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Preface

EUROGEN 2013, the tenth in the international series of Conferences was organized
by the Institute of Intelligent Systems and Numerical Applications in Engineering
(SIANI) of Universidad de Las Palmas de Gran Canaria (ULPGC), Spain, in
association with the European Community on Computational Methods in Applied
Sciences—ECCOMAS (Thematic Conference series) and the European Research
Community on Flow, Turbulence and Combustion—ERCOFTAC (Special Group
of Interest), and took place in the Industrial and Civil Engineering School at the
Tafira Campus of ULPGC in October 7–9, 2013.

This event gathered experts from Universities, Research Institutions and
Industries developing or applying evolutionary and deterministic methods in design
optimization with emphasis on industrial and societal applications.

Additionally to the traditional themes and applications in the Series, EUROGEN
2013 focused particularly on:

• Intelligent systems for multidisciplinary design optimization (MDO) problems
based on multi-hybridized software

• Adjoint-based and one-shot methods
• Uncertainty quantification and optimization
• Multidisciplinary design optimization
• Applications of game theory to industrial optimization problems
• Applications in structural and civil engineering optimum design
• Offshore, coastal and marine applications
• Surrogate models-based optimization methods in aerodynamic design
• Neural networks applied to logistic transport

Among the 75 presentations of the EUROGEN 2013 Conference, 34 extended
full papers were selected for publication in this volume after peer-review by
members of the European Scientific Program Committee and classified in the
following sections:

v



• Theoretical and Numerical Methods and Tools for Optimization:

– Theoretical Methods and Tools
– Numerical Methods and Tools

• Engineering Design and Societal Applications:

– Turbo machinery
– Structures, Materials and Civil Engineering
– Aeronautics and Astronautics
– Societal Applications
– Electrical and Electronics Applications

This volume presents up-to-date material on the state of the art in Evolutionary
and Deterministic Methods for Design, Optimization and Control with Applications
to Industrial and Societal Problems from Europe, Asia, North and South America.

The Scientific Organizing Committee and the Local Organizing Committee
acknowledge the sponsorship of the following organizations through financial sup-
port or/and assistance during the development of the event: Cátedra Endesa-Red,
European Community on Computational Methods in Applied Sciences (ECCO-
MAS), European Research Community on Flow, Turbulence and Combustion
(ERCOFTAC), European Community (EC), Research Project E-CAERO, Center for
Numerical Methods in Engineering (CIMNE), Plataforma Oceánica de Canarias
(PLOCAN), CEANI Division—Institute of Intelligent Systems and Numerical
Applications in Engineering (SIANI)—Universidad de Las Palmas de Gran Canaria
(ULPGC), Gobierno de Canarias.

The two Committees above are grateful to all the members of the European
Scientific Committee, the European Technical Committee and the International
Corresponding members.

Special thanks are also addressed to Dr. Dietrich Knoerzer, Project Officer EC
DG Aeronautics who initialized the EUROGEN series through the INGENET
Networking EC project and has been continuously participating in this two-year
frequency event since 1995.

Finally, the editors acknowledge Nathalie Jacobs, Springer, and Eugenio Oñate
for the interest to this series in publishing the most representative scientific and
industrial material presented in the EUROGEN 2013 ECCOMAS Thematic Con-
ference in the Springer—ECCOMAS Series entitled: Computational Methods in
Applied Sciences.

David Greiner
Blas Galván

Jacques Périaux
Nicolas Gauger

Kyriakos Giannakoglou
Gabriel Winter
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Chapter 1
Multi-objective Evolutionary Algorithms
in Real-World Applications: Some Recent
Results and Current Challenges

Carlos A. Coello Coello

Abstract This chapter provides a short overview of the most significant research
work that has been conducted regarding the solution of computationally expensive
multi-objective optimization problems. The approaches that are briefly discussed
include problem approximation, function approximation (i.e., surrogates) and evo-
lutionary approximation (i.e., clustering and fitness inheritance). Additionally, the
use of alternative approaches such as cultural algorithms, small population sizes and
hybrids that use a few solutions (generated with optimizers that sacrifice diversity
for the sake of a faster convergence) to reconstruct the Pareto front with powerful
local search engines are also briefly discussed. In the final part of the chapter, some
topics that (from the author’s perspective) deserve more research, are provided.

Keywords Evolutionary algorithms ·Multi-objective optimization ·Metaheuristics

1.1 Introduction

In real-world applications, most problems have several (often conflicting) objectives
that we aim to optimize at the same time. Such problems are called “multi-objective”
and their solution gives rise to a set of solutions that represent the best possible trade-
offs among all the objectives (i.e., the so-called Pareto optimal set). The image of the
Pareto optimal set (i.e., the objective function values corresponding to this set) forms
to so-called Pareto front of the multi-objective optimization problem being solved.

Starting in themid-1980s, Evolutionary Algorithms (EAs) have become a popular
search engine to solve multi-objective optimization problems, mainly because of
their ease of use, and wide applicability (i.e., they require little domain-specific
information to operate) [11, 15].

The author acknowledges the financial support obtained through a “Cátedra Marcos
Moshinsky”.

C.A. Coello Coello (B)

CINVESTAV-IPN (Evolutionary Computation Group), 07360 Mexico, D.F., Mexico
e-mail: ccoello@cs.cinvestav.mx

© Springer International Publishing Switzerland 2015
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_1
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4 C.A. Coello Coello

Modern multi-objective evolutionary algorithms (MOEAs) consist of two main
components:

1. A selection mechanism that is normally (but not necessarily) based on Pareto
optimality. Performance indicators can also be used for selecting solutions in a
population and that has been, indeed, a relatively popular research trend in recent
years [3].

2. A density estimator, which is responsible for producing different elements of the
Pareto optimal set in a single run of a MOEA. Different options are available
for this mechanism, such as: fitness sharing [16], entropy [82], clustering [79],
adaptive grids [31] and crowding [17], among others.

Additionally, all modern MOEAs are elitist, which means that they retain the non-
dominated solutions generated at each iteration, so that at the end of a run, the user
can have the globablly nondominated solutions that had been produced. Elitism is
normally implemented through the use of an external archive, but the use of the main
population for this purpose is also possible.

In spite of their popularity, one of the main limitations of MOEAs, when used for
solving real-world problems, is their high computational cost, which is associated
to the relatively high number of objective function evaluations that most current
MOEAs require [62]. Although there are several remarkable efforts in this regard,
several challenges still lie ahead, and the purpose of this chapter is precisely to review
some of the most representative research that has been conducted in this area.

The remainder of this chapter is organized as follows. In Sect. 1.2, we present basic
concepts related to multi-objective optimization. Then, in Sect. 1.3, we discuss the
main schemes that have been proposed for dealing with expensive multi-objective
optimization problems. In Sect. 1.4, we explore other ideas that havel also been
used for dealing with real-world applications having objective functions that are
computationally expensive. Section1.5, provides some potential paths for future
research in this area. Finally, the conclusions of this chapter are presented in Sect. 1.6.

1.2 Basic Concepts

We are interested in solving problems of the type1:

minimize f(x) := [ f1(x), f2(x), . . . , fk(x)] (1.1)

subject to:
gi (x) ≤ 0 i = 1, 2, . . . , m (1.2)

hi (x) = 0 i = 1, 2, . . . , p (1.3)

1 Without loss of generality, we will assume only minimization problems.
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where x = [x1, x2, . . . , xn]T is the vector of decision variables, fi : IRn → IR, i =
1, ..., k are the objective functions and gi , h j : IRn → IR, i = 1, ..., m, j = 1, ..., p
are the constraint functions of the problem.

To describe the concept of optimality inwhichwe are interested, wewill introduce
next a few definitions.

Definition 1 Given two vectors x, y ∈ IRk , we say that x ≤ y if xi ≤ yi for
i = 1, ..., k, and that x dominates y (denoted by x ≺ y) if x ≤ y and x �= y.

Definition 2 We say that a vector of decision variables x ∈ X ⊂ IRn is non-
dominated with respect to X , if there does not exist another x′ ∈ X such that
f(x′) ≺ f(x).

Definition 3 We say that a vector of decision variables x∗ ∈ F ⊂ IRn (F is the
feasible region) is Pareto-optimal if it is nondominated with respect toF .

Definition 4 The Pareto Optimal Set P∗ is defined by:

P∗ = {x ∈ F |x is Pareto-optimal}

Definition 5 The Pareto Front PF ∗ is defined by:

PF ∗ = {f(x) ∈ IRk |x ∈ P∗}

Therefore, we wish to determine the Pareto optimal set from the set F of all the
decision variable vectors that satisfy (1.2) and (1.3). In practice, however, not all the
Pareto optimal set is normally desirable or even achievable.

1.3 Dealing with Expensive Problems

In general, MOEAs can be unaffordable for an application when:

• The evaluation of the fitness functions is computationally expensive (e.g., it takes
several hours).

• The total number of fitness function evaluations that can be performed is limited
(e.g., we only have a certain computational budget available).

According to [29], there are three main schemes that can be used to deal with expen-
sive problems:

Problem approximation: In this case, the idea is to replace theoriginal (expensive)
statement of the problem by another one which is easier (and less expensive) to
solve.

Functional approximation: In this case, instead of using the original objective
function(s) (which is/are expensive to evaluate), an alternative expression(s) is
adopted. The new expression(s) is built based on the previous data obtained from
evaluating the real objective function(s). The models that are obtained from the
data that is currently available are called meta-models or surrogates.
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Evolutionary approximation: This is an approach that is specific to EAs, and that
aims to save fitness function evaluations by estimating the fitness of an individual
using information from other (similar) individuals. The two main approaches in
this class are: fitness inheritance and clustering.

Next, we will provide a short discussion of each of these schemes, as well as some
real-world problems in which they have been adopted.

1.3.1 Use of Problem Approximation

As indicated before, in this case, the idea is to replace the original problem by
another one which is easier to solve. This sort of approach has been relatively pop-
ular in aeronautical/aerospace engineering, in which complex Computational Fluid
Dynamics (CFD), Computational Aero-Acoustics (CAA) and Computational Struc-
tural Mechanics (CSM) are adopted. When using such tools, it is possible to approx-
imate the original problem by using different resolutions in the flow or structural
simulation, adopting either coarse or fine grids. For CFD simulations is also possible
to rely onEuler flows instead of (themore expensive)Navier-Stokes flow simulations.

An example of this sort of approach is the work of Lee et al. [41, 42]. In
this case, the authors applied the HAPMOEA (Hierarchical Asynchronous Paral-
lel Multi-Objective Evolutionary Algorithm) [24] to the robust design optimization
of an ONERA M6 wing shape. The authors considered uncertainties in the design
environment, related to the flow Mach number, and the Taguchi method was used to
transform the problem into one with two objectives to be minimized: (1) the mean
value of an objective function with respect to variability of the operating conditions,
and (2) the variance of the objective function of each solution candidate, with respect
to its mean value. HAPMOEA uses an evolution strategy as its search engine, incor-
porating the concept of Covariance Matrix Adaptation (CMA). It also incorporates a
distance-dependent mutation operator, and a hierarchical set of CFDmodels (varying
the grid resolution of the solver). Small populations are evolved using finemesh CFD
solutions in order to exploit the search space, while large populations are evolved
with coarse mesh CFD solutions for exploring the search space. Good solutions from
the coarsemesh populations (inwhich evaluations have a low computational cost) are
transferred to the fine mesh populations (in which evaluations are computationally
expensive).

For more information on this topic, the interested reader must refer to: [6, 62, 68]

1.3.2 Use of Functional Approximation

The use of meta-models or surrogate models has been very popular in engineering.
In order to build a meta-model, a set of data points that lie on the local neighborhood
of the design is required. The accuracy of the meta-model relies on the number of
samples provided (from the real objective function evaluations), as well as on the
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accuracy of the model that is used to approximate the objective functions. Such an
approximatemodelmust also have a lowcomputational cost, since itwill be evaluated
many times during the search.

There are several techniques available for constructing surrogate models, from
which the main ones are [62]: response surface methods, Gaussian processes
(or Kriging), radial basis functions, artificial neural networks and support vector
machines.

An example of this sort of approach is the work of Voutchkov et al. [81], in
which the Nondominated Sorting Genetic Algorithm-II (NSGA-II) [17] was used
to perform a robust structural design of a simplified jet engine model. The aim was
to find the best jet engine structural configuration that minimized: the variation of
reacting forces under a range of external loads, the mass for the engine and the
engine’s fuel consumption. The evaluation of the structural response was done in
parallel by means of finite element simulations. The authors adopted a kriging based
response surface method in order to reduce the computational time required to solve
this problem. Four objectives were minimized: (1) standard deviation of the internal
reaction forces, (2) mean value of the internal reaction forces, (3) engine’s mass,
and (4) mean value of the specific fuel consumption. The first two objectives were
computed over 200 external load variations. Due to the many combinations of loads
and finite element thicknesses, the multi-objective optimization problem would have
taken on the order of one year of computational time on a single 1GHZ CPU, if no
effort had been made to perform a more efficient search. When using the surrogate
model that they report, combined with parallel processing, the total optimization
time was reduced to about 26h, in a cluster with 30 cores.

For more information on this topic, the interested reader must refer to: [32, 43,
45, 51, 53].

1.3.3 Use of Evolutionary Approximation

In this case, two main approaches are considered: clustering and fitness inheritance.
Next, we will briefly discuss each of them.

Clustering is a term used to refer to the unsupervised classification of paterns into
groups (which are called clusters). The idea is to partition data into different groups
either in a hard way (i.e., into well-defined groups) or in a fuzzy way (i.e., using a
certain degree of membership to each of the groups) [27].

Althoughclustering is normally not used as a specific technique to reduceobjective
function evaluations, this sort of technique is normally adopted in combination with
surrogates in order to reduce the size of the training data set. This is an important task,
since the use of very large training data sets makes prohibitive the cost of a surrogate
method. Clustering is normally adopted in this context to split the data set into several
small groups, and then an independent local model is built from each of them.

An example of the use of clustering is the work of Langer et al. [38], in which an
integrated approach that adopts computer aided design modeling is combined with a
MOEA for solving structural shape and topology optimization problems. The authors



8 C.A. Coello Coello

were interested in optimizing an instrument panel of a satellite, considering two
objectives: (1) minimize the instrument panel mass, and (2) maximize the first eigen-
frecuency. The authors solved the optimization problem for three shape and topology
optimization cases: (a) a panel without instruments, (b) a panel with instruments at
fixed positions, and (c) a panel with instrumental placing. They adopted polynomial
based response surface methods in order to reduce the computational cost, and mul-
tiple local approximation models were constructed using a clustering technique. The
use of parallel techniques was also required in this case (a cluster with 32 processors
was adopted by the authors).

Fitness inheritance was originally introduced by Smith et al. [71], with the moti-
vation of reducing the total number of fitness function evaluations performed by an
evolutionary algorithm. The idea is that, when assigning fitness to an individual,
some times we evaluate the objective function as usual, but the rest of the time, we
assign a fitness value equal to the average of the fitness values of its parents. This
saves one fitness function evaluation, and is based on the assumption of similarity of
an offspring to its parents.

Evidently, fitness inheritance cannot be applied all the time, since it is required to
have information from true fitness function evaluations in order to guide the search in
a proper way. The percentage of time in which fitness inheritance is applied is called
inheritance proportion. Clearly, this proportion should be less than one in order to
avoid premature convergence [4].

A theoretical model of fitness inheritance was presented by Sastry et al. [69].
Such model was used to obtain the convergence time, the optimal population size
and the optimal inheritance proportion (the authors found that values between 0.54
and 0.558 worked best for the inheritance proportion in problems of moderate and
large size).

The work of Sastry et al. [69] was extended to the multi-objective case by Chen
et al. [4]. In this case, the authors used fitness sharing tomaintain diversity in the pop-
ulation with the aim of covering a larger extension of the Pareto front. The problem
they solved was a bi-objective extension of the OneMax problem originally solved
by Sastry et al. [69] in their study. The authors also presented a generalization (for
the multi-objective case) of the theoretical work reported by Sastry et al. [69] regard-
ing convergence time, optimal population sizing and optimal inheritance proportion.
The experiments reported by the authors showed that savings of up to 40% of the
total number of evaluations could be achieved when using fitness inheritnance alone.
When combining fitness inheritance with fitness sharing, savings of up to 25% were
obtained.

Reyes-Sierra and Coello Coello proposed the use of dynamic rules to assign the
inheritance proportion in a multi-objective particle swarm optimizer [55]. Such rules
produced savings that were from 19 up to 78% of the total number of evaluations.
However, as expected, the greater the savings in the number of evaluations, the greater
was the degradation in the quality of the results. Nevertheless, the authors showed
it was possible to obtain savings of up to 49% without having a significant loss in
the quality of the results. The authors adopted the Zitzler-Deb-Thiele (ZDT) test
problems in their experiments [89].
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It is worthmentioning that some researchers have considered fitness inheritance to
be an inappropriate mechanism in complex or real-world problems (see for example
[20], in which the authors concluded that fitness inheritance was not useful when the
shape of the Pareto front is nonconvex or discontinuous). Such conclusions are valid
for the proposal reported in [20]. However, in [56] it is shown that these limitations
of fitness inheritance can be overcome, so that this approach can be applied to Pareto
fronts having any kind of shape.

For more information on this topic, the interested reader must refer to: [19, 23,
37, 52, 56].

1.4 Other Approaches

There are some other ideas that can be used to tackle problems with computation-
ally expensive objective functions, and which do not fall into any of the categories
analyzed in the previous section. Here, we will focus on three types of approaches:

1. Cultural algorithms
2. Use of very small population sizes
3. Use of efficient search techniques

Next, we will briefly discuss each of these three types of approaches.

1.4.1 Cultural Algorithms

Cultural algorithms were originally proposed by Robert Reynolds in the mid-1990s
[57, 60]. The core ideabehind cultural algorithms is to incorporate domainknowledge
extracted during the search to an evolutionary algorithm. Cultural algorithms use,
in addition to the population space commonly adopted in evolutionary algorithms,
a belief space, which encodes the knowledge obtained from the search points that
have been evaluated so far. The belief space is used to influence the evolutionary
operators, with the aim of guiding the search in a very efficient way.

At each generation, a cultural algorithm selects some individuals from the popula-
tion, in order to extract information from them. Such information will then be used to
speed up the search. Evidently, the belief space requires some sort of scheme to repre-
sent the knowledge extracted during the evolutionary process and this representation
is normally specific for each particular problem (or class of problems). It is also nec-
essary to design mechanisms that allow to use this extracted knowledge to influence
the way in which the evolutionary operators explore and exploit the search space.

Although cultural algorithms have been adopted for single-objective optimization
by several authors (see for example [7, 28, 35, 58, 59]), their use in multi-objective
optimization has been very limited until now.

The first proposal to design a cultural algorithm for solving multi-objective opti-
mization problems is the framework described in [12], which uses Pareto ranking,
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and an approximation of the dimensions of the Pareto front in the belief space. In this
proposal, the belief space works as a guide for the individuals to reach regions where
nondominated solutions have been found. The belief space includes also a mecha-
nism to obtain a good distribution of the resulting points along the Pareto front (i.e.,
a density estimator).

The earliest attempt to solve multi-objective optimization problems using cultural
algorithms was based on the use of the ε-constraint method [36], since this sort of
approach uses a single-objective optimizer rather than a MOEA (the cultural algo-
rithm with differential evolution proposed in [35] was adopted for this sake). This
approach turned out to be computational expensive, due to the high number of objec-
tive function evaluations required to generate a good approximation of the Pareto
front. However, the authors showed that if the aim was to solve very difficult multi-
objective optimization problems, then this additional computational cost was worth
it. This was illustrated by solving several problems from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [18] and the Walking-Fish-Group (WFG) [25, 26] test suites.

More recently, Best and his collaborators [1, 2] proposed a more general frame-
work for using cultural algorithms with any sort ofMOEA. This approach is interest-
ing and incorporates several sources of knowledge, but it did not show a significant
reduction of objective function evaluations, which is one of the main motivations
for using cultural algorithms. Additionally, the results presented by the authors are
not competitive with respect to those obtained by traditional MOEAs using the same
number of objective function evaluations, which suggests that it is still required to
conduct more research in this area. In fact, the incorporation of knowledge into
MOEAs (using any sort of scheme), with the aim of making them more efficient is
indeed a very promising research area [37].

1.4.2 Use of Very Small Population Sizes

The use of small population sizes is unusual in the evolutionary algorithms literature
in general, mainly because of the evident loss of diversity that is associated to small
population sizes, and which normally leads to premature convergence. However, in
the genetic algorithms literature, it is known that the use of very small population sizes
is possible, if an appropriate reinitialization process is adopted (such approaches are
called micro-genetic algorithms (micro-GAs) [13, 14, 34] and they use populations
with no more than five individuals).

Krishnakumar [34] proposed the first implementation of a micro-GA. The first
micro-GA formulti-objective optimizationwas introduced in [13, 14]. This approach
uses a population size of four individuals, and three forms of elitism: (1) an external
archive that adopts the adaptive grid from the Pareto Archived Evolution Strategy
(PAES) [33], (2) a population memory, in which randomly generated individu-
als are replaced by evolved individuals, and (3) a mechanism that retains the two
best solutions generated by each run of the micro-GA. The main advantage of this
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approach is its efficiency (its authors showed that their approach was up to an order
of magnitude faster than the NSGA-II [17]). This is the reason why this approach
has been used in computationally expensive real-world applications (see for example
[8, 9]).

In a further paper, CoelloCoello andPulido introduced themicro-GA2 [78],which
is a fully self-adaptive MOEA that adopts a parallel strategy to adapt the crossover
operator and the type of encoding (binary or real numbers) to be used. This approach
can even stop automatically (it uses a mechanism based on a performance indicator
to decide when to stop the search).

Over the years, other authors have adopted micro-genetic algorithms for solving
a variety of problems (see for example [5, 30, 46, 47, 61, 72, 76, 77]). Additionally,
the use of very small population sizes has also been attempted with other bio-inspired
metaheuristics, such as particle swarm optimization (see [22]).

1.4.3 Use of Efficient Search Techniques

During the last few years, some researchers have proposed schemes that allow a
more efficient exploration of the search space through the use of aggressive search
engines that produce a few points from the Pareto front and then adopt a local
search engine to reconstruct the rest of the front. One example of this sort of hybrid
MOEA is DEMORS (differential evolution (DE) for multi-objective optimization
with local search based on rough set theory) [64]. This approach operates in two
phases. In the first one, a DE-based MOEA produces a rough approximation of the
Pareto front using a relatively low number of objective function evaluations (65% of
the total number of objective function evaluations adopted by DEMORS are spent
in the first phase). In the second phase, the remainder 35% of objective function
evaluations still available, are spent on the use of a local search procedure based on
rough set theory [49, 50], whose task is to reconstruct the missing parts of the Pareto
front. DEMORS was validated using several standard test problems taken from the
specialized literature, as well as in a real-world problem having 8 objective functions
and 160 decision variables in which it was able to outperform NSGA-II.

The same authors experimented with other (similar) hybrids in which DE was
replaced by particle swarm optimization [66, 67] or rough sets were replaced by
scatter search [65]. All these approaches were found to be very efficient multi-
objective optimizers, and seem particularly suitable for real-world applications in
which the use of surrogates is not appropriate.

In further related work [63], the same authors compared different surrogate meth-
ods (namely, artificial neural networks, radial basis functions and support vector
machines) coupled to a MOEA and combined the best performer of them (support
vector machines) with rough sets. This sort of scheme was proposed as an alternative
for dealing with multi-objective problems that are very expensive (computationally
speaking).
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1.5 Future Research Paths

There are a number of possible research paths in this area that are worth exploring:

• Parallel Approaches: Although parallel MOEAs have been used for several years
[11, 48], most of the papers published in that area focus on discussing applications
and normally, such papers put little emphasis on the development of innovative
algorithmic designs. Nowadays, the use of grid computing and Graphics Process-
ing Units (GPUs) opens new and promising venues for future research in this
area (see for example [21, 70, 73–75, 80, 88]), particularly regarding the solu-
tion of real-world problems having computationally expensive objective functions.
The incorporation of surrogate models into parallel MOEAs is another interesting
topic that deserves more research and that has been only scarcely explored in the
specialized literature until now (see for example [54]).

• Hybridization: Coupling gradient-based or direct search methods to MOEAs is
another alternative way for dealing with computationally expensive problems.
In recent years, several promising hybrids of this sort have been proposed (see
for example [39, 40, 44, 83–85]). These approaches can also be combined with
surrogates for further efficiency (see for example [86, 87]). However, the use of
such hybrid approaches in real-world applications is still rare (see for example
[8]). Nevertheless, this situation is expected to change as more research results in
this area become available.

• Sampling techniques: Surrogate methods heavily rely on the sample and updat-
ing technique adopted. In many real-world applications that use surroages, latin
hypercubes have been adopted for the initial sampling, with the aim of covering
as much as possible of the design (i.e., decision variable) space. At later stages of
the search, it may be more relevant to explore the neighborhood of a good solution
(see for example [8]). However, sampling is also relevant in other approaches,
such as when using small population sizes or when hybridizing a MOEA with
a local search engine. Nevertheless, the impact of the sampling technique in the
performance of such approaches has not been properly addressed so far, to the
author’s best knowledge.

1.6 Conclusions

This chapter has provided a quick overview of the most relevant research tools that
are currently available to tackle computationally expensive problems using multi-
objective evolutionary algorithms. Breadth has been emphasized over depth in the
discussions provided herein. However, several additional references have been pro-
vided for those interested in getting an in-depth knowledge about any of the topics
that have been addressed in this chapter.

One aspect that is worthmentioning is that the presence of computationally expen-
sive objective functions is clearly not the only relevant aspectwhen solving real-world
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problems. Other issues such as scalability (in decision variable space or in objective
function space, or in both), uncertainty and incorporation of user’s preferences, just
to name a few, have not been addressed here, mainly because of obvious space
limitations. Readers interested in information about these and other relevant topics
are invited to visit the EMOO repository [10], which is available at: http://delta.cs.
cinvestav.mx/~ccoello/EMOO/EMOObib.html.
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Chapter 2
Hybrid Optimization Algorithms and Hybrid
Response Surfaces

George S. Dulikravich and Marcelo J. Colaço

Abstract In this paper we will present some hybrid methodologies applied to
optimization of complex systems. The paper is divided in two parts. The first
part presents several automatic switching concepts among constituent optimizers
in hybrid optimization, where different heuristic and deterministic techniques are
combined to speed up the optimization task. In the second part, several high dimen-
sional response surface generation algorithms are presented, where some very basic
hybridization concepts are introduced.

Keywords Multiobjective optimization · Response surfaces · Hybrid optimizers

2.1 Introduction

Design of complex nonlinear engineering systems usually requires a large computa-
tional effort in the case of simulation, or a large amount of human and experimental
resources in the case of experiments. Multi-dimensional topology of the objective
function space of such problems has multiple local minima and large domains of pos-
sible variations of the design variables search space. A typical approach to finding
the global minimum is to start with a large search space utilizing an entire population
of initial guesses and advancing them simultaneously using any of the evolutionary
optimization algorithms. Once the search space has narrowed sufficiently, the search
process is switched to a fast and accurate gradient-based search algorithm to con-
verge on the minimum. However, this simplistic semi-manual approach to sequential
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hybrid optimization is not reliable since it utilizes only one evolutionary optimizer
and one gradient-based optimizer, each of which has its own intrinsic deficiencies.
A more robust and faster hybrid optimization approach utilizes a collection of sev-
eral evolutionary optimizers and several gradient-based optimizers and automatically
switches among them. This chapter will focus on these types of hybrid optimizers.

When systems having large number of design variables, objective functions and
constraints need to be optimized, this implies the evaluation of thousands and even
millions of candidate solutions, which can make this task impossible from a very
practical point of view, especially if each such high fidelity evaluation of the objective
function is time-consuming or expensive. Thus, it is important to develop surrogate
models, also called metamodels, which approximate the response of the original
problem, but using a much simpler mathematical formulation. The objective of this
chapter is to present several common response surface models existing in the liter-
ature, and some hybridization among them. Some hybrid optimizers are also pre-
sented, based on heuristic and deterministic methods, which take advantage of these
hybrid response surface models to improve the efficiency of the optimization task of
complex engineering systems.

2.2 Hybrid Optimization Algorithm Concepts

It is well known that each optimization algorithm provides a unique approach to
optimization with varying degrees of convergence, reliability, and robustness at dif-
ferent stages during the iterative process. The “no free lunch theorem” states [1] that
no individual optimization algorithm is better than all the other optimization algo-
rithms for all classes of optimization problems (Fig. 2.1). A natural response to this
problem is to use hybrid optimization algorithms that combine individual constituent
optimization algorithms in a sequential or parallel manner so that resulting software
can utilize the specific advantages of each constituent algorithm. That is, a variety
of individual constituent optimization algorithms that rely on different principles of
operation are combined in a hybrid optimization algorithm as subroutines where a set
of specified heuristic measures of the iterative convergence process is used to perform
automatic switching among the constituent algorithms. This allows for automatic use
of the most appropriate constituent optimization algorithm at each step of the global
iterative optimization process. The automatic back-and-forth switching [2] among
the constituent optimization algorithms can also be viewed as an automatic backup
strategy so that, if one optimization algorithm fails, another optimization algorithm
can automatically take over.

The key to the success of this hybrid optimization concept is the automatic
switching strategy [2, 3] among the constituent optimization algorithms. One of the
early single-objective hybrid optimization algorithms [4, 5] had three gradient-based
(Davidon-Fletcher-Powell algorithm, Sequential Quadratic Programming and quasi-
Newton algorithm of Pshenichny-Danilin) and three non-gradient-based
(Genetic Algorithm, Nelder-Mead simplex algorithm, and Differential Evolution
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Fig. 2.1 Convergence histories for Griewank’s test function no. 8 using (from left to right) individ-
ual: BFGS algorithm, differential evolution, simulated annealing, particle swarm, and our hybrid
optimizer [27]. The last figure illustrates the convergence history of one hybrid optimizer using
automatic switching process [5]

algorithm) constituent optimization algorithms that were automatically switching
back-and-forth each time when a particular heuristic prescribed convergence mea-
sure was reached [5].

This hybrid single-objective optimizer only restarts with a single design (the
“best” from the “previous” iteration). In other words, when switching from one of the
population-based constituent optimizers to a gradient-based constituent optimizer,
only the best design from that population, and not the entire population, is used as
the initial guess for the gradient-based constituent algorithm.

For population-based constituent optimizers used in this hybrid optimizer, the
population matrix was updated every iteration with new designs and ranked according
to the value of the objective function. The optimization problem was completed
when: (1) the maximum number of iterations or objective function evaluations was
exceeded, or (2) the best design in the population was equivalent to a target design,
or (3) the optimization program tried all four algorithms, but failed to produce a
decrease in the objective function.

Another hybrid single-objective optimization algorithm was developed by com-
bining three of the fastest gradient-based and evolutionary optimization algorithms
[5], namely: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm, the
Differential Evolution algorithm, and the Particle Swarm algorithm. It was found
that the most often automatically used constituent optimization module is the Particle
Swarm algorithm. When a certain percentage of the particles find a minimum, the
algorithm switches automatically to the Differential Evolution algorithm and the
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particles are forced to breed. If there is an improvement in the objective function,
the algorithm returns to the Particle Swarm method, meaning that some other region
is more likely to have a global minimum. If there is no improvement in the objec-
tive function value, this can indicate that this region already contains the global
value expected and the algorithm automatically switches to the Broyden-Fletcher-
Goldfarb-Shanno algorithm in order to quickly and accurately find the location of
the minimum.

One of the most recent switching algorithms is the Search Vector-based Hybrid
(SVH) [2] which automatically changes search directions during the optimization
process. During each iteration, the SVH will generate the SVs based on a predeter-
mined formula or quality. Some examples of the SVs include:

1. Global Best vector (GB) which is the fittest design vector currently in the popu-
lation.

2. Population Weighted Average vector (PWA): The population is ranked from best
to worst, with the best receiving a rank equal to the population size, and the
worst having a rank of one. The ranks are then used as weights, and the standard
weighted arithmetic mean procedure is used to create this SV.

