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Abstract While the handling of optimization variables directly expressed by
numbers (continuous, discrete, or integer) is abundantly investigated in the literature,
the use of nominal variables is generally overlooked, despite its practical interest in
plenty of scientific and industrial applications. For example, in civil engineering,
the designers of a structure made out of beams might have to select the best cross-
section shapes among a list of available geometries (square, circular, rectangular,
etc.), which can be modeled by nominal data. Therefore, in the context of single-
and multi-objective evolutionary optimization for mixed variables, this study inves-
tigates three genetic encodings (binary, real, and real-simplex) for the representation
of mixed variables involving both continuous and nominal parameters. The com-
parison of the genotypes combined with the instances of crossover is performed on
six analytical benchmark test functions, as well as on the multi-objective design
optimization of a six-storey rigid frame, showing that for mixed variables, real (and
to a lesser extent: real-simplex) coding provides the best results, especially when
combined with a uniform crossover.

R. Filomeno Coelho (B) · M. Herrera
ULB–BATir Department, Université Libre de Bruxelles, Avenue F.D. Roosevelt,
50 (CP 194/2), 1050 Brussels, Belgium
e-mail: rfilomen@ulb.ac.be

M. Herrera
e-mail: mherrera@ulb.ac.be

M. Xiao
NPU–Department of Applied Mathematics, Northwestern Polytechnical University,
Shaanxi 710072, Xi’an, People’s Republic of China
e-mail: manyuxiao@nwpu.edu.cn

A. Guglielmetti · W. Zhang
NPU–School of Mechanical Engineering, Northwestern Polytechnical University,
Shaanxi 710072, Xi’an, People’s Republic of China
e-mail: wuhong_mathnpu@hotmail.fr

W. Zhang
e-mail: zhangwh@nwpu.edu.cn

© Springer International Publishing Switzerland 2015
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_20

309



310 R.F. Coelho et al.

Keywords Mixed variables · Evolutionary algorithms · Categorical variables ·
Genotype

20.1 Introduction

Real-life engineering applications are often characterized by data of versatile natures.
Formally, design variables in parameterization/optimization can be divided into five
classes:

• continuous variables are defined over an interval Ic ⊆ R (e.g. length, curvature
radius);

• discrete variables are continuous variables available only within a finite set
Id = {d1, . . . , dn} where all di ∈ R (e.g. cross-section areas from a catalog
of beam profiles). It is interesting to note that gradient-based optimizers can be
adapted to discrete variables, as developed for instance by [3] through dual for-
mulations and subgradient-based algorithms;

• integer variables are defined over an interval Ii ⊆ N or Z (e.g. number of holes
in a plate). In engineering problems, they differ from discrete variables by the fact
that no intermediate values between two integer variables can be defined (e.g. a
plate can contain two or three holes, but not 2.5), which has an impact both on the
simulation and optimization sides. Binary variables are a particular case of integer
variables;

• ordinal categorical variables, or simply ordinal variables, take their values (called
attributes) among non-numerical values endowed with a ranking, as in the set
{‘tiny’, ‘small’, ‘medium-sized’, ‘large’, ‘huge’};

• nominal categorical variables, or simply nominal variables, are non-numerical
variables characterized by no explicit ordering, as the shape of a beam profile:
{ › ; — ; “ ; š }, the choice of a material: {‘steel’, ‘aluminum’, ‘titanium’}, etc.

According to the nature of the variables, distinct fields of optimization have been
developed; they can be roughly classified as continuous versus combinatorial opti-
mization. Interestingly, due to their flexibility in data representation, evolutionary
optimization algorithms are ideally suitedwhen both types of data are involved.Addi-
tionally, since the categorical variables are characterized by non-numerical entries,
they represent a challenging issue for the parameterization—and eventually for the
optimization—since they require a careful investigation of the conversion procedure
onto a chromosome. The optimization algorithms proposed in the literature formixed
variables have been summarized by the authors in [8], confirming that bio-inspired
algorithms are an efficient option for single- and multi-objective optimization, as
illustrated for example by [12]. However, a systematic examination of data struc-
tures for mixed variables is still missing.

Based on all these considerations, the goal of this paper is to investigate three
genotypes (binary, real, and real-simplex) in combination with three types of
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crossover (line, uniform, and two-site) in order to extract information about the
mutual interaction between encoding and genetic operators.

The paper is organized as follows: first, a systematic representation of mixed vari-
ables is introduced in Sect. 20.2. Then, the genetic operators used in the evolutionary
algorithms are described in Sect. 20.3. Afterwards, six analytical test cases includ-
ing continuous and nominal variables are thoroughly studied (Sect. 20.4), followed
by the multi-objective design optimization of a rigid frame (Sect. 20.5). Finally, the
conclusions and future prospects are discussed in Sect. 20.6.

