
Chapter 7
Multi-objective Design Optimization Using
High-Order Statistics for CFD Applications

Pietro M. Congedo, Gianluca Geraci, Remi Abgrall and Gianluca Iaccarino

Abstract This work illustrates a practical and efficient method for performing
multi-objective optimization using high-order statistics. It is based on a Polynomial
Chaos framework, and evolutionary algorithms. In particular, the interest of consid-
ering high-order statistics for reducing the number of uncertainties is studied. The
feasibility of the proposed method is proved on a Computational Fluid-Dynamics
(CFD) real-case application.

Keywords High-order statistics · Dimension reduction · Genetic algorithms ·
Robust optimization

7.1 Introduction

Optimization and design in the presence of uncertain operating conditions, mate-
rial properties and manufacturing tolerances poses a tremendous challenge to the
scientific computing community. In many industry-relevant situations the perfor-
mance metrics depend in a complex, non-linear fashion on those factors and the
construction of an accurate representation of this relationship is difficult. Proba-
bilistic uncertainty quantification (UQ)approaches represent the inputs as random
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variables and seek to construct a statistical characterization of few quantities of inter-
est. Several methodologies are proposed to tackle this problem; polynomial chaos
(PC) methods [1] can provide considerable speed-up in computational time when
compared to MC. In realistic situations however, the presence of a large number of
uncertain inputs leads to an exponential increase of the cost thus making these
methodologies unfeasible [2]. This situation becomes even more challenging when
robust design optimization is tackled [3]. Robust optimization processes may require
a prohibitive computational cost when dealing with a large number of uncertainties
and a highly non-linear fitness function. Efforts in the development of numerical
method are directed mainly to reduce the number of deterministic evaluations neces-
sary for solving the optimization problem and for the uncertainty quantification (UQ)
of the performances of interest. The overall cost is typically the product of the cost of
the two approaches because the stochastic analysis and the optimization strategy are
completely decoupled. Decoupled approaches are simple but more expensive than
necessary.

Several UQ methods have been developed with the objective of reducing the
number of solution required to obtain a statistical characterization of the quantity of
interest. An alternative solution is based on approaches attempting to identify the rel-
ative importance of the input uncertainties on the output. Awell knownmethodology
is based on a decomposition of the variance of the quantity of interest in contribu-
tions closely connected to each of the input uncertainties (main effects) or combined
inputs [4]. Recently, a practical way to decompose high-order statistical moments
has been also proposed [5].

In this work, we illustrate an efficient multi-objective optimization method taking
into account high-order statistic moments, such as the third and fourth-order statistic
moments, i.e. skewness and kurtosis, respectively. These moments can be easily
computed by means of a Polynomial Chaos (PC) method. A simplified test-case is
presented that displays the importance of considering high-order moments during
the optimization. The efficiency of the method in terms of computational cost and
fitness function complexity is verified in a realistic CFD-case optimization problem.

7.2 Computing High-Order Statistics by Using Polynomial
Chaos Techniques

This section is devoted to show how formulas of variance, skewness and kurtosis
can be obtained using a polynomial chaos framework (for more details see Ref. [5]).
If a polynomial chaos formulation is used, an approximation f̃ of the function f is
provided

f (ξ) ≈ f̃ (ξ) =
P∑

k=0

βkΨk(ξ), (7.1)
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where P is computed according to the order of the polynomial expansion n0 and the
stochastic dimension of the problem d

P + 1 = (n0 + d)!
n0!d! . (7.2)

Each polynomial Ψk(ξ) of total degree no is a multivariate polynomial form which
involve tensorization of 1D polynomial form by using a multi-index αk ∈ R

d , with∑d
i=1 αk

i ≤ n0:

