
Chapter 3
A Genetic Algorithm for a Sensor Device
Location Problem

Egidio D’Amato, Elia Daniele and Lina Mallozzi

Abstract In this paper we present a noncooperative game theoretical model for the
well known problem of experimental design. A virtual player decides the design
variables of an experiment and all the players solve a Nash equilibrium problem by
optimizing suitable payoff functions.We consider the casewhere the design variables
are the coordinates of n points in a region of the plane and we look for the optimal
configuration of the points under some constraints. Arising from a concrete situation,
concerning the ARGO-YBJ experiments, the goal is to find the optimal configuration
of the detector, consisting of a single layer of resistive plate counters. Theoretical
and computational results are presented for this location problem.

Keywords Facility location · Nash equilibrium · Constrained optimization

3.1 Introduction

The scope of the ARGO-YBJ project is to study cosmic gamma radiation, identifying
transient emissions and performing a systematic search of steady sources [1]. The
detection of very small size air showers (at low energy< TeV), is needed to reach this
scope, because standard ones would sample only a small percentage of the shower
particles. The achieving of the objective is committed to a new instrument located in
Yangbajing Laboratory (Tibet, China), at a very high altitude (4,000m a.s.l.) in order
to approach the maximum size development of low energy showers. This detector
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uses a full coverage layer of Resistive Plate Counters (RPCs) that can provide a high
granularity sampling of particle showers. It covers an area of about 6,700m2 and
allows a detailed space-time picture of the shower front.

This work is related to the optimization of RPCs location on the layer, to capture
a uniform cosmic source distribution, constrained by a limited number of receivers
due to a budget limitation.

Considering the capture surface of a single receiver shaped as a circular area,
the problem has many points in common with a classic sphere packing problem
[5, 13, 18]. The problem of packing circles in different geometrical shapes in the
plane has always attracted researchers for the large amount of fields on which it
can be applied. In the last decades many results, mainly for small packings, were
obtained. The increasing performance of computing systems and the development
of new optimization algorithms for large problems have recently brought to the fore-
front this kind of problems. Usually the circle packing problem can be stated as that
of spreading points and it’s needed to find a configuration of points in the given region
such that theminimummutual distance between the points is as large as possible. The
packing problem is dual to the covering one, in which the optimal location of points
is needed to cover as much as possible the area of interest. Typical solutions can
be found in several fields and are addressed using several algorithmic optimization
procedures [3, 11, 14, 16, 19].

In this paperwe are interested infinding the optimal location of a limited number of
receivers to maximize the total detection area. This experimental design problem can
be faced as a Nash equilibrium problem as stated in Game Theory: the choice of the
variables in n experiments is made by n players, each of them has to decide his loca-
tion far as possible from the opponents and also from the border of the region. On this
model, it is possible to compute the equilibria by using a numerical procedure based
on agenetic algorithm [4, 6, 10, 15, 17, 20]. InSect. 3.2 the constrained locationprob-
lem is introduced and the procedure to solve it by a Nash game is shown; in Sect. 3.3
theNash genetic algorithm for the facility location game is presentedwith several test
cases. In Sect. 3.4 concluding remarks and some further developments are discussed.

3.2 Constrained Location Problem

3.2.1 Preliminaries

Let us consider an n-player normal form game Γ (n ∈ N , where N is the set of
natural numbers), that consists of a tuple

Γ = 〈N ; X1, . . . , Xn; f1, . . . , fn〉

where N = {1, 2, . . . , n} is the finite player set, for each i ∈ N the set of player i’s
strategiesisXi (i.e. thesetofplayer i’sadmissiblechoices)and fi :X1×· · ·× Xn → R
isplayer i’spayoff function(R is thesetof realnumbers).Wesupposehere thatplayers
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arecostminimizing,sothatplayer i hasacost fi (x1, x2, . . . , xn)whenplayer1chooses
x1 ∈ X1, player 2 chooses x2 ∈ X2,…, player n chooses xn ∈ Xn .

We define X = X1 × · · · × Xn and for i ∈ N : X−i = Π j∈N\{i} X j . Let x =
(x1, x2, . . . , xn) ∈ X and i ∈ N . Sometimes we denote x = (xi , x−i ), where
x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

A Nash equilibrium [2, 12] for Γ is a strategy profile x̂ = (x̂1, x̂2, . . . , x̂n) ∈ X
such that for any i ∈ N and for any xi ∈ Xi we have that

fi (x̂) ≤ fi (xi , x̂−i ).

Such a solution is self-enforcing in the sense that once the players are playing
such a solution, it is in every player’s best interest to remain in his strategy.We denote
by N E(Γ ) the set of the Nash equilibrium strategy profiles.

Any x̂ = (x̂1, . . . , x̂n) ∈ N E(Γ ) is a vector such that for any i ∈ N , x̂i is solution
to the optimization problem

min
xi ∈Xi

fi (xi , x̂−i ).

3.2.2 The Facility Location Game

We consider the unit square Ω = [0, 1]2: the problem is to decide for two variables
x and y the values of n available experiments (n ∈ N given).