20.2 Data Structures for Mixed Variables

Historically, the initial conversion of design variables to genetic encoding has been
done through binary coding [4, 9], as illustrated in Fig. 20.1. After conversion, the
converted binary strings for all variables can seamlessly be concatenated in a chro-
mosome, regardless of the various natures of the actual variables.

Another popular and straightforward encoding consists in modeling all variables
through real values, as shown in Fig. 20.2.

While these operations are straightforward for numerical values (not only
continuous, but also discrete and integer), they require an arbitrary mapping for
nominal variables, as shown in Table20.1.

Fig. 20.1 Conversion of a mixed-variable vector to a binary chromosome

Fig. 20.2 Conversion to a real vector
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Table 20.1 Conversion of a
nominal variable: two
legitimate mappings onto
real/binary values

Nominal variable Mapping 1 Mapping 2

Real Binary Real Binary

› 1 (0,0) 2 (0,1)

— 2 (0,1) 4 (1,1)

“ 3 (1,0) 1 (0,0)

š 4 (1,1) 3 (1,0)

Fig. 20.3 Mapping of a
three-attribute nominal
variable onto a regular
simplex (the Euclidean
distance between each pair of
attributes in the regular
simplex space is always equal
to 1)

Indeed, since there is no intrinsic ordering between attributes, both mappings
mentioned in Table20.1 are legitimate, but they might not exhibit the same behavior
in the genetic algorithm. Therefore, another conversion is proposed here for nominal
values, constraining the attributes of a nominal variable to be equidistant. This con-
straint can be ensured by assigning to each of the n attributes the coordinates of the
vertex of a regular simplex in a (n − 1)-space, as depicted in Fig. 20.3. Largely used
in learning and classification theory [1] with categorical data, this approach was first
introduced by the authors for approximation purposes [7].

To summarize, three encodings are analyzed in this paper:

1. binary;
2. real;
3. real-simplex, i.e. conversion to real numbers for continuous, discrete, integer,

and ordered categorical variables, and regular simplex mapping for the nominal
parameters.

Since the relation between coding and crossover is critical in genetic algorithms,
the next section lists the types of crossovers investigated in this study.

20.3 Genetic Operators for Mixed Variables

In all three genotypes proposed here above, the conversion finally leads to a real-
valued vector (the chromosome), on which three popular types of crossover can be
applied [2]:

1. line crossover (LCX): for each pair of parents (p1, p2) selected among the pop-
ulation of the previous generation, the offspring are created as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

b(c1)
i = b(p1)

i + α1

(
b(p2)

i − b(p1)
i

)

b(c2)
i = b(p1)

i + α2

(
b(p2)

i − b(p1)
i

) (20.1)

where bi are the components of the chromosome (a bit or a real value depending
on the coding), p1, p2 refer to the parents, c1, c2 to the children, and α1, α2 are
random numbers uniformly sampled in [0, 1], and constant for the whole chro-
mosome. Geometrically speaking, the children are generated on the line joining
the parents (in a space depending on the data structure, viz. the type of coding);

2. uniform crossover (UCX): each child c is generated as follows:

b(c)
i =

⎧
⎪⎨

⎪⎩

b(p1)
i if α < 0.5

b(p2)
i if α ≥ 0.5

(20.2)

where α is sampled independently for each component of the chromosome;
3. two-site crossover (TSX): the children are generated by swapping pieces of

parental chromosomes between two sites randomly chosen within the chromo-
some.

After the crossover operation, if values are found that do not correspond to
available values (depending on the coding and/or crossover implemented, this prob-
lem can happen for discrete, integer, or categorical variables), they are repaired in
the chromosome by replacing the wrong value by the closest existing value. The
remainder of the paper is devoted to an empirical analysis of the interaction between
data structure and crossover on several test cases. Nevertheless, the following condi-
tions can already be devised, and serve eventually as guidelines to analyze the results
obtained:

• Condition of exploration: the crossover should be able to produce children different
from their parents.

• Condition of invariance: the children generated from crossover have to be inde-
pendent from the ranking of the attribute values.

