
Chapter 14
Robust Aerodynamic Design Optimization
of Horizontal Axis Wind Turbine Rotors

Marco Caboni, Edmondo Minisci and Michele Sergio Campobasso

Abstract The work reported in this paper deals with the development of a design
system for the robust aerodynamic design optimization of horizontal axis wind
turbine rotors. The system developed is here used to design a 126-m diameter,
three-bladed rotor, featuring minimal sensitivity to uncertainty associated with blade
manufacturing tolerances. In particular, the uncertainty affecting the rotor geometry
is associated with the radial distributions of blade chord and twist, and the airfoil
thickness. In this study, both geometric and operative design variables are treated
as part of the optimization. Airfoil aerodynamics and rotor aeroelasticity are pre-
dicted by means of XFOIL and FAST codes, respectively, and a novel deterministic
method, the Univariate Reduced Quadrature, is used for uncertainty propagation.
The optimization is performed by means of a two-stage multi-objective evolution-
based algorithm, aiming to maximize the rotor expected annual energy production
and minimize its standard deviation. The design optimization is subjected to a single
structural constrain associated with the maximum out-of-plane blade tip deflection.
The results of this research highlight that a lower sensitivity to uncertainty tied to
manufacturing tolerances can be achieved by lowering the angular speed of the rotor.
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14.1 Introduction

By the late 20th century, wind power has become one of the most promising new
energy sources worldwide, achieving a rapid global growth in installed capacity.
Considerable efforts have been put into wind turbine design in order to improve
performance and reduce costs, making wind power a competitive energy source. In
recent years, several studies have focused on the aerodynamic and structural design
optimization of horizontal axis wind turbines (HAWTs) [1–6], encompassing differ-
ent approaches to increasing the annual energy production (AEP) and reducing the
cost of energy. However, an optimized design can become inefficient in the presence
of environmental, operation, manufacturing or assembly uncertainties. Therefore,
one of the ways to further improve the design of modern wind turbines is to consider
the effect of the aforementioned sources of uncertainty throughout the optimization
process, leading to the design of more effective devices with minimal sensitivity to
uncertainties. The design optimization under uncertainty, aiming to maximize the
expected value of one of more objective functions (e.g., AEP), while minimizing
the effect of uncertainties, is often denoted by the attribute “robust”. Incorporating
sources of uncertainty into a robust optimization process implies the use of a suit-
able technique for uncertainty propagation, which should keep computational costs
affordable while maintaining an acceptable accuracy.

Petrone et al. [7] developed a comprehensive multi-physics computational model
to study the impact of wind condition variability, manufacturing tolerances and
roughness induced by insect contamination on HAWT aerodynamic performance
and noise. In this framework, the Latin Hypercube Sampling (LHS) and the Sto-
chastic Simplex Collocation (SSC) methods were successfully used to propagate
uncertainties throughout the computational model. In a more recent work, Petrone
et al. [8] developed a system for the robust optimization ofHAWT rotors under uncer-
tainty represented by insect contamination. Uncertainty was propagated by means of
the SSC method. The proposed design strategy was coupled with a multi-objective
genetic algorithm.

Minisci et al. [9] demonstrated a methodology for the aerodynamic optimization
of HAWT rotors under geometric uncertainty of the blade geometry caused by man-
ufacturing and assembly tolerances. Chord and twist distributions, and the angular
speed of the rotor were included in the optimization process. Uncertainty propaga-
tion was conveniently performed by means of the Univariate Reduced Quadrature
(URQ) approach [10]. The adopted optimization method was based on a two-stages
multi-objective optimization strategy.

The work described in this paper aims to improve the current state-of-art in robust
aerodynamic design optimization of HAWT rotors by including the effect of a com-
prehensive range of geometric uncertainties associated with blade manufacturing
tolerances in the design process. In this context, blade chord and twist distrib-
utions as well as airfoil thickness are considered affected by uncertainty. Design
variables include blade chord and twist distributions, airfoil shape, and the angular
speed of the rotor. The URQmethod for uncertainty propagation, and the two-stages
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multi-objective optimization strategy developed byMinisci et al. [9] are used to carry
out the robust design process.