After the SVs have been evaluated, the fittest SV is selected as the SV for that
iteration. Once the SV has been selected, the constituent algorithm selection process
begins. First, each constituent algorithm is executed so that it generates a temporary
small population. This temporary population will not be evaluated. Instead, it will be
used as an indication of the behavior of the constituent algorithm for a given topology.
For example, suppose the SVH has two constituent algorithms called CA1 and CA2
where CA1 will use the current population to generate a temporary population which
will be situated in one part of the space of design variables, while CA2 will create
a temporary population shifted to another part of the space of design variables. In
order to select the most appropriate constituent optimization algorithm, the Euclidean
distance between the endpoint of each centroid vector of the temporary populations
and the selected SV is calculated and stored. Then, each centroid is evaluated. The
constituent algorithms are then ranked using the Pareto dominance scheme based
on two objectives: (1) minimize distance between the centroid and the SV, and (2)
minimum objective function value of the centroid. The constituent algorithm to be
used is randomly selected from the Pareto front. In order for the centroids of the
temporary populations for the constituent algorithms to be statistically meaningful,
the constituent algorithms are executed 10× each iteration. Once a constituent algo-
rithm has been selected, it is then executed one last time. This time, the population is
permanently changed, and the objective function for each design vector is evaluated.
This completes one full iteration of the SVH. This strategy [2] differs from any other
known work in that it uses a collection of different search directions, each with its
own unique formulation, and chooses among them. The method presented by Ahrari
et al. [6], like most other hybrid algorithms, generates the search direction and keeps
it fixed throughout the entire optimization process.

In multi-objective optimization it would be onerous to use a single value and
compare the quality of one Pareto approximation to another [7]. Instead, multiple
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attributes of two successive Pareto approximations should be considered to determine
if a multi-objective optimizer is converging on non-dominated set. Since “no free
lunch theorem” applies to multi-objective optimizers as well as single-objective opti-
mizers, hybrid optimization is highly advisable in the multi-objective optimization
problems. Such hybridization can be implemented by using a suite of multi-objective
optimization algorithms in the form of either High-level Relay Hybrid (HRH) algo-
rithms where each of the constitutive algorithms run on its own in a sequential
non-parallelized scheme, or as High-level Teamwork Hybrid (HTH) metaheuristic
algorithms [8] where constitutive optimization algorithms run in parallel and con-
tribute a portion of each new generation’s population. The portion that each search
contributes to the new generation is dependent on the success of the algorithm to
provide past useful solutions to the search. One such HTH algorithm is AMALGAM
[9], which utilizes NSGA-II [7] and outperforms NSGA-II.

A robust and accurate HRH type concept is Multi-Objective Hybrid Optimizer
(MOHO) [10] which currently uses three multi-objective optimization algorithms:
Strength Pareto Evolutionary Algorithm (SPEA-2), a multi-objective implementa-
tion of the single objective Particle Swarm, and a Non-Sorting Differential Evolu-
tion (NSDE) algorithm which is a low level hybrid metaheuristic search combining
NSGA-II [7] and Differential Evolution. MOHO starts by creating the population
that will be used for the optimization run. The population contains the decision vector
and the objective vector for all population points and stores the Pareto approximation
and clustering routine. Clustering is performed by the population on the object vec-
tors of the Pareto approximation. The decision vectors of all population points are
evenly distributed over the decision space using Sobol’s pseudo random sequence
generator [11]. The software then passes the population from optimization routine to
optimization routine as the switching criteria dictates. The constitutive algorithm that
is selected at each generation makes a new generation using any or all of the informa-
tion provided to it: the last generation’s population and the latest non-dominated set.
Then MOHO combines the new generation and the latest non-dominated set to create
a new non-dominated set. The switching algorithm compares the non-dominated set
from the current generation to the non-dominated set of the previous generation. The
comparison process consists of looking at five desired improvements to the Pareto
approximation [10]. The improvements are actually gains in five performance crite-
ria (quality factors). If the particular search algorithm can achieve at least two of any
of the five specified improvements [10], this algorithm is allowed to create the next
generation. The five criteria (aspects) are:

1. The new population changes the number of points in the Pareto set. When this
happens, either points are being added to the approximation, or, more importantly,
a new point is found that causes points to be deleted from the Pareto set.

2. The new population has at least one point that dominates a point, or points, in the
current Pareto approximation. This means that the Pareto approximation is being
improved.

3. The hyper volume of the dominated space changes. When the optimization soft-
ware starts, it picks a worst case objective vector from its initial population guess.
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At each constituent optimization algorithm iteration, hyper cubes are created,
with one vertex of the diagonal being a point on Pareto approximation and the
other vertex of the diagonal being the worst case objective vector. Then the vol-
ume of the union of all the hyper cubes is calculated. The union is defined as the
Boolean union of the cubes; in the same sense as this operation is performed in
Constructive Solid Geometry for CAD applications. When this occurs, the Pareto
approximation is changing geometry.

4. The new population generation causes the average distance of Pareto approxi-
mation from the objective space origin to change. This also denotes a change on
the Pareto approximation geometry. This is a backup to criterion (3) where two
approximations may have the same volume, but different average distances.

5. The new population causes the maximum spread of the Pareto approximation to
increase. The formula for calculating the spread developed by Zitzler is shown
by Deb [7].

At the end of each iteration, the population of design vectors assigns itself a grade
point for each of the above criteria that its new generation meets. If the new population
earns a grade of 2 or more, the current optimization routine is allowed to continue
running. When the grade falls below 2, the software switches to the next optimizer
in its repository. If the grade is 0 or 1, the reason to switch to another constituent
optimizer is because the currently used constituent algorithm is not contributing to
improving the Pareto approximation. As an example, the population gives itself
a grade of 1 because it meets criterion 4. This change could be caused just by
clustering of the previous Pareto approximation and the new population. While this
type of change in the Pareto approximation has its uses, it has been found that the
multi-objective routines used here can cause these kind of changes to the Pareto
approximation ad infinitum, when the Pareto approximation is very near the actual
non-dominated set of the objective space. It has been found that by enforcing at least
2 of the criteria, these situations are avoided.

The other limiting factor on how many consecutive iterations a given optimization
routine can run is the sub-iteration limit. Although a routine may be able to score a
grade of at least 2 indefinitely, for each new generation, there may be an optimization
method available that can do a better job. For this reason, each constituent optimizer
is limited to a user defined maximum sub-iteration limit. This limit gives all the
constituent optimizers a chance to run.

2.3 Hybrid Response Surface Generation Concepts

Optimization of systems with a large number of design variables where the objective
function is given in a pointwise fashion requires creation of a hypersurface that
fits through the given values of the objective function in a multi-dimensional space
where dimensionality corresponds to the number of the design variables. It is well
known that the locations of the training points are crucial for the proper construction
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of the response surface. When we are given a freedom to choose the locations of
the support points of a multi-dimensional response surface, a typical approach is to
use Design of Experiments (DoE) for this purpose. For high dimensional problems,
strategies such as Latin Hypercube Sampling [11], Sobol quasi-random sequences
of numbers [12], and a variety of de facto random number generators are most often
used. However, when we do not have freedom to choose the number and the locations
of the support points for generation of a response surface, all existing methods for
generating response surfaces have serious problems with accuracy and robustness.
This is mainly because arbitrary data sets provide inadequate uniformity of coverage
of space of the design variables and clustering of the support points that leads to
spurious oscillations of the response surfaces.

2.3.1 Polynomial Regression

The use of polynomial regression is one of the earliest attempts to generate response
surface models [13, 14]. The idea is to approximate an unknown function f(x) by an
approximation s(x) in the following general form

f (x) ≈ s(x) = a0 +
n∑

i=1
aixi +

n∑

i=1

n∑

j≤i
aijxixj

+
n∑

i=1

n∑

j≤i

n∑

k≤j
aijkxixjxk + · · ·

(2.1)

where n is the number of dimensions of the problem. Notice that we can write
Eq. (2.1) as

f = Xa + ε (2.2)

where ε is an approximation error with zero mean and variance, σ 2. If the functions
are given at certain known locations, the unknowns a can be found by least squares

a =
(

XT X
)−1

XT f (2.3)

It is well known that the locations of the training points are crucial for the proper
construction of the response surface. Such choice is known in the literature as Design
of Experiments (DoE). For low dimension problems, the classical method of choice
was the factorial design [13], which is not practical for high dimensional problems.
Other strategies for high dimensions include the Latin Hypercube Sampling [11],
Sobol quasi-random numbers [12], etc.

Although the polynomial regression technique seems very attractive in view of its
simplicity, it is not practical when the number of dimensions of the problem becomes
very high. In this case, there are other relatively recent techniques more appropriate.
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Among those techniques, the most used are Kriging [15], Radial Basis Functions
[16], and Neural Networks [17], among others.

2.3.2 Self Organizing Algorithms [19, 20]

Self-organizing algorithms come from the field of cybernetics [18]. The idea is that
the program “learns” the black box model as it is trying to mimic and makes the
response surface as complex as is required. By allowing the program to gradually
complicate the final model, the construction and evaluation time of the surrogate
model is automatically optimized for a given task. The black box model is the test
function being used to evaluate the RSM method.

The self-organizing algorithm presented here [19], is the multilayer algorithm
where the design variables are permutated, in pairs, to form nodes. At each node
a least squares regression is performed using the two variables input to the nodes.
These are variable vectors that are the size of the sample population. Thus, the output
of the node is a vector of the predicted values from the regression. The polynomial
used for the regression is a first order or second order polynomial. For instance, a
second order basis polynomial would be:

yk,n
i,j = ak,n

0 + a1
k,nxk,n

i + a2
k,nxk,n

j + a3
k,nxk,n

i xk,n
j

+ a4
k,nxk,n

i xk,n
i + a5

k,nxk,n
j xk,n

j i �= j (2.4)

where i, j = 1, 2, . . . , number of inputs to a given layer, k is the current layer, and
n is the node number at current layer. Equation (2.4) would then be a row in the
Vander Monde matrix for a regression using a second order basis polynomial of two
variables. The output of the node is the vector of predicted y values for the given
input. The output of a node in layer k − 1 becomes the input (provides an xi vector)
for layer k.

The notation in Eq. (2.4) is designed to inform the reader that the functions and
polynomial coefficients pertain to a particular layer and particular node in the layer.
The notation should also give the reader a feel for the computational resources needed
to create and maintain a multilayer self-organizing model.

Figure 2.2 shows a possible multilayer surrogate model for a three variable engi-
neering model. In the bottom layer (the zero layer) actual design variables are the
nodes in the layer. These become the x inputs to layer 1. The nodes for layer 1 are
created by permuting the input variables and performing a least squares fit using
Eq. (2.4), and the actual responses from the actual function (that is, objective func-
tion, engineering simulation, etc.). Once layer 1 is made, layer 2 is created, but now
the nodes of layer 1 provide the x’s to make the new nodes using Eq. (2.4). When
layer 3 is to be created, the 3rd node of layer 2 is not included. For now, we will just
say that the results of that regression were not good enough to be used to make the
3rd layer. Since only two nodes from layer 2 were used to make layer 3, only one
node can be created in layer 3 and the model making process ends there.
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Fig. 2.2 Sample multilayer
model for self-organizing
response surface creation [19]

The third node in layer 2 is not used to make nodes in layer 3 in Fig. 2.2. A
selection criterion is used to determine if the information in a node gets passed on
to the next layer. Madalaand and Ivakhnenko [18] suggest that using the following
equation is an appropriate means for checking the quality of a node and can be a
selection criterion

�2(B) =
∑

p∈NB
(y − �

y )2
p

∑
p∈NB

(yp − ȳ)2 (2.5)

where yp are the desired values,
�
y are the predicted values and ȳ are the mean of

the desired values. In the multilayer algorithm a threshold is set for the maximum
acceptable value of Eq. (2.5). Nodes that are within the threshold are passed on to the
next layer. For each new layer the threshold is made smaller. This serves to minimize
the amount of nodes in each layer to only the information that is needed to improve
the network. This trimming of nodes is crucial to keeping the method compact and
efficient [19]. The reader is urged to follow the example in Fig. 2.2, but first setting
the number of input variables to 4. The rate of the growth of layers can be very large.

The building of the multilayer network can be terminated in two ways (in practice):
A) Build a predetermined number of layers and chose the node in the last layer with
the best value of Eq. (2.5) to be the model output. B) Build layers until all nodes
are unable to meet the threshold value, chose the best-valued node as the output of
the model. Once the output node is chosen, the polynomial coefficients pertaining
to all the nodes used to create the output node are stored for evaluation of the model
(extraction of a predicted value).
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2.3.3 Kriging

The Kriging technique was named after the initial work of the South African mining
engineer Krige [20]. Details of this technique can be found in the classical papers of
Sacks et al. [21, 22] and Matheron [15]. It is worth mentioning also the excellent work
of Jones et al. [23] where they proposed an efficient method to global optimization.
Later, Huang et al. [24] extended Jones et al. work to deal with model uncertainties.
Following procedure described in the works of Jones et al. [23] and Sacks et al. [21,
22], the Kriging method starts by constructing a stochastic process model for the
function as

f
(

xi
)

=
m∑

j=1

ajgj

(
xi

)
+ εi (2.6)

where the superscript i is used to denote the ith point in the space of design variables
x. In Eq. (2.6), gj is a set of m linear or non-linear functions and ε is an approximation
error with zero mean and variance, σ 2. In the classical Kriging model, the approxi-
mation error is supposed to be function of the design variables, such that εi = ε(xi).
Some recent works [24] also include a measurement error in Eq. (2.6), but this will
not be discussed here. A usual hypothesis in this model is that if two points xi and
xj are close, then their approximation errors ε(xi) and ε(xj) are also close, meaning
that ε(xi) and ε(xj) are correlated. The correlation function between those two errors
can be given as a function of the weighted distance between then [21, 22].

d
(

xi, xj
)

=
n∑

k=1

θk

∣
∣
∣xi

k − xj
k

∣
∣
∣
Pk

θk ≥ 0, Pk ∈ [1, 2] (2.7)

where n is the number of dimensions of the problem. The correlation is given as

Corr
[
ε
(

xi
)

, ε
(

xj
)]

= exp
[
−d

(
xi, xj

)]
(2.8)

According to Jones et al. [23], such model is so powerful that we can rewrite
Eq. (2.6) in terms of the mean of the stochastic process μ, such that

f
(

xi
)

= μ + ε
(

xi
)

(2.9)

Following Jones et al. [23] we can then obtain the approximate function for a new
point x* as

f
(
x∗) = μ̂ + rT R−1 (

f − 1μ̂
)

(2.10)

where 1 is vector of ones, Ri,j = Corr[ε(xi), ε(xj)], ri = Corr[ε(x∗), ε(xi)], f is the
vector of functions at the known locations, and
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μ̂ = 1R−1f
1T R−11

(2.11)

Kriging also predicts the mean squared error of the estimates [21–23] and this
has been used as a predictor to locations where to add points in the response surface
model. Locations of the domain where the mean squared error of the estimates are
large, usually require the addition of extra points to increase the local accuracy.

2.3.4 Radial Basis Functions

The use of Radial Basis Functions (RBFs), initially proposed in the work of Hardy
[25] on multivariate approximation, is now becoming an established approach. RBFs
may be classified into two main groups:

• The globally supported ones namely the multiquadrics (MQ,
√(

x − xj
)2 + c2

j ,
where cj is a shape parameter), the inverse multiquadrics, thin plate splines, Gaus-
sians, etc;

• The compactly supported ones such as the Wendland [26] family (for example,
(1 − r)n+ + p (r) where p(r) is a polynomial and (1 − r)n+ is 0 for r greater than
the support).

Let us suppose that we have a function of L variables xi, i = 1, . . ., L. One possible
RBF approximation [27] can be written as

f (x) ≈ s (x) =
N∑

j=1

αjφ
(∣
∣x − xj

∣
∣
) +

M∑

k=1

L∑

i=1

βi,kpk (xi) + β0 (2.12)

where x={x1,…, xi, …, xL} and f(x) is known for a series of points x . Here, pk(xi)

is one of the M terms of a given basis of polynomials [28]. This approximation is
solved for the αj and βi,k unknowns from the system of N linear equations, subject
to the conditions (for the sake of uniqueness)

N∑

j=1
αjpk (xi) = 0

...
N∑

j=1
αjpk (xL) = 0

(2.13)

N∑

j=1

αj = 0 (2.14)

One of the possible RBFs are the multiquadrics radial functions
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φ
(∣
∣xi − xj

∣
∣
) =

√(
xi − xj

)2 + c2
j (2.15)

where the shape parameter cj must be adjusted. According to Baxter [29], usually
large values of cj provide the best approximations.

2.3.5 Wavelet Based Neural Networks [31, 32]

Wavelets occur in the family of functions generated from a mother wavelet ψ(x).
Each wavelet in it is defined by dilatation vector, ai, which controls the scaling, and
translation vector, ti, which controls the position. Given a training set, the overall
response of a WNN can be arithmetically written as

s (x) = W0 +
Np∑

i=1

Wiψi

(
x̄ − t̄

ā

)

(2.16)

where NP is the number of wavelet nodes in the hidden layer and wi is the synaptic
weight for each hidden node in the WNN. The dilatation and translation vectors have
size equal to the number of variables in the estimated function. Such a network can
be used to approximate any function

f (x) = s (x) + ε (2.17)

where s is a regression function and the error term ε is a zero-mean random variable
of disturbance.

One of the well known approaches for constructing WNN [30] requires the gen-
eration of a wavelet library, W. This library is composed of discretely dilatated and
translated versions of mother wavelet function, ψ (x). The next step is selecting the
best wavelets based on the training data from this library to build the regression. This
approach for building WNN becomes prohibitively computationally expensive when
the estimated function has a large number of variables. This is due to exponential
increase of the size of the wavelet library W with the dimension of the estimated
function. Searching such a huge library one-by-one is computationally redundant.
Therefore, a stochastic approach should be used for searching the best wavelets for
the WNN hidden nodes [31].

2.4 Hybrid Methods for Response Surfaces

In this section we will present some hybrid response surface methods. The accuracy of
these methods, along with their comparison against other strategies, will be presented
in the next section.
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2.4.1 Fittest Polynomial Radial Basis Function (FP-RBF) [28]

The FP-RBF hybrid method [27] consists of choosing the best possible combination
of RBF, polynomial order, variable scaling, and shape parameter for a given problem.

In the work of Colaço et al. [27], the polynomial part of Eq. (2.12) was taken as

pk (xi) = xk
i (2.18)

and the radial basis functions were selected among the following

Multiquadrics: φ
(∣
∣xi − xj

∣
∣
) =

√(
xi − xj

)2 + c2
j (2.19)

Gaussian: φ
(∣
∣xi − xj

∣
∣
) = exp

[
−c2

j

(
xi − xj

)2
]

(2.20)

Squared multiquadrics: φ
(∣
∣xi − xj

∣
∣
) = (

xi − xj
)2 + c2

j (2.21)

Cubical multiquadrics: φ
(∣
∣xi − xj

∣
∣
) =

[√(
xi − xj

)2 + c2
j

]3

(2.22)

Some tests were made using the cross-product polynomials (xixjxk…), but the
improvements on the results were found out to be irrelevant [27]. Also, other types
of RBFs were previously considered by the authors [27], but no improvement in the
accuracy of the interpolation was observed.

Therefore, a polynomial of order M is added to the radial basis function. After
inspecting Eqs. (2.12)– (2.14), (2.18), one can easily check that the final linear system
has [(N+M*L)+1] equations that can be solved by any traditional technique.

In the technique presented by Colaco et al. [27], initially all variables have to be
normalized. Then, the initial guess for the shape parameter c is set as the minimum
distance between two points in the training set of variables. Shape parameter, c,
is then increased until the best solution is obtained. Also, different scaling of the
variables are tried to give the best fit for the function. The choice of which polynomial
order, which shape parameter and scaling of the variables, and which RBF are the
best for fitting a specific data set was made based on a cross-validation procedure.
Let us suppose that we have PTR training points, which are the locations in the
multidimensional space where the values of the function are known. Such set of
training points is equally subdivided into two subsets of points, named PTR1 and
PTR2. The Eqs. (2.12)– (2.14) are solved for a polynomial of order zero and for one
of the RBF expression given by Eqs. (2.19)– (2.22) using the subset PTR1. Then, the
value of the interpolated function is checked against the known values of the function
that are in the subset PTR2. The error is recorded as

RMSPTR1,M=0,RBF1 =
PTR2∑

i=1

[
s(xi) − f (xi)

]2 (2.23)
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Then, the same procedure is repeated by using the subset PTR2 to solve the
equations and the subset PTR1 to calculate the error as

RMSPTR2,M=0,RBF1 =
PTR1∑

i=1

[
s(xi) − f (xi)

]2 (2.24)

Finally, the total error for the polynomial of order zero using one of the RBF
expressions given by Eqs. (2.19)– (2.22) is obtained as

RMSM=0,RBF1 = √
RMSPTR1,m=0,RBF1 + RMSPTR2,m=0,RBF1 (2.25)

This procedure is repeated for all polynomial orders, up to M = 10 and for each
one of the RBF expressions given by Eqs. (2.19)– (2.22). The best combination is the
one that returns the lowest value of the RMS error. Although this cross-validation
procedure is quite simple, it worked very well for practical test cases including opti-
mization of chemical compositions of alloys [32, 33] ,maghnetohydrodynamic flow
in cavities [34], energy/exergy optimization [35, 36] and Bayesian inverse problems
in heat transfer [37].

2.4.2 Kriging Approximation with Fittest Polynomial Radial
Basis Function (KRG-FP-RBF)

A new method is proposed in this paper, which combines the very high accuracy of
the FP-RBF approximation with the stochastic appealing of the Kriging method. The
idea is conceptually simple, although the computational implementation requires
some effort. Results presented in this paper are still preliminary and need further
investigation.

Referring to Jones et al. [23], the Kriging approximation given by Eq. (2.6) is
so powerful that the base function g(x) can be written as the mean of the stochastic
process, μ. However, we propose to extend even more such accuracy by using the FP-
RBF approximation as a base function for the Kriging process. In other words, once
the FP-RBF method has been adjusted and fitted to a particular set of data, we use this
approximation as the g(x) function in the Kriging model given by Eq. (2.6). Inserting
the FP-RBF definition given by Eq. (2.12) into the Kriging model of Eq. (2.6), we
have the following stochastic process model for the function as

f
(

xi
)

= a s
(

xi
)

+ εi (2.26)

Notice that s(x) has to be built using the FP-RBF model explained earlier. By
doing this, we are assuming that ε is the FP-RBF approximation error, which has
(by hypothesis) zero mean and variance σ 2. Once the approximation was built by
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the FP-RBF method, the Kriging approximation is used to model such error in a
stochastic way. Then, following Sacks et al. [21, 22] derivations, adapted to our
nomenclature, we can obtain the best linear unbiased predictor at a new point x*
as (mathematical details are omitted for lack of space, but the interested readers are
urged to read publications by Sacks et al. [21, 22] for all details of this derivation)

s̃
(
x∗) = a s

(
x∗) + rT (

x∗) R−1 [F − a S] (2.27)

where F is the vector of the exact function evaluated at the training points locations
and S is vector of FP-RBF approximation at these same locations. Notice that if
a = 1, and F=S, then the Kriging model reduces to the FP-RBF model. Thus, the
second term gives some measure of the error between the real data and the FP-RBF
approximation. In this equation, R is the full correlation matrix between the training
points, given by Eq. (2.8) and r is the correlation vector between the evaluation point
x* and the training points, also given by Eq. (2.8). The parameters θ and P, appearing
in Eq. (2.7) can be obtained by minimizing [(detR)1/mσ 2] where m is the number
of training points [21, 22]. In this paper, such minimization was performed by the
Particle Swarm method. The other parameters appearing in these equations are given
as [21, 22]

σ 2 = 1

m
(F − a S)T R−1 (F − a S) (2.28)

a =
(

ST R−1S
)−1

ST R−1F (2.29)

where Eq. (2.28) gives the maximum likelihood estimation of the variance and
Eq. (2.29) is the generalized least-squares estimate [21, 22] of a. Thus, this pro-
cedure uses the Kriging method to model the approximation error of the FP-RBF
approximation.

2.4.3 Hybrid Self Organizing Model With RBF [20]

The best known application of self-organizing method is in the commercial software
IOSO [38] which uses quadratic local fitting polynomials. A more general idea is
to use the self-organizing method given by Eq. (2.4) to choose the best local fitting
functions (linear, quadratic, cubic or quadratic) to generate a response surface thus
capturing the major topology of the response multi-dimensional hyper-surface. How-
ever, this metamodel does not force the hyper-surface to pass exactly through the
provided support points. The difference between the actual values of the objective
function at the support points and the fitted values at the support points represents a
much less challenging topology which it then fitted using RBF method [19]. Such a
combined response surface fitting method is much more robust and accurate (Figs. 2.3
and 2.4) than either of the separate methods used in this hybrid [19]. This hybrid
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Fig. 2.3 Self-organizing method using quadratic local polynomials applied to a medium size data
set; model accuracy [19]

method is simple to implement, although computationally costly, where computing
cost is mainly due to the self-organizing method. This suggests a need for research
into reducing the computing cost of the self-organizing method by using more effi-
cient pruning algorithms to eliminate those branches in the genetic tree that are
terminating.

2.4.4 Genetic Algorithm Based Wavelet Neural Network
(HYBWNN) [31, 32]

Another hybrid method used for fitting high dimensional functions is the Genetic
Algorithm Wavelet Based Neural Network (WNN) model presented by Sahoo and
Dulikravich [31] with 5 neural subnets. Typically, the mother wavelet used in the
WNN is Mexican Hat wavelet given by

ψ (x) =
(

2√
3
π−1/4

)(
1 − x2

)
exp

(−x2

2

)

(2.30)

Gaussian wavelets were also used along with this mother wavelet to construct
the WNN [31]. For each node of the WNN, genetic algorithm was used to search
the best Mexican Hat wavelet and the best Gaussian wavelet. The one having a
lower norm of residue after performing multiple linear regression was selected and
used in the WNN architecture. The concept of binary genetic algorithm was used to
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Fig. 2.4 Self-organizing method followed by RBF used on residuals applied to a medium size data
set; model accuracy [19]

t1 a1 t2 a2

1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 

Fig. 2.5 Binary string representation of a 2-D wavelet

search for the wavelets required for the hidden nodes in the WNN. The dilatation
and translation factors (binary representation) in Eq. (2.16) for each dimension of
the wavelet were concatenated to form the chromosomes in the GA population. A
typical representation of a wavelet in 2-D function estimation is shown in Fig. 2.5.

It has two dilatation factors specifying the scaling and two translation factors
specifying the position of the wavelet in each dimension. The variables space is
normalized so the translation factors can vary within [−1, 1] and the dilatation factors
can vary within [0.1, 0.8]. The fitness for selecting the wavelet was defined as the
norm of the residue obtained by doing multiple linear regression of the values given
by the wavelet transform of the training data versus the real function values. The
GA was run for a sufficient number of generations to select a wavelet. Subsequent
wavelets were searched by the GA based on the residue obtained in former step set
as target values. This approach was unable to search for proper wavelets when the
number of variables in the estimated function went beyond ten. The chromosome
length for such functions was huge and the binary GA became inefficient. Therefore,
a real numbers GA search was proposed where the wavelet is represented as a string
of real number instead of a binary string. The range for searching for the values of
dilation factors was relaxed to [0.005, 5.00]. This gave more flexibility to the GA for
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a1 t1 a2 t2 a3 t3 a4 t4

2.8424 0.25483 2.4672 0.000922 1.7407 0.98521 2.5848 -0.61214

Fig. 2.6 Real string representation of a 4-D wavelet

searching appropriate wavelets [31]. A typical example of a wavelet representation
in 4-D function estimation is shown in Fig. 2.6.

The fitness assignment was similar to the previous method. In addition, whole
arithmetic crossover and floating point mutation operators were used. Separate GAs
were run serially [36] for finding the activation function in each node of the WNN
architecture.

2.5 Comparison Among Different Response Surface Algorithms

Performance of different hybrid response surface algorithms was evaluated on data
sets containing either scarce (3L), small (10L), medium (30L) or large (50L) number
of points, where L designates the dimensionality of the problem [39, 40].

2.5.1 Fittest Polynomial RBF Versus Hybrid Wavelet Neural
Network [42]

In order to compare the accuracy of the FP-RBF [27] model against the Hybrid
Wavelet Neural Network (WNN) [31], 13 test cases were used, representing linear
and non-linear problems with up to 16 variables. These test cases, defined as problems
1–13 were selected by Jin et al. [41] in a comparative study among different kinds
of meta-models. Such problems were selected from a collection of 395 problems
(actually 296 test cases), proposed by Hock and Schittkowski [42] and Schittkowski
[43]. For the other comparison presented in this paper, all 296 test cases will be
presented. The reason is the very high computational cost associated with the WNN
method that restricted us to these 13 test cases initially. Also, for these test cases,
the polynomial degree of the FP-RBF model was fixed in a pre-specified value, and
the shape parameter was set to 1/N, where N is the number of training points. For the
other sections of this paper, those two parameters were allowed to vary according to
the cross-validation procedure defined previously.

The first 12 problems do not have random errors added to the original function,
while the problem no. 13 has a noise added with the following form

ε (x1, x2) = σ r (2.31)
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where σ is the standard deviation and r is a random number with Gaussian distribution
and zero mean.

For accuracy, the goodness of fit obtained from “training” data is not sufficient to
assess the accuracy of newly predicted points. For this reason, additional confirma-
tion samples are used to verify the accuracy of the metamodels. To provide a more
complete picture of metamodel accuracy, two different metrics are used: R Square,
and Relative Average Absolute Error (RAAE) [41].

(a) R Square (R2)

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2

∑n
i=1 (yi − ȳ)2 = 1 − MSE

variance
(2.32)

where ŷi is the corresponding predicted value for the observed value yi; ȳ is the
mean of the observed values. While MSE (Mean Square Error) represents the
departure of the metamodel from the real simulation model, the variance captures
how irregular the problem is. The larger the value of R2, the more accurate the
metamodel.

(b) Relative Average Absolute Error (RAAE)

RAAE =
∑n

i=1

∣
∣yi − ŷi

∣
∣

n∗STD
(2.33)

where STD stands for standard deviation. The smaller the value of RAAE, the
more accurate the metamodel.

The FP-RBF model presented here was compared against the WNN method for the
13 selected analytical test cases. In order to check the accuracy of the metamodel
when different samples were employed, three different sets of training points were
used, as suggested by Jin et al. [41]. Table 2.1 gives the number of training points,
testing points, minimum and maximum value of each test function, as well as the
standard deviation and average value of each test function.

Initially, the results obtained with the FP-RBF model, with a polynomial of order
10 using a large number of training points and the results obtained with a polynomial
of order 1 for small and scarce sets of training points were compared with the results
obtained by using WNN method [44]. Only problems no. 1–5 were tested for a scarce
set of training points, as suggested by Jin et al. [41].

Figure 2.7 demonstrates that when considering R2 metric, for large and small sets
of training points, the RBF was better than the WNN, while for a scarce number of
training points, the WNN was more accurate. On the contrary, it appears that when
considering RAAE metric, for large and small sets of training points, the WNN was
better than the RBF, while for a scarce number of training points, the RBF was more
accurate.
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Fig. 2.7 R2 and RAAE metrics for WNN and FP-RBF

Fig. 2.8 R2 results with WNN for a large number of variables (WNN with five subnets)

However, one of the major problems with WNN is its rapidly decreasing accuracy
with increasing dimensionality of the problem. Figure 2.8 demonstrates the results
for test problem no. 2 when using the WNN. One can see that the accuracy, given
by the R2 metric, decreases rapidly when using 100 training points. Also, for 400
training points, the R2 goes to a negative value when using more than 100 variables.
Colaço et al. [39] demonstrated that the RBF model was able to maintain a very high
accuracy even when the number of variables increased to 500.

Figure 2.9a shows the computational time required to run this test case using the
FP-RBF model. The code was written in Fortran 90 and the CPU was an Intel T2300
1.66 Ghz (Centrino Duo) with 1 Gb RAM. Figure 2.9b shows the computational time
required by the WNN where one can notice the extremely high computational cost.
The code for the WNN was written in Matlab 7.0.4 and the CPU was an Intel T2300
1.66 Ghz (Centrino Duo) with 1 Gb RAM. Some improvement in the performance
could be expected by converting this code to Fortran90 or C++. However, the compu-
tational cost for the WNN for a problem with 300 variables and 400 training points,
even with different programming languages (Matlab and Fortran90) was approxi-
mately 6,000 times greater than for the RBF.
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Fig. 2.9 Computing time for a large number of variables: (a) RBF with M=1, (b) WNN with five
subnets
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Fig. 2.10 Number of variables for each problem considered in the Schittkowski suite of analytical
test cases [42, 43]

Table 2.2 Number of training
and testing points

Number of training points Number of testing points

(L) (L)

Scarce set 3 300

Small set 10 1,000

2.5.2 Fittest Polynomial RBF Versus Kriging

In this section we will compare the accuracy and computing time requirement of the
FP-RBF model against the one given by the Kriging model proposed by Jones et al.
[23]. From now on, 296 test cases will be used, representing linear and non-linear
analytical problems with up to 100 variables. These test problems were selected from
a collection of 395 (actually 296) test cases proposed by Hock and Schittkowski [42]
and Schittkowski [43]. Figure 2.10 shows the number of variables of each test case
analyzed. To verify the accuracy of the interpolation over different number of training
points, two sets were defined. Also, the number of testing points varied, according to
the number of training points. Table 2.2 presents these two sets, based on the number
of dimensions (variables) L of the problem.