Ψk(ξ · m�,k) =
d∏

i=1
m�,k

i �=0

ψαk
i
(ξi ) (7.3)

where the multi index m�,k = m�,k(αk) ∈ R
d is a function of αk : m�,k =

(m�,k
1 , . . . , m�,k

d ), with m�,k
i = αk

i /
∣∣∣∣αk

i

∣∣∣∣�=0.
Remark that, for each polynomial basis, ψ0(ξi ) = 1 and then Ψ0(ξ) = 1. Then,

the first coefficient β0 is equal to the expected value of the function, i.e. E( f ). The
polynomial basis is chosen accordingly to the Wiener-Askey scheme in order to
select orthogonal polynomials with respect to the probability density function p(ξ)

of the input. Thanks to the orthogonality, the following relation holds

∫

�

Ψi (ξ)Ψk(ξ)p(ξ)dξ = δi j 〈Ψi (ξ), Ψi (ξ)〉 (7.4)

where 〈·, ·〉 indicates the inner product and δi j is the Kronecker delta function.
The orthogonality can be advantageously used to compute the coefficients of the

expansion in a non-intrusive PC framework

βk = 〈 f (ξ), Ψk(ξ)〉
〈Ψk(ξ), Ψk(ξ)〉 , ∀k. (7.5)

Note that the coefficients of the PC expansion are computed by a quadrature
employing the points generated by a full tensorization of monodimensional quadra-
ture rules. In particular, employing uniform distribution for the stochastic variables,
a Legendre quadrature is chosen following the so-called Wiener-Askey scheme.

Variance (σ 2), skewness (s) and kurtosis (k) can be computed as follows:

σ 2 = E( f 2) − E( f )2 =
P∑

k=1

β2
k 〈Ψ 2

k (ξ)〉. (7.6)

s =
P∑

k=1

β3
k 〈Ψ 3

k (ξ)〉
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+ 3
P∑

i=1

β2
i

P∑

j=1
j �=i

β j 〈Ψ 2
i (ξ), Ψ j (ξ)〉

+ 6
P∑

i=1

P∑

j=i+1

P∑

k= j+1

βiβ jβk〈Ψi (ξ), Ψ j (ξ)Ψk(ξ)〉, (7.7)

k =
∫

f 4(ξ)p(ξ)dξ − 4E( f )s − 6σ 2E( f )2 − E( f )4

=
P∑

k=1

β4
k 〈Ψ 4

k (ξ)〉 + 4
P∑

i=1

β3
i

P∑

j=1
j �=i

β j 〈Ψ 3
i , Ψ j 〉

+ 6
P∑

i=1

β2
i

P∑

j=i+1

β2
j 〈Ψ 2

i , Ψ 2
j 〉

+ 12
P∑

i=1

β2
i

P∑

j=1
j �=i

β j

P∑

k= j+1
k �=i

βk〈Ψ 2
i , Ψ jΨk〉

+ 24
P∑

i=1

P∑

j=i+1

P∑

k= j+1

P∑

h=k+1

βiβ jβkβh〈ΨiΨ j , ΨkΨh〉. (7.8)

7.3 Introducing More Sensitivity Indices

As introduced by Sobol [6], sensitivity indexes for variance can be computed for
each conditional contribution as follows:

σ 2,SI
mi

= σ 2
mi

σ 2 . (7.9)

Here, we introduce new sensitivity indexes, basing on the decomposition of skew-
ness and kurtosis, as follows

sSImi
= smi

s

kSImi
= kmi

k .
(7.10)

If a total sensitivity index is needed, i.e. it is necessary to compute the overall
influence of a variable, it can be computed summing up all the contributions in
which the variable is present
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TSI j =
∑

ξ j ∈(ξ ·mi )

σ 2,SI
mi

TSIsj =
∑

ξ j ∈(ξ ·mi )

sSImi
(7.11)

TSIkj =
∑

ξ j ∈(ξ ·mi )

kSImi
.

7.3.1 Dimensional Reduction in the Truncation Sense

The first test case is represented by the following quadratic g-function:

f (ξ) =
4∏

i=1

|4ξi − 2| + ai

1 + ai
(7.12)

where ξi ∼ U (0, 1). Two possible choices of the coefficients are considered here

• ai = (i − 1)/2 the so called linear g-function fglin

• ai = i2 the so called quadratic g-function fgquad.

From the analysis, it is possible to note that the third and fourth variables seem to be
meaningless for the variance based indexes. Their total sensitivity indexes sum up to
0.05 for the variance, while exceed 0.15 for both skewness and kurtosis. Considering
only the sensitivity indexes computed on the variance the decision-maker could be
tempted to neglect the variables ξ3 and ξ4. In this case the ANOVA expansion will
loose all the terms containing ξ3 and ξ4

fG1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2)

fG2 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2) + f3(ξ3) + f13(ξ1, ξ3) + f23(ξ2, ξ3) + f123(ξ1, ξ2, ξ3),

(7.13)

where in the first case fG1 both are neglected; while for fG2 only ξ4 is neglected.
In this case the ANOVA terms can be computed analytically and, from them, the
statistics too. In the Table7.1 the percentage errors, for the first four central moments,
have been reported with respect the analytical exact solution for both the reduced
models fG1 and fG2.

