
Chapter 13
Evaluation of Surrogate Modelling Methods
for Turbo-Machinery Component Design
Optimization

Gianluca Badjan, Carlo Poloni, Andrew Pike and Nadir Ince

Abstract Surrogate models are used to approximate complex problems in order to
reduce the final cost of the design process. This study has evaluated the potential
for employing surrogate modelling methods in turbo-machinery component design
optimization. Specifically four types of surrogate models are assessed and compared,
namely: neural networks, Radial Basis Function (RBF) Networks, polynomial mod-
els and Kriging models. Guidelines and automated setting procedures are proposed
to set the surrogate models, which are applied to two turbo-machinery application
case studies.
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13.1 Introduction

This paper is based on aMSc thesis inMechanical Engineering (University of Trieste)
[1]. The main author was a research student at the University and is now employed
as an Aerodynamics Methods Engineer at ALSTOM Power UK, facilitating tailored
applied research collaboration between the University and the Company. The aim of
the research was to evaluate the possibility of employing surrogate modelling meth-
ods for turbo-machinery component design optimization. Themain idea behind these
methods is to replace expensive to compute physical models with surrogate models,
in order to speed up the entire design optimization process. These surrogate models
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are required to be cheap to compute and easy to use, whilst providing an adequate
representation of the real problem. Four different surrogate models were employed
in this study: Feed-Forward Backpropagation Neural Networks (FFBP NN), Radial
Basis Function (RBF) Networks, Kriging models and polynomial models.

In the first part of this paper the surrogate modelling methods will be summarized,
providing guidelines and automated procedures for their setting. Surrogate models
will subsequently applied to two turbo-machinery case studies.

13.2 Neural Networks

The FFBP NNs employed in this study are multilayer networks with a single hidden
layer. FFBP NNs are characterized by a very complex setting process, due to the
high number of parameters to be set and their multi-modal performance function [2].
A critical choice for the neural network is the number of hidden neurons, since it
determines the “flexibility” of themodel. This parameter is usually chosen directly by
the user. Unfortunately, the complexity of the modelled process is usually unknown,
and FFBP NNs are tested for different architectures in order to find the best fitting
for a particular dataset. This “Trial and Error” procedure is very time consuming,
making it desirable to automate the setting of neural networks.

There are two main approaches to design a FFBP NN in an automatic fashion [1]:

• Constructive Methods
• Pruning Methods

Thepruningmethods appear to be themost convincing, since they allowamore tai-
lored neural networks setting than the constructive methods. Two pruning techniques
are evaluated in this paper: the Optimal Brain Surgeon (OBS) and the MATLAB
trainbr algorithm.

13.2.1 Optimal Brain Surgeon

The OBS algorithm is a pruning technique developed by Hassibi [3] and imple-
mented by Noorgard [4]. Each pruning session returns a certain number of pruned
(partially connected) networks, one for each OBS algorithm iteration. Consequently,
a neural network must be chosen according to some criteria, which are provided by
Noorgard [4].

In addition, a new criteria was introduced by Badjan [1]:

Balanced Valid. Error = Valid. Error + ‖Valid. Error − Train. Error‖2 (13.1)
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called balanced validation error, which takes into account both the error on the
estimation subset and on the validation subset (note that Valid. and Train. error are
≥ 0 by definition).

According to this criteria, FFBPNNswith a low validation error that show similar
performances on both the estimation and the validation subsets are preferred to the
other networks.

13.2.2 MATLAB trainbr

In MATLAB trainbr [13], the following cost function is implemented:

MSEreg = αMSW + βMSE (13.2)

where MSE is the mean square error, MSW is the sum of the squares of the network
weight and biases, α and β are regularization parameters.

Minimizing Eq. (13.2) leads to lower values of the network weights and biases,
making the network response smoother and less prone to overfit. In fact, assigning
low values to the free parameters may be viewed as equivalent to pruning the neural
network.

