:

Basic System
I(K) = 0 iff K �+ ⊥ (Consistency Null)
If α′ is a prenormal form of α then I(K ∪ {α}) = I(K ∪ {α′}) (Rewriting)
If σK ⊆ K ′ for some substitution σ then I(K) ≤ I(K ′) (Instance Low)
I(K ∪ {α ∨ β}) ≤ max(I(K ∪ {α}), I(K ∪ {β})) (Disjunct Maximality)
If α ≡
 then I(K) = I(K ∪ {α}) (Tautology Independence)
If α ≡
 then I(K ∪ {α ∧ β}) = I(K ∪ {β}) (
-conjunct Independence)
I(K ∪ {α}) ≤ I(K ∪ {α ∧ β}) (Conjunction Dominance)

As was mentioned previously, (Variant Equality) and (Monotony) are implied
by (Instance Low). They are then consequences of the basic system, and so are
(Substitutivity Dominance) and (∧-over-∨ Dominance). It is however the case for
none of (Dominance), (Free Formula Independence), (Adjunction Invariancy),
and (Exchange). It also happens that neither (Swap) nor (Disjunct Minimality)
are consequences. Adding either one, or both, to the basic system results in
minor variants.

However, adding (Free Formula Independence) yields a major variant devoted
to inconsistency measures mainly based on minimal inconsistent subsets (see the
next section). Adding (Adjunction Invariancy) and/or (Exchange) yields a major
variant for inconsistency measures not based on minimal inconsistent subsets.

394 P. Besnard

6 HK Postulates Identified as (Subsumption Orientation)

Time has come to make sense5 of the HK choice of (Free Formula Independence)
together with (Monotony), by means of Theorem 1 and Theorem 2.

Theorem 1. Let C be such that for every K ∈ KL and for every X ⊆ L which
is minimal inconsistent, X ∈ C(K) iff X ⊆ K. If I satisfies both (Monotony)
and (Free Formula Independence) then I satisfies (Subsumption Orientation)
restricted to its non-substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

Proof. Let C(K) ⊆ C(K ′). Should K be a subset of K ′, (Monotony) yields
I(K) ≤ I(K ′) as desired. So, let us turn to K �⊆ K ′. Consider ϕ ∈ K \ K ′.
If ϕ were not free for K, there would exist a minimal inconsistent subset X
of K such that ϕ ∈ X . Clearly, X �⊆ K ′. The constraint imposed on C in the
statement of the theorem would then yield both X ∈ C(K) and X �∈ C(K ′),
contradicting the assumption C(K) ⊆ C(K ′). Hence, ϕ is free for K. In view of
(Free Formula Independence), I(K) = I(K \ {ϕ}). The same reasoning applied
to all the (finitely many) formulas in K \K ′ gives I(K) = I(K ∩K ′). However,
K ∩K ′ is a subset of K ′ so that using (Monotony) yields I(K ∩K ′) ≤ I(K ′),
hence I(K) ≤ I(K ′).

Define Ξ = {X ∈ KL | ∀X ′ ⊆ X,X ′ + ⊥ ⇔ X = X ′}. Then, C is said to be
governed by minimal inconsistency iff C satisfies the following property

if C(K) ∩Ξ ⊆ C(K ′) ∩ Ξ then C(K) ⊆ C(K ′).

Please note that C being governed by minimal inconsistency does not mean that
C(K) is determined by the set of minimal inconsistent subsets of K. Intuitively,
it only means that those Z in C(K) which are not minimal inconsistent cannot
override set-inclusion induced by minimal inconsistent subsets —i.e., no such Z
can, individually or collectively, turn C(K)∩Ξ ⊆ C(K ′)∩Ξ into C(K) �⊆ C(K ′).

Theorem 2. Let C be governed by minimal inconsistency and be such that for
all K ∈ KL and all X ⊆ L which is minimal inconsistent, X ∈ C(K) iff X ⊆ K.
I satisfies (Monotony) and (Free Formula Independence) whenever I satisfies
(Subsumption Orientation) restricted to its non-substitution part, namely

if C(K) ⊆ C(K ′) then I(K) ≤ I(K ′).

Proof. Trivially, if X ⊆ K then X ⊆ K∪{α}. By the constraint imposed on C in
the statement of the theorem, it follows that if X ∈ C(K) then X ∈ C(K ∪{α}).
Since C is governed by minimal inconsistency, C(K) ⊆ C(K ∪ {α}) ensues and
(Subsumption Orientation) yields (Monotony). Let α be a free formula for K.
By definition, α is in no minimal inconsistent subset of K ∪ {α}. So, X ⊆ K iff

5 Although still not defending the choice of (Free Formula Independence).

Revisiting Postulates for Inconsistency Measures 395

X ⊆ K ∪ {α} for all minimal inconsistent X . By the constraint imposed on C
in the statement of the theorem, X ∈ C(K) iff X ∈ C(K ∪ {α}) ensues for all
minimal inconsistent X . In symbols, C(K) ∩ Ξ = C(K ∪ {α}) ∩ Ξ. Since C is
governed by minimal inconsistency, it follows that C(K) = C(K ∪ {α}). Thus,
(Free Formula Independence) holds, due to (Subsumption Orientation).

Therefore, Theorem 1 and Theorem 2 mean that, if substitutivity is left aside,
(Subsumption Orientation) is equivalent with (Free Formula Independence) and
(Monotony) when primitive conflicts are essentially minimal inconsistent subsets.
So, these postulates form a natural pair if it is assumed that minimal inconsistent
subsets must be the basis for inconsistency measuring.

7 Conclusion

We have proposed a new system of postulates for inconsistency measures, i.e.

- I(K) = 0 iff K is consistent (Consistency Null)
- If C(σK) ⊆ C(K ′) for some substitution σ then I(K) ≤ I(K ′)

(Subsumption Orientation)
parameterized by the requirements imposed on C.

The new system omits both (Dominance) and (Free Formula Independence),
which we have argued against. We investigated various postulates, absent in the
HK set, giving grounds to include them in the new system. We have shown that
(Subsumption Orientation) not only accounts for the other postulates but also
gives a justification for (Free Formula Independence) together with (Monotony),
through focussing on minimal inconsistent subsets.

We do not hold that the new system, in its basic version or any variant,
captures all desirable cases, we more simply claim for improving over the original
HK set. In particular, we think that HK postulates suffer from over-commitment
to minimal inconsistent subsets. Crucially, such a comment applies to postulates
(because they would exclude all approaches that are not based upon minimal
inconsistent subsets) but it does not apply to measures themselves: There can
be excellent reasons to develop a specific inconsistency measure [9] [10] [13] . . .
based upon minimal inconsistent subsets.

For the class of inconsistency measures whose output does not depend on
having a consistent subset replaced by an equivalent set of formulas, we have
proposed (Exchange), exclusive of (Free Formula Independence) that only fits
in the class of inconsistency measures based upon minimal inconsistent subsets.

As to future work, we must mention taking seriously belief bases as multisets.
Perhaps the most insighful postulate in this respect is (Adjunction Invariancy)
as there surely is some rationality in holding that {a∧b∧¬a∧¬b∧a∧b∧¬a∧¬b}
is more inconsistent than {a ∧ b ∧ ¬a ∧ ¬b}.

Acknowledgements. Many thanks to Hitoshi Omori for insightful discussions,
to Sébastien Konieczny for helpful comments on a draft, and to the reviewers
for constructive remarks.

396 P. Besnard

References

1. Besnard, P.: Absurdity, contradictions, and logical formalisms. In: 22nd IEEE In-
ternational Conference on Tools with Artificial Intelligence (ICTAI 2010), Arras,
France, October 27-29, vol. 1, pp. 369–374. IEEE (2010)

2. Church, A.: Introduction to Mathematical Logic. Princeton University Press (1956)
3. Doder, D., Rašković, M., Marković, Z., Ognjanović, Z.: Measures of inconsistency
and defaults. Journal of Approximate Reasoning 51(7), 832–845 (2011)

4. Gabbay, D., Hunter, A.: Making inconsistency respectable 2: Meta-level handling
of inconsistent data. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993.
LNCS, vol. 747, pp. 129–136. Springer, Heidelberg (1993)

5. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of In-
telligent Information Systems 27(2), 159–184 (2006)

6. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In:
Dechter, R., Sutton, R. (eds.) 18th AAAI Conference on Artificial Intelligence
(AAAI 2002), Edmonton, Alberta, Canada, July 28-August 1, pp. 68–73. AAAI
Press/MIT Press (2002)

7. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In: Brewka, G., Lang, J. (eds.) 11th Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), Sydney, Australia, September 16-19, pp.
358–366. AAAI Press (2008)

8. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency val-
ues. Artificial Intelligence 174(14), 1007–1026 (2010)

9. Jabbour, S., Raddaoui, B.: Measuring inconsistency through minimal proofs. In:
van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS, vol. 7958, pp. 290–301. Springer,
Heidelberg (2013)

10. Knight, K.: Measuring inconsistency. Journal of Philosophical Logic 31(1), 77–98
(2002)

11. Ma, Y., Qi, G., Hitzler, P.: Computing inconsistency measure based on paracon-
sistent semantics. Logic and Computation 21(6), 1257–1281 (2011)

12. Mu, K., Liu, W., Jin, Z.: A general framework for measuring inconsistency through
minimal inconsistent sets. Journal of Knowledge and Information Systems 27(1),
85–114 (2011)

13. Mu, K., Liu, W., Jin, Z.: Measuring the blame of each formula for inconsistent
prioritized knowledge bases. Logic and Computation 22(3), 481–516 (2012)

14. Oller, C.: Measuring coherence using LP-models. Journal of Applied Logic 2(4),
451–455 (2004)

15. Thimm, M.: Inconsistency measures for probabilistic logics. Artificial Intelli-
gence 197, 1–24 (2013)

16. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsat-
isfiable subsets. In: De Raedt, L., Bessière, C., Dubois, D., Doherty, P., Frasconi,
P., Heintz, F., Lucas, P.J.F. (eds.) 20th European Conference on Artificial Intel-
ligence (ECAI 2012), Montpellier, France, August 27-31, pp. 864–869. IOS Press
(2012)

A Translation-Based Approach for Revision

of Argumentation Frameworks

Sylvie Coste-Marquis, Sébastien Konieczny,
Jean-Guy Mailly, and Pierre Marquis

CRIL
Université d’Artois – CNRS

Lens, France
{coste,konieczny,mailly,marquis}@cril.fr

Abstract. In this paper, we investigate the revision issue for Dung ar-
gumentation frameworks. The main idea is that such frameworks can be
translated into propositional formulae, allowing the use of propositional
revision operators to perform a rational minimal change. Our translation-
based approach to revising argumentation frameworks can take advan-
tage of any propositional revision operator ◦. Via a translation, each
propositional operator ◦ can be associated with some revision operators
� suited to argumentation frameworks. Some rationality postulates for
the � operators are presented. If the revision formulae are restricted to
formulae about acceptance statuses, some � operators satisfy these pos-
tulates provided that the corresponding ◦ operator is AGM.

1 Introduction

In this paper, we investigate the revision issue for abstract argumentation frame-
works à la Dung [17]. Such argumentation frameworks are directed graphs, where
nodes correspond to arguments and arcs to attacks between arguments. In such
frameworks, the status (acceptance) of each argument depends on the chosen
acceptability semantics (grounded, preferred, stable – among others).

Change in argumentation frameworks is a very active topic in the argumen-
tation community [9,8,11,3,6,2,10,7,13,15] In [16], a classification of the change
operators is given. A change operator can be characterized by the nature of the
constraint to enforce and the nature of the change to perform to reach the goal.
In this work, we focus on two types of constraint and change: those concerning
the structure of the argumentation graph, and those concerning the acceptance
statuses of arguments.

We present a translation-based approach for revising argumentation systems.
The aim is to characterize a set F � ϕ of argumentation systems which corre-
sponds to the revision of the argumentation system F by the revision formula
ϕ. Basically, given a semantics σ, we associate with F a propositional formula
fσ(F) which represents it; given the revision formula ϕ, we take advantage of
AGM revision operators ◦ in order to characterize the revision F � ϕ of F by
ϕ. In a nutshell, the approach consists in revising using ◦ the representation of

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 397–411, 2014.
c© Springer International Publishing Switzerland 2014

398 S. Coste-Marquis et al.

fσ(F) by a propositional formula induced by ϕ plus some additional constraints
on the expected revision. The output is a propositional formula which character-
izes the argumentation frameworks which can be interpreted as the revision of F
by ϕ. This paper only presents propositional encodings for Dung’s complete and
stable semantics, but our revision method can be used with any other accept-
ability semantics σ, as soon as there is a propositional encoding for arguments
acceptance given σ.

Some rationality postulates for the � operators are presented. We show that if
the revision formulae are restricted to formulae about acceptance statuses, some
� operators satisfy these postulates provided that the corresponding ◦ operator
is AGM.

2 Background

Let us first define formally argumentation frameworks. We only consider the case
of finite frameworks. The following notions come from [17].

Definition 1. An argumentation framework (AF) is a pair F = 〈A,R〉 with A
a finite set of abstract entities called arguments and R a binary relation on A
called the attack relation.

The intuitive meaning of an attack (a, b) ∈ R is that a defeats b, so if a is
accepted then b has to be rejected. An argument can be defended by another
one against a third one: if (a, b) ∈ R and (b, c) ∈ R, then a defends c against b.
These two notions can be extended to sets: S ⊆ A attacks (resp. defends) a ∈ A
if ∃b ∈ S such that b attacks (resp. defends) a.
To compute the acceptance status of each argument, Dung defines several accept-
ability semantics which leads to sets of arguments (called extensions) which can
be accepted together. A common point to these semantics is conflict-freeness: a
set S ⊆ A is conflict-free if and only if there is no a, b ∈ S such that (a, b) ∈ R.

For instance, complete and stable semantics are defined as:
– A conflict-free set S ⊆ A is a complete extension of F if and only if S contains

every argument that S defends;
– A conflict-free set S ⊆ A is a stable extension of F if and only if S attacks

every argument that does not belong to S.
Given a semantics σ and a framework F , Extσ(F) denotes the set of extensions
of F . An argument a is skeptically accepted by F with respect to the semantics
σ if and only if ∀ε ∈ Extσ(F), a ∈ ε.

Let us also give a few preliminaries about belief revision. Intuitively, belief
revision can be defined as the minimal change to enforce a new information in
a logical belief base. It has been characterized in many settings, including the
setting of deductively closed theories [1], and the setting of finite propositional
belief bases [21]. These works give families of rationality postulates, which are
logical properties that a rational revision operator is supposed to satisfy. Katsuno
and Mendelzon [21] have proved that propositional revision operators can be
characterized through the notion of faithful assignment:

A Translation-Based Approach for Revision of AFs 399

Definition 2. A faithful assignment is a mapping which associates a proposi-
tional formula ϕ with a total pre-order ≤ϕ on interpretations such that:

– if ω |= ϕ and ω′ |= ϕ, then ω ≈ϕ ω′;

– if ω |= ϕ and ω′ �|= ϕ, then ω <ϕ ω′;

– if ϕ ≡ ψ, then ≤ϕ=≤ψ.

Faithful assignments characterize well-behaved revision operators:1

Theorem 1. A KM revision operator ◦ satisfies the rationality postulates from
[21] if and only if there exists a faithful assignment which associates with every
formula ϕ a total pre-order ≤ϕ, and such that for every formula α:2

Mod(ϕ ◦ α) = min(Mod(α),≤ϕ)

3 A Translation-Based Approach

In this section, we explain how to encode an argumentation framework into
logical constraints, and which constraints must be added to take into account
the main semantics of acceptability. Then we show that classical AGM revision
operators can be used to revise an argumentation framework. This idea is rem-
iniscent to the ones considered in [18,12] for other purposes (revising modal or
non-classical formulae, and case-based reasoning).

3.1 A Propositional Encoding

Let us consider a finite set of arguments A = {a1, . . . , an} and an argumentation
framework F = 〈A,R〉.

Definition 3 (Propositional language based on A).

– for x ∈ A, acc(x) is a propositional variable meaning “the argument x is
skeptically accepted by the framework F”.

– for x, y ∈ A, att(x, y) is a propositional variable meaning “the argument x
attacks the argument y in the framework F”.

– for x ∈ A, x is a propositional variable meaning “the argument x belongs to
the extension of the framework F which is taken in consideration”.

– PropA = {acc(x)|x ∈ A} ∪ {att(x, y)|x, y ∈ A} ∪ {x|x ∈ A}
– LA is the propositional language built up from the set of variables PropA

and the connectives ¬,∨,∧.

1 This result is a particular case of Grove’s system of spheres [19].
2 Mod(ϕ) denotes the set of models of the propositional formula ϕ.
Given a set S and a pre-order ≤ on S, min(S,≤) = {x ∈ S : �y ∈ S, y ≤ x and
x � y}.

400 S. Coste-Marquis et al.

An att-formula (resp. an acc-formula) is a formula from LA which contains
only variables from {att(x, y)|x, y ∈ A} (resp. {acc(x)|x ∈ A}).

Clearly enough, the set of models over {att(x, y)|x, y ∈ A} of an att-formula
ϕatt (called att-models) corresponds in a bijective way to a set of argumenta-
tion frameworks over A: (x, y) belongs to the attack relation R precisely when
att(x, y) is true in the model under consideration. It can be formalized through
the definition of a mapping from a set of att litterals to an argumentation frame-
work:

Definition 4 (Argumentation framework associated with a att-model).
Given a set A of arguments, any m ⊆ {att(x, y)|x, y ∈ A} can be associated with
an argumentation framework arg(m) = 〈A, {(x, y) ∈ A×A|att(x, y) ∈ m}〉.
This notion can be extended to the set of argumentation frameworks correspond-
ing to a set of att-models: arg(M) = {arg(m)|m ∈M}.

We also need the following notion of projection:

Definition 5 (att-projection of models and formulae). Given a set A
of arguments, any interpretation m over LA can be projected on its att-part:
Projatt(m) = m ∩ {att(x, y)|x, y ∈ A}. This notion can be extended to the pro-
jection of a formula ϕ ∈ LA: Projatt(ϕ) = {Projatt(m)|m ∈Mod(ϕ)}.

Then, a formula ϕ representing argumentation frameworks can be associated
with these frameworks by combining these two mappings: arg(Projatt(ϕ)).

The other way around, at a shallow level, any F = 〈A,R〉 can be represented
by the formula over {att(x, y)|x, y ∈ A}∧

(x,y)∈R
att(x, y) ∧

∧
(x,y) �∈R

¬att(x, y)

but this translation does not take into account the semantics σ under which F
must be interpreted. One clearly needs to consider σ in the encoding. We propose
to do it as follows:

Definition 6 (σ-formula of F). Given an argumentation framework F =
〈A,R〉 and a semantics σ, the σ-formula of F is

fσ(F) =
∧

(x,y)∈R
att(x, y) ∧

∧
(x,y) �∈R

¬att(x, y) ∧ thσ(A)

where thσ(A) is a logical formula (the σ-theory of A) that encodes the seman-
tics σ.

Now, the question is how to define thσ(A) for some usual semantics. To do
so, we take advantage of the logical representation of σ-extensions as proposed
in [4]. Let us begin with the stable semantics. It has been proved in [4] that
the stable extensions of an argumentation framework F = 〈{a1, . . . , an}, R〉 are
exactly the models of the propositional formula:∧

ak∈A
(ak ⇔

∧
aj :(aj ,ak)∈R

¬aj)

A Translation-Based Approach for Revision of AFs 401

It is interesting to note that an argument ai is skeptically accepted by F =
〈A,R〉 if and only if every model of the previous formula contains ai:

|= [
∧

ak∈A
(ak ⇔

∧
aj :(aj ,ak)∈R

¬aj)⇒ ai]

or in a simpler way,

∀a1, . . . , an, [
∧

ak∈A
(ak ⇔

∧
aj :(aj ,ak)∈R

¬aj)⇒ ai] is valid.

In this encoding, it is assumed that the argumentation framework is known.
However, one can relax this assumption by taking advantage of the att(x, y)
variables:

acc(ai)⇔ ∀a1, . . . , an, [
∧

ak∈A
(ak ⇔

∧
aj∈A

(att(aj , ak)⇒ ¬aj))⇒ ai]

This formula encodes a way to compute the skeptically accepted arguments of
any argumentation framework built on A given the stable semantics (it proves
enough to condition the formula by the literals att(aj , ak) corresponding to the
attack relation of the given argumentation framework to recover the encoding
from [4]).

Altogether, we get:

thst(A) =
∧

ai∈A

(acc(ai)⇔ ∀a1, . . . , an, (
∧

ak∈A

(ak ⇔
∧

aj∈A

(att(aj, ak)⇒ ¬aj))⇒ ai))

It is well-known that a quantified Boolean formula (QBF) can be transformed
into a classical propositional formula through the elimination of quantifications.
We keep the notation of our encoding in QBF to keep reasonable the formula
size, but it does not prevent from using KM revision operators (Section 3.2).

Example 1. Let us illustrate these notions on F1, given on Fig.1.

a b c d

Fig. 1. The argumentation framework F1

402 S. Coste-Marquis et al.

The stable theory of the set of arguments A = {a, b, c, d} is thst(A) =
acc(a)⇔ ∀a, b, c, d, [[(a⇔ (att(a, a)⇒ ¬a) ∧ (att(b, a)⇒ ¬b))

∧(att(c, a)⇒ ¬c)) ∧ (att(d, a)⇒ ¬d))
∧(b⇔ (att(a, b)⇒ ¬a) ∧ (att(b, b)⇒ ¬b)

∧(att(c, b)⇒ ¬c) ∧ (att(d, b)⇒ ¬d))
∧(c⇔ (att(a, c)⇒ ¬a) ∧ (att(b, c)⇒ ¬b)

∧(att(c, c)⇒ ¬c) ∧ (att(d, c)⇒ ¬d))
∧(d⇔ (att(a, d)⇒ ¬a) ∧ (att(b, d)⇒ ¬b)

∧(att(c, d)⇒ ¬c) ∧ (att(d, d)⇒ ¬d))]⇒ a]
∧ acc(b)⇔ ∀a, b, c, d, [. . .]
∧ acc(c)⇔ ∀a, b, c, d, [. . .]
∧ acc(d)⇔ ∀a, b, c, d, [. . .]
So the stable formula of F1 is given by

thst(A) ∧
∧

(a,b)∈R
att(a, b) ∧

∧
(a,b) �∈R

¬att(a, b)

Propagating the values of att-variables allows to deduce the values of acc-variables
(acc(a) = acc(c) = true, and acc(b) = acc(d) = false), and so leads to the set of
skeptically accepted arguments {a, c}.

The complete-theory thco(A) of A can be defined in a similar way. First, let
us recall the encoding of the complete extensions given in [4]:∧

ak∈A
[(ak ⇒

∧
aj :(aj ,ak)∈R

¬aj) ∧ (ak ⇔
∧

aj :(aj ,ak)∈R
(

∨
al:(al,aj)∈R

al))]

Using a similar reasoning scheme, we get that:

thco(A) =
∧

ai∈A[acc(ai)⇔ [∀a1, . . . , an,∧
ak∈A[(ak ⇒

∧
aj∈A(att(aj , ak)⇒ ¬aj))

∧(ak ⇔
∧

aj∈A(att(aj , ak)⇒
∨

al∈A(att(al, aj)⇒ al)))]]⇒ ai]

3.2 Encoding Revision Operators with Logical Constraints

One can take advantage of the encodings presented in the previous section to
define revision operators for argumentation frameworks, via the use of classical
AGM operators. In particular, the KM revision operators ◦ defined for proposi-
tional logic [21] are suited to the language LA.

At a first glance, one can consider to revise fσ(F) by the revision formula
ϕ. However, this is not sufficient. Indeed, if the revision formula ϕ does not
correspond to any argumentation framework interpreted under the semantics σ
(for instance, when ϕ = acc(a)∧acc(b)∧att(a, b)), then the revised formula will
not correspond to any argumentation framework interpreted under σ. Indeed the
success postulate fσ(F) ◦ ϕ |= ϕ would force ϕ to be the case.

Such pathological scenarios must be avoided. A way to ensure it consists in
revising fσ(F) by ϕ ∧ thσ(A) since the latter formula is logically consistent

A Translation-Based Approach for Revision of AFs 403

precisely when there exists at least one argumentation framework interpreted
under σ which is compatible with ϕ.

Finally, the models of the revised formula fσ(F)◦(ϕ∧thσ(A)), projected onto
the att(x, y) variables, characterize the revised argumentation frameworks.

Definition 7 (Translation-based revision). Let ◦ be a KM revision operator.
For any semantics σ, any argumentation framework F = 〈A,R〉 and any formula
ϕ ∈ LA, the associated translation-based revision operator � is given by:

F � ϕ = arg(Projatt(fσ(F) ◦ (ϕ ∧ thσ(A))))

F, σ, ϕ F � ϕ

fσ(F) fσ(F) ◦ (ϕ ∧ thσ(A))

Encoding

◦

�

Decoding

Fig. 2. Schematic explanation of the revision process

The decoding process is performed by the functions arg and projatt defined
previously (Definition 4, Definition 5).

Let us instanciate this general definition of translation-based revision opera-
tors, using distances 3 between the interpretations over LA.

Definition 8 (Distance-based revision). Let d be a distance between inter-
pretations over LA. Given a formula ψ ∈ LA, the pre-order ≤ψ is defined by

ω ≤ψ ω′ if and only if d(ω,Mod(ψ)) ≤ d(ω′,Mod(ψ))

For any formulae ψ, α ∈ LA, the distance-based KM revision operator ◦d is
defined by

Mod(ψ ◦d α) = min(Mod(α),≤ψ)

Then, the distance-based AF revision operator �d is defined by

F �d ϕ = arg(Projatt(fσ(F) ◦d (ϕ ∧ thσ(A))))

3 We call a distance a function d such that (1) d(x, y) = 0 iff x = y; (2) d(x, y) =
d(y, x); (3) d(x, z) ≤ d(x, y) + d(y, z). In fact, we only need pseudo-distances: (3) is
not required. Such a pseudo-distance d can be extended to a “distance” between an
interpretation and a set of interpretations: d(ω,Ω) = minω′∈Ω d(ω, ω′).

404 S. Coste-Marquis et al.

Depending on the revision operator ◦ used, the concept of minimal change
in the argumentation framework can vary. A first option is to consider minimal
change on the arguments statuses more important than minimal change on the
attack relation.

To perform this kind of change, we can consider a weighted Dalal-like oper-
ator (see [14,21] for details about Dalal’s revision operator) which ensures min-
imal change on the acc variables. This kind of revision operator is a particular
distance-based revision operator:

Definition 9 (Arguments statuses minimal revision). Let A be a set of
arguments, let N = |A|2 + 1. The acceptance-weighted distance dacc between
interpretations is defined by4

dacc(I1, I2) = N ×
∑

a∈A(I1(acc(a))⊕ I2(acc(a)))
+

∑
a,b∈A(I1(att(a, b))⊕ I2(att(a, b)))

The arguments statuses minimal revision operator �accd is the distance-based re-
vision operator based on the distance dacc.

The weight on acc(x) variables is chosen in such a way that changing the
value of every att(x, y) variable is still cheaper than changing the value of a
single acc(x) variable.

Conversely, we can define a Dalal-like revision operator which requires min-
imal change on the attack relation. Here the weights are chosen to ensure that
changing the value of every acc(x) variable is cheaper than changing the value
of a single att(x, y) variable:

Definition 10 (Attacks minimal revision). Let A be a set of arguments,
let N = |A| + 1. The attacks-weighted distance datt between interpretations is
defined by

datt(I1, I2) =
∑

a∈A(I1(acc(a))⊕ I2(acc(a)))
+N ×

∑
a,b∈A(I1(att(a, b))⊕ I2(att(a, b)))

The attacks minimal revision operator �attd is the distance-based revision operator
based on the distance datt.

Interestingly, the addition of new arguments is allowed.

Definition 11 (Open world revision). Given F = 〈A,R〉 an AF, B a non-
empty set of arguments such that A ∩B = ∅, ϕ ∈ LA∪B a formula and ◦ a KM
revision operator. The associated open world revision operator �B is defined as:

F �B ϕ = arg(Projatt(fσ(F) ◦ (ϕ ∧ thσ(A ∪B))))

4 The exclusive or ⊕ is the binary operation on Boolean variables defined by x⊕ y ≡
(x ∨ y) ∧ (¬x ∨ ¬y).

A Translation-Based Approach for Revision of AFs 405

Here, new arguments and new attacks between them or between new and old
arguments can be added.

More generally, one can constrain the revision process: some integrity con-
straints can be required for a particular application (because a given attack
is known to hold for sure or because a given argument has to be skeptically
accepted, and so cannot change during the revision):

Definition 12 (Constrained revision). Given F = 〈A,R〉 an AF, ϕ, μ ∈ LA

formulae and ◦ a KM revision operator. The associated μ-constrained revision
operator is

F �μ ϕ = arg(Projatt(fσ(F) ◦ (ϕ ∧ thσ(A) ∧ μ)))

Here are some examples of integrity constraints μ which can prove useful:

–
∧

a∈A ¬att(a, a) is useful when self-attacking arguments are not allowed [13];
–

∧
(a,b)∈R att(a, b)∧

∧
(a,b) �∈R ¬att(a, b) is useful when attacks between former

arguments must be preserved but attacks involving new arguments can be
added [11].

Of course, the KM revision operator used to define �B or �μ can take advan-
tage of a weighted distance to ensure minimal change of arguments statuses or
minimal change of the attack relation.

Depending on the situation, it can also be useful to consider a single argu-
mentation framework as result of the revision process. This amounts to selecting
one model of the projected formula. Several criteria can be used to do so; for
space reasons, we will not detail them is this paper. Let us now illustrate two of
the previously defined revision operators.

Example 2. Let us revise the argumentation framework F1, given on Fig.1, by
the revision formula ϕ = acc(a)∧¬att(a, b), meaning that we want to change F1

to have a skeptically accepted without a attacking b.
F1’s single stable extension is {a, c}, so a is already skeptically accepted, but ϕ

is not satisfied because a attacks b. All possible results of attack minimal revision
and argument minimal revision are given respectively on Fig.3(a) and Fig.3(b).
F2’s stable extensions are {{a, c}{a, b, d}}, so a is the only skeptically accepted

a b c d

(a) F2: Attack minimal revision of F1

a b c d

(b) F3: Arguments statuses mini-
mal revision of F1

Fig. 3. Results of F1 revisions

argument. With respect to acceptance statuses, the difference between F1 and F2

is 1, and there is also 1 attack different between them ((a, b) is removed).

406 S. Coste-Marquis et al.

The single stable extension of F3 is {a, c}, so there is no difference between
F1 and F3 with respect to acceptance statuses. The difference only concerns the
attack relation ((a, b) is removed and (d, b) is added).

4 Rationality Postulates in the acc Case

In this section, we focus on constraints expressing an information about skepti-
cally accepted arguments.

Scσ(F) correspond to the skeptical consequences of the argumentation frame-
work F with respect to the semantics σ. Formally, it is defined as {

⋂
ε∈Extσ(F) ε}.

We generalize this notion to Scσ(S) =
⋃

F∈S Scσ(F) where S is a set of argu-
mentation frameworks. We call this set the skeptical consequences of S.

The satisfaction of acc-formulae can be defined with respect to a set of argu-
ments. Let ε ⊆ A and ϕ an acc-formula. The concept of satisfaction of ϕ by ε,
noted ε|∼ϕ, is defined inductively as follows:

– If ϕ = acc(a) with a ∈ A, then ε|∼ϕ iff a ∈ ε,
– If ϕ = (ϕ1 ∧ ϕ2), ε|∼ϕ iff ε|∼ϕ1 and ε|∼ϕ2,
– If ϕ = (ϕ1 ∨ ϕ2), ε|∼ϕ iff ε|∼ϕ1 or ε|∼ϕ2,
– If ϕ = ¬ψ, ε|∼ϕ iff ε|�∼ψ.

Then for any argumentation framework F , any set S of argumentation frame-
works on A, and any semantics σ, we say that:

– ϕ is skeptically accepted w.r.t. F , noted F |∼σϕ, if ∀ε ∈ Scσ(F), ε|∼ϕ.
– ϕ is rejected w.r.t. F in the remaining case.
– ϕ is skeptically accepted w.r.t. S , noted S |∼σϕ, if ∀ε ∈ Scσ(S), ε|∼ϕ.
– ϕ is rejected w.r.t. S in the remaining case.

Each ε in the set S(ϕ) = {ε ⊆ A|ε|∼ϕ} is a possible set of skeptically accepted
arguments with respect to a framework which accepts the formula ϕ.
A formula ϕ is said to be acc-consistent if and only if S(ϕ) �= ∅.
Two formulae ϕ and ψ are said to be acc-equivalent, noted ϕ ≡acc ψ, if and only
if S(ϕ) = S(ψ).

Let us now point out an adaptation of KM’s postulates:

(AS1) Scσ(F � ϕ) ⊆ S(ϕ)
(AS2) If Scσ(F) ∩ S(ϕ) �= ∅, then Scσ(F � ϕ) = Scσ(F) ∩ S(ϕ)
(AS3) If ϕ is acc-consistent, then Scσ(F � ϕ) �= ∅
(AS4) If ϕ ≡acc ψ, then Scσ(F � ϕ) = Scσ(F � ψ)
(AS5) Scσ(F � ϕ) ∩ S(ψ) ⊆ Scσ(F � (ϕ ∧ ψ))
(AS6) If Scσ(F � ϕ) ∩ S(ψ) �= ∅, then Scσ(F � (ϕ ∧ ψ)) ⊆ Scσ(F � ϕ) ∩ S(ψ)

The first postulate is the success postulate: the result of the revision must
satisfy the formula ϕ. (AS2) requires the skeptical consequences to stay the
same ones if the input framework already satisfies ϕ. The third postulate states
that revising a framework by a consistent formula cannot lead to an inconsistent

A Translation-Based Approach for Revision of AFs 407

result (such an inconsistent result is identified by an empty set of skeptical con-
sequences). (AS4) states that revising by equivalent formulae leads to the same
result. The last two postulates constrain the behavior of the revision operator
when revising by a conjunction of formulae.

Similar postulates have been proposed in [13]. The main difference concerns
the semantics of revision formulae. In [13], argumentation frameworks are revised
by propositional formulae the satisfaction of which is defined with respect to the
extensions. For instance, a ∨ b means “a or b must be in every extension” (and
so, this formula is satisfied by a framework the extensions of which are E =
{{a}, {b}}). Whereas here, formulae deal with the skeptical consequences of the
framework, i.e. the intersection of the extensions. So the formula acc(a)∨ acc(b)
means “a must be in every extension or b must be in every extension”, and is
not satisfied by the set of extensions E.
More generally, the difference between our postulates and those expressed in
[13] is the object of the constraint they give: in [13], the postulates give some
constraint on the expected extensions of the output of the revision process, while
the current postulates concern the set of skeptically accepted arguments.

The following proposition explains how to define a rational revision operator
from any pseudo-distance between sets of arguments.

Proposition 1 Given a pseudo-distance d between sets of arguments and an
argumentation framework F , ≤d

F denotes the total pre-order between sets of ar-
guments defined by: ε1 ≤d

F ε2 iff d(ε1, Scσ(F)) ≤ d(ε2, Scσ(F)).
The pseudo-distance based revision operator �d which satisfies

Scσ(F �d ϕ) = min(S(ϕ),≤d
F)

satisfies the postulates (AS1) - (AS6).

Proof. (AS1) is satisfied from the definition of the operator.

If Scσ(F) ∩ S(ϕ) �= ∅, then obviously ∀ε ∈ Scσ(F) ∩ S(ϕ), ε ∈ Scσ(F), and
d(ε,Scσ(F)) = 0. Any ε′ which is not in Scσ(F) ∩ S(ϕ) either does not satisfy
ϕ (and so does not belong to S(ϕ)), or does not belong to Scσ(F) (and so
d(ε′, Scσ(F)) > 0). So min(S(ϕ),≤d

F) = Scσ(F) ∩ S(ϕ), which leads to (AS2).
If ϕ is acc-consistent, S(ϕ) �= ∅, so min(S(ϕ),≤d

F) �= ∅. So (AS3) holds.
ϕ ≡acc ϕ can be rewritten S(ϕ) = S(ψ), which leads to min(S(ϕ),≤d

F) =
min(S(ψ),≤d

F). It is enough to prove (AS4).
If Scσ(F � ϕ) ∩ S(ψ) = ∅, (AS5)-(AS6) are satisfied. We suppose now that

Scσ(F � ϕ) ∩ S(ψ) �= ∅.
We first prove the inclusion Scσ(F �ϕ)∩S(ψ) ⊆ Scσ(F �ϕ∧ψ). By reductio ad

absurdum, suppose that ∃ε ∈ Scσ(F � ϕ) ∩ S(ϕ ∧ ψ) such that
ε �∈ Scσ(F �ϕ∧ψ), also written as ε ∈ min(S(ϕ),≤d

F)∩S(ψ) and ε �∈ min(S(ϕ∧
ψ),≤d

F). From the first part, we deduce ε ∈ S(ϕ ∧ ψ). However, ε is not a mini-
mal element in this set with respect to ≤d

F . Consequently, ∃ε′ ∈ S(ϕ ∧ ψ) such
that ε′ <d

F ε. From the definition of S(ϕ ∧ ψ), ε′ ∈ S(ϕ) holds. This contradicts
ε ∈ min(S(ϕ),≤d

F). So Scσ(F � ϕ) ∩ S(ϕ ∧ ψ) ⊆ Scσ(F � ϕ ∧ ψ), (AS5) holds.

408 S. Coste-Marquis et al.

If Scσ(F � ϕ) ∩ S(ψ) �= ∅, let us suppose ∃ε ∈ Scσ(F � ϕ ∧ ψ)
such that ε �∈ Scσ(F � ϕ) ∩ S(ψ). ε ∈ min(S(ϕ ∧ ψ),≤d

F)⇒ ε ∈ S(ϕ ∧ ψ)⇒ ε ∈
S(ψ) holds. From this and ε �∈ Scσ(F � ϕ) ∩ S(ψ), we deduce ε �∈ Scσ(F � ϕ).
Since we suppose that the intersection is non-empty, ∃ε′ ∈ Scσ(F � ϕ) ∩ S(ψ).
In particular, ε′ satisfies ϕ and ψ, i.e. ε′ ∈ S(ϕ) ∩ S(ψ) = S(ϕ ∧ ψ). From
ε ∈ Scσ(F � ϕ ∧ ψ) = min(S(ϕ ∧ ψ),≤d

F) and ≤d
F is a total relation, ε ≤d

F ε′.
As ε′ ∈ Scσ(F � ϕ) = min(S(ϕ),≤d

F), ε ∈ min(S(ϕ),≤d
F). It is a contradiction.

So Scσ(F � ϕ ∧ ψ) ⊆ Scσ(F � ϕ) ∩ S(ψ) holds.
The previous proposition gives a sufficient condition to prove that a pseudo-

distance based revision operator satisfies the rationality postulates. From this
proposition, we prove that the arguments statuses minimal revision operator
(restricted to the acc-case) satisfies the postulates, through a reduction of this
operator to a pseudo-distance based revision operator as described in Prop. 1.

Proposition 2 The arguments statuses minimal revision operator satisfies the
postulates (AS1)-(AS6).

Proof. Let us show that the arguments statuses minimal revision operator is a
pseudo-distance based revision operator. We define Projacc as the counterpart
of Projatt to project the formulae on their acc-part.
F �accD ϕ = arg(Projatt(fσ(F) ◦accD (ϕ ∧ thσ(A)))) leads to
Scσ(F �accD ϕ) = Projacc(fσ(F) ◦accD (ϕ ∧ thσ(A)))

= Projacc(min(Mod(ϕ ∧ thσ(A)),≤dacc
H

F))
Let us prove that projecting the minimal models of ϕ ∧ thσ(A) leads to the
minimal sets of skeptically accepted arguments. The models of ϕ ∧ thσ(A) are
the propositional representations of argumentation frameworks which satisfy ϕ,
so it is obvious that the projection of the models on the acc variables allows to
obtain a subset of S(ϕ). Let us show that these sets of arguments are minimal
with respect to ≤d

F :

Given m ∈ min(Mod(ϕ ∧ thσ(A)),≤dacc
H

F), we have daccH (m,Mod(fσ(F)) is mini-
mal. fσ(F) has a single model mF , so daccH (m,mF) is minimal. In other words,

(|A|2 + 1)
∑
a∈A

(m(acc(a))⊕mF (acc(a))) +
∑

a,b∈A
(m(att(a, b))⊕mF (att(a, b)))

is minimal. Let us suppose that the acc part of the distance is not minimal, i.e.
there exists m′ such that

(|A|2+1)
∑
a∈A

(m′(acc(a))⊕mF (acc(a))) < (|A|2+1)
∑
a∈A

(m(acc(a))⊕mF (acc(a)))

In the extreme case when
∑

a,b∈A(m(att(a, b)) ⊕ mF (att(a, b))) = 0 and∑
a,b∈A(m

′(att(a, b))⊕mF (att(a, b))) = |A|2,

(|A|2 + 1)
∑

a∈A(m
′(acc(a))⊕mF (acc(a)))

+
∑

a,b∈A(m
′(att(a, b))⊕mF (att(a, b)))

< (|A|2 + 1)
∑

a∈A(m(acc(a))⊕mF (acc(a)))
+

∑
a,b∈A(m(att(a, b))⊕mF (att(a, b)))

A Translation-Based Approach for Revision of AFs 409

is ensured by the weight |A|2 + 1 on the acc part. By reductio ad absurdum, we
proved that the acc part of daccH (m,mF) is minimal, i.e., dH(Projacc(m), Scσ(F))
is minimal, with dH the Hamming distance [20]. It implies

Scσ(F �accD ϕ) = Projacc(min(Mod(ϕ ∧ thσ(A)),≤dacc
F

F))

= min(S(ϕ),≤dH

F)

From Prop. 1, �accD satisfies the postulates (AS1)-(AS6).

5 Conclusion

In this paper, we studied a way to benefit from the well-known logical revision
operators from Katsuno and Mendelzon’s work ◦ to define revision operators �
for abstract argumentation frameworks.

This approach is particularly interesting due to the ability of our revision
operators to enforce both structural and acceptability constraints. Depending on
the underlying operator ◦, the operator � ensures minimal change either on the
acceptance statuses, or on the attack relation. Moreover, these operators can
encode some change operators defined in some recent related works [11].

We have also stated some rationality postulates inspired by the classical AGM
framework, and proved that under the constraint that revision formulae only deal
with acceptability, a revision operator � based on an AGM operator ◦ satisfies
our postulates.

As a future work, several possibilities are opened. First, this paper only
presents the logical characterization of skeptical acceptance under the stable
and complete semantics. It would be interesting to define a similar characteri-
zation of skeptical acceptance under other semantics, this can be done thanks
to the encoding method defined in [4,22,23,5]. Another interesting result would
be to define the credulous σ-theory for these semantics σ. We are also inter-
ested in enforcing the result of the revision to belong to a particular subclass of
argumentation frameworks, as the acyclic argumentation frameworks.

Another point for further studies is the axiomatic characterization of revision
operators. We proved that arguments statuses minimal revision satisfies some ra-
tionality postulates in the case of acceptability revision constraints, but it would
be interesting to know if some other kinds of operators satisfy these postulates,
and to know if some other kinds of revision constraints can be characterized.
At last, we plan to encode our revision operators into a SAT-based software. The
propositional setting of our operators is particularly well-suited to SAT solvers,
so this approach is very promising from a computational point of view.

Acknowledgments. We would like to thank the reviewers for their helpful
comments and proposals. This work benefited from the support of the project
AMANDE ANR-13-BS02-0004 of the French National Research Agency (ANR).

410 S. Coste-Marquis et al.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic 50,
510–530 (1985)

2. Baumann, R.: What does it take to enforce an argument? minimal change in ab-
stract argumentation. In: Proceedings of the European Conference on Artificial
Intelligence (ECAI 2012), pp. 127–132 (2012)

3. Baumann, R., Brewka, G.: Expanding argumentation frameworks: Enforcing and
monotonicity results. In: Proceedings of the Third International Conference on
Computational Models of Argument (COMMA 2010), pp. 75–186 (2010)

4. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In: Pro-
ceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR
2004), pp. 59–64 (2004)

5. Besnard, P., Doutre, S., Herzig, A.: Encoding Argument Graphs in Logic. In: Lau-
rent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part
II. CCIS, vol. 443, pp. 345–354. Springer, Heidelberg (2014)

6. Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Change in
argumentation systems: Exploring the interest of removing an argument. In: Ben-
ferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 275–288. Springer,
Heidelberg (2011)

7. Bisquert, P., Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.-C.: Enforcement
in argumentation is a kind of update. In: Liu, W., Subrahmanian, V.S., Wijsen, J.
(eds.) SUM 2013. LNCS, vol. 8078, pp. 30–43. Springer, Heidelberg (2013)

8. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with single
extensions: Abstraction principles and the grounded extension. In: Sossai, C.,
Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 107–118. Springer,
Heidelberg (2009)

9. Boella, G., Kaci, S., van der Torre, L.: Dynamics in argumentation with sin-
gle extensions: attack refinement and the grounded extension. In: Proceedings of
the International Conference on Autonomous Agents and Multiagents Systems
(AAMAS 2009), pp. 1213–1214 (2009)

10. Booth, R., Kaci, S., Rienstra, T., van der Torre, L.: A logical theory about dynamics
in abstract argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM
2013. LNCS, vol. 8078, pp. 148–161. Springer, Heidelberg (2013)

11. Cayrol, C., de Saint-Cyr, F.D., Lagasquie-Schiex, M.C.: Change in abstract ar-
gumentation frameworks: Adding an argument. Journal of Artificial Intelligence
Research 38, 49–84 (2010)

12. Cojan, J., Lieber, J.: Belief revision-based case-based reasoning. In: Richard, G.
(ed.) ECAI 2012 Workshop Similarity and Analogy-Based Methods in AI, Mont-
pellier, France, pp. 33–39 (2012)

13. Coste-Marquis, S., Konieczny, S., Mailly, J.G., Marquis, P.: On the revision of argu-
mentation systems: Minimal change of arguments statuses. In: 14th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2014),
Vienna, July 2014 (to appear)

14. Dalal, M.: Investigations into a theory of knowledge base revision: Preliminary
report. In: Proceedings of the Seventh National Conference on Artificial Intelligence
(AAAI 1988), pp. 475–479 (1988)

15. Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract ar-
gumentation. In: Proceedings of the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2014), pp. 62–71 (2014)

A Translation-Based Approach for Revision of AFs 411

16. Doutre, S., Perrussel, L.: On Enforcing a Constraint in Argumentation. In: 11th
European Workshop on Multi-Agent Systems, EUMAS 2013, Toulouse (2013)

17. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming, and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

18. Gabbay, D., Rodrigues, O., Russo, A.: Revision by translation. In: Proceedings of
the Seventh International Conference on Information Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU 1998). Information, Uncer-
tainty and Fusion, pp. 3–32 (1998)

19. Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17,
157–170 (1988)

20. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical
Journal 29(2), 147–160 (1950)

21. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52, 263–294 (1991)

22. Nieves, J., Osorio, M., Corts, U.: Inferring preferred extensions by minimal mod-
els. In: Workshop on Argumentation and Non-Monotonic Reasoning, Workshop
at Logic Programming and Non-Monotonic Reasonning 2007 (LPNMR 2007),
pp. 114–124 (2007)

23. Nofal, S., Atkinson, K., Dunne, P.: Algorithms for decision problems in argument
systems under preferred semantics. Artificial Intelligence 207, 23–51 (2014)

Preserving Strong Equivalence while Forgetting

Matthias Knorr and José Julio Alferes

CENTRIA & Departamento de Informática, Faculdade Ciências e Tecnologia,
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. A variety of proposals for forgetting in logic programs under different
semantics have emerged that satisfy differing sets of properties considered de-
sirable. Despite the achieved progress in devising approaches that capture an in-
creasing number of these properties, the idea that the result of forgetting should
preserve the meaning of the initial program for the remaining, non-forgotten,
atoms, has not yet been captured. In particular, the existing proposals may not
preserve dependency relations between such atoms that are given by the struc-
ture of the program. In logic programs, these relations are captured by strong
equivalence, but, preserving strong equivalence of two different programs while
forgetting does not suffice. Rather, strong equivalence relativized to the remain-
ing atoms should be preserved between the original program and the one that
results from forgetting. In this paper, we overcome this deficiency by formaliz-
ing the property that captures this maintenance of relations while forgetting, and
at the same time a general semantic definition for such a forgetting for arbitrary
logic programs. Then, we study forgetting for normal programs under the well-
founded semantics, and for programs with double negation under the answer set
semantics. In both cases, we focus on efficient syntax-based algorithms that only
manipulate the rules in which changes are effectively necessary.

1 Introduction

Removing or hiding information that is no longer needed in a knowledge base, also
known as forgetting or variable elimination [12], is important in Knowledge Represen-
tation and Reasoning (KRR). This is witnessed by the recent amount of work developed
for different logical formalisms [20,9,16,13,21,2] and for Logic Programming (LP) in
particular [6,15,14,1], and has been applied, e.g., in cognitive robotics, ontologies, and
resolving conflicts.

For LP, these approaches are commonly introduced together with a number of desir-
able properties that justify design rationales and allow comparisons between different
approaches. Yet, the property that the result of forgetting should preserve all the se-
mantic dependencies contained in the original program, for all but the atom(s) to be
forgotten, has not been considered.

Example 1. Consider a part of a taxonomy including professors, university staff, and
persons with properties assigned to them, represented in rules:1

person(X)← ustaff(X) ustaff(X)← professor(X)

1 As usual, rules with variables stand for the set of ground rules obtained by replacing the vari-
ables by constants in all possible ways.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 412–425, 2014.
c© Springer International Publishing Switzerland 2014

Preserving Strong Equivalence while Forgetting 413

Consider that professor(mary) is part of the program. Then, clearly, person(mary)
is derivable. Now suppose that we want to forget about the class university staff, e.g.,
because there are no longer specific properties attached to it. In this case, it should
still be derivable that every professor is also a person, i.e., in the result of forgetting
(all ground instances of) ustaff(X) from this program, person(mary) should still be
derivable. This is indeed the case for most existing approaches of forgetting.

Now consider that university staff that are not professors must use the punch clock,
and staff that do not have to use the punch clock have flexible schedules:

flexible(X)← ustaff(X), not punchClock(X)

punchClock(X)← ustaff(X), not professor(X)

Suppose that professor(mary), ustaff(peter) and person(john) is the only infor-
mation about these three individuals contained in the program. Then, we expect to de-
rive that flexible(mary) and punchClock(peter) hold. Now suppose that we want
to forget about punchClock(X) from the program, then the derivation that professors
have flexible schedules should not be lost. If we learn later that john is a professor, then
we would expect to be able to derive that he also has a flexible schedule, while peter
still does not. However, none of the existing proposals for forgetting in logic programs
satisfies the desired behavior (see related work in Section 6).

Strong equivalence [10] has been introduced in LP to semantically capture the de-
pendency relations between atoms expressed in logic programs, and has been used, e.g.,
in program optimization. Two programs P and Q are strongly equivalent if, for all pro-
grams R, P ∪ R and Q ∪ R are equivalent, i.e., they have the same models. However,
preserving strong equivalence between programs to which the same forgetting is ap-
plied is not sufficient as it does not say much about how similar the output is to the
original program [6,1]. Neither would considering strong equivalence between a pro-
gram and its result of forgetting work, simply because, in general, this does not hold
for all programs R: consider P with two rules a ← not b and b ← not c, then adding
just c ← to P allows us to derive a, but adding c ← and b ← does not, and there is no
program Q over a and c (and without b) that allows us to obtain the same result.

Instead, strong equivalence restricted to programs R over the remaining, non-for-
gotten, atoms should be preserved between the original program and the one that results
from forgetting. Relativized strong equivalence (RSE) [5,17] was introduced to relax
strong equivalence when certain internal atoms are no longer allowed to be part of R
and thus captures our idea, yet no related notion of forgetting exists.

Most approaches for forgetting in LP also provide methods on how to obtain the
result of forgetting, and often these methods rely on computing models and then deter-
mining a representation of the result of forgetting. Thus, the complexity of computing
such a result usually corresponds to that of computing models in the considered class of
logic programs, but additionally, the resulting program may be exponential in the size
of the original program (see [14], and the syntactic transformation in [6]). We argue
that computing the result of forgetting should in general not need to change any rules
other than those containing the atoms to be forgotten. Therefore, we focus on syntax-
based algorithms that manipulate precisely these rules without the need to compute any
models. As argued in [6], such kind of algorithms are also of benefit for applications.

414 M. Knorr and J.J. Alferes

In this paper, we introduce a new property that formalizes the idea of preserving
relativized strong equivalence while forgetting in LP and a new general definition of
forgetting for logic programs that, besides our new property, also satisfies a number of
other desired properties. We then study concrete cases of this new notion under the two
most-widely used semantics for LP. Namely, we consider forgetting from normal logic
programs under the well-founded semantics [7], and forgetting from programs with
double negation under the answer set semantics [8]. It turns out, that such forgetting is
not always possible in the latter case, so we subsequently study adequate restrictions
under which our approach can still be applied. The construction of the resulting pro-
gram, in both cases, is then achieved by applying syntactic transformations which do
not require the computation of models. We can show that computing the resulting pro-
gram is exponential in the number of rules that contain atoms to be forgotten and linear
in the remaining. We argue that on average this is at least competitive when compared
to computing models in P or NP (over the entire program), and certainly better than an
algorithm that, in addition to computing models, creates a program exponential in the
size of the entire given program.

2 Logic Programs

We start by recalling notions and notation of LPs. More precisely, we consider logic
programs with double negation, a subset of extended logic programs [11].

A logic program P , is a finite set of rules r of the form

a← b1, ..., bl, not c1, ..., not cm, not not d1, ..., not not dn

where a and all bh, ci, and dj , for 1 ≤ h ≤ l, 1 ≤ i ≤ m, and 1 ≤ j ≤ n, are
propositional atoms over a signature Σ. Alternatively, a may be the special logical
constant ⊥ representing an empty head. Given such a rule r, we distinguish the head
of r as H (r) = a, and the body of r, B(r) = B+(r) ∪ notB−(r) ∪ not notB−−(r),
where B+(r) = {b1, . . . , bl}, B−(r) = {c1, . . . , cm}, B−−(r) = {d1, . . . , dn}, and,
for a set A of atoms, notA = {not q: q ∈ A} and not notA = {not not q: q ∈ A}.

Logic programs of this general form include a number of special kinds of rules: if
m = n = 0, then we call r positive; if l = m = n = 0, then r is a fact; if a = ⊥, then r
is a constraint; and if a �= ⊥ and n = 0, we say r is normal. The classes of positive and
normal programs are defined as a finite set of positive and normal rules, respectively.

We now recall the answer set semantics [8] by first defining the least model of pos-
itive programs and then relying on a generalization of the reduct to nested programs, a
very general class of programs which admits double negation in the body [11].

Given a logic programP , BP is the set of all atoms appearing in P . An interpretation
for P is a set of atoms I ∈ BP , and is meant to represent all the atoms considered
true. A positive rule is satisfied in interpretation I if B+(r) ⊆ I implies a ∈ I . An
interpretation I is a model of a positive program P if I satisfies all rules r ∈ P , and I
is the least model of P if there is no model I ′ of P such that I ′ ⊂ I . The reduct of P
w.r.t. an interpretation I is defined as P I = {H (r) ← B+(r) : r ∈ P,B−(r) ∩ I =
∅,B−−(r) ⊆ I}. Then, an interpretation I is an answer set of P iff I is the least model
of P I . A program is called consistent if it has (at least) one answer set, and the set

Preserving Strong Equivalence while Forgetting 415

of all answer sets of P is denoted by Mas(P). Determining whether a (propositional)
program has an answer set is NP-complete [4].2

We also consider the well-founded semantics [7] for normal programs. A 3-valued
interpretation I of a program P is defined as I = I+ ∪ not I− with I+ ∪ I− ⊆
BP and I+ ∩ I− = ∅; I+ and I− contain the atoms that are true and false in I ,
respectively; an atom p appearing neither in I+ nor in I− is undefined, and so is not p.
The computation of the well-founded model requires a consequence operator TP for
three-valued interpretations that derives true information. For a normal program P and
a three-valued interpretation I for P , we define TP (I) = {H (r) : r ∈ P,B(r) ⊆ I}.
The notion of unfounded set complements that by deriving false information. For a
normal program P and a three-valued interpretation I for P , we say that U ⊆ BP is an
unfounded set (of P) w.r.t. I if each atom a ∈ U satisfies the following condition: for
each rule r ∈ P with H (r) = a at least one of the following holds: (Ui) not bh ∈ I for
some bh ∈ B+(r), or ci ∈ I for some ci ∈ B−(r); (Uii) bh ∈ U for some bh ∈ B+(r).
The greatest unfounded set UP (I) (ofP) w.r.t. I always exists and leads to the definition
of operator WP (I), by setting WP (I) = TP (I) ∪ notUP (I). This operator WP is
monotonic, can be iterated by WP ↑ 0 = ∅, WP ↑ (n + 1) = WP (WP ↑ n) for
all n, and its least fixed point, which exactly corresponds to the well-founded model
Mwf (P), is obtained for some finite n for propositional normal programs as considered
here. Determining Mwf (P) of a (propositional) normal program is P-complete [4].

Finally, given a set of atoms V with V ⊆ Σ, two programs P1 and P2 are strongly
equivalent relative to V under semantics S, denoted P1 ≡V

S P2, iff MS(P1 ∪ R) =
MS(P2 ∪ R) for all programs R over signature V . This notion is generalized from
answer sets [17,5] to arbitrary semantics S and captures as special cases that P1 and
P2 are equivalent and strongly equivalent, denoted P1 ≡S P2 and P1 ≡s

S P2, by
considering V = ∅ and V = Σ, respectively.

3 Forgetting with Strong Persistence

In previous work [6,18,15,14,1], a number of desirable properties for forgetting in logic
programs has been investigated under both answer set and well-founded semantics.
Before we introduce our new property, we generalize several properties presented in
[14] to arbitrary classes of logic programs and arbitrary semantics.

For that purpose, we define that, given interpretation I under semantics S and a set
of atoms V , I‖V represents the part of I without elements from V . E.g., for the answer
set semantics, I‖V represents I \V and for the well-founded semantics I \ (V ∪not V).
For sets of interpretations I, we also define I‖V = {I‖V : I ∈ I}.

Now, let C be a class of logic programs over a signature Σ, P and P ′ programs in C,
S a semantics for C, V ⊆ BP , and f(P, V) abstractly denote a program resulting from
forgetting about V from P . Note that, in general f(P, V) does not determine a syntac-
tically unique program but rather one representative of a class of (strongly) equivalent
programs (depending on the considered notion of forgetting, e.g., in most notions, a
result {q ←} would also represent {q ←; q ← q}). Some properties about f(P, V) are:

2 More precisely, this result coincides with the one first established for normal programs in [4].

416 M. Knorr and J.J. Alferes

(E) Existence w.r.t. C: if P is in C, then f(P, V) is expressible in C.
(IR) Irrelevance: f(P, V) ≡s

S P ′ for some P ′ that does not contain any v ∈ V
(SE) Strong Equivalence: If P ≡s

S P ′, then f(P, V) ≡s
S f(P ′, V).

(CP) Consequence Persistence: MS(f(P, V)) = MS(P)‖V .

There are three further properties presented in [14], but it is shown that two of them
conflict with the others in the case of answer set semantics. Moreover, all three require
an additional entailment relation over logic programs, defined over HT logic for answer
set semantics in [14], which is non-standard since entailment in LP is usually considered
only for (sets of) atoms. Since the choice of this entailment relation for each semantics
affects whether these properties hold or not, we leave such a study for future work.

As motivated in the introduction, none of the existing definitions of forgetting en-
sures that the result of forgetting really semantically resembles the original program if
we ignore the atom(s) to be forgotten. This is why we introduce a new property that can
be considered a generalization of (CP), i.e., consequence persistence but under (rela-
tivized) strong equivalence, hence the name strong persistence.

(SP) Strong Persistence: MS(f(P, V) ∪R) = MS(P ∪R)‖V for all programs R over
signature Σ \ V .

The definition of (SP) strongly resembles that of relativized strong equivalence. The
only essential technical difference is that we have to omit the elements in V from the
models of P ∪R. This also clarifies that, even though both notions are strongly related,
they are not identical nor is one a special case of the other.

Given that none of the existing approaches on forgetting for logic programs satisfy
(SP), we introduce a new general definition of forgetting in LP.

Definition 1. Let C be a class of logic programs, and S a semantics for C. A result of
strong S-forgetting about V ∈ BP from P ∈ C, denoted FS(P, V), is a program s.t.

(1) all v ∈ V do not appear in FS(P, V), and
(2) MS(FS(P, V) ∪R) = MS(P ∪R)‖V for all programs R over signature Σ \ V .

Due to its generality, this notion of forgetting naturally satisfies (SP) for any class
of programs and any semantics, but also several other of the previously introduced
properties, namely (IR), (SE), and (CP).

Proposition 1. Let C be a class of logic programs, and S a semantics for C. Then strong
S-forgetting satisfies (IR), (SE), (CP), and (SP).

Whether our definition of forgetting also satisfies (E) depends on the concrete class
of programs and semantics and, in the following sections, we answer this question for
the well-founded semantics of normal programs, and the answer set semantics of pro-
grams with double negation.

4 Strong WF-Forgetting for Normal Programs

We first consider strong wf-forgetting, in which the considered class of logic programs is
normal programs and the semantics the well-founded semantics. We start by providing

Preserving Strong Equivalence while Forgetting 417

an algorithm (Alg. 1) that computes a result that satisfies Def. 1 for the simpler case of
forgetting a single atom p from a normal program P , denoted Fwf (P, p). Here and in
the following, we abuse notation, and represent the singleton set {p} simply by p.

Before we discuss Alg. 1, we need to introduce one additional notion, namely that
of a wf-dual w.r.t. a program P and an atom p, that is useful when substituting not p in
rules in P while forgetting about p from P . For that, given a literal l, the complementary
literal, l̄, is defined as p̄ = not p and not p = p.

Definition 2. Let P be a normal program, p ∈ BP , and R all the n rules in P of the
form p ← lj1, . . . , ljmj where n ≥ 1, 1 ≤ j ≤ n, mj ≥ 1 for all j. The wf-dual
w.r.t. P and p, denoted Dwf (P, p), is the set of all possible sets {l̄1k1 , . . . , l̄nkn} with
1 ≤ k1 ≤ m1, . . . , 1 ≤ kn ≤ mn.

The wf-dual w.r.t. P and p can be understood as a set of conjunctions that, building
on the rules in P with head p and non-empty body, can be used to replace not p, but
preserve its truth value. Consider P containing two rules p ← s and p ← not q, not r.
Then Dwf(P, p) = {{not s, q}, {not s, r}} and, e.g., not p is true if one of the two
conjuncts is true, false if both conjuncts are false, and undefined otherwise. This is
what we apply in Alg. 1 whose details we explain next.

First, P ′ is initialized with P from which all rules whose head appears in the (posi-
tive) body are removed right away (line 1). This is known as elimination of tautologies
TAUT [3]. Then, new rules are introduced by substituting occurrences of p in the bod-
ies (of rules r) with the bodies of rules r1 whose head is p, in a way similar to wGPPE
[3] (lines 3-12). This includes a special case if not p appears in the body of r1 (lines
5-7). I.e., with such a rule alone, p would be undefined, which is why not p is replaced
with the negation of the rule head of r. Subsequently, all rules with p in the body can
be removed (line 13). Next, new rules are introduced in which all not p in rule bod-
ies (apart from those with rule head p – line 14 – since those will be eliminated at the
end) are substituted by the wf-duals (lines 14-28), unless one of the two special cases
applies. Namely, either there is no rule with head p in which case not p can simply be
omitted in such a rule body (lines 15-16) or there is a fact for p, in which case none of
the rules with not p is considered any further for substitution (line 17). The application
of the wf-duals again includes a special case to handle potential undefinedness due to
the presence of H (r) or p in the wf-dual (lines 20-22). Finally, rules containing p (in
the head) or not p in the body can be removed (line 29).

Example 2. Consider the following normal program P to illustrate Alg. 1:

r1 : r ← p r2 : q ← not p r3 : p← not p, t r4 : p← not s

The program Fwf (P, p) returned by Alg. 1 is

r′1 : r ← not r, t r′2 : r ← not s r′3 : q ← not q, s r′4 : q ← not t, s

where r′1 and r′2 are obtained from r1 in combination with r3 (by lines 5-7) and r4
(by lines 8-10), respectively, while r′3 and r′4 are obtained from r2, the duals over r3
and r4, and lines 20-22 and 22-25 respectively. It can be verified that Mwf (P

′) =
Mwf (P)‖{p} = {r, not q, not s, not t}, i.e., (2) of Def. 1 holds for R = ∅. In fact,

418 M. Knorr and J.J. Alferes

input : Normal program P and p ∈ BP

output: Normal program P ′ = Fwf (P, p)

1 P ′ := P \ {r ∈ P : H (r) ∩ B+(r) �= ∅};
2 R1 := {r ∈ P ′ : H (r) = p};
3 for r ∈ P ′ s.t. p ∈ B(r) do
4 for r1 ∈ R1 do
5 if not p ∈ B(r1) then
6 P ′ := P ′ ∪ {H (r)← (B(r) \ {p}) ∪ ({notH (r)} ∪ (B(r1) \ {not p}))};
7 end
8 else
9 P ′ := P ′ ∪ {H (r)← (B(r) \ {p}) ∪ B(r1)};

10 end
11 end
12 end
13 P ′ := P ′ \ {r ∈ P ′ : p ∈ B(r)};
14 R2 := {r ∈ P ′ : not p ∈ B(r),H (r) �= p};
15 if R1 = ∅ then
16 P ′ := P ′ ∪ {H (r)← B(r)′ : r ∈ R2,B(r)

′ = B(r) \ {not p}};
17 else if {p ←} �⊆ R1 then
18 for r ∈ R2 do
19 for D ∈ Dwf (P, p) do
20 if (H (r) ∈ D) or (p ∈ D) then
21 P ′ := P ′ ∪ {H (r)←

(B(r) \ {not p}) ∪ ((D\{H (r), p}) ∪ {notH (r)})};
22 end
23 else
24 P ′ :=P ′∪{H (r)←B(r)\{not p}∪D};
25 end
26 end
27 end
28 end
29 P ′ := P ′ \ (R1 ∪ R2);

Algorithm 1. Strong wf-forgetting for a single atom p

it holds for arbitrary programs R over Σ \ {p}, e.g., for R = {s ← r}, we have
Mwf (P

′ ∪R) = Mwf (P ∪R)‖{p} = {not t}.

Example 3. Consider only the rules and facts explicitly given in Ex. 1 as P . The re-
sult of Fwf (P, V) with V = {punchClock(X) | X ∈ {mary, peter, john}} con-
tains precisely three instances of flexible(X) ← ustaff(X), professor(X). Thus,
flexible(mary) is derivable right away, and if professor(john) is added later, then
flexible(john) becomes derivable as well.

We can show that Alg. 1 always returns a result P ′ that corresponds to Fwf (P, p).

Theorem 1. Given a normal program P and p ∈ BP , Alg. 1 computes Fwf (P, p).

Preserving Strong Equivalence while Forgetting 419

Alg. 1 can be generalized to arbitrary sets V ∈ BP using the following property
applicable to strong S-forgetting for arbitrary classes C of programs and semantics S
for C.

Theorem 2. Let C be a class of logic programs, S a semantics for C, P ∈ C, and
V1, V2 ⊆ BP . Then, for all P ′ ∈ C, P ′ is FS(P, V1 ∪ V2) iff P ′ is FS(FS(P, V1), V2).

Thus, Alg. 1 allows us to compute strong wf-forgetting about one atom, and Thm. 2
ensures that we can forget a set of atoms by simply forgetting each atom one after the
other in any chosen order. This also guarantees that (E) holds for strong wf-forgetting.

Proposition 2. Strong wf-forgetting for normal programs satisfies (E).

The computational complexity of Alg. 1 is as follows.

Theorem 3. Given a normal program P and p ∈ BP , computing Fwf (P, p) is in EX-
PTIME in the number of rules containing occurrences of p and linear in the remaining
rules.

We would like to point out that this worst-case exponential is indeed limited to the wf-
duals w.r.t. P and p, i.e., to the number of rules n1 whose head is p and the number
of body literals in these rules. In fact, any of the transformations in Alg. 1 (apart from
the linear one in line 1) only affects rules in which p occurs. Since it is reasonable to
assume that, in large programs, the atom to be forgotten does on average appear only in
a small fraction of the rules, we argue that this considerably relativizes the high worst-
case complexity, in the sense that an exponential on a small fraction of the input may
be preferable to a polynomial over all rules as in [1].

5 Strong AS-Forgetting for Programs with Double Negation

We now present strong as-forgetting under the answer set semantics. Similar to [15,14],
strong as-forgetting for normal programs does not satisfy (E). Consider p← not q and
q ← not p whose answer sets are {p} and {q}. The result of strong as-forgetting about
q should have two answer sets {} and {p}, and there is no normal program where an
answer set is a subset of another. That is why we consider logic programs with double
negation where one single rule p← not not p suffices as such result of forgetting.3

Unfortunately, due to such rules, strong as-forgetting under the answer set semantics
for programs with double negation is not always possible.

Example 4. Consider the following program P from which we want to forget about p:

p← not not p q ← p r ← not p

Strong as-forgetting requires to find a program over {q, r} that satisfies condition (2) of
Def. 1. Note first that P itself has two answer sets {p, q} and {r} and that adding either
q or r as facts to P simply adds the atom to both answer sets, i.e., P ∪ {q} has two

3 Applicability of ASP solvers to such programs is ensured by (linear) transformations cf. [6].

420 M. Knorr and J.J. Alferes

input : Program P with double negation
output: Program P ′ = NF (P) in normal form

1 P ′ := P \ {r ∈ P : H (r) ∩ B+(r) �= ∅};
2 P ′ := P ′ \ {r ∈ P : B+(r) ∩ B−(r) �= ∅};
3 P ′ := P ′ \ {r ∈ P : B−(r) ∩ B−−(r) �= ∅});
4 R′ := {r ∈ P ′ : B+(r) ∩ B−−(r) �= ∅};
5 P ′ := (P ′ \ R′) ∪ {H (r)← B(r)′ : r ∈ R′,B(r)′ = B(r) \ {not not q : q ∈
(B+(r) ∩ B−−(r))}};

6 R′′ := {r ∈ P ′ : H (r) ∩ B−(r) �= ∅};
7 P ′ := (P ′ \ R′′) ∪ {⊥ ← B(r) : r ∈ R′′};
8 R′′′ := {r ∈ P ′ : H (r) = B−−(r),B+(r) ∪ B−(r) = ∅};
9 for r ∈ R′′′ do

10 if ⊥ ← H (r) or ⊥ ← not notH (r) then
11 P ′ := P ′ \ r;
12 end
13 if ⊥ ← notH (r) then
14 P ′ :=(P ′\ (r∪{⊥←notH (r)})) ∪ {H (r)←};
15 end
16 end

Algorithm 2. Computing a normal form of P

answer sets {p, q} and {q, r} and P ∪ {r} has two answer sets {p, q, r} and {r}. We
thus require that P ′ = Fas(P, p) has two answer sets {q} and {r}, and that P ′ ∪ {q}
and P ′∪{r} also both have two answer sets, namely {q} and {q, r}, and {r} and {q, r}
respectively. Such a program P ′ does not exist over {q, r} since (a) it is required to be
symmetric in q and r, (b) we have to ensure that precisely only one of q and r is true
in each answer set of P ′, but (c) adding either of the two explicitly, must not avoid the
existence of an answer set that contains the other and in which both atoms are true.

In the following, we investigate conditions under which strong as-forgetting can still be
applied focusing again on syntactic transformations (as in the previous section), in the
sense that computing the result of forgetting about V ∈ BP in P only uses the rules r
with H (r) ∈ V to replace (possibly negated) occurrences of V in the bodies of rules.

We start by introducing a normal form that simplifies the presentation and the cases
to consider in such an algorithm, and, as a byproduct, reduces the size of the pro-
gram. Formally, a logic program P with double negation is in normal form if: for every
p ∈ BP and each rule r ∈ P , at most one of p, not p, and not not p occurs in B(r); if
H (r) = p, then neither p nor not p occur in B(r) and; if r = p ← not not p, then no
constraint containing only p, not p, or not not p in its body occurs in P . This normal
form NF (P) can be computed using Alg. 2 in linear time. It first applies some general
program transformations including TAUT and CONTRA [3] (lines 1-7), and then han-
dles the case that simplifies p← not not p in combination with constraints (lines 8-16).
The algorithm is correct, and NF (P) is strongly equivalent to the original program:

Proposition 3. LetP be a logic program with double negation. Alg. 2computesNF (P),
and P and NF (P) are strongly equivalent.

Preserving Strong Equivalence while Forgetting 421

With such a normal form in place, we proceed to introduce a notion that indicates
whether a certain atom p can be forgotten syntactically from a given program P .

Definition 3. Let P be a logic program with double negation in normal form and p ∈
BP . We call P p-forgettable if a) there is no r ∈ P with H (r) ∩ B−−(r) �= ∅ or b)
p← in P , or c) there is no rule r with H (r) �= p and p ∈ B+(r) ∪ B−(r) ∪ B−−(r).

Case a) describes the kind of rule which in general conflicts with the existence of the
result of strong as-forgetting (cf. also Ex. 4), while the cases b) and c) indicate excep-
tions under which rules described in a) are not problematic. Note that any normal logic
program P is p-forgettable for any p ∈ BP , and that rules matching case a) are allowed
for all other atoms except the one to be forgotten.

Checking whether a program is p-forgettable is easy. So given a p-forgettable pro-
gram P in normal form, we now introduce Alg. 3 for forgetting about a single atom p
from P , denoted Fas(P, p).

For that purpose, we introduce some further notation. First, we introduce a function
N that applies a number of negation symbols to elements of a rule body by defin-
ing, for all p ∈ BP and for x ∈ {p, not p, not not p}, N 0(x) = x, N 1(p) = not p,
N 1(not p) = not not p, and N 1(not not p) = not p, N 2(p) = N 2(not not p) =
not not p and N 2(not p) = not p, and N 3 = N 1. Also, for a rule body S, N i(S) =
{N i(s) : s ∈ S}. We also adapt the notion of dual to strong as-forgetting.

Definition 4. Let P be a logic program, p ∈ BP , and R all n ≥ 1 rules in P of
the form p ← lj1, . . . , ljmj where 1 ≤ j ≤ n, mj ≥ 1 for all j. The as-dual w.r.t.
P and p, denoted Das(P, p), is the set of all possible sets {N 1(l1k1), ...,N

1(lnkn)},
1 ≤ k1 ≤ m1, ..., 1 ≤ kn ≤ mn.

Unlike the wf-dual, the as-dual contains only negated and double negated atoms.
We can now describe Alg. 3. First, P ′ and four disjoint sets of rules are initialized,

in each of which p appears in the rules in a different form (lines 1-5). Then, the special
case of existing a fact p is treated directly by introducing rules in which occurrences
of p and not not p in all rules in R0 and R2 (whose head is not p) are omitted (lines
6-9). Alternatively, if there is no fact p, then new rules are introduced by substituting all
such occurrences of p and not not p in a way similar to wGPPE [3] (lines 11-15), i.e., p
and not not p are adequately replaced by the rule bodies in R. Next, the replacement of
not p is treated, by simply canceling these if there is no rule with head p (lines 16-17)
and using the as-dual otherwise (lines 18-24). Note that, unlike the previous section, no
special case is necessary for handling potential occurrences of p of any form because
P is p-forgettable and in normal form. Finally, all rules containing occurrences of p,
not p, and not not p are removed (line 26). Note that the steps introducing substitutions
for p, not p, and not not p in the bodies also handle constraints. Thus, it may happen
that the result contains a rule ⊥ ← which makes the resulting program permanently
inconsistent and cannot be removed. This has similarly been observed in [14].

Example 5. Consider the following program P to illustrate Algs. 2 and 3.

r1 : q ← not p r3 : p← r, not not r r5 : p← not not p, not r, not not r

r2 : p← not t r4 : s← not not p

422 M. Knorr and J.J. Alferes

input : p-forgettable P in normal form and p ∈ BP

output: Program P ′ = Fas(P, p)

1 R := {r ∈ P : H (r) = p};
2 R0 := {r ∈ P : p ∈ B(r)};
3 R1 := {r ∈ P : not p ∈ B(r)};
4 R2 := {r ∈ P : not not p ∈ B(r),H (r) �= p};
5 P ′ := P ;
6 if {p ←} ⊆ R then
7 for r ∈ Ri s.t. i = 0 or i = 2 do
8 P ′ := P ′ ∪ {H (r)← (B(r) \ {N i(p)})};
9 end

10 else
11 for r ∈ Ri s.t. i = 0 or i = 2 do
12 for r1 ∈ R do
13 P ′ := P ′ ∪ {H (r)← (B(r) \ {N i(p)}) ∪ N i(B(r1))};
14 end
15 end
16 if R = ∅ then
17 P ′ := P ′ ∪ {H (r)← B(r)′ : r ∈ R1,B(r)

′ = B(r) \ {not p}};
18 else
19 for r ∈ R1 do
20 for D1 ∈ Das(P, p) do
21 P ′ :=P ′∪{H (r)←B(r)\{not p}∪D1};
22 end
23 end
24 end
25 end
26 P ′ := P ′ \ (R ∪ R0 ∪ R1 ∪ R2);

Algorithm 3. Strong as-forgetting for a single atom p

Since P is clearly not in the normal form (r3, r5), we first apply Alg. 2 and obtain P ′.

r1 : q ← not p r2 : p← not t r′3 : p← r r4 : s← not not p

Rule r3 is simplified to r′3 according to lines 4-5 (of Alg. 2), and rule r5 can simply be
omitted due to line 3 (Alg. 2). Note that the resulting program is not only in the normal
form, but also p-forgettable. It can then be verified that Alg. 3 returns the following
program P ′′ when forgetting about p from P ′ (and thus from P).

r′′1 : q ← not not t, not r r′′2 : s← not t r′′3 : s← not not r

The rule r′′1 can be obtained from r1 and the as-dual over r2 and r′3 (lines 18-24), while
the rules r′′2 and r′′3 result from r4 in combination with r2 and r′3, respectively (lines 11-
15). It can be verified that Mas(P

′′ ∪R) = Mas(P ∪R) holds for all R over Σ \ {p}.
For example, for R = ∅, we obtain Mas(P

′′) = Mas(P) = {{s}}, and if we consider
R1 = {t← not not t}, then Mas(P ∪R1) = Mas(P

′′ ∪R1) = {{q, t}, {s}}.

Preserving Strong Equivalence while Forgetting 423

Example 6. Consider only the rules and facts explicitly given in Ex. 1 as P . The result
of Fas(P, V) with V = {punchClock(X) | X ∈ {mary, peter, john}} contains pre-
cisely three instances of flexible(X) ← ustaff(X), not not professor(X). Thus,
again, flexible(mary) is derivable right away, and if professor(john) is added later,
then flexible(john) becomes derivable as well.

As expected, Alg. 3 always returns a result corresponding to Fas(P, p).

Theorem 4. Given a p-forgettable program P in normal form and p ∈ BP , Alg. 3
computes Fas(P, p).

For the generalization to forgetting sets of atoms V , we can simply rely on Thm. 2
provided, of course, that the program is in normal form, which can easily be ensured
by applying Alg. 2 after each step of forgetting, and that it is p-forgettable for each
p ∈ V . If the latter is indeed the case, then we simply forget a set of atoms by forgetting
one atom after the other. Note that Thm. 2 also allows us to forget atoms in any order.
So, if one p ∈ V is not p-forgettable immediately, then we may delay it and forget
another atom q first which is q-forgettable at that time, thereby potentially modifying the
program such that it becomes p-forgettable after q has been forgotten, by, e.g., reducing
some rule to a fact for p or canceling a rule with head p and p ∈ B−−(r). In this sense,
whenever strong as-forgetting is applicable, then it ensures that (E) holds.

Proposition 4. Strong as-forgetting for programs with double negation satisfies (E).

Under the same assumption, we can determine the complexity of strong as-forgetting.

Theorem 5. Given a program P and p ∈ BP , computing Fas(P, p) is in EXPTIME in
the number of rules containing occurrences of p and linear in the remaining rules.

This result for computing Fas(P, p) is identical to that of computing Fwf (P, p) as ob-
tained in Thm. 3. Indeed, the exponential can be traced to the as-duals, and an argument
such as the one following Thm. 3 can be applied.

6 Related Work and Conclusions

We have proposed a new property for forgetting propositional variables, called strong
persistence (SP), that guarantees that the semantic dependencies between the extant
propositional variables are kept. Since none of the existing approaches for forgetting in
LP obeys this (SP), we have introduced a new abstract definition of forgetting, which
is closely related to (SP) and naturally satisfies a number of other properties previously
studied in the literature. We have also studied this new notion of forgetting for the cases
of well-founded semantics for normal programs and answer set semantics for programs
with double negation, and focused on efficient syntax-based algorithms that effectively
only touch the rules in which atoms to be forgotten appear.

Considering the related work, the only other forgetting for the well-founded seman-
tics is [1] which does neither satisfy (SP) nor (SE). Indeed, consider the following P
which is a simplification of Ex. 1 (with obvious abbreviations):

flx(m)← not pC(m) pC(m)← not prof(m) prof(m)

flx(j)← not pC(j) pC(j)← not prof(j)

424 M. Knorr and J.J. Alferes

Even after forgetting about {pC(m), pC(j)}, flx(m) should hold, and if prof(j) is
later added, then flx(j) should hold as well. All three algorithms in [1] return only an
instance of a rule with head flx(X), viz., flx(m)←. So, adding prof(j) cannot yield
the desired result. An advantage of [1] is that the size of the program always shrinks
while forgetting. Also, computing the result is in PTIME, but over the entire program.

Regarding answer set semantics, several proposals exist, and we consider the same
program P from above for comparison. The work in [19], which is based on syntactic
transformations, returns only prof(m) for strong forgetting, and, additionally, the facts
flx(m) and flx(j) for weak forgetting. So neither of them satisfies (SP) nor actually
(SE) or (CP). The proposal in [6] satisfies (CP), but not (SE), nor (SP), since in the
considered example, flx(m) would persist as a fact, but no rule with flx(j) would
be part of the result of forgetting, thus loosing the semantic relation that intuitively
says that professors have flexible schedules. In [15], a correspondence based on strong
equivalence via HT models [10] is established between a program and its result of
forgetting, so (SE) is satisfied, but not (CP). Also, the result is not always expressible
as a logic program. The recent work in [14] further remedies that, thus satisfying both
(CP) and (SE), but not (SP). In fact, since flx(m) is part of the only answer set of
P , its derivation persists, but, again, no rule with head flx(j) is contained in the result
of this forgetting. Finally, the three previous approaches have a worst case complexity
of at least coNP on the entire program. But, as indicated for the syntactic transformation
of [6] and for [14], the resulting program is in general of exponential size over the entire
given program, whereas our approach is exponential only over the rules containing
the atom(s) to be forgotten, and linear over the remainder, and does not require any
additional model computation.

In terms of future work, we want to investigate the remaining properties presented in
[14], including appropriate entailment relations for each semantics. The latter are most
likely related to HT logics, which may also give rise to study the semantical relations,
e.g., to the proposal in [14], which is based on this logic. Another topic to consider is
the extension to other classes of programs and different semantics, e.g., disjunction in
rules under answer set semantics, though we conjecture that efficient syntactic methods
as investigated here cannot be used effectively for this class of programs and there is
no clear counterpart for the well-founded semantics. Finally, we intend to implement
our approach to allow testing its efficiency. In that regard, the normal programs result-
ing from forgetting under the well-founded semantics can be readily used, e.g., in XSB
Prolog, while in the case of programs with double negation under answer set seman-
tics, the applicability of ASP solvers to the results can be ensured based on (linear)
transformations following ideas on N-acyclicity [6].

Acknowledgments. Matthias Knorr and José J. Alferes were partially supported by
Fundação para a Ciência e a Tecnologia under project “ERRO – Efficient Reasoning
with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010) and Matthias Knorr also
by FCT grant SFRH/BPD/86970/2012.

Preserving Strong Equivalence while Forgetting 425

References

1. Alferes, J.J., Knorr, M., Wang, K.: Forgetting under the well-founded semantics. In: Cabalar,
P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 36–41. Springer, Heidelberg (2013)

2. Antoniou, G., Eiter, T., Wang, K.: Forgetting for defeasible logic. In: Bjørner, N., Voronkov,
A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 77–91. Springer, Heidelberg (2012)

3. Brass, S., Dix, J.: Semantics of (disjunctive) logic programs based on partial evaluation. J.
Log. Program. 40(1), 1–46 (1999)

4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Comput. Surv. 33(3), 374–425 (2001)

5. Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of equivalences
in answer set programming. ACM Trans. Comput. Log. 8(3) (2007)

6. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. Intell. 172(14),
1644–1672 (2008)

7. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM 38(3), 620–650 (1991)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3-4), 365–385 (1991)

9. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison and mod-
ule extraction, with an application to DL-Lite. Artif. Intell. 174(15), 1093–1141 (2010)

10. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.
Comput. Log. 2(4), 526–541 (2001)

11. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif.
Intell. 25(3-4), 369–389 (1999)

12. Lin, F., Reiter, R.: Forget it! In: Proceedings of the AAAI Fall Symposium on Relevance, pp.
154–159 (1994)

13. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive de-
scription logics. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, pp. 989–995.
IJCAI/AAAI (2011)

14. Wang, Y., Wang, K., Zhang, M.: Forgetting for answer set programs revisited. In: Rossi,
F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, IJCAI/AAAI (2013)

15. Wang, Y., Zhang, Y., Zhou, Y., Zhang, M.: Forgetting in logic programs under strong equiv-
alence. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012, pp.
643–647. AAAI Press (2012)

16. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in DL-Lite. Ann.
Math. Artif. Intell. 58(1-2), 117–151 (2010)

17. Woltran, S.: Characterizations for relativized notions of equivalence in answer set program-
ming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 161–173.
Springer, Heidelberg (2004)

18. Wong, K.S.: Forgetting in Logic Programs. Ph.D. thesis, The University of New South Wales
(2009)

19. Zhang, Y., Foo, N.Y.: Solving logic program conflict through strong and weak forgettings.
Artif. Intell. 170(8-9), 739–778 (2006)

20. Zhang, Y., Zhou, Y.: Knowledge forgetting: Properties and applications. Artif. Intell.
173(16-17), 1525–1537 (2009)

21. Zhou, Y., Zhang, Y.: Bounded forgetting. In: Burgard, W., Roth, D. (eds.) Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Francisco,
California, USA, August 7-11. AAAI Press (2011)

Computing Repairs for Inconsistent DL-programs
over EL Ontologies

Thomas Eiter, Michael Fink, and Daria Stepanova

Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,fink,dasha}@kr.tuwien.ac.at

Abstract. DL-programs couple nonmonotonic logic programs with DL-
ontologies through queries in a loose way which may lead to inconsistency, i.e.,
lack of an answer set. Recently defined repair answer sets remedy this. In par-
ticular, for DL-LiteA ontologies, the computation of deletion repair answer sets
can effectively be reduced to constraint matching based on so-called support sets.
Here we consider the problem for DL-programs over EL ontologies. This is more
challenging than adopting a suitable notion of support sets and their computa-
tion. Compared to DL-LiteA, support sets may neither be small nor few, and
completeness may need to be given up in favor of sound repair computation on
incomplete support information. We provide such an algorithm and discuss par-
tial support set computation, as well as a declarative implementation. Preliminary
experiments show a very promising potential of the partial support set approach.

1 Introduction

Nonmonotonic Description Logic (DL-) programs [29] are a prominent proposal to
combine rules and ontologies, following a loose coupling approach (see [21] for an
overview of approaches). Due to a bidirectional information flow between rules and
the ontology via special DL-atoms, they provide a powerful framework for expressing
many advanced reasoning applications. However, the loose interaction between rules
and the ontology can easily lead to inconsistency (lack of answer sets, i.e. models).

Example 1. Consider the DL-program Π = 〈O,P〉 in Figure 1 formalizing an access
policy over an ontology O = T ∪ A [4], whose taxonomy (TBox) T is given by (1)-
(3), while (4)-(9) is a sample data part (ABox) A. Besides facts (10), (11) and a simple
rule (12), the rule part P contains defaults (13), (14) expressing that staff members are
granted access to project files unless they are blacklisted, and a constraint (15), which
forbids that owners of project information lack access to it. Both parts,P andO, interact
via DL-atoms, such as DL[Project � projfile; StaffRequest](X). The latter specifies
an update ofO, via operator �, prior to querying it: i.e. additional assertions Project(c)
are considered for each individual c, such that projfile(c) is true in an interpretation of
P , before all instances X of StaffRequest are retrieved fromO. Inconsistency arises as
john , the chief of project p1 and owner of its files, has no access to them.

As an inconsistent DL-program yields no information, a relevant issue is how to
change it in order to gain consistency. In [9], different repair options were discussed

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 426–441, 2014.
c© Springer International Publishing Switzerland 2014

Computing Repairs for Inconsistent DL-programs over EL Ontologies 427

O=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1) Blacklisted � Staff

(2) StaffRequest ≡ ∃hasAction.Action � ∃hasSubject .Staff � ∃hasTarget .Project
(3) BlacklistedStaffRequest ≡ StaffRequest � ∃hasSubject .Blacklisted
(4) StaffRequest(r1) (5) hasSubject(r1 , john) (6) Blacklisted(john)
(7) hasTarget(r1 , p1) (8) hasAction(r1 , read) (9) Action(read)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(10) projfile(p1); (11) hasowner(p1 , john);

(12) chief (Y)← hasowner(X ,Y), projfile(X);

(13) grant(X)← DL[Project $ projfile; StaffRequest](X),not deny(X);

(14) deny(X)← DL[Staff $ chief ; BlacklistedStaffRequest](X),

(15) ⊥ ← hasowner (Y,Z),not grant(X),

DL[; hasTarget](X,Y),DL[; hasSubject](X,Z).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. DL-program Π over a policy ontology

and a theoretical framework for repairing inconsistent DL-programs was proposed, in
which the ontology ABox (a likely source of errors) is changed such that the modified
DL-program has answer sets, called repair answer sets. An algorithm to compute the
latter was given in [9] as well, which however lacks practicality.

For DL-LiteA ontologies, a more effective repair algorithm was given in [10]. It is
based on support sets [8] for a DL-atom, which are portions of its input that together
with the ABox determine the value of the DL-atom. The algorithm uses complete sup-
port families, i.e. stocks of support sets such that the value of each DL-atom under every
interpretation can be decided without ontology access. Fortunately, for DL-LiteA on-
tologies complete support families are small and easy to compute.

In this paper, we consider a similar approach for ontologies inEL, which likeDL-LiteA
is another prominent Description Logic that offers tractable reasoning. Despite limited
expressivity, EL ontologies are still useful for many application domains, including biol-
ogy, medicine, chemistry, policy, etc. Due to range restrictions and concept conjunctions
on the left-hand side of inclusion axioms in EL, a DL-atom accessing an EL ontology
can have arbitrarily large and infinitely many support sets in general. While for acyclic
TBoxes (which is a property often met in practice [13]) the latter is excluded, complete
support set families can be still very large, and constructing as well as managing them
might be impractical. This obstructs to a deployment of the approach in [10] to EL on-
tologies.

For this reason, we introduce here a more general algorithm for repair answer set
computation that operates on incomplete (partial) support families. More specifically,
our contributions and advances over previous works [8; 10] are summarized as follows:

– We generalize repair answer set computation to deal with partial support families,
such that EL ontologies can be handled.

– Following [8], we formally define both ground and nonground support sets for EL
ontologies and present techniques for their computation. In contrast to [8; 10], we
take advantage of datalog rewritings of queries over an EL ontology (see also [15]).

– We provide a declarative realization of an algorithm dealing with partial support
families for repair answer set computation within the DLVHEX system. For that,

428 T. Eiter, M. Fink, and D. Stepanova

Tnorm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1∗) StaffRequest � ∃hasAction.Action
(2∗) StaffRequest � ∃hasSubject .Staff
(3∗) StaffRequest � ∃hasTarget .Project
(4∗) ∃hasAction.Action � C∃hasA.A

(5∗) ∃hasSubject .Staff � C∃hasS .St

(6∗) ∃hasTarget .Project � C∃hasT .P

(7∗) C∃hasA.A � C∃hasS .St � C∃hasA.A�∃hasS .St

(8∗) C∃hasA.A�∃hasS .St � C∃hasT .P � StaffRequest

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2. Normalized TBox

we present some experimental results showing very promising potential of the ap-
proach.

As a practical result of this work, we have an implementation of inconsistency toler-
ant DL-programs over EL-ontologies, which is the first of its kind.

2 Preliminaries

We first briefly recall DL-programs and repair answer sets; see [29; 9] for details.

Syntax. A DL-program is a pair Π = 〈O,P〉 of a finite ontologyO and a finite set of
rules P defined as follows.
• O is an DL-knowledge base (or ontology) over a signature Σo = 〈I,C,R〉 with a set
I of individuals, a set C of concept names and a set R of role names. We assume that
O = T ∪ A is a consistent EL KB [26] with TBox T and ABox A, which are sets of
axioms capturing taxonomic resp. factual knowledge. Concepts C and roles R obey the
following syntax, where A ∈ C is an atomic concept and U ∈ R is an atomic role:

C → A B → C | C �D | ∃R.C R→ U

TBox axioms are of the form B1 � B2 (inclusion axiom); ABox assertions are of
the form A(a) and U(a, b), where A ∈ C, U ∈ R and a, b ∈ I; A TBox is normalized,
if all of its axioms have one of the following forms:

A1 � A2 A1 �A2 � A3 ∃R.A1 � A2 A1 � ∃R.A2,

where A1, A2, A3 are atomic concepts. E.g., the axioms (1) and (2) in Example 1 are in
normal form, while axiom (3) is not. For any EL TBox, an equivalent TBox in normal
form is constructable in linear time [26] (over an extended signature); Figure 2 shows a
normalized form of the TBox in Example 1.

In the sequel, we use P as a generic predicate from C ∪ R (if distinction is immate-
rial).
• P consists of logic program rules r of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . ,not bm , (1)

where n+m > 0, all ai are lp-atoms, and each bi is either an lp-atom or a DL-atom;
here

– an lp-atom is a first-order atom p(t) with predicate p from a set P of predicate
names disjoint with C and R, and constants from a set C; we adopt C = I.

Computing Repairs for Inconsistent DL-programs over EL Ontologies 429

– a DL-atom a(t) is of form DL[λ; Q](t), where

λ = S1 op1 p1, . . . , Sm opm pm, m ≥ 0, (2)

s.t. for 1 ≤ i ≤ m, Si ∈ C∪R, opi ∈ {�, −∪} is an update operator, 1 and pi ∈ P
is an input predicate of the same arity as Si—intuitively, opi=� (resp., opi = −∪)
increases Si (resp., ¬Si) by the extension of pi; Q(t) is a DL-query, which is either
of the form (i) C(t), where C is a concept and t is a term; (ii) R(t1, t2), where R
is a role and t1, t2 are terms; or (iii) ¬Q′(t) where Q′(t) is from (i)-(ii).

If n = 0, the rule r is a constraint.

Example 2 (cont’d). The DL-atom DL[Project � projfile; StaffRequest](X)
contained in rule (12) of Example 1 first enriches the concept Project in O by the ex-
tension of the predicate projfile in P via �, and then queries the concept StaffRequest .

Semantics. The semantics of a DL-program Π = 〈O,P〉 is in terms of its grounding
gr(Π) = 〈O, gr(P)〉 over C, i.e., gr(P) contains all ground instances of rules r in P
over C. In the remainder, by default we assume that Π is ground.

A (Herbrand) interpretation of Π is a set I ⊆ HBΠ of ground atoms, where HBΠ is
the usual Herbrand base w.r.t. C and P; I satisfies an lp-atom a, if a ∈ I and a DL-atom
a of the form (2) if

O ∪ τI(a) |= Q(c) (3)

where τI(a) =
⋃m

i=1 Ai(I), and Ai(I) =

{
{Si(t) | pi(t) ∈ I}, for opi = �;
{¬Si(t) | pi(t) ∈ I}, for opi = −∪.

Satisfaction of a DL-rule r resp. set P of rules by I is then as usual, where I satisfies
not bj if I does not satisfy bj ; I satisfies Π , if it satisfies each r ∈ P . We denote that I
satisfies (is a model of) an object o (atom, rule, etc.) by I |=Oo.

Example 3 (cont’d). Consider I = {projfile(p1), hasowner (p1 , john), chief (john)},
which satisfies dl-atom d = DL[Project � projfile; StaffRequest](r1) of Example 1,
as O ∪ τI(d) |= StaffRequest(r1). However for O′, given by O without (4) and (5),
O′ ∪ τI(d) �|= StaffRequest(r1) and thus I does not satisfy d underO′.

An (flp-)answer set of Π = 〈O,P〉 is any interpretation I that is a⊆-minimal model
of the flp-reduct ΠI

FLP , which maps P and I ⊆ HBΠ to the rule set PI
FLP = {rIFLP |

r ∈ gr(P)}, where rIFLP = r if the body of r is satisfied, i.e., I |=O bi, for all bi,
1 ≤ i ≤ k and I �|=O bj , for all k < j ≤ m; otherwise, rIFLP is void.

A DL-program Π is inconsistent, if it has no answer set. An interpretation I is an
(flp-)deletion repair answer set of Π = 〈T ∪ A,P〉, if it is an flp-answer set of some
Π ′ = 〈T ∪ A′,P〉 where A′ ⊆ A; any such A′ is called a deletion repair of Π . Note
that we consider arbitrary deletion repairs. One might resort to more refined notions of
repair [9], e.g.,⊆-maximal deletion repairs, however resulting in a complexity increase.

Example 4 (cont’d). Program Π is inconsistent; if we remove (6) from A, then I =
{projfile(p1), hasowner(p1 , john), chief (john), grant(r1)}, becomes an answer set.
Along with the facts (8) and (9) the flp-reduct PI

FLP contains the ground rule (10),

1 We disregard here for simplicity the less used constrains-operator −∩ and subsumption queries.

430 T. Eiter, M. Fink, and D. Stepanova

where X is substituted by r1 . Then I is a deletion repair answer set with respect to
the repair A′ = {Action(read), hasAction(r1 , read), StaffRequest(r1), hasSubject
(r1 , john), hasTarget(r1 , p1)}.

Shifting Lemma. To simplify matters and avoid dealing with the logic program pred-
icates separately, we shall shift as in [10] the lp-input of DL-atoms to the ontology.
Given a DL-atom d = DL[λ; Q](t) and P ◦ p ∈ λ, ◦ ∈ {�, −∪}, we call Pp(c) an input
assertion for d, where Pp is a fresh ontology predicate and c ∈ C; Ad is the set of all
such assertions. For a TBox T and a DL-atom d, we let Td = T ∪{Pp � P | P�p ∈ λ},
and for an interpretation I , let OI

d = Td ∪A∪ {Pp(t) ∈ Ad | p(t) ∈ I}. We then have:

Proposition 1 ([10]). For every O = T ∪ A, DL-atom d = DL[λ; Q](t) and interpre-
tation I , it holds that I |=O d iff I |=OI

d DL[ε; Q](t) iff OI
d |= Q(t).

Unlike O ∪ τI(d), in OI
d there is a clear distinction between native assertions and

input assertions for d w.r.t. I (via facts Pp and axioms Pp � P), mirroring its lp-input.

3 Support Sets for DL-atoms

In this section, we provide a definition of support sets using the framework given in [8].
Intuitively, a support set for a DL-atom d is a portion of its input that determines the
output values of d.

Definition 1 (Ground Support Sets). Let d(c) = DL[λ; Q](c) be a ground DL-atom
of a DL-programΠ = 〈O,P〉. Then a support set for d is a subset of the Herbrand Base
S = {pi(t) ∈ HBΠ , Pi � pi ∈ λ}, s.t. for all interpretations I, I ′ ⊇ S, it holds that
I |=O d iff I ′ |=O d. Moreover, S is positive (resp. negative), if for every interpretation
I ⊇ S it holds that I |=O d (resp. I �|=O d).

In this work we exploit only positive support sets, i.e. portions of the ontology input,
which ensure that the DL-atom will be true.

Example 5. Recall Π and d(r1) = DL[Project � projfile; StaffRequest](r1) from
Example 1. A positive ground support set for d(r1) is S = {projfile(p1)}. Indeed, for
all interpretations I ⊇ {projfile(p1)}, it holds thatA∪T ∪λI(d) |= StaffRequest(r1).

Intuitively, support sets reflect the relevant part of an external source (ontology in our
case). Thus different ground support sets can be similar with respect to their structure.
With this motivation in mind in [8] support sets were lifted to the nonground level.
The definition of a nonground support set exploits source information in the form of
so-called conditional guards (γ); we now adapt it to DL-programs.

Definition 2. Let Π be a DL-program and let d(X) = DL[λ; Q](X) be a DL-atom of
Π . A positive nonground support set S for d(X) is a pair 〈N, γ〉, where

– N ⊆ {pi(Y) | Pi ◦ pi ∈ λ, ◦ ∈ {�, −∪}} is a set of nonground atoms over the input
signature λ of d;

– γ : C|X| × grndC(N) → {0, 1} is a Boolean function (called the guard), s.t. for
all c ∈ C|X| and Ngr ∈ grndC(N) it holds that γ(c, Ngr) = 1 only if Ngr is a
ground support set for d(c).

Computing Repairs for Inconsistent DL-programs over EL Ontologies 431

In this definition, grndC(N) is the support family, i.e. a set of support sets, con-
structed from N by replacing all variables with constants from C in all possible ways.
Intuitively, the guard γ is an abstract function that checks a condition under which the
ground atoms for predicates in N form a ground support set. A family S of support sets
is said to be complete for a (non-ground) DL-atom d(X) iff for every c ∈ C|X| and
ground support set S of d(c), there exists S′ = 〈N, γ〉 ∈ S, such that S ∈ grndC(N)
and γ(c, S) = 1.

Example 6. The DL-atom d(X) = DL[Project � projfile ; StaffRequest](X) has
S1 = 〈projfile(Y), γ〉 as a nonground support set, where γ : C × grndC(projfile(Y))
→ {0, 1} is such that γ(c, projfile(c′)) = 1 only if the ABoxA contains the assertions
hasAction(c, c1), Action(c1), hasSubject(c, c2), Staff (c2), and hasTarget(c, c′),
where c1, c2 are arbitrary constants from C.

Another nonground support set for d(X) is S2 = 〈∅, γ′〉, where γ′ : C × ∅ → {0, 1}
is such that γ′(c, ∅) = 1 only if StaffRequest(c) ∈ A.

The abstract definition of nonground support sets leaves room for flexible realiza-
tion of the conditional guard γ. A natural one is by (unions of) conjunctive queries
(UCQs) over the ontology ABox viewed as a database. In Example 6, the guard γ of S1

takes as input a constant c ∈ C and a ground instance of form projfile(c′), and returns
1 if the Boolean CQ q(c) ← ∃X,X ′ φ(X,X ′) evaluates to true, where φ(X,X ′) =
hasAction(c,X) ∧ Action(X) ∧ hasSubject(c,X ′) ∧ Staff (X ′) ∧ hasTarget(c, c′).
The UCQ q(c)← ∃X,X ′ φ(X,X ′)∨ψ(X,X ′), whereψ(X,X ′)= hasAction(c,X)∧
Action(X) ∧ hasSubject(c,X ′) ∧Blacklisted(X ′) ∧ hasTarget(c,X ′), is more gen-
eral; even more general guards are possible (e.g. nonrecursive datalog programs).

3.1 Computing Support Sets for DL-atoms over EL Ontology

We now provide a method for support set construction that allows us to just work with
ontology predicates when constructing nonground support sets.

As negation is not available nor expressible in EL (⊥ is unavailable), from now on
we restrict our attention to DL-atoms DL[λ; Q](c) with positive updates, i.e. ◦ ∈ {�}
for all P ◦ p ∈ λ.

