
Chapter 5
Reliability-Based Design Optimization
with the Generalized Inverse
Distribution Function

Domenico Quagliarella, Giovanni Petrone and Gianluca Iaccarino

Abstract This paper presents an approach to optimization under uncertainty that
is very well and naturally suited to reliability-based design optimization problems
and it is a possible alternative to traditional approaches to robust design based on the
optimization of statistical moments. The approach shown here is based on the direct
use of the generalized inverse distribution function estimated using the empirical
cumulative distribution function (ECDF). The optimization approach presented is
illustrated with the application to some test functions for both robust optimization
and reliability-based design optimization. In the robust optimization test case, the
bootstrap statistical technique is used to estimate the error introduced by the usage
of the ECDF for quantile estimation.

Keywords Optimization under uncertainty · Reliability based design · Robust
design · Generalized inverse distribution function · Bootstrap method

5.1 Introduction

Many industrial optimization processes must take account of the stochastic nature of
the systemand processes to design or re-design and consider the variability of someof
the parameters that describe them. Thus it is necessary to characterize the system that
is being studied from various points of view related to the treatment of uncertainty.
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In particular, it is necessary to consider the sensitivity of the system to the uncertain
parameters and assess its reliability. Having established the ability to characterize
the system from this point of view, it is necessary to build an optimization loop that
can improve its reliability, or that is capable of providing a robust optimum, or that
could withstand acceptably random perturbations of design parameters or operating
conditions. The classical approach to this problem is the so-called “robust design
optimization” (RDO), which tries to maximize the performance and simultaneously
to minimize the performance sensitivity with respect to random parameters. Instead,
the “reliability based design optimization” (RBDO) tries to find the optimum design
by explicitly assigning a specific level of risk and a given level of reliability. This
is equivalent to assigning a quantile of the function to be optimized as the actual
objective function and, for example, to minimize its value. Therefore, if the goal is
that a given objective function is less than a specific value q̄ in 75% of possible
cases, this will translate into the following constraint on the corresponding quantile:
q0.75 ≤ q̄ . Alternatively, the problem can be set as the minimization of q0.75 and
a function is thus obtained which is less than or equal to the value obtained by
optimization of the quantile in 75% of cases. If, instead, the objective is min q1,
then the purpose of the optimization procedure is to protect against the worst case
scenario, as it happens when the problem is of minimax type.

In this work an approach to robust and reliable design optimization based on
the use of the generalized inverse distribution function is presented. The robust
optimization framework is illustrated and the commonly used techniques to face
the problem are briefly summarized making reference to the related literature. A
very simple evolutionary multi-objective optimization algorithm based on the usage
of the inverse cumulative distribution function is illustrated and discussed with the
help of some test problems.

5.2 Robust Optimization

Let Z be a metric space and z ∈ Z the vector of design variables. Let also X : Ω →
Ξ ⊆ R be a real valued random variable defined in a given (Ω,F , P) probability
space.Wewant to deal with an optimization problemwhere an objective is optimized
with respect to z ∈ Z and depends on the realizations x of X . In other terms we have:

y(z, X): z ∈ Z , X −→ Y (z)

with Y (z) a new random variable, e.g. a new mapping of (Ω,F , P) into R, that
depends on z. Solving an optimization problem involving Y (z) = y(z, X) means
that we want to find a value z̄ ∈ Z such that the random variable Y (z̄) is optimal. To
establish the optimality of a given Y (z̄) with respect to all Y (z), ∀z ∈ Z , a ranking
criterion must be defined such that for any couple z1, z2 ∈ Z it is possible to state
that Y (z1) is better or worse than Y (z2) (from now on, Y (z1) � Y (z2)will mean that
Y (z1) is better or equivalent to Y (z2)).
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Recalling that a random variable is a measurable function, it seems natural to
introduce measures that highlight particular features of the function. This leads to
the classical and widely used approach of using the statistical moments to define the
characteristics of the probability distribution that are to be optimized.More generally,
let’s consider an operator