13.2.3 Dynamic Threshold Neural Networks

The Dynamic Threshold Neural Network (DTNN) was originally proposed by Chi-
ang and Fu [5] for pattern recognition purposes, but it was also successfully applied
to function approximation problems by Pediroda [6] and Poloni et al. [7]. The DTNN
was designed to employ Static Threshold Quadratic Sigmoidal Neurons in the hidden
layer and Dynamic Threshold Quadratic Sigmoidal Neurons in the output layer.

This network configuration produces outputs in the range [0, 1], which is ade-
quate for pattern recognition purposes, but it could represent a limitation for function
approximation purposes. In the view of the Authors, having an output range limited
between two fixed values implies that the training-set contains both the minima
and the maxima of the objective function. If the training-set targets are normalized
between [0, 1], then other new input configurations will always produce target val-
ues included between [0, 1]. An example may illustrate the concept: considering a
training-set with the maximum objective function value 12 and the minimum objec-
tive function value −5, after the data normalization 12 will correspond to 1 and −5
to 0; if there is a maxima (or minima) somewhere in the input domain with a value
15 (−7), then the corresponding output will be again 1 (0). It can be noticed that
even if the objective value is saturated, the input configuration might represent the
true maxima (minima). In any case, no robust analysis could be performed using the
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surrogate model on that point, since it would not be possible to approximate in a
proper way the shape of the objective function in the saturated zone.

For these reasons, in this study it was decided to rearrange the architecture of the
DTNN, employing the Dynamic Threshold Quadratic Sigmoidal neurons directly in
the hidden layer and the standard linear transformation in the output layer, thereby
removing the output limits.

The setting process of the DTNN presents some differences with respect to classic
FFBP NNs. In fact, fewer neurons are generally required to fit a dataset, since they
have a higher approximation capability than the neurons of classic FFBP NNs [5]. It
was therefore decided to use a constructivemethodology to train this type of network.

The proposed setting process for DTNNs consists in:

1. Set the DTNN with n hidden neurons.
2. Train the network m times from different initial configurations.
3. Check the performance on the validation subset.
4. Set a new DTNN with n + 1 hidden neurons.
5. Train the new network a couple of times and check the performance on the vali-

dation subset.
6. If the validation error increases stop the procedure, otherwise go to point 4.

13.3 RBF Networks

In this paper, Gaussian, multiquadrics and inverse-multiquadrics functions were cho-
sen to build RBF Networks, since they have a shape parameter σ used to control the
domain of influence of the radial basis function. There are various strategies in the
literature for selecting an appropriate value for the shape parameter σ. The leave-
one-out (LOO) error is a well known criteria for setting RBFNetworks. However, the
computational cost can be very high, of order O(N 4), which becomes prohibitively
expensive even for problems of modest size. Fortunately, Rippa [8] proposed a tech-
nique to reduce the computational cost of the LOOmetric to O(N 3), which was here
implemented.

Based on the LOO error, an iterative procedure to select the optimal shape para-
meter for interpolating RBF Network is proposed in this paper:

1. Initialize σ to 1 and evaluate the LOO error.
2. Set σnew to 0.5 and evaluate the corresponding LOO error.
3. If LOO σnew < LOO σ then σ = σnew and σnew = σ/a, otherwise σ = σnew and

σnew = σ ∗ b.
4. Evaluate the LOO error for the RBF Network set with σnew.
5. Repeat the procedure from point 3 until the maximum number of iterations is

reached.
6. Return the RBF Network which scored the minimum LOO error.
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The parameters a, b can be set by the user, determining how much σ is increased
or decreased at each iteration. In addition, there is also the possibility to vary these
parameters during the iterations, to gradually reduce or increase the step size of the
shape parameter. The Authors suggest to set a = 1.5 and b = 1.8. The maximum
number of iterations should take into account the time required to solve a single LOO
measure. However, 20 iterations should be an appropriate number for the majority
of the problems.

