
Chapter 34
Generation of New Detection Codes
for GPS Satellites Using NSGA-II

J. Sosa, Tomás Bautista, Daniel Alcaraz, S. García-Alonso
and Juan A. Montiel-Nelson

Abstract In this paper we obtain new detection codes, to determine whether a
GPS satellite in particular is visible, using NSGA-II as multi-objective optimization
engine. Our approach takes into consideration the length of the code and the sampling
frequency in comparison with other approaches found in the literature that fix those
design parameters. The obtained new detection codes produce an improvement of
the 19 % in terms of CPU execution time. Results demonstrate that both design
parameters must be taken in consideration to obtain high quality detection codes.

Keywords Genetic algorithms · GNSS · Gold codes · Low computational effort ·
Multi-objective optimization

34.1 Introduction

Nowadays, the detection of GPS signals for performing location tasks is one of
the most commonly demanded applications [1]. In particular, the fast expansion
of the mobile telephony, the increasing of the CPU capabilities and the reduced
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battery charging times provide a wide market where GPS applications are potentially
explored [2, 3]. However, in this scenario, since the GPS receiver just becomes one
application running concurrently with some others in a single device, the require-
ments of low computational effort and low power consumption are mandatory [4].
Reducing the computational effort to determine whether a GPS satellite is visible
or not is a hot topic in this research area [5–7]. In the existing literature three ba-
sic approaches are presented to cope with this problem. The first one consists in
reusing most of the computation with additional hardware. This approach is called
split-sum methodology [8]. Other authors propose to obtain a single detection code
that allows to know if more than one satellite is visible or not [9]. Finally, in another
approach [10] authors present a methodology to obtain GPS detection codes of 341
bits achieving a lower computational effort. In this paper we explore the idea of
obtaining reduced length detection codes for GPS satellites presented in [10] using a
multi-objective approach and we introduce as new optimization variables the length
of the reduced code and the sampling frequency.

34.2 Problem Definition

In order to detect whether a satellite is visible or not, receivers compare the incoming
GPS identifiers (at a frequency L1 of 1,575.42 MHz), with all the possible GPS
satellite identifiers [11]. A satellite identifier is a Pseudo Random Number (PRN).
Basically, a PRN is an array of binary digits where each digit is called chip. The
length of the PRN array is 1,023 chips [12]. Each satellite has assigned an unique
PRN as identifier. Every satellite transmits its own PRN identifier every millisecond.
The comparison function is as follows:

Comp(PRNsat, Drx) = [a1, a2, . . . , aL] (34.1)

ai =
L∑

j=1

PRNsat
modL(i+j) ∗ Drx

i

where L is the length of the PRN, that is, 1,023 chips for each GPS satellite. Drx is the
incoming radio frequency data that is acquired by the GPS analog front-end receiver.
PRNsat is the PRN identification of the GPS satellite (sat). This function takes in
consideration all the possible alignments between the incoming GPS identification
data and the compared PRN. Therefore, this is the reason to obtain an array of
values and not only a single value. The size of array Comp(PRNsat, Drx) is L, one
value for each possible alignment between the incoming data and the compared
PRN.

Following the theory, when a satellite is visible the array Comp(PRNsat, Drx)

has an unique maximum. This maximum value is called Detection Peak (DP). The
location/index where the DP is placed in the comparison array is called code-phase.
The code-phase determines the starting chip of the PRN sequence. The other values
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in this array are lower than the DP value. These lower values are called Noise (N). If
the compared satellite (PRNsat) is not visible, all values in array Comp(PRNsat, Drx)

are noise.
Nowadays, in the literature there exist multiple approaches to implement the

detection Eq. 34.1. For instance, it is quite easy to translate this Eq. 34.1 from the
time domain to the frequency domain and use the Fast Fourier Transform (FFT) and
its inverse (IFFT) to obtain the same results. However, in practical GPS receivers there
exist only two basic detection techniques [13]. Their main key in comparison with
other approaches are their implementation simplicity and the required computational
effort.

In one of these approaches the L1 incoming signal is oversampled, that is, every
chip of the PRN is sampled more than once, so the DP grows with the increasing sam-
pling frequency. In terms of Eq. 34.1, implementing the oversampling only requires
to set the correct value to L.

The other solution, instead of increasing the sampling frequency, increases the
sampling period. As a consequence, the recorded incoming GPS data contains more
than one complete PRN sequence. Therefore, the Detection Peak increases its value
in proportion to the increment of the sampling period, that is, the signal recording
time is increased.

Stepping up the sampling frequency and/or the sampling period increases the
sensibility of a GPS receiver when the GPS signal-to-noise ratio is too low. How-
ever, ordinary applications like open-sky navigation systems, i.e., typical GPS re-
ceiver for car tracking, only takes one of both methodologies with reduced increasing
factors.