Initially, Fig. 2.11 presents the values of R2 and RAAE metrices for the FP-RBF
model, considering a scarce set of data. As one can see, most of the test cases
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Fig. 2.11 Metrics for the FP-RBF method (scarce set of data)

Fig. 2.12 Metrics for the FP-RBF method (small set of data)

Fig. 2.13 CPU time for the FP-RBF method. a scarce set of data, b small set of data

have high values of R2 and low values of RAAE, indicating a good approximation,
even for such small number of training points. When the number of training points is
increased from scarce to small, results look better, as one can notice from the analysis
of Fig. 2.12 for the R2 and RAAE metrics.

Figure 2.13 shows the CPU time for FP-RBF method. All test cases ran on an
Intel i7 2GHz with 4 Gb of RAM (Windows XP emulated under Mac OS X 10.8.4)
and codes were written in Fortran 90. Besides running on different processors, CPU
times in these test cases are a little higher than in previous one, since now we are also
optimizing the shape parameter, the RBF polynomial degree and the scaling of the
variables, as discussed before. Notice that computing time increased only slightly by
going from a scarce data set to a small data set.

Figure 2.14 shows difference of R2 and RAAE metrics between the Kriging
method and the FP-RBF model for 296 test-cases studied in this section, using the
scarce set of data. Since higher R2 and lower RAAE values indicate a good accuracy,
in these graphics, negative values of Delta R2 and positive values of RAAE indicate
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Fig. 2.14 Difference of the R2 and RAAE metrices between the Kriging model proposed by Jones
et al. [23] and FP-RBF methods for the scarce set of data (negative values of Delta R2 and positive
values of Delta RAAE indicates superiority of the FP-RBF method)

Fig. 2.15 Difference of the R2 and RAAE metrics between the Kriging model proposed by Jones
et al. [23] and FP-RBF methods for the small set of data (negative values of Delta R2 and positive
values of Delta RAAE indicates superiority of the FP-RBF method)

the superiority of the FP-RBF method. As a general trend, the FP-RBF method per-
forms better than the original Kriging method, given by Eq. (2.9), for most of the test
cases, although there are some functions were Kriging has a better accuracy. For the
small set of data, such comparison is presented in Fig. 2.15, where one can notice
the superiority of the FP-RBF method over Kriging.

Figure 2.16 shows the CPU time ratio between Kriging and FP-RBF for scarce
and small sets of data. In this figure, values greater than one indicate how many
times the Kriging is slower than the FP-RBF. As a general trend, for the scarce set
of data, Kriging is one order of magnitude slower than the FP-RBF, whereas for the
small set of data it is two orders of magnitude slower. Two factors contribute for
the high computing cost of Kriging: (i) the need to invert the covariance matrix R
in Eqs. (2.27)– (2.29) and the minimization of [(detR)1/mσ 2] by the Particle Swarm
method. We intend to investigate ways to reduce this computational cost, since Krig-
ing seems to have some advantage over FP-RBF model when applied to certain
functions, as shown above. It is also worth noting that the CPU time ratio is almost
constant over all test problems. In fact, going from test function number 200–295 the
CPU time ratio decreases, when the number of dimensions of the problems varies
considerably, as one can check from Figs. 2.10 and 2.16.
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Fig. 2.16 CPU time ratio between the Kriging model proposed by Jones et al. [23] and FP-RBF
methods for the scarce and small sets of data (values higher than one indicate the Kriging method
is more expensive than FP-RBF)

Fig. 2.17 Difference of the R2 and RAAE metrics between the HYBSORSM and FP-RBF methods
for the scarce sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Fig. 2.18 Difference of the R2 and RAAE metrics between the HYBSORSM and FP-RBF methods
for the small sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

2.5.3 Fittest Polynomial RBF Versus Hybrid Self Organizing
Response Surface Method—HYBSORSM

Results in Fig. 2.17 indicate better accuracy of the FP-RBF method over HYBSORM.
From the analysis of this figure it is clear the superiority of FP-RBF model. Compar-
ing Fig. 2.17 with Fig. 2.14, it is evident that for this set of data, the Kriging model
is also superior to HYBSORSM. However, when the small set of data is used (see
Fig. 2.18) the HYBSORM method improves its performance, but is still outperformed
by the FP-RSM method. Comparing now Figs. 2.15 and 2.18, the HYBSORM has a
better performance than the Kriging model for the small sets of data.
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Fig. 2.19 CPU time ratio between the HYBSORSM and FP-RBF methods for the scarce and small
sets of data (values higher than one indicate the method is more expensive than FP-RBF)

Fig. 2.20 Difference of the R2 and RAAE metrics between the KRG-FP-RBF and FP-RBF methods
for the scarce sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Figure 2.19 shows some interesting results regarding the CPU time ratio between
HYBSORM and FP-RSM model. In some cases, the first method is faster then the
FP-RBF model, whereas it is slower for other ones. Comparing Figs. 2.10 and 2.19,
it is interesting to notice that the CPU time ratio follows the same behaviour as the
number of variables. Thus, opposite to the Kriging model, where the CPU time was
almost constant with the number of variables, the HYBSORSM method requires
more computational effort for problems where the number of dimensions is high.

2.5.4 Fittest Polynomial RBF Versus Kriging Approximation with
Fittest Polynomial Radial Basis Function—KRG-FP-RBF

This section compares the results of the FP-RBF method with the ones obtained
by the combined (hybrid) KRG-FP-RBF method. Figures 2.20 and 2.21 show Delta
R2 and Delta RAAE for the scarce and small sets of data. In general, the hybrid
KRG-FP-RBF method does not modify the accuracy of the FP-RBF method, except
in a few cases. Although for some cases the performance decreases, for most of the
cases where the hybrid KRG-FP-RBF method changes the FP-RBF performance, it
improves the solution. These results are still in a very early stage of development
and we believe this approach might improve the overall performance of the FP-RBF
method if some better strategy to minimize [(detR)1/mσ 2] is used.
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Fig. 2.21 Difference of the R2 and RAAE metrics between the KRG-FP-RBF and FP-RBF methods
for the small set of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Fig. 2.22 CPU time ratio between the KRG-FP-RBF and FP-RBF methods for the scarce and small
sets of data (values higher than one indicate the method is more expensive than FP-RBF)

Finally, Fig. 2.22 shows the CPU time ratio between the KRG-FP-RBF method
and the FP-RBF method. This ratio can be reduced if better optimization procedures
are used in the Kriging part of the code.

2.6 Conclusions

A number of concepts for constructing hybrid optimization algorithms with focus on
automatic switching logic have been described. Also, a number of multi-dimensional
response surface fitting algorithms and their hybrids have been described and their
performances compared for scarce, small and medium data sets. Fittest polyno-
mial radial basis function (FP-RBF) method appears to offer the best overall perfor-
mance concerning high accuracy of fitting arbitrary data sets and low computing time
requirements. Possible hybridization of Kriging and FP-RBF was also thoroughly
tested showing its promises as far as increased robustness of such hybrids, although
at significant increase in the computing time.
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Chapter 3
A Genetic Algorithm for a Sensor Device
Location Problem

Egidio D’Amato, Elia Daniele and Lina Mallozzi

Abstract In this paper we present a noncooperative game theoretical model for the
well known problem of experimental design. A virtual player decides the design
variables of an experiment and all the players solve a Nash equilibrium problem by
optimizing suitable payoff functions.We consider the casewhere the design variables
are the coordinates of n points in a region of the plane and we look for the optimal
configuration of the points under some constraints. Arising from a concrete situation,
concerning the ARGO-YBJ experiments, the goal is to find the optimal configuration
of the detector, consisting of a single layer of resistive plate counters. Theoretical
and computational results are presented for this location problem.

Keywords Facility location · Nash equilibrium · Constrained optimization

3.1 Introduction

The scope of the ARGO-YBJ project is to study cosmic gamma radiation, identifying
transient emissions and performing a systematic search of steady sources [1]. The
detection of very small size air showers (at low energy< TeV), is needed to reach this
scope, because standard ones would sample only a small percentage of the shower
particles. The achieving of the objective is committed to a new instrument located in
Yangbajing Laboratory (Tibet, China), at a very high altitude (4,000m a.s.l.) in order
to approach the maximum size development of low energy showers. This detector
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uses a full coverage layer of Resistive Plate Counters (RPCs) that can provide a high
granularity sampling of particle showers. It covers an area of about 6,700m2 and
allows a detailed space-time picture of the shower front.

This work is related to the optimization of RPCs location on the layer, to capture
a uniform cosmic source distribution, constrained by a limited number of receivers
due to a budget limitation.

Considering the capture surface of a single receiver shaped as a circular area,
the problem has many points in common with a classic sphere packing problem
[5, 13, 18]. The problem of packing circles in different geometrical shapes in the
plane has always attracted researchers for the large amount of fields on which it
can be applied. In the last decades many results, mainly for small packings, were
obtained. The increasing performance of computing systems and the development
of new optimization algorithms for large problems have recently brought to the fore-
front this kind of problems. Usually the circle packing problem can be stated as that
of spreading points and it’s needed to find a configuration of points in the given region
such that theminimummutual distance between the points is as large as possible. The
packing problem is dual to the covering one, in which the optimal location of points
is needed to cover as much as possible the area of interest. Typical solutions can
be found in several fields and are addressed using several algorithmic optimization
procedures [3, 11, 14, 16, 19].

In this paperwe are interested infinding the optimal location of a limited number of
receivers to maximize the total detection area. This experimental design problem can
be faced as a Nash equilibrium problem as stated in Game Theory: the choice of the
variables in n experiments is made by n players, each of them has to decide his loca-
tion far as possible from the opponents and also from the border of the region. On this
model, it is possible to compute the equilibria by using a numerical procedure based
on agenetic algorithm [4, 6, 10, 15, 17, 20]. InSect. 3.2 the constrained locationprob-
lem is introduced and the procedure to solve it by a Nash game is shown; in Sect. 3.3
theNash genetic algorithm for the facility location game is presentedwith several test
cases. In Sect. 3.4 concluding remarks and some further developments are discussed.

3.2 Constrained Location Problem

3.2.1 Preliminaries

Let us consider an n-player normal form game Γ (n ∈ N , where N is the set of
natural numbers), that consists of a tuple

Γ = 〈N ; X1, . . . , Xn; f1, . . . , fn〉

where N = {1, 2, . . . , n} is the finite player set, for each i ∈ N the set of player i’s
strategiesisXi (i.e. thesetofplayer i’sadmissiblechoices)and fi :X1×· · ·× Xn → R
isplayer i’spayoff function(R is thesetof realnumbers).Wesupposehere thatplayers
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arecostminimizing,sothatplayer i hasacost fi (x1, x2, . . . , xn)whenplayer1chooses
x1 ∈ X1, player 2 chooses x2 ∈ X2,…, player n chooses xn ∈ Xn .

We define X = X1 × · · · × Xn and for i ∈ N : X−i = Π j∈N\{i} X j . Let x =
(x1, x2, . . . , xn) ∈ X and i ∈ N . Sometimes we denote x = (xi , x−i ), where
x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

A Nash equilibrium [2, 12] for Γ is a strategy profile x̂ = (x̂1, x̂2, . . . , x̂n) ∈ X
such that for any i ∈ N and for any xi ∈ Xi we have that

fi (x̂) ≤ fi (xi , x̂−i ).

Such a solution is self-enforcing in the sense that once the players are playing
such a solution, it is in every player’s best interest to remain in his strategy.We denote
by N E(Γ ) the set of the Nash equilibrium strategy profiles.

Any x̂ = (x̂1, . . . , x̂n) ∈ N E(Γ ) is a vector such that for any i ∈ N , x̂i is solution
to the optimization problem

min
xi ∈Xi

fi (xi , x̂−i ).

3.2.2 The Facility Location Game

We consider the unit square Ω = [0, 1]2: the problem is to decide for two variables
x and y the values of n available experiments (n ∈ N given).

Problem 1 Experimental Design (ED)
The problem is to sattle n points P1, P2, . . . , Pn in the square Ω in such a way

that they are far as possible from the rest and from the boundary of the square.

This implies to maximize the dispersion of the points in the interior and the
distance from the boundary of Ω as in experimental design ([9]). Various concrete
situations satisfy these requirement, for example the location of sensor device to
capture cosmic rays in a region that will be discussed in the next section.

There is a competition between the points in the square, because the dispersion
depends on the mutual position of all the points, also with respect to the boundary
of Ω , so we use a game theoretical model and assign each point to a virtual player,
whose decision variables are the coordinates and whose payoff function translates
the dispersion in terms of distances.

As it happens in applications, forbidden places may be present inside the square.
We consider the location problem in the constrained case depending on the admissible
subregion of Ω , say Ωc ⊂ Ω .

In the constrained case we define the following n-player normal form game
Γc = 〈N ;Ωc, . . . ,Ωc; f1, . . . , fn〉 where each player in N = {1, 2, . . . , n}, for
each i ∈ N , minimizes the cost fi : Ac → R defined by

fi (P1, . . . , Pn) =
∑

1≤ j≤n, j �=i

1

d(Pi , Pj )
+ 1√

2d(Pi , ∂Ω)
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being Ac = {
(P1, . . . , Pn) ∈ Ωn

c : Pi ∈ (]0, 1[)2, Pi �= Pj ∀i, j = 1, . . . , n, j �= i
}

and d is the Euclidean metric in R2. The first n − 1 terms in the definition of fi

give the distance between the point Pi and the rest of the points, the last term an
decreasing function of the distance of Pi from the boundary of the square.

Definition 1 Any (x̂1, ŷ1, . . . , x̂n, ŷn) ∈ Ac that is a Nash equilibrium solution of
the game Γc is an optimal solution of the problem (ED). For any i ∈ N , (x̂i , ŷi ) is
solution to the optimization problem

min
(xi ,yi )∈Ωc

fi (x̂1, ŷ1, . . . , x̂i−1, ŷi−1, xi , yi , x̂i+1, ŷi+1, . . . , x̂n, ŷn)

with (x1, y1, . . . , xn, yn) ∈ Ac.

A very common situation is to consider Ωc = Ω\T with T a closed subset of
Ω (a triangle, a circle, etc.) that corresponds to a facility location problem with an
obstacle (a lake, a mountain, etc.). Other concrete cases for the admissible regionΩc

can be considered: in the following Section we will examine the location problem
when the admissible region is given by a set of segments.

3.2.3 Location of Sensor Devices on a Grid

Given the set {h1, . . . , hk} (hi ∈ ]0, 1[, i = 1, . . . , k) we consider the set of possible
location of n sensor devices able to capture cosmic particles

Ωc = {[0, 1] × {h1}, . . . , [0, 1] × {hk}}.
We are obliged to locate the sensors on the given k segments in the square: for
example because of electricity constraints.

In terms of coordinates, if Pi = (xi , yi ), i ∈ N the distance of a point P = (x, y)

from the set ∂Ω , the boundary of Ω , is

d(P, ∂Ω) = min
Q∈∂Ω

d(P, Q) = min{x, y, 1 − x, 1 − y}

and we have for (x1, y1, . . . , xn, yn) ∈ Ac

fi (x1, y1, . . . , xn, yn) =
∑

1≤ j≤n, j �=i

1
√

(xi − x j )2 + (yi − y j )2

+ 1√
2min{xi , yi , 1 − xi , 1 − yi }

for (x1, y1, . . . , xn, yn) ∈ Ωc ∩ Ac.
The optimal location of the sensors will be the Nash equilibrium solutions of the

game Γc = 〈N ;Ωc, . . . ,Ωc; f1, . . . , fn〉, where each player in N = {1, 2, . . . , n},
for each i ∈ N , minimizes the cost fi : Ac → R for (x1, y1, . . . , xn, yn) ∈ Ωc ∩ Ac.
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3.3 Nash Genetic Algorithm for the Location Problem

3.3.1 Genetic Algorithm

Let X1, X2, . . . , Xn be compact subsets of an Euclidean spaces, denoted as search
space. Let f1, f2, . . . , fn be real valued functions, defined on X1 × X2 × · · · × Xn ,
representing the objective functions to be maximized.

Let s = x1, x2, . . . , xn be the individual (or chromosome) representing a feasible
solution in the search space. A finite set of individuals make up a population. It can
be viewed as a sampling of the problem domain that generation by generation maps
zones with an higher probability of presence of the optimum ([10]).

A typical genetic algorithm consists of several steps:

• Population initialization: at the first step, a random population is set to map the
search domain.

• Selection: on the sorted population, a probabilistic based selection of parents is
made to permit coupling of best individuals without wasting worst chromosomes
that may be useful to move towards unexplored zones of search space.

• Crossover: on selected parents, a crossover operator is applied to create two new
individuals. This operator may be applied in several forms.

• Mutation: to avoid premature stagnation of the algorithm a mutation operator is
used, randomly changing a bit of the just created chromosomes.

• Fitness computation: objective function and constraints must be evaluated to sort
individuals in the population.

• Termination criterion: usually two criteria are defined in a GA, one on the max-
imum number of total generations and one on the maximum number of total
generations without improvements on the best chromosome.

3.3.2 Nash Equilibrium Game

According to the definition of Nash equilibrium presented in 3.2.3, the algorithm for
a n players Nash equilibrium game is presented [6–8, 15].

The algorithm is based on the Nash adjustment process [12], where players take
turns setting their outputs, and each player’s chosen output is a best response to the
output that his opponent chose the period before. If the process does converge, the
solution is an optimal location of the n sensor devices.

Let x = x1, . . . , xn be a feasible solution for the n player Nash problem. Then
xi denotes the subset of variables handled by player i , belonging to a metric space
Xi , and optimized by an objective function called fi . Player i search the optimal
solution with respect to his objective function by modifying xi .

At each step k of the optimization algorithm, player i optimizes xk
i using xk−1

(−i) =
xk−1
1 , . . . , xk−1

i−1 , xk−1
i+1 , . . . xk−1

n .
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The first step of the algorithm consists of creating n different populations, one
for each player. Player i’s optimization task is performed by population i . Let xk−1

i
be the best value found by player i at era k − 1. At era k, player i optimizes xk

i

using xk−1
−i in order to evaluate the chromosome. At the end of kth era optimization

procedure players−i communicate their own best value xk
−i to player i who will use

it at era k + 1 to generate their entire chromosome, using only xk
i for common GAs

crossover and mutation procedures. A Nash equilibrium is reached when no player
can further improve his objective function, or a generation number limit is reached.

3.3.3 Test Cases

In this section, numerical results for the constrained location model are shown. They
have been obtained using the Nash Genetic Algorithm presented above, with para-
meters summarized in Table3.1.

First results are relative to the grid constrained case, in which RPCs can be located
only at defined values of the second coordinate h1, . . . , hk . In this case, the genetic
algorithm is modified to handle a discrete variable y ∈ Y , where Y = {h1, . . . , hk}
is the set of feasible bands.

In Figs. 3.1, 3.2 and 3.3 the comparison for uncostrained and constrained cases
are shown, changing the number of rows on which the RPCs are contrained case
by case, depending on the results of the unconstrained cases. The optimal location
points are denoted by blue circles in the unconstrained case, and by red squares in
the constrained case.

Table 3.1 Genetic
algorithms characteristics

Parameter Value or type

Chromosome Binary string

Crossover Multi-cut

Mutation probability 0.01

Population size 100

Mating-pool 50
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Fig. 3.1 Cases n = 4 and Y = {0.3, 0.7}; n = 5 and Y = {0.3, 0.5, 0.7}
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Fig. 3.2 Cases n = 6, 7 and Y = {0.2, 0.4, 0.6, 0.8}
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Fig. 3.3 Cases n = 8 and Y = {0.2, 0.4, 0.6, 0.8}; n = 10 and Y = {0.15, 0.35, 0.5, 0.65, 0.85}

3.4 Conclusions

In this paper the problemof locating a given number of sensor devices has been solved
by means of a facility location problem whose solutions are the Nash equilibrium
profiles of a suitable normal form game. The objective functions are given according
to physical requirements. For such a problem a numerical procedure based on a
genetic type of algorithm has been used to compute the final configurations. We
considered the special case where the admissible region is made by a set of parallel
segments, due to operative constraints (for example, electricity lines).

Other possible cases could be examined, for example the case where in the
admissible region a convex obstacle is present. In this case the optimal location
of the sensors will be the Nash equilibrium solutions of the game Γc = 〈N ;
Ωc, . . . ,Ωc; f1, . . . , fn〉, where each player in N = {1, 2, . . . , n}, for each i ∈ N ,
minimizes the cost fi : Ac → R for (x1, y1, . . . , xn, yn) ∈ Ωc ∩ Ac andΩc = Ω \T
with T a closed subset of Ω (a triangle, a circle, etc.). In the numerical procedure
the objective functions can been modified to handle obstacles as penalty functions
applied to the principal objective. In particular, fi the objective function relative to
the i th player, it is penalized by:
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Fig. 3.4 Cases for n = 5, 10 with circle shaped obstacle
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Fig. 3.5 Cases for n = 5, 10 with box shaped obstacle T = [0, 0.5]2

fi = fi/ f pen

where f pen ∈ [0, 1] is a suitable penalty function.
For example, for a circular obstacle f pen = d(x, y)/rc, where d(x, y) is the

minimum distance between the sensor (x, y) and the center of the circular obstacle,
rc is the radius of the circle. Two test cases are shown in Fig. 3.4 with T given by the
circle centered at (0.5, 0.5) with radius 0.25.

In other cases, for example if we have a rectangular obstacle, a constant penalty
( f pen = 0.1) can be applied for each sensor located in the unfeasible region. Two
test cases are shown in Fig. 3.5.

Amore systematic study of the constrained case from a theoretical as well as from
a numerical point of view will be the object of future research.
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Chapter 4
The Role of Artificial Neural Networks
in Evolutionary Optimisation: A Review

M. Maarouf, A. Sosa, B. Galván, D. Greiner, G. Winter, M. Mendez
and R. Aguasca

Abstract This paper reviews the combination of Artificial Neural Networks (ANN)
and Evolutionary Optimisation (EO) to solve challenging problems for the academia
and the industry. Both methodologies has been mixed in several ways in the last
decade with more or less degree of success, but most of the contributions can be
classified into the two following groups: the use of EO techniques for optimizing the
learning of ANN (EOANN) and the developing of ANNs to increase the efficiency of
EO processes (ANNEO). The number of contributions shows that the combination
of both methodologies is nowadays a mature field but some new trends and the
advances in computer science permits to affirm that there is still room for noticeable
improvements.

Keywords Artificial neural networks · Evolutionary optimisation · Evolutionary
algorithm

4.1 Introduction

Artificial Neural Network (ANN) and Evolutionary Algorithm (EA) are relatively
young research areas that were subject to a steadily growing interest nowadays; rep-
resent two evolving technologies that are inspired by biological information science.

ANN is derived from brain theory to simulate learning behavior of an individual,
which is, used for approximation and generalization, while EA is developed from
the evolutionary theory raised by Darwin to evolve the whole population for better
fitness. Evolutionary Algorithm is actually used as an optimisation algorithm, and
not a learning algorithm.

In particular, EO has been used to search for the design and structure of the
network and to select the most relevant features of the training data. It is well known
that to solve nonlinearly separable problems, the network must have at least one
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hidden layer; but determining the number and the size of the hidden layers is mostly
a matter of trial and error. EOs has been used to search for these parameters, to
generate the appropriate network to solve specific problems.

On the other hand, ANNhas yieldmany benefits solving a lot of problems in fields
as diverse as biology, physics, computer science and engineering. In many applica-
tions, the real-time solutions of optimisation problems are widely required. However,
traditional algorithms may not be efficient since the computing time required for a
solution is greatly dependent on the structure of the problems and there dimension.

A promising approach to solving such problems in real time is to employ artificial
neural networks based on circuit implementation [133]. ANNs possess many desir-
able properties such as real-time information processing. Therefore, neural networks
for optimisation, control, and signal processing received tremendous interests. The
theory, methodology, and applications of ANNs have been widely investigated.

The present work focuses on Evolutionary Algorithms (EO), Artificial Neural
Networks (ANN) and their joint applications as a powerful tool to solve challeng-
ing problems for the academia and the industry. In this section the essentials and
importance of both methodologies are presented.

4.1.1 Evolutionary Algorithms

Since 1960s, there has been an increasing interest in emulating evolutionary process
of living beings to solve hard optimisation problems [34, 101]. Simulating these fea-
tures of living beings, yields stochastic optimisation procedures called Evolutionary
Optimisation (EO). EO belongs to global search meta-heuristics methods since, by
its own nature, explores the whole decisional space for global optima.

Evolutionary algorithms (EAs) are a class of stochastic and probabilistic optimi-
sation methods that are inspired by some presumed principles of evolution; attempt
to emulate the biological process of evolution, incorporating concepts of selection,
reproduction, and mutation.These techniques, inspired in Darwinian evolution pos-
tulates, consider a population of individuals on which selection and diversity gen-
eration procedures are performed, guaranteeing better fitted individuals to survive
through successive iterations [12, 46, 47]. Each individual is a potential solution of
the optimisation problem, so it belongs to decision space. Every iteration (genera-
tion), individual features are combined by means of recombination operators such
selection, crossover and mutation, driving solutions to global optima. By mimicking
this process, EAs are able to evolve solutions to real world problems, if they have
been suitably encoded.

EvolutionaryOptimisationhas demonstrated tobe effective in engineering and sci-
ence optimisation problems in several fields such as: Aerospatiale applications [15],
energy [9], transport planning, RAMS [87, 96, 97, 111], task scheduling and so on.

The applications mentioned above usually results in high dimensional search
spaces, highly non-linear optimisation problems, non-convex optimisation, highly
constrained problems, uncertainty effects and/or multicriteria paradigm. These
numerical difficulties are commonly tackled by these meta-heuristics, which usually
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outperforms traditional optimisation strategies with lower probability of being
stacked in local optima, and being able to yield a Pareto set in a single run of the
algorithm (multi-objective approach). Because of this, Evolutionary Optimisation
has been an important R&D matter in the last decade.

Among the variety of EOmeta-heuristics, themost relevant nowadays are:Genetic
Algorithm (GA), Evolutionary Strategy (ES), Evolutionary Programming (EP), Col-
lective Intelligence, Memetic Algorithms, and Differential Evolution.

In recent years, there has been an increase in the use of evolutionary approaches
in the training and optimisation of artificial neural networks(ANNs). Different works
are presented in Sect. 4.2.1.

4.1.2 Artificial Neural Networks ANN

Artificial neural networks (ANNs) are biologically inspired computer programs,
inspired from the morphological and biophysical properties of neurons in the brain.
ANNs are designed to simulate the way the human brain processes information.
Neural networks are similar to the human brain in the following two ways:

1. A neural network acquires knowledge by learning.
2. The knowledge of a neural network is stored in the connections between neurons

known as synaptic weights.

[98] were the first patterned biological neurons from the binary automata. A second
generation of neurons integrates a nonlinear activation function that has allowed
growing up the interest in ANNs [69], allowing to solve nonlinear problems.

The power and utility of artificial neural networks have been shown in several
applications including speech synthesis, diagnostic problems, medicine, business
and finance, control, robotics, signal processing, computer vision and many other
industrial problems that are included in the category of pattern recognition. But
knowing that there exists a suitable network for a specific problem is interesting,
finding it proved to be difficult. Although there exist some algorithms to set the
weights by learning from data training given a fixed topology, even if get stuck in
local minima. To lead to good results, they strongly depend on problem specific
parameter settings and on the topology of the network.

Training procedures of neural networks are optimisation algorithms aim to mini-
mize the global error output respect to connection weights under conditions of noise,
qualitative uncertainty, nonlinearity, etc. Therefore training procedures of neural net-
works provide a common approach to the optimisation task in process optimisation
and control applications [149]. However, this is an important issue because there are
strong biological and engineering evidences to support that an ANN is determined
by its architecture. Using EOs as a procedure to assist neural network design and
training seems to be a straightforward idea. Branke in [23] explain how EO improve
design and training ANNs.
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Today, significant progress has been made in the field of neural networks, enough
to attract a lot of attention and research funding. Research in the field is advancing
on many fronts. New neural concepts are emerging and applications to complex
problems developing. Clearly, today is a period of transition for neural network
technology.

ANNs are inherently parallel architectures which can be implemented in software
and hardware. One important implementation issue is the size of the neural network
and its weight adaptation. This makes the hardware implementation complex and
software learning slower.

ANNs has two distinct steps [172];

1. Choosing proper network architecture.
2. Adjusting the parameters of a network so as to minimize certain fit criterion.

Even if, the most of problems treated in real study are complex, so the unknown
architecture of the ANN is set arbitrarily or by trial and error [121], and small
networks cannot achieve the solution in much iteration, but if the network is too
large, it leads to overfitting and a bed generalization, and the majority of neural
networks suffers of premature convergence and low global convergence speed etc.
In order to overcome these limitations, some improvements were made for EOs in
the last decade on ANNs.

4.2 Different Use of ANNEO and EOANN

In the last decade, there has been a great interest combining learning and evolutionary
techniques in computing science to solve complex problems for different fields.
Different works presented how ANNs are an optimisation tools [33, 120, 131, 136,
173, 175]. In this paper we just limit this review to several ways in which EOs and
ANNs may be combined.

The next section presents different approaches of combining EOs and ANNs.

4.2.1 The Use of EOs in ANNs: EOANN

In recent years, evolutionary algorithms (EAs) have been applied to the ANN’s
optimisation. The first applications of EAs to ANN parameter learning date back to
the late 80 s in the fields of Genetic Algorithms (GAs) [45, 47] and Evolutionary
Programming (EP) [47, 103]. EAs are powerful search algorithms based on the
mechanism of natural selection. Since the 90s, EAs have been successfully used for
optimizing the design and the parameters of ANNs [132, 150]. This special class of
ANNs in which evolution is another fundamental form of adaptation in addition to
learning creating an EOANN [40, 167]. EOANN are used to find the best data subset
which optimizes the ANN training for a specific problem.

The result ofEOANNis anANNwith optimal performance to estimate the value of
one or more variables and the estimation error is strongly related to the quality of the
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training set in terms of size and treatment of the possible outputs. Another approach is
the evolutionary weight training process, to optimizing connection weights, learning
rules, and optimizing the network architecture by identifying how many inputs neu-
rons, hidden neurons, hidden layerswe have to use, to get a good performance [18, 39,
88, 92, 128]. Considerable research has been conducted on the evolution of topolog-
ical structures of networks using evolutionary algorithms [3, 6, 13, 14, 20, 73, 84].

In the other hand, an essential issue is to improve generalization of the neural net-
work training models. Early stopping, weight decay and curvature-driven smooth-
ing and other techniques are been used to resolve this problem, another approach is
including an additional term in the cost function of learning algorithms, which penal-
izes overly highmodel complexity. Regularization of neural trainingwas treatedwith
Eos in [1, 75].

In general, constructing neural network consists of two major steps, design and
training component networks, combining of the component networks predictions to
produce the neural networks solutions. ANN training method has some limitations
associated with overfitting, local optimum problems and slow convergence rate. In
order to overcome the limitations, some scientist proposed particle evolutionary
algorithm to train ANN.

The research use EOs to evolve and design the structure architecture or the selec-
tion of the training algorithms and optimisation of its synaptic weight initialization,
thresholds, training ratio, momentum factor, etc., of neural network roundly. The
scientist object is to accelerate the convergence speed of network and optimize the
result in case of trapping into local optimal value, and a better searching space is
found out in the solution space.

The initial set of weights to be used in learning of ANN has a strong influence
in the learning speed and in the quality of the solution obtained after training. An
inadequate initial choice of the weight values may cause the training process to get
stuck in a poor local minimum or more time to converge. Inappropriate topology
selection and learning algorithm are frequently bed; there is little reason to expect
that one can find a uniformly best algorithm for selecting the weights in an ANN
[94]. This kind of topology was chosen for the following main reasons:

1. Additional links that skip adjacent layers allow the genetic algorithm to remove
a whole layer of nodes while still keeping the network functional.

2. Some additional shortcut connections, e.g., those between the network input and
output, may ease training and therefore the whole genetic topology optimisation
may become faster.

There are differentways to evaluateweights of the component networks. For example
Jimenez [74] use weights determined by confidence of the component networks.
Zhou [184] utilize the genetic algorithm to find proper weights for each member of
an ensemble. In [143], present and define many operators and crossover applied to
weights of an ANN. The importance of a good choice for the initial set of weights is
stressed by Kolen and Pollak [83].