RBF Networks can also perform a regression of the data, introducing the reg-
ularization parameter λ in a similar way as for the Kriging model [9]. Keane and
Nair [10] suggest to set λ to the variance of the noise in the response data, but since
this information in usually unknown. The remaining option is to add it to the list
of parameters to be estimated. In this study, both the shape parameter σ and the
regularization parameter λ were searched throughout their domain using a Genetic
Algorithm (GA). Suitable upper and lower bounds for the search of λ are 10−6 and
1 respectively [10].

13.4 Polynomial Models

Polynomialmodels can be applied tomulti-dimensional problems taking into account
interaction terms [9]. In this paper, optimal values for global and interaction orders
are found by applying cross-validation.

13.5 Kriging Models

Kriging models are powerful methods based on Gaussian processes. They can per-
form either interpolation or regression of data. In this paper, Kriging models are set
via maximizing the marginal likelihood function [9].

13.6 Assessment Criteria for Surrogate Models

If the observational data are abundant, a randomly selected subset (Hastie et al. [11]
recommend around the 25% of the total x → y pairs) should be set aside for model
testing purposes. These observations must not be touched during the previous stages,
as their sole purpose is to allowus to evaluate the testing error (based on the difference
between the true and approximated functionvalues at the test sites) once themodel has
been built. Standard assessment criteria for surrogate models are Normalized Root
Mean Square Error (NRMSE) and Coefficient of Determination (r2). According to
[9], good surrogate models should have NRMSE<10% and r2 > 0.8.
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Furthermore, a new criteria is introduced in this paper, called RANKING [1], the
aim of which is to assess the capability of surrogate models to replicate the trend
expressed by the underlying function.

The RANKING is evaluated using the following procedure:

1. Sort the true solutions of a particular dataset in ascending order.
2. Check if the corresponding approximated solutions increase their valuesmonoton-

ically.
3. A score of 1 is given to the solutions that increase step by step, referring to the

previous highest value (absolute RANKING).
4. Finally the score is divided by the number of points in the dataset and multiplied

by 100.

A numerical example may illustrate the steps:

• Assuming the following true solutions y: [12, 43, 2, 33, 30, 31]
and the surrogate model approximations ŷ: [10, 45, 3, 32, 35, 31].

• Now sorting the true solutions y in an ascending order: [2, 12, 30, 31, 33, 43]
with the corresponding original index: [3, 1, 5, 6, 4, 2].

• Then the corresponding approximation ŷ will be: [3, 10, 35, 31, 32, 45].
• The scores for each point are [1, 1, 1, 0, 0, 1] and their sum is 4, it should be
noticed that this metric is done on the absolute ascending order.

RANKING = 4

6
100 = 67% (13.3)

The higher the value of the RANKING, the better the surrogate model can follow
the underlying response trend. However, this criteria in isolation is insufficient to
determine the overall accuracy of the model.

13.7 Optimization Case Studies

Two optimization case studies were chosen to evaluate the application of surrogate
models in turbo-machinery component design optimization:

• Mono-objective optimization of the operating conditions of a turbine cascade.
• Mono-objective optimization of a turbine labyrinth seal.

The optimization procedure consisted in two consecutive steps:

1. Global search of the optima, over all the design space.
2. Local search of the optima, refining the result obtained from the global search.

This optimization strategy combines both robustness and accuracy.
In particular, a Genetic Algorithm was chosen as the global optimizer, since it is

a robust and reliable algorithm widely used in optimization [7, 12]. The subsequent
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local optimization was done using the Sequential Quadratic Programming (SQP)
method [13].

13.7.1 Turbine Cascade Case

The performance of a steam turbine cascade [14]was analyzed for different operating
conditions employing an ALSTOM in-house CFD code.