The first part of the paper provides a general description of the optimization
system, including: (a) the blade geometric module, (b) the aeroelastic module, (c)
the URQ uncertainty propagation method, and (d) the procedure and algorithms used
to carry out the optimizations. In the second part, the optimization process set-up is
presented in detail, and the obtained results are described and discussed in the third
part. A conclusion section summarizes the key findings of this work, and suggests
some directions for future developments.

14.2 Optimization System

The integrated design system developed within the framework of this work con-
sists of four main components, including: a blade geometric module defining airfoil
shapes and blade chord and twist distributions, an aeroelastic module including air-
foil aerodynamics and wind turbine rotor aeroelasticity, an algorithm for uncertainty
propagation, and a two-stage multi-objective evolution-based optimizer.

14.2.1 Blade Geometric Module

Blade geometric module defines airfoil shapes and blade chord and twist distribu-
tions. The airfoil shape parametrization is achieved through a composite third order
Bezier curve. More specifically, airfoil suction and pressure sides are described by
four third order Bezier curves joined with C0, C1 and C2 continuity. This solution
provides a flexible airfoil parametrization within the context of the optimization
process by actively using a total number of eleven design variables, corresponding
to the degrees of freedom of the Bezier curve control points. Figure14.1 shows the
control points of the composite third order Bezier curves used to parametrize the
airfoil shape. Along the suction side, points from p1 to p4 define the first third order
Bezier curve, while points from p4 to p7 define the second one. In the pressure side,
points from p7 to p10 define the third Bezier curve, and points from p5 to p7 define
the fourth one. Thus, a total of 13 control points are used.

The leading and the trailing edges (points p1 and p7, respectively) are fixed.
The degrees of freedom of the Bezier curve control points are the y-coordinate of
point p6, and the x- and y-coordinates of points p2, p3, p5, p11, and p12. x and
y-coordinates of all the remaining control points are determined by the algorithmic
to keep the tangent and the curvature continuity between consecutive Bezier curves.

Blade chord and twist distributions are each defined by four design variables,
representing chord and twist at four fixed radial sections. Blade chord and twist
distributions are reconstructed by using the MATLAB shape-preserving piecewise
cubic (pchip) interpolation function over the four radial stations.
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Fig. 14.1 Airfoil shape parametrization through a composite third order Bezier curve

14.2.2 Aeroelastic Module

The aeroelastic module consists of twomain components, which are used to compute
airfoil aerodynamic loads, as well as rotor power extraction and structural deforma-
tions. Lift and drag coefficients of the airfoil, as a function of the Reynolds number
and the angle of attack, are calculated using the viscous-inviscid airfoil analysis code
XFOIL [11]. XFOIL is a rapid and efficient way of calculating airfoil performance,
however it may overestimate lift coefficient, and it does not provide reliable predic-
tion beyond stall. Moreover, two-dimensional (2D) aerodynamic data calculated by
means of XFOIL need to be corrected to account for the complex three-dimensional
(3D) physics occurring over rotating blades, especially in the stall regime. Based on
empirically derived equations, AERODAS [12] provides a method for calculating
stall and post-stall lift and drag characteristics of rotating airfoils, using as input a
limited amount of pre-stall 2D aerodynamic data of the airfoils used by the turbine
under investigation.

The calculation of rotor power extraction and structural deformations is per-
formed by means of the NREL aeroelastic design code FAST [13]. FAST solves
the rotor aerodynamics through the AeroDyn code, employing the blade-element
momentum (BEM) [14] theory and several corrections including those to account
for tip and hub losses, axial induction factors exceeding the maximum theoretical
limit of 0.5, and dynamic stall. FAST model uses a linear modal representation to
model flexible blades [13]. Blade modes depend on the blade span-variant struc-
tural properties, which are tied to the blade external shape and the internal layup of
composite laminates.
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14.2.3 Method for Uncertainty Propagation

Uncertainty propagation is performed by means of the non intrusive URQ determin-
istic sampling technique, requiring 2nu + 1 evaluations, where nu is the number of
uncertain variables. URQ has a computational cost comparable to that of the lin-
earization method, but allows a higher accuracy. More details about this method can
be found in [10], and its validation against Monte Carlo method for wind turbine
design can be found in [9].