20.4 Analytical Benchmark Test Cases

The first six test functions aim at showing the relation between genotypes and types
of crossover for real, nominal, and mixed (real-nominal) variables. Their analyti-
cal expression is detailed in Table20.2. For each test function, three situations are
examined: (1) ten real variables, no nominal variables (nz = 10, nc = 0), (2) ten
nominal variables, no real variables (nz = 0, nc = 10), and (3) five real variables,
five nominal variables (nz = 5, nc = 5).
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Table 20.2 Definition of the six analytical benchmarks with mixed variables

Output
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Input

Cont. vars. zi = 10−3xcont
i , xcont

i ∈ [−300, 700] for i = 1, . . . , nz

Categ. vars. ci ∈ o(i)
permut ([0, 1, . . . , 10]) for i = 1, . . . , nc

Table 20.3 Numerical errors obtained for the six analytical benchmark test functions for 10 real
variables (the error values, averaged over 10 independent runs, are normalized between 0 and 1)

Coding Binary Real Real-simplex

Crossover LCX UNX TSX LCX UNX TSX LCX UNX TSX

T C1 1 5.45e-01 4.58e-01 0 3.39e-02 6.13e-02 5.17e-02 1.81e-01 2.36e-01

T C2 1 3.85e-01 4.87e-01 0 2.97e-02 1.85e-02 1.17e-01 1.79e-01 1.48e-01

T C3 1 3.34e-01 3.71e-01 0 5.77e-02 2.42e-02 6.66e-02 1.21e-01 1.37e-01

T C4 1 2.20e-01 2.43e-01 2.32e-03 9.24e-03 0 4.22e-02 6.35e-02 6.58e-02

T C5 4.59e-01 1 9.24e-01 0 3.43e-02 2.28e-02 4.87e-02 6.39e-02 7.62e-02

T C6 1 3.94e-01 4.06e-01 0 3.76e-03 1.13e-03 1.40e-01 1.99e-01 1.05e-01

Since the goal is to compare the interactions between the type of crossover and the
data structure (coding), the probability ofmutation is set to 0 (nomutation).Moreover,
a tournament selection is used; the population size is set to 100, and the number of
generations to 50. 10 independent runs are performed for each configuration.

The results are collected in Tables20.3, 20.4 and 20.5, showing the normalized
error between the worst and best solutions (averaged over the ten independent runs).
In other words, on each line, 0 corresponds to the best solution found (in average),
while 1 refers to the worst.
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Table 20.4 Numerical errors obtained for the six analytical benchmark test functions for 10 nominal
variables (the error values, averaged over 10 independent runs, are normalized between 0 and 1)

Coding Binary Real Real-simplex

Crossover LCX UNX TSX LCX UNX TSX LCX UNX TSX

T C1 1 8.43e-01 8.03e-01 6.86e-02 0 2.47e-02 1.51e-01 4.17e-02 9.79e-02

T C2 1 9.79e-01 7.98e-01 9.16e-02 2.95e-03 0 1.23e-01 4.28e-02 6.20e-02

T C3 1 9.38e-01 9.02e-01 6.78e-02 0 1.37e-02 5.67e-02 3.87e-02 9.19e-02

T C4 9.61e-01 9.35e-01 1 1.36e-01 0 6.78e-02 1.45e-01 1.11e-01 1.19e-01

T C5 9.08e-01 1 8.55e-01 1.74e-01 0 5.60e-02 1.66e-01 1.29e-01 1.39e-01

T C6 8.85e-01 8.22e-01 1 3.74e-02 0 9.77e-02 3.17e-01 2.73e-01 3.21e-01

Table 20.5 Numerical errors obtained for the six analytical benchmark test functions for 10 mixed
(viz. 5 real and 5 nominal) variables (the error values, averaged over 10 independent runs, are
normalized between 0 and 1)

Coding Binary Real Real-simplex

Crossover LCX UNX TSX LCX UNX TSX LCX UNX TSX

T C1 1 6.05e-01 6.51e-01 7.92e-02 2.90e-03 0 2.46e-01 1.19e-01 1.08e-01

T C2 1 7.40e-01 6.80e-01 1.29e-01 0 1.48e-02 1.26e-01 1.16e-01 7.87e-02

T C3 1 3.74e-01 4.44e-01 1.81e-02 1.85e-02 0 1.63e-01 3.14e-02 3.68e-02

T C4 1 6.44e-01 4.77e-01 9.18e-02 0 2.77e-02 1.44e-01 7.74e-02 1.54e-01

T C5 6.25e-01 7.53e-01 1 0 3.39e-02 7.73e-02 4.90e-02 1.86e-01 9.40e-01

T C6 1 7.00e-01 8.78e-01 1.57e-03 0 7.27e-02 2.53e-01 1.95e-01 9.43e-02

In the six analytical test functions, it appears that the conversion to real numbers
is the most effective for the cases with either continuous or nominal variables only.
As intuition would have suggested, the line crossover allows for a better exploration
of the design space for continuous variables, while the uniform crossover is more
effective with nominal variables, where the swapping of variable values is performed
independently and randomly for each variable. The binary coding with line crossover
provides the worst results, which could be expected since the linear combination of
parental chromosomes is not a meaningful operation for values converted into binary
digits. Finally, the real-simplex coding generally provides reasonably good results
in comparison with the real coding.