ANNs strongly depend on the network topology, the neurons activation function,
the learning rule, etc. optimisation for these factors are usually unknown a priori
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because they depend mainly on the particular training set to be considered and on
the nature of the solution [137]. So, for practical purposes, the learning rule should
be based on optimisation techniques that employ local search to find the optimal
solution [124, 126].

Evolutionary approaches have been shown to be very effective as an optimisa-
tion technique, their efficiency could he exploited in training and constructing neural
networks, there architecture/design and learning, they can evolve towards the opti-
mal architecture without outside interference, thus eliminating the tedious trial and
error work of manually finding an optimal network, adapting the connection weights
and learning algorithms according to the problem environment. Many considerable
efforts at obtaining optimal ANNs based on EAs have been reported in the literature
[4–7, 10, 13, 24–28, 31, 52, 53, 58, 63–67, 82, 99, 117, 122, 132, 139, 144, 166,
168–171].

The EAs are using diver methods to encode ANNs for the purpose of training
and design. The common approach is to encode the ANN weights into genes that
are then concatenated to build the genotype. Encoding methods can be divided in
three main groups according to the process of creating the network from the encoded
genome: direct, parametric and indirect encoding. A real coded genetic algorithm
is used to optimize the mean square of the error produced by training a neural
network established by Aljahdali in [11]. Benaddy et al. [17] present a real coded
genetic algorithm that uses the appropriate operators type to train feed-forward neural
network. Larranaga et al. [86] describes various methods used to encode artificial
neural networks to chromosomes to be used in evolutionary computation.

Another important point to note is the use of EOs to extract rules from neural
networks trained. Rule extraction from neural networks is attracting wide attention
because of its computational simplicity and ability to generalize [49–51, 141].

4.2.2 The Use of ANNs in EO: ANNEO

In real world applications, sometimes it is not easy to obtain the objective value.
Therefore we needs complicated analysis or time consuming simulation to evaluate
the performance of design variables [147]. As ANNs represent a nonlinear robust
modeling techniquewhich are developed, or trained, based on analytical or simulated
results of a subset of possible solutions [35], give to ANNs an important role in
solving problems with extremely difficult or unknown analytical solution. ANNs
can be used with a huge reduction of cost in terms of objective function evaluations
[22]. One of the first pioneers in ANNEO were Hopfield and Tank who presented
an ANN for solving combinatorial problems, that was mapped into a closed-loop
circuit [68, 133], named Hopfield Neural Network (HNN). HNN is a continuously
operating model very close to analog circuit implementation. Since 1985 a wide
variety of ANNs have been designed for improving the performance of HNN.

In ANNEO fast objective functions evaluations are performed using pre-trained
ANN. Normally in iterative process subsets of objective function values obtained
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using exact procedures are used in an embedded EOANN algorithm, and some of
the new objective function evaluations are performed using the ANN. The result is
an EO which evolves faster than conventional ones but special care must be paid to
the selection of appropriate training subsets and the number of objective functions
evaluated using ANN in order to avoid convergence problems. Acceleration of the
convergence speed is done in [176] as an ANN model trained to approximate the fit-
ness function according to an adaptive scheme for increasing the number of network
fitness calculation.

EOs usually needs a large number of fitness evaluations before a satisfying result
can be obtained. And as an explicit fitness function does not exist, or his evaluation
is computationally very expensive. It is necessary to estimate the fitness function by
constructing an approximate model or presenting an interpolation of the true fitness
function via some interpolation technique as ANNs [22, 55] employ a Feedforward
neural networks for fitness estimation, reduce the number of expensive fitness func-
tion evaluations in evolutionary optimisation. The idea of the implementation of an
ANN, that approximates thefitness function, comes from the universal approximation
capability of multi-layer neural networks [69]. An artificial neural networks model
is used in order to reduce the number of time-consuming fitness evaluations [55].

Real-time solutions to resolve problems are often needed in engineering applica-
tions. Solve many problem of optimisation in real time usually contain time-varying
parameters, such in signal processing, robotic, time series, etc., andwe have to reduce
and optimize the performance. The numbers of decision variables and constraints are
usually very large and large-scale optimisation problems are even more challenging
when they have to be solved in real time to optimize the performance of dynamical
systems. For such applications, Conventional numerical methods may not be effec-
tive at all due to the problem dimensionality and stringent requirement on computa-
tional time [16]. The employment ofANNs techniques asRecurrentNeuralNetworks
(RNN) [21, 33, 48, 79, 89, 91, 113, 115, 127, 133, 145, 146, 160, 165, 177] (Pap-
ers below proposed neural networks guaranteed to be globally convergent in finite
time to the optimal solutions), Fuzzy Neural Network (FNN) are a promising
approach to resolve this inefficiency [123].

Application of ANNs algorithms receive increase interests for optimisation as we
see in [21, 32, 33, 37, 79, 93, 105–107, 118, 133, 134, 151, 154, 156, 157, 182],
using gradient and projection methods [91, 104], Bouzerdoum and Pattison [21] pre-
sented a neural network for solving quadratic optimisation problems with bounded
variables only, which constitutes a generalization of the network described by Sud-
harsanan [127]. Rodrguez-Vzquez et al. [118] proposed a class of neural networks
for solving optimisation problems, in which their design does not require the calcu-
lation of a penalty parameter. To avoid using finite penalty parameters, many other
studies have been done in [21, 56, 70, 78, 118, 134, 148, 153, 156, 157, 159, 182,
183]. In [151–154], the authors presented several neural networks for solving linear
and quadric programming problems with no unique solutions, which are proved to
be globally convergent to exact solutions, and in which there is no variable parameter
to tune.
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Romero [119] approached optimisation problems with a multilayer neural net-
work. Da Silva [36] coupled fuzzy logic with Hopfield Neural Networks to solve
linear and non-linear optimisation problems. Case studies with convex and non-
convex optimisation problems are studied in illustrate the approach with a trained
Multilayer neural networks [143]. Xia et al. [155, 158, 160] proposed a general
projection neural network, that includes projection neural network, the primal-dual
neural network, and/or the dual neural network, as special cases, for solving a wider
class of variational inequalities and related optimisation problems.

A reliability network reflect a network optimized whose topology is optimist,
at minimal cost, under the constraint that every pair of neurons can communicate
with each other. Abo El fotoh et al. [2] presents an ANN for solving this problem
o reliability, by constructing an energy function whose minimization process drives
the neural network into one of its stable states.

An ANN aided with other algorithms as simulated-annealing (SA) algorithm, can
be usefully used to resolve optimisation problems as they do in [85]. Chaotic artificial
neural are studied and established as optimisation model in [8, 85]. Another point to
be mentioned is the use of ANNs to re-optimisation online as it presented in [138] .

4.3 Some Applications Using ANNEO and EOANN

Many academic papers show the applicability of EOANN to optimize different para-
meters of ANN, to improve their training and their stability [13, 20, 43, 71–73,
76, 84] and the papers cited below in Sect. 4.2.2. Other EOANN applications were
performed in several fields such as Financial Engineering [41, 59], grammatical
inference [19], Chemical Reaction [178], Hydrochemistry [142], Time series pre-
diction [77, 81, 180], ClassificationProcess [29, 30, 44, 80, 90, 95, 109, 112, 135],
Medicine [54], Diagnosis problems [17, 72, 129, 130], Diverse Engineering Appli-
cations [57, 100, 125, 135, 174], Robotic [161], Monitoring [38], Traffic Prediction
[114], Control Systems [181], Neutron spectrometry and Dosimetry research areas
[108], Multi-agent systems [81], Regression problems [61], Chaos dynamics Prob-
lem [179, 180], Reliability [62], etc.

Also, the role of ANNs in EO is presented in many academic papers as in
[22, 147, 176], and in many fields like Reliability Systems [35], Electromagnetics
optimisation [22], pressure vessel design problem [147], aerodynamic design opti-
misation [73], Electric-Field optimisation [85, 116, 164], Cybernetics [162], Design
optimisation [102, 163], Diagnosis [60], Power Technology [110, 140], Resource
Management optimisation [42], etc.



4 The Role of Artificial Neural Networks … 67

4.4 Conclusions

We can deduce that if the purpose of using ANNs is to find the best network configu-
ration for solving particular problems, is has been possible employing EOs, as it have
mentioned above in several works. EOs provides good approximation to get success
and speed of training of neural network based on the initial parameter settings, such
as architecture, initial weights, learning rates, and others.

In the other hand, ANNs based objective function allows the fitness to be evaluated
in a small fraction of the time taken to perform first principles analysis and permits
the EAs to complete in a reasonably small amount of time.

Due to the last advances in both methodologies, there are several chances for
future develops of joint procedures especially when complex industrial applications
are addressed. Anyway the use of big computing facilities will continue being still
necessary for that applications.
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Chapter 5
Reliability-Based Design Optimization
with the Generalized Inverse
Distribution Function

Domenico Quagliarella, Giovanni Petrone and Gianluca Iaccarino

Abstract This paper presents an approach to optimization under uncertainty that
is very well and naturally suited to reliability-based design optimization problems
and it is a possible alternative to traditional approaches to robust design based on the
optimization of statistical moments. The approach shown here is based on the direct
use of the generalized inverse distribution function estimated using the empirical
cumulative distribution function (ECDF). The optimization approach presented is
illustrated with the application to some test functions for both robust optimization
and reliability-based design optimization. In the robust optimization test case, the
bootstrap statistical technique is used to estimate the error introduced by the usage
of the ECDF for quantile estimation.

Keywords Optimization under uncertainty · Reliability based design · Robust
design · Generalized inverse distribution function · Bootstrap method

5.1 Introduction

Many industrial optimization processes must take account of the stochastic nature of
the systemand processes to design or re-design and consider the variability of someof
the parameters that describe them. Thus it is necessary to characterize the system that
is being studied from various points of view related to the treatment of uncertainty.
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In particular, it is necessary to consider the sensitivity of the system to the uncertain
parameters and assess its reliability. Having established the ability to characterize
the system from this point of view, it is necessary to build an optimization loop that
can improve its reliability, or that is capable of providing a robust optimum, or that
could withstand acceptably random perturbations of design parameters or operating
conditions. The classical approach to this problem is the so-called “robust design
optimization” (RDO), which tries to maximize the performance and simultaneously
to minimize the performance sensitivity with respect to random parameters. Instead,
the “reliability based design optimization” (RBDO) tries to find the optimum design
by explicitly assigning a specific level of risk and a given level of reliability. This
is equivalent to assigning a quantile of the function to be optimized as the actual
objective function and, for example, to minimize its value. Therefore, if the goal is
that a given objective function is less than a specific value q̄ in 75% of possible
cases, this will translate into the following constraint on the corresponding quantile:
q0.75 ≤ q̄ . Alternatively, the problem can be set as the minimization of q0.75 and
a function is thus obtained which is less than or equal to the value obtained by
optimization of the quantile in 75% of cases. If, instead, the objective is min q1,
then the purpose of the optimization procedure is to protect against the worst case
scenario, as it happens when the problem is of minimax type.

In this work an approach to robust and reliable design optimization based on
the use of the generalized inverse distribution function is presented. The robust
optimization framework is illustrated and the commonly used techniques to face
the problem are briefly summarized making reference to the related literature. A
very simple evolutionary multi-objective optimization algorithm based on the usage
of the inverse cumulative distribution function is illustrated and discussed with the
help of some test problems.

5.2 Robust Optimization

Let Z be a metric space and z ∈ Z the vector of design variables. Let also X : Ω →
Ξ ⊆ R be a real valued random variable defined in a given (Ω,F , P) probability
space.Wewant to deal with an optimization problemwhere an objective is optimized
with respect to z ∈ Z and depends on the realizations x of X . In other terms we have:

y(z, X): z ∈ Z , X −→ Y (z)

with Y (z) a new random variable, e.g. a new mapping of (Ω,F , P) into R, that
depends on z. Solving an optimization problem involving Y (z) = y(z, X) means
that we want to find a value z̄ ∈ Z such that the random variable Y (z̄) is optimal. To
establish the optimality of a given Y (z̄) with respect to all Y (z), ∀z ∈ Z , a ranking
criterion must be defined such that for any couple z1, z2 ∈ Z it is possible to state
that Y (z1) is better or worse than Y (z2) (from now on, Y (z1) � Y (z2)will mean that
Y (z1) is better or equivalent to Y (z2)).
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Recalling that a random variable is a measurable function, it seems natural to
introduce measures that highlight particular features of the function. This leads to
the classical and widely used approach of using the statistical moments to define the
characteristics of the probability distribution that are to be optimized.More generally,
let’s consider an operator

ΦX : Y (z) = y(z, X) ∈ Z × (Ω,F , P) −→ Φ(z) ∈ V ⊆ R

that translates the functional dependency on the randomvariable, Y , into a real valued
function of z that represents a deterministic attribute of the function,Y (z). Thismakes
possible to formulate the following optimization problem

PΦ :min
z∈Z

Φ(z)

Without loss of generality, it is possible to identify the random variable Y through its
distribution function fY (y) or its cumulative distribution function FY (y). If Φ(·) is
assumed as the expected value of the objective function (E), the classical formulation
of first moment optimization is retrieved:

P
E
:min

z∈Z

∫

R

y fY (y, z)dy

that in terms of the CDF becomes:

P
E
:min

z∈Z

∫

R

yd FY (y, z)

It should be noted that here the distribution function depends also on z, that is the
vector of the design variables.

For the purposes of the definition of the problem, it is not necessary to know
exactly the distribution fY (or FY ). Indeed, it is possible, as will be shown below,
to use an estimate of the distribution having the required accuracy. In particular, the
Empirical Cumulative Distribution Function (ECDF) will be used in this work as
statistical estimator of the CDF.

The first order moment method is also called mean value approach, as the mean is
used as objective to reduce the dependency on Y . This method is widely used, mostly
because the mean is the faster converging moment and relatively few samples are
required to obtain a good estimate. Often, however, the mean alone is not able to
capture and represent satisfactorily the uncertainties embedded in a given design
optimization problem. To overcome this drawback, a possible approach is the intro-
duction in the objective function of penalization terms that are function of higher
order moments. The drawback of this technique is that the ideal weights of the penal-
ization terms are often unknown. Furthermore, in some cases, an excessive number
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of higher order moments may be required to adequately capture all the significant
aspect of the uncertainty embedded into a given problem. Finally, a wrong choice
of the penalties may lead to a problem formulation that does not have any feasible
solution. Instead of penalization terms, explicit constraints can be introduced in the
robust optimization problem, and the same considerations apply for the advantages
and the drawbacks of the technique.

Another possibility is the minimax criterion, very popular in statistical decision
theory, according to which the worst case due to uncertainty is the objective for
optimization. This ensures protection against worst case scenario, but it is often
excessively conservative.

Themulti-objective approach [7] based on constrained optimization is alsowidely
adopted. Here different statistical moments are used as independent trade-off objec-
tives. The obtained Pareto front allows an a-posteriori choice of the optimal design
between a set of equally ranked candidates. In this case a challenge is posed by
the increase in the dimensionality of the Pareto front when several statistical mo-
ments are used. The research related to the multi-objective method has led to several
extensions of the classical Pareto front concept. In [10], for example, the Pareto front
exploration in presence of uncertainties is faced introducing the concept of proba-
bilistic dominance, which is an extension of the classical Pareto dominance. While
in [6], a probabilistic ranking and selection mechanism is proposed that introduces
the probability of wrong decision directly in the formula for rank computation.

An interesting approach, similar in some aspects to the one here described, is
found in [5] where a quantile based approach is coupled with the probability of
Pareto nondominance (already seen in [6]). Here, contrary to the cited work, the
optimization technique introduced relies on direct estimation of the quantile function
obtained through the Empirical Cumulative Distribution Function.

5.3 The Generalized Inverse Distribution Function Method

In the methodology presented herein, the operator that is used to eliminate the
dependence on random variables is the quantile function of the objective function to
be optimized, calculated in one or more points of its domain of definition.

Before going into the details of the exposure, the definitions of Cumulative Distri-
bution Function (CDF) and Generalized Inverse Distribution Function (GIDF) that
will be used are reported.

The “cumulative distribution function” (CDF), or just “distribution function”,
describes the probability that a real-valued random variable Q with a given proba-
bility distribution will be found at a value less than or equal to q. Intuitively, it is
the “area so far” function of the probability distribution. The CDF is one of the most
precise, efficient and compact ways to represent information about uncertainty, and
a new CDF based approach to robust optimization is described.

If theCDF is continuous and strictlymonotonic then it is invertible, and its inverse,
called quantile function or inverse distribution function, returns the value below



5 Reliability-Based Design Optimization … 81

which random draws from the given distribution would fall, s × 100 percent of the
time. That is, it returns the value of q such that

FQ(q) = Pr(Q ≤ q) = s (5.1)

Hence F−1(s), s ∈ [0, 1] is the unique real number q such that FQ(q) = s.
Unfortunately, the distribution does not, in general, have an inverse. If the proba-

bility distribution is discrete rather than continuous then there may be gaps between
values in the domain of its CDF, while, if the CDF is only weakly monotonic, there
may be “flat spots” in its range. In general, in these cases, one may define, for
s ∈ [0, 1], the “generalized inverse distribution function” (GIDF)

qs = Q(s) = F−1
Q (s) = inf {q ∈ R : F (q) ≥ s}

that returns the minimum value of s for which the previous probability statement
(5.1) holds. The infimum is used because CDFs are, in general, weakly monotonic
and right-continuous (see [15]).

Now that the CDF and the GIDF have been introduced, it becomes easy to define,
within the framework of multi-objective optimization, a robust optimization problem
in terms of an arbitrary number of quantiles to optimize:

PQ(si ):min
z∈Z

qsi (z) = min
z∈Z

inf
{
q (z) ∈ R : FQ (q (z)) ≥ si

}
i = 1, . . . , n (5.2)

where n is the number of objectives chosen. The approach, then, can be further
extended by introducing objectives that are arbitrary functions of quantiles.

Of course, the problem now is focused on how to satisfactorily calculate the
quantiles required by themethod. In this work theEmpirical Cumulative Distribution
Function (ECDF) is used for this purpose. The definition of ECDF, taken from [16],
is reported here for the sake of completeness.

Let X1, . . . , Xn be random variables with realizations xi ∈ R, the empirical
distribution function is an indicator function that estimates the true underlying CDF
of the points in the sample. It can be defined by using the order statistics X(i) of Xi

as:

F̂n(x,ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < x(1);
1
n if x(1) ≤ x < x(2), 1 ≤ k < 2;
2
n if x(2) ≤ x < x(3), 2 ≤ k < 3;
...
i
n if x(i) ≤ x < x(i+1), i ≤ k < i + 1;
...

1 if x ≥ x(n);
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where x(i) is the realization of the random variable X(i) with outcome (elementary
event) ω ∈ Ω .

From now on, therefore, when the optimization algorithm requires the calculation
of the FQ(s), it will used instead its estimator F̂Qn (s), where n indicates the number
of samples used to estimate this ECDF.

Note that each indicator function, and hence the ECDF, is itself a random variable.
This is a very delicate issue to consider. Indeed, if the EDCF is used to approximate
the deterministic operator Q(s), a direct residual influence of the random variables
that characterize the system under investigation remains on PQ(s). In other words
Q(s) behaves as a random variable, but with the important difference that its variance
tends to zero when the ECDF approximates the CDF with increasing precision. It
is possible to demonstrate that the estimator F̂Qn (s) is consistent, as it converges
almost surely to FQ(s) as n → ∞, for every value of s [11]. Furthermore, for the
Glivenko-Cantelli theorem [8], the convergence is also uniform over s. This implies
that, if the ECDF is calculated with sufficient accuracy, it can be considered and
treated as a deterministic operator. On the other hand, if the number of samples, or
the estimation technique of the ECDF, do not allow as such, one can still correlate
the variance of the ECDF with the precision of the obtained estimate. Of course,
if the ECDF is estimated in a very precise way, it is possible to use an algorithm
conceived for deterministic problems, provided that it has a certain resistance to
noise. Conversely, if the ECDF is obtained from a coarse sample, its practical use is
only possible with optimization algorithms specifically designed for that purpose.

For the same reason, it is often convenient, especially in applications where the
ECDF is defined with few samples, to use qε instead of q0, with ε > 0 and small,
but such that a not excessive variance of the estimate of qε is ensured.

5.4 A Robust Optimization Test Case

The function reported in Table5.1, taken from [13], is used as a benchmark to test the
GIDF based approach to robust optimization.With respect to the function reported in
the reference, the following changes have been introduced: the ranges of design and
uncertain parameters have been changed as reported in table, and a multiplicative
factor equal to 1/n has been introduced tomake easier the result comparisonwhen the
dimension of the parameter space changes. The random variables u have a uniform
distribution function. Table5.2 reports the solutions to the optimization problems

min
d∈D,u∈U

f (d, u)

min
d∈D

max
u∈U

f (d, u)

over the cartesian product of D and U . The first problem represents the best pos-
sible solution obtainable if the u are considered as design parameters varying in
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Table 5.1 Benchmark functions table

ID Function Ranges Dimension

MV4 f = 1
n

n∑

i=1
(2π − ui ) cos (ui − di ) u ∈ [0, 3]n , d ∈ [0, 2π ]n 1, 2 and 6

Table 5.2 Benchmark functions table results

ID min
d∈D,u∈U

f (d, u) min
d∈D

max
u∈U

f (d, u)

d u f d u f

MV4 [3.1416]n [0]n −6.283185 . . . [4.6638]n [0]n −0.305173 . . .

U . The second one, instead, minimizes the maximum possible loss or, alternatively,
maximizes the minimum gain, according to the framework of decision theory [12].
These solutions have been obtained analytically and verified by exhaustive search
for n = 1. It is worth to note that these particular optimal solutions are the same
whatever is the dimension of the search space.

The optimization algorithm used here is a simple multi-objective genetic algo-
rithm not specially conceived for optimization under uncertainty. The algorithm is
based on the Pareto dominance concept and on local randomwalk selection [14]. The
crossover operator is the classical one-point crossover which operates at bit level,
while mutation operator works at the level of the design vector parameters (which
are real numbers). A parameter, called mutation rate controls the operator activa-
tion probability for each variable vector element, while a further parameter, called
strength, is the maximum relative value for the uniform word mutation. The word
mutation value is given by strength · (r − 0.5)(u − l) where r ∈ [0, 1] is the uniform
random number, u is the upper variable bound and l is the lower variable bound. An
elitist strategy was adopted in the optimization runs. It consists in replacing 20% of
the population calculated at each generation with elements taken at random from the
current Pareto front. Obviously, the elements of the population are used to update the
current Pareto front before the replacement, in order to avoid losing non-dominated
population elements.

The multi-objective runs were performed using 100% crossover activation prob-
ability and word mutation with mutation rate equal to 50% and strength equal to
0.06. The initial population was obtained using the quasi-random low-discrepancy
Sobol sequence [1]. The ECDF used to estimate the CDF was obtained with 2,500
Montecarlo samples in all runs. The population size was set to 4,000 elements for
all runs, while the number of generations was set to 10 for n = 1, 200 for n = 2 and
1,000 for n = 6. The problem solved was min

z∈Z

(
qε, q1−ε

)
.

Figure5.1 reports the Pareto fronts and the deterministic min and minmax
solutions obtained for the MV4 test case at different values of the design space
size n. It can be easily observed that, in the case n = 1, the extremes of the front are
practically coincident with the deterministic solutions, while, in the case n = 2, the
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Fig. 5.1 Pareto fronts and deterministic min and minmax solutions for the MV4 test case

solution of the Pareto front which minimizes the second objective (q1−ε) underesti-
mates the minmax solution. The trend is even more evident in the case n = 6, where
also the extreme of the front that minimizes the first goal (qε) overestimates the value
obtained from the min problem. This can be explained by the fact that the two de-
terministic solutions are located in correspondence with the extremes of variation of
the random variables of the problem. Therefore, as the number of random variables
increases, in accordance with the central limit theorem [9], it becomes less likely that
all random variables are located in correspondence of one of their limits of variation.
However, as illustrated in Fig. 5.2, when the Pareto front obtained with the sample
size m equal to 2,500 is re-evaluated with a larger Montecarlo sample, the curve is
a quite acceptable approximation of the Pareto front obtained with m =100,000.

Figures5.3 and 5.4 show the ECDF corresponding to the extremes of the Pareto
front, respectively for the cases n = 1 and n = 6. It is noted, again in accordance
with the central limit theorem, that, in the case n = 6, the ECDF curves are very
close to those related to a Gaussian distribution.

5.5 Evaluating and Improving the Quantile Estimation

The example in the previous section shows very clearly that the results of the proposed
method may depend in an essential way on the quality of estimation of quantiles that
is obtained through the ECDF. This leads in a naturalway to dealwith two issues: how
to evaluate the quality of the estimation of the quantiles used in the multi-objective
optimization problem, and how to possibly get a better quantile estimate with a given
computational effort.
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m

Fig. 5.2 Pareto fronts for the MV4 test case obtained with different sizes for Montecarlo sampling
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Fig. 5.3 Optimal ECDF curves for the MV4 with n = 1

The approach here proposed for assessing the quality of the estimate of the quantile
is based on the bootstrap method introduced by Efron in 1977 [3, 4].

This method represents a major step forward in the statistical practice because it
allows to accurately assess the variability of any statistical estimator without mak-
ing any assumption about the type of distribution function involved. Suppose that a
statistic T (x1, x2, . . . , xn) is given, evaluated on a set of data x1, x2, . . . , xn be-
longing to an assigned space X . The bootstrap essentially consists in the repeated
recalculation of the statistic T employing a tuple of new samples x∗

1 , x∗
2 , . . . , x∗

n
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Fig. 5.4 Optimal ECDF curves for the MV4 with n = 6

obtained by selecting them from the collection {x1, x2, . . . , xn} by replacement. The
repeated calculation of T

(
x∗
1 , x∗

2 , . . . , x∗
n

)
gives a set of values that is a good indi-

cation of the distribution of T .
Therefore, to calculate the accuracy of a generic quantile qs , obtained by the

estimator F̂Qn (s), the bootstrap procedure can be applied to the samples that define
the estimator. This allows to calculate the corresponding distribution of qs for a fixed
value of s.

Figure5.5 reports the ECDF related to the solution labeled as “MOST ROBUST”
in Fig. 5.4. The bootstrap was applied to this ECDF repeating the sampling process
2,000 times. The area in gray color represents the superposition of all the curves
obtained in this way. From the bootstrap data it is then possible to evaluate the
accuracy of a given quantile estimate. According to [3], an accuracy measure for qs

can be obtained considering the central 68% of bootstrap samples. These values lay
between an interval [qs

� , qs
u] centered on the observed value qs . Half the length of

this interval gives a measure of the accuracy for the observed value that corresponds
to the traditional concept of “standard error”. Here this value is indicated with ŜE to
distinguish it from the true standard error SE.

Table5.3 reports the computed accuracy values for the considered quantiles for
the above cited “MOST ROBUST” solution obtained from an ECDF with 2,500
Montecarlo samples. The fourth column reports, finally, the maximum estimated
error M̂E.
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Fig. 5.5 ECDF corresponding to the most robust solution and related bootstrap coverage

Table 5.3 Quantile estimates and related accuracy for MV4 “MOST ROBUST” solution with
n = 6

s qs ŜE M̂ E

0.001000 −4.630433 ±0.090423 ±0.117169

0.500000 −3.230388 ±0.018834 ±0.054983

0.999000 −1.425868 ±0.013192 ±0.136330

5.6 Single and Multi-objective Reliability Optimization Tests

A very complete review of reliability-based optimization and of the solution tech-
niques based on evolutionary algorithms can be found in [2].

A reliability based single or multi-objective problem can be written as follows:

⎧
⎪⎨

⎪⎩

min
z,x

f(x, z)

s. to: gi (z, x) ≤ 0 i = 1, . . . , n
x ∈ X, z ∈ Z

(5.3)

with x representing deterministic and z stochastic design variables. In order to find
a solution to this problem, a reliability measure R is introduced that means that the
probability of having an infeasible solution instance will be at most (1− R), and the
problem is reduced to the following one:
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⎧
⎪⎨

⎪⎩

min
z,x

f(x, μz)

s. to: Pi (gi (z, x) ≤ 0) ≥ R i = 1, . . . , n
x ∈ X, z ∈ Z

(5.4)

where μz is the mean vector of the uncertain variables z, and Pi () is the probability
that the i th constraint is feasible. The constraints in problem (5.4) can be immediately
expressed in terms of generalized inverse distribution function:

⎧
⎪⎨

⎪⎩

min
z,x

f(x, μz)

s. to: q R (gi (z, x)) ≤ 0 i = 1, . . . , n
x ∈ X, z ∈ Z

(5.5)

Problem 5 can be further transformed by introducing penalty functions into:

min
z,x

f(x, μz) +
n∑

i=1

Γ
(

q R (gi (z, x))
)

(5.6)

with Γ defined, for example, as:

Γ (x) =
{
0 if x ≤ 0
kx2, k > 0 if x > 0

(5.7)

Considering that Γ
(
q R = 0

) = q R (Γ (gi (z, x))) it is possible to write, finally:

min
z,x

q R

(

f(x, μz) +
n∑

i=1

Γ (gi (z, x))

)

(5.8)

In the subsequent examples, problem (5.8) is solved using a simple multi-objective
genetic algorithm for unconstrained problems. Of course, more sophisticated and
efficient algorithms could be used to reduce the computational effort.

The first example considered is taken from [2]. It involves two variables, x and
y, and two objectives, f1 and f2:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min f1 = x
min f2 = 1+y

x
s. to: y + 9x − 6 ≥ 0

−y + 9x − 1 ≥ 0
0.1 ≤ x ≤ 1, 0 ≤ y ≤ 5

(5.9)

with both variables uncertain and characterized by a normal distribution with σ =
0.03.
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Fig. 5.6 Pareto front for the simple two-objectives reliability problem obtained with three different
reliability indexes

The optimization runs have been carried out with three different reliability levels,
namely 90% (βr = 1.28), 97.725% (βr = 2.00) and 99.875% (βr = 3.00), where

βr is the reliability index computed according to R = 50
(
1 + erf

(
βr

/√
2
))

. The

results are reported in Fig. 5.6. The multi-objective genetic algorithm crossover and
mutation settings are the same that have been used in the previous test case. For each
different reliability level, a population of 100 individuals evolved for 400 generations.
For βr = 1.28 and βr = 2.00 the Montecarlo sample size was set to 1,000, while
for the βr = 3.00 case the sample size was set to 10,000.

The second problem presented is a car side-impact problem related to vehicle
crash-worthiness and dealingwith vehicle safety rating scores related to human safety
issues. The problem is reported in [17] and, in a slightly different form, in [2]. The
reader is referred to the references above for more details on the physical nature of
the model used and the role and significance of variables and parameters. In extreme
synthesis, eleven random variables are involved in the optimization problem, whose
characteristics and nature is reported in Table5.4 for the sake of completeness. The
random variables z10 and z11 are not regarded as design variables, because they are
related to aspects that define the type of the problem but which can not be controlled
in any way by the designer. The objective function and constraints of the problem
are given below:
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Table 5.4 Properties of design and random parameters of vehicle side impact model

Random variable Std dev. Distr type. Lower limit Upper limit

z1 (B-pillar inner) 0.030 Normal 0.500 1.500

z2 (B-pillar reinforce) 0.030 Normal 0.500 1.500

z3 (Floor side inner) 0.030 Normal 0.500 1.500

z4 (Cross member) 0.030 Normal 0.500 1.500

z5 (Door beam) 0.030 Normal 0.500 1.500

z6 (Door belt line) 0.030 Normal 0.500 1.500

z7 (Roof rail) 0.030 Normal 0.500 1.500

z8 (Mat. B-pillar inner) 0.006 Normal 0.192 0.345

z9 (Mat. floor side inner) 0.006 Normal 0.192 0.345

z10 (Barrier height) 10.0 Normal −30.0 30.0

z11 (Barrier hitting) 10.0 Normal −30.0 30.0

f (z) = 1.98 + 4.9z1 + 6.67z2 + 6.98z3 + 4.01z4 + 1.78z5 + 2.73z7
g1(z) = 1.16 − 0.3717z2z4 − 0.00931z2z10 − 0.484z3z9

+ 0.01343z6z10 ≤ 1 kN
g2(z) = 0.261 − 0.0159z1z2 − 0.188z1z8 − 0.019z2z7

+ 0.0144z3z5 + 0.0008757z5z10 + 0.08045z6z9 + 0.00139z8z11
+ 0.00001575z10z11 ≤ 0.32 m/s

g3(z) = 0.214 + 0.00817z5 − 0.131z1z8 − 0.0704z1z9
+ 0.03099z2z6 − 0.018z2z7 + 0.0208z3z8 + 0.121z3z9
− 0.00364z5z6 + 0.0007715z5z10
− 0.0005354z6z10 + 0.00121z8z11 ≤ 0.32 m/s

g4(z) = 0.74 − 0.61z2 − 0.163z3z8
+ 0.001232z3z10 − 0.166z7z9 + 0.227z2z2 ≤ 0.32 m/s

g5(z) = 28.98 + 3.818z3 − 4.2z1z2 + 0.0207z5z10 ≤ 32 mm
+ 6.63z6z9 − 7.7z7z8 + 0.32z9z10

g6(z) = 33.86 + 2.95z3 + 0.1792z10 − 5.057z1z2
−11z2z8 − 0.0215z5z10 − 9.98z7z8 + 22z8z9 ≤ 32 mm

g7(z) = 46.36 − 9.9z2 − 12.9z1z8 + 0.1107z3z10 ≤ 32 mm
g8(z) = 4.72 − 0.5z4 − 0.19z2z3 − 0.0122z4z10 + 0.009325z6z10

+ 0.000191z11z11 ≤ 4 kN
g9(z) = 10.58 − 0.674z1z2 − 1.95z2z8 + 0.02054z3z10

− 0.0198z4z10 + 0.028z6z10 ≤ 9.9 mm/ms
g10(z) = 16.45 − 0.489z3z7 − 0.843z5z6 + 0.0432z9z10

− 0.0556z9z11 − 0.000786z11z11 ≤ 15.7 mm/ms
(5.10)

The goal is to minimize the weight of the structure.
Again, the same settings were used for crossover and mutation and, in all cases

analyzed, the size of the population and was fixed to 30 individuals that have evolved
over 3,000 generations. The Montecarlo sample size was set to 100,000. Figure5.7
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Fig. 5.7 Best optimization result as a function of the reliability index for the crash-worthiness
vehicle side impact problem

shows, both in tabular and number line format, the values of the objective func-
tion for different reliability values (expressed both in percentage and in βr terms).
These values are compared both with the deterministic case, calculated by setting
the parameters z10 and z11 to zero (average value), that with the case here called
“best outcome”, obtained by considering also the two parameters z10 and z11 as
deterministic variables of the problem.