The discussion above reveals that for support set construction, it is natural to exploit
(conjunctive) query answering methods in EL (e.g., [23; 19; 18; 25]). Most of them are
based on rewriting the query and the TBox into a datalog program over the ABox; to
construct guard functions that use a datalog rewriting of the TBox seems thus sugges-
tive.

Suppose we are given a DL-program Π = 〈O,P〉, where O = 〈T ,A〉 is an EL on-
tology and a DL-atom d(X) = DL[λ; Q](X). Our method for constructing nonground
support sets for d(X) consists of the following three steps.

Step 1. DL-query Rewriting over the TBox. The first step exploits the rewriting of
the DL-query Q of d(X) over the TBox Td = T ∪ {Pp � P | P � p ∈ λ} into
a set of datalog rules, see e.g. Figure 3. At the preprocessing stage, the normalization
technique is first applied to the TBox Td. This technique restricts the syntactic form
of TBoxes by decomposing complex axioms into syntactically simpler ones. For this
purpose, a minimal required set of fresh concept symbols is introduced. Given a TBox

432 T. Eiter, M. Fink, and D. Stepanova

Table 1. EL TBox Rewriting

Axiom Datalog rule
A1 � A2 A2(X)← A1(X)

A1 �A2 � A3 A3(X)← A1(X), A2(X)
∃R.A2 � A1 A2(X)← R(X,Y), A3(Y)
A1 � ∃R.A2 R(X, oA2)← A1(X)

A2(oA2)← A1(X)

Td, its normalized form Tdnorm is computed in linear time [1]. We then rewrite the part
of the TBox, relevant for the query at hand, into a datalog program ProgQ,Tdnorm

using
the translation given in Table 1, which is a variant of [22; 28]. When rewriting axioms of
the form A1 � ∃R.A2 (fourth axiom in Table 1) we introduce fresh constants (oA2) to
represent “unknown” objects. A similar rewriting is exploited in the REQUIEM system
(where function symbols are used instead of fresh constants). As a result we obtain:

Lemma 1. For any data part, i.e., ABox A, and any ground assertion Q(c), deciding
ProgQ,Tdnorm

∪A |= Q(c) is equivalent to checking Tdnorm ∪ A |= Q(c).

Step 2. Query Unfolding. The second step proceeds with the standard unfolding of
the rules of ProgQ,Tdnorm

w.r.t. the target DL-query Q. We start with the rule that has
Q in the head and expand its body using other rules of the program ProgQ,Tdnorm

. By
applying this procedure exhaustively, we get a number of rules which correspond to the
rewritings of the query Q over Tdnorm. Note that it is not always possible to obtain all
of the rewritings effectively, since in general there might be infinitely many of them
(exponentially many for acyclic T). We discuss possible restrictions in the next section.

Step 3. Support Set Extraction. The last step is devoted to the extraction of nonground
support sets from the rewritings computed in Step 2. We select those that contain only
predicates from Td and obtain a set of rules r of the form

Q(X)← P1(Y1), . . . Pk(Yk), Pk+1pk+1
(Yk+1), . . . , Pnpn

(Yn), (4)

where each Pi is a native ontology predicate if 1 ≤ i ≤ k, and a predicate mirroring
lp-input of d otherwise. From such rules r we construct pairs S = 〈N, γ〉, where

– N = {pi(Yi) |Pipi
(Yi) ∈ B(r), k + 1 ≤ i ≤ n};

– γ : C|X| × grndC(N) → {0, 1} is such that γ(c, Ngr) = 1 only if Q(c) follows
from r ∪ Ad, whereAd = A ∪ {Pipi

(t) | pi(t) ∈ Ngr}.
Then the following holds.

Proposition 2. Let d(X) = DL[λ; Q](X) be a DL-atom of a program Π = 〈O,P〉,
where O = 〈T ,A〉, is an EL ontology. A set S, constructed using Step 1-Step 3 is a
nonground support set for d(X).

Proof. Towards a contradiction assume that S is not a nonground support set for d(X).
This means that either (1) N is not a set of nonground predicates from λ or (2) the
function γ of Definition 2 is not correct.

Computing Repairs for Inconsistent DL-programs over EL Ontologies 433

ProgQ,Tdnorm
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(4′) C∃hasA.A(X)← hasAction(X ,Y),Action(Y).
(5′) C∃hasS .St(X)← hasSubject(X ,Y),Staff (Y).
(6′) C∃hasT .P(X)← hasTarget(X ,Y),Project(Y).
(7′) C∃hasA.A�∃hasS .St(X)← C∃hasA.A(X),C∃hasS .St(X).
(8′) StaffRequest(X) ← C∃hasA.A�∃hasS .St (X),C∃hasT .P (X).
(9) Project(X)← Projectprojfile (X).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Fig. 3. DL-query Rewriting for DL[Project $ projfile; StaffRequest](X) over Tdnorm

The predicates of the form PP in the TBox Td are obtained from λ of d(X) by
construction and clearly so are the predicates Pjpj

of each rule r. Thus predicates in N

are indeed nonground predicates from the input signature of d(X).
Hence the function γ must be incorrect, i.e. some c ∈ C|X|, and Ngr ∈ grndC(N)

must exist, s.t. γ(c, Ngr) = 1 but Ngr is not a positive ground support set for d(c). The
latter means that some interpretation I ′ ⊇ Ngr exists s.t. I ′ �|=O d(c). By Proposition 1
we have that OI′

d �|= Q(c), i.e. Td ∪Ad ∪ {Pipi
(t) | pi(t) ∈ I ′} �|= Q(c). On the other

hand, we know that Q(c) follows from r and Ad ∪ {Pipi
(t) | pi(t) ∈ I ′}. Since r is

obtained by unfolding of the rules in ProgQ,Tdnorm
, we know that Q(c) also follows

fromProgQ,Tdnorm
∪Ad and hence from Tdnorm∪A by construction of ProgQ,Tdnorm

.
Consequently, T ∪ Ad |= Q(c) must hold. ��

As shown above, when working with support sets we can restrict ourselves to the
ontology predicates and operate only on them. More specifically, rules of the form (4)
fully reflect nonground support sets as of Definition 2, and ground instantiations of such
a rule over constants from C implicitly correspond to ground support sets.

According to novel results [15], complete support families can be computed for large
classes of ontologies. However, in general there might be exponentially many unfold-
ings produced at Step 2. Thus, to cope with exponentiality, one might often want to
apply reasonable restrictions on the support families.

4 Partial Support Family Computation

In this section we discuss restrictions on the size, structure and number of support sets,
which is of interest for practical applications, and we analyze conditions under which
all support sets from the restricted category form a complete support family.

In general, unlike for the DL-LiteA case, due to possible cyclic dependencies of the
form C � ∃R.C allowed in EL, the explanations of an instance query can be of infinite
size and so are the support sets for DL-atoms accessing an EL ontology.

An analysis of a vast number of ontologies has revealed that in many realistic cases
they do not contain (or imply) cyclic axioms [13]; we thus assume that the TBox of
the ontology in a given DL-program is acyclic (i.e., does not entail inclusion axioms
of form C � ∃R.C). However, even under this restriction support sets can be large in
general.

Example 7. If T implies the following chain of inclusions ∃R1.A1 � Q, ∃R2.A2 �
A1, ∃R3.A3 � A2, . . . , ∃Rn.An � An−1, then the set of ground support sets for

434 T. Eiter, M. Fink, and D. Stepanova

DL[R1 � p1, R2 � p2, . . . , Rn � pn, An � q; Q](c1)

contains {p1(c1, c2), p2(c2, c3), p3(c3, c4) . . . pn(cn−1, cn), q(cn)}. Replacing Ai with
nested range restrictions and conjunctions would yield support sets of exponential size.

This raises the question of reasonable restrictions on the form and size of support
sets, and under which conditions such restrictions still yield complete support families.

Support set size. A natural approach for computing a partial support family is the
restriction of the target support set size. We may put a certain bound on the size of
support sets that we want to compute and proceed with unfolding of the rules of the
datalog program. When a certain unfolding branch reaches the size limit, we stop its
further expansion and choose a different branch.

Suppose the size is bounded by n. Under the following conditions on the TBox the
set of all support sets of size at most n is complete:

– inclusions do not contain any existential restrictions on the left hand side and the
number of conjuncts on the left hand side of all inclusions in the TBox is bounded by
n.

– all existential restrictions of form ∃R.A occurring on the left hand side of inclu-
sions are such that A occurs in the TBox elsewhere only in simple atomic concept
inclusions.

Number of Support Sets. Another restriction relevant in practice regards the number
of support sets. In general, determining the exact number of support sets that is needed
to form a complete family for a DL-atom is a hard problem. It is tightly related to
counting minimal explanations for an abduction problem, which was analyzed in [16]
for propositional theories under various restrictions; there it was shown that counting
all smallest solutions (explanations) for an abduction problem over a Horn theory is
#OptP [logn]-complete. Moreover, meaningful conditions such that a fixed number n
of support sets suffices to obtain a complete family are non-obvious (bounded tree-
width [14] might be useful, as for efficient datalog abduction); a careful analysis of
real world ontologies is needed to ensure practical relevance. This remains for future
research.

5 Algorithm for Repair Answer Set Computation

In this section, we present our algorithm SoundRAnsSet for computing deletion repair
answer sets by exploiting support families for DL-atoms accessing an EL ontology.

Exploiting DLVHEX, DL-programs are evaluated via a rewriting Π̂ of gr(Π), where
DL-atoms a are replaced by ordinary atoms ea (replacement atoms), together with a
guess on their truth by additional “choice” rules ea ∨ nea, where nea stands for the
negation of ea. We denote interpretations of Π̂ by Î , and use Î|Π when referring to
their restriction to the original language of Π .

The naive algorithm for repair answer set computation [9] cycles through all ABox
candidates A′ and checks whether under A′ the guess for the replacement atoms coin-
cides with their actual values. IfA′ fulfills this, an unfoundedness check is performed for
this repair candidate. An alternative approach [10], specifically targeted at DL-LiteA
ontologies, aims at finding repairs using complete support families for DL-atoms. In our

Computing Repairs for Inconsistent DL-programs over EL Ontologies 435

algorithm SoundRAnsSet for EL ontologies (see Algorithm 1) we also exploit support
families, but do not require that they are complete. If the families are complete (which
may be known), then SoundRAnsSet is guaranteed to be complete; otherwise, it may
miss repair answer sets (an easy extension ensures completeness though).

We start (a) by computing a family S of nonground support sets for each DL-atom.
Next the replacement program Π̂ is created, whose answer sets Î are computed one
by one in (b). For Î , we first determine the sets Dp (resp. Dn) of DL-atoms that are
guessed true (resp. false) in it and then use the function Gr(S, Î ,A) which instantiates
S for the DL-atoms in Dp ∪Dn to relevant ground support sets, i.e., those compatible
with Î .

In (d) we check whether some DL-atom in Dn has a support set S consisting just of
input assertions; if so we move to the next answer set Î of Π̂ . Otherwise, we (e) loop
over all minimal hitting sets H ⊆ A of the support sets for DL-atoms in Dn, formed by
ABox assertions only. For each H we check whether every atom in Dp has at least one
support set disjoint fromH . If yes (f), i.e. removingH fromA does not affect the values
of DL-atoms in Dp, then we evaluate in a postcheck the atoms from Dn over T ∪A\H
w.r.t. Î . Otherwise, we evaluate the DL-atoms from Dn and Dp. A Boolean flag rep
stores the evaluation result of a function evaln(resp. evalp). More specifically, given
Dn (resp. Dp), Î and T ∪ A\H , the function evaln (resp. evalp) returns true, if all
atoms in Dn (resp. Dp) evaluate to false (resp. true). If rep is true and the foundedness
check flpFND(Î ,A \H,P) succeeds, then in (g) Î|Π is output as repair answer set.

We remark that in many cases, the foundedness check might be trivial [7]; if we
would consider weak FLP-answer sets [9], it can be skipped.

Example 8 (cont’d). ConsiderΠ from Example 1with equivalence (≡) in axioms (2) and
(3) substituted by5. Let Î= {projfile(p1), hasowner(p1 , john), chief (john), ea , neb}
be returned at (b), where a=DL[Project � projfile ; Staffrequest](r1) and
b=DL[Staff � chief ; BlacklistedStaffRequest](r1). At (c) we obtained

– SÎ
gr(a) = {S1, S2}, where S1 = {hasAction(r1 , read), hasSubject(r1 , john),

Action(read), Staff (john), hasTarget(r1 , p1),Projectprojfile (p1)} and
S2 = {StaffRequest(r1)};

– SÎ
gr(b) = {S′1, S′2} with S′1 = {StaffRequest(r1), hasSubject(r1 , john),

Blacklisted(john)} and S′2 = {BlacklistedStaffRequest(r1)}.

At (e) we got a hitting set H = {StaffRequest(r1),BlacklistedStaffRequest(r1)},
which is disjoint with S1. Thus we get to the if branch of (f) and check whether b
is false under A\{StaffRequest(r1)}. This is not true, hence rep = false and we
pick a different hitting set H ′, e.g {Blacklisted(john),BlacklistedStaffRequest(r1)}.
Proceeding with H ′, we get to (g), since at (f) evaln(b, Î, T ∪ A ∩H) = true.

Proposition 3. SoundRAnsSet is sound, it outputs only deletion repair answer sets.

If the support families are complete, then the postchecks at (f) are redundant. In case
the if-condition of (f) is satisfied, we set rep= true, otherwise rep = false .

Proposition 4. If for all DL-atoms in Π the support families in S are complete, then
SoundRAnsSet is complete, i.e., it outputs every deletion repair answer set.

436 T. Eiter, M. Fink, and D. Stepanova

Algorithm 1: SoundRAnsSet: compute deletion repair answer sets

Input: Π=〈T ∪ A,P〉
Output: a set of deletion repair answer sets of Π

(a) compute a set S of nongr. supp. sets for the DL-atoms in Π
(b) for Î ∈ AS(Π̂) do
(c) Dp ← {a | ea ∈ Î}; Dn ∈ {a | nea ∈ Î}; SÎ

gr ← Gr(S, Î ,A);
(d) if every S ∈ SÎ

gr(a
′) for a′ ∈ Dn fulfills S ∩ A �= ∅ then

(e) for all min. hitting sets H ⊆ A of
⋃

a′∈Dn
SÎ
gr(a

′) do
(f) if for every a ∈ Dp some S ∈ SÎ

gr(a) exists s.t. S ∩H = ∅;
then rep← evaln(Dn, Î, T ∪ A\H) else
rep← evaln(Dn, Î , T ∪ A\H) ∧ evalp(Dp, Î , T ∪ A\H)

(g) if rep and flpFND(Î , 〈T ∪ A\H,P〉) then output Î|Π
end

end
end

We easily can turn SoundRAnsSet into a complete algorithm, by modifying (e) to
consider all hitting sets and not only minimal ones. In the worst case, this means a
fallback to almost the naive algorithm (note that all hitting sets can be enumerated
efficiently relative to their number).

6 Implementation and Experiments

We have implemented the algorithm within the DLVHEX evaluation framework,2 thus
providing a means to effectively compute some deletion repair answer sets for EL. For
support set computation we exploit the REQUIEM tool [22], which produces the rewrit-
ings of the target query using datalog rewriting techniques.

More specifically, we proceed as follows: first for each DL-atom we compute query
rewritings of a certain size using REQUIEM. We then use a declarative approach for
computing repair answer sets, in which support detection and minimal hitting set compu-
tation are accomplished by rules. To this end, for each DL-atom a(X) fresh predicates
Sa(X), SPa (Y) and SA,P

a (Y) are introduced, where Y = XX′, which intuitively say
that a(X) has some support set, some support set with only logic program predicates,
and some mixed support set, respectively (for simplicity we superficially use uniform
variables). Furthermore, rules of the following form are added:

(1) Sa(X) ← SP
a (Y) (5) ⊥ ← nea(X), S

P
a (Y)

(2) Sa(X) ← SA,P
a (Y) (6) P̄1a(Y) ∨ . . . ∨ P̄na(Y)← nea(X), S

A,P
a (Y)

(3) SP
a (Y) ← rb(Sp

a(Y)) (7) evala(X)← ea(X), not Ca(X), not Sa(X)

(4) SA,P
a (Y)← rb(SA,P

a (Y)), (8) evala(X)← nea(X), not Ca(X)
nd(SA,P (Y))

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex

http://www.kr.tuwien.ac.at/research/systems/dlvhex

Computing Repairs for Inconsistent DL-programs over EL Ontologies 437

Here Ca(X) states that the support family for a(X) is known to be complete; such
information can be added by facts. The rules (1)-(4) derive information about support
sets of a(X) under a potential repair; rb(S) stands for a rule body rendering of a support
set S, and nd(S) = not P̄1a(Y), . . . ,not P̄na(Y), where {P1a(Y), . . . , Pna(Y)}
is the ontology part of S and P̄ia(Y) states that the assertion Pia(Y) is marked for
deletion. The constraint (5) forbids a(X), if guessed false, to have a matching support
set with only input assertions; (6) means that if a(X) has instead a matching mixed
support set, then some assertion from its ontology part must be eliminated. The rule (7)
says that if a(X) is guessed true and completeness of its support family is not known,
then an evaluation postcheck must be performed (evala(X)) if no matching support set
is available; rule (8) is similar for a(X) guessed false (mind rule (5)).

6.1 Experiments

We have conducted a preliminary experimental evaluation of our approach by consider-
ing inconsistent DL-programs over acyclic OWL 2 EL ontologies.

Experimental Setup. We have computed repair answer sets with complete and incom-
plete support families. The experiments were run on a Linux server with two 12-core
AMD 6176 SE CPUs/128GB RAM using DLVHEX 2.3.0; a timeout of 300 secs was set
for each run. As benchmarks, we used the following problems.

Access Policy Control. The first benchmark is a slight modification of Example 1
with an additional TBox axiomBlacklisted � Unauthorized . We have run experiments
in two settings: (a) with complete support families and (b) with support families ob-
tained under different restrictions, viz. bounded size and cardinality. We considered
three ABoxes with 40, 100 and 1000 staff members, respectively, and generated facts
of the form hasowner(pi , si), and such that Staff (si),Project(pi) ∈ A. For the set-
ting where complete support families were computed, we used ABoxes with 100 and
1000 staff members, respectively. For the incomplete scenario we used an ABox with
40 staff members. In each data set, 30% of staff members are unauthorized and 20% are
blacklisted. Instances vary on facts hasowner(pi , si). For each si, pi s.t. Staff (si),
Project(pi) ∈ A, a fact hasowner(pi , si) is added to the program with probability
p/100, where p ranges from 20 to 90 for the complete setting and from 5 to 35 for the
incomplete one.

The total average running times (including support set computation and timeouts) for
computing the first repair answer set for these settings are shown in Table 2. The number
of timeouts per each run is reported in brackets. The columns for the incomplete case
show the restriction on support sets we used in their generation, viz. size (resp. number)
of support sets bounded by 2 resp. unlimited; the latter means that in fact all support
sets were computed, but the system is not aware of the completeness.

We exploit partial completeness for the number restriction case, i.e. if no more sup-
port sets for an atom are computed and the number limit is not yet reached, then the
support family for the considered atom is complete.

Open Street Map. For the second benchmark, we added rules on top of the ontology
developed in the MyITS project,3 which enhanced personalized route planning with

3 http://www.kr.tuwien.ac.at/research/projects/myits/

http://www.kr.tuwien.ac.at/research/projects/myits/

438 T. Eiter, M. Fink, and D. Stepanova

Table 2. Policy benchmark results (30 runs per p; time in sec. (#timeouts) for 1st rep. AS)

p
Complete supp. family

p
Support set size restricted Support set number restricted
sizelim=2 sizelim=∞ numlim=2 numlim=∞

A100 A1000 A40

20 (30) 2.28 (0) 13.89 (0) 5 (30) 21.09 (0) 4.35 (2) 2.70 (2) 4.30 (2)
30 (30) 2.27 (0) 13.93 (0) 10 (30) 26.62 (5) 5.50 (3) 6.64 (3) 5.49 (3)
40 (30) 2.28 (0) 14.02 (0) 15 (30) 30.20 (12) 7.53 (5) 3.25 (10) 7.56 (5)
50 (30) 2.29 (0) 14.33 (0) 20 (30) 48.99 (5) 5.21 (4) 3.07 (4) 5.38 (4)
60 (30) 2.28 (0) 14.59 (0) 25 (30) 37.37 (16) 26.41 (6) 4.48 (14) 26.39 (6)
70 (30) 2.29 (0) 15.08 (0) 30 (30) 19.33 (22) 38.75 (6) 6.74 (12) 40.41 (6)
80 (30) 2.30 (0) 15.59 (0) 35 (30) 16.32 (26) 49.41 (10) 5.23 (17) 51.47 (10)
90 (30) 2.30 (0) 16.23 (0)

Table 3. OpenStreetMap benchmark results (30 runs per p; time in sec. (#timeouts) for 1st
rep. AS)

p Complete supp. family
Support set size restricted Support set number restricted

sizelim=1 sizelim=2 sizelim=∞ numlim=1 numlim=2 numlim=∞
10 (30) 10.08 (0) 13.87 (0) 13.22 (0) 14.19 (0) 13.82 (0) 13.98 (0) 13.89 (0)
20 (30) 9.36 (0) 23.38 (0) 22.82 (0) 20.32 (1) 20.32 (1) 20.19 (1) 20.29 (1)
30 (30) 9.13 (0) 27.92 (1) 27.48 (1) 20.36 (3) 20.39 (3) 20.18 (3) 20.22 (3)
40 (30) 9.53 (0) 54.63 (3) 54.36 (3) 23.34 (10) 23.31 (10) 23.42 (10) 23.51 (10)
50 (30) 9.62 (0) 76.08 (1) 76.18 (1) 19.61 (13) 19.48 (13) 19.48 (13) 19.64 (13)

semantic information. The ontology contains 4601 axioms, where 406 axioms are in
the TBox and 4195 are in the ABox. The fragmentO relevant for our scenario and the
rules P are shown in Figure 4. Intuitively,O states that building features located inside
private areas are not publicly accessible and a covered bus stop is a bus stop with a roof.
The rules P check that public stations do not lack public access, using CWA on private
areas.

We used the method in [12] to extract data from the OpenStreetMap,4 and we con-
structed an ABox A by extracting the sets of all bus stops (285) and leisure areas
(682) of the Irish city Cork, as well as isLocatedInside relations between them (9)
(i.e., bus stops located in leisure areas). As the data has been gathered by many volun-
teers, chances of inaccuracies may be high (e.g. imprecise gps data). As data about
roofed bus stops and private areas is not available yet, we randomly made 80% of
the bus stops roofed and 60% of leisure areas private. Finally, we added for each bsi
s.t. isLocatedInside(bsi, laj) ∈ A the fact busstop(bsi) to P with probability p/100.
Some instances are inconsistent since in our data set there are roofed bus stops, located
inside private areas.

The results for both complete and incomplete support families are shown in Table 3.

Discussion of Results. As expected, using complete support families works for both
settings well in practice. For the policy benchmark, allowing up to 2 support sets is more
effective than bounding the size by 2. This is due to exploitation of partial completeness
for the case when the number of support sets is limited. Moreover, there are just few
support sets for each DL-atom in this scenario; however almost all support sets have
size larger than 2. Thus many random guesses on potential repair candidates need to be
done, which is witnessed by jumps in the runtime for p = 40 to p = 80. If both size
and number of support sets are unlimited, the obtained results are practically the same.

4 http://www.openstreetmap.org/

http://www.openstreetmap.org/

Computing Repairs for Inconsistent DL-programs over EL Ontologies 439

O =

{
(1) BuildingFeature � ∃isLocatedInside.Private � NoPublicAccess
(2) BusStop � Roofed � CoveredBusStop

}

P =

⎧⎪⎪⎨
⎪⎪⎩

(9) publicstation(X)← DL[BusStop $ busstop ; CoveredBusStop](X);
not DL[; Private](X);

(10) ⊥ ← DL[BuildingFeature $ publicstation ; NoPublicAccess](X),
publicstation(X).

⎫⎪⎪⎬
⎪⎪⎭

Fig. 4. DL-program Π over OpenStreetMap ontology

A similar behavior is observed for the OpenStreetMap scenario. Even if the ontology
is big, runtimes do not differ significantly from the Policy example. This is due to liberal
safety [6], which effectively restricts the reasoning only to relevant individuals. We can
again see that bounding the number of support sets works better; however, there are no
jumps for bounded support set size. This is because a considerable number of support
sets has size at most 2, and they guide the repair search effectively.

7 Related Work and Conclusion

We considered computing repair answer sets of DL-programs over EL ontologies, for
which we generalized the support set approach [10; 8] for DL-LiteA to work with in-
complete families of supports sets; this advance is needed since in EL complete support
families can be large or even infinite. We discussed how to generate support families, by
exploiting query rewriting over ontologies to datalog [19; 23; 25], which is in contrast
to [10; 8] where TBox classification is invoked. We presented an algorithm to compute
deletion repair answer sets which trades answer completeness for scalability (a variant
is complete); a declarative implementation shows very promising results.

As for related work, our DL-program repair is related to ABox cleaning [20; 24].
However, the latter differs in various aspects: it aims at restoring consistency of an
inconsistent ontology by deleting ⊆-minimal sets of assertions (i.e., computing ⊆-
maximal deletion repairs); we deal with inconsistency incurred on top of a consistent
ontology, by arbitrary (non-monotonic) rules which access it with an interface. Further-
more, we must consider multiple ABoxes at once (via updates), and use EL instead of
DL-Lite . Refining our algorithm to compute⊆-maximal deletion repairs is possible.

Our support sets are related to solutions of abduction problems for EL [2], and
correspond in the ground case to support sets for query answering over first-order
rewritable ontologies [3]; nonground computation naturally links to TBox classifica-
tion [17]. Abduction had been studied for DL-Lite in [5] and for datalog e.g. in [14;
16]. The use of incomplete support families for DL-atoms is related in spirit to approxi-
mate inconsistency-tolerant reasoning on DLs using restricted support sets [3]; however,
we target repair computation while [3] targets inference from all repairs.

As for implementation, no comparable system exists. The DReW system [27] can
evaluate DL-programs over EL ontologies after transforming the input to datalog, where
DL-atoms are replaced by datalog rewritings; the latter amount to succinct representa-
tions of support sets. However, DReW can not handle inconsistencies and how to inject
repairs efficiently is non-obvious (naive attempts fail).

440 T. Eiter, M. Fink, and D. Stepanova

It remains an issue for further research to identify classes of EL ontologies for which
support sets have a benign structure and can be effectively computed, and on the other
side to extend the work to other members of the EL family. To increase usability in prac-
tice, real world ontologies need to be analyzed to develop good heuristics and strategies
for computing incomplete support families. Another possible research direction is com-
puting specific types of repairs, e.g. by bounded deletion or addition [9].

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P., Saffiotti, A.
(eds.) IJCAI, pp. 364–369. Prof. Book Center (2005)

2. Bienvenu, M.: Complexity of abduction in the EL family of lightweight description logics.
In: KR Proc., pp. 220–230. AAAI Press (2008)

3. Bienvenu, M., Rosati, R.: New inconsistency-tolerant semantics for robust ontology-based
data access. In: DL CEUR Workshop Proc., vol. 1014, pp. 53–64. CEUR-WS.org (2013)

4. Bonatti, P.A., Faella, M., Sauro, L.: EL with default attributes and overriding. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B.
(eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 64–79. Springer, Heidelberg (2010)

5. Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in DL-Lite . In: DL CEUR
Workshop Proc., vol. 353. CEUR-WS.org (2008)

6. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal safety for answer set programs with
external sources. In: AAAI, pp. 267-275. AAAI Press (2013)

7. Eiter, T., Fink, M., Krennwallner, T., Redl, C., Schüller, P.: Efficient HEX-program evaluation
based on unfounded sets. J. of Artif. Intell. Res. 49, 269–321 (2014)

8. Eiter, T., Fink, M., Redl, C., Stepanova, D.: Exploiting support sets for answer set programs
with external computations. In: AAAI (to appear, 2014)

9. Eiter, T., Fink, M., Stepanova, D.: Data repair of inconsistent DL-programs. In: IJCAI, pp.
869-876. IJCAI/AAAI (2013)

10. Eiter, T., Fink, M., Stepanova, D.: Towards practical deletion repair of inconsistent DL-
programs. In: ECAI 2014 (to appear, 2014)

11. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–
1539 (2008)

12. Eiter, T., Schneider, P., Simkus, M., Xiao, G.: Using openstreetmap data to create benchmarks
for ontology-based query answering systems. In: ORE 2014 (to appear, 2014)

13. Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison of descrip-
tion logic reasoners. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 654–667. Springer,
Heidelberg (2006)

14. Gottlob, G., Pichler, R., Wei, F.: Efficient datalog abduction through bounded treewidth. In:
AAAI, pp. 1626–1631. AAAI Press (2007)

15. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Query rewriting under EL-TBoxes:efficient algo-
rithms In: DL (to appear, 2014)

16. Hermann, M., Pichler, R.: Counting complexity of minimal cardinality and minimal weight
abduction. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI),
vol. 5293, pp. 206–218. Springer, Heidelberg (2008)

17. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK. J. of Autom. Reason, 1–61
(2013)

18. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite . In: KR Proc., pp. 247–257. AAAI Press (2010)

Computing Repairs for Inconsistent DL-programs over EL Ontologies 441

19. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in EL using a database system.
In: OWLED. CEUR Workshop Proc., vol. 432. CEUR-WS.org (2008)

20. Masotti, G., Rosati, R., Ruzzi, M.: Practical abox cleaning in DL-Lite (progress report). In:
DL. CEUR Workshop Proc., vol. 745. CEUR-WS.org (2011)

21. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. J. of the ACM 57(5), 1–62
(2010)

22. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic 8(2), 186–209 (2010)

23. Rosati, R.: On conjunctive query answering in EL. In: DL CEUR Workshop Proc., vol. 250.
CEUR-WS.org (2007)

24. Rosati, R., Ruzzi, M., Graziosi, M., Masotti, G.: Evaluation of techniques for inconsistency
handling in OWL 2 QL ontologies. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part II.
LNCS, vol. 7650, pp. 337–349. Springer, Heidelberg (2012)

25. Stefanoni, G., Motik, B., Horrocks, I.: Small datalog query rewritings for EL. In: DL CEUR
Workshop Proc., vol. 846, CEUR-WS.org (2012)

26. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies. LNCS,
vol. 5445. Springer, Heidelberg (2009)

27. Xiao, G., Eiter, T., Heymans, S.: The DReW system for nonmonotonic DL-programs. In:
CSWS 2012 and CWSC 2012, pp. 383–389. Springer, New York (2013)

28. Zhao, Y., Pan, J.Z., Ren, Y.: Implementing and evaluating a rule-based approach to querying
regular EL+ ontologies. In: HIS (3), pp. 493–498. IEEE Computer Society (2009)

29. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer
set programming with description logics for the Semantic Web. Artif. Intell. 172(12-13),
1495–1539 (2008)

A Prioritized Assertional-Based Revision for DL-Lite
Knowledge Bases

Salem Benferhat1, Zied Bouraoui1, Odile Papini2, and Eric Würbel3

1 CRIL-CNRS UMR 8188, Univ Artois, France
{benferhat,bouraoui}@cril.univ-artois.fr

2 LSIS-CNRS UMR 7296, Univ Aix Marseille, France
odile.papini@univ-amu.fr

3 LSIS-CNRS UMR 7296, Univ Toulon, France
wurbel@univ-tln.fr

Abstract. DL-Lite is a powerful and tractable family of description logics. One
of the fundamental issue in this area is the evolution or revision of knowledge
bases. To this end, many approaches are recently developed for revising flat DL-
Lite knowledge bases. This paper investigates “Prioritized Removed Sets Revi-
sion” (PRSR) in DL-Lite framework where the assertions or data are prioritized
(for instance in case where the data are provided by multiple sources having dif-
ferent reliability levels). PRSR approach is based on inconsistency minimization
in order to restore consistency where the minimality refers to the lexicographic
criterion and not to the set inclusion one. We study different forms of incorpo-
rated information: an assertion, a positive inclusion axiom or a negative inclusion
axiom. We show that under some conditions PRSR can be achieved in polynomial
time. We give logical properties of the proposed operators in terms of satisfaction
of Hansson’s postulates rephrased in DL-Lite framework. We finally show how to
use the notion of hitting sets for computing prioritized removed sets.

1 Introduction

In the last years, there has been an increasing use of ontologies in many application ar-
eas. Description Logics (DLs) have been recognized as a powerful formalism for both
representing and reasoning about ontologies. A DL knowledge base is built upon two
distinct components: A terminological base (called TBox), representing generic knowl-
edge about the application domain, and an assertional base (called ABox), containing
the assertional facts (i.e. individuals or constants) that instantiate terminological knowl-
edge. Recently, a lot of attention was given to DL-Lite [8], a family of lightweight
DLs specifically tailored for applications that use huge volumes of data, like Web ap-
plications, for which query answering is the most important reasoning task. DL-Lite
guarantees a very low computational complexity of the reasoning process.

DLs knowledge base evolution gave rise to an increasing interest (e.g. [10,17]) and
often concerns the situation where new information should be incorporated, while en-
suring the consistency of the result. Such problem is well-known as a belief revision
problem. It has been defined as knowledge change and has been characterized for in-
stance by the well-known AGM postulates [1] for the revision of belief sets, or by
the Hansson’s postulates [11,13] for the revision of belief bases. Several works have

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 442–456, 2014.
c© Springer International Publishing Switzerland 2014

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 443

been proposed for the revision of DL-Lite knowledge bases (e.g. [21,9,12]), and espe-
cially for the revision of the ABox, since DL-Lite has witnessed a well suitability for
Ontology-Based Data Access applications (OBDA). In such setting a TBox acts as be-
ing a schema used to reformulate raised queries in order to offer a better access to the
set of data stored in an ABox.

Recently, an assertional-based "Removed Sets Revision" (RSR) approach has been
proposed in [4] to revise DL-Lite knowledge bases. This approach is inspired from
belief base revision in propositional logic framework [23,16]. It is based on incon-
sistency minimization, and consists in determining the smallest subsets of assertions
which should be dropped from the current base in order to accept the new information
and restore consistency. Note that in this approach, the minimality is understood with
respect to cardinality and not with respect to set inclusion. The computation of the set
of minimal assertions responsible of conflicts can be performed in polynomial time.

In real word applications, data is often provided by several and potentially conflicting
sources. Their concatenation leads to a prioritized or a stratified ABox. This stratifica-
tion generally results from two situations, as pointed out in [5]. The first one is when
each source provides its set of data without any priority between them, but there exists
a total pre-ordering between the sources, reflecting their reliability. The other situation
is when the sources are considered as equally reliable (i.e. having the same reliability
level), but there exists a preference ranking between the set of provided data according
to their level of certainty.

To illustrate this situation, let us give the following example, adapted from [9]. Let
K be a consistent knowledge base storing knowledge of an online newspaper collected
using RSS feeds or Web crawling. The terminological base of this newspapers is as
follows: wives are exactly those individuals who have husbands and some wives are
employed. The assertional base A comes from crawling three distinct Web sources A1,
A2 and A3 where A2 is more reliable than A1 and A1 is more reliable than A3. A1

says that Mary is a wife, A2 says that Mary is employed and A3 says that Mary’s
husband is John. It is clear that connecting information issued from A1, A2 and A3

gives a prioritized assertional base. Assume that we found out an information to be
incorporated into the knowledge base, which states that singles cannot be husbands.
One can easily check that this new information not conflicting with the old ones stored
in the knowledge base. Assume now that we found out another information saying that
John is now single. One can verifies that this new information conflicts with the previous
one. An important question addressed here is : "how one can we revise the knowledge
base, while taking into account priorities between the assertions?".

The role of priorities in belief revision is very important and it has been largely stud-
ied in the literature, in the case where knowledge bases are encoded in a propositional
logic setting (e.g. [6]). The notion of priorities in DLs is used in (e.g.[19]) to deal with
defaults terminology while assuming that the ABox is completely sure. In [18] priori-
ties are used to deal with inconsistencies in DL knowledge bases. In [17] the notion of
priority has been used for ontology matching. Note that in [17] priorities are used on
the set of concepts name and not on formulas. However, as far as we know, revising of
prioritized assertional-based in DL-Lite knowledge bases has not been addressed so far.

444 S. Benferhat et al.

This paper goes one step further in the definition of assertional-based RSR and in-
vestigates revision when priorities attached to assertions are available. This extension
is based on the notion of Prioritized Removed Sets proposed in [3] for revising a set of
prioritized propositional formulas. The minimality in revision with prioritized removed
set refers to the lexicographic criterion and not to the set inclusion one. In this paper,
we study revision for different forms of input: an ABox assertion or a TBox axiom. We
define prioritized removed sets in DL-Lite framework. The main contribution of this
work is to analyze the different scenarios of revision. In particular, we show that for
some form of conflicts and some kinds of inputs, the revision process can be achieved
in polynomial time. In the general case, we show that the number of prioritized removed
sets is bounded and we propose an algorithm for computing them using the notion of
hitting sets.

The rest of this paper is organized as follows. Section 2 gives brief preliminaries on
DL-Lite logic. Section 3 investigates prioritized assertional-based removed sets revi-
sion within the framework of DL-Lite and gives the logical properties of the proposed
operators. Section 4 provides algorithms for computing the prioritized removed sets
through the use of hitting sets. We show that in particular cases revision process can be
performed in a polynomial time. Section 5 concludes this paper.

2 Preliminaries

In this paper, we only considerDL-LiteR, which underlies OWL2-QL. However, results
of this work can be easily generalized for others DL-Lite logics (see [2] for more details
about the DL-Lite family).

Syntax A DL-Lite knowledge baseK=〈T ,A〉 is built upon a set of atomic concepts (i.e.
unary predicates), a set of atomic roles (i.e. binary predicates) and a set of individuals
(i.e. constants). Complex concepts and roles are formed as follows:

B −→ A|∃R C −→ B|¬B
R −→ P |P− E −→ R|¬R

where A (resp. P) is an atomic concept (resp. role). B (resp. C) are called basic (resp.
complex) concepts and roles R (resp. E) are called basic (resp. complex) roles. The
TBox T consists of a finite set of inclusion axioms between concepts of the form: B �
C and inclusion axioms between roles of the form: R � E. The ABox A consists of a
finite set of membership assertions on atomic concepts and on atomic roles of the form:
A(ai), P (ai, aj), where ai and aj are individuals. For the sake of simplicity, in the rest
of this paper, when there is no ambiguity we simply use DL-Lite instead of DL-LiteR.

Semantics The DL-Lite semantics is given by an interpretation I = (Δ, .I) which con-
sists of a nonempty domain Δ and an interpretation function .I . The function .I assigns
to each individual a an element aI ∈ ΔI , to each concept C a subset CI ⊆ ΔI and
to each role R a binary relation RI ⊆ ΔI ×ΔI over ΔI . Moreover, the interpretation
function .I is extended for all constructs of DL-LiteR. For instance: (¬B)I=ΔI\BI ,
(∃R)I={x ∈ ΔI |∃y ∈ ΔI such that (x, y) ∈ RI} and (P−)I={(y, x) ∈ ΔI ×

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 445

ΔI |(x, y) ∈ P I}. Concerning the TBox, we say that I satisfies a concept (resp. role)
inclusion axiom, denoted by I |= B � C (resp. I |= R � E), iff BI ⊆ CI (resp.
RI ⊆ EI). Concerning the ABox, we say that I satisfies a concept (resp. role) mem-
bership assertion, denoted by I |= A(ai) (resp. I |= P (ai, aj)), iff aIi ∈ AI (resp.
(aIi , a

I
j) ∈ P I). Note that we only consider DL-Lite with unique name assumption.

Finally, an interpretation I is said to satisfy a knowledge base K=〈T ,A〉 iff I satisfies
every axiom in T and every axiom in A. Such interpretation is said to be a model of K.

Incoherence and inconsistency Two kinds of inconsistency can be distinguished in DL-
based knowledge bases: incoherence and inconsistency [4]. The former is considered as
a kind of inconsistency in the TBox, i.e. the terminological part, of a knowledge base.
The latter is the classical inconsistency for knowledge bases. Namely, a knowledge base
is said to be inconsistent iff it does not admit any model and it is said to be incoherent
if there exists at least a non-satisfiable concept, namely for each interpretation I which
is a model of T , we have CI=∅.

In DL-Lite a TBox T ={PIs,NIs} can be viewed as composed of positive inclusion
axioms, denoted by (PIs), and negative inclusion axioms, denoted by (NIs). PIs are of
the form B1 � B2 or R1 � R2 and NIs are of the form B1 � ¬B2 or R1 � ¬R2. The
negative closure of T , denoted by cln(T), performs interaction between PIs and NIs.
It represents the propagation of the NIs using both PIs and NIs in the TBox. cln(T) is
obtained by using the following rules repeatedly until reaching a fix point (see [8] for
more details):

– all NIs in T are in cln(T);
– if B1 � B2 is in T and B2 � ¬B3 or B3 � ¬B2 is in cln(T), then B1 � ¬B3 is

in cln(T);
– if R1 � R2 is in T and ∃R2 � ¬B or B � ¬∃R2 is in cln(T), then ∃R1 � ¬B is

in cln(T);
– if R1 � R2 is in T and ∃R−2 � ¬B or B � ¬∃R−2 is in cln(T), then ∃R−1 � ¬B

is in cln(T);
– if R1 � R2 is in T and R2 � ¬R3 or R3 � ¬R2 is in cln(T), then R1 � ¬R3 is

in cln(T);
– if one of the assertions ∃R � ¬∃R, ∃R− � ¬∃R− or R � ¬R is in cln(T) then

all three such assertions are in cln(T).

An important property has been established in [8] for consistency checking in DL-Lite.
Formally,K is consistent if and only if 〈cln(T),A〉 is consistent [8].

3 PRSR for DL-Lite Knowledge Bases

In this section, we investigate DL-Lite prioritized knowledge base revision using a lex-
icographical strategy based on inconsistency minimization, well-known as Prioritized
Removed Sets Revision (PRSR) [3], and previously defined in a classical logic setting.

446 S. Benferhat et al.

3.1 Conflict Sets

Let L be a DL-Lite description language, presented in section 2 andK=〈T ,A〉 be a DL-
Lite prioritized knowledge base expressed in L. We assume T is coherent and not strat-
ified. On contrast, the ABox is stratified i.e. partitioned into n strata,A=A1 ∪ · · · ∪An

such that the assertions in Ai have the same level of priority and have higher priority
than the ones in Aj where j > i. We assume that K is consistent and let us denote by
N a new consistent information to be accepted. The presence of this new information
may lead to inconsistency according to the content of the TBox and the nature of the
input information. Within the DL-LiteR language, N may be an assertions, a positive
inclusion axiom (PI) or a negative inclusion axiom (NI). In some cases N may have a
desirable interaction withK. Clearly, according to [8], every DL-Lite knowledge baseK
with only PIs in its TBox is always satisfiable (consequence of Lemma 7 in [8]). How-
ever when the TBox T contains NI axioms then N may have an undesirable interaction
with K, which leads to inconsistency. In this case, a natural question for revising K is:
which of the TBox axioms or ABox assertions should be removed first with respect to
some ABox, since a TBox may be incoherent but never inconsistent. We remind the
Calvanese et al. result [9].

Lemma 1. Let K = 〈T ,A〉 be a DL-Lite knowledge base. If A = ∅ then K is consis-
tent. If K is inconsistent, then there exists a subset A′ ⊆ A with at most two elements,
such that T ∪ A′ is inconsistent.

In this paper, revision leads to ignoring some assertions, namely we give a priority
to the TBox over ABox. Furthermore we only focus on inconsistency and assume that
T is coherent and not stratified. This is not a restriction. This particular case can be
handled outside the revision problem considered in this paper. Recall that this choice
is motivated by the fact that DL-Lite framework was especially tailored for Ontology-
Based based Access setting, in which the TBox is needed to access to the data stored in
the ABox. LetK be an inconsistent knowledge base, we define the notion of conflict as
a minimal inconsistent subset of A, more formally:

Definition 1. LetK = 〈T ,A〉 be an inconsistent DL-Lite knowledge base. A conflict C
is a set of membership assertions such that: i) C ⊆ A, ii) 〈T , C〉 is inconsistent, iii)
∀C′, C′ ⊂ C, T ∪ C′ is consistent.

We denote by C(K) the collection of conflicts in K. Since K is assumed to be finite, if
K is inconsistent then C(K) �= ∅ is also finite.

Within the DL-Lite framework, in order to restore consistency while keeping new
information, the Prioritized Removed Sets Revision strategy removes exactly one as-
sertion in each conflict, by choosing the minimum number of assertions from A1, then
the minimum number of assertions in A2, and so on. Using lexicographic criterion in-
stead of set inclusion one reduces the set of potential conflicts. Taking the stratification
of the ABox into account has not been considered before for revising or repairing DL-
Lite knowledge bases (e.g. [15,7]).

We first define a lexicographic preference relation between subsets of the ABox.

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 447

Definition 2. Let X and X ′ be two subsets ofA = A1∪. . .∪An. X is strictly preferred
to X ′, denoted by X <lex X ′ if and only if i) ∃i, 1 ≤ i ≤ n , |X ∩ Ai| < |X ′ ∩ Ai|,
ii) ∀j, 1 ≤ j < i, |X ∩ Aj | = |X ′ ∩ Aj |.

Example 1. Let A be a stratified ABox A=A1 ∪ A2 ∪ A3 where A1={B1(a)}, A2=
{B2(b)} andA3={B3(a), B3(b)}. Let X={B3(a), B3(b)} and X ′={B3(a), B2(b)} be
two subsets of A. We have X <lex X ′.

Definition 3. let X and X ′ be two subsets ofA. X is at least equally preferred1 to X ′,
denoted by X ≤lex X ′ if and only if : i) ∃i, 1 ≤ i ≤ n , |X ∩ Ai| ≤ |X ′ ∩ Ai|, ii)
∀j, 1 ≤ j < i, |X ∩ Aj | = |X ′ ∩ Aj |.

We now more formally present PRSR according to the nature of the input informa-
tion.

3.2 Revision by a Membership Assertion

We first consider the case where N is a membership assertion. It corresponds to the re-
vision by a fact or by an observation. In what follows,K∪{N} denotes 〈T ,A ∪ {N}〉
where A is a prioritized ABox. The following definition introduces the concept of pri-
oritized removed set.

Definition 4. Let K=〈T ,A〉 be a consistent stratified knowledge base and N be a
membership assertion. A prioritized removed set, denoted by X , is a set of membership
assertions such that i) X ⊆ A, ii) 〈T , (A\X) ∪ {N}〉 is consistent, iii) ∀X ′ ⊆ A, if
〈T , (A\X ′) ∪ {N}〉 is consistent then X ≤lex X ′.

We denote by PR(K ∪ {N}) the set of prioritized removed sets of K ∪ {N}. If
K ∪ {N} is consistent then PR(K ∪ {N}) = ∅.

Proposition 1. LetK be a consistent stratified knowledge base andN be a membership
assertion. If K ∪ {N} is inconsistent then |PR(K ∪ {N})| = 1.

Proof. Suppose that there are two prioritized removed sets X and X ′ such that X �=
X ′. By Definition 4, X ⊆ A, X ′ ⊆ A, X =lex X ′ and ∀C ∈ C(K∪{N}), C ∩X �= ∅
and C ∩ X ′ �= ∅. Moreover C ∩ {N} �= ∅, therefore |C ∩ A| = 3 which contradicts
lemma 1. ��

Definition 5. Let K=〈T ,A〉 be a consistent stratified knowledge base and N be a
membership assertion. The revised knowledge baseK◦PRSRN is defined byK◦PRSR

N = 〈T ,A ◦PRSR N〉 whereA◦PRSRN = (A\X)∪{N} with X ∈ PR(K∪{N}).

When N is a membership assertion and the ABox is prioritized, PRSR gives the
same result as RSR[4] in the flat case (where all the assertions in the ABox have the
same priority). More formally:

Proposition 2. LetK be a consistent stratified knowledge base andN be a membership
assertion. K ◦PRSR N = K ◦RSR N .

1 X is equally preferred to X ′, denoted by X =lex X ′, iff X ≤lex X ′ and X ′ ≤lex X .

448 S. Benferhat et al.

Proof (Sketch of proof). The proof is immediate. It follows from Proposition 1, since
|PR(K ∪ {N})| = 1. ��

Example 2. Let K=〈T ,A〉 be a consistent stratified knowledge base such that T
={B1 � B2, B2 � ¬B3, B3 � ¬B4} and A = A1 ∪ A2 ∪ A3, where A1 = {B1(a)}
A2 = {B3(b)},A3 = {B4(a)}. Let N=B3(a). ThenK∪{N} is inconsistent. By Def-
inition 1, C(K ∪ {N}) = {{B1(a), B3(a)}, {B3(a), B4(a)}}. Hence, by Definition 4,
PR(K ∪ {N}) = {{B1(a), B4(a)}}. ThereforeA ◦PRSR N = {B3(b), B3(a)}.

As detailed in [4], computing the set of conflicts is polynomial. Moreover when the
input is a membership assertion, as illustrated in the above example, Proposition 1 states
that there is only one prioritized removed set, which is computed in polynomial time as
shown in Section 4.

3.3 Revision by a Positive or a Negative Axiom

We now consider the case where the input N is a PI axiom or a NI axiom. In this case,
K ∪ {N} denotes 〈T ∪ {N},A〉.

Definition 6. Let K=〈T ,A〉 be a consistent stratified knowledge base, and N be a PI
or a NI axiom. A prioritized removed set, denoted by X , is a set of assertions such that i)
X ⊆ A, ii) 〈T ∪ {N}, (A\X)〉 is consistent and iii) ∀X ′ ⊆ A, if 〈T ∪ {N}, (A\X ′)〉
is consistent then X ≤lex X ′.

Let us point out that Definition 6 is similar to Definition 4, except that new infor-
mation is not added to the ABox but to the TBox. However, the revision process still
considers the TBox as a stable knowledge. Therefore, in order to restore consistency,
assertional elements should be removed. We denote again by PR(K ∪ {N}) the set of
prioritized removed sets of K ∪ {N}.

Example 3. LetK=〈T ,A〉 be a consistent stratified knowledge base such that T ={B1 �
B2, B3 � ¬B4} andA = A1 ∪A2 ∪A3, whereA1 = {B1(a)} A2 = {B2(b)}, A3 =
{B3(a), B3(b)}. Let N=B2 � ¬B3. Then K ∪ {N} is inconsistent. C(K ∪ {N}) =
{{B1(a), B3(a)}, {B2(b), B3(b)}}, the removed sets [4] are X1 = {B1(a), B2(b)},
X2 = {B1(a), B3(b)}, X3 = {B3(a), B2(b)}, X4 = {B3(a), B3(b)} however there is
only one prioritized removed set X4 as illustrated in table 1.

Table 1. One prioritized removed set

Ai |X1 ∩Ai| |X2 ∩Ai| |X3 ∩Ai| |X4 ∩Ai|
A3 0 1 1 2
A2 1 0 1 0
A1 1 1 0 0

If the stratification of A is A1={B1(a), B3(a)}, A2={B2(b)} and A3 = {B3(b)},
then there are two prioritized removed sets X2 and X4 as illustrated in table 2.

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 449

Table 2. Two prioritized removed sets

Ai |X1 ∩Ai| |X2 ∩ Ai| |X3 ∩ Ai| |X4 ∩ Ai|
A3 0 1 0 1
A2 1 0 1 0
A1 1 1 1 1

When the input is a membership assertion, then there exists exactly one prioritized
removed set. However, when the input information is a NI or a PI axiom there may
exist one or several prioritized removed sets, as illustrated in the previous example. The
following proposition provides the condition of the existence of exactly one prioritized
removed set.

Proposition 3. If for each C ∈ C(K ∪ {N}), there exists i and j, i �= j, such that
C ∩Ai �= ∅ and C ∩ Aj �= ∅, then |PR(K ∪ {N})| = 1.

Proof. Suppose that there are two prioritized removed sets, X and X ′, with X �= X ′.
By Definition 6 X ⊆ A, X ′ ⊆ A, X =lex X ′ and ∀C ∈ C(K∪ {N}), C ∩X �= ∅ and
C ∩X ′ �= ∅. If |C ∩X | = 2 (resp. |C ∩X ′| = 2), then X (resp. X ′) is not a prioritized
removed set. If |C ∩X | = 1 and |C∩X ′| = 1 then two cases hold. If C∩X �= C∩X ′,
since there exists i and j, i �= j, such that C∩Ai �= ∅ and C∩Aj �= ∅which contradicts
X =lex X ′. If C ∩X = C ∩X ′ then X = X ′ which contradicts the hypothesis. ��

This situation holds when each stratum is consistent with T ∪ {N}, for example
when the stratification comes from several experts with different degrees of reliability.
In this case, as detailed in section 4, computing the unique prioritized removed set
is polynomial. The following proposition gives the condition of existence of several
prioritized removed sets.

Proposition 4. If there exists C ∈ C(K ∪ {N}) such that there exists i, C ∩ Ai �= ∅
and for all j, j �= i, C ∩ Aj = ∅, then |PR(K ∪ {N})| ≥ 2.

Proof. Suppose there is only one prioritized removed set X . By Definition 6, X ⊆ A
and C ∩X �= ∅. If |C ∩X | = 2 then X is not a prioritized removed set. If |C ∩X |=1,
since there exists i, such that |C ∩ Ai|=2 therefore there exists X and X ′ such that
C ∩X �= ∅ and C ∩X ′ �= ∅ and X =lex X ′ which contradicts the hypothesis. ��

There are several prioritized removed sets as soon as there are conflicts included
in a stratum where each conflict may leads to two prioritized removed sets. Namely,
let NC be the number of conflicts such that each one is included in a stratum, the
number of prioritized removed sets is bounded by 2NC . In such case, each prioritized
removed set leads to a possible revised knowledge base: Ki=〈T ∪ {N}, (A\Xi)〉 with
Xi ∈ PR(K ∪ {N}). In the DL-Lite language, it is not possible to find a knowledge
base which represents the disjunction of such possible revised knowledge base. If we
want to keep the result of revision in DL-Lite, several options are possible. The first
one is to consider the intersection of all possible revised knowledge bases however this
option may be too cautious since it could remove too many assertions and contradicts
in some sense the minimal change principle. Another option is to define a selection
function, where the revised knowledge base is defined as follows.

450 S. Benferhat et al.

Definition 7. Let K=〈T ,A〉 be a consistent stratified knowledge base and N be a PI
or a NI axiom. Let f be a selection function, the revised knowledge baseK◦PRSRN is
such thatK ◦PRSR N=〈T ∪ {N},A ◦PRSR N〉, where A◦PRSR N=(A\f(PR(K∪
{N}))).

When N is a NI or a PI axiom, PRSR generalizes RSR [4]. More formally:

Proposition 5. Let K=〈T ,A〉 be a consistent knowledge base, N be a PI or a NI ax-
iom. If A is not stratified then K ◦PRSR N = K ◦RSR N

Proof. If A is not stratified, i.e. there is only one stratum, conditions i) and ii) in Def-
inition 6 do not change and condition iii) becomes ∀ ⊆ A, if 〈T ∪ {N}, (A\X ′)〉
is consistent, then |X ∩ A| < |X ′ ∩ A| since X ⊆ A. It follows that ∀ ⊆ A if
〈T ∪ {N}, (A\X ′)〉 is consistent then |X | < |X ′|, which is the third condition in the
definition of a removed set [4]. ��

3.4 Logical Properties

Revision within the framework of Description logics, in particular DL-Lite, requires
belief bases, i.e. finite sets of formulas. Postulates have been proposed for characteriz-
ing belief bases revision in a propositional logic setting [11,13]. In [4] the Hansson’s
postulates are rephrased within DL-Lite framework.

Let K, K′ be DL-Lite knowledge bases, N and M be either membership assertions
or positive or negative axioms, ◦ be a revision operator.K+N denotes the non closing
expansion, i.e. K + N=K ∪ {N}. The postulates are: P1 (Success) N ∈ K ◦ N . P2
(Inclusion) K ◦ N ⊆ K + N . P3 (Consistency) K ◦ N is consistent. P4 (Vacuity) If
K∪{N} is consistent thenK◦N=K+{N}. P5 (Pre-expansion) (K+N)◦N=K◦N .
P6 (Internal exchange) If N , M ∈ K then K ◦ N=K ◦M . P7 (Core retainment) If
M ∈ K and M �∈ K ◦ N then there is at least one K′ such that K′ ⊆ K + N , and K′
is consistent but K′ ∪ {M} is inconsistent. P8 (Relevance) If M ∈ K and M �∈ K ◦N
then there is at least one K′ such that K ◦N ⊆ K′ ⊆ K + N , and K′ is consistent but
K ′ ∪ {M} is inconsistent.

Proposition 6. Let K be a consistent stratified knowledge base. If N is a membership
assertion then the revision operator ◦PRSR satisfies the postulates P1- P8. If N is a PI
or a NI axiom then the revision operator ◦PRSR satisfies the postulates P1- P7.

Proof (Sketch of proof). For both revision operators P1-P6 follow from the definition
of PRSR and P7 follows from the existence of at least one prioritized removed set. On
contrast P8 requires the existence of only one prioritized removed set, which is the case
when N is a membership assertion, but this is not the case in general when N is a PI or
a NI axiom, except for the case stated in Proposition 3. ��

In the next section, we provide different algorithms for computing the prioritized re-
moved sets depending on the nature of the input.

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 451

4 Computing Revision Operation

As stated before, when trying to revise a DL-Lite knowledge base we want to withdraw
only ABox assertions in order to restore consistency, i.e. prioritized removed sets will
only contain elements from the ABox. From the computational point of view, we have
to distinguish several cases depending on the nature of the input N , the content of the
knowledge base and the form of the conflicts.

4.1 Result of Revision by an Assertion

When new information is an assertion, thanks to Proposition 1, there exists only one
prioritized removed set. The computation of this set amounts in picking in each con-
flict the assertion which is different from the input N . This operation follows from a
simple and non costly adaptation of the algorithm given in [8] for checking the consis-
tency of a DL-Lite knowledge base. The main difference is that in [8] the aim is only
to check whether a DL-Lite knowledge base is consistent or not. Here, we do one step
further, as we need to enumerate all assertional facts that conflict with the input. Com-
puting these conflicting assertions with N first requires the negative closure cln (T),
computed using the rules given in Section 2 repetively until reaching a fixed point. We
suppose that this is performed by a NEGCLOSURE function. We provide the algorithm
COMPUTEPRSR1, which computes the prioritized removed set PR ∈ PR(K∪{N}).

Algorithm 1. COMPUTEPRSR1
1: function COMPUTEPRSR1 (K = 〈T ,A〉 , N)
2: PR ← ∅
3: cln (T)← NEGCLOSURE(T)
4: for all X � ¬Y ∈ cln (T) do
5: for all α ∈ A do
6: if 〈X � ¬Y, {α,N}〉 is inconsistent then
7: PR ← PR ∪ {α}
8: Return PR

Generally, the computation of the conflicts proceeds with the evaluation over A of
each NI axiom in cln (T) in order to exhibit whether A contains assertions which con-
tradict the NI axioms. Intuitively, for each X � ¬Y belonging to cln (T), the eval-
uation of X � ¬Y over the A simply amounts to return all (X(x), Y (x)) such that
X(x) and Y (x) belongs to A. When N is an assertion, one can easily check that every
conflict which contradicts a NI axiom is of the form {α,N} where α ∈ A. This means
that there exists exactly one prioritized removed set. Hence, in this case the removed
set computation can be performed in polynomial time.

Note that the algorithm COMPUTEPRSR1 produces the same revision result as the
algorithm proposed in [9], since revision with an ABox assertion is uniquely defined
(theorem 13 in [9]).

452 S. Benferhat et al.

4.2 PRSR Computation : Revision by an Axiom

We now detail the case where N is a PI or a NI axiom. According to Definition 6,
computing PR(K ∪ {N}) starts with the computation of PR((T ∪ {N}) ∪ A1), then
continues with the computationPR((T ∪{N})∪ (A1 ∪A2)), and so on. A prioritized
removed set is formed by picking in each conflict the least priority element. However,
according to the form of conflicts, two situations hold as pointed out in Section 3.

The first one is when each conflict involves two elements having different levels of
priority. From Proposition 3, we have shown that there exists only one prioritized re-
moved set. We provide the algorithm COMPUTEPRSR2 which computes the prioritized
removed set PR ∈ PR(K ∪ {N}).

Algorithm 2. COMPUTEPRSR2
1: function COMPUTEPRSR2 (K = 〈T ,A〉 , N)
2: T ′ ← T ∪ {N}, K′ = 〈T ′,A〉
3: cln (T ′)← NEGCLOSURE(T ′)
4: PR ← ∅
5: i ← 1
6: while i ≤ n do
7: for all X � ¬Y ∈ cln (T ′) do
8: for all α ∈ Ai do
9: j ← i+ 1

10: while j ≤ n do
11: for all β ∈ Aj do
12: if 〈X � ¬Y, {α, β}〉 is inconsistent then
13: PR ← PR ∪ {β}
14: Aj ← Aj \ {β}
15: j ← j + 1

16: i← i+ 1

17: Return PR

The algorithm COMPUTEPRSR2 proceeds from a current layer to all the other less
preferred layers and selects the assertions which conflict with the ones in the current
layer. We increment from a layer to another in order to ensure the minimality of the
prioritized removed set w.r.t. lexicographic ordering. Note that this algorithm is based
on inconsistency checking and its computational complexity is polynomial.

We now describe the second case, where there exists at least a conflict involving two
elements having the same priority level. In such situation there are several prioritized
removed sets to be computed, as pointed out in Proposition 4. In order to compute
them, we follow the idea proposed in [23], where removed sets in the flat case can be
computed using the hitting set notion [20]. A hitting set is a set which intersects each set
in a collection. A minimal hitting set, w.r.t. set inclusion, is called a kernel. Moreover,
kernels which are minimal w.r.t. cardinality correspond to the definition of a removed
set [23]. The same result has been established for the removed set revision of DL-Lite
knowledge bases [4] where the computation of the kernels of C(K∪{N}) is performed
using Reiter’s algorithm [20], modified in [22]. We recall this algorithm [4].

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 453

Definition 8. A tree T is an HS-tree of C(K ∪ {N}) if and only if it is the smallest tree
having the following properties:

1. Its root is labeled by an element from C(K∪{N}). If C(K∪{N}) is empty, its root
labeled by ’

√
’.

2. If m is a node from T, let H(m) be the set of branch labels on the path going from
the root to T to m. If m is labeled by ’

√
’, it has no successor in T.

3. If m is labeled by a set C ∈ C(K ∪ {N}), then, for each c ∈ C, m has a successor
node mc in T, joined to m by a branch labeled by c. The label of mc is a set
C

′ ∈ C(K∪ {N}) such that C
′ ∩H(mc) = ∅, if such a set exist. Otherwise, mc is

labeled by ’
√

’.

The kernels correspond to the leaves labeled by
√

. For each such node m, H(m) is a
kernel of C(K ∪ {N}). We use the same pruning techniques as in [22].

Concerning prioritized removed sets, they are not necessarily minimal w.r.t. cardinality.
But they are minimal w.r.t. lexicographic ordering (≤lex for short). So, a naive algo-
rithm for computing PR(K ∪ {N}) is : (i) compute the kernels of C(K ∪ {N}). (ii)
keep only minimal ones w.r.t. ≤lex. However, we can improve the algorithm.

As we said before, a prioritized removed set is computed from one layer to another.
The idea of the enhancement of the algorithm is as follows: First, compute the conflicts
in the first layer, i.e. in (T ∪{N})∪A1, then build the hitting set tree on this collection
of conflicts. This tree allows for the computation of the kernels of (T ∪ {N}) ∪ A1

minimal w.r.t. ≤lex. From these kernels, continue the construction of the tree using
conflicts in (T ∪ {N}) ∪ ({A1 ∪ A2}) if they exist, and so on until reaching a fixed
point where no conflict will be generated. Now the kernels of the final hitting set tree
using conflicts in (T ∪ {N}) ∪ ({A1 ∪ A2 ∪ ... ∪ An}) which are minimal w.r.t. ≤lex

are the prioritized removed sets. The following algorithm COMPUTEPRSR3 computes
PR(K ∪ {N}) using hitting sets.

Algorithm 3. COMPUTEPRSR3
1: function COMPUTEPRSR3 (K=〈T ,A〉 , N)
2: T ′ ← T ∪ {N}, K′ = 〈T ′,A〉
3: cln (T ′)← NEGCLOSURE(T ′)
4: PR(K′)← ∅
5: C ← ∅, TREE← ∅, i ← 1
6: while i ≤ n do
7: for all X � ¬Y ∈ cln (T ′) do
8: for all (α, β) s.t. α ∈ A1, β ∈ A1 ∪ . . . ∪Ai do
9: if 〈X � ¬Y, {α, β}〉 is inconsistent then

10: C ← C ∪ {α, β}
11: TREE← TREE.ADDFROMLEXKERNEL(HS(C))
12: C ← ∅,
13: i← i+ 1

14: PR(K′)← LEXKERNEL(TREE)
15: Return PR(K′)

454 S. Benferhat et al.

In this algorithm the function HS(C) takes as input the conflicts computed in each layer
(if they exist) and builds the corresponding hitting sets tree (TREE), using the algo-
rithm presented in Definition 8. From a layer to another, we resume the construction of
(TREE) from its current kernels minimal w.r.t. ≤lex. Namely, the function ADDFROM-
LEXKERNEL((HS(C)) builds the hitting set tree of a collection of conflicts C starting
from the kernels branches of the current TREE which are minimal w.r.t. ≤lex. Finally
PR(K ∪ {N}) corresponds to the kernels of TREE obtained using function LEXKER-
NEL(TREE)) which are minimal w.r.t. ≤lex. Note that COMPUTEPRSR3 is a general-
ization of COMPUTEPRSR2, since when all conflicts involve elements from distinct
layers, then the final tree will only contains one prioritized removed set. The following
example illustrates this algorithm.

Example 4. ConsiderK=〈T ,A〉, with T ={A � B,C � B} andA=A1∪A2∪A3∪A4

where A1={A(a), D(a)}, A2={C(a), B(b)}, A3={D(b)} and A4={D(c), C(c)}. We
want to revise K with N=B � ¬D. Then, We have cln(T ∪ {B � ¬D})={B �
¬D,A � ¬D,C � ¬D}. The conflicts obtained from cln(T ′)∪A1 are {A(a), D(a)}.
The constructed tree using HS({A(a), D(a)}) will contain two branches labeled re-
spectively by A(a) and D(a) which are kernels minimal w.r.t. ≤lex (≤lex kernel). We
continue with cln(T ′)∪A1∪A2 where {C(a), D(a)} is a conflict. We resume the con-
struction of the tree its current≤lex kernel (branches labeled by A(a) and D(a)) and we
obtain three HS-tree: {A(a), C(a)}, {A(a), D(a)} and D(a) where only D(a) is ≤lex

kernel. Now, we increment to cln(T ′)∪A1∪A2∪A3 where {B(b), D(b)} is a conflict
and we continue the construction of the Tree from D(a). We obtain {D(a), D(b)} and
{D(a), B(b)} as HS-tree where only {D(a), D(b)} is≤lex kernel. Finally, We we have
{D(c), C(c)} as a conflict in cln(T ′)∪A1∪A2∪A3∪A4. We continue the construction
of the tree from branch labeled by {D(a), D(b)}. We obtain two other branches labeled
respectively by {D(a), D(b), C(c)} and {D(a), D(b), D(c)} which are two ≤lex ker-
nels. Hence, PR(K ∪ {N})={D(a), D(b), C(c)}, {D(a), D(b), D(c)}.

5 Conclusion

In this paper, we investigated Prioritized Removed Sets Revision of DL-Lite knowledge
bases. We studied the revision operation for three forms of input, namely, an ABox
assertion or a TBox axiom. We first defined the prioritized removed sets within the
framework of DL-Lite as a lexicographic approach. We showed that when the input is
an assertion then PRSR is computed in polynomial time. When the input is a PI or a
NI axiom we provided the condition for the computation of PRSR in polynomial time.
We showed that in the general case the number of prioritized removed sets is bounded
and we proposed an algorithm for computing these sets using the notion of hitting sets.
We finally gave logical properties of the proposed operators in terms of satisfaction of
Hansson’s postulates rephrased in our framework. In a near future we plan to investigate
the iterated revision of DL-Lite knowledge bases. We also want focus on the extension
of Removed Sets Fusion [14], defined in a propositional setting, to the merging of DL-
Lite knowledge bases.

A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases 455

Acknowledgement. This work has received support from the french Agence Nationale
de la Recherche, ASPIQ project reference ANR-12-BS02-0003.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family and rela-
tions. J. Artif. Intell. Res (JAIR) 36, 1–69 (2009)

3. Benferhat, S., Ben-Naim, J., Papini, O., Würbel, E.: An answer set programming encoding
of prioritized removed sets revision: application to gis. Appl. Intell. 32(1), 60–87 (2010)

4. Benferhat, S., Bouraoui, Z., Papini, O., Würbel, E.: Assertional-based removed sets revision
of DL-LiteR knowledge bases. In: ISAIM (2014)

5. Benferhat, S., Dubois, D., Prade, H.: How to infer from inconsisent beliefs without revising.
In: IJCAI, pp. 1449–1457 (1995)

6. Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A practical approach to revising pri-
oritized knowledge bases. Studia Logica 70(1), 105–130 (2002)

7. Bienvenu, M., Rosati, R.: New inconsistency-tolerant semantics for robust ontology-based
data access. In: Eiter, T., Glimm, B., Kazakov, Y., Krötzsch, M. (eds.) Description Logics.
CEUR Workshop Proceedings, vol. 1014, pp. 53–64. CEUR-WS.org (2013)

8. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The dl-lite family. J. Autom. Reason-
ing 39(3), 385–429 (2007)

9. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of dl-lite knowledge
bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 112–128. Springer, Heidelberg
(2010)

10. Flouris, G., Plexousakis, D., Antoniou, G.: On applying the agm theory to dls and owl. In:
Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp.
216–231. Springer, Heidelberg (2005)

11. Fuhrmann, A.: An essay on contraction. CSLI Publications, Stanford (1997)
12. Gao, S., Qi, G., Wang, H.: A new operator for abox revision in dl-lite. In: Hoffmann, J.,

Selman, B. (eds.) AAAI. AAAI Press (2012)
13. Hansson, S.O.: Revision of belief sets and belief bases. Handbook of Defeasible Reasoning

and Uncertainty Management Systems 3, 17–75 (1998)
14. Hué, J., Würbel, E., Papini, O.: Removed sets fusion: Performing off the shelf. In: Proc. of

ECAI 2008 (FIAI 178), pp. 94–98 (2008)
15. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics

for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp.
103–117. Springer, Heidelberg (2010)

16. Papini, O.: A complete revision function in propositional calculus. In: ECAI, pp. 339–343
(1992)

17. Qi, G., Ji, Q., Haase, P.: A conflict-based operator for mapping revision. In: Bernstein, A.,
Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.)
ISWC 2009. LNCS, vol. 5823, pp. 521–536. Springer, Heidelberg (2009)

18. Qi, G., Liu, W., Bell, D.A.: A revision-based approach to handling inconsistency in descrip-
tion logics. Artif. Intell. Rev. 26(1-2), 115–128 (2006)

19. Qi, G., Pan, J.: A stratfication-based approach for inconsistency handling in description log-
ics. In: IWOD 2007, p. 83 (2007)

456 S. Benferhat et al.

20. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
21. Wang, Z., Wang, K., Topor, R.W.: A new approach to knowledge base revision in dl-lite. In:

Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)
22. Wilkerson, R.W., Greiner, R., Smith, B.A.: A correction to the algorithm in reiter’s theory of

diagnosis. Artificial Intelligence 41, 79–88 (1989)
23. Würbel, E., Jeansoulin, R., Papini, O.: Revision: An application in the framework of GIS. In:

Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR, pp. 505–515. Morgan Kaufmann (2000)

Modular Paracoherent Answer Sets�

Giovanni Amendola1, Thomas Eiter2, and Nicola Leone1

1 Department of Mathematics and Computer Science, University of Calabria
Via P. Bucci, Cubo 30b, 87036 Rende (CS), Italy

amendola@mat.unical.it,leone@mat.unical.it
2 Institute of Information Systems, Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
eiter@kr.tuwien.ac.at

Abstract. The answer set semantics may assign a logic program no model due to
classic contradiction or cyclic negation. The latter can be remedied by resorting
to a paracoherent semantics given by semi-equilibrium (SEQ) models, which are
3-valued interpretations that generalize the logical reconstruction of answer sets
given by equilibrium models. While SEQ-models have interesting properties,
they miss modularity in the rules, such that a natural modular (bottom up) eval-
uation of programs is hindered. We thus refine SEQ-models using splitting sets,
the major tool for modularity in modeling and evaluating answer set programs.
We consider canonical models that are independent of any particular splitting se-
quence from a class of splitting sequences, and present two such classes whose
members are efficiently recognizable. Splitting SEQ-models does not make rea-
soning harder, except for deciding model existence in presence of constraints
(without constraints, split SEQ-models always exist).

1 Introduction

As well-known, the answer set semantics [11] does not assign to every logic program a
model. This can be either due to a logical contradiction, as emerging e.g. in the program
{open ← not closed , ¬open ← }, or due to cyclic negation, as e.g. present in the pro-
gram {shaves(joe, joe) ← not shaves(joe, joe)}, which is a paraphrase of Russell’s
paradox (where joe is the barber).

In order to avoid trivialization of reasoning from such programs, Inoue and Sakama
[28] have introduced paraconsistent semantics for answer set programs. While dealing
with explicit contradictions can be achieved with similar methods as for (non-)classical
logic (cf. also [5,1,17]), dealing with cyclic negation turned out to be tricky. With
the idea that atoms may also be possibly true (i.e., by belief), Inoue and Sakama de-
fined a semi-stable semantics which for Russell’s paradox above yields the model that
shaves(joe, joe) is possibly true, which seems reasonable. In fact, semi-stable seman-
tics approximates answer set semantics and coincides with it whenever a program has
some answer set; otherwise, it yields under Occam’s razor models with a least set of
atoms believed to be true. That is, the intrinsic closed world assumption (CWA) of logic
programs is slightly relaxed for achieving stability of models.

� This work was partially supported by Regione Calabria under the EU Social Fund and project
PIA KnowRex POR FESR 2007- 2013, and by the Italian Ministry of University and Research
under PON project “Ba2Know (Business Analytics to Know) S.I.-LAB n. PON03PE 0001.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 457–471, 2014.
c© Springer International Publishing Switzerland 2014

458 G. Amendola, T. Eiter, and N. Leone

In a similar vein, we can regard many semantics for non-monotonic logic programs
that relax answer sets as paracoherent semantics, e.g. [3,9,18,22,23,25,27,29,31,32].1

Ideally, such a relaxation meets for a program P the following desiderata [8]:

(D1) Every (consistent) answer set of P corresponds to a model (answer set coverage).
(D2) If P has some (consistent) answer set, then its models correspond to answer sets

(congruence).
(D3) If P has a classical model, then P has a model (classical coherence).

In particular, (D3) intuitively says that in the extremal case, a relaxation should re-
nounce to the selection principles imposed by the semantics on classical models (in
particular, if a single classical model exists).

However, only few paracoherent semantics satisfy all three desiderata (cf. [8]). A
recent one are semi-equilibrium (SEQ) models [8], which improve semi-stable models
by avoiding some anomalies. SEQ -models are a relaxation of Pearce’s well-known
equilibrium models [19], which provide a logical reconstruction of answer sets alias
stable models in terms of a non-monotonic version of Heyting’s [12] logic of here and
there. Roughly speaking, SEQ-models are 3-valued interpretations in which atoms can
be true, false or believed to be true; the gap between believed and derivably true atoms
is globally minimized by SEQ -models. Note that the distinction between believed and
derivably true atoms in models is important; other approaches, e.g. CR-Prolog [3], make
a distinction at the rule level.

While the SEQ -semantics has nice properties, it may select models that do not re-
spect modular structure in the rules. To illustrate this, consider the following example.

Example 1. Suppose we have a program that captures knowledge about friends of a
person regarding visits to a party, where go(X) informally means that X will go:

P =

⎧⎨⎩
go(John)← not go(Mark);
go(Peter)← go(John), not go(Bill);
go(Bill)← go(Peter)

⎫⎬⎭
Then P has no answer set; its semi-equilibrium models are M1 = (∅, {go(Mark)}),

and M2 = ({go(John)}, {go(John), go(Bill)}). Informally, a key difference between
M1 and M2 concerns the beliefs on Mark and John. In M2 Mark does not go, and,
consequently, John will go (moreover, Bill is believed to go, and Peter will not go). In
M1, instead, we believe Mark will go, thus John will not go (likewise Peter and Bill).

None of the two models provides a fully coherent view (on the other hand, the pro-
gram is incoherent, having no answer set). Nevertheless, M2 appears preferable over
M1, since, according with a layering (stratification) principle, which is widely agreed
in LP, one should prefer go(John) rather than go(Mark), as there is no way to derive
go(Mark) (which does not appear in the head of any rule of the program).

Modularity via rule dependency as in the example above is widely used in problem
modeling and logic programs evaluation; in fact, program decomposition is crucial for
efficient answer set computation. For the programP above, advanced answer set solvers

1 Notably, Seipel’s Evidential Stable Models for disjunctive LPs [29] coincide with SEQ-
models.

Modular Paracoherent Answer Sets 459

like DLV and clasp immediately set go(Mark) to false, as go(Mark) does not occur
in any rule head. In a customary bottom up computation along program components,
answer sets are gradually extended until the whole program is covered, or incoherence
is detected at some component (in our example for the last two rules). But rather than
to abort the computation, we would like to switch to a paracoherent mode and continue
with building semi-equilibrium models, as an approximation of answer sets.

In this general setting, we refine SEQ -models with the following contributions.

– Resorting to splitting sets [15], the major tool for modularity in modeling and evalu-
ating answer set programs, we define split SEQ -models (Section 3), for which the pro-
gram is evaluated in progressive layers according to a splitting sequence of the atoms. In
the example above, the natural sequence S = ({go(Mark)}, {go(Mark), go(John)},
{go(Mark), go(John), go(Bill), go(Peter)}) will yield the expected result.

– In general, the resulting split SEQ-models depend on the particular splitting se-
quence S. We thus introduce canonical splitting sequences, with the property that the
models are independent of any particular from a class of splitting sequences, and thus
yield canonical models (Section 4). This is analogous to the perfect models of a (dis-
junctive) stratified program, which are independent of a concrete stratification [2,26].
For constraint-free programs P , the class derived from the strongly connected compo-
nents (SCCs) of P warrants this property, as well as modularity property. For arbitrary
programs, independence is held by a similar class derived from the maximal joined
components (MJCs), merging SCCs involved in constraints.

– We characterize the computational complexity of split SEQ-model semantics, for
canonical models and various classes of logic programs (Section 5). It appears that the
refined semantics has the same complexity as SEQ-semantics, except for the model ex-
istence problem, which gets harder in general. This provides useful insight for defining
canonical models that satisfy all desiderata (D1)-(D3) for arbitrary programs, which
we briefly discuss here (Section 7).

The refined semantics, and in particular the SCC -models semantics, lends for a mod-
ular use and bottom up evaluation of programs. Cautious merging of components, as
done for MJC -models, aims at preserving independence of components and thus pos-
sible parallel evaluation. This makes the refined semantics attractive for incorporation
into answer set evaluation frameworks, in order to add paracoherent features.

2 Preliminaries

We start with recalling answer set semantics and fixing notation, and then present the
paracoherent semantics of semi-equilibrium models.

Answer Set Programs. Following the traditional grounding view [11], we concentrate
on programs over a propositional signature Λ. A disjunctive rule r is of the form

a1 ∨ · · · ∨ al ← b1, ..., bm, not bm+1, ..., not bn, (1)

where all ai and bj are atoms (from Λ) and l ≥ 0, n ≥ m ≥ 0 and l + n > 0;
not represents negation-as-failure. The set H(r) = {a1, ..., al} is the head of r, while
B+(r) = {b1, ..., bm} and B−(r) = {bm+1, . . . , bn} are the positive body and the

460 G. Amendola, T. Eiter, and N. Leone

negative body of r, respectively; the body of r is B(r) = B+(r) ∪ B−(r). We denote
by At(r) = H(r) ∪ B(r) the set of all atoms occurring in r. For any set of atoms S,
we let not S = {not a | a ∈ S}; rules of form (1) will also be written (in abuse of
notation) H(r) ← B+(r), not B−(r). A rule r is a fact, if B(r) = ∅ (we then omit
←); a constraint, if H(r) = ∅; normal, if |H(r)| ≤ 1 and positive, if B−(r) = ∅.

A (disjunctive logic) program P is a finite set of disjunctive rules. P is called normal
[resp. positive] if each r ∈ P is normal [resp. positive]. We let At(P) =

⋃
r∈P At(r).

Any set I ⊆ Λ is an interpretation; it is a model of a program P (denoted I |= P)
iff for each rule r ∈ P , I ∩ H(r) �= ∅ if B+(r) ⊆ I and B−(r) ∩ I = ∅ (denoted
I |= r). A model M of P is minimal, iff no model M ′ ⊂M of P exists. We denote the
by MM (P) set of all minimal models of P and by AS(P) the set of all answer sets (or
stable models) of P , i.e., the set of all interpretations I such that I ∈ MM (P I), where
P I is the well-known Gelfond-Lifschitz reduct [11] of P w.r.t. I .

Semi-equilibrium Paracoherent Semantics. We call logic programs that lack answer
sets due to cyclic dependency of atoms among each other by rules through negation
incoherent (cf. Russel’s paradox). The semi-equilibrium semantics [8] avoids incoher-
ence by resorting to the view of answer sets in the logic of here and there (HT-logic)
[19,20]. We focus here on formulas φ of the form

b1 ∧ ... ∧ bm ∧ ¬bm+1 ∧ ... ∧ ¬bn → a1 ∨ ... ∨ al, (2)
which correspond in an obvious way to rules of form (1). In HT-logic, interpretations
are pairs (X,Y), X ⊆ Y ⊆ Λ, where X is the here world and Y the there world.
Intuitively, the atoms in X are true (value t), atoms not in Y are false (f), and the atoms
in gap(X,Y) = Y \X are believed to be true (bt). For any set A of HT-interpretations,
we denote by mc(A) the set of maximal canonical interpretations (X,Y) ∈ A, i.e., no
(X ′, Y ′) ∈ A exists such that gap(X ′, Y ′) ⊂ gap(X,Y). We define (X,Y) to be an
HT-model of the formula φ, denoted (X,Y) |= φ, in a recursive way:

1. (X,Y) |= a iff a ∈ X ;
2. (X,Y) �|= ⊥; (⊥ is falsity)
3. (X,Y) |= φ ∧ ψ iff (X,Y) |= φ and (X,Y) |= ψ;
4. (X,Y) |= φ ∨ ψ iff (X,Y) |= φ or (X,Y) |= ψ;
5. (X,Y) |= φ→ ψ iff (i) (X,Y) �|= φ or (X,Y) |= ψ, and (ii) Y |= φ→ ψ;2

6. (X,Y) |= ¬φ iff (X,Y) |= φ→ ⊥.

In particular, (X,Y) |= ¬a iff a /∈ Y , and (X,Y) |= r for a rule r of form (2)
iff either {a1 . . . , ak} ∩ X �= ∅, {b1, . . . , bm} �⊆ Y , or {bm+1, . . . , bn} ∩ Y �= ∅. A
HT-interpretation (X,Y) is an HT-model of a theory (i.e., a set of formulas) Θ, denoted
(X,Y) |= Θ iff (X,Y) |= φ for each φ ∈ Θ. It is an equilibrium (EQ) model of Θ iff
X = Y and for every X ′ ⊂ Y it holds that (X ′, Y) �|= Θ.

Example 2. Consider the program P = {a ← b; b ← not c; c ← not a}, and the
corresponding theory ΘP = {b → a; ¬c → b; ¬a → c}. As easily checked, (∅, ac),
(a, ab), (a, abc), and (c, c) are HT-models of ΘP ; the only equilibrium model is (c, c).

As shown by Pearce [19], M ⊆ At(P) fulfills M ∈ AS(P) iff (M,M) is an EQ -
model of ΘP . Paracoherent answer sets emerge with minimal sets of believed atoms.

2 Note that in condition 5.(ii) ’|=’ is the standard operator of classical propositional logic.

Modular Paracoherent Answer Sets 461

Definition 1 ([8]). A semi-equilibrium (SEQ) model (or paracoherent answer set) of
a program P is any HT-model (X,Y) of P s.t. (i) (X ′, Y) �|= P , for all X ′ ⊂ X (h-
minimality) and (ii) no HT-model (X ′, Y ′) ofP satisfies h-minimality and gap(X ′, Y ′)⊂
gap(X,Y) (gap-minimality).

The set of all semi-equilibrium models of P is denoted by SEQ(P).

Example 3. Consider the program P = {a ← b; b ← not a}. Its HT-models are
(∅, a), (∅, ab), (a, a), (a, ab), (b, ab) and (ab, ab). Hence, there is no equilibrium model
for P , while SEQ(P) = {(∅, a)}.

3 Split Semi-equilibrium Semantics

In this section, we introduce a refinement to the semi-equilibrium semantics. In fact we
observe that sometimes gap minimization is too weak. Consider the following example.

Example 4. Let P = {c ← b, not c; b ← not a}; then SEQ(P)= { (b, bc), (∅, a)}.
Here (b, bc) is more appealing than (∅, a) because a is not derivable, as no rule has a
in the head. Moreover, intuitively, P1 = {b← not a} is a lower (coherent) part feeding
into the upper part P2 = {c← b, not c}.

To overcome this limitation, we introduce a refined paracoherent semantics, called
split semi-equilibrium semantics. It coincides with the answer sets semantics in case of
coherent programs, and selects a subset of the SEQ-models otherwise. The main results
of this section are two model-theoretic characterizations which identify necessary and
sufficient conditions for deciding whether a SEQ -model is selected.

Splitting Sets and Sequences. Splitting sets [15] allow us to divide a program P
into a lower and a higher part which can be evaluated bottom up. More formally, a set
S ⊆ At(P) is a splitting set of P , if for every rule r in P such that H(r) ∩ S �= ∅ we
have that At(r) ⊆ S. We denote by bS(P) = {r ∈| At(r) ⊆ S} the bottom part of P ,
tS(P) = P \ bS(P) the top part of P relative to S.

Splitting sets naturally lead to splitting sequences. A splitting sequenceS = (S1, . . . ,
Sn) of P is a sequence of splitting sets of P such that Si ⊆ Sj for each i < j.

Split Semi-equilibrium Models. We now introduce the notion of SEQ -models related
to a splitting set. First given a splitting set S for a program P and an HT-interpretation
(I, J) for bS(P), we let

PS(I, J) = P \ bS(P) ∪ {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}.
Informally, the bottom part of P w.r.t. S is replaced with rules and constraints which

fix in any EQ-model of the remainder (= tS(P)) the values of the atoms in S to (I, J).

Definition 2 (Semi-equilibrium models related to a splitting set).Let S be a splitting
set of a program P . Then the semi-equilibrium models of P related to S are defined as

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS(P))

SEQ(PS(I, J))
)
. (3)

462 G. Amendola, T. Eiter, and N. Leone

Example 5 (cont’d). For the splitting set S = {a, b} of P in Example 4, bS(P) =
{b ← not a} and SEQ(bS(P)) = {(b, b)}. Hence, PS(b, b) = {c ← b, not c; b; ←
a} and SEQS(P) = SEQ(PS(b, b)) = {(b, bc)}.

For any HT-model (X,Y) and splitting set S of a program P , we define the restric-
tion of (X,Y) to S as (X,Y)|S = (X ∩ S, Y ∩ S).

Proposition 1. Let S be a splitting set of a program P . If (X,Y)∈SEQS(P), then
(X,Y)|S ∈ SEQ(bS(P)).

The following result shows that each semi-equilibrium model related to a given split-
ting set is always a semi-equilibrium model of the program.

Theorem 1 (Soundness). Let S be a splitting set of a program P . If (X,Y)∈
SEQS(P), then (X,Y) ∈ SEQ(P).

The converse does not hold in general; in fact if we consider the program of Ex-
ample 4 and the splitting set S = {a, b} we have SEQS(P) = {(b, bc)}, while
SEQ(P) = {(b, bc), (∅, a)}. It is also clear that SEQS(P) depends on the choice
of S; in fact if S = ∅ then SEQ∅(P) = SEQ(P).

Moreover for the validity of Theorem 1, the selection of maximal canonical HT-
models is necessary. Indeed, for P = {a ← not b; b ← not a; c ← b, not c}
and the splitting set S = {a, b}, we have SEQ(bS(P)) = {(a, a), (b, b)}; hence
SEQ(PS(a, a)) ∪ SEQ(PS(b, b)) = {(a, a), (b, bc)}, while SEQ(P) = {(a, a)}.

We have seen so far two necessary conditions for an HT-model to qualify as a semi-
equilibrium model related to a given splitting set. These conditions are also sufficient.

Theorem 2 (Completeness). Let S be a splitting set of a program P . If (X,Y) ∈
SEQ(P) and (X,Y)|S ∈ SEQ(bS(P)), then (X,Y) ∈ SEQS(P).

Putting together the various results obtained so far we have proved the following
semantic characterization for semi-equilibrium models related to a splitting set:

Theorem 3. Let S be a splitting set of a program P . Then (X,Y) ∈ SEQS(P) iff
(X,Y) ∈ SEQ(P) and (X,Y)|S ∈ SEQ(bS(P)).

Now we generalize the use of splitting sets to compute the SEQ-models of a program
via splitting sequences.

Definition 3 (Semi-equilibrium models related to a splitting sequence). Given a
splitting sequence S = (S1, . . . , Sn) for a program P , we let S′ = (S2, ..., Sn) and de-
fine the semi-equilibrium models of P related to the splitting sequence S = (S1, ..., Sn)
as

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS1(P))

SEQS′
(PS1(I, J))

)
. (4)

The SEQ -models related to a splitting sequence can be characterized similarly as
those related to a splitting set. To ease presentation, for a program P and splitting
sequence S = (S1, ..., Sn), we let P0 = P and Pk = (Pk−1)

Sk(Ik, Jk), where
(Ik, Jk) ∈ SEQ(bSk

(Pk−1)), k = 1, ..., n. We now state the main result of this section.

Modular Paracoherent Answer Sets 463

Theorem 4. LetS=(S1, ..., Sn)be a splitting sequence of a programP . Then (X,Y) ∈
SEQS(P) iff (X,Y) ∈ SEQ(P) and (X,Y)|Sk

∈ SEQ(bSk
(Pk−1)), for k = 1, ..., n.

Finally we observe that a classically consistent program does not necessarily have split
semi-equilibrium models (but always semi-equilibrium models). In fact, if we consider
P = {← b; b ← not a} and the splitting set S = {a}, we obtain SEQ(bS(P)) =
{(∅, ∅)} and so SEQS(P) = ∅. However (a, a) and (∅, a) are HT-models of P .

4 Canonical Semi-Equilibrium Models

The split semi-equilibrium semantics depends on the choice of the particular splitting
sequence, which is not much desirable. We thus consider a way to obtain a refined
split SEQ -semantics that is independent of a particular splitting sequence, but imposes
conditions on sequences that come naturally with the program and can be easily tested.

Attractive for this purpose are the strongly connected components (SCCs) of a given
program, which are at the heart of bottom up evaluation algorithms in ASP systems.
In absence of constraints, we get the desired independence of a particular splitting se-
quence, such that we can then talk about the SCC -models of a program. Allowing for
constraints will need a slight extension.

4.1 SCC -split Sequences and Models

Recall that the dependency graph of a program P is the directed graph DG(P) =
〈VDG, EDG〉, where VDG = At(P) and EDG = {(a, b) | a ∈ H(r), b ∈ B(r) ∪
(H(r) \ {a}), r ∈ P}. The SCCs of P , denoted SCC (P), are the SCCs of DG(P),
and the supergraph of P is the graph SG(P) = 〈VSG, ESG〉, where VSG = SCC (P)
and ESG = {(C,C′) | C �= C′ ∈ SCC (P), ∃a ∈ C, ∃b ∈ C′, (a, b) ∈ EDG}. Note
that SG(P) is a directed acyclic graph (dag); recall that a topological ordering of a
dag G = 〈V,E〉 is an ordering v1, v2, ..., vn of its vertices, denoted ≤, such that for
every (vi, vj) ∈ E we have i > j. Such an ordering always exists, and the set O(G)
of all topological orderings of G is nonempty. Any such ordering of SG(P) naturally
induces a splitting sequence as follows.

Definition 4. Let P be a program and let ≤ = (C1, ..., Cn) be a topological ordering
of SG(P). Then the splitting sequence induced by ≤ is S≤ = (S1, ..., Sn), where
S1 = C1 and Sj = Sj−1 ∪ Cj , for j = 2, ..., n.

We call any such S≤ a SCC -splitting sequence; note that S≤ is indeed a splitting
sequence of P . We now have the following result.

Theorem 5. Let P be a constraint-free program. For every ≤,≤′∈ O(SG(P)), we
have SEQS≤(P) = SEQS≤′ (P).

This result allows to define the SCC -models of P as M SCC (P) = SEQS≤(P) for
an arbitrary topological ordering of SG(P). We then obtain:

Proposition 2. The SCC -models semantics, given by M SCC (P) for constraint-freeP ,
satisfies (D1)-(D3).

464 G. Amendola, T. Eiter, and N. Leone

Example 6. Consider P = {a ← c, not a; a ← not b; c ← not d; b ← not e};
its SCCs are C1 = {a}, C2 = {b}, C3 = {c}, C4 = {d} and C5 = {e}. For ≤ =
(C4, C5, C3, C2, C1), we obtain that SEQS≤(P) = SEQ (S2,S3,S4,S5)(PS1(∅, ∅)) =

SEQ(S3,S4,S5)(PS2
1 (∅, ∅)) = SEQ (S4,S5)(PS3

2 (c, c))= SEQ (S5)(PS4
3 (bc, bc))= {(bc,

abc)}; hence M SCC (P) = {(bc, abc)}. For ≤′= (C5, C2, C4, C3, C1), we obtain
SEQS≤′ (P) = {(bc, abc)}, in line with Theorem 5. Note that SEQ(P) = {(bc, abc),
(b, bd), (ac, ace)}.

Finally, if we replace in Equation (4) SEQ , SEQS , and SEQS′
all by MSCC , then

the resulting equation holds; i.e., we can compute SCC -models modularly bottom up
along an arbitrary splitting sequence (using always MSCC).

4.2 MJC -split Sequences and Models

Theorem 5 fails if we allow constraints in P . E.g., the program P = {b; ← b, not a}
has the SCCs {a} and {b}; hence O(SG(P)) = {({a}, {b}), ({b}, {a})}. But the re-
spective semi-equilibrium models are different: SEQ({a},{a,b})(P) = ∅ and
SEQ({b},{a,b})(P) = {(b, ba)}. Note here that semi-equilibrium semantics is able to
distinguish constraints ← Body from rules f ← Body , not f ; the latter can always be
satisfied by believing f (and thus be viewed as soft constraints). On the other hand, The-
orem 5 extends to the case without cross-component constraints, i.e., each constraint r
is embedded in some SCC Ci (B(r) ⊆ Ci ∈ SCC (P)); otherwise, the order in which
unrelated components appear in a splitting sequence may matter.

We thus consider merging SCCs of a program in such a way that independence of
concrete topological orderings is preserved and merging is done only if deemed nec-
essary. This is embodied by the maximal joinable components of a program, which
lead to so called MJC -split sequences and models. Informally, relevant SCCs that are
unordered (thus unproblematic in evaluation) are merged if they intersect with a con-
straint.

We start with introducing related pairs and joinable pairs of SCCs. We call (K1,K2)
from SCC (P)2 a related pair, if either K1 = K2 or some constraint r ∈ P fulfills
At(r) ∩ K1 �= ∅ and At(r) ∩K2 �= ∅; by C(K1,K2)(P) we denote the set of all such
constraints.

Definition 5. A related pair (K1,K2) is a joinable pair iff K1 = K2 or some (C1, . . . ,
Cn) in O(SG(P)) exists such that (i) K1 = Cs and K2 = Cs+1 for some 1 ≤ s < n,
(ii) (K2,K1) /∈ ESG and (iii) there exists r ∈ C(K1,K2)(P) s.t. At(r) ⊆ C1∪...∪Cs+1.

We denote by JP (P) the set of all joinable pairs. Intuitively item (i) states that in
some topological ordering K1 immediately precedes K2; item (ii) states that no atom
in K2 directly depends on an atom from K1. If this does not hold, joining K1 and K2

to achieve independence is not necessary as their ordering is fixed. Finally item (iii)
requires that some constraint must access the two SCCs and appear in the evaluation in
the bottom of the program computed so far.

Example 7. For P = {← b, not a; ← b, not c; d ← not a; c ← not e; b ← c},
we have SCC (P) = {{a}, {b}, {c}, {d}, {e}}. We observe that ({c}, {b}) is a related,
but not a joinable pair, because ({c}, {b}) satisfies conditions (i) and (iii), but not (ii).
On the other hand, ({a}, {b}) is a joinable pair.

Modular Paracoherent Answer Sets 465

We now extend joinability from pairs to any number of SCCs.

Definition 6. Let P be a program. Then K1, ...,Km ∈ SCC (P) are joinable iff m = 2
and some K ∈ SCC (P) exists such that (K1,K), (K,K2) ∈ JP (P), or other-
wise Ki,Kj are joinable for each i, j = 1, ...,m. We let JC(P) = {

⋃m
i=1 Ki |

K1, ...,Km ∈ SCC (P) are joinable} and call MJC (P) = {J ∈ JC(P) | ∀J ′ ∈
JC(P) : J �⊂ J ′} the set of all maximal joined components (MJC s) of P .

Note that (K1,K2) ∈ JP (P) implies that K1 and K2 are joinable.

Example 8. In Ex. 7, ({a}, {b}) is the only nontrivial joinable pair; hence MJC(P)
= {{a, b}, {c}, {d}, {e}}.

As easily seen, MJC (P) is a partitioning of At(P) that results from merging SCCs.
We define the MJC graph of P as JG(P) = 〈VJG, EJG〉, where VJG = MJC (P)
and EJG = {(J, J ′) | J �= J ′ ∈ MJC (P), ∃a ∈ J, ∃b ∈ J ′, (a, b) ∈ EDG}. Note that
JG(P) is like SG(P) a dag, and hence admits a topological ordering; we denote by
O(JG(P)) the set of all such orderings. We thus define

Definition 7. Let P be a program and ≤ = (J1, ..., Jm) be a topological ordering
of JG(P). Then the splitting sequence induced by ≤ is S≤ = (S1, ..., Sm), where
S1 = J1 and Sk = Sk−1 ∪ Jk, for k = 2, . . . ,m.

The sequenceS≤ is again indeed a splitting sequence, which we call a MJC -splitting
sequence. We obtain a result analogous to Theorem 5, but in presence of constraints.

Theorem 6. Let P be a program. For every ≤,≤′∈ O(JG(P)), we have SEQS≤(P)
= SEQS≤′ (P).

Similarly as SCC -models, we thus can define the MJC -models of P as MMJC (P)
= SEQS≤(P) for an arbitrary topological ordering≤ of JG(P).

Example 9 (cont’d). ReconsiderP in Example 7. Then for the ordering≤= ({a}, {d},
{e}, {c}, {b}) we obtain SEQS≤(P) = ∅, while for ≤′= ({e}, {c}, {b}, {a}, {d}) we
obtain SEQS≤′ (P) = {(bc, abc)}. On the other hand, JG(P) has the single topo-
logical ordering ≤= ({e}, {c}, {a, b}, {d}), and SEQS≤(P) = {(bc, abc)}; hence
MMJC (P) = {(bc, abc)}. Note that SEQ(P) = {(bc, abc), (d, de)}.

The problem in Section 4.2 disappears when we use the MJCs. The program P =
{← b, not a; b} there has the single MJC J = {a, b}, since the two SCCs {a} and
{b} are related through the constraint← b, not a and thus joinable. As desired, we get
(b, ab) as the (single) MJC -model of P .

Note that trivially, the MJC - and the SCC -semantics coincide for constraint-free
programs (in fact, also in absence of cross-constraints). As for the desiderata, we note:

Proposition 3. The MJC -models semantics, given by MMJC (P) for any program P ,
satisfies (D1)-(D2).

Classical coherence (D3), however, is not ensured by MJC -models, due to lean com-
ponent merging that fully preserves dependencies. To obtain a model, blurring strict
dependencies can be necessary, where two aspects need to taken into account.

(A1) Inconcistency may still emerge from cross-component constraints.

466 G. Amendola, T. Eiter, and N. Leone

Example 10. The program P = {← b, not a; b; b ← a} has MJC (P) = {{b}, {a}}
as {b}, {a} are not joinable. As the single MJC -splitting sequence, ({a}, {a, b}), ad-
mits no split SEQ-model, MMJC (P) = ∅.

This can be remedied by suitably merging components that intersect the same con-
straint.

(A2) A second, orthogonal aspect is dependence.

Example 11. The program P = {← b; b← not a} has no MJC -model, as the MJC -
splitting sequence S = ({a}, {a, b}) admits no split SEQ -model; the culprit is a, which
does not occur in the constraint.

Clearly, the problem extends to dependence via an (arbitrarily long) chain of rules
(e.g., change in Example 11 the rule to b ← c1, c1 ← ci+1, 1 ≤ i < n, cn ←
not a). Again, this can be remedied by merging components. Many merging policies to
ensure (D3) are conceivable; however, such a policy should ideally not dismiss structure
unless needed, and it should be efficiently computable; we defer further discussion to
Section 7, as the next section will provide useful insight for it.

5 Complexity and Computation

In this section, we consider the computational complexity of the following major rea-
soning tasks for programs under split SEQ -semantics.

(MCH) Given a program P , a splitting sequence S and an HT-interpretation (X,Y),
decide whether (X,Y) is a split semi-equilibrium model of P .

(INF) Given a program P , a splitting sequence S, an atom a and v ∈ {t, f ,bt}, decide
if a is a brave [resp. cautious] SEQS-consequence of P with value v, denoted
P |=b,v

S a [resp. P |=c,v
S a], i.e., a has in some (all) (X,Y) ∈ SEQS(P) value v.

(CON) Given a program P and a splitting sequence S, decide whether SEQS(P) �= ∅.

We consider also SCC - and MJC -splitting sequences and several classes of pro-
grams, viz. normal, disjunctive, stratified, and headcycle-free programs.3 Recall that a
program P is stratified, if for each r ∈ P and C ∈ SCC (P) either H(r) ∩ C = ∅
or B−(r) ∩ C = ∅; P is headcycle-free (hcf), if |H(r) ∩ C| ≤ 1 for each r ∈ P and
C ∈ SCC (P ′), where P ′ = {a← B+(r) | r ∈ P, a ∈ H(r)}.

Positive programs are here of less interest, as SEQS(P) = {(M,M) | M ∈
MM (P)} for each splitting sequence S. Furthermore, hcf-programs are under SEQ-
semantics sensitive to body shifts; e.g., P = {a ∨ b; a← not a; b← not b} has the
SEQ-models (a, ab) and (b, ab), while its shift P→ = {a← not b; b← not a; a←
not a; b← not b} has the single SEQ-model (∅, ab).
Overview of Complexity Results. Our complexity results are summarized in Table 1.
Briefly, they show that split SEQ-models have the same complexity as SEQ-models
(i.e., structural information does not affect complexity) except on Problem CON, which
is harder. The reason is that coherence (D3) no longer holds. In particular, this means

3 Note that [8] did not consider stratified and hcf programs.

Modular Paracoherent Answer Sets 467

Table 1. Complexity of split SEQ-models (completeness results). The same results hold for
canonical models (SCC -, MJC -split seq. S); diverging results for SEQ-models are in brackets.