In this research, we propose to obtain new detection codes to determine whether
a satellite is visible or not. The main feature of those new codes is their reduced
length in comparison with the original PRN. Proposed new codes require lower
computational effort than the traditional PRN [15]. Moreover, we are based on the
approach presented in [10] where authors introduce a novel methodology to obtain
new PRN detection codes using GA. In this previous approach, the research is focused
in determining what kind of multi/single objective algorithm is more suitable for this
type of application. However, in order to narrow the search space of the problem,
authors fix the length of the new detection codes to a submultiple of the original
length. This submultiple is 341 chips (341 × 3 = 1,023).

Our proposal in this work is redefining the problem presented in [10] with two
new variables to optimize. The first is the length of the detection code and the second
is the sampling ratio. We define the sampling ratio as the size of the new detection
code divided by 1,023 chips. Since we reduce the sampling ratio below the unity,
we will use the term dropping ratio as a more adequate concept or definition. The
approach presented in [10] has a length of 341 and a dropping ratio of 3 (that is, to
take 1 sample and drop 2 for every 3 samples of the incoming signal). This results
in a sampling ratio of 1/3 as shown in Fig. 34.1.
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Fig. 34.1 Example of 1/3 sampling ratio

34.3 Problem Codification

Based on the approaches found in the literature, we choose the NSGA-II [14] as GA
multi-objective optimization engine. The codification for the individual is as follows.
Each individual represents a new detection code. The individual is made by an array
of Boolean values (see Fig. 34.2). The status of each Boolean value can be only a
logic zero and a logic one. The unknown or error states are forbidden in this engine.
The length of the individual array determines the length of the new detection code.
Finally, each element of the individual array corresponds with an element of the new
detection code; this makes that the index is the same in both arrays.

Unsurprisingly, the cost function is basically the Eq. 34.1. As before mentioned,
this cost function is an array of comparison values. However we are not interested
in all these values but our attention is focused on the Detection Peak and the Noise.
Moreover, we know that the dropping ratio determines the total number of Detection
Peaks in the comparison array. For example, if the length of the new detection code
is set to 341 and the dropping ratio is set to 3, then there exist 3 different Detection
Peaks. So the comparison array contains as many Detection Peaks as set the dropping
ratio. Other values on this comparison array are Noise values.
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Fig. 34.2 Problem codification
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We are interested in obtaining new reduced GPS detection codes with a low Noise
and high Detection Peaks. In order to obtain those values, after evaluating each
individual with Eq. 34.1, the evaluation function extracts the minimum Detection
Peak and the maximum Noise from the computed comparison array.

34.4 Experiments

We assume that the search space of this problem grows with the length of the new
detection codes and dropping ratio used. If we provide all the degrees of freedom
on all our problem variables, the required computational effort is increased in great
matter. The magnitude of this computational effort produces non-practical CPU ex-
ecution times. In this sense, in order to obtain the solutions in a practical CPU time,
we include the following rule:

|Proposed length × Dropping Ratio − 1,023| < ξ (34.2)

where ξ is the maximum allowed deviation between the original PRN and new
proposed PRN.

Table 34.1 presents the NSGA-II optimization engine setup. We define two objec-
tive functions to optimize. The first one is to maximize DP (minimize −DP) and the
second is to minimize the Noise (N). The NSGA-II optimization engine is controlled
by a program written in C that proposes lengths and sizes randomly using the rule
introduced in Eq. 34.2.

In other words, our application (C program) proposes different lengths and
dropping ratios and the NSGA-II optimization engine obtains new detection codes.
That is, the application starts with a proposal of a new length and dropping ratio to
obtain a new detection code. Then the NSGA-II optimization engine takes the control
and produces a Pareto-Front curve for those parameters. Once the optimization is
finished, our application extracts the best solution of the Pareto-Front. This proce-
dure starts over and over with several lengths and dropping ratios. In addition, after
extracting the best solution our application evaluates the convergence of the proposed

Table 34.1 NSGA-II setup
in our experiments

Parameter Value

Num. objectives 2

OBJ1 −DP

OBJ2 N

Population 40

Generations 10 k/100 k

Crossover 0.8

Mutation 1/PRN length

Seed Random/uniform distribution
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parameters. If the application determines that the solution can be refined/improved
the NSGA-II is executed again with more generations (from 10 k to 100 k).

In order to measure the quality of new detection codes we introduce some con-
cepts. We define the Detection Gap (DG) as follows:

DG = min(DP) − max(N) (34.3)

This means that the Detection Gap is the distance between the minimum Detection
Peak (min(Dp)) and the maximum Noise (max(N)). Bigger Detection Gaps give
better detection codes.