14.2.4 Optimization Algorithms

Evolutionary Algorithms (EAs) solve optimization problems by making a genera-
tion of individuals evolve subject to selection and search operators. In this study,
an individual denotes a HAWT rotor configuration, defined by the geometry of the
bladed rotor and its rotational speed. This iterative process eventually leads to a pop-
ulation containing the fittest possible individuals (best rotor configuration designs),
or individuals who are significantly fitter than those of the starting population. The
role of the selection operators is to identify the fittest or most promising individuals
of the current population, whereas search operators such as crossover and mutation
attempt to generate better offspring starting from suitably selected individuals of the
current generation. Each individual is defined by genes, which correspond to design
variables in design optimization. The solution of the optimization problems reported
in this study is based on a two-stage approach using the Multi-Objective Parzen-
based Estimation of Distribution (MOPED) [15] and the Inflationary Differential
Evolution Algorithm (IDEA) [16].

MOPED belongs to a subset of EAs and was developed to circumvent certain
algorithmic problems of conventional EAs, which can be ineffective when the prob-
lem at hand features a high level of interaction among the design variables. This is
mainly due to the fact that the recombination operators are likely to disrupt promis-
ing sub-structures that may lead to optimal solutions. Additionally, the use of the
crossover and mutation operators may result in slow convergence to the solution
of the optimization; that is, it may require a large number of generations to obtain
very fit individuals. MOPED was developed to circumvent shortfalls of this kind.
Its use of statistical tools enables it to preserve promising sub-structures associ-
ated with variable interaction from one generation to another (automatic linkage
learning). Such statistical tools also replace the crossover and mutation operators of
conventional EAs, and they allow a faster convergence of MOPED with respect to
the latter class of optimizers. Starting from the individuals of the current population,
MOPED builds an approximate probabilistic model of the search space. The role of
the crossover and mutation operators is replaced by sampling of this probabilistic
model. There exist similar other evolutionary methods that use the aforementioned
strategy, and they are called Estimation of Distribution Algorithms (EDAs) [17].
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MOPED is a multi-objective optimization EDA for continuous problems that uses
the Parzen method [18] to build a probabilistic representation of Pareto solutions,
and can handle multivariate dependencies of the variables [15, 19]. MOPED imple-
ments the general layout and the selection techniques of the Non-dominated Sorting
Genetic Algorithm II (NSGA II) [20], but traditional crossover and mutation search
approaches of NSGA-II are replaced by sampling of the Parzen model. NSGA-II
was chosen as the base for MOPED mainly due to its simplicity, and also for the
excellent results obtained for many diverse optimization problems [21, 22].

The Parzen method utilizes a non-parametric approach to kernel density estima-
tion, and results in an estimator that converges asymptotically to the true Probability
Density Function (PDF) over the whole design space. Additionally, when the true
PDF is uniformly continuous, the Parzen estimator can also be made uniformly con-
sistent. TheParzenmethod allocates Nind identical kernels (where Nind is the number
of individuals of the current population), each centered on a different element of the
sample. A probabilistic model of the promising search space portion is built on the
basis of the statistical data provided by the Nind individuals through their kernels,
and τE Nind new individuals (τE ≤ 1) are sampled. The variance of each kernel
depends on (i) the location of the individuals in the search space and (ii) the fitness
value of these individuals, and its construction leads to values that favor sampling in
the neighborhood of the most promising solutions.

The features of MOPED often prevent the true Pareto front from being achieved,
particularly when the front is broad and the individuals of the population are spread
over different areas, which are far apart from each other in the feasible space. This
circumstance has prompted couplingMOPEDwith another EA,which has better con-
vergence properties. To this aim, the Inflationary Differential Evolution Algorithm
(IDEA) [16] has been selected. IDEAwas first developed for the design optimization
of interplanetary trajectories, and it is an improved variant of the differential evolution
(DE) algorithms [16]. The IDEA algorithm is based on a synergistic hybridization
of a standard DE algorithm and the strategy behind the monotonic basin hopping
(MBH) [23]. The resulting algorithm was shown to outperform both standard DE
optimizers and the MBH algorithm in the solution of challenging space trajectory
design problems, featuring a multiple funnel-like structure. In this paper, a modified
version of IDEA has been used to move the individuals of the approximate Pareto
front obtained with MOPED closer to the true front.