Problem / Program P : normal, strat. normal,
headcycle-free

disj. strati-
fied, disjunc-
tive

(MCH) Model checking: (X,Y)∈SEQS(P)? coNP Πp
2

(INF) Brave reasoning: P |=b,v
S a ? Σp

2 Σp
3

Cautious reasoning: P |=c,v
S a ? Πp

2 Πp
3

(CON) Existence: SEQS(P) �= ∅ ? Σp
2 [NP] Σp

3 [NP]

that imposing a structural condition on building SEQ-models along SCC s may elimi-
nate such models. Furthermore, it implies that no polynomial-time method μ exists that
associates with P a splitting sequence S = μ(P), using a polynomial-time checkable
criterion on P , such that (i) μ respects structure, i.e., μ(P) �= (At(P)) if SEQS(P) �= ∅
for some S �= (At(P)), and (ii) μ preserves consistency, i.e., SEQ(P) �= ∅ implies
SEQS(P) �= ∅; this holds even if μ may be nondeterministic, i.e., can “guess” a suit-
able S for P . In other words, the price for ensuring coherence with tractable (or NP)
effort is to merge sometimes more components than necessary.

Problems MCH and INF do not become harder, as MCH reduces to polynomially
many MCH instances without splitting. The hardness results for arbitrary splitting se-
quences are inherited from respective results without splitting; we also provide results
for stratified and hcf programs.

For SCC and MJC splitting sequences, we obtain analogous results; informally, the
problems do not get easier as splitting can be blocked by irrelevant rules.

Details on the derivation of the results in Table 1 are omitted for space reasons and
included in the extended version of this paper.

Constructing and Recognizing Canonical Splitting Sequences. It is well-known that
SCC (P) and SG(P) are efficiently computable from P (using Tarjan’s [30] algorithm
even in linear time); hence, it is not hard to see that one can recognize a SCC -splitting
sequence S in polynomial time, and that every such S can be (nondeterministically)
generated in polynomial time (in fact, in linear time). We obtain similar tractability
results for MJC (P) and MJC-splitting sequences. To this end, we first note the fol-
lowing useful proposition.

Proposition 4. Let P be a program and let K1,K2 ∈ SCC (P). Then K1 and K2

satisfy (i) and (ii) of Definition 5 iff they are disconnected in SG(P), i.e., no path from
K1 to K2 and vice versa exists.

Theorem 7. Given a program P , MJC(P) and JG(P) are computable in polynomial
time (in time O(cs·‖P‖), where cs = |{r ∈ P | H(r) = ∅}| and ‖P‖ is the size of P).

Proof (Sketch). For every constraint r, determine all C1, . . . , Ck in SCC (P) such that
Ci ∩ B(r) �= ∅; suppose C1, . . . , Cl, l ≤ k are the maximal among them in SG(P).

468 G. Amendola, T. Eiter, and N. Leone

Using Proposition 4, it can be shown that the pairs (Ci, Cj), 1 ≤ i �= j ≤ l are
the joinable pairs witnessed by r (i.e., satisfying (iii)). One can compute C1, . . . , Cl

efficiently, e.g. using a stratified program Pr with the following rules:

1. rj ← , for each Cj ∈ VSG such that Cj ∩B(r) �= ∅;
2. rj ← ri and n max rj ← ri, for each (Ci, Cj) ∈ ESG;
3. max rj ← rj , not n max rj , for each Ci ∈ VSG.

The answer set of Pr yields C1, . . . , Cl, whose union Cr =
⋃l

i=1 Ci is contained in
a (unique) MJC C (i.e., Cr ⊆ C). The set MJC (P) is built by merging Cr and Cr′ s.t.
Cr ∩ Cr′ �= ∅ repeatedly. From MJC(P) and SG(P), computing JG(P) is easy.

Each step: building SCC (P), SG(P) and P ; evaluating Pr; computingCr; merging
the Cr’s; and building JG(P) from MJC(P) and SG(P) is feasible in linear time,
except evaluating Pr, which takes O(cs·‖P‖) time; in total, this is O(cs·‖P‖) time. �

6 Application: Inconsistency-Tolerant Query Answering

The standard answer set semantics may be regarded as appropriate when a knowledge
base, i.e., logic program, is properly specified adopting the CWA principle to deal with
incomplete information. Query answering over a knowledge base then resorts usually to
brave or cautious inference from the answer sets of a knowledge base; let us focus on the
latter here. However, if (unexpected) incoherence arises, then we lose all information and
query answers are trivial. This, however, may not be satisfactory, especially if it is not pos-
sible to modify the knowledge base, which may be due to various reasons. Paracoherent
semantics can be exploited to overcome this problem and to render query answering op-
erational, without trivialization. In particular, SEQ-semantics is attractive as it builds on
simple grounds and (1) brings in “unsupported” assumptions, (2) stays in model building
close to answer sets, but distinguishes atoms that require such assumptions from atoms
derivable without them, (3) keeps the CWA/LP spirit of minimal assumptions, and (4)
easily lifts to extensions (nested programs, arbitrary formulas, aggregates, etc).

For instance, consider a variant of the Russell paraphrase from the Introduction [28]:

P = {shaves(joe,X)← not shaves(X ,X); man(paul)}.
While this program has no answer set, SEQ-semantics gives us the model

({shave(joe, paul),man(paul)}, {shave(joe, paul),man(paul), shave(joe, joe)});
here the incoherent rule shaves(joe, joe) ← not shaves(joe, joe) obtained by ground-
ing is isolated from rest of the program, avoiding the absence of solutions (a similar in-
tuition is underlying the definition of CWA inhibition rule in [21], used for contradiction
removal in a logic program), and allows us to derive, for instance, that shave(joe, paul)
and man(paul) are true; furthermore, we can infer that shave(joe, joe) can not be false.
Such a capability seems very attractive in query answering.

Now reconsider the program in Example 1, and let us ask for query go(John). Again
answer set semantics yields only a trivial answer to the query. However the local inco-
herence is due to the second and the third rule, and the CWA implies that go(Mark)
is false; hence there is no reason to avoid the answer. Moreover split-SEQ semantics
yields the unique model ({go(John)}, {go(John), go(Bill)}) and removes the SEQ-
model ambiguity, as it makes stronger gap minimization through the bottom-up evalua-
tion. In this way, the relaxation of CWA is minimized.

Modular Paracoherent Answer Sets 469

Notice that also the well-founded semantics (WFS) [31] avoids cyclic incoherence,
but resorts to undefinedness that is cautiously propagated, such that reasoning by cases
may be abandoned. For example, consider the program

P = {a← not b; b← not a; c← a; c← b; d← not d}.
and ask the query c. The program is incoherent due to the last rule; under WFS, c is
undefined (as a and b are, due to the first two rules), while split-SEQ semantics yields
the models (ac, acd) and (bc, bcd), from which c is a cautious consequence as expected.

7 Discussion and Conclusion

Related Work. CR-Prolog [3] adds, roughly speaking, a subset-minimal set R of rules
from a pool R′ to program P such that P ∪R is coherent, and accepts all answer sets of
P∪R. This is a (syntactic) inconsistency management strategy (possibly missing cases),
not a logic-level semantic treatment of incoherence. Even for R′ consisting of all atoms,
it may disagree with SEQ -semantics, as adding facts is stronger than blocking negated
atoms (admitting more answer sets).

To our knowledge, modularity aspects of paracoherent semantics have not been stud-
ied extensively. A noticeable exception is [9], which studied the applicability of splitting
sets for several partial models semantics, among them the L-stable semantics. The lat-
ter is in spirit close to semi-equilibrium semantics but uses a different 3-valued logic.
Unsurprisingly, it does not satisfy the splitting property. Huang et al. [13] showed that
hybrid knowledge bases, which generalize logic programs, have modular paraconsistent
semantics for stratified knowledge bases; however, the semantics aims at dealing with
classical contradictions and not with incoherence in terms of instability through cyclic
negation. Pereira and Pinto [24], using the layering notion, that is similar to SCC-split
sequences, introduce Layered Models (LM) semantics which is an alternative semantics
that extends the stable models semantics for normal logic programs. But LM are just
a superset of stable models, and do not coincide with them on coherent programs, so
the CWA is too relaxed. Finally, Faber et al. [10] introduced a notion of modularity for
answer set semantics, based on syntactic relevance, which has paracoherent features.
However, this notion was geared towards query answering rather than model building,
and did not incorporate gap minimization at a semantic level.

Further Issues. By the results of Section 5, tractable merging policies that ensure
classical coherence (D3) will sometimes merge more components than necessary. To
deal with the issues (1) and (2) in Section 4.2, a parametric approach that gradually
merges SCCs seems attractive. Let Dk(C) denote the set of all descendants of C in
SG(P) within distance k ≥ 0; then we may proceed as follows.

Create a graph Gk with a node vr for each constraint r in P , which is labeled with
the set of SCCs λ(vr) = clp(

⋃
{Dk(Ci) | Ci ∈ SCC (P), Ci ∩ B(r) �= ∅}); here

clp(D) is a ‘closure operation that for a set D of SCCs yields D plus all SCCs that are
in SG(P) on some path between two SCCs from D. Merge then nodes vr and vr′ (and
their labels, using clp) such that λ(vr) ∩ λ(v′r) �= ∅ as long as possible. After that, add
an edge from v to v′, if v �= v′ and SG(P) has some edge (Ci, Cj) where Ci ∈ λ(v)
and Cj ∈ λ(v′). The resulting graph Gk is acyclic and distinct nodes have disjoint
labels. Similar as for JG(P), any topological ordering ≤ of Gk induces a splitting

470 G. Amendola, T. Eiter, and N. Leone

sequence S≤ (via the node labels); thanks to an analog of Theorem 6, one can define
the Mk-models of P as Mk(P) = SEQS≤(P) for an arbitrary ≤.

Clearly, Mk(P) ⊆ Mk+1(P) holds for every k ≥ 0, and Mk(P) = SEQ(P) for
large enough k; as MMJC (P) ⊆M0(P) holds, we have a hierarchy of models between
MMJC (P) and SEQ(P) which eventually establishes (D3); however, predicting the
least k such that Mk(P) �= ∅ is intractable.

Other relaxed notions of models (using different parameters for cross-constraints and
direct dependency) are conceivable; we leave this for future study.

Summary and Outlook. We have studied a refinement of SEQ-semantics that respects
modular structure, and we gave a semantics via splitting sets that is amenable to bottom
up evaluation of programs.

The generic framework of Equilibrium Logic makes it easy to define SEQ -semantics
via gap minimization for many extensions of the programs considered here, such as
nested programs, programs with aggregates and external atoms, hybrid knowledge bases
etc; programs with classical negation require to use more truth values [17]. It remains
to consider modularity in these extensions and to define suitable refinements of SEQ-
models. Particularly interesting are modular logic programs [14,6] where explicit (by
module encapsulation) and implicit modularity (by splitting sets) occur at the same time.

Besides language extensions, another issue is generalizing the model selection. To
this end, preference of gap minimization at higher over lower levels must be supported;
however, this intuitively requires more guessing and hinders bottom up evaluation. Fi-
nally, efficient algorithms and an implementation are to be done, as well integration into
an answer set building framework.

References

1. Alcântara, J., Damásio, C.V., Pereira, L.M.: A declarative characterization of disjunctive
paraconsistent answer sets. In: Proc. ECAI 2004, pp. 951–952. IOS Press (2004)

2. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker (ed.)
[16], pp. 89–148

3. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: McCarthy,
J., Williams, M.A. (eds.) Int’l Symp. Logical Formalization of Commonsense Reasoning.
AAAI 2003 Spring Symp. Series, pp. 9–18 (2003)

4. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Ann.
Math. & Artif. Intell. 12, 53–87 (1994)

5. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput.
Sci. 68(2), 135–154 (1989)

6. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–159.
Springer, Heidelberg (2009)

7. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Ann. Math. & Artif. Intell. 15(3/4), 289–323 (1995)

8. Eiter, T., Fink, M., Moura, J.: Paracoherent answer set programming. In: Lin, F., Sattler, U.,
Truszcyński, M. (eds.) Proc. KR 2010, pp. 486–496. AAAI Press, Toronto (2010)

9. Eiter, T., Leone, N., Saccà, D.: On the partial semantics for disjunctive deductive databases.
Ann. Math. & Artif. Intell. 19(1/2), 59–96 (1997)

10. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. J. Com-
put. Syst. Sci. 73(4), 584–609 (2007)

Modular Paracoherent Answer Sets 471

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

12. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften 16(1), 42–56 (1930)

13. Huang, S., Li, Q., Hitzler, P.: Reasoning with inconsistencies in hybrid MKNF knowledge
bases. Logic Journal of the IGPL 21(2), 263–290 (2013)

14. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive sta-
ble models. J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)

15. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. ICLP 1994, pp. 23–38. MIT-
Press (1994)

16. Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Morgan
Kaufman, Washington, DC (1988)

17. Odintsov, S., Pearce, D.J.: Routley semantics for answer sets. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 343–355. Springer,
Heidelberg (2005)

18. Osorio, M., Ramı́rez, J.R.A., Carballido, J.L.: Logical weak completions of paraconsistent
logics. J. Log. Comput. 18(6), 913–940 (2008)

19. Pearce, D.: Equilibrium logic. Ann. Math. & Artif. Intell. 47(1-2), 3–41 (2006)
20. Pearce, D.J., Valverde, A.: Quantified equilibrium logic and foundations for answer set pro-

grams. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
546–560. Springer, Heidelberg (2008)

21. Pereira, L.M., Alferes, J.J., Aparı́cio, J.N.: Contradiction removal semantics with explicit
negation. In: Masuch, M., Pólos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 91–105.
Springer (1992)

22. Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In:
Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 29–42.
Springer, Heidelberg (2005)

23. Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In: Dershowitz, N.,
Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 454–468. Springer, Heidelberg
(2007)

24. Pereira, L.M., Pinto, A.M.: Layered models top-down querying of normal logic programs. In:
Gill, A., Swift, T. (eds.) PADL 2009. LNCS, vol. 5418, pp. 254–268. Springer, Heidelberg
(2008)

25. Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing 9,
401–424 (1991)

26. Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs.
In: Minker (ed.) [16], pp. 193–216

27. Saccà, D., Zaniolo, C.: Partial models and three-valued stable models in logic programs with
negation. In: Subrahmanian, V., et al. (eds.) Proc. LPNMR 1991, pp. 87–101. MIT Press
(1991)

28. Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J.
Log. Comput. 5(3), 265–285 (1995)

29. Seipel, D.: Partial evidential stable models for disjunctive deductive databases. In: Dix, J.,
Moniz Pereira, L., Przymusinski, T.C. (eds.) LPKR 1997. LNCS (LNAI), vol. 1471, pp.
66–84. Springer, Heidelberg (1998)

30. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

31. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
J. ACM 38(3), 620–650 (1991)

32. You, J.H., Yuan, L.: A three-valued semantics for deductive databases and logic programs. J.
Comput. Syst. Sci. 49, 334–361 (1994)

Action Theories over Generalized Databases

with Equality Constraints�

Fabio Patrizi and Stavros Vassos

Department of Computer, Control, and Management Engineering (DIAG)
Sapienza University of Rome

Rome, Italy
{patrizi,vassos}@dis.uniroma1.it

Abstract. In this work we focus on situation calculus action theories
over generalized databases with equality constraints, here called GFDBs,
which are able to finitely represent complete information over a possibly
infinite number of objects. We contribute with the following: i) we show
that GFDBs characterize the class of definitional KBs and that they are
closed under progression; ii) we show that temporal projection queries
are decidable for theories with an initial KB expressed as a GFDB, which
we call GFDB-BATs; iii) we extend the notion of boundedness to allow
for infinite objects in the extensions of fluents and prove that a wide
class of generalized projection queries is decidable for GFDB-BAT under
a restriction we call C-boundedness; iv) we show that checking whether
C-boundedness holds for a given bound is decidable. The proposed action
theories are to date the most expressive ones for which there are decidable
methods for computing both progression and generalized projection.

Introduction

Situation calculus basic action theories (BATs) [13] are well-studied logical theo-
ries that consist of a first-order knowledge base (KB) which describes the initial
state of a given domain, and a set of first-order axioms that specify how the
properties of the domain change under the effects of named actions. Two impor-
tant reasoning problems are studied in the context of variants of BATs: temporal
projection and progression. Projection is about predicting whether a condition
would hold in the resulting state if a series of actions were to be performed in
the initial KB, while progression is about updating the KB by a new description
that reflects the current state after actions have been performed.

If we think of a BAT as a database which also features some specified opera-
tions (or actions) that alter the data, solving the projection problem corresponds
to answering a query over the state of the database after some of these opera-
tions are consecutively performed, while the progression problem is to provide
a concrete representation of the resulting database state. It then becomes clear

� The authors acknowledge the support of the EU Project FP7-ICT 318338 (OP-
TIQUE) and the Sapienza Award 2013 “Spiritlets” project.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 472–485, 2014.
c© Springer International Publishing Switzerland 2014

Action Theories over Generalized Databases 473

that these two problems are closely related. In particular, progression can be
used as a way to solve the projection problem in the following way: first update
the database according to the operations in question and then answer the query.

Nonetheless, this view is only helpful when the KB is a database. Solving
projection and progression becomes very tricky in the general case when we have
an unrestricted first-order specifications for the KB and the effects of actions.
As far as progression is concerned, for the general case it has been shown that
second-order logic may be required to capture the updated KB [9,15]; a list of
some special cases where it becomes first-order is studied in [16]. Similarly, a few
cases have been studied such that projection is decidable, namely (i) the case
when the KB is a regular database as we discussed above [14], (ii) the case when
the KB is an open-world database of a particular form, in which case a sound
and sometimes complete method for projection is specified [12], (iii) the case of
a modified version of the situation calculus built using a two-variable fragment
of first-order logic [6] in which case projection is decidable, and, more recently,
(iv) the case of bounded theories that require that in all models and in every
situation there is a fixed upperbound on the number of positive atomic facts [3].

Notably, the case when the KB has the form of a generalized database with
constraints [7], which allows to specify relations with possibly infinitely many
tuples, has not been investigated. In this work we show that for a special type of
BATs whose KB is a generalized database with equality constraints projection
is decidable and a first-order progression can always be computed. We then look
into richer forms of projection that may refer to more than one possible evolution
of the initial KB, e.g., capturing invariants of the form “after execution of α
condition φ always holds” and specify a condition that also ensures decidability.
To the best of our knowledge these BATs are to date the most expressive ones
with an infinite domain and possibly infinite extensions for fluents for which
there are known decidable methods for computing both a first-order progression
and generalized projection.

Situation Calculus Basic Action Theories (BATs)

The situation calculus as presented by Reiter [13] is a three-sorted first-order
language L with equality (and some limited second-order features). The sorts
are used to distinguish between actions, situations, and objects.

A situation represents a world history as a sequence of actions. S0 is used to
denote the initial situation and sequences of actions are built using the function
symbol do, such that do(a, s) denotes the successor situation resulting from per-
forming action a in situation s. Actions need not be executable in all situations,
and the predicate Poss(a, s) states that action a is executable in situation s. We
will typically use a to denote a variable of sort action and α to denote a term
of sort action, and similarly s and σ for situations. A (relational) fluent is a
predicate whose last argument is a situation, and thus whose value can change
from situation to situation. We also assume a finite number of fluent and action
symbols, F and A, and an infinite number of constants C.

474 F. Patrizi and S. Vassos

Often we need to restrict our attention to sentences in L that refer to a
particular situation. For example, the initial knowledge base (KB) is a finite set
of sentences in L that do not mention any situation terms except for S0. We
define Lσ to be the subset of L that does not mention any other situation terms
except for σ, does not mention Poss , and where σ is not used by any quantifier
[9]. When a formula φ(σ) is in Lσ we say that it is uniform in σ [13].

We will be dealing with a specific kind of L-theory, the so-called basic action
theory (BAT) D which has the following form:1

D = Dap ∪ Dss ∪ Duna ∪ D0 ∪Σ, where:

1. Dap is a set of action precondition axioms, one for each action function
symbolAi∈A, of the form Poss(Ai(x), s) ≡ Πi(x, s), whereΠi(x, s) is in Ls.

2. Dss is a set of successor state axioms (SSAs), one per fluent symbol Fi ∈
F , of the form Fi(x, do(a, s)) ≡ Φi(x, a, s), with Φi(x, a, s) ∈ Ls. SSAs
characterize the conditions under which Fi has a specific value at situation
do(a, s) as a function of situation s and action a.

3. Duna is the set of unique-names axioms for actions: Ai(x) �= Aj(y), and
Ai(x)=Ai(y) ⊃ x=y, for each pair of distinct symbols Ai and Aj in A.

4. D0 is uniform in S0 and describes the initial situation.
5. Σ is a set of foundational axioms which formally define legal situations and

an ordering by means of symbol�, also using a second-order inductive axiom.

Finally, we will typically restrict our attention to the case that distinct con-
stants are always interpreted into different objects. This unique-names restriction
can be captured by a set of axioms E consisting of the axioms of equality and
the set of sentences {ci �= cj |ci, cj ∈ C, i �= j} [8].

Generalized Databases and Query Evaluation

A generalized database [7] is a first-order interpretation (finitely) represented as
constraints on the tuples of relations. Generalized databases are obtained by
including in each relation the (possibly infinite) set of tuples that satisfy the
corresponding constraints. Various classes of constraints are considered. In this
work we focus on equality constraints. Let us present basic definitions from [7]
in the context of the situation calculus language L we specified.

Definition 1. An equality constraint is a literal formula xθy or xθc, where
c ∈ C and θ is = or �=. A generalized k-tuple over variables x1, . . . , xk is a
finite conjunction ψ of equality constraints whose variables are free and among
x1, . . . , xk. A generalized relation of arity k is a finite set R = {ψ1, . . . , ψq}, of
generalized k-tuples over x1, . . . , xk. The formula corresponding to a generalized
relationR is the disjunction ψ1∨· · ·∨ψq. We will use φR to denote the quantifier-
free formula corresponding to relation R.

1 For readability we often omit the leading universal quantifiers.

Action Theories over Generalized Databases 475

Generalized relations represent possibly infinite relations over the domain of
sort objects of L. In detail, let R = {ψ1, . . . , ψq} be a generalized relation of
arity k, and φR the formula corresponding to this relation. Then, R is associated
with the k-ary relation {c | c ∈ Ck, E |= φR(c)}. It is easy to see that any finite
relation can be represented as a generalized relation, while infinite relations exist
that are not captured by generalized ones.

The notion of generalized relation extends naturally to databases: a general-
ized database is a finite set of generalized relations. Differently from standard
settings in databases, since generalized databases represent in general infinite
relations, answers to queries are in general infinite and cannot be represented by
means of finite relations. Nonetheless, it turns out that query answers over gen-
eralized databases can be represented as generalized relations with constraints,
thus providing a closed representation system.

First observe that we can characterize the answer to a query by replacing
the occurrences of relation atoms in the query by the formulas corresponding to
the relations of the generalized database. Let ϕ(x) be a first-order query over
the relation symbols R1, . . . , Rn and D a generalized database over the same
relations. Let ϕ[R1/φR1 , . . . , Rn/φRn](x) be the first-order formula in L that is
the result of replacing every occurrence of Ri in ϕ by φRi . This formula, denoted
here as ϕ′(x), is then a finite representation of the answer to query ϕ over D.

The second trick is to observe that ϕ′(x) can be represented as a finite set of
generalized tuples that characterize the isomorphism types of regular tuples in
the answer of the query. Kanellakis et al. [7] specify a procedure that first builds
all the (finitely many) generalized tuples ψ over x using only the constants
mentioned in ϕ′(x), and then checks which of these are consistent with ϕ′(x).
The set of the ones that are consistent is a generalized relation that (finitely)
represents the answer to ϕ(x) over D.

Kanellakis et al. [7] also show that following this procedure the answer to a
first-order query over a generalized database (with equality constraints) is com-
putable in LOGSPACE data complexity. Thus, this constitutes a notable case
of infinite databases for which an effective procedure exists to answer queries.

BATs with Generalized Fluent Databases (GFDBs)

Reiter [13] investigates the case where the initial knowledge base (KB) is a defi-
nitional theory with respect to the fluent atoms in S0, i.e., with S0 characterized
as follows:

∧
Fi∈F ∀xi.Fi(xi, S0) ≡ φi(xi), where φi(xi), called the definition for

Fi, is an unrestricted first-order formula mentioning no situations. When the
underlying language L includes only fluent predicates, as it is the case in this
paper, a KB in such form is called a definitional KBs.

Definitional KBs in L capture complete information for fluents under the
assumption of the unique-name axioms for constants and axioms for equality in
E . For example the following axiom states that there are exactly two atoms true
for In(x1, x2, S0), namely In(box, it1, S0) and In(box, it2, S0):

∀x∀y(In(x, y, S0) ≡ (x=box∧(y= it1 ∨y= it2))).

476 F. Patrizi and S. Vassos

Nonetheless, the definition for a fluent can be any unrestricted first-order formula
built over the constants in C and equality, for example it could have the following
form that implies an infinity of ground atoms that are true in S0:

∀x∀y(In(x, y, S0) ≡ (x�=box∧(y= it1 ∨y= it2))).

Note that this definition can be rewritten as a formula that corresponds to a
generalized relation by distributing over the disjunction. Also, more complicated
definitions that include quantification do not actually add to the expressiveness,
as first-order theories of equality admit quantifier elimination [5].

We identify BATs over generalized databases as follows.

Definition 2. A set D0 of first-order sentences uniform in S0 is a generalized
fluent database (GFDB) iff it has the form

∧
Fi∈F ∀xi.F (xi, S0) ≡ φi(xi), where

φi(xi) is a formula that corresponds to a generalized relation over x, i.e., is a
disjunction of conjunctions of equality constraints. A basic action theory D is a
basic action theory over a generalized fluent database (BAT-GFDB) iff it also
includes the set of axioms E and D0 is a generalized fluent database.

Theorem 1. Let φ be a definitional KB. There exists a GFDB φ′ such that
E |= φ ≡ φ′.

As discussed in the previous section for such KBs there is also a decidable
LOGSPACE data complexity procedure for evaluating queries. Note also that
equivalence of GFDBs can also be decided, formed as an appropriate query. With
these tools available in the next sections we will proceed to show how solutions
for progression and projection can be obtained for BAT-GFDBs. We close this
section with a simple example of a GFDB-BAT.

0 1 2

2

1

0

3 Start

3

Fig. 1. Map of the grid domain

Example 1. Figure 1 shows a space where an agent can move only along specified
lines. The agent starts in (2, 3) and can initially move only vertically, i.e., to any
position s.t. x = 2. After moving, the agent can change direction (at the next
move) only if it has stopped at a crossing point (marked with solid circles). For
instance, if the agent moves from (2, 3) to (2, 1), it cannot move next to, e.g.,
(0, 1). Instead, if the agent stops in (2, 2), it can then move along the x-axis
to, e.g., (10, 2). The crossing points are placed along the diagonal, i.e., points
s.t. x = y, and at (0, 2) and (1, 0). A BAT describing this domain is as follows:

Action Theories over Generalized Databases 477

– Action types: A = {moveTo(x, y)}
– Fluents: F = {At(x, y, s), Dest(x, y, s), Cross(x, y, s)}
– D0: At(x, y, S0) ≡ x = 2 ∧ y = 3, Dest(x, y, S0) ≡ x = 2

Cross(x, y, S0) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)

– Dap: Poss(moveTo(x, y), s) ≡ Dest(x, y, s)

– Dss: Cross(x, y, do(moveTo(x′, y′), s)) ≡ Cross(x, y, s)

At(x, y, do(moveTo(x′, y′), s)) ≡ (x = x′ ∧ y = y′)

Dest(x, y, do(moveTo(x′, y′), s)) ≡ (Cross(x′, y′, s) ∧ (x = x′ ∨ y = y′))∨
∃x′′, y′′.At(x′′, y′′, s) ∧ [(x′ = x′′ ∧ y′ �= y′′ ∧ x = x′)∨
(y′ = y′′ ∧ x′ �= x′′ ∧ y = y′) ∨ (y′ = y′′ ∧ x′ = x′′ ∧Dest(x, y, s))]

Observe that the extension of fluent Dest is initially infinite. Indeed, according
to its definition, the fluent contains all possible tuples s.t. x = 2. Such tuples
represent the infinitely many possible destinations available to the agent in S0.

Progression of BAT-GFDBs

In order to do a one-step progression of the BAT D with respect to the ground
action α we need to replace D0 in D by a suitable set Dα of sentences uniform
in do(α, S0) so that the original theory D and the theory (D − D0) ∪ Dα are
equivalent with respect to how they describe the situation do(α, S0) and the
situations in the future of do(α, S0).

Lin and Reiter [9] gave a model-theoretic definition for the progression Dα of
D0 wrt α and D that achieves this goal. Finding such a Dα is a difficult task and
it has been shown that second-order logic may be required in the general case
[9,15]. Nonetheless, for the definitional KBs, and as a result also for the special
case of generalized fluent databases, there is a very simple way to progress.

Theorem 2 ([9]). Let D0 be
∧

Fi∈F ∀xi.Fi(xi, S0) ≡ φi(xi), and for all Fi∈F ,
let Dss include an SSA of the form Fi(xi, do(a, s)) ≡ Φi(xi, α, S0). For each
Fi∈F , let Φ′i(xi, α, S0) be the sentence obtained by replacing every occurrence of
atoms Fj(o, S0) in Φi(xi, α, S0) by φj(o), and Dα be

∧
Fi∈F ∀xi.Fi(xi, do(a, s))

≡ Φ′i(xi, α, S0). Then, Dα is a progression of D0 wrt α and the theory D.

Observe that this is very similar to the first trick we discussed when we re-
viewed the work on generalized databases and query evaluation [7], where we
replaced the occurrences of relation atoms in the query by the formulas corre-
sponding to the relations of the generalized database. It is interesting to look
into how this method works when D0 is a generalized fluent database, that will
illustrate how the second trick can also be of use.

Note that since each Φi(xi, α, S0) in the SSAs is in general unrestricted, e.g.,
may include quantifiers, Dα is not guaranteed to be in the form of a generalized
fluent database even though D0 is. The point in using a form like the generalized

478 F. Patrizi and S. Vassos

fluent database is that it allows us to perform query evaluation using the methods
and existing technologies in constraint databases instead of performing more
general theorem proving. Therefore, we want progression to preserve the form of
D0. The method of Theorem 2 does well in preserving the form of a definitional
KB but does not preserve the form in the case of a generalized fluent database.

This is how the second trick becomes useful. The idea is to consider generalized
tuples as the “base” formulas that we use to express any generalized fluent
relation. This is similar to a regular database where we would update D0 into a
Dα such that for every fluent a finite list of tuples is specified. Theorem 1 then
provides a way to transform, by means of quantifier elimination, the resulting
Dα of Theorem 2 into the form of a generalized fluent database.

Theorem 3. Let D be a BAT over a generalized fluent database and α a ground
action. Then there exists a first-order progression Dα of D0 wrt α and D that is
in the form of a generalized fluent database.

As a consequence, we can iteratively progress a BAT-GFDB and express the
state corresponding to any ground situation as a generalized fluent database.

Example 2. The following theory Dα is the progression of the initial GFDB D0

of Example 1, wrt action α = moveTo(2, 2) (and theory D):

At(x, y, do(α, S0)) ≡ x = 2 ∧ y = 2, Dest(x, y, do(α, S0)) ≡ x = 2 ∨ y = 2

Cross(x, y, do(α, S0)) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)

Notice that, similarly to the initial situation, after executing α in S0, the agent
still has an infinite set of destinations available: all those s.t. x = 2 or y = 2.

Finally, since every definitional KB can be expressed as a GFDB, this analysis
also illustrates a subtle detail about the way we understand progression. Both a
progression Dα according to Theorem 2 and a progression D′α according to The-
orem 3 qualify as logically correct progressions of D0 and are logically equivalent
(under the assumption of E). Nonetheless, Dα is more of a logical specification of
the changes that need to be made due to action α and D′α more of a materialized
update of these changes into a practical normal form.

Another way to look at it is that the progression procedure of Theorem 2
is purely syntactic (linear to the size of D0) and does not involve any form
of evaluation; in a sense, the fluents are not updated to a new truth value but,
rather, the new truth values are still specified with respect to the initial situation.
Theorem proving is then needed in order to reason over the specification, even for
a simple look-up query for a given atom. Even though this logical specification
may in fact be beneficial in some cases, in practice we expect that materializing
the update into a GFDB normal form (that explicitly lists the generalized tuples
for each fluent) would offer similar advantages as updates do in regular databases.

Action Theories over Generalized Databases 479

Projection over BAT-GFDBs

The (simple) projection problem is the task of predicting whether a condition
holds at a particular time in the future after a series of ground actions have been
executed [13]. The following is a straightforward result.

Theorem 4. Let D be a BAT-GFDB, α1, . . . , αn a sequence of ground actions,
and φ(s) a first-order formula uniform in s. Then determining whether or not
the following holds is decidable: D |= φ(do(αn, · · · do(α1, S0))) .

This is not a new result and can be proven by means of regression and the
fact that E is decidable. Our previous analysis also shows that simple projection
queries over a BAT-GFDB can be decided by iteratively progressing D0 wrt
α1, . . . , αn according to Th. 3 and then evaluating the query over the resulting
GFDB following the method of [7]. Depending on the type of queries, and the
frequency that actions occur, either approach may be preferred under conditions.

We now proceed to show a major result about the decidability of richer projec-
tion queries over BAT-GFDBs that may also quantify over future situations. A
generalized version of the projection problem is when φ may refer to any number
or combination of future situations. For instance, referring to Ex. 1, the formula
∀s.do(moveTo(2, 2), S0) � s ⊃ ∃xy.Dest(x, y, s) states that after executing ac-
tion moveTo(2, 2) in the initial situation, the agent has an available destination
in any future situation.

We consider the language Lp of generalized projection queries ϕ. Lp is defined
on top of the language Ln, whose formulas φ are as follows: φ := x = c | x =
y | F (x, s) | F (x, σ) | ¬φ | φ ∧ φ | ∃x.φ, for F a fluent symbol, c a constant,
and σ a ground situation term. Lp formulas are defined as: ϕ := φ | ¬ϕ | ϕ∧ϕ |
∃s.σ�s ∧ ϕ, where φ ∈ Ln is any formula uniform in s or in a ground situation
term σ, whose free variables (if any) are only of sort situation.

We also consider a class of BAT-GFDBs which we callC-bounded. To define it,
let TV be the (finite) set of all generalized tuples ψ that use equality constraints
with (only variable) symbols from the finite set of variables V , and s.t. ψ does
not contain multiple occurrences of some equality constraint. Notice that since
generalized tuples are conjunctions (thus multiple occurrences of a conjunct do
not change their semantics), TV essentially contains all the possible generalized
tuples one can build using symbols from V .

Definition 3. LetD be aBAT-GFDBandB a natural number.A ground situation
term σ is said to be constant-bounded byB inD (or simply C-bounded) iff for every
fluent F (x, s) ∈ F , it is the case that D |=

∨
Ψ∈2TV ∃y.F (x, σ) ≡

∨
ψ∈Ψ ψ, where:

V is partitioned intoX and Y , withX the set of variables occurring in x, Y any set
of variable symbols such that |Y | = B, and y are the free variables of ψ coming from
Y .D is said to be constant-bounded by a finite boundB, C-bounded byB for short,
iff every ground situation term of D that is executable is also C-bounded by B.

Notice that Ψ above is a set of generalized tuples, thus the formula
∨

ψ∈Ψ ψ is a
generalized relation. Intuitively, Definition 3 requires that the definition of each

480 F. Patrizi and S. Vassos

fluent in σ is a generalized relation mentioning at most B distinct constants. An
example of C-bounded BAT-GFDB is provided by the action theory of Ex. 1.

For this class of theories, we have the following result.

Theorem 5. Given a BAT-GFDB D that is C-bounded by some B, and a gener-
alized projection query sentence ϕ in Lp, it is decidable to check whether D |= ϕ.

The rest of this section details the proof of this theorem.

Definition 4. A (labelled) transition system over GFDBs (for a GFDB-BAT
D), GFDB-TS for short, is a tuple T = (Q, q0,→, L), where:

– Q is the GFDB-TS’s (nonempty) set of nodes2;
– q0 ∈ Q is the GFDB-TS’s initial node;
– → ⊆ Q × Act ×Q is the GFDB-TS’s transition relation, for Act the set of

all ground action terms of D; we interchange the notations (q, α, q′) ∈ →
and q

α−→ q′;
– L is the GFDB-TS’s labelling function, associating each node q with a gen-

eralized fluent database L(q).

We associate each ground situation term σ = do([α1, . . . , αn], S0) with the node

qσ s.t. q0
α1−→ · · · αn−1−→ qσ, if it exists.

In Def. 4, the label L(q) of a generic node q is a GFDB, thus uniform in S0

as required by the corresponding definition. Such GFDBs should be intuitively
understood as defining the state of the situation obtained by executing, from S0,
the ground actions labeling a path from q0 to q, while moving the “S0 point of
reference” to be the current situation.

Besides the standard semantics of Lp over action theories, we define an alter-
native semantics over GFDB-TSs.

Definition 5. Given a GFDB-TS T , an Lp formula ϕ, and a node q of T , we
define when T satisfies ϕ at node q, written T, q |= ϕ, as follows:

– for ϕ = φ ∈ Ln, T, q |= ϕ, iff
• φ is uniform in s, i.e., of the form φ(s), and E , L(q) |= φ(S0), i.e., treated
as a local query over node q; or

• φ is uniform in σ, qσ exists, and T, qσ |= φ[σ/s], i.e., reduced to the
previous case as a a unique base case;

– the semantics of the connectives ¬, ∧ is as standard;
– T, q |= ∃s.σ � s ∧ ϕ, for σ = do([α1, . . . , αn], S0), if for some σ′ =

do([α1, . . . , αn, . . . , αm], S0) s.t. m ≥ n, it is the case that qσ′ is defined
and T, qσ′ |= ϕ[s/σ′];

When ϕ is a sentence, T is said to satisfy ϕ, written T |= ϕ iff T, q0 |= ϕ.

Every BAT-GFDB D induces an infinite GFDB-TS, as defined below.

2 We use node instead of state to avoid confusion with the states associated with
situations in action theories.

Action Theories over Generalized Databases 481

Definition 6. The induced GFDB-TS of a BAT-GFDB D is the GFDB-TS
TD = (Q, q0,→, L) (over D), s.t.:

– Q is the set of all D’s ground situation terms;
– q0 = S0;

– q
A(c)−→ q′ iff q′ = do(A(c), q);

– L(q) is a generalized database such that:
• if q = q0 then L(q) = D0;
• if q �= q0 and there exists q′ s.t. q′

A(c)−→ q, then L(q′) is the progression of
L(q) wrt A(c) and D, where do(A(c), q) is replaced by S0.

Our first result shows that, as far as generalized projection queries are concerned,
the induced GFDB-TS can be used as an alternative representation of D.

Lemma 1. Let D be a BAT-GFDB and TD the corresponding induced GFDB-
TS. Then, for any generalized projection query ϕ that is a sentence in Lp, we
have that D |= ϕ iff TD |= ϕ.

Proof. By induction on the structure of ϕ.

Thus, one can check whether D |= ϕ using TD. Obviously, this does not imply
decidability, as both the situation terms and the state space of TD are in general
infinite. We show next how to circumvent this problem when D is a BAT-GFDB
C-bounded by a bound B.

Starting from D and ϕ, we construct a finite GFDB-TS T̂D,ϕ that is indis-
tinguishable from TD, by ϕ. To this end, fix a finite set of constants H ⊆ C,
s.t. CD ∪ Cϕ ⊆ H and |H | ≥ B · |F|+ |CD ∪ Cϕ|+NA, where: CD and Cϕ are the
set of constants respectively occurring in D and ϕ, and NA is the largest number
of parameters in the action types of D. The construction of T̂D,ϕ is shown in
Algorithm 1, where Progr(D0, A(c)) denotes the result of progressing an initial
theory D0 w.r.t. a ground action A(c), which we assume to be a GFDB (see
Th. 3). The symbol ≡E represents logical equivalence between theories, under E .

The procedure inductively builds a GD-TS for D, by applying, at every step,
all the executable actions obtained from the action types of D and the constants
inH . Applying an action A(h) consists in progressing (line 10) the labeling DB of
the current node q (initially q0) w.r.t. A(h), provided it is executable according
to the labeling L(q) (line 9), then replacing, in the obtained progression, the
situation term do(A(h), S0) by S0. If the obtained progression P is not logically
equivalent (under E) to any GFDB labeling some node of (the current) Q, then a
fresh node q′ is added to Q, with labeling L(q) = P (lines 11–15); if instead some
node q′ exists with L(q′) logically equivalent to P , then q′ is simply retrieved
from Q (line 17), and no new node is added. In either case, a transition from q
to q′ under the executed action is added to → (line 15). Every time a fresh node
is added to Q, it is stored in the set Front, containing the nodes of Q to be
expanded. Initially, Front = {q0}. The algorithm returns when Front is empty.

Lemma 2. Algorithm 1 terminates on any C-bounded BAT-GFDB D and gen-
eralized projection query ϕ.

482 F. Patrizi and S. Vassos

Algorithm 1. (Constructs T̂D,ϕ)

1: procedure BuildT̂ (D, ϕ)
2: Q := {q0};
3: → := ∅;
4: L(q0) := D0;
5: Front := {q0};
6: while Front �= ∅ do
7: for all q ∈ Front do
8: Front := Front \ {q};
9: for all A(h) s.t. A ∈ A, h ∈H and E , L(q) |= Poss(A(h), S0) do
10: P := Progr(L(q),A(h))[do(S0, A(h))/S0];
11: if ¬∃q′ ∈ Q s.t. P ≡E L(q′) then
12: let q′ a fresh node;
13: Q := Q ∪ q′;
14: L(q′) := P ;
15: Front := Front ∪ {q′};
16: else
17: let q′ ∈ Q be s.t. L(q′) ≡E P ;
18: end if
19: → :=→∪ (q,A(h), q′);
20: end for
21: end for
22: end while
23: return (Q, q0,→, L);
24: end procedure

Proof. Follows from the facts: H is finite; checking E , L(q) |= Poss(A(h), S0)
is decidable as L(q) is a GFDB; checking P ≡E L(q) is decidable, P and L(q)
being GFDBs; for a given (finite) set of fluents F and a finite set H of constants,
there exist only finitely many equivalence classes of logically equivalent (under
E) GFDBs that can be defined using only constants from H .

The following result, together with Lemma 1, proves that one can use T̂Dϕ,
instead of the infinite TD, to check D |= ϕ.

Lemma 3. For any BAT-GFDB D C-bounded by some bound B and generalized
projection query ϕ that is a sentence in Lp, we have that: TD |= ϕ iff T̂D,ϕ |= ϕ.

Proof. (Sketch) Given two GFDBs D0 and D′0, and a set C ⊆ C of constants,
write D0 ≈C D′0, if there exists a bijection γ : CD0 ∪ C → CD′

0
∪ C that is the

identity on C, s.t. for the theory D′′0 obtained from D0 by renaming all of its
constants c as γ(c), it is the case that D′′0 ≡E D′0. (This intuitively means that D0

and D′0 are logically equivalent up to renaming of the constants not mentioned in
C.) Then, let TD = (Q, q0,→, L), T̂D,ϕ = (Q̂, q̂0, →̂, L̂), and CD,ϕ = CD∪Cϕ. The
proof is based on proving that (*) for any q ∈ Q and q̂ ∈ Q̂ s.t. L(q) ≈CD,ϕ L̂(q̂),

TD, q |= ϕ iff T̂D,ϕ, q̂ |= ϕ. Since L(q0) ≈CD,ϕ L̂(q̂0) (see Algorithm 1), this

Action Theories over Generalized Databases 483

implies that TD, q0 |= ϕ iff T̂D,ϕ, q̂0 |= ϕ, i.e., TD |= ϕ iff T̂D,ϕ |= ϕ. The proof of
(*), omitted for space reasons, is by induction on the structure of ϕ.

To complete the proof of Theorem 5, it remains to show that checking whether
T̂D,ϕ |= ϕ is decidable.

Lemma 4. Given a C-bounded BAT-GFDBD and a generalized projection query
ϕ that is a sentence in Lp, checking whether T̂D,ϕ |= ϕ is decidable.

Proof. (Sketch) To perform the check, we use the following recursive procedure
(the cases of boolean connectives ¬, ∧ and ∨ are as standard):

1: procedure CheckT̂ (q, ϕ)
2: if ϕ = φ ∈ Ln and φ is uniform in s then
3: return T̂D,ϕ, q |= ϕ;
4: end if
5: if ϕ = φ ∈ Ln and φ is uniform in σ then
6: if qσ does not exist in Q then
7: return false;
8: else
9: return CheckT̂ (qσ, ϕ[σ/s]);
10: end if
11: end if
12: if ϕ = ∃s.do([α1, . . . , αn], S0) � s ∧ φ then

13: for all paths q0
α1−→ · · · αn−→ qn+1

αn+1−→ · · ·
αm−1−→ qm s.t. in the suffix

qn+1
αn+1−→ · · ·

αm−1−→ qm, no node occurs more than once do
14: if CheckT̂ (qm, ϕ[s/σ′]) == true, for σ′ = do([α1, . . . , αm−1], S0) then
15: return true;
16: end if
17: end for
18: return false;
19: end if
20: end procedure

(Termination and correctness proofs omitted for brevity.)

Lemmas 1, 2, 3 and 4 prove, together, Th. 5. By exploiting Th. 5 we can prove
the following notable result.

Theorem 6. Given a BAT-GFDB D and a natural number B, checking whether
D is C-bounded by B is decidable.

Proof. (Sketch) From D, a theory D′, C-bounded by B by construction, can be
derived that matches D up to the situations (if any) that violate C-boundedness,
and s.t. the situations preceding a violation are marked with distinguished facts.
This can be done because the formula ϕ(s) =

∨
Ψ∈2TV ∃y.F (x, s) ≡

∨
ψ∈Ψ ψ,

which, for appropriate V , expresses that s is C-bounded by B, is regressable.
We can then prove that D |= ∀s.ϕ(s) iff D′ |= ∀s.ϕ′(s), with ϕ′(s) expressing that
situation s is not marked with any of the distinguished facts discussed above.
Since D′ is C-bounded, by Th. 5, D′ |= ϕ′ is decidable. Thus, so is D |= ϕ.

484 F. Patrizi and S. Vassos

Related Work

Our work relates definitional KBs and BATs over them to the work in databases
and, in particular, constraint query languages (CQL). The representation of
infinitely many tuples we use here shares a lot of similarities with the work in
database theory about finitary representations of infinite query answers [1], and
the more general approach of CQL of [7] that is our main inspiration.

Proper KBs [8] also generalize regular databases by allowing possibly infinite
sets of positive or negative ground facts to be expressed, as well as tuples to
be undefined (incomplete information). This provides enough expressive power
to make theorem proving, in general, undecidable with proper KBs, even for
queries about S0. This is overcome in [8] by an approximate reasoning method
which is always logically sound, but also complete only under specific conditions.
The case of a KB as a generalized database with equality constraints, instead, is
less expressive, as it captures only complete information, but effective, and logi-
cally correct methods exist for query answering, projection, and progression. In
particular, wrt (possibly generalized) projection queries, our approach can deal
with full first-order queries over S0 and any projected ground future situation,
as well as generalized projection queries of a particular form. In contrast, the
approach of [8] can guarantee completeness only under some constraints on the
first-order queries [11], that limit their expressivity.

The case of bounded action theories of [3] is the only one in the literature that
investigates conditions under which generalized projection queries can be decided
over BATs. They require a finite upperbound on the number of positive atomic
facts for all models and situations, and look into queries that can be expressed
over BATs using a first-order variant of the μ-calculus [4]. Our work extends this
work in the case where fluents may have infinite extensions, concisely represented
by means of equality constraints. We are able then to prove similar results for
a wide class of general projection queries. Finally, the two-variable variant of
situation calculus language in [6] allows richer forms of incomplete information
in the initial KB, but is bound by the limitation of using only two variables, e.g.,
not being able to express reachability relations.

Conclusions and Future Work

In this paper we looked into situation calculus action theories over generalized
fluent databases with equality constraints (GFDB), connecting the situation
calculus with constraint query languages. We showed that GFDBs characterize
the class of definitional KBs and that for action theories over such KBs (BAT-
GFDBs), the KBs are closed under progression. We proved that simple projection
queries over BAT-GFDBs are decidable in general. Also, extending the notion
of boundedness proposed in [3], we introduced the notion of C-boundedness and
showed that, under this, a wide class of generalized projection queries that in-
clude quantification over situations is decidable. Finally, we proved decidability
of checking C-boundedness of a BAT-GFDB for some bound.

Action Theories over Generalized Databases 485

For future work we want to consider other constraints, in particular extending
GFDBs to include linear orderings. We believe that this work can provide the
ground for specifying action theories that capture topological properties and rea-
son effectively over rich temporal aspects relating to projection and progression.
We also intend to look into controlled ways to express incomplete information
similar to the extensions of proper KBs in [10] and [2]. We believe that the latter
can be used to include a practical form of incomplete information.

References

1. Chomicki, J., Imieliński, T.: Finite representation of infinite query answers. ACM
Trans. Database Syst. 18(2), 181–223 (1993)

2. De Giacomo, G., Lespérance, Y., Levesque, H.J.: Efficient Reasoning in Proper
Knowledge Bases with Unknown Individuals. In: Proc. of IJCAI 2011, pp. 827–832
(2011)

3. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded Situation Calculus Action
Theories and Decidable Verification. In: Proc of KR 2012 (2012)

4. Emerson, E.A.: Model Checking and the Mu-calculus. In: Descriptive Complexity
and Finite Models, pp. 185–214 (1996)

5. Enderton, H., Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn.
Academic Press (2001)

6. Gu, Y., Soutchanski, M.: Decidable Reasoning in a Modified Situation Calculus.
In: Proc. of IJCAI 2007, pp. 1891–1897 (2007)

7. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint Query Languages. Journal
of Computer and System Sciences 51(1), 26–52 (1995)

8. Levesque, H.J.: A Completeness Result for Reasoning with Incomplete First-Order
Knowledge Bases. In: Proc. of KR 1998 (1998)

9. Lin, F., Reiter, R.: How to Progress a Database. Artificial Intelligence 92(1-2),
131–167 (1997)

10. Liu, Y., Lakemeyer, G., Levesque, H.J.: A Logic of Limited Belief for Reasoning
with Disjunctive Information. In: Proc. of KR 2004, pp. 587–597 (2004)

11. Liu, Y., Lakemeyer, G.: On the Expressiveness of Levesque’s Normal Form. J. Artif.
Int. Res. 31(1), 259–272 (2008)

12. Liu, Y., Levesque, H.J.: Tractable Reasoning with Incomplete First-Order Knowl-
edge in Dynamic Systems with Context-Dependent Actions. In: Proc.of IJCAI 2005
(2005)

13. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

14. Reiter, R.: The Projection Problem in the Situation Calculus: A Soundness and
Completeness Result, with an Application to Database Updates. In: Proc. of AIPS
1992, pp. 198–203 (1992)

15. Vassos, S., Levesque, H.J.: How to progress a database III. Artificial Intelli-
gence 195, 203–221 (2013)

16. Vassos, S., Patrizi, F.: A Classification of First-Order Progressable Action Theories
in Situation Calculus. In: Proc. of IJCAI 2013 (2013)

A Dynamic View of Active Integrity Constraints

Guillaume Feuillade and Andreas Herzig

Université de Toulouse, IRIT-LILaC and CNRS, France

Abstract. Active integrity constraints have been introduced in the database
community as a way to restore integrity. We view active integrity constraints as
programs of Dynamic Logic of Propositional Assignments DL-PA and show how
several semantics of database repair that were proposed in the literature can be
characterised by DL-PA formulas. We moreover propose a new definition of re-
pair. For all these definitions we provide DL-PA counterparts of decision problems
such as the existence of a repair or the existence of a unique repair.

Keywords: Active integrity constraints, dynamic logic, propositional assignments.

1 Introduction

Updates under integrity constraints is an important and notoriously difficult issue in
databases and AI. About ten years ago, active integrity constraints were proposed in the
database literature as a ‘more informed’ way of maintaining database integrity [FGZ04,
CTZ07, CT08, CGZ09, CT11, CF14]. There, an active integrity constraint is basically
viewed as a couple r = 〈C(r),R(r)〉 where C(r) is a formula and R(r) is a set of update
actions each of which is of the form either p←� or p←⊥, for some atomic formula p.
The idea is that (1) when C(r) is true then the constraint r is violated, and (2) a violated
constraint can only be repaired by performing one or more of the update actions in R(r).

In this paper we examine active integrity constraints in the framework of dynamic
logic and argue that they should be viewed as a complex program: the sequential com-
position of the test of C(r) and the nondeterministic choice of an action in R(r). Repair-
ing a database can then be done by means of a complex program that combines active
integrity constraints. We use a simple yet powerful dialect of dynamic logic: Dynamic
Logic of Propositional Assignments, abbreviated DL-PA [HLMT11, BHT13]. The latter
is a simple instantiation of Propositional Dynamic Logic PDL [Har84, HKT00]: instead
of PDL’s abstract atomic programs, its atomic programs are update actions: assignments
of propositional variables to either true or false, written p←� and p←⊥. Just as in PDL,
these atomic programs can be combined by means of program operators: sequential and
nondeterministic composition, finite iteration, and test. While DL-PA programs describe
the evolution of the world, DL-PA formulas describe the state of the world. In particular,
formulas of the form

〈
π
〉
ϕ express that ϕ is true after some possible execution of π, and

[π]ϕ expresses that ϕ is true after every possible execution of π. The models of DL-PA
are considerably simpler than PDL’s Kripke models: valuations of classical proposi-
tional logic are enough. The assignment p←� inserts p, while the assignment p←⊥
deletes p. It is shown in [HLMT11, BHT13] that every DL-PA formula can be reduced

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 486–499, 2014.
c© Springer International Publishing Switzerland 2014

A Dynamic View of Active Integrity Constraints 487

to an equivalent boolean formula. This will allow us to construct repaired databases
syntactically.

Just as [CT11, CF14] we only consider ground constraints, i.e., we work with a
propositional language.

The paper is organized as follows. After some preliminaries (Section 2) we recall
DL-PA in Section 3. In Section 4 we recall static constraints and provide an embedding
of the associated repairs that have been defined in the literature into DL-PA. In Section 5
we do the same for active integrity constraints. In Section 6 we propose a new definition
in terms of while programs. Section 7 concludes.

2 Preliminaries

In this paper we consider propositional languages that are built from a countable set
of propositional variables (alias atomic formulas) P = {p, q, . . .}. Boolean formulas are
built from P by means of the boolean operators �, ⊥, ¬, and ∨ and are denoted by A,
B, etc. The other boolean connectives ∧,→, and↔ are abbreviated in the usual way. A
literal is an element of P or the negation of an element of P and a clause is a disjunction
of literals. We define PA to be the set of variables from P occurring in formula A. This
extends to sets in the obvious way.

Valuations are subsets of P and are denoted by V , V1, V2, etc. The set of all valuations
is thereforeV = 2P. It will sometimes be convenient to write V(p) = � instead of p ∈ V
and V(p) = ⊥ instead of p � V . In the context of active integrity constraints a valuation
is called a database.

A valuation determines the truth value of every boolean formula. The set of valua-
tions where A is true is noted ||A||. We sometimes write V |= A when A ∈ ||V ||.

An update action is of the form p←� and p←⊥, for p ∈ P. The former is the
insertion of p and the latter is the deletion of p. We denote the set of all update actions
by U. We sometimes use X as a metavariable for � and ⊥ and write p←X. For subsets
P of P it will be convenient to write P←� to denote the set of update actions {p←� :
p ∈ P}, and likewise for P←⊥. A set of update actions U ⊆ U is consistent if it does
not contain both p←� and p←⊥, for some p.

The update of a valuation V by a set of update actions U is defined as:

V◦U =
(
V \ {p : p←⊥ ∈ U}

)
∪ {p : p←� ∈ U}

So all the deletions are applied in parallel first, followed by the parallel application of
all insertions. We could as well have chosen some other order of application. When U
is consistent then all of them lead to the same result. In particular:

Proposition 1. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉 be
some permutation of 〈1 . . .n〉. Then V◦{α1, . . . , αn} =

(
. . . (V◦{αk1 }) . . .

)
◦{αkn }.

3 Dynamic Logic of Propositional Assignments

The first studies of assignments in the context of dynamic logic are due, among others,
to Tiomkin and Makowski and van Eijck [TM85, vE00]. Dynamic Logic of Propo-
sitional Assignments DL-PA was introduced in [HLMT11] and was further studied

488 G. Feuillade and A. Herzig

in [BHT13]. Evidence for its widespread applicability was provided in several recent
publications, including belief update and belief revision, argumentation, and planning
[Her14, DHP14, HMNDBW14]. We briefly recall syntax and semantics.

3.1 Language

The language of DL-PA is defined by the following grammar:

ϕ� p | � | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π � α | π; π | π ∪ π | π∗ | π− | ϕ?

where p ranges over the set of atomic formulas P and α ranges over the set of update
actionsU. In DL-PA, update actions are called atomic assignments. The operators of se-
quential composition (“;”), nondeterministic composition (“∪”), finite iteration (“(.)∗”,
the so-called Kleene star), and test (“(.)?”) are familiar from PDL. The operator “(.)−” is
the converse operator. The formula 〈π〉ϕ is read “there is an execution of π after which
ϕ”. The star-free fragment of DL-PA is the subset of the language made up of formulas
without the Kleene star “(.)∗”.

We define Pϕ to be the set of variables from P occurring in formula ϕ, and we define
Pπ to be the set of variables from P occurring in program π. For example, Pp←q∪p←¬q =

{p, q} = P〈
p←⊥
〉

q
.

Several program abbreviations are familiar from PDL. First, skip abbreviates�? and
fail abbreviates ⊥?. Second, if ϕ then π1 else π2 is expressed by (ϕ?; π1) ∪ (¬ϕ?; π2).
Third, the loop while ϕ do π is expressed by (ϕ?; π)∗;¬ϕ?. Let us moreover introduce
assignments of literals to variables by means of the following two abbreviations:

p←q = if q then p←� else p←⊥ p←¬q = if q then p←⊥ else p←�

The former assigns to p the truth value of q, while the latter assigns to p the truth
value of ¬q. In particular, the program p←¬p flips the truth value of p. Note that both
abbreviations have constant length, namely 14. Finally and as usual in modal logic,

[
π
]
ϕ

abbreviates ¬
〈
π
〉
¬ϕ.

3.2 Semantics

DL-PA programs are interpreted by means of a relation between valuations. The atomic
programs α update valuations just as singleton sets of update actions do (cf. the preced-
ing section), and complex programs are interpreted just as in PDL by mutual recursion.
Table 1 gives the interpretation of formulas and programs. where ◦ is relation composi-
tion and (.)−1 is relation inverse.

A formula ϕ is DL-PA valid iff ||ϕ|| = 2P = V. It is DL-PA satisfiable iff ||ϕ|| � ∅. For
example, the formula

〈
p←⊥

〉
�,
〈
p←�

〉
ϕ ↔ ¬

〈
p←�

〉
¬ϕ,
〈
p←�

〉
p, and

〈
p←⊥

〉
¬p

are all valid.
Observe that if p does not occur in ϕ then formulas such as ϕ →

〈
p←�

〉
ϕ and ϕ →

〈p←⊥〉ϕ are valid. This is due to the following semantical property that is instrumental
in the proof of several results in the rest of the paper.

A Dynamic View of Active Integrity Constraints 489

Table 1. Interpretation of formulas and programs

||p|| = {V : p ∈ V} ||α|| =
{
〈V1,V2〉 : V2 = V1◦{α}

}
||�|| = V = 2P ||π; π′|| = ||π|| ◦ ||π′||
||⊥|| = ∅ ||π ∪ π′|| = ||π|| ∪ ||π′||
||¬ϕ|| = 2P \ ||ϕ|| ||π∗|| =

(
||π||
)∗

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ|| ||π−|| =
(
||π||
)−1

||
〈
π
〉
ϕ|| =

{
V : ∃V1 s.t. 〈V ,V1〉 ∈ ||π|| and V1 ∈ ||ϕ||

}
||ϕ?|| =

{
〈V ,V〉 : V ∈ ||ϕ||

}

Proposition 2. Suppose Pϕ ∩ P = ∅, i.e., none of the variables in P occurs in ϕ. Then
V ∪ P ∈ ||ϕ|| iff V \ P ∈ ||ϕ||.

A distinguishing feature of DL-PA is that its dynamic operators can be eliminated
(which is impossible in PDL). Just as for QBF, the resulting formula may be exponen-
tially longer than the original formula.

Theorem 1 ([BHT13]). For every DL-PA formula there is an equivalent boolean for-
mula.

Every assignment sequence α1; · · · ;αn is a deterministic program that is always ex-
ecutable: for a given V , there is exactly one V ′ such that 〈V ,V ′〉 ∈ ||α1; · · · ;αn||. More-
over, when a set of update actions {α1, . . . , αn} is consistent then the order of the αi in
a sequential composition is irrelevant. The following can be viewed as a reformulation
of Proposition 1 in terms of the DL-PA operator of sequential composition.

Proposition 3. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉
be some permutation of 〈1 . . .n〉. Then V◦{αk1 , . . . , αkn } equals the single V ′ such that
〈V ,V ′〉 ∈ ||αk1 ; · · · ;αkn ||.

This entitles us to use sets of consistent update actions as programs: one may suppose
that this stands for a sequential composition in some predefined order (based e.g. on the
enumeration of the set of propositional variables).

4 Static Constraints and the Associated Repairs

In this section we consider the classical notion of database integrity that is defined in
terms of static integrity constraints (or static constraints for short). In our propositional
language they are nothing but boolean formulas. Two ways of repairing databases can
be found in the literature on active integrity constraints [CT11]. Both consist in first
finding an appropriate set of update actions U and then building the update V ◦ U of V
by U as defined in Section 2. We relate them to well-known operations in belief revision
and update [KM92], which allows us to reuse their embeddings into DL-PA [Her14].

490 G. Feuillade and A. Herzig

4.1 Weak Repairs and Drastic Updates

Let V be a database and let C be a set of static constraints. A weak repair of V achieving
C is a consistent set of update actions U ⊆ U such that V◦U |=

∧
C and such that U is

relevant w.r.t. V . The latter means that p←� ∈ U implies p � V and p←⊥ ∈ U implies
p ∈ V .

Example 1. Let V = ∅ and let C = {p∨q}. The weak repairs of V achieving C are all
those subsets of the set of positive update actions {r←� : r ∈ P} that contain either
p←�, or q←�, or both.

The example illustrates that weak repairs are indeed very weak. As the following
result shows, if we consider what is true in all possible weak repairs then we obtain
what is called a drastic update in the literature on belief revision and update.1

Proposition 4. Let V be a database and let C be a set of static constraints. Then
{
V ◦ U : U is a weak repair of V achieving C

}
=
∣∣∣∣∣∣∧C

∣∣∣∣∣∣.
Note that a weak repair may contain assignments of variables that do not occur in

C. To remedy this we define a relevant weak repair to be a weak repair U such that if
p←� or p←⊥ occurs in U then p ∈ PC .

This corresponds to a very basic update semantics that is sometimes called Winslett’s
standard semantics [Win90].

4.2 Repairs Tout Court and Their Relation to Winslett’s PMA

A repair of V achieving C is a weak repair of V achieving C that is minimal w.r.t. set
inclusion: there is no weak repair of V achieving C that is strictly contained in it.

Example 2. Let V = ∅ and C = {p∨q}. There are exactly two repairs of V achieving C,
viz. {p←�} and {q←�}.

We are now going to relate repairs to Winslett’s possible models approach PMA
[Win88, Win90]. Remember that the update of a database V by a boolean formula A
according to the PMA is the set of V ′ such that V ′ |= A and such that the symmetric
difference between V and V ′ is minimal w.r.t. set inclusion. Formally, symmetric dif-
ference is defined as D(V ,V ′) = {p : V(p)�V ′(p)} and the PMA update of V by A
is

V�pmaA =
{
V ′ : V ′ |= A and there is no V ′′ ∈ ||A|| such that D(V ,V ′′) ⊂ D(V ,V ′)

}
For example, ∅ �pma p∨q =

{
{p}, {q}

}
and ∅ �pma(p∧q)∨r =

{
{p, q}, {r}

}
.

Proposition 5. Let V be a database and let C be a set of static constraints. Then
{
V ◦ U : U is a repair of V by C

}
= V�pma

(∧
C
)
.

The above result justifies the term PMA repair that we are going to employ hence-
forth (because the mere term ‘repairs’ might lead to confusions).

1 It is actually also a drastic revision because V is a complete database and update and revision
coincide in that case [PNP+96].

A Dynamic View of Active Integrity Constraints 491

4.3 Repairs and Weak Repairs in DL-PA

We now embed Winslett’s standard semantics (and thereby relevant weak repairs) and
the PMA (and thereby repairs tout court) into DL-PA. This was already done in [Her14],
but our embeddings are slightly more elegant and are presented in a more uniform and
streamlined way. We start with some auxiliary definitions.

To each propositional variable p we associate a fresh propositional variable p±. Each
proposition p± will register whether or not the proposition p has been modified along
the update. This is necessary to ensure that every proposition is modified at most once
during a repair. We extend the definition to sets of variables P ⊆ P: P± = {p± | p ∈ P}.

First, we need a program that sets all the propositions in a given set P to ⊥: P←⊥
is the sequence of assignments p←⊥ for all p ∈ P (whose order does not matter, cf.
Proposition 3). Therefore PC

±←⊥ is going to initialise the relevant p± before the pro-
gram containing toggle(p) below is executed.

Second, the following two DL-PA programs (1) modify a single proposition and store
this and (2) undo that modification:

toggle(p) = if ¬p± then p←¬p; p±←� else fail = ¬p±?; p←¬p; p±←�
undo(p) = if p± then p←¬p; p±←⊥ else fail = p±?; p←¬p; p±←⊥

The idea is that the variable p± keeps track of the modifications of p: we are going
to ensure that it is true only once p has been modified during the current update. Then
toggle(p) will flip the truth value of p if this value has not been modified yet and records
the modification by setting p± to�; if p has already been made true then toggle(p) fails.
The program undo(p) undoes this.

Then a weak repair that is relevant w.r.t. C is achieved by the following DL-PA pro-
gram:

weakRepair(C) = PC
±←⊥;

⎛⎜⎜⎜⎜⎜⎜⎝
⋃
p∈PC

toggle(p)

⎞⎟⎟⎟⎟⎟⎟⎠
∗

;
(∧

C
)
?

We note that since each variable can be updated at most once and since the order of
the updates does not matter, this can be rewritten without the Kleene star as a sequence(
toggle(p1) ∪ skip

)
; . . . ;

(
toggle(pk) ∪ skip

)
where p1, . . . , pk are the variables in PC .

We finally define the following DL-PA formula:

Minimal(C) = ¬
〈⋃

p∈PC

undo(p);

⎛⎜⎜⎜⎜⎜⎜⎝
⋃
p∈PC

undo(p)

⎞⎟⎟⎟⎟⎟⎟⎠
∗〉∧

C

The program in this formula undoes a nonempty set of toggle(p) actions (and non-
deterministically so, failing when there was no change at all). Therefore the formula
Minimal(C) says that there is no execution of that program leading to a database closer
to the actual database that satisfies the constraints. So the actual database corresponds
to a minimal change of the initial database.2

2 The difference with [Her14] is that our programs memorise that a variable has been flipped
instead of storing its previous value.

492 G. Feuillade and A. Herzig

Theorem 2. Let C be a set of static constraints in the language of P and let V ⊆ P be
a database (i.e., no p± occurs in either of them). Let U be a consistent set of update
actions that is relevant w.r.t. V. Set V ′ = (V◦U) ∪ {p± : p←� ∈ U or p←⊥ ∈ U}.

– U is a relevant weak repair of V achieving C if and only if 〈V ,V ′〉 ∈ ||weakRepair(C)||.
– U is a PMA repair of V achieving C iff 〈V ,V ′〉 ∈ ||weakRepair(C); Minimal(C)?||.

Proof. For the first item, observe that 〈V ,V ′〉 ∈ ||weakRepair(C)|| if and only if V ′ ∈
||C|| and the following holds for all variables p ∈ P (i.e., excluding the p±): (a) p± ∈ V ′

iff V(p) � V ′(p) and (b) if V(p) � V ′(p) then p ∈ PC , i.e., only p’s from C and the
associated p± were modified.

For the second item, given some actual database V ′, define the initial database as

V = {p ∈ P : p ∈ V ′ and p± � V ′} ∪ {p ∈ P : p � V ′ and p± ∈ V ′}.

Then V ′ ∈ ||Minimal(C)|| iff there is no V ′′ ∈ ||
∧

C|| such that D(V ,V ′′) ⊂ D(V ,V ′).3

5 Active Constraints and the Associated Repairs

Active integrity constraints were proposed about ten years ago [FGZ04], and various
ways of repairing a database V by such constraints have been studied in the literature.
We refer to [CT11] for an overview. Just as for static constraints, all definitions are
based on the notion of repair set: an appropriate set of update actions U such that V ◦U
no longer violates the integrity constraints, where V ◦U is the result of updating V with
U as defined in Section 2 and is called the repaired database.

In the present section we recall syntax and semantics and show that they can be recast
in DL-PA.

5.1 Active Integrity Constraints

An active integrity constraint (or active constraint for short), combines a static integrity
constraint with a preferred repair action. Formally, an active constraint is a couple

r =
〈
C(r),R(r)

〉
where C(r) is a boolean formula and R(r) is a finite set of update actions that is consis-
tent. As before, C(r) is a static integrity constraint that is violated when C(r) is false. If
so then r is applicable and R(r) indicates how to get rid of the violation and achieve in-
tegrity. We view the elements of R(r) as permitted update actions: When C(r) is violated
then each of the actions in R(r) gets a ‘license to update’.4 This is a rather imprecise
description of the job the update actions in R(r) are expected to do, and in the litera-
ture various semantics are associated to a set of active constraints. For one of the most

3 Note that by definition of toggle(p), p ∈ D(V ,V ′) is equivalent to p± ∈ D(V ,V ′) thus the
inclusion D(V ,V ′′) ⊂ D(V ,V ′) is not affected by the variables in PC

±.
4 The reading that is given in the literature is slightly different from ours: there, R(r) is called

the set of preferred update actions.

A Dynamic View of Active Integrity Constraints 493

prominent of them in terms of founded repairs, it turns out that the elements of R(r)
have to be viewed as exclusive choices: when some α ∈ R(r) is part of the repair set
then no other β can be part of the repair set.

We say that an active constraint r = 〈C(r),R(r)〉 is standard if C(r) is a clause and
each update action in R(r) produces one of the literals of C(r): if p←� ∈ R(r) then p
has to be one of the literals of C(r) and if p←⊥ ∈ R(r) then ¬p has to be one of the
literals of C(r).

Remark 1. The definition in the literature differs in several respects from ours here.
First, C(r) is not viewed as a static integrity constraint but as the negation of a static
integrity constraint (r is violated when the first argument of r is true). Second, active
constraints are noted C(r) → R(r), which makes them look like formulas. However,
such formulas are non-standard because the right hand side of the implication is not a
formula but a set of programs. So their semantics remains to be given: in the literature
this is typically done by means of disjunctive logic programs under a non-monotonic
semantics. Third, all active constraints have to be standard.

We denote finite sets of active constraints by η, η1, etc. The set of static integrity
constraints associated to such a set is defined as C(η) = {C(r) : r ∈ η}.

It remains to associate a semantics to active constraints. In the present and the fol-
lowing section we discuss the options and their properties.

5.2 Founded Weak Repairs and Founded Repairs

In the literature, founded repairs are considered to be a natural basic semantics of active
constraints that is a good starting point for further refinements.

Given a set of active constraints η and a database V , a consistent set of update actions
U is founded if for every α ∈ U there is an r ∈ η such that (a) α ∈ R(r), (b) V◦U |= C(r),
and (c) V ◦ (U \ {α}) �|= C(r). A set of update actions U is a founded (weak) repair of V
by η if U is a (weak) repair of V achieving C(η) and U is founded.

Remark 2. We have reformulated the original definition so that it applies to our more
general definition of active constraint. Both are equivalent as far as standard active
constraints are concerned.

Founded repairs do not necessarily exist [CT11, Example 2].

Example 3. Consider η =
{
〈p, {p←�}〉, 〈p∨q, {q←�}〉

}
. The set {p←�} is a founded

weak repair of V0 = ∅ by η. It is the only such repair: the second update action in
{p←�, q←�} cannot be founded on the second active constraint of η.

In the next section, we propose an encoding of the notion of founded repairs in
DL-PA.

Example 4 ([CT11], Example 3). Consider
η =
{
〈p∨q, {p←�}〉, 〈¬p∨q, {p←�}〉, 〈p∨¬q, {q←�}〉

}
.

The set {p←�, q←�} is the only founded repair of V0 = ∅ by η.

494 G. Feuillade and A. Herzig

This illustrates circularity of support: each update action is individually founded be-
cause the others happen to be in the repair. Such repairs are considered to be unintended
and the notion of justified repair was proposed to overcome the problem. Justified re-
pairs can be encoded in DL-PA in a way similar to the encoding of founded repairs. We
however do not work this out here.

5.3 Founded Repairs in DL-PA

We re-use the abbreviations weakRepair(C(η)) and Minimal(C(η)) that we have intro-
duced in Section 4.3. Remember that in order to keep track of modifications we had
supposed that we have at our disposal fresh variables p±, one per variable p ∈ P. We
moreover need the following:

IsFounded(η) =
∧

p∈PC(η)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝p
± →

∨
r∈η

p←X∈R(r)

〈
p←¬p

〉
¬C(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where X ranges over {�,⊥}. The formula is true if and only if all current update actions
(encoded in the current valuation by means of the fresh variables p±) are founded.

Theorem 3. Let η be a set of active integrity constraints in the language of P and let
V0 ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of
update actions that is relevant w.r.t. V0.

– U is a weak founded repair of V0 by η iff

〈V0,V0◦U〉 ∈
∣∣∣∣∣∣weakRepair(C(η)); IsFounded(η)?

∣∣∣∣∣∣.
– U is a founded repair of V0 by η iff

〈V0,V0◦U〉 ∈
∣∣∣∣∣∣weakRepair(C(η)); IsFounded(η)?; Minimal(C(η))?

∣∣∣∣∣∣.
Proof. Suppose V is some repaired database (containing variables p±). Define the set
of update actions

UV ,η = {p←� : p± ∈ V and p ∈ V} ∪ {p←⊥ : p± ∈ V and p � V}.

Let us prove that V ∈ ||weakRepair(C(η)); IsFounded(η)||? iff UV ,η is a weak founded
repair of V0 by η. The latter means that for every α ∈ UV ,η, the three conditions (a) α ∈
R(r), (b) V0 ◦UV ,η |= C(r), and (c) V0 ◦ (UV ,η \ {α}) �|= C(r) are satisfied.

For the left-to-right direction consider some p←� ∈ UV ,η. Then p± ∈ V . Condition
(b) is satisfied from the definition weakRepair(C(η)) and Theorem 2. Condition (a) is
satisfied by the existence of a candidate rule in the definition of IsFounded(η); remark
that we are guaranteed that the rule contains indeed p←�, as opposed to p←⊥, because
undoing the change on p changes C(r) to false (so X has to be �). Condition (c) is
satisfied because V0 ◦ (U \ {p←�}) �|= C(r) is equivalent to V0 ◦U |= ¬

〈
p←⊥

〉
C(r).

For the right-to-left direction, Theorem 2 ensures that UV ,η is a weak repair. To prove
that V ∈ ||IsFounded(η)||, consider some p± ∈ V . By definition, it entails p←X ∈ UV ,η

for some X ∈ {�,⊥}. Condition (a) ensures that there is a rule r ∈ η with p←� ∈ R(r).
Condition (c) implies V |= ¬

〈
p←¬X

〉
C(r). This concludes.

A Dynamic View of Active Integrity Constraints 495

6 A New Definition of Repair in DL-PA

We now propose two new definitions that take advantage of the resources of DL-PA.
More precisely, we make use of while loops in order to iterate the application of active
constraints. We start by discussing how databases can be repaired by applying active
constraints in sequence. This will lead us to the definition of dynamic repair. We show
that it is incomparable with both founded weak repairs and founded repairs.

6.1 Repairing a Database: A Dynamic View

Suppose there is only one active constraint r that is standard. Then it is clear how to
proceed: either V |= C(r) and there is nothing to do, or V �|= C(r) and we have to apply
r. In the second case, each αi ∈ R(r) provides a PMA repair of V achieving C(r).5 What
about the case where R(r) is empty? Well, then V cannot be repaired and we are stuck.

So far so good. The situation gets way more intricate when the set of active con-
straints η contains two or more elements that can interact.

Even for standard active constraints it might not be enough to apply only one of
the update actions from R(r): some of the active constraints might have to be applied
several times in order to obtain integrity. The following example of an n-bit counter
highlights this.

Example 5. Suppose we represent binary numbers up to 2n+1−1 by means of n+1 propo-
sitional variables: ¬pn∧ · · · ∧¬p0 represents the integer zero and pn∧ · · · ∧p0 represents
2n+1−1. Let

r1 = 〈p0∨x0∨ · · · ∨xn, {p0←�}〉
r2k = 〈pk∨¬pk−1∨ · · · ∨¬p0∨xk, {xk←�}〉, for k ≤ n

r3k = 〈pk∨¬pk−1∨ · · · ∨¬p0∨¬xk, {pk←�, pk−1←⊥, . . . , p0←⊥}〉, for k ≤ n

r4k = 〈¬pk∨pk−1∨ · · · ∨p0∨¬xk, {xk←⊥}〉, for k ≤ n

The idea is that when ¬pk∧pk−1∧ · · · ∧p0 is true, i.e., when the number 011. . .1 has to
be incremented to 100. . .0, then xk is made true by r2k and remains so unless 100. . .0 has
been attained. This involves flipping the k digits in the conjunction ¬pk∧pk−1∧ · · · ∧p0:
with active constraints this is done one-by-one by the rule r3k . Then xk is set to false
again by r4k . Let ηn =

{
r1} ∪ {r21 , . . . , r2n } ∪ {r31 , . . . , r3n } ∪ {r41 , . . . , r4n }

}
. Successive

repairing steps implement an n-bit counter counting from the initial database ∅ to the
database {pn, . . . , p0}.

The computation takes 2n+1−1 steps, demonstrating that sometimes atomic repairs
must be performed an exponential number of times: V0 = ∅ can only be repaired by
applying r1 a number of times exponential in n.

Our example highlights the difference between dynamic repairs and founded repairs:
in the latter an active constraint can only be used once.

5 For our more general active constraints where there is no syntactical link between C(r) and
R(r) we have to compute all possible minimal subsets U ⊆ R(r) such that V |= C(r). All of
them are PMA repairs.

496 G. Feuillade and A. Herzig

6.2 Dynamic Weak Repairs and Dynamic Repairs

We associate to every active constraint r the DL-PA programs

πr = ¬C(r)?;
⋃
α∈R(r)

α and π±r = ¬C(r)?;
⋃

p←X∈R(r)

(
p←X; p±←�

)
,

where we consider that
⋃
α∈R(r) α equals fail when R(r) is empty. This matches the intu-

itive reading that we have given to active constraints in Section 5.1: the repair program
πr checks whether the static integrity constraint associated to r is violated and if so ap-
plies one of the update actions from R(r). The program π±r moreover stores that p has
been changed. This is also supported by the following proposition, which tells us that
applicability of an active constraint r is matched by the DL-PA notion of executability
of the program πr.

Proposition 6. Let r be an active constraint and let V be a database. Then applicability
of r at V is equivalent to both V |= 〈πr〉� and V |= 〈πr〉±�.

Proof. It suffices to observe that when π is a nondeterministic composition of update
actions then the equivalence ϕ↔ 〈ϕ?; π〉� is DL-PA valid for every ϕ.

A dynamic weak repair of V by η is a set of update actions U such that U is relevant
w.r.t. V and

〈V ,V◦U〉 ∈
∣∣∣∣
∣∣∣∣while ¬C(η) do

(⋃
r∈η
πr

)∣∣∣∣
∣∣∣∣.

Finally, U is a dynamic repair of V by η if U is a PMA repair of V by η that is dynamic.

Example 6 (Example 4, ctd.). Consider again
η =
{
〈p∨q, {p←�}〉, 〈¬p∨q, {p←�}〉, 〈p∨¬q, {q←�}〉

}
.

There is a single dynamic (weak) repair of V0 = ∅ by η, viz. {p←�, q←�}.

Example 7 (Example 3, ctd.). Consider again η =
{
〈p, {p←�}〉, 〈p∨q, {q←�}〉

}
, whose

only founded weak repair was {p←�}. There are two dynamic weak repairs of V0 = ∅
by η, namely {p←�} and {p←�, q←�}. Only the former is a dynamic repair.

The next example illustrates that dynamic weak repairs are not necessarily founded.

Example 8. Consider η =
{
〈p∨q, {p←�, q←�}〉, 〈p∨r, {p←�, r←�}〉

}
. There are four

dynamic weak repairs of V0 = ∅ by η, namely U1 = {p←�}, U2 = {q←�, r←�},
U′1 = {p←�, q←�}, and U′′1 = {p←�, r←�}. Only U1 and U2 are dynamic repairs.

The next theorem characterises dynamic repairs in terms of DL-PA programs.

Theorem 4. Let η be a set of active integrity constraints in the language of P and let
V0 ⊆ P be a database (i.e., no p± occurs in either of them). Let U be a consistent set of
update actions that is relevant w.r.t. V0. U is a dynamic repair of V0 by η iff

〈V0,V0◦U〉 ∈
∣∣∣∣
∣∣∣∣while ¬C(η) do

(⋃
r∈η
π±r
)
; Minimal

(
C(η)
)
?
∣∣∣∣
∣∣∣∣.

Other definitions of dynamic repairs are possible. We could e.g. stipulate that U is a
dynamic repair of V if it is a dynamic weak repair that is minimal w.r.t. set inclusion,
i.e., such that there is no dynamic weak repair U′ of V such that U ′ ⊂ U. We have not
explored this option in detail, but it seems that it can be captured in DL-PA as well.

A Dynamic View of Active Integrity Constraints 497

7 Discussion and conclusion

We have shown how several definitions of database repair via active integrity constraints
can be expressed in DL-PA, including a new proposal in terms of their iterated appli-
cation. This allows us to claim that DL-PA is a nice integrated framework for database
updates: it not only provides operators p←� of insertion and p←⊥ of deletion and
more generally sets U of such assignments that can be applied to a database V; it also
provides a means to reason about the repair of the resulting V◦U when some element
of the set of integrity constraints is violated. For example, V ′ is a possible repair of the
update of the database V by the deletion of p if and only if the couple 〈V ,V ′〉 belongs to
the interpretation of the DL-PA program p←⊥; repair, where repair is one of the repair
programs of theorems 2, 3, 4. Moreover, the set of candidate repaired databases is the
interpretation of the DL-PA formula

〈(
p←⊥; repair

)−〉
ϕV , where ϕV is a conjunction of

literals describing V syntactically.
Beyond identifying possible repaired databases, our programs repair also allow to

solve decision problems. For example, we may check whether it is possible at all to
repair V by model checking in DL-PA whether

V |=
〈
repair

〉
�.

We can also check whether there is a unique repair of V by model checking whether the
set of databases V ′ such that 〈V ,V ′〉 ∈ ||repair|| is a singleton. This amounts to model
check for each of the variables p occurring in the constraints whether

V |=
[
repair

]
p ∨
[
repair

]
¬p.

We might as well wish to check possibility or unicity of the repairs independently of a
specific database V . For example, we can check whether η can repair any database by
checking whether the formula

〈
repair

〉
� is DL-PA valid. A further interesting reasoning

task is to check whether two sets of active constraints η1 and η2 are equivalent under a
given semantics by checking whether ||repairη1

|| = ||repairη2
||.

Our active integrity programs of the form r = 〈C(r),R(r)〉 generalise the condition
C(r) from disjunctions of clauses to arbitrary formulas (that could actually even be
DL-PA formulas). This opens up two perspectives. First, our definition also covers re-
vision programs [CT11]; we leave it to future work to establish the exact relationship.
Second, we could further generalise the action R(r) from a set of update actions to ar-
bitrary DL-PA programs. Dynamic repairs would then still make sense, while it is not
clear how founded and justified repairs would have to be defined.

It is known that deciding the existence of a repair is NP-complete for PMA repairs
and for founded weak repairs, while it is Σ2

P complete for founded repairs [CT11].
We leave to future work the investigation of the complexity of dynamic repairs. What
can already be said is that our repair programs repairη all have length polynomial in
the size of η. Complexity results for the fragments of DL-PA containing the respective
repair programs would therefore provide an upper complexity bound. These results re-
main to be established; they would parallel those for fragments of QBF. First steps are
in [Her14].

498 G. Feuillade and A. Herzig

Acknowledgements. Thanks are due to the reviewers for helpful comments.

References

[BHT13] Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assign-
ments: a well-behaved variant of PDL. In: Kupferman, O. (ed.) Logic in Com-
puter Science (LICS). IEEE (2013)

[CF14] Cruz-Filipe, L.: Optimizing computation of repairs from active integrity con-
straints. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS, vol. 8367, pp.
361–380. Springer, Heidelberg (2014)

[CGZ09] Caroprese, L., Greco, S., Zumpano, E.: Active integrity constraints for database
consistency maintenance. IEEE Trans. Knowl. Data Eng. 21(7), 1042–1058
(2009)

[CT08] Caroprese, L., Truszczyński, M.: Declarative semantics for active integrity con-
straints. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 269–283. Springer, Heidelberg (2008)

[CT11] Caroprese, L., Truszczynski, M.: Active integrity constraints and revision pro-
gramming. TPLP 11(6), 905–952 (2011)

[CTZ07] Caroprese, L., Trubitsyna, I., Zumpano, E.: View updating through active in-
tegrity constraints. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670,
pp. 430–431. Springer, Heidelberg (2007)

[DHP14] Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract
argumentation. In: International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), Vienna, Austria, pp. 143–152. AAAI Press
(2014)

[FGZ04] Flesca, S., Greco, S., Zumpano, E.: Active integrity constraints. In: Moggi, E.,
Warren, D.S. (eds.) PPDP, pp. 98–107. ACM (2004)

[Har84] Harel, D.: Dynamic logic. In: Gabbay, D.M., Günthner, F. (eds.) Handbook of
Philosophical Logic, vol. II, pp. 497–604. D. Reidel, Dordrecht (1984)

[Her14] Herzig, A.: Belief change operations: A short history of nearly everything, told
in dynamic logic of propositional assignments. In: Baral, C., De Giacomo, G.
(eds.) Proc. KR 2014. AAAI Press (2014)

[HKT00] Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
[HLMT11] Herzig, A., Lorini, E., Moisan, F., Troquard, N.: A dynamic logic of normative

systems. In: Walsh, T. (ed.) International Joint Conference on Artificial Intelli-
gence (IJCAI), Barcelona, pp. 228–233. IJCAI/AAAI (2011)

[HMNDBW14] Herzig, A., Menezes, V., De Barros, L.N., Wassermann, R.: On the revision of
planning tasks. In: Schaub, T. (ed.) European Conference on Artificial Intelli-
gence (ECAI) (August 2014)

[KM92] Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowl-
edge base and revising it. In: Gärdenfors, P. (ed.) Belief Revision, pp. 183–203.
Cambridge University Press (1992); preliminary version in Allen, J.A., Fikes,
R., Sandewall, E. (eds.): Principles of Knowledge Representation and Reason-
ing: Proc. 2nd Int. Conf., pp. 387–394. Morgan Kaufmann Publishers (1991)

[PNP+96] Peppas, P., Nayak, A.C., Pagnucco, M., Foo, N.Y., Kwok, R.B.H., Prokopenko,
M.: Revision vs. update: Taking a closer look. In: Wahlster, W. (ed.) ECAI,
pp. 95–99. John Wiley and Sons, Chichester (1996)

[TM85] Tiomkin, M.L., Makowsky, J.A.: Propositional dynamic logic with local assign-
ments. Theor. Comput. Sci. 36, 71–87 (1985)

A Dynamic View of Active Integrity Constraints 499

[vE00] van Eijck, J.: Making things happen. Studia Logica 66(1), 41–58 (2000)
[Win88] Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowl-

edge base and revising it. In: Gärdenfors, P. (ed.) Belief Revision, pp. 183–203.
Cambridge University Press (1992); Reasoning about action using a possible
models approach. In: Proc. 7th Conf. on Artificial Intelligence (AAAI 1988),
St. Paul, pp. 89–93 (1988)

[Win90] Winslett, M.-A.: Updating Logical Databases. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press (1990)

Similarity Orders from Causal Equations

Johannes Marti and Riccardo Pinosio

ILLC, University of Amsterdam

Abstract. The purpose of this paper is to demonstrate that, contrary
to the received wisdom, causal reasoning can be formalized wholly within
the framework of Lewis’ conditional logic. To this aim we simulate causal
reasoning based on structural equations in Lewis’ order semantics. This
reduction is based on a formalization of an intuitive idea for computing
relative similarity between worlds. Worlds are the more similar the more
they satisfy the same relevant propositions, where relevance is a compar-
ative notion represented by a preorder. In the context of causal reasoning
this relevance order on propositions depends on the causal structure of
the problem domain.

Keywords: Causal reasoning, conditional logic, counterfactual condi-
tionals, non-monotonic reasoning, similarity orders, structural equations.

1 Introduction

In this paper we show how causal reasoning based on systems of structural
equations can be embedded into the framework of the similarity order semantics
for conditional logic.

The order semantics for conditional logic was developed in [4] in order to an-
alyze counterfactual conditionals. On this a approach a relative similarity order
over possible worlds is taken as basic and counterfactual conditionals are evalu-
ated by a minimization procedure in this similarity order. With this approach it
has proven to be difficult to account for counterfactual conditionals which rely
on causal dependencies in the problem domain [12]. The difficulty is to give an
account of how to determine a relative similarity order that captures these causal
dependencies [5].

In artificial intelligence the framework based on systems of structural equa-
tions has been very successful as a formalization of causal reasoning. Pearl’s
book [8] is the standard treatment of this approach. Here we also find a se-
mantics for a restricted class of counterfactual conditionals. This semantics is
not prone to the kind of counterexamples that have been proposed against the
similarity approach.

Pearl already notices [8, Section 7.4] a close relation between the semantics for
counterfactual conditionals on systems of structural equations and the seman-
tics on similarity orders. In [10] Schulz brings the approach to counterfactual
conditionals using structural equations closer to premise semantics for condi-
tional logic [13,3], which is a framework essentially equivalent to the similarity
approach [6]. In particular, by importing notions from premise semantics into

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 500–513, 2014.
c© Springer International Publishing Switzerland 2014

Similarity Orders from Causal Equations 501

the setting of structural equations, Schulz extends the class of conditionals that
can be evaluated. However, it remained an open question how to construct a
relative similarity order that captures precisely the causal dependencies encoded
in a system of structural equations:

While – as we have seen – we can understand Pearl’s system as an in-
stantiation of the similarity approach, so far we do not know the exact
nature of the similarity relation that would give us Pearl’s interpretation
of would have conditionals. Of course, it would be nice to have a refor-
mulation of Pearl’s theory in terms of similarity. But the only thing we
can say so far is that it looks as if the relevant similarity relation differs
clearly from what has been proposed in premise semantics. [9, p. 113]

We show how to construct a relative similarity order between possible worlds
from a system of structural equations such that the truth of counterfactual
conditionals is preserved.

For our construction we introduce the notion of a relevance order. A relevance
order is a preorder with a proposition associated to every element in the order.
This notion is motivated by the premise semantics for conditional logic where
a set of relevant propositions is associated to every world. In the definition of
relevance orders we take, following previous work [7], the relevant propositions to
be world-independent. Moreover, our notion of a relevance order makes precise
the idea from [5] that relevance is a matter of degree. We thus order propositions
by comparative relevance instead of just having a set of relevant propositions.

The paper has the following structure. In Section 2 we briefly review the
language and order semantics of conditional logic. In Section 3 we review the
framework of systems of structural equations. In Section 4 we introduce the no-
tion of a relevance order. Section 5 contains the construction of relative similarity
orders from systems of structural equations and proves the preservation of true
conditionals. In Section 6 we show that the framework of relevance orders can
also account for backtracking counterfactual conditionals.

2 Conditional Logic

In this section we present the syntax of conditional logic and review its semantics
on relative similarity orders. The purpose is to fix the notation and clarify the
setting. For an extensive technical treatment of conditional logic we refer to [14].

The language of conditional logic is the set of all formulas generated according
to the following grammar:

ϕ ::= x | ϕ ∧ ϕ | ¬ϕ | ϕ 	 ϕ

where x ∈ A is an element from a fixed finite set A = {x0, x1, . . . , xn−1} of
atomic sentences. The Boolean connectives ∨, → and ↔ are defined in terms of
¬ and ∧ in the usual way. Formulas of the form ϕ 	 ψ are conditionals, where
ϕ is the antecedent and ψ the consequent.

502 J. Marti and R. Pinosio

The semantics for conditional logic on relative similarity orders is based on a
set W of worlds. We assume that the set of worlds W is the set of all Boolean
valuations over the set of atomic sentences. This choice ensures the existence of
enough possible worlds, which we need for the proof of our main result.

Definition 1. A world w : A→ 2 is a function which assigns to every variable
xk with k < n a binary value wk = w(xk). We write W for the set of all worlds.

The order semantics is based on preorders, which are just reflexive and tran-
sitive relations. If ≤ is preorder on a set V we also write w < v for w ≤ v and
not v ≤ w. Given a set U ⊆ V we use Min(≤, U) ⊆ U for the set of minimal
elements of U in ≤, that is

Min(≤, U) = {m ∈ U | if u ≤ m then m ≤ u for all u ∈ U} .

The semantic structures in the order semantics are relative similarity orders.

Definition 2. A relative similarity order ≤ over W is a tertiary relation on W
such that ≤w is preorder for every w ∈ W .

We think of v ≤w u as meaning that the world v is more similar to the actual
world w than the world u.

The standard semantics of the conditional on relative similarity orders is de-
fined using minimization.

Definition 3. The semantics of a conditional ϕ 	 ψ on a relative similarity
order ≤ is given by:

w,≤ |= ϕ 	 ψ iff v,≤ |= ψ for all v ∈ Min(≤w, A),where

A = {v ∈W | v,≤ |= ϕ}

Intuitively, this clause says that ϕ 	 ψ is true at a world w if ψ is true at all
the ϕ-worlds that are maximally similar to w.

3 Causal Reasoning with Structural Equations

In this section we review causal reasoning based on functional causal models.
We are working within the extended version of Pearl’s framework [8] introduced
by Schulz in [10]. These extensions allow for a more general approach to the
evaluation of conditionals than [8].

Again we assume a fixed set of atomic binary variables A = {x0, x1, . . . , xn−1}
as given. These atomic variables represent the basic facts in the causal structure
of the problem domain. We restrict our presentation to binary variables since
these can be taken to be atomic sentences of conditional logic. However, the
construction of this paper also works if the variables take values in any finite
set. In that case one has to adapt the language of conditional logic by introducing
atomic sentences expressing that a variable has a certain fixed value.

The causal structure of the problem domain is represented by a system of
structural equations, which are called recursive causal models in [8, Defini-
tion 7.1.1] and dynamics in [10, Definition 1].

Similarity Orders from Causal Equations 503

Definition 4. A system of structural equations F is a set Fen ⊆ A and a func-
tion Fk : 2k → 2 for every number k such that xk ∈ Fen. We call Fen the endoge-
nous variables of F and define the set of exogenous variables as Fex = A \ Fen.
If Fen = A then we call F complete.

If Fk : 2k → 2 is a constant function for every k ∈ Fen then we call F
constant. Every consistent conjunction of literals ϕ induces a constant system
of equations S(ϕ) such that S(ϕ)en is the set of all variables occurring in ϕ and
S(ϕ)k is the constant function with value 1 if xk occurs positively in ϕ and with
value 0 otherwise.

We also call a system of structural equations just a system of equations. Intu-
itively, one thinks of a system of equations F as specifying, for every k such that
xk ∈ Fen, an equation

xk = Fk(x0, . . . , xk−1) .

This equation represents the causal dependence of the effect xk on its causes,
which are a subset of the variables x0, . . . , xk−1. The following definition makes
this subset of causes explicit.

Definition 5. Let F be a system of structural equations. The variable xk ∈ Fen

depends on the variable xl ∈ A if xk ∈ Fen and

Fk(x0, . . . , xl−1, 0, xl+1, . . . , xk−1) �= Fk(x0, . . . , xl−1, 1, xl+1, . . . , xk−1)

for some assignment of binary values to x0, . . . , xl−1, xl+1, . . . , xk−1. Define the
parent relation P on A such that xlPxk if xk depends on xl.

The graph determined by the parent relation P on A is called the causal diagram
of F . In our setting it follows by definition that this graph is acyclic since the
equation Fk determining the value of xk depends only on the previous variables
x0, . . . , xk−1. For this reason we can define the causal diagram of F as a poset.

Definition 6. The causal diagram G(F) = (A,≤) associated to F is a poset
over A where ≤ is the reflexive, transitive closure of the parent relation P .

Our definition of a system of equations differs from Pearl’s presentation in [8]
where the equation defining the value of some variable can depend on the values
of all other variables. Pearl then restricts his attention to recursive systems of
equations, which are defined as those whose causal diagram is acyclic. One can
show that any finite recursive system of equations can be put into the form of
Definition 4; thus our setting is not more restrictive.

Our presentation allows us to exploit recursion on the natural numbers. If
one uses the definition from [8] one has to resort to recursion over the parent
relation, which is less familiar.

Example 1. Throughout this paper we use a slightly adapted version of an ex-
ample from [11, p. 339]. In the example we consider five binary causal variables:
r there is enough rain, f fertilizer is used, w the wheat crop is large, d there
is high demand for wheat and p the wheat prize is high. The causal dependen-
cies between these variables are that enough rain and the use of fertilizer causes

504 J. Marti and R. Pinosio

the wheat crop to be large, and that a small wheat crop or a high demand for
wheat causes the wheat prize to be high. This problem domain is represented by
the following system of equations F , where we use Boolean formulas to specify
binary functions:

w = r ∧ f

p = ¬w ∨ d .

The causal diagram G(F) of this system of equations is as follows:

r f

w

p

d

If a world w satisfies all the causal laws represented by an equation in F then
it is a solution to F . This motivates the following definition.

Definition 7. A world w is a solution to a system of equations F if

wk = F (w0, . . . , wk−1) for all k with xk ∈ Fen .

We write �F � ⊆W for the the set of all solutions of F . We also use the notation
�xk = G(x0, . . . , xk−1)� for the set of solutions of the system of equations F with
Fen = {xk} and Fk = G.

For a complete system of equations one can compute a unique solution by
recursion on the natural numbers. This simplifies the presentation of [10] which
relies on fixed points of logic programs.

Definition 8. For a complete system of equations F define the world σ(F) = w
by a recursion on k < n− 1 such that w0 = F0 and wk+1 = Fk+1(w0, . . . , wk).

The following proposition is proven by induction.

Proposition 1. A system of equations F is complete if and only if it has a
unique solution, which in this case is σ(F).

The following notion was introduced by [10].

Definition 9. Let F be a system of equations. The basis BF,w of a world w is
the complete system of equations for BF,w

en = A where for k < n we define

BF,w
k (x0, . . . , xk−1) =

{
Fk(x0, . . . , xk−1) xk ∈ Fen and wk = Fk(w0, . . . , wk−1)
w(k) otherwise .

The basis BF,w is a system of equations which differs minimally from F but has
w as its unique solution. One can prove by a simple induction that:

Proposition 2. The world w is the unique solution σ(BF,w) of BF,w.

Similarity Orders from Causal Equations 505

Intuitively, the basis BF,w keeps all the laws from F that are not violated at w
and sets all other variables to their value in w by means of a constant equation.

The next definition captures intervention on a causal system by fixing the
value of some variables on constant values. This corresponds to the definition of
a submodel in [8].

Definition 10. Let F and A be systems of equations such that A is constant.
The intervention F |A of F with A is defined to be the system of equations such
that (F |A)en = Fen ∪ Aen and for an k with xk ∈ Fen ∪ Aen

(F |A)k =

{
Ak xk ∈ Aen

Fk xk ∈ Fen \Aen .

Note that F |A is complete if F or A is complete.
We now define the semantics of the conditional on a system of equations.

Definition 11. The semantics of a conditional ϕ 	 ψ, where ϕ is a consistent
conjunction of literals, on a system of equations F is given by:

w,F |= ϕ 	 ψ iff σ(BF,w | S(ϕ)), F |= ψ .

Note that this clause is well-defined because BF,w | S(ϕ) is complete since BF,w

is complete.
Our definition of the semantics follows [10]. In the restricted case where ϕ

contains only endogenous variables of F and w satisfies all the laws of F the
above semantic clause for the conditional is equivalent to [8, Definition 7.1.5].
However, the semantics of [10] extends the semantics of [8] in two respects. First,
the antecedent can contain variables that are exogenous in F . In [8] this is not
possible because there interventions are only defined for endogenous variables.
Second, conditionals can be evaluated at worlds which violate some of the laws
represented in F . This works thanks to Schulz’ notion of a basis, which deals
with a violation of a law by an intervention. In [8] the world of evaluation only
sets the values of exogenous variables in F . Hence it is implicitly assumed that
it satisfies all the laws of F .

4 Relative Similarity Orders from Relevance Orders

In this section we introduce the notion of a relevance order and show how it can
be used to construct a relative similarity order.

Definition 12. A relevance order for a set of worlds W is a tuple (D,�, e)
where D is a set whose elements we call descriptions, � is a preorder on D and
e : D → PW is a function mapping descriptions to sets of worlds.

We keep the standard terminology and take propositions to be just sets of worlds.
However, we treat the description d ∈ D in a similar fashion as the proposition
e(d) determined by d. For instance we say that d is true at a world w if w ∈ e(d).

506 J. Marti and R. Pinosio

The notion of a relevance order allows us to rank propositions according to
how important it is to keep their truth value constant when switching to coun-
terfactual worlds. Propositions which are low in the order are considered more
important. For example, mathematical theorems would intuitively count as more
relevant than physical laws, which in turn are more relevant than particular facts.

In Definition 12 propositions are not ordered directly as sets of worlds but
by means of descriptions having those propositions as extensions. This simplifies
later proofs, since one does not need to verify that distinct elements in the order
are really distinct as sets of worlds.

We now show how to construct a relative similarity order between worlds from
a relevance order. The following technical notion is needed.

Definition 13. A proposition U ⊆ W is v, u-separating if either v ∈ U and
u /∈ U , or v /∈ U and u ∈ U . Given a relevance order (D,�, e) we say that
a description d ∈ D is v, u-separating if the proposition e(d) is v, u-separating.
We use sep(v, u) ⊆ D for the set of all v, u-separating descriptions. We use
sepw(v, u) ⊆ D for all the v, u-separating descriptions that are true at w.

Now for the construction of the relative similarity order.

Definition 14. The relative similarity order (W,≤) determined by a relevance
order (D,�, e) for W is defined such that

v ≤w u iff v ∈ e(d) for all d ∈ Min(�, sepw(v, u)) .

Similarity of worlds to w is determined only by the relevant propositions which
are true at w. Thus, a world is the more similar to w the more of these proposition
it makes true. When comparing two worlds for similarity to w, we consider only
the most relevant propositions true at w which can distinguish between the two
worlds. In the special case where � is a total preorder, meaning that any two
elements are required to be comparable, our clause reduces to the discrimin
ordering of [1].

We need to verify that Definition 13 actually yields a relative similarity order.

Proposition 3. The relation ≤w from Definition 14 is reflexive and transitive
for every world w ∈W .

Proof. Reflexivity holds because there are no v, v-separating descriptions.
For transitivity assume that v ≤w u and u ≤w z. We show that v ≤w z. So

pick any d ∈ Min(�, sepw(v, z)) and assume for a contradiction that v /∈ e(d).
Distinguish cases on whether u ∈ e(d).

If u ∈ e(d) then d ∈ sepw(v, u) and because v ≤w u it follows that v ∈ e(d).
This contradicts the assumption v /∈ e(d).

If u /∈ e(d) we distinguish cases on whether z ∈ e(d). If z ∈ e(d) then d ∈
sepw(u, z) and by u ≤w z we get that u ∈ e(d), which is a contradiction. If
z /∈ e(d) then contrary to our assumption d would not be v, z-separating.

With a proof similar to the one of Propositions 3 one can show that the relative
similarity order determined by a relevance order satisfies the weak centering

Similarity Orders from Causal Equations 507

axiom w ≤w v and the triangularity axiom v ≤w u ∧ u ≤v w → v ≤u w. It is an
open question what further axioms are enforced by this construction.