The design space was defined by three input variables:

• Incidence Angle
• Inlet Total Pressure (for adjusting Mach Number)
• Fluid Viscosity (for adjusting Reynolds Number)

The objective of the optimization was to maximize the efficiency of the turbine
profile. A dataset of 150 points was obtained running an Optimized Latin Hypercube
DOE. Each simulation took about three minutes on a PC (Quad Core CPU running
@ 2.66Ghz, 3.25GB RAM). Afterwards, the dataset was normalized in the range
[−1, 1] and randomly split into a training-set of 120 points and a test-set of 30 points.

13.7.1.1 Performance of Surrogate Models

Different setting approaches were adopted for each type of surrogate model. Five
FFBP NNs were created using the trainbr algorithm and the OBS technique. It is
worth reminding that FFBPNNs have amulti-modal performance function, therefore
finding the best network configuration for a particular dataset usually requires to train
the network from different initial weights/biases configurations. The same concept
applies to the OBS technique, since the setting of the first oversized neural network
influences the results of the subsequent pruning process. The validation subset was
the 20% of the training-set. The DTNN was built finding the optimal number of
hidden neurons via “trial and error” procedure. Eventually, five DTNNswere created
with the optimal architecture. As described for neural networks, five polynomial
models were built using cross-validation with 10 subsets, in order to investigate
how the random splitting affects the setting process. The same global order and
interaction order were obtained for all five models, confirming that cross-validation
is a robust procedure to set polynomial models. The interpolating RBF Networks
were built only once, using the iterative procedure previously described in Sect. 13.3,
with 20 steps. However, the setting procedure for regressive RBF Networks was
different. In fact, these models were tuned using the GA, which was set with a
population of 30 individuals and 30 generations. In this case, five regressive RBF
Networkswere built for each basis function, resulting in broadly similar performance.
Finally, five Kriging models were also built. The likelihood function employed to
build the Kriging models was optimized setting the GA with a population of 50
individuals and 100 generations. The adopted setting configuration produced almost
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Table 13.1 Surrogate models performance on the blade test-set

Test Test Test

RMSE (%) r2 RANKING (%)

FFBP NN OBS 0.505 0.9996 90.00

FFBP NN trainbr 3.069 0.9848 56.67

DTNN 0.712 0.9993 93.33

RBF G 1.908 0.9943 73.34

RBF IM 1.668 0.9965 73.34

RBF M 1.803 0.9965 76.67

Reg. RBF G 1.740 0.9954 73.34

Reg. RBF IM 1.620 0.9962 73.34

Reg. RBF M 1.501 0.9967 73.34

Kriging 1.888 0.9960 66.67

Reg. Kriging 1.034 0.9983 76.67

Polynomial 1.389 0.9967 83.34

G Gaussian, IM inverse-multiquadrics and M multiquadrics

Table 13.2 Optimized and validated results for the blade study case

Incidence Tot. inlet Fluid viscosity Optimized Validated

angle (deg) pressure (bar) (Ns/m2) (10−6) solution (−) solution (−)

FFBP NN OBS −27.4056 190.10 1.8 0.93319 0.93378

FFBP NN trainbr −8.4097 188.06 1.8 0.93115 0.93360

DTNN −24.2300 189.31 1.8 0.93330 0.93383

RBF G 3.3989 191.63 1.8 0.93213 0.93304

RBF IM −32.2721 189.11 1.8 0.93247 0.93376

RBF M −32.0508 189.01 1.8 0.93250 0.93377

Reg. RBF G −23.5060 190.59 1.8 0.93240 0.93375

Reg. RBF IM −22.8310 190.87 1.8 0.93219 0.93372

Reg. RBF M −32.5122 188.99 1.8 0.93267 0.93376

Polynomial −14.2838 190.56 1.8 0.93389 0.93364

Reg. Kriging −28.9457 189.05 1.8 0.93409 0.93382

The maximum efficiency in the DOE dataset is 0.93099, G Gaussian, IM inverse-multiquadrics and
M multiquadrics

identical models, the small differences were related to the GA obtaining only the
neighbourhood of the maximum as opposed to maximum of the likelihood function.