5.7 Conclusions

An alternative approach to the optimization under uncertainty has been introduced
and illustrated with examples related to both robust and reliability based design
optimization. Furthermore, a method, based on the well known bootstrap statistical
technique, has been introduced to estimate the error introduced by the usage of the
ECDF instead of the true CDF.

The algorithm used for optimization is a classical genetic algorithm, but, to further
improve the proposed procedure, an optimization algorithm capable of accounting
for the errors in the estimation of the CDF has to be conceived. This is a very
important topic and it will be subject of next research work. In particular, to reduce
the curse of dimensionality, the effect of different sampling methodologies, like
stochastic collocation, on the estimation of the ECDF will be considered in future
works. Indeed the possibility to use the error on the ECDF estimator to properly
refine the probability space using adaptive uncertainty quantification algorithms will
be explored.
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Chapter 6
On the Choice of Surrogates for Multilevel
Aircraft Perfomance Models

Manon Bondouy, Sophie Jan, Serge Laporte and Christian Bes

Abstract The objective of this study is to propose a methodology which aims at
reducing the memory size of hierarchical multilevel models while satisfying both a
given accuracy and amaximumcomputational time, and keeping the initialmultilevel
structure. In this paper, we propose to construct a new multilevel model satisfying
such requirements, basedona choice amongavailable surrogates associatedwith each
submodel.We showhow thismetamodel assignments can be formulated in an optimal
manner through an integer programming problem. The proposed methodology is
illustrated on a drag performancemodel, with surrogates based on High Dimensional
Model Representation (HDMR).

Keywords Hierarchical multilevel models · Surrogates · HDMR

6.1 Description

6.1.1 Introduction

Complex performance models have generally a hierarchical multilevel structure.
Hierarchical modeling [1] is used to decompose complex model into multilevel sub-
models according to their functional attributes, physical structures, or size. Each
submodel has multiple entries, which are the outputs of the previous level submod-
els (the input variables for the top level), and a unique output.

For example, pitchingmoment or drag coefficients for Airbusmodels may contain
up to thirty submodels spread in about ten levels. Each submodel has at most four
input variables.
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The strong interest of air transport on environmental impact associated with the
growing need to reduce congestion of air traffic and the important economical pres-
sure on airlines [4] induce new challenges on aircraft operations; for example, finding
best trajectories allows to reduce the fuel consumption and also decrease the noise
pollution close to the airport. This leads to an intensive use of numerical performance
models either on ground or in flight. They can then either be part of optimization
loops, Monte Carlo sampling or real time computation. Consequently, a crucial need
to reduce the computational time and memory size of the performance models
while keeping acceptable accuracy appears.

There are different stages for tackling the above problem. These strategies include
parallel computing, increasing computer power, eliminating the irrelevant interac-
tions between input variables, reducing the number of input variables, building rel-
evant surrogate models. These strategies are not mutually exclusive and should be
used together for a better efficiency.

In this paper, we focus on embedded applications. Therefore, the critical points
are the computational time and the structure of the model, strongly constrained by
the avionics system capabilities which lead to optimize the memory size. Moreover,
most of such functions have to be certified because of their criticity level; this implies
a need to preserve the multilevel structure in order to comply with the certification
process. Obviously an acceptable level of accuracy has to be fulfilled.

We propose here to construct a global surrogate satisfying requirements of
computational time, storage memory and accuracy while keeping the multilevel
structure. This paper is organised as follows. In Sect. 6.1.2, we first introduce the
mathematical formulation of the submodel multilevel architecture that we have to
deal with. Then, from this structure we show in Sect. 6.1.3 how the optimal choice
of surrogate model assigments for each submodel can be formulated as an integer
programming problem [5]. In Sect. 6.2, we illustrate our method on an industrial
case. Finally we conclude and open further perpective.

6.1.2 Notations

X vector of input variables.
d dimension of the input variables vector.
n total number of levels.
F global model.
F̃ global surrogate model.
ε measure of the error, F̃ − F

‖.‖ norm; the choice of this norm is free.

For each intermediate level i , 1 ≤ i ≤ n:

Li number of submodels; we can notice that Ln = 1. By convention L0 = d.
Oi = (Oi, 1, . . . , Oi, Li ) vector representing all outputs at level. By convention
O0 = X .
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For each level i , 1 ≤ i ≤ n and for each submodel j , 1 ≤ j ≤ Li :

Fi, j submodel j at level i .
Oi, j output of Fi, j . By convention O0, j = X j for 1 ≤ j ≤ d.
Qi, j number of surrogates of submodel Fi, j

For each level i , 1 ≤ i ≤ n, for each sumodel j , 1 ≤ j ≤ Li and for each surrogate
q, 1 ≤ q ≤ Qi, j :

F̃i, j, q qth surrogate model of the submodel Fi, j .
Ti, j, q local computational time of the surrogate submodel F̃i, j, q .
Si, j, q local memory size of the surrogate submodel F̃i, j, q .
εi, j, q measure of the local error, F̃i, j, q − Fi, j .
ai, j, q upper-bound of the global error due the propagation of the local error between

F̃i, j, q and Fi, j .
zi, j, q binary decision variable to select or not the surrogate submodel F̃i, j, q .

Z vector composed by the elementary decision variables zi, j, q .

Remark Li ’s value is generally different at each level i and the number of surrogates
Qi, j for each submodel Fi, j is not constant, therefore j depends on i and q depends
on i and j ; nevertheless these dependances are generally obvious and will not be
explicitely specified when not necessary.

The data flow of the global model F follows a one way direction from the top
level to the bottom level (cf. Fig. 6.1).

The global original model F is composed of submodels Fi, j and the global sur-
rogate model F̃ is composed of surrogate submodels F̃i, j, q . We assume that at each
i ∈ {1, . . . , n} and for each j ∈ {1, . . . , Li }, the submodel Fi, j is defined by:

Fi, j : RLi−1 −→ R

Oi−1 �−→ Fi, j (Oi−1)

and can be approximated by a family of q surrogates F̃i, j,q :

F̃i, j, q : RLi−1 −→ R

Oi−1 �−→ F̃i, j, q(Oi−1).

6.1.3 The Optimization Problem

The problemdescribed in the introduction is naturally formulated as amulti-objective
optimization problem in which we would like to minimize simultaneously the
memory size S, the computational time T and the global error ‖ε‖. However, we
notice that these three criteria are generally monotonously linked: when the memory
size increases, the computational time generally increases as well, while the error
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X = Input Variables
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Fig. 6.1 Multilevel architecture description

decreases. The maximum acceptable global error ε is deduced by specialist analysis
from the consequences it induces. In the same way, the maximum acceptable global
computational time T is established in order to be compatible with real time cal-
culation needs during flight. Therefore, these latter quantities are given and can be
considered as constraints. The initial multi-criteria problem can then be reformu-
lated as a monocriterium problem subject to constraints, in which the objective is to
minimize the memory size.

In order to formalize it, we now introduce a decision variable defined by:

∀i ∈ {1, · · · n},∀ j ∈ {1, . . . , Li },∀q ∈ {1, . . . , Qi, j }
zi, j, q =

{
1 if the surrogate model number q is selected for submodel Fi, j ,

0 else.

Since there is a unique surrogate selected for each submodel, we have:

∀i ∈ {1, . . . n},∀ j ∈ {1, . . . , Li },
Qi, j∑

q=1

zi, j, q = 1.
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The global memory size S of the surrogate model F̃ is the sum of the memory
sizes of each selected surrogates F̃i, j, q :

S =
n∑

i=1

Li∑

j=1

Qi, j∑

q=1

Si, j, q · zi, j, q .

S is a function of the selected surrogates and is the criterium to minimize.
In the same way, the global computational time T is the sum of the computational
times of each selected surrogates:

T =
n∑

i=1

Li∑

j=1

Qi, j∑

q=1

Ti, j, q · zi, j, q ,

while the global error ‖ε‖ is the norm of the output error ‖ε‖ = ‖F̃ − F‖.
Again, T and ‖ε‖ are functions of the selected surrogates.

If we note Z the vector composed by the elementary decision variables zi, j, q , the
optimization problem can now be written as follows:

min
Z

S(Z)

subject to

{
T (Z) ≤ T ,

‖ε(Z)‖ ≤ ε.

(6.1)

The exact value of the global error ‖ε(Z)‖ is not known but we prove that it can
be upper bounded if F is differentiable:

‖ε(Z)‖ ≤
n∑

i=1

Li∑

j=1

Qi, j∑

q=1

ai, j, q · zi, j, q . (6.2)

Proof For level one, we have ∀1 ≤ j1 ≤ L1:

O1, j1 = F1, j1(X),

Õ1, j1 =
Q1, j1∑

q=1

F̃1, j1, q(X) · z1, j1, q ,

F̃1, j1, q(X) = F1, j1(X) + ε1, j1, q(X), 1 ≤ q ≤ Q1, j1 .

Since there is only one selection of surrogate model for each submodel, we have:

∀1 ≤ j1 ≤ L1, Õ1, j1 = F1, j1(X) +
Q1, j1∑

q=1

ε1, j1, q(X) · z1, j1, q .
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We then obtain:

∀1 ≤ j1 ≤ L1, Õ1, j1 = O1, j1 +
Q1, j1∑

q=1

ε1, j1, q(X) · z1, j1, q . (6.3)

For level two, we have ∀1 ≤ j2 ≤ L2:

O2, j2 = F2, j2(O1),

Õ2, j2 =
Q2, j2∑

q=1

F̃2, j2, q(Õ1) · z2, j2, q ,

F̃2, j2, q(Õ1) = F2, j2(Õ1) + ε2, j2, q(Õ1), 1 ≤ q ≤ Q2, j2 .

As for level one, we simplify the equation and have:

∀1 ≤ j2 ≤ L2, Õ2, j2 = F2, j2(Õ1) +
Q2, j2∑

q=1

ε2, j2, q(Õ1) · z2, j2, q .

By using (6.3), we obtain:

F2, j2(Õ1) = F2, j2

(
O1, 1 +

Q1, 1∑

q=1

ε1, 1, q(X) · z1, 1, q , . . . ,

O1, L1 +
Q1, L1∑

q=1

ε1, L1, q(X) · z1, L1, q

)
.

Since F is differentiable at each point of the line segment [O1; Õ1], then by using
the mean value theorem (for several variables) there exists ζ2, j2 ∈ [O1; Õ1] such
that:

F2, j2(Õ1) = F2, j2(O1) +
L1∑

j1=1

∂ F2, j2

∂O j1
(ζ2, j2)

⎛

⎝

Q1, j1∑

q=1

ε1, j1, q(X) · z1, j1, q

⎞

⎠ .

Finally we obtain:

∀1 ≤ j1 ≤ L2,

Õ2, j2 = O2, j2 +
L1∑

j1=1

Q1, j1∑

q=1

(
∂ F2, j2

∂O j1
(ζ2, j2) · ε1, j1, q(X)

)

· z1, j1, q

+
Q2, j2∑

q=1

ε2, j2, q(Õ1) · z2, j2, q . (6.4)
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For the last output at level n, we obtain:

Õn, 1 = On, 1 +
Qn, 1∑

q=1

εn, 1, q(Õn−1) · zn, 1, q

+
Ln−1∑

jn−1=1

Q(n−1, jn−1)∑

q=1

(
∂ Fn, 1

∂O jn−1

(ζn, 1) · εn−1, jn−1,q(Õn−1)

)

· zn−1, jn−1, q

+ · · ·

+
Ln−1∑

jn−1=1

· · ·
L3∑

j3=1

Q3, j3∑

q=1

(
∂ Fn, 1

∂O jn−1

(ζn, 1) · · · ∂ F4, j4

∂O j3
(ζ4, j4) · ε3, j3, q(Õ2)

)

·z3, j3,q

+
Ln−1∑

jn−1=1

· · ·
L3∑

j3=1

L2∑

j2=1

Q2, j2∑

q=1

(
∂ Fn, 1

∂O jn−1

(ζn, 1) · · ·

∂ F4, j4

∂O j3
(ζ4, j4) · ∂ F3, j3

∂O j2
(ζ3, j3) · ε2, j2, q(Õ1)

)
· z2, j2, q

+
Ln−1∑

jn−1=1

· · ·
L3∑

j3=1

L2∑

j2=1

L1∑

j1=1

Q1, j1∑

q=1

( ∂ Fn, 1

∂O jn−1

(ζn, 1) · · ·

∂ F4, j4

∂O j3
(ζ4, j4)·

∂ F3, j3

∂O j2
(ζ3, j3)·

∂ F2, j2

∂O j1
(ζ2, j2)·ε1, j1, q(X)

)
·z1, j1, q

(6.5)

By using the triangle inegality on Eq. (6.5)
∥
∥
∥Õn, 1 − On, 1

∥
∥
∥:

∥
∥
∥Õn, 1 − On, 1

∥
∥
∥ ≤

Qn, 1∑

q=1

an, 1, q · zn, 1, q

+
Ln−1∑

jn−1=1

Qn−1, jn−1∑

q=1

an−1, jn−1, q · zn−1, jn−1, q + · · ·

+
L3∑

j3=1

Q3, j3∑

q=1

a3, j3, q · z3, j3, q

+
L2∑

j2=1

Q2, j2∑

q=1

a2, j2, q · z2, j2, q

+
L1∑

j1=1

Q1, j1∑

q=1

a1, j1, q · z1, j1, q .
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with:

an, 1, q = ∥
∥εn, 1, q

∥
∥ ,

ai, ji , q =
Ln−1∑

jn−1=1

· · ·
Li+2∑

ji+2=1

Li+1∑

ji+1=1

∥
∥
∥
∥

∂ Fn, 1

∂O jn−1

∥
∥
∥
∥ · · ·

∥
∥
∥
∥
∂ Fi+3, ji+3

∂O ji+2

∥
∥
∥
∥

∥
∥
∥
∥
∂ Fi+2, ji+2

∂O ji+1

∥
∥
∥
∥

∥
∥
∥
∥
∂ Fi+1, ji+1

∂O ji

∥
∥
∥
∥

∥
∥εi, ji , q

∥
∥ ,

∀i ∈ {1, . . . , n − 1},∀ ji ∈ {1, . . . , Li },∀q ∈ {1, . . . , Qi, j },

which is an upper bound for ‖ε(Z)‖, see Eq. (6.2).
‖εi, ji , q‖ and

∥
∥
∥
∥

∂ Fi, ji

∂O ji−1

∥
∥
∥
∥ respectively denote the norms of εi, ji , q(.) and

∂ Fi, ji

∂O ji−1

(.).

Note that the choice of the norm is free and depends on the criticity of the industrial
model we want to reduce (cf Sect. 6.2). �

Finally, the problem (6.1) can be written as the following linear integer program-
ming problem:

min
n∑

i=1

Li∑

j=1

Qi, j∑

q=1

Si, j, q · zi, j, q

subject to:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

Li∑

j=1

Qi, j∑

q=1

Ti, j, q · zi, j, q ≤ T ,

n∑

i=1

Li∑

j=1

Qi, j∑

q=1

ai, j, q · zi, j, q ≤ ε,

zi, j, q ∈ {0, 1}, ∀i ∈ {1, . . . , n},
∀ j ∈ {1, . . . , Li },
∀q ∈ {1, . . . , Qi, j },

Qi, j∑

q=1

zi, j, q = 1, ∀i ∈ {1, . . . , n},

∀ j ∈ {1, . . . , Li }.

(6.6)

6.2 Application on an Industrial Case

The Fuel Consumption Model (FCM) aims at computing a fuel consumption in
cruise. It depends on six variables: the load factor (NxAero), the Mach (M), the
altitude (Zp), the temperature (ΔISA), the weight (GW) and the center of gravity
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position (ΔXCG). Its structure complies with the multilevel architecture defined in
Sect. 6.1.2 (cf. Fig. 6.1).

This model is derivated from a general performance model. As it is part of an
embedded function, some requirements have to be fulfilled:

• the number of input parameters of elementary tabulated submodelsmust not exceed
two,

• the number of values of the tabulated functions is limited due to memory size
constraint,

• the computational time is limited due to real time needs.

The figure below shows the multilevel architecture of the FCM. Each of its nine
levels is composed of one to five submodels having one, two or three inputs. Nine
of them have an analytical expression and therefore do not need to be reduced. They
are represented with colored boxes in Fig. 6.2. The eight other ones use interpola-
tion in numerical look-up tables. They are responsible of most of the memory size
and computational time. Thus, the proposed optimization process will focus on the
reduction of these particular submodels. They are represented with white boxes in
Fig. 6.2.

6.2.1 Building High Dimensional Model Representation

The optimization methodology presented in Sect. 6.1.1 will be applied to perform
the best choice among a set of surrogates. For the industrial case presented hereafter,
each tabulated submodel will be reduced using HDMR decomposition of different
orders [2]. Such a decomposition generally achieves a drastic reduction on data to
be stored in the numerical tables. More precisely, HDMR methods construct a map
of the relationship between the input variables and the output by capitalizing only
low order correlations among the input variables having an impact on the output.
Therefore HDMR methods provide a means of partitioning the original multivariate
input data into low variate data while keeping the dimensionality of the original input
space.

Let g be one of the submodels to be reduced and d the dimension of its input
variable vector X with X = (X1, X2, . . . , Xd).
The HDMR decomposition gives:

g(X) = g̃0+
d∑

i=1

g̃i (Xi )+
d∑

i=1

d∑

j=i+1

g̃i, j (Xi , X j )+. . .+g̃1, 2,..., d(X1, . . . , Xd).

(6.7)

The value g̃0 is a constant term representing the zeroth-order component function,
which is the mean response of the aircraft performance submodel g. The function
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Fig. 6.2 The multilevel architecture of the FCM

(g̃i )1≤i≤d is a first-order term expressing the effect of input variable Xi acting alone
on g. The function (g̃i, j )1≤i≤d,i+1≤ j≤d is a second-order term that describes the
cooperative effects of the variables Xi and X j . The higher order terms give the coop-
erative effects of increasing number of input variables acting together to influence
the output g. HDMR is based on the fundamental principle that correlations between
input variables affecting the submodels decrease rapidly [3]. Thanks to this method
we can build different surrogate models for each submodel by truncating Eq. (6.7) at
zeroth-order, first-order or second-order.

An example of such surrogate obtained by truncating HDMR decomposition is
given hereafter for submodel F12 . This submodel F12 represents the Reynolds effect
on drag coefficient which is a function of three variables (d = 3): Mach, ΔISA and
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lift coefficient. For this submodel, only first and second-order HDMR are considered.
Therefore the associated index q for F12 can reach three values:

• q = 1: reference submodel (no HDMR built).
• q = 2: 2nd-orderHDMR. In Eq. (6.7), we keep the constant g̃0, the first-order terms

3∑

i=1

g̃i (Xi ), and the second-order terms
3∑

i=1

3∑

j=i+1

g̃i, j (Xi , X j ).

• q = 3: 1st order HDMR. In Eq. (6.7), we keep the constant g̃0 and the first order

terms
3∑

i=1

g̃i (Xi ).

The global characteristics of the eight submodels to be reduced and their candidate
surrogates (HDMR of 0th, 1st and 2nd-order) are given in the tables below.
Table6.1 gives the memory size expressed in terms of numbers of tabulated values.
Table6.2 provides the computational time in milliseconds on a personnal computer.
Table6.3 presents the maximum error relatively to the reference model. Finally,
Table6.4 gives the correspondance between the HDMR order and the index q of
surrogate.
Remark No value in Tables 6.1, 6.2, 6.3, 6.4 means that the corresponding surrogates
are either irrelevant or non-existant.

6.2.2 Surrogate Optimal Choice Results

In this section, the optimization process developped in Sect. 6.1.1 is applied to find
out the best choice of surrogates, provided in the previous Sect. 6.2.1. In order to
solve this linear integer programming problem, a branch and bound algorithm [5] is
used. In this industrial example, the global computational time constraint (T̄ ) has no
major effect on the optimal solution, because its value is sufficiently high. Hence,
the only active constraint is the maximum global error, which has a major impact on
the memory size of the solution; then it is worth to propose a trade-off between these
two parameters.

Table 6.1 Size S

Model Ref HDMR order

2nd 1st 0th

F11 2D 415 − 81 −
F12 3D 504 284 49 −
F13 1D 40 − − 1

F14 3D 51 83 23 −
F15 3D 474 282 49 −
F51 2D 246 − 61 −
F61 2D 305 − 67 −
F71 1D 12 − − 1
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Table 6.2 Computation time T

Model Ref HDMR order

2nd 1st 0th

F11 2D 0.4 − 0.3 −
F12 3D 0.8 1.5 0.3 −
F12 3D 0.1 − − 0

F12 3D 0.8 1.5 0.3 −
F12 3D 0.8 1.5 0.3 −
F12 3D 0.4 − 0.3 −
F12 3D 0.4 − 0.3 −
F12 3D 0.4 − − 0

Table 6.3 Error ‖ε‖∞
Model Ref HDMR order

2nd 1st 0th

F11 2D 0 − 3.88 × 10−4 −
F12 3D 0 7.83 × 10−7 2.59 × 10−4 −
F13 1D 0 − − 7.05 × 10−5

F14 3D 0 1.00 × 10−16 1.60 × 10−1 −
F15 3D 0 6.70 × 10−5 4.80 × 10−3 −
F51 2D 0 − 2.07 × 10−2 −
F61 2D 0 − 4.72 × 10−2 −
F71 1D 0 − − 7.16 × 10−5

Table 6.4 q values

Model Ref HDMR order

2nd 1st 0th

F11 2D 1 − 2 −
F12 3D 1 2 3 −
F13 1D 1 − − 2

F14 3D 1 2 3 −
F15 3D 1 2 3 −
F51 2D 1 − 2 −
F61 2D 1 − 2 −
F71 1D 1 − − 2

In the first subsection, the impact of the global maximum error constraint value ε̄

on thememory size of the optimal solution is shown. The second subsection describes
the choice of surrogates achieved for each optimal solution.
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6.2.2.1 Trade-Off Between Error Constraint and Memory Size

The chart below presents the evolution of the optimal memory size in function of the
global maximum error constraint value ε̄.

The output of the model is a fuel flow which takes its value between 200 and
9,000kg/h. Since there is a finite number of candidate surrogates, the set of optimal
sizes is discrete. Therefore the evolution of size versus global maximum error con-
straint is a step curve.Moreover, as the global maximum error constraint tested is also
finite (every 100kg/h), the curve presented in Fig. 6.3 is the conservative one betwen
twooptimal solutions found.Wenotice for example that between100 ≤ ε̄ ≤ 200kg/h
the optimal size remains at 1,398, thus between these two values the exact size is
visualized. On the same step, between 200 ≤ ε̄ ≤ 300kg/h, the size of the FCM
model is at most 1,398 but it could be 1,206 or any other value between 1,206 and
1,398. Because we can not test all the ε̄ value, we made the decision of keeping the
conservative size, which is 1,398 in this case.

Obviously, it should be noticed that the memory size is a decreasing function of
global maximum error constraint.

6.2.2.2 Evolution of the Optimal Choice of Surrogates

In this subsection, we show the evolution of the optimal HDMR decomposition for
each of the eight tabulated functions vs maximum error constraint value of the global
corresponding model (see Fig. 6.4).
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Fig. 6.4 Visualisation of the changes in submodel selections

We can notice in Fig. 6.4 that the submodel selection is not a monotonous function
of ε̄. Several comments of these evolutions are given hereafter:

• For ε̄ = 0, all the original submodels are selected (no reduction).
• The error due to submodel F11 has a strong influence on the output because the
reference submodel is kept except for high maximum error constraint.

• The error due to the submodels F61 and F71 have low influence on the output of
the global model FCM: the highest possible reduction is always choosen for both
of them.

• F12, F13, F15, F51 are the key elements of the reduction.When the globalmaximum
error constraint evolves, their HDMR decomposition order change to obtain the
best memory size solution. Roughly speaking, the optimization process found the
best balance between these four submodels.

• For the submodel F14, since the 1st order HDMR is not enough accurate and the
2nd order HDMR has a larger size (see Table6.1), the reference original submodel
is always selected.

6.3 Conclusion

For embedded hirarchical multilevel model, we define a new methodology which is
able to find the best combination of available surrogate submodels, in order to build a
global surrogate satisfying requirements of computational time, storage memory and
accuracywhile keeping amultilevel structure.We showhow this optimal combination
method can be formalized as a linear integer programming problem.



6 On the Choice of Surrogates for Multilevel Aircraft Perfomance Models 109

The feasability and the efficiency of this method has been demonstrated on a
real aircraft performance function, the Fuel Consumption Model. In this application,
the set of surrogate submodels have previously been constructed with the HDMR
decomposition of different orders.

Our future work will be focused on improving the estimation of the different error
propagations in order to reduce the conservatism of the global maximum error.More-
over, to refine the decision about the choices of surrogates,multi-criteria optimization
methods will be explored.
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Chapter 7
Multi-objective Design Optimization Using
High-Order Statistics for CFD Applications

Pietro M. Congedo, Gianluca Geraci, Remi Abgrall and Gianluca Iaccarino

Abstract This work illustrates a practical and efficient method for performing
multi-objective optimization using high-order statistics. It is based on a Polynomial
Chaos framework, and evolutionary algorithms. In particular, the interest of consid-
ering high-order statistics for reducing the number of uncertainties is studied. The
feasibility of the proposed method is proved on a Computational Fluid-Dynamics
(CFD) real-case application.

Keywords High-order statistics · Dimension reduction · Genetic algorithms ·
Robust optimization

7.1 Introduction

Optimization and design in the presence of uncertain operating conditions, mate-
rial properties and manufacturing tolerances poses a tremendous challenge to the
scientific computing community. In many industry-relevant situations the perfor-
mance metrics depend in a complex, non-linear fashion on those factors and the
construction of an accurate representation of this relationship is difficult. Proba-
bilistic uncertainty quantification (UQ)approaches represent the inputs as random
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variables and seek to construct a statistical characterization of few quantities of inter-
est. Several methodologies are proposed to tackle this problem; polynomial chaos
(PC) methods [1] can provide considerable speed-up in computational time when
compared to MC. In realistic situations however, the presence of a large number of
uncertain inputs leads to an exponential increase of the cost thus making these
methodologies unfeasible [2]. This situation becomes even more challenging when
robust design optimization is tackled [3]. Robust optimization processes may require
a prohibitive computational cost when dealing with a large number of uncertainties
and a highly non-linear fitness function. Efforts in the development of numerical
method are directed mainly to reduce the number of deterministic evaluations neces-
sary for solving the optimization problem and for the uncertainty quantification (UQ)
of the performances of interest. The overall cost is typically the product of the cost of
the two approaches because the stochastic analysis and the optimization strategy are
completely decoupled. Decoupled approaches are simple but more expensive than
necessary.

Several UQ methods have been developed with the objective of reducing the
number of solution required to obtain a statistical characterization of the quantity of
interest. An alternative solution is based on approaches attempting to identify the rel-
ative importance of the input uncertainties on the output. Awell knownmethodology
is based on a decomposition of the variance of the quantity of interest in contribu-
tions closely connected to each of the input uncertainties (main effects) or combined
inputs [4]. Recently, a practical way to decompose high-order statistical moments
has been also proposed [5].

In this work, we illustrate an efficient multi-objective optimization method taking
into account high-order statistic moments, such as the third and fourth-order statistic
moments, i.e. skewness and kurtosis, respectively. These moments can be easily
computed by means of a Polynomial Chaos (PC) method. A simplified test-case is
presented that displays the importance of considering high-order moments during
the optimization. The efficiency of the method in terms of computational cost and
fitness function complexity is verified in a realistic CFD-case optimization problem.

7.2 Computing High-Order Statistics by Using Polynomial
Chaos Techniques

This section is devoted to show how formulas of variance, skewness and kurtosis
can be obtained using a polynomial chaos framework (for more details see Ref. [5]).
If a polynomial chaos formulation is used, an approximation f̃ of the function f is
provided

f (ξ) ≈ f̃ (ξ) =
P∑

k=0

βkΨk(ξ), (7.1)
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where P is computed according to the order of the polynomial expansion n0 and the
stochastic dimension of the problem d

P + 1 = (n0 + d)!
n0!d! . (7.2)

Each polynomial Ψk(ξ) of total degree no is a multivariate polynomial form which
involve tensorization of 1D polynomial form by using a multi-index αk ∈ R

d , with∑d
i=1 αk

i ≤ n0:

Ψk(ξ · m�,k) =
d∏

i=1
m�,k

i �=0

ψαk
i
(ξi ) (7.3)

where the multi index m�,k = m�,k(αk) ∈ R
d is a function of αk : m�,k =

(m�,k
1 , . . . , m�,k

d ), with m�,k
i = αk

i /
∣
∣
∣
∣αk

i

∣
∣
∣
∣�=0.

Remark that, for each polynomial basis, ψ0(ξi ) = 1 and then Ψ0(ξ) = 1. Then,
the first coefficient β0 is equal to the expected value of the function, i.e. E( f ). The
polynomial basis is chosen accordingly to the Wiener-Askey scheme in order to
select orthogonal polynomials with respect to the probability density function p(ξ)

of the input. Thanks to the orthogonality, the following relation holds

∫

�

Ψi (ξ)Ψk(ξ)p(ξ)dξ = δi j 〈Ψi (ξ), Ψi (ξ)〉 (7.4)

where 〈·, ·〉 indicates the inner product and δi j is the Kronecker delta function.
The orthogonality can be advantageously used to compute the coefficients of the

expansion in a non-intrusive PC framework

βk = 〈 f (ξ), Ψk(ξ)〉
〈Ψk(ξ), Ψk(ξ)〉 , ∀k. (7.5)

Note that the coefficients of the PC expansion are computed by a quadrature
employing the points generated by a full tensorization of monodimensional quadra-
ture rules. In particular, employing uniform distribution for the stochastic variables,
a Legendre quadrature is chosen following the so-called Wiener-Askey scheme.