ΦX : Y (z) = y(z, X) ∈ Z × (Ω,F , P) −→ Φ(z) ∈ V ⊆ R

that translates the functional dependency on the randomvariable, Y , into a real valued
function of z that represents a deterministic attribute of the function,Y (z). Thismakes
possible to formulate the following optimization problem

PΦ :min
z∈Z

Φ(z)

Without loss of generality, it is possible to identify the random variable Y through its
distribution function fY (y) or its cumulative distribution function FY (y). If Φ(·) is
assumed as the expected value of the objective function (E), the classical formulation
of first moment optimization is retrieved:

P
E
:min

z∈Z

∫

R

y fY (y, z)dy

that in terms of the CDF becomes:

P
E
:min

z∈Z

∫

R

yd FY (y, z)

It should be noted that here the distribution function depends also on z, that is the
vector of the design variables.

For the purposes of the definition of the problem, it is not necessary to know
exactly the distribution fY (or FY ). Indeed, it is possible, as will be shown below,
to use an estimate of the distribution having the required accuracy. In particular, the
Empirical Cumulative Distribution Function (ECDF) will be used in this work as
statistical estimator of the CDF.

The first order moment method is also called mean value approach, as the mean is
used as objective to reduce the dependency on Y . This method is widely used, mostly
because the mean is the faster converging moment and relatively few samples are
required to obtain a good estimate. Often, however, the mean alone is not able to
capture and represent satisfactorily the uncertainties embedded in a given design
optimization problem. To overcome this drawback, a possible approach is the intro-
duction in the objective function of penalization terms that are function of higher
order moments. The drawback of this technique is that the ideal weights of the penal-
ization terms are often unknown. Furthermore, in some cases, an excessive number
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of higher order moments may be required to adequately capture all the significant
aspect of the uncertainty embedded into a given problem. Finally, a wrong choice
of the penalties may lead to a problem formulation that does not have any feasible
solution. Instead of penalization terms, explicit constraints can be introduced in the
robust optimization problem, and the same considerations apply for the advantages
and the drawbacks of the technique.

Another possibility is the minimax criterion, very popular in statistical decision
theory, according to which the worst case due to uncertainty is the objective for
optimization. This ensures protection against worst case scenario, but it is often
excessively conservative.

Themulti-objective approach [7] based on constrained optimization is alsowidely
adopted. Here different statistical moments are used as independent trade-off objec-
tives. The obtained Pareto front allows an a-posteriori choice of the optimal design
between a set of equally ranked candidates. In this case a challenge is posed by
the increase in the dimensionality of the Pareto front when several statistical mo-
ments are used. The research related to the multi-objective method has led to several
extensions of the classical Pareto front concept. In [10], for example, the Pareto front
exploration in presence of uncertainties is faced introducing the concept of proba-
bilistic dominance, which is an extension of the classical Pareto dominance. While
in [6], a probabilistic ranking and selection mechanism is proposed that introduces
the probability of wrong decision directly in the formula for rank computation.

An interesting approach, similar in some aspects to the one here described, is
found in [5] where a quantile based approach is coupled with the probability of
Pareto nondominance (already seen in [6]). Here, contrary to the cited work, the
optimization technique introduced relies on direct estimation of the quantile function
obtained through the Empirical Cumulative Distribution Function.

5.3 The Generalized Inverse Distribution Function Method

In the methodology presented herein, the operator that is used to eliminate the
dependence on random variables is the quantile function of the objective function to
be optimized, calculated in one or more points of its domain of definition.

Before going into the details of the exposure, the definitions of Cumulative Distri-
bution Function (CDF) and Generalized Inverse Distribution Function (GIDF) that
will be used are reported.

The “cumulative distribution function” (CDF), or just “distribution function”,
describes the probability that a real-valued random variable Q with a given proba-
bility distribution will be found at a value less than or equal to q. Intuitively, it is
the “area so far” function of the probability distribution. The CDF is one of the most
precise, efficient and compact ways to represent information about uncertainty, and
a new CDF based approach to robust optimization is described.