5 Relative Similarity Orders from System of Equations

This section contains the main technical result of this paper. We first define
a ranking over propositions R(F) and then prove that the semantics of the
conditional in F is equivalent to its semantics on the relative similarity order
determined by R(F).

Definition 15. For every system of equations F with causal diagram G(F) =
(A,≤) define a ranking over descriptions R(F) = (D,�, e). The set D of de-
scriptions is given by

D ⊆ A× (2 + {�}) ,
D = {(xk, a) | xk ∈ A, a ∈ 2} ∪ {(xk, �) | xk ∈ Fen} .

The preorder � on D is defined such that

(xk, a) � (xl, b) iff xk < xl in G(F) or (xk = xl and (a = � or a = b)) .

We leave it to the reader to check that this is indeed reflexive and transitive. The
evaluation e : D → PW is given by

e(xk, a) = �xk = a� , xk ∈ A, a ∈ 2

e(xk, �) = �xk = Fk(x0, . . . , xk−1)� . xk ∈ Fen

One can obtain the ranking R(F) from the causal diagram G(F) by replacing
all exogenous variables xk with the antichain of two descriptions evaluating to
�xk = 0� and �xk = 1� respectively, and all endogenous variables xk with the
following poset of descriptions, where the evaluations are displayed:

�xk = Fk(x0, . . . , xk−1)�

�xk = 0� �xk = 1�

Moreover a description in the subposet of a variable xk is smaller than a descrip-
tion in the subposet of another variable xl exactly if xk < xl in G(F).

508 J. Marti and R. Pinosio

Example 2. For the system of equations F from Example 1 we obtain the fol-
lowing relevance order R(F):

�r = 0� �r = 1� �f = 0� �f = 1�

�w = r ∧ f�

�w = 0� �w = 1� �d = 0� �d = 1�

�p = ¬w ∨ d�

�p = 0� �p = 1�

The idea behind the definition of R(F) is that when evaluating counterfactual
conditionals on a system of structural equations it is more important to keep the
past than the future facts constant, and one rather gives a causal law up than
any causes occurring in it. This order is reflected in the relevance ranking R(F).

The following lemma states the crucial property of R(F) which we exploit in
the proof of Theorem 1.

Lemma 1. Let F be a system of equations and consider two worlds w and v
such that wl = vl for all l �= k for some k < n. If xk ∈ Fen then any d ∈ sep(w, v)
in R(F) is an element in a suborder of R(F) which has the following shape

e

(xk, 0) (xk, 1)

(xk, �)

In other words: if xk ∈ Fen then any d ∈ sep(w, v) is either equal to (xk, 0),
(xk, 1) or (xk, �), or (xk, 0)
 d and (xk, 1)
 d.

If xk ∈ Fex then any d ∈ sep(w, v) in R(F) is an element in a suborder of
R(F) which has the following shape

e

(xk, 0) (xk, 1)

In other words: if xk ∈ Fex then any d ∈ sep(w, v) is either equal to (xk, 0) or
(xk, 1), or (xk, 0)
 d and (xk, 1)
 d.

Proof. We show the case where xk ∈ Fen and leave the second similar case to
the reader. We reason by contraposition.

Similarity Orders from Causal Equations 509

First assume that d = (xl, a) where xl �= xk and a ∈ 2. Then certainly
d /∈ sep(w, v) because e(xl, a) = �xl = a� and by assumption w and v agree on
the value of xl.

Now assume that d = (xl, �) such that not xk ≤ xl in G(F). First we have
again by assumption that wl = vl because k �= l. Moreover Fl does not depend
on xk because otherwise xk would be a parent of xl and so xk ≤ xl in G(F). So
Fl(w0, . . . , wl−1) = Fl(v0, . . . , vl−1) again by the assumption that wm = vm for
all m �= k. The facts that wl = vl and that Fl(w0, . . . , wl−1) = Fl(v0, . . . , vl−1)
entail that either both or none of w and v is in �xl = Fl(x0, . . . , xl−1)� = e(xl, �).
Hence d = (xl, �) /∈ sep(w, v). This concludes the proof.

We now prove our main result.

Theorem 1. Let F and A be systems of equations such that A is constant.
Denote by ≤ be the relative similarity order determined by R(F). Then for every
world w ∈W :

Min(≤w, �A�) = {σ(BF,w |A)} .

Proof. Consider the world s = σ(BF,w |A) and take any world z ∈ Min(≤w, �A�).
We show by an induction on k < n that zk = sk.

It is sufficient to prove that zk = sk on the assumption that zl = sl for all
l < k. This also covers the base case where k = 0 because then there are no
l < k and hence the assumption is trivially satisfied.

So pick any k < n and assume that zl = sl for all l < k. We want to show
that zk = sk.

First consider the case where xk ∈ Aen. In this case sk = Ak(s0, . . . , sk−1) by
Definition 10 of BF,w |A. Because z ∈ Min(≤w, �A�) and so z ∈ �A� we also have
that zk = Ak(z0, . . . , zk−1). But Ak(z0, . . . , zk−1) = Ak(s0, . . . , sk−1) because Ak

is a constant function.
In the other case where xk /∈ Aen we have that sk = BF,w

k (s0, . . . , sk−1).
Again, we distinguish cases depending on the truth of xk ∈ Fen and wk =
Fk(w0, . . . , wk−1).

If xk ∈ Fen and wk = Fk(w0, . . . , wk−1) then by Definition 9 of BF,w we have

that sk = BF,w
k (s0, . . . , sk−1) = Fk(s0, . . . , sk−1). Assume for a contradiction

that zk �= Fk(s0, . . . , sk−1). By the induction hypothesis it follows that zk �=
Fk(z0, . . . , zk−1). We show that there is a world z′ such that z′ ∈ �A�, z′ ≤w z but
not z ≤w z′, which contradicts the assumption that z ∈ Min(≤w, �A�). The world
z′ is defined by setting z′l = zl for all l < n with l �= k and z′k = Fk(z

′
0, . . . , z

′
k−1).

Since xk /∈ Aen, A is constant and z ∈ �A� it follows that z′ ∈ �A�. Now
we have that z′, w ∈ �xk = Fk(x0, . . . , xk−1)� but z /∈ �xk = Fk(x0, . . . , xk−1)�.
Since �xk = Fk(x0, . . . , xk−1)� = e(xk, �) it follows by Lemma 1 that (xk, �) is
the only minimal z, z′-separating description that is true at w. So it follows by
Definition 14 of ≤w that z′ ≤w z but not z ≤w z′.

In the other case we have that either xk /∈ Fen or that wk �= Fk(w0, . . . , wk−1).
By Definition 9 it follows that sk = BF,w(s0, . . . , sk−1) = wk. Now assume for a
contradiction that sk �= zk. We again construct a z′ such that z′ ∈ �A�, z′ ≤w z
but not z ≤w z′ contradicting the assumption that z ∈ Min(≤w, �A�). The world

510 J. Marti and R. Pinosio

z′ is defined by setting z′l = zl for all l < n with l �= k and z′k = wk. Since
xk /∈ Aen, A is constant and z ∈ �A� it follows that z′ ∈ �A�. We now show that
in R(F) the description (xk, wk) is the only minimal z, z′-separating description
that is true at w. For this we distinguish cases depending on whether xk ∈ Fen.

First consider the case with xk ∈ Fen. Then wk �= Fk(w0, . . . , wk−1). We
now consider the descriptions (xk, �), (xk, wk) and (xk, a) for a �= wk. We know
that w /∈ �xk = Fk(x0, . . . , xk−1)� = e(xk, �) and that w /∈ �xk = a� = e(xk, a).
However, �xk = wk� = e(xk, wk) is z, z′-separating and true at w. It follows
by the first part of Lemma 1 that (xk, wk) is the only minimal z, z′-separating
description that is true at w.

In the other case xk /∈ Fen we only need to consider the descriptions (xk, wk)
and (xk, a) for a �= wk. By the same reasoning as in the previous case it follows
that (xk, wk) is z, z′-separating and true at w and (xk, a) fails to be true at w.
So by the second part of Lemma 1 we get that (xk, wk) is the only minimal
z, z′-separating description that is true at w.

From the fact that the only minimal z, z′-separating description true at w is
(xk, wk) it follows that z′ ≤w z but not z ≤w z′ because z′ ∈ �xk = wk� but
z /∈ �xk = wk�. This concludes the proof of the theorem.

By unfolding Definition 3 and Definition 11 one now easily concludes that the
truth of conditionals is preserved by construction of this paper.

Corollary 1. Let F be systems of equations and denote by ≤ be the relative
similarity order determined by R(F). Consider a conditional ϕ 	 ψ where ϕ is
a consistent conjunction of literals. Then for every world w ∈W

w,F |= ϕ 	 ψ iff w,≤ |= ϕ 	 ψ .

6 Backtracking Counterfactual Conditionals

In this section we show that the framework of relevance orders is flexible enough
to cope with backtracking counterfactual conditionals. A backtracking counter-
factual conditional infers from an effect to a cause. This means that the an-
tecedent of the conditional counterfactually assumes that a different effect than
the one actually obtaining occurs, and the consequent reasons to a counterfac-
tual cause. In Example 1, the conditional “if the wheat crop had been smaller
last year, then there would have been either less rain or less fertilizer applied”
is backtracking, since it reasons from the counterfactual effect of a smaller crop
to the absence of one of the actual causes.

Backtracking does not arise in the evaluation of conditionals specified by the
semantic clause in Definition 11. Take for instance the world frwd̄p̄ as the actual
world. One can check that according to Definition 11 the above backtracking
conditional ¬w 	 ¬r ∨ ¬f turns out false at this world. The reason for this
is that intervening with the antecedent of the conditional cancels the causal
law leading from the consequent to the antecedent. The failure of backtracking
also becomes obvious by inspecting the relevance order defined in Definition 15.

Similarity Orders from Causal Equations 511

There a causal law is deemed as less relevant than the causes appearing in it.
Thus counterfactual worlds which violate the causal law will be more similar to
the actual world than those which violate the causes.

Backtracking conditionals, however, seem to play a role in communication.
In [5, p. 457] Lewis argues that there is an ambiguity between interpreting
counterfactual conditionals with a standard, non backtracking or with a back-
tracking resolution. In conversation, different contextual factors can trigger the
backtracking interpretation of counterfactual conditionals. We show that the
ambiguity between these two interpretations can be accounted for as a choice
between different relevance orders. We now show how to modify the relevance or-
der from Example 2 to allow for backtracking in the evaluation of the conditional
¬w 	 ¬r ∨ ¬f .

The most obvious modification of the original order from Example 2 to allow
for backtracking is to make the causal law w = r ∧ f more relevant than the
causal facts r = 0, r = 1, f = 0 and f = 1 occurring in it. Thus one obtains the
following order:

�w = r ∧ f�

�r = 0� �r = 1� �f = 0� �f = 1�

�w = 0� �w = 1� �d = 0� �d = 1�

�p = ¬w ∨ d�

�p = 0� �p = 1�

In the similarity order determined by this relevance order the conditional ¬w 	
¬r∨¬f is true at u = frwd̄p̄. In particular, one can verify that Min(≤u, �w = 0�)
= {f̄rw̄d̄p, f r̄w̄d̄p}. Note that we have two non logically equivalent minimal
worlds. For this reason, both ¬w 	 r and ¬w 	 ¬r are false at u, which
means that conditional excluded middle fails. This situation could never arise
in the case of non backtracking counterfactual conditionals, as one can see from
Theorem 1.

The example shows that the approach presented here can be adapted to
deal with backtracking counterfactual conditionals. The relevance order given
in the example, however, admits backtracking only over one particular causal
law, namely ¬w 	 ¬r ∨¬f . By a stepwise swapping of causal laws with causes,
one can precisely determine how many steps one can backtrack along which laws.
The limit case, allowing all backtracking, is determined by a relevance order in
which all causal laws are strictly more relevant than all particular facts that oc-
cur as causes or effects. Our theory does not determine how much backtracking is
admissible, but leaves this choice to the modeler, depending on the application.

512 J. Marti and R. Pinosio

7 Conclusions and Further Work

In this paper we have presented a construction of relative similarity orders be-
tween possible worlds from systems of structural equations which preserves the
truth of counterfactual conditionals. This shows that the framework of similarity
orders can adequately model causal dependencies of a problem domain.

Our construction crucially depends on the notion of a relevance order over
propositions. Relevance orders are a powerful tool to construct relative similarity
orders, as they allow us to precisely control which propositions matter for the
similarity of worlds. The treatment of backtracking in Section 6 gives an idea of
the flexibility of the approach. It might thus be of interest to employ relevance
orders in other settings where conditional logic is used. For instance, in belief
revision they could be used to determine plausibility orders from rankings over
evidence. A technical problem is to characterize the class of relative similarity
orders which arise from relevance orders and to axiomatize its conditional logic.

A natural question is whether there is an inverse construction reading off a
system of structural equations from a relative similarity order between worlds.
One would thus define causality by means of relative similarity orders. This
would be a semantic analog to Lewis’ definition of causality, which is widely
considered to be defective.

It has been shown in [2] that certain principles of conditional logic which
are valid over similarity orders can be falsified by cyclic systems of equations.
It might be worthwhile to see whether the techniques from this paper can be
adapted to this case by giving up the assumption that relevance and similarity
orders are transitive.

References

1. Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and
succinctness of propositional languages for preference representation. In: Dubois,
D., Welty, C.A., Williams, M.-A. (eds.) KR, pp. 203–212. AAAI Press (2004)

2. Halpern, J.Y.: From causal models to counterfactual structures. Review of Sym-
bolic Logic 6(2), 305–322 (2013)

3. Kratzer, A.: Partition and revision: The semantics of counterfactuals. Journal of
Philosophical Logic 10(2), 201–216 (1981)

4. Lewis, D.: Counterfactuals. Blackwell Publishers (1973)

5. Lewis, D.: Counterfactual dependence and time’s arrow. Noûs 13(4), 455–476
(1979)

6. Lewis, D.: Ordering semantics and premise semantics for counterfactuals. Journal
of Philosophical Logic 10(2), 217–234 (1981)

7. Marti, J., Pinosio, R.: Topological semantics for conditionals. In: Punčochář, V.,
Švarný, P. (eds.) The Logica Yearbook 2013. College Publications (to appear)

8. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press
(2000)

9. Schulz, K.: Minimal Models in Semantics and Pragmatics: Free Choice, Exhaus-
tivity, and Conditionals. PhD thesis, University of Amsterdam (2007)

Similarity Orders from Causal Equations 513

10. Schulz, K.: “If you’d wiggled A, then B would’ve changed” - Causality and coun-
terfactual conditionals. Synthese 179(2), 239–251 (2011)

11. Simon, H.A., Rescher, N.: Cause and counterfactual. Philosophy of Science 33(4),
323–340 (1966)

12. Tichý, P.: A counterexample to the Stalnaker-Lewis analysis of counterfactuals.
Philosophical Studies 29(4), 271–273 (1976)

13. Veltman, F.: Prejudices, presuppositions, and the theory of counterfactuals. In:
Groenendijk, J., Stokhof, M. (eds.) Amsterdam Papers in Formal Grammar, vol. 1,
pp. 248–282. Centrale Interfaculteit, Universiteit van Amsterdam (1976)

14. Veltman, F.: Logics for Conditionals. PhD thesis, University of Amsterdam (1985)

Verification of Context-Sensitive
Knowledge and Action Bases

Diego Calvanese1, İsmail İlkan Ceylan2, Marco Montali1, and Ario Santoso1

1 Free University of Bozen-Bolzano, Italy
lastname@inf.unibz.it

2 Technische Universität Dresden, Germany
ceylan@tcs.inf.tu-dresden.de

Abstract. Knowledge and Action Bases (KABs) have been recently proposed
as a formal framework to capture the dynamics of systems which manipulate
Description Logic (DL) Knowledge Bases (KBs) through action execution. In
this work, we enrich the KAB setting with contextual information, making use
of different context dimensions. On the one hand, context is determined by the
environment using context-changing actions that make use of the current state
of the KB and the current context. On the other hand, it affects the set of TBox
assertions that are relevant at each time point, and that have to be considered when
processing queries posed over the KAB. Here we extend to our enriched setting
the results on verification of rich temporal properties expressed in μ-calculus,
which had been established for standard KABs. Specifically, we show that under
a run-boundedness condition, verification stays decidable and does not incur in
any additional cost in terms of worst-case complexity. We also show how to adapt
syntactic conditions ensuring run-boundedness so as to account for contextual
information, taking into account context-dependent activation of TBox assertions.

1 Introduction

Recent work in the areas of knowledge representation, databases, and business pro-
cesses [15,26,4,10,19] has identified the need for integrating static and dynamic aspects
in the design and maintenance of complex information systems. The static aspects are
characterized on the one hand by the data manipulated by the system, and on the other
hand by possibly complex domain knowledge that may vary during the evolution of
the system. Instead, dynamic aspects are affected by the processes that operate over the
system, by executing actions that manipulate the state of the system. In such a setting,
in which new data may be imported into the system from the outside environment, the
system becomes infinite-state in general, and the verification of temporal properties be-
comes more challenging: indeed, neither finite-state model checking [14] nor most of
the current techniques for infinite-state model checking apply to this case.

Knowledge and action bases (KABs) [4] have been introduced recently as a mech-
anism for capturing systems in which knowledge, data, and processes are combined
and treated as first-class citizens. In particular, KABs provide a mechanism to represent
semantically rich information in terms of a description logic (DL) [1] knowledge base
(KB) and a set of actions that manipulate such a KB over time. Additionally, actions

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 514–528, 2014.
c© Springer International Publishing Switzerland 2014

Verification of Context-Sensitive Knowledge and Action Bases 515

allow one to import into the system fresh values from the outside, via service calls.
In this setting, the problem of verification of rich temporal properties expressed over
KABs in a first-order variant of the μ-calculus has been studied. Decidability has been
established under the assumptions that in the properties first-order quantification across
states is restricted, and that the system satisfies a so-called run-boundedness condition.
Intuitively, these ensure that along each run the system cannot encounter (and hence
manipulate) an unbounded number of distinct objects. In KABs, the intensional knowl-
edge about the domain, expressed in terms of a DL TBox, is assumed to be fixed along
the evolution of the system, i.e., independent of the actual state. However, this assump-
tion is in general too restrictive, since specific knowledge might hold or be applicable
only in specific, context-dependent circumstances. Ideally, one should be able to form
statements that are known to be true in certain cases, but not necessarily in all.

Work on representing and formally reasoning over contexts dates back to work on
generality in AI see [20]. Since then, there has been some effort in knowledge represen-
tation and in DLs to devise context-sensitive formalisms, ranging from multi-context
systems [5] to many-dimensional logics [18]. An important aspect in modeling con-
text is related to the choice of which kind of information is considered to be fixed
and which context dependent. Specifically, for DLs, one can define the assertions in
the TBox [2,13], the concepts [5], or both [24,18] as context-dependent. Each choice
addresses different needs, and results in differences in the complexity of reasoning.

We follow here the approach of [2,13], and introduce contextualized TBoxes, in
which each inclusion assertion is adorned with context information that determines
under which circumstances the inclusion assertion is considered to hold. The relation
among contexts is described by means of a lattice in [2] and by means of a directed
acyclic graph in [13]. In our case, we represent context using a finite set of context
dimensions, each characterized by a finite set of domain values that are organized in a
tree structure. If for a context dimension d, a value v2 is placed below v1 in the tree (i.e.,
v2 is a descendant of v1), then the context associated to v1 is considered to be more
general than the one for v2, and hence whenever context dimension d is in value v2, it
is also in value v1.

Starting from this representation of contexts, we enrich KABs towards context-
sensitive KABs (CKABs), by representing the intensional information about the domain
using a contextualized TBox, in place of an ordinary one. Moreover, the action com-
ponent of KABs, which specifies how the states of the system evolve, is extended in
CKABs with context changing actions. Such actions determine values for context di-
mensions in the new state, based on the data and the context in the current state. In
addition, also regular state-changing actions can query, besides the state, also the con-
text, and hence be enabled or disabled according to the context. Notably, we show that
verification of a very rich temporal logic, which can be used to query the system evo-
lution, contexts, and data, is decidable for run-bounded CKABs. We also discuss how
to recast the syntactic condition of weak acyclicity [4], which ensures run-boundedness,
to the case of CKABs.

516 D. Calvanese et al.

2 Preliminaries

2.1 DL-LiteA

For expressing knowledge bases, we use the lightweight Description Logic (DL) [1]
DL-LiteA [9,7]. The syntax for concept and role expressions in DL-LiteA is as follows:

B ::= N | ∃R R ::= P | P−

where N denotes a concept name, B a basic concept,P a role name, P− an inverse role,
and R a basic role. A DL-LiteA knowledge base (KB) is a tuple O = 〈T,A〉, where:

– T is a TBox, containing a finite set of assertion of the form:

B1 � B2 R1 � R2 B1 � ¬B2 R1 � ¬R2 (funct R)

From left to right, assertions of the first two columns respectively denote positive
inclusions between basic concepts and basic roles; assertions of the third and fourth
columns denote negative inclusions between basic concepts and basic roles; asser-
tions of the last column denote functionality on roles.

– A is an Abox, i.e., a finite set of ABox membership assertions of the form N(c1) or
P (c1, c2), where c1, c2 denote individuals (constants).

We use the standard semantics of DLs based on FOL interpretations I = (ΔI , ·I) such
that cI ∈ ΔI , NI ⊆ ΔI , and P I ⊆ ΔI × ΔI . The semantics of the DL-LiteA
constructs and of TBox and ABox assertions, and the notions of satisfaction and of
model are as usual (see, e.g., [9]). We also say that A is T -consistent if O = 〈T,A〉 is
satisfiable, i.e., admits at least one model.

Queries. We are interested to query the KB, i.e., retrieving relevant constants in the
ABox based on the query. We denote with ADOM(A) the set of constants appearing in
A. A union of conjunctive queries (UCQ) q over a KB O = 〈T,A〉 is a FOL formula
of the form

∨
1≤i≤n ∃�yi.conj i(�x, �yi) with free variables �x and existentially quantified

variables �y1, . . . , �yn. Each conj i(�x, �yi) in q is a conjunction of atoms of the form N(z),
P (z, z′), where N and P respectively denote a concept and a role name occurring in T ,
and z, z′ are constants in ADOM(A) or variables in �x or �yi, for some 1 ≤ i ≤ n.

The (certain) answers of q over O = 〈T,A〉 are defined as the set ans (q, T,A) of
substitutions σ which substitute the free variables of q with constants from ADOM(A)
such that qσ evaluates to true in every model of O = 〈T,A〉. If q has no free variables,
then it is called boolean and its certain answers are either true or false.

We also consider an extension of UCQs, namely EQL-Lite(UCQ) [8] (briefly, ECQs),
that is, the FOL query language whose atoms are UCQs evaluated according to the
certain answer semantics above. Formally, an ECQ over a TBox T is a possibly open
formula of the form:

Q ::= [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ over T . The certain answers ANS(Q, T,A) of an ECQ Q over
O = 〈T,A〉 are obtained by first computing the certain answers over O = 〈T,A〉
of each UCQs embedded in Q, then evaluating them through the first-order part of Q,

Verification of Context-Sensitive Knowledge and Action Bases 517

and interpreting existential variables as ranging over ADOM(A). As stated in [8], the
reformulation algorithm for answering query q over DL-LiteA KB O = 〈T,A〉 which
allows us to “compile away” the TBox (i.e., ans (q, T,A) = ans (rew(q), ∅, A), where
rew(q) is a UCQ computed by the algorithm in [7]) can be extended to ECQs.

2.2 Knowledge and Action Bases

In the following, we make use of a countably infinite set Δ of constants, and a finite set
F of functions representing service calls, which can be used to introduce fresh values
from Δ into the system.

A knowledge and action base (KAB) is a tuple K = 〈T,A0, Γ,Π〉 where: (i) T
is a DL-LiteA TBox capturing the domain of interest, (ii) A0 is the initial DL-LiteA
ABox, which intuitively represents the initial data of the system, (iii) Γ is a finite set of
actions that characterize the evolution of the system, (iv) Π is a finite set of condition-
action rules forming a process that intuitively specifies when and how an action can be
executed. T and A0 together form the knowledge base while Γ and Π form the action
base.

An action α ∈ Γ represents the progression mechanism that changes the ABox in
the current state and hence generates a new ABox for the successor state. Formally,
an action α ∈ Γ is represented as α(p1, . . . , pn) : {e1, . . . , em} where (i) α is the
action name, (ii) p1, . . . , pn are the input parameters, and (iii) {e1, . . . , em} is the set
of effects. Each effect ei is of the form [q+i] ∧ Q−i 	 Ai, where: (a) q+i is an UCQ,
and Q−i is an arbitrary ECQ whose free variables occur all among the free variables of
q+i . (b) Ai is a set of facts (over the alphabet of T) which includes as terms: constants
in ADOM(A0), input parameters, free variables of q+i , and Skolem terms representing
service calls formed by applying a function f ∈ F to one of the previous kinds of terms.
Intuitively, q+i , together with Q−i acting as a filter, selects the values that instantiate the
facts listed in Ai. Collectively, the instantiated facts produced from all the effects of α
constitute the newly generated ABox, once the ground service calls are substituted with
corresponding results. The process Π is formally defined as a finite set of condition-
action rules of the form Q(�x) �→ α(�x), where: (i) α ∈ Γ is an action, and (ii) Q(�x)
is an ECQ over T , which has the parameters of α as free variables �x, and quantified
variables or values in ADOM(A0) as additional terms.

Notice that KABs are a pristine action specification framework, aimed at understand-
ing the interaction between the static and dynamic components of systems evolving
over time, towards general decidability results for verification. On top of KABs, several
abstractions typical of reasoning about actions in AI can be built, see, e.g., [22].

KABs Execution Semantics. The execution semantics of a KAB is defined in terms of
a possibly infinite-state transition system. Formally, given a KAB K = 〈T,A0, Γ,Π〉,
we define its semantics by the transition system ΥK = 〈Δ,T,Σ, s0, abox ,⇒〉, where:
(i) T is a DL-LiteA TBox; (ii) Σ is a (possibly infinite) set of states; (iii) s0 ∈ Σ is the
initial state; (iv) abox is a function that, given a state s ∈ Σ, returns an ABox associated
to s; (v) ⇒ ⊆ Σ × Σ is a transition relation between pairs of states. Intuitively, the
transitions system ΥK of KAB K captures all possible evolutions of the system by the
actions in accordance with the process rules.

518 D. Calvanese et al.

During the execution, an action can issue service calls. In this paper, we assume that
the semantics of service calls is deterministic, i.e., along a run of the system, whenever a
service is called with the same input parameters, it will return the same value. To enforce
this semantics, the transition system remembers the results of previous service calls in
a so-called service call map that is part of the system state. Formally, a service call map
is defined as a partial function m : SC → Δ, where SC is the set {f(v1, . . . , vn) |
f/n ∈ F and {v1, . . . , vn} ⊆ Δ} of (skolem terms representing) service calls. Each
state s ∈ Σ of the transition system ΥK is a tuple 〈A,m〉, where A is an ABox and m
is a service call map.

The semantics of an action execution is as follows: Given a state s = 〈A,m〉, let
α ∈ Γ be an action of the form α(p1, . . . , pn) : {e1, . . . , em} with ei = [q+i] ∧ Q−i 	
Ai, and let σ be a parameter substitution for p1, . . . , pn with values taken from Δ.
We say that α is executable in state s with parameter substitution σ, if there exists a
condition-action rule Q(�x) �→ α(�x) ∈ Π s.t. ANS(Qσ, T,A) is true. The result of
the application of α to an ABox A using a parameter substitution σ is captured by the
following function:

DO(T,A, ασ) =
⋃

[q+i]∧Q−
i �Ai in α

⋃
ρ∈ANS(([q+i]∧Q−

i)σ,T,A)

Aiσρ

Intuitively, the result of the evaluation of α is obtained by combining the contribution
of each effect of α, which in turn is obtained by grounding the facts Ai in the head of
the effect with all the certain answers of the query [q+i] ∧Q−i over 〈T,A〉.

The result of DO(T,A, ασ) is in general not a proper ABox, because it could con-
tain (ground) Skolem terms, attesting that in order to produce the ABox, some service
calls have to be issued. We denote by CALLS(DO(T,A, ασ)) the set of such ground
service calls, and by EVALS(T,A, ασ) the set of substitutions that replace such calls
with concrete values taken from Δ. Specifically, EVALS(T,A, ασ) is defined as

EVALS(T,A, ασ) = {θ | θ : CALLS(DO(T,A, ασ))→ Δ is a total function}.

With all these notions in place, we can now recall the execution semantics of a KAB
K = 〈T,A0, Γ,Π〉. To do so, we first introduce a transition relation EXECK that con-
nects pairs of ABoxes and service call maps due to action execution. In particular,
〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK if the following holds: (i) α is executable in state
s = 〈A,m〉 with parameter substitution σ; (ii) there exists θ ∈ EVALS(T,A, ασ) s.t. θ
and m “agree” on the common values in their domains (in order to realize the determin-
istic service call semantics); (iii) A′ = DO(T,A, ασ)θ; (iv) m′ = m ∪ θ (i.e., updating
the history of issued service calls).

The transition system ΥK of K is then defined as 〈Δ,T,Σ, s0, abox ,⇒〉 where
s0 = 〈A0, ∅〉, and Σ and ⇒ are defined by simultaneous induction as the smallest
sets satisfying the following properties: (i) s0 ∈ Σ; (ii) if 〈A,m〉 ∈ Σ, then for all
actions α ∈ Γ , for all substitutions σ for the parameters of α and for all 〈A′,m′〉
s.t. 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK and A′ is T -consistent, we have 〈A′,m′〉 ∈ Σ,
〈A,m〉 ⇒ 〈A′,m′〉. A run of ΥK is a (possibly infinite) sequence s0s1 · · · of states of
ΥK such that si ⇒ si+1, for all i ≥ 0.

Verification of Context-Sensitive Knowledge and Action Bases 519

3 Contextualizing Knowledge Bases

Following [21], we formalize context as a mathematical object. Basically, we follow the
approach in [24] of contextualizing knowledge bases by adopting the metaphor of con-
sidering context as a box [6,17]. Specifically, this means that the knowledge represented
by the TBox (together with the ABox) in a certain context is affected by the values of
parameters used to characterize the context itself.

Formally, to define the context, we fix a set of variables Cdim = {d1, . . . , dn} called
context dimensions . Each context dimension di ∈ Cdim comes with its own tree-shaped
finite value domain 〈Dom(di),≺di〉, where Dom(di) represents the finite set of do-
main values, and ≺di represents the predecessor relation forming the tree. We denote
the domain value in the root of the tree with
di . Intuitively,
di is the most general
value in the tree-shaped value hierarchy of Dom(di). We denote the fact that a context
dimension d is in value v by [d � v], and call this a context dimension assignment.

A context C over a set Cdim of context dimensions is defined as a set {[d1 �

v1], . . . , [dn � vn]} of context dimension assignments such that for each context di-
mension d ∈ Cdim, there exists exactly one assignment [d � v] ∈ C.

To predicate over contexts, we introduce a context expression language Lcx over
Cdim, which corresponds to propositional logic where the propositional letters are con-
text dimension assignments over Cdim. The syntax of Lcx is as follows:

ϕC ::= [d � v] | ϕC ∧ ϕ′C | ¬ϕC

where d ∈ Cdim, and v ∈ Dom(d). We adopt the standard propositional logic seman-
tics and the usual abbreviations. The notion of satisfiability and model are as usual. We
call a formula expressed in Lcx a context expression.

Observe that a context C = {[d1 � v1], . . . , [dn � vn]}, being a set of (atomic)
formulas in Lcx , can be considered as a propositional theory. The semantics of value
domains in Cdim can also be characterized by a Lcx theory. Specifically, we define
the theory ΦCdim

as the smallest set of context expressions satisfying the following
conditions. For every context dimension d ∈ Cdim, we have:

– For all values v1, v2 ∈ Dom(d) s.t. v1 ≺d v2, we have that ΦCdim
contains the

expression [d � v1] → [d � v2]. Intuitively, this states that the value v2 is more
general than v1, and hence, whenever we have [d � v1] we can infer that [d � v2].

– For all values v1, v2, v ∈ Dom(d) s.t. v1 ≺d v and v2 ≺d v, we have that ΦCdim

contains the expression [d � v1] → ¬[d � v2]. Intuitively, this expresses that
sibling values v1 and v2 are disjoint.

Example 1. Consider an online retail enterprise (e.g., amazon.com) with many warehouses. A
simple order processing scenario is as follows: (i) The customer submits the order. (ii) The central
processing office receives the order. (iii) The assembler collects the ordered product. For each
product that is not available in the central warehouse, the assembler makes a request to one of
the warehouses having that product. (iv) The wrapper wraps the ordered product. (v) The quality
controller (QC) checks the prepared order. (vi) The delivery team delivers the order to the delivery
service. In this scenario we consider Cdim = {PP,S}, where PP stands for processing plan, and
S stands for season. Dom(PP) = {WE, ME, RE, N, AP} (WE stands for worker efficiency, ME
stands for material efficiency, RE stands for resource efficiency, N stands for normal processing

520 D. Calvanese et al.

plan, and AP stands for any processing plan.), where (i) WE ≺PP RE, (ii) ME ≺PP RE,
(iii) RE ≺PP AP, (iv) N ≺PP AP, For example, WE ≺PP RE means that worker efficiency is
a form of resource efficiency. Dom(S) = {WH, PS, LS, NS, AS} (WH stands for winter holiday,
PS stands for peak season, LS stands for low season, NS stands for normal season, and AS stands
for any season.), where (i) WH ≺S PS, (ii) PS ≺S AS, (iii) NS ≺S AS, (iv) LS ≺S AS.

Context-Sensitive Knowledge Bases. We define a context-sensitive knowledge base
(CKB) Ocx over Cdim as a standard DL knowledge base in which the TBox assertions
are contextualized. Formally, a contextualized TBox Tcx over Cdim is a finite set of
assertions of the form 〈t : ϕ〉, where t is a TBox assertion and ϕ is a context expression
over Cdim. Intuitively, 〈t : ϕ〉 expresses that the TBox assertion t holds in all those
contexts satisfying ϕ, taking into account the theory ΦCdim

. Given a contextualized
TBox Tcx , we denote with VOC(Tcx) the set of all concept and role names appearing in
Tcx , independently from the context.

Given a CKB Ocx = 〈Tcx , A〉 and a context C, both over Cdim, we define the KB
Ocx in context C as the KB OC

cx = 〈TC
cx , A〉, where TC

cx = {t | 〈t : ϕ〉 ∈ Tcx and C ∪
ΦCdim

|= ϕ}.

Example 2. Continuing our example, in a normal situation, to guarantee a suitable service qual-
ity, wrapper and assembler must not be the QC. However, in the situation (context) where we have
either peak season ([S � PS]) or the company wants to promote worker efficiency ([PP � WE]),
the wrapper and the assembler act also as QC. This situation can be encoded as follows:

〈Assembler � ¬QC : [PP � N] ∧ [S � NS]〉 〈Assembler � QC : [PP � WE] ∨ [S � PS]〉
〈Wrapper � ¬QC : [PP � N] ∧ [S � NS]〉 〈Wrapper � QC : [PP � WE] ∨ [S � PS]〉

4 Context-Sensitive Knowledge and Action Bases

We now enhance KABs with context-related information, introducing in particular
context-sensitive knowledge and action bases (CKABs), which consist of: (i) a context-
sensitive knowledge base (CKB), which maintains the information of interest, (ii) an
action base, which characterizes the system evolution, and (iii) context information that
evolves over time, capturing changing circumstances. Differently from KABs, where
the TBox is fixed a-priori and remains rigid during the evolution of the system, in
CKABs the TBox changes depending on the current context. Alongside the evolution
mechanism for data borrowed from KABs, CKABs include also a progression mecha-
nism for the context itself, giving raise to a system in which data and context evolve
simultaneously.

4.1 Formalization of CKABs

As for standard KABs, in addition to Δ and F , we fix the set Cdim = {d1, . . . , dn} of
context dimensions. A CKAB is a tuple Kcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉 where:

– Tcx is a DL-LiteA contextualized TBox capturing the domain of interest.
– A0 and Γ are as in a KAB.

Verification of Context-Sensitive Knowledge and Action Bases 521

– Π is a finite set of condition-action rules that extend those of KABs by including,
in the precondition, a context expression. Such context expression implicitly selects
those contexts in which the corresponding action can be executed. Specifically, each
condition-action rule has the form 〈Q(�x), ϕC〉 �→ α(�x), where (i) α ∈ Γ is an
action, (ii) Q(�x) is an ECQ over Tcx whose free variables �x correspond exactly to
the parameters of α, and (iii) ϕC is a context expression over Cdim.

– C0 is the initial context over Cdim.
– ΠC is a finite set of context-evolution rules, each of which determines the configu-

ration of the new context depending on the current context and data. Each context-
evolution rule has the form 〈Q,ϕC〉 �→ Cnew, where: (i) Q is a boolean ECQ over
Tcx , (ii) ϕC is a context expression, and (iii) Cnew is a finite set of context dimen-
sion assignments such that for each context dimension d ∈ Cdim, there exists at
most one context dimension assignment [d � v] ∈ C. If a context variable is not
assigned by Cnew , it maintains the assignment of the previous state.

Example 3. In our running example, suppose the company has warehouses in a remote area
(remote warehouses), each of which is expected to guarantee a certain time to delivery (TTD) for
products. During the low season, the company is free to set the TTD for all its remote warehouses,
which we model as a chgTTD() action. The execution of this action is controlled by the condition-
action rule 〈∃w.RemWH(w), [S � LS]〉 �→ chgTTD(). Assuming that the company maintains
the TTD for a remote warehouse in the relation hasTTD, the chgTTD() action can be specified
as follows:

chgTTD() : { RemWH(x) ∧ hasTTD(x, y)	 {RemWH(x),hasTTD(x, newTTD(x, y))}}

Intuitively, the unique effect in hasTTD updates the TTD of a remote warehouse x, by issuing a
service call newTTD(x, y), which also takes into account the current TTD y of x.

Example 4. An example of context-evolution rule is 〈true, [S � PS]〉 �→ [S � NS]. It models
the transition from peak season to normal season, independently from the data.

4.2 CKAB Execution Semantics

We are interested in verifying temporal properties over the evolution of CKABs, in
particular “robust” properties that the system is required to guarantee independently
from context changes. Towards this goal, we define the execution semantics of CKABs
in terms of a possibly infinite-state transition system that simultaneously captures all
possible evolutions of the system as well as all possible context changes.

Each state in the execution of a CKAB is a tuple 〈id, A,m,C〉, where id is a state
identifier,A is an ABox maintaining the current data, m is a service call map accounting
for the service call results obtained so far, and C is the current context. The context
univocally selects which are the axioms of the contextual TBox that currently hold, in
turn determining the current KB.

Formally, given a CKAB Kcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉, we define its semantics
in terms of a context-sensitive transition system ΥKcx = 〈Δ,Tcx , Σ, s0, abox , ctx ,⇒〉,
where: (i) Tcx is a contextualized TBox; (ii) Σ is a set of states; (iii) s0 ∈ Σ is the initial
state; (iv) abox is a function that, given a state s ∈ Σ, returns the ABox associated to

522 D. Calvanese et al.

s; (v) ctx is a function that, given a state s ∈ Σ, returns the context associated to s;
(vi)⇒ ⊆ Σ ×Σ is a transition relation between pairs of states.

Starting from the initial state s0, ΥKcx accounts for all the possible (simultaneous)
data and context transitions. To single out the dynamics of the system as opposed
to those of the context, the transition system is built by repeatedly alternating be-
tween system and context transitions. Technically, we revise the notion of executability
for KABs by taking into account context expressions, as well as the context evolu-
tion. Given an action α ∈ Γ , we say that α is executable in state s with parameter
substitution σ if there exists a condition-action rule 〈Q(�x), ϕC〉 �→ α(�x) in Π s.t.

�xσ ∈ ANS(Q, T
ctx(s)
cx , abox (s)) and ctx(s) ∪ ΦCdim

|= ϕC .
We then introduce an action transition relation EXECKcx , where

〈〈A,m,C〉, ασ, 〈A′,m′, C′〉〉 ∈ EXECKcx if the following holds:
– Action α is executable in state 〈A,m,C〉 with parameter substitution σ.
– There exists θ ∈ EVALS(TC

cx , A, ασ) s.t. θ and m “agree” on the common values in
their domains;

– A′ = DO(TC
cx , A, ασ)θ;

– m′ = m ∪ θ;
– C′ = C, i.e., the context does not change.

Alongside the action transition relation, we also define a context transition relation
CEXECKcx , where 〈〈A,m,C〉, 〈A′,m′, C′〉〉 ∈ CEXECKcx if the following holds:

– A′ = A, i.e., the ABox does not change;
– m′ = m, i.e., the service call map does not change;
– there exists a context rule 〈Q,ϕC〉 �→ Cnew in ΠC s.t.: (i) ANS(Q, TC

cx , A) is true;
(ii) C ∪ ΦCdim

|= ϕC ; (iii) for every context dimension d ∈ Cdim s.t. [d � v] ∈
Cnew , we have [d � v] ∈ C′; (iv) for every context dimension d ∈ Cdim s.t.
[d � v] ∈ C, and there does not exist any v2 s.t. [d � v2] ∈ Cnew , we have
[d � v] ∈ C′.

Given these, we can now define how ΥKcx is constructed, by suitably alternating the
action and context transitions. In order to single out the states obtained by applying
just an action transition and for which the context transition has not taken place yet,
we introduce a special marker State(inter), which is an ABox assertion with a fresh
concept name State and a fresh constant inter. When State(inter) is present, it means
that the state has been produced by an action execution, and that the next transition will
represent a context change. Such states can be considered as intermediate, in the sense
that the overall change both of the ABox facts and of the context has not taken place
yet.

Formally, given a CKABKcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉, the context-sensitive tran-
sition system ΥKcx = 〈Δ,Tcx , Σ, s0, abox , ctx ,⇒〉 is defined as follows:

– s0 = 〈id0, A0, ∅, C0〉;
– Σ and ⇒ are defined by simultaneous induction as the smallest sets satisfying the

following properties: (i) s0 ∈ Σ; (ii) if 〈id, A,m,C〉 ∈ Σ and State(inter) /∈ A,
then for all actions α ∈ Γ , for all substitutions σ for the parameters of α, and for
all A′, m′ s.t. 〈〈A,m,C〉, ασ, 〈A′,m′, C〉〉 ∈ EXECKcx , let

S = {〈id′′, A′,m′, C′〉 | id′′ is a fresh identifier, and there is 〈A′,m′, C〉
such that 〈〈A′,m′, C〉, 〈A′,m′, C′〉〉 ∈ CEXECKcx}.

Verification of Context-Sensitive Knowledge and Action Bases 523

If for some 〈id′′, A′,m′, C′〉 ∈ S, we have that A′ is TC′

cx -consistent, then s′ ∈ Σ
and 〈id, A,m,C〉 ⇒ s′, where s′ = 〈id′, A′ ∪ {State(inter)},m′, C〉 and id′ is a
fresh identifier. Moreover, in this case, for each s′′ = 〈id′′, A′,m′, C′〉 ∈ S such
that A′ is TC′

cx -consistent, we have that s′′ ∈ Σ and s′ ⇒ s′′.
Notice that, if at some point in the above inductive construction, for no
〈id′′, A′,m′, C′〉 ∈ S we have that A′ is TC′

cx -consistent, then neither the state s′ nor
any state in S becomes part of Σ.

5 Verifying Temporal Properties over CKAB

Given a CKABKcx , we are interested in verifying whether the evolution ofKcx , which
is represented by ΥKcx , complies with some given temporal property. The challenge
is that in general the transition system is infinite due to the presence of services calls,
which can introduce arbitrary fresh values into the system.

5.1 Verification Formalism: Context-Sensitive FO-Variant of μ-Calculus

In order to specify temporal properties over CKABs, we use a first-order variant of μ-
calculus [25,23], one of the most powerful temporal logics, which subsumes LTL, PSL,
and CTL* [14]. In particular, we introduce the language μLCTX of context-sensitive
temporal properties, which is based on μLEQL

A defined in [4]. Basically, we exploit
ECQs to query the states, and support a first-order quantification across states, where
the quantification ranges over the constants in the current active domain. Additionally,
we augment ECQs with context expressions, which allows us to check also context
information while querying states. Formally, μLCTX is defined as follows:

Φ := Q | ϕC | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉[−]Φ | [−][−]Φ | Z | μZ.Φ

where Q is a possibly open EQL query that can make use of the distinguished constants
in ADOM(A0), ϕC is a context expression over Lcx , and Z is a second order predicate
variable (of arity 0). We adopt the usual abbreviations of FOL, and also [−]Φ = ¬〈−〉¬Φ
and νZ.Φ = ¬μZ.¬Φ[Z/¬Z]. Hence 〈−〉〈−〉Φ = ¬[−][−]¬Φ and [−]〈−〉Φ = ¬〈−〉[−]¬Φ.

Notice that 〈−〉[−]Φ and [−][−]Φ are used in μLCTX to quantify over the successor states
of the current state, obtained after a state-changing transition followed by a context-
changing one. This allows one to separately control how the property quantifies over
state and context changes. Furthermore, due to the fact that the diamond and box oper-
ators can be only used in pairs, the local queries that inspect the data and the context
maintained by the states are never issued over intermediate states, but only over those
resulting from the combination of an action and context transition.

The semantics of μLCTX is defined over a transition system
Υ = 〈Δ,Tcx , Σ, s0, abox , ctx ,⇒〉. Since μLCTX contains formulae with both in-
dividual and predicate free variables, given a transition system Υ, we introduce an
individual variable valuation v, i.e., a mapping from individual variables x to Δ, and a
predicate variable valuation V , i.e., a mapping from predicate variables Z to subsets
of Σ. The semantics of μLCTX follows the standard μ-calculus semantics, except for
the semantics of queries and of quantification. We assign meaning to μLCTX formulas

524 D. Calvanese et al.

by associating to Υ and V an extension function (·)Υv,V , which maps μLCTX formulas to

subsets of Σ. The extension function (·)Υv,V is defined inductively as follows:

(Q)Υv,V = {s ∈ Σ | ANS(Qv, TC
cx , abox (s)) = true}

(ϕC)
Υ
v,V = {s ∈ Σ | ctx(s) ∪ ΦCdim

|= ϕC}
(∃x.Φ)Υv,V = {s ∈ Σ | ∃d.d ∈ ADOM(abox (s)) and s ∈ (Φ)Υv[x/d],V }

(Z)Υv,V = V (Z) ⊆ Σ

(¬Φ)Υv,V = Σ − (Φ)Υv,V
(Φ1 ∨ Φ2)

Υ
v,V = (Φ1)

Υ
v,V ∪ (Φ2)

Υ
v,V

(〈−〉Φ)Υv,V = {s ∈ Σ | ∃s′. s⇒ s′ and s′ ∈ (Φ)Υv,V }
(μZ.Φ)Υv,V =

⋂
{E ⊆ Σ | (Φ)Υv,V [Z/E] ⊆ E}

where Qv is the query obtained from Q by substituting its free variables according to v.
For a closed formula Φ (for which (Φ)Υv,V does not depend on v or V), we denote with
(Φ)Υ the extension of Φ in Υ, and we say that Φ holds in a state s ∈ Σ if s ∈ (Φ)Υ .

Model checking is the problem of checking whether s0 ∈ (Φ)Υ , denoted by Υ |= Φ.
We are interested in verification of μLCTX properties over CKABs, i.e., given a CKAB
Kcx , and a μLCTX property Φ, check whether ΥKcx |= Φ.

Example 5. In our running example, the property νZ.(∀x.CustOrder(x) ∧ [S � PS] →
μY.(Delivered(x) ∨ [−][−]Y)) ∧ [−][−]Z checks that every customer order placed during peak
season will be eventually delivered, independently on how the context and the state evolve.

5.2 Decidability of Verification

In general, verification of temporal properties over CKABs is undecidable, even for
properties as simple as reachability, which can be expressed in much weaker languages
than μLCTX . This follows immediately from the fact that CKABs generalize KABs [4].

In order to establish decidability of verification, we need to pose restrictions on the
form of CKABs. We adopt the semantic restriction of run-boundedness identified in
[4], which intuitively imposes that along every run the number of distinct values cumu-
latively appearing in the ABoxes of the states in the run is bounded. Formally, given
a CKAB Kcx , a run τ = s0s1 · · · of ΥKcx is bounded if there exists a finite bound b
s.t.

∣∣⋃
s state of τ ADOM(abox (s))

∣∣ < b. We say that Kcx is run-bounded if there exists a
bound b s.t. every run τ in ΥKcx is bounded by b. The following result shows that the
decidability of verification for run-bounded KABs can be lifted to CKABs as well.

Theorem 1. Verification of μLCTX properties over run-bounded CKABs is decidable,
and can be reduced to finite-state model checking.

Proof (sketch). For a run-bounded CKAB Kcx , we construct a faithful finite-state ab-
straction for ΥKcx , that is, a finite-state transition system θKcx s.t., for every μLCTX prop-
erty Φ, we have that θKcx |= Φ if and only if ΥKcx |= Φ.

We observe that, thanks to run-boundedness, the number of distinct states appearing
along each run of ΥKcx is finite. Hence, the only source of infinity present in ΥKcx is due
to infinite branching. A distinctive feature of CKABs is that distinct states may differ

Verification of Context-Sensitive Knowledge and Action Bases 525

not only in the ABox, but also in the TBox. However, the possible TBoxes that can be
encountered during the system evolution depend only on the contexts, and not on the
data contained in the ABoxes. Since contexts are propositional, only a finite number
of distinct TBoxes will appear in ΥKcx . This, in turn, shows that infinite branching is
only caused by the possibly infinite number of distinct values returned by the service
calls. Hence, the source of infinity in CKABs is analogous to that of KABs, and we can
adopt the same pruning strategy as for KABs [12]: we have shown that two successor
states whose ABoxes are isomorphic w.r.t. values not present in ADOM(A0) cannot be
distinguished by μLA formulas, and therefore it is sufficient to keep only one of them
in the faithful abstraction. The claim follows since μLCTX is a fragment of μLA.

We close by observing that, due to the “alternating” nature between action and con-
text transitions in ΥKcx , we can interpret ΥKcx as a game structure in which the system
is the “good” player and the context is the “bad” player. In this light, μLCTX formulas
that are in negation-normal form and only make use of temporal operators 〈−〉[−] and
[−][−] can express properties that the system is required to guarantee independently on
how the context evolves. Thanks to Theorem 1, and by observing that CKABs meet the
so-called genericity property in the sense of [11], we can not only verify whether there
exists a system strategy to enforce a property of this kind, but also effectively extract
such strategy, following the metaphor of synthesis via model checking.

6 Weakly Acyclic CKABs

Even though run-boundedness guarantees decidability of μLCTX verification over CK-
ABs, it is a semantic property, which is undecidable to check [3]. To mitigate this prob-
lem, [3] provides a sufficient condition for run-boundedness. Such condition leverages
on the notion of weak-acyclicity in data exchange [16], and is syntactically checked
over a dependency graph that over-approximates the transfer of values from relation
components to other relation components, according to the specification of the system
actions.

Intuitively, weak-acyclicity checks for the presence of service calls that can feed
themselves, either directly or indirectly, through a chain of other service calls. This
cyclic dependency gives raise to runs in which infinitely many distinct service calls
are issued, and possibly return infinitely many distinct values, thus making those runs
unbounded.

In [4], the notion of weak-acyclicity has been suitably recast in the context of KABs,
taking advantage from first-order rewritability of EQL queries over DL-Lite ontologies,
and from the fact that KABs have a TBox that is fixed, i.e., independent of the state.
The idea is to construct the dependency graph approximating the behavior of the KAB
action component, by considering the contribution of the TBox.

The main difficulty in lifting weak-acyclicity to our setting, is that due to the presence
of the context, the TBox changes over time. To tackle this issue, we observe that the cur-
rent TBox is determined by the current context, and that each action α in a CKAB can
be executed only in those contexts that match with the context expressions contained
in the pre-conditions of condition-action rules having α in their head. Therefore, when
analyzing the contribution of α to the dependency graph, we consider all the possible

526 D. Calvanese et al.

finitely many contexts in which α can be applied, and consider the application of α with
all corresponding TBoxes.

Formally, given a CKAB Kcx = 〈Tcx , A0, Γ,Π,C0, ΠC〉, we define its dependency
graph G = 〈V,E〉 as follows.

The set V of nodes is created from the concepts and roles in VOC(Tcx), as the small-
est set satisfying the following conditions: (a) for each concept N in VOC(Tcx), V con-
tains one node 〈N, 1〉; (b) for each role R in VOC(Tcx), V contains two nodes 〈R, 1〉
and 〈R, 2〉, respectively reflecting the first and second component of R.

The set E of edges is created based on the condition-action rules in Π and the actions
in Γ . Each edge represents a possible data transfer from one node (i.e., concept/role
component) to another node, due to some action effect. In particular, a normal edge
represents a value transfer, whereas a special edge represents that the source node is
part of the input for a service call whose result is stored in the target node. Specifically,
E is the smallest set satisfying the following conditions (we consider the contribution
of concepts, the case of role components is analogous):
1. E contains an ordinary edge 〈N1, 1〉 → 〈N2, 1〉 if there exist (i) an action α ∈ Γ ,

(ii) an effect [q+] ∧ Q− 	 A′ in α, (iii) a condition-action rule 〈Q(�x), ϕC〉 �→
α(�x), and (iv) a variable x, s.t. N1(x) appears in rew(q+, TCα

cx) (i.e., in the perfect
rewriting of q+ w.r.t. TCα

cx), and N2(x) appears in A′.
2. E contains a special edge 〈N1, 1〉 ∗−→ 〈N2, 1〉 if there exist (i) an action α ∈ Γ ,

(ii) an effect [q+]∧Q− 	 A′ in α, (iii) a condition-action rule 〈Q(�x), ϕC〉 �→ α(�x),
and (iv) a variable x, s.t. N1(x) appears in rew(q+, TCα

cx), and N2(f(. . . , x, . . .))
appears in A′.

A CKAB Kcx is weakly acyclic if its dependency graph has no cycle going through
a special edge. Such a cycle witnesses that the same service call (in)directly feeds it-
self. The following result shows that such “context-aware” dependency graph can be
effectively used as a sufficient condition for checking whether a CKAB is run-bounded.

Theorem 2. Given a weakly acyclic CKAB Kcx , we have that ΥKcx is run-bounded.

Proof (sketch). The proof is obtained by observing that the dependency graph construc-
tion for CKABs corresponds to that of standard KABs, imagining that the context is
“compiled away”, and that each (contextualized) action α of the CKAB under study is
translated into a set of actions α1, . . . , αn, each corresponding to the execution of α in
one of the possible contexts in which α can be applied. Observe that n is finite and, in
the worst case, it corresponds to the overall number of contexts that can be encountered
in the system. In standard KABs, the contribution of each action to the dependency
graph is obtained by compiling away the TBox and by considering the rewritten queries
in the action effects. Hence, there is no difference between a normal KAB and a CKAB
in which each of the aforementioned αi is rewritten using the TBox obtained from the
context to which αi corresponds. This is exactly what the dependency graph construc-
tion provided above does. We can therefore recast Theorem 6.1 in [12] to obtain the
claim.

From Theorems 1 and 2, we finally obtain:

Verification of Context-Sensitive Knowledge and Action Bases 527

Corollary 1. Verification of μLCTX properties over weakly acyclic CKABs is decidable,
and can be reduced to finite-state model checking.

7 Conclusion

We have introduced context-sensitive KABs, which extend KABs with contextual infor-
mation. In this enriched setting, we make use of context-sensitive temporal properties
based on a FOL variant of μ-calculus, and establish decidability of verification for such
logic over CKABs in which the data values encountered along each run are bounded.

In this work, we adopt a simplistic approach to deal with inconsistency, based on sim-
ply rejecting inconsistent states. This approach is particularly critical in the presence of
contextual information, which could lead to an inconsistent state simply due to a con-
text change. In this light, it is particularly interesting to merge the approach presented
in this paper with the one in [12], where inconsistency is treated in a more sophisticated
way, based on the notion of repairs.

Acknowledgments. This research has been partially supported by the EU IP project
Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-318338, and
by DFG within the Research Training Group “RoSI” (GRK 1907).

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

2. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and conse-
quences of semantic web ontologies. John Wiley & Sons 12–13, 22–40 (2012)

3. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: Proc. of the 32nd ACM
SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems (PODS), pp. 163–174
(2013)

4. Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., Felli,
P.: Description logic knowledge and action bases. J. of Artificial Intelligence Research 46,
651–686 (2013)

5. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information from peer
sources. J. on Data Semantics 1, 153–184 (2003)

6. Bozzato, L., Ghidini, C., Serafini, L.: Comparing contextual and flat representations of knowl-
edge: A concrete case about football data. In: Proc. of the 7th Int. Conf. on Knowledge Cap-
ture (K-CAP), pp. 9–16. ACM Press (2013)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodrı́guez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.,
Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web.
LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI), pp. 274–279 (2007)

528 D. Calvanese et al.

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385–429 (2007)

10. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-based gov-
ernance of data-aware processes. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS,
vol. 7497, pp. 25–41. Springer, Heidelberg (2012)

11. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: Verification and synthesis in de-
scription logic based dynamic systems. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS,
vol. 7994, pp. 50–64. Springer, Heidelberg (2013)

12. Calvanese, D., Kharlamov, E., Montali, M., Santoso, A., Zheleznyakov, D.: Verification of
inconsistency-aware knowledge and action bases. In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence, IJCAI (2013)

13. Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic BEL. In: Demri, S., Kapur, D.,
Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 480–494. Springer, Heidelberg
(2014)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. The MIT Press, Cambridge
(1999)

15. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of the 12th Int. Conf. on Database Theory (ICDT), pp. 252–267 (2009)

16. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answer-
ing. Theoretical Computer Science 336(1), 89–124 (2005)

17. Giunchiglia, F., Bouquet, P.: Introduction to contextual reasoning. an artificial intelligence
perspective. In: Perspectives on Cognitive Science, pp. 138–159. NBU Press (1997)

18. Klarman, S., Gutiérrez-Basulto, V.: ALCALC: A context description logic. In: Janhunen, T.,
Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 208–220. Springer, Heidelberg (2010)

19. Limonad, L., De Leenheer, P., Linehan, M., Hull, R., Vaculı́n, R.: Ontology of dynamic
entities. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 345–358.
Springer, Heidelberg (2012)

20. McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987)
21. McCarthy, J.: Notes on formalizing context. In: Proc. of the 13th Int. Joint Conf. on Artificial

Intelligence (IJCAI), pp. 555–560 (1993)
22. Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based

multiagent systems. In: Proc. of the 13th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2014), pp. 157–164 (2014)

23. Park, D.M.R.: Finiteness is Muineffable. Theoretical Computer Science 3(2), 173–181
(1976)

24. Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. of
Web Semantics 12, 64–87 (2012)

25. Stirling, C.: Modal and Temporal Properties of Processes. Springer (2001)
26. Vianu, V.: Automatic verification of database-driven systems: A new frontier. In: Proc. of the

12th Int. Conf. on Database Theory (ICDT), pp. 1–13 (2009)

System ASPMT2SMT:
Computing ASPMT Theories by SMT Solvers

Michael Bartholomew and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
{mjbartho,joolee}@asu.edu

Abstract. Answer Set Programming Modulo Theories (ASPMT) is an approach
to combining answer set programming and satisfiability modulo theories based
on the functional stable model semantics. It is shown that the tight fragment
of ASPMT programs can be turned into SMT instances, thereby allowing SMT
solvers to compute stable models of ASPMT programs. In this paper we present
a compiler called ASPSMT2SMT, which implements this translation. The system
uses ASP grounder GRINGO and SMT solver Z3. GRINGO partially grounds input
programs while leaving some variables to be processed by Z3. We demonstrate
that the system can effectively handle real number computations for reasoning
about continuous changes.

1 Introduction

Answer Set Programming (ASP) is a widely used declarative computing paradigm. Its
success is largely due to the expressivity of its modeling language and efficiency of
ASP solvers thanks to intelligent grounding and efficient search methods that origi-
nated from propositional satisfiability (SAT) solvers. While grounding methods imple-
mented in ASP solvers are highly optimized, ASP inherently suffers when variables
range over large domains. Furthermore, real number computations are not supported
by ASP solvers because grounding cannot be even applied. Thus reasoning about con-
tinuous changes even for a small interval requires loss of precision by discretizing the
domain.

Satisfiability Modulo Theories (SMT) emerged as an enhancement of SAT, which
can be also viewed as a special case of (decidable) first-order logic in which certain
predicate and function symbols in background theories have fixed interpretations. Ex-
ample background theories are the theory of real numbers, the theory of linear arith-
metic, and difference logic.

A few approaches to loosely combining ASP and SMT/CSP exist [1,2,3], in which
nonmonotonicity of the semantics is related to predicates in ASP but has nothing to do
with functions in SMT/CSP. For instance, while

WaterLevel(t+1, tank, l) ← WaterLevel(t, tank, l), not ¬WaterLevel(t+1, tank, l)

(t is a variable ranging over steps; l is a variable for the water level) represents the de-
fault value of water level correctly (albeit grounding suffers when the variables range

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 529–542, 2014.
c© Springer International Publishing Switzerland 2014

530 M. Bartholomew and J. Lee

over a large numeric domain), rewriting it in the language of CLINGCON—a combina-
tion of ASP solver CLINGO and constraint solver GECODE—as

WaterLevel(t+1, tank)=$ l ← WaterLevel(t, tank)=$ l, not ¬(WaterLevel(t+1, tank)=$ l)

does not express the concept of defaults correctly.
In [4], it was observed that a tight integration of ASP and SMT requires a general-

ization of the stable model semantics in which default reasoning can be expressed via
(non-Herbrand) functions as well as predicates. Based on the functional stable model se-
mantics from [5], a new framework called “Answer Set Programming Modulo Theories
(ASPMT)” was proposed, which is analogous to SMT. Just like SMT is a generalization
of SAT and, at the same time, a special case of first-order logic with fixed background
theories, ASPMT is a generalization of the traditional ASP and, at the same time, a
special case of the functional stable model semantics in which certain background the-
ories are assumed. Unlike SMT, ASPMT allows expressive nonmonotonic reasoning as
allowed in ASP.

It is shown in [4], a fragment of ASPMT instances can be turned into SMT instances,
so that SMT solvers can be used for computing stable models of ASPMT instances.
In this paper, we report an implementation of this translation in the system called
“ASPMT2SMT.” The system first partially grounds the theory by replacing “ASP vari-
ables” with ground terms, leaving other “SMT variables” ungrounded. Then, it com-
putes the completion of the theory. Under certain conditions guaranteed by the class
of ASPMT theories considered, the remaining variables can then be eliminated. After
performing this elimination, the ASPMT2SMT system then invokes the Z3 system to
compute classical models, which correspond to the stable models of the original theory.
We show that several examples involving both discrete changes as well as continuous
changes can be naturally represented in the input language of ASPMT2SMT, and can be
effectively computed.

The paper is organized as follows. In section 2, we first review the functional stable
models semantics and as its special case, ASPMT, and then review the theorem on
completion from [5]. In section 3, we describe the process of variable elimination used
by the system. In section 4, we describe the architecture of the system as well as the
syntax of the input language. Finally, in section 5, we present several experiments with
and without continuous reasoning and compare the performance to ASP solver CLINGO

when appropriate.
The system is available at http://reasoning.eas.asu.edu/aspmt.

2 Preliminaries

2.1 Review of the Functional Stable Model Semantics

We review the stable model semantics of intensional functions from [5]. Formulas are
built the same as in first-order logic.

Similar to circumscription, for predicate symbols (constants or variables) u and c,
expression u ≤ c is defined as shorthand for ∀x(u(x)→ c(x)). Expression u = c is
defined as ∀x(u(x)↔ c(x)) if u and c are predicate symbols, and ∀x(u(x) = c(x)) if

http://reasoning.eas.asu.edu/aspmt

System ASPMT2SMT: Computing ASPMT Theories by SMT Solvers 531

they are function symbols. For lists of symbols u = (u1, . . . , un) and c = (c1, . . . , cn),
expression u ≤ c is defined as (u1 ≤ c1) ∧ · · · ∧ (un ≤ cn), and similarly, expression
u = c is defined as (u1 = c1) ∧ · · · ∧ (un = cn). Let c be a list of distinct predicate
and function constants, and let ĉ be a list of distinct predicate and function variables
corresponding to c. By cpred (cfunc , respectively) we mean the list of all predicate
constants (function constants, respectively) in c, and by ĉpred (ĉfunc , respectively) the
list of the corresponding predicate variables (function variables, respectively) in ĉ.

For any formula F and any list of predicate and function constants c, which we call
intensional constants, expression SM[F ; c] is defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where ĉ < c is shorthand for (ĉpred ≤ cpred) ∧ ¬(ĉ = c), and F ∗(ĉ) is defined
recursively as follows.

– When F is an atomic formula, F ∗ is F ′∧F where F ′ is obtained from F by replac-
ing all intensional (function and predicate) constants c in it with the corresponding
(function and predicate) variables from ĉ;

– (G ∧H)∗ = G∗ ∧H∗; (G ∨H)∗ = G∗ ∨H∗;
– (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);
– (∀xG)∗ = ∀xG∗; (∃xF)∗ = ∃xF ∗.

(We understand ¬F as shorthand for F → ⊥;
 as ¬⊥; and F ↔ G as (F → G) ∧
(G→ F).)

When F is a sentence, the models of SM[F ; c] are called the stable models of F
relative to c. They are the models of F that are “stable” on c. The definition can be
easily extended to formulas of many-sorted signatures.

This definition of a stable model is a proper generalization of the one from [6], which
views logic programs as a special case of first-order formulas.

We will often write G ← F , in a rule form as in logic programs, to denote the
universal closure of F → G. A finite set of formulas is identified with the conjunction
of the formulas in the set.

By {c = v}, we abbreviate the formula c = v ∨ ¬(c = v) which, in the functional
stable model semantics, can be intuitively understood as “by default, c is mapped to v”.

2.2 ASPMT as a Special Case of the Functional Stable Model Semantics

We review the semantics of ASPMT described in [4]. Formally, an SMT instance is a
formula in many-sorted first-order logic, where some designated function and predicate
constants are constrained by some fixed background interpretation. SMT is the prob-
lem of determining whether such a formula has a model that expands the background
interpretation [7].

The syntax of ASPMT is the same as that of SMT. Let σbg be the (many-sorted) sig-
nature of the background theory bg. An interpretation of σbg is called a background in-
terpretation if it satisfies the background theory. For instance, in the theory of reals, we
assume that σbg contains the setR of symbols for all real numbers, the set of arithmetic

532 M. Bartholomew and J. Lee

functions over real numbers, and the set {<,>,≤,≥,=} of binary predicates over real
numbers. Background interpretations interpret these symbols in the standard way.

Let σ be a signature that is disjoint from σbg . We refer to functions in σbg as inter-
preted functions and functions in σ as uninterpreted functions. We say that an interpre-
tation I of σ satisfies F w.r.t. the background theory bg, denoted by I |=bg F , if there is
a background interpretation J of σbg that has the same universe as I , and I ∪J satisfies
F . For any ASPMT sentence F with background theory σbg , interpretation I is a stable
model of F relative to c (w.r.t. background theory σbg) if I |=bg SM[F ; c]. When c is
empty, the stable models of F coincides with the models of F .

Consider the following running example from a Texas Action Group discussion1.

A car is on a road of length L. If the accelerator is activated, the car will
speed up with constant acceleration A until the accelerator is released or the
car reaches its maximum speed MS, whichever comes first. If the brake is ac-
tivated, the car will slow down with acceleration ¬A until the brake is released
or the car stops, whichever comes first. Otherwise, the speed of the car remains
constant. Give a formal representation of this domain, and write a program that
uses your representation to generate a plan satisfying the following conditions:
at duration 0, the car is at rest at one end of the road; at duration T , it should
be at rest at the other end.

This problem is an instance of planning with continuous time, which requires real
number computations.

The domain can be naturally represented in ASPMT as follows. Below s ranges over
time steps, b is a boolean variable, x, y, a, c, d are all real variables, and A and MS are
some specific numbers.

We represent that the actions Accel and Decel are exogenous and the duration of each
time step is to be arbitrarily selected as

{Accel(s) = b}, {Decel(s) = b}, {Duration(s) = x}.

Both Accel and Decel cannot be performed at the same time:

⊥ ← Accel(s) = TRUE ∧ Decel(s) = TRUE.

The effects of Accel and Decel on Speed are described as

Speed(s+ 1) = y ← Accel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x+A× d),

Speed(s+ 1) = y ← Decel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x−A× d).

The preconditions of Accel and Decel are described as

⊥ ← Accel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x+A× d) ∧ (y > MS),

⊥ ← Decel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x−A× d) ∧ (y < 0).

1 http://www.cs.utexas.edu/users/vl/tag/continuous_problem

http://www.cs.utexas.edu/users/vl/tag/continuous_problem

System ASPMT2SMT: Computing ASPMT Theories by SMT Solvers 533

Speed is inertial:
{Speed(s+ 1) = x} ← Speed(s) = x.

The Location is defined in terms of Speed and Duration as

Location(s+ 1) = y ← Location(s) = x ∧ Speed(s) = a ∧ Speed(s+ 1) = c
∧ Duration(s)=d ∧ y = x+ ((a+ c)/2)× d.

2.3 Theorem on Completion

We review the theorem on completion from [4]. The completion turns “tight” ASPMT
instances into equivalent SMT instances, so that SMT solvers can be used for computing
this fragment of ASPMT.

We say that a formula F is in Clark normal form (relative to the list c of intensional
constants) if it is a conjunction of sentences of the form

∀x(G→ p(x)) (1)

and
∀xy(G→ f(x)=y) (2)

one for each intensional predicate p and each intensional function f , where x is a list
of distinct object variables, y is a variable, and G is a formula that has no free variables
other than those in x and y, and sentences of the form

← G. (3)

The completion of a formula F in Clark normal form (relative to c) is obtained
from F by replacing each conjunctive term (1) with

∀x(p(x)↔ G), (4)

each conjunctive term (2) with

∀xy(f(x)=y ↔ G), (5)

and each conjunctive term (3) with ¬G.
An occurrence of a symbol or a subformula in a formula F is called strictly positive

in F if that occurrence is not in the antecedent of any implication in F .
The dependency graph of a formula F relative to c, denoted by DGc[F], is the di-

rected graph that

– has all members of c as its vertices, and
– has an edge from c to d if, for some strictly positive occurrence of G → H in F ,

c has a strictly positive occurrence in H , and d has a strictly positive occurrence
in G.

We say that F is tight on c if the dependency graph of F relative to c is acyclic.

534 M. Bartholomew and J. Lee

Theorem 1 ([4, Theorem 2]) For any formula F in Clark normal form that is tight on
c, an interpretation I that satisfies ∃xy(x �= y) is a model of SM[F ; c] iff I is a model
of the completion of F relative to c.

For example, the car example formalization contains the following implications for
the function Speed(1):

Speed(1)=y ← Accel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x+A× d)
Speed(1)=y ← Decel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x− A× d)
Speed(1)=y ← Speed(0)=y ∧ ¬¬(Speed(1)=y)

({c= v} ← G is strongly equivalent to c= v ← G ∧ ¬¬(c= v)) and the completion
contains the following equivalence.

Speed(1) = y ↔
∃xd((Accel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x+A× d))

∨ (Decel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x−A× d))
∨ Speed(0) = y)

(6)

3 Variable Elimination

Some SMT solvers do not support variables at all (e.g. iSAT) while others suffer in
performance when handling variables (e.g. Z3). While we can partially ground the input
theories, some variables have large (or infinite) domains and should not (or cannot) be
grounded. Thus, we consider two types of variables: ASP variables—variables which
are grounded by ASP grounders—and SMT variables—variables which should not be
grounded. After eliminating ASP variables by grounding, we consider the problem of
equivalently rewriting the completion of the partially ground ASPMT theory so that the
result contains no variables.

To ensure that variable elimination can be performed, we impose some syntactic
restrictions on ASPMT instances. We first impose that no SMT variable appears in the
argument of an uninterpreted function.

We assume ASPMT2SMT programs comprised of rules of the form H ← B where

– H is ⊥ or an atom of the form f(t) = v, where f(t) is a term and v is a variable;
– B is a conjunction of atomic formulas possibly preceded with ¬.

We define the variable dependency graph of a conjunction of possibly negated atomic
formulas C1∧· · ·∧Cn as follows. The vertices are the variables occurring in C1∧· · ·∧
Cn. There is a directed edge from v to u if there is a Ci that is v = t or t = v for some
term t such that u appears in t. We say a variable v depends on a variable u if there is
a directed path from v to u in the variable dependency graph. We say a rule H ← B is
variable isolated if every variable v in it occurs in an equality t = v or v = t that is not
negated in B and the variable dependency graph of B is acyclic.

Example 1. The rule f = x ← g = 2 × x is not variable isolated because variable
x does not occur in an equality x = t or t = x in the body. Instead, we write this as
f = x← (g = y) ∧ (y = 2× x), which is variable isolated.

The rule f = x ← (2 × x = y) ∧ (2 × y = x) is not variable isolated; although
variable y occurs in an equality of the form t = y, the dependency graph is not acyclic.

System ASPMT2SMT: Computing ASPMT Theories by SMT Solvers 535

The variable elimination is performed modularly so the process needs only to be
described for a single equivalence. If an ASPMT program contains no variables in ar-
guments of uninterpreted functions, any equivalence in the completion of the ASPMT
program will be of the form

∀v(f = v ↔ ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)))

where each Bi is a conjunction of possibly negated literals and has v = t as a non-
negated subformula, and the variable dependency graph of B is acyclic. In the follow-
ing, the notationF v

t denotes the formula obtained fromF by replacing every occurrence
of the variable v with the term t. We define the process of eliminating variables from
such an equivalence E as follows.

1. Given an equivalence E = ∀v(f = v ↔ ∃x(B1(v,x) ∨ · · · ∨Bk(v,x))),
F := ∀v(f = v → ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)));
G := ∀v(∃x(B1(v,x) ∨ · · · ∨Bk(v,x))→ f = v).

2. Eliminate variables from F as follows:
(a) F := ∃x(B1(v,x)

v
f ∨ · · · ∨Bk(v,x)

v
f) and then equivalently,

F := ∃x(B1(v,x)
v
f) ∨ · · · ∨ ∃x(Bk(v,x)

v
f).

(b) Fi := ∃x(Bi(v,x)
v
f).

(c) Eliminate variables from Fi as follows:
i. Di := Bi(v,x)

v
f .

ii. While there is a variable x still in Di, select a conjunctive term x = t or
t = x (such that no variable in t depends on x) in Di, then Di := (Di)

x
t .

iii. Fi = Di (drop the existential quantifier since there are no variables in Di).
(d) F := F1 ∨ · · · ∨ Fk.

3. Eliminate variables from G as follows:
(a) G := ∀vx((B1(v,x) ∨ · · · ∨Bk(v,x))→ f = v) and then equivalently,

G := ∀vx(B1(v,x)→ f = v) ∧ · · · ∧ ∀vx(Bk(v,x)→ f = v).
(b) Gi := ∀vx(Bi(v,x)→ f = v).
(c) Eliminate variables from Gi as follows:

i. Di := Bi(v,x)→ f = v.
ii. While there is a variable x still in Di, select a conjunctive term x = t or

t = x (such that no variable in t depends on x) from the body of Di, then
Di := (Di)

x
t .

iii. Gi = Di (drop the universal quantifier since there are no variables in Di).
(d) G := G1 ∨ · · · ∨Gk.

4. E := F ∧G.

The following proposition asserts the correctness of this method. Note that the ab-
sence of variables in arguments of uninterpreted functions can be achieved by grounding
ASP variables and enforcing that no SMT variables occur in uninterpreted functions.

Proposition 1 For any completion of a variable isolated ASPMT program with no vari-
ables in arguments of uninterpreted functions, applying variable elimination method
repeatedly results in a classically equivalent formula that contains no variables.

536 M. Bartholomew and J. Lee

For example, given the equivalence (6), Step 2a) turns the implication from left to
right into the formula

∃xd((Accel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (Speed(1)=x+A× d))
∨ (Decel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (Speed(1)=x− A× d))
∨ (Speed(0) = Speed(1)))

And then step 2d) produces

(Accel(0)= TRUE ∧ Speed(1)=Speed(0) + A× Duration(0))∨
(Decel(0)= TRUE ∧ Speed(1) = Speed(0)− A× Duration(0))∨
(Speed(0) = Speed(1)).

4 ASPMT2SMT System

4.1 Syntax of Input Language

In addition to the syntactic restriction on ASPMT rules imposed in the previous section,
the current version of system ASPMT2SMT assumes that the input program is f -plain
[5], as well as “av-separated,” which intuitively means that no variable occurring in
an argument of an uninterpreted function is related to the value variable of another
uninterpreted functions via equality.2 For example, for the rule f(x) = 1 ← g =
y ∧ y = x, variable x is an argument of f and is also related to the value variable y
of g via equality y = x. The reason for this restriction is because the system sets the
equalities g = y and y = x aside (so that GRINGO does not ground them), and ground
the rule and then replace the equalities back to yield

f(1) = 1← g = y ∧ y = x
f(2) = 1← g = y ∧ y = x
. . .

rather than the intended
f(1) = 1← g = y ∧ y = 1
f(2) = 1← g = y ∧ y = 2.
. . .

It should also be noted that the only background theories considered in this version of
the implementation are arithmetic over reals and integers.

System ASPMT2SMT uses a syntax similar to system CPLUS2ASP [8] for declarations
and a syntax similar to system F2LP [9] for rules.

There are declarations of four kinds, sorts, objects, constants, and
variables. The sort declarations specify user data types (note: these cannot be used
for value sorts). The object declarations specify the elements of the user-declared data
types. The constant declarations specify all of the (possibly boolean) function constants
that appear in the theory. The variables declarations specify the user-declared data types
associated with each variable. Declarations for the car example are shown below.

2 See the system homepage for the precise description of this condition.

System ASPMT2SMT: Computing ASPMT Theories by SMT Solvers 537

:- sorts
step; astep.

:- objects
0..st :: step; 0..st-1 :: astep.

:- constants
time(step) :: real[0..t]; accel(astep) :: boolean;
duration(astep) :: real[0..t]; decel(astep) :: boolean;
speed(step) :: real[0..ms]; location(step) :: real[0..l].

:- variables
S :: astep; B :: boolean.

Only propositional connectives are supported in this version of ASPMT2SMT and
these are represented in the system as follows:

∧ ∨ ¬ → ←
& | not -> <-

Comparison and arithmetic operators are represented as usual:

< ≤ ≥ > = �= add subtract multiply divide
< <= >= > = != + - * /

a != b is understood as ¬(a = b). To abbreviate the formula A∨¬A, which is useful
for expressing defaults and inertia, we write {A}. The rest of the car example is shown
below.

% Actions and durations are exogenous
{accel(S)=B}.
{decel(S)=B}.
{duration(S)=X}.

% no concurrent actions
<- accel(S)=true & decel(S)=true.

% effects of accel and decel
speed(S+1)=Y <- accel(S)=true & speed(S)=X & duration(S)=D & Y = X+ar*D.
speed(S+1)=Y <- decel(S)=true & speed(S)=X & duration(S)=D & Y = X-ar*D.

% preconditions of accel and decel
<- accel(S)=true & speed(S)=X & duration(S)=D & Y = X+ar*D & Y > ms.
<- decel(S)=true & speed(S)=X & duration(S)=D & Y = X-ar*D & Y < 0.

% inertia of speed
{speed(S+1)=X} <- speed(S)=X.

location(S+1)=Y <- location(S)=X & speed(S)=A &
speed(S+1)=C & duration(S)=D & Y = X+(A+C)/2*D.

538 M. Bartholomew and J. Lee

time(S+1)=Y <- time(S)=X & duration(S)=D & Y=X+D.

% problem instance
time(0)=0. speed(0)=0. location(0)=0.
<- location(st) = Z & Z != l.
<- speed(st) = Z & Z != 0.
<- time(st) = Z & Z != t.

This description can be run by the command

$aspmt2smt car -c st=3 -c t=4 -c ms=4 -c ar=3 -c l=10

which yields the output

accel(0) = true accel(1) = false accel(2) = false
decel(0) = false decel(1) = false decel(2) = true
duration(0) = 1.1835034190 duration(1) = 1.6329931618
duration(2) = 1.1835034190 location(0) = 0.0
location(1) = 2.1010205144 location(2) = 7.8989794855
location(3) = 10.0 speed(0) = 0.0
speed(1) = 3.5505102572 speed(2) = 3.5505102572
speed(3) = 0.0 time(0) = 0.0 time(1) = 1.1835034190
time(2) = 2.8164965809 time(3) = 4.0

z3 time in milliseconds: 30
Total time in milliseconds: 71

4.2 Architecture

Fig. 1. ASPMT2SMT System Architecture

The architecture of ASPMT2SMT system is shown in Figure 1. The system first con-
verts the ASPMT description to a propositional formula containing only predicates. In
addition, this step substitutes auxiliary constants for SMT variables and necessary pre-
processing for F2LP (v1.3) and GRINGO (v3.0.4) to enable partial grounding of ASP

System ASPMT2SMT: Computing ASPMT Theories by SMT Solvers 539

variables only. F2LP transforms the propositional formula into a logic program and
then GRINGO performs partial grounding on only the ASP variables. The ASPMT2SMT

system then converts the predicates back to functions and replaces the auxiliary con-
stants with the original expressions. Then the system computes the completion of this
partially ground logic program and performs variable elimination on that completion.
Finally, the system converts this variable-free description into the language of Z3 and
then relies on Z3 to produce models which correspond to stable models of the original
ASPMT description.

For instance, consider the result of variable elimination on the portion of the com-
pletion related to speed(1) of the running car example:

(Accel(0)= TRUE ∧ Speed(1)=Speed(0) + A× Duration(0))∨
(Decel(0)= TRUE ∧ Speed(1) = Speed(0)− A× Duration(0))∨
(Speed(0) = Speed(1)).

In the language of Z3, this is

(assert (or (or
(and (= accel_0_ true) (= speed_1_ (+ speed_0_ (* duration_0_ a))))
(and (= decel_0_ true) (= speed_1_ (- speed_0_ (* duration_0_ a)))))
(= speed_1_ speed_0_)))

5 Experiments

The following experiments demonstrate the capability of the ASPMT2SMT system to
perform nonmonotonic reasoning about continuous changes. In addition, this shows a
significant performance increase compared to ASP solvers for domains in which only
SMT variables have large domains. However, when ASP variables have large domains,
similar scalability issues arise as comparable grounding still occurs.

All experiments were performed on an Intel Core 2 Duo 3.00 GHZ CPU with 4 GB
RAM running Ubuntu 13.10. The domain descriptions of these examples can be found
from the system homepage.

5.1 Leaking Bucket

c CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

10 0s (0s+0s) .037s (.027s + .01s)
50 .02s (02s + 0s) .089s (.079s + .01s)

100 .12s (.12s + 0s) .180s (.170s + .01s)
500 8.69s (8.68s + .01s) 1.731s (1.661s + .07s)
1000 60.32s (60.29s+ .03s) 35.326s (35.206s + .12s)

Consider a leaking bucket with
maximum capacity c that loses
one unit of water every time step
by default. The bucket can be re-
filled to its maximum capacity
by the action fill. The initial ca-
pacity is 5 and the desired ca-
pacity is 10.

We see that in this exper-
iment, ASPMT2SMT does not

yield significantly better results than CLINGO. The reason for this is that the scaling

540 M. Bartholomew and J. Lee

of this domain takes place in the number of time steps. Thus, since ASPMT2SMT uses
GRINGO to generate fluents for each of these time steps, the ground descriptions given
to CLINGO and Z3 are of similar size. Consequently, we see that the majority of the
time taken for ASPMT2SMT is in preprocessing.

5.2 Car Example

k CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 n/a .084s (.054s + .03s)
5 n/a .085s (.055s + .03s)

10 n/a .085s (.055s + .03s)
50 n/a .087s (.047s + .04s)
100 n/a .088s (.048s + .04s)

1 .61s (.6s + .01s) .060s (.050s + .01s)
2 48.81s (48.73s + .08s) .07s (.050s + .02s)
3 > 30 minutes .072s (.052s + .02s)
5 > 30 minutes .068s (.048s + .02s)

10 > 30 minutes .068s (.048s + .02s)
50 > 30 minutes .068s (.048s + .02s)
100 > 30 minutes .072s (.052s + .02s)

Recall the car example in Sec-
tion 2.2. The first half of the ex-
periments are done with the val-
ues L = 10k, A = 3k, MS =
4k, T = 4k, which yields solu-
tions with irrational values and
so cannot be solved by system
CLINGO. The second half of the
experiments are done with the
values L = 4k, A = k, MS =
4k, T = 4k, which yields so-
lutions with integral values and
so can be solved by system
CLINGO. In this example, only
the SMT variables have increas-
ing domains but the ASP vari-
able domain remains the same.

Consequently, the ASPMT2SMT system scales very well compared to the ASP system
which can only complete the two smallest size domains.

We also experimented with CLINGCON. Since CLINGCON does not allow intensional
functions, we need to encode the example differently using auxiliary abnormality atoms
to represent the notions of inertia and default behaviors. In the first set of experiments,
CLINGCON performed better than ASPMT2SMT, but like CLINGO, the current version
of CLINGCON cannot handle real numbers, so it is not applicable to the second set of
experiments.

5.3 Space Shuttle Example

k CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 0s (0s + 0s) .048s (.038s + .01s)
5 .03s (.02s + .01s) .047s (.037s + .01s)

10 .14s (.9s + .5s) .053s (.043s + .01s)
50 7.83s (3.36s + 4.47s) .050s (.040s + .01s)
100 39.65s (16.14s + 23.51s) .051s (.041s + .01s)

The following example is from
[10], which represents cumu-
lative effects on continuous
changes. A spacecraft is not af-
fected by any external forces. It
has two jets and the force that
can be applied by each jet along
each axis is at most 4k. The
initial position of the rocket is
(0,0,0) and its initial velocity is

(0,1,1). How can it get to (0,3k,2k) within 2 seconds? Assume the mass is 2.

System ASPMT2SMT: Computing ASPMT Theories by SMT Solvers 541

Again in this problem, the scaling lies only in the size of the value of the functions in-
volved in the description. Consequently, we see no scaling issues in either ASPMT2SMT

or CLINGCON.

5.4 Bouncing Ball Example

k CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 n/a .072s (.062s + .01s)
10 n/a .072s (.062s + .01s)

100 n/a .071s (.061s + .01s)
1000 n/a .075s (.065s + .01s)
10000 n/a .082s (.062s + .02s)

The following example is from
[11]. A ball is held above the
ground by an agent. The actions
available to the agent are drop
and catch. Dropping the ball
causes the height of the ball to
change continuously with time
as defined by Newton’s laws of
motion. As the ball accelerates
towards the ground it gains ve-

locity. If the ball is not caught before it reaches the ground, it hits the ground with
speed s and bounces up into the air with speed r × s where r = .95 is the rebound co-
efficient. The bouncing ball reaches a certain height and falls back towards the ground
due to gravity. An agent is holding a ball at height 100k. We want to have the ball hit
the ground and caught at height 50.

Again, CLINGO and CLINGCON are unable to find solutions to this domain since
solutions are not integral. Also, we see that ASPMT2SMT suffers no scaling issues here
again due to the fact that in this problem the scaling lies only in the size of the value of
the functions involved in the description.

6 Conclusion

We presented system ASPMT2SMT, which translates ASPMT instances into SMT in-
stances, and uses SMT solvers to compute ASPMT. Unlike other ASP solvers, this sys-
tem can compute effective real number computation by leveraging the effective SMT
solvers. Future work includes extending the system to handle other background theo-
ries, and investigate a larger fragment of ASPMT instances that can be turned into SMT
instances.

Acknowledgements. We are grateful to the anonymous referees for their useful com-
ments. This work was partially supported by the National Science Foundation under
Grant IIS-1319794 and by the South Korea IT R&D program MKE/KIAT 2010-TD-
300404-001.

References

1. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009)

2. Balduccini, M.: Representing constraint satisfaction problems in answer set programming.
In: Working Notes of the Workshop on Answer Set Programming and Other Computing
Paradigms, ASPOCP (2009)

542 M. Bartholomew and J. Lee

3. Janhunen, T., Liu, G., Niemelä, I.: Tight integration of non-ground answer set programming
and satisfiability modulo theories. In: Working notes of the 1st Workshop on Grounding and
Transformations for Theories with Variables (2011)

4. Bartholomew, M., Lee, J.: Functional stable model semantics and answer set programming
modulo theories. In: Proceedings of International Joint Conference on Artificial Intelligence,
IJCAI (2013)

5. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In: Proceed-
ings of International Conference on Principles of Knowledge Representation and Reasoning
(KR), pp. 2–12 (2012)

6. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelli-
gence 175, 236–263 (2011)

7. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press (2009)

8. Babb, J., Lee, J.: Cplus2ASP: Computing action language C+ in answer set programming.
In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148, pp. 122–134. Springer,
Heidelberg (2013)

9. Lee, J., Palla, R.: System F2LP – computing answer sets of first-order formulas. In: Er-
dem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 515–521. Springer,
Heidelberg (2009)

10. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pp. 1079–1084 (2003)

11. Chintabathina, S.: Towards answer set prolog based architectures for intelligent agents. In:
AAAI 2008, pp. 1843–1844 (2008)

A Library of Anti-unification Algorithms

Alexander Baumgartner and Temur Kutsia

RISC, Johannes Kepler University, Linz, Austria

Abstract. Generalization problems arise in many branches of artificial intelli-
gence: machine learning, analogical and case-based reasoning, cognitive mod-
eling, knowledge discovery, etc. Anti-unification is a technique used often to
solve generalization problems. In this paper we describe an open-source library
of some newly developed anti-unification algorithms in various theories: for first-
and second-order unranked terms, higher-order patterns, and nominal terms.

1 Introduction

Given concrete examples, find an expression which adopts all their common features
and has them as particular instances: This is an informal formulation of the general-
ization problem that arises in many branches of artificial intelligence. For instance, in
inductive logic programming, which combines logic programming with machine learn-
ing, generalization is one of the steps used to fit the theory being learned to example
clauses. In cognitive modeling, analogical reasoning relies on exploring and general-
izing common features of different domains. Proof abstraction and lemma generation,
software code clone detection and procedure invention are some other examples that
involve generalization.

Anti-unification is a technique used often to solve generalization problems. Given
two terms t1 and t2, this technique requires finding a term t such that both t1 and
t2 are instances of t under some substitutions. Interesting generalizations are the least
general ones. Introduced in [21, 22] for the first-order syntactic case, anti-unification
has been extended to more complex theories and is used in various applications. For
some of those developments, one can see [2–4, 8–11, 14, 15, 17, 18, 20, 23]. First-order
order-sorted equational anti-unification (for combinations of associative and commuta-
tive theories with or without unit element) has been implemented in Maude and is freely
available [1].

The open-source library described in this paper implements anti-unification for un-
ranked terms, higher-order patterns, and nominal terms. Theories over these expressions
have applications in knowledge representation, reasoning, programming, etc. General-
ization problems in these theories may arise, for instance, in proof generalization or ana-
logical reasoning in higher-order or nominal logic, in learning or refactoring λ-Prolog
and α-Prolog programs, in detection of similarities in XML documents or in pieces of
software code, just to name a few. Therefore, the algorithms provided by the library can
be a valuable ingredient for tools that need to solve such generalization problems.

To be more specific, the library contains Java implementation of the following
algorithms:

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 543–557, 2014.
c© Springer International Publishing Switzerland 2014

544 A. Baumgartner and T. Kutsia

– first-order rigid unranked anti-unification from [16],
– second-order unranked anti-unification from [5],
– higher-order (pattern) anti-unification from [6] and

– its subalgorithm for deciding α-equivalence,
– nominal anti-unification from [7] and

– its subalgorithm for deciding equivariance.

The mentioned subalgorithms are needed to compute least general generalizations.
All these algorithms can be accessed from the Web page of the SToUT project at RISC:
http://www.risc.jku.at/projects/stout/. Each of them has a separate
Web page with a convenient Web interface to try the algorithm online. There are also
the link to the paper where the algorithm is described, a brief explanation of the syntax,
and some examples. Besides using the Web interface, the user may try also a shell
version of each algorithm, or download the sources, or embed the algorithm in her/his
own project. A sample code of the latter option is also available from the Web.

In this paper, for each algorithm mentioned above we define the problem it solves,
give some simple examples, indicate its Web address, and explain the Web interface.
For some of them, we also explain how it can be embedded in users projects.

2 Structure of the Library

We describe the structure of the library in a bit
more detail. It consists of four Java libraries for four
anti-unification algorithms (urau.jar, urauc.jar, hoau.jar
and nau.jar), which have the same structure. There
is one main package which starts with the name
at.jku.risc.stout, followed by a short abbrevia-
tion for the implemented algorithm (e.g. urau, urauc,
hoau or nau). Under this main package there are three
subpackages, namely algo, data and util. The data
package has one subpackage of its own, which is called
data.atom. The main package is irrelevant for using
the library, as it only contains some test cases and the
user interfaces. For instance, the applets which are used
in the web frontend. Nevertheless, the source code might
be interesting as those Java classes serve as reference implementations of the library.

As the name suggests, the package algo contains the algorithmic part of the library.
There is a Java class named AntiUnify which serves as entry point of the respec-
tive anti-unification algorithm. The data package contains some Java classes which
are needed to build the term structure. Furthermore, it includes the equation system
which consists of some term pairs, and it offers a default implementation of an input
parser, named InputParser. The Java class EquationSystem is implemented in
a generic way, such that it can be used for different types of equation systems. In the
util package there are some utility classes like DataStructureFactory which
is used by the library to instantiate structures (e.g., lists, queues, maps, sets). The user of

http://www.risc.jku.at/projects/stout/

A Library of Anti-unification Algorithms 545

the library is free to choose an arbitrary implementation for all of those data structures,
which might have some advantages on the performance of the provided algorithms. The
package data.atom contains the atomic building blocks for constructing the terms.

3 Unranked First-Order Anti-unification

The problem of unranked anti-unification is formulated for terms defined over unranked
alphabet. Hedge variables are used to fill in gaps in generalizations, while term variables
abstract single subterms with different top function symbols. Unranked anti-unification
is finitary, but it turned out that a minimal and complete algorithm may compute up
to 3n generalizations, where n is the size of the input. To deal with this problem, the
notion ofRT-generalization has been introduced in [16].

Definitions. Given pairwise disjoint countable sets of unranked function symbols F
(symbols without fixed arity), term variables VT, and hedge variables VH, terms t and
hedges s̃ are defined by the following grammar:

t ::� x � f�s̃� s ::� t � X s̃ ::� s1, . . . , sn where x � VT, f � F , X � VH, n � 0.

Substitutions map term variables (x, y, . . .) to terms and hedge variables (X,Y, . . .)
to hedges. For instance, �x �	 f�a�, X �	 �g�y, b�, c�, Y �	 ��
 is a substitution,
where �� is the empty hedge and a, b, c, f, g are unranked function symbols. Applying
it to f�x,X, Y � gives f�f�a�, g�y, b�, c�.

The set of positions (typically I, J) of a hedge s̃, denoted pos�s̃�, is a prefix-closed
set of strings of positive integers. For example, pos�a, f�b, g�c��, d� � �1, 2, 2�1, 2�2,
2�2�1, 3
. The symbol g stands at the position 2�2 and c occurs at the position 2�2�1.

Two symbols s1, s2 � F � VH � VC of a hedge are horizontal consecutive if their
positions Is1 �is1 and Is2 �is2 are in the relation Is1 � Is1 and is1 1 � is2 . They are
in a vertical chain if their positions Is1 and Is2 are in the relation Is1 �1 � Is2 and
Is1 �2 � pos�s̃�. For example, in �a, f�g�a, b���, the occurrence of a at position 1 and f at
2 are horizontal consecutive. The occurrence of f at 2 and g at 2�1 are in vertical chain.

Given two hedges s̃ and q̃, an alignment is a sequence of the form f1�I1, J1� . . .
fm�Im, Jm� such that I1 � � � � � Im, J1 � � � � � Jm, and fk is the symbol at position
Ik in s̃ and at position Jk in q̃ for all 1 � k � m. With � we denote the (strict)
lexicographic ordering on positions, e.g., 1�2�1 � 1�2�2 and 1�2�1 � 1�2�1�2.

A rigidity function R is a function that returns a set of alignments for two hedges
with all the positions in the alignments being singleton integers (allowing only top sym-
bols). Typical examples of rigidity functions are those which return longest common
subsequences or longest common substrings of the top symbols of the input hedges.

Given two variable-disjoint hedges s̃, q̃ and the rigidity function R, we say that a
hedge g̃ that generalizes both s̃ and q̃ is theirRT-generalization, if eitherR�s̃, q̃� � �
and g̃ is a hedge variable or a sequence of term variables, or there exists an alignment
f1�i1, j1� � � � fn�in, jn� � R�s̃, q̃�, such that:

1. If the sequence g̃ contains a pair of horizontal consecutive variables, then both of
them are term variables.

546 A. Baumgartner and T. Kutsia

2. If we remove all variables that occur as elements of g̃, we get a sequence of the
form f1�g̃1�, . . . , fn�g̃n�.

3. For every 1 � k � n, there exists a pair of sequences s̃k and q̃k such that s̃�ik �
fk�s̃k�, q̃�jk � fk�q̃k� and g̃k is anRT-generalization of s̃k and q̃k.

The implemented anti-unification algorithm solves the following problem:

Given: Two variable-disjoint hedges s̃ and q̃ and the rigidity functionR.
Find: A complete set ofRT-generalizations for s̃, q̃ andR.

For instance, ��g�a, a�, X, f�g�a�, g�Y ���, �X, g�x, x�, f�g�a�, g�Z���
 is the mini-
mal complete set of RT-generalization of the hedges �g�a, a�, g�b, b�, f�g�a�, g�a���
and �g�a, a�, f�g�a�, g��, whereR computes longest common subsequences.

Web page. The implementation of unranked rigid anti-unification is available from
http://www.risc.jku.at/projects/stout/software/urau.php.

Web interface explanation. The input form of the web page of the first-order rigid
unranked anti-unification algorithm consists of five rows:

In the first row, the anti-unification problem should be given. It consists of some anti-
unification equations, separated by semicolons. Each anti-unification equation consists
of two hedges, with =ˆ= in between. The second row contains a drop-down menu
to chose a rigidity function. Currently, the only two possibilities are longest common
subsequence and longest common substring.

Furthermore, in the third row, one can specify the minimal alignment length l. We
defineRl�s̃, q̃� :� �a : �a� � l, a � R�s̃, q̃�
 as the rigidity function which corresponds
to a given rigidity functionR satisfying the length restriction. The implementation uses
Rl and for anyR holdsR0 � R. By unchecking the check-box from the fourth row, the
user can specify to only compute theRT-generalization for the first alignment which is
returned by the rigidity functionRl (nondeterministically).

In the last row, the output format can be specified. One can choose form a drop-
down box between simple, verbose and progress. The first choice only shows some
basic facts and the computed RT-generalizations. The verbose output format shows
some additional information, like the differences at the input hedges. By choosing the
progress output format, all the debug information will be shown to the user.

http://www.risc.jku.at/projects/stout/software/urau.php

A Library of Anti-unification Algorithms 547

How to use. We assume that there are two data sources in1 and in2 available in form
of Reader instances, each of them containing one of the hedges to be generalized.
Moreover, the variable eqSys is of appropriate type and there is a Boolean variable
iterateAll which corresponds to the option “Iterate all possibilities” of the web
interface. We explain the usage of the library on a code fragment:

1 RigidityFnc rFnc=new RigidityFncSubsequence().setMinLen(3);
2 eqSys = new EquationSystem<AntiUnifyProblem>() {
3 public AntiUnifyProblem newEquation() {
4 return new AntiUnifyProblem();
5 } };
6 new InputParser<AntiUnifyProblem>(eqSys)
7 .parseHedgeEquation(in1, in2);
8 new AntiUnify(rFnc, eqSys, DebugLevel.SILENT) {
9 public void callback(AntiUnifySystem res, Variable var)

{
10 System.out.println(res.getSigma().get(var));
11 }; }.antiUnify(iterateAll, null);

In the first line a certain rigidity function is instantiated and the minimum alignment size
is set to the value 3. There are two rigidity functions available from the library. The one
which is used in the code fragment computes longest common subsequence alignments.
The other one is called RigidityFncSubstring and computes longest common
substring alignments. It is easy to implement a different rigidity function. One simply
has to extend the base class RigidityFnc which is provided by the library.

The lines 2 to 5 show the instantiation of an equation system which is of type
AntiUnifyProblem. It is used in line 6 to instantiate a parser instance.

In line 7, the mentioned input sources are used to create one equation of two hedges,
which is added to the equation system. One could add more equations to the system by
just calling the method parseHedgeEquation(in3, in4) again.

After specifying the rigidity function and parsing the equation system, the main algo-
rithm AntiUnify is invoked using this data (line 8). There is one additional argument,
which specifies the debug level. For production use we want to silently compute all the
generalizations and process them by a callback function, which is defined in the lines 9
to 11. For debugging, one must also specify a print stream at line 11 instead of null.
The callback function is invoked for each generalization and it provides two arguments
for the implementation. The first one is of type AntiUnifySystem and contains all
the data which has been collected during the run: The substitution getSigma, the store
getStore and some additional information. The second argument is the generaliza-
tion variable. The computed generalization is the value which is associated with this
variable in the substitution. Line 10 prints this generalization.

During the anti-unification process, fresh variables are introduced. They are named
by a sequence number which is put between a prefix and a suffix. The counter for
generating the number sequence is static and can be reset by calling the function Node
Factory.resetCounter. The prefix and the suffix for fresh term variables and
also for fresh hedge variables can be specified by the user. Therefore the class Node
Factory offers four static variables, named PREFIX_FreshTermVar, SUFFIX_
FreshTermVar, PREFIX_FreshHedgeVar and SUFFIX_FreshHedgeVar.

548 A. Baumgartner and T. Kutsia

4 Unranked Second-Order Anti-unification

The language used in section 3 does not permit higher-order variables. This imposes a
natural restriction on solutions: The computed lggs do not reflect similarities between
input hedges, which are located under distinct heads or at different depths. For instance,
f�a, b� and g�h�a, b�� are generalized by a single variable, although both terms con-
tain a and b and a more natural generalization could be, e.g., X̊�a, b�, where X̊ is a
higher-order variable. In applications, it is often desirable to detect these similarities.
Therefore, in [5], an anti-unification algorithm has been developed where second-order
power is gained by using context variables to generalize vertical differences at the input
hedges. Hedge variables are used to generalize horizontal differences.

Definitions. Given pairwise disjoint countable sets of unranked function symbols F
(typically a, b, c, f, g, . . .), hedge variables VH (typically X,Y, . . .), unranked context
variables VC (typically X̊, Y̊ , . . .), and a special symbol � (the hole), terms t, hedges s̃,
and contexts c̃ are defined by the following grammar:

t ::� X � f�s̃� � X̊�s̃� s̃ ::� t1, . . . , tn c̃ ::� s̃1, �, s̃2 � s̃1, f�c̃�, s̃2 � s̃1, X̊�c̃�, s̃2

where X � VH, f � F , X̊ � VC, and n � 0.
A context c̃ can apply to a hedge s̃, denoted by c̃�s̃�, obtaining a hedge by re-

placing the hole in c̃ with s̃. For example, �X̊�X�, f�f���, b���a, X̊�a�� � �X̊�X�,
f�f�a, X̊�a��, b��. Application of a context to a context is defined similarly.

A substitution is a mapping from hedge variables to hedges and from context vari-
ables to contexts. When substituting a context variable X̊ by a context, the context will
be applied to the argument hedge of X̊ . The definition of positions and all the relations
defined on positions, as well as the definition of an alignment are taken from section 3.

We only give an informal definition of admissible alignments. A necessary and suf-
ficient condition for alignments to be admissible, as well as the exact definitions can be
found in [5]. An alignment a of two hedges s̃ and q̃ is called admissible iff there exists
a generalization g̃ of s̃ and q̃ which contains all the corresponding symbols from a.