Variance (σ 2), skewness (s) and kurtosis (k) can be computed as follows:

σ 2 = E( f 2) − E( f )2 =
P∑

k=1

β2
k 〈Ψ 2

k (ξ)〉. (7.6)

s =
P∑

k=1

β3
k 〈Ψ 3

k (ξ)〉
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+ 3
P∑

i=1

β2
i

P∑

j=1
j �=i

β j 〈Ψ 2
i (ξ), Ψ j (ξ)〉

+ 6
P∑

i=1

P∑

j=i+1

P∑

k= j+1

βiβ jβk〈Ψi (ξ), Ψ j (ξ)Ψk(ξ)〉, (7.7)

k =
∫

f 4(ξ)p(ξ)dξ − 4E( f )s − 6σ 2E( f )2 − E( f )4

=
P∑

k=1

β4
k 〈Ψ 4

k (ξ)〉 + 4
P∑

i=1

β3
i

P∑

j=1
j �=i

β j 〈Ψ 3
i , Ψ j 〉

+ 6
P∑

i=1

β2
i

P∑

j=i+1

β2
j 〈Ψ 2

i , Ψ 2
j 〉

+ 12
P∑

i=1

β2
i

P∑

j=1
j �=i

β j

P∑

k= j+1
k �=i

βk〈Ψ 2
i , Ψ jΨk〉

+ 24
P∑

i=1

P∑

j=i+1

P∑

k= j+1

P∑

h=k+1

βiβ jβkβh〈ΨiΨ j , ΨkΨh〉. (7.8)

7.3 Introducing More Sensitivity Indices

As introduced by Sobol [6], sensitivity indexes for variance can be computed for
each conditional contribution as follows:

σ 2,SI
mi

= σ 2
mi

σ 2 . (7.9)

Here, we introduce new sensitivity indexes, basing on the decomposition of skew-
ness and kurtosis, as follows

sSImi
= smi

s

kSImi
= kmi

k .
(7.10)

If a total sensitivity index is needed, i.e. it is necessary to compute the overall
influence of a variable, it can be computed summing up all the contributions in
which the variable is present
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TSI j =
∑

ξ j ∈(ξ ·mi )

σ 2,SI
mi

TSIsj =
∑

ξ j ∈(ξ ·mi )

sSImi
(7.11)

TSIkj =
∑

ξ j ∈(ξ ·mi )

kSImi
.

7.3.1 Dimensional Reduction in the Truncation Sense

The first test case is represented by the following quadratic g-function:

f (ξ) =
4∏

i=1

|4ξi − 2| + ai

1 + ai
(7.12)

where ξi ∼ U (0, 1). Two possible choices of the coefficients are considered here

• ai = (i − 1)/2 the so called linear g-function fglin

• ai = i2 the so called quadratic g-function fgquad.

From the analysis, it is possible to note that the third and fourth variables seem to be
meaningless for the variance based indexes. Their total sensitivity indexes sum up to
0.05 for the variance, while exceed 0.15 for both skewness and kurtosis. Considering
only the sensitivity indexes computed on the variance the decision-maker could be
tempted to neglect the variables ξ3 and ξ4. In this case the ANOVA expansion will
loose all the terms containing ξ3 and ξ4

fG1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2)

fG2 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2) + f3(ξ3) + f13(ξ1, ξ3) + f23(ξ2, ξ3) + f123(ξ1, ξ2, ξ3),

(7.13)

where in the first case fG1 both are neglected; while for fG2 only ξ4 is neglected.
In this case the ANOVA terms can be computed analytically and, from them, the
statistics too. In the Table7.1 the percentage errors, for the first four central moments,
have been reported with respect the analytical exact solution for both the reduced
models fG1 and fG2.

Table 7.1 Percentage
(

abs(μ−μex )
μex

× 100
)
errors related to the reduced g-function fG1 and fG2

Function Variance Skewness Kurtosis

fG1 4.7997 29.236 15.039

fG2 1.2369 7.7705 4.0632
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The Table7.1makes evident as an error of only 5%on the variance can correspond
to a much greater error on the higher moments. The effect of a such behavior is clear
looking at the Fig. 7.1 where the probability density function has been computed for
both fG1 and fG2 and compared with the complete function (7.12). In this case the
model with only the first two variables looses both the tails while a good approx-
imation is achieved in the central part. However this test case clearly shows that
considering only the sensitivity indexes based on the variance could be very danger-
ous if the reduced model need to be obtained for safety purpose. The information
related to the less probable realizations of the system are totally lost and in this case
the pdf resuls to be analytically bounded between the values of f equal to 0.4 and
1.8. If the third variable is included in the reduced model both variance and skewness
are included with an error lower than 5%, while the error on the skewness remains
lower than 8%. The total sensitivity indexes associated to the fourth variable is lower
than 5% for the three moments. The improvement of the model on the base of the
inclusion of the third variable is evident in Fig. 7.1 where the pdf of the reduced
model recover both the tails and better approximate the pdf of the complete function.

From a practical point-of-view the dimensional reduction of the model has com-
monly obtained freezing the neglected parameters. For an analytical function, as here
of interest, it is possible to compute the constant values to choose, for both ξ3 and
ξ4, to obtain a reduced model that preservers both the expectancy and the variance
of the original complete model. Of course the two requirements cannot be satisfied
contemporary but a set of values of constant satisfying the mean and the variance
can be obtained analytically requiring (having a product tensorial function)

Fig. 7.1 PDFs for the
complete g-function and the
reduced models (see Eq.7.13)
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|4ξ̄ j − 2| + a j

1 + a j
= 1

( |4ξ̄ j − 2| + a j

1 + a j

)2

=
1∫

0

( |4ξ j − 2| + aj

1 + a j

)2

dξ j . (7.14)

The following values can be analytically computed for the two variables: ξ3 =
{1/4, 3/4, 91/120, 29/120} and ξ4 = {1/4, 3/4, 77/102, 25/102}.

In the Fig. 7.2 the pdf relative to the complete quadratic g-function freezing the
parameters ξ3 and ξ4 are reported compared to the complete pdf and the totally
reduced one.

From Fig. 7.2 it is evident that freezing parameter to assure the correctness of
the mean and the variance produces pdf very close to that one obtained neglecting
entirely theANOVA terms. From a practical point-of-view the analysis of the reduced
model can be carried out both with the ANOVA reduced model (if it is analytically
possible to compute integrals) of by freezing the parameter to neglect satisfying the
requirement on the expectancy and variance. In both case the resultsmake in evidence
as the analysis on the variance based sensitivity indexes needs to be supplemented by
information from sensitivity indexes of higher order to be confident that the reduction
of the model can be realized without deteriorate too much the information carried by
the reduced model in term of distribution of the realizations, especially in the tails.

In the second part of this section the function f1 has been analyzed. For the third
variable, the level of the TSI 1.55%, has resulted to be less than the threshold of 2%,
indicated in [7], to detect meaningless parameters. A dimensional reduced model
can be obtained freezing the third parameter, or equivalently for what shown in the
first part of this section, neglecting all the ANOVA terms in which the variable ξ3 is
present

Fig. 7.2 PDFs for the
complete g-function and the
reduced models freezing
the remaining parameters
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Fig. 7.3 PDFs for the
complete f1 and the reduced
models freezing the third
parameter
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f̂1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2). (7.15)

If the variable ξ3 is chosen to recover the exact value of the mean and the variance
of the complete model the following values are obtained: ξ3 = {0.4282865945,
0.4166346546}. In the Fig. 7.3 the pdf for the complete model and the one freezing
the third parameters have been reported. Even in this case, even with a model that it
is able to obtain an error on the variance less than the 2% (that for an engineering
application can be very optimistic as goal for a metamodel) the information about
the tails of the distributions are, again, totally lost. Of course the intent of this paper
and of this section is not to criticize the use of the variance estimator, but to make
evident that to obtain a metamodel to employ, for instance, for safety purpose the
information relative to high-order sensitivity indexes should be considered. In all the
case proposed and in many other, not reported here only for brevity, appear evident
that onlywhen even the high-order sensitivity indexes have reached a safety threshold
(about 5%) the model can be really (and more safely) truncated.

7.4 Multi-objective Design Optimization

7.4.1 Importance of Skewness in Decomposition

This paragraph is devoted to show how important is to control the skewness during
an optimization process. Let us consider the following polynomial function:

f = a (xz + xy) + b
(

x2 + z2
)

+ (cba) y2 (7.16)

where x , y and z vary between 0 and 1 with an uniform pdf. Parameters a, b and c
are design parameters that vary between −5 and 5. For this function, it is possible
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Fig. 7.4 Pareto front in the plan μ–σ 2 for the bi-objectives and three-objectives problem

to compute analytically high-order statistics, as functions of the design parameters.
In order to show the importance to take into account also the high-order statistics in
the robust optimization, different types of optimization are performed using several
objective functions.

First, a classical bi-objective optimization is performed, where the mean of the
function is maximized and its variance minimized. The Pareto front is reported in
Fig. 7.4. No measures of skewness have been used during the optimization process,
then the Pareto front is constituted by various designs displaying a very large variation
of skewness.

Now, let us consider a three-objectives optimization, i.e. consisting in the max-
imization of the mean, the minimization of the variance and the minimization of
the absolute value of the conditional skewness sxy . In this case, the Pareto front is
no more constituted by a curve, but by a surface in a 3D plan. The Pareto front is
represented by means of 2D representation in the Figs. 7.4 and 7.5 with projections
on the plans μ–σ 2, μ–sxy and σ 2–sxy , respectively. As shown in Fig. 7.5, designs
belonging to the Pareto front display a large variation of the conditional skewness.

Now, let us compare the results obtained with both optimizations. In Fig. 7.4, we
show Pareto fronts in the plan μ–σ 2. Designs obtained with the three-objectives
optimization are dominated (with respect to only μ and σ 2) by the designs com-
ing from the bi-objectives optimization. This is reasonable seeing that designs
from bi-objective optimization are not influenced by the skewness sxy during the
optimization.

In Fig. 7.6, curves associated to the three-objectives optimization are obtained by
the 3D Pareto front regarding only the designs having a skewness lower than 0.0001.
Remark that individuals of this Pareto front take values ofμ lower than 3.2 and values
of σ 2 lower than 4.4. Moreover, they could be dominated in terms of μ and σ 2 by
some individuals of the Pareto front obtained from the bi-objectives optimization.



120 P.M. Congedo et al.

μ

S
ke

w
n

es
s

0 10 20 30 40
0.00E+00

5.00E+01

1.00E+02

1.50E+02

σ2

S
ke

w
n

es
s

0 200 400 600 800 1000

0.00E+00

5.00E+01

1.00E+02

1.50E+02

Fig. 7.5 Pareto front in the planμ–sxy (on the left) and σ 2–sxy (on the right) for the three-objectives
optimization

Fig. 7.6 Pareto front in the
plan μ–σ 2 for the
three-objectives optimization
(extracted by the complete
one considering only
skewness inferior to 0.0001)
and the bi-objective
optimization
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Here, the interest is to get a Pareto front that is not sensitive to large variation in the
skewness, since designs obtained from bi-objective optimization could present large
skewness values. This displays the great interest to estimate high-order statistics
during optimization.

7.4.2 Description of the Algorithm

In this section, the algorithm for multi-objective robust design optimization is
described. The strategy is constituted by two steps, that are schematically repre-
sented in Figs. 7.7 and 7.8. In the first step, (reported in the Fig. 7.7), a design of
experience in the design variables space (called hereafter DOE), i.e. an initial set of
design variables y, is generated. For each design variable y of the DOE, a high-order
decomposition analysis is performed by computing for each uncertainty j , TSI j and
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Fig. 7.7 Compact scheme for
the kriging procedure
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k
(y)
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TSI (y)TSI k(y)

TSIk
j . Then TSI is computed for each y of the DOE and for each uncertainty. A

TSI response surface is built for each uncertainty and for each statistical moment as
function of design variable space, i.e. T̃SI j (y) and T̃SI j (y)k , by means of a kriging
method based on a DACE approach. The advantage of this methodology is the possi-
bility of implement an adaptive response surface in order to minimize the statistical
error between the real function and the extrapolated one.

In the second step (represented in Fig. 7.8), basing on the criterion for the TSI,
the reduced stochastic problem is performed for each point of the DOE, where mean
and variance are computed. Genetic algorithms are applied in order to compute new
individuals basing on μ(y) and σ(y). The NSGA algorithm [8] is used. The main
tuning parameters of the algorithm are the population size, the number of generations,
the crossover and mutation probabilities pc, pm and the so-called sharing parameter
r used to take into account the relative isolation of an individual along a dominance
front. Typical values for pc, pm are, respectively, 0.9 and 0.1; values of r are retained
following a formula given in [8] that takes into account the population size and the
number of objectives. Then, for the new design, mean and variance are computed for
the reduced stochastic problem. Algorithm continues until convergence of genetic

Fig. 7.8 Compact scheme for
the overall optimization
strategy
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y
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algorithms. For further validation of the algorithm, a complete stochastic analysis is
performed for each optimal design in order to verify TSI for each uncertainty.

The criterion for TSI is based on a double verification on TSI j and TSIk
j . In

particular, when the uncertainty j is considered, the criterion on TSI j is applied (2%
based on Hestaven criterion) only if the ranking associated to j is the same for TSI j

and TSIk
j .

7.4.3 Base Configuration and Sources of Uncertainty

In the presentwork, the turbine blade under consideration is the two dimensional VKI
LS-59 cascade, a configuration which has been widely studied [9, 10]. An unstruc-
tured CFD dense-gas solver is used to ensure the reliability of the computed results
for dense gas flows through a turbine cascade (for more details see Ref. [10]).The
two-dimensional flow domain is discretized by a structured C-grid comprised of
192× 16 cells. The boundary conditions are imposed as follows: at the inlet and
outlet boundaries, non-reflecting boundaries are applied using the method of char-
acteristics; a slip condition is imposed at the wall, which uses multi-dimensional
linear extrapolation from interior points to calculate the wall pressure; periodicity
conditions are prescribed at the inter-blade passage boundaries.

The siloxane dodecamethylcyclohexasiloxane (C12H36Si6O6), commercially
known as D6, is the fluid considered in this study. The physical properties of D6
are reported in Table7.2. The Peng-Robinson (PRSV) equation is used as thermody-
namic model for D6. It depends on the following parameters, the fluid acentric factor
ω, the isobaric specific heat in the ideal gas state, i.e. cv∞, and a fluid-dependent
parameter n (the mean values of these parameters for D6 are defined in Table7.3).

Performance of the turbine cascade can be evaluated by using several output
criteria. Here, the power output per unit depth (PO) expressed as Δh · ṁ/wmol [W]
is taken into account, where Δh is the enthalpy variation through turbine stage, ṁ is
the mass flow rate and wmol is the molecular weight.

Three main sources of uncertainties are considered in this study (globally eight
uncertainties): (i) the uncertainties on the operating conditions, i.e. inlet total temper-
ature, Tin/Tc, inlet total pressure, pin/pc, angle of incidence β and the stagger angle
θ , (ii) the uncertainties on the thermodynamic model, i.e. ω, cv∞ and n, and uncer-
tainties on geometrical parameters, i.e. the blade thickness φ. Basing on [11], the
3.0% of uncertainty for the temperature and pressure levels at the inlet conditions has

Table 7.2 Thermodynamic data for D6, where M is the percentage molecular weight, and Tb is
the boiling temperature at 1 atm

M (g/mole) Tc (K) Pc (kPa) Tb (K)

444.9 645.8 961 518.1
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Table 7.3 Thermodynamic constants for D6, PRSV equation of state, mean and min/max values
for the uniform probability density function, data taken from [4]

n cv∞ ω

Mean 0.5729 105.86 0.7361

Range 0.5385–0.6073 99.50–112.20 0.7214–0.7508

been taken into account. The PRSV thermodynamic model is considered as a good
trade-off between the accuracy of thermodynamic properties and the functional com-
plexity since it depends on a limited number of parameters, hence a reduced number
of uncertainty sources [11]. The following uncertainties are retained for this model
(see the Table7.3 and Ref. [11]), listed with their associated error bars: the acentric
factor ω (2%), the isobaric specific heat in the ideal gas state and a fluid-dependent
parameter n (6%). For the other parameters, it is assumed an uncertainty of 3% for
the angle of incidence β and the stagger angle θ , and an uncertainty of 2% for the
thickness φ.

7.4.4 Problem Definition

The objective is to find the optimal values for Tin/Tc, pin/pc, β and θ (four design
variables) in order to maximize the mean of power output, μ(P O), and to minimize
its standard deviation, σ(P O) (two objective-optimization problem). Ranges for
each design variable are defined in Table7.4. Remark that the lower limit for the
temperature is given by the saturation curve limit (SCL). Seeing that CFD code can
compute only 1-phase flows, it has to be verified that the uncertainty region does not
cross the maximal saturation curve (that can be computed as the upper limit of the
100% confidence intervals when uncertainties on thermodynamic model are taken
into account).

Finally, the optimization problem consists in finding the optimal values for four
design variables where the output to maximize is dependent from eight uncertainties.

7.4.5 Optimization

Adesign of experiment (DOE) of 50 elements in the four design variable space is gen-
erated. Then, for each design, a quasi-Montecarlo plan (based on Sobol sequences) of
two hundred individuals in the stochastic plan is generated and TSI is computed for

Table 7.4 Ranges of design variables in the optimization plan

pin/pc Tin/Tc β θ

0.7–0.98 SCL–1.15 25◦–35◦ 29◦–39◦
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each uncertainty. The convergence of TSI indexes for each uncertainty and design is
verified by increasing the number of individuals until five hundred. TSI for variance
and kurtosis have been computed, displaying very small differences.

In Fig. 7.9, TSI (based on variance) contours are reported for each uncertainty
in the plan p-T, where the point in the plan p-T is associated to the couple (pin ,
Tin) of inlet thermodynamic conditions. As shown in Fig. 7.9a, b, TSI associated to
the uncertainty on pin vary from 8 to 44% while vary from 39 to 83% for uncer-
tainty on Tin . For the uncertainties on two geometrical parameters, θ and φ (see
Fig. 7.9c, d), TSI vary from 7 to 25% and from 0.7 to 2.9%, respectively. TSI asso-
ciated to the uncertainties on thermodynamic model, i.e. ω, cv∞ and n, and on the
geometrical parameter φ, are less than 0.29%, then they are negligible with respect
to the TSI criterion.

For each design of the DOE that has been previously computed for kriging meta-
model, the reduced stochastic problem is performed and the statistics are computed
in terms of mean and standard deviation for PO.
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Fig. 7.9 TSI contours in the plan p-T for each uncertainty. a pin . b Tin . c θ . d φ
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Fig. 7.10 Mean (a) and standard deviation (b) for pressure for some optimal individuals

Then, twenty individuals evolved during forty generations. The converged Pareto
front is represented in Fig. 7.4. Various configurations are obtained with a large
variation of the PO, going from 0.91 to 1.46.

The proposed method, in terms of criterion for reduction problem, has been com-
pared with the one proposed in [4]. In particular, the Pareto front is different with the
exclusion of several profiles. This is due to a lack of accuracy when only variance is
considered in the reduction strategy. With respect to the old version, the introduction
of a more strict criterion (based on kurtosis) increases the global computational cost,
even if with a greater accuracy.

In Fig. 7.10, the mean pressure is shown in the computational domain. Gener-
ally, high inlet turbine pressures are associated to high mean of PO, displaying a
strong dependence of turbine performances from thermodynamic inlet conditions.
In a similar way, standard deviation of the pressure is reported in Fig. 7.10. Variance
is concentrated around the compression shock location near the trailing edge.

7.5 Conclusions

In this work, the interest of using high-order decomposition for reducing the number
of uncertainties in a robust optimization problem is assessed. In particular, sensitiv-
ity of different problems with respect to the variance or kurtosis decomposition is
illustrated. Finally, a well-known optimization algorithm is modified for including
this adding information in the reduction loop.
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Chapter 8
Extension of the One-Shot Method for Optimal
Control with Unsteady PDEs

Stefanie Günther, Nicolas R. Gauger and Qiqi Wang

Abstract The one-shot approach has proven to be very efficient in optimization
and control with steady partial differential equations (PDEs) which are solved by
fixed-point iterations. The purpose of this paper is to extend the one-shot method
to unsteady problems and to make it as efficient as in steady cases. We derive a
framework for optimization and control with unsteady PDEs, whose structure is the
same as in the steady one-shot method. First results in the direction of one-shot opti-
mization with unsteady Reynolds-averaged Navier-Stokes equations (URANS) are
presented. With the Van der Pol oscillator as a generic model problem, we investi-
gate an adaptive time scaling approach, which demonstrates the classical one-shot
efficiency on unsteady problems.

Keywords Simultaneous analysis and design · One-shot method · Unsteady opti-
mization · Adaptive timescale

8.1 Introduction

Optimal control of partial differential equations (PDEs) has gained a considerable
amount of attention in recent years. Gradient-based methods are typically used
for finding optimal design or control parameters [11]. If the number of design
parameters is rather large, the adjoint method is preferred since the cost of comput-
ing the sensitivities is then independent of the number of design parameters [16].

S. Günther (B) · N.R. Gauger
Computational Mathematics Group, Department of Mathematics and CCES,
RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
e-mail: guenther@mathcces.rwth-aachen.de

N.R. Gauger
e-mail: gauger@mathcces.rwth-aachen.de

Q. Wang
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA 02139, USA
e-mail: qiqi@mit.edu

© Springer International Publishing Switzerland 2015
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_8

127



128 S. Günther et al.

For optimization problems where the underlying PDE is steady-state and can be
solved iteratively, Ta’asan [19] suggested to solve the PDE simultaneously with the
optimization problem. In this so called one-shot approach, the necessary optimal-
ity conditions, including the state, the adjoint and the design equations, are solved
simultaneously. Since then, the one-shot method has been further developed and
successfully applied to various optimization tasks especially in the field of aero-
dynamics [3, 4, 10]. The benefit over classical, so called sequential optimization
algorithms, where the state and adjoint equations have to be solved accurately in
each optimization step, is, that the cost of an one-shot optimization is just a small
multiple of the effort of a simulation for the underlying PDE [4]. It has been proven
in [9] that the one-shot method converges to a stationary point of the optimization
problem, provided that a certain preconditioner for the design updates is used. The
one-shot approach for optimization with steady PDEs is recalled shortly in Sect. 8.2.

Along with increasing computer capacities optimal control of time-dependent
PDEs has become an active field of research [12, 13, 17, 18, 21]. In computational
fluid dynamics, where complex and accurate simulation tools have been developed
over years, the computational cost for solving unsteady PDEs is still enormous.
Extending the one-shot methodology for unsteady problems such that the state and
adjoint equations can be solved approximately during the optimization process, is
therefore crucial. Simulation tools for solvingunsteadyPDEs typically use an implicit
time marching scheme and solve the resulting implicit equations by applying an iter-
ative fixed point solver at each time step [2]. In Sect. 8.3 we derive a new framework
for solving the time-dependent PDE iteratively, that can be used in a one-shotmethod.
The newmethod uses the above mentioned fixed point iterations in a black box man-
ner making the unsteady one-shot method applicable for a wide range of existing
unsteady PDE solvers.

Section8.4 presents numerical results for solving the state and the adjoint equation
simultaneously within the new framework. The piggy-back iteration is applied to
an optimal contol problem solving the unsteady Reynolds-averaged Navier-Stokes
equations (URANS). In order to further improve the state iterations and accelerate the
convergence behavior, an adaptive time scaling approach is investigated in Sect. 8.5.
The Van der Pol oscillator, written as a system of two ODEs, is used as a generic
model problem to study the convergence of the unsteady one-shot method including
adaptive time scales in Sect. 8.6.

8.2 One-Shot Optimization for Steady PDEs

We consider the general optimization problem

min
y,u

f (y, u) s.t. c(y, u) = 0 , (8.1)

where the constraint represents a steady-state PDE for a state variable y ∈ Y and
a design variable u ∈ U . The objective function f : Y × U → R to be minimized
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as well as the state contraint c : Y × U → Y are assumed to be twice continuously
differentiable. Y and U are Hilbertspaces with finite dimensions m = dim(Y ) and
n = dim(U ) such that elements can be identified with coordinate vectors in Rm and
R

n .
We make the general assumption, that every design uniquely defines a state that

satisfies the state constraint. Moreover we assume, that this state can be computed
numerically by a contractive fixed-point iteration of the form

yk+1 = G(yk, u). (8.2)

To ensure convergence of iteration (8.2) we assume, that

∥
∥
∥
∥
∂G(y, u)

∂y

∥
∥
∥
∥ ≤ ρ < 1 for all (y, u) ∈ Y × U (8.3)

for some vector induced matrix norm ‖ · ‖. Hence, the fixed-point iterator G is
a contractive function and it follows from Banach’s fixed point theorem [1] that
(8.2) converges to the unique fixed point y∗ = G(y∗, u) where c(y∗, u) = 0 holds.
Replacing the state constraint by the fixed-point equation, the optimization problem
reads

min
y,u

f (y, u) s.t. y = G(y, u). (8.4)

We define the corresponding Lagrangian function L and the shifted Lagrangian N
by

L(y, ȳ, u) := f (y, u) + (G(y, u) − y)T ȳ =: N (y, ȳ, u) − yT ȳ , (8.5)

where the Lagrange multiplier ȳ ∈ Y is called the adjoint variable.

8.2.1 Steady One-Shot Algorithm

The first order necessary optimality conditions for the optimization problem (8.4)
are, that the gradients of the Lagrange function L with respect to ȳ, y and u vanish:

∇ȳ L = 0 ⇔ y = G(y, u) (8.6)

∇y L = 0 ⇔ ȳ = Ny(y, ȳ, u)T (8.7)

∇u L = 0 ⇔ 0 = Nu(y, ȳ, u)T (8.8)

where subscripts denote partial derivatives. To reach such a point, the following
one-shot algorithm is suggested [8, 9]
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⎡

⎣
yk+1
ȳk+1
uk+1

⎤

⎦ =
⎡

⎣
G(yk, uk)

Ny(yk, ȳk, uk)
T

uk − B−1
k Nu(yk, ȳk, uk)

T

⎤

⎦ , (8.9)

where Bk is a carefully chosen preconditioner that ensures convergence of the cou-
pled iteration (see Sect. 8.2.2). In this approach the state, the adjoint and the design
variables are updated simultaneously in one iteration step.

Since G is contractive in its first argument, iterating only in the state and the
adjoint variable for a fixed design u converges linearly to the solution of (8.6) and
(8.7). Thus, both variables can be updated simultaneously in the so called piggy-back
iteration without any preconditioning [5]. Although both variables converge at the
same convergence rate ρ, the adjoint variable lags behind the convergence of the
state variable which was measured in numerical results and analyzed theoretically
in [6].

8.2.2 Choosing a Preconditioner B

In order to ensure convergence of the one-shot iteration (8.9) a preconditioner Bk has
to be chosen such that contractivity of the coupled iteration is achieved. To this end,
Griewank et al. [8, 9] suggest to look for descent on a doubly augmented Lagrangian
function

La(y, ȳ, u) := α

2
‖G(y, u) − y‖2 + β

2

∥
∥
∥Ny(y, ȳ, u)T − ȳ

∥
∥
∥
2 + L(y, ȳ, u),

(8.10)

where weighted residuals of the state and the adjoint equations are added to the
Lagrangian function with α, β > 0.

It has been proven in [8] that if the weights α and β are chosen such that

√
αβ(1 − ρ) > 1 + β

2

∥
∥Nyy

∥
∥ (8.11)

holds, the augmented Lagrangian La is an exact penalty function, i.e. the stationary
points of L and La coincide. Furthermore, the step increment vector s of the coupled
one-shot iteration defined as

s(y, ȳ, u) :=
⎡

⎣
G(y, u) − y

Ny(y, ȳ, u)T − ȳ
−B−1Nu(y, ȳ, u)T

⎤

⎦ (8.12)

is a descent direction for La for any preconditioner B satisfying
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B = BT 	 B0 := 1

σ
(αGT

u Gu + βN T
yu Nyu), (8.13)

where σ = 1 − ρ − (1+ ‖Nyy‖
2 β)2

αβ(1−ρ)
(see [8] for a detailed derivation of the above

expressions).
A particular preconditioner B can be derived fromminimizing a quadratic approx-

imation of La with respect to the design changes. It is suggested in [9] to choose

B = 1

σ
(αGT

u Gu + βN T
yu Nyu + Nuu) (8.14)

which approximates ∇uu La in a neighborhood of a minimization point. Since (8.13)
is satisfied for this particular choice, the increment vector s decreases La . Thus
applying the one-shot iteration converges to a local minimum of (8.4).

Numerical applications of the one-shot algorithm choosing B as in (8.14) yields a
bounded retardation, i.e. the cost for an one-shot optimization is just a small multiple
of the cost of a single simulation for the underlying PDE. The factor typically varies
between 2 and 8, as various numerical applications have shown [4, 9].

8.3 Extension of the One-Shot Optimization for Unsteady PDEs

For time-dependent PDEs the state variable varies with time and thus is a function
y : [0, T ] → Y . The objective function to be minimized is typically given by some
time-averaged quantity. The optimization problem with unsteady PDEs reads

min
y,u

1

T

T∫

0

f (y(t), u) dt s.t.

{
∂y(t)
∂t + c(y(t), u) = 0 ∀ t ∈ [0, T ]

y(0) = y0∗
, (8.15)

where f and c are defined as in Sect. 8.2 and y0∗ ∈ Y describes some initial state.
Numerical methods for solving unsteady PDEs often discretize the time domain

with t0 = 0 < t1 < · · · < tN = T and approximate the transient term by an implicit
scheme. This results in an implicit equation for each time step. For simplicity, we
approximate the transient term by the implicit Backward Euler method resulting in
the following implicit residuum equations:

R(ti+1) := yi+1 − yi

ti+1 − ti
+ c(yi+1, u) = 0 ∀ i = 0, . . . , N − 1, (8.16)

where yi = y(ti ) denotes the state variable evaluated at the discrete time step ti .
Using the first order Backward Euler time marching scheme is not a restriction since
modification to any other implicit multistepmethod is straightforward. The residuum
equation at time ti+1 then also contains the evaluation of the state variable at other



132 S. Günther et al.

previous time steps yi−1, yi−2, . . ., depending on the order of the transient term
approximation.

It is assumed, that the implicit equations can be solved one after another forward
in time using an iterative fixed-point solver which converges at each time step to a
pseudo-steady-state solution:

for i = 0, . . . , N − 1 :
iterate yi+1

k+1 = G(yi+1
k , yi∗, u)

k→∞−→ yi+1∗ (8.17)

where yi+1∗ denote the convergedpseudo-steady-states at time steps ti+1 which satisfy
the residuum equations (8.16) and are fixed points of G, i.e. yi+1∗ = G(yi+1∗ , yi∗, u)

∀ i = 0, . . . , N −1. In contrast to the steady-state iterations in Sect. 8.2, the unsteady
fixed-point iterator now also depends on the state at the previous time step yi∗.

Convergence of the above fixed-point iterations is ensured, if G is contractive
with respect to its first argument:

∥
∥
∥
∥
∂G(yi+1, yi , u)

∂yi+1

∥
∥
∥
∥ ≤ ρ < 1 ∀ i = 0, . . . , N − 1 (8.18)

for all point of interest.
In order to extend from simulation to one-shot optimization, where one incorpo-

rates design updates already during the primal flow computation, the time marching
scheme (8.17) is modified as

iterate k = 0, 1 . . . :
yi+1

k+1 = G(yi+1
k , yi

k+1, u) for i = 0, . . . , N − 1 (8.19)

with y0k := y0∗ ∀ k ∈ N. In contrast to (8.17), where fixed point iterations are per-
formed at each time step to reach the converged states yi∗ one after another, in the
one-shot framework (8.19) the complete trajectory of the unsteady solution is updated
within one iteration. Interpreting the time-dependent state variable as a discrete vec-
tor from the product space y = (y1, . . . , yN ) ∈ Y N := Y × · · · × Y we can write
(8.19) in terms of an update function yk+1 = H(yk, u) where H : Y N × U → Y N

performs the update formulas (8.19) and is defined as

H(y, u) :=

⎛

⎜
⎜
⎜
⎝

G(y1, y0∗ , u)

G(y2, G(y1, y0∗), u)

...

G(yN , G(yN−1, G(yN−2, . . . , G(y1, y0∗ , u), u) . . . , u), u)

⎞

⎟
⎟
⎟
⎠

. (8.20)

Theorem 1 For a fixed design u ∈ U, the iteration

yk+1 = H(yk, u), (8.21)
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where H : Y N × U → Y N is defined in (8.20), converges locally to the fixed point
y∗ = H(y∗, u) with linear convergence rate bounded by ρ. Furthermore, H is
contractive in a neighborhood of y∗ with respect to a suitable norm ‖ · ‖H .

Proof Let yi+1∗ = G(yi+1∗ , yi∗, u) denote the fixed points of G that can be computed
with (8.17). Then y∗ = (y1∗, . . . , yN∗ ) ∈ Y N is by construction a fixed point of H .
The partial derivatives of H are given by

∂ Hi (y∗, u)

∂y j
=

⎧
⎨

⎩

0 : j > i
∂1Gi∗ : j = i

∂2Gi∗ · ∂2Gi−1∗ · · · ∂2G j+1∗ · ∂1G j∗ : j < i
(8.22)

where Gi∗ := G(yi∗, yi−1∗ , u) for i = 1, . . . , N and ∂k denotes partial derivatives
of G with respect to the kth argument with k ∈ {1, 2}. Thus, the Jacobian matrix
of H(y∗, u) is a tridiagonal block matrix whose diagonal blocks coincide with the
derivatives of the fixed point iterator G with respect to its first argument:

∂ H(y∗, u)

∂y
=

⎛

⎜
⎝

∂1G(y1∗, y0∗, u) 0 0

∗ . . . 0
∗ ∗ ∂1G(yN∗ , yN−1∗ , u)

⎞

⎟
⎠ (8.23)

Using the contractivity of G in (8.18) we can bound the spectral radius of the Jaco-
bian:

spr

(
∂ H(y∗, u)

∂y

)

= max
i∈{1,...,N } spr

(
∂1G(yi∗, yi−1∗ , u)

)
≤ ρ < 1 (8.24)

It follows from Ostrowski’s theorem [15, Proposition 10.1.3 and 10.1.4], that the
iteration yk+1 = H(yk, u) converges locally to the fixed point y∗ = H(y∗, u) with
linear convergence rate bounded by ρ.