Table 7.1 Percentage
(

abs(μ−μex )
μex

× 100
)
errors related to the reduced g-function fG1 and fG2

Function Variance Skewness Kurtosis

fG1 4.7997 29.236 15.039

fG2 1.2369 7.7705 4.0632
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The Table7.1makes evident as an error of only 5%on the variance can correspond
to a much greater error on the higher moments. The effect of a such behavior is clear
looking at the Fig. 7.1 where the probability density function has been computed for
both fG1 and fG2 and compared with the complete function (7.12). In this case the
model with only the first two variables looses both the tails while a good approx-
imation is achieved in the central part. However this test case clearly shows that
considering only the sensitivity indexes based on the variance could be very danger-
ous if the reduced model need to be obtained for safety purpose. The information
related to the less probable realizations of the system are totally lost and in this case
the pdf resuls to be analytically bounded between the values of f equal to 0.4 and
1.8. If the third variable is included in the reduced model both variance and skewness
are included with an error lower than 5%, while the error on the skewness remains
lower than 8%. The total sensitivity indexes associated to the fourth variable is lower
than 5% for the three moments. The improvement of the model on the base of the
inclusion of the third variable is evident in Fig. 7.1 where the pdf of the reduced
model recover both the tails and better approximate the pdf of the complete function.

From a practical point-of-view the dimensional reduction of the model has com-
monly obtained freezing the neglected parameters. For an analytical function, as here
of interest, it is possible to compute the constant values to choose, for both ξ3 and
ξ4, to obtain a reduced model that preservers both the expectancy and the variance
of the original complete model. Of course the two requirements cannot be satisfied
contemporary but a set of values of constant satisfying the mean and the variance
can be obtained analytically requiring (having a product tensorial function)

Fig. 7.1 PDFs for the
complete g-function and the
reduced models (see Eq.7.13)
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|4ξ̄ j − 2| + a j

1 + a j
= 1

( |4ξ̄ j − 2| + a j

1 + a j

)2

=
1∫

0

( |4ξ j − 2| + aj

1 + a j

)2

dξ j . (7.14)

The following values can be analytically computed for the two variables: ξ3 =
{1/4, 3/4, 91/120, 29/120} and ξ4 = {1/4, 3/4, 77/102, 25/102}.

In the Fig. 7.2 the pdf relative to the complete quadratic g-function freezing the
parameters ξ3 and ξ4 are reported compared to the complete pdf and the totally
reduced one.

From Fig. 7.2 it is evident that freezing parameter to assure the correctness of
the mean and the variance produces pdf very close to that one obtained neglecting
entirely theANOVA terms. From a practical point-of-view the analysis of the reduced
model can be carried out both with the ANOVA reduced model (if it is analytically
possible to compute integrals) of by freezing the parameter to neglect satisfying the
requirement on the expectancy and variance. In both case the resultsmake in evidence
as the analysis on the variance based sensitivity indexes needs to be supplemented by
information from sensitivity indexes of higher order to be confident that the reduction
of the model can be realized without deteriorate too much the information carried by
the reduced model in term of distribution of the realizations, especially in the tails.

In the second part of this section the function f1 has been analyzed. For the third
variable, the level of the TSI 1.55%, has resulted to be less than the threshold of 2%,
indicated in [7], to detect meaningless parameters. A dimensional reduced model
can be obtained freezing the third parameter, or equivalently for what shown in the
first part of this section, neglecting all the ANOVA terms in which the variable ξ3 is
present

Fig. 7.2 PDFs for the
complete g-function and the
reduced models freezing
the remaining parameters
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Fig. 7.3 PDFs for the
complete f1 and the reduced
models freezing the third
parameter
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f̂1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2). (7.15)