We also need to evaluate the required mathematical operations. For this pur-
pose, we label the number of required multiplication/addition operations to execute
Eq. (34.1) as CPU Operations (CPUO). In this case, fewer CPU Operations require
lower resources for hardware implementation.

Moreover, we define the CPU Effort (CPUE) as the CPU Operations per Detection
Gap, that is:

CPUE = CPUO

DG
= num. required mul/add

min(DP) − max(N)
(34.4)

In our experiments we compare our proposal with the traditional methodol-
ogy [15]. This traditional methodology consists of implementing Eq. (34.1) directly
without any of our proposed improvements.

Table 34.2 presents some results of our application when we look for reduced
codes of GPS satellite ID 1. In this experiment, we set ξ to a maximum of 400
chips. The first and second columns of the table contain the proposed code length
and the dropping ratio. The number of generations are shown in the third column (in
times of 1k generations). The fourth column gives the value of the rule defined in
Eq. (34.2). The following two columns exhibit the best optimized minimum Detection
Peak (min(DP)) and maximum Noise (max(N)). The seventh column indicates the
Detection Gap (DG). The following column measures the CPU Operations (CPUO).
Ninth column evaluates the CPU Effort CPUE . Finally, the last column presents the
difference (CPUDiff ) between our proposal and the traditional methodology for the
CPU Effort (CPUE(our)− CPUE(traditional)). In addition, please note that the last
two rows in this Table 34.2 show the best solution obtained in [10] and also using
the traditional methodology, respectively.

As expected, results from Table 34.2 are better as greater is the total number
of generations in terms of maximum Noise and/or minimum Detection Peak. Last
column presents a comparison between the traditional methodology and our new
reduced detection code. The comparison is done in terms of required computational
effort and detection gap to determine whether a satellite is visible or not. The negative
values in this column denote better solutions than using the traditional methodology.

From Table 34.2, we observed that, for instance, the combination 320 × 3 (length
× dropping ratio) with 100 k generations and 212 × 3 with 10 k generations have
similar values in last column, −73 and −76, respectively. The first one has the double
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Table 34.2 NSGA-II experiments for Satellite ID 1 and ξ < 400

Code Dropping Generations Rule min(DP) max(N) DG CPUO CPUE CPUDiff

length ratio (× 1 k) value

384 2 10 768 206 64 142 147,456 1038.4 −59

448 2 10 896 236 66 170 200,704 1180.6 84

480 2 10 960 250 70 180 230,400 1280.0 183

512 2 10 1,024 276 72 204 262,144 1285.0 188

212 3 10 636 90 46 44 44,944 1021.5 −76

288 3 10 864 116 54 62 82,944 1337.8 241

304 3 10 912 126 56 70 92,416 1320.2 223

320 3 10 960 134 56 78 102,400 1312.8 216

336 3 10 1,008 140 60 80 112,896 1411.2 314

341 3 10 1,023 141 59 82 116,281 1418.1 321

256 4 10 1,024 90 52 38 65,536 1724.6 628

512 2 100 1,024 276 70 206 262,144 1272.5 176

288 3 100 864 136 54 82 82,944 1011.5 −85

304 3 100 912 148 56 92 92,416 1004.5 −92

320 3 100 960 156 56 100 102,400 1024.0 −73

341 3 100 1,023 177 57 120 116,281 969.0 −128

256 4 100 1,024 98 52 46 65,536 1424.7 328

341 3 40 1,023 177 89 88 116,281 1321.4 224a

1,023 1 – 1,023 1,023 69 954 1,046,529 1097.0 0b

min(DP) minimum Detection Peak, max(N) maximum noise, DG Detection Gap, CPUO CPU
Operations, CPUE CPU Effort, CPUDiff CPU Effort Difference
aData from [10]
bTraditional methodology [15]

of detection gap than the second one, but the second proposal requires a half of the
CPU Operations to evaluate Eq. (34.1). Therefore, this comparison demonstrates that
there exist several combinations of code lengths and dropping ratios that have similar
ratios of CPU effort and detection gap.

The results obtained with our application, as shown on Table 34.2, are always
better than the presented in a previous work [10] in terms of maximum Noise. In
case of the Detection Peaks our approach obtains at least the same or better values
than those in the referred work [10].