The main features of the original IDEA algorithm are reported in [16]. The IDEA
algorithmworks as follows: aDEprocess is performed several times and each process
is stopped when the population contracts below a predefined threshold. At the end of
each DE step, a local search is performed in order to get closer to the local optimum.
In the case of non-trivial functions, where there is a high likelihood of converging
to local optima, the combined DE/local search is usually iterated several times,
performing either a local or a global restart on the basis of a predefined scheduling.

The design optimization presented in this study is constrained. Therefore, the DE
step has been modified so that the fitness assessment of the individuals during the DE
process also takes into account the constraints. The constraint handling technique
used herein is one of the approaches that can be adopted in evolutionary computing,
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and is similar to the approach used by MOPED. In the unconstrained DE algo-
rithm [24], and also in the unconstrained IDEA algorithm [16], each parent solution
is compared with its offspring, and the solution with a better value of the objective
function is passed to the next generation. In the constrained case, on the other hand,
when parents and offspring are compared, the solutions are first evaluated in terms
of constraint compatibility cp. Its definition is:

cp(x) =
m∑

j=1

s j (x) (14.1)

where x is the array of design variables, m is the number of constraints, and the
constraint factor s j is:

s j (x) = max g j (x), 0 (14.2)

The constraint factor equals 0 when the constraint (g j (x) ≤ 0) is satisfied and is
strictly positive when the constraint is violated. The solution with the better values
of cp is then passed to the next generation.When the cp values of parent and offspring
are the same, the selection is performed on the basis of the objective function. In the
current implementation, MOPED and IDEA are used sequentially. When MOPED
has reached a given number of generations, its final population represents a first
and good approximation to the sought Pareto front. Then, clustered sub-populations
of such a population are used as initial solutions of the single-objective constraint
IDEA optimizer. this algorithm “pushes” the individuals of a sub-population of the
MOPED front towards a better local approximation of the sought Pareto front. The
resulting two-stage optimizer blends the exploratory capabilities of MOPED (global
exploration) and the favorable convergence characteristics of IDEA (exploitation of
local information).

14.3 Optimization Set-Up

In this study, two optimizations have been performed: a robust optimization, and
a deterministic one (i.e., without considering uncertainties throughout the design
process) for comparison purposes.

14.3.1 General Settings

All optimizations performed in this research aimed at maximizing the AEP of a
three-bladed HAWT based on the NREL 5-MW reference turbine [25]. The yearly
wind distribution was represented by a Weibull distribution with scale parameter of
7m/s and shape parameter of 2 (Fig. 14.2). The wind turbine was regulated through
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Fig. 14.2 Weibull distribution with scale parameter of 7m/s and shape parameter of 2, and hour
bins for the wind speeds considered between cut-in and cut-out

variable rotational speed before rated wind speed, and variable blade pitch thereafter.
Cut-in, rated and cut-out wind speeds were fixed to 3, 12 and 25m/s, respectively.
Blade root radius was set equal to 1.5m, while blade tip radius was set equal to
63m. From root to tip, each blade was modeled through seventeen radial sections,
including two cylindrical sections near the root, one section transitioning from the
last cylindrical section to the first airfoil section, and fourteen airfoil sections over
the remainder.