If theCDF is continuous and strictlymonotonic then it is invertible, and its inverse,
called quantile function or inverse distribution function, returns the value below
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which random draws from the given distribution would fall, s × 100 percent of the
time. That is, it returns the value of q such that

FQ(q) = Pr(Q ≤ q) = s (5.1)

Hence F−1(s), s ∈ [0, 1] is the unique real number q such that FQ(q) = s.
Unfortunately, the distribution does not, in general, have an inverse. If the proba-

bility distribution is discrete rather than continuous then there may be gaps between
values in the domain of its CDF, while, if the CDF is only weakly monotonic, there
may be “flat spots” in its range. In general, in these cases, one may define, for
s ∈ [0, 1], the “generalized inverse distribution function” (GIDF)

qs = Q(s) = F−1
Q (s) = inf {q ∈ R : F (q) ≥ s}

that returns the minimum value of s for which the previous probability statement
(5.1) holds. The infimum is used because CDFs are, in general, weakly monotonic
and right-continuous (see [15]).

Now that the CDF and the GIDF have been introduced, it becomes easy to define,
within the framework of multi-objective optimization, a robust optimization problem
in terms of an arbitrary number of quantiles to optimize:

PQ(si ):min
z∈Z

qsi (z) = min
z∈Z

inf
{
q (z) ∈ R : FQ (q (z)) ≥ si

}
i = 1, . . . , n (5.2)

where n is the number of objectives chosen. The approach, then, can be further
extended by introducing objectives that are arbitrary functions of quantiles.

Of course, the problem now is focused on how to satisfactorily calculate the
quantiles required by themethod. In this work theEmpirical Cumulative Distribution
Function (ECDF) is used for this purpose. The definition of ECDF, taken from [16],
is reported here for the sake of completeness.

Let X1, . . . , Xn be random variables with realizations xi ∈ R, the empirical
distribution function is an indicator function that estimates the true underlying CDF
of the points in the sample. It can be defined by using the order statistics X(i) of Xi

as:

F̂n(x,ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < x(1);
1
n if x(1) ≤ x < x(2), 1 ≤ k < 2;
2
n if x(2) ≤ x < x(3), 2 ≤ k < 3;
...
i
n if x(i) ≤ x < x(i+1), i ≤ k < i + 1;
...

1 if x ≥ x(n);
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where x(i) is the realization of the random variable X(i) with outcome (elementary
event) ω ∈ Ω .

From now on, therefore, when the optimization algorithm requires the calculation
of the FQ(s), it will used instead its estimator F̂Qn (s), where n indicates the number
of samples used to estimate this ECDF.

Note that each indicator function, and hence the ECDF, is itself a random variable.
This is a very delicate issue to consider. Indeed, if the EDCF is used to approximate
the deterministic operator Q(s), a direct residual influence of the random variables
that characterize the system under investigation remains on PQ(s). In other words
Q(s) behaves as a random variable, but with the important difference that its variance
tends to zero when the ECDF approximates the CDF with increasing precision. It
is possible to demonstrate that the estimator F̂Qn (s) is consistent, as it converges
almost surely to FQ(s) as n → ∞, for every value of s [11]. Furthermore, for the
Glivenko-Cantelli theorem [8], the convergence is also uniform over s. This implies
that, if the ECDF is calculated with sufficient accuracy, it can be considered and
treated as a deterministic operator. On the other hand, if the number of samples, or
the estimation technique of the ECDF, do not allow as such, one can still correlate
the variance of the ECDF with the precision of the obtained estimate. Of course,
if the ECDF is estimated in a very precise way, it is possible to use an algorithm
conceived for deterministic problems, provided that it has a certain resistance to
noise. Conversely, if the ECDF is obtained from a coarse sample, its practical use is
only possible with optimization algorithms specifically designed for that purpose.

For the same reason, it is often convenient, especially in applications where the
ECDF is defined with few samples, to use qε instead of q0, with ε > 0 and small,
but such that a not excessive variance of the estimate of qε is ensured.