Table 34.3 presents the summary of the results for all checked lengths. The first col-
umn shows the PRN length. The second, the third and the fourth columns provide the
maximum, minimum and average computational effort difference (CPU difference)
between our proposal presented in this document and the traditional methodology.
The last column in this table gives the obtained improvement in percentage. A neg-
ative value here means that our proposal is better than the traditional methodology
in the case referred to.
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Table 34.3 Obtained results
from experiments for all
satellites

PRN CPUDiff Improvement (%)

length Max Min Avg

256 114.26 −159.25 −44.38 4.05

264 27.13 −339.43 −202.94 18.50

272 −40.09 −342.06 −208.95 19.05

280 −65.42 −328.37 −170.86 15.57

288 55.00 −267.56 −173.64 15.83

296 26.28 −270.43 −135.58 12.36

304 303.24 −241.30 −116.91 10.66

312 −38.91 −227.86 −115.25 10.51

320 40.78 −229.20 −98.23 8.95

328 47.51 −215.16 −80.58 7.35

341 114.26 −159.25 −44.38 4.05
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Fig. 34.3 Results comparison in terms of PRN length and CPU effort improvement

Figure 34.3 display graphically the data on Table 34.3. On the left vertical axis is
represented the computational effort difference units. In addition, on the right vertical
axis the average improvement in percentage is shown. The horizontal axis gives the
detection code length (proposed PRN length). In this Fig. 34.3, each vertical bar
represents the maximum, minimum and average obtained improvement (left vertical
axis). Finally, the × symbol identifies the improvement in percentage (right vertical
axis).
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The ideal goal in our application is to obtain a set of detection codes where
the obtained improvement is equal for all satellites. In addition, due to hardware
restrictions, all detection codes must have with the same length. These are moved to
Fig. 34.3 looking for a bar (set of detection codes with same length) and its maximum
and minimum as close as possible to the bottom of the figure. In this sense, there
are two solutions very close with similar results, lengths 264 and 272, where the
improvement in average is 18.50 and 19.05 % respectively. The advantage of length
272 set is not only the better percentage, but also this set provides improvements in
all its detection codes (maximum, minimum and average improvements are negative
values).

34.5 Conclusions

In this paper a methodology is proposed to take into account new design parameters
to obtain reduced GPS detection codes to determine whether a satellite is visible
or not. Those new design parameters are the length of the reduced detection code
and the dropping ratio. New optimal detection codes are obtained using NSGA-II as
optimization engine. In addition, we present a new metric to evaluate the performance
of new detection codes in terms of required CPU effort. Results demonstrate that new
detection codes exist that exhibit both similar or better performance in terms of CPU
effort, detection gap, code length and/or dropping ratio.

Acknowledgments This work is patent pending and was funded under project BATTLEWISE
(TEC2011-29148-C02-01) of the Ministry of Economy and Competitiveness.

References

1. USAF Navstar GPS (2003) Where am I? Are we there yet? Air Space Power J 6(2):182–197
2. Kaplan E, Hegarty C (1996) Understanding GPS principles and applications. Artech House,

Norwood
3. Duncan MJ, Badland HM, Mummery WK (2009) Applying GPS to enhance understanding of

transport-related physical activity. J Sci Med Sport 12(5):549–556
4. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, GALILEO, and augmen-

tation systems. Artech House, Norwood
5. Borre K (2006) A software defined gps and galileo receiver: a single-frequency approach.

Birkhuser, Boston
6. Hyoungmin S, Haeyoung J, Changdon K (2007) A new GNSS signal acquisition algorithm

based on cross-correlation sequence with reduced signal-receiving time. In: International con-
ference on control, automation and systems (ICCAS’07), pp 2563–2567

7. Chih-Hung W, Wei-Han S (2011) A study on GPS GDOP approximation using support-vector
machines. IEEE Trans Instrum Meas 60(1):137–145

8. Gunawardena S, van Graas F (2006) Split-sum correlator simplifies range computations in GPS
receiver. Electron Lett 42(25):1469–1471

9. Jan S-S, Lin Y-C (2009) A new multi-C/A code acquisition method for GPS. GPS Solutions
13(4):293–303



520 J. Sosa et al.

10. Sosa J, Montiel-Nelson JA, Nooshabadi S (2011) Low power GPS pseudo random numbers
using genetic algorithms. In: Evolutionary and deterministic methods for design, optimisation
and control with applications to industrial and societal problems (EUROGEN11), Capua, Italy

11. Lee S-W, Kim J, Jeong M-S, Lee YJ (2011) Monitoring atomic clocks on board GNSS satellites.
Adv Space Res 47(10):1654–1663

12. Michalski A, Czajewski J (2004) The accuracy of the global positioning systems. IEEE Instrum
Meas Mag 7(1):56–60

13. Hamza G, Motawie I (2009) Implementation of a complete GPS receiver using Simulink. IEEE
Circuits Syst Mag 9(4):43–51

14. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comp 6:182–197

15. Dunn MJ (2012) Navstar GPS space segment/navigation user interfaces (IS-GPS-200). U.S.
Coast Guard Navigation Center


	34 Generation of New Detection Codes  for GPS Satellites Using NSGA-II
	34.1 Introduction
	34.2 Problem Definition
	34.3 Problem Codification
	34.4 Experiments
	34.5 Conclusions
	References