We call such a g̃ a supporting generalization of s̃ and q̃ with respect to a.
Least general supporting generalizations might not be unique. For instance, for �a, b, a�

and �b, c� with the admissible alignment b�2, 1�, we have two supporting least general
generalizations �X, b,X, Y � and �X, b, Y,X�. Therefore, we are interested in a special
class of supporting generalizations, which we callRC-generalizations.

Given two variable-disjoint hedges s̃, q̃ and their admissible alignment a, a hedge g̃
is called anRC-generalization of s̃ and q̃ with respect to a, if g̃ is a supporting general-
ization of s̃ and q̃ with respect to a such that the following conditions are fulfilled:

1. There exist substitutions σ, ϑ with g̃σ � s̃ and g̃ϑ � q̃ such that all the contexts in
σ and ϑ are singleton contexts.

2. No context variable in g̃ applies to the empty hedge.
3. g̃ doesn’t contain horizontal consecutive hedge variables.
4. g̃ doesn’t contain vertical chains of variables.
5. g̃ doesn’t contain context variables with a hedge variable as the first or the last

argument (i.e., no subterms of the form X̊�X, . . . � and X̊�. . . , X��.

A Library of Anti-unification Algorithms 549

The implemented anti-unification algorithm has O�n2� time complexity and O�n�
space complexity, where n is the size of the input. It solves the following problem:

Given: Two variable-disjoint hedges s̃ and q̃ and their admissible alignment a.
Find: A least generalRC-generalization of s̃ and q̃ with respect to a.

For instance, X̊�a, b� is anRC-generalization of f�g�a, b, c�� and �a, b� with respect to
a�1�1�1, 1�b�1�1�2, 2�, while X̊�a, b,X� and X̊�Y̊ �a, b�� are not.

Web page. The implementation of the algorithm is available from
http://www.risc.jku.at/projects/stout/software/urauc.php.

Web interface explanation. The input form of the web page of unranked second-
order anti-unification consists of five rows, where the first, the fourth and the last row
are equal to those of the unranked first-order anti-unification web interface.

In the second row, the alignment computation can be chosen. The only two possi-
bilities are longest admissible alignments and the input of an alignment by hand. If the
user selects the computation of longest admissible alignments, then the program au-
tomatically generates the set of all admissible alignments with maximum length, and
the corresponding supporting generalizations are computed. Otherwise, the user has to
specify an alignment in the input box next to the drop-down menu.

In the third row one can specify, whether or not to justify the computedRC-general-
ization. For justification of a generalization g̃, the recorded differences of the input
hedges s̃, q̃ are used to obtain two substitutions σ, ϑ. Then the program tests whether
g̃σ � s̃ and g̃ϑ � q̃ holds. The justification fails if this is not the case.

How to use. The usage of this algorithm is very similar to the one we explained in sec-
tion 3. Instead of a rigidity function there is an alignment computation function. The li-
brary offers two such functions: The first one, called AlignFncLAA, computes longest
admissible alignments. The other one is AlignFncInput and can be used to specify
a certain admissible alignment. The admissibility test for this alignment has to be done
in advance. Therefore the Alignment-class offers a method isAdmissible which
returns true iff an alignment is admissible. Alignment computation functions have
the common base class AlignFnc. This base class can be used to implement other
alignment computation functions.

http://www.risc.jku.at/projects/stout/software/urauc.php

550 A. Baumgartner and T. Kutsia

5 Higher-Order Pattern Anti-unification

The higher-order anti-unification algorithm described in [6] works on simply typed λ-
terms: It takes as input two such terms of the same type, in η-long β-normal form,
and returns their least general pattern generalization. Patterns here mean higher-order
patterns à la Miller [19]. (Note that it is not required the input to be patterns.) Such a
generalization always exists, is unique modulo α-equivalence and variable renaming,
and can be computed in cubic time within linear space with respect to the size of the
input, see [6].

Definitions. Simple types are constructed from basic types δ with the help of the type
constructor 	 by the grammar τ :� δ � τ 	 τ . Variables and constants have an
assigned type. Then λ-terms t are built using the grammar:

t ::� x � c � λx.t � �t1 t2� where x is a typed variable and c is a typed constant.

Terms like �. . . �h t1� . . . tm�, where h is a constant or a variable, are written as h�t1,
. . . , tm�, and terms of the form λx1. � � � .λxn.t as λx1, . . . , xn.t. Substitutions map
variables to terms of the same type, and can be extended to arbitrary terms as usual.
A higher-order pattern (HOP) is a λ-term, in which, when written in η-long β-normal
form, all free variables apply to pairwise distinct bound variables. For instance, if we use
capital letters for free variables, λx.f�X�x�, Y �, f�c, λx.x� and λx, y.X�λz.x�z�, y�
are patterns, while λx.f�X�X�x��, Y �, f�X�c�, c� and λx, y.X�x, x� are not.

Given two variable-disjoint λ-terms t1 and t2, we say that a λ-term t that generalizes
both t1 and t2 is their higher-order pattern generalization, if t is an HOP. The HOP
anti-unification (HOPAU) algorithm solves the following problem:

Given: Higher-order terms t1 and t2 of the same type in η-long β-normal form.
Find: A least general higher-order pattern generalization of t1 and t2.

For instance, if t1 � λx, y.f�h�x, x, y�, h�x, y, y�� and t2 � λx, y.f�g�x, x, y�, g�x, y,
y��, then t � λx, y.f�X�x, y�, Y �x, y�� is a higher-order pattern lgg of t1 and t2.

Web page. The implementation of the HOPAU algorithm is available from
http://www.risc.jku.at/projects/stout/software/hoau.php.

Web interface explanation. The implementation slightly differs from the theoretical
algorithm: In addition to simply-typed terms, it can also take untyped input. It has an
advantage that the user does not necessarily have to supply types, but has a disadvantage
that the terms may not be typeable or normalizable. The input form of the Web interface
to HOPAU algorithm consists of four rows shown below:

http://www.risc.jku.at/projects/stout/software/hoau.php

A Library of Anti-unification Algorithms 551

In the first row, the anti-unification problem should be given. The problems consist
of one or more anti-unification equations, separated by semicolon. Each such equation
consists of two λ-terms, with =ˆ= in between. The backslash \ is used instead of λ.

In the second row, the maximum recursion depth of the β-reduction can be specified.
This is to avoid infinite chain of reductions for terms like �λx.�x x���λx.�x x��.

As in Sect. 4, one can choose to justify the computed lgg in the third row.
In the last row, the output format can be specified. One can choose form a drop-

down box between simple, verbose, progress, and progress-origin. The
first three of them are like those described in Sect. 3. By choosing the output format
progress-origin, all the debug information will be shown to the user, but the
original names of bound variables are used. This is useful for debugging, as all the
bound variables are renamed by the parser, giving them unique names.

5.1 Deciding α-equivalence

The HOPAU algorithm performs a constructive α-equivalence test to see whether dif-
ferent terms can be abstracted by the same variable. It is needed to ensure that the com-
puted generalization is least general. Such a problem arises, e.g., in the course of gener-
alization of the terms t1 � λx, y, z.f�x�y, z�, x�z, y�� and t2 � λx, y, z.f�X�y, λu.u�,
X�z, λv.v��. To see if the same variable can be used in the generalization of the argu-
ments of t1 and t2, we have to check whether there exists a bound variable renaming ρ
such that x�y, z�ρ � x�z, y� and X�y, λu.u�ρ � X�z, λv.v�.

The algorithm that performs such a test is integrated in the HOPAU implementation,
but we provide access to it separately as well, due to the fact that the problem is in-
teresting, may appear in various contexts, and having a tool to solve it is useful. The
algorithm solves the following problem (in linear time and space):

Given: A set of equations of the form t� s where t and s are λ-terms, and two sets
of variables, the domain D and the range R.

Find: A variable renaming substitution ρ : D 	 R, such that tρ is α-equivalent to s
for all equations t� s, if it exists. Otherwise report failure.

The generalization problem for t1 and t2 above creates the set of equations �x�y, z��
x�z, y�, X�y, λu.u� � X�z, λv.v�
, the domain D � �x, y, z
 and the range R �
�x, y, z
. Then the α-equivalence decision algorithm returns the renaming ρ � �x �	 x,
y �	 z, z �	 y
. Afterwards, this renaming can be used to answer the original ques-
tion of generalization of t1 and t2, obtaining the lgg λx, y, z.f�Y �x, y, z�, Y �x, z, y��
where, indeed, the variable Y appears twice.

Web page. The α-equivalence decision algorithm is available from
http://www.risc.jku.at/projects/stout/software/hoequiv.php.

Web interface explanation. The input form of the Web interface to the α-equivalence
algorithm consists of four rows shown below:

http://www.risc.jku.at/projects/stout/software/hoequiv.php

552 A. Baumgartner and T. Kutsia

The first, the third and the fourth row are equivalent, respectively, to the first, the
second and the fourth ones in the HOPAU interface, described above. (The terms of an
equivariance equation are separated by = instead of =ˆ=.) In the second row, the two
sets of variables which specify the domain and the range should be given.

How to use. We explain the usage on a code fragment and assume that there are two
data sources in1 and in2 available in form of Reader instances, each of them con-
tains one of the λ-terms. There is also an integer variable maxReduce which specifies
the maximum recursion depth of β-reduction.

1 Set<Variable> ran = DataStructureFactory.$.newSet();
2 ran.add(new Variable("x", null));
3 ran.add(new Variable("y", null));
4 Map<Variable,Variable> permutation = new PermEquiv(eqSys,

dom, ran).compute(DebugLevel.SILENT, null);
5 System.out.println(permutation);

The lines 1–3 show how range variables used in the mapping are specified. The second
parameter of the Variable-constructor specifies the type of the variable. (null is
used for untyped variables.) To obtain a new set, DataStructureFactory.$ is
used, which is a singleton instance of type DataStructureFactory. The user can
change the behavior by simply assigning another implementation of this type to $. We
assume that a set dom of domain variables is available and the set of equations eqSys
exists (e.g., it can be created in a similar way as in unranked anti-unification above).
In line 4, after specifying the domain and the range and parsing the equation system,
the main algorithm PermEquiv is invoked using this data. It silently computes the
renaming permutation, which is represented as a mapping from variables to variables.

6 Nominal Anti-unification

Nominal techniques have been introduced in [12, 13] to formally represent and study
systems with binding. The nominal anti-unification (NAU) algorithm developed in [7]
takes as input two terms-in-contexts (pairs of a freshness constraint and a nominal term)
and tries to compute a generalization term-in-context. Under the assumption that the set
of atoms permitted in generalizations is finite, there is a unique lgg modulo variable
renaming and α-equivalence. The algorithm has O�n4� time complexity and O�n2�
space complexity, where n is the size of the input.

A Library of Anti-unification Algorithms 553

Definitions. Nominal terms contain variables and atoms. Variables can be instantiated
and atoms can be bound. We have sorts of atoms ν and sorts of data δ as disjoint sets.
Atoms (a, b, . . .) have one of the sorts of atoms. Variables (X,Y, . . .) have a sort of atom
or data. Nominal function symbols (f, g, . . .) have an arity of the form τ1�� � ��τn 	 δ,
where δ is a sort of data and τi are sorts given by the grammar τ ::� ν � δ � �ν�τ .
Abstractions have sorts of the form �ν�τ. A swapping �a b� is a pair of atoms of the
same sort. A permutation π is a sequence of swappings. It can apply to terms and cause
swapping the names of atoms. Nominal terms t are given by the grammar below, where
a.t is abstraction (it binds a) and π�X is called suspension:

t ::� f�t1, . . . , tn� � a � a.t � π�X

Suspensions suspend application of the permutation π to X until X is instantiated.
Substitutions are defined in the standard way, and their application allows atom capture,
for instance, a.X�X �	 a
 � a.a.

A freshness context ∇ is a finite set of pairs of the form a#X stating that the instan-
tiation of X cannot contain free occurrences of a. A term-in-context is a pair �∇, t� of a
freshness context∇ and a term t. A term-in-context �∇, t� is based on a set of atoms A,
if all the atoms which occur in t and ∇ are elements of A. The NAU algorithm solves
the following problem:

Given: Two nominal terms t1 and t2 of the same sort, a freshness context ∇, and a
finite set of atoms A such that �∇, t1� and �∇, t2� are based on A.

Find: A term-in-context �Γ, t� which is also based on A, such that �Γ, t� is a least
general generalization of �∇, t1� and �∇, t2�.

For instance, for t1 � f�b, a�, t2 � f�X, �a b��X�, ∇ � �b#X
, and A � �a, b
, the
NAU algorithm computes the lgg of �∇, t1� and �∇, t2�, which is ��, f�Y, �a b��Y ��.

Web page. The nominal anti-unification algorithm is available from
http://www.risc.jku.at/projects/stout/software/nau.php.

Web interface explanation. The input form of the Web interface to the NAU algorithm
consists of five rows shown below, where the first, the fourth and the fifth row are similar
to the first, third and fifth explained in section 4.

All the anti-unification equations share the same freshness context∇, which can be
specified in the second row. The computed term-in-context is a generalization of �∇, t�
and �∇, s� for every anti-unification equation t =ˆ= s.

http://www.risc.jku.at/projects/stout/software/nau.php

554 A. Baumgartner and T. Kutsia

As all the terms-in-context �∇, t� and �∇, s� obtained by anti-unification equations
t =ˆ= s have to be based on the same set of atoms A, all the atoms which appear in
the anti-unification problem as well as those from∇ are assumed to be elements of A.
In the third row, the user may specify some additional atoms which are in A.

How to use. To explain the library usage on a code example, we again assume the ex-
istence of two Reader instances in1 and in2 which contain the nominal terms to be
generalized. Furthermore, we assume that there is a Reader instance inA for reading
atoms and inN for the freshness context. Both of them are assumed to be comma sep-
arated sets, e.g., inN = {a#X,b#Y,...} and inA = {c,d,...}, where the braces
are optional. The data source inA only specifies extra atoms, which do nor appear in
in1, in2 and inN.

1 final NodeFactory factory = new NodeFactory();
2 eqSys = new EquationSystem<AntiUnifyProblem>() {
3 public AntiUnifyProblem newEquation(NominalTerm t,

NominalTerm s) {
4 return new AntiUnifyProblem(t, s, factory);
5 } };
6 FreshnessCtx nablaIn = new InputParser(factory)
7 .parseEquationAndCtx(in1, in2, inA, inN, eqSys);
8 new AntiUnify(eqSys, nablaIn, DebugLevel.SILENT, factory) {
9 public void callback(AntiUnifySystem res, Variable var)

{
10 System.out.println(res.getNablaGen());
11 System.out.println(res.getSigma().get(var));
12 }; }.antiUnify(false, null);

In contrast to the other libraries, an instance of NodeFactory is needed, which we
create in line 1. The lines 2 to 5 demonstrate the creation of an equation system.

All the input sources are parsed in line 7. The new equation is added to eqSys and
the parsed freshness context is returned. Moreover, the factory instance remembers all
the parsed atoms regardless of the input source they come from. More equations may be
added eqSys by calling the method parseEquation(in1, in2, eqSys) from
InputParser. Atoms and freshness contexts can also be parsed separately.

Line 10 shows that, additionally to the substitution and store, the generated freshness
context is provided by the instance res of the class AntiUnifySystem.

Again, one can specify how fresh variables and fresh atoms are named. In contrast to
the other three libraries, this functionality is implemented by private instance variables
of NodeFactory and appropriate getter and setter methods.

6.1 Deciding Equivariance

The nominal equivariance algorithm checks whether two terms differ from each other
only by a permutation and bound atom renaming, i.e., if they are equivariant. Equiv-
ariance problem arises, for instance, in the course of generalization of the terms-in-
contexts p1 � ��, f�a, b�� and p2 � ��, f�b, c��, where the atoms permitted in the

A Library of Anti-unification Algorithms 555

generalization are a, b, and c, then the term-in-context ��c#X, a#Y
, f�X,Y �� gen-
eralizes p1 and p2, but it is not least general. To compute the latter, we need to reflect
the fact that generalizations of the atoms are related to each other: One can be obtained
from the other by the permutation �b c��c a�. This leads to a least general generalization
��c#X
, f�X, �b c��c a��X��.

The equivariance decision algorithm solves the following problem (in quadratic time
and space):

Given: A set of equations of the form t � s, a freshness context∇, and a finite set
of atoms A such that all �∇, t� and �∇, s� are based on A.

Find: A permutation π of variables from A such that for all equations t � s, π�t is
α-equivalent to s with respect to∇, if such a π exists. Otherwise report failure.

For instance, in the example above, the permutation �b c��c a� was computed by the
equivariance algorithm for �a� b, b� c
, A � �a, b, c
, and∇ � �.

Web page. The equivariance decision algorithm is available from
http://www.risc.jku.at/projects/stout/software/nequiv.php.

Web interface explanation. The input form is nearly the same as the one for NAU:

There are two differences: The row to specify extra atoms is missing, because the
computed permutation must only permute atoms which appear in the problem set and
further on, terms of an equivariance equation are separated by = instead of =ˆ=.

How to use. We assume to have data sources for two nominal terms in1 and in2,
and another one for a freshness context, called inN, similarly to the NAU algorithm.
Moreover, we assume that an equation system eqSys has already been instantiated and
that a NodeFactory instance, called factory, exists. We explain the usage of the
library on the following code fragment:

1 InputParser parser = new InputParser(factory);
2 parser.parseEquation(in1, in2, eqSys);
3 FreshnessCtx nablaIn = parser.parseNabla(inN);
4 Collection<? extends Atom> atomSet = factory
5 .getAllByType(factory.classAtom);
6 Permutation pi = new Equivariance(eqSys, atomSet, nablaIn)
7 .compute(factory, false, DebugLevel.SILENT, null);
8 System.out.println(pi);

http://www.risc.jku.at/projects/stout/software/nequiv.php

556 A. Baumgartner and T. Kutsia

In line 1 the parser instance is created, which afterwards is used to parse the equation
and the freshness context from the input sources. The lines 4 and 5 demonstrate how
one can obtain the collected set of atoms from the NodeFactory instance.

Later in line 6 this set is needed to instantiate a class named Equivariance, which
encapsulates the computation of a permutationpi. The computation returnsnull, if no
permutation exists for the input. The class Permutation contains two mappings from
atoms to atoms (Map<Atom, Atom>): The permutation itself can be obtained by call-
ing getPerm and the inverse permutation, which can be obtained by getInverse.
Furthermore the class Permutation provides some methods to work with permuta-
tions and swappings.

Acknowledgments. This research has been supported by the Austrian Science Fund
(FWF) under the project SToUT (P 24087-N18).

References

[1] Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: ACUOS: Order-sorted modular ACU
generalization (2013), http://safe-tools.dsic.upv.es/acuos/

[2] Alpuente, M., Escobar, S., Meseguer, J., Espert, J.: A modular order-sorted equational gen-
eralization algorithm. Information and Computation 235, 98–136 (2014)

[3] Armengol, E., Plaza, E.: Bottom-up induction of feature terms. Machine Learning 41(3),
259–294 (2000)

[4] Baader, F.: Unification, weak unification, upper bound, lower bound, and generalization
problems. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 86–97. Springer, Heidelberg
(1991)

[5] Baumgartner, A., Kutsia, T.: Unranked second-order anti-unification. In: Kohlenbach, U.
(ed.) WoLLIC 2014. LNCS, vol. 8652, pp. 66–80. Springer, Heidelberg (2014)

[6] Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: A variant of higher-order anti-
unification. In: Van Raamsdonk, F. (ed.) RTA. LIPIcs, vol. 21, pp. 113–127. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

[7] Baumgartner, A., Kutsia, T., Levy, J., Villaret, M.: Nominal anti-unification. In: Kutsia, T.,
Ringeissen, C. (eds.) Proc. 28th International Workshop on Unification, UNIF 2014. RISC
Technical Report Series, vol. (14-06) (2014)

[8] Bulychev, P.E., Kostylev, E.V., Zakharov, V.A.: Anti-unification algorithms and their appli-
cations in program analysis. In: Pnueli, A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009.
LNCS, vol. 5947, pp. 413–423. Springer, Heidelberg (2010)

[9] Burghardt, J.: E-generalization using grammars. Artif. Intell. 165(1), 1–35 (2005)
[10] De Souza Alcantara, T., Ferreira, J., Maurer, F.: Interactive prototyping of tabletop and

surface applications. In: Forbrig, P., Dewan, P., Harrison, M., Luyten, K. (eds.) EICS, pp.
229–238. ACM (2013)

[11] Delcher, A.L., Kasif, S.: Efficient parallel term matching and anti-unification. J. Autom.
Reasoning 9(3), 391–406 (1992)

[12] Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal
Asp. Comput. 13(3-5), 341–363 (2002)

[13] Gabbay, M.J.: A Theory of Inductive Definitions with alpha-Equivalence. PhD thesis,
University of Cambridge, UK (2000)

[14] Huet, G.: Résolution d’équations dans des langages d’ordre 1,2,...,ω. PhD thesis, Université
Paris VII (September 1976)

http://safe-tools.dsic.upv.es/acuos/

A Library of Anti-unification Algorithms 557

[15] Krumnack, U., Schwering, A., Gust, H., Kühnberger, K.-U.: Restricted higher-order anti-
unification for analogy making. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS
(LNAI), vol. 4830, pp. 273–282. Springer, Heidelberg (2007)

[16] Kutsia, T., Levy, J., Villaret, M.: Anti-unification for unranked terms and hedges. J. Autom.
Reasoning 52(2), 155–190 (2014)

[17] Li, H., Thompson, S.: Similar code detection and elimination for Erlang programs. In:
Carro, M., Peña, R. (eds.) PADL 2010. LNCS, vol. 5937, pp. 104–118. Springer, Heidelberg
(2010)

[18] Lu, J., Mylopoulos, J., Harao, M., Hagiya, M.: Higher order generalization and its applica-
tion in program verification. Ann. Math. Artif. Intell. 28(1-4), 107–126 (2000)

[19] Miller, D.: A logic programming language with lambda-abstraction, function variables, and
simple unification. J. Log. Comput. 1(4), 497–536 (1991)

[20] Pfenning, F.: Unification and anti-unification in the calculus of constructions. In: LICS,
pp. 74–85. IEEE Computer Society (1991)

[21] Plotkin, G.D.: A note on inductive generalization. Machine Intel. 5(1), 153–163 (1970)
[22] Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas.

Machine Intel. 5(1), 135–151 (1970)
[23] Schmid, U.: Inductive Synthesis of Functional Programs. LNCS (LNAI), vol. 2654.

Springer, Heidelberg (2003)

The D-FLAT System for Dynamic Programming

on Tree Decompositions

Michael Abseher, Bernhard Bliem, Günther Charwat,
Frederico Dusberger, Markus Hecher, and Stefan Woltran

Institute of Information Systems 184/2
Vienna University of Technology

Favoritenstrasse 9–11, 1040 Vienna, Austria
{abseher,bliem,gcharwat,dusberg,hecher,woltran}@dbai.tuwien.ac.at

Abstract. Complex reasoning problems over large amounts of data pose
a great challenge for computer science. To overcome the obstacle of high
computational complexity, exploiting structure by means of tree decom-
positions has proved to be effective in many cases. However, the imple-
mentation of suitable efficient algorithms is often tedious. D-FLAT is a
software system that combines the logic programming language Answer
Set Programming with problem solving on tree decompositions and can
serve as a rapid prototyping tool for such algorithms. Since we initially
proposed D-FLAT, we have made major changes to the system, improv-
ing its range of applicability and its usability. In this paper, we present
the system resulting from these efforts.

Keywords: Answer Set Programming, tree decompositions, treewidth.

1 Introduction

Complex reasoning problems over large amounts of data arise in many applica-
tion domains for computer science and pose a great challenge to push methods
from Artificial Intelligence toward practical use. For formalizing complex prob-
lems, declarative approaches often lead to readable and maintainable code. A
more and more popular candidate for such an approach is Answer Set Program-
ming (ASP) [11,17], for which highly efficient solvers are available that offer rich
languages for modeling the problems at hand.

In order to overcome performance problems on large problem instances, struc-
tural features need to be exploited. A prominent means for this endeavor is the
concept of tree decompositions (see, e.g., [9]). Many problems can be efficiently
solved with dynamic programming (DP) algorithms on tree decompositions if
the structural parameter “treewidth” is bounded, which means, roughly, that
the graph resembles a tree to a certain extent. With such an approach, the
runtime explosion can be confined to only this parameter instead of input size.
Consequently, if the treewidth is bounded, even huge instances of many complex
problems can efficiently be solved.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 558–572, 2014.
c© Springer International Publishing Switzerland 2014

The D-FLAT System 559

We focus here on a combination of ASP and problem solving via DP on tree
decompositions. For this, we have implemented a free software system called
D-FLAT1 [4], for rapid prototyping of DP algorithms in ASP. Since ASP is
well suited for a lot of problems, it is often also well suited for parts of such
problems, making it an appealing candidate to work on decomposed problem
instances. The key feature of D-FLAT is that the user is only required to write
an encoding of the DP algorithm on a tree decomposition in the ASP language,
and the system takes care of tedious tasks that are not related to the problem.

The initial prototype of D-FLAT [4] stored partial solutions in tables. It be-
came clear, however, that for problems higher in the polynomial hierarchy than
NP a more general data structure is required. We have shown in [5] that using
a tree-shaped data structure instead greatly increases applicability.

In this paper we present the D-FLAT system resulting from the major changes
since its initial presentation in [4]. Our main contributions are:

1. We introduce item trees as the central data structure in D-FLAT algorithms.
2. We show how item trees allow problems to be solved in the style of Alter-

nating Turing Machines while also taking decomposition into account.
3. We present the special predicates used for communication between the sys-

tem and the user’s encoding.
4. Finally, we show how the system interprets the answer sets of the user’s

program for constructing item trees and eventually solving the problem.

This work is structured as follows. In Section 2, we provide background on
Answer Set Programming, tree decompositions and the original prototype of
D-FLAT. In Section 3, we present the current version of D-FLAT and describe its
components in detail. Finally, we give a conclusion and an outlook in Section 4.

An extended version of this paper can be found in the technical report [1].

2 Background

Answer Set Programming Answer Set Programming (ASP) is a declarative lan-
guage where a program Π is a set of rules

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1, . . . , not bn.

The constituents of a rule r ∈ Π are h(r) = {a1, . . . , ak}, b+(r) = {b1, . . . , bm}
and b−(r) = {bm+1, . . . , bn}. We call r a fact if b+(r) = b−(r) = ∅, and we
omit the ← symbol in this case. Intuitively, a rule r states that if an answer
set contains all of b+(r) and none of b−(r), then it contains some element of
h(r). A set of atoms I satisfies a rule r if I ∩ h(r) �= ∅ or b−(r) ∩ I �= ∅ or
b+(r) \ I �= ∅. I is a model of a set of rules if it satisfies each rule. I is an
answer set of a program Π if it is a subset-minimal model of the program
ΠI = {h(r)← b+(r) | r ∈ Π, b−(r) ∩ I = ∅} [18].
1 http://dbai.tuwien.ac.at/research/project/dflat/ (including download link)

http://dbai.tuwien.ac.at/research/project/dflat/

560 M. Abseher et al.

ASP programs can be viewed as succinctly representing problem solving spec-
ifications following the Guess & Check principle. A “guess” can, for example, be
performed using disjunctive rules which non-deterministically open up the search
space. Constraints (i.e., rules r with h(r) = ∅), on the other hand, amount to a
“check” by imposing restrictions that solutions must obey.

In this paper, we use the language of the grounder Gringo [15,16] (version 4)
where programs may contain variables that are instantiated by ground terms
(elements of the Herbrand universe, i.e., constants and compound terms con-
taining function symbols) before a solver computes answer sets according to the
propositional semantics stated above.

Example 1. The following program solves the 3-Colorability problem for
graphs that are given as facts using the predicates vertex and edge.

color(red;grn;blu).

1 { map(X,C) : color(C) } 1 ← vertex(X).

← edge(X,Y), map(X,C;Y,C).

Informally, the first rule is shorthand for the three facts color(red), color(grn)
and color(blu). The second rule states that any vertex from the input graph
shall be mapped to one color. The colon controls the instantiation of the variable
C such that it is only instantiated with arguments of the predicate color. The
third rule checks that adjacent vertices never receive the same color. In this rule,
map(X,C;Y,C) stands for map(X,C), map(Y,C).

Tree Decompositions Tree decompositions and treewidth, originally defined in
[21], are well-known tools for tackling computationally hard problems. Infor-
mally, treewidth is a measure of the cyclicity of a graph, and many NP-hard prob-
lems become tractable if the treewidth is bounded. There are several overviews
of this topic, such as [8,6,3,20]. The intuition behind tree decompositions is ob-
taining a tree from a (potentially cyclic) graph by subsuming multiple vertices
under one node and thereby isolating the parts responsible for the cyclicity. The
definition of tree decompositions can also be extended to hypergraphs, but in
this paper we will only consider graphs for the sake of presentation.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T, χ)
where T = (N,F) is a (rooted) tree and χ : N → 2V assigns to each node a set
of vertices (called the node’s bag), such that the following conditions are met:

1. For every vertex v ∈ V , there exists a node n ∈ N such that v ∈ χ(n).
2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ χ(n).
3. For every v ∈ V , the subtree of T induced by {n ∈ N | v ∈ χ(n)} is connected.

We call maxn∈N |χ(n)| − 1 the width of the decomposition. The treewidth of a
graph is the minimum width over all its tree decompositions.

Figure 1 shows a graph together with a tree decomposition of it that has
width 2. This decomposition is optimal because the graph contains a cycle and
thus its treewidth is at least 2. (A graph is a tree iff it has treewidth 1.)

The D-FLAT System 561

Constructing an optimal tree decomposition is intractable [2]. However, when
considering treewidth as a parameter, the problem is fixed-parameter tractable
(FPT) [14], i.e., solvable in time O(f(w) ·nc), where c is a constant, n is the size
of the input, w is its treewidth and f(w) depends only on w [7]. Moreover, there
are efficient heuristics that produce good tree decompositions [10,13,19].

Tree decompositions are prominently used for solving problems with dynamic
programming algorithms. These algorithms generally start at the leaf nodes and
traverse the tree decomposition to the root. At each node, partial solutions for the
subgraph induced by the vertices encountered so far are computed and stored in a
data structure corresponding to that tree decomposition node. Typically, the size
of each such data structure only depends on the width of the tree decomposition,
and the number of tree decomposition nodes is linear in the size of the input
graph. Thus, when the width is bounded by a constant, the search space for
each subproblem remains constant as well, and the number of subproblems only
grows by a linear factor for larger instances.

Example 2. To solve the 3-Colorability problem with a bottom-up traversal
of the tree decomposition in Figure 1, we can first compute all proper 3-colorings
of the subgraphs induced by {a, b, c} and {c, e}, respectively. In the node with
bag {b, c, d} we proceed similarly but now only look for colorings (i) which are
consistent combinations of some coloring from each child node, and (ii) where
the “new” vertex d is colored consistently with respect to its neighbors (b and c).
Here we can disregard the colors of a and e because condition 3 from Definition 1
guarantees that these vertices will never appear again in the bottom-up traversal.

The D-FLAT System D-FLAT [1,4] is a framework for solving computational
problems by dynamic programming on a tree decomposition of the input. It
proceeds as follows.

1. D-FLAT parses a representation of the problem instance and automatically
constructs a tree decomposition of it using heuristic methods which are pro-
posed in [13]. For details, we refer to [1].

2. It provides a data structure suitable for storing partial solutions for many
problems. The programmer only needs to specify (using ASP) how to pop-
ulate the data structure associated with a tree decomposition node.

3. D-FLAT traverses the tree decomposition in post-order and calls an ASP
system at each tree decomposition node for computing the data structure
corresponding to that node by means of the user-specified program.

4. The framework automatically combines the partial solutions and prints all
complete solutions. Alternatively, it is also possible to solve decision, count-
ing and optimization problems.

In our presentation of the initial D-FLAT prototype [4] we were able to suc-
cessfully apply it to several problems, and we showed in [5] which modifications
could further extend its applicability. In the current paper we present the new
version of D-FLAT that results from these extensions.

562 M. Abseher et al.

3 The Extended D-FLAT System

This section gives an overview of D-FLAT with the emphasis on the extensions
made since [4] for solving any problem expressible in monadic second-order logic
in FPT time [5]. This includes many problems in PSPACE.

3.1 Item Trees

D-FLAT equips each tree decomposition node with an item tree. This is the data
structure that shall contain information about (candidates for) partial solutions.
At each node during D-FLAT’s bottom-up traversal of the tree decomposition,
the problem-specific algorithm can store data in the item tree of that node.

Each node in an item tree contains an item set. The elements of this set,
called items, are arbitrary ground ASP terms. An item tree node also contains
additional information about the item set as well as data required for putting
together complete solutions, which will be described later in this section.

Item trees are similar to computation trees of Alternating Turing Machines
(ATMs) [12]. Like in ATMs, a branch can be seen as a computation sequence,
and branching amounts to non-deterministic guesses. We will repeatedly come
back to the ATM analogy in the course of this section.

Usually we want to restrict the information within an item tree to information
about the current decomposition node’s bag elements. The reason is that when
the maximum size of an item tree only depends on the bag size, and if the
decomposition width is bounded by a constant, the size of each item tree is also
bounded. This allows us to achieve FPT algorithms.

Each branch in an item tree may be associated with a cost value, which allows
for optimization problems to be solved. If costs are given, D-FLAT automatically
only reports optimal solutions. Details on this are found in [1].

Example 3. Figure 1 shows a graph, one of its tree decompositions and, for
each decomposition node, the corresponding item tree that could result from
an algorithm for 3-Colorability. Each item tree node at depth 1 encodes a
coloring of the vertices in the respective bag. The meaning of the symbols ∨,

and ⊥ will be explained later in this section.

Extension Pointers. For solving a complete problem instance, it is usually
necessary to combine information from different item trees. For example, in
order to find out if a proper coloring of a graph exists, we not only have to check
if a proper coloring of each subgraph induced by a bag exists but also if, for each
bag, we can pick a local coloring in such a way that each vertex is never colored
differently by two chosen local colorings.

For this reason each item tree node has a (non-empty) set of extension pointer
tuples. The elements of such a tuple are called extension pointers and reference
item tree nodes from children of the respective decomposition node. Roughly, an
extension pointer specifies that the information in the source and target nodes
can reasonably be combined.

The D-FLAT System 563

a b

c d

e

(a) A 3-col-
orable graph

b, c, d

a, b, c c, e

∨

map(b,red)
map(c,red)
map(d,red)

⊥

...

map(b,grn)
map(c,blu)
map(d,red)

�

...

map(b,blu)
map(c,blu)
map(d,blu)

⊥

∨

map(a,red)
map(b,red)
map(c,red)

⊥

...

map(a,red)
map(b,grn)
map(c,blu)

...

map(a,blu)
map(b,blu)
map(c,blu)

⊥

∨

map(c,red)
map(e,red) ⊥

...

map(c,blu)
map(e,red)

...

map(c,blu)
map(e,blu) ⊥

(b) A tree decomposition of the instance in (a) with item trees
for 3-Colorability (not showing extension pointers)

Fig. 1. Item trees for a decomposition of a 3-Colorability instance

Example 4. Consider Figure 1b again. In the following examples, let IS denote
the item tree of the node whose bag is S. In I{a,b,c} and I{c,e}, all nodes have
the same set of extension pointer tuples: the set consisting of the empty tuple, as
those decomposition nodes have no children. The set of extension pointer tuples
at the root of I{b,c,d} consists of a single binary tuple – one element references
the root of I{a,b,c}, the other references the root of I{c,e}. For a node ν at depth 1
of I{b,c,d}, the set of extension pointer tuples consists of all tuples (ν1, ν2) such
that ν1 and ν2 are nodes at depth 1 of I{a,b,c} and I{c,e}, respectively. Moreover,
if an element of the current bag {b, c, d} is assigned a color in ν1 or ν2, then ν
colors it in the same way.

Item Tree Node Types. Like states of ATMs, item tree nodes in D-FLAT
can have one of the four types: “or”, “and”, “accept” or “reject”. Unlike ATMs,
however, the mapping in D-FLAT is partial, i.e., a node’s type may be undefined.
The problem-specific algorithm determines which item tree node is mapped to
which type. The following conditions must be fulfilled for an item tree I.

– If a non-leaf node of I has been mapped to a type, it is either “or” or “and”.

– If a leaf of I has been mapped to a type, it is either “accept” or “reject”.

– If a node of I extends a node with defined type, it must be mapped to the
same type.

564 M. Abseher et al.

When D-FLAT has finished processing all answer sets and has constructed
the item tree for the current tree decomposition node, it propagates information
about the acceptance status of nodes upward in this item tree depending on the
node types. These types also play a role when solving optimization problems –
roughly, when something is an “or” node, we would like to find a child with
minimum cost, and if something is an “and” node, we would like to find a child
with maximum cost. This is described in Section 3.3.

Example 5. The item trees in Figure 1b all have roots of type “or”, denoted by
the symbol ∨. This is because an ATM for deciding graph corolability starts
in an “or” state, then guesses a coloring and accepts if this coloring is proper.
Therefore, we shall derive the type “reject” in our decomposition-based algo-
rithm whenever we determine that a guessed coloring is not proper, and we
derive “accept” once we are sure that a coloring is proper. In I{a,b,c} and I{c,e},
for instance, we have marked all leaves representing an improper coloring with
⊥. The types of the other leaves are left undefined, as guesses on vertices that
only appear later could still lead to an improper coloring. At the root of the
tree decomposition however, we mark all item tree leaves having a yet undefined
type with
 because all vertices have been encountered.

3.2 D-FLAT’s Interface for ASP

D-FLAT invokes an ASP solver at each node during a bottom-up traversal of the
tree decomposition. The user-defined, problem-specific encoding is augmented
with input facts describing the current bag as well as the bags and item trees of
child nodes. Additionally, the original problem instance is supplied as input. The
answer sets of this ASP call specify the item tree that D-FLAT shall construct
for the current decomposition node. D-FLAT provides facts about the tree de-
composition and child item trees according to Table 1. We have omitted some
less frequently used predicates for clarity. A complete list is given in [1].

Each answer set corresponds to a branch in the new item tree. The predicates
for specifying this branch are described in Table 2. One should keep in mind,
however, that D-FLAT may merge subtrees as described in Section 3.3. There-
fore, after merging, one branch in the item tree may comprise information from
multiple answer sets.

Example 6. A possible encoding for the 3-Colorability problem is shown in
Listing 1.1. We use colors to highlight input and output predicates. Note that it
would be more convenient (and faster) to encode this problem using the simpli-
fied ASP interface for problems in NP described in [1], which we omit from this
paper for space reasons.

Line 1 specifies that each answer set declares a branch of length 1, whose
root node has the type “or”. Line 2 guesses a color for each current vertex.
The “reject” node type is derived in line 3 if this guessed coloring is improper.
Lines 4 and 5 guess a branch for each child item tree. Due to line 6, the guessed
combination of predecessor branches only leads to an answer set if it does not

The D-FLAT System 565

Table 1. The most commonly used input predicates describing the tree decomposition
and item trees of child nodes in the decomposition

Input predicate Meaning

final The current tree decomposition node is the root.

current(V) V is an element of the current bag.

introduced(V) V is a current vertex but was in no child node’s bag.

removed(V) V was in a child node’s bag but is not in the current one.

root(S) S is the root of an item tree from a child of the current node.

sub(R,S) R is an item tree node with child S.

childItem(S, I) The item set of item tree node S contains I .

childCost(S,C) C is the cost value corresponding to the item tree leaf S.

childOr(S) The type of the item tree node S is “or”.

childAnd(S) The type of the item tree node S is “and”.

childAccept(S) The type of the item tree leaf S is “accept”.

childReject(S) The type of the item tree leaf S is “reject”.

Table 2. The most commonly used output predicates for constructing the item tree
of the current decomposition node

Output predicate Meaning

item(L, I) The item set of the node at level L of the current branch shall
contain the item I .

extend(L, S) The node at level L of the current branch shall extend the child
item tree node S.

cost(C) The leaf of the current branch shall have a cost value of C.

length(L) The current branch shall have length L.

or(L) The node at level L of the current branch shall have type “or”.

and(L) The node at level L of the current branch shall have type
“and”.

accept The leaf of the current branch shall have type “accept”.

reject The leaf of the current branch shall have type “reject”.

1 length (1). or(0).

2 1 { item (1,map(X,red;X,grn;X,blu)) } 1 ← current (X).

3 reject ← edge(X,Y), item (1,map(X,C;Y,C)).

4 extend(0,S) ← root (S).

5 1 { extend (1,S) : sub(R,S) } 1 ← root (R).

6 ← item (1,map(X,C1)), childItem (S,map(X,C2)),

extend(_,S), C1 �= C2.

7 reject ← childReject (S), extend(_,S).

8 accept ← final , not reject.

Listing 1.1. D-FLAT encoding for 3-Colorability

566 M. Abseher et al.

1 length (2). or(0). and (1).

2 1 { item (L,map(X,red;X,grn;X,blu)) } 1 ← current (X),
L = 1..2.

3 ← edge(X,Y), item (L,map(X,C;Y,C)).

4 ← item (2,map(V,red)), not item (1,map(V,red)).

5 extend (0,S) ← root (S).

6 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R),
L = 0..1.

7 ← item (L,map(X,C1)), childItem (S,map(X,C2)),

extend(L,S), C1 �= C2.

8 item (2,fail) ← item (1,map(V,red)),
not item (2,map(V,red)).

9 item (2,fail) ← extend(2,S), childItem (S,fail).

10 reject ← final , item (2,fail).

11 accept ← final , not reject.

Listing 1.2. D-FLAT for a subset-minimization variant of 3-Colorability

contradict the coloring guessed in line 2. This makes sure that only branches are
joined that agree on all common vertices, as each vertex occurring in two child
nodes must also appear in the current node due to the connectedness condition
of tree decompositions. If a guessed predecessor branch has led to a conflict
(denoted by a “reject” node type), this information is retained in line 7. Finally,
line 8 derives the “accept” node type if no conflict has occurred.

Example 7. For a more involved example, consider a variant of the 3-Color-
ability problem: Given an input graph, we now want to compute only those
proper 3-colorings whose red vertices are minimal (w.r.t. set inclusion) among all
proper 3-colorings. A D-FLAT encoding for this problem is shown in Listing 1.2.

Item trees now have height 2, again with the root being an “or” node, but its
children now being “and” nodes (line 1). Each item tree node at depth 1 encodes
a proper coloring of the current bag elements (lines 2 and 3). Let R denote the
set of vertices assigned “red” by this coloring. The children of this item set node
encode all proper colorings whose red vertices R′ are a subset of R (lines 2–4).
If R′ ⊂ R, the item “fail” is put into the respective item set (lines 8 and 9). In
case a coloring at depth 2 containing “fail” survives until the final decomposition
node, the respective leaf of the item tree is set to the type “reject” (line 10).
As this leaf witnesses, its parent encodes a proper coloring whose red vertices
are not minimal. Since this parent is an “and” node, it becomes rejecting, too.
What remains at depth 1 after pruning rejecting nodes are exactly those nodes
that can be extended (via the extension pointers) to proper 3-colorings whose
red vertices are minimal in the sense we required.

The D-FLAT System 567

3.3 D-FLAT’s Handling of Item Trees

Every time the ASP solver reports an answer set for the current tree decomposi-
tion node, D-FLAT creates a new branch in the current item tree, which results
in a so-called uncompressed item tree. Subsequently D-FLAT prunes subtrees of
that tree that can never be part of a solution in order to avoid unnecessary com-
putations in future decomposition nodes. For optimization problems, D-FLAT
then propagates information about the optimization values upward in the un-
compressed item tree. The item tree so far is called uncompressed because it
may contain redundancies that are eliminated in the final step.

Constructing an Uncompressed Item Tree from the Answer Sets. In
an answer set, all atoms using extend, item, or and and with the same depth
argument, as well as accept and reject, constitute what we call a node specifica-
tion. To determine where branches from different answer sets diverge, D-FLAT
uses the following recursive condition: Two node specifications coincide (i.e., de-
scribe the same item tree node) iff (1) they are at the same depth in the item
tree; (2) their item sets, extension pointers and node types are equal; and (3)
both are at depth 0, or their parent node specifications coincide. In this way, an
(uncompressed) item tree is obtained from the answer sets.

Propagation of Acceptance Statuses and Pruning of Item Trees. In
Section 3.1 we have defined the different node types that an item tree node
can have. When D-FLAT has processed all answer sets and constructed the
uncompressed item tree, these types come into play. That is to say, D-FLAT
then prunes subtrees from the uncompressed item tree.

First of all, if the current tree decomposition node is the root, D-FLAT prunes
from the uncompressed item tree any subtree rooted at a node whose type is
still undefined. Then, regardless of whether the current decomposition node is
the root, D-FLAT prunes subtrees of the uncompressed item tree depending on
the acceptance status of its nodes. The acceptance status of a node can either
be “undefined”, “accepting” or “rejecting”, which we define now.

A node in an item tree is accepting if (a) its type is “accept”, (b) its type is
“or” and it has an accepting child, or (c) its type is “and” and all children are
accepting. A node is rejecting if (a) its type is “reject”, (b) its type is “or” and
all children are rejecting, or (c) its type is “and” and it has a rejecting child. The
acceptance status of nodes that are neither accepting nor rejecting is undefined.

After having computed the acceptance status of all nodes in the current item
tree, D-FLAT prunes all subtrees rooted at a rejecting node, as we can be sure
that these nodes will never be part of a solution.

Note that in case the current decomposition node is the root, there are no
nodes with undefined acceptance status because D-FLAT has pruned all subtrees
rooted at nodes with undefined type. Therefore, in this case, the remaining tree
consists only of accepting nodes. For decision problems, we can thus conclude
that the problem instance is positive iff the remaining tree is non-empty. For

568 M. Abseher et al.

enumeration problems, we can follow the extension pointers down to the leaves
of the tree decomposition in order to obtain complete solutions by combining
all item sets along the way. This is described in more detail in Section 3.4.
Recursively extending all item sets in this way would yield a (generally very big)
item tree that usually corresponds to the accepting part of a computation tree
that an ATM would have when solving the complete problem instance. (But of
course D-FLAT does not materialize this entire tree in memory.)

Example 8. Consider again Figure 1b. Because I{b,c,d} is the final item tree
in the decomposition traversal, D-FLAT would subsequently remove all nodes
with undefined types (but there are none in this case). Then it would prune
all rejecting nodes and conclude that the root of I{b,c,d} is accepting because
it has an accepting child. Therefore the problem instance is positive. At the
decomposition root, we are then left with an item tree having only six leaves,
each encoding a proper coloring of the vertices b, c and d, and storing extension
pointers that let us extend the respective coloring of these vertices to proper
colorings of all the other vertices, too.

Propagation of Optimization Values in Item Trees. For optimization
problems, after an uncompressed item tree has been computed, an additional
step is done. Each leaf in the item tree stores an optimization value (or “cost”)
that has been specified by the user’s program. D-FLAT now propagates these
optimization values from the leaves toward the root of the current uncompressed
item tree such that the optimization value of a leaf node is its cost, and the
optimization value of an “or” or “and” node is the minimum or maximum,
respectively, among the optimization values of its children.

Compressing the Item Tree. The uncompressed item tree obtained in the
previous step may contain redundancies that must be eliminated in order to
avoid an explosion of memory and runtime. The following situations can arise:

– There are two isomorphic sibling subtrees where all corresponding nodes
have equal item sets, node types and (when solving an optimization problem)
optimization values. In this case, D-FLAT merges these subtrees into one and
unifies their sets of extension pointers.

– An optimization problem is being solved and there are two isomorphic sibling
subtrees where all corresponding nodes have equal item sets and node types,
but the root of one of these subtrees is “better” than the root of the other. In
this context, a node n1 is “better” than one of its siblings, n2, if the parent
of n1 and n2 either has type “or” and the cost of n1 is less than that of n2,
or their parent has type “and” and the cost of n1 is greater than that of n2.

In this case, D-FLAT retains only the subtree rooted at the “better” node.

For problems in NP, this redundancy elimination can be done on the fly [1].

The D-FLAT System 569

3.4 Materializing Complete Solutions

After all item trees have been computed, it remains to materialize complete
solutions. We first describe how D-FLAT does this for enumeration problems.

In the item tree at the root of the decomposition there are only accepting
nodes left after the pruning described in Section 3.3. Starting with the root of
this item tree, D-FLAT extends each of the nodes recursively as follows.

To obtain a complete extension of an item tree rooted at a node n, we recur-
sively extend the item set of n by unifying it with all items of nodes reachable
via extension pointers. For each child n′ of n we also perform this procedure
and add each possible extension of n′ to the children to the current extension of
n. When extending n′ in this way, however, D-FLAT takes care to only pick an
extension pointer tuple of n′ if every node that is being pointed to in this tuple
is a child of a node that is used for the current extension of n.

For optimization problems, D-FLAT only materializes optimal solutions. That
is, if n is an “or” node with optimization value c, D-FLAT only extends those
children of n that actually have the value c. Due to D-FLAT’s propagation of
optimization values (cf. Section 3.3), the optimization value of an “or” node is
the minimum of the values of its children. For “and” nodes this is symmetric.

D-FLAT allows the depth until which the final item tree is to be extended
to be limited by the user. This is useful if, e.g., only existence of a solution
shall be determined. In such a case, we could limit the materialization depth
to 0. This would lead to only the root of the final item tree being extended. If
D-FLAT yields an extension, a solution in fact exists. This is because the final
item tree would have no root in case no solutions existed (cf. Section 3.3). Lim-
iting the materialization depth can thus save us from potentially materializing
exponentially many solutions for decision problems.

Moreover, limiting the materialization depth is also helpful for counting prob-
lems. If the user limits this depth to d and in the final item tree there is a node
at depth d having children, D-FLAT prints for each extension of this node how
many extended children would have been materialized. For the most common
case, where the materialization depth is limited to 0, D-FLAT is able to calculate
the number of possible extensions while doing the main bottom-up traversal of
the decomposition for computing the item trees. Hence, for classical counting
problems, D-FLAT offers quite efficient counting.

3.5 Debugging Support

Since it can be hard to find the cause of erroneous results of D-FLAT encodings,
we have developed a debugging tool that visualizes the generated tree decom-
position and the computed item trees. It allows to inspect how certain solutions
came to be and thus greatly simplifies debugging. We refer to [1] for details.

3.6 Experiments

In [4] we have experimentally evaluated the prototype of D-FLAT. In the current
paper, we additionally consider the Maximum Independent Set problem with

570 M. Abseher et al.

● ●
● ●

●
●

●
● ●

●
● ● ● ●

●

●
● ●

●
●

●

Number of vertices

40 44 48 52 56 60 64 68 72 76 80

0.01 s
0.02 s
0.05 s
0.10 s
0.20 s
0.50 s
1.00 s
2.00 s
5.00 s

10.00 s
20.00 s
50.00 s

100.00 s
200.00 s
500.00 s

A
ve

ra
ge

 r
un

tim
e

(lo
g

sc
al

e) ● D−FLAT (tables)
D−FLAT
Clingo (opt)
Clingo (optN)

Fig. 2. Comparison of runtimes on the Maximum Independent Set problem

the new version of D-FLAT. For each number of vertices in {40, 42, . . . , 80}, we
have generated 20 random instances that admit a tree decomposition of width
12. On each instance we have executed D-FLAT 1.0.0 (with an encoding using
the simplified ASP interface and the default implementation for join nodes of
weakly normalized decompositions [1]) as well as the ASP system Clingo 4.3.0.
The experiments were run on a system with 48 GB of RAM and 2 Intel Xeon
64-bit CPUs (each with 4 cores) at 2.33 GHz using only a single core.

Figure 2 shows that the runtime of Clingo 4.3.0 increases exponentially, both
for finding just a single optimal solution (denoted by “opt” in the figure) as well
as counting the number of optimal solutions (“optN”). Note that especially for
“optN” the curve seems to flatten toward the right side of the figure, but this is
because timeouts (> 10 minutes) were counted as 10 minutes. The runtime of
D-FLAT increases linearly and it outperforms Clingo on the larger instances.

4 Conclusion

In this paper we have presented the D-FLAT system for solving problems by
means of dynamic programming on a tree decomposition of the instance. The
key feature is that D-FLAT allows the user to specify the problem-specific com-
putations in the logic programming language of Answer Set Programming.

We have discussed the most significant changes made since the initial publi-
cation of D-FLAT in [4]. In particular, these extensions allow D-FLAT to solve
any problem expressible in monadic second-order logic [5]. This significantly ex-
tends its range of applicability. For instance, D-FLAT can thus solve Quantified
Boolean Formulas or compute subset-minimal models of propositional theories.
Furthermore, we provide a debugging tool that facilitates development of algo-
rithms for D-FLAT.

Future work. We will analyze which features of tree decompositions have the
most influence on the runtime of D-FLAT. Moreover, we will investigate for
which fragments of ASP we can automatically generate a dynamic programming
algorithm for tree decompositions from a “traditional” encoding.

The D-FLAT System 571

Acknowledgments. This work is supported by the Austrian Science Fund
(FWF) projects P25518, P25607 and Y698, and by the Vienna University of
Technology special fund “Innovative Projekte” (9006.09/008).

References

1. Abseher, M., Bliem, B., Charwat, G., Dusberger, F., Hecher, M., Woltran, S.:
D-FLAT: Progress report. Technical Report DBAI-TR-2014-86, Vienna University
of Technology (2014)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

3. Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., Thorstensen, E.: Structural
decomposition methods and what they are good for. In: Proc. STACS. LIPIcs,
vol. 9, pp. 12–28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)

4. Bliem, B., Morak, M., Woltran, S.: D-FLAT: Declarative problem solving using
tree decompositions and answer-set programming. TPLP 12(4-5), 445–464 (2012)

5. Bliem, B., Pichler, R., Woltran, S.: Declarative dynamic programming as an al-
ternative realization of courcelle’s theorem. In: Gutin, G., Szeider, S. (eds.) IPEC
2013. LNCS, vol. 8246, pp. 28–40. Springer, Heidelberg (2013)

6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1-2), 1–22
(1993)

7. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

8. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

9. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of
bounded treewidth. Comput. J. 51(3), 255–269 (2008)

10. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations I. Upper bounds.
Inf. Comput. 208(3), 259–275 (2010)

11. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

12. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

13. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B., Musliu, N., Samer, M.:
Heuristic methods for hypertree decomposition. In: Gelbukh, A., Morales, E.F.
(eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)

14. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer (1999)

15. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo. Preliminary Draft (2010),
http://potassco.sourceforge.net

16. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers (2012)

17. Gelfond, M., Leone, N.: Logic programming and knowledge representation – the
A-Prolog perspective. Artif. Intell. 138(1-2), 3–38 (2002)

18. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

http://potassco.sourceforge.net

572 M. Abseher et al.

19. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press (2006)

21. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

ACUOS: A System for Modular ACU

Generalization with Subtyping and Inheritance�

Maŕıa Alpuente1, Santiago Escobar1, Javier Espert1, and José Meseguer2

1 DSIC-ELP, Universitat Politècnica de València, Spain
{alpuente,sescobar,jespert}@dsic.upv.es

2 University of Illinois at Urbana-Champaign, USA
meseguer@illinois.edu

Abstract. Computing generalizers is relevant in a wide spectrum of au-
tomated reasoning areas where analogical reasoning and inductive infer-
ence are needed. The ACUOS system computes a complete and minimal
set of semantic generalizers (also called “anti-unifiers”) of two struc-
tures in a typed language modulo a set of equational axioms. By sup-
porting types and any (modular) combination of associativity (A), com-
mutativity (C), and unity (U) algebraic axioms for function symbols,
ACUOS allows reasoning about typed data structures, e.g. lists, trees,
and (multi-)sets, and typical hierarchical/structural relations such as is a
and part of. This paper discusses the modular ACU generalization tool
ACUOS and illustrates its use in a classical artificial intelligence problem.

1 Introduction

Generalization is the dual of unification [14]. Roughly speaking, in this work
the generalization problem for two expressions t1 and t2 means finding their
least general generalization (lgg), i.e., the least general expression t such that
both t1 and t2 are instances of t under appropriate substitutions. For instance,
the expression father(X,Y) is a generalizer of both father(john,sam) and
father(tom,sam), but their least general generalizer, also known as most spe-
cific generalizer (msg) and least common anti–instance (lcai), is father(X,sam).
Applications of generalization arise in many artificial intelligence areas, including
case-based reasoning, analogy making, web and data mining, ontology learning,
machine learning, theorem proving, and inductive logic programming, among
others [5,12,13,16].

While ordinary, syntactic generalization is useful for some applications, it has
two important limitations. First, it cannot generalize common data structures
such as records, lists, trees, or (multi-)sets, which satisfy specific premises such
as the order among the elements in a set being irrelevant. For instance, let us

� This work has been partially supported by the EU (FEDER) and the Spanish
MINECO under grants TIN 2010-21062-C02-02 and TIN 2013-45732-C4-1-P, by
Generalitat Valenciana PROMETEO2011/052, and by NSF Grant CNS 13-10109.
J. Espert has also been supported by the Spanish FPU grant FPU12/06223.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 573–581, 2014.
c© Springer International Publishing Switzerland 2014

574 M. Alpuente et al.

introduce the constants john, sam, peter, tom, mary, chris, and joan, and
consider the predicate symbols twins, ancestors, spouses, and children that
establish several relations among (a selection of) such constants. Since twins is
a symmetric relation, we would like the pair “john and sam” to be in the relation
twins if the pair “sam and john” is in the relation twins. For the time being,
let us introduce a new tuple constructor symbol (;) to satisfy commutativity
and an overloaded use of twins as a unary symbol such that the expressions
twins((john;sam)) and twins((sam;john)) are equivalent modulo the com-
mutativity of the (;) operator. Then, we can generalize twins((john;sam))

and twins((sam;tom)) as twins((X;sam)), whereas without equational at-
tributes the least general (or most specific) generalizer of twins(john,sam) and
twins(sam,tom) is twins(X,Y).

Similarly, we can express the relation given by the ancestors of a person by
means of a list using the list concatenation operator (.). We assume that a
person’s name is automatically coerced into a singleton list. Due to the as-
sociativity of list concatenation, i.e.,(x.y).z = x.(y.z), we can use the flat-
tened list (john.sam.mary.peter) as a very compact and convenient repre-
sentation for the congruence class modulo associativity whose members are
the different parenthesized list expressions, e.g., ((john.sam).mary).peter,
john.(sam.mary).peter, john.(sam.(mary.peter)), etc. Then, for the ex-
pressions ancestors(chris,(john.sam.mary.peter)) and ancestors(joan,

(tom.mary.john)), the least general generalizer is ancestors(X,(Y.mary.Z)),
which reveals that mary is the only common ancestor of chris and joan. Note
that ancestors(chris,(john.sam.mary.peter)) is an instance (modulo A)
of ancestors(X,(Y.mary.Z)) by the substitution {X/chris, Y/(john.sam),

Z/peter}.
Due to the equational axioms, in general there can be more than one least

general generalizer of two expressions. For instance, let us record the marriage
history of a person using a list, e.g. sam.sam.tom.peter for the marriage history
of mary, where she divorced sam and married him again. Then, the expressions
spouses(mary,(sam.sam.tom.peter)) and spouses(joan,(tom.tom.john))

have two incomparable least general generalizers: (a) spouses(X, (Y.tom.Z))

and (b) spouses(U, (V.V.W)), respectively meaning that both mary and joan

have married tom, and they both repeated marriage (consecutively) with their
first husband. Note that the two generalizers are least general and incomparable,
since neither one is an instance (modulo associativity) of the other.

Furthermore, if we consider the set of children of a person, this set should be
recognized irrespectively of the order in which the children’s names are written in
the set. Let us introduce a new symbol (&) that satisfies associativity, commuta-
tivity, and unit element ∅; i.e., X & ∅ = X and ∅ & X = X. Then, we can use the flat-
tened multiset (john & mary & peter & sam) (with a total order on elements given,
e.g., by the lexicographic order) as a very compact and convenient representation
for the congruence class modulo associativity, commutativity, and unit element
(written ACU) whose members are the different parenthesized expressions with
all permutations of the elements and as many occurrences of ∅ as needed, due to

ACUOS: A System for Modular ACU Generalization 575

unity [6]. Working modulo ACU, the expressions (i) children(chris,(john &

sam & mary & peter)) and (ii) children(joan,(tom & sam & john)) can be gen-
eralized as children(P,(john & sam & X)) but they can also be generalized as
children(P’,(john& sam & X’ & Y)) since children(joan,(tom& sam & john))
is an instance (modulo ACU) of children(P’,(john& sam & X’ & Y)) by the sub-
stitution {P’/joan, X’/tom, Y/∅}. Actually, for every least general generalizer t,
the set of all ACU generalizers that are equivalent to t modulo ACU-renaming1 is
infinite, i.e.,

children(P0, (john & sam & X0)),
children(P1, (john & sam & X1 & Y1)),
children(P2, (john & sam & X2 & Y2 & Z2)), . . .

yet we can choose one of them, typically the smallest one, as the class repre-
sentative. Note that children(P,(john & sam & X)) is an instance (modulo
ACU) of children(P’,(john & sam & X’ & Y)) by the substitution {X’/X,
Y/∅} but also children(P’,(john & sam & X’ & Y)) is an instance (modulo
ACU) of children(P,(john & sam & X)) by the substitution {X/(X’ & Y)}.

The second problem with ordinary generalization is that it does not cope with
types and subtypes, which can lead to more specific generalizers. For instance, as-
sume that the constants john, sam, peter, and tom belong to type Male and that
mary, joan, and chris belong to type Female. Let us introduce another type Peo-
ple for the typed version of the ACU (multi-)set structures on which the relation
children described above is defined. The Male and Female types can be consid-
ered as subtypes of a common type Person, which is itself a subtype of People
representing a singleton set. Subtyping implies automatic coercion. Note that the
empty set, denoted by ∅, belongs to People. Then, the above expressions (i) and
(ii) have one typed ACU least general generalizer children(P:Female,(john

& sam & X:Male & Y:People)) that we choose as the representative of the in-
finite ACU congruence class. Note that children(P’:Female,(john & sam &

X’:People)) is not a least general generalizer since it is strictly more general; it
suffices to see that the class representative is an instance of it with substitution
{P’:Female/P:Female,X’:People/(X:Male & Y:People)}.

This work presents ACUOS, a mature and highly developed implementation of
the order-sorted ACU least general generalization algorithm that we formalized
in [1]. ACUOS has been written in the high-performance language Maude [11]
that supports reasoning modulo algebraic properties and reflection. To the best
of our knowledge, this is the first generalization system that is able to compute
least general generalizers in order-sorted theories modulo equational axioms.

In Section 2, we describe the system and discuss how it can be used to address
artificial intelligence problems that need a form of ACU generalization. This is
done by focusing on a simple and classical artificial intelligence problem that
is known as the Rutherford analogy [8,9], proving that our system fulfills the
objective to recognize that atoms resemble tiny solar systems. Experimental

1 i.e., the equivalence relation ≈ACU induced by the relative generality (subsumption)
preorder ≤ACU : s ≈ACU t iff s ≤ACU t and t ≤ACU s.

576 M. Alpuente et al.

results given in Section 3 show that ACUOS performs efficiently in practice. For
a discussion of the related literature, we refer to [2,3,1,4,10]

2 Use Case: Extracting Analogies

In this section, we analyze and extract structural commonalities between two
representative sets of physical assertions, one of which regards the electromag-
netic forces in the atom while the other one considers gravitational forces in the
solar system. First, we provide a functional representation for the solar system
and the Rutherford model for the atom and then we use ACUOS to automati-
cally extract a precise correspondence between them. Note that this is a classical
example of higher-order generalization [8], in the sense that function symbols
themselves are generalized by using function variables. We explain how higher-
order reasoning can be achieved within our first-order setting by using reflection
through the Maude meta-programming capabilities [7].

2.1 Problem Representation

Let us introduce a meta-representation for models by introducing the HModel

sort (or type) that is defined in Figure 1, using (sub-)sorts HTerm and HOperator.
The generic Maude implementation given in Figure 1 is then used in Figure 2 to
specify the operators that describe the two considered systems (i.e., the domain
relations). Each relation r such as mass, charge, or attraction is represented
by an HTerm that is rooted by a suitable operator that is given appropriate
equational axioms, similarly to the operators2 (;), (.), and (&) discussed in
Section 1. In other words, the semantic information concerning each domain is
encoded using appropriate equational attributes for the relation r itself (e.g., the
action-reaction principle of gravitational forces is captured by the commutativity
property of the attraction operator). In Maude syntax, this can be done by
declaring the equational attributes of any given symbol through the use of special
tags. Not only is this concise, it is also efficient because it takes advantage of the
powerful optimizations included in the Maude interpreter [6].

Maude syntax is almost self-explanatory, using explicit keywords such as fmod,
sort, and op to introduce a module, sort, and operator, respectively. The decla-
ration subsort A1 . . . An < B denotes that A1 . . . An are subsorts of B and implies
automatic coercion. The keywords assoc and comm respectively specify associa-
tivity and commutativity axioms for an operator. The keyword prec establishes
the precedence of an operator. Module inclusion is denoted by inc. Using this
representation, our knowledge of each domain can simply be encoded as a first-
order term of sort HTerm, as shown in Figure 3, which depicts the two terms that
respectively encode the gravitational solar system and the Rutherford model for
the atom.

2 Notice themixfix notation [6] in the definition of the operators (e.g., op ; : HModel

HModel -> HModel), which uses underscores to indicate that each argument of the
function will replace one of the underscores (e.g., the term (x;y)).

ACUOS: A System for Modular ACU Generalization 577

fmod HIGHER -ORDER -metarepresentation is
sorts HModel HTerm HOperator HVariable .
sorts HTermList HTermPair HConj HRule .
subsort HOperator HVariable < HTerm .
subsort HTerm < HTermList HConj HModel .
subsort HRule < HTerm .
op _[_] : HOperator HTermList -> HTerm [prec 10] .
op __ : HOperator HTermPair -> HTerm [prec 10] .
op _,_ : HTermList HTermList -> HTermList [assoc prec 20] .
op <_,_> : HTerm HTerm -> HTermPair [comm prec 20] .
op _/_ : HConj HConj -> HConj [assoc comm prec 30] .
op _=>_ : HConj HTerm -> HRule [prec 40] .
op _;_ : HModel HModel -> HModel [assoc comm prec 50] .

endfm

Fig. 1. Generic higher-order meta-representation

fmod DOMAIN -OPERATORS is inc HIGHER -ORDER .
ops mass sun planet gravity : -> HOperator .
ops charge coulomb electron nucleus : -> HOperator .
ops attraction distant : -> HOperator [comm] .
ops x y : -> HVariable .

endfm

Fig. 2. Signature of the analogy domain operators

Solar System
mass[sun] ;
mass[planet] ;
distant〈sun,planet〉 ;
mass[x] ∧ mass[y] ⇒ gravity[x,y] ;
gravity[x,y] ⇒ attraction[x,y]

Rutherford Atom Model
charge[y] ∧ charge[x] ⇒ coulomb[x,y] ;
charge[electron] ;
charge[nucleus] ;
distant〈electron,nucleus〉 ;
coulomb[x,y] ⇒ attraction[x,y]

Fig. 3. Analogy problem representation

After feeding the ACUOS generalization tool with the Maude specification
given in Figures 1 and 2, together with the two input terms of Figure 3, we
obtain the least general ACU generalizer shown in Figure 4. For clarity, we omit
the sorting information in the results and summarize it as an annotation at the
bottom of the figure.

Generalization of Solar System and Rutherford Atom
P[X] ;
P[Y] ;
distant〈X,Y〉 ;
P[x] ∧ P[y] ⇒ Q[x,y] ;
Q[x,y] ⇒ attraction[x,y]

where variables P, Q belong to sort HOperator and variables X, Y to sort HTerm; note
that P,Q encode higher-order variables in our first-order setting.

Fig. 4. ACU generalization of the analogy problem

578 M. Alpuente et al.

2.2 Further Generalization Capabilities

The analogy extracted so far relates a planet in the solar system with an electron
in the atom, and the Sun with the atom nucleus. The related entities planet and
electron are the only argument of the relations mass and charge, respectively.
However, they both appear as arguments of the relations gravity and coulomb,
though in different order. Also, the order of appearance of the definitions for
the relations coulomb and gravity differs in both models. Therefore, the corre-
spondence between the two models would have been hard to establish without
considering the commutativity and associativity of the operators (∧) and (;).

We must often extract analogies from large deductive databases that, un-
like our previous example, contain irrelevant information with respect to the
analogies that we intend to extract. Let us further illustrate the advantages
of our order-sorted, equational generalization approach by slightly modifying
our example with the introduction of irrelevant knowledge. Specifically, suppose
that we add the assertions positive(nucleus) and negative(electron) into
the Rutherford Atom description and the assertion heavier-than(sun,planet)

into the solar system model. Figure 5 below shows the extended domain repre-
sentation together with the recomputed least general generalization result; the
only difference is the addition of a variable Z (of sort HModel), which can be
thought of as a container for the unnecessary pieces of information that are
automatically disregarded in this case.

Extended Solar System
mass[sun] ; mass[planet] ;
distant〈sun,planet〉 ;
mass[x] ∧ mass[y] ⇒ gravity[x,y] ;
gravity[x,y] ⇒ attraction[x,y] ;
heavier-than[sun,planet]

Extended Rutherford Atom Model
charge[y] ∧ charge[x] ⇒ coulomb[x,y] ;
charge[electron] ; charge[nucleus] ;
distant〈electron,nucleus〉 ;
coulomb[x,y] ⇒ attraction[x,y] ;
positive[nucleus] ; negative[electron]

Generalization of Extended Solar System and Extended Rutherford Atom
Z ; P[X] ; P[Y] ; distant〈X,Y〉 ; P[x] ∧ P[y] ⇒ Q[x,y] ; Q[x,y] ⇒ attraction[x,y] ;

Fig. 5. ACU generalization of the extended analogy problem

3 The ACU Generalization System ACUOS

The ACUOS backend consists of about 1000 lines of Maude code that essen-
tially implement the algorithm of [1], making heavy use of the Maude meta-
programming capabilities based on reflection. The algorithm is formalized as
an inference system in the style of [14], with specific rules for solving and de-
composing constraints (i.e., generalization subproblems) involving symbols that
obey equational axioms, such as ACU and their combinations. The number of
independent, order-sorted least general generalizers modulo E-renaming, where
E consists of any combination of associativity, commutativity, and unity axioms
of two expressions, is always finite [1], and our algorithm terminates for every
generalization problem, while computing a complete and minimal generalization
set (that is, a set covering all independent generalizations).

ACUOS: A System for Modular ACU Generalization 579

The implementation of [1] in ACUOS has been optimized as follows. First, we
identify many generalization subproblems that are equal modulo (equational)
variable renaming, which enables the use of Maude memoization thus leading
to exponential speed-ups for common generalization problems. Second, we de-
lay adding any sort information for new variables until needed, which avoids
repeated computation of subsorts for the same terms. Finally, those computa-
tions that are deterministic are encoded as Maude equations (instead of rules),
thereby greatly reducing the search space as well as the memory usage due to
the different treatment of rules and equations in Maude [6]. Thanks to these im-
provements, we can handle terms that are up to 50% larger than the preliminary,
näıve implementation reported in [1].

ACUOS is publicly available at http://safe-tools.dsic.upv.es/acuosand
comes with an intuitive web interface which allows the tool to be used through a
Java Web application. Alternatively, ACUOS can also be used without the Web
interface, by directly invoking the Maude generalization routine lggs that is im-
plemented in the ACUOS backend. This is the preferred approach to integrate
ACUOS with third-party software. For convenience, the system is also endowed
with a Full Maude [6] user-level command allowing the user to harness the full
power of the tool while being liberated from ancillary meta-level technicalities.

3.1 Experiments

In this section, we report on some experiments we have conducted with the
ACUOS system. When computing modulo equational axioms, the size of the
equivalence classes of the least general generalizers gives a measure of the com-
plexity of the problem (see [15] for some theoretical results on the complexity
of generalization). We use three symbols for denoting the different sizes: 0 when
there is no generalizer for two terms (unlike the case of syntactical generaliza-
tion, in the order-sorted setting the sorts of different kinds3 are incompatible
and then the terms of these sorts have no generalization, not even a variable);
ω when there is a finite number of elements in the equivalence classes of the
generalizers; and ∞ when the equivalence classes (w.r.t. ≈ACU) can have an
infinite number of ACU-equivalent generalizers. Any combinations of the A and
C axioms are in the ω class. The introduction of the U axiom leads to size ∞
(even if the number of ACU least general generalizers is still finite).

We have tested our tool with several representative generalization problems
taken from the literature that can be found online and in the distribution pack-
age. The benchmarks used for the analysis are: (i) incompatible types, a prob-
lem without any generalizers; (ii) twins, ancestors, spouses, siblings, and
children, as described in the introduction; (iii) only-U, a generalization prob-
lem modulo (just) unity axioms, i.e., without A and C; (iv) synthetic, an in-
volved example mixing A, C, and U axioms for different symbols; (v) multiple
inheritance, which uses a classic example of multiple subtyping from [6] to

3 Each connected component in the poset of sorts has a top sort that is called the
kind.

http://safe-tools.dsic.upv.es/acuos

580 M. Alpuente et al.

illustrate the interaction of advanced type hierarchies with order-sorted general-
ization; (vi) rutherford, the example of Section 2; (vii) and chemical, a variant
of the case-based reasoning problem for chemical compounds discussed in [5].

Table 1. Experimental results

Test G # N ms.

incompatible types 0 2 0 16
twins (C) ω 6 1 16
ancestors (A) ω 22 5 40
spouses (A) ω 16 3 16
spouses (AU) ∞ 16 6 360
siblings (AC) ω 14 2 80
children (ACU) ∞ 12 1 288
only-U (U) ∞ 10 1 16
synthetic ω 20 2 20
multiple inheritance ω 10 4 28
rutherford ω 54 1 462
chemical ω 20 2 240

Table 1 shows our experimental results. For each problem, we show its gen-
eralization class (G), the size (number of symbols) of the input terms (#), the
number of least general generalizers for each problem (N), and the total compu-
tation time (ms). As mentioned in Section 3, we achieve a dramatic improvement
w.r.t. the preliminary tool reported in [1], where only the incompatible types and
the twins benchmarks can be run with comparable performance; the rest of the
examples time out for AC or ACU terms with more than six symbols, with the
computation times surpassing one minute. Table 1 reflects that the runtimes of
our algorithm do not just depend on the equational attributes given to each
symbol and the size of the input terms but also on the actual shape of the terms
(in particular, whether there are repeated subterms or not). This demonstrates
the effectivity of the memoization mechanism that we introduced as an improve-
ment in Section 3. Actually, we achieve up to 90% of reduction in the size of the
search space w.r.t. the coarse search space generated without the improvements
discussed in Section 3.

Considering the high combinatorial complexity of the ACU generalization
problem, our implementation is reasonably time efficient. For example, most of
the examples discussed in Section 1 took on the order of 10 ms on standard
hardware (3.30 GHz Intel Xeon E3-1240 with 8Gb of RAM memory).

References

1. Alpuente, M., Escobar, S., Espert, J., Meseguer, J.: A Modular Order-sorted Equa-
tional Generalization Algorithm. Information and Computation 235, 98–136 (2014)

2. Alpuente, M., Escobar, S., Meseguer, J., Ojeda, P.: A Modular Equational Gen-
eralization Algorithm. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp.
24–39. Springer, Heidelberg (2009)

ACUOS: A System for Modular ACU Generalization 581

3. Alpuente, M., Escobar, S., Meseguer, J., Ojeda, P.: Order–Sorted Generalization.
ENTCS 246, 27–38 (2009)

4. Alpuente, M., Espert, J., Escobar, S., Meseguer, J.: ACUOS: A System for Mod-
ular ACU Generalization with Subtyping and Inheritance. Tech. rep., DSIC-UPV
(2013), http://riunet.upv.es/handle/10251/38854

5. Armengol, E.: Usages of Generalization in Case-Based Reasoning. In: Weber, R.O.,
Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 31–45. Springer,
Heidelberg (2007)

6. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: Reflection, metalevel computation, and strategies. In: All About Maude [6],
pp. 419–458

8. Gentner, D.: Structure-Mapping: A Theoretical Framework for Analogy*. Cogni-
tive Science 7(2), 155–170 (1983)

9. Krumnack, U., Schwering, A., Gust, H., Kühnberger, K.-U.: Restricted higher order
anti unification for analogy making. In: Orgun, M.A., Thornton, J. (eds.) AI 2007.
LNCS (LNAI), vol. 4830, pp. 273–282. Springer, Heidelberg (2007)

10. Kutsia, T., Levy, J., Villaret, M.: Anti-Unification for Unranked Terms and Hedges.
Journal of Automated Reasoning 520, 155–190 (2014)

11. Meseguer, J.: Conditioned rewriting logic as a united model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

12. Muggleton, S.: Inductive Logic Programming: Issues, Results and the Challenge of
Learning Language in Logic. Artif. Intell. 114(1-2), 283–296 (1999)

13. Ontañón, S., Plaza, E.: Similarity measures over refinement graphs. Machine Learn-
ing 87(1), 57–92 (2012)

14. Plotkin, G.: A note on inductive generalization. In: Machine Intelligence, vol. 5,
pp. 153–163. Edinburgh University Press (1970)

15. Pottier, L.: Generalisation de termes en theorie equationelle: Cas associatif-
commutatif. Tech. Rep. INRIA 1056, Norwegian Computing Center (1989)

16. Schmid, U., Hofmann, M., Bader, F., Häberle, T., Schneider, T.: Incident Mining
using Structural Prototypes. In: Garćıa-Pedrajas, N., Herrera, F., Fyfe, C., Beńıtez,
J.M., Ali, M. (eds.) IEA/AIE 2010, Part II. LNCS, vol. 6097, pp. 327–336. Springer,
Heidelberg (2010)

http://riunet.upv.es/handle/10251/38854

Drawing Euler Diagrams from Region

Connection Calculus Specifications
with Local Search

François Schwarzentruber1 and Jin-Kao Hao2

1 ENS Rennes, Campus de Ker lann, Av Robert Schumann, 35170 Bruz, France
2 LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France

Abstract. This paper describes a local search based approach and a
software tool to approximate the problem of drawing Euler diagrams.
Specifications are written using RCC-8-constraints and radius constra-
ints. Euler diagrams are described as set of circles.

1 Introduction

Fig. 1. Euler diagram drawn by our tool

Euler diagrams are pictures to under-
stand relations between concepts. Sets
(= concepts) are represented as regions
in the plane and inclusions or inter-
sections of those regions depict inclu-
sions or intersections of the correspond-
ing sets. Euler diagrams are a very gen-
eral tool that is used in a wide range of
application areas. For instance, Figure
1 shows an Euler diagram representing
the relations of the complexity classes as
many computer scientists may believe
they are. Generally speaking, the user
may want to generate automatically Eu-
ler diagrams from a knowledge base ex-
pressed in description logic [20].

This paper presents a proof-of-
concept software tool for drawing Eu-
ler diagrams by constraint solving with local search available here:
http://www.irisa.fr/prive/fschwarz/constrainteddrawing.

Given a set of geometrical objects and a set of constraints over these objects,
the objective is to find a drawing that contains the geometrical objects and
satisfies the set of given constraints. In this work, objects are circles and our
first aim is to draw Euler diagrams from constraints given as an input.

As discussed in Section 6 on related work, there are different approaches to
solve this problem of drawing Euler diagrams. One prominent work is to use algo-
rithms coming from graph theory [17]. Nevertheless, when we deal with drawing

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 582–590, 2014.
c© Springer International Publishing Switzerland 2014

http://www.irisa.fr/prive/fschwarz/constrainteddrawing

Drawing Euler Diagrams from Region Connection Calculus Specifications 583

generation, there is a need which seems essential: the user should be offered
the possibility of interacting with the generated drawing. For instance, the user
should be allowed to move or resize a circle in the current Euler diagram. Then
the system should be able to take into account the input of the user and correct
the drawing with respect to the constraints. With the graph theory approach, it
seems difficult and even impossible to correct Euler diagrams interactively. That
is why, we claim that the local search approach, thanks to its high flexibility, is a
suitable method for this problem. Local search both takes into account the input
of the user and corrects the picture in order to always satisfy the constraints.

Concerning the constraint specification language, we decided to start from
RCC-8 constraints [11], where RCC stands for ‘Region connection calculus’.
Indeed, RCC-8 is a desirable formalism for constraint specifications of Euler
diagrams. It provides constraints that describe pure set theory concepts. For
instance, the proposition ’a and b are disjoint’ is expressed as the circles rep-
resenting the relation ’a and b are disconnected’ (DC). This information may
come from a knowledge base where the description logic formula a � b = ¬
 is
inferred [20].

Moreover, this tool may be used to draw Euler diagrams representing sets
in a topological space (for instance this tool may be used by a math teacher
in an introductory course in topology). And RCC-8 also provides topological
concepts. As in illustration, if a and b are sets in a topological space such that
interiors of a and b are disjoint and closures of a and b are not disjoint, we may
express that the circles representing a and b are externally connected (EC) (see
Figure 2).

The paper is organized as follows. In section 2 we describe the language we con-
sider. Section 3 gives the semantics. Section 4 is dedicated to the local search pro-
cedure. Section 5 presents the implementation. Section 6 reviews related work.
Perspectives are provided in the concluding section. Proofs and experimental
results are in [16].

2 Syntax

The syntax of the language L of constraints is defined by the following rule:

ϕ ::= R(a, b) | radius(a) = r | (ϕ ∨ ϕ)

where a and b range over a set of constant symbols, r is a rational number and
R ranges over the symbol predicates of RCC-8. Intuitive meanings of RCC-8-
relations are given in table 1 and figure 2 gives them in pictures RELRCC-8.

3 Semantics

Usually in logic, semantics is given in terms of truth values. A formula ϕ is either
true or false in a given model. But, for the local search algorithm, we need the
semantics to be soft and we measure how much a formula ϕ is true (or false).

584 F. Schwarzentruber and J.-K. Hao

Table 1. Intuitive meanings of RCC-8-relations

Construction Intuitive meaning

DC(a, b) a and b are disconnected
EC(a, b) a and b are externally connected
PO(a, b) a and b partially overlap
TPP (a, b) a is a tangential proper part of b
TPP−1(a, b) b is a tangential proper part of a
NTPP (a, b) a is a non-tangential proper part of b
NTPP−1(a, b) b is a non-tangential proper part of a
EQ(a, b) a and b are equal
radius(a) = r the radius of the circle a is r
(ϕ ∨ ψ) ϕ or ψ

a

b

a

b

a

b

a

b

DC(a, b) EC(a, b) PO(a, b) TPP (a, b)

a

b

a

b

b

a a

b

TPP−1(a, b) NTPP (a, b) NTPP−1(a, b) EQ(a, b)

Fig. 2. The eight RCC-8-relations in pictures

First we define the hard semantics of our language L. Second we define the soft
semantics and we make a correspondence between them.

Models are pairs M = 〈C, i〉 where:

– C is a non-empty set of circles of non-zero radius in the plane (for all c ∈ C,
we respectively denote c.x, c.y and c.r > 0 the abscissa, the ordinate and
the radius of the circle c ; we note c.c the center of c);

– i assigns to each constant symbol an element in C.

To ease the readability, a constant symbol a also designates i(a), that is the
circle represented by a in a model M.

3.1 Hard Semantics

Let us define the truth conditions as follows.

Definition 1. Let M = 〈C, i〉 a model. We define the relation M |= ϕ by
induction on ϕ ∈ L as follows:

Drawing Euler Diagrams from Region Connection Calculus Specifications 585

M |= DC(a, b) iff d(a.c, b.c) > a.r + b.r;
M |= EC(a, b) iff d(a.c, b.c) = a.r + b.r;
M |= PO(a, b) iff d(a.c, b.c) ∈]|a.r − b.r|, a.r + b.r[;
M |= TPP (a, b) iff d(a.c, b.c) = b.r − a.r (and a.r ≤ b.r);
M |= TPP−1(a, b) iff d(a.c, b.c) = a.r − b.r (and b.r ≤ a.r);
M |= NTPP (a, b) iff d(a.c, b.c) < b.r − a.r (and a.r < b.r);
M |= NTPP−1(a, b) iff d(a.c, b.c) < a.r − b.r (and a.r > b.r);
M |= EQ(a, b) iff a.c = b.c and a.r = b.r;
M |= radius(a) = r iff i(a).r = r;
M |= (ϕ ∨ ψ) iff M |= ϕ or M |= ψ.

The problem we tackle here is defined as follows:

– input: a finite set I = 〈ϕ1, . . . , ϕn〉 of constraints in L;
– output: a model M such that for all i ∈ {1, . . . , n}, M |= ϕi.

The corresponding decision problem L-SAT takes the same input and outputs
yes, iff there exists a model M such that for all i ∈ {1, . . . , n}, M |= ϕi.

Proposition 1. L-SAT is NP-hard and in PSPACE.

3.2 Soft Semantics

ϕ Objective functions obj(ϕ)

DC(a, b) max(0, 2(a.r+b.r)−d(a.c,b.c) − 0.0001)
EC(a, b) |d(a.c, b.c) − (a.r + b.r)|
PO(a, b) |d(a.c, b.c)−max(a.r, b.r)|
TPP (a, b) |d(a.c, b.c) − (b.r − a.r)|

TPP−1(a, b) constraint of TPP (b, a)

NTPP (a, b) |d(a.c, b.c) − (b.r−a.r)
2

|+max
(
0, 0001 + a.r−b.r

b.r

)
NTPP−1(a, b) constraint of NTPP (b, a)

EQ(a, b) d(a.c, b.c) + |a.r − b.r|
radius(a) = r |a.r − r|

ϕ ∨ ψ min(obj(ϕ), obj(ψ))

Fig. 3. Objective functions

Now, a formula is evaluated according to an objective function obj : L → R,
defined by induction on ϕ as given in figure 3. Now we interpret obj over models
M. We note obj(ϕ)M the value obtained in M.

Proposition 2. If obj(ϕ)M = 0, then M |= ϕ.

Note that one could have chosen other objective functions than proposition
2. Those objective functions have been chosen experimentally so that the local
search algorithm described in the next section works.

586 F. Schwarzentruber and J.-K. Hao

4 Local Search

Given a problem instance I = 〈ϕ1, . . . , ϕn〉, we use a local search approach to
determine an Euler diagram respecting the constraints of I. Generally speaking,
local search constitutes a simple optimization approach which improves itera-
tively the current solution based on a neighborhood relation [10]. In our case,
the local search algorithm explores the search space Ω of possible drawings M
of a set of circles with the purpose of finding a feasible drawing satisfying the
predicates (constraints) of the given formula. The pseudo-code is defined as fol-
lows:

M := generate randomly a drawing
while true do

Mnew := getSolutionInNeighborhood(M)
if Mnew is better than M then

M :=Mnew

The algorithm never stops and keeps improving the current solution M. To
represent a modelM (i.e. a drawing),M is considered as a vector, where indices
are constant symbols a and each elementM[a] is a circle represented by its center
(M[a].x,M[a].y) and its radius M[i].r.

The function getSolutionInNeighborhood(M) returns a new solutionMnew,
where for all constant symbols a,Mnew[a].x, Mnew[a].y,Mnew[a].r are respec-
tively obtained by adding randomly chosen numbers in an interval [−ε, ε] to
respectively M[a].x, M[a].y, M[a].r. That is, a new drawing is obtained by
moving every circle center from its current position to a new position and mod-
ifying slightly each radius (this move operator defines thus the neighborhood
relation of our local search algorithm).

Solutions are compared with the following total order.

Definition 2. Given two candidate solutions (drawings) M,Mnew ∈ Ω, Mnew

is better than M if
∑n

i=1 obj(ϕi)Mnew ≤
∑n

i=1 obj(ϕi)M, where obj(ϕi)M and
obj(ϕi)Mnew are the values of the objective function obj(ϕi) that corresponds to
the ith constraint ϕi for respectively Mnew and M.

5 Implementation

Our local search algorithm available as a web application written in Javascript
can be found here: http://www.irisa.fr/prive/fschwarz/constrainteddrawing.

5.1 Syntax Used in The Software

The user can add circles and constraints by clicking on the appropriate buttons in the
palette. Let us describe the syntax we use in the software to define circles and con-
straints. In the left part of the screen, the user adds a circle by writing circle(name);
where name is a string for the name of the circle. Constraints are created with functions.
For instance TPP(name1, name2) creates a TPP constraints between the circle named

http://www.irisa.fr/prive/fschwarz/constrainteddrawing

Drawing Euler Diagrams from Region Connection Calculus Specifications 587

name1 and the circle named name2. The construction or(constraint1, constraint2)

returns a constraint that represents the disjunction of constraint1 and constraint2.
The construction addConstraint(constraint) adds the constraint constraint in the
set of constraints.

5.2 Interaction

The user may assist the local search. During the local search, the user can move
the circles by drag and drop and modify the radius of each circle. When the user
makes a modification in the drawing, she directly modifies the current modelM. Those
modifications are directly taken in account in real-time by the local search algorithm.

6 Related Work

6.1 Region Connection Calculus

RCC-8 [11] is a first order logic for spatial reasoning. Contrary to the version we adopt
in this article, variables are interpreted by regions of an abstract topological space. The
satisfiability problem of a first order formula given in RCC-8 is undecidable, more
precisely not recursively enumerable [7].
Nevertheless, the satisfiability problem, called RSAT, of a formula of the form

∃x1, . . .∃xn,
∧

i,j∈{1,...n}
∨

R∈C(i,j) R(xi, xj) where n is a positive integer, C(i, j) a sub-

set of RELRCC-8, is NP-complete [12].
The satisfiability problem for RCC-8 formulas over disc-homeomorphs is NP-

complete [14,13]. We should have emphasized that the problem addressed in our paper
is not about disc-homeomorphs but about discs. We here tackle the satisfiability prob-
lem for RCC-8 formulas over discs its exact complexity is still an open problem (see
proposition 1). An extension of RCC-8 with Boolean operations over sets has been
studied in [6]. Soft semantics for RCC-8 are also given in [15,18].

6.2 Constrained Graph Drawing

Drawing with Constraint. Constraints have long been used for graph drawing.
Generally, the positions of constrained objects to draw can be computed in polynomial
time. For instance, in drawing software like Geogebra, one may state, for example,
that Δ1 contains point A and is orthogonal to line Δ2 [5]. Similarly, in a graphical user
interface library, the layout is computed from easily solvable constraints as ‘the window
is horizontally separated in two parts. The first part is a textbox. The second contains
three buttons displayed vertically’. For these systems, various layout algorithms have
been studied [2,8]. Finally, there exist tools to compute nice graphical representations
of graphs [1,3]. Displaying graphs consists in solving constraints such as two connected
nodes are close and two different edges do not cross.

Bottom-Up Approach for Drawing Euler Diagrams. The visualization tool
Tulip integrates a functionality for Euler diagrams [17]. The input of this system is given
by an extensive description of the elements of sets. For instance, the following can be
a possible input:

588 F. Schwarzentruber and J.-K. Hao

P := {path, linearprog}
NP := {path, linearprog, intlinearprog, sat}
coNP := {path, linearprog, intlinearprog, valid}

Tulip is a ‘bottom-up’ approach. It considers the elements (in the example, elements are
path, linearprog, etc.) as nodes in a graph constrained by the set-theoretical relations
(in the example, P ⊆ NP , etc.). Tulip displays the graph and extracts an Euler diagram
from it. The shape of a region corresponding to a set (for instance P) is delimited by
the positions of the elements in that set (for instance, path and linearprog). Thus, the
shape can be arbitrary and the diagram may be difficult to read. A similar approach
can be found in [21].
On the contrary, our approach is ‘top-down’. The shape of the region are circles. We

do not specify elements that are in sets. Furthermore, contrary to Tulip, our framework
can be extended to capture constraints as ‘the radius of the disc representing NP is
10cm’.

Other top-down Approaches for Euler Diagrams. The authors of [4] de-
scribe a software tool for Euler diagrams which are made up of circles (see the site:
http://www.eulerdiagrams.com/software.htm). Their algorithm is based on the the-
ory of piercings [19] and is able to draw nice diagrams. Yet, their approach does not
capture topological constraints as TPP (circle a is a tangential proper part of b) and
the size of circles are not easily adjustable. Very recently, another interesting tool is
presented in [9] which is able to draw not only circles, but also ellipses.
Compared to these tools, our approach distinguishes itself by some interesting fea-

tures. First, our tool is based on the RCC-8 language which enables both precise and
rich constraint specifications. For instance, our tool allows the specification of topolog-
ical constraints. Second, one can specify the radius of circles, and our system can then
adjust dynamically these radius for a better visualization. Last but not least, in our
approach, the user can always modify the drawing by moving and resizing circles and
the system will adjust the drawing accordingly and adaptively.

7 Conclusion

This study makes the bridge between logical framework RCC-8, generation of Euler
diagrams (and more generally drawings under constraints), as well as heuristic search.
A first extension is to add a large collection of elements in addition of circles (rect-

angles, splines, etc.). Then an interesting perspective is to combine constraints that
do not require search (for instance constraints of Geogebra, or tractable fragments of
RCC-8 [12]) and constraints that require search. That is, the tool should be able to
choose how to solve the constraints by detecting which method to apply and on which
part of the drawing.
Another perspective is to improve the graphical interface. From a better graphical

interface, we can start to make the tool tested by users and do experimental validations
(can users write constraints they need? do users feel as if the tool understands their
constraints?).
Finally, it would be interesting to integrate default reasoning in the tool. For instance

the sole constraint P TPP NP (tangential proper part) should avoid the radius of P
to be too small. This may be solved by using default reasoning: by default, P TPP NP
implies that the radius of P is approximately the half of the radius of NP .

http://www.eulerdiagrams.com/software.htm

Drawing Euler Diagrams from Region Connection Calculus Specifications 589

Another interesting research problem concerns the axiomatization. Is there an ax-
iomation of RCC-8 where objects are circles? Having an axiomatization may help us
to improve the software so that it could give explanations for the generated drawings.

References

1. Auber, D.: Tulip a huge graph visualization framework. In: Graph Drawing Soft-
ware, pp. 105–126. Springer (2004)

2. Borning, A., Marriott, K., Stuckey, P.J., Xiao, Y.: Solving linear arithmetic con-
straints for user interface applications. In: ACM Symposium on User Interface
Software and Technology, pp. 87–96 (1997)

3. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C., Woodhull, G.: Graphviz and
dynagraph static and dynamic graph drawing tools. In: Graph Drawing Software,
pp. 127–148. Springer (2004)

4. Flower, J., Howse, J.: Generating euler diagrams. In: Hegarty, M., Meyer, B.,
Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 61–75.
Springer, Heidelberg (2002)

5. Hohenwarter, M., Preiner, J.: Dynamic mathematics with geogebra. Journal of
Online Mathematics and its Applications, 7 (2007)

6. Kontchakov, R., Nenov, Y., Pratt-Hartmann, I., Zakharyaschev, M.: On the de-
cidability of connectedness constraints in 2d and 3d euclidean spaces. In: IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, p.
957 (2011)

7. Lutz, C., Wolter, F.: Modal logics of topological relations. Logical Methods in
Computer Science 2, 1–14 (2006)

8. Marriott, K., Moulder, P., Stuckey, P.J.: Solving disjunctive constraints for inter-
active graphical applications. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp.
361–376. Springer, Heidelberg (2001)

9. Micallef, L., Rodgers, P.: Drawing area-proportional venn-3 diagrams using el-
lipses. In: 2012 Grace Hopper Celebration of Women in Computing, ACM Student
Research Competition and Poster Session. ACM Press (2012)

10. Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd. (2003)
11. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.

KR 92, 165–176 (1992)
12. Renz, J., Nebel, B.: On the complexity of qualitative spatial reasoning: A maximal

tractable fragment of the region connection calculus. Artificial Intelligence 108(1),
69–123 (1999)

13. Schaefer, M., Sedgwick, E., Štefankovič, D.: Recognizing string graphs in np. Jour-
nal of Computer and System Sciences 67(2), 365–380 (2003)

14. Schaefer, M., Stefankovic, D.: Decidability of string graphs. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 241–246.
ACM (2001)

15. Schockaert, S., De Cock, M., Kerre, E.E.: Spatial reasoning in a fuzzy region con-
nection calculus. Artificial Intelligence 173(2), 258–298 (2009)

16. Schwarzentruber, F., Hao, J.-K.: Drawing euler diagrams from region connection
calculus specifications. Technical report

17. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of over-
lapping sets. In: Computer Graphics Forum, vol. 28, pp. 967–974. Wiley Online
Library (2009)

590 F. Schwarzentruber and J.-K. Hao

18. Sridhar, M., Cohn, A.G., Hogg, D.C.: From video to rcc8: exploiting a distance
based semantics to stabilise the interpretation of mereotopological relations. In:
Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS,
vol. 6899, pp. 110–125. Springer, Heidelberg (2011)

19. Stapleton, G., Zhang, L., Howse, J., Rodgers, P.: Drawing euler diagrams
with circles: The theory of piercings. IEEE Trans. Vis. Comput. Graph. 17(7),
1020–1032 (2011)

20. Van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of knowledge representation,
vol. 1. Elsevier (2008)

21. Verroust, A., Viaud, M.-L.: Ensuring the drawability of extended euler diagrams
for up to 8 sets. In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams
2004. LNCS (LNAI), vol. 2980, pp. 128–141. Springer, Heidelberg (2004)

Probabilistic Abstract Dialectical Frameworks

Sylwia Polberg1,� and Dragan Doder2,��

1 Vienna University of Technology, Institute of Information Systems
Favoritenstraße 9-11, 1040 Vienna, Austria

2 University of Luxembourg, Computer Science and Communications
Rue Richard Coudenhove-Kalergi 6, L-1359 Luxembourg

Abstract. Although Dung’s frameworks are widely approved tools for
abstract argumentation, their abstractness makes expressing notions such
as support or uncertainty very difficult. Thus, many of their generaliza-
tions were created, including the probabilistic argumentation frameworks
(PrAFs) and the abstract dialectical frameworks (ADFs). While the first
allow modeling uncertain arguments and attacks, the latter can handle
various dependencies between arguments. Although the actual probabil-
ity layer in PrAFs is independent of the chosen semantics, new relations
pose new challenges and new interpretations of what is the probability of
a relation. Thus, the methodology for handling uncertainties cannot be
shifted to more general structures without any further thought. In this
paper we show how ADFs are extended with probabilities.

Keywords: Abstract argumentation, abstract dialectical frameworks,
probabilistic argumentation frameworks.

1 Introduction

Within the last decade, argumentation has emerged as a central field of Arti-
ficial Intelligence [1]. One of its subfields is the abstract argumentation, at the
heart of which lies the Dung’s argumentation framework (AF) [2]. Although
quite powerful, for many applications Dung’s AFs appear too abstract in order
to conveniently model all aspects of an argumentation problem. This has led to
the development of their numerous enrichments [3]. One of AF’s shortcomings is
the insufficient handling of the levels of uncertainty [4], an aspect which typically
occurs in domains, where diverging opinions are raised. This calls for augmenting
AFs with probabilities [4, 5]. They serve as a basis to generate AF–subgraphs,
which naturally represent the possible situations induced by the uncertainties in
a given probabilistic framework (PrAF). From them we obtain extensions and
their associated uncertainty coming from the subgraphs. Consequently, the un-
certainty layer is independent of the underlying semantics and of the framework
itself, which is considered one of its greatest strengths.

� The author is supported by the Vienna PhD School of Informatics and the FWF
project I1102. We would also like to thank Stefan Woltran for his valuable comments.

�� The author is supported by the National Research Fund (FNR) of Luxembourg
through project PRIMAT.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 591–599, 2014.
c© Springer International Publishing Switzerland 2014

592 S. Polberg and D. Doder

Argument and attack uncertainties had proved to be a useful concept. There-
fore, it is not unreasonable that an AF enrichment should also incorporate
them [6]. Due to the independency of the probability layer, it was claimed that
it can be done easily [5]. However, it is natural to expect that the probability of
a positive relation between the arguments may be interpreted in different ways.
While we may doubt if e.g. a positive interaction between a and b will be carried
out, we can also question whether b requires a (or only a) to hold. Thus, the con-
ditions for accepting an argument might be uncertain. Those two interpretations
of relation probabilities are modeled in exactly the opposite way. Assuming that
the relation does not occur, in the first case b would not be acceptable, while
in the latter it would not be a problem. Generating the subgraphs in the usual
manner would allow us to model only one of the scenarios at a time. Thus, new
relations pose new challenges and this research should not be dismissed so easily.

Unfortunately, AFs permit only binary conflict. Among the most general
structures addressing this issue [3] are abstract dialectical frameworks (ADFs)
[7]. They assign acceptance conditions to arguments, which can be seen as a
Boolean functions stating if its “owner” can be accepted or not w.r.t. given ar-
guments. Although various other frameworks that can handle positive relations
were proposed [8–10], our preliminary findings show that they can be expressed
within ADFs. Thus, ADFs make a good base for probabilistic frameworks that
would allow us to model various uncertain relations, not limited to attack or
support only. In this paper we create a framework joining both the uncertainty
and the relation research – the probabilistic abstract dialectical framework. We
show that it generalizes ADFs as well as PrAFs. Our goal is to model situations
when the requirements to accept an argument might be uncertain. We achieve it
by assigning not a single acceptance condition to an argument, but a number of
them. We then adopt the subgraph approach to our new setting. Consequently,
we are able to generalize the methodology introduced by PrAFs to handle dif-
ferent interpretations of probability. Finally, we discuss other possible methods
of augmenting ADFs with uncertainties and give pointers for future work.

2 Dung’s Framework and its Probabilistic Extensions

Definition 1. A Dung’s argumentation framework (AF) is a pair F =
〈A,R〉 where A is a set of arguments and R ⊆ A×A is the attack relation.

An argument a ∈ A is defended (in F) by S ⊆ A if ∀b ∈ A s.t. (b, a) ∈ R,
∃c ∈ S s.t. (c, b) ∈ R. A set S ⊆ A is:
– conflict–free, if there are no a, b ∈ S, such that (a, b) ∈ R.
– stable, if it is conflict–free and for all a ∈ A \ S, ∃b ∈ S, s.t.(b, a) ∈ R;
– admissible, if it is conflict–free and each a ∈ S is defended (in F) by S;
– complete, if it is admissible and each a defended (in F) by S is in S;
– grounded, if it is the least w.r.t. ⊆ complete;
– preferred, if it is maximal w.r.t. ⊆ admissible.

By σ(F) we will denote the extensions of F under semantics σ listed above.

For an AF F = (A,R) and a set A′ ⊆ A, by RA′ we denote the restriction of
R to A′ ×A′, i.e. RA′ = {(a, b) ∈ R | a, b ∈ A′}.

Probabilistic Abstract Dialectical Frameworks 593

We will now recall the probabilistic frameworks [5]. In this setting, instead of
asking if a set of arguments is an extension of a given semantics, one now expects
to analyze the probability that it is. This is addressed by the idea of subgraphs,
which express the possible interpretations of the original probabilistic framework
FPR in terms of AFs, whereby it is not sure that all arguments or attacks in
FPR actually appear in a given AF. The collection of such graphs represents the
possible scenarios induced by the probabilities in the initial structure.

Definition 2. A probabilistic argumentation framework (PrAF) FPR is
a tuple 〈A,R, PA, PR〉, where 〈A,R〉 is a Dung’s framework, PA : A −→ (0, 1]
and PR : R −→ (0, 1] are the probabilities of arguments and attacks.

Definition 3. Let FPR = (A,R, PA, PR) be a PrAF. A subgraph 1 G of FPR

(denoted G � FPR) is a pair (A′, R′) s.t. 1) A′ ⊆ A and {a ∈ A | PA(a) = 1} ⊆
A′, and 2) R′ ⊆ RA′ and {(a, b) ∈ R | a, b ∈ A′, PA(a) = PA(b) = 1, PR(a, b) =
1} ⊆ R′. s(FPR) = {G | G � FPR} denotes the set of all subgraphs of FPR.

Given a semantics σ and its potential extension E , we determine the subgraphs
of an FPR that have E as their AF σ–extension. The sum of the probabilities of
such subgraphs gives us the final probability that E is a σ–extension of FPR.