If the variable ξ3 is chosen to recover the exact value of the mean and the variance
of the complete model the following values are obtained: ξ3 = {0.4282865945,
0.4166346546}. In the Fig. 7.3 the pdf for the complete model and the one freezing
the third parameters have been reported. Even in this case, even with a model that it
is able to obtain an error on the variance less than the 2% (that for an engineering
application can be very optimistic as goal for a metamodel) the information about
the tails of the distributions are, again, totally lost. Of course the intent of this paper
and of this section is not to criticize the use of the variance estimator, but to make
evident that to obtain a metamodel to employ, for instance, for safety purpose the
information relative to high-order sensitivity indexes should be considered. In all the
case proposed and in many other, not reported here only for brevity, appear evident
that onlywhen even the high-order sensitivity indexes have reached a safety threshold
(about 5%) the model can be really (and more safely) truncated.

7.4 Multi-objective Design Optimization

7.4.1 Importance of Skewness in Decomposition

This paragraph is devoted to show how important is to control the skewness during
an optimization process. Let us consider the following polynomial function:

f = a (xz + xy) + b
(

x2 + z2
)

+ (cba) y2 (7.16)

where x , y and z vary between 0 and 1 with an uniform pdf. Parameters a, b and c
are design parameters that vary between −5 and 5. For this function, it is possible
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Fig. 7.4 Pareto front in the plan μ–σ 2 for the bi-objectives and three-objectives problem

to compute analytically high-order statistics, as functions of the design parameters.
In order to show the importance to take into account also the high-order statistics in
the robust optimization, different types of optimization are performed using several
objective functions.

First, a classical bi-objective optimization is performed, where the mean of the
function is maximized and its variance minimized. The Pareto front is reported in
Fig. 7.4. No measures of skewness have been used during the optimization process,
then the Pareto front is constituted by various designs displaying a very large variation
of skewness.

Now, let us consider a three-objectives optimization, i.e. consisting in the max-
imization of the mean, the minimization of the variance and the minimization of
the absolute value of the conditional skewness sxy . In this case, the Pareto front is
no more constituted by a curve, but by a surface in a 3D plan. The Pareto front is
represented by means of 2D representation in the Figs. 7.4 and 7.5 with projections
on the plans μ–σ 2, μ–sxy and σ 2–sxy , respectively. As shown in Fig. 7.5, designs
belonging to the Pareto front display a large variation of the conditional skewness.

Now, let us compare the results obtained with both optimizations. In Fig. 7.4, we
show Pareto fronts in the plan μ–σ 2. Designs obtained with the three-objectives
optimization are dominated (with respect to only μ and σ 2) by the designs com-
ing from the bi-objectives optimization. This is reasonable seeing that designs
from bi-objective optimization are not influenced by the skewness sxy during the
optimization.

In Fig. 7.6, curves associated to the three-objectives optimization are obtained by
the 3D Pareto front regarding only the designs having a skewness lower than 0.0001.
Remark that individuals of this Pareto front take values ofμ lower than 3.2 and values
of σ 2 lower than 4.4. Moreover, they could be dominated in terms of μ and σ 2 by
some individuals of the Pareto front obtained from the bi-objectives optimization.
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Fig. 7.5 Pareto front in the planμ–sxy (on the left) and σ 2–sxy (on the right) for the three-objectives
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Fig. 7.6 Pareto front in the
plan μ–σ 2 for the
three-objectives optimization
(extracted by the complete
one considering only
skewness inferior to 0.0001)
and the bi-objective
optimization
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Here, the interest is to get a Pareto front that is not sensitive to large variation in the
skewness, since designs obtained from bi-objective optimization could present large
skewness values. This displays the great interest to estimate high-order statistics
during optimization.

7.4.2 Description of the Algorithm

In this section, the algorithm for multi-objective robust design optimization is
described. The strategy is constituted by two steps, that are schematically repre-
sented in Figs. 7.7 and 7.8. In the first step, (reported in the Fig. 7.7), a design of
experience in the design variables space (called hereafter DOE), i.e. an initial set of
design variables y, is generated. For each design variable y of the DOE, a high-order
decomposition analysis is performed by computing for each uncertainty j , TSI j and
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Fig. 7.7 Compact scheme for
the kriging procedure

DOE
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˜TSI

k
(y)

y

TSI (y)TSI k(y)

TSIk
j . Then TSI is computed for each y of the DOE and for each uncertainty. A

TSI response surface is built for each uncertainty and for each statistical moment as
function of design variable space, i.e. T̃SI j (y) and T̃SI j (y)k , by means of a kriging
method based on a DACE approach. The advantage of this methodology is the possi-
bility of implement an adaptive response surface in order to minimize the statistical
error between the real function and the extrapolated one.