Excluding the cylindrical and transitioning sections near the root, the airfoil distri-
bution along the blade span was defined exclusively by a single aerodynamic shape.
Airfoil lift and drag coefficientswere computed throughXFOIL for a singleReynolds
number of 1.2 · 107 over an angle of attack range spanning form −5 to 25◦. XFOIL
polars were then extended for angles of attack ranging from −180 to 180◦, and cor-
rected to account for 3D aerodynamic effects by means of the AERODAS model.
In XFOIL, transition from laminar to turbulent flow along the airfoil is simulated
by the eN method, through the parameter NCRIT. For all optimizations reported in
this paper, NCRIT was fixed to 9. The airfoil shape and the twist and chord distrib-
utions at the airfoil sections were treated as part of the optimization. Lift and drag
coefficients of the cylindrical sections near the hub were assumed to be equal to 0
and 0.5, respectively. Lift and drag coefficients for the transitioning section were
obtained by interpolating between the neighboring sections. Blade chord and twist
distributionswere defined at four radial sections r1, r2, r3 and r4 fixed to 11.75, 28.15,
48.65 and 61.6333m, respectively. The blade shape was parametrized by means of
eleven design parameters defining the airfoil shape (x1 to x11), four design parameters
defining the chord distribution (x12 to x15), and four design parameters defining the
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twist distributions (x16 to x19). Wind turbine operating conditions were completely
determined by one design variable defining the rotational speed associated with the
rated wind speed x20. Indeed, the optimal rotational speed at the given rated wind
speed defined the constant optimal tip speed ratio at which the turbine operated
between cut-in and rated wind speeds. Thus, the total number of design parame-
ters was equal to 20. Design variables and their ranges of variability are shown in
Table14.1. All optimizations were subject to a structural constraint tied to the maxi-
mum out-of-plane blade tip deflection (BTD), which was assumed to be equal to 2/3
of the total clearance in unloaded conditions [3]. Tower diameter was assumed to be
constant and equal to 6m. Rotor overhang, rotor shaft tilt angle, and blade precone
angle were fixed to 5.0191m, 5◦, and 2.5◦, respectively. Maximum BTD allowed
was therefore equal to 6.8m.

FAST is able to account for flexible bodies, including tower, blades and drive
shaft. However, since this work focuses only on the design of bladed rotors, tower and
drive shaft deflections were neglected. Moreover, during the optimization process,
the adopted hypothesis was to change the internal layup of each turbine in such a

Table 14.1 Range of design variables

x1 ∈ [0.001, 0.2] y(p6)

x2 ∈ [0.001, 0.2] x(p5)

x3 ∈ [0.001, 0.2] y(p5))

x4 ∈ [0.3, 0.6] x(p3)

x5 ∈ [0.1, 0.5] y(p3)

x6 ∈ [0.7, 0.9] x(p2)

x7 ∈ [0.001, 0.1] y(p2)

x8 ∈ [0.6, 0.8] x(p11)

x9 ∈ [−0.1, 0.01] y(p11)

x10 ∈ [0.8, 0.99] x(p12)

x11 ∈ [−0.05, 0.1] y(p12)

x12 ∈ [4, 5.5]m c(r1)

x13 ∈ [3.5, 5]m c(r2)

x14 ∈ [2, 3.5]m c(r3)

x15 ∈ [0.5, 2]m c(r4)

x16 ∈ [11, 16]◦ θT (r1)

x17 ∈ [5, 10]◦ θT (r2)

x18 ∈ [0, 5]◦ θT (r3)

x19 ∈ [0, 3]◦ θT (r4)

x20 ∈ [5, 15] RPM Ω(Urated)

x(p5), x(p3), x(p2), x(p11), and x(p12) represent the x-coordinates of control points p5, p3,
p2, p11 and p12, respectively. y(p6), y(p5), y(p3), y(p2), y(p11) and y(p12) represent the
y-coordinates of control points p6, p5, p3, p2, p11 and p12, respectively. c(r1), c(r2), c(r3) and
c(r4) represent the chord length at r1, r2, r3 and r4, respectively. θT (r1), θT (r2), θT (r3), and θT (r4)
are the twist angles at r1, r2, r3 and r4, respectively. Ω(Urated) represents the rotational speed at the
rated wind speed
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way that the span-variant structural properties remained constant. Therefore, blade
modes were considered constant throughout the optimization process.

To avoid intersection between airfoil suction and pressure sides, and more than
one change in their curvatures, two constraints were enforced. For practical purposes
tied to blade manufacturing, a monotonicity constraint was enforced on both chord
and twist distributions.

For both MOPED optimization process, the size of the population have set to 100
and the fitness parameter α f and the sampling proportion τE have been set to 0.5 and
1, respectively. Themaximum number of generationwas set 100 for the deterministic
process and 300 for the robust one. In both IDEA-based optimizations, the weighting
factor F and the crossover probability CR have been set to 0.6 and 0.9, respectively.
The IDEA search has used a random population of 40 individuals, and has stopped
when the population has contracted to 25% of the maximum expansion during the
evolution.