Problem 1 Experimental Design (ED)
The problem is to sattle n points P1, P2, . . . , Pn in the square Ω in such a way

that they are far as possible from the rest and from the boundary of the square.

This implies to maximize the dispersion of the points in the interior and the
distance from the boundary of Ω as in experimental design ([9]). Various concrete
situations satisfy these requirement, for example the location of sensor device to
capture cosmic rays in a region that will be discussed in the next section.

There is a competition between the points in the square, because the dispersion
depends on the mutual position of all the points, also with respect to the boundary
of Ω , so we use a game theoretical model and assign each point to a virtual player,
whose decision variables are the coordinates and whose payoff function translates
the dispersion in terms of distances.

As it happens in applications, forbidden places may be present inside the square.
We consider the location problem in the constrained case depending on the admissible
subregion of Ω , say Ωc ⊂ Ω .

In the constrained case we define the following n-player normal form game
Γc = 〈N ;Ωc, . . . ,Ωc; f1, . . . , fn〉 where each player in N = {1, 2, . . . , n}, for
each i ∈ N , minimizes the cost fi : Ac → R defined by

fi (P1, . . . , Pn) =
∑

1≤ j≤n, j �=i

1

d(Pi , Pj )
+ 1√

2d(Pi , ∂Ω)
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being Ac = {
(P1, . . . , Pn) ∈ Ωn

c : Pi ∈ (]0, 1[)2, Pi �= Pj ∀i, j = 1, . . . , n, j �= i
}

and d is the Euclidean metric in R2. The first n − 1 terms in the definition of fi

give the distance between the point Pi and the rest of the points, the last term an
decreasing function of the distance of Pi from the boundary of the square.

Definition 1 Any (x̂1, ŷ1, . . . , x̂n, ŷn) ∈ Ac that is a Nash equilibrium solution of
the game Γc is an optimal solution of the problem (ED). For any i ∈ N , (x̂i , ŷi ) is
solution to the optimization problem

min
(xi ,yi )∈Ωc

fi (x̂1, ŷ1, . . . , x̂i−1, ŷi−1, xi , yi , x̂i+1, ŷi+1, . . . , x̂n, ŷn)

with (x1, y1, . . . , xn, yn) ∈ Ac.

A very common situation is to consider Ωc = Ω\T with T a closed subset of
Ω (a triangle, a circle, etc.) that corresponds to a facility location problem with an
obstacle (a lake, a mountain, etc.). Other concrete cases for the admissible regionΩc

can be considered: in the following Section we will examine the location problem
when the admissible region is given by a set of segments.

3.2.3 Location of Sensor Devices on a Grid

Given the set {h1, . . . , hk} (hi ∈ ]0, 1[, i = 1, . . . , k) we consider the set of possible
location of n sensor devices able to capture cosmic particles

Ωc = {[0, 1] × {h1}, . . . , [0, 1] × {hk}}.
We are obliged to locate the sensors on the given k segments in the square: for
example because of electricity constraints.

In terms of coordinates, if Pi = (xi , yi ), i ∈ N the distance of a point P = (x, y)

from the set ∂Ω , the boundary of Ω , is

d(P, ∂Ω) = min
Q∈∂Ω

d(P, Q) = min{x, y, 1 − x, 1 − y}

and we have for (x1, y1, . . . , xn, yn) ∈ Ac

fi (x1, y1, . . . , xn, yn) =
∑

1≤ j≤n, j �=i

1√
(xi − x j )2 + (yi − y j )2

+ 1√
2min{xi , yi , 1 − xi , 1 − yi }

for (x1, y1, . . . , xn, yn) ∈ Ωc ∩ Ac.
The optimal location of the sensors will be the Nash equilibrium solutions of the

game Γc = 〈N ;Ωc, . . . ,Ωc; f1, . . . , fn〉, where each player in N = {1, 2, . . . , n},
for each i ∈ N , minimizes the cost fi : Ac → R for (x1, y1, . . . , xn, yn) ∈ Ωc ∩ Ac.
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3.3 Nash Genetic Algorithm for the Location Problem

3.3.1 Genetic Algorithm

Let X1, X2, . . . , Xn be compact subsets of an Euclidean spaces, denoted as search
space. Let f1, f2, . . . , fn be real valued functions, defined on X1 × X2 × · · · × Xn ,
representing the objective functions to be maximized.

Let s = x1, x2, . . . , xn be the individual (or chromosome) representing a feasible
solution in the search space. A finite set of individuals make up a population. It can
be viewed as a sampling of the problem domain that generation by generation maps
zones with an higher probability of presence of the optimum ([10]).

A typical genetic algorithm consists of several steps:

• Population initialization: at the first step, a random population is set to map the
search domain.

• Selection: on the sorted population, a probabilistic based selection of parents is
made to permit coupling of best individuals without wasting worst chromosomes
that may be useful to move towards unexplored zones of search space.

• Crossover: on selected parents, a crossover operator is applied to create two new
individuals. This operator may be applied in several forms.

• Mutation: to avoid premature stagnation of the algorithm a mutation operator is
used, randomly changing a bit of the just created chromosomes.

