
Chapter 33
Optimization of the Dimensionless Model
of an Electrostatic Microswitch Based
on AMGA Algorithm

Jorge Santana-Cabrera, José Miguel Monzón-Verona,
Francisco Jorge Santana-Martín, Santiago García-Alonso
and Juan Antonio Montiel-Nelson

Abstract In this paper a micro genetic algorithm for multi-objective optimization
(AMGA) is used to minimize the number of function evaluations of the dimensionless
model of an electrostatic microswitch. A non-dimensional dynamic model is pro-
posed, and three objective functions are defined: the closing dimensionless time of
the first impact, the maximum dimensionless speed and the maximum dimensionless
displacement of the first impact. This work has been carried out using dimensional
analysis. Results demonstrate an interesting methodology based on AMGA for opti-
mizing the closing time and displacement of the first impact in a microswitch.
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33.1 Introduction

MEMS electrostatic microswitches possess high insulation of the electromechanical
switches and ultra-low losses. They also have low power consumption and small size
and the advantages of low cost of solid state relays manufactured with microelec-
tronic technology. Besides, electrostatic microswitches operate in a large range of
frequencies. These properties make possible the massive application of these MEMS
devices to wide technology fields, in particular, to the telecommunication industry,
to wireless devices such as microswitches for antennas and switches for reception-
transmission, among others.

One of the main subjects in resistive microswitch design is related to the interaction
between the tip and the substrate, and the damage accumulated produced by the
bouncing of the tip on the substrate. It is well known that the tip of a resistance
microswitch bounces several times on the substrate before reaching a permanent
contact [1].

We have used dimensional analysis for measured performance of some dimen-
sionless parameters. The use of a dimensionless model is a valuable procedure used
to study engineering problems [2]. By applying Buckingham [3] theorem, dimen-
sionless parameters are obtained.

Π Buckingham theorem applied to dimensionless analysis establishes that, an
equation with a number of variables related between them that defines a physical
problem is reduced to another similar dimensionless equation but with a lower num-
ber of variables. A dimensionless parameter consists in a group of variables joined
in a way that the dimensionless expression is the unit. The number of dimensionless
sets for a particular problem is equal to the difference between the total number of
variables minus the number of fundamental dimensions.

Our contribution in this work consists in designing a microswitch with the follow-
ing goal: minimize the time of the first contact tip-substrate to increment the working
frequency and, at the same time, minimize the maximum velocity and the oscillation
of the first bouncing to decrease the number of bounces.

These goals are in contradiction because if we decrease the closing time, then,
the velocity of the first impact increases and, hence, there is a greater bouncing, see
Fig. 33.1. This fact indicates that we are dealing with a multiobjective optimization
problem.

This paper is organized as follows. Section 33.2 presents the theoretical funda-
ments of the optimization multiobjective of a microswitch. Section 33.3 provides the
results and discussion. Finally, in Sect. 33.4 conclusions are presented.

33.2 Theoretical Fundaments of the Optimization
Multiobjective of a Microswitch

In general, the optimization multiobjective problem is defined as follows: find the
vector −→x ∗ = [x∗

1 , x∗
2 , . . . , x∗

n ]T that satisfaces the m restrictions of the inequalities
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Fig. 33.1 Dimensionless analysis of the velocity for A1 = 0.1

gi (
−→x ) ≥ 0 i = 1, 2, . . . , m

the p restrictions of the equalities

h j (
−→x ) = 0 j = 1, 2, . . . , p (33.1)

and optimizes the vector of functions

f(−→x ) = [ f1(
−→x ), f2(

−→x ), . . . , fk(
−→x )]T (33.2)

where x = [x1, x2, . . . , xr ]T is the vector of variable decision.
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Multiobjective optimization problems require three basic elements:

• A conflicting trade-off between two or more objective functions. They are a quan-
titative measure of the system to be optimized.

• The variables that affect the objective functions.
• The restrictions: a set of relations, equations and inequalities that some variables

must satisfy.

For obtain an optimal design of the microswitch the dinamic behavior of the system
is modelled and analyzed. A cantilever beam represents a basic physical model of
microswitch. We have analyzed this beam through a lumped parameter model of
mass-spring-friction and two state variables (velocity and position). In this model,
we stress the interaction between the tip of the beam and the substrate that has been
modeled introducing a “Lennard–Jones” force [1]. In our work, see Fig. 33.1, the
three objective functions are:

• f1(
−→x ): The closing time—to increase the working frequency of the microswitch.

• f2(
−→x ): The first impact velocity.

• f3(
−→x ): The first impact displacement.

We have identified six dimensionless parameters. In first place, A1, which is a pro-
portion between the impeller electrostatic force and the elastic force associated to
the cantilever beam. Second, the quality factor Q which is inversely proportional to
friction coefficient.

From the dynamical analysis, we have obtained two performance related to the
time domain, the velocity and the position. From this performance we obtain impor-
tant data for the design of the microswitch: the time Tmin to establish the first contact
tip/substrate, the maximum velocity for the first contact, ṽmax, and the maximum
elongation after the first impact, r̃max.