Definition 4 ([5]). Let FPR = 〈A,R, PA, PR〉 be a PrAF and let G = 〈A′, R′〉
� FPR. Then the probability of G is:

pFPR(G) = (
∏
a∈A′

P (a))(
∏

a∈A\A′

(1−P (a)))(
∏
r∈R′

PR(r))(
∏

r∈RA′\R′

(1−PR(r))). (1)

Theorem 1 ([5]). The function pFPR is a probabilistic distribution on the set
s(FPR), i.e., a nonnegative function s.t.

∑
G�FPR

pFPR(G) = 1.

Definition 5. Let FPR = 〈A,R, PA, PR〉 be a PrAF, E ⊆ A a set of argu-
ments, and σ ∈ {conflict-free, admissible, complete, preferred, stable, grounded}
a semantics. The set of subgraphs of FPR for which E is a σ-extension is
Qσ

FPR
(E) = {G ∈ s(FPR) | E ∈ σ(G)}. The probability that E ⊆ A is in

σ(FPR) is defined as:2

P σ
FPR

(E) =
∑

G∈Qσ
FPR

(E)

pFPR(G). (2)

3 Abstract Dialectical Frameworks

Abstract dialectical frameworks have been defined in [7] and further developed
in [11–16]. Their main goal is to be able to express arbitrary relations, which is
achieved by the use of acceptance conditions. They define what sets of arguments
related to a given argument should be present for it to be accepted or rejected.

1 In [5], subgraphs are called AFs induced from FPR
2 The definition from [5] is more general, it computes the probability that a set is a
subset of a σ extension.

594 S. Polberg and D. Doder

Definition 6. An abstract dialectical framework (ADF) as a tuple 〈S,L,C〉,
where S is a set of arguments (nodes), L ⊆ S × S is a set of links (edges) and
C = {Cs}s∈S is a set of acceptanceconditions, one condition per each argument.
An acceptance condition is given by a total function Cs : 2par(s) → {in, out},
where par(s) = {p ∈ S | (p, s) ∈ L} is the set of parents of s.

One can also use the propositional representation, i.e. with C = {ϕs}s∈S where
ϕs is a propositional formula over the parents of s. Since the links no longer
define the nature of the connections between the arguments and can be easily
extracted from the conditions, we can use shortened notation D = 〈S,C〉.

Instead of returning sets of accepted arguments, the semantics of ADFs from
[11] produce three–valued interpretations in which arguments are assigned truth–
values from {t, f ,u}. The values are compared w.r.t. precision (information)
ordering ≤i, defined as u ≤i t and u ≤i f . It can be extended to interpretations:
given two interpretations v and v′ on S, v ≤i v

′ iff ∀s∈S v(s) ≤i v
′(s). In case

v is three and v′ two–valued (i.e. has only f and t mappings), we say that
v′ extends v. The set of all two–valued interpretations extending v is denoted
[v]2. The pair ({t, f,u},≤i) forms a complete meet–semilattice with the meet
operation � defined as: t � t = t, f � f = f and u in all other cases. � can
also be defined for interpretations: for interpretations v and v′ on S, v � v′ = v′′

where ∀s∈S v′′(s) = v(s)�v′(s). Meet simply checks whether two interpretations
agree on assignments or not. Finally, we will use vx to denote a set of arguments
mapped to x by v, where x ∈ {t, f ,u}. We can now recall the ADF semantics
from [11], which are based on the notion of a characteristic operator:

Definition 7. Let D = 〈S,L,C〉 with C = {ϕs}s∈S be an ADF, VS the set of all
three–valued interpretations defined on S, s ∈ S and v an interpretation in VS.
The three–valued characteristic operator of D is a function ΓD : VS → VS

s.t. ΓD(v) = v′ with v′(s) =
�

w∈[v]2 Cs(par(s) ∩ wt). We say that v is:

– admissible iff v ≤i ΓD(v);
– complete iff v = ΓD(v);
– preferred iff it is ≤i–maximal admissible;
– grounded iff it is the least fixpoint of ΓD.

The stable semantics is a slightly different case, as formally we receive a set, not
an interpretation. However, stability leaves nothing undecided, and we can just
map arguments not in the set to f . The definition uses the concept of a reduct.
Reduction of an acceptance condition simply means that the occurrences of
rejected arguments are replaced by f (one can also use ⊥).

Definition 8. Let D = 〈S,C〉 with C = {ϕs}s∈S be an ADF. We say that
M ⊆ S is a model of D iff ∀m ∈M,Cm(S∩par(m)) = in and ∀ s ∈ S, Cs(M∩
par(s)) = in implies s ∈M . A reduct of D w.r.t. M is DM = (M,CM), where
for m ∈M we set CM

m = ϕm[b/f : b /∈M]. Let gv be the grounded model of DM .
Model M is stable iff M = gvt.

Finally, we recall that ADFs properly generalize AFs [11].

Probabilistic Abstract Dialectical Frameworks 595

Definition 9. For an F = 〈A,R〉, the associated ADF is DF = 〈A,R, {ϕa}a∈A〉
with ϕa =

∧
b:(b,a)∈R ¬b for a ∈ A. For an interpretation v, the set Ev = {a ∈

A | v(a) = t} defines the unique extension associated with v.

Theorem 2. Let F be an AF and DF its associated ADF. An extension E is
in σ(F), where σ ∈ {admissible, complete, preferred, stable, grounded}, iff it is
in σ(DF).

4 Probabilistic Abstract Dialectical Frameworks

The probability of a positive interaction between arguments can be interpreted
in several ways. First of all, it can happen that a given argument is actually sup-
porting another one only with a certain probability, which canhave its source in
e.g. ambiguity or incompletion. However, it is also possible that the requirements
to accept a given argument change. This brings us to the idea of ADFs in which
the acceptance conditions are assigned a level of uncertainty. In order to grasp
the probabilities of different scenarios, instead of a single condition, an argument
receives a block of acceptance conditions. Each member of the block is assigned
a probability in a way that they all sum up to 1. The uncertainty of a condition
should be understood as the uncertainty of the argument’s requirements for ac-
ceptance. This also means that at a given point, only a single condition of a block
can “happen”. However, it does not mean that only one relation targeted at this
argument can occur. If we consider an AF and its associated ADF (Definition
9), both augmented with probabilities, it is not the case that every condition
and its probability would correspond to one attack and its probability in the
original framework. ADF conditions provide a bigger point of view and express
the general requirements of an argument to hold. Given an argument attacked
by two others (with some probabilities), ADFs would model the situation with
four conditions – when both, none, and only one of the attacks occur.

The idea of our method of determining the probability of an extension is
similar to the one in PrAFs. Just like in PrAFs we generated AF subgraphs, in
probabilistic ADFs we will create ADFs. This brings us to another reason why
the total probability of a condition block has to be 1. In PrAFs, if we knew
that a attacks b with a chance 0.3, then we also knew that a does not attack b
with a chance 0.7. In ADFs, should a given acceptance condition be used with
probability 0.3, what condition should occur with 0.7? The state of an argument
is always defined by the condition, thus on any occasion one has to be assigned.
Consequently, it is important that the total probability of a block is 1.

Let us now describe our party example and introduce the framework. We can
observe that ADFs can express relations between arguments (see argument d)
which go beyond the usual understanding of attack or support and that cannot,
to the best of our knowledge, be conveniently modeled in any other framework.

Example 1. Julia is throwing a dinner party and is deciding with her husband
Mark which of their friends – Anne, Bernard, Cecilia and David – to invite.
Bernard and Cecilia are taking care of their sick mother and the two of them

596 S. Polberg and D. Doder

will not be able to come at the same time. Mark was told that Anne had to reject
one of Bernard’s projects at work and he might not want to meet with her now.
Julia believes that David is still angry at Cecilia for their bad break up and will
not come if she is invited unless Anne, who is his current girlfriend, also shows
up. However, Mark thinks that David is fine with it now and Cecilia’s presence
should not be a problem, but he might prefer to come with Anne anyway since
she is leaving for a business trip soon. Finally, they both agree that even though
Anne would like to come, she might not be able to due to the travel preparations.
We now construct arguments a, b, c and d representing Anne, Bernard, Cecilia
and David coming to the dinner, and their possible acceptance conditions. The
condition of a is just
, since Anne’s decision does not depend on anyone else.
However, since she is busy, a is assigned a probability of 0.5. The condition of
b might be just ¬c – since Bernard cannot come together with Cecilia – but it
can also be ¬a∧¬c due to issues with Anne. We give both of them a 0.5 chance.
Similarly, c is assigned ¬b. Finally, we have that condition of d might be a∨¬c,
reflecting Davids problem with Cecilia, or just a in case he sorted it out and just
wants time with Anne. We assign to them probabilities 0.7 and 0.3 respectively.

Definition 10. A probabilistic abstract dialectical framework (PrADF)
is a tuple DPR = 〈A, {Ca}a∈A, PA, {PCa}a∈A〉, where A is a set of arguments,
Ca = {ϕa,i | i = 1, . . . , na} is a set of possible acceptance conditions of a,
PA : A → (0, 1] is the probability of arguments and PCa : Ca → (0, 1] s.t.∑

ϕa,i∈Ca
PC(ϕa,i) = 1, is the probability of acceptance conditions.

We can now continue with the definition of a subframework in our new set-
ting.We first choose an arbitrary subset of arguments – the only restriction is
that it contains the ones that are certain to happen. We then assign each argu-
ment an acceptance condition from its block and thus obtain our subframework.
However, it can happen that an argument occurring in the condition no longer
appears in our set. Therefore, what needs to be performed is the reduction of the
conditions (see Definition 8). This brings us to the definition of a subframework:

Definition 11. Let DPR = 〈A, {Ca}a∈A, PA, {PCa}a∈A〉 be a PrADF and A′ ⊆
A a set of arguments s.t. {a ∈ A | PA(a) = 1} ⊆ A′. Given a collection of indices
{ia}a∈A′ , the induced subframework is D′ = 〈A′, {ϕA′

a,ia
}a∈A′〉. The set of all

subframeworks of DPR is denoted by s(DPR).

Note that it is possible that two acceptance conditions of an argument a
that are initially different in a PrADF, i.e. ϕa,i �= ϕa,j for some j �= i, become

equivalent in some subframework D′ = 〈A′, {ϕA′

a,i}a∈A′〉(i.e.ϕA′

a,i = ϕA′

a,j
3). Thus,

the definition of the probability of D′ has to take this situation into account.

Definition 12. Let DPR = 〈A, {Ca}a∈A, PA, {PCa}a∈A〉 be a PrADF and D′ =
〈A′, {ϕA′

a,ia}a∈A′〉 its subframework.The probability of D′ is defined as:

pDPR(D
′) = (

∏
a∈A′

PA(a))(
∏

a∈A\A′

(1− PA(a)))(
∏
a∈A′

∑
j:ϕA′

a,j=ϕA′
a,i

PCa(ϕa,j)). (3)

3 We identify the equivalent formulas, since they induce the same acceptance functions.

Probabilistic Abstract Dialectical Frameworks 597

Theorem 3. Given a PrADF DPR = 〈A, {Ca}a∈A, PA, {PCa}a∈A〉, the func-
tion pDPR is a probabilistic distribution on the set s(DPR), i.e., a nonnegative
function s.t.

∑
D′∈s(DPR) pDPR(D

′) = 1.

We will now proceed with PrADF semantics, focusing on the extensions as-
sociated with ADF interpretations.

Definition 13. Let DPR = 〈A, {Ca}a∈A, PA, {PCa}a∈A〉 be a PrADF and E ⊆
A. The set of all subframeworks D′ of DPR s.t. E is a σ extension of DPR,
where σ ∈ {admissible, complete, preferred, stable, grounded}, is:

Qσ
DPR

(E) = {D′ � DPR | ∃v ∈ σ(D′) s.t. vt = E}. (4)

The probability that E is a σ-extension of DPR is defined as:

P σ
DPR

(E) =
∑

D′∈Qσ
DPR

(E)

pDPR(D
′). (5)

Example 2. Let us now construct a PrADF D for our scenario from Example 1.
Our arguments are {a, b, c, d}, where PA(a) = 0.5 and since there are no reasons
against, PA(b) = PA(c) = PA(d) = 1. As discussed before, ϕa =
. This is
the only condition of a and thus PCa(ϕa) = 1. For b we have ϕb1 = ¬c and
ϕb2 = ¬a ∧ ¬c with probabilities PCb

(ϕb1) = PCb
(ϕb2) = 0.5. In the case of c,

ϕc = ¬b and has chance of 1 just like a. Finally, for d we have ϕd1 = a∨¬c and
ϕd2 = a with chances PCd

(ϕd1) = 0.7 and PCd
(ϕd2) = 0.3. We obtain 6 possible

subframeworks:DG1 = 〈{a, b, c, d}, {ϕa =
, ϕb = ¬c, ϕc = ¬b, ϕd = a}〉,DG2 =
〈{a, b, c, d}, {ϕa =
, ϕb = ¬a ∧ ¬c, ϕc = ¬b, ϕd = a}〉, DG3 = 〈{b, c, d}, {ϕb =
¬c, ϕc = ¬b, ϕd = ¬c}〉, DG4 = 〈{a, b, c, d}, {ϕa =
, ϕb = ¬a ∧ ¬c, ϕc =
¬b, ϕd = a∨¬c}〉, DG5 = 〈{a, b, c, d}, {ϕa =
, ϕb = ¬c, ϕc = ¬b, ϕd = a∨¬c}〉,
and DG6 = 〈{b, c, d}, {ϕb = ¬c, ϕc = ¬b, ϕd = ⊥}〉. Their probabilities and
extension are listed in Table 1. Note DG3 and DG6 can be induced in two ways,
as reducing ϕb1 and ϕb2 w.r.t. {b, c, d} leads to equivalent formulas.

As expected, there is no possibility of inviting everyone. The next options in
which we get the most friends are extensions {a, b, d} and {a, c, d}. The first one
has probability pD(DG1) + pD(DG5) = 0.25 if we assume preferred or complete
semantics, but 0 in case of grounded.The other set occurs in DG1 , DG2 , DG4 and
DG5 , which yields probability 0.25 w.r.t. grounded semantics and 0.5 otherwise.
Inviting just Anne and David, i.e. {a, d}, would have a chance of 0.5 in admissible
semantics (DG1 , DG2 , DG4 and DG5), 0.25 in complete and grounded (DG1 and
DG5), and would not be possible at all in preferred and stable cases. Going just
for the manly team - {b, d} would give us 0 probability in the grounded case,
0.52 in admissible and 0.35 in any other.

Note that by setting argument probability to 1 and using single element ac-
ceptance condition blocks, we easily retrieve ADFs from PrADFs. We close this
section by showing that PrADFs properly generalize PrAFs.

598 S. Polberg and D. Doder

Table 1. Subframeworks of D and their extensions

s(D) pD stb grd adm prf com

DG1 0.075
{a, b, d},
{a, c, d} {a, d}

∅, {a}, {b}, {c},{a, b},
{a, c}, {a, d}, {a, b, d},

{a, c, d}

{a, b, d},
{a, c, d}

{a, d},
{a, b, d},
{a, c, d}

DG2 0.075 {a, c, d} {a, c, d} ∅, {a}, {c}, {a, c},
{a, d}, {a, c, d} {a, c, d} {a, c, d}

DG3 0.35 {c}, {b, d} ∅ ∅, {b}, {c}, {b, d} {c}, {b, d} ∅, {c}, {b, d}

DG4 0.175 {a, c, d} {a, c, d} ∅, {a}, {c}, {a, c},
{a, d}, {a, c, d} {a, c, d} {a, c, d}

DG5 0.175
{a, b, d},
{a, c, d} {a, d}

∅, {a}, {b}, {c}, {a, b},
{a, c}, {a, d}, {b, d},
{a, b, d}, {a, c, d}

{a, b, d},
{a, c, d}

{a, d},
{a, b, d},
{a, c, d}

DG6 0.15 {b}, {c} ∅ ∅, {b}, {c} {b}, {c} ∅, {b}, {c}

Definition 14. The PrADF associated to the PrAF FPR = 〈A,R, PA, PR〉 is
DFPR = 〈A, {Ca}a∈A, PA, {PCa | a ∈ A}〉, where:
– Ca = {

∧
(b,a)∈R′ ¬b | R′ ⊆ R}

– PCa(
∧

(b,a)∈R′ ¬b) = (
∏

(b,a)∈R′ PR((b, a)))(
∏

(b,a)∈R\R′(1− PR((b, a))))

Theorem 4. Let FPR = 〈A,R, PA, PR〉 be a PrAF and let DFPR be its associ-
ated PrADF. Then P σ

FPR
(E) = P σ

DFPR
(E).

5 Discussion and Future Work

One of the most interesting observations we have made in our research is the fact
that the probabilities of acceptance conditions allow us to express the probabili-
ties of arguments. This method is unique to ADFs and is possible thanks to the
fact that we can have a ϕs = ⊥ condition, which is simply interpreted as s does
not exist. Consequently, an argument–based PrADF can be transformed into an
acceptance condition based one. Given an argument a assigned probability arg1
and conditions C1, ..., Cn with probabilities p1, ..., pn, we can shift the argument
uncertainty into a condition. We produce an additional formula Cn+1 = ⊥ with
probability 1−arg1 and alter the probabilities of existing conditions by multiply-
ing them by arg1. Consequently, PrADFs can be improved and that a simpler,
cleaner formulation can be created. We would like to fully develop this idea in
our future work and create an approach without the independency assumption.

A particular line of research in abstract argumentation concerns the formal-
ization of argumentation semantics in terms of logics. A uniform logical formal-
ization for PrAFs using probabilistic logic was already developed in [17]. We
believe that this approach may be further extended in order to logically formal-
ize PrADFs. Finally, we would like to study the complexity of PrADFs and their
semantics and possibly provide an implementation.

Probabilistic Abstract Dialectical Frameworks 599

References

1. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171, 619–641 (2007)

2. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artificial Intelligence 77,
321–358 (1995)

3. Brewka, G., Polberg, S., Woltran, S.: Generalizations of Dung frameworks and
their role in formal argumentation. IEEE Intelligent Systems 29, 30–38 (2014)

4. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments.
International Journal of Approximate Reasoning 54, 47–81 (2013)

5. Li, H., Oren, N., Norman, T.J.: Probabilistic argumentation frameworks. In: Mod-
gil, S., Oren, N., Toni, F. (eds.) TAFA 2011. LNCS, vol. 7132, pp. 1–16. Springer,
Heidelberg (2012)

6. Li, H., Oren, N., Norman, T.J.: Relaxing independence assumptions in probabilistic
argumentation. In: Proceedings of ArgMAS 2013 (2013) (forthcoming)

7. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Lin, F., Sattler, U.,
Truszczyński, M. (eds.) Proceedings of the 12th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2010), pp. 780–785. AAAI
Press (2010)

8. Cayrol, C., Lagasquie-Schiex, M.C.: Bipolarity in argumentation graphs: Towards a
better understanding. International Journal of Approximate Reasoning 54, 876–899
(2013)

9. Nouioua, F.: AFs with necessities: Further semantics and labelling characterization.
In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078,
pp. 120–133. Springer, Heidelberg (2013)

10. Polberg, S., Oren, N.: Revisiting support in abstract argumentation systems. In:
Proceedings of COMMA 2014 (forthcoming, 2014)

11. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract di-
alectical frameworks revisited. In: Proceedings of IJCAI 2013, pp. 803–809. AAAI
Press (2013)

12. Polberg, S., Wallner, J.P., Woltran, S.: Admissibility in the abstract dialectical
framework. In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.)
CLIMA XIV 2013. LNCS, vol. 8143, pp. 102–118. Springer, Heidelberg (2013)

13. Strass, H.: Approximating operators and semantics for abstract dialectical frame-
works. Artificial Intelligence 205, 39–70 (2013)

14. Strass, H.: Instantiating knowledge bases in abstract dialectical frameworks. In:
Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA XIV
2013. LNCS, vol. 8143, pp. 86–101. Springer, Heidelberg (2013)

15. Strass, H., Wallner, J.P.: Analyzing the computational complexity of abstract di-
alectical frameworks via approximation fixpoint theory. In: Proceedings of KR
2014, Vienna, Austria (forthcoming, 2014)

16. Polberg, S.: Extension–based semantics of abstract dialectical frameworks. Tech-
nical Report DBAI-TR-2014-85, Institute for Information Systems, Technical
University of Vienna (2014)

17. Doder, D., Woltran, S.: Probabilistic argumentation frameworks – A logical ap-
proach. In: Straccia, U., Cali, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 134–147.
Springer, Heidelberg (2014)

Argumentative Aggregation of Individual Opinions

Cosmina Croitoru

MPII Saarbrücken, Germany

Abstract. Over a new abstract model of aggregating individual issues – abstract
debates – we introduce an entire class of aggregating operators by borrowing
ideas from Abstract Argumentation to Social Choice Theory. The main goal was
to introduce rational aggregation methods which do not satisfy the commonly
used independence condition in Social Choice Theory. This type of context de-
pendent aggregation is very natural, could be useful in many real world decision
making scenarios, and the present paper provides the first theoretical investigation
of it.

1 Introduction

Comparing and assessing different points of view in order to obtain fair and ratio-
nal collective aggregation of them is the main research topic of Social Choice Theory
(SCT) [4] having major philosophical, economic, and political significance. The most
important methodological tool in SCT is the axiomatic method, pioneered by Arrow
[3], and consisting in formulating normatively desirable properties of aggregation rules
as postulates or axioms, in order to obtain precise characterizations of the aggregation
rules that satisfy these properties. The AI developments, especially in the area of col-
lective decision making in Multiagent Systems, have lead to the emergence of a new
research area called Computational Social Choice (CSC), mainly concerned with the
design and analysis of collective decision making mechanisms. If in classical SCT the
objects of aggregation belong to preferential knowledge [5], recent developments ap-
ply the same methodology to other types of information: beliefs [14], judgments [16],
ontologies [19], graphs [1, 13], and argumentation frameworks [8, 12].

Argumentation is a powerful mechanism for automating the decision making process
of autonomous agents. Several recent works have studied the problem of accommodat-
ing ideas from CSC to Argumentation [17, 22, 20, 21, 7, 12]. Most of them rely on
Dung’s Argumentation Frameworks and their acceptability semantics [10].

In this paper, we go beyond what we have done in [9] by borrowing ideas from Ab-
stract Argumentation Frameworks to CSC, hence in the converse direction of the above
line of research on this subject. Inspired by Dung’s admissibility based semantics, we
consider a new interpretation of the collective rationality. More precisely, we introduce
a novel framework for aggregating individual opinions expressed as pairs of disjoint
sets of positive and negative positions on a given finite set of facts. Each opinion having
a negative position on some fact attacks all other opinions having positive positions on
this fact. The attack digraph obtained, viewed as an argumentation framework, gives
rise to rational coalition formations, whose collective opinions are viewed as aggregate
opinions of the society. This represents a novel qualitative approach to the aggregation

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 600–608, 2014.
c© Springer International Publishing Switzerland 2014

Argumentative Aggregation of Individual Opinions 601

of individual opinions contrasting the usual quantitative voting methods.Let us consider
a simple mundane choice situation. The table in Figure 1 presents the available pizza
toppings, F = {pepperoni, salami, ham, onion, olive, pineapple}, and the opinions on
F of a group of five friends, S = {Anne, Bob,Cara, Dan, Elly}.

L DL
Anne {pepperoni,ham} {olive,onion}
Bob {ham, pineapple} {pepperoni,onion}
Cara {ham,olive} {pepperoni,onion}
Dan {olive, pepperoni,salami} {ham}
Elly {olive, pepperoni} {ham,salami}

Majority {ham, pepperoni,olive} {onion}

Anne Bob Cara Dan Elly

pepperoni ham oliveonion pineapple salami

(a) Pizza Paradox (b) Graph Representation

Fig. 1. A debate and its bipartite digraph representation

As we can see, Anne likes (agrees) pepperoni and ham but dislikes (disagrees) olive and
onion. Similarly, we can read the opinions of the other members of S. The table is en-
titled Pizza Paradox since if we consider the majority opinion (obtained by including
each fact in one of the two sets of liked and disliked facts using the majority rule) as out-
put, then this has the unpleasant property that each individual dislikes a topping in the
collective output: ({ham, pepperoni,olive},{onion}). Note that this happens despite
the majority rule gives a consistent opinion, i.e. a disjoint pair of subsets of F .

The basic idea of the argumentative aggregation of individual opinions is to consider
collective opinions by merging the opinions of non-conflicting coalitions of individuals.
A coalition is conflict-free if the individual’s opinions in the coalition does not attack
each other. Such a coalition is called an autarky if, in addition, has the property that
the collective opinion counterattacks any attack of the opinion of an individual not in
coalition. This property offers a rational justification for the output opinion.
In our example, such an autarky is C1 = {Bob,Cara} giving the output opinion OC1 =
({ham, pineapple,olive},{pepperoni,onion}). OC1 attacks the opinions of Anne, Dan
or Elly (on pepperoni) in response of their attacks (on olive, or ham). Another autarky is
C2 = {Elly} with her vegetarian opinion OC2 = ({olive, pepperoni},{ham,salami}).

This kind of explanatory selection of the output opinion arises in more important
choice situations, where the facts could be: ethical values; drugs to be administrated to
a patient; meanings of a discourse; actions, goals, propositions in political practice.

We introduce different types of autarkies, corresponding to the admissible based ex-
tensions in abstract argumentation. In fact, we show that any argumentation framework
can be viewed as a particular abstract debate. This implies that the time complexity of
the decision problems on the abstract debates is high, often beyond NP.

In the new framework, a natural way of elimination the conflicts in a coalition gives
rise to compromise autarkies and their collective opinions enlarge the set of opinions
returned by the argumentative aggregation operators. It is proved that the argumentative
aggregation operators satisfy appropriate unanimity and anonymity conditions but not

602 C. Croitoru

the analogue of Arrow’s independence condition. This shows that the argumentative
aggregation is strongly dependent on the context: the position of the collective opinion
on a fact depends not only on the positions of individual opinions on this fact, but
also depends on their position on other facts. The rest of the paper is organized as
follows. The next section presents a brief description of argumentation frameworks and
their semantics, as introduced by Dung [10]. It follows the main section in which we
introduce opinions and their attacks, abstract debates, aggregation operators, and focus
on argumentative aggregation obtained using (compromise) coalitions of individuals.
The last section concludes the paper and suggests future study.

2 Dung’s Theory of Argumentation

In this section we present the basic concepts used for defining classical semantics in
abstract argumentation frameworks introduced by Dung in 1995, [10].

Definition 1. An Argumentation Framework is a digraph AF = (A,D), where A is a
finite and nonempty set; the vertices in A are called arguments, and if (a,b) ∈ D is a
directed edge, then argument a defeats (attacks) argument b.

Let AF = (A,D) be an argumentation framework. For each a ∈ A we denote a+ =
{b ∈ A| (a,b) ∈ D} the set of all arguments attacked by a, and a− = {b ∈ A| (b,a) ∈
D} the set of all arguments attacking a. These notations can be extended to sets of
arguments. The set of all arguments attacked by S ⊆ A is S+ =

⋃
a∈S a+, and the set of

all arguments attacking S is S− =
⋃

a∈S a−. We also have /0+ = /0− = /0.
The set S of arguments defends an argument a ∈ A if a− ⊆ S+ (i.e. any a’s attacker

is attacked by an argument in S). The set of all arguments defended by a set S of ar-
guments is denoted by F(S). For M ⊆ 2A, max(M) denotes the set of maximal (w.r.t.
set-inclusion) members of M and min(M) denotes the set of its minimal members.

Definition 2. Let AF = (A,D) be an argumentation framework.

– A conflict-free set in AF is a set S ⊆ A with property S∩ S+ = /0 (i.e. there are no
attacking arguments in S). We will denote cf(AF) = {S⊆ A|S is conflict-free set }.

– An admissible set in AF is a set S ∈ cf(AF) with property S− ⊆ S+ (i.e. defends its
elements). We will denote adm(AF) = {S⊆ A|S is admissible set }.

– A complete extension in AF is a set S ∈ cf(AF) with property S = F(S). We will
denote comp(AF) = {S⊆ A|S is complete extension }.

– A preferred extension in AF is a set S∈max(comp(AF)). pref(AF) :=max(comp(AF)).
– A grounded extension in AF is a set S∈min(comp(AF)). gr(AF) :=min(comp(AF)).
– A stable extension in AF is a set S ∈ cf(AF) with the property S+ = A− S. We will

denote stab(AF) = {S⊆ A|S is stable extension }.

3 Abstract Debates

In this section we introduce our new framework of aggregating individual opinions,
consider its relationship with argumentation frameworks in order to define the argu-
mentative aggregation operators.

Argumentative Aggregation of Individual Opinions 603

Let F �= /0 be a finite set of facts (items). An opinion on F (shortly, F-opinion) is a
pair O = (L ,DL) of disjoint sets of facts: L,DL⊆ F and L∩DL = /0. L is the set of liked
(agreed, accepted) facts in O and DL is the set of disliked (disagreed, rejected) facts
in O (the facts in F− (L∪DL) are not the subject of opinion O). O(F) denotes the set
of all F-opinions. O = (L ,DL) ∈ O(F) is a full opinion if L∪DL = F , and a single-
minded opinion if |L| = 1. An Abstract Debate is a tuple AD = (F,S,{Os}s∈S), where:
S, the society, is a finite non-empty set of individuals (agents, persons); Os ∈ O(F) is
the F-opinion of individual s∈ S. We denote by A D(F,S) the set of all abstract debates
of S over F . The graph representation of the abstract debate AD = (F,S,{Os}s∈S) is the
bipartite digraph GAD = (F,S;E), where (f ,s) ∈ E if and only if f ∈ Ls and (s, f) ∈ E
if and only if f ∈ DLs. The graph representation of the debate in the introduction is
depicted in Figure 1 b). This is an intuitive and concise representation of a debate.

Note that our abstract debates correspond to profiles in SCT and to agendas in the
Judgment Aggregation area. In fact, our framework is equivalent to judgment aggrega-
tion with atomic propositions only (and their negations) and with the standard require-
ment of completeness dropped. Also, note that if in the bipartite digraph GAD a node
f ∗ ∈ F with f ∗ = arg max f∈F(| f+|− | f−|) is selected, then we obtain the well-known
dis&approval voting procedure characterized axiomatically in [2].

Our approach is based on the following relationship between abstract debates and
argumentation frameworks.

Definition 3. (Abstract Debates vs Argumentation Frameworks)
(i) Let O1 = (L1,DL1),O2 = (L2,DL2) ∈ O(F). O1 agrees with O2 on f ∈ F if

f �∈ L1∩DL2∪DL1∩L2. O1 attacks O2 on f ∈ F if f ∈DL1∩L2. O1 agrees with O2 if
O1 agrees with O2 on every f ∈F . O1 attacks O2 if there is f ∈ F such that O1 attacks O2

on f . The argumentation framework associated to AD = (F,S,{Op}p∈S) ∈ A D(F,S)
is AF(AD) = (S,D) in which the arguments are the individuals and an individual s1

attacks an individual s2 if and only if Os1 attacks Os2 .
(ii) Let AF = (A,D) be an argumentation framework such that (a,a) �∈D,∀a∈ A.The

abstract debate assocsiated to AF is ADAF = (FAF ,SAF ,{Os}s∈SAF), where FAF =
{ fa|a ∈ A}, SAF = {sa|a ∈ A}, and for each a ∈ A, Osa = ({ fa},{ fb|b ∈ a+}).

In Figure 2 i) is illustrated the attack digraph of the argumentation framework asso-
ciated to the pizza topping debate in the Introduction. Note that we labelled each attack
with the set of facts on which the corresponding opinions attacks each other (h=ham,
p=pepperoni, s=salami, o=olive). In Figure 2 ii) we have the attack digraph of a simple
argumentation framework AF , and the bipartite digraph representation of its associated
abstract debate ADAF , is depicted in Figure 2 iii). Note that in ADAF each fact fa is liked
by exactly one individual sa, and all individual’s opinions are single minded.

The argumentation framework AF(AD) can be used to consider particular sets of
compatible individuals such that their merged collective opinion defends itself against
the attacks of the opinions of individuals outside these sets.
A coalition in AD = (F,S,{Op}p∈S) is any subset C ⊆ S. C is opinion-closed if

OC = (LC ,DLC) =
(⋃

p∈C

Lp,
⋃

p∈C

DLp
)
∈O(F). OC is the collective

604 C. Croitoru

e a

c

d

b

sa

sb

sc

sd

se

fa

fb

fc

fd

fe

(ii) (iii)

Fig. 2. Abstract Debates vs Argumentation Frameworks

Anne

Bob

DanElly

Cara

{h}
{o}

{o}
{p}

{h}
{p}{h}

{o}
{s}

{p} {h}
{p}

{h}
{p}

{h}

{p}

(i)

opinion of the coalition C . Note that a coalition C is opinion-closed if and only if
C is a conflict-free set in AF(AD). It follows that each admissible based extension in
AF(AD) gives rise to a collective opinion in O(F) and the semantics in AF(AD) can be
transferred to the abstract debate AD.

Definition 4. Let AD = (F,S,{Op}p∈S) ∈A D(F,S) an abstract debate.

– A coalition C is an autarky in AD if C is an admissible set in AF(AD), i.e. if it is
opinion-closed and for each p ∈ S−C , if Op attacks OC then OC attacks Op.

– A coalition C is a strong autarky in AD if C is a complete extension in AF(AD), i.e.
if it is an autarky, and, for each p �∈ C such that Op is not attacked by OC , there is
s �∈ C such that Os attacks Op and OC does not attack Os. A minimal strong autarky
(maximal strong autarky) is a strong autarky such that there is no strong autarky
strictly contained in it (stricly containing it).

– A coalition C is a stable coalition in AD if C is a stable extension in AF(AD), i.e. if
it is opinion-closed and OC attacks the opinion Op of any individual p outside C .

Example 1. Let AD be the topping pizza debate in the introduction. The only non-
empty opinion-closed coalitions are singletons and C1 = {Bob,Cara}. We can ob-
serve that OC1 = {Bob,Cara}= ({ham, pineapple,olive},{pepperoni,onion})attacks
OAnne, ODan, and OElly. It follows that C1 = {Bob,Cara} is a stable coalition (hence it
is an autarky, a strong autarky, and a maximal strong autarky). We can also easily see
that {Anne} and {Dan} are not autarkies but C2 = {Elly} is a stable coalition.
Example 2. Let AD be the abstract debate represented in the Figure 3 below.

s1 s2 s3 s4 s5 s6 s7

f1 f2 f3 f4 f5 f6 f7

Fig. 3. Bipartite digraph representation of debate in Example 2

C1 = {s5,s7} is an autarky. Indeed, OC1 = ({ f5, f7},{ f4, f6}). Os4 = ({ f4},{ f5})
attacks OC1 but this counterattacks Os4 ; Os6 = ({ f6},{ f7}) attacks OC1 but this coun-

Argumentative Aggregation of Individual Opinions 605

terattacks Os7 ; no other Osi attacks OC1 , for i ∈ {1,2,3}. C1 is also a strong autarky, but
it is not a maximal strong autarky since C2 = {s1,s3,s5,s7} is also a strong autarky as
we can easily verify. Note that C2 is also a stable coalition.

For the debate ADAF associated to an argumentation framework AF , the above dif-
ferent type of coalitions translate to the corresponding admissible based extensions in
AF . Hence the decision problems on argumentation frameworks can be polynomially
transformed into instances on abstract debates. Two typical examples are given below.

Credmsa: Given an abstract debate AD = (F,S,{Op}p∈S), and a fact f ∈ F . Is f con-
tained in the liked facts set LC of some maximal strong autarky C in AD?

Skeptmsa: Given an abstract debate AD = (F,S,{Op}p∈S), and a fact f ∈ F . Is f con-
tained in the liked facts set LC of each maximal strong autarky C in AD?

Using the time complexity results on the corresponding decision problems for argu-
mentation frameworks [11], and the above remark we obtain the following Theorem.

Theorem 5. Credmsa is NP-complete and Skeptmsa is Π P
2 -complete.

Coalitions are very restrictive when the opinions of individuals are full-opinions (in
this case, the only nonempty opinion-closed coalitions are singletons). Inspired by po-
litical practice, we consider a strategical way of coalition formation: some members of
a coalition renounces at some liked facts for making the coalition opinion-closed.

Definition 6. Let C be a coalition in AD = (F,S,{Os}s∈S). A C -compromise is a func-
tion α : C → 2F such that for every s ∈ C we have α(s) �= /0, α(s)⊆ Ls and

OC ;α = (LC ;α ,DLC) =
(⋃

p∈C

α(p),
⋃

p∈C

DLp
)
∈ O(F).

If α a C -compromise, the pair (C ,α) is a compromise σ for σ ∈ { autarky, strong
autarky, minimal strong autarky, maximal strong autarky, stable coalition} if C is a σ
in the abstract debate AD |C ;α = (F,S,{O′s}s∈S), where DL′s = DLs for every s ∈ S, and
L′s = Ls if s ∈ S−C and L′s = α(s) if s ∈ C .

Example. Let us consider again the pizza topping debate, and σ = stable coalition.
Clearly C3 = {Anne,Dan} is not opinion-closed. But, we can obtain a C3-compromise
by taking α3(Anne)= {pepperoni} and α3(Dan)= {pepperoni,salami}. Then (C3,α3)
is a stable coalition with OC3;α3 = ({pepperoni,salami},{olive,onion,ham}).

Note that in debates AD = (F,S,{Os}s∈S) with L p �= /0, ∀p ∈ S, if C is σ then C is
also a compromise σ (by taking α0(s) = Ls for each s ∈ C). Also, in the debates AD
with |L p|= 1, ∀p ∈ S, a coalition C is compromise σ if and only if C is σ .

We define now our argumentative aggregation operators.

Definition 7. An argumentative aggregation operator for abstract debates is a function
Aσ : A D(F,S)→ 2O(F) such that for any AD ∈A D(F,S),

Aσ (AD) = {OC ;α |(C ,α) is a compromise σ}.

606 C. Croitoru

In the terminology of SCT, our argumentative aggregation operators, Aσ , are (irreso-
lute) social functions. We can reduce the set of aggregate opinions by an appropriate
choosing of σ . Another possibility is to keep in Aσ (AD) only the opinions with a maxi-
mal (w.r.t. inclusion) set of liked facts. This would eliminate the trivial opinion (/0, /0) for
σ = autarky. Other strategy of reducing the set Aσ (AD) is to retain only the opinions
at minimum distance to the entire set of individuals opinion (after defining appropriate
distance functions).

We now turn to conditions one may wish to impose on an aggregation operator as
usually done in SCT. Let Aσ : A D(F,S)→ 2O(F) be an argumentative aggregation
operator for σ ∈ { autarky, strong autarky, minimal strong autarky, maximal strong
autarky, stable coalition}. We begin with the uncontroversial requirement that, if all in-
dividuals have the same opinion, this should be the collective one (Unanimity). Clearly,
if in an abstract debate AD = (F,S,{Os}s∈S) we have Os = O ∈ O(F) for every s ∈ S,
then the grand coalition S is σ and its collective opinion is OS = O. Hence every Aσ
satisfies the unanimity condition. Another basic democratic requirement of an aggrega-
tion operator is Anonymity: for every two abstract debates AD = (F,S,{Os}s∈S) and
AD ′ = (F,S,{O ′

s}s∈S) such that there is a permutation π : S → S with O ′
s = Oπ(s), we

have Aσ (AD) = Aσ (AD ′). Clearly, if π : S→ S is a permutation, then a coalition C is
σ if and only if π(C) = {π(s)|s ∈ C } is σ . Hence every Aσ satisfies the anonymity
condition. Similarly, we can easily argue that every Aσ satisfies Neutrality: the set of
aggregate opinions returned by Aσ for a debate obtained by renaming the facts in a
debate is obtained by renaming the facts in each aggregate opinion returned by Aσ for
that debate. Also, by the definition, every Aσ satisfies Compatibility (each returned
opinion agrees with at least one individual opinion), introduced in [18].

The main tool used in SCT to change the argument of an aggregation operator with-
out changing the output is the Arrow’s independence of irrelevant alternatives. Aσ sat-
isfies Independence if for every f ∈ F , AD1 = (F,S,{O1

p}p∈S), AD2 = (F,S,{O2
p}p∈S),

if O1
s agrees with O2

s on f for all s ∈ S, then for every opinion O1 ∈ A(AD1)
there is a nontrivial opinion O2 ∈ A(AD2) such that O1 agrees with O2 on f .

Since the operators Aσ are not "fact wise" and are strongly dependent on the context of
the debate on which they are applied, we have the following theorem.

Theorem 8. Argumentative aggregation operators Aσ do not satisfy independence.

Proof. Let F = { f ,g,h} be the set of facts and let S = {s1,s2,s3}. Let AD1 =
(F,S,{O1

p}p∈S) be the abstract debate in which O1
s1
= ({ f},{g}), O1

s2
= ({g},{ f}),

O1
s3
= ({h},{g}). Since all opinions in AD1 are single minded, we have no compromise

σ in the debate AD1. The coalition C = {s1,s3} is an autarky with OC = ({ f ,h},{g}).
There is no autarky containing s2 and other member of S since by adding s1 or s3 to {s2}
the resulting coalition is not opinion-closed. The coalition C ′ = {s2} is not an autarky
since OC ′ = ({g},{ f}) does not defend against the attack of O1

s3
= ({h},{g}). It fol-

lows that Aσ (AD1) =
{
({ f ,h},{g})

}
. Let AD2 =(F,S,{O2

p}p∈S) be the abstract debate
in which O2

s1
= ({ f},{h}), O2

s2
= ({g},{ f ,h}), O2

s3
= ({h}, /0). All opinions in AD2 are

single minded, hence we have no compromise σ in the debate AD2. The only autarky is

Argumentative Aggregation of Individual Opinions 607

C = {s2}, therefore Aσ (AD2) =
{
({g},{ f ,h})

}
. Hence no opinion in Aσ (AD1) agrees

with an opinion in Aσ (AD2) on f . But, O1
s agrees with O2

s on f , ∀s ∈ S. �

4 Discussion

In spite of its proximity to the field of judgment aggregation (JA), in our approach the
"facts" in F are not a priory logically related. However, it is possible to discuss problems
related to "logical consistency" by considering opinion spaces, in which an opinion
O = (L,DL) is consistent if and only if L∩DL = /0, where L is the set of facts entailed
by L under a predefined entailment relation on F . The opinion attack digraph is defined
now by considering that an opinion O = (L,DL) attacks any opinion O ′ = (L ′,DL ′) if
and only if DL∩L ′ �= /0. In this way, we meet questions related to logically based AF’s
([6]), since opinion-closed coalitions are not simply conflict-free sets (as we obtained
for the particular case X = X). However, using specific rules from judgment aggregation
field (see [15] and its references), could be worthwhile, when these are applied to our
set Aσ (AD) of aggregate opinions. Of course, our incipient study of the properties of
argumentative operators must be developed. Most of the properties studied in SCT or
JA are quantitative in nature and require introducing a structure on the set of abstract
debates in order to replace the independence property as a vehicle for passing from a
profile (debate) to another one to obtain impossibility or non-manipulability results.

References

[1] Airiau, S., Endriss, U., Grandi, U., Porello, D., Uckelman, J.: Aggregating dependency
graphs into voting agendas in multi-issue elections. In: Proc. of IJCAI 2011 (2011)

[2] Alcantud, J., Laruelle, A.: Dis&approval voting: A characterization. Social Choice and Wel-
fare, 1–10 (2013)

[3] Arrow, K.: A difficulty in the concept of social welfare. Journal of Political Economy, 328–
346 (1950)

[4] Arrow, K.: Social Choice and Individual Values. Wiley (1963)
[5] Arrow, K., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare. Elsevier (2002)
[6] Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial In-

telligence 171, 286–310 (2007)
[7] Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation. Au-

tonomous Agents and Multi-Agent Systems 22, 64–102 (2011)
[8] Coste-Marquis, S., Devred, C., Konieczny, S., Lagasquie-Schiex, M.C., Marquis, P.: On the

merging of Dung’s argumentation systems. Journal of Artificial Intelligence 171, 730–753
(2007)

[9] Croitoru, C.: Abstract debates. In: Proc. of ICTAI 2013 (2013)
[10] Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence 77, 321–357
(1995)

[11] Dunne, P., Bench-Capon, T.: Coherence in finite argument systems. Artificial Intelli-
gence 141, 187–203 (2002)

[12] Dunne, P., Marquis, P., Wooldridge, M.: Argument aggregation: Basic axioms and complex-
ity results. In: Proc. of COMMA 2012 (2012)

608 C. Croitoru

[13] Endriss, U., Grandi, U.: Graph aggregation. In: Proc. of COMSOC 2012 (2012)
[14] Konieczny, S., Pérez, R.P.: Merging information under constraints: A logical framework.

Journal of Logic and Computation 12, 773–808 (2002)
[15] Lang, J., Pigozzi, G., Slavkovik, M., van der Torre, L.: Judgment aggregation rules based

on minimization. In: Proc. of TARK 2011, pp. 238–246 (2011)
[16] List, C., Puppe, C.: Judgment aggregation: A survey, ch. 19, pp. 158–190. Oxford University

Press (2009)
[17] Pigozzi, G.: Belief merging and the discursive dilemma: An argument-based account to

paradoxes of judgment aggregation. Synthese 152, 285–298 (2006)
[18] Pigozzi, G., Grandi, U.: On compatible multi-issue group decisions. In: Proc. of LOFT 2012

(2012)
[19] Porello, D., Endriss, U.: Ontology merging as social choice. In: Leite, J., Torroni, P.,

Ågotnes, T., Boella, G., van der Torre, L. (eds.) CLIMA XII 2011. LNCS, vol. 6814, pp.
157–170. Springer, Heidelberg (2011)

[20] Rahwan, I., Larson, K., Tohme, F.: A characterisation of strategy-proofness for grounded
argumentation semantics. In: Proc. of IJCAI 2009, pp. 251–256 (2009)

[21] Rahwan, I., Tohme, F.: Collective argument evaluation as judgement aggregation. In: Proc.
of AAMAS 2010 (2010)

[22] Tohmé, F.A., Bodanza, G.A., Simari, G.R.: Aggregation of attack relations: A social-choice
theoretical analysis of defeasibility criteria. In: Hartmann, S., Kern-Isberner, G. (eds.)
FoIKS 2008. LNCS, vol. 4932, pp. 8–23. Springer, Heidelberg (2008)

Measuring Dissimilarity between Judgment Sets

Marija Slavkovik and Thomas Ågotnes

University of Bergen, PB. 7802, 5020 Bergen, Norway
{marija.slavkovik,thomas.agotnes}@infomedia.uib.no

Abstract. Distances and scores are widely used to measure (dis)similarity be-
tween objects of information such as preferences, belief sets, judgment sets, etc.
Typically, measures are directly imported from information theory or topology,
with little consideration for adequacy in the context of comparing logically re-
lated information. We propose a set of desirable properties for measures used to
aggregate (logically related) judgments, and show which of the measures used for
this purpose satisfy them.

1 Introduction

The aggregation of sets of logically related information is a problem that occurs in at
least four disciplines with intersecting areas of interest with multiagent systems and
artificial intelligence: judgement aggregation [3], belief revision [11], social choice [3]
and abstract argumentation [2]. Many approaches to aggregating sets of information are
based on comparing the information sets and measuring how similar they are. Further-
more, studies of complexity of various forms of manipulation, see for example [9,8,1],
extensively rely on similarity comparisons. For an effective comparison, information
sets cannot be viewed as inseparable units that are either entirely the same or entirely
different from each other.

Simply counting the number of units on which collections of information differ,
namely using the Hamming distance [10], is adequate only when these units are logi-
cally independent [12,7,2]. Although the Hamming distance is extensively used to ag-
gregate them [12,8,11,16,17], in general, neither sets of beliefs, arguments labelings,
votes, preferences, nor sets of judgments contain exclusively logically unrelated el-
ements. How should logically related information sets be compared, namely, which
properties should be satisfied by the (dis)similarity measures used?

We focus on sets of judgments and their comparison for the purpose of aggregation.
Since judgment aggregation has known relations with belief merging [17], preference
aggregation [15], voting [13], and aggregation of labelings within abstract argumen-
tation [4,2], dissimilarity measures for sets of judgments can also be applied in these
disciplines. In this paper we focus on three tasks: a) identifying a set of properties com-
mon to all dissimilarity measures used in the literature; b) defining desirable properties
of dissimilarity measures that are apt for comparing sets containing logically related
information; c) showing that there exist measures that satisfy both sets of properties.

In Section 2 we give the necessary preliminaries, while in Section 3 we first discuss
related work and then we attend to tasks a) and b). In Section 4 we concern ourselves
with task c). In Section 5 we draw conclusions and outline directions for future work.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 609–617, 2014.
c© Springer International Publishing Switzerland 2014

610 M. Slavkovik and T. Ågotnes

2 Preliminaries

Judgment aggregation problems are typically represented using a set L of well-formed
propositional logic formulas, including � (tautology) and � (contradiction). An issue
is a pair of formulas �ϕ,�ϕ� � L where ϕ is neither a tautology nor a contradiction.
For simplicity, we often abuse notation and write only the positive formula when we
discuss issues. An agenda A is a finite set of issues, A � �ϕ1,�ϕ1, . . . , ϕm,�ϕm�. A
sub-agenda Y � A is a subset of issues from A, e.g., Y � �p,�p� is a sub-agenda for
A � �p,�p, q,�q�. A judgment on an issue ��ϕ, ϕ� � A is one of ϕ or �ϕ.

A judgment set J is a subset of A, complete iff for each ��ϕ, ϕ� � A either ϕ � J or
�ϕ � J , and incomplete otherwise. A judgment set J is consistent iff it is a consistent
set of formulas. For a given agenda A, the set of all consistent nonempty judgment sets
is D	A
, while D	A
 � D	A
 is the set of all consistent and complete judgement sets.
Judgment sets J1, J2 � D	A
 are complementary when for every ϕ � A, ϕ � J1 iff
�ϕ � J2.

A profile P � D	A
n is a tuple P � �J1, . . . , Jn� of judgment sets for agents
1, . . . , n. An (irresolute) judgment aggregation rule is a correspondence F : D	A
n
2D�A���. Namely, a judgment aggregation rule associates a set of complete and con-
sistent judgment sets for an agenda A, called collective judgment sets, to a profile of
judgments for the same A. Two very basic properties for judgment aggregation rules are
unanimity, for every P � D	A
n s.t. P � �J, J, . . . , J�, F 	P
 � �J�, and anonymity
for every permutation σ of P and every P � D	A
n, F 	P
 � F 	σ	P

.

Two existing classes of judgment aggregation rules make use of similarity or dis-
similarity measures, respectively, selecting collective judgment sets: scoring rules [6],
which here we refer to using Fs, and distance-based rules [7,8,16,17], here denoted
with Fd,�. We give the respective definitions for these two classes of rules using our
notation. For any A, P � D	A
n, P � �J1, . . . , Jn�:
Fs	P
 � argmax

J�D�A�

�

i��1,n�

�

ϕ�J�Ji

s	Ji, ϕ
, Fd,�	P
 � argmin
J�D�A�

�	d	J1, J
, . . . , d	Jn, J

.

In the definition of Fs, s is a scoring function of type s : D	A
 � A R. Scoring
functions assign judgment set-dependent scores for each possible judgment that can be
cast. One set J is more similar to a given Ji than another j set J �, if the sum of scores
of the judgments in J , according to the Ji-respective scoring, is higher than that sum of
the scores assigned to judgments in J �.

In the definition of Fd,�, two functions are used to determine the collective judgment
sets. The function � : Rn R is an n-ary aggregation function that assigns a unique
value to an n-ary vector of values. E.g., the function Σ in definition of Fs is an n-ary
aggregation function; other examples include max, min, and Π . The second function
used in the definition of Fd,� is the dissimilarity function d, defined for every A � L,
as d : D	A
�D	A
 R, which assigns a higher number the more different Ji is from
J .

Dissimilarity measures are typically defined as functions that take as arguments two
sequences of equal length: for every A � L, d : Am�Am R. Observe that d is being
defined for all agendas; we stipulate that d compares judgment sets that are complete
and consistent judgment sets for the same agenda.

Measuring Dissimilarity between Judgment Sets 611

Although scores and dissimilarity measures appear to be different functions, we show
that for every scoring function s there exists a corresponding dissimilarity function ds,
and as a result, we show that the Fs rules are a special case of the Fd,� rules.

Definition 1. For every agenda A � L and scoring function s : D	A
 � A R,
for every J, J � � D	A
 we define S	J, J �
 �

�

ϕ�J�J �

s	J, ϕ
. A dissimilarity measure

ds : D	A
 � D	A
 R corresponds to a scoring function s : D	A
 � A R
iff, for every J, J �, J	 � D	A
, ds	J, J �
 � ds	J, J

	
 iff S	J, J �
 � S	J, J	
 and
ds	J, J

�
 � ds	J, J
	
 iff S	J, J �
 � S	J, J	
.

Proposition 1. For every finite agenda A � L, for every scoring function s there exists
a corresponding dissimilarity measure ds.

Proof. Observe that S	J, J �
 gives a J-dependent score that measures similarity to a
judgement set J � by summing the scores of all the judgments in J � J � . If instead we
sum the scores for the judgments in J�J �, we obtain a dissimilarity measure. For each

s we can define a ds as: ds	J, J �
 �
s�

ϕ�J
J �

	J, ϕ
. To show that ds is corresponding to

s, it is sufficient to observe that the judgment sets are finite, hence the maximal value
that s can obtain for a given J is S	J, J
 and that ds	J, J �
 � S	J, J
 � S	J, J �
.

It is now easy to show that Proposition 2 holds. The proof of the proposition consists
in observing that, for each Fs, and P � D	A
n, Fs	P
 � Fds,

�	P
.

Proposition 2. For every scoring rule Fs there exists a rule Fd,� such that for every
P � D	A
n, Fs	P
 � Fd,�	P
.

Due to Propositions 1 and 2 it is sufficient to consider dissimilarity measures when
looking for desirable properties for both similarity and dissimilarity measures in judg-
ment aggregation.

3 Measuring Dissimilarity between Judgment Sets

We first discuss related work on measuring dissimilarity between judgment sets and
then what can be considered general requirements for such measures, before discussing
how sensitivity to logic relations can be expressed as their property. The general re-
quirements we outline are weak properties that most of the dissimilarity measures in
use should satisfy. Although most are obvious, we do need to have them to show that
they can be consistent with properties of sensitivity to the logic relations.

Given that it is obvious that a different (dis)similarity measure, even for the same ag-
gregator�, yields a judgment aggregation rule with different properties, it is surprising
that not even very general requirements on the ds functions induced from scoring rules
are required or discussed, meaning that anything goes as long as the scoring rule fits the
signature D	A
 �D	A
 R. The situation appears to be better when the dissimilarity

612 M. Slavkovik and T. Ågotnes

functions d are used directly in the distance-based rules, whereupon it is usually re-
quired that the function d is a pseudo-distance1 or a distance [5]. It can be observed that
the judgment aggregation rule Fd,� works with any dissimilarity measure. The (pseudo-
)distance requirements have been imported from the literature of belief merging [11],
from where the Fd,� rules originate, however the necessity of these requirements in
judgment aggregation has never been justified.

The requirement of triangular inequality is easy to drop, since it is not required in be-
lief merging either and no justification for it has been offered in judgment aggregation.
The need for the symmetry property is not so clear. Five out of the six scoring functions
presented in [6] give rise to ds that is not symmetric, as it is simple to verify by looking
at the examples in [6]. The exception is the simple scoring rule which corresponds to
the Hamming distance. When one is measuring a distance, symmetry is necessary, but
dissimilarity can be meaningful without symmetry as the scoring rules demonstrate. We
therefore consider symmetry desirability to be context-dependent.

In [19] it has been identified that the non negativity and identity of indiscernibles
properties of a pseudo-distance are necessary for the Fd,� rule to satisfy unanimity. It
was also established that the anonymity of Fd,� does not depend on the function d, but
on whether the aggregation function � is commutative or not. As a consequence, all
scoring rules will satisfy anonymity, however only those for which ds is non-negative
will satisfy unanimity.

Let us consider the sensitivity to logic relations for a similarity measure at this point
before considering some more properties of measures from the literature. In [7] it is ar-
gued that if for an agenda A two agents cannot disagree on one issue without disagree-
ing on another issue, then these two disagreements in their judgment sets should not be
counted as two disagreements, as the Hamming distance does, but only as one. In [7],
this requirement is captured by Axiom 5. A J2 � D	A
 is in-between J1, J3 � D	A
,
J1 � J2 � J3, if J1�J2 � J1�J3. Axiom 5 states that if J1, J2 � D	A
 are such
that there exists no in-between J � D	A
, then d	J1, J2
 � 1. Implicitly, in [7] it is
advocated that similarity measures should consider the logical relations among issues
and not only count disagreements. Here, we make explicit the logic relation sensitivity
hinted on in [12,7,2] by defining it as a set of properties for measures.

An agendaA cannot contain tautologies or contradictions, but we may add arbitrarily
many issues to it that are logically equivalent to existing agenda issues. Consider for
example two hiring committee members that do not agree that “a candidate is good for
the open position” (ϕ). Adding the issue “the candidate is not bad for the open position”
(��ϕ) to the agenda should not increase the quantity of disagreement between the
positions of the agents. Regardless of how many times an issue is cloned in the agenda,
the disagreement quantity should not increase, namely, a measure that is sensitive of the
logic relations among issues should be insensitive to agenda clones.

A property called disagreement monotonicity, is considered in [2], for aggregation
of labelings in argumentation, but applicable to judgment sets as well. A dissimilarity

1 A pseudo-distance f is a function that (for every x, y, z in its codomain) satisfies f�x, y� �
0 (nonnegativity), f�x, y� � 0 iff x � y (identity of indiscernibles) and f�x, y� �
f�y, x�(symmetry). A distance additionally satisfies f�x, y� � f�y, z� � f�x, z� (triangu-
lar inequality).

Measuring Dissimilarity between Judgment Sets 613

measure is disagreement monotonic if for all J1, J2, J3 � D	A
 s.t. J2 is in-between
J1 and J3, d	J1, J2
 � d	J1, J3
. Requiring that the amount of disagreement is strictly
increasing with the number of judgments on which two judgment sets differ is not
compatible with the insensitivity to agenda clones requirement. Indeed when a clone
is added to the agenda, the number of issues on which two judgment sets disagree will
increase, but the amount of disagreement will not. Therefore we propose weak disagree-
ment monotonicity, requiring that the amount of disagreement between judgment sets
does not decrease with an increase in the number of disagreeing issues in the sets.

In addition to Axiom 5, another requirement was considered in [7], the Axiom 4. Ax-
iom 4 states that, if J2 is in-between J1 and J3, then d	J1, J3
 � d	J1, J2
�d	J2, J3
.
Axiom 4 is strictly stronger than the disagreement monotonicity requirement of [2],
namely, in-between together with non-negativity implies disagreement monotonicity,
but the implication in the other direction does not hold. In judgment aggregation, dis-
agreement monotonicity is easy to justify, however requiring Axiom 5, that for every
judgment set there exists a judgment set at distance 1, is arbitrary outside of the scope
of the [7], where this property is needed to characterise the introduced distance. In addi-
tion, forcing Axiom 5 limits the domain of the dissimilarity measure to natural numbers.
We therefore consider only disagreement monotonicity to be a basic requirement.

The insensitivity to clones requirements can be made stronger. Assume that two com-
mittee members agree “not to hire any more academic staff until 2015”(�ϕ�) but do not
agree on “increasing the number of administrative staff” (ψ). The committee members
have no need to vote regarding the issue of “increase the number of academic staff and
hire John for a lecturer position” (ϕ� � ϕ”) as agreeing on �ϕ� also means an agree-
ment on�	ϕ��ϕ	
. Removing an implied judgment from the judgment sets should not
change the amount of disagreement between them. This property we call insensitivity
to consequents.

Definition 2. Let d : D	A
 � D	A
 R be a dissimilarity measure defined for every
A � L. The function d is an adequate dissimilarity measure for judgment aggregation
if, for every J1, J2, J3 � D	A
, properties (p1)-(p3) hold, and an adequate dissimilarity
measure for logically related sets of formulas if properties (p1)-(p5) hold. Desirability
of (p6) is context-dependent.
Nonnegativity: d	J1, J2
 � 0. (p1)
Identity of in-
discernibles:

d	J1, J2
 � 0 iff J1 � J2. (p2)

Agreement
monotonicity:

For every J1 � J2 � J3, if J3�J2 � J3�J1, then d	J2, J3
 �
d	J1, J3
.

(p3)

Insensitivity
to clones:

If there are ψ, ϕ � A s.t. ψ � ϕ, then for every J1, J2 � D	A
 it
holds that d	J1, J2
 � d	J1��ϕ,�ϕ�, J2��ϕ,�ϕ�
.

(p4)

Insensitivity
to
consequents:

If there exist S � J1 and ϕ � J1 s.t. J1 � D	A
, S � ϕ, and
there is no S� � S s.t. S� � ϕ, then for every J2 � D	A
, it holds
that d	J1, J2
 � d	J��ϕ,�ϕ�, J ���ϕ,�ϕ�
.

(p5)

Symmetry: d	J1, J2
 � d	J2, J1
. (p6)

Clearly when comparing d	J1, J2
 and d	J1��ϕ,�ϕ�, J2��ϕ,�ϕ�
, the sets J1 and
J1��ϕ,�ϕ� are not complete and consistent judgment sets for the same agenda:
J1 � D	A
 and J1��ϕ,�ϕ� � D	A��ϕ,�ϕ�
. However, these two sets do not need

614 M. Slavkovik and T. Ågotnes

to be from the same agenda, we are only comparing two rational numbers. Also ob-
serve that while (p4) is a property that refers to issues (that are pairs of judgments), the
(p5) property refers to judgments. Lastly, we mention two obvious relationships.

Proposition 3. If d satisfies insensitivity to consequents, then it also satisfies insensi-
tivity to agenda clones. The reverse does not hold. If d satisfies Axiom 4 as defined in
[7], then it also satisfies agreement monotonicity.

4 Compliance

In this section we analyse existing (dis)similarity measures from the literature and
identify which satisfy the desirable properties we outlined. We demonstrate that there
does exist a measure that satisfies all (p1)-(p6). We found the following measures:
the Hamming and drastic distances dH and dD, see e.g., [16], defined respectively as
dH	J1, J2
 � �J2�J1�	� �J1�J2�
 and dD	J1, J2
 is 0 iff J2�J1 � � and 1 otherwise;
the five scoring rules from [6]: reversal scoring, entailment scoring, disjoint entailment
scoring, minimal entailment scoring and irreducible entailment scoring, giving rise to
drv, det, dds, dmd, and dir respectively; the critical subsets distance dCS from [2] and
the minimal prime implicant measures introduced in [18], definitions follow. We omit
here the definitions of the five scoring functions from [6], and resulting distances, due
to space restrictions. These are fairly simple to retrieve from the original work [6], and
the proofs involving them are straightforward. We give the definitions of the rest.

We repeat the concept of prime implicants of judgment sets introduced in [18]. Con-
sider an agenda A and J � D	A
 with a subset I � J . The set I is an implicant of J
if for every ϕ � J it holds that I � ϕ. I is a prime J-implicant if I is an implicant of
J and there is no I � � I s.t. I � � ϕ for every ϕ � J . Intuitively, the prime J-implicant
is a set of judgments which when known, all the judgments in J can be known as well.
We assume that PI	�
 � �. The minimal prime J-implicant is defined as that prime
J-implicant that, among all of the prime J-implicants, has the minimal cardinality. We
denote the set of prime implicants for J with PI	J
 and the minimal prime J-implicant
with MPI	J
: MPI	J
 � argmin

I�PI�J�

�I�. The Minimal sum prime implicant measure is

defined as dmsp	J1, J2
 � �MPI	J2�J1
� � �MPI	J1�J2
�.
A critical set for an agendaA is a sub-agendaY � A, s.t. for everyJ � D	A
,J�Y ��
J and there exists no sub-agenda Y � � Y s.t. J � Y � �

�
J . E.g., for the agenda

A � �p,�p, q,�q, p � q
,�	p � q
�, there is one critical set Y � �p,�p, q,�q, �.
For a critical subset Y � A, dCS	J1, J2
 � dH 	J1 � Y, J2 � Y
.

We also consider the Duddy-Piggins distance dDP from [7]. Let G � �V,E� be a
graph in which the set of vertices is V � D	A
 and there exists an edge, in the set of
edges E � D	A
 � D	A
, between two judgement sets J1 and J2 iff there exists no
J3 � D	A
 in-between J1 and J2. For any J1, J2 � D	A
, dDP 	J1, J2
 is the minimal
number of edges between J1 and J2.

Proposition 4. The compliance of the dissimilarity measures dD , dmsp, dDP , dCS , dH ,
drv, det, dds , dmd , and dir with properties (p1)-(p6) is as in Table 1.

Proof. We prove only the non-obvious entries.

Measuring Dissimilarity between Judgment Sets 615

Table 1. Compliance of existing distances with proposed properties

(p1) (p2) (p3) (p4) (p5) (p6)
dD, dmsp � � � � � �
dDP , dCS � � � � � �
dH � � � � � �
drv, det, dds , dmd , dir � � � � � �

Measures dCS and dmsp are agreement monotonic.
Consider J1, J2, J3 � D	A
, J1 � J2 � J3 s.t. J2 is in-between J1 and J3. For dCS ,
observe that if J2 is in-between J1 and J3, then also J2 � Y is in-between J1 � Y and
J3 � Y . Consequently dCS behaves as Hamming distance and is as such agreement
monotonic.

For dmsp we show that when J2 is in-between J1 and J3 (and J1 � J2 � J3)
it holds that MPI	J3�J2
 � MPI	J3�J1
. Observe that when J2 is in-between
J1 and J3 we can represent the sets J1, J2, J3 as a union of mutually exclusive sets
S1, S2, S3, S2, S3: J1 � S1 � S2 � S3, J2 � S1 � S2 � S3, J3 � S1 � S2 � S3,
where S1 � J1 � J2 � J3, S2 � J3 � J2, S3 � ��ϕ � ϕ � S3�, and S3 �
J2 � J1, S2 � ��ϕ � ϕ � S2�. We have that J3�J1 � S2 � S3 and J3�J2 � S3.
Since S2 is consistent with both S3 and S3, clearly neither of these subsets implies the
other. Therefore the MPI	J3�J1
 �MPI	J3�J2
 �MPI	S2
 and MPI	J3�J2
 �
MPI	J3�J1
. Observe further that MPI	J1�J3
 �MPI	J2�J3
 �MPI	S2
. Con-
sequently MPI	J2�J3
 �MPI	J1�J3
.

We now have that dmsp	J2, J3
 � �MPI	S3
� � �MPI	S3
� and dmsp	J1, J3
 �
�MPI	S3
� � �MPI	S2
� � �MPI	S3
� � �MPI	S2
�.

From this proof it also follows that dmsp satisfies the Axiom 4 of [7]: observe that
MPI	J3�J2
 �MPI	J3�J2
 �MPI	S2
 �MPI	J3�J2
 �MPI	J2�J1
.

The measures dDP , dCS and dmsp are insensitive to clones.
Let A� � A � �ϕ,�ϕ� where ϕ � ϕi for some ϕi � A. Observe that there exists an
isomorphism between D	A
 and D	A�
. For every J � D	A
 there exists exactly one
J � � D	A�
, furthermore J � � J � �ϕ� iff ϕ � J and J � � J � ��ϕ� iff �ϕ � J .
Consequently, there is an edge between J1 and J2 in the graph G built for A iff there
is an edge between the corresponding J �

1 and J �
2 in the graph G� built for A�. Hence for

every J1, J2 � D	A
 and corresponding J �
1, J

�
2, dDP 	J1, J2
 � dDP 	J

�
1, J

�
2
.

For dCS , observe that a logically equivalent issue (to some agenda issue) would
never be part of the critical set. The insensitivity to clones of dmsp is obtained as a
consequence of its insensitivity to consequents; proof follows.

The dDP and the dCS are not insensitive to consequents.
As a counter example for dDP , consider an A � �p,�p, p� q,�	p� q
� and J1, J2 �
D	A
 s.t. J1 � �p, p� q� and J2 � ��p,�	p� q
�. Observe that ��p� � �	p � q
.
We have that dDP 	J1, J2
 � 2, because J3 � �p,�	p � q
� is in between J1 and
J2 (D	A
 � �J1, J2, J3�). However dDP 	J1��p � q�, J2���	p � q
�
 � 1, since
J3��p� q� � J2���	p� q
� and these two points in the graph for A collapse into one
point in the graph for A��p� q,�	p� q
�.

616 M. Slavkovik and T. Ågotnes

As a counter example for dCS consider A � �p,�p, p q,�	p q
�. Observe that
the critical set Y � A. Consider J1 � ��p,�	p q
� and J2 � �p, p q�. We have
�p� � p q. We have that dCS	J1, J2
 � 2 and dCS	J1��p q,�	p q
�, J2��p
q,�	p q
�
 � 1.

The dmsp is insensitive to consequents.
Let A be s.t. S � A, ϕ � A and S � ϕ. Let A� � A��ϕ,�ϕ� be a sub-agenda of
A. Consider a J1, J2 � D	A
 with S � J2 and corresponding J �

1 � J1 � A� and
J �
2 � J2�A�. There are two possible cases: (a)ϕ � J1 and (b) ϕ ! J1. If (a) is the case,

then J2�J1 � J �
2�J

�
1 (also J1�J2 � J �

1�J
�
2) and thus dmsp	J1, J2
 � dmsp	J

�
1, J

�
2
. If

(b) is the case, then S " J1. We have that ϕ ! MPI	J2�J1
, thus MPI	J2�J1
 �
MPI	J �

2�J
�
1
. If there exists an MPI	J1�J2
 s.t. �ϕ ! MPI	J1�J2
, then

�MPI	J1�J2
� � �MPI	J �
1�J

�
2
�. If for all MPI	J1�J2
, �ϕ � MPI	J1�J2
, then

there will be exactly one element of S not in MPI	J1�J2
 because S minimally entails
ϕ, thus �MPI	J1�J2
� � �MPI	J �

1�J
�
2
�.

5 Summary

Functions are used to quantify the (dis)similarity between different types of informa-
tion collections, in e.g., belief merging, judgment aggregation, preference aggregation
and abstract argumentation. This is the first work to consider the assembly of desir-
able properties for dissimilarity measures in judgment aggregation, as well as defining
properties that identify measures sensitive to the logic relations among judgments.

It is straightforward to show that neither of the scoring distances dH , drv, det, dds,
dmd, and dir are insensitive to clones. Any scoring function s can be transformed into
a clone insensitive version sci using sci	Ji, ϕ
 �

s�J,ϕ�
�Sϕ�

, where Sϕ � �ψ � ψ � A, ψ �

ϕ�. It remains to be explored whether the clone insensitive scores still generalise known
voting rules, as studied in [6,13].

Interesting future work arises from looking into how the “logic relation sensitivity”
properties of a measure interact with the properties of a judgment aggregation operator
that uses them. The first obvious property to investigate is the property of majority-
preservation. A profile is majority-consistent when the majoritarian set is consistent.
The majoritarian set is the judgment set in which each judgment is supported by a
majority in the profile. A judgment aggregation rule is majority-preserving when it se-
lects as a unique collective judgment set the majoritarian set whenever the profile is
majority-consistent. Can a distance-based rule using a logic relation sensitive dissimi-
larity measure be majority-preserving? It can be shown that neither the Duddy-Piggins
distance, nor the dmsp combined with the sum yield a majority-preserving rule. We
conjecture that this result scales to all sensitive measures and aggregators. Other pos-
sible dependencies between the judgment aggregation rule and the constituting d, such
as agenda separability [14] are likely to exist.

Acknowledgment. We are grateful to Jérôme Lang for his valuable comments on vari-
ous versions of this paper.

Measuring Dissimilarity between Judgment Sets 617

References

1. Baumeister, D., Erdélyi, G., Erdélyi, O.J., Rothe, J.: Computational aspects of manipulation
and control in judgment aggregation. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013.
LNCS, vol. 8176, pp. 71–85. Springer, Heidelberg (2013)

2. Booth, R., Caminada, M., Podlaszewski, M., Rahwan, I.: Quantifying disagreement in
argument-based reasoning. In: Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS 2012, Richland, SC, pp. 493–500. In-
ternational Foundation for Autonomous Agents and Multiagent Systems (2012)

3. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G. (ed.) Multi-
agent Systems, pp. 213–283. MIT Press (2013)

4. Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation. Au-
tonomous Agents and Multi-Agent Systems 22(1), 64–102 (2011)

5. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer (2009)
6. Dietrich, F.: Scoring rules for judgment aggregation. Social Choice and Welfare, 1–39 (2013)
7. Duddy, C., Piggins, A.: A measure of distance between judgment sets. Social Choice and

Welfare 39(4), 855–867 (2012)
8. Endriss, U., Grandi, U., Porello, D.: Complexity of judgment aggregation. Journal Artificial

Intelligence Research (JAIR) 45, 481–514 (2012)
9. Everaere, P., Konieczny, S., Marquis, P.: The strategy-proofness landscape of merging. Jour-

nal of Artificial Intelligence Research (JAIR) 28, 49–105 (2007)
10. Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Jour-

nal 29(2), 147–160 (1950)
11. Konieczny, S., Pino-Pérez, R.: Logic based merging. Journal of Philosophical Logic 40(2),

239–270 (2011)
12. Lafage, C., Lang, J.: Propositional distances and compact preference representation. Euro-

pean Journal of Operational Research 160(3), 741–761 (2005)
13. Lang, J., Slavkovik, M.: Judgment aggregation rules and voting rules. In: Perny, P., Pirlot,

M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol. 8176, pp. 230–243. Springer, Heidelberg
(2013)

14. Lang, J., Slavkovik, M., Vesic, S.: A weakening of independence in judgment aggregation:
agenda separability (extended abstract). In: Schaub, T. (ed.) Proceedings of the 21st European
Conference on Artificial Intelligence, page forthcoming (2014)

15. List, C., Puppe, C.: Judgment aggregation: A survey. In: Anand, P., Puppe, C., Pattanaik, P.
(eds.) Oxford Handbook of Rational and Social Choice. Oxford (2009)

16. Miller, M.K., Osherson, D.: Methods for distance-based judgment aggregation. Social
Choice and Welfare 32(4), 575–601 (2009)

17. Pigozzi, G.: Belief merging and the discursive dilemma: an argument-based account to para-
doxes of judgment aggregation. Synthese 152(2), 285–298 (2006)

18. Slavkovik, M., Agotnes, T.: A judgment set similarity measure based on prime implicants.
In: Proceedings of the 13th International Conference on Autonomous Agents and Multiagent
Systems, AAMAS, page forthcoming (2013)

19. Slavkovik, M., Jamroga, W.: Distance-based rules for weighted judgment aggregation
(extended abstract). In: Proceedings of AAMAS, pp. 1405–1406 (2012)

Exploiting Answer Set Programming

for Handling Information Diffusion
in a Multi-Social-Network Scenario

Giuseppe Marra1, Francesco Ricca2, Giorgio Terracina2,
and Domenico Ursino1,�

1 DIIES, University Mediterranea of Reggio Calabria, Via Graziella, Località Feo di
Vito, 89122 Reggio Calabria, Italy

2 Dipartimento di Matematica, University of Calabria, Via Pietro Bucci, 89136
Rende (CS), Italy

Abstract. In this paper we apply Answer Set Programming for analyz-
ing properties of social networks, and we consider Information Diffusion
in Social Network Analysis. This problem has been deeply investigated
for single social networks, but we focus on a new setting where many
social networks coexist and are strictly connected to each other, thanks
to those users who join more social networks. We present some experi-
ments allowing us to conclude that the way of spreading information in
a Multi-Social-Network scenario is completely different from that of a
Single-Social-Network context.

1 Introduction

Answer Set Programming (ASP)[2,14,18,30,31] is a powerful programming
paradigm for knowledge representation and declarative problem-solving. The
idea of ASP is to represent a given computational problem by a logic program
such that its answer sets correspond to solutions, and then, use an answer set
solver to find such solutions. The high knowledge-modeling power [2,14] of ASP
and the availability of efficient ASP systems [11], make ASP a suitable choice for
implementing applications where there is the need of representing and manipu-
lating complex knowledge. Nowadays, ASP counts applications in several fields,
ranging from Artificial Intelligence [1,3,4,17,32] to Knowledge Management [2,5],
Information Integration [8,7,28,29], and it was also exploited in industrial ap-
plications [21,22]. In this paper we apply ASP in a further field, namely Social
Network Analysis [12,16]. In particular, we focus on one of the most relevant
problems in this field, called Information Diffusion [13,19,20,24,25,26].

Information Diffusion problem has been investigated in the past for a Single-
Social-Network context. According to [24], this problem can be divided into three
main issues, namely: (i) modeling diffusion process, which implies to determine
how (i.e., through which paths) information is spread, (ii) detecting influential

� This work was partially supported by Aubay Italia S.p.A. and by the project
BA2Kno (Business Analytics to Know) funded by MIUR.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 618–627, 2014.
c© Springer International Publishing Switzerland 2014

Exploiting Answer Set Programming 619

nodes, which requires to identify those nodes of the network that play important
roles in the spreading process, and (iii) analyzing the most diffused topics, which
concerns the detection of the most popular pieces of information within the
network and those appearing the most relevant for a given node.

As for the diffusion process modeling, a basic predictive model is the Linear
Threshold (LT) one [20]; it assumes the existence of a static graph (representing
the social network) through which the diffusion process proceeds. LT requires the
definition of an influence degree on each edge and of a threshold on each node.
The diffusion process iteratively proceeds by starting from a set of initially ac-
tivated nodes. Inactive nodes are activated only if the sum of the degrees of the
edges directly connected to active nodes is higher than to the corresponding node
threshold. An alternative predictive model is the Independent Cascade (IC) one
[19]. In this model only edge weights play a role in the Information Diffusion
process. Indeed, once activated, a node has a unique chance to activate an in-
active neighbor node; this chance is directly proportional to the weight of the
edge connecting them. More recent models [23,33] improve these seminal ones,
allowing, for instance, the relaxation of the synchronicity assumption, previously
mandatory.

As for the detection of influential nodes, in the past, a variety of approaches
facing it in a single social network have been proposed. For instance, Kempe
et al. [25,26] propose an approach that exploits both LT and IC to face the
influence maximization problem. This problem was first introduced in [13]. Given
a parameter k, it aims at finding the k maximally influential nodes (i.e., the k best
early adopters). Indeed, thanks to a correct choice of them, it is possible to trigger
a large Influence Cascade within the network. Furthermore, found solutions can
be used to extract some general features characterizing them (i.e., a sort of their
“identikit”). We call this side-problem influential node characterization and its
extension (and next solution) from a Single-Social-Network Context to a MSNS
is one of the main contributions of this paper.

Information Diffusion has been largely investigated in the past on single social
networks. However, the current scenario is Multi-Social-Network [6,9,10]. Here,
many social networks coexist and are strictly connected to each other, thanks
to those users who join more social networks, acting as bridges among them.
But, what happens to the Information Diffusion problem when passing to this
new scenario? New aspects must be taken into account and new considerations
are in order. However, to the best of our knowledge, no investigation about this
issue has been made in the past. When starting this task, several new questions
arise, such as: (i) What is the role of bridges for Information Diffusion in a
Multi-Social-Network Scenario (MSNS, for short)? (ii) Are there other kind of
nodes (such as power user or bridge’s direct neighbors) that play a key role in
Information Diffusion? (iii) What is the “identikit” of the most influential nodes?
(iv) How this identikit varies when the number of social networks of the MSNS
increases? In this paper, we exploit ASP to give an answer to these questions
and, more in general, to face the Information Diffusion problem in an MSNS.

620 G. Marra et al.

2 Answer Set Programming

ASP is a declarative programming paradigm based on nonmonotonic reasoning.
Its main advantage consists in its declarativity, combined with a relatively high
expressive power. In ASP, a (disjunctive) rule r has the following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an, b1, . . . , bm are atoms, and n, k,m ≥ 0. A literal is either an
atom a or its negation not a. The disjunction a1∨ . . .∨an is the head of r, while
the conjunction b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty
body are called facts. Those with empty head are called strong constraints. A
rule is safe if every variable occurs in some positive literal of the body. An ASP
program is a set of safe rules. An atom, a literal, a rule, or a program is ground if
no variables appear in it. Let P be an ASP program. The Herbrand universe UP

and the Herbrand base BP of P , are defined as usual. The ground instantiation
GP of P is the set of all the ground instances of rules of P , that can be obtained
by substituting variables with constants from UP . An interpretation I for P is
a subset I of BP . A ground literal � (resp. not �) is true w.r.t. I if � ∈ I (resp.
� �∈ I), and false (resp. true) otherwise. A ground rule r is satisfied by I if at
least one atom in the head is true w.r.t. I whenever all literals in the body of
r are true w.r.t. I. A model is an interpretation that satisfies all the rules of a
program. Given a ground program GP and an interpretation I, the reduct [15]
of GP w.r.t. I is the subset GI

P of GP obtained by deleting from GP the rules
in which a body literal is false w.r.t. I. An interpretation I for P is an answer
set (or stable model [18]) for P if I is a minimal model (under subset inclusion)
of GI

P (i.e., I is a minimal model for the program GI
P) [15]. Optimal answer sets

can be specified by weak constraints. An ASP program with weak constraints is
Π =< R,W >, where R is a program and W is a set of weak constraints. In
detail, a weak constraint ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm.[w@l]

where w and l are the weight and level of ω. The semantics of Π extends from
the basic case defined above, thus we assume that R and W are ground in the
following. A constraint ω is violated by an interpretation I if all literals in ω are
true w.r.t. I. An optimal answer set O for P is an answer set of R that minimizes
the sum of the weights of the violated weak constraints in a prioritized way.

A complete description of the ASP language is out of the scope of this paper;
we refer the reader to [2] for a textbook on Answer Set Programming and to
[27] for a complete description of the language implemented by DLV, the ASP
implementation used for our analysis, which also supports aggregate atoms [15]
to easily encode aggregate functions as the ones available in SQL.

3 Modeling a Multi-Social-Network Scenario

A Multi-Social-Network Scenario models a context where several social networks
coexist and are strictly connected to each other, thanks to those users who

Exploiting Answer Set Programming 621

join more social networks. Indeed, when a user joins more social networks, her
multiple accounts allow these networks to be connected. We call bridge user each
user joining more social networks, bridge (node) each account of such a user and
me edge each edge connecting two bridges.

AMulti-Social-Network Scenario Ψ , consisting of n social networks {S1, S2, . . . ,
Sn}, can be modeled by a pair 〈G, T 〉. Here, T is a list {t1, t2, . . . , tp} of top-
ics of interest for the users of Ψ . It is preliminarily obtained by performing the
union/reconciliation of the topics related to the social networks of Ψ . G is a graph
and can be represented as G = 〈V,E〉. V is the set of nodes. A node vi ∈ V repre-
sents a user account in a social network of Ψ . E = Ef ∪Em is a set of edges. Ef is
the set of friendship edges; Em is the set of me edges. An edge ej ∈ E is a triplet
〈vs, vt, Lj〉. vs and vt are the source and the target nodes of ej , whereas Lj is a list
of p pairs 〈tjk , wjk〉, where tjk is a topic and wjk is a real number between 0 and 1
representing the corresponding weight. This weight depends on both tjk and the
ability of the user associated with vt to propagate, to the user associated with vs,
the information related to tjk .

4 Formalizing the Information Diffusion Problem in a
Multi-Social-Network Scenario

As previously pointed out, to extend the information diffusion problem from a
single social network to an MSNS, it is necessary to consider the peculiarities
of this scenario. As for the first issue of the Information Diffusion problem (i.e.,
the diffusion process model), we chose to exploit the Linear Threshold model.
Our updated version of this model in MSNS works as the traditional one, except
for me edges. In fact, as said before, a me edge links two accounts of the same
user (i.e. bridge nodes) belonging to different social networks. Thus, it makes no
sense to talk of influence degree for these edges, since a user cannot influence
herself. Actually, we can still define a degree for me edges but it depends on
the probability of a bridge user to share the content in other social networks
joined by her (i.e., to spread the information from a social network to another
one). This probability is a function of both the habits of the bridge user and
the features of the two social networks she joins. Moreover, as for the activation
rule of bridge nodes, the definition of a threshold is misleading. Indeed, given
a me edge and a bridge, if this last does not activate the corresponding bridge
at the moment of its own activation, it’s unrealistic that it will do this task in
a second time. As a consequence, it is reasonable to adopt an activation policy
for me edges similar to the one suggested by the Independent Cascade model.
This means that, at the time of its activation, given a me edge and a bridge, this
last has a single chance proportional to the probability defined for the edge, to
activate the corresponding bridge. On the basis of this reasoning, our diffusion
process model (called MSNS-DP model) is as follows.

MSNS-DP model. Consider an Information Diffusion task in an MSNS and
assume that at the jth step some nodes have already been activated. At the
(j + 1)th step an inactive node n is activated if: (i) the sum of the degrees

622 G. Marra et al.

of friendship edges directly connecting n to already active neighbors is higher
than the threshold associated with n, and/or (ii) a random number uniformly
extracted in the interval [0, 1] is lower than the diffusion probability of a me edge
connecting n to a bridge activated at the jth step.

As for the second issue of the Information Diffusion problem (i.e., the detec-
tion and characterization of influential spreaders), we start from the influence
maximization problem introduced in the Introduction. However, even in this
case, some modifications are in order. In fact, when passing from a single so-
cial network to an MSNS, it could happen that the optimal solution found by
classical approaches maximizes the diffusion in a single network leaving uncov-
ered the remaining ones. In order to take the peculiarities of the MSNS into
account, a slightly different definition of the influence maximization problem
(called MSNS-IM problem) is required.
MSNS-IM Problem. Given in input:
– A Multi-Social-Network Scenario Ψ , made of n social networks {S1, . . . , Sn}.
– A list D of n elements. The generic element Dh of D consists of a tuple
〈Sh, ph, ch〉. Here, Sh is a social network of Ψ . ch is the minimum desired
coverage for Sh, i.e., the minimum number of nodes of Sh which must be
reached by the information to spread throughout Ψ . ph denotes the priority
of Sh, it is an integer from 1 to n, where 1 (resp., n) is the maximum (resp.,
minimum) priority. The social network with the maximum (resp., minimum)
priority will the first (resp., the last) to have its coverage requirements sat-
isfied.

– A list τ of q elements. The generic element τ [k] of τ is a pair 〈tk, ωk〉. Here,
tk corresponds to the kth element of the set of topics T of Ψ . ωk is a real
number, belonging to the interval [0, 1] and indicating the weight of tk in the
information to spread throughout Ψ .

The MSNS-IM problem in Ψ requires to find the minimum set of the nodes of
Ψ allowing the maximization of the coverage of the social networks of Ψ , taking
into account the minimum required network coverage, the network priorities (as
expressed in D), and the topics characterizing the information to spread (as
expressed in τ). Observe that this version of the problem is quite different from
the one specified for single social networks in the past. Indeed, it does not fix
the parameter k but asks to find the minimum set of nodes (i.e., minimizing
k) that are able to trigger a diffusion process that guarantees, at least, the
coverage requirements represented in D. In this way, the optimization task is
transferred to the number of earlier starters, whereas the maximization of the
overall coverage is not considered, since it makes no sense in an MSNS. Clearly,
the solution of MSNS-IM problem, along with a next study of returned nodes,
leads to the detection and characterization of influential spreaders and, therefore,
to face the second issue of the Information Diffusion problem. Finally, in our
definition, topics (i.e., the third issue of the Information Diffusion problem - see
the Introduction) can be handled by means of the list τ given in input. In this
way, once the topics of interest of each node have been determined, it is possible
to state how much a node is important in the Information Diffusion process into
consideration.

Exploiting Answer Set Programming 623

5 Handling Information Diffusion in a MSNS with ASP

The MSNS-IM problem described in the previous section is extremely complex.
The adoption of ASP has been a strategic choice to allow an easy modeling
and a fast set-up of the approach implementation. Interestingly, the elegant
modeling of the problem in ASP is associated with acceptable performances of
the implementation.

First, let us define the input format of the problem. Let starting node(V)

be the set of nodes from which initially activated nodes must be chosen. Let
edge(V1,V2,K) be the relation containing the edges from V1 to V2, where K

specifies the edge kind (i.e., me or friendship). Let edge topic(V1,V2,T,W) be
the set of topics/weights associated with the edge from v1 to v2. Let node(V,Sn)
represent the set of nodes in the social network Sn. Finally, let D(Sh,Ph,Ch)

identify the desiderata for coverage and priority and tau(T,W) the set of topics,
with the corresponding weights, of the information to spread.

The logic program designed to solve our problem is as follows

1. in(V) v out(V) :- starting node(V).

2. :- D(Sh,Ph,Ch), #count{V:active(V),node(V,Sh)}<=Ch.
3. active(V) :- in(V).

4. active(V) :- active(V1),edge(V,V1,me).

5. active(V) :- node(V,Sn), #sum{W: edge(V,V1,friendship), active(V1),

edge topic(V,V1,T,W), tau(T,Wb) }>=Tw
6. :∼ in(V). [1@4]

7. :∼ node(V,Sn), not active(V). [1@3]

8. :∼ D(S1,P1,C1), D(S2,P2,C2), P1<P2,

nactive(S1,N1), nactive(S2,N2), N1<N2. [1@2]

9. nactive(Sn,N) :- node(V,Sn), #count{W: active(W), node(W,Sn)}=N.
10. :∼ tau(Ta,Wa), tau(Tb,Wb), active(V1), active(V2), Wa>Wb,

edge topic(V1,V2,Ta,W1), edge topic(V1,V2,Tb,W2), W1<W2. [1@1]

where, rule 1. guesses a subset of starting nodes sufficient for the optimization
purposes. To discard non admissible solutions, constraint 2. is exploited. In order
to compute the nodes activated by the current choice, rules 3. to 5. are applied.
Rules 3. and 4. state that a node is active if either it is a starting one, or it
reaches an active node through a me edge. In rule 5., Tw is a fixed threshold
indicating the minimum weight that must be totalized through the topics of the
edges connected to V to activate it. In our experimental campaign we performed
some simplifications about this activation policy. In particular, we assumed that
all the topics of Ψ have the same weight.It follows that all the friendship edges
in Ψ have the same weight (we assign a weight equal to 1 to them). We also
assumed that me edges always propagate the information to spread. This means
assigning a weight equal to 1 to all me edges. Finally, we assumed also that a
node is activated when at least two edges, outgoing from it, are pointing to
already activated nodes. This corresponds to set the threshold Tw to 2. Under
these assumptions, rules 3.-5. can be simplified.

Returning to the examination of our approach, we point out that the opti-
mization step consisting of the choice of the best models among the consistent

624 G. Marra et al.

ones, is carried out by a number of weak constraints. Specifically, the weak con-
straint 6. imposes that the number of nodes in the consistent solutions must be
minimum. The weak constraint 7. imposes the minimization of non-active nodes,
whereas the weak constraint 8. states that the best solution must be such that
the order of Social Networks in terms of activated nodes must follow what spec-
ified in the desiderata or, at least, the number of violations of this order must
be minimized. Rule 9. is an auxiliary one, counting the number of active nodes
for each social network. Analogously, weak constraint 10. minimizes the number
of selected arcs whose list of topics does not comply with the topic classification
specified in tau. Observe that all the weak constraints have the same weight,
but different priorities. This guarantees that, for instance, the minimum sets of
nodes providing consistent solutions are identified first, and, among them, the
ones minimizing non-active nodes are selected.

6 Experimental Campaign

To test our Information Diffusion approach we performed an experimental cam-
paign on an MSNS consisting of four social networks, namely LiveJournal, Flickr,
Twitter and YouTube. We chose these networks because they are the ones al-
lowing an easier access to their own data. Our MSNS has 93177 nodes and
146957 edges. The dataset can be downloaded from: www.ursino.unirc.it/
DiffusionJELIA.html. The password the Reader must specify is “85749236”.

We performed a large number of runs of our ASP program using DLV [27].
In these runs we considered many configurations of the starting nodes. They
differed in the number of nodes (ranging from 25 to 100 with a step of 25),
the percentage of bridges (ranging from 0 to 100 with a step of 10), and the
number of the social networks to cover (ranging from 2 to 4). To reduce the
influence of possible outliers, for each configuration we considered four different
sets of starting nodes randomly constructed by following the guidelines discussed
in Section 4. For each set of starting nodes we considered 10 different network
coverage requirements (ranging from 10% to 100% of each social network with
a step of 10%). The whole number of runs we have performed was 5280. Due to
space limitations, in the following we report only some of obtained results.

As a first experiment we measured the average percentage of bridges in the
optimal solutions. For this purpose, we computed the variation of the average
percentage of bridges present in the optimal solutions against the variation of
the average percentage of bridges present in the sets of starting nodes. Obtained
results are shown in Figure 1. Observe that the percentage of bridges in the opti-
mal solutions is generally higher, or much higher, than the percentage of bridges
in the sets of starting nodes. This information is precious for drawing an iden-
tikit of the most influential nodes for Information Diffusion in an MSNS. Indeed,
it suggests that bridges certainly play a key role in Information Diffusion in an
MSNS. Therefore, a first feature of influential nodes is that they are generally
bridges. Observe that, while it is straightforward that bridges are important for
spreading information from a social network to another of an MSNS, it is not so

www.ursino.unirc.it/DiffusionJELIA.html
www.ursino.unirc.it/DiffusionJELIA.html

Exploiting Answer Set Programming 625

Fig. 1. Average percentage of bridges in the optimal solutions

obvious that starting nodes are generally bridges. Indeed, in principle, it could
happen that starting nodes are non-bridges, and bridges are reached only in a
second time. The fact that starting nodes are generally bridges is an important
result of our paper and indicates that bridges allow the minimization of the set
of nodes necessary for spreading information in an MSNS.

As a second experiment we analyzed which kind of nodes generally compose
the optimal solutions. For this purpose, we computed the following statistics
(we first report the parameters and, then, in parentheses, the obtained value):
(i) average percentage of bridges (87%); (ii) average percentage of the direct
neighbors of bridges (13%); (iii) average percentage of power users (83%); (iv)
average percentage of the direct neighbors of power users (7%); (v) average
percentage of nodes being both bridges and power users (77%); (vi) average
percentage of nodes being bridges or power users (93%); (vii) average percentage
of nodes being bridges but not power users (6%); (viii) average percentage of
nodes being power users but not bridges (7%); (ix) average percentage of nodes
being neither bridges nor power users (10%); (x) average Jaccard coefficient1 of
bridges and power users (82%). From the analysis of these values we can observe
that 100% of the nodes in the optimal solutions are either bridges or direct
neighbors of bridges. Analogously, 90% of the nodes in the optimal solutions are
either power users or direct neighbors of power users. Furthermore, the majority
of the bridges involved in the optimal solutions are power users, and vice versa.
Finally, only a little fraction of the nodes present in the optimal solutions are
neither bridges nor power users. These results allow us to conclude that almost
all the bridges in the optimal solutions are power users. It tells also that if an
influential node is not a bridge, it is surely a direct neighbor of a bridge. We
think that the capability of our approach of finding solutions with a low number
of node, as emerged in the first test, is due to the double nature of influential
nodes: as bridges they can start the Information Diffusion process among the
social networks of our MSNS; as power users they can favor the in-depth diffusion
of the same information.

1 We recall that the Jaccard Coefficient J(A,B) between two sets A and B is defined
as J(A,B) = A∩B

A∪B
.

626 G. Marra et al.

References

1. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: A Case
Study in Answer Set Planning. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 439–442. Springer, Heidelberg (2001)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

3. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Logic-Based
Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers (2000)

4. Baral, C., Uyan, C.: Declarative Specification and Solution of Combinatorial Auc-
tions Using Logic Programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.)
LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 186–199. Springer, Heidelberg (2001)

5. Bardadym, V.A.: Computer-Aided School and University Timetabling: The New
Wave. In: Burke, E., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 22–45.
Springer, Heidelberg (1996)

6. Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., Pedreschi, D.: The pur-
suit of hubbiness: Analysis of hubs in large multidimensional networks. Journal of
Computational Science 2(3), 223–237 (2011)

7. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance. LNCS,
vol. 3300. Springer, Heidelberg (2005)

8. Bravo, L., Bertossi, L.: Logic programming for consistently querying data integra-
tion systems. In: Proc. of the International Joint Conference on Artificial Intelli-
gence (IJCAI 2003), Acapulco, Mexico, pp. 10–15 (2003)

9. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Discovering Links among Social
Networks. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012,
Part II. LNCS, vol. 7524, pp. 467–482. Springer, Heidelberg (2012)

10. Buccafurri, F., Lax, G., Nocera, A., Ursino, D.: Moving from social networks to so-
cial internetworking scenarios: The crawling perspective. Information Sciences 256,
126–137 (2014)

11. Calimeri, F., Ianni, G., Ricca, F.: The third open answer set programming compe-
tition. TPLP 14(1), 117–135 (2014)

12. Carrington, P., Scott, J., Wasserman, S.: Models and Methods in Social Network
Analysis. Cambridge University Press (2005)

13. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc.
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2001), pp. 57–66. ACM, San Francisco (2001)

14. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on
Database Systems 22(3), 364–418 (1997)

15. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004.
LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004)

16. Freeman, L.: The Development of Social Network Analysis. Empirical Press (2006)
17. Garro, A., Palopoli, L., Ricca, F.: Exploiting agents in e-learning and skills man-

agement context. AI Communications – The European Journal on Artificial Intel-
ligence 19(2), 137–154 (2006)

18. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385 (1991)

19. Goldenberg, J., Libai, E., Muller, E.: Talk of the network: A complex sys-
tems look at the underlying process of word-of-mouth. Marketing Letters 12(3),
211–223 (2001)

Exploiting Answer Set Programming 627

20. Granovetter, M.: Threshold models of collective behavior. American Journal of
Sociology 83(6), 1127–1138 (1978)

21. Grasso, G., Iiritano, S., Leone, N., Lio, V., Ricca, F., Scalise, F.: An asp-based
system for team-building in the gioia-tauro seaport. In: Carro, M., Peña, R. (eds.)
PADL 2010. LNCS, vol. 5937, pp. 40–42. Springer, Heidelberg (2010)

22. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowl-
edge Management. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 591–597. Springer, Heidelberg (2009)

23. Guille, A., Hacid, H.: A predictive model for the temporal dynamics of information
diffusion in online social networks. In: Proc. of the International World Wide Web
Conference (WWW 2012) - Companion Volume, pp. 1145–1152. ACM, Lyon (2012)

24. Guille, A., Hacid, H., Favre, C., Zighed, D.: Information Diffusion in Online Social
Networks: A Survey. SIGMOD Record 42(2), 17–28 (2013)

25. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a
social network. In: Proc. of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD 2003), pp. 137–146. ACM, Washington,
DC (2003)

26. Kempe, D., Kleinberg, J., Tardos, É.: Influential Nodes in a Diffusion Model for So-
cial Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 1127–1138. Springer, Heidelberg (2005)

27. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV System for Knowledge Representation and Reasoning. ACM Transactions on
Computational Logic 7(3), 499–562 (2006)

28. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni,
G., Ka�lka, E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis,
W., Terracina, G.: The INFOMIX System for Advanced Integration of Incomplete
and Inconsistent Data. In: Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data (SIGMOD 2005), pp. 915–917. ACM Press,
Baltimore (2005)

29. Manna, M., Ricca, F., Terracina, G.: Consistent query answering via ASP from
different perspectives: Theory and practice. Theory and Practice of Logic Pro-
gramming 13(2), 277–252 (2013)

30. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. CoRR cs.LO/9809032 (1998)

31. Niemelä, I.: Logic Programs with Stable Model Semantics as a Constraint Program-
ming Paradigm. In: Niemelä, I., Schaub, T. (eds.) Proceedings of the Workshop
on Computational Aspects of Nonmonotonic Reasoning, Trento, Italy, pp. 72–79
(May/June 1998)

32. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog
Decision Support System for the Space Shuttle. In: Ramakrishnan, I.V. (ed.) PADL
2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)

33. Saito, K., Ohara, K., Yamagishi, Y., Kimura, M., Motoda, H.: Learning diffu-
sion probability based on node attributes in social networks. In: Kryszkiewicz,
M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804,
pp. 153–162. Springer, Heidelberg (2011)

Reasoning about Dynamic Normative Systems

Max Knobbout, Mehdi Dastani, and John-Jules Ch. Meyer

Utrecht University, Department of Information and Computing Sciences
PO Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract. The use of normative systems is widely accepted as an ef-
fective approach to control and regulate the behaviour of agents in multi-
agent systems. When norms are added to a normative system, the
behaviour of such a system changes. As of yet, there is no clear for-
mal methodology to model the dynamics of a normative system under
addition of various types of norms. In this paper we view the addition
of a norm as an update of a normative system, and we provide update
semantics to model this process.

1 Introduction

The use of normative systems is widely accepted as an effective approach to
control and regulate the behavior of agents in multi-agent systems [12]. Nor-
mative systems are generally considered as systems that specify the standards
of behaviours for the agents, such as which actions or which states should be
achieved or avoided [11,10,1].

A lot of research has focused on deciding (or proving) correctness of a nor-
mative system. A normative system is correct if, after implementing it, the ob-
jectives of the system designer are satisfied [11]. This might include restrictions
like robustness of defection [3,7] or rationality to comply [2,4]. However, these
approaches do not cope with the fact that the behaviour of a system may change
over time. When norms are added to a normative system, it may for example be
that certain actions become forbidden, or certain states become allowed. As of
yet, there is no clear formal methodology to model the dynamics of a normative
system under addition of various types of norms.

In this paper we provide update semantics for norm addition which allows
us to characterize the dynamics of norm addition in a formal way. The view we
adopt is that normative systems can be modelled by pointed labelled transition
systems, which show which normative (institutional) facts become true under
execution of which actions. A norm is a closed operation on these models: they
transform normative systems into new normative systems such that the resulting
system is aligned with the norm. In this paper we explore how these operations
work, and how we can use these operations to prove various properties of a
normative system in a dynamic environment.

In the first part of this paper we provide our model of normative systems. We
then give a language to construct norms, show how we can update normative
systems with these norms and finally show how we can reason with these updates.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 628–636, 2014.
c© Springer International Publishing Switzerland 2014

Reasoning about Dynamic Normative Systems 629

2 Framework

This section defines the models we use for normative systems, and defines the
language we use to express properties of these systems. A normative system
in this paper is viewed as an entity which characterizes all the normative facts
which are currently true and can become true under execution of certain actions.
It is important to note that a normative system does not encode (brute) facts
about the environment of the agents. A state in the normative system deter-
mines the normative facts which are applicable at the current moment. These
normative facts constitute the prohibitions and obligations the agents have at
the current moment. Whenever an action occurs in the brute system, the norma-
tive system (possibly) progresses from one normative state to another, in which
new normative facts might hold. Thus, like in Searle’s work [9], even though the
brute facts and institutional facts exist in different dimensions, there exists some
relation between the two. An example might be a library which lends out books
to customers. When a customer borrows a book, the library asserts that it is
normatively/legally the case that the customer is holding a book. This proposi-
tion might very well correspond to a brute proposition (fact), but they have a
different meaning in a normative context. In this paper, we are merely interested
in normative systems, and only assume the existence of some actions which may
occur in the brute system. Formally, we assume we have an action alphabet Act
which denotes the set of possible actions that can occur in a brute system. When
a certain action α ∈ Act occurs in the brute system and a normative system is
in a certain state q, we might progress to a different normative state q′ in which
different normative facts might hold. Formally, a normative system frame F is
a tuple (Q,Act,→, Π, V) such that:

– Q is a non-empty finite set of normative states.
– Act is a finite action alphabet from the brute system.
– →⊆ Q×Act×Q is a relation between states with actions, such that for all

q ∈ Q and α ∈ Act there exists exactly one q′ ∈ Q such that (q, α, q′) ∈→.
Since the relation is functional, we write q[α] to denote the state q′ for which
it holds that (q, α, q′) ∈→.

– Π is a finite set of normative propositions.
– V ⊆ Π is a finite set of violation propositions.