5.4 A Robust Optimization Test Case

The function reported in Table5.1, taken from [13], is used as a benchmark to test the
GIDF based approach to robust optimization.With respect to the function reported in
the reference, the following changes have been introduced: the ranges of design and
uncertain parameters have been changed as reported in table, and a multiplicative
factor equal to 1/n has been introduced tomake easier the result comparisonwhen the
dimension of the parameter space changes. The random variables u have a uniform
distribution function. Table5.2 reports the solutions to the optimization problems

min
d∈D,u∈U

f (d, u)

min
d∈D

max
u∈U

f (d, u)

over the cartesian product of D and U . The first problem represents the best pos-
sible solution obtainable if the u are considered as design parameters varying in
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Table 5.1 Benchmark functions table

ID Function Ranges Dimension

MV4 f = 1
n

n∑
i=1

(2π − ui ) cos (ui − di ) u ∈ [0, 3]n , d ∈ [0, 2π ]n 1, 2 and 6

Table 5.2 Benchmark functions table results

ID min
d∈D,u∈U

f (d, u) min
d∈D

max
u∈U

f (d, u)

d u f d u f

MV4 [3.1416]n [0]n −6.283185 . . . [4.6638]n [0]n −0.305173 . . .

U . The second one, instead, minimizes the maximum possible loss or, alternatively,
maximizes the minimum gain, according to the framework of decision theory [12].
These solutions have been obtained analytically and verified by exhaustive search
for n = 1. It is worth to note that these particular optimal solutions are the same
whatever is the dimension of the search space.

The optimization algorithm used here is a simple multi-objective genetic algo-
rithm not specially conceived for optimization under uncertainty. The algorithm is
based on the Pareto dominance concept and on local randomwalk selection [14]. The
crossover operator is the classical one-point crossover which operates at bit level,
while mutation operator works at the level of the design vector parameters (which
are real numbers). A parameter, called mutation rate controls the operator activa-
tion probability for each variable vector element, while a further parameter, called
strength, is the maximum relative value for the uniform word mutation. The word
mutation value is given by strength · (r − 0.5)(u − l) where r ∈ [0, 1] is the uniform
random number, u is the upper variable bound and l is the lower variable bound. An
elitist strategy was adopted in the optimization runs. It consists in replacing 20% of
the population calculated at each generation with elements taken at random from the
current Pareto front. Obviously, the elements of the population are used to update the
current Pareto front before the replacement, in order to avoid losing non-dominated
population elements.

The multi-objective runs were performed using 100% crossover activation prob-
ability and word mutation with mutation rate equal to 50% and strength equal to
0.06. The initial population was obtained using the quasi-random low-discrepancy
Sobol sequence [1]. The ECDF used to estimate the CDF was obtained with 2,500
Montecarlo samples in all runs. The population size was set to 4,000 elements for
all runs, while the number of generations was set to 10 for n = 1, 200 for n = 2 and
1,000 for n = 6. The problem solved was min

z∈Z

(
qε, q1−ε

)
.

Figure5.1 reports the Pareto fronts and the deterministic min and minmax
solutions obtained for the MV4 test case at different values of the design space
size n. It can be easily observed that, in the case n = 1, the extremes of the front are
practically coincident with the deterministic solutions, while, in the case n = 2, the
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Fig. 5.1 Pareto fronts and deterministic min and minmax solutions for the MV4 test case

solution of the Pareto front which minimizes the second objective (q1−ε) underesti-
mates the minmax solution. The trend is even more evident in the case n = 6, where
also the extreme of the front that minimizes the first goal (qε) overestimates the value
obtained from the min problem. This can be explained by the fact that the two de-
terministic solutions are located in correspondence with the extremes of variation of
the random variables of the problem. Therefore, as the number of random variables
increases, in accordance with the central limit theorem [9], it becomes less likely that
all random variables are located in correspondence of one of their limits of variation.
However, as illustrated in Fig. 5.2, when the Pareto front obtained with the sample
size m equal to 2,500 is re-evaluated with a larger Montecarlo sample, the curve is
a quite acceptable approximation of the Pareto front obtained with m =100,000.