For each type of surrogate model, only the best performing model was chosen for
the comparison summarized below.

It can be noticed from Table13.1 that all the models performed very well, with
low values for the NRMSE and high values for r2 and RANKING.

Once the surrogate models were built, then it was possible to use them to evaluate
all the other input configurations required by the optimizer algorithm. The constraints
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Fig. 13.1 Blade case—DTNN

of the optimization were represented by the design space boundaries, which were
defined by the highest and lowest values of each input variable in the DOE.

As can be seen in Table13.2, all the surrogate models gave very similar validated
solutions. In particular, the DTNN produced the best results, which was chosen to
plot a graphic representation of the problem, fixing the viscosity to its lowest value
in the dataset (see Fig. 13.1). It is also interesting to note that the DTNN had the best
RANKING score on the test-set. However, almost the same validated solution was
obtainedwith theRegressiveKriging,whichwas also definitely far quicker to set than
DTNNs and FFBP NNs. Polynomial model and RBF Networks were also quicker
and easier to set than neural networks. In the opinion of the authors, the simplicity
of the setting process should be always considered in the assessment of surrogate
modelling methods. In practical applications, a quick-to-set surrogate model should
be preferred to other models with time consuming and non-robust setting processes,
especially when the results are almost the same, as in this case.

Finally, it should be considered that the efficiency improvements obtained from
the initial DOE were small from the numerical point of view, but very important in
engineering design.

13.7.2 Turbine Seal Case

The leakage of a labyrinth seal of the high-pressure stage of a steam turbine was
evaluated via CFD simulations, which were performed with the commercial code
ANSYS FLUENT [15]. Seven geometric parameters were originally chosen in order
to determine the key variables for prediction of leakage, such as fin height, thickness,
angle, etc. These input variables were screened using full-factorial DOEs and Pareto
Charts (based on polynomial regression). Finally four top parameters were selected
to be included in the surrogate modelling and subsequent model based optimization
(minimization) of seal leakage:



218 G. Badjan et al.

• a1, Angle parameter
• a2, Angle parameter
• L1, Length parameter
• L2, Length parameter

A full-factorial DOE of 5 levels per variable (resulting in 54 = 625 points) was
originally planned to investigate the problem, but some simulations failed due to
technical issues in the CFD solver, obtaining a reduced dataset composed of 517
points. Each simulation took about eight minutes on a PC (12 Core CPU running @
2.92Ghz, 24GB RAM). The dataset was randomly split into a training-set of 414
points and test-set of 103 points. The surrogate models were built adopting the same
methodology employed for the turbine cascade case.

The subsequent optimizations were run setting the GA with 100 individuals and
30 generations, and allowing a maximum of 30 iterations for the local optimizer. As
for the turbine cascade case, the design space boundaries were defined by the highest
and lowest values of each variable in the DOE.

All the values shown in the tables and pictures regarding the seal case were
normalized in the range [−1, 1], for the purpose of protecting commercially sensitive
information.

13.7.2.1 Performance of Surrogate Models

Table13.3 shows that the surrogate models did not perform very well in this case,
scoring high NRMSE values and low r2 values. Also the scores for the RANKING
were very low. In the opinion of the authors, the RANKING criteria should be applied
to the cases where surrogate models perform very similarly, as for the blade case.

Table 13.3 Surrogate models performance on the seal test-set

Test Test Test

NRMSE (%) r2 RANKING (%)

FFBP NN OBS pruned 10.490 0.7554 5.83

FFBP NN trainbr 10.181 0.7704 9.71

DTNN 11.903 0.6871 5.83

RBF G 13.339 0.6072 8.74

RBF IM 11.880 0.6924 8.74

RBF M 11.530 0.7103 7.77

Reg. RBF G 11.246 0.7267 8.74

Reg. RBF IM 11.420 0.7164 7.77

Reg. RBF M 11.544 0.7093 7.77

Polynomial 11.573 0.7108 7.77

Kriging 14.199 0.5573 9.71

Reg. Kriging 10.749 0.7504 7.77

G Gaussian, IM inverse-multiquadrics and M multiquadrics
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Fig. 13.2 Full factorial cubic spline interpolations: a2 and L2 are fixed to different values