Note that we distinguish between general normative propositions (i.e. “The cus-
tomer is holding a book”) and violations, since it is often useful to talk about
forbidden states. As a convention, we write p to denote an element from the set
Π and v as an element from V . We define a tuple of the form N = (F, μ) as
a normative system, where F is a normative system frame and μ a valuation
function mapping a q ∈ Q to an element from P(Π). A pointed normative sys-
tem is a pair (N, q) such that N is a normative system, and q ∈ Q a normative
state from N . The language of propositional logic with action modality, written
in this paper as Lmodal, consists of formulas ϕ built by the following (standard)
grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | �αϕ (p ∈ Π,α ∈ Act)

630 M. Knobbout, M. Dastani, and J.-J. Ch. Meyer

Along a pointed normative system (N, q), we can evaluate formulas of Lmodal

in the following (standard) way:

– N, q |= p iff p ∈ μ(q)
– N, q |= ¬ϕ iff N, q �|= ϕ
– N, q |= ϕ1 ∨ ϕ2 iff N, q |= ϕ1 or N, q |= ϕ2.
– N, q |= �αϕ iff N, q[α] |= ϕ

Given a pointed normative system (N, q), we say that a sequence of actions
α1...αn brings about normative state of affairs ϕ if and only ifN, q |= �α1 ...�αnϕ.
As is standard, we say that N |= ϕ holds whenever for all q ∈ Q it holds that
N, q |= ϕ, and we say that |= ϕ holds (alternatively, “ϕ is valid”) whenever for all
normative systems N we have N |= ϕ. Whenever we refer to the language Lprop

we refer to language of propositional logic, which is the fragment of this language
without the modalities of �α. We will now briefly discuss an example normative
system of a library which lends out books to customers. This will show how we
can evaluate formula’s from our logic on pointed normative system. This example
will also function as a running example throughout this paper to demonstrate
how various norms may alter the behaviour of the system.

{}
q0

{book}
q1

lend book

return

Fig. 1. Normative system Nlibrary

Running Example. Consider the normative system Nlibrary in Figure 1,

which is a very simple example of a library that lends out books to customers. As
a convention in this paper, whenever we draw a normative system we omit the
reflexive arrows. Here ‘book’ denotes a normative proposition that a customer is
borrowing a book. The library can either be in state q0 or state q1, and depend-
ing on the performed actions can switch between these states. An example of a
formula that holds in this system is Nlibrary, q1 |= �return¬book, although the

behaviour of this system is currently very limited. We will see how the addition
of norms allows the system to show more interesting and complex behaviour.

3 Language for Norm Updates

In this section we begin our first step into developing a simple model and lan-
guage of normative update that is still able to capture a broad variety of different
kinds of norms. The kinds of norms we consider in this section are of the ‘to-do’
variant: A norm of this type, when added to the system, ensures that after ex-
ecution of a certain action in certain states, certain normative facts are true or

Reasoning about Dynamic Normative Systems 631

false. For example, the library from our example might add a norm stating that
lending a book is now forbidden (i.e., after execution of the ‘lend book’ action a
violation will start to hold). To extend the expressiveness of these kinds of norms
even further, we also optionally allow the addition of a ‘repair’ action. For ex-
ample, the library may state that lending a book causes a violation, until a fee
is paid which removes the violation. Although we often think about the addition
of a norm as the addition of a prohibition (i.e. something becomes forbidden), it
is also easy to imagine that a norm can enable normative facts to become true
which are related to things such as policy updates. For example, the library may
update their policy by allowing the lending of magazines, i.e. after the perfor-
mance of a lend mag (“lend magazine”) action the library will assert that the
proposition magazine is true, until a return mag (“return magazine”) action
is performed. It is important to note that the addition of these norms are not
‘physical’ actions of the brute system: They come from outside the system (i.e.
a designer) and are not triggered by brute actions. In more realistic scenarios,
this might very well be the case, as for example the signing of a contract might
very well instantiate certain norms to come into effect.

In the remainder of this section, we give a language to construct these kinds
of norms, we show how we can update a normative system using these norms
and finally we show some interesting properties of this update.

3.1 Language and Update

Given a normative system, we construct the language of norms Lnorm in the
following way:

ν ::= (ActT , ϕ,+p,ActR)|(ActT , ϕ,−p,ActR)

Where:
ϕ ∈ Lprop, p ∈ Π, ActT , ActR ⊆ Act

Intuitively, an update of the form (ActT , ϕ,+v,ActR) should be interpreted as
meaning that whenever an action from ActT has been taken (the set of trigger
actions), to be in a ϕ-state causes violation v until an action from ActR has been
taken (the set of repair actions). Whenever a repair action occurs, the normative
state of affairs are equivalent to what they were before the update. Note that
the set ActR can be empty, which implies that the update is permanent, i.e. it
will from then on always be the case that for every ϕ-state the proposition p
is true. The set ActT can also be empty, but this implies that the update does
nothing, since the norm can never be triggered. Some examples:

– ({speeding},
,+v, {pay fine}): After speeding, a violation occurs which
persists for any possible state (
 is valid for all states) until a fine is payed.

– ({smoking}, restaurant,+v, Act): It is forbidden to smoke in a restaurant.
More specifically, after smoking, to be in a ‘restaurant’-state causes violation
v. No specific repair action has to be performed such as paying a fee, since
any action (besides again smoking) is a repair action.

632 M. Knobbout, M. Dastani, and J.-J. Ch. Meyer

– ({drunk driving},
,−license, {driving test}): After drunk driving, the
drivers license is revoked for any possible state, until a driving test has been
performed.

These updates work on pointed normative systems. This means that these norms
both update the normative system itself and the current state. However, given
the nature of the kind of norms we consider in this paper, the normative state of
affairs of the current state is not altered since a trigger action has to occur first.
In this paper we want to give a clear semantic interpretation to how a pointed
normative system should behave when a norm from our language is added to
the system. This is why we introduce the notion of norm-aligned : We say that
an updated system is norm-aligned if the resulting system implements the new
restrictions of the added norm. Formally:

Definition 1 (Norm-Aligned Update). Given a pointed normative system
(N, q) updated with norm (ActT , ϕ,+p,ActR), we say that the resulting pointed
normative system is norm-aligned iff for every atomic normative proposition p′

and every (possibly empty) sequence of actions α1...αn, we have that α1...αn

brings about p′ if ...

1. ...it was the case that α1...αn brought about p′ in the original system (i.e.
N, q |= �α1 ...�αnp

′), or if ...;

2. ... p′ = p, α1...αn brought about ϕ before the update (N, q |= �α1 , ...,�αnϕ),
and the norm was triggered but not repaired, that is ∃i : αi ∈ ActT , ∀j > i :
αj �∈ ActR).

This definition gives exact restrictions to what a ‘correct’ update of a pointed
normative system ought to be and we can in a similar manner define this for
an update of the form (ActT , ϕ,−p,ActR). Although these norms may appear
at first quite limited in expressiveness, more complex norms can be expressed
by combining a multitude of these simpler norms. For example, a complex norm
which states that it should always be the case that before entering the train,
a ticket needs to be bought, can be encoded with the following two norms
in their respective order: (buy ticket,
,+ticketBought, leave train) and
(enter train,¬ticketBought,+v, leave train). Here ticketBought is a nor-
mative proposition to denote that a ticket has been bought.
We will now show how we can update a pointed normative system to a new
pointed normative system which is norm-aligned. Given a pointed normative sys-
tem (N, q) and a norm (ActT , ϕ,+p,ActR), we write (N, q)[(ActT , ϕ,+p,ActR)]
to denote the updated system. Formally, given N = ((Q,Act,→, Π, V), μ) and
ν = (ActT , ϕ,+p,ActR), we let (N, q)[ν] = (N [ν], q[ν]) = (N ′, q′) such that:

– Normative system N ′ = ((Q′, Act,→′, Π, V), μ′), where:

• Q′ = {qr, qa | q ∈ Q}
That is, for every state q ∈ Q we create two copies in the updated system;
one in which the norm is active (qa) and one in which it is repaired (qr);

Reasoning about Dynamic Normative Systems 633

•

→′= {(qri , α, qrj) | qi[α] = qj and α �∈ ActT }
⋃

{(qri , α, qaj) | qi[α] = qj and α ∈ ActT }
⋃

{(qai , α, qaj) | qi[α] = qj and α �∈ ActR\ActT }
⋃

{(qai , α, qrj) | qi[α] = qj and α ∈ ActR\ActT }
Whenever we are in a repaired state (qri) and a trigger action has been
performed, we go to an active state (qaj). Whenever we are in an active
state (qai) and a repair action has been performed which is not also a
trigger action, we go to a repaired state (qrj). If no trigger or repair action
is performed, we remain in an active (or repaired) state. Note that we
write qi and qj to simply denote that these states might possibly be
different; we attach no further meaning to this indexing;

• For every q ∈ Q:

μ′(qr) = μ(q) and μ′(qa) =

{
μ(q) ∪ {p} if N, q |= ϕ

μ(q) otherwise

That is, all active states (qa) are updated with atomic proposition p.

– State q′ = qa

Alternatively, for an update with −p, the updated valuation function μ′ becomes:

μ′(qr) = μ(q) and μ′(qa) =

{
μ(q)\{p} if N, q |= ϕ

μ(q) otherwise

The way this update works is that it makes a copy of every state q in which
either the newly added norm is active (qa to denote that it is active) or in which
the added norm is repaired (qr to denote that it is repaired). Moreover, the
transitions between active and repaired states are analogous to the transitions
of the original system except for any action that triggers or repairs the norm.

3.2 Running Example

We return to the running example of the library visualized in figure 1. As dis-
cussed in the beginning of this section, suppose that the library now updates
their policy such that they now also allow customers to borrow magazines. They
do this by adding the following norm:

ν0 = ({lend mag},
,+magazine, {return})

This norm states that the library (normatively) asserts that a customer has
a magazine if he borrows a magazine, and retracts this fact when a customer
returns the borrowed items (here, the action return is seen as either returning
a book or a magazine, or both). By following the rules of the update, we see in
Figure 2 how we go from system Nlibrary to Nlibrary[ν0], and states q0 and q1
to qr0 and qr1 respectively. We have the following:

634 M. Knobbout, M. Dastani, and J.-J. Ch. Meyer

{}
q0

{book}
q1

{}qr0

{book} qr1

{magazine} qa0

{book,magazine} qa1

Nlibrary Nlibrary[ν0]

lend book return

lend mag

return

len
d boo

k

return

lend mag
len

d boo
k

ret
urn

Fig. 2. System Nlibrary together with Nlibrary[ν0]

1. In the initial system, after performance of the lend mag action the library
did not assert that ‘magazine’ was the case (i.e. the policy was not yet
implemented):

Nlibrary, q0 |= �lend mag(¬book ∧ ¬magazine)

2. After the addition of this norm, this is the case:

(Nlibrary, q0)[ν0] |= �lend mag(¬book ∧magazine)

3. After the addition of this norm, if the customer returns the magazine, the
library no longer asserts that the customer is holding a magazine:

(Nlibrary, q0)[ν0] |= �lend mag�return(¬book ∧ ¬magazine)

Now, if we would consider the most simple normative system as a system con-
sisting of only a single state with an empty valuation (call this the minimal
system), it is not hard to see that Nlibrary is in fact the minimal system up-

dated with the norm (lend book,
,+book, return book). So we see that by
combining these norms in meaningful ways we are able to express a wide variety
of different complex normative behaviour.

3.3 Properties

The norm update we provided governs interesting logical properties, which we
briefly want to touch upon in this section. As mentioned earlier, when we up-
date a pointed normative system the valuation of the current state remains
unchanged. This is exactly characterized by the property that for any pointed
normative system (N, q) and norm ν ∈ Lnorm we have that:

N, q |= ϕ iff (N, q)[ν] |= ϕ

Reasoning about Dynamic Normative Systems 635

Moreover, we mentioned that whenever a norm ν = (ActT , ϕ,+p,ActR) is not
triggered, the normative state of affairs of the system remains as it was before
the update. This is characterized by:

N, q |= �α1 ...�αnϕ and α1, ..., αn �∈ ActT implies (N, q)[ν] |= �α1 ...�αnϕ

Finally, for any sequence of actions α′1...α
′
n in which norm ν was triggered but

not repaired (i.e. ∃i : α′i ∈ ActT , ∀j > i : α′j �∈ ActR) we have the property that:

N, q |= �α1 ...�αnϕ implies (N, q)[ν] |= �α1 ...�αnp

And for the norm ν′ = (ActT , ϕ,−p,ActR) we have:

N, q |= �α1 ...�αnϕ implies (N, q)[ν] |= �α1 ...�αn¬p

Which corresponds to the fact that triggering a norm can indeed change the
normative state of affairs. That is to say, whenever after a sequence of actions
α′1...α

′
n that triggered the norm it is the case that ϕ holds, and we updated with

a norm stating that for all ϕ states it is the case that +p (alternatively −p),
then the update indeed ensures this. Certainly more interesting properties exist,
but lay beyond the scope of this paper.

4 Conclusions and Future Research

In this paper we provided update semantics to characterize the dynamics of norm
addition of various types of norms. This allows us to provide exact semantics
for computational systems that incorporate norm-update. Moreover, this line
of work can provide a natural progression to the development of norm-based
programming languages, which currently is an important topic within the agent
community [5]. From a practical point of view, this framework can be useful
for a designer/legislator that has to decide whether or not to introduce a new
norm to a system. The new norm may have various effects and non-effects on the
behaviour of a system which might initially be overlooked. With a formal and
rigid framework like the one provided in this paper, we can verify exactly what
these effects are. From a theoretical point of view, it also makes sense to view a
normative system as a dynamic entity. For example, in the field of deontic logic
[6] (i.e. the logic that concerns itself with what is obligatory and prohibited),
we often find that viewing a normative system as a static entity may result in
several paradoxes, such as is the case with contrary-to-duty obligations [8].

For future research, we would like to study how different kinds of norms
lead to different kinds of possible updates (e.g. norms of the ‘to-be’ variant,
or norms with deadlines). Moreover, it would be very useful and interesting to
develop a dynamic logic to reason about these properties. If a sound and complete
axiomatization can be given, we can use automated theorem provers to prove
several properties of normative systems in a dynamic environment. We can also
apply this framework to other well known frameworks of normative systems,
such as the coloured systems considered in [10]. Lastly, the relation between the
current framework of dynamic normative systems and the established theory of
deontic logic needs to be explored further.

636 M. Knobbout, M. Dastani, and J.-J. Ch. Meyer

References

1. Ågotnes, T., van der Hoek, W., Rodŕıguez-Aguilar, J.A., Sierra, C., Wooldridge,
M.: On the logic of normative systems. In: Proceedings of the Twentieth Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 1175–1180
(2007)

2. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Normative system games. In:
Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2007), pp. 881–888 (2007)

3. Ågotnes, T., van der Hoek, W., Wooldridge, M.: Robust normative systems and a
logic of norm compliance. Logic Journal of the IGPL 18(1) (2010)

4. Bulling, N., Dastani, M.: Verifying normative behaviour via normative mechanism
design. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI 2011), pp. 103–108 (2011)

5. Dastani, M.: 2apl: A practical agent programming language. Autonomous Agents
and Multi-Agent Systems 16(3), 214–248 (2008)

6. John-Jules, C., Meyer, R.W.: Deontic Logic in Computer Science: Normative Sys-
tem Specification. Wiley (1994)

7. Knobbout, M., Dastani, M.: Reasoning under compliance assumptions in normative
multiagent systems. In: Proceedings of the 11th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 331–340 (2012)

8. Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica 57(1),
91–115 (1996)

9. Searle, J.: The Construction of Social Reality. The Free Press, New York (1995)
10. Sergot, M.J.: Action and agency in norm-governed multi-agent systems. In: Artikis,

A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI),
vol. 4995, pp. 1–54. Springer, Heidelberg (2008)

11. Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial
agent societies. In: Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI 1992), pp. 276–281 (1992)

12. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. John Wiley
and Sons (2009)

A Modal Logic of Knowledge, Belief, and Estimation

Costas D. Koutras1, Christos Moyzes2, and Yorgos Zikos2

1 Department of Informatics and Telecommunications
University of Peloponnese

end of Karaiskaki Street, 22 100 Tripolis, Greece
ckoutras@uop.gr

2 Graduate Programme in Logic, Algorithms and Computation (MPLA)
Department of Mathematics, University of Athens

Panepistimiopolis, 157 84 Ilissia, Greece
cmoyzes@yahoo.gr, zikos@sch.gr

Abstract. We introduce KBE, a modal epistemic logic for reasoning about
Knowledge, Belief and Estimation, three attitudes involved in an agent’s decision-
making process. In our logic, Knowledge and Belief are captured by S4.2, a
modal logic holding a distinguished position among the epistemic logics investi-
gated in AI and Philosophy. The Estimation operator of KBE is a kind of gen-
eralized ‘many’ or ‘most’ quantifier, whose origins go back to the work of J.
Burgess and A. Herzig, but its model-theoretic incarnation (‘weak filters’) has
been introduced by K. Schlechta and V. Jauregui. We work with complete weak
filters (‘weak ultrafilters’) as we are interested in situations where an estimation
can be always reached. The axiomatization of KBE comprises ‘bridge’ axioms
which reflect the intuitive relationship of ‘estimation’ to ‘knowledge’ and ‘be-
lief ’, several introspective properties are shown to hold and it comes out that
believing ϕ can be equivalently defined in KBE as ‘estimating that ϕ is known’,
an interesting fact and an indication of the intuitive correctness of the introduced
estimation operator. The model theory of KBE comprises a class of frames com-
bining relational Kripke frames with Scott-Montague semantics, in which neigh-
borhoods are collections of ‘large’ sets of possible worlds. Soundness and com-
pleteness is mentioned and a tableaux proof procedure is sketched.

1 Introduction

The various logics of Knowledge and Belief have found very important applications in
Knowledge Representation, Distributed Computing, Security and Cryptography, Game
Theory and Economics. On the other hand, it is natural to ask whether knowledge and
belief suffice to guide the decision-making process of an agent acting in a complex
environment. Given the fact that an agent typically reasons in terms of incomplete in-
formation, it is natural to consider that its epistemic state is incomplete; the same for its
belief set. In the absence of knowledge, the agent can proceed to an estimation on the
truth (or falsity) of a certain fact, in view of the available evidence and in several situa-
tions where a decision has to be taken at any rate, the estimation should necessarily be
accomplished. The interaction of Knowledge, Belief and Estimation crops all over,
implicitly or explicitly.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 637–646, 2014.
c© Springer International Publishing Switzerland 2014

638 C.D. Koutras, C. Moyzes, and Y. Zikos

In our logic, estimation is intended to capture the intuition that the agent can es-
timate that ϕ is true (in the sense that she ‘bets’ on its truth rather than its falsity) in
the case ϕ is true in ‘many’ alternative situations to the one the agent is situated in.
The axiomatization of KBE comprises four ‘bridge’ axioms that pin down the rela-
tionship of estimation to knowledge and belief, as suggested by our intuition on what
‘estimation’ actually means. We insist on estimation being consistent and complete, if
it is to be really useful in the decision-making process. We prove some ‘introspective’
properties of estimation and it turns out that, in KBE, belief can be equivalently
defined in terms of estimation and knowledge: believing that ϕ is true amounts ex-
actly to the agent estimating that she knows ϕ. This is clearly close to our intuition on
‘estimation’ as a weak version of belief, which traditionally comes in many facets and
many variants. Regarding the model theory of KBE, we work with a class of frames
which combine a subclass of S4.2 relational frames (those with a final cluster), en-
dowed with Scott-Montague semantics. Due to space limitations, proofs of the results
and full presentation of the tableaux proof procedure, is left for the full report [20].

The logic KBE resembles the approach of J. Burgess in [4], where a ‘probably’
operator is added to S5. In [15], Andreas Herzig employs the same operator, providing
an axiomatization which is very close to the ‘most’ modality underlying our estimation
operator. However, our approach is the first to combine such a generalized quantifier
with a normal modal system, providing a full completeness proof both for the Hilbert-
style axiomatization and the tableaux proof procedure introduced; see [20].

2 Background Material

We assume that the reader is well acquainted with the notation and the terminology of
Modal Logic; we refer to [16,7,3] for Modal Logic and to [11] for a tour in epistemic
logic (see also [24,2,26]). In particular, we assume that the reader is readily aware of
the epistemic interpretation of the widely used modal axioms. We will work with S4.2,
which is the normal modal logic KT4G, assuming Lenzen’s approach [23,22] in which
belief can be defined through knowledge: see (‘abbreviation’) DB in Section 3.1 and
[20] for details. It is well-known that S4.2 is determined by the class of reflexive,
transitive and directed relational frames; in [18] (and independently in [21]) it is proved
that S4.2 is also determined by the subclass of frames which possess a non-empty final
(terminal) cluster, intuitively, a non-empty universally-related set of worlds ‘seen’ by
every world in the frame.

The interpretation of estimation as a ‘many’ (‘most’) quantifier requires a model-
theoretic interpretation of this notion. In classical Model Theory, it is the notion of
‘filter’ (non-empty collection of sets, upwards closed and closed under intersection)
that captures the ‘large’ subsets of the universe. For various reasons this notion is not
entirely appropriate for our purposes and we work with the ‘weak filters’ (non-empty
collections of pairwise-disjoint sets, upwards closed) introduced in [25,17]. Actually,
we work with ‘weak ultrafilters’ introduced in [1], requiring further that either a set or
its complement (but not both) is a ‘large’ set. The reader is referred to [19], in which
it is shown that the notion of ‘weak ultrafilter’ is non-trivial and that every ‘consistent’
weak filter can be extended to a weak ultrafilter. It is worth noting that similar notions
of generalized quantification have been introduced earlier by W. Carnielli et al. in [5,6].

A Modal Logic of Knowledge, Belief, and Estimation 639

Definition 1. Consider sets W �= ∅, Z ⊆ W , F ⊆ P(W) and the following proper-
ties:

(wf1) W ∈ F

(wf2) (∀X ∈ F)(∀Y ⊆W)(X ⊆ Y =⇒ Y ∈ F)

(wf3) (∀X ⊆W)(X ∈ F =⇒W \X /∈ F)

(wuf) (∀X ⊆W)(X /∈ F =⇒W \X ∈ F)

(inZ) (∀A,D ∈ F)(A ∩D ∩ Z �= ∅)

If (wf1) to (wf3) hold for F , then it is called a weak filter over W [25,17]. If (wuf)
holds for weak filter F , then it is called a weak ultrafilter over W . If (inZ) holds for a
weak filter F then it is called weak filter over W with intersections in Z .

3 The Logic KBE

The logic S4.2 has been advocated by W. Lenzen as the ‘correct’ logic of knowledge,
as it contains practically every one of the ‘plausible’ principles governing knowledge,
belief and their interaction. In the full report [20] we discuss in detail the epistemic
importance of S4.2 and the work of W. Lenzen and R. Stalnaker. We proceed to enrich
S4.2 with estimation; see [20] for the rationale of the axioms.

3.1 Axiomatization of KBE

We consider the propositional bimodal languageLKBE with the propositional variables
Φ = {p0, p1, . . .}, the falsum ⊥, the implication connective⊃ and the modal operators
K and E. The intended interpretation is that Kϕ is read as ‘the agent knows ϕ’, Bϕ (it
is an abbreviation) is read as ‘the agent believes ϕ’, Eϕ is read as ‘the agent estimates
that ϕ is true’. We proceed now to list the axioms of KBE, including the abbreviation
for belief.

Abbreviation

DB. Bϕ ≡ ¬K¬Kϕ Belief definition.

Axioms

K. Kϕ ∧ K(ϕ ⊃ ψ) ⊃ Kψ
Knowledge is closed under logical consequence.

T. Kϕ ⊃ ϕ
Only true things are known.

4. Kϕ ⊃ KKϕ
Positive introspection, with respect to knowledge.

CB. Bϕ ⊃ ¬B¬ϕ
Belief is consistent.

BE. Bϕ ⊃ Eϕ

640 C.D. Koutras, C. Moyzes, and Y. Zikos

Beliefs are estimations.

CCE. Eϕ ≡ ¬E¬ϕ
Estimation is consistent and complete.

EK. Eϕ ∧ K(ϕ ⊃ ψ) ⊃ Eψ
Estimation can be inferred, only through knowledge.

PIE. Eϕ ⊃ KEϕ
Introspection with respect to estimation.

Definition 2. KBE is the propositional bimodal logic axiomatized by K, T, 4, CB,
BE, CCE, EK, PIE and closed under rule RNK.

ϕ
Kϕ

The next result, whose proof consists of formal KBE derivations (see [20]) clarifies
some properties of the logic, of ‘introspective’ nature.

Proposition 1.

i. Positive ‘Introspection’ wrt estimation is valid in all three epistemic ‘degrees’:
Eϕ ⊃ KEϕ, Eϕ ⊃ BEϕ, Eϕ ⊃ EEϕ ∈ KBE

ii. So is the negative ‘Introspection’ wrt estimation:
¬Eϕ ⊃ K¬Eϕ, ¬Eϕ ⊃ B¬Eϕ, ¬Eϕ ⊃ E¬Eϕ ∈ KBE

iii. Non-estimation implies introspection wrt ignorance and ‘lack of certainty’:
¬Eϕ ⊃ K¬Kϕ, ¬Eϕ ⊃ B¬Kϕ, ¬Eϕ ⊃ E¬Kϕ ∈ KBE
¬Eϕ ⊃ K¬Bϕ, ¬Eϕ ⊃ B¬Bϕ, ¬Eϕ ⊃ E¬Bϕ ∈ KBE

iv. KEϕ ≡ Eϕ ∈ KBE

v. EKϕ ≡ Bϕ ∈ KBE

Remark 1. Note that, by the last item of Prop. 1 above, belief can be equivalently de-
fined as ‘estimation that the agent knows’. Defining knowledge in terms of belief and
vice versa, is a very interesting topic in epistemic logic (see [14]). In that respect, it
is interesting that belief can be equivalently defined in an S4.2 framework, in a rather
intuitive way, through an ‘estimation’ operator. In the same fashion, item (iv) says that
knowledge about estimation amounts exactly to estimation itself.

3.2 The Possible-Worlds Models of KBE

In this section, we define the frames and models of KBE. These structures properly
mix an interesting subclass of S4.2-frames (the reflexive, transitive, with a final cluster
FC) with Scott-Montague semantics [7, neighborhood semantics], in which each neigh-
borhood is a complete collection of large sets on the epistemic alternatives of the world
at hand - a weak ultrafilter. In the following definition, the properties (cce) and (ek)
are essentially (wf2), (wf3) and (wuf) of Definition 1 of weak ultrafilters, properly
stated, as we define weak ultrafilters onR(w).

A Modal Logic of Knowledge, Belief, and Estimation 641

Definition 3. Consider the triple F = 〈W,R,N〉, where W is a non-empty set,
R ⊆W ×W , N : W → P(P(W)) and

– R is reflexive, transitive and has a nonempty final cluster
FC = {v ∈ W | (∀w ∈ W) wRv}.

– N is such, that ∀w ∈ W

(nr) N (w) ⊆ P(R(w))

(be) FC ∈ N (w)

(pie) ∀X ⊆ R(w) ∀u ∈W
(
X ∈ N (w) & wRu =⇒ X ∩R(u) ∈ N (u)

)
(cce) ∀X ⊆ R(w)

(
X ∈ N (w)⇐⇒R(w) \X /∈ N (w)

)
(ek) ∀X,Y ⊆ R(w)

(
X ∈ N (w) & Y ⊇ X =⇒ Y ∈ N (w)

)
F is called a kbe-frame. M = 〈F, V 〉 is called a kbe-model, if it is based on a

kbe-frame and V : Φ → P(W) is a valuation. It is not hard to show that the class
of kbe-frames is nonempty [20]. Given a model M = 〈W,R,N , V 〉 for the language
LKBE , the valuation V : Φ → P(W) can be extended to all formulae of LKBE in a
straightforward way. In [20] the following result is proved.

Theorem 1. (Soundness & Completeness)KBE is sound and strongly complete w.r.t.
the class of all kbe-frames.

Using Theorem 1 we can show that various ‘introspective’ principles are not KBE-
axioms. Having in mind that ‘estimation’ is conceived as a weak form of a belief-
like attitude, the fact that Eϕ ⊃ Bϕ is not a KBE-theorem is consistent with our
intuition. Among the formulae of Fact 2.(iii), Eϕ ⊃ EKϕ deserves a comment. The
fact that it is not a theorem of KBE is welcomed; otherwise, given that EKϕ ⊃ Bϕ ∈
KBE (Prop. 1.(v)) and BE, estimation would collapse to belief (Eϕ ≡ Bϕ would
be a theorem of KBE) and this would immediately invalidate our attempt to define
estimation as a weak form of belief. In the same fashion, it is really good news that
EKϕ ⊃ Kϕ is not a KBE-theorem. This formula introduces a strong form of the
‘infallibility argument’ or else the ‘paradox of the perfect believer’ (see [11]): in view
of axiom T, it finally requires that something is true whenever our agent estimates that
she knows it.

Fact 2. i. Eϕ ⊃ Bϕ /∈ KBE

ii. ¬B¬ϕ ⊃ Bϕ /∈ KBE

iii. Eϕ ⊃ KKϕ, Eϕ ⊃ KBϕ /∈ KBE
Eϕ ⊃ BKϕ, Eϕ ⊃ BBϕ /∈ KBE
Eϕ ⊃ EKϕ, Eϕ ⊃ EBϕ /∈ KBE

iv. EKϕ ⊃ Kϕ /∈ KBE

v. Eϕ ∧ E(ϕ ⊃ ψ) ⊃ Eψ /∈ KBE

642 C.D. Koutras, C. Moyzes, and Y. Zikos

4 Tableaux for KBE

In this section we sketch a tableau system for KBE using prefixed formulas. A re-
minder on terminology is in order: a prefix is a finite sequence of natural numbers,
separated by periods. A prefixed formula is an expression of the form σ ϕ, where σ is a
prefix and ϕ is a formula. A tableau branch is closed if it contains both σ ϕ and σ ¬ϕ
for some prefix σ and formula ϕ. A tableau is closed if all of its branches are closed. A
tableau or branch is open if it is not closed. The terminology and most of the techniques
we use, draw from [8,9].

The intention for the prefixes is that they name worlds in a model, and the world
named by σ.n is accessible from the world named by σ. The worlds of a kbe-model
either belong to its final cluster or not, so we will be using two kinds of prefixed for-
mulas; of the form 0.n, n ∈ N to represent the first, and of the form 1.σ to represent
the latter. Prefixes of the form 0.n do not allow tracking of some accessibility relation,
but are sufficient for the final cluster, exactly because it is a cluster, i.e. relation R is
universal in it.

4.1 Tableaux Rules

Before presenting the rules themselves we need a notion of accessibility between pre-
fixes, proper for kbe-models. For the alphabet of our tableaux, we assume Bϕ, 〈K〉ϕ,
〈E〉ϕ, ϕ ⊃ ψ, ϕ ≡ ψ are abbreviations for ¬K¬Kϕ,¬K¬ϕ,¬E¬ϕ,¬ϕ ∨ ψ, (ϕ ⊃
ψ) ∧ (ψ ⊃ ϕ) respectively, thus no corresponding rules have to be specified.

Definition 4. A prefix σ′ is accessible from a prefix σ if and only if σ is an initial
segment of σ′ (proper or otherwise), or σ′ is of the form 0.n, n ∈ N.

Definition 5. A kbe-tableau for a formula ϕ is a tableau that starts with the prefixed
formulas 1 ¬ϕ and 0.1
 and is extended using any of the rules below.

A few words on the rules that follow: KBE is normal with respect to K, and our rules
for K (and ¬K) state what they should, regarding semantics. What makes the rules
appropriate for an S4.2-frame, is that we introduce at least a prefix for the final cluster
with 0.1
, and reflexivity, transitivity and that the final cluster is both ‘final’ and a
cluster, is integrated into our notion of prefix accessibility. Regarding [CCE-rule] and
[PIE-rule], as their name suggests, they exist to tend to axioms CCE andPIE. Axiom
CCE is in fact an equivalence, but we decide to transform all 〈E〉 into E and have no use
for the other direction. Axiom PIE is also not exactly what our rule implies, but for the
sake of shortening proofs, one can observe the only applicable rule to a formula KEϕ
is [Kν-rule]; we do it outright. Finally, regarding modality E, KBE is monotonic with
respect to it. The proper rule, is that for any pair 〈E〉ϕ, Eψ there is a world such that
ϕ, ψ hold (see [9] regarding the Logic U, and specifically Chapter 6.13 for a tableau
for U). In our case, 〈E〉 has turned into E, and not just any world will do, but one
accessible with respect toR; [E-rule] is created accordingly. Also note that ϕ can be the
same as ψ.

A Modal Logic of Knowledge, Belief, and Estimation 643

For prefixes σ of the form 1.σ′ :

[Double negation rule]
σ ¬¬ϕ
σ ϕ

[Conjunctive rules]
σ ϕ ∧ ψ

σ ϕ
σ ψ

σ ¬(ϕ ∨ ψ)

σ ¬ϕ
σ ¬ψ

[Disjunctive rules]
σ ϕ ∨ ψ
σ ϕ σ ψ

σ ¬(ϕ ∧ ψ)
σ ¬ϕ σ ¬ψ

[Kν-rule]
σ Kϕ

σ′ ϕ

for all σ′ accessible from σ and already
existing on the branch.

[Kπ-rule]
σ ¬Kϕ
σ.n ¬ϕ for any prefix σ.n new to the branch.

[CCE-rule]
σ ¬Eϕ
σ E¬ϕ

[PIE-rule]
σ Eϕ

σ′ Eϕ

for all σ′ accessible from σ and already
existing on the branch.

[E-rule]

σ Eϕ
σ Eψ

σ.n ϕ
σ.n ψ

for any prefix σ.n new to the branch.

For prefixes 0.n we have, in essence, the same rules, but the exact notation for rules
introducing a new world is:

[Kπ-rule]
0.n ¬Kϕ
0.m ¬ϕ for any prefix 0.m new to the branch.

[E-rule]

0.n Eϕ
0.n Eψ

0.m ϕ
0.m ψ

for any prefix 0.m new to the branch.

Definition 6. A closed kbe-tableau for a formula ϕ is a kbe-tableau proof for ϕ.

Let us see an example from Prop. 1.

644 C.D. Koutras, C. Moyzes, and Y. Zikos

EKp ≡ ¬K¬Kp
1 ¬((¬EKp ∨ ¬K¬Kp) ∧ (¬¬K¬Kp ∨ EKp)) 1.

0.1
 2.
1 ¬(¬EKp ∨ ¬K¬Kp) 3. 1 ¬(¬¬K¬Kp ∨ EKp) 10.
1 ¬¬EKp 4. 1 ¬¬¬K¬Kp 11.
1 ¬¬K¬Kp 5. 1 ¬EKp 12.
1 EKp 6. 1 ¬K¬Kp 13.
1 K¬Kp 7. 1 E¬Kp 14.

1.1 Kp 8. 1.1 ¬¬Kp 15.
1.1 ¬Kp 9. 1.1 Kp 16.

0.1 E¬Kp 17.
0.2 ¬Kp 18.
0.3 ¬p 19.
0.3 p 20.

Item 1 is the negation of the formula we want to prove expressed in the tableaux
language and item 2 is standard. Items 3 and 10 are from 1 by [Disjunctive Rule]. Items
4 and 5 are from 3 by a [Conjunctive Rule]. Items 6 and 7 are from 4 and 5 respectively
by [Double negation rule]. Item 8 is from 6 by [E-rule]. Item 9 is from 7 by [Kν-rule].
Item 11 and 12 are from 10 by a [Conjunctive rule]. Item 13 is from 11 by [Double
negation rule]. Item 14 is from 12 by [CCE-rule]. Item 15 is from 13 by [Kπ-rule].
Item 16 is from 15 by [Double negation rule]. Item 17 is from 14 by [PIE-rule]. Item
18 is from 17 by [E-rule]. Item 19 is from 18 by [Kπ-rule] and item 20 is from 16 by
[Kν-rule]. In the full report [20] we develop a systematic tableaux-based procedure and
prove finite model property and decidability of KBE.

5 Conclusions

To the best of our knowledge (belief and estimation) our work is the first to provide a
modal treatment of (qualitative) estimation, with respect to its interaction with knowl-
edge and belief. The analysis of KBE is in line with the tradition of possible-worlds
analysis in epistemic logic and sheds light on the nature of belief as ‘estimation that ϕ is
known’. There exist similar approaches, involving the notion of certainty. The relation
of knowledge, belief and certainty has been investigated by Halpern [13], Lenzen [22]
and other authors. Certainty is also called ‘robust belief ’ by some authors, as opposed
to ‘strong belief ’; belief is a delicate interesting notion with a lot of useful variants.

As far as future research is concerned, we believe that the most important question
is the identification of the computational properties of KBE. Moreover, it seems very
challenging to try to embed a similar modal ‘estimation’ operator in first-order modal
epistemic logic. This is bound to raise several technical and philosophical issues, but it
seems a very promising and interesting problem.

Acknowledgments. We wish to thank the anonymous JELIA 2014 referees for many
useful and insightful comments on the philosophical aspects of knowledge, belief and
estimation, along with many useful pointers to the literature. Some of the comments
and the questions asked, will certainly find their way in the final, full version of this
work.

A Modal Logic of Knowledge, Belief, and Estimation 645

References

1. Askounis, D., Koutras, C.D., Zikos, Y.: Knowledge means ‘all’, belief means ‘most’. In: del
Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 41–53. Springer,
Heidelberg (2012)

2. Aucher, G.: Principles of knowledge, belief and conditional belief. In: Rebuschi, M., Batt,
M., Heinzmann, G., Lihoreau, F., Musiol, M., Trognon, A. (eds.) Dialogue, Rationality, and
Formalism. Logic, Argumentation & Reasoning, vol. 3, Springer (2014)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical
Computer Science, vol. (53). Cambridge University Press (2001)

4. Burgess, J.P.: Probability logic. J. Symb. Log. 34(2), 264–274 (1969)
5. Carnielli, W.A., Sette, A.M.: Default operators. In: Workshop on Logic, Language, Informa-

tion and Computation, WOLLIC 1994, UFPE, Recife (1994)
6. Carnielli, W.A., Veloso, P.A.S.: Ultrafilter logic and generic reasoning. In: Gottlob, et al.

(eds.) [12], pp. 34–53
7. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press (1980)
8. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthése Library, vol. 277. Kluwer

Academic Publishers (1998)
9. Fitting, M.C.: Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing Co.,

Dordrecht (1983)
10. Gabbay, D.M., Woods, J. (eds.): Logic and the Modalities in the Twentieth Century. Hand-

book of the History of Logic, vol. 7. North-Holland (2006)
11. Gochet, P., Gribomont, P.: Epistemic logic. Gabbay and Woods [10], vol. 7, pp. 99–195

(2006)
12. Gottlob, G., Leitsch, A., Mundici, D. (eds.): KGC 1997. LNCS, vol. 1289. Springer, Heidel-

berg (1997)
13. Halpern, J.: The relationship between knowledge, belief and certainty. Annals of Mathemat-

ics and Artificial Intelligence 4, 301–322 (1991)
14. Halpern, J., Samet, D., Segev, E.: Defining knowledge in terms of belief: The modal logic

perspective. Review of Symbolic Logic (to appear)
15. Herzig, A.: Modal probability, belief, and actions. Fundamenta Informaticae 57(2-4),

323–344 (2003)
16. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)
17. Jauregui, V.: Modalities, Conditionals and Nonmonotonic Reasoning. PhD thesis, Depart-

ment of Computer Science and Engineering, University of New South Wales (2008)
18. Kaminski, M., Tiomkin, M.L.: The modal logic of cluster-decomposable kripke interpreta-

tions. Notre Dame Journal of Formal Logic 48(4), 511–520 (2007)
19. Koutras, C.D., Moyzes, C., Nomikos, C., Zikos, Y.: On the ‘in many cases’ modality:

tableaux, decidability, complexity, variants. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN
2014. LNCS, vol. 8445, pp. 207–220. Springer, Heidelberg (2014)

20. Koutras, C.D., Moyzes, C., Zikos, Y.: A modal logic of Knowledge, Belief and Estimation.
Technical report, Graduate Programme in Algorithms and Computation (2014) (available
through the authors’ webpages)

21. Koutras, C.D., Zikos, Y.: A note on the completeness of S4.2. Technical report, 2013,
Graduate Programme in Logic, Algorithms and Computation (December 2013)

22. Lenzen, W.: Recent Work in Epistemic Logic. North-Holland (1978)

646 C.D. Koutras, C. Moyzes, and Y. Zikos

23. Lenzen, W.: Epistemologische Betrachtungen zu [S4,S5]. Erkenntnis 14, 33–56 (1979)
24. Pacuit, E.: Dynamic epistemic logic I: Modeling knowledge and belief. Philosophy Com-

pass 8(9), 798–814 (2013)
25. Schlechta, K.: Defaults as generalized quantifiers. Journal of Logic and Computation 5(4),

473–494 (1995)
26. Stalnaker, R.: On logics of knowledge and belief. Philosophical Studies 128(1), 169–199

(2006)

A Logic for Belief Contraction

Konstantinos GeorgatosÆ

Department of Mathematics and Computer Science
John Jay College

City University of New York
524 West 59th Street
New York, NY 10019

U.S.A.
kgeorgatos@jjay.cuny.edu

Abstract. We introduce a logical system in which we can define a be-
lief contraction modal connective. The logic is based on a combination
of Moss-Parikh subset space logic and temporal logic. The semantics is
the system of spheres used in conditional logic and the belief contraction
connective encodes minimization of the distance between two spheres.
We prove completeness and decidability and show that the belief con-
traction connective satisfies most of the AGM postulates when those are
translated into statements of the logic.

1 Introduction

The operation of belief contraction and its companion belief revision was orig-
inally defined for deductively closed sets of sentences. This choice is justified
because beliefs may first be thought of as sentences and logical omniscience,
although somewhat impractical, is convenient and ubiquitous.

Nevertheless, research on belief change was soon extended to belief change
of objects representing beliefs other than theories. There is base revision where
the beliefs are represented by a usually finite but not deductively closed set
of sentences. Another popular view of belief revision is that of an operation on
propositions such as the one in [1] or an operation on a more general propositional
epistemic state (for example [2]). A more abstract view of belief change as a set
theoretic or algebraic operator has also been explored ([3,4,5]). In all the above
cases, belief change was explored in metalanguage.

In this paper, we will study belief contraction as a (definable modal) connec-
tive in a logical system that is not in metalanguage but in the object language.
We will use a belief contraction connective, denoted by �, to form sentences in
a language of the form a � b. It is important to notice that contraction here is
neither represented indirectly through a conditional nor as an operator within
a modality. The meaning (extension) of the sentence a� b will be all epistemic
states (the notion of epistemic state will be defined later) that can be reached by

Æ Support for this project was provided by a PSC-CUNY Award, jointly funded by
The Professional Staff Congress and The City University of New York.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 647–656, 2014.
c© Springer International Publishing Switzerland 2014

648 K. Georgatos

a contraction with the belief b from some epistemic state where a was believed.
This is a natural view of the meaning of the contraction of a belief a with the
belief b when a is not all we believe (a theory).

There are a few advantages in our approach:

– expressing contraction into an object language makes contraction amenable
to a study using a wide variety of formal logic techniques and semantics,

– proofs in the logical system amount to an algorithm of constructing the
contracted belief set, that is, this representation is constructive with respect
to the original formulation of contraction postulates,

– expressive power is increased as we can form arbitrary nestings and there-
fore successive application of the contraction connective, resulting in a more
comprehensive treatment of contraction which includes iteration.

The logical system we employ is a combination of linear temporal logic and
the subset space logic introduced by Moss and Parikh ([6]). The basic combining
system and semantics have been introduced by Heinemann ([7]). Our contribu-
tion is to alter the meaning of until, define contraction, and adjust completeness
and decidability results.

In the next section, we present the language of our logical system, the seman-
tics, the axiomatization and the definition of contraction (Definition 2). Then,
we study the properties of the contraction connective, compare the results with
related work and conclude with a discussion of the ways this research can be
extended.

2 Syntax and Semantics

Definition 1. The language of belief contraction logic will be the language of
subset space logic augmented with the next operator � and an until operator U,
i.e. the least set such that Atom, a set of atomic propositions, is a subset of L
and closed under the following rules:

φ, ψ � L
φ� ψ, φUψ � L

φ � L
�φ,�φ,�φ,Kφ � L .

We will write �a for � � �a, ♦a for ���a and La for �K�a. We will
also assume that unary bind stronger that binary connectives, so for example
�aUb stands for ��a�Ub. The next operator is needed to describe the sequential
contraction, that is, next is one-step contraction and not strictly temporal as it
is in [8],[9], or [10]. For general contraction we need the following

Definition 2. The contraction a� b of a with b is the formula

L�b� ��bUa�.

Definition 2 is the cornerstone of this paper and will be explained in detail after
the presentation of semantics.

We modify the original subset semantics using a sequence of decreasing subsets
which we will call a system of spheres. This is a slight variation of Heinemann
finite descending chains in [7].

A Logic for Belief Contraction 649

Definition 3. Let X be a set, then a system of spheres S is a sequence of
decreasing subsets 	Ui

�

i�1 of X, i.e. Ui�1 � Ui such that if Ui � Uj for some
j i, then Ui � Uk for all k � i. If Ui � Uj holds for some i � j then the
system will be called finite and, otherwise, infinite. Let S be a system of spheres,
then a model is a triple �X,S, v�, where v is the initial interpretation.

The satisfaction relation ��M, where M is the model �X,S, v�, is a subset of
�X ��S� � L defined recursively by:

x, Ui ��M A iff x � v�A�, where A � Atom
x, Ui ��M φ� ψ iff x, Ui ��M φ and x, Ui ��M ψ
x,Ui ��M �φ iff x, Ui �M φ
x, Ui ��M �φ iff x � Ui�1 and x, Ui�1 ��M φ.
x, Ui ��M �φ iff for all j � i x, Uj ��M φ.
x, Ui ��M Kφ iff for all y � Ui, y, Ui ��M φ
x, Ui ��M φUψ iff there exists j � i and y � Uj such that y, Uj ��M Kψ

and for all i � k � j y, Uk ��M Kφ.

If x, Ui ��M φ for all �x, Ui� belonging to X ��S then φ is valid in M, denoted
by M �� φ.

We describe the process of reasoning when the epistemic state expands to
encompass other possibilities. This is also the central idea behind the system-of-
spheres semantics for conditional logic. Knowing a proposition on a given epis-
temic state is modeled using necessity. This correspondence allows us to express
the minimization of the distance of an epistemic state, where the antecedent is
consistent, for the interpretation of contraction. Since we look at the state we
came from, indices in our models describe the opposite of expansion and increase
as the states get smaller. Observe that satisfaction does not depend on the index
but rather on the subset:

Lemma 1. Let x � X and Ui � Uj with i � j then, for all φ � L

x, Ui �� φ iff x, Uj �� φ.

The axiom system CL consists of axiom schemes 1 through 16 and rules of
table 1 (see page 650). We will write �CL φ (or just �) iff φ is a theorem of CL.

Axiom 2 stipulates that the non-epistemic facts true in the world of an agent
will remain true as the only change we allow is epistemic. The actual state of an
agent remains always the same although the agent’s view may change. Axioms
3 to 8 is just the axiomatization of LTL (linear temporal logic) with next and
always (accounting for points that do not have a successor). Axioms 9 to 12 are
the axioms of the modal logic S5. Axiom 13 is the Cross Axiom of the original
logic of subsets; the “perfect recall” of [11] for a single modality. The effect of
this axiom is that the sequence of subsets is non-increasing. Axioms 15 and 16
are the axioms for until. Axiom 15 says that the until connective implies the
existence of the future state where ψ is believed. Axiom 16 is the inductive
definition of the until, akin to the inductive definition of until in linear temporal

650 K. Georgatos

Table 1. Axioms for CL

Axioms

1. All propositional tautologies
2. �A� �A� � ��A� ��A�, for all A � Atom
3. ��φ� ψ� � ��φ� �ψ�
4. �φ� �φ
5. ��φ� ψ� � ��φ� �ψ�
6. �φ� φ
7. �φ� ��φ
8. ��φ� �φ� � �φ� �φ�
9. K�φ� ψ� � �Kφ� Kψ�
10. Kφ� φ
11. Kφ� KKφ
12. φ� KLφ
13. K� φ� �Kφ
14. �Kφ� K� φ
15. φUψ � ♦Kψ
16. φUψ 	 Kψ
 �Kφ���φUψ��

Rules

φ� ψ, φ

ψ
MP

φ

Kφ
K-Necessitation

φ

�φ
�-Necessitation

φ

�φ
�-Necessitation

logic. Observe that satisfaction of aUb at the pair x, Ui does not depend on x
but on Ui due to the use of K modalities in the truth condition. This means that
aUb is a knowledge formula, that is, it is equivalent to a formula of the form Ka
or �Ka and the following is a theorem (follows from Axioms 15 and 16)

aUb � K�aUb�.

This means that if aUb is true the agent believes it. Obviously this definition of
until is not standard. The reason we chose to treat until formulas as knowledge
formulas, instead of employing the standard definition of until is technical as it
simplifies greatly the completeness proof. In particular, this version of until is
deterministic just like in linear temoral logic and allows us to reuse parts of the
completeness of that logic. The extension ex�a� of all knowledge formulas a can
be identified with a set of subsets

ex�a� � 	Ui : y, Ui �� a
.

A Logic for Belief Contraction 651

Therefore, the meaning of the epistemic until ex�aUb� is contextual as it depends
on the epistemic view of the agent. Also, spheres will represent the belief state
of the agent as they determine the satisfaction of knowledge formulas.

Heinemann has combined the logic of subsets and linear temporal logic in
several papers. He studied the temporal logic of decreasing subsets in [8] and
added a pointwise until in [12]. He then studied the temporal logic of increas-
ing subset [13] without next and a combination of alternating increasing and
decreasing subsets in [14]. Combinations of epistemic and temporal logic is nat-
urally a useful combination and several other approaches combining those two
exist in the literature ([15,16,9]).

We now turn to the semantics of contraction. The until formula aUb, as de-
fined, allows us to define a minimization procedure among subsets of X . To see
that, suppose that ���b�Ua holds in a state x, Ui. This means that �b is be-
lieved in all states smaller than Ui until we reach a state Uj where a is believed.
In particular, b is believed in all epistemic states between Ui and Uj (including
Uj and excluding Ui). If we specify that �b is a possibility in Ui then Ui is
the minimum epistemic state that contains Uj where �b is a possibility. In this
sense, the conditional U may act as a minimization operator.

The same basic idea lies behind belief contraction: contracting the belief b at a
state, where a and b is believed, means to expand this state with a possibility of
�b and doing it in a minimal way. In other words, we seek to reach the minimum
state where �b is a possibility. Now, it easy to express all the above syntactically
and define: the contraction a� b of a with b with the formula

L�b� ��bUa�.

Observe that � is necessary in �bUa as if it was omitted then Kb would be
true in the current state and would contradict L�b. Here is an example that
illustrates the above procedure. The model consists of a set X � 	x, y, z
, S �
		x
, 	x, y
, 	x, y, z

 and an initial valuation on three atomic formulas v�a� �
	x
, v�b� � 	x, y
 and v�c� � 	x, y, z
. We have x, 	x
 �� K�a� b� c�, x, 	x, y
 ��
L�a� K�b� c� and x, 	x, y, z
 �� L�a� L�b� Kc. We have x, 	x
 �� ��a� b�,
x, 	x, y
 �� a� a���a� b� and x, 	x, y, z
 �� ��a� a� � �a� b� ���a� c�. We
also have ex�a� a� � 		x, y

, ex�a� b� � 		x, y, z

, and ex�a� c� � 	�
.

The following holds:

Theorem 1. The axioms and rules of CL are sound with respect to systems of
spheres.

Proof. The proof is straightforward and we show only soundness for Axiom 16.
Suppose x, Ui �� aUb and let j � i be the least such that y, Uj �� Kb and for all
i � k � j, x, Uk �� Ka. If i � j then x, Ui �� Kb. If j i then j � i� 1, therefore
x, Ui �� Ka and x, Ui�1 �� aUb. The other direction is similar.

The proof of completeness runs along the lines of the linear temporal logic.
Unfortunately, we cannot make full use of Heinemann’s completeness theorem as
it is not obvious how some definitions could apply to our framework (for example
the satisfaction of U in the canonical model, see page 79 in [7]).

652 K. Georgatos

Theorem 2. The axioms and rules of CL are complete with respect to systems
of spheres.

Theorem 3. CL has the finite model property and therefore it is decidable.

3 Properties of the Contraction Connective

We will now explore to some extent the properties that the contraction connec-
tive satisfies. We cannot always compare directly the contraction defined with
the vast number of properties introduced for the theory contraction operators.
Sometimes properties of theory operators do not correspond to some property
for contraction between formulas. Other times, theory contraction postulates
have two or more possible translations.

Recall that the contraction a� b of a with b is defined by

L�b� ��bUa�.

We shall use this last form to illustrate the correspondence with the traditional
AGM postulates.

The Closure postulate only concerns theory contractions.
Inclusion translates to

Ka� a� b.

This is not a theorem of our logic and a model counterexample is easy to find:
let X � 	x, y
, S � 		x
, 	x, y

 and v�a� � 	x
. We have x, 	x
 �� Ka, and
x, 	x, y
 �� a � a, but x, 	x, y
 �� L�a. At first sight, as this counterexam-
ple shows, the source of the failure of inclusion is that the framework is more
expressive: we can express belief consistency. In the state we reach after con-
traction, we believe in the consistency of �a, which contradicts the belief in a
where we started from. In other words, contraction with a is not achieved by the
removal of a, but the addition of the possibility of �a.

Notice that if we contract with a proposition b whose negation �b is consistent
with a, then inclusion is valid if we restrict formulas to those without an occur-
rence of the contraction operator. The additional expressive power of referring
to contraction within the language allows us to express iterated contractions. In
particular, we can define a model where x, Ui �� a � b and x, Uj �� a � b � c
for some Uj � Ui, i.e., we need to reach some Uj � Ui to contract with c. This
provides another counterexample of inclusion because x, Ui �� ��a� b� � c.

We now turn to Vacuity that translates to

�a� L�b� � b� a� L�b.

This is a theorem in our logic and follows from the axioms of temporal logic.
(Use �aUb� b��aU�b� a�.)

Consistency is guaranteed by Classical logic and the definition of contraction:
if b is a theorem then so is ��a� b�.

A Logic for Belief Contraction 653

Extensionality corresponds to the provable rule

b� c then a� b� a� c.

Recovery translates to
a� b� Kb� Ka,

which is a theorem because the following

a� b� L�b

is a theorem. It seems that Recovery is upheld for the wrong reason, as the
Inclusion case presented earlier, namely the ability to express consistency. So we
might opt for the following pointwise translation of recovery:

a� b� b� a.

This is not a theorem, which makes the � a case of Makinson’s withdrawal
operator ([17]), and this can be shown with a three element model. Let X �
	x, y, z
 and S � 		x
, 	x, y, z

. Also let v�a� � 	x, y
 and v�b� � 	x, z
. We
have x, 	x
 �� Ka, and z, 	x, y, z
 �� a� b� b but z, 	x, y, z
 �� �a.

We now turn to the last two postulates that have been proved to correspond
to linear structures.

Intersection is directly translated to

a� �b� c� � a� b� a� c.

One can show that it follows from the axioms of temporal logic (using the the-
orem �a� b�Uc� aUb� aUc.�

Conjunction translates to the rule

if a� �b� c� � L�b then a� b� a� �b� c�.

The rule is provable in the logic using the contrapositive of the antecedent and
the fact that until formulas are knowledge formulas.

4 Comparison with Other Work

This work should be thought of as part of a considerable amount of work that
tries to establish links between object language representations of belief change
operations. Herzig in [18] studied belief change operators in the object language.
The results include both update operators and conditionals but for the rep-
resentation results a restriction to non nested update operators was required.
Giordano et al ([19,20]) take a different approach where conditionals are in ob-
ject language but the operators are in metalanguage. The correspondence is
established by a representation result based on Ramsey test. Again some of the
axioms involve non nested fragments.

654 K. Georgatos

A similar approach is that of Dynamic Doxastic logic ([21]) and the more re-
cent Dynamic Epistemic Logic that use action modalities corresponding to belief
change operators much like dynamic logic (see [22,23,24]—and more recently in
combination with temporal logic [25]). Such formulas correspond to conditionals
and similarly they are restricted to the boolean fragment of the language. This
work is complementary: we believe that the results of the present paper can be
translated to Dynamic Epistemic Logic, therefore systems based on this logic
can be equipped with a temporal-like contraction operator.

Bonanno ([10]) used a different approach involving temporal logic and two
operators that of Belief and Receiving Information to axiomatize logical systems
that describe the process of revision. Belief revision operators are still kept in
the metalanguage and the correspondence is done at the semantical level much
like Giordano’s approach.

5 Conclusion

We showed that it is possible to incorporate assertions about belief contraction
within the language. We are able to axiomatize those assertion with the help of
temporal logic and Moss-Parikh subset space logic. We also show that the logic is
complete with respect to models made out of linearly ordered decreasing subsets,
much like the models used in conditional logic as well as the systems-of-spheres
used to model belief change.

This research suggests an interesting direction; namely, a wider class of mod-
els. Although linearly ordered subsets is a simple semantical framework and
bonds well with previous research, it is natural to ask if this work can be gener-
alized to more permissive structures. It has been shown that belief revision and
nonmonotonic logic fare well with partially ordered subsets ([26]) or even metric
spaces and graphs ([4]).

A relaxation of the semantical framework is useful for another reason. If we
simply model expansion with conjunction, we can express a belief revision con-
nective a � b defined by contraction via the Levi identity:

�a��b� � b.

Revision is defined using the primary connectives with

a � b � b� ���bUa�.

Although we may nest the above definition, the resulting formulas do not cor-
respond to successive revisions because a system of linearly ordered subsets is
simply not closed under revision. Closure under other forms of belief change,
apart from contraction, requires a richer semantical framework.

References

1. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal
change. Artificial Intelligence 52, 263–294 (1991)

2. Lehmann,D.:Belief revision, revised. In:Proceedings of theFourteenth International
Joint Conference of Artificial Intelligence (IJCAI 1995), pp. 1534–1540 (1995)

A Logic for Belief Contraction 655

3. Pais, J.: Revision algebra semantics for conditional logic. Studia Logica 51(2), 279–
316 (1992)

4. Georgatos, K.: Geodesic revision. Journal of Logic and Computation 19(3), 447–459
(2009), doi:10.1093/logcom/exn008

5. Georgatos, K.: Iterated contraction based on indistinguishability. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 194–205. Springer, Heidelberg
(2013)

6. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowl-
edge. Annals of Pure and Applied Logic 78(1-3), 73–110 (1996)

7. Heinemann, B.: A modal logic for discretely descending chains of sets. Studia Log-
ica 76(1), 67–90 (2004)

8. Heinemann, B.: Topological nexttime logic. In: Kracht, M., de Rijke, H.W., Za-
kharyaschev, M. (eds.) Advances in Modal Logic 1996, pp. 99–113. Center for the
Study of Language and Information, Stanford (1998)

9. Battigalli, P., Bonanno, G.: The logic of belief persistence. Economics and Philos-
ophy 13(01), 39–59 (1997)

10. Bonanno, G.: Axiomatic characterization of the agm theory of belief revision in a
temporal logic. Artificial Intelligence 171(2-3), 144–160 (2007)

11. Schmidt, R.A., Tishkovsky, D.: On combinations of propositional dynamic logic and
doxastic modal logics. Journal of Logic, Language and Information 17(1), 109–129
(2008)

12. Heinemann, B.: Temporal aspects of the modal logic of subset spaces. Theoretical
Computer Science 224(1-2), 135–155 (1999)

13. Heinemann, B.: On sets growing continuously. In: Pandu Rangan, C., Raman,
V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 420–431. Springer,
Heidelberg (1999)

14. Heinemann, B.: Extending topological nexttime logic. In: Proceedings of the Sev-
enth International Workshop on Temporal Representation and Reasoning (TIME
2000), pp. 87–94. IEEE Computer Society, Washington, DC (2000)

15. Kraus, S., Lehmann, D.: Knowledge, belief and time. Theoretical Computer Sci-
ence 58(1-3), 155–174 (1988)

16. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

17. Makinson, D.: On the status of the postulate of recovery in the logic of theory
change. Journal of Philosophical Logic 16, 383–394 (1987)

18. Herzig, A.: Logics for belief base updating. In: Handbook of Defeasible Reasoning
and Uncertainty Management, vol. 3, pp. 189–231. Kluwer Academic Publishers,
Belief Change (1998)

19. Giordano, L., Gliozzi, V., Olivetti, N.: Iterated belief revision and conditional logic.
Studia Logica 70(1), 23–47 (2002)

20. Giordano, L., Gliozzi, V., Olivetti, N.: Weak AGM postulates and strong Ramsey
test: A logical formalization. Artificial Intelligence 168(1-2), 1–37 (2005)

21. Segerberg, K.: Belief revision from the point of view of doxastic logic. Logic Journal
of IGPL 3(4), 535–553 (1995)

22. de Rijke, M.: Meeting some neighboursa dynamic modal logic meets theories of
change and knowledge representation. In: van Eijck, J., Visser, A. (eds.) Logic and
Information Flow, pp. 170–195. MIT Press, Cambridge (1994)

23. van Ditmarsch, H.P.: Prolegomena to dynamic logic for belief revision. In: Uncer-
tainty, Rationality, and Agency, pp. 175–221. Springer, Netherlands (2006)

656 K. Georgatos

24. van Benthem, J.: Dynamic logic for belief revision. Journal of Applied Non-Classical
Logics 17(2), 129–155 (2007)

25. van Ditmarsch, H.P., van der Hoek, W., Ruan, J.: Connecting dynamic epistemic
and temporal epistemic logics. Logic Journal of the IGPL 21(3), 380–403 (2013)

26. Georgatos, K.: To preference via entrenchment. Annals of Pure and Applied
Logic 96(1-3), 141–155 (1999)

Logic Foundations of the OCL Modelling
Language

Enrico Franconi1, Alessandro Mosca1,2,
Xavier Oriol3, Guillem Rull4, and Ernest Teniente3

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
2 SIRIS Academic, Spain

3 Universitat Politècnica de Catalunya, Spain
4 Universitat de Barcelona, Spain

Abstract. In this paper we define the first-order fragment of the Ob-
ject Constraint Language (OCL), the declarative language for describing
rules that apply to conceptual schemas in the Unified Modelling Lan-
guage (UML). This fragment covers the whole of OCL without arithmetic
operators, aggregation functions, iterators, and recursion. We give the set
theoretical formal syntax and semantics in an elegant, concise, and clear
way. This fragment has the same expressivity as domain-independent
first-order logic (aka relational algebra), in the sense that any relational
algebra expression can be reformulated as a logically equivalent OCL
expression, and vice-versa.

1 Introduction

Graphical modelling languages like UML, ORM or ER, provide a general and
intuitive idea of the concepts of the domain being modelled and the associa-
tions among them. However, these languages are not expressive enough to allow
defining all the relevant information of the domain.

For example, consider the class diagram in Fig. 1 about employees and their
departments. The diagram captures all the necessary concepts (i.e. Employee,
JuniorEmployee and Department) together with their associations (i.e. WorksIn
and Manages), thus providing an intuitive idea of the specified domain. Never-
theless, the schema as such is not expressive enough to encode further relevant

worker workingDept
* 1

manager managedDept
1 0..1

WorksIn

Manages

Employee
name
salary
age

JuniorEmployee

Department
name

grade

Fig. 1. Class diagram of employees and departments

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 657–664, 2014.
c© Springer International Publishing Switzerland 2014

658 E. Franconi et al.

characteristics of the domain, e.g., that junior employees cannot manage a de-
partment or that the salary of the manager of a department must be the highest
one among the salaries of the workers of that department.

For this reason, the usage of graphical modelling languages is usually comple-
mented with some textual languages that allow defining such additional informa-
tion in a precise and unambiguous way. The OCL language (Object Constraint
Language) [1] is one of the most well-known textual languages used for this
purpose. OCL is a declarative language that allows defining conditions that the
schema states should satisfy. Although OCL may be used to define structural as
well as behavioural conditions, in this paper we will consider just the structural
ones, i.e., OCL integrity constraints that any class diagram state should always
satisfy. Examples of OCL integrity constraints over the above UML schema are:

context Employee inv ManagerIsOlder:
self.age <= self.workingDept.manager.age

context JuniorEmployee inv GradeStudentSalary:
self.grade=’degree’ implies self.salary > 15000

context JuniorEmployee inv JuniorIsNotManager:
self.managedDept->isEmpty().

Intuitively, ManagerIsOlder states that no employee in a department can be
older than its manager. GradeStudentSalary ensures that junior employees with
a degree must earn a salary greater than 15000. JuniorIsNotManager guarantees
that no junior employee manages a department.

It is conjectured that there is a relationship between OCL and the Relational
Algebra (RA). This relationship is important since RA is at the heart of the
SQL query and constraint language for relational databases, and SQL could be
used to check the validity of OCL constraints over actual data. However, up to
our knowledge, nobody has succeeded in formally establishing the exact nature
of such a relationship. For instance, [2] and [3] argue that OCL does not capture
RA because there is no possibility to translate some relational algebra operations
into OCL. However, such a strong claim remains unproved in [3], where the
authors simply ground their argument on some presumably hard OCL cases. On
the other hand, [4] proposes an approach to simulate relational algebra queries
over UML by using OCL constraints and operations: it is not clear whether this
approach can work with nested relational algebra operations like, for instance, a
cartesian product after a selection. [5] provides an informal translation without
any claim of even soundness. An informal translation in first order logic with
heavy usage of primitive functions also for most of the first order expressible
constructs is introduced in [6]. Practical approaches implementing a translation
from OCL to SQL have problems too: MySQL4OCL [7] relies on some MySQL
procedures which clearly falls out of RA; OCL2SQL [8] lacks a theoretical basis
and has an unsound translation.

The main contribution of this paper is the identification by formal means of
the first-order fragment of OCL having the same expressivity relational algebra

Logic Foundations of the OCL Modelling Language 659

OCL-Bool ::= OCL-Bool BoolOp OCL-Bool |
not OCL-Bool |
OCL-Set = OCL-Set |
OCL-Set <> OCL-Set |
OCL-Set ->includesAll(OCL-Set) |
OCL-Set ->excludesAll(OCL-Set) |
OCL-Set ->forAll(Var OCL-Bool) |
OCL-Set ->exists(Var OCL-Bool) |
OCL-Set ->isEmpty() |
OCL-Set ->notEmpty() |
OCL-Set ->size() CompOp Integer |
OCL-Set ->one(Var OCL-Bool) |
Var = Var |
Var <> Var |
Var.oclIsKindOf(Class) |
OCL-Value CompOp OCL-Value

OCL-Set ::= OCL-Set ->union(OCL-Set) |
OCL-Set ->intersection(OCL-Set) |
OCL-Set - OCL-Set |
OCL-Set ->select(Var OCL-Bool) |
OCL-Set ->reject(Var OCL-Bool) |
OCL-Set.role [[role]] |
Var.role [[role]] |
Class.allInstances()

OCL-Value ::= Constant |
Var(.fRole)∗.attr

BoolOp ::= and | or | xor | implies
CompOp ::= < | <= | = | >= | > | <>
Var ::= 〈a variable name〉
Class ::= 〈a class name〉
Assoc ::= 〈an association name〉
role ::= 〈a role name〉
fRole ::= 〈a functional role name〉
attr ::= 〈an attribute name〉
Integer ::= 〈an integer number〉
Constant ::= 〈a constant name〉

Fig. 2. Syntax of OCLFO

(i.e. any RA expression can be reformulated as an equivalent OCL expression
of our fragment, and vice-versa). For this purpose, we exploit the connection
between the domain-independent fragment of first-order logic and RA. As stated
in the following sections, this fragment covers the expressive power of OCL
without arithmetic operations, aggregation functions, iteration, recursion, and
other non first-order features. We provide the formal syntax and semantics to
this fragment in an elegant, concise, and clear way since we base the semantics
on set theoretical constructs.

The OCL constraints mentioned before could be expressed as follows in RA:

1. πsσo1<o2((Emp�s=s EmpAge)�s=s

(Emp�s=worker WorksIn�dept=mDept Manages�manager=s EmpAge)) = ∅
2. πs((JuniorEmp�s=s JuniorEmpGrade)�s=s{degree}) \

πs(σo>15000(Emp�s=s EmpSalary)) = ∅
3. JuniorEmp ∩ πs(JuniorEmp�s=manager Manages) = ∅

2 The OCLFO Fragment of OCL

This section introduces the syntax and the semantics of boolean statements in
OCLFO, the first-order fragment of OCL. The OCLFO fragment contains all the
first-order features of OCL, and it leaves out arithmetic operators, aggregation
functions, iterators, and recursion. We will show in the following section that
OCLFO is equally expressive as the domain-independent fragment of first-order
logic. Figure 2 defines all the legal boolean statements in OCLFO, built from a sig-
nature including class names, role names (among them, functional role names),
association names, attribute names, and constant names. The signature speci-
fies to which association name each role name is attached to, via the function

660 E. Franconi et al.

ass : role �→ Assoc; the function comp : role �→ role, defined only for roles
of binary associations, returns the complementary role of a given role. The sig-
nature is given according to an associated UML class diagram. As expected,
boolean statements are composed by simpler boolean statements, and make use
of set descriptions obtained by composition of simpler sets or by navigation along
classes and roles.

Notice that an OCL constraint begins by declaring at top level the class
from which the navigation starts, and that the special variable name self –
denoting objects from that class – may occur within the OCL constraint. In our
formalisation we assume a simplified equivalent form of OCL constraints, where
the top-level class declaration is replaced by bounding the self variable with a
universal quantification ranging over all the elements of the declared class. So,
the OCL constraint:
context top-class inv invariant-label: φ

is automatically transformed into the equivalent boolean statement:
top-class.allInstances()->forAll(self | φ).

Note that unbound variables – i.e., variables not in the scope of forAll,
exists, one, select, reject quantifiers – are disallowed in boolean statements.
Moreover, the core of OCLFO excludes obvious cases which could be easily be
encoded in the language. This is the case of multiple variables, the iterator
operator ->isUnique, the non-iterator operators includes and excludes, and
the instance operators oclIsTypeOf and oclIsKindOf.

The semantics of an OCLFO boolean statement is given by means of the in-
terpretations satisfying the statement. An interpretation is a relational struc-
ture, namely a pair I = 〈ΔI , ·I〉 with a non-empty set ΔI—the domain of
the interpretation of object identifiers and values—and an interpretation func-
tion ·I—defined over the signature of the OCL constraints, namely class names,
role/association names, attribute names, and constant names. Interpretations
do not distinguish between object identifiers and values, since the evaluation of
OCL constraints does not depend on this distinction, due to the strict syntactic
requirements for the appearance of attributes within boolean statements. A class
name is interpreted as a set of domain elements, a role name is interpreted as a
set of pairs of domain elements, an attribute name is interpreted as a function
from domain elements to domain elements, and constant names are interpreted
as domain elements with the same name (standard name assumption). Intu-
itively, an interpretation represents a state (or snapshot) of the system, namely
a complete description of an instance of the modelled system: it indicates the
classes object identifiers belong to, the inter-relations between object identifiers
via association’s roles, and the values objects have via their attributes. An inter-
pretation I satisfies a set of OCL constraints – i.e., it is a model for it, written
I |= Φ – if and only if the interpretation function ·I , extended over arbitrary
boolean statements as specified in the inductive definition of Figure 3, evaluates
to true for each constraint in the set of boolean statements. Models represent
the legal states of the constraints.

Logic Foundations of the OCL Modelling Language 661

OCL-BoolI ∈ {true, false}
(OCL-Bool1 BoolOp OCL-Bool2)I ≡ OCL-Bool1

I BoolOp OCL-Bool2
I

(not OCL-Bool)I ≡ ¬OCL-BoolI

(OCL-Set1 = OCL-Set2)I ≡ OCL-Set1
I = OCL-Set2

I

(OCL-Set1 <> OCL-Set2)I ≡ OCL-Set1
I �= OCL-Set2

I

(OCL-Set1->includesAll(OCL-Set2))I ≡ OCL-Set1
I ⊇ OCL-Set2

I

(OCL-Set1->excludesAll(OCL-Set2))I ≡ (OCL-Set1
I ∩ OCL-Set2

I) = ∅
(OCL-Set->forAll(Var OCL-Bool))I ≡ (OCL-SetI \ (OCL-SetI ∩ OCL-BoolI,Var)) = ∅
(OCL-Set->exists(Var OCL-Bool))I ≡ (OCL-SetI ∩ OCL-BoolI,Var) �= ∅
(OCL-Set->isEmpty())I ≡ OCL-SetI = ∅
(OCL-Set->notEmpty())I ≡ OCL-SetI �= ∅
(OCL-Set->size() CompOp n)I ≡ ||OCL-SetI|| CompOp n
(OCL-Set->one(Var OCL-Bool))I ≡ ||OCL-SetI ∩ OCL-BoolI,Var|| = 1
(v1 = v2)I ≡ (v1 = v2)
(v1 <> v2)I ≡ (v1 �= v2)
(v.oclIsKindOf(Class))I ≡ v ∈ ClassI

(OCL-Value1 CompOp OCL-Value2)I ≡ OCL-Value1
I CompOp OCL-Value2

I

OCL-BoolI,Var = {v ∈ ΔI | (OCL-Bool[Var/v])I = true} ⊆ ΔI

OCL-SetI ⊆ ΔI

(OCL-Set1->union(OCL-Set2))I = OCL-Set1
I ∪ OCL-Set2

I

(OCL-Set1->intersection(OCL-Set2))I = OCL-Set1
I ∩ OCL-Set2

I

(OCL-Set1 − OCL-Set2)I = OCL-Set1
I \ OCL-Set2

I

(OCL-Set->select(Var OCL-Bool))I = OCL-SetI ∩ OCL-BoolI,Var

(OCL-Set->reject(Var OCL-Bool))I = OCL-SetI \ OCL-BoolI,Var OCL-Set2
I

(OCL-Set.role)I = πrole(OCL-SetI �comp(role) ass(role)I)
(v.role)I = πroleσcomp(role)=v ass(role)I

(OCL-Set.roled[roles])I = πroled
(OCL-SetI �roles ass(roles)I)

(v.roled[roles])I = πroled
σroles=v ass(roles)I

(Class.allInstances())I = ClassI

OCL-ValueI ∈ ΔI

ConstantI = vConstant
(v.fRole1.· · · .fRolen.attr)I = attrI (fRoleI

n(· · · (fRoleI
1(v))))

Fig. 3. Semantics of OCLFO

For example, the OCL constraint:
context JuniorEmployee inv GradeStudentsSalary:

self.grade=’degree’ implies self.salary > 15000
is satisfied in the following interpretation I0, namely in the state where all the
junior employees with a degree have a salary above 15000:

ΔI0 = {john, mary, melissa, degree, diploma, 16000, 22000, 8000, . . .}
JuniorEmployeeI0 = {john, mary}
gradeI0 = {john �→ degree, mary �→ degree, melissa �→ diploma}
salaryI0 = {john �→ 16000, mary �→ 22000, melissa �→ 8000}

In other words, I0 |= GradeStudentsSalary. In fact, it is easy to see that the
following holds:

(JuniorEmployeeI0 \
(JuniorEmployeeI0 ∩

{v ∈ ΔI0 | gradeI0(v) = degreeI0 → salaryI0(v) > 15000I0})) = ∅.

662 E. Franconi et al.

3 Equivalence of OCLFO with Relational Algebra

We show in this section that OCLFO and Relational Algebra are equally expres-
sive. The notion of equal expressivity is captured by the following two theorems.

Theorem 1 (Completeness for RA). Let q be an arbitrary n-ary RA ex-
pression, q(I) the evaluation of q over an interpretation I, and t an arbitrary
n-tuple. Then there exists a set of OCLFO boolean statements Φ, such that for
any interpretation I:

t ∈ q(I) if and only if I |= Φ.

Theorem 2 (Soundness). Let φ be an arbitrary OCLFO boolean statement.
Then there exist finitely many RA expressions p1, . . . , pm, q1, . . . , qn – with
m∑

i=1
|pi| +

n∑

i=1
|qi| ≤ k · |φ| for some k – such that for any interpretation I:

I |= φ if and only if
m∧

i=1
pi(I) = ∅ ∧

n∧

i=1
qi(I) �= ∅.

There exists a reduction from the membership problem of a tuple in the answer
of a RA expression over a database instance to the satisfiability problem of a set
of OCL constraints over the same database (completeness); and there exists a
reduction from the satisfiability problem of an OCL constraint over a database
instance to (non-)emptiness problem of the answer of a sequence RA expressions
(whose total size is linearly bounded by the size of the original OCL constraint)
over the same database (soundness). We sketch below the proofs of the theorems.

In [2], Mandel and Cengarle conclude that OCL is incomplete for RA: “In
order to achieve completeness OCL should just include a concept of tuple func-
tions (or creation of virtual classes) and a mechanism for creating instances of
any type or class. These instances are of course not meant to be included to
the current model of the class diagram but to allow navigation on a higher level
of abstraction.” Indeed, in order to prove the completeness for RA of OCLFO,
for each association in the signature we create an association class whose in-
stances represent exactly the tuples of the association. That is, a tuple identifier
represents the same tuple in any association class, and any tuple is represented
by a unique tuple identifier in any association class. Tuple identifiers and tu-
ple components are related by means of binary relations corresponding to the
roles. A global correspondence between roles of a n-ary association and positions
of a n-ary relation has to be globally established in the signature. This encod-
ing is called global reification. An association class R is created out of the roles
r1, · · · , rn of an n-ary association as follows:
R.allInstances() ->forAll(idA R.allInstances() ->forAll(idB

(idA.r1 = idB.r1 and ... and idA.rn = idB.rn) implies idA = idB)) ,
where r1, · · · , rn are n attributes of the association class, homonym with the n
roles of the n-ary association. The above constraint guarantees that instances of
the association class are in one-to-one correspondence with n-tuples identified

Logic Foundations of the OCL Modelling Language 663

via its attributes. The association class is the reified (aka objectified) version
of the association. In addition to that we need to guarantee that two instances
of distinct association classes are globally the same whenever they identify the
same n-tuple; the OCL constraints needed to guarantee global reification are
inspired by the work in [9]. Once we have association classes and access to their
components defined by a set of OCLFO constraints, it is easy to write additional
constraints in OCLFO encoding the basic constructs of RA.

Let us consider now the association class R of arity 4 with attributes a, b, c, d
obtained by joining two association classes R1 and R2 of arity 3 by R1.a = R2.a
and R1.b = R2.b. We can formalise this with the following OCL constraints, in
addition to the reification constraints mentioned above for the three relations.
(→) For any pair of instances in R1 in R2 with the same value for a and b, there
must exist an instance in R that represents its join:
R1.allInstances() ->forAll(id1 R2.allInstances() ->forAll(id2

id1.a = id2.a and id1.b = id2.b implies
R.allInstances() ->exists(id

id.a = id1.a and id.b = id1.b and id.c = id1.c and id.d = id2.d))).

(←) Any instance of R should come from the join of two instances of R1 and R2
respectively:
R.allInstances() ->forAll(r

R1.allInstances() ->exists(id1
id1.a = r.a and id1.b = r.b and id1.c = r.c) and

R2.allInstances() ->exists(id2

id2.a = r.a and id2.b = r.b and id2.d = r.d)).

In order to prove soundness, we reduce OCLFO boolean statements to formulas
in the domain-independent fragment of first-order logic with the Standard Name
Assumption. Due to the known equivalence of domain-independent first-order
logic and RA, then for each OCLFO boolean statement there exists an equivalent
RA expression. A formula is domain-independent if whenever it is satisfiable in
an interpretation with a given domain, then it is satisfiable in a compatible
interpretation. Two interpretations are compatible if they differ only for their
domain. We observe that all the constraints representing the meaning of OCLFO
are all domain-independent and reducible to emptiness checks, and they are all
encodable as first-order logic formulas.

4 Conclusions

OCL is a formal language for defining constraints that serves as a complement
for graphical modelling languages such as UML. Although it was known that a
relationship between OCL and RA should exist, this relationship had not been
formally proved before. In this paper, we have identified OCLFO, the first-order
fragment of OCL, which covers the entire of OCL except for its non first-order
features (aggregation, recursion, etc.), and we have proved that OCLFO has the
same expressivity as RA, that is, any RA expression can be rewritten into an

664 E. Franconi et al.

equivalent OCLFO one, and vice-versa. This paper extends [10] by considering an
extended fragment of OCL and proving the equivalence with RA. On the other
hand, [10] provides computational means for reasoning in OCL-lite.
Acknowledgements. This work has been partly supported by Ministerio de
Ciencia e Innovación under project TIN2011-24747 and by the FI grant from
the Secreteria d’Universitats i Recerca of the Generalitat de Catalunya.

References

1. Object Management Group: OMG object constraint language (OCL). Technical
Report formal/2012-01-01, Object Management Group, Inc. (2012)

2. Mandel, L., Cengarle, M.V.: On the expressive power of the object constraint lan-
guage OCL. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp.
854–874. Springer, Heidelberg (1999)

3. Balsters, H.: Modelling database views with derived classes in the UML/OCL-
framework. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS,
vol. 2863, pp. 295–309. Springer, Heidelberg (2003)

4. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas
with OCL constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13 (2012)

5. Clavel, M., Egea, M., de Dios, M.A.G.: Checking unsatisfiability for OCL con-
straints. In: Proceedings of the Workshop The Pragmatics of OCL and Other Tex-
tual Specification Languages, vol. 24. ECEASST (2009)

6. Beckert, B., Keller, U., Schmitt, P.H.: Translating the object constraint language
into first-order predicate logic. In: Proceedings of VERIFY, Workshop at Federated
Logic Conferences, FLoC (2002)

7. Egea, M., Dania, C., Clavel, M.: MySQL4OCL: A stored procedure-based MySQL
code generator for OCL. Electronic Communications of the EASST 36 (2010)

8. Demuth, B., Wilke, C.: Model and object verification by using Dresden OCL. In:
Proceedings of the Russian-German Workshop Innovation Information Technolo-
gies: Theory and Practice, Ufa, Russia, pp. 687–690 (2009)

9. Franconi, E., Mosca, A.: Towards a core ORM2 language (research note). In: De-
mey, Y.T., Panetto, H. (eds.) OTM 2013 Workshops 2013. LNCS, vol. 8186, pp.
448–456. Springer, Heidelberg (2013)

10. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-Lite: finite reasoning on
UML/OCL conceptual schemas. Data & Knowledge Engineering 73, 1–22 (2012)

11. Demuth, B., Hussmann, H.: Using UML/OCL constraints for relational database
design. In: France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 598–613. Springer,
Heidelberg (1999)

12. Clavel, M., Egea, M., García de Dios, M.A.: Building an efficient component for
OCL evaluation. Electronic Communications of the EASST 15 (2008)

13. Akehurst, D.H., Bordbar, B.: On querying UML data models with OCL. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 91–103. Springer,
Heidelberg (2001)

Constraint-Based Algorithm
for Computing Temporal Invariants

Jussi Rintanen

Department of Information and Computer Science
Aalto University, Helsinki, Finland�

Abstract. Automatically identified invariants are an important part of reductions
of state-space reachability problems to SAT and related formalisms as a method
of pruning the search space. No general algorithms for computing temporal in-
variants have been proposed before. Earlier algorithms restrict to unconditional
actions and at-most-one invariants. We propose a powerful inductive algorithm
for computing invariants for timed systems, showing that a wide range of timed
modeling languages can be handled uniformly. The algorithm reduces the com-
putation of timed invariants to a sequence of temporal logic consistency tests.

1 Introduction

Invariants are facts that hold in all reachable states of a transition system. In search
methods other than explicit state space search, including symbolic search with SAT [9]
and backward chaining search, the search space includes (partial) states that are not
reachable from the initial states. For these search methods invariants help pruning the
search space. Additionally, as an approximate upper-bound for the set of all reachable
states, invariants can help in analyzing properties of the state space, with applications in
planning, verification, diagnosis, and other forms of reasoning about transition systems.

The leading methods for computing invariants for untimed/asynchronous systems
can be viewed as approximations of exact symbolic methods for computing the set of
all reachable states, such as those based on binary decision diagrams [2]. These meth-
ods inductively compute a sequence of sets of states reachable with a given number of
actions. Upon reaching a fixpoint, the computation terminates. Most works on invari-
ants have adopted the inductive construction [10,6,7,11,12] which is well understood in
the context of untimed/asynchronous systems.

The conceptual difficulties about reasoning with partial temporal states, as well as
the concurrency of actions, have hampered attempts to apply the inductive construc-
tion in the timed setting. The main challenges in the timed setting are, first, identifying
the form of induction suitable for timed systems with several concurrent and tempo-
rally overlapping actions, and, second, developing sufficiently powerful and efficient
temporal reasoning methods for handling complex timed transition system models. We
present solutions to both of these problems.

� Also affiliated with Griffith University, Brisbane, Australia, and the Helsinki Institute of In-
formation Technology, Finland. This work was funded by the Academy of Finland (Finnish
Centre of Excellence in Computational Inference Research COIN, 251170).

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 665–673, 2014.
c© Springer International Publishing Switzerland 2014

666 J. Rintanen

The structure of the paper is as follows. After formal preliminaries in Section 2,
the new algorithm is presented in Section 3. A core component of the algorithm, tem-
poral consistency tests, is presented in Section 4. Experiments with the algorithm are
summarized in Section 5 before concluding the paper in Section 6.

2 Problem Definition

Formulas x and ¬x for x ∈ X are literals. The complement l of a literal l is defined by
x = ¬x and ¬x = x. We define actions as pairs consisting of a precondition (a propo-
sitional formula) and an effect which indicates how and when state variables change.
Effects are conditional on values of state variables at the time instant the action is taken.

Definition 1 (Actions). Let X be a finite set of (Boolean) state variables. An action
over X is a pair (p, e) where p is a propositional formula over X and e is a set of rules
φ l@t, where φ is a propositional formula over X , l is a literal over X , and t > 0 is
a rational number. Effect l takes place after time t has passed provided that φ was true.

Definition 2 (Transition systems). A transition system is a 3-tuple 〈X, I,A〉 where X
is a finite set of (Boolean) state variables, I : X → {0, 1} is the initial state (a total
function from state variables to 0 and 1), and A is a set of actions.

Above we have left out one important component of timed systems, dependencies
between actions that prevent some combinations of actions being taken. Actions may
use the same (implicitly represented) resources, and hence cannot temporally overlap.
Several alternative definitions of this kind of exclusions between actions are possible
[13,8,4], and here we only assume that exclusions can be factored to binary relations
between actions: if a given action a1 is taken at time t, then another action a2 cannot be
taken during the interval [t+ t1, t+ t2] for some t1 and t2 such that 0 ≤ t1 ≤ t2.

Plans are finite sets P ⊆ A×Q+ that schedule actions so that action exclusions are
respected: if a1 ∈ A is exclusive of a2 ∈ A being taken at [t1, t2], and (a1, t) ∈ P , then
(a2, t

′) ∈ P for no t′ such that t+ t1 ≤ t′ ≤ t+ t2.

Definition 3 (Plans and executions). Given a transition system 〈X, I,A〉, an execu-
tion for a plan P is a mapping v : Q×X → {0, 1} from time points and state variables
to 0 and 1 such that

1. v(0, x) = I(x) for all x ∈ X ,
2. v(t, p) = 1 if (a, t) ∈ P and a = (p, e), where v(t, p) denotes the obvious gener-

alization of the values v(t, x), x ∈ X to arbitrary Boolean formulas p,
3. if (a, t) ∈ P and φ l@t′ ∈ a, then v(t+ t′, l) = 1,
4. state variables not changed by actions retain their values: for any tl and tu such

that tl < tu, if
– v(tl, x) = 1, and
– there is no (a, t′) ∈ P such that φ ¬x@t′′ ∈ e (where a = (p, e)) and

tl ≤ t′ + t′′ ≤ tu
then v(ti, x) = 1 for all ti such that tl < ti ≤ tu. (Analogously for v(tl, x) = 0.)

For a given transition system T = 〈X, I,A〉, propositional formulas φ such that
v(t, φ) = 1 for every execution v of T and every t ∈ Q are invariants. Later we use a
generalization of this notion to temporal logic formulas.

Constraint-Based Algorithm for Computing Temporal Invariants 667

2.1 Temporal Logic Representations

We use a linear temporal logic for reasoning about actions and invariants, with both
actions and invariants represented as formulas in the logic.

Definition 4. Let Σ = {x1, . . . , xn} be a set of atomic propositions. Then our tem-
poral language consists of exactly those formulas that are obtained with the following
inductive definition.

1. x is a formula for every x ∈ Σ.
2. Formulas with ¬, ∨ and ∧ are defined in the usual way.
3. [t0, t1]φ is a formula if φ is a formula and t0 and t1 are rational numbers such that

t0 ≤ t1. This is a metric temporal modal operator saying that φ holds at all time
points t such that tnow + t0 ≤ t ≤ tnow + t1 where tnow is the time point in which
the formula is evaluated. The formula [t]φ is defined as an abbreviation for [t, t]φ.

4. φ1Uφ2 is a formula if φ1 and φ2 are formulas. This is the temporal operator until,
which says that if φ1 is true in all time points until φ2 is true.

Boolean connectives→and ↔ are defined by φ→ψ ≡def ¬φ ∨ ψ and φ ↔ ψ ≡def

(φ→ψ) ∧ (ψ→φ).

2.2 Semantics for Temporal Formulas

Temporal formulas are evaluated with respect to linear temporal models v : Q × Σ →
{0, 1} that assign a truth value to every rational time point and atomic proposition.
Consequently, we can identify executions with linear temporal models. Formulas have
a standard semantics, with the truth of formulas at time point t denoted by v |=t φ.

Definition 5. The truth of a temporal formula φ at time point t in a given model v is
recursively defined as follows.

1. v |=t b iff v(t, b) = 1, for atomic propositions b ∈ Σ.
2. Truth with truth-functional ¬, ∨ and ∧ is as usual.
3. v |=t φUψ iff v |=t′ φ for all t′ ≥ t such that v �|=t′′ ψ for all t′′ such that

t ≤ t′′ ≤ t′.
4. v |=t [t1, t2]φ iff v |=t′ φ for all t′ such that t1 ≤ t′ ≤ t2.

We also use half-open and open intervals with the operators]t1, t2], [t1, t2[, and
]t1, t2[, which are defined analogously. The operator � is identified with]−∞,∞[.

2.3 Representation of Actions

We translate action descriptions into this temporal language. The atomic propositions
are a1, . . . , an where 1, . . . , n is some indexing of the n = |A| actions in a transition
system 〈X, I,A〉, and x1, . . . , xm for the m = |X | state variables in X . Actions (p, e)
with index i are formalized as follows.

ai→p (1)

(φ ∧ ai)→ [t]l for all (φ l@t) ∈ e (2)

668 J. Rintanen

Depending on the planning language used, there are action exclusion constraints
preventing an action from being taken if some other action has been taken recently.
Main forms of such constraints can be translated into formulas

ai→ [t0, t1]¬aj (3)

where t0 and t1 are rational numbers such that t0 ≤ t1. The working of our invariant al-
gorithm is independent of how these constraints are derived. Representative definitions
of action exclusion can be found in literature [13,8,4].

Frame axioms indicate when a fact remains unchanged. For every x ∈ X we have

x→(xUc) (4)

where c is the disjunction of all formulas [−t](ai ∧ φ) such that (φ ¬x@t) ∈ e for
the action (p, e) with index i. There is an analogous axiom ¬x→ (¬xUc¬) indicating
the conditions c¬ for change from true to false.

We denote the set of all formulas above by αX,A.

3 The Algorithm

Standard invariant algorithms [10,5,3,6,7,11,12] are not applicable in the timed setting
where multiple actions can be taken concurrently. For classical planning, the basic
induction step in invariant computation is determining, for a given action, which true
facts remain true after the action has been taken. With timed models, this basic step
must cover the possibility of other actions being taken concurrently. For example, two
actions both with precondition a and respectively effects ¬a, b and ¬a, c individually
cannot falsify candidate invariant ¬(b ∧ c), but taken simultaneously they will.

The inductive algorithm for deriving invariants for timed systems is given in Figure
1, with the subprocedure weaken explained later.

1: PROCEDURE temporalinvariants(X, I,A);
2: C := {x ∈ X|I |= x} ∪ {¬x|x ∈ X, I �|= x};
3: REPEAT

4: Cold := C;
5: FOR EACH a ∈ A and c ∈ C such that φ l@t is an effect of a and l occurs in c DO

6: Sa,c := the formula given in Lemma 1;
7: IF Sa,c is consistent THEN

8: C := C\{c};
9: C := C ∪ weakenSa,c(c);

10: UNTIL C = Cold;
11: RETURN C;

Fig. 1. Algorithm for computing timed invariants

The induction follows the idea of constructing a schedule of temporal actions step
by step. We consider the construction of such schedules in a specific form. Instead of

Constraint-Based Algorithm for Computing Temporal Invariants 669

an inductive step that allows adding an arbitrary action in an arbitrary location of a
schedule, we only add actions in the end of the schedule so that no other action is taken
later, and no actions with a smaller index (according to an arbitrary ordering <) can be
taken at the same last time point.

Assuming that all schedules of i − 1 actions satisfy a certain set C of candidate
invariants, we consider schedules of i actions to test which of the candidate invariants
are still satisfied. The passage from i − 1 to i actions corresponds to adding an action
a ∈ A to a schedule with i− 1 actions.

The base case of the induction is the execution with 0 actions with I as the initial
state at some unspecified time point and at all preceding and succeeding time points.

For the inductive cases, we can over-approximate executions with i − 1 actions that
satisfy candidate invariants Cold with the following formula.

S = {�φ | φ ∈ αX,A}∪
{[−∞, 0[φ | φ ∈ Cold}

This formula says that all changes during the execution correspond to some actions (as
formalized by αX,A) and that all candidate invariants hold until 0.

For a given action a and candidate invariant c that could be falsified by an effect
φ l@t we extend this set further. Now a will be taken at time point 0 as the last action
at (the arbitrarily chosen) time point 0, no actions are taken after 0, and no action with
index smaller than a’s is taken at 0. Hence we have

Sa,c = S ∪ {[0]a, [0]φ, [t]¬c}
∪{]0,∞[¬a′ | a′ ∈ A}
∪{[0]¬a′ | a′ ∈ A, d(a′) < d(a)}

for executions with some i− 1 actions extended with the ith action a.
The important properties of Sa,c are stated in the next lemma. Section 4 provides an

efficient incomplete procedure for the consistency tests. Although we have fixed 0 to
be the time point where a is taken in Sa,c, this choice does not lose generality and the
result holds for an arbitrary time points.

Lemma 1. Let αX,A be the translation of actions A into temporal logic as given ear-
lier, a ∈ A an action with effect φ l@t, Cold a set of candidate invariants, and c a
candidate invariant with occurrence of the literal l. Let

Sa,c = {�φ | φ ∈ αX,A}
∪{[−∞, 0[φ | φ ∈ Cold}
∪{[0]a, [0]φ, [t]¬c}
∪{]0,∞[¬a′ | a′ ∈ A}
∪{[0]¬a′ | a′ ∈ A, d(a′) < d(a)}.

If Sa,c is inconsistent, then there is no execution with actions from A such that 1. action
a is taken at some time point t′, 2. formulas in Cold are true until t′ (excluding t′), 3.
no action is taken after t′, 4. no lower index action is taken at t′, and 5. action a makes
one of the literals in c is false at t′ + t.

670 J. Rintanen

After an attempt to prove that a candidate invariant remains true has failed, it will be
replaced by logically weaker candidate invariants. The new candidate invariants either
add a new disjunct, or replace a disjunct [t0, t1]l by a weaker one [t′0, t

′
1]l such that

t0 ≤ t′0 ≤ t′1 ≤ t1 and either t0 < t′0 or t′1 < t1.
Our algorithm is general and is not limited to any particular form of (candidate) in-

variants. For performance reasons, our implementation (Section 5) limits to (candidate)
invariants of forms l and l1 ∨ [−t, 0]l2, t ≥ 0.

We define weakenSa,c(φ) as the set of all maximal weakenings of φ as read from the
partial assignment that satisfied Sa,c (see Section 4), with maximality defined in terms
of inclusion of intervals [t, t′]l.

Lemma 2. weakenSa,c(φ) �|= φ, and φ |= φ′ for all φ′ ∈ weakenSa,c(φ).

In the main loop of the algorithm, line 5 tests whether the effects of action a mention
a state variable occurring in a candidate invariant c. If not, c cannot be possibly falsified
by a. Otherwise, a more thorough test is performed in the form of the consistency test on
line 7. If Sa,c is inconsistent then a cannot possibly falsify c. If Sa,c is consistent, then
it may be possible that c is falsified by a, and c has to be weakened or eliminated. This
consistency test for the linear temporal logic is approximated as described in Section 4.

Only candidate invariants that pass all tests and cannot therefore be falsified by any
action in any reachable state will remain in the set C until the algorithm reaches a
fixpoint. Therefore all such formulas are invariants. However, due to the approximate
consistency test and syntactic restrictions on the form of the invariants, not all invariants
are always found.

Theorem 1. If the algorithm temporalinvariants(X, I,A) returns C, then all formulas
in C are true everywhere in every execution of 〈X, I,A〉.

Proof. The proof is by induction on i, the number of iterations of the outermost repeat-
until loop on lines 3-10. The proof is based on identifying the number of iterations with
the number of action occurrences in an execution. Let Ci be the value of the variable C
in the beginning of each iteration of the loop (with iterations numbered as 0,1,...).

Induction hypothesis: v |=t c for every t and every c ∈ Ci and every execution v of
〈X, I,A〉 with i actions.

Base case i = 0: By construction, C0 consists of formulas true in the initial state,
and hence in all states that precede or follow, as no actions are taken anywhere.

Inductive case i ≥ 1: For any c ∈ Ci it must be that Sa,c is inconsistent for every
a ∈ A (otherwise c would have been eliminated between lines 7 and 9.)

Hence by Lemma 1 there is no execution with i actions in which that “last” action
would make c false (with Cold representing all executions with i− 1 actions.) Assume
there is an execution v with i actions in which some other than the “last” action would
make c false. We could remove a from this execution to obtain an execution with i− 1
actions that still falsifies c, and hence by induction hypothesis we would have c �∈ Ci−1.
Since Ci is logically weaker than Ci−1 (due to formulas being replaced by strictly
weaker ones (Lemma 2)), we could not have c ∈ Ci. Hence there is no execution with
i actions with c false at some time point.

Constraint-Based Algorithm for Computing Temporal Invariants 671

4 Approximate Consistency Tests

We now present an efficient and sound but incomplete approximation of temporal logic
consistency based on constraint networks, as required in the consistency tests of Sa,c

in the preceding section. A constraint network is constructed for a set of temporal logic
formulas. Every subformula is represented as a node in the constraint network and as-
sociated with two sets of intervals, one for true and another for false. Each rule infers
intervals for a node given its neighbors. The neighbors are the immediate subformulas,
the parent formula, and sibling formulas. The rules are of the form

(g1 : i1)φ1, . . . , (gn : in)φn

(g : i)φ

where φ1, . . . , φn and φ are formulas respectively with tags (gj : ij), j ∈ {1, . . . , n}
and (g : i), where each gj is either
 or ⊥ to express truth or falsity, and ij is a set
(union) of intervals where φj has the specified truth value. A rule is applied by first
selecting a node for a formula of the form of the consequent φ. Then the tags (gj : ij)
for φ1, . . . , φn (in some rules only a single interval) are retrieved. Finally the tag (g : i)
for the consequent is computed and the new intervals i added to the old intervals of φ.

The rules for truth-functional connectives are obvious. Next we list some of the more
interesting propagation rules. The rules for the interval operator are the following.

(
 : [t0, t
′
0])φ

(
 : [t0 − t, t′0 − t′])[t, t′]φ
(5)

(⊥ : [t0, t
′
0])φ

(⊥ : [t0 − t′, t′0 − t])[t, t′]φ
(6)

(
 : [t0, t
′
0])[t, t

′]φ
(
 : [t0 + t, t′0 + t′])φ

(7)

In the first rule, the interval [t0 − t, t′0 − t′] is empty if t′0 − t′ < t0 − t. In the first
two rules, intervals with infinite end-points are handled specially, as subtraction of ∞
or−∞ from itself is not well-defined. We define finite additions and subtractions to the
infinities by ∞ + r = ∞ and −∞+ r = −∞. In rule (5), if both the interval starting
point t0 of φ and the operator starting point t are−∞, then the starting point for [t, t′]φ
is −∞ as well. Similarly for end points∞.

The rules for the until operator are the following.

(⊥ : i0)φ0, (⊥ : i1)φ1

(⊥ : i0 ∩ i1)φ0Uφ1
(8)

(
 : [t, t′])φ0Uφ1, (⊥ : [t1, t
′
1])φ1

(
 : [max(t, t1), t
′
1])φ0

if
[t, t′9]∩
[t1, t

′
1] �= ∅

(9)

In all of the rules above we have used closed intervals only. The rules can be adapted
to open and half-open intervals as well as to interval operators with such intervals.

Initially, all nodes are labelled with (
 : ∅) and (⊥ : ∅) with
 denoting true and ⊥
false, and with the empty set of intervals ∅ indicating that no truth or falsity is known
for any time interval. We detect a contradiction when i1 ∩ i2 �= ∅ for (
 : i1)φ and
(⊥ : i2)φ and some φ, that is, φ has to be both true and false in at least one time point.

The constraint propagation procedure does not terminate for all formula sets. How-
ever, for all sets Sa,c we have tried the procedure quickly terminates.

672 J. Rintanen

5 Experiments

We have experimented with the algorithm and problem instances featured in the tem-
poral planning tracks of the 2008 and 2011 planning competitions (IPC), modeled in
timed PDDL. Table 1 summarizes runtimes and other statistics.

Table 1. Statistics for a number of IPC domains. We give the runtimes (in seconds) for the eas-
iest and hardest instance in each domain, the number of instances for which the computation
terminated in under 10 minutes, the numbers of invariants found, and the numbers of actions.

runtime invariants actions
problem min. max. < 600 s min. max. min. max.
crewplanning 1.33 83.34 30/30 225 2925 27 1393
elevators 7.85 > 14400 25/30 740 ≥ 23934 1672 141384
elevators/numeric 2.79 7311.33 22/30 704 ≥ 31620 448 10734
openstacks/adl 1.45 283.16 30/30 86 1508 45 2074
openstacks/numeric 0.64 5.13 30/30 104 960 15 102
openstacks/numeric/adl 0.68 7.16 30/30 66 638 15 102
openstacks/strips 1.52 384.80 30/30 124 1830 45 2074
parcprinter 2.57 > 14400 24/30 656 ≥ 17530 61 3979
pegsol 0.62 3.61 30/30 40 986 76 76
sokoban 5.40 > 14400 19/30 1682 ≥ 40274 280 28240
transport/numeric 1.08 > 14400 16/30 124 ≥ 57240 66 22869
floortile 2.10 19.33 20/20 264 2610 148 606
matchcellar 0.43 1.03 10/10 2 10 3 210
parking 3.94 392.60 20/20 653 6991 726 7406
storage 27.96 > 14400 10/20 2430 ≥ 18684 3400 130480
tms 1.79 > 14400 5/20 774 ≥ 5664 133 12141
turnandopen 4.36 805.85 18/20 704 10354 464 12216

6 Conclusion

We have, for a first time, presented a general algorithm for computing a large class of
invariants for timed systems, with the analysis of such systems and speeding up reason-
ing with them as the main applications. Earlier works on timed invariants in planning
have limited to narrow classes of invariants or narrow classes of timed models [13,1].
Our framework is applicable to a wide range of timed models and forms of invariants.

Similarly to the strongest earlier algorithms for untimed or asynchronous systems,
our algorithm is based on a fixpoint iteration which starts from a set of candidate invari-
ants characterizing the initial state, and weakens this set to cover all reachable states of
the system. Iteration N of the algorithm corresponds to reachability by schedules of N
timed actions, with the fixpoint corresponding to schedules with any number of actions.

Due to the generality of our algorithm, its scalability for large action sets and high
number of state variables is not as good as with simpler algorithms. Future work will
focus on finding interesting performance vs. generality trade-offs.