In the second step (represented in Fig. 7.8), basing on the criterion for the TSI,
the reduced stochastic problem is performed for each point of the DOE, where mean
and variance are computed. Genetic algorithms are applied in order to compute new
individuals basing on μ(y) and σ(y). The NSGA algorithm [8] is used. The main
tuning parameters of the algorithm are the population size, the number of generations,
the crossover and mutation probabilities pc, pm and the so-called sharing parameter
r used to take into account the relative isolation of an individual along a dominance
front. Typical values for pc, pm are, respectively, 0.9 and 0.1; values of r are retained
following a formula given in [8] that takes into account the population size and the
number of objectives. Then, for the new design, mean and variance are computed for
the reduced stochastic problem. Algorithm continues until convergence of genetic

Fig. 7.8 Compact scheme for
the overall optimization
strategy

DOE

PCM on reduced problem

GA

T SI (y) TSI
k
(y)

Criterion

y

μ(y), σ(y)
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algorithms. For further validation of the algorithm, a complete stochastic analysis is
performed for each optimal design in order to verify TSI for each uncertainty.

The criterion for TSI is based on a double verification on TSI j and TSIk
j . In

particular, when the uncertainty j is considered, the criterion on TSI j is applied (2%
based on Hestaven criterion) only if the ranking associated to j is the same for TSI j

and TSIk
j .

7.4.3 Base Configuration and Sources of Uncertainty

In the presentwork, the turbine blade under consideration is the two dimensional VKI
LS-59 cascade, a configuration which has been widely studied [9, 10]. An unstruc-
tured CFD dense-gas solver is used to ensure the reliability of the computed results
for dense gas flows through a turbine cascade (for more details see Ref. [10]).The
two-dimensional flow domain is discretized by a structured C-grid comprised of
192× 16 cells. The boundary conditions are imposed as follows: at the inlet and
outlet boundaries, non-reflecting boundaries are applied using the method of char-
acteristics; a slip condition is imposed at the wall, which uses multi-dimensional
linear extrapolation from interior points to calculate the wall pressure; periodicity
conditions are prescribed at the inter-blade passage boundaries.

The siloxane dodecamethylcyclohexasiloxane (C12H36Si6O6), commercially
known as D6, is the fluid considered in this study. The physical properties of D6
are reported in Table7.2. The Peng-Robinson (PRSV) equation is used as thermody-
namic model for D6. It depends on the following parameters, the fluid acentric factor
ω, the isobaric specific heat in the ideal gas state, i.e. cv∞, and a fluid-dependent
parameter n (the mean values of these parameters for D6 are defined in Table7.3).

Performance of the turbine cascade can be evaluated by using several output
criteria. Here, the power output per unit depth (PO) expressed as Δh · ṁ/wmol [W]
is taken into account, where Δh is the enthalpy variation through turbine stage, ṁ is
the mass flow rate and wmol is the molecular weight.

Three main sources of uncertainties are considered in this study (globally eight
uncertainties): (i) the uncertainties on the operating conditions, i.e. inlet total temper-
ature, Tin/Tc, inlet total pressure, pin/pc, angle of incidence β and the stagger angle
θ , (ii) the uncertainties on the thermodynamic model, i.e. ω, cv∞ and n, and uncer-
tainties on geometrical parameters, i.e. the blade thickness φ. Basing on [11], the
3.0% of uncertainty for the temperature and pressure levels at the inlet conditions has

Table 7.2 Thermodynamic data for D6, where M is the percentage molecular weight, and Tb is
the boiling temperature at 1 atm

M (g/mole) Tc (K) Pc (kPa) Tb (K)

444.9 645.8 961 518.1
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Table 7.3 Thermodynamic constants for D6, PRSV equation of state, mean and min/max values
for the uniform probability density function, data taken from [4]

n cv∞ ω

Mean 0.5729 105.86 0.7361

Range 0.5385–0.6073 99.50–112.20 0.7214–0.7508

been taken into account. The PRSV thermodynamic model is considered as a good
trade-off between the accuracy of thermodynamic properties and the functional com-
plexity since it depends on a limited number of parameters, hence a reduced number
of uncertainty sources [11]. The following uncertainties are retained for this model
(see the Table7.3 and Ref. [11]), listed with their associated error bars: the acentric
factor ω (2%), the isobaric specific heat in the ideal gas state and a fluid-dependent
parameter n (6%). For the other parameters, it is assumed an uncertainty of 3% for
the angle of incidence β and the stagger angle θ , and an uncertainty of 2% for the
thickness φ.