The validated solutions were generally worse than the “best solution” contained
in the DOE (which was equal to −1 following normalization). However, very small
reductions of the leakage were obtained with RBF Networks (surrogate model based
optimal solution −1.001, validated CFD code solution −1.0067), but not enough to
consider the optimization a success.

It was also found that most of the optimized solutions were found for the low-
est value of a2 and L2. Recalling that a generic full-factorial DOE consists in a
multi-dimensional grid, Fig. 13.2 was generated fixing some variables and using
MATLAB cubic spline interpolation [13].

As can be seen fromFig. 13.2, the underlying function shows very different scenar-
ios varying the values of the same fixed variables, making it difficult to be modelled
even with a full-factorial DOE of 517 points. This behavior is probably due to the
fact that the input variables are highly correlated. However, it should be noted that
the cubic spline interpolation does not correspond to the true function, which is
obviously unknown, and the underlying function might be even more complex.

In addition, Figs. 13.3 and 13.4 show a comparison between some surrogate mod-
els and the corresponding full factorial cubic spline. It is clear from Fig.13.3 that

Fig. 13.3 FFBP NN OBS pruned versus full factorial cubic spline interpolation, a2 = −1 and
L2 = −1
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FFBP NNs pruned with OBS overfitted the data. In fact, it appeared that the high
flexible structure of FFBP NNs can fit the data in a large variety of ways (i.e. with
very different configurations for weights/biases), generating approximations with
good values for NRMSE and r2 but also with very strange shapes. On the contrary,
the FFBP NN trained with trainbr gave a good representation of the problem, as can
be seen in Fig. 13.4. In fact, the trainbr algorithm increases the level of regression
of neural networks, making them smooth and less prone to overfit [16]. RBF Net-
works and Kriging showed less flexibility than neural networks, since their structure
is directly anchored to the points in the dataset.

After these observations, it was decided to adopt a different strategy for the seal
case, aimed to obtain an optimized solution similar to the best solution contained in
the full-factorial DOE of 517 points, but using less CFD computations.

13.7.2.2 Further Investigation with Alternative Datasets

An Optimized Latin Hypercube DOE of 100 points was run with the objective to
gather information over all the design space using less points. Again, some points
failed to produce a result, obtaining a reduced dataset composed of 94 points. Surro-
gatemodelswere built with the new dataset, employing all the points as a training-set.

The new validated solutions were not better than the solutions obtained in the
previous optimization. However, it can be noticed that the majority of the regressive
models gave again the optimized solutions for the lowest value of a2 and L2.

It was therefore decided to run a further Optimized Latin Hypercube DOE of 50
points with a2 and L2 fixed to their lowest value, in order to reduce the dimensionality
of the problem. Finally a dataset composed of 47 points was obtained. The surrogate
models were built employing all the 47 points as the training-set.

As can be seen in Table13.4, the Krigingmodel and the Regressive RBFGaussian
Network improved the best solution contained in the first dataset of 517 points. Thus,
the computational budget was reduced from 600 points to 150 points. Unfortunately
the FLUENT solver failed to converge at the optimized solution of the Regressive
Kriging.