Constraint-Based Algorithm for Computing Temporal Invariants 673

References

1. Bernardini, S., Smith, D.E.: Automatic synthesis of temporal invariants. In: Proceedings
of the Ninth Symposium on Abstraction, Reformulation, and Approximation, SARA 2011,
Parador de Cardona, Cardona, Catalonia, Spain, July 17-18. AAAI Press (2011)

2. Burch, J.R., Clarke, E.M., Long, D.E., MacMillan, K.L., Dill, D.L.: Symbolic model check-
ing for sequential circuit verification. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 13(4), 401–424 (1994)

3. Edelkamp, S., Helmert, M.: Exhibiting knowledge in planning problems to minimize state
encoding length. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp.
135–147. Springer, Heidelberg (2000)

4. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research 20, 61–124 (2003)

5. Gerevini, A., Schubert, L.: Inferring state constraints for domain-independent planning. In:
Proceedings of the 15th National Conference on Artificial Intelligence (AAAI 1998) and
the 10th Conference on Innovative Applications of Artificial Intelligence (IAAI 1998), pp.
905–912. AAAI Press (1998)

6. Gerevini, A., Schubert, L.K.: Discovering state constraints in DISCOPLAN: Some new re-
sults. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000)
and the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI 2000),
pp. 761–767. AAAI Press (2000)

7. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Chien, S., Kamb-
hampati, S., Knoblock, C.A. (eds.) Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems, pp. 140–149. AAAI Press (2000)

8. Haslum, P., Geffner, H.: Heuristic planning with time and resources. In: Cesta, A. (ed.) Re-
cent Advances in AI Planning, Sixth European Conference on Planning (ECP 2014), pp.
107–112. AAAI Press (2014)

9. Kautz, H., Selman, B.: Pushing the envelope: planning, propositional logic, and stochastic
search. In: Proceedings of the 13th National Conference on Artificial Intelligence and the 8th
Innovative Applications of Artificial Intelligence Conference, pp. 1194–1201. AAAI Press
(1996)

10. Rintanen, J.: A planning algorithm not based on directional search. In: Cohn, A.G., Schu-
bert, L.K., Shapiro, S.C. (eds.) Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Sixth International Conference (KR 1998), pp. 617–624. Morgan Kaufmann
(1998)

11. Rintanen, J.: An iterative algorithm for synthesizing invariants. In: Proceedings of the 17th
National Conference on Artificial Intelligence (AAAI-2000) and the 12th Conference on
Innovative Applications of Artificial Intelligence (IAAI-2000), pp. 806–811. AAAI Press
(2000)

12. Rintanen, J.: Regression for classical and nondeterministic planning. In: Ghallab, M., Spy-
ropoulos, C.D., Fakotakis, N. (eds.) ECAI 2008: Proceedings of the 18th European Confer-
ence on Artificial Intelligence, pp. 568–571. IOS Press (2008)

13. Smith, D.E., Weld, D.S.: Temporal planning with mutual exclusion reasoning. In: Dean, T.
(ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp.
326–337. Morgan Kaufmann Publishers (1999)

Answer Set Solver Backdoors

Emilia Oikarinen1 and Matti Järvisalo2

1 HIIT and Department of Information and Computer Science, Aalto University, Finland
2 HIIT and Department of Computer Science, University of Helsinki, Finland

Abstract. Backdoor variables offer a generic notion for providing insights to the
surprising success of constraint satisfaction solvers in solving remarkably com-
plex real-world instances of combinatorial problems. We study backdoors in the
context of answer set programming (ASP), and focus on studying the relative size
of backdoors in terms of different state-of-the-art answer set solving algorithms.
We show separations of ASP solver families in terms of the smallest existing
backdoor sets for the solvers.

1 Introduction

Answer set programming (ASP) [28,4] offers an expressive rule-based declarative lan-
guage for conveniently modelling hard combinatorial problems, together with highly ef-
ficient solver technology for finding solutions (answer sets) to the rule-based constraint
models. Answer set solver technology [21,30,31,2,19,26,22,15,1] builds on the suc-
cess of Boolean satisfiability (SAT) [3] solving techniques (DPLL [8,7], CDCL [6,27])
and implements additional inference mechanisms for native reasoning over answer set
programs, most notably, well-foundedness checking. While advances in ASP and SAT
solvers have improved our ability to efficiently solve and reason over a remarkably wide
range of important real-world problems, our understanding for the fundamental reasons
for this success is still somewhat lacking. The concept of backdoor variables, as intro-
duced originally in [32], offers a generic notion for providing insights to the surprising
success of constraint satisfaction solvers in solving remarkably large and complex real-
world instances of combinatorial problems. Informally, a backdoor B is a subset of the
variables in a problem instance, such that a systematic search procedure needs to non-
deterministically assign values (branch) only on the variables in B in order to decide
the instance. Given that a search procedure has a small backdoor to a problem instance,
the procedure can in principle decide the instance efficiently.

In this paper, we study backdoors in the context of ASP. While several other ex-
tensions of backdoors have been studied [9,10,29], there has only recently been work
on backdoors in the context of ASP, and mainly from the parameterized complexity
perspective [13]. In contrast, we focus on studying the relative size of backdoors in
terms of practical state-of-the-art answer set solving algorithms. As the underlying mo-
tivation, we aim at further understanding structural properties of answer set programs
in terms of to what extent specific search techniques (subsolvers) can potentially dis-
cover “hidden structure”, characterized by small backdoors, in the programs. Closely
following the techniques implemented in different solvers, we formalize different solver
variants in terms of three dimensions: (i) well-foundedness, (ii) conflict-learning, and

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 674–683, 2014.
c© Springer International Publishing Switzerland 2014

Answer Set Solver Backdoors 675

(iii) branching, reflecting algorithmic choices in answer set solvers. Different choices
along the three dimensions allow for a more fine-grained analysis than that possible in
the context of SAT solvers [10], especially due to the fact that dimensions (i) and (iii)
do not have direct counterparts in SAT solving. As the basis of our analysis, we define
answer set solver backdoors extending related backdoor concepts from SAT along the
three dimensions, opening a new point of view to analyzing the effectiveness of differ-
ent answer set solving techniques in terms of problem structure. As the main results, we
show up to exponential separations of the ASP solver families characterized by differ-
ent choices along the three dimensions in terms of the smallest existing backdoor sets
for the solvers, both on satisfiable and unsatisfiable families of answer set programs.

2 Preliminaries

Answer Set Semantics. A normal logic program (or an answer set program in this
context) Π over a finite set P of atoms consists of a finite set of rules of the form r :
h← p1, . . . , pm,∼pm+1, . . . ,∼pn, where 0 < m ≤ n, h ∈ P ∪ {⊥} (where⊥ stands
for falsity), and, for each i = 1..n, pi ∈ P . A rule r consists of a head, head(r) = h,
and a body, body(r) = {p1, . . . , pm,∼pm+1, . . . ,∼pn}. The symbol “∼” is default
negation. A default literal is an atom p or its default negation ∼p. The set of atoms
appearing in program Π is denoted by atom(Π). The set of bodies (resp. heads) in Π is
body(Π) = {body(r) | r ∈ Π} (resp. head(Π) = {head(r) | r ∈ Π}). For each atom
p ∈ head(Π), let body(p) = {body(r) | r ∈ Π, head(r) = p} to represent the set of
rules bodies that share the same head p. For a rule r, let body(r)+ = {p1, . . . , pm} and
body(r)− = {pm+1, . . . , pn} denote the sets of positive and negative (default negated)
atoms in body(r), respectively.

In ASP, we are interested in stable models [17] (or answer sets) of a given pro-
gram Π . A truth assignment for an answer set program Π is a function τ that maps
atoms in Π to {0, 1}. An assignment τ extends implicitly to default literals by requiring
that τ(∼p) = 1− v for each atom p such that τ(p) = v ∈ {0, 1}. An assignment τ can
be extended over a set of literals β: τ(β) = 1 if τ(p) = 1 for all p ∈ β+ and τ(p) = 0
for each p ∈ β−; otherwise τ(β) = 0. τ satisfies a rule r ∈ Π iff τ(body(r)) = 1
implies τ(head(r)) = 1. An assignment τ that satisfies all rules of a program Π is an
answer set of Π if and only if there is no complete assignment τ ′ distinct from τ such
that (i) τ(p) = 0 implies τ ′(p) = 0, and (ii) τ ′ satisfies each rule in the program

Relation to Boolean Satisfiability (SAT). For a Boolean variable x, there are two liter-
als, the positive literal x and the negative literal ¬x. A clause is a disjunction of literals
and a CNF formula a conjunction of clauses. A truth assignment for a CNF formula F
is a function τ that maps variables in F to {0, 1}. An assignment τ extends implicitly to
literals by requiring that τ(¬x) = 1−v for each variable x such that τ(x) = v ∈ {0, 1}.
A clause C is satisfied by τ if τ(l) = 1 for some literal l ∈ C. An assignment τ satisfies
F if it satisfies every clause in F .

Clark [5] defines the completion of a given answer set program Π , mapping Π to a
CNF formula comp(F) as follows. For a body β = {p1, . . . , pm,∼pm+1, . . . ,∼pn} ∈
body(Π), let B(β) stand for β ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn interpreted as

676 E. Oikarinen and M. Järvisalo

a CNF formula where β and all pi’s are viewed as Boolean variables; we will liberally
refer to atoms and Boolean variables interchangeably.

B(β) characterizes that (i) the body of a rule is 1 if all its literals are 1, and (ii) some
literal in the body must be 0 if the head is 0 For an atom p ∈ head(Π) with body(p) =
{β1, . . . , βk}, H(p) stands for p ↔ β1 ∨ · · · ∨ βk, characterizing that (i) a head atom
must be 0 if all of the bodies of the rules defining it are 0, and (ii) the head atom must be
1 if there is a rule such that the body is 1. The completion of Π is then the CNF formula
comp(Π) =

∧
β∈body(Π) B(β) ∧

∧
p∈head(Π) H(p). For any Π , the satisfying assign-

ments of comp(Π) capture the supported models of Π . In general, every answer set of
Π is also a supported model. However, the supported models coincide with answer sets
only when Π is tight [12,11], is which case an assignment τ satistying comp(Π) cor-
responds to the answer set Aτ (p) = τ(p) if and only if p ∈ atom(Π) of Π , obtained
basically by restricting τ to atom(Π).

In case Π is non-tight, Aτ might not be an answer set of Π , due to loops in Π
that induce cyclic support among atoms assigned to 1 in τ . Loop formulas can be used
to prohibit such cyclic support. For a given program Π and a set U ⊆ atom(Π) of
atoms, the set of external bodies of U in Π , denoted by EB(U,Π), is {body(r) | r ∈
Π, head(r) ∈ U, body(r)+ ∩ U = ∅}. The loop formula induced by U for Π , where
EB(U,Π) = {β1, . . . , βk}, is L(U,Π) =

∧
p∈U (p → β1 ∨ · · · ∨ βk). For any non-

tight program Π and satisfying truth assignment τ for comp(Π), we know that Aτ is an
answer set of Π if and only if τ satisfies the loop formulas induced by each non-empty
U ⊆ atom(Π), i.e., all loop formulas for Π : L(Π) =

∧
∅⊂U⊆atom(Π) L(U,Π). There

is an exponential number of loop formulas in the worst-case [24], which makes the
direct approach of answer set solving Π by satisfiability checking comp(Π)∧L(U,Π)
infeasible in practice.

3 Search for Answer Sets

We now describe formalizations of answer set solver variants which we analyze in terms
of the relative size of backdoors, based on the fact that, for any program Π , the answer
sets of Π correspond to the satisfying assignments for comp(Π) ∧ L(Π). Indeed, the
various answer set solvers available today can be characterized as implementing vari-
ants of the classical the Davis–Putnam–Logemann–Loveland (DPLL) procedure [8,7]
or the conflict-driven clause learning (CDCL) algorithm [6,27], with additional propa-
gation techniques for performing well-foundedness checks over L(Π).

DPLL implements a standard backtracking depth-first search for satisfiability, with
unit propagation over clauses for extending deterministically the current partial assign-
ment τ making decisions (branching) on variables. Unit propagation overF and τ refers
to applying the following rules until fixpoint: if there is a clause (l∨l1∨· · ·∨lk) such that
τ(li) = 0 for all i = 1..k, let τ(l) = 1. Unit propagation on the completion comp(Π)
and loop formulas L(Π) of an answer set program Π is tightly connected with native
propagation rules [16,14] on the level of the answer set program. While CDCL also
makes decisions and employes unit propagation, in contrast to DPLL it does not imple-
ment standard backtracking, but rather uses a conflict analysis scheme for learning con-
flict clauses from seen conflicting assignments, and performs non-chronological back-
tracking after learning a conflict clause to erase more than one decision from the current

Answer Set Solver Backdoors 677

assignment. For detailed accounts on conflict-driven answer set solving, see [23,15],
and e.g. [18,20] for accounts on the relation of ASP and SAT solving.

Concretely, given a program Π as input, our formalizations of answer set solvers
differ in three dimensions:
(1) whether well-foundedness checks over the loop formulas L(Π) are performed ea-
gerly (EWF) after each decision during search under the current partial assignment τ ,
or lazily (LWF) after reaching a satisfying assignment for comp(Π);
(2) whether a form of conflict learning is employed (CL), in analogy with CDCL, or
not (noCL), in analogy with DPLL; and
(3) whether the solver makes decisions on all atoms in comp(Π) (B), or only on atoms
in atom(Π) (noB), i.e., not on the atoms of the form β, which would correspond to
making decision on the bodies of rules), yielding eight solver variants {(X,Y, Z)}
where X ∈ {EWF,LWF}, Y ∈ {CL, noCL}, and Z ∈ {B, noB}. The different vari-
ants are closely related to techniques implemented in state-of-the-art answer set solvers.
For examples, the DLV [21] and Smodels [30] systems relate with (EWF, noCL, noB);
Nomore++ [2] with (EWF, noCL,B); Smodelscc [31] (a conflict-learning variant of
Smodels) with (EWF,CL, noB); the SAT-based answer set solvers ASSAT [25], Cmod-
els [19], and SUP [22], incorporating variants of LWF, relate with (LWF,CL,B); and
finally, Clasp [15] relates most closely with (EWF,CL,B), together with WASP [1]
and SAG [26], both of which employ forms of (partial) EWF.

4 Backdoors

We continue by defining backdoors in the context of answer set solving. In general,
backdoors are defined in terms of tractable (polynomial-time decidable) subclasses
which may be either syntactically-defined classes such as Horn programs or 2-SAT,
or, more closely related to solvers, subclasses defined via subsolvers, such as unit prop-
agation in the context of SAT. Here our focus is on the latter type. Due to the page
limit, we omit the technical definitions of (traditional) strong unit-propagation back-
doors [32] and learning-sensitive backdoors (wrt unit propagation) [10] in the context
of SAT. As natural counterparts of these definitions, we now define (X, noCL, Z)-
backdoors and (X,CL, Z)-backdoors, respectively, in the context of ASP. We start with
(X, noCL, Z)-backdoors, which serve as the counterparts of strong backdoors. Simi-
larly as for CNF formulas, Π |τ denotes the simplified program obtained by assigning
values to atoms according to τ .

Definition 1. Given an answer set program Π , a subset B ⊆ atom(Π) ∪ body(Π)
is a (X, noCL, Z)-backdoor, where X ∈ {EWF,LWF} and Z ∈ {B, noB}, if the
following conditions hold:

– If X = EWF, then for every truth assignment τ : B → {0, 1}, unit propagation on
comp(Π)∧L(Π) and τ returns a satisfying assignment for Π |τ or concludes that
Π |τ is unsatisfiable.

– If X = LWF, then for every truth assignment τ : B → {0, 1}, unit propagation
on comp(Π) and τ returns a satisfying assignment for comp(Π) or concludes that
Π |τ is unsatisfiable.

678 E. Oikarinen and M. Järvisalo

– If Z = noB, then B ⊆ atom(Π).

Since comp(Π) over-approximates the answer sets of Π , in the case X = LWF,
unit propagation can be restricted to comp(Π) without loss of generality: If unit prop-
agation on comp(Π) and τ determines that comp(Π)|τ is unsatisfiable, then Π |τ is
also unsatisfiable. If unit propagation on comp(Π) and τ returns a satisfying assign-
ment for comp(Π), we know that the assignment is either an answer set of Π , or unit
propagation on comp(Π) ∧ L(Π) and τ concludes unsatisfiability.

We continue by defining (X,CL, Z)-backdoors as natural counterparts of learning-
sensitive backdoors in SAT.

Definition 2. Given an answer set program Π , a subset B ⊆ atom(Π) ∪ body(Π)
is a (X,CL, Z)-backdoor for Π if there exists a search tree exploration order for the
(X,CL, Z)-solver such that the following conditions hold:

– The solver branches only on the variables in B.
– The solver uses unit propagation on comp(Π)∧L(Π) when all variables in B are

assigned.
– The solver either finds a satisfying assignment for Π or proves Π unsatisfiable.
– If X = LWF, then the solver uses L(Π) for unit propagation only when the current

assignment is complete over atom(Π) ∪ body(Π).
– If Z = noB, then B ⊆ atom(Π).

Notice that, in contrast to (X, noCL, Z)-backdoors, here the additional unit propa-
gation enabled by L(Π) can play a critical role in terms of causing a conflict, which
would then allow the solver to learn from the conflict. Thus, in connection with the
lazy well-foundedness checking employed in SAT-based ASP solvers which employ
CDCL SAT-solvers, in case X = LWF unit propagation on L(Π) is postponed until a
complete assignment is reached on comp(Π) alone.

5 Analysis

As the main results of this paper, we will now analyze the relative size of (X,Y, Z)-
backdoors that exist for different answer set solver variants. We begin with relatively
simple observations.

Theorem 1. The following claims hold for any program Π , B ⊆ atom(Π)∪body(Π),
and X ∈ {EWF,LWF}, Y ∈ {CL, noCL}, Z ∈ {B, noB}.

(a) If B is a (LWF, Y, Z)-backdoor for Π , then it is a (EWF, Y, Z)-backdoor for Π .
(b) If B is a (X, noCL, Z)-backdoor, then it is a (X,CL, Z)-backdoor for Π .
(c) If B is a (X,Y, noB)-backdoor, then it is a (X,Y,B)-backdoor for Π .

Theorem 2. For any tight programΠ ,B⊆ atom(Π)∪body(Π), and Y∈ {CL, noCL},
Z∈ {B, noB}, it holds that B is a (LWF, Y, Z)-backdoor for Π if and only if B is a
(EWF, Y, Z)-backdoor for Π .

Answer Set Solver Backdoors 679

In many cases, bounds on the sizes of backdoors in SAT can be mapped into bounds on
the sizes of backdoors in ASP. For this, we use a straightforward encoding cnf2asp(F)
of a CNF formula F as

{⊥ ← ∼x1, . . . ,∼xm, xm+1, . . . , xn | (x1 ∨ ... ∨ xm ∨ ¬xm+1 ∨ ... ∨ ¬xn) ∈ F} ∪
{x← ∼x̂ | variable x occurs in F} ∪ {x̂← ∼x | variable x occurs in F},

where the first set of rules encode the clauses in F , and the latter two enforce the clas-
sical semantics over the variables (atoms) using a new atom x̂ for each x.

Theorem 3. Let F be a CNF formula and B a subset of variables in F .

(a) If B is a strong backdoor for F , then B is a (X, noCL, Z)-backdoor for cnf2asp(F)
for any X ∈ {EWF,LWF} and Z ∈ {B, noB}.

(b) If B is a learning-sensitive backdoor for F , then B is a (X,CL, Z)-backdoor for
cnf2asp(F) for any X ∈ {EWF,LWF} and Z ∈ {B, noB}.

Theorem 4. For any CNF formula F , if the smallest strong (resp. learning-sensitive)
backdoors for F are of size k, then the smallest (X, noCL, Z)-backdoors (resp.
(X,CL, Z)-backdoors) for cnf2asp(F) are of size at least k for any X ∈ {EWF,LWF}
and Z ∈ {B, noB}.

In addition to being able to carry over results from SAT to ASP, in particular cases—
especially, when conflict-learning is not enabled—results for unsatisfiable programs
carry over to satisfiable programs, using the following transformation:

trsat(Π) = {e← ∼d} ∪ {d← ∼e} ∪ {head(r)← body(r),∼d | r ∈ Π}.

This translation essentially encodes an exclusive-or choice between d and e, and each
of the rules in Π is conditioned on ∼d.

Theorem 5. For any unsatisfiable program Π for which the smallest (X, noCL, Z)-
backdoors are of size k, it holds that (i) trsat(Π) has an answer set, and that (ii) the
smallest (X, noCL, Z)-backdoors for trsat(Π) are at least of size k, for any X ∈
{EWF,LWF} and Z ∈ {B, noB}.

Proof. (sketch) The assignment τ such that τ(d) = 1 and τ(a) = 0 for all a ∈
atom(trsat(Π)) \ {d} is the unique answer set of trsat(Π). Furthermore, the small-
est (X, noCL, Z)-backdoors for trsat(Π) can be shown to be at least of size k. ��

We will next focus on the effects of different choices for X ∈ {EWF,LWF} and
Y ∈ {CL, noCL} on the relative sizes of (X,Y, Z)-backdoors. We begin by focusing
on unsatisfiable programs. First, we exploit a result from [10] for backdoors in SAT via
the connections between backdoors in SAT and ASP we established in Sect. 5.

Theorem 6. [10] There are unsatisfiable CNF formulas for which the smallest learning-
sensitive backdoor are exponentially smaller than the smallest strong backdoors.

Theorem 7. There are unsatisfiable programs for which the smallest (LWF,CL, noB)-
backdoors are exponentially smaller than the smallest (EWF, noCL,B)-backdoors.

680 E. Oikarinen and M. Järvisalo

Proof. Take any witness of Theorem 6. By Theorem 3, a smallest learning-sensitive
backdoor B for F is any (LWF,CL, noB)-backdoor for cnf2asp(F). By Theorems 6
and 4, the smallest (EWF, noCL,B)-backdoors are exponentially larger than B. ��

To compare the differences between lazy and eager propagation, we need to con-
sider non-tight programs, thus involving a more fine-grained analysis than what is pos-
sible in the context of SAT. Interestingly, there are programs which have exponentially
smaller (EWF, noCL, noB)-backdoors than (LWF,CL, noB)-backdoors; that is, lazy
well-foundedness checking can cause an exponential blow-up in the size of backdoor.

Theorem 8. There are unsatisfiable programs for which the smallest (EWF, noCL, noB)
-backdoors are exponentially smaller than the smallest (LWF, noCL,B)-backdoors.

Proof. (sketch) Consider the unsatisfiable program

Πn = {f ← ∼f,∼pi,1, . . . ,∼pi,n−1 | i = 1..n} ∪
{f ← ∼f, pi,k, pj,ki, j = 1..n, k = 1..n− 1, i �= j} ∪
{pi,k ← pi,k | i = 1..n, k = 1..n− 1},

from [18], where n = 2m for some m. Notice that there is no external support for
atoms pi,k (the only rule with an atom pi,k in the head is a self-loop). This and the
first rule cause the unsatisfiability of the program. Now {f} is a (EWF, noCL, noB)-
backdoor for Πn (note that τ(pi,j) = 0 for all i, j can directly be propagated with
EWF). However, for a (LWF,CL,B)-backdoor, in order to check the loops of the form
pi,k ← pi,k, one must first have a complete truth assignment, which can be shown to
require assigning at least n atoms. Thus, a (LWF, noCL,B)-backdoor has to be at least
of size n. ��

We now turn our attention to backdoors for satisfiable programs.

Theorem 9. [10] There are satisfiable CNF formulas for which there are learning-
sensitive backdoors that are smaller than the smallest strong backdoors.

Theorem 10. There are satisfiable programs for which there are (LWF,CL, noB)-
backdoors that are smaller than the smallest (EWF, noCL,B)-backdoors.

Proof. Like Theorem 7, follows from Theorems 9, 3, and 4. ��

Theorem 11. There are satisfiable programs for which the smallest (EWF, noCL, noB)-
backdoors are exponentially smaller than the smallest (LWF,CL, noB)-backdoors.

Proof. (sketch) Consider the program Πn = P0 ∪ P1 ∪ · · · ∪ Pn such that P0 = {d←
∼d, c} and Pi = {ai ← bi. bi ← ai. ei ← ∼ai,∼bi,∼c} for all i = 1..n, where
n = 2m for some m. The assignment τ(ei) = 1 for all i = 1..n and τ(a) = 0
for all a ∈ atom(Πn) \ {e1, . . . , en} is the unique answer set of Πn. Now, {d} is
a (EWF, noCL, noB)-backdoor for Πn. However, the smallest (LWF, noCL, noB)-
backdoors and (LWF,CL, noB)-backdoors can be shown to be of size n+ 1. ��

By a simple modification, we have an analogous results for unsatisfiable programs.

Answer Set Solver Backdoors 681

Theorem 12. There are unsatisfiable programs for which the smallest (EWF, noCL,
noB)-backdoors are exponentially smaller than the smallest (LWF,CL, noB)-
backdoors.

Proof. Consider the program Π ′
n = Πn ∪ {⊥ ← e1, . . . , en,∼a1, . . . ,∼an,∼b1, . . . ,

∼bn,∼c,∼d}. The additional rule disallows in a naive way exactly the only satisfying
assignment forΠn, being equivalent with the clause

∨n
i=1 ¬ei∨

∨n
i=1 ai∨

∨n
i=1 bi∨c∨d.

This rule has 3n+2 atoms in the body. Hence under any assignment over no more than
3n atoms, unit propagation cannot derive anything based on the rule. It follows that the
arguments in the proof of Theorem 11 are valid also for Π ′

n. ��
Finally, we look at the question of whether allowing solvers to branch on the bodies

of rules (i.e., on the β variables in comp(Π)), or put another way, whether restricting
solvers to branch only on atoms, has an effect on the size of smallest backdoors.

Theorem 13. There are unsatisfiable programs for which the smallest (LWF, noCL,B)-
backdoors are exponentially smaller than the smallest (EWF, noCL, noB)-backdoors.

Proof. (sketch) Consider the tight program Πn
k = {f ← ∼f} ∪ Pn

1 ∪ · · · ∪ Pn
k , where

Pn
i = {f ← Bi | Bi = {∼ai,1, . . . ,∼ai,n}}∪{ai,j ← Bi,j | Bi,j = Bi \{∼ai,j}, j = 1..n}

and n = 2k. There are (LWF, noCL,B)-backdoors of size k for Πn
k : Consider any set

{f,B1, . . . , Bj−1, Bj+1, Bk} that contains f and all except one bodies Bi from Πn
k .

On the other hand, it can be shown that the smallest (EWF, noCL, noB)-backdoor are
of size at least (k − 1) · (n− 1) + 1. ��

Additionally, we establish that in connection with eager well-foundedness check-
ing, conflict-learning even when restricting branching on atoms can have exponentially
smaller backdoors than without conflict-learning.

Theorem 14. There are unsatisfiable programs for which the smallest (LWF,CL, noB)-
backdoors are exponentially smaller than the smallest (EWF, noCL,B)-backdoors.

Proof. Consider the CNF formulaF3 from [10, Proof of Theorem 3] with k+3·2k vari-
ables, having a learning-sensitive backdoor of size k. Now, by Theorem 3 the translation
cnf2asp(F3), which is a tight program, has a (LWF,CL, noB)-backdoor of size k. On
the other hand, as shown in [10, Proof of Theorem 3], the smallest strong backdoors
for F3 are at least of size 2k + k. Thus, by Theorem 4 the smallest (EWF, noCL,B)-
backdoors of cnf2asp(F3) are at least of size 2k + k. ��

6 Conclusions

Closely following the techniques implemented in different solvers, we introduced an-
swer set solver backdoors defined with respect to three dimensions of answer set solv-
ing techniques. As the main results, we showed up to exponential separations of the
resulting notions of answer set solver backdoors, which we believe to highlight intrin-
sic differences of the solver variants in terms of their behavior w.r.t. problem structure.

Acknowledgements. Work funded by Academy of Finland, grants 251170 (Centre of
Excellence in Computational Inference Research), 250518 (EO), and 276412 (MJ).

682 E. Oikarinen and M. Järvisalo

References

1. Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: WASP: A native ASP solver
based on constraint learning. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS (LNAI),
vol. 8148, pp. 54–66. Springer, Heidelberg (2013)

2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ system. In: Baral,
C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
422–426. Springer, Heidelberg (2005)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun.
ACM 54(12), 92–103 (2011)

5. Clark, K.: Negation as failure. In: Readings in Nonmonotonic Reasoning, pp. 311–325.
Morgan Kaufmann Publishers (1987)

6. Darwiche, A., Pipatsrisawat, K.: Complete algorithms. In: Biere et al [3], pp. 99–130
7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-

nications of the ACM 5(7), 394–397 (1962)
8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the

ACM 7(3), 201–215 (1960)
9. Dilkina, B.N., Gomes, C.P., Malitsky, Y., Sabharwal, A., Sellmann, M.: Backdoors to com-

binatorial optimization: Feasibility and optimality. In: van Hoeve, W.-J., Hooker, J.N. (eds.)
CPAIOR 2009. LNCS, vol. 5547, pp. 56–70. Springer, Heidelberg (2009)

10. Dilkina, B.N., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors to sat-
isfiability: Dynamic sub-solvers and learning during search. Ann. Math. Artif. Intell. 70(4),
399–431 (2014)

11. Erdem, E., Lifschitz, V.: Tight logic programs. Theory and Practice of Logic Program-
ming 3(4-5), 499–518 (2003)

12. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Meth-
ods of Logic in Computer Science 1, 51–60 (1994)

13. Fichte, J.K., Szeider, S.: Backdoors to normality for disjunctive logic programs. In: Proc.
AAAI. AAAI Press (2013)

14. Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: ICLP Work-
shop on Search and Logic: Answer Set Programming and SAT, Seattle, pp. 41–56 (August
16, 2006)

15. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artif. Intell. 187, 52–89 (2012)

16. Gebser, M., Schaub, T.: Tableau calculi for logic programs under answer set semantics. ACM
Trans. Comput. Log. 14(2), 15 (2013)

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc.
ICLP/SLP 1988, pp. 1070–1080. MIT Press (1988)

18. Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers. Ann.
Math. Artif. Intell. 53(1-4), 169–204 (2008)

19. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

20. Järvisalo, M., Oikarinen, E.: Extended ASP tableaux and rule redundancy in normal logic
programs. Theory and Practice of Logic Programming 8(5-6), 691–716 (2008)

21. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (2006)

Answer Set Solver Backdoors 683

22. Lierler, Y.: Abstract answer set solvers. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP
2008. LNCS, vol. 5366, pp. 377–391. Springer, Heidelberg (2008)

23. Lierler, Y.: Abstract answer set solvers with backjumping and learning. TPLP 11(2-3),
135–169 (2011)

24. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261–268 (2006)

25. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1–2), 115–137 (2004)

26. Lin, Z., Zhang, Y., Hernandez, H.: Fast SAT-based answer set solver. In: Proc. AAAI, pp.
92–97. AAAI Press (2006)

27. Marques-Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Biere et al [3], pp. 131–153

28. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

29. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. In: Marques-Silva, J.,
Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 230–243. Springer, Heidelberg (2007)

30. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1–2), 181–234 (2002)

31. Ward, J., Schlipf, J.: Answer set programming with clause learning. In: Lifschitz, V.,
Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 302–313. Springer,
Heidelberg (2003)

32. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proc.
IJCAI, pp. 1173–1178. Morgan Kaufmann (2003)

Incremental SAT-Based Method

with Native Boolean Cardinality Handling
for the Hamiltonian Cycle Problem

Takehide Soh1, Daniel Le Berre2, Stéphanie Roussel2,
Mutsunori Banbara1, and Naoyuki Tamura1

1 Kobe University 1-1, Rokko-dai, Nada, Kobe, Hyogo 657-8501 Japan
{soh@lion.,tamura@,banbara@}kobe-u.ac.jp

2 CNRS - Université d’Artois, Rue Jean Souvraz, SP-18, F-62307, Lens, France
{leberre,sroussel}@cril.univ-artois.fr

Abstract. The Hamiltonian cycle problem (HCP) is the problem of
finding a spanning cycle in a given graph. HCP is NP-complete and has
been known as an important problem due to its close relationship to the
travelling salesman problem (TSP), which can be seen as an optimiza-
tion variant of finding a minimum cost cycle. In a different viewpoint,
HCP is a special case of TSP. In this paper, we propose an incremental
SAT-based method for solving HCP. The number of clauses needed for
a CNF encoding of HCP often prevents SAT-based methods from being
scalable. Our method reduces that number of clauses by relaxing some
constraints and by handling specifically cardinality constraints. Our ap-
proach has been implemented on top of the SAT solver Sat4j using Scarab.
An experimental evaluation is carried out on several benchmark sets and
compares our incremental SAT-based method against an existing eager
SAT-based method and specialized methods for HCP.

1 Introduction

The Hamiltonian cycle problem (HCP) is the problem of finding a spanning
cycle, called Hamiltonian cycle, in a given graph. HCP is listed in Karp’s 21
NP-complete problems [24] and has been known as an important problem due
to its close relationship to the travelling salesman problem (TSP). On the one
hand, HCP is a special case of TSP. On the other hand, TSP can be seen as
an optimization variant of HCP and the development of an effective method for
TSP would have a significant impact in computer science.

HCP has been theoretically studied in graph theory [16,17]. Besides, HCP
is tackled in Operations Research (OR). For instance, Jäger and Zhang [21]
shows a method based on the Hungarian algorithm and Karp-Steele patching
for solving HCP on directed graphs. More recently, Eshragh et. al. shows a
hybrid algorithm and a Mixed Integer Programming (MIP) model for HCP on
undirected graphs [12].

HCP also has been studied in Artificial Intelligence using propositional satis-
fiability (SAT). In SAT-based methods, the main issue for solving HCP is how

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 684–693, 2014.
c© Springer International Publishing Switzerland 2014

Incremental SAT-Based Method with Native BC Handling for HCP 685

to encode connectivity constraints. Those constraints can also be seen as per-
mutation constraints which have been studied in Constraint Programming [18].
An encoding method was proposed in 90’s by [20,19] named later absolute en-
coding. Following that, in 2003, Prestwich proposed the relative encoding [28]
which requires fewer clauses than the absolute encoding. In 2009, Velev and
Gao further improve the relative encoding by merging encoding variables and
applying triangulation to a given graph [32] which achieved indeed 4 orders of
magnitude speedup on satisfiable structured graphs from the DIMACS graph
coloring instances compared to the one by Prestwich [28]. However, the number
of clauses in the encoding is increasing by O(n3) and it is still difficult to solve
graph instances which consist in over 1,000 nodes.

In this paper, we escape the current limitations of SAT-based methods using
an abstraction/refinement approach and by natively handling Boolean cardinal-
ity constraints. Note that we consider in our encoding for undirected graphs as
in [28,32].

– Incremental HCP Solving. The encoding of the connectivity constraints
often causes the generation of a huge amount of clauses which prevent SAT-
based methods from being scalable. Our method thus relaxes the connectivity
constraints to reduce the number of clauses and incrementally refines the
encoding by adding new clauses when sub-cycles are detected.

– Native Boolean Cardinality Handling. Another issue when translating
HCP to SAT is to express Boolean Cardinality (BC) constraints, for which
various encoding into CNF exists. In addition to using those existing BC
encodings, we propose to use a solver with native support for BC constraints,
called Native BC. The Native BC has the advantages to reduce encoding time
and memory usage. Native BC is provided as a specific constraint in the SAT
solver Sat4j [27].

– Implementation on a System Tightly Integrated with SAT Solvers.
Since SAT solvers are necessary to invoke many times in incremental HCP
solving, communication cost is not negligible. We thus implement the first
version of our method on Scarab [31] which is tightly integrated with Sat4j.

We carried out experiments on three benchmark sets. One is color04 which is
used in [32] andcomes fromDIMACSgraphcoloring instances [1].The secondone is
knightwhich is a set of knight’s tour instances used in [12]. The third one is tsplib
which is the whole set of HCP instances in TSPLIB [4]. On those benchmark sets,
we compare the proposed incremental SAT-based methods against the previous
eager SAT-basedmethod byVelev andGao [32], aHCP solvingmethod byEshragh
et al. [12], and the state-of-the-art TSP solver LKH. The latter provided the best
answers for instances with unknown optima fromDIMACSTSP Challenge [2] and
provides an interface for HCP. In our experiments, we used the latest version 2.0.7
of LKH, whose performance on HCP is improved from previous versions [3]. All
benchmark, programs, experimental results explained in this paper are available
in: http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/

http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/

686 T. Soh et al.

2 Hamiltonian Cycle Problems

The Hamiltonian cycle problem (HCP) is the problem of finding a spanning cycle
in a given graph. Let G = (V,E) be a graph where V is a set of n nodes and E
is a set of edges. A set of auxiliary arcs A = {(i, j), (j, i) | {i, j} ∈ E} is also
introduced for simple modeling. Let xij(i �= j) be a Boolean variable for each
arc (i, j) ∈ A, which is equal to 1 when (i, j) is used in a solution cycle. Then,
a direct modeling of HCPs would be using the following constraints.∑

(i,j)∈A
xij = 1 for each node i = 1, . . . , n. (out-degree)

∑
(i,j)∈A

xij = 1 for each node j = 1, . . . , n. (in-degree)

∑
i,j∈S

xij ≤ |S| − 1, S ⊂ V, 2 ≤ |S| ≤ n− 2 (connectivity)

The out-degree and in-degree constraints force that, for each node, in-degree
and out-degree are respectively exactly one in a solution cycle. The connectivity
constraint prohibits the formation of sub-cycles, i.e., cycles on proper subsets
of n nodes. HCPs have been tackled by SAT-based methods. In [28], transitive
relations for all possible permutations of three nodes are used to represent the
connectivity constraint, which however results in O(n3) clauses. Velev and Gao
follow this encoding, i.e., it basically needs O(n3) clauses, but they practically
reduce the number of clauses by a triangulation for a given graph [32]. Besides,
they also improve encoding by merging ordering variables. As a result, their SAT-
based method achieves 4 orders of magnitude speedup on satisfiable structured
graphs from the DIMACS graph coloring instances. However, it struggles to find
a Hamiltonian cycle when the graph has over 1,000 nodes.

3 Proposal

3.1 Incremental HCP Solving

Previous SAT-based methods encode all constraints of HCP into SAT and com-
pute its solution using a single execution of the SAT solver: we call those methods
“eager”. The main drawback of those eager methods for HCP is the encoding of
connectivity constraints which results basically in O(n3) clauses.

To solve large HCPs, instead of encoding connectivity constraints into CNF
and run a SAT solver once, we relax those constraints and incrementally execute
the SAT solver on an abstraction of the problem. If the solution found con-
tains sub-cycles, we prevent them in the new abstraction by adding new clauses.
As such, we generate the clauses encoding the connectivity constraints “on de-
mand”, or “lazily”. Such approach correspond to a Counterexample-Guided Ab-
straction Refinement (CEGAR) loop for HCP which was originally proposed in
the context of model checking [9] and depicted in Fig. 1.

Incremental SAT-Based Method with Native BC Handling for HCP 687

1: Ψ := initial abstraction of G ;
2: while (Ψ is satisfiable)
3: if (Solution contains only one cycle)

// we found a Hamiltonian cycle of G
4: return Solution
5: Ψblock := Construct blocking clauses;

// (two for each sub-cycle)
6: Ψ := Ψ ∧ Ψblock ;
7: return there is no Hamiltonian cycle;

Fig. 1. CEGAR Iteration for Solving HCP

5

6

1

48

2

7

3

C
1

C
2

Fig. 2. Counter Example

The initial abstraction is built by omitting the connectivity constraint. That
is, cardinality constraints corresponding to in/out-degree constraints are en-
coded. We also encode xij+xji ≤ 1 for each edge {i, j} ∈ E to prevent sub-cycles
between two nodes. Those encoding results in a CNF formula Ψ (Line 1), which
represents an abstract HCP constraint model. It ensures that every node must
belong to some cycle but it does not ensure that the cycle is a Hamiltonian cycle.
Fig. 2 shows such a case: every node belongs to a cycle but there is more than one
cycle. SAT solving is then executed and the CEGAR iteration starts (Line 2).
Whenever the formula is unsatisfiable, the iteration ends and it is decided that
there is no Hamiltonian cycle (Line 8). If the formula is satisfiable and its model
contains a single cycle then it must be a Hamiltonian cycle (Line 4). Otherwise,
the solution consists of multiple sub-cycles which represent counter examples.
To refine the constraints, some blocking clauses are added to Ψ to block each
sub-cycle clockwise and counterclockwise (Line 6 and 7). This procedure is it-
erated until a Hamiltonian cycle is found or Ψ becomes unsatisfiable. Blocking
clauses are generated to prevent the sub-cycles to appear again. In the case of
Fig. 2, the following four clauses are generated: ¬x12∨¬x23∨¬x37∨¬x78∨¬x81

to block C1 clockwise. ¬x87 ∨ ¬x73 ∨ ¬x32 ∨ ¬x21 ∨ ¬x18 to block C1 counter-
clockwise. ¬x46∨¬x65∨¬x54 to block C2 clockwise. ¬x45∨¬x56∨¬x64 to block
C2 counter-clockwise. Note that, even in the worst case, we do not always need
to block all sub-cycles in a given graph since in/out-degree constraints ensure
that every node belongs to some cycle. For instance, in Fig. 2, it is not neces-
sary to block a sub-cycle (1, 2, 3, 4, 8) since the remaining nodes {5, 6, 7} cannot
construct any sub-cycles.

3.2 Native Boolean Cardinality Handling

By the relaxation of connectivity constraints, we may reduce considerably the
number of clauses compared to eager SAT-based methods [19,28,32]. This sec-
tion discusses how to encode the remaining in/out-degree constraints, which form
Boolean cardinality (BC) constraints

∑m
i=1 xi # k where xi ∈ {0, 1} are Boolean

variables, m is an integer represents the number of variables, the relational

688 T. Soh et al.

operator # is one of {≤,≥,=}, k is an integer represents the degree (threshold)
of the constraint.

Boolean cardinality encoding into CNF has been actively studied [30,6,29,13].
When we use binomial encoding,

(
m
k

)
clauses are needed. It is improved by using

Totalizer (O(m2)) [6], or Sequential Counter (O(m·k)) [30]. However, even when
using the Sequential Counter for encoding the BC constraints in HCP, O(n2)
clauses are needed for graph instances consisting of n nodes.

One way to avoid generating those clauses is to support natively a specific
representation of those cardinality constraints in the SAT solver. It is expected
that such specialized SAT-based systems could benefit from avoiding the time
of CNF encoding, and reducing the number of constraints in the solver, which
reduces the amount of memory used.

The Sat4j library [27] started in 2004 as an implementation in Java of the
original Minisat specification [11]. In contrast with recent versions of Minisat,
and most SAT solvers, the underlying SAT solver is still designed to work with
custom constraints, not just clauses. Sat4j has a native representation of BC
constraints, denoted Native BC in the rest of the paper. It currently emulates
a BC constraint

∑n
i=1 xi ≥ k. This specific constraints generates clauses of size

n − k + 1 when it detects a conflict with the current assignment. In addition,
whenever it detects that n− k variables are already assigned to 0, it forces the
remaining variables to be 1 using the n−k falsified literals as an explanation for
those propagation. One can consider that such constraint generates “on demand”
or lazily the clauses of the binomial encoding.

4 Experimental Results

This section provides experimental results to evaluate the effectiveness of the
incremental HCP solving, Native BC, and their implementation on Scarab. We
also have a comparison with other specialized methods. The following systems
are used:

– Eager SAT-based method (referred to as Velev) is our implementation of the
previous SAT-based method by Velev and Gao [32]. It runs with Minisat2.2.

– HCP/TSP Solver LKH is the state-of-the-art TSP solver which provided
the best answers for instances with unknown optima from DIMACS TSP
Challenge [2] and provides an interface for HCP. In our experiments, we used
the latest version 2.0.7 of LKH, whose performance on HCP is improved from
previous versions [3].

– Incremental HCP Solving (referred to as S4J-S, S4J-N) is the proposed meth-
ods implemented on Scarab. Two versions are prepared to measure the ef-
fectiveness of using Sequential Counter or Native BC, respectively. We have
also tested another encoding method Totalizer in all instances but omit their
results since they are similar (or slightly inferior) to Sequential Counter.
Readers can check the results of Totalizer in the supplemental web page.
Note that learned clauses are cleared after each iteration since keeping them

Incremental SAT-Based Method with Native BC Handling for HCP 689

 0

 100

 200

 300

 400

 500

 0 20 40 60 80 100 120

T
im

e
(s

ec
)

#Solved

Velev
LKH

S4J-S-Loose
S4J-S
S4J-N

Fig. 3. Cactus Plot on color04, knight, and tsplib

across calls did not accelerate searches but other heuristic values are kept
through all iterations.

– We also prepared, S4J-S-Loose, a variant of S4J-S, which is implemented on
loosely integrated system to measure the implementation difference.

All experiments are carried out on Intel Xeon 2.93 GHz within the timelimit
of 500 seconds. 4GB heap memory is allowed in the Java virtual machine set-
tings (-Xms4g -Xmx4g). Sat4j with the prebuilt solver “Glucose21” is used for
incremental HCP solving, which gave the best overall results from the available
solvers of the library on the benchmarks used. Benchmark sets are selected from
the literature of the previous eager SAT-based method [32] and a HCP solving
method by Eshragh et al. [12]: color04 comes from DIMACS graph coloring in-
stances [1] used in the eager SAT-based method [32]. It consists of 119 instances
whose number of nodes ranges from 11 to 10,000. knight is a set of knight’s
tour instances used in [12]. In the literature, only 3 instances of sizes 8x8, 12x12,
20x20 are used. In the experiments, we additionally use 8 instances of sizes 30x30,
40x40, ..., and 100x100 for wider comparisons. tsplib is the whole set of HCP
instances of TSPLIB [4]. Similar to knight, two of them are used in [12] and we
additionally use the remaining 7 instances for wider comparisons.

Fig. 3 shows a cactus plot denoting all results of compared systems: Velev,
LKH, S4J-S, S4J-N, and S4J-S-Loose. In the result, the eager SAT-based method
Velev solved 60 instances but slows down in early stage. A reason is the number
of encoded clauses which explodes to over 100 million even when #nodes of
the input graph is 500. It is obviously closed to the limit of SAT solvers. For
instance, it generates 194,186,195 clauses for DSJC500.5 (#nodes is 500) and
could not encode latin square (#nodes is 900) within 500 seconds. LKH solved
81 instances, which is more than Velev but less than the incremental HCP solving

690 T. Soh et al.

Table 1. #Solved per Graph-Size

Graph Size #Ins.
Velev [32] S4J-N
#S (%) #S (%)

n ≤ 200 54 45 (83) 48 (89)
200 < n ≤ 2000 63 15 (23) 49 (78)

2000 < n 21 0 (0) 8 (38)

Table 2. Statistics

S4J-S S4J-N
#Ite. #Cyc. #Ite. #Cyc.

Median 10 48 7 20
Average 60.0 311.8 37.9 310.5
Maximum 3332 9188 761 7604

methods: S4J-S-Loose, S4J-S, and S4J-N. Among them, the difference of S4J-
S-Loose and S4J-S is not small: S4J-S is faster especially until 100 seconds.
Consequently, incremental HCP solving with Native BC S4J-N solved the most
instance – it is always faster than other methods. A reason is that incremental
methods can start with much less clauses and practically do not need so many
iterations and blocking clauses as is explained in the latter part of this section.
We also have a literature-based comparison with results provided by Eshragh
et. al. [12]. They carried experiments on knight’s tour problems of 8x8, 12x12,
and 20x20, and TSPLIB problems of alb1000 and alb2000. Runtimes of S4J-N
range from 1 second to 8 seconds while runtimes of their method range from 2
seconds to 165,600 seconds.

Table 1 shows the distribution of the number of solved instances for the num-
ber n of nodes on Velev and S4J-N. In case of n ≤ 200, both Velev and S4J-N
solved more than 80% of instances. However, in case of 200 < n ≤ 2000, Velev
could solve only 23% of instances while S4J-N solves 78% of instances. Moreover,
even the case of 2000 < n, S4J-N still solves 38% of instances. With regard to
the number of nodes of graphs, the largest satisfiable instance solved by Velev
is 1-Insertions 6 (n = 607), one by S4J-N is alb5000 (n = 5, 000) 1. In the
literature [7,32], triangulation techniques are proposed to reduce the number of
transitivity constraints and they are supposed to be effective for sparse graphs. If
we select graph instances whose density are less than 0.03 and number of nodes
are less than 2000 (33 out of 138), the difference between Velev and S4J-N be-
comes smaller but S4J-N still solves 25 instances while Velev solves 16 instances.

Table 2 shows the median, average, and maximum numbers of iterations and
cycles for all satisfiable instances solved by each of S4J-S and S4J-N. We can
read the followings from this table. The maximum number of cycles found for
one instance is less than 10 thousands, that is, we need at most 20 thousands
clauses in addition to the base clauses for solving those instances. Also, the
median numbers of cycles show that we generally need much less additional
clauses. The median numbers of iterations and cycles are almost stable in two
encoding methods. In some cases, from the maximum numbers of iterations, we
need to launch the SAT solver over thousands times. Considering that the given
time limit is 500 seconds, the cost of the invocation of SAT solving procedure is
preferred to be low in incremental HCP solving.

1 S4J-N solved qg.order100 (n = 10, 000) with 512 seconds a bit longer than timelimit.

Incremental SAT-Based Method with Native BC Handling for HCP 691

In addition to above experiments and analyses, readers can find further ex-
periments and comparisons (e.g. using other SAT solvers) in:
http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/.

5 Related Work

In 2000, Clarke et al. proposed Counterexample-Guided Abstraction Refinement
(CEGAR) in the context of model checking [9], which receives a program text
and abstract functions are extracted from it. Following their work, there are
some applications of CEGAR to Presburger Arithmetic [25], deciding the theory
of Arrays [14], and the RNA-folding problem [15]. Recently, the use of CEGAR
was proposed to solve QBF [23], Circumscription [22] and argumentation infer-
ence [10]. We believe that such approach can be applied to even more cases in
Artificial Intelligence.

In the context of solving TSP, there is a traditional OR technique proposed
in 80’s which translates TSP into the assignment problem [8,26]. Jäger and
Zhang [21] apply this OR technique to HCP on directed graphs by using the
Hungarian algorithm and Karp-Steele patching. Though only for a small pro-
portion of instances, a SAT approach is used in their rare last step (14 out of
4266 instances) to guarantee completeness. It is described in the literature [21]
that their method is less effective to undirected graphs, in particular, in the case
that a given graph have no Hamiltonian cycle their method will enumerate all
sub-cycles in the main step which cause a long running time. In our method, the
SAT approach is central and part of a CEGAR loop, which practically performs
well on undirected graphs for both SAT/UNSAT problems. Comprehensive ex-
periments are carried by using several encoding/solvers. Our work provides some
hints on the importance of (not) encoding cardinality constraints into CNF.

6 Conclusion

In this paper, we proposed an incremental SAT-based method with Native BC
for solving HCP. It overcomes other methods by reducing the cost of full en-
coding of connectivity constraints and CNF encoding of BC constraints. Our
work gives analyses for encoded clauses and iterations, and also points out that
pre-processing affects the convergence of CEGAR iterations for solving HCP.
Recently, Ab́ıo et. al. presented an approach which balance the use of encoding
and the use of custom propagators within SMT [5]. In our work, a custom prop-
agator is used for BC while a lazy encoding of the combination constraints is
performed using CEGAR. It is another kind of balance between encoding and
propagation.

Acknowledgements. This work was partially funded by JSPS KAKENHI
Grant Numbers 24300007 and 25730042.

http://kix.istc.kobe-u.ac.jp/~soh/scarab/jelia2014/

692 T. Soh et al.

References

1. DIMACS Graph Coloring, http://mat.gsia.cmu.edu/COLOR/instances.html
2. DIMACS TSP Challnege, http://dimacs.rutgers.edu/Challenges/TSP/
3. LKH, http://www.akira.ruc.dk/~keld/research/LKH/
4. TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
5. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Stuckey, P.J.: To
encode or to propagate? The best choice for each constraint in SAT. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)

6. Bailleux, O., Boufkhad, Y., Roussel, O.: A translation of pseudo boolean con-
straints to SAT. Journal on Satisfiability, Boolean Modeling and Computation
2(1-4), 191–200 (2006)

7. Bryant, R.E., Velev, M.N.: Boolean satisfiability with transitivity constraints. ACM
Trans. Comput. Log. 3(4), 604–627 (2002)

8. Carpeneto, G., Toth, P.: Some new branching and bounding criteria for the asym-
metric travelling salesman problem. Management Science 26(7), 736–743 (1980)

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

10. Dvorák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive decision
procedures for abstract argumentation. Artif. Intell. 206, 53–78 (2014)

11. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

12. Eshragh, A., Filar, J.A., Haythorpe, M.: A hybrid simulation-optimization algo-
rithm for the Hamiltonian cycle problem. Annals OR 189(1), 103–125 (2011)

13. Frisch, A.M., Giannaros, P.A.: SAT encodings of the at-most-k constraint: Some
old, some new, some fast, some slow. In: Proceedings of the The 9th International
Workshop on Constraint Modelling and Reformulation, ModRef 2010 (2010)

14. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

15. Ganesh, V., O’Donnell, C.W., Soos, M., Devadas, S., Rinard, M.C., Solar-Lezama,
A.: Lynx: A programmatic SAT solver for the rna-folding problem. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 143–156. Springer, Heidelberg
(2012)

16. Gould, R.J.: Advances on the Hamiltonian problem - a survey. Graphs and Com-
binatorics 19(1), 7–52 (2003)

17. Gould, R.J.: Recent advances on the Hamiltonian problem: Survey III. Graphs and
Combinatorics 30(1), 1–46 (2014)

18. Hnich, B., Walsh, T., Smith, B.M.: Dual modelling of permutation and injection
problems. J. Artif. Intell. Res (JAIR) 21, 357–391 (2004)

19. Hoos, H.H.: SAT-encodings, search space structure, and local search performance.
In: Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI 1999), pp. 296–303 (1999)

20. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.
In: Proceedings of the IFIP 13th World Computer Congress, pp. 253–258 (1994)

21. Jäger, G., Zhang, W.: An effective algorithm for and phase transitions of the di-
rected Hamiltonian cycle problem. J. Artif. Intell. Res (JAIR) 39, 663–687 (2010)

http://mat.gsia.cmu.edu/COLOR/instances.html
http://dimacs.rutgers.edu/Challenges/TSP/
http://www.akira.ruc.dk/~keld/research/LKH/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Incremental SAT-Based Method with Native BC Handling for HCP 693

22. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction
refinement algorithm for propositional circumscription. In: Janhunen, T., Niemelä,
I. (eds.) JELIA 2010. LNCS (LNAI), vol. 6341, pp. 195–207. Springer, Heidelberg
(2010)

23. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving qbf with counterex-
ample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

24. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103 (1972)

25. Kroning, D., Ouaknine, J., Seshia, S.A., Strichman, O.: Abstraction-based satisfi-
ability solving of presburger arithmetic. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004)

26. Laporte, G.: The traveling salesman problem: An overview of exact and approxi-
mate algorithms. European Journal of Operational Research 59(2), 231–247 (1992)

27. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation 7, 59–64 (2010)

28. Prestwich, S.D.: SAT problems with chains of dependent variables. Discrete Ap-
plied Mathematics 130(2), 329–350 (2003)

29. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality con-
straints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer,
Heidelberg (2007)

30. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

31. Soh, T., Tamura, N., Banbara, M.: Scarab: A rapid prototyping tool for SAT-
based constraint programming systems. In: Järvisalo, M., Van Gelder, A. (eds.)
SAT 2013. LNCS, vol. 7962, pp. 429–436. Springer, Heidelberg (2013)

32. Velev, M.N., Gao, P.: Efficient SAT techniques for relative encoding of permuta-
tions with constraints. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS (LNAI),
vol. 5866, pp. 517–527. Springer, Heidelberg (2009)

Revisiting Reductants in the Multi-adjoint Logic
Programming Framework�

Pascual Julián-Iranzo1, Jesús Medina2, and Manuel Ojeda-Aciego3

1 University of Castilla-La Mancha. Dept. of Information Technologies and Systems,
Ciudad Real, Spain

2 Universidad de Cádiz. Dept. de Matemáticas, Cádiz, Spain
3 Universidad de Málaga. Dept. de Matemática Aplicada, Málaga, Spain

Abstract. In this work, after revisiting the different notions of reduc-
tant arisen in the framework of multi-adjoint logic programming and
akin frameworks, we introduce a new, more adequate, notion of reduc-
tant in the context of multi-adjoint logic programs. We study some of its
properties and its relationships with other notions of reductants.

Keywords: Fuzzy Logic Programming, Multi-adjoint Logic Program-
ming, Reductants.

1 Introduction

Fuzzy extensions of the logic programming paradigm have been investigated
since the late eighties and the decade of the nineties [1, 4, 7, 9, 20]; later, some
general frameworks were introduced and their interrelationships were studied
[2, 5, 10, 12, 17, 19]; currently, one can still find papers on the subject of fuzzy
logic programming, some of them even from the perspective of category theory,
which address important issues in this topic [3, 11, 15]. This work focuses on
multi-adjoint logic programming [13] and, specifically, on the most adequate
notion of reductant for a logic program.

Multi-adjoint logic programming is a flexible framework combining fuzzy logic
and logic programming. Roughly speaking, a multi-adjoint logic program can
be seen as a set of implicational rules annotated by a truth degree (a value of
a complete lattice). One of the main features of the multi-adjoint framework is
its flexibility, in that rules need not be written with common implications, and
the most suitable one can be used instead; another important feature is that
it works even when the conjunctors used in the body of the rules are neither
commutative or associative.

Reductancts were first introduced in the context of generalized annotated
logic programming [9] in order to deal with problems related to incomplete-
ness. The multi-adjoint logic programming paradigm has to deal with a similar
problem of incompleteness that may arise when programs are interpreted in a
� Partially supported by the Spanish MICINN projects TIN2012-39353-C04-01,

TIN2012-39353-C04-04 and the Spanish Ministry of Economy and Competition un-
der grant TIN2013-45732-C4-2-P.

E. Fermé and J. Leite (Eds.): JELIA 2014, LNAI 8761, pp. 694–702, 2014.
c© Springer International Publishing Switzerland 2014

Revisiting Reductants in the Multi-adjoint Logic Programming Framework 695

non-linear lattice. Specifically, it might be not possible to compute the greatest
correct answer (for a given goal and program) due to the existence of incom-
parable elements in (L,0), see [13]. As a result, multi-adjoint programs need
to incorporate a special kind of rules, called reductants, in order to preserve the
(approximate) completeness property, and this introduces severe penalties in the
implementation of efficient multi-adjoint logic programming systems, since not
only the size of programs increases but also their execution time. Moreover, the
original definitions of reductants often produce infinitely many reductants for
some programs. Therefore, if we want to develop complete and efficient imple-
mentation systems for the multi-adjoint logic framework, it is essential to define
more accurate notions of reductants and methods for optimizing their compu-
tation. In this work, after revisiting different notions of reductant proposed for
multi-adjoint programs, we define a new, more adequate, notion of reductant
and we study some of its formal properties.

2 Syntax and Semantics of Multi-adjoint Logic Programs

We will work with a first order language, L, containing variables, function sym-
bols, predicate symbols, constants, the classical quantifiers (∀ and ∃), and several
(arbitrary) connectives in order to increase language expressiveness.

In our fuzzy setting, we assume a number of implication connectives (←i) to-
gether with other connectives, so-called “aggregators” (usually denoted @j), used
to build the bodies of the rules. The general definition of aggregation operators
subsumes conjunctive operators (denoted by &k), disjunctive operators (∨l), and
average and hybrid operators. The truth function for an n-ary aggregation op-
erator1 @ : Ln → L is required to be monotone and fulfill @(
, . . . ,
) =
,
@(⊥, . . . ,⊥) = ⊥. The underlying set of truth-values is assumed to be a com-
plete lattice L together with a collection of adjoint pairs intended to produce
the evaluation of modus ponens [6].

A rule is a formula H ←i B, where H is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn, n ≥ 0, truth values of L and aggregation operators. Rules whose
body is
 are called facts (usually, we will represent a fact as a rule with an
empty body). A goal is a body submitted as a query to the system. Variables in a
rule are assumed to be universally quantified. Roughly speaking, a multi-adjoint
logic program is a set of pairs 〈R;α〉, where R is a rule and α is a weight, usually
assigned by an expert.

Formulas are interpreted on a multi-adjoint lattice. In this framework, it is
sufficient to consider Herbrand interpretations, in order to define a declarative
semantics. See [13] for a formal characterization of a fuzzy interpretation, I, as
a mapping from the Herbrand base, BL, into the multi-adjoint lattice of truth
values L and a notion of evaluation and satisfiability of formulas.

1 Note that, as no confusion arises, we use the same notation for a formal function
symbol and its semantic meaning.

696 P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego

The procedural semantics can be formalized as an operational phase followed
by an interpretive one. The operational phase uses a residuum-based general-
ization of modus ponens [6] that, given an atomic goal A and a program rule
〈H←iB; v〉, if there is a most general unifier substitution θ = mgu({A = H})
the atom A is substituted by the expression (v&iB)θ. In the following, we write
C[A] to denote a formula where A is a sub-expression (usually an atom) occuring
in the—possibly empty—context C[]. Moreover, C[A/H] means the replacement
of A by H in context C[]. Also we use Var(s) for referring to the set of variables
occurring in the syntactic object s, whereas θ[Var(s)] denotes the substitution
obtained from θ by restricting its domain, Dom(θ), to Var(s).

Definition 1 (Admissible Steps). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is a state and we denote by E the set of states. Given a pro-
gram P, an admissible computation is formalized as a state transition system,
whose transition relation 	AS ⊆ (E × E) is the smallest relation satisfying the
following admissible rules (where we consider that A is the selected atom in Q):

1) 〈Q[A];σ〉	AS〈(Q[A/v&iB])θ;σθ〉 if θ = mgu({H = A}), 〈H←iB; v〉 in P.
2) 〈Q[A];σ〉	AS〈(Q[A/⊥]);σ〉 if there is no rule in P whose head unifies A.

Formulas involved in admissible computation steps are renamed apart before
being used. The symbols 	+

AS and 	∗
AS denote, respectively, the transitive

closure and the reflexive, transitive closure of 	AS .

Definition 2. Let P be a program and let Q be a goal. An admissible derivation
is a sequence 〈Q; id〉	∗

AS 〈Q′; θ〉. When Q′ is a formula not containing atoms,
the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called an admissible computed answer
(a.c.a.) for that derivation.

If we exploit all atoms of a goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms
which can be then directly interpreted in the multi-adjoint lattice L.

Definition 3 (Interpretive Step). Let P be a program, Q a goal and σ a sub-
stitution. We formalize the notion of interpretive computation as a state transi-
tion system, whose transition relation 	IS⊆ (E ×E) is the smallest one satisfy-
ing: 〈Q[@(r1, . . . , rn)];σ〉	IS 〈Q[@(r1, . . . , rn)/v];σ〉, where v is the truth value
obtained after evaluating @(r1, . . . , rn) in the lattice 〈L,0〉 associated with P.

Definition 4. Let P be a program and 〈Q;σ〉 an a.c.a., that is, Q is a goal not
containing atoms. An interpretive derivation is a sequence 〈Q;σ〉 	∗

IS 〈Q′;σ〉.
When Q′ = r ∈ L, 〈L,0〉 being the lattice associated with P, the state 〈r;σ〉 is
called a fuzzy computed answer (f.c.a.) for that derivation.

We denote by 	+
IS and 	∗

IS the transitive closure and the reflexive, transitive
closure of 	IS , respectively. Also note that, sometimes, when it is not important
to pay attention on the substitution component of a f.c.a. 〈r; θ〉 (maybe, because
θ = id) we shall refer to the value component r as the “f.c.a.”.

Revisiting Reductants in the Multi-adjoint Logic Programming Framework 697

3 Different Notions of Reductant

In this section we survey the different notions of reductants raised over the last
years in the field of fuzzy logic programming, describing some of their features
which are important for the present work.

The original notion of reductant appeared in the framework of generalized
annotated logic programming [9] was initially adapted to the multi-adjoint logic
programming framework in the following terms [13]:

Definition 5 (Reductant). Let P be a program, A a ground atom, and the
(non empty) set of rules {〈Ci←i Bi; vi〉 | 1 ≤ i ≤ n} in P whose head matches
with A (i.e., for each Ci there exists a θi such that A = Ciθi). A reductant for
A in P is a rule 〈A← @(B1, . . . ,Bn)θ;
〉 where θ = θ1 · · · θn, the connective
← is any implication with an adjoint conjunctor, and the truth function for the
intended aggregator @ is defined as @(b1, . . . , bn) = sup{v1&1b1, . . . , vn&nbn}.
This notion was introduced as a valuable theoretical tool for proving the (approx-
imate) completeness property of the multi-adjoint logic programming framework.
It is worth to note that, contrariwise to the original definition of a reductant
in [9], which is uniquely linked with a program, this one is linked to a ground
atom and a program.

In order to preserve the approximate completeness property, it is necessary to
construct the “completion” of a program, extending it with all their reductants.
So, if one has to compute all the reductants associated with a program, all the
atoms of the Herbrand base of that program, which might be infinite, should
be taken into account. Hence, although this notion of reductant is theoretically
valuable may easily turn impractical because of its potential non-termination.
Therefore, it was soon clear that if we wanted to implement complete systems
we needed a new notion of reductant leading to finite completions and producing
reductants able to be executed more efficiently.

As a step further in the path of trying to avoid the proliferation of an infinite
number of reductants, in [14, 15], a new notion named G-reductant was intro-
duced. The aim was that a single generalized reductant was required to cover
all the (possibly infinite) calls to atoms headed by a specific predicate symbol
defined in a program.

Definition 6 (G-Reductant). Given a program P and a definite predicate p
in P, a G-reductant for the predicate p in P is a rule

〈p(X1, . . . , Xm)← @(θ̂1&B1, . . . , θ̂n&Bn);
〉
where

– {〈Ci←i Bi; vi〉 | 1 ≤ i ≤ n} is the non-empty set of rules such that every Ci is
an instance of p(X1, . . . , Xm) via the substitution θi = {X1/ti1, . . . , Xm/tim};

– θ̂i ≡ (X1 ≈ ti1& · · ·&Xm ≈ tim) with ≈ being a unification operator defined
by the rule R≈ ≡ 〈X ≈ X ;
〉, which is considered to be included in every
multi-adjoint program;

– the connective ← is any implication with an adjoint conjunction &, and the
truth function for the intended aggregator @ is the same as in Definition 5.

698 P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego

Observe that, although only finitely many G-reductants are generated for a given
program (just one for each definite predicate in the program), due to the fact
that they are built in a non-evaluated form, computing with this kind of re-
ductants becomes inefficient. By this reason, in [16], unfolding-based techniques
were applied for simplifying general reductants: the idea was to perform compu-
tational steps on the body of G-reductants, at transformation time, in order to
improve their efficiency at execution time.

Despite the accomplishments obtained by these transformation techniques,
the overall process is little intuitive and, what is worst, it does not guarantee
the approximate completeness of a multi-adjoint logic programming framework.

4 A New Notion of Reductant: Sets of Critical Rules

In this section we propose a new notion of reductant, once again in the line of [9],
aiming at solving the aforementioned problems inherent to the other notions of
reductant. We seek a new notion of reductant such that:

1. is not attached to a certain kind of goals for its computation,
2. can be computed efficiently, and
3. there is no need to consider infinitely many of them.

To begin with, we will informally discuss the underlying idea, and then proceed
with the formal definition. Firstly, note that the need of using reductants arises
when for a program P and an atom A (with or without variables) launched
as a goal, there exist different derivations leading to fuzzy computed answers
with the same computed substitution but leading to incomparable truth-values:
〈v1; θ〉, . . . , 〈vn; θ〉. In this case, 〈sup{v1, . . . , vn}; θ〉 can be proven to be a fuzzy
correct answer which is not computed by the operational mechanism. In general,
this problem may occur when there exist sets of rules in a program whose heads
unify. We shall say that such sets are “sets of critical rules”.

Definition 7 (Critical Rules). Let P be a program, and R1 ≡ 〈H1←B1, v1〉,
and R2 ≡ 〈H2←B2, v1〉 two rules in P that are renamed apart. The rules R1 and
R2 are said to be critical iff H1 and H2 unify, that is, there exists a substitution
θ = mgu{H1, H2} �≡ fail.

A set of rules in P, is a set of critical rules iff the set of their heads unify.

Note that a set of critical rules is composed by a subset of rules defining a certain
predicate p in P .

Example 1. Let P = {R1 : 〈p(a, g(Z))←1; v1〉,R2 : 〈p(Y, g(Y))←2; v2〉} be a pro-
gram. The rulesR1 andR2 are critical rules, since mgu{p(a, g(Z)), p(Y, g(Y))} =
{Y/a, Z/a} �≡ fail. ��

Now we can introduce the new notion of reductant.

Definition 8 (Critical Reductant). Let P be a program and {〈Hi←i Bi; vi〉 |
1 ≤ i ≤ n} a set of critical rules in P with θ = mgu{H1, . . . , Hn}. Then, the

Revisiting Reductants in the Multi-adjoint Logic Programming Framework 699

rule 〈H1θ← @sup(v1&1B1, . . . , vn&nBn)θ;
〉 is a critical reductant of P, where
the connective ← is any implication with an adjoint conjunctor, and the truth
function for the aggregator @sup is the supremum operator.

It is worth to recall that we are assuming an extended language where truth
degrees and adjoint conjunctions are allowed in the body of program rules.

Observe that for programs with finitely many rules there always exist finitely
many critical reductants. If Pp is the set of rules defining a predicate p, the
elements in the powerset of Pp (excluding the empty set and the singletons) are
the candidates to generate critical reductants, but only those which form sets of
critical rules truly generate them. The sets of critical rules ordered by inclusion
form a partially ordered set. The critical reductants obtained from the maximal
elements of that set of sets will be called maximal reductants.

Example 2. For the program P of Example 1 there exists just one reductant,
namely 〈p(a, g(a))← sup{v1, v2};
〉, which is obtained from the maximal set of
critical rules {R1,R2}. Therefore, this is a maximal reductant.

5 Formal Properties of Critical Reductants

In this section we establish some important properties of critical reductants
which are substantive for the correctness of the multi-adjoint logic programming
framework. The first result is a technical lemma, which will be used later.

Lemma 1. Let A be a formula, I an interpretation and θ a substitution. Then
I(A) ≤ I(Aθ).

Proposition 1. If R is a critical reductant of a multi-adjoint program P, then
every interpretation I which is a model of P is also a model of the critical
reductant R, that is, P |= R.

The converse result is not true in general; in fact, the natural requirement for
it to be true is very restrictive, as we will show in Proposition 2.

Given a program P , the set of the critical reductants of P will be denoted
as PR, and the following result shows a procedure in order to obtain a model
from PR.

Proposition 2. Given a multi-adjoint program P and a model I of PR, if
I(A) = inf{I(Aθ) | 〈Aθ← @sup(v1&1B1, . . . , vn&nBn)θ;
〉is a critical reductant}
then I is a model of P.

The following proposition relates the notion of critical reductant and the G-
reductant developed in [14,15]. We claim the equivalence between maximal crit-
ical reductants of a multi-adjoint program P and the G-reductants of P , after a
sequence of unfolding steps.

In the context of logic programs, “unfolding” means to transform a program
rule by replacing it by the set of rules obtained after application of a computation

700 P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego

step (in all its possible forms) on the body of the selected rule [18]. Unfolding
was defined for the multi-adjoint framework in [8].

Let P be a program and R ≡ 〈A ← B; v〉 ∈ P a program rule. Then, the
fuzzy unfolding of program P with respect to rule R is the new program P ′ =
(P 	 {R}) ∪ U such that: U = {〈Aσ ← B′; v〉 | 〈B; id〉	AS〈B′;σ〉}. Note that
the set U may be a singleton when the unfolding step is performed on an atom
of the body with a predicate at the root which is defined deterministically by
just one rule. Unfolding is a program transformation technique which preserves
semantics.

Proposition 3. Any G-reductant of a multi-adjoint program P can be trans-
formed into a maximal critical reductant of P after a sequence of unfolding steps.

An important question, given a multi-adjoint program, is to know how many
reductants are necessary to take into account in order to preserve the approxi-
mate completeness of the framework. We focus now on this question, and drive
the discussion by means of one small but significative example.

Example 3. Given the program

P = {R1 : 〈p(a, Y, Z)←; v1〉,R2 : 〈p(X, b, Z)←; v2〉,R3 : 〈p(X,Y, c)←; v3〉}

one can compute the following reductants, according to the corresponding sets
of critical rules:

– Set of critical rules {R1,R2}: Red1 ≡ 〈p(a, b, Z)←sup{v1, v2};
〉,
– Set of critical rules {R1,R3}: Red2 ≡ 〈p(a, Y, c)←sup{v1, v3};
〉,
– Set of critical rules {R2,R3}: Red3 ≡ 〈p(X, b, c)←sup{v2, v3};
〉,
– Set of critical rules {R1,R2,R3}: Red4 ≡ 〈p(a, b, c)←sup{v1, v2, v3};
〉.

Note that this is a maximal reductant.

Some derivations that can be performed with the original program P and the
goal p(a, b, Z) are:

– 〈p(a, b, Z); id〉 R1	AS 〈v1; {Y1/b, Z/Z1}〉 with fca1 〈v1; {Z/Z1}〉,
– 〈p(a, b, Z); id〉 R2	AS 〈v2; {X1/a, Z/Z1}〉 with fca2 〈v2; {Z/Z1}〉,
– 〈p(a, b, Z); id〉 R3	AS 〈v3; {X1/a, Y1/b, Z/c}〉 with fca3 〈v3; {Z/c}〉.

It is worth to state that the fuzzy computed answers fca1 and fca2 are
problematic, because they compute the same answer substitution but differ-
ent truth degrees. From this, by soundness, it can be inferred that 〈v1; {Z/Z1}〉
and 〈v2; {Z/Z1}〉 are correct answers and, therefore, the existence of a correct
answer 〈sup{v1, v2}; {Z/Z1}〉 which is better than the preceding correct answers,
but cannot be computed by the operational mechanism. In order to solve this
problem it is necessary to complete P with the reductant Red1. Now the following
derivation is possible: 〈p(a, b, Z); id〉Red1	AS 〈sup{v1, v2}; {Z/Z1}〉, that computes
the missing fuzzy computed answer.

Revisiting Reductants in the Multi-adjoint Logic Programming Framework 701

On the other hand, note that just including the unique maximal reductant
Red4 (disregarding the other reductants of P) does not solve the problem. The
only leading derivation in this case is: 〈p(a, b, Z); id〉Red4	AS 〈sup{v1, v2, v3}; {Z/c}〉,
computing the fuzzy computed answer 〈sup{v1, v2, v3}; {Z/c}〉 but not the cor-
rect answer 〈sup{v1, v2}; {Z/Z1}〉.

Finally, if we consider the goal p(a, b, c) and the program P , it is possible to
obtain the following one step derivations:

– 〈p(a, b, c); id〉 R1	AS 〈v1; {Y1/b, Z1/c}〉 with fca4 〈v1; id〉,
– 〈p(a, b, c); id〉 R2	AS 〈v2; {X1/a, Z1/c}〉 with fca5 〈v2; id〉,
– 〈p(a, b, c); id〉 R3	AS 〈v3; {X1/a, Y1/b}〉 with fca6 〈v3; id〉.

The fuzzy computed answers fca4, fca5 and fca6 are correct answers as well, and
this leads, by definition, to the existence of the correct answer 〈sup{v1, v2, v3}; id〉.
This makes the extension of P with the reductant Red4, in order to compute it,
necessary: 〈p(a, b, c); id〉Red4	AS 〈sup{v1, v2, v3}; id〉, ��

The previous example shows that all reductants of a program (associated with
the different sets of critical rules) are necessary for preserving the (approximate)
completeness of the multi-adjoint logic programming framework. Also, it can be
seen as a counter-example to the statement claiming that, “it is only necessary
to extend a multi-adjoint program with a significative subset of its reductants
to preserve completeness”.

6 Conclusions

We have revisited the concept of a reductant in the framework of multi-adjoint
logic programming. After presenting a summary of the different notions of reduc-
tant appeared in this field, we have defined the concept of a set of critical rules
and a new notion of reductant. Significantly, the new notion of reductant allows
for recovering approximate completeness by including just finitely many critical
reductants; contrariwise to that happens with the previous notions proposed in
the literature, which generate infinitely many of them. We have studied some of
the formal properties of the new notion of reductant and its relationships with
other notions of reductant. Specifically, we have proved that, as expected, any
model of P is also a model of their critical reductants. However, the converse
property does not hold in general, but under very restrictive conditions. We
have proved that any G-reductant can be transformed into a maximal critical
reductant by using unfolding transformations. Also we have shown, by means of
a small but significative example, that it is necessary to compute all the reduc-
tants associated with a multi-adjoint logic program (and not only a significative
subset of them: e.g., its maximal critical reductants). These reductants must
be attached to the program in order to preserve the approximate completeness
property of the multi-adjoint logic programming framework.

702 P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego

References
1. Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning

in Artificial Intelligence. John Wiley &; Sons, Inc. (1995)
2. Cao, T.H., Noi, N.V.: A framework for linguistic logic programming. International

Journal of Intelligent Systems 25(6), 559–580 (2010)
3. Eklund, P., Galán, M.Á., Helgesson, R., Kortelainen, J., Moreno, G., Vázquez, C.:

Towards categorical fuzzy logic programming. In: Masulli, F. (ed.) WILF 2013.
LNCS (LNAI), vol. 8256, pp. 109–121. Springer, Heidelberg (2013)

4. Eklund, P., Klawonn, F.: Neural fuzzy logic programming. IEEE Transactions on
Neural Networks 3(5), 815–818 (1992)

5. Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy prolog: A new approach using
soft constraints propagation. Fuzzy Sets and Systems 144(1), 127–150 (2004)

6. Hájek, P.: Metamathematics of fuzzy logic, vol. 4. Springer (1998)
7. Ishizuka, M., Kanai, N.: Prolog-ELF Incorporating Fuzzy Logic. In: Joshi, A.K.

(ed.) Proc. of the 9th International Joint Conference on Artificial Intelligence (IJ-
CAI 1985), Los Angeles, CA, USA, pp. 701–703. Morgan Kaufmann (1985)

8. Julián, P., Moreno, G., Penabad, J.: On Fuzzy Unfolding. A Multi-adjoint Ap-
proach. Fuzzy Sets and Systems, Elsevier 154, 16–33 (2005)

9. Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming 12, 335–367 (1992)

10. Krajči, S., Lencses, R., Vojtáš, P.: A comparison of fuzzy and annotated logic
programming. Fuzzy Sets and Systems 144(1), 173–192 (2004)

11. Kuhr, T., Vychodil, V.: Fuzzy logic programming reduced to reasoning with at-
tribute implications. Fuzzy Sets and Systems (in press 2014)

12. Le, V.H., Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applica-
tions. Theory and Practice of Logic Programming 9, 309–341 (2009)

13. Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: A multi-
adjoint approach. Fuzzy Sets and Systems 146(1), 43–62 (2004)

14. Morcillo, P., Moreno, G.: A practical approach for ensuring completeness of multi-
adjoint logic computations via general reductants. In: Lucio, G.M.P., Peña, R.
(eds.) Proc. of IX Jornadas sobre Programación y Lenguajes, PROLE 2009, San
Sebastián, Spain, September 8-11, pp. 355–363. Universidad del País Vasco (2009)
ISBN 978-84-692-4600-9

15. Morcillo, P., Moreno, G.: Improving completeness in multi-adjoint logic computa-
tions via general reductants. In: Proc. of 2011 IEEE Symposium on Foundations of
Computational Intelligence, Paris, France, April 11-15, pp. 138–145. IEEE (2011)

16. Morcillo, P., Moreno, G.: Simplifying general reductants with unfolding-based tech-
niques. In: Arenas, P., Gulías, V., Nogueira, P. (eds.) Proc. of XI Jornadas sobre
Programación y Lenguajes, PROLE 2011, A Coruña, Spain, September 5-7, pp.
154–168 (sección de trabajos en progreso). Universidade da Coruña (2011) ISBN
978-84-9749-487-8

17. Moreno, G., Pascual, V.: A hybrid programming scheme combining fuzzy-logic
and functional-logic resources. Fuzzy Sets and Systems 160(10), 1402–1419 (2009),
Special Issue: Fuzzy Sets in Interdisciplinary Perception and Intelligence

18. Pettorossi, A., Proietti, M.: Rules and Strategies for Transforming Functional and
Logic Programs. ACM Computing Surveys 28(2), 360–414 (1996)

19. Vojtáš, P.: Fuzzy Logic Programming. Fuzzy Sets and Systems 124(1), 361–370
(2001)

20. Yasui, H., Hamada, Y., Mukaidono, M.: Fuzzy prolog based on Lukasiewicz implica-
tion and bounded product. In: Proc. of IEEE Symp on Fuzzy Systems FUZZ-IEEE,
pp. 949–954 (1995)

Author Index

Abseher, Michael 558
Aceto, Luca 267
Ågotnes, Thomas 609
Alferes, José Julio 412
Alpuente, Maŕıa 573
Amendola, Giovanni 457
Askounis, Dimitris 282

Banbara, Mutsunori 684
Baral, Chitta 239
Bartholomew, Michael 529
Baumgartner, Alexander 543
Benferhat, Salem 442
Besnard, Philippe 383
Bliem, Bernhard 558
Bomanson, Jori 166
Borgwardt, Stefan 62
Bouraoui, Zied 442
Bresolin, Davide 122
Broda, Krysia 311

Cabalar, Pedro 297, 340
Calvanese, Diego 1, 514
Casini, Giovanni 92
Ceylan, İsmail İlkan 77, 514
Charwat, Günther 558
Ciabattoni, Agata 18
Coste-Marquis, Sylvie 397
Croitoru, Cosmina 600

Dastani, Mehdi 628
De Clercq, Sofie 196
De Cock, Martine 196
del Cerro, Luis Fariñas 340
Della Monica, Dario 267
Doder, Dragan 591
Dusberger, Frederico 558

Eichhorn, Christian 210
Eiter, Thomas 426, 457
Escobar, Santiago 573
Espert, Javier 573

Fandiño, Jorge 297
Feuillade, Guillaume 486

Fink, Michael 297, 426
Franconi, Enrico 657

Gebser, Martin 137, 166
Geffner, Hector 33
Gelfond, Gregory 239
Georgatos, Konstantinos 647

Hao, Jin-Kao 582
Hecher, Markus 558
Herzig, Andreas 486
Hunter, Anthony 48

Ingólfsdóttir, Anna 267

Jabbour, Said 152
Janhunen, Tomi 137, 166
Järvisalo, Matti 674
Julián-Iranzo, Pascual 694

Kern-Isberner, Gabriele 210
Knobbout, Max 628
Knorr, Matthias 412
Koehler, Henning 181, 224
Konieczny, Sébastien 397
Koutras, Costas D. 282, 637
Kutsia, Temur 543

Law, Mark 311
Le Berre, Daniel 684
Leck, Uwe 181
Lee, Joohyung 326, 529
Leone, Nicola 457
Leyva Galano, José A. 62
Link, Sebastian 181, 224
Ludwig, Michel 107

Mailly, Jean-Guy 397
Marques-Silva, Joao 152
Marquis, Pierre 397
Marra, Giuseppe 618
Marti, Johannes 500
Medina, Jesús 694
Meseguer, José 573
Meyer, John-Jules Ch. 628
Meyer, Thomas 92
Montali, Marco 514

704 Author Index

Montanari, Angelo 267
Moodley, Kodylan 92
Mosca, Alessandro 657
Moyzes, Christos 282, 637
Muñoz-Velasco, Emilio 122

Nortjé, Riku 92
Nowé, Ann 196

Oikarinen, Emilia 674
Ojeda-Aciego, Manuel 694
Oriol, Xavier 657

Papini, Odile 442
Pardo, Pere 253
Patrizi, Fabio 472
Pearce, David 340
Peñaloza, Rafael 62, 77, 107
Peppas, Pavlos 355
Pinosio, Riccardo 500
Polberg, Sylwia 591
Pontelli, Enrico 239
Prade, Henri 181

Ricca, Francesco 618
Rintanen, Jussi 137, 665
Rott, Hans 368
Roussel, Stéphanie 684
Rull, Guillem 657
Russo, Alessandra 311

Sais, Lakhdar 152
Salhi, Yakoub 152
Santoso, Ario 514
Sarrión-Morillo, Enrique 253
Schockaert, Steven 196
Schwarzentruber, François 582
Sciavicco, Guido 122, 267
Slavkovik, Marija 609
Soh, Takehide 684
Soler-Toscano, Fernando 253
Son, Tran Cao 239
Spendier, Lara 18
Stepanova, Daria 426

Tamura, Naoyuki 684
Teniente, Ernest 657
Terracina, Giorgio 618

Ursino, Domenico 618

Valverde, Agustin 340
Vassos, Stavros 472
Velázquez-Quesada, Fernando R. 253

Wang, Yi 326
Williams, Mary-Anne 355
Woltran, Stefan 558
Würbel, Eric 442

Zikos, Yorgos 282, 637

	Preface
	Organization
	Table of Contents
	Invited Talks
	Query Answering over Description Logic Ontologies
	1 Introduction
	2 Description Logic Ontologies and Queries
	3 Query Answering by Rewriting in Lightweight DLs
	4 Data Complexity for Query Entailment in Expressive DLs
	5 Query Entailment in Very Expressive DLs
	6 Conclusions
	References

	Tools for the Investigation of Substructuraland Paraconsistent Logics
	1 Introduction
	2 The System TINC
	3 Substructural Logics
	3.1 From Axioms to Structural Rules
	3.2 An Application: Standard Completeness

	4 Paraconsistent and Related Logics
	4.1 From Axioms to Logical Rules
	4.2 An Application: Non-deterministic Semantics

	5 Future Research
	References

	Non-classical Planning with a Classical Planner:The Power of Transformations
	1 Introduction
	2 Planning Models
	3 Classical Planning
	4 Beyond Classical Planning
	5 Translations and Transformations
	5.1 Soft Goals and Rewards
	5.2 Plan and Goal Recognition
	5.3 Incomplete Information and Sensing
	5.4 Finite-State Controllers
	5.5 Planning with Other Agents in Mind

	6 Summary
	References

	Opportunities for Argument-Centric Persuasionin Behaviour Change
	1 Introduction
	2 Requirements for Argument-Centric Behaviour Change
	3 Computational Models of Argument
	4 A Simple Case Study
	5 Discussions
	References

	Description Logics
	The Fuzzy Description Logic G-FL0with Greatest Fixed-Point Semantics
	1 Introduction
	2 Preliminaries
	2.1 Lattices, Operators, and Fixed-Points
	2.2 Gödel Fuzzy Logic

	3 Fuzzy FL0
	4 Characterizing Subsumption Using Finite Automata
	5 Conclusions
	References

	Tight Complexity Bounds for Reasoning in theDescription Logic BEL
	1 Introduction
	2 EL and Proof Structures
	3 The Bayesian Description Logic BEL
	3.1 Contextual Subsumption
	3.2 Probabilistic Subsumption
	3.3 Most Likely Context

	4 Related Work
	5 Conclusions
	References

	Relevant Closure: A New Form of Defeasible Reasoning for Description Logics
	1 Introduction
	2 ALLwith Defeasible Subsumption
	3 Reasoning with Defeasible Knowledge Bases
	4 RelevantClosure
	4.1 Basic Relevant Closure
	4.2 Minimal Relevant Closure

	5 Properties of Relevant Closure
	6 Experimental Results
	7 Related Work
	8 Conclusion and Future Work
	References

	Error-Tolerant Reasoningin the Description Logic EL
	1 Introduction
	2 Preliminaries
	3 Complexity
	4 Precompiling Repairs
	5 Implementation and Experiments
	6 Conclusions
	References

	Automated Reasoning
	Sub-propositional Fragments of the IntervalTemporal Logic of Allen’s Relations
	1 Introduction
	2 HS:Syntax and Semantics
	3 Sub-propositional Fragments of HS
	4 Undecidability of HSHorn in the Infinite Case
	5 Undecidability of HSHorn in the Finite Case
	6 Conclusions
	References

	SAT Modulo Graphs: Acyclicity
	1 Introduction
	2 Extending SAT with Acyclicity
	3 Examples
	4 Acyclicity in SAT Solvers
	4.1 Propagator for Acyclicity
	4.2 Integration in a CDCL Implementation
	4.3 Preprocessing with Logical Simplifications

	5 Comparison to Clausal Encodings
	5.1 Explicit Enumeration of Cycles
	5.2 Transitive Closure
	5.3 Topological Sorting with Indices
	5.4 Tree Reduction
	5.5 Summary of Encoding Properties

	6 Relation to Difference Logic
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	References

	Enumerating Prime Implicants of PropositionalFormulae in Conjunctive Normal Form
	1 Introduction
	2 Preliminary Definitions and Notations
	3 SAT-Based Encoding of PI Enumeration Problem
	4 Structure-Based Enhancement of PI Enumeration
	5 Prime Implicant Enumeration: Alternative Approaches
	6 Experiments
	7 Conclusion and Future Works
	References

	Improving the Normalization ofWeight Rules in Answer Set Programs
	1 Introduction
	2 Preliminaries
	3 Merger and Sorter Programs
	4 Normalizing Weight Rules
	5 Experiments
	6 Related Work
	7 Conclusions
	References

	Logics for Uncertain Reasoning
	Logical Foundations of Possibilistic Keys
	1 Introduction
	2 Related Work
	3 Possibilistic Keys
	4 Reasoning Tools
	4.1 The Magic of β-Cuts
	4.2 Axiomatic Characterization
	4.3 Algorithmic Characterization

	5 Acquisition Tools
	5.1 Structure and Computation of Visualizations
	5.2 Discovery

	6 Data Cleaning
	7 Query Processing
	8 Conclusion and Future Work
	References

	Possibilistic Boolean Games: Strategic Reasoning under Incomplete Information
	1 Introduction
	2 Preliminaries
	2.1 Possibilistic Logic
	2.2 Boolean Games

	3 Boolean Games with Incomplete Information
	3.1 Semantic Approach
	3.2 Syntactic Approach
	3.3 Soundness and Completeness

	4 Decision Problems
	5 Conclusion
	References

	LEG Networks for Ranking Functions
	1 Introduction
	2 Preliminaries
	3 OCF and Inductive Reasoning
	4 Related Networks and Hypergraphs
	5 OCF-LEG Network
	6 Inductively Generating an OCF-LEG Network
	7 Conclusion
	References

	Logics for Approximating Implication Problemsof Saturated Conditional Independence
	1 Introduction
	2 Implication in Fixed Sets of Random Variables
	3 Gaining Consciousness
	4 Pure Implication
	5 Classical and Pure Implication
	6 Logical Characterization of Pure Implication
	7 Database and Algorithmic Characterization
	8 Related Work
	9 Conclusion
	References

	Non-Classical Logics
	Finitary S5-Theories
	1 Introduction and Motivation
	2 Preliminary: Epistemic Logic
	3 Finitary S5-Theories: Definition and Properties
	4 Computing All Models of Finitary S5-Theories
	5 Discussion
	6 Conclusion and Future Work
	References

	Efficient Program Transformersfor Translating LCC to PDL
	1 Introduction
	2 Preliminaries: Logic of Communication and Change
	3 A Matrix Calculus for Program Transformation
	4 A New Translation and Axiom System for LCC
	5 Complexity of the New Transformers
	6 Summary and Future Work
	References

	On the Expressiveness of the Interval Logic of Allen’s Relations Over Finite and Discrete Linear Orders
	1 Introduction
	2 Preliminaries
	3 Definability and Expressivenesss
	3.1 Proof Techniques to Disprove Definability
	3.2 Expressing Properties of a Model in HS Fragments

	4 The Easy Cases
	5 The HardCases
	6 Conclusions
	References

	Only-Knowing a `la Halpern-Moses for Non-omniscient Rational Agents: A Preliminary Report
	1 Introduction
	2 Background Material
	3 Only-knowing
	3.1 Only-Knowing with RM-stable Sets
	3.2 Only-Knowing with REp-Stable Sets

	4 Conclusions
	References

	Answer-Set Programming
	A Complexity Assessment for Queries Involving Sufficient and Necessary Causes
	1 Introduction
	2 Background
	3 Query Language
	4 Complexity Assessment
	5 Related Work and Conclusions
	References

	Inductive Learning of Answer Set Programs
	1 Introduction
	2 Background
	3 Learning from Answer Sets
	4 Algorithm
	5 Application to a Planning Problem
	6 Related Work
	7 Conclusion and Future Work
	References

	Stable Models of Fuzzy Propositional Formulas
	1 Introduction
	2 Preliminaries
	2.1 Review: Stable Models of Classical Propositional Formulas
	2.2 Review: Fuzzy Logic

	3 Definition and Examples
	4 Relation to Boolean-Valued Stable Models
	5 Relation to Other Approaches to Fuzzy ASP
	5.1 Relation to Stable Models of Normal FASP Programs
	5.2 Relation to Fuzzy Equilibrium Logic

	6 Properties of Fuzzy Stable Models
	6.1 Alternative Definition of F
	6.2 Theorem on Constraints
	6.3 Theorem on Choice Formulas

	7 Other RelatedWork
	8 Conclusion
	References

	A Free Logic for Stable Models with PartialIntensional Functions
	1 Introduction: Functions in ASP
	1.1 Approaches to Intensional Functions
	1.2 Contribution of the Paper

	2 The Free (Quantified) Here-and-There logic
	3 Relation to Cabalar’s Partial Functions
	4 Gentzen Calculus FHTG
	5 Conclusions
	References

	Belief Revision
	Constructive Models for Contraction with Intransitive Plausibility Indifference
	1 Introduction
	2 Formal Preliminaries
	3 Semiorders
	4 Weaker Postulates for Revision and Contraction
	5 Semi-entrenchments
	6 Semi-entrenchments and Belief Contraction
	7 Semiorders in the Partial Meet Model
	8 Conclusion
	References

	Four Floors for the Theory of Theory Change: The Case of Imperfect Discrimination
	1 Introduction
	2 Preparation
	2.1 The Classical Theory of AGM
	2.2 Exponentiated Theory Change

	3 Four Intermediate Floors
	3.1 Weakening the Full AGM Theory
	3.2 The Ground Floor
	3.3 The 1st Floor
	3.4 The 2nd Floor
	3.5 The 3rd Floor
	3.6 The 4th Floor
	3.7 The Top Floor

	4 Conclusion
	Bibliography

	Revisiting Postulates for InconsistencyMeasures
	1 Introduction
	2 Objections to HK Postulates
	2.1 Objection to (Dominance)
	2.2 Objection to (Free Formula Independence)

	3 Consequences of HK Postulates
	4 Two Postulates for Replacement of Equivalent Subsets
	4.1 Replacing Consistent Equivalent Subsets: The Value of (Exchange)
	4.2 The Value of an Adjunction Postulate

	5 Revisiting HK Postulates
	5.1 Sticking with (Consistency Null) and (Monotony)
	5.2 Intended Postulates
	5.3 Taking Care of Disjunction
	5.4 A Schematic Postulate
	5.5 A New System of Postulates (Basic Version and Variants)

	6 HK Postulates Identified as (Subsumption Orientation)
	7 Conclusion
	References

	A Translation-Based Approach for Revisionof Argumentation Frameworks
	1 Introduction
	2 Background
	3 A Translation-Based Approach
	3.1 A Propositional Encoding
	3.2 Encoding Revision Operators with Logical Constraints

	4 Rationality Postulates in the acc Case
	5 Conclusion
	References

	Dealing with Inconsistency in ASP and DL
	Preserving Strong Equivalence while Forgetting
	1 Introduction
	2 Logic Programs
	3 Forgetting with Strong Persistence
	4 Strong WF-Forgetting for Normal Programs
	5 Strong AS-Forgetting for Programs with Double Negation
	6 Related Work and Conclusions
	References

	Computing Repairs for Inconsistent DL-programsover EL Ontologies
	1 Introduction
	2 Preliminaries
	3 Support Sets for DL-atoms
	3.1 Computing Support Sets for DL-atoms over EL Ontology

	4 Partial Support Family Computation
	5 Algorithm for Repair Answer Set Computation
	6 Implementation and Experiments
	6.1 Experiments

	7 Related Work and Conclusion
	References

	A Prioritized Assertional-Based Revision for DL-Lite Knowledge Bases
	1 Introduction
	2 Preliminaries
	3 PRSR for DL-Lite Knowledge Bases
	3.1 Conflict Sets
	3.2 Revision by a Membership Assertion
	3.3 Revision by a Positive or a Negative Axiom
	3.4 Logical Properties

	4 Computing Revision Operation
	4.1 Result of Revision by an Assertion
	4.2 PRSR Computation : Revision by an Axiom

	5 Conclusion
	References

	Modular Paracoherent Answer Sets
	1 Introduction
	2 Preliminaries
	3 Split Semi-equilibrium Semantics
	4 Canonical Semi-Equilibrium Models
	4.1 SCC-split Sequences and Models
	4.2 MJC-split Sequences and Models

	5 Complexity and Computation
	6 Application: Inconsistency-Tolerant Query Answering
	7 Discussion and Conclusion
	References

	Reason about Actions and Causality
	Action Theories over Generalized Databaseswith Equality Constraints
	Introduction
	Situation Calculus Basic Action Theories (BATs)
	Generalized Databases and Query Evaluation
	BATs with Generalized Fluent Databases (GFDBs)
	Progression of BAT-GFDBs
	Projection over BAT-GFDBs
	Related Work
	Conclusions and Future Work
	References

	A Dynamic View of Active Integrity Constraints
	1 Introduction
	2 Preliminaries
	3 Dynamic Logic of Propositional Assignments
	3.1 Language
	3.2 Semantics

	4 Static Constraints and the Associated Repairs
	4.1 Weak Repairs and Drastic Updates
	4.2 Repairs Tout Court and Their Relation toWinslett’s PMA
	4.3 Repairs and Weak Repairs in DL-PA

	5 Active Constraints and the Associated Repairs
	5.1 Active Integrity Constraints
	5.2 FoundedWeak Repairs and Founded Repairs
	5.3 Founded Repairs in DL-PA

	6 A New Definition of Repair in DL-PA
	6.1 Repairing a Database: A Dynamic View
	6.2 DynamicWeak Repairs and Dynamic Repairs

	7 Discussion and conclusion
	References

	Similarity Orders from Causal Equations
	1 Introduction
	2 Conditional Logic
	3 Causal Reasoning with Structural Equations
	4 Relative Similarity Orders from Relevance Orders
	5 Relative Similarity Orders from System of Equations
	6 Backtracking Counterfactual Conditionals
	7 Conclusions and Further Work
	References

	Verification of Context-Sensitive Knowledge and Action Bases
	1 Introduction
	2 Preliminaries
	2.1 DL-LiteA
	2.2 Knowledge and Action Bases

	3 Contextualizing Knowledge Bases
	4 Context-Sensitive Knowledge and Action Bases
	4.1 Formalization of CKABs
	4.2 CKAB Execution Semantics

	5 Verifying Temporal Properties over CKAB
	5.1 Verification Formalism: Context-Sensitive FO-Variant of μ-Calculus
	5.2 Decidability of Verification

	6 Weakly Acyclic CKABs
	7 Conclusion
	References

	System Descriptions
	System ASPMT2SMT:Computing ASPMT Theories by SMT Solvers
	1 Introduction
	2 Preliminaries
	2.1 Review of the Functional Stable Model Semantics
	2.2 ASPMT as a Special Case of the Functional Stable Model Semantics
	2.3 Theorem on Completion

	3 Variable Elimination
	4 ASPMT2SMT System
	4.1 Syntax of Input Language
	4.2 Architecture

	5 Experiments
	5.1 Leaking Bucket
	5.2 Car Example
	5.3 Space Shuttle Example
	5.4 Bouncing Ball Example

	6 Conclusion
	References

	A Library of Anti-unification Algorithms
	1 Introduction
	2 Structure of the Library
	3 Unranked First-Order Anti-unification
	4 Unranked Second-Order Anti-unification
	5 Higher-Order Pattern Anti-unification
	5.1 Deciding α-equivalence

	6 Nominal Anti-unification
	6.1 Deciding Equivariance

	References

	The D-FLAT System for Dynamic Programmingon Tree Decompositions
	1 Introduction
	2 Background
	3 The Extended D-FLAT System
	3.1 Item Trees
	3.2 D-FLAT’s Interface for ASP
	3.3 D-FLAT’s Handling of Item Trees
	3.4 Materializing Complete Solutions
	3.5 Debugging Support
	3.6 Experiments

	4 Conclusion
	References

	Short System Descriptions
	ACUOS: A System for Modular ACUGeneralization with Subtyping and Inheritance
	1 Introduction
	2 Use Case: Extracting Analogies
	2.1 Problem Representation
	2.2 Further Generalization Capabilities

	3 The ACU Generalization System ACUOS
	3.1 Experiments

	References

	Drawing Euler Diagrams from RegionConnection Calculus Specificationswith Local Search
	1 Introduction
	2 Syntax
	3 Semantics
	3.1 Hard Semantics
	3.2 Soft Semantics

	4 Local Search
	5 Implementation
	5.1 Syntax Used in The Software
	5.2 Interaction

	6 Related Work
	6.1 Region Connection Calculus
	6.2 Constrained Graph Drawing

	7 Conclusion
	References

	Short Papers
	Probabilistic Abstract Dialectical Frameworks
	1 Introduction
	2 Dung’s Framework and its Probabilistic Extensions
	3 Abstract Dialectical Frameworks
	4 Probabilistic Abstract Dialectical Frameworks
	5 Discussion and Future Work
	References

	Argumentative Aggregation of Individual Opinions
	1 Introduction
	2 Dung’s Theory of Argumentation
	3 Abstract Debates
	4 Discussion
	References

	Measuring Dissimilarity between Judgment Sets
	1 Introduction
	2 Preliminaries
	3 Measuring Dissimilarity between Judgment Sets
	4 Compliance
	5 Summary
	References

	Exploiting Answer Set Programmingfor Handling Information Diffusionin a Multi-Social-Network Scenario
	1 Introduction
	2 Answer Set Programming
	3 Modeling a Multi-Social-Network Scenario
	4 Formalizing the Information Diffusion Problem in a Multi-Social-Network Scenario
	5 Handling Information Diffusion in a MSNS with ASP
	6 Experimental Campaign
	References

	Reasoning about Dynamic Normative Systems
	1 Introduction
	2 Framework
	3 Language for Norm Updates
	3.1 Language and Update
	3.2 Running Example
	3.3 Properties

	4 Conclusions and Future Research
	References

	A Modal Logic of Knowledge, Belief, and Estimation
	1 Introduction
	2 Background Material
	3 The Logic KBE
	3.1 Axiomatization of KBE
	3.2 The Possible-Worlds Models of KBE

	4 Tableaux for KBE
	4.1 Tableaux Rules

	5 Conclusions
	References

	A Logic for Belief Contraction
	1 Introduction
	2 Syntax and Semantics
	3 Properties of the Contraction Connective
	4 Comparison with Other Work
	5 Conclusion
	References

	Logic Foundations of the OCL ModellingLanguage
	1 Introduction
	2 TheOCLFO Fragment of OCL
	3 EquivalenceofOCLFO with Relational Algebra
	4 Conclusions
	References

	Constraint-Based Algorithm for Computing Temporal Invariants
	1 Introduction
	2 Problem Definition
	2.1 Temporal Logic Representations
	2.2 Semantics for Temporal Formulas
	2.3 Representation of Actions

	3 The Algorithm
	4 Approximate Consistency Tests
	5 Experiments
	6 Conclusion
	References

	Answer Set Solver Backdoors
	1 Introduction
	2 Preliminaries
	3 Search for Answer Sets
	4 Backdoors
	5 Analysis
	6 Conclusions
	References

	Incremental SAT-Based Methodwith Native Boolean Cardinality Handlingfor the Hamiltonian Cycle Problem
	1 Introduction
	2 Hamiltonian Cycle Problems
	3 Proposal
	3.1 Incremental HCP Solving
	3.2 Native Boolean Cardinality Handling

	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Revisiting Reductants in the Multi-adjoint Logic Programming Framework
	1 Introduction
	2 Syntax and Semantics of Multi-adjoint Logic Programs
	3 Different Notions of Reductant
	4 A New Notion of Reductant: Sets of Critical Rules
	5 Formal Properties of Critical Reductants
	6 Conclusions
	References

	Author Index