20.5 Application: Structural Design of a Rigid Frame

To analyze the efficiency of the proposed algorithmic instances on a structural design
example, a 3D rigid frame is investigated [11]. The quantities of interest are the mass
and the compliance, the latter being post-processed from a finite element linear
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Fig. 20.4 Six-storey rigid
frame (with numbering of the
beam elements): the five
groups of cross-sections are
displayed with various shades
of gray color. Each node
connecting two (or more)
elements is a rigid
connection. The
multi-objective optimization
consists in finding the best
compromise (Pareto) designs
with respect to two
conflicting objectives, namely
the mass and the compliance
for the whole structure

analysis with beam elements [6]. The loads are derived from Eurocode 3 [10], and
consist in:

• the dead load of the beams and columns;
• the gravity load on the floors (19.16kPa);
• the lateral load due to the wind (110kN).

The beams or columns are classified in five groups of common cross-sections (as
depicted in Fig. 20.4):

• group 1: {4, 5, 9, 10, 14, 15, 18, 21, 24, 28, 29, 33, 34, 38, 39, 42, 45, 48};
• group 2: {49, 51, 52, 54, 55, 57, 58, 60, 62};
• group 3: {50, 53, 56, 59, 61, 63};
• group 4: {1, 2, 3, 6, 7, 8, 11, 12, 13, 25, 26, 27, 30, 31, 32, 35, 36, 37};
• group 5: {16, 17, 19, 20, 22, 23, 40, 41, 43, 44, 46, 47}.

Ten design variables are necessary to parameterize a given structure:

• for each of the five groups of profiles, a categorical variable c defines the cross-
section geometry among seven attributes: { š ; — ; › ; ˜ ; “ ; • ; ” };

• for all groups of profile, one continuous bounded variable defines the maximum
length l of the cross-section (either height or diameter) with 0.09m ≤ l 0.11m,
and with a fixed thickness (when applicable) set to 0.0025m. For the rectangular
cross-section, the width is defined as half of the height; for the š—section, the
width is equal to the height.

Thegeometry of the cross-section is typically a nominal variable, since noordering
of the available cross-section types can be made a priori. The choice of the cross-
section has a direct impact on the calculation of the quantities (area, moments of
inertia) necessary to get the normal efforts, shear forces, and bending moments.
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Fig. 20.5 Rigid frame: Pareto fronts obtained for the nine combinations of coding and crossover
types

The multi-objective implementation of the genetic algorithm is based on the
second version of the Nondominated Sorting Genetic Algorithm, or NSGA-II [5].
The corresponding Pareto fronts obtained for the nine possible combinations of cod-
ing and type of crossover are depicted in Fig. 20.5.

In this problem, the uniform and two-site crossovers clearly outperfom the line
crossover to obtain dense and nondominated Pareto fronts. In particular, the uniform
crossover provides comparable results for all codings.

In terms of designs obtained, a close examination of the Pareto set reveals that the
optimal cross-sections are mostly circular (›) or I-shaped (š), and square (—) to a
lesser extent. The tubular shapes constitute the best compromise between lightness
and stiffness.

20.6 Conclusions and Future Prospects

In this paper, three genotypes, along with three types of crossover, are analyzed
in order to extract their properties in the modeling of mixed (continuous + nom-
inal) variables. For the analytical test functions, the real coding furnishes the best
results in almost all configurations (real, nominal, or mixed variables), while the
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Fig. 20.6 Clustering procedure: considering for example the static structural analysis of a beam
with respect to the shape of its cross-section (square, circular, or I-shaped), a priori calculations can
build clusters of attributes depending on their impact on output quantities of interest (here: bending
moment and torsion effect)

real-simplex performs fairly, and the binary coding poorly. The type of crossover
also has a significant influence on the results, and this aspect is mostly visible in the
multi-objective design optimization of a rigid frame, where the uniform crossover
consisting in randomly swapping genes in the parental chromosome is the most
effective one to find dense and widely distributed Pareto fronts.

Future studies are guided by the need for better accounting for the relations
between attributes of nominal variables. In the simplex mapping representation of
nominal variables, the hypothesis that all attributes are equidistant is acceptablewhen
no information is known a priori about their correlations with the output quantities
of interest (objectives and constraints). However, when knowledge about the physics
is available, a non-regular simplex might be preferable, with distinct pairwise dis-
tances between attributes. For instance, the square and circular cross-section shapes
of beam profiles might exhibit a closer behavior than the I-shaped profiles, which
might be taken into account directly in the coding. This crucial step (under inves-
tigation) requires a clustering phase to identify these pairwise relationships to be
performed before the optimization process (see Fig. 20.6), by using physical insight
from the input-output model.
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