In addition, a further full-factorial DOE of 400 points (20 levels per variable)
was run fixing a2 and L2 to their lowest value, in order to investigate in detail the

Fig. 13.4 FFBP NN trainbr versus full factorial cubic spline interpolation, a2 = −1 and L2 = −1
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Table 13.4 Optimized and validated results for the seal study case using the dataset composed of
47 points

a1 (−) L1 (−) Optimized solution Validated solution

OBS pruned −0.9350 −0.4219 −1.2282 −0.8986

trainbr −0.5230 0.0042 −1.0246 −0.9818

DTNN −0.7167 0.0274 −1.0073 −0.9966

RBF G −0.7374 0.6752 −1.0303 −1.0013

RBF IM −0.5981 −0.0644 −1.0210 −0.9943

RBF M −0.6270 −0.0109 −1.0195 −1.0188

Reg. RBF G −0.7383 0.6797 −1.0292 −1.0196

Reg. RBF IM −0.5976 −0.0651 −1.0210 −0.9982

Reg. RBF M −0.3396 0.1970 −1.1035 −0.9693

Kriging −0.6989 0.5896 −1.1035 −1.0286

Reg Kriging −0.5494 1 −1.0054 N/A

Polynomial −0.7461 0.7949 −1.0454 −0.9824

Leakage normalized w.r.t. the first dataset, G Gaussian, IM inverse-multiquadrics and M multi-
quadrics

Fig. 13.5 Regressive Kriging versus FF interpolation, DOE 50 points

Fig. 13.6 Polynomial model versus FF interpolation, DOE 50 points

morphology of the underlying function. The final dataset was composed of 384 points
(with 16 points failing to converge).

As can be seen in Figs. 13.5 and 13.6, regressive models developed with 47 points
were capable to detect the general trends of the real problem, which was highly irreg-
ular with many peaks (see the full factorial cubic spline interpolations). In particular,
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the Polynomial model was able to define the “borders” of the underlying function
verywell. On the contrary, FFBPNNprunedwithOBSandDTNNoverfitted the data.

In engineering design, the visualization of a problem is extremely useful, since it
can provide an indication of promising regions thatmay yield a robust optimal design.
Flat zoneswith stable performancewill be preferred to peaky zones,where small vari-
ations of the input variables lead to high variation of the output. For example, the blue
valley in Fig. 13.6 represents a stable zone, where small variations of a1 and L1 do not
particularly affect the leakage. In fact, the geometric parameters defining a labyrinth
seal are subject to manufacturing tolerances. Thus, it is clear that an important aspect
in industrial design is managing the uncertainties, to find solutions which are insen-
sitive to the stochastic fluctuations of the parameters (Robust Design) [10, 17].

Summarizing, the seal casewas significantlymore challenging than the blade case.
FFBP NNs pruned with OBS and DTNNs performed poorly, overfitting the surface.
Instead, the FFBP NNs trained with trainbr were able to detect the main trends of
the underlying function. However, other surrogate models such as RBF Networks,
Kriging and Polynomial, gave better results with less training. In particular, the
Kriging model produced the best numerical result and the Polynomial model gave
the best representation.

In addition, it appeared that a good strategy in optimization assisted by surrogate
models may consist in:

1. Run a small global DOE, according to the available computational budget.
2. Build regressive surrogate models and visualize the problem where possible.
3. Validate the optimized solutions.
4. Evaluate the possibility of reducing the dimensionality of the problem, or at least

to define a small promising zone in the domain.
5. Run a reduced/local DOE, according to the available computational budget.
6. Validate the new optimized solutions.

13.8 Conclusion

This paper has demonstrated the utility of Surrogate Models in turbo-machinery
design optimization. In the first instance, different surrogate modelling methods
should be used when dealing with unknown problems, in order to find the model
that best fits a particular dataset. In addition, surrogate models should be assessed
on the basis of their ease of configuration. From this point of view, FFBP NNs
and DTNNs present too many drawbacks to be considered a valid methodology
in turbo-machinery component design optimization. They did not show any clear
advantage compared to other methodologies in terms of accuracy, but their setting
process presented many issues. However, neural networks are widely applied in
control engineering and signal processing, where their flexibility represents a benefit
in modelling of dynamic systems.
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Finally for the considered case studies, Kriging models were assessed as being
the most promising surrogate model among those evaluated in this paper, combining
high performance with a relatively easy setting process.
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