14.3.1.1 Robust Design Optimization

The 8 design parameters defining chord and twist distributions as well as the air-
foil thickness were assumed to be affected by normally distributed uncertainty. The
Gaussian distribution of these parameters was centered at their nominal values. Stan-
dard deviations were set to 3◦ for twist, and 30cm for chord. At a given radial section,
standard deviation for thickness was considered equal to 1% of the chord. The robust
optimization described in this paper aimed to maximize the mean value of the AEP
and minimize its standard deviation, by varying the twenty aforementioned design
variables and propagating the uncertainties affecting the nine variables described
above. Robust optimization was achieved by minimizing the following objective
functions:

F1 = −μAEP (14.3)

F2 = σ 2
AEP (14.4)

where μAEP is the mean value of the AEP in kWh, and σ 2
AEP is its variance in kW h2.

The robust optimization was subject to the following constraints:

C1 : μAEP ≥ 5e6 (14.5)

C2 : σ 2
AEP ≤ 1e11 (14.6)

C3 : (μBTD + 3 · σBTD) ≤ 6.8 (14.7)

where μBTD and σBTD represent maximum BTD main value and standard deviation
inm, respectively. AEPwas computed for each turbine by integrating its power curve
against the givenWeibull distribution. In order to save computational sources, power
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curve of eachwind turbinewas determined through three FAST runs, by interpolating
between the power values computed at cut-in wind speed, rated wind speed, and at
one intermediate wind speed of 8m/s. This interpolation was performed by a cubic
spine. For each turbine, one additional FAST run was required to determine the
maximum BTD. According to Ghedin [3], maximum blade deflections occur when
the wind turbine works at rated conditions under a severe gust. In these conditions,
the gust occurs so suddenly that the blades cannot be pitched. The gust intensity a
wind turbine can withstand depends on its class. The NREL 5-MW reference turbine
belongs to the 1A IEC wind class [3], which means it is able to withstand gusts up to
21% above its rated wind speed. Therefore, maximum BTDwas computed at a wind
speed equal to 14.52m/s.

The robust optimization was performed considering identical geometric errors
affecting all blades. Each robust analysis performed by means of the URQ technique
required 19 computations of AEP, namely 76 FAST runs.

14.3.1.2 Deterministic Design Optimization

Along with the robust optimization, a deterministic optimization was performed. In
the deterministic optimization uncertainty sources where not included, and therefore
the following objective function was minimized:

F1 = −AEP (14.8)

The enforced constraints were:

C1 : AEP ≥ 5e6 (14.9)

C2 : BTD ≤ 6.8 (14.10)

14.4 Results and Discussions

14.4.1 Robust Optimization

The robust design optimization problem led to a Pareto front arising from the trade-
off between the mean and the standard deviation of AEP. Figure14.3 shows the
URQ Pareto front obtained by means of MOPED. In Fig. 14.3, the performance of
a nominal rotor, labeled “URQ ref.”, obtained by using the IDEA local refinement
is also represented. Given the final population of the MOPED optimization, the
IDEA refinement was performed selecting a sub-population containing a solution
with maximum μAEP, and using it as starting point of the IDEA optimization. This
optimization aimed at maximizing μAEP subject to the constraints (14.5)–(14.7).
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Fig. 14.3 Airfoil shapes of deterministic and robust designs

14.4.2 Robust and Deterministic Optimal Rotors

The deterministic optimization problem led to an optimal rotor which has a nominal
AEP of 13.3352GWh and μAEP = 13.1474GWh. This rotor configuration, denoted
by “det. opt.”, is compared to the “URQ ref.” rotor, which has a nominal AEP
of 12.1435GWh, and μAEP = 12.0732GWh. The AEP standard deviation of the
“det. opt.” rotor is σAEP = 0.2305GWh, and is lower than that of the “URQ ref.”
rotor, which is equal to σAEP = 0.2924GWh. These results do not meet the usual
expectations as the AEP standard deviation of the rotor designed taking into account
stochastic geometry errors due to manufacturing tolerances is higher than that of
the rotor designed neglecting such errors. The structural constrain on the maximum
BTD is the explanation for these results. The robust rotor has a nominal maximum
BTD equal to 5.6550m, and maximum BTD mean and standard deviation equal to
5.6533 and 0.3797m, respectively. The nominal maximum BTD associated with the
deterministic design is equal to 6.788m, while its mean value and standard deviation
are 6.7435 and 0.4915m, respectively. As can be seen, the constraint (14.7) is verified
only for the robust optimization. To demonstrate that the obtained results are strongly
influenced by the constraint, a new uncertainty based optimization was performed
replacing the reliability constraint (14.7) with the following:

C3 : μBTD ≤ 6.8 (14.11)

The rotor obtained through this new optimization, denoted by “URQ ref. 2”, has a
nominal AEP of 13.2751GWh, μAEP = 13.1263GWh and σAEP = 0.1816GWh.
The “URQ ref. 2.” rotor has an AEP standard deviation which is lower than that of
the “det. opt.” rotor by about 20%.
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The airfoil shapes obtained through (i.e., “URQ ref.” and “URQ ref. 2”) and
deterministic (i.e. “det. opt.”) optimizations are shown in Fig. 14.4. The radial profiles
of the chord c and the pitch angle θp of the three rotors are reported in the top
left and bottom left subplots, respectively, of Fig. 14.5. Chord distributions of the
deterministic and robust designs have the same shape near the root because the
cylindrical sections, not treated as part of the optimization, were considered constant.
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The rotational speed of the three rotors for all considered wind speeds is reported in
the right subplot of Fig. 14.5, which highlights that the probabilistically optimized
rotors have lower Ω values than the deterministically optimized one.

In light of the above analysis, as it was also reported by Minisci et al. [9], a lower
sensitivity of AEP to rotor geometry errors can be achieved by lowering rotational
speeds. Further analyses are needed, and have been carrying out by the authors to
demonstrate that these results meet the findings obtained in [9]. In this paper it was
explained and demonstrated that the reduction of power due to lower circumferential
velocities is compensate by an increase of blade aerodynamic loading (i.e., radial lift
coefficient distribution), achieved by increasing the angle of attack. This increase is
due to the reduced circumferential speed itself, which results in higher values of the
relative wind angle. In such conditions, the overall level of angle of attack is in a
region where the slope of the angle of attack/lift coefficient curve starts to decrease
with respect to the linear part corresponding to lower angles of attack. Therefore, the
variation of the lift coefficient caused by a given variation of the angle of attack is
smaller for robust rotors.

14.5 Conclusions

A cascade of evolutionary algorithms has been applied to the robust aerodynamic
design of a wind turbine rotor to maximize the annual energy production and, at
the same time, minimize its variations due to blade manufacturing tolerances. The
deterministic URQ sampling approach has been adopted for uncertainty propaga-
tion instead of the much more expensive Monte Carlo sampling. The performed
robust optimizations and the comparison with the reference deterministic optimiza-
tion stress the influence of the structural constraint on the achievable results. When
the considered constraint limits the magnitude of the mean value of the maximum
out-of-plane blade tip deflection, the robust optimization procedure can obtain a
rotor producing the same annual energy of the deterministic one, but with a standard
deviation which is 20% lower. On the other hand, if a reliability constraint on the
maximum out-of-plane blade tip deflection is considered, the average performance
of obtained rotors decrease significantly.

Both robust optimization processes performed in this paper confirm that the search
for the lower sensitivity to geometry errors is pursued by adopting lower rotational
speeds, and further investigations are needed to demonstrate that robustness is actu-
ally obtained by moving to a range of higher values of the angle of attack where the
slope of the angle of attack/lift coefficient curve is lower than for lower values of the
angle of attack.

For this work, low fidelity models such as XFOIL and FAST have been adopted.
If the use of low fidelity models allows preliminary design procedures requiring a
huge number of model evaluations, on the other hand, the search space should be
heavily bounded, to avoid regions of the design space where the (low fidelity) models
can not provide correct results. The next step of this work will regard the integration
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of the current optimization approach with a multi-fidelity method, which will allow
one to achieve a true global design optimization.
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