• Fitness computation: objective function and constraints must be evaluated to sort
individuals in the population.

• Termination criterion: usually two criteria are defined in a GA, one on the max-
imum number of total generations and one on the maximum number of total
generations without improvements on the best chromosome.

3.3.2 Nash Equilibrium Game

According to the definition of Nash equilibrium presented in 3.2.3, the algorithm for
a n players Nash equilibrium game is presented [6–8, 15].

The algorithm is based on the Nash adjustment process [12], where players take
turns setting their outputs, and each player’s chosen output is a best response to the
output that his opponent chose the period before. If the process does converge, the
solution is an optimal location of the n sensor devices.

Let x = x1, . . . , xn be a feasible solution for the n player Nash problem. Then
xi denotes the subset of variables handled by player i , belonging to a metric space
Xi , and optimized by an objective function called fi . Player i search the optimal
solution with respect to his objective function by modifying xi .

At each step k of the optimization algorithm, player i optimizes xk
i using xk−1

(−i) =
xk−1
1 , . . . , xk−1

i−1 , xk−1
i+1 , . . . xk−1

n .
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The first step of the algorithm consists of creating n different populations, one
for each player. Player i’s optimization task is performed by population i . Let xk−1

i
be the best value found by player i at era k − 1. At era k, player i optimizes xk

i

using xk−1
−i in order to evaluate the chromosome. At the end of kth era optimization

procedure players−i communicate their own best value xk
−i to player i who will use

it at era k + 1 to generate their entire chromosome, using only xk
i for common GAs

crossover and mutation procedures. A Nash equilibrium is reached when no player
can further improve his objective function, or a generation number limit is reached.

3.3.3 Test Cases

In this section, numerical results for the constrained location model are shown. They
have been obtained using the Nash Genetic Algorithm presented above, with para-
meters summarized in Table3.1.

First results are relative to the grid constrained case, in which RPCs can be located
only at defined values of the second coordinate h1, . . . , hk . In this case, the genetic
algorithm is modified to handle a discrete variable y ∈ Y , where Y = {h1, . . . , hk}
is the set of feasible bands.

In Figs. 3.1, 3.2 and 3.3 the comparison for uncostrained and constrained cases
are shown, changing the number of rows on which the RPCs are contrained case
by case, depending on the results of the unconstrained cases. The optimal location
points are denoted by blue circles in the unconstrained case, and by red squares in
the constrained case.

Table 3.1 Genetic
algorithms characteristics

Parameter Value or type

Chromosome Binary string

Crossover Multi-cut

Mutation probability 0.01

Population size 100

Mating-pool 50
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Fig. 3.1 Cases n = 4 and Y = {0.3, 0.7}; n = 5 and Y = {0.3, 0.5, 0.7}



3 A Genetic Algorithm for a Sensor Device Location Problem 55

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 3.2 Cases n = 6, 7 and Y = {0.2, 0.4, 0.6, 0.8}
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Fig. 3.3 Cases n = 8 and Y = {0.2, 0.4, 0.6, 0.8}; n = 10 and Y = {0.15, 0.35, 0.5, 0.65, 0.85}

3.4 Conclusions

In this paper the problemof locating a given number of sensor devices has been solved
by means of a facility location problem whose solutions are the Nash equilibrium
profiles of a suitable normal form game. The objective functions are given according
to physical requirements. For such a problem a numerical procedure based on a
genetic type of algorithm has been used to compute the final configurations. We
considered the special case where the admissible region is made by a set of parallel
segments, due to operative constraints (for example, electricity lines).

Other possible cases could be examined, for example the case where in the
admissible region a convex obstacle is present. In this case the optimal location
of the sensors will be the Nash equilibrium solutions of the game Γc = 〈N ;
Ωc, . . . ,Ωc; f1, . . . , fn〉, where each player in N = {1, 2, . . . , n}, for each i ∈ N ,
minimizes the cost fi : Ac → R for (x1, y1, . . . , xn, yn) ∈ Ωc ∩ Ac andΩc = Ω \T
with T a closed subset of Ω (a triangle, a circle, etc.). In the numerical procedure
the objective functions can been modified to handle obstacles as penalty functions
applied to the principal objective. In particular, fi the objective function relative to
the i th player, it is penalized by:
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Fig. 3.4 Cases for n = 5, 10 with circle shaped obstacle
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Fig. 3.5 Cases for n = 5, 10 with box shaped obstacle T = [0, 0.5]2

fi = fi/ f pen

where f pen ∈ [0, 1] is a suitable penalty function.
For example, for a circular obstacle f pen = d(x, y)/rc, where d(x, y) is the

minimum distance between the sensor (x, y) and the center of the circular obstacle,
rc is the radius of the circle. Two test cases are shown in Fig. 3.4 with T given by the
circle centered at (0.5, 0.5) with radius 0.25.

In other cases, for example if we have a rectangular obstacle, a constant penalty
( f pen = 0.1) can be applied for each sensor located in the unfeasible region. Two
test cases are shown in Fig. 3.5.

Amore systematic study of the constrained case from a theoretical as well as from
a numerical point of view will be the object of future research.
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