The MEMS switch is modeled as a one-degree of freedom system which is the
position of the tip of the cantilever r . It consists on a mass m, initially placed at a
distance g0 from the substrate, a spring with elastic constant k, and a dashpot with
damping coefficient b. Thus, the motion of the system is described by the classical
second order linear Eq. 33.3, where FE L is the electrostatic actuation force and FL J

the Lennard-Jones force that provides the mechanical interaction between two fac-
ing surfaces. FE L and FL J is expressed as 33.4 and 33.5, respectively. In this work,
the area of interaction has been assumed as A = 100 µm2, C1 = 10−20 Nm and
C2 = 10−80 Nm [1].

m
d

2
r

dt 2 + b
dr

dt
+ k r = FE L + FL J (33.3)

FE L =
1
2ε0 A0V 2

(
g0 + dε

εr
− r

)2 (33.4)

FL J = C1 A

(g0 − r)3 − C2 A

(g0 − r)9 (33.5)
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The dimensionless equations of the dynamic model are:

d ṽe

dt̃
=

[
A1

(1 + A4 − r̃)2

[
1 + A5 (1 − r̃)

] − ṽe

Q
− r̃

+ A2

(1 − r̃)3 − A3

(1 − r̃)9

]
(33.6)

dr̃e

dt̃
= ṽe (33.7)

where A1, A2, A3, A4 and A5 are non dimensional parameters and Q is the quality
factor.

A1 and Q are expressed as follows:

A1 = ε0 A0V 2

2kg3
0

(33.8)

and

Q =
√

km

b
(33.9)

33.3 Results and Discussion

The proposed optimization problem is described as follows

min ( f1(
−→x ), f2(

−→x ), f3(
−→x )) (33.10)

where

−→x = (A1, Q) (33.11)

is the decision variable vector that corresponds to the dimensionless parameters A1
and Q described previously.

f1(
−→x ) corresponds to the first dimensionless bounce time. At this instant the

microswitch contacts the substrate for first time, f1(
−→x ) = Tmin, see Fig. 33.1.

f2(
−→x ) is ṽemax , which is the velocity for the first bounce at Tmin value; in this

time instant, the velocity V1 for T −
min is equal to V2 at T +

min, see Fig. 33.1. Note that
the velocity senses are opposite.

f3(
−→x ) is r̃max which is the dimensionless maximum position of the first bounce

and correspond to a V = 0 velocity.
The instants Tmin and Tmax are determined in the execution time of the numerical

solution. For this reason, we have analyzed two consecutive instants of the simulation,
comparing the value of the variables r̃e and ṽe.
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Table 33.1 Execution time
of the experiments

Population Generation Evaluations Time (s)

80 10 800 2,405

80 50 4,000 20,566

80 62 4,960 25,568

100 62 6,200 31,996

60 200 12,000 62,245

Differential Eqs. 33.6 and 33.7 have been solved using a RKF with fixed step pro-
grammed in C++ [4] wich uses the algorithm AMGAII-Archive-based Microgenetic
Algorithm. We have chosen a real codification for each chromosome composed by
the design variables A1 and Q. In general, the precision is better than the binary
codification [5]. This is improved adding more bits, but it increases the simulation
time. The used time step Δ was 10−6 s and is constant during the whole simulation.

All the simulation results were obtained in a SunFire X2200, with 2 CPU AMD
Opteron 2214 Dual Core (2,2Ghz), 4 GB RAM, using the O. S. Red Hat Enterprise
Linux Server 5.3.

We have solved this problem based on the concept of Pareto optimal solution
applying genetic multiobjective algorithms. The numerical solution of the objective
functions is highly time consuming, see Table 33.1. Hence, we have reduced the
number of evaluations of the objective functions.

We propose the use of Archieve based Micro Genetic Algorithm (AMGA) [6]
method because this algorithm generates a small number of new solutions in each
evaluation, improving the total time for the evaluation [7].

Taking into account the first group of results of the dimensionless dynamic model,
we conclude that the most important dimensionless parameters are A1 and Q. A1
represents the quotient between the minimum electrostatic force and the maximum
elastic force and Q represents the quotient between the maximum energy stored in
the spring and mass, and the friction looses.

Figure 33.2 illustrates the Pareto optimum with the objective functions closing
time for the first impact versus the maximum velocity in the first impact. Figure 33.3
shows the Pareto optimum and represents the three objective functions mentioned
in the previous section [6]. Figures 33.4 and 33.5 represent the influence of A1 in
the closing time and velocity of the first impact. As A1 increases the closing time
decreases and the closing speed increases.

Figure 33.6 shows the influence of the dimensionless parameter Q in the maximum
oscillation of the first impact. As Q increases the closing position increases.

In this work, we have developed a methodology based on AMGA for optimiz-
ing the closing time and displacement of the first impact in a microswitch. From
Figs. 33.2, 33.3, 33.4, 33.5 and 33.6, the relationship between dimensionless para-
meters A1 and Q and closing time and displacement is illustrated.
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Fig. 33.2 Pareto solution time versus speed
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Fig. 33.3 3D Pareto AMGA method first impact
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Fig. 33.4 Dimensionless time versus A1
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Fig. 33.5 Dimensionless speed versus A1
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Fig. 33.6 Dimensionless speed versus Q

33.4 Conclusions

Based on a dimensionless model of a microswitch for the closing time and displace-
ment, we have analyzed the sensitivity of this Micro Electro Mechanical System—
MEMS—to the variation of the dimensionless parameters of the model. In this way,
we predict the dynamic behavior of a microswitch. By using multiobjective Genetic
Algorithms we have optimized the bouncing of the microswitch which is one of the
major designing concern. We have used the AMGA multi-objective GA for obtaining
the Pareto front of the design space.
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