Figures5.3 and 5.4 show the ECDF corresponding to the extremes of the Pareto
front, respectively for the cases n = 1 and n = 6. It is noted, again in accordance
with the central limit theorem, that, in the case n = 6, the ECDF curves are very
close to those related to a Gaussian distribution.

5.5 Evaluating and Improving the Quantile Estimation

The example in the previous section shows very clearly that the results of the proposed
method may depend in an essential way on the quality of estimation of quantiles that
is obtained through the ECDF. This leads in a naturalway to dealwith two issues: how
to evaluate the quality of the estimation of the quantiles used in the multi-objective
optimization problem, and how to possibly get a better quantile estimate with a given
computational effort.
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m

Fig. 5.2 Pareto fronts for the MV4 test case obtained with different sizes for Montecarlo sampling
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Fig. 5.3 Optimal ECDF curves for the MV4 with n = 1

The approach here proposed for assessing the quality of the estimate of the quantile
is based on the bootstrap method introduced by Efron in 1977 [3, 4].

This method represents a major step forward in the statistical practice because it
allows to accurately assess the variability of any statistical estimator without mak-
ing any assumption about the type of distribution function involved. Suppose that a
statistic T (x1, x2, . . . , xn) is given, evaluated on a set of data x1, x2, . . . , xn be-
longing to an assigned space X . The bootstrap essentially consists in the repeated
recalculation of the statistic T employing a tuple of new samples x∗

1 , x∗
2 , . . . , x∗

n
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Fig. 5.4 Optimal ECDF curves for the MV4 with n = 6

obtained by selecting them from the collection {x1, x2, . . . , xn} by replacement. The
repeated calculation of T

(
x∗
1 , x∗

2 , . . . , x∗
n

)
gives a set of values that is a good indi-

cation of the distribution of T .
Therefore, to calculate the accuracy of a generic quantile qs , obtained by the

estimator F̂Qn (s), the bootstrap procedure can be applied to the samples that define
the estimator. This allows to calculate the corresponding distribution of qs for a fixed
value of s.

Figure5.5 reports the ECDF related to the solution labeled as “MOST ROBUST”
in Fig. 5.4. The bootstrap was applied to this ECDF repeating the sampling process
2,000 times. The area in gray color represents the superposition of all the curves
obtained in this way. From the bootstrap data it is then possible to evaluate the
accuracy of a given quantile estimate. According to [3], an accuracy measure for qs

can be obtained considering the central 68% of bootstrap samples. These values lay
between an interval [qs

� , qs
u] centered on the observed value qs . Half the length of

this interval gives a measure of the accuracy for the observed value that corresponds
to the traditional concept of “standard error”. Here this value is indicated with ŜE to
distinguish it from the true standard error SE.

Table5.3 reports the computed accuracy values for the considered quantiles for
the above cited “MOST ROBUST” solution obtained from an ECDF with 2,500
Montecarlo samples. The fourth column reports, finally, the maximum estimated
error M̂E.
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Fig. 5.5 ECDF corresponding to the most robust solution and related bootstrap coverage

Table 5.3 Quantile estimates and related accuracy for MV4 “MOST ROBUST” solution with
n = 6

s qs ŜE M̂ E

0.001000 −4.630433 ±0.090423 ±0.117169

0.500000 −3.230388 ±0.018834 ±0.054983

0.999000 −1.425868 ±0.013192 ±0.136330

5.6 Single and Multi-objective Reliability Optimization Tests

A very complete review of reliability-based optimization and of the solution tech-
niques based on evolutionary algorithms can be found in [2].