Furthermore, since for all ε > 0 there exists a norm‖·‖ε such that spr
(

∂ H(y∗,u)
∂y

)
≤

‖ ∂ H(y∗,u)
∂y ‖ε ≤ spr

(
∂ H(y∗,u)

∂y

)
+ ε [15, Proposition 2.2.8], it follows, that

∥
∥
∥
∥
∂ H(y∗, u)

∂y

∥
∥
∥
∥

ε

≤ ρ + ε < 1 (8.25)

for ε small enough. Thus, H is contractive in a neighborhood of y∗ with respect to
a suitable norm which we will refer to as ‖ · ‖H . �

By construction of H and G, the components of the fixed point y∗ = H(y∗, u)

satisfy the residuum equations in (8.16). We find an approximate solution function
y : [0, T ] → Y of the unsteady PDE by applying a spline interpolation with the grid
{ti : i = 0, . . . , N } for the discrete state vector y∗ ∈ Y N and initial state y0∗ .
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The unsteady PDE-constrained optimization problem can be written in terms of
the fixed-point equation as

min
y,u

J (y, u) s.t. y = H(y, u) (8.26)

where the objective function J approximates the time-averaged quantity that is to be
minimized:

J (y, u) := 1

N

N∑

i=1

f (yi , u) ≈ 1

T

T∫

0

f (y(t), u) dt . (8.27)

We define the Lagrangian function L and the shifted Lagrangian N corresponding
to the optimization problem (8.26) by

L(y, ȳ, u) := J (y, u) + (H(y, u) − y)T ȳ =: N (y, ȳ, u) − yT ȳ , (8.28)

where the Lagrange multiplier ȳ ∈ Y N is the adjoint variable.
This formulation has the same structure as the definition of the Lagrangian in (8.5)

for optimization with steady PDEs. Thus, the one-shot approach for steady PDEs
as in Sect. 8.2 can be applied in the same way by considering the state variable as
a vector from the product space Y N and exchanging the iterator G with H and the
objective function f with J . The unsteady one-shot iteration is then given by

⎡

⎣
yk+1
ȳk+1
uk+1

⎤

⎦ =
⎡

⎣
H(yk, uk)

Ny(yk, ȳk, uk)
T

uk − B−1
k Nu(yk, ȳk, uk)

T

⎤

⎦ (8.29)

Since the condition of the one-shot method, i.e. the constraints are solved by a
contractive fixed-point iterator, are satisfied for the mapping H , the existing theory
for converging the state and adjoint variables in a piggy-back iteration as well as
finding a preconditioner Bk that ensures convergence of the one-shot method, also
applies for the unsteady optimization problem. The advantages of the steady one-
shot method, that have been measured in terms of a bounded retardation factor, are
expected for the unsteady one-shot method.

8.4 Piggy-Back Iteration for the Unsteady State
and Adjoint Equations

For a fixed design u ∈ U the piggy-back iteration for the state and adjoint variable
is given by
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[
yk+1
ȳk+1

]

=
[

H(yk, u)

Ny(yk, ȳk, u)T

]

. (8.30)

Since H is contractive, its adjoint counterpart is also contractive. Thus, both variables
converge simultaneously to the solution of the unsteady state and adjoint equations
without any preconditioning. In contrast to the steady piggy-back iterations, one
update of the state and the adjoint variables now each contains a loop over all time
steps. While one evaluation of H performs an update for each state component yi

one after another forwards in time, one evaluation of N T
y performs an update for

each adjoint component ȳi one after another backwards in time.
The piggy-back approach for solving the state and the adjoint equations simulta-

neously is applied for two test cases. After setting up the iterator H and the objective
function J as explained in Sect. 8.3, Automatic Differentiation in reverse mode [7]
is applied to H and J in order to compute the derivative of the shifted Lagrangian
with respect to the state variable.

8.4.1 Piggy-Back Iteration Solving the Unsteady
RANS Equations

The piggy-back iteration is implemented for an optimal active flow control problem
of unsteady flow around a 2D cylinder. Eight actuation slits are installed on the
surface of the cylinder where sinusoidal blowing and suction is applied in order to
reduce vorticity downstream the cylinder. Amplitude, phase shift and frequency of
the actuation are used as design variables. The governing incompressible unsteady
Reynolds-averaged Navier-Stokes equations (URANS) are solved by applying the
new approach described in Sect. 8.3 to the second order implicit finite volume code
ELAN [20]. The original code performs a pressure-velocity correction loop in each
time step. In order to apply the piggy-back iteration, these inner correction loops are
reduced to perform only one update in each time step and are therefore identified
with the fixed point iterator G.

To study the convergence behavior of the piggy-back approach, the L2-norm of
the state and the adjoint residuals ‖yk − H(yk, u)‖2, ‖ȳk − Ny(yk, ȳk, u)T ‖2 are
computed. From Fig. 8.1 it can be observed, that both variables converge at the same
convergence rate while the adjoint residuum exhibits the typical time lag behind the
convergence of the state variable. An initial phase of approximately 150 iterations
is needed before the primal variable starts to converge rapidly. It was observed, that
this phase enlarges for numbers of time steps, making the convergence behavior
dependent on the number of time steps.
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Fig. 8.1 Convergence history
of primal and adjoint states
for solving incompressible
URANS in piggy-back
framework (N = 200)
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Fig. 8.2 Convergence history
of primal and adjoint states
solving Van der Pol oscillator
in piggy-back framework
(N = 1.000)
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8.4.2 Piggy-Back Iteration Solving the Van der Pol Oscillator

The Van der Pol oscillator is a nonlinear oscillator where a damping factor μ ≥ 0
controls the magnitude of the nonlinear term. It can be written as a system of two
first order ordinary differential equations (ODEs)

(
ẋ
v̇

)

=
(

v

−x + μ(1 − x2)v

)

. (8.31)

Since anyunsteadyPDE transforms into a systemofODEs after spatial discretization,
the Van der Pol oscillator is used as a simple model problem to study the convergence
of the piggy-back approach and test the unsteady one-shotmethod. The transient term
of the ODE is approximated by the implicit Backward Euler method. The resulting
implicit equations are solved using a Quasi-Newton method. According to Sect. 8.3,
the contractive function H is set up to converge the primal variable at all time steps,
while G represents one step of the Quasi-Newton solver.

The L2-norm of the state and the adjoint residuals during the piggy-back iterations
are plotted in Fig. 8.2. About 50 iterations are needed before the state variable starts
to converge rapidly.
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Fig. 8.3 x-component of the
Van der Pol oscillator for 16
different k-iterations and final
solution marked by triangles
(N = 1.000, μ = 2)

Fig. 8.4 Residuum of the
Van der Pol oscillator at each
time step for 16 different k-
iterations (N = 1.000, μ = 2)

To clarify the reason for the slowly converging initial phase, the x-component of
theVander Pol oscillator is plotted inFig. 8.3 for 16 primal iterations. Themagnitudes
of each k-iteration follow a similar trajectory, but the first few k-trajectories exhibit an
artificial time dilation compared to the final solution, marked by triangles. The time
dilation enlarges for increasing number of time steps. The corresponding residuals
‖Rk(ti )‖2 at each time step are plotted in Fig. 8.4. While the residuum decreases
rapidly for t close to zero, the magnitude of the residuum at increasing times stays
almost unchanged during the first iterations.

Figures8.3 and8.4 demonstrate, that the slow convergence comes from this arti-
ficial time dilation. Concerning the primal update formulation for a trajectory as in
(8.19) one can see, that every update yi

k+1 is performed on the basis of an inexact

state yi−1
k+1 at the previous time step. This error propagates to all following time steps.

Thus, enlarging the time domain leads to larger accumulated errors at the last time
steps leading to larger residuals and increasing number of iterations to reduce the
errors. Figure8.3 shows, that the dominating part of the error occurs in the direction
of time while the error in the amplitude of the inexact trajectories are rather marginal.
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8.5 Adaptive Time Scaling

To reduce the time dilation observed in the previous section and therefore improve
the primal convergence speed, we introduce an adaptive time scaling approach. After
each state update, we assign a trajectory yk+1 to a scaled time t̃ such that the new
trajectory is in phase with the physical solution. More precisely, we define the new
trajectory as

ỹi
k+1 := yk+1(t̃i ) ∀ i = 1, . . . , N (8.32)

where t̃i is chosen such that the residuals R defined in (8.16) are minimized:

min
t̃i

‖R(t̃i )‖2 ∀ i = 1, . . . , N (8.33)

In this adaptive time scaling approach, we rescale the time parametrization after
each state update in such a way, that the new trajectory mimics the solution of the
PDE. Since we eliminate the error component that points in the direction of time by
minimizing the residuum with respect to time scales, the time dilation effect, that
was observed numerically, vanishes. Obviously, this rescaling approach leads to an
accelerated convergence speed of the primal iteration since we have

‖ỹk+1 − y∗‖H ≤ ‖yk+1 − y∗‖H (8.34)

= ‖H(yk, u) − y∗‖H
k→∞−→ 0 (8.35)

for a design u ∈ U and the fixed point y∗ = H(y∗, u) ∈ Y N .

8.6 Numerical Results: Unsteady One-Shot Optimization
Including Adaptive Time Scales

In this section we present numerical results that demonstrate the efficiency of the
one-shot approach including adaptive time scales for optimization with unsteady
PDEs.

The unsteady one-shot approach is applied for an inverse design problem subject
to the Van der Pol oscillator, while the design parameter μ controls the magnitude of
the nonlinear term.With y = (x, v)T , the minimization problem under consideration
is defined as
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Fig. 8.5 Residuum of state
and adjoint variable during
the piggy-back iteration for
the Van der Pol oscillator
including adaptive timescales
for N = 1.000 and
N = 2.000 time steps
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min
y,μ

1

T

T∫

0

‖y(t) − yre f (t)‖22 dt + γ ‖μ‖22 (8.36)

s.t.

(
ẋ(t)
v̇(t)

)

=
(

v(t)
−x(t) + μ(1 − x(t)2)v(t)

)

∀t ∈ [0, T ] (8.37)

(
x(0)
v(0)

)

=
(

x0
v0

)

(8.38)

where yre f denotes a target solution for some given reference parameter. A Tykhonov
regularization is added in the objective function with γ = 0.0001.

First, we investigate the accelerated convergence speed of the piggy-back iteration
including adaptive time scales. Similar to Sect. 8.4.2, we compute the L2-norm of
the state and the adjoint variable during the piggy-back iteration for N = 1.000
and N = 2.000 time steps. From Fig. 8.5 we observe, that the initial phase of slow
convergence has vanished completely and a fast piggy-back convergence independent
of the number of time steps is achieved.

Figure8.6 shows the residuals ‖Rk(ti )‖2 of the Van der Pol oscillator at each time
step for 16 different k-iterations. Comparing Fig. 8.6 with Fig. 8.4 from Sect. 8.4.2 it
can be seen, that the adaptive time scaling approach yields a more or less constant
accuracy over all computed times leading to a fast convergence of the state variable
for all time steps.

Enhancing the fast converging piggy-back iteration with a preconditioned design
update, the one-shot algorithm is applied to the optimization problem (8.36)–(8.38).
Instead of computing the exact preconditioner Bk as derived in Sect. 8.2 we find
an approximate preconditioner by using BFGS-updates [14] on the gradient of the
augmented Lagrangian with respect to the design variable. A stopping criterion for
the one-shot iteration on the norm of the gradient is implemented as ‖Nu‖2 < ε with
ε = 10−9.

The convergence behavior of the one-shot algorithm including adaptive time
scales can be monitored in Fig. 8.7. The state and the adjoint residuum converge
to zero with a linear convergence rate. Moreover the gradient reaches the stopping
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Fig. 8.6 Primal residuals of
the Van der Pol oscillator at
each time step for 16
k-iterations including
adaptive timescales
(N = 1.000)

Fig. 8.7 Convergence history
of one-shot iterations
including adaptive time scales
for solving the Van der Pol
oscillator (N = 1.000)
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criterion and thus the optimization stops at a local minimum after approximately
225 iteration steps where the objective function is fully converged and reduced to
zero. Comparing Fig. 8.5 with Fig. 8.7 it can be seen that a retardation factor of
approximately 7.0 is achieved.

The numerical results demonstrate, that the unsteady one-shot approach enhanced
with adaptive time scales yields a similar efficiency as observed in the steady one-
shot applications. In the current test case, the cost for an optimization is only a small
multiple of the cost of a primal simulationwhich is in good agreement with numerical
results for steady one-shot optimization.

8.7 Conclusion and Outlook

The theory for steady one-shot optimization has been recalled. The one-shot method-
ology has been extended to unsteady optimization problems by interpreting the
time-dependent solution of the PDE as a discrete state vector from the product
space Y N . We introduced an iterative fixed point solver by rearranging the classical
implicit time marching scheme. The updating scheme has been further improved by
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introducing an adaptive time scaling approach. After each iteration step for solving
the state equation, the time domain is rescaled such that the new trajectory is in phase
with the final solution. The one-shot algorithm including adaptive time scales has
been implemented for the Van der Pol oscillator as a first simple model problem. As
in the steady case, a bounded retardation was achieved, i.e. the cost of the one-shot
optimization is just a small multiple of the cost of a single simulation. The one-shot
method will be applied to optimal control of the unsteady RANS equations in future
work.
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Chapter 9
Adaptive Aerodynamic Design Optimization
for Navier-Stokes Using Shape Derivatives
with Discontinuous Galerkin Methods

L. Kaland, M. Sonntag and N.R. Gauger

Abstract We state and analyze one-shot optimization methods in a function space
setting for optimal control problems, for which the state equation is given in terms
of a fixed-point equation. Further, we concentrate on the application of a design
optimization problem incorporating the solution of the compressible Navier-Stokes
equations using a discontinuous Galerkin method. For the given primal fixed-point
solver an appropriate adjoint solver is constructed. For the following design update
we compute the shape derivative analytically based on the weak formulation of the
governing equations. The primal, adjoint and design updates are performed in a one-
shot manner, i.e., the corresponding equations are not fully solved, instead only a few
iteration steps are performed. Finally, we add an additional adaptive step. During the
optimization routine we refine or coarsen the grid to obtain a better accuracy.

Keywords One-shot method · Function space analysis · Design optimization ·
Adaptivity · Shape derivative

9.1 Introduction

Many algorithms for solving optimization problems governed by partial differential
equations (PDE) aim to solve the necessary first-order optimality system, also called
Karush-Kuhn-Tucker (KKT) system. This can be either done consecutively, i.e., after
a complete solve of the state equation the corresponding adjoint equation is solved
and finally the control or design parameter is updated. On the other hand, this can be
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done simultaneously or in one-shot, where state and adjoint equation are not fully
converged. Sequential quadratic programming (SQP) methods are an example for
a simultaneous treatment [1, 2], where the new iterate is immediately used in the
subsequent computations. The necessary second-order sensitivity informations are
often approximated by a BFGS update. Additionally, some variations include the
approximation of the linearized state equation components [3]. Instead of incorpo-
rating the new iterate immediately into the iteration cycle as for SQP type methods,
in [4] state, adjoint and design update depend on the previous iteration. This enables
a complete parallel treatment of the KKT system. This so-called single-step one-shot
method as discussed and analyzed in [4] relies on the fact, that the state equation is
solved in terms of a fixed-point solver. A convergence proof is provided for finite
dimensions [4].

Different versions of the one-shot method have been tested successfully for many
problems, especially in aerodynamics [5, 6]. A further extension of one-shotmethods
can be achieved by adding adaptivity. In more detail, that means that during the
optimization the grid is adapted simultaneously. This procedure yields the problem
of handling several dimensions in the optimization algorithm. In other words, before
dealing with adaptivity, the optimization method, here the one-shot method, needs
to be formulated and analyzed in a function space setting [7, 8].

The paper is structured as follows. We review the main aspects of the one-shot
method, its setting in function spaces as well as the principle steps of the convergence
proof as given in [8]. We continue by stating the framework with all its components
necessary for the design optimization problem in aerodynamics. In particular, we
review the compressible Navier-Stokes equations, its discretization by the discontin-
uous Galerkinmethod as well as the iterative solution by the backward Euler-Newton
method. These are the main steps of the simulation code PADGE (Parallel adaptive
discontinuous Galerkin environment), that was developed and provided by the Ger-
man Aerospace Center (DLR), see [9]. The relevant gradient information for the
design step is obtained by the shape gradient approach. Here, we compute the gradi-
ent based on a weak formulation of the Navier-Stokes equations as in [10]. Finally,
some computational results regarding the optimization of a NACA0012 airfoil are
shown.

9.2 General Setting of the One-Shot Method

We consider the optimization problem

min J (u, q) s.t. e(u, q) = 0, (9.1)

where e(u, q) = 0, e : U × Q → U ′ denotes the governing equations in form of
a PDE. Here, u ∈ U , q ∈ Q denote the state and control or design variable with
appropriate Hilbert spaces U and Q as well as the dual space U ′ of U . We further
assume that the PDE can be reformulated in terms of a fixed-point equation, i.e.,
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u = G(u, q). (9.2)

The fixed-point operator G needs to have a contraction factor less than 1. Therefore,
it needs to hold

‖Gu(u, q)‖ ≤ ρG < 1, (9.3)

where ‖·‖ denotes the appropriate operator norm. Overall, this leads to the equivalent
optimization problem

min J (u, q) s.t. u = G(u, q). (9.4)

In order to define the Lagrange function for (9.4) in a Hilbert space setting correctly,
we need to consider the transition from the PDE to the fixed-point formulation.
This is given according to [8] in terms of a linear, bounded and bijective operator
F(u) : U → U ′ such that

e(u, q) = F(u)[u − G(u, q)].

We note, that for the sake of simplicity we assume F(u) to be independent of q. We
can now define the Lagrangian incorporating the fixed-point formulation

L(u, q, λ) = J (u, q) + 〈λ, e(u, q)〉U,U ′

= J (u, q) + 〈F(u)∗λ, u − G(u, q)〉U ′,U . (9.5)

Computing the KKT system based on (9.5) yields a fixed-point formulation of the
optimality system according to

u − G(u, q) = 0 (9.6a)

Φ(u, q, λ) − λ = 0 (9.6b)

Lq(u, q, λ) = 0. (9.6c)

The operator Φ(u, q, λ) in (9.6b) is the fixed-point operator of the adjoint equation
and defined by (see [8])

〈F(u)∗Φ(u, q, λ), w〉U ′,U :=〈Ju(u, q), w〉U ′,U
− 〈λ, Fu(u)w[u − G(u, q)]〉U,U ′

+ 〈F(u)∗λ, Gu(u, q)w〉U ′,U

for all w ∈ U . Note that it holds

〈Lu(u, q, λ), w〉U ′,U = 〈F(u)∗Φ(u, q, λ), w〉U ′,U − 〈F(u)∗λ,w〉U ′,U . (9.7)
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A standard optimization method solves (9.6a) to obtain the state u. Afterwards,
(9.6b) is solved for the adjoint λ and finally the design is updated according to some
optimization routine. Instead, the one-shot method is based on a simultaneous update
of state, adjoint and design according to [4]

uk+1 = G(uk, qk) (9.8a)

λk+1 = Φ(uk, qk, λk) (9.8b)

qk+1 = qk − (Bk)−1Lq(uk, qk, λk), (9.8c)

with an appropriate preconditioner Bk . In [8] a convergence proof is given for the
general case and specified for model problems including the viscous Burgers equa-
tions. Additionally, [7] considers the incompressible Navier-Stokes equations in a
Hilbert space setting. In the following, we only mention the leading steps of the
general convergence proof.

Therefore, consider the augmented Lagrangian defined as

La(u, q, λ) = L(u, q, λ) + α

2
‖G(u, q) − u‖2U + β

2
‖Φ(u, q, λ) − λ‖2U , (9.9)

with the penalty parameters α, β > 0. Further, we define the increment vector

s =
⎛

⎝
s1
s2
s3

⎞

⎠ :=
⎛

⎝
G(u, q) − u

Φ(u, q, λ) − λ

−B−1Lq(u, q, λ)

⎞

⎠ . (9.10)

The convergence proof follows the idea to show that the augmented Lagrangian
acts as an exact penalty function, i.e., that every local minimum of the original
optimization problem (9.1) is also a local minimum of La . Further, we show that the
one-shot method yields descent on La . The next theorem is the main result in this
procedure and ensures the equivalence of the stationary points as well as the descent
condition.

Theorem 1 If there exist constants α > 0 and β > 0 such that the following
conditions are fulfilled

α(1 − ρG) − α2

2γ̃
‖Gq‖2 > ‖F(u)‖ + β

2
‖Φu‖, (9.11)

β(1 − ρG) > ‖F(u)‖ + β

2
‖Φu‖, (9.12)

γ >
γ̃

2
, (9.13)

for a positive preconditioner B with (Bh, h)Q ≥ γ ‖h‖2Q, ‖Φλ‖ ≤ ρG < 1 and a
constant γ̃ > 0, then a point is a stationary point of La if and only if it is a solution of
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the optimality system (9.6a), (9.6b) and (9.6c). Additionally s is a descent direction
for La.

Proof For the proof we refer to [8]. �

9.3 Design Optimization for Navier-Stokes

In our application the PDE is given by the steady compressible Navier-Stokes equa-
tions with the flow field u around an airfoil q. The vector of conservative variables
in two dimensions is given by

u =

⎡

⎢
⎢
⎣

ρ

ρv1
ρv2
ρE

⎤

⎥
⎥
⎦ ,

with the density ρ, the total energy E and the velocity components v1 and v2. We
further define the convective fluxes

f c
1 (u) =

⎡

⎢
⎢
⎣

ρv1
ρv21 + p
ρv1v2
ρhv1

⎤

⎥
⎥
⎦ and f c

2 (u) =

⎡

⎢
⎢
⎣

ρv2
ρv1v2

ρv22 + p
ρhv2

⎤

⎥
⎥
⎦ ,

as well as the viscous fluxes

f v
1 (u,∇u) =

⎡

⎢
⎢
⎣

0
τ11
τ21

τ11v1 + τ12v2 + κ ∂T
∂x1

⎤

⎥
⎥
⎦ and f v

2 (u, ∇u) =

⎡

⎢
⎢
⎣

0
τ12
τ22

τ21v1 + τ22v2 + κ ∂T
∂x2

⎤

⎥
⎥
⎦ ,

with the pressure p, the enthalpy h with h = E + p/ρ, the thermal conductivity κ ,
the temperature T and the viscous stress tensor τ . Omitting external volume forces,
we finally obtain the compressible Navier-Stokes equations for laminar flow in a
two-dimensional domain Ω

2∑

i=1

∂

∂xi
f c
i (u) − ∂

∂xi
f v
i (u,∇u) = 0. (9.14)

For a Newtonian fluid the stress tensor is expressed by

τ = μ(∇v + (∇v)T ) − 2

3
μ div(v)I,
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with the dynamic viscosity μ. For an ideal gas it holds e = cvT for the internal
energy e and the temperature is related to the viscosity by

κT = μγ

Pr

(

E − 1

2
|v|2

)

where γ is the ratio of specific heat capacity at constant pressure cp and constant
volume cv , i.e., γ = cp/cv , and Pr = μcp/κ is the Prandtl number. The compress-
ible Navier-Stokes equations are completed by appropriate subsonic or supersonic
inflow and outflow boundary conditions. Additionally, we have no-slip boundary as
well as adiabatic or isothermal boundary conditions on the wall, see [11] for details.

The cost functions under consideration are the lift and drag coefficients given by

J (u,Ω) = 1

C∞

∫

ΓW

(pn − τn) · ψ ds, (9.15)

where ΓW is the wall boundary of the domain Ω , n is the normal vector and ψ is
either ψl = (− sin(α), cos(α)) for the lift or ψd = (cos(α), sin(α)) for the drag
coefficient at a given angle of attack α. Further, it is C∞ = 1

2ρ∞|v∞|2 L , where the
subscript∞ denotes the values on the farfield and L is the characteristic length scale.

9.3.1 The Backward Euler-Newton Method

The system of PDEs (9.14) is discretized by the discontinuous Galerkin method. It
is based on a weak formulation of the system and on integration by parts. Since the
discrete variables are not assumed to be continuous over the element edges in the
discontinuous Galerkin method, we obtain a weak formulation inhabiting jumps and
numerical flux functions. We refer to [11] for details. We denote the discrete variable
by uh and obtain the discrete weak formulation

N (uh, vh) = 0 (9.16)

for uh ∈ V p
h and all vh ∈ V p

h , where V p
h denotes the finite element space consisting

of discontinuous vector-valued polynomial functions of degree p.
The simulation code PADGE offers the iterative solution of (9.16) with the backward
Euler-Newtonmethod thatwill be explained in the following. Incorporating a pseudo-
time leads to the following system

(
d

dt
uh(t), vh

)

+ N (uh(t), vh) = 0 for all vh ∈ V p
h , t ∈ (0, T ),

uh(0) = u0
h .
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The time is discretized with the backward Euler method. Linearizing the nonlinear
term together with Δtk = tk+1 − tk , we obtain

(
uk+1

h − uk
h

Δtk
, vh

)

+ N ′(uk
h, vh)(uk+1

h − uk
h) = −N (uk

h, vh). (9.17)

Here,N ′(u, v)w denotes the derivative ofN (u, v) with respect to u in the direction
w. Introducing a finite dimensional basis of V p

h the fixed-point iteration reads in
system notation

uk+1
h = uk

h −
(

M

Δtk
+ N ′(uk

h)

)−1

N (uk
h), (9.18)

with the mass matrix M , the Jacobian N ′(uk
h) and the residual vector N (uk

h). We
note that by interpreting M/Δtk + N ′(uk

h) as an augmented Jacobian, the scheme
corresponds to the Newton scheme, i.e., Δtk → ∞ leads to a standard Newton
update.

9.3.2 Adjoint Navier-Stokes Equations

The discrete adjoint equations to (9.16) are given by

N ′(uh, λh)wh = Ju(uh,Ω) (9.19)

for all wh ∈ V p
h . The control q now corresponds to the domain Ω . In order to satisfy

an adjoint consistency condition, the target function J needs to be modified at the
boundary. To keep notation shortly, we still denote this function by J and refer to
[11] for details. The same arguments as above, i.e., choosing a finite dimensional
basis of V p

h , lead to the linear adjoint system

N ′(uh)T λh = Ju(uh,Ω) (9.20)

for the discrete adjoint variable λh . The discrete linear system (9.20) can be solved
directly with a standard iterative scheme. Nevertheless, in the spirit of the one-shot
method it is important to update the adjoint variable simultaneously to the state with
an appropriate fixed-point iteration. Therefore, we add a pseudo-time and discretize
it by backward Euler. The adjoint fixed-point iteration is finally given by

λk+1
h = λk

h −
(

M

Δt
+ N ′(uk

h)

)−T (
N ′(uk

h)T λk
h − Ju(uk

h,Ω)
)

. (9.21)
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The primal-dual update based on the backward Euler-Newton method fits into the
general framework of the one-shot method as introduced in Sect. 9.2 in a dis-
crete and simplified manner. This follows directly by defining the preconditioner

R := (
M/Δt + N ′(uk

h)
)−1

and omitting its dependency on the state, so that we
obtain the adjoint update with F(uh) := R−1 and G(uh,Ω) := uh − R N (uh).

9.3.3 Shape Derivative

We present a derivation of the shape gradient, that is based on the variational for-
mulation of the state equations. Using shape and adjoint calculus, we compute the
shape gradients of lift and drag coefficient gd and gl in the so-called Hadamard form.
Compared to an approach using a strong form, where the state equations are fulfilled
pointwise, our approach leads to numerically more accurate results (see Fig. 9.1). We
summarize the concept of shape derivatives and especially the Hadamard Theorem
as stated in [12, 13] for J (Ω) := J (u,Ω). Therefore, let D be an open set in R

d

and the domain Ω be a measurable subset of D. Using the perturbation of identity

Tt [V ] : D × [0, δ) → R
d , (x, t) �→ x + tV (x),

which describes the deformation of the domain Ω by a vector field V , we can define
the following Eulerian derivative

d J (Ω; V ) := lim
t↘0

J (Ωt ) − J (Ω)

t

as the shape derivative of the target functional in the direction V . The function J is
called shape differentiable at Ω if the Eulerian derivative exists for all directions V
and the mapping G(Ω) : Ck

0 (D;Rd) → R defined by V �→ d J (Ω; V ) is linear and
continuous. In the following, let Ck

0 (Ω,Rd)∗ denote the dual space of Ck
0 (Ω,Rd)

and Ck
0 (Γ )∗ the dual space space of Ck

0 (Γ ) appropriately.

Theorem 2 (Hadamard Theorem) For every domain Ω ⊂ D, let J (Ω) be shape
differentiable of class Ck. Furthermore, let the boundary Γ be of class Ck−1. Then,
there exists the following scalar distribution g(Γ ) ∈ Ck

0 (Γ )∗, such that the shape
gradient G(Ω) ∈ Ck

0 (Ω,Rd)∗ of J (Ω) is given by

G(Ω) = γ ∗
Γ (g · n),

where γΓ ∈ L
(
Ck
0 (Ω,Rd), Ck

0 (Γ,Rd)
)

is the trace operator and γ ∗
Γ its adjoint.

Hence, it follows

dJ(Ω; V ) = dJ(Γ ; V · n) = 〈g, V · n〉(Ck
0 (Γ,Rd )

)∗×Ck
0 (Γ,Rd )

.
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If g(Γ ) is integrable over Γ , than the Hadamard Formula

d J (Ω; V ) =
∫

Γ

g (V · n) ds

is fulfilled. In the following, we denote terms which are written in this form to be in
Hadamard form.

Proof A proof can for example be found in [12] or in [13]. �

The Hadamard Formula implies that the shape derivative only depends on the
normal component of the vector field V at the boundary of the domain. For the
optimization the scalar distribution g(Γ ), which corresponds to the shape gradient,
has to be found for the drag and lift coefficient.

Theorem 3 (Preliminary shape derivative of the cost functional) If the vector field
of the perturbation of identity fulfills V = 0 in the neighborhood of the farfield
boundary Γ∞, then the shape derivative of the lift and drag coefficient according to
(9.15) is given by

d J (Ω; V ) = 1

C∞

∫

ΓW

(p′n − τ ′n) · ψ + (V · n) div(pψ − τψ)ds, (9.22)

where f ′ denotes the local shape derivative of a function f (t, x), defined as the
partial derivative f ′ := ∂

∂t f (t, x).

Proof A proof can be found in [14]. �

Since this preliminary shape derivative is not yet in Hadamard form, one has to use
adjoint calculus to eliminate the local shape derivatives p′ and τ ′. This can be done on
the one hand for the Navier-Stokes equations in pointwise form as stated in equation
(9.14), see [14, 15]. On the other hand the shape gradient can be computed for the
Navier-Stokes equations in variational form

(
2∑

i=1

∂

∂xi
f c
i (u) − ∂

∂xi
f v
i (u,∇u), v

)

Ω

= 0 ∀v ∈ H, (9.23)

where H represents an appropriate broken Sobolev space necessary for the weak
discontinuous Galerkin formulation, see [10, 16] for details. Computing the shape
derivative based on the latter approach leads to additional terms compared to the shape
derivative based on the strong form. This fact is caused by the reversed treatment
of shape differentiation and integration. Using technical reformulations, particularly
exploiting the no-slip condition and its local shape derivative at the wall boundary,
leads to the Hadamard form of the drag and lift coefficient.
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Theorem 4 The shape derivative of the drag and lift coefficient (9.15) in Hadamard
form is given by

where � is the adjoint stress tensor and the last two integrals, inside the boxes, only
occur for the variational approach of the Navier-Stokes equations.

Proof A detailed proof is given in [10] or [17]. �

We use all discretization points of the shape as parameters for the one-shot optimiza-
tion. This is often called free-node parameterization.