7.4.4 Problem Definition

The objective is to find the optimal values for Tin/Tc, pin/pc, β and θ (four design
variables) in order to maximize the mean of power output, μ(P O), and to minimize
its standard deviation, σ(P O) (two objective-optimization problem). Ranges for
each design variable are defined in Table7.4. Remark that the lower limit for the
temperature is given by the saturation curve limit (SCL). Seeing that CFD code can
compute only 1-phase flows, it has to be verified that the uncertainty region does not
cross the maximal saturation curve (that can be computed as the upper limit of the
100% confidence intervals when uncertainties on thermodynamic model are taken
into account).

Finally, the optimization problem consists in finding the optimal values for four
design variables where the output to maximize is dependent from eight uncertainties.

7.4.5 Optimization

Adesign of experiment (DOE) of 50 elements in the four design variable space is gen-
erated. Then, for each design, a quasi-Montecarlo plan (based on Sobol sequences) of
two hundred individuals in the stochastic plan is generated and TSI is computed for

Table 7.4 Ranges of design variables in the optimization plan

pin/pc Tin/Tc β θ

0.7–0.98 SCL–1.15 25◦–35◦ 29◦–39◦
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each uncertainty. The convergence of TSI indexes for each uncertainty and design is
verified by increasing the number of individuals until five hundred. TSI for variance
and kurtosis have been computed, displaying very small differences.

In Fig. 7.9, TSI (based on variance) contours are reported for each uncertainty
in the plan p-T, where the point in the plan p-T is associated to the couple (pin ,
Tin) of inlet thermodynamic conditions. As shown in Fig. 7.9a, b, TSI associated to
the uncertainty on pin vary from 8 to 44% while vary from 39 to 83% for uncer-
tainty on Tin . For the uncertainties on two geometrical parameters, θ and φ (see
Fig. 7.9c, d), TSI vary from 7 to 25% and from 0.7 to 2.9%, respectively. TSI asso-
ciated to the uncertainties on thermodynamic model, i.e. ω, cv∞ and n, and on the
geometrical parameter φ, are less than 0.29%, then they are negligible with respect
to the TSI criterion.

For each design of the DOE that has been previously computed for kriging meta-
model, the reduced stochastic problem is performed and the statistics are computed
in terms of mean and standard deviation for PO.
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Fig. 7.9 TSI contours in the plan p-T for each uncertainty. a pin . b Tin . c θ . d φ
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Fig. 7.10 Mean (a) and standard deviation (b) for pressure for some optimal individuals

Then, twenty individuals evolved during forty generations. The converged Pareto
front is represented in Fig. 7.4. Various configurations are obtained with a large
variation of the PO, going from 0.91 to 1.46.

The proposed method, in terms of criterion for reduction problem, has been com-
pared with the one proposed in [4]. In particular, the Pareto front is different with the
exclusion of several profiles. This is due to a lack of accuracy when only variance is
considered in the reduction strategy. With respect to the old version, the introduction
of a more strict criterion (based on kurtosis) increases the global computational cost,
even if with a greater accuracy.

In Fig. 7.10, the mean pressure is shown in the computational domain. Gener-
ally, high inlet turbine pressures are associated to high mean of PO, displaying a
strong dependence of turbine performances from thermodynamic inlet conditions.
In a similar way, standard deviation of the pressure is reported in Fig. 7.10. Variance
is concentrated around the compression shock location near the trailing edge.

7.5 Conclusions

In this work, the interest of using high-order decomposition for reducing the number
of uncertainties in a robust optimization problem is assessed. In particular, sensitiv-
ity of different problems with respect to the variance or kurtosis decomposition is
illustrated. Finally, a well-known optimization algorithm is modified for including
this adding information in the reduction loop.
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