A reliability based single or multi-objective problem can be written as follows:

⎧⎪⎨
⎪⎩

min
z,x

f(x, z)

s. to: gi (z, x) ≤ 0 i = 1, . . . , n
x ∈ X, z ∈ Z

(5.3)

with x representing deterministic and z stochastic design variables. In order to find
a solution to this problem, a reliability measure R is introduced that means that the
probability of having an infeasible solution instance will be at most (1− R), and the
problem is reduced to the following one:
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⎧⎪⎨
⎪⎩

min
z,x

f(x, μz)

s. to: Pi (gi (z, x) ≤ 0) ≥ R i = 1, . . . , n
x ∈ X, z ∈ Z

(5.4)

where μz is the mean vector of the uncertain variables z, and Pi () is the probability
that the i th constraint is feasible. The constraints in problem (5.4) can be immediately
expressed in terms of generalized inverse distribution function:

⎧⎪⎨
⎪⎩

min
z,x

f(x, μz)

s. to: q R (gi (z, x)) ≤ 0 i = 1, . . . , n
x ∈ X, z ∈ Z

(5.5)

Problem 5 can be further transformed by introducing penalty functions into:

min
z,x

f(x, μz) +
n∑

i=1

Γ
(

q R (gi (z, x))
)

(5.6)

with Γ defined, for example, as:

Γ (x) =
{
0 if x ≤ 0
kx2, k > 0 if x > 0

(5.7)

Considering that Γ
(
q R = 0

) = q R (Γ (gi (z, x))) it is possible to write, finally:

min
z,x

q R

(
f(x, μz) +

n∑
i=1

Γ (gi (z, x))

)
(5.8)

In the subsequent examples, problem (5.8) is solved using a simple multi-objective
genetic algorithm for unconstrained problems. Of course, more sophisticated and
efficient algorithms could be used to reduce the computational effort.

The first example considered is taken from [2]. It involves two variables, x and
y, and two objectives, f1 and f2:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min f1 = x
min f2 = 1+y

x
s. to: y + 9x − 6 ≥ 0

−y + 9x − 1 ≥ 0
0.1 ≤ x ≤ 1, 0 ≤ y ≤ 5

(5.9)

with both variables uncertain and characterized by a normal distribution with σ =
0.03.
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Fig. 5.6 Pareto front for the simple two-objectives reliability problem obtained with three different
reliability indexes

The optimization runs have been carried out with three different reliability levels,
namely 90% (βr = 1.28), 97.725% (βr = 2.00) and 99.875% (βr = 3.00), where

βr is the reliability index computed according to R = 50
(
1 + erf

(
βr

/√
2
))

. The

results are reported in Fig. 5.6. The multi-objective genetic algorithm crossover and
mutation settings are the same that have been used in the previous test case. For each
different reliability level, a population of 100 individuals evolved for 400 generations.
For βr = 1.28 and βr = 2.00 the Montecarlo sample size was set to 1,000, while
for the βr = 3.00 case the sample size was set to 10,000.

The second problem presented is a car side-impact problem related to vehicle
crash-worthiness and dealingwith vehicle safety rating scores related to human safety
issues. The problem is reported in [17] and, in a slightly different form, in [2]. The
reader is referred to the references above for more details on the physical nature of
the model used and the role and significance of variables and parameters. In extreme
synthesis, eleven random variables are involved in the optimization problem, whose
characteristics and nature is reported in Table5.4 for the sake of completeness. The
random variables z10 and z11 are not regarded as design variables, because they are
related to aspects that define the type of the problem but which can not be controlled
in any way by the designer. The objective function and constraints of the problem
are given below:
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Table 5.4 Properties of design and random parameters of vehicle side impact model

Random variable Std dev. Distr type. Lower limit Upper limit

z1 (B-pillar inner) 0.030 Normal 0.500 1.500

z2 (B-pillar reinforce) 0.030 Normal 0.500 1.500

z3 (Floor side inner) 0.030 Normal 0.500 1.500

z4 (Cross member) 0.030 Normal 0.500 1.500

z5 (Door beam) 0.030 Normal 0.500 1.500

z6 (Door belt line) 0.030 Normal 0.500 1.500

z7 (Roof rail) 0.030 Normal 0.500 1.500

z8 (Mat. B-pillar inner) 0.006 Normal 0.192 0.345

z9 (Mat. floor side inner) 0.006 Normal 0.192 0.345

z10 (Barrier height) 10.0 Normal −30.0 30.0

z11 (Barrier hitting) 10.0 Normal −30.0 30.0

f (z) = 1.98 + 4.9z1 + 6.67z2 + 6.98z3 + 4.01z4 + 1.78z5 + 2.73z7
g1(z) = 1.16 − 0.3717z2z4 − 0.00931z2z10 − 0.484z3z9

+ 0.01343z6z10 ≤ 1 kN
g2(z) = 0.261 − 0.0159z1z2 − 0.188z1z8 − 0.019z2z7

+ 0.0144z3z5 + 0.0008757z5z10 + 0.08045z6z9 + 0.00139z8z11
+ 0.00001575z10z11 ≤ 0.32 m/s

g3(z) = 0.214 + 0.00817z5 − 0.131z1z8 − 0.0704z1z9
+ 0.03099z2z6 − 0.018z2z7 + 0.0208z3z8 + 0.121z3z9
− 0.00364z5z6 + 0.0007715z5z10
− 0.0005354z6z10 + 0.00121z8z11 ≤ 0.32 m/s

g4(z) = 0.74 − 0.61z2 − 0.163z3z8
+ 0.001232z3z10 − 0.166z7z9 + 0.227z2z2 ≤ 0.32 m/s

g5(z) = 28.98 + 3.818z3 − 4.2z1z2 + 0.0207z5z10 ≤ 32 mm
+ 6.63z6z9 − 7.7z7z8 + 0.32z9z10

g6(z) = 33.86 + 2.95z3 + 0.1792z10 − 5.057z1z2
−11z2z8 − 0.0215z5z10 − 9.98z7z8 + 22z8z9 ≤ 32 mm

g7(z) = 46.36 − 9.9z2 − 12.9z1z8 + 0.1107z3z10 ≤ 32 mm
g8(z) = 4.72 − 0.5z4 − 0.19z2z3 − 0.0122z4z10 + 0.009325z6z10

+ 0.000191z11z11 ≤ 4 kN
g9(z) = 10.58 − 0.674z1z2 − 1.95z2z8 + 0.02054z3z10

− 0.0198z4z10 + 0.028z6z10 ≤ 9.9 mm/ms
g10(z) = 16.45 − 0.489z3z7 − 0.843z5z6 + 0.0432z9z10

− 0.0556z9z11 − 0.000786z11z11 ≤ 15.7 mm/ms
(5.10)

The goal is to minimize the weight of the structure.
Again, the same settings were used for crossover and mutation and, in all cases

analyzed, the size of the population and was fixed to 30 individuals that have evolved
over 3,000 generations. The Montecarlo sample size was set to 100,000. Figure5.7
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Fig. 5.7 Best optimization result as a function of the reliability index for the crash-worthiness
vehicle side impact problem

shows, both in tabular and number line format, the values of the objective func-
tion for different reliability values (expressed both in percentage and in βr terms).
These values are compared both with the deterministic case, calculated by setting
the parameters z10 and z11 to zero (average value), that with the case here called
“best outcome”, obtained by considering also the two parameters z10 and z11 as
deterministic variables of the problem.

5.7 Conclusions

An alternative approach to the optimization under uncertainty has been introduced
and illustrated with examples related to both robust and reliability based design
optimization. Furthermore, a method, based on the well known bootstrap statistical
technique, has been introduced to estimate the error introduced by the usage of the
ECDF instead of the true CDF.

The algorithm used for optimization is a classical genetic algorithm, but, to further
improve the proposed procedure, an optimization algorithm capable of accounting
for the errors in the estimation of the CDF has to be conceived. This is a very
important topic and it will be subject of next research work. In particular, to reduce
the curse of dimensionality, the effect of different sampling methodologies, like
stochastic collocation, on the estimation of the ECDF will be considered in future
works. Indeed the possibility to use the error on the ECDF estimator to properly
refine the probability space using adaptive uncertainty quantification algorithms will
be explored.
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