Figure9.1 shows the shape gradient of the drag and lift coefficient based on the
variational as well as the pointwise formulation, computed with a flow solution of
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Fig. 9.1 Shape gradient for lift and drag in Hadamard form for variational/strong approach with
p = 2
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Fig. 9.2 Shape gradient for lift and drag in Hadamard form for variational/strong approach with
p = 3

polynomial degree 2. For a verification of our implementation we also computed the
shape gradients with finite differences. While the Hadamard form of the variational
approach shows a good agreement with the computation by finite differences for
both cases, the shape derivative of the pointwise approach deviates from the finite
difference results significantly. Solving the flow solution more accurately we are
getting closer to a pointwise solution of theNavier-Stokes equations and can therefore
expect the Hadamard form of the pointwise approach to match the finite differences.
Hence, an increase of the polynomial degree of the flow and adjoint solution, see
Fig. 9.2, let the Hadamard form based on the pointwise approach match the finite
differences better in total. Nevertheless, the difference around the leading edge of
the airfoil, where the magnitude of the gradients of the flow solution is big, is still
noticeable. However, the agreement of the shape derivative based on the variational
approach compared to finite differences is nearly perfect.

Naturally, the gradient g(Γ ) belongs to Ck
0 (Γ )∗ and lacks the smoothness neces-

sary for the optimization. Therefore, as in [14] we additionally solve the following
PDE for g̃ to smooth the gradient

(I − εΔΓ )g̃ = g. (9.24)

Here, ε is a smoothing parameter and ΔΓ the so-called Laplace-Beltrami operator.
Numerical experiments show good results for ε = 5. The PDE (9.24) is solved
with homogeneous Dirichlet boundary conditions, which corresponds to fixing the
leading and trailing edge.
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9.3.4 Adaptive One-Shot Method

Putting all the steps together, we obtain the one-shot method. Motivated by the
formulation of the algorithm in function spaces in Sect. 9.2, we extent the method by
an adaptive step. The complete adaptive one-shot algorithm then reads:

repeat
1. if (res < tol1): refine/coarsen the mesh
2. perform n coupled steps in primal and

adjoint solver:
uk

h → uk+1
h

λk
h → λk+1

h
5. compute shape gradient gk+1

6. compute the smoothed gradient g̃ k+1

7. update the geometry ΓW due to
Γ k+1

W = Γ k
W − τ k g̃k+1

9. deform the mesh
until res < tol2

Therefore, whenever the residual reaches a given tolerance tol1, we refine or
coarsen themesh.After every adaptive stepor designupdate, the solutionvectors need
to be interpolated to the new mesh. An interpolation error is introduced and hence
we perform n simultaneous primal-dual updates before we continue. We therefore
call this method n-step one-shot method. The design corresponds to the boundary
wall of the airfoil ΓW . After computing and smoothing the shape gradient, we can
finally update the design via

Γ k+1
W = Γ k

W − τ k g̃ k+1 (9.25)

with the step size parameter τ k ∈ (0, 1], which might improve the convergence
behavior. We proceed until we reach a prescribed tolerance tol2.

9.4 Computational Results

We consider the drag minimization of a NACA0012 airfoil at M = 0.5, Re = 5,000
and an angle of attack of 2. The leading as well as the trailing edge of the airfoil are
kept fixed. As design parameters all surface grid points of the shape are chosen. The
initial mesh has only 1,600 cells and is given in Fig. 9.3.

This is sufficient, because we adapt the mesh during the one-shot optimization.
Furthermore, the contraction rate on coarse meshes is usually better than on fine
meshes, which yields further speed-up at the beginning of the optimization. For the
initial state we choose the given freestream solutionwith subsonic inflow and outflow
as well as adiabatic wall boundary conditions. The initial adjoint is set to zero. For
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Fig. 9.3 Initial mesh for NACA0012 airfoil
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Fig. 9.4 Primal and dual residual for the one-shot optimization

the discretization of the primal the polynomial degree 2 is used. The adjoint variable
is discretized with degree 3. We need the higher polynomial degree for the adjoint
in order to compute the dual weighted residual (DWR) error estimator with PADGE,
see [18] for details.

Figure9.4 shows the primal and dual residual of the one-shot method without
adaptive steps. After 20 iterations in the beginningwe obtain a feasible starting iterate
for the optimization. The choices n = 7 and τ k = 0.5 yield good results. The similar
behavior of primal and dual iteration can be seen clearly. After 6 deformation steps
the drag was reduced significantly. As expected, the shape of the airfoil appears to
become thinner.Whereas the initial drag is J 0

d = 5.586×10−2, after the optimization
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Fig. 9.6 Deformed and refined mesh after 4 deformation and 2 refinement steps

it is J ∗
d = 4.939 × 10−2. Due to fixing the leading and trailing edge, the airfoil

develops a curved behavior and the lift increases.
We finally add two adaptive steps. After 2 deformation steps 20% of the cells

with the largest DWR error indicator are refined. After the first refinement the mesh
has 2,656 cells, after 2 refinement steps it has 4,333 cells. The residuals are plotted
in Fig. 9.5. Since the accuracy is improved by the adaptivity and the shape gradients
can therefore be evaluated more accurately, the drag reaches J ∗

d = 4.728 × 10−2

already after 4 deformation steps. The airfoil becomes much thinner, the deformed
and refined mesh is plotted in Fig. 9.6.
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9.5 Conclusions

In this paper we studied the extension of the one-shot method by adaptivity. Since
the method needs to be capable of handling several dimensions during the iteration,
we presented the main steps of the convergence proof in a function space setting.
In this framework, we considered the shape optimization of a NACA0012 airfoil in
more detail. We introduced the compressible Navier-Stokes equations, which were
discretized by the discontinuous Galerkin method, as well as their solution by the
backward Euler-Newtonmethod. An appropriate iterative solver for the adjoint equa-
tionswas set up. The relevant gradient information for the optimizationwas computed
based on a weak formulation of the Navier-Stokes equations. The computational re-
sults underlined the positive effect of adaptivity during the optimization with respect
to accuracy and efficiency.
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Chapter 10
Optimal Flow Control and Topology
Optimization Using the Continuous
Adjoint Method in Unsteady Flows
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and Kyriakos C. Giannakoglou

Abstract This paper presents the development and application of the unsteady
continuous adjoint method to the incompressible Navier-Stokes equations and its
use in two different optimization problems. The first is the computation of the opti-
mal setting of a flow control system, based on pulsating jets located along the surface
of a square cylinder, in order to minimize the time-averaged drag. The second is deal-
ing with unsteady topology optimization of a duct system with four fixed inlets and a
single outlet, with periodic in time inlet velocity profiles, where the target is to mini-
mize the time-averaged viscous losses. The presentation of the adjoint formulation is
kept as general as possible and can thus be used to other optimization problems gov-
erned by the unsteady Navier-Stokes equations. Though in the examined problems
the flow is laminar, the extension to turbulent flows is doable.
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10.1 Introduction

Adjoint methods [1–4] are successfully used to compute the gradient of the objective
functionwith respect to the design variables and support gradient-based optimization
methods. This paper is dealing with the unsteady continuous adjoint [5–8] methods,
where the adjoint PDEs are firstly derived and, then, discretized. The primal problem
is governed by the unsteady flow equations and time-averaged performance metrics
are used as objective functions. Two optimization problems are solved: an active flow
control and a topology optimization problem.

Active flow control [9, 10], based on suction of blowing jets, steady or unsteady,
may control the boundary layer of the flow by preventing or delaying separation or
controlling other flow phenomena, such as the Karman vortices generated behind a
cylinder. The case examined here is the unsteady flow developed around a square
cylinder, which is controlled by a set of pulsating jets at fixed locations around the
cylinder, with their amplitudes as the design variables.

On the other hand, topology optimization is a shape parameterization-free design
method, which is used to identify which parts of an extended domain should be
solidified, so as to minimize the objective function which quantifies the quality of the
fluid flow in the remaining, non-solidified, part of the domain. Twomajor variances of
topology optimization exists, the porosity [11–13] and the level-set [14, 15]methods.

The porosity-based class of topology optimization algorithms compute a real-
valued porosity field, a, over an extended domain, which minimizes the objective
function. Domain areas corresponding to the fluid flow are identified as those with
nodal values a = 0 or, practically, a ≤ ε where ε is an infinitesimally small positive
number. Remaining areas where a �= 0 or, practically, a > ε define the part of
the domain to be solidified. In contrast, the level-set method is based on the signed
distance ϕ from the sought solid-fluid interface. If locally ϕ < 0, this cell is a fluid
cell, whereas cells with ϕ > 0 must be solidified. The isolines ϕ = 0 define the solid
walls.

In this paper, the topology optimization is based on the level-set method and
aims at designing a duct system with four fixed inlets and a single fixed outlet, for
minimum time-averaged viscous losses. Unsteadiness is caused by the time-varying
inlet velocity profiles.

In the unsteady adjoint method, a major issue is the storage of the primal solution
fields, at different time steps. When solving the unsteady adjoint equations, infor-
mation travels backwards in time. Also, to solve the adjoint equations at a given
time instant, the primal fields for the same instant must be available. The full-storage
of the primal field evolution in time is memory-wise too expensive and alternatives
must be used. The check-pointing technique [16, 17], which is used in this paper,
stores the primal solution at a number of instants and recomputes the solution at all
other time instants, starting from the closest check-point.
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10.2 Flow Model and Objective Functions

The flow is modeled by the Navier-Stokes equations for the unsteady laminar flow of
an incompressible fluid. The last term in Eq.10.1, which is activated only in topology
optimization problems, is added. The primal equations are

Rv
i = ∂vi

∂t
+ v j

∂vi

∂x j
− ∂

∂x j

[

ν

(
∂vi

∂x j
+ ∂v j

∂xi

)]

+ ∂ p

∂xi
+ αH (ϕ) vi =0, i = 1, 2(3) (10.1)

R p = −∂v j

∂x j
=0 (10.2)

where vi and p stand for the velocity components and the static pressure divided by
the density, respectively. ϕ is the signed distance (d or−d) from the solid walls used
in the level set method,

ϕ (x) =
⎧
⎨

⎩

d, if x ∈ solid region(Ωs),

−d, if x ∈ fluidic region(Ω f ),

0, if x is on the interface.
(10.3)

H(ϕ) is the Heaviside function and α is a penalty multiplier.
In view of the derivation of the primal equations, needed for the adjoint equations,

the non-differentiable Heaviside function is replaced with the sigmoid function

Ĥ (ϕ, h) =

⎧
⎪⎨

⎪⎩

1 , if ϕ ≥ h
1
2 + 15ϕ

16h − 5ϕ3

8h3
+ 3ϕ5

16h5
, if | ϕ |< h

0 , if ϕ ≤ −h

and its derivative is

τ (ϕ, h) = ∂ Ĥ (ϕ, h)

∂ϕ
=

{
+ 15

16h

(
1 − ϕ2

h2

)
, if | ϕ |< h

0 , if | ϕ |≥ h

where h takes on a very small positive value determining the shape of the sigmoid
function.

For the numerical solution of the primal equations the SIMPLE algorithm [18]
was used, with a cell-centered, finite-volume discretization scheme.

The first problem examined is the design of an optimal flow control system.
It is about the optimal configuration of a set of pulsating jets activated at fixed
locations along the perimeter of a square cylinder, to minimize the time-averaged
drag. The velocity components of each jet are given by

vm
λ = (

Am sin
(
2π f m (

t − f m
0

)) − Am)
nλ , λ = 1, 2(3) (10.4)
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wherem is the jet counter. Am is the amplitude, f m the frequency and f m
0 the phase of

each jet. Jets are aligned with the outwards, normal to the wall, unit vector. Positive
Am corresponds to blowing and negative Am to suction. The frequencies f m and
phases f m

0 of all jets are the same and fixed to f m = v∞
d [8] and f m

0 = 0, where v∞
is the infinite flow velocity and d is the side length of the square cylinder. The only
design variables are the amplitudes Am . In this case, the period of pulsating jets is
about 6 times shorter than that of the Karman vortices.

The time-averaged (squared) drag force is expressed as

J1= 1

2T

∫

T

D2(t)dt (10.5)

where T is the flow period. In the uncontrolled case, the flow period is the Karman
vortices’ periodwhereas in the optimally controlled case T stands for the jets’ period.
D is the time-dependent drag force

D(t)=
∫

Sw

[

pni − ν

(
∂vi

∂x j
+ ∂v j

∂xi

)

n j − ∣
∣v j n j

∣
∣ vi

]

ri d S (10.6)

where ri are the components of the unit vector aligned with the farfield velocity
and Sw stands for the solid wall boundary. The last term in Eq.10.6 stands for the
contribution of jets on the forces acting upon the body, at the jets locations. A similar
study, for a circular cylinder, can be found in [8].

The second problem is concerned with the design of an optimal duct system
connection fixed inlets with a single outlet. The flow is unsteady since time-varying
inflow conditions are imposed. The velocity at each inlet is still given by Eq.10.4,
where Am(>0), f m and f m

0 have fixed values. The problem is handled as a topology
optimization problem on an extended domain where the level set values ϕ at each
cell center are the design variables.

The objective function to be minimized is the time- and mass-averaged total
pressure losses between the inlets SI and the outlet SO . This is mathematically
expressed as

Jpt =− 1

T

∫

T

∫

SI,O

(

p + 1

2
v j v j

)

vi ni d Sdt (10.7)

with a term expressing a volume constraint being added to it. The constraint
function is

c =
[∫

Ω
H (ϕ) dΩ

Vall
− Vtar

]2

=
(

Vsolid

Vall
− Vtar

)2

(10.8)
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where Vall is the volume of Ω , V is the volume occupied by fluid, Vsolid that of
the solidified part of the domain and Vtar gives the desired percentage of Ω to be
solidified. After including the equality constraint of Eq. 10.8, the objective function
becomes

J2 = Jpt − λc + wc2 (10.9)

where λ is a Lagrangian multiplier and w a weight associated with the constraint.
During the optimization loop, both are updated according to theAugmentedLagrange
Multiplier (ALM) algorithm [19]. λ is initialized with a zero value and w with a
small positive value. At the end of each optimization cycle, w is multiplied by a
user-defined positive factor γ > 1 (unless it exceeds wmax ) and λ is updated as
λnew = λold − 2woldc.

10.3 The Continuous Unsteady Adjoint Method

10.3.1 Field Adjoint Equations

The augmented objective function Lk is defined as the sum of Jk and the time-space
(T −Ω) integrals of the products of the state equations and the corresponding adjoint
fields. So,

Lk = Jk +
∫

T

∫

Ω

ui Rv
i dΩdt+

∫

T

∫

Ω

q R p dΩdt, k = 1, 2 (10.10)

where ui and q are the adjoint velocities and pressure, respectively.
The derivatives of Lk w. r. t. the design variables bm , after applying the Leibniz

theorem, become

δLk

δbm
= δJk

δbm
+

∫

T

∫

Ω

ui
∂Rv

i

∂bm
dΩdt+

∫

T

∫

Ω

q
∂R p

∂bm
dΩdt (10.11)

By applying the Green-Gauss theorem and eliminating the integrals which depend
on variations in the flow variables w. r. t. bm , the field adjoint equations are derived.
These are

Rq=∂ui

∂xi
= 0 (10.12)

Ru
i =−∂ui

∂t
− v j

∂ui

∂x j
+ u j

∂v j

∂xi
+ ∂q

∂xi
− ∂

∂x j

[

ν

(
∂ui

∂x j
+ ∂u j

∂xi

)]

+ αH (ϕ) ui = 0

(10.13)
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Since both objective functions, J1 and Jpt , comprise only boundary integrals, their

derivatives δJ1
δbm

and δJpt
δbm

are defined only at these boundaries and do not contribute
to the adjoint field equations. The c constrain term, added to Jpt to form J2, contains
a volume integral which contributes only to the sensitivity derivatives. Since none of
the objective functions contributes to the field adjoint equations, the samefield adjoint
equations are valid for both. Of course, in the flow control optimization problem, the
last term in Eq.10.13 vanishes.

After eliminating the integrals depending on the variations in flow quantities, the
sensitivity derivatives are expressed, in the most general form, as

δLk

δbm
= δJk

δbm
+

∫

Ω

[

vi
∂vi

∂bm

]T

0
dΩ +

∫

T

∫

S

Du
i

∂vi

∂bm
d Sdt +

∫

T

∫

S

Dq ∂ p

∂bm
d Sdt

+
∫

T

∫

S

Eu
i

[
∂

∂x j

(
∂vi

∂bm

)

+ ∂

∂xi

(
∂v j

∂bm

)]

n j d Sdt (10.14)

where S = SI ∪ SO ∪ Sw or S = S∞ ∪ Sw is the boundary and Du
i = ui v j n j +

ν
(

∂ui
∂x j

+ ∂u j
∂xi

)
n j − qni , Eu

i = −νui and Dq = u j n j .

By substituting the derivative of each objective function into Eq.10.14, the elim-
ination of the boundary integrals which depend on the variation in the flow variables
gives the adjoint boundary conditions. The remaining terms give the expression of
the sensitivity derivatives to be used in the descent algorithm.

10.3.2 Boundary Conditions and Sensitivity Derivatives for J1

The derivative of the ‘mean drag’ objective function w. r. t. bm is

δJ1
δbm

= 1

T

∫

T

∫

Sw

D

(

− ν

[
∂

∂x j

(
∂vi

∂bm

)

+ ∂

∂xi

(
∂v j

∂bm

)]

n j

+ ∂vi

∂bm

∣
∣v j n j

∣
∣ + v j n j∣

∣v j n j
∣
∣

∂v j

∂bm
n j vi + ∂ p

∂bm
ni

)

ri d Sdt (10.15)

After substituting Eq.10.15 into Eq.10.14, the elimination of the boundary integrals
depending on the variation of the flow variables w. r. t. bm gives the adjoint boundary
conditions at every time step.

The adjoint boundary conditions along Sw, SI and SO , at every time-step, are Sw:
ui = − D(t)

T ri and S∞: ui = 0; for the whole domain Ω , the initial condition at
t = T is ui |t=T = 0.

The incoming or outgoing adjoint velocity is proportional to the instantaneous
value of drag D(t); this is the origin of the unsteady adjoint flow.



10 Optimal Flow Control and Topology Optimization Using the Continuous … 165

Finally, the sensitivities of J1 w. r. t. the control variables bm = Am are given by

δJ1
δbm

=
∫

T

∫

Sw

[

ui v j n j − ui
∣
∣v j n j

∣
∣ + ν

(
∂ui

∂x j
+ ∂u j

∂xi

)

n j − qni − v j n j∣
∣v j n j

∣
∣
u j v j ni

]

(sin(2π f m(t − f m
0 )) − 1)ni d Sdt (10.16)

10.3.3 Boundary Conditions and Sensitivity Derivatives for J2

For the time-averaged total pressure losses, used in topology optimization, the adjoint
boundary conditions are derived by substituting the derivative of J2 w. r. t. bm in
Eq.10.14 and eliminating terms depending on the derivatives of the flow fields. The
derivative of J2 w. r. t. bm is

δJ2
δbm

= − 2

T

∫

T

∫

SI,O

[

vi ni
∂ p

∂bm
+

(

vi v j n j +
(

p + 1

2
v2j

))
∂vi

∂bm

]

d Sdt

+ (4wc − λ)

(
Vsolid

Vall
− Vtar

)
∫

Ω

τ (ϕ) dΩ

Vall
(10.17)

The adjoint boundary conditions are Sw: ui = 0, SI : u(n) = v(n)

T , u(t) =
0, SO : q = u(n)v(n) + ν

(
∂u(n)

∂n + ∂u(n)

∂n

)
+ (

p + 1
2v2

) + v(n)v(n) and u(t)v(n) +
ν

(
∂u(t)
∂n + ∂u(n)

∂t

)
+v(t)v(n) = 0 and the initial condition for the adjoint field, at t = T ,

is ui |t=T = 0. Indices (n) and (t) stand for the normal and tangent components to
the boundary.

The sensitivity derivatives of J2 w. r. t. bm , where bm are the ϕ values at the
cell-center, are

δJ2
δbm

= δJ2
δϕ

=
∫

Ω

[α (vi ui ) τ (ϕ)] dΩ + 2 (−λ + 2wc)

(
Vsolid

Vall
− Vtar

)

×
∫
Ω

τ (ϕ) dΩ

Vall
(10.18)

10.3.4 Check-Pointing

For the solution of the unsteady adjoint equations, the primal fields at all time steps
must be available. Since the adjoint information travels backwards in time, in order
to use the primal fields at each time step, these should have been stored during the
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solution of the primal equations. Due to memory limitations, this is replaced by the
binomial check-pointing technique.

The check-pointing technique is a compromise between memory consumption
and CPU cost. Instead of storing the primal solutions at every time step, which is
verymemory consuming, only those at a predefined number of time-instances, called
check-points, are stored; from them, the primal solution in every other time-instant
is re-computed.

The binomial check-pointing method uses a binomial distribution of check-points
in time, for which it can be proved [17] that the number of flowfield recomputations
is minimal for given numbers of check-points and time-steps. The distribution of
check-points is dynamically updated as time progresses, so that, at any given time-
step, each check-point is always in the optimal position in time, as dictated by the
binomial distribution.

10.4 Results

In both optimization problems, the steepest descent method [19]

bnew
m = bold

m − η
δJk

δbm
(10.19)

is used to update the design variables values, after solving the adjoint equations.

10.4.1 Flow Control Optimization

The Reynolds number of the flow around the cylinder is Re = 100. Five jets were
equi distributed along each side of the square cylinder, the placement of which can
be seen in Fig. 10.1. All 20 jets share the same frequency f m = v∞/d = 10Hz and
phase f m

0 = 0. Recall that the optimization variables are the amplitudes Am of the
jets and the minimization of J1 is targeted.

The time step for the simulation is Δt = 4 × 10−4 sec. Two variants were tried.
In the first variant, the so-called “full-in-time” approach, the flow computation was
performed for 11 periods of time in each optimization circle. It was decided to
discard the solution during the first 5 periods, so as to get rid of the transient phase
of the primal problem and do the same for the last 5 to also avoid the transient
phase of the adjoint problem. Only the intermediate period, which is considered
representative of the periodic primal and adjoint phenomena, was used to calculate
sensitivity derivatives and the value of the objective function. In the second variant,
to be referred to as the “fast-in-time” approach, only one period of time is simulated
in each optimization cycle. After the numerical solution of the primal equations for
a single period of time, the adjoint equations were solved for this period. Then, the
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Fig. 10.1 Flow control optimization—mean drag minimization of a square cylinder at Re = 100.
The optimal solution is shown. Snapshot of the vorticity field at a random time instant. Primal (top)
and adjoint (bottom) vorticity fields

sensitivity derivatives were computed using the solution to the primal and adjoint
equations, for this single period, and the design variables were updated.

Because the transient effects were not discarded, the computed sensitivities were
not exact but the CPU cost per optimization cycle was lower. In order to reduce
transient effects, the results at the last time-step of the previous period/cycle were
used as initialization for the primal flow in the next optimization cycle. For the
adjoint equations, the first time-instant was used instead, since time goes backwards.
At the end of the optimization process, both the primal and the adjoint equations
were converged to a periodic solution.

In this case, 400 check-points were used and enough optimization cycles were
performed for both variants to converge. The convergence of both approaches is
presented in Fig. 10.2. The “fast-in-time” simulation appears to be twice as fast as
the “full-in-time” one. As such, the “fast-in-time” approach was exclusively used in
the second problem.

As both variants converged to a similar mean drag value and, except convergence,
only the outcome of the “fast-in-time” approach is shown.

The time variation in the drag and lift coefficients for the uncontrolled and con-
trolled cases are shown in Fig. 10.3 and 10.4. The resulted reduction in the amplitude
of the oscillating lift force is nothing more than a by-product of the optimization
process and is attributed to the controlled flow field symmetry.

A snapshot of the optimized flow, at an arbitrary time instant, is presented in
Fig. 10.1. The Karman vortices of the uncontrolled flow were suppressed and both
the primal and adjoint flows are symmetric in space. Also, the wake in the adjoint
flow, developed in the upwind direction, is visible.
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Fig. 10.2 Flow control optimization—mean drag minimization of a square cylinder, at Re = 100.
Convergence of both “-in-time” approaches. The x-axis corresponds to simulated periods of time.
For the “full-in-time” approach, each optimization cycle solves 11 primal and 6 adjoint periods,
while the “fast-in-time” approach solves for only 1 primal and 1 adjoint period per cycle. From this
case, a speed-up of about ×2 was achieved by using the “fast-in-time” approach
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Fig. 10.3 Flow control optimization—mean drag minimization of a square cylinder, at Re = 100.
Drag coefficientCd (= D(t)

0.5d2v2∞
) for the uncontrolled case and the optimally controlled configuration.

The mean drag coefficient was reduced from ∼1.6 to ∼0.3

The computed optimal jet amplitudes are shown in Fig. 10.5. Slots 4–10 create
symmetric vortices above andbelow the cylinder and slots 1–3push themaway.These
vortices do not allow the Karman street to be developed and produce a symmetric
flow field around the horizontal axis.
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Fig. 10.4 Flow control optimization—mean drag minimization of a square cylinder, at Re = 100.
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Slot Amplitude
1 0 . 0437
2 0 . 0792
3 0 . 0836
4 0 . 0488
5 − 0. 0416
6 − 0. 0374
7 − 0. 0163
8 − 0. 0127
9 0 . 0756
10 0 . 0577
11 0 . 0034

Fig. 10.5 Flow control optimization—mean drag minimization of a square cylinder, at Re = 100.
Jet locations and slot widths are shown. The computed optimal amplitudes of the pulsating jets are
listed and sketched

10.4.2 Unsteady Topology Optimization

The topology optimization was carried out on an empty square box, 2 × 2m2, with
four inlets of 5 cm each and a single 15 cm outlet. The set-up of the inlets and outlets
is shown in Fig. 10.6. The velocity at each inlet is expressed by Eq.10.4. All inlet
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Fig. 10.6 Unsteady topology optimization. The Ĥ(ϕ) field showing the optimal duct computed
by the optimization loop. Left Vtar = 0.6, Right Vtar = 0.8, Red areas (Ĥ(ϕ) ≈ 1) indicate the
solidified part of the domain whereas the blue one (Ĥ(ϕ) ≈ 0) is the fluid. Left the inlet velocity
vectors at this instant are also shown, so as to make clear that the four incoming mass flow rates are
not in phase
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Fig. 10.7 Unsteady topology optimization. The mean total pressure losses as the optimization
algorithm. Evolves the presented results correspond to two runs with different constraints, Vtar =
0.6 and Vtar = 0.8. The number of optimization cycles might appears to be high but the CPU cost
per cycle is quite low since both the primal and adjoint equations were solved for a single period of
time only. The constrained and unconstrained value of the objective function are plotted. Once the
solidified part of the domain reaches the desired percentage of the overall volume, the terms added
to Jpt become zero and the two curves coincide. As expected, increasing the solidified part of the
domain led to a narrow fluid passage and increased pressure losses
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Fig. 10.8 Unsteady topology optimization. The velocity flow field at 4 different time instants,
corresponding to maximum velocities at inlet 1 (top-left), inlet 2 (top-right), inlet 3 (bottom-left)
and inlet 4 (bottom-right). Strong swirl effects are present close to the flow outlet. Should these be
undesirable, they could be controlled or even eliminated [13] by adding a second constraint to the
objective function
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velocity profiles share the same amplitude Am = 1m/s and frequency f m = 10Hz,
but each had each own phase, f 10 = 0.05, f 20 = 0, f 30 = 0.075 and f 40 = 0.025.
The percentage of the square box volume to be solidified was initially set at 60%
or, in Eq.10.8, Vtar = 0.6. For the sake of comparison, a second optimization was
carried out using Vtar = 0.8. The target is to minimize J2. In this case, only the
“fast-in-time” approach was used.

The optimal shape of the duct, for each constraint, is shown in Fig. 10.6 and
the progress of the optimization algorithm in Fig. 10.7. Also, four snapshots of the
velocity field are presented in Fig. 10.8, for Vtar = 0.6, each corresponding to the
time instant at which the velocity of each inlet jet is at its maximum value.

10.5 Conclusions

The development of the unsteady continuous adjoint method to the incompressible
Navier-Stokes equations was presented for two optimization problems. The first is a
flow control optimization, using pulsating jets, of the unsteady flow around a square
cylinder and the second is a level-set optimization problem to design an optimal
duct system in a box with four inlets, a single outlet and unsteady inlet boundary
conditions, under a volume constraint.

On the flow control problem the optimal amplitude for each jet, as well as its
type (blowing or suction) were identified. On the topology optimization problem,
the optimal duct systems were identified for different volume constraints, based on
the level-set topology method.

In all cases, the binomial check-pointing method was used to overcome the mem-
ory requirements of the unsteady adjoint method.

The “fast-in-time” technique was formulated, where the optimization is based on
an approximation of the sensitivity derivatives, due to transient effects. Using this
technique, though more optimization cycles are needed, each one of them is much
cheaper in CPU cost and the over-all time needed by the “fast-in-time” technique is
about half the time needed by its “standard” counterpart.
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Chapter 11
Design Optimization of the Primary Pump
of a Nuclear Reactor

T. Verstraete and L. Mueller

Abstract Engineers are often challenged by designing new equipment without any
prior knowledge or guidance from an existing similar product. The large degree of
freedom that this generates can become a bottleneck as it could lead to a loss of global
oversight and may even lead to wrong, uninformed choices. It is essential to have a
large exploration of the design space to allow for innovative solutions, on the other
hand it is important to introduce a high level of detail as early as possible in the design
process to increase the reliability of the model predictions, which drive the decision
process. This leads to a well-known conflict where more knowledge is needed upfront
in the design process in the early stages of the design, and a larger degree of freedom
is needed near the end of the design process where typically more knowledge is
available. In this work it is demonstrated how modern design optimization tools can
be effectively used to integrate the preliminary with the detailed design process. The
key to achieve a good balance between design exploration and detailed design is
obtained by reducing the parameters that are fixed during the preliminary design to
an absolute minimum, such that the detailed design phase has still a large degree of
freedom. The parameters that are fixed in the preliminary design phase are moreover
those parameters that have a pronounced influence on the design performance and
can be reliably predicted by a lower detail analysis code. Both preliminary and
detailed design processes rely heavily on optimization techniques. Due to the larger
computational cost in the detailed design phase, a surrogate model based optimization
is used opposed to an evolutionary algorithm in the preliminary design phase. The
application within this paper is the design of a liquid-metal pump for the primary
cooling system of the advanced nuclear reactor MYRRHA conceived by the Belgian
research center (SCK·CEN). This single stage axial-flow pump has unique design
requirements not met by any previously designed pump, and hence demands for a
novel approach.
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11.1 Introduction

The MYRRHA project, initiated by the Belgian nuclear research center (SCK·CEN),
aimes at demonstrating a new generation of nuclear reactors. Indeed, fourth gener-
ation fast reactors show considerable improvements in fuel efficiency, safety and
nuclear waste generation compared to the current installed reactors. The primary
coolant is either sodium or lead/lead-bismuth eutectic (LBE). The use of sodium has
more safety hazards as it reacts explosively with water and ignites in air, and has a
lower boiling point. In contrast, the main problem with LBE is related to erosion.

The MYRRHA reactor is conceived as an accelerator driven system (ADS), able
to operate in sub-critical and critical modes [7] and will allow the demonstration and
performance assessment of the transmutation concept and associated technologies
starting in 2023.

The primary system of the MYRRHA research reactor is a pool-type design, as
illustrated in Fig. 11.1. All components of the primary loop, i.e. the pumps, heat
exchangers, fuel handling tools, experimental rigs, etc., are inserted from the top and
immersed in the reactor vessel, which is filled with lead-bismuth eutectic (LBE) as
primary coolant. The relatively high boiling temperature of LBE of 1,670 ◦C leads

Spallation loop

Primary pump (x2)

Heat exchanger (x4)

Diaphragm

Core plate

Fuel storage

Inner vessel

In-vessel fuel handling

Outer vessel

Rotor

Inlet

Stator

Outlet

Primary Pump 

Fig. 11.1 Schematic assembly of the MYRRHA reactor [7] with a close up of the primary pump
(dimensions not to scale)
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to a passively safe design regarding a loss of coolant accident (LOCA), as it allows
the operation without pressurizing the reactor even at high temperatures. However,
the high density of 10,000 kg/m3 and the corrosive properties of LBE add additional
challenges to the design, which regard mainly a restriction in flow velocity. Lower
flow velocities will for instance reduce the convective heat transfer, hence resulting
in large heat exchangers. But more significantly, low flow velocities have a major
impact on the pump design reducing dramatically the realizable head. The maximum
relative velocity in the pump needs indeed to be limited to rather low values to avoid
exessive blade erosion, e.g. it is reported that pumps developed by OKBM [6] for
nuclear submarines operate at maximum velocities of Wmax = 25–30 m/s.

11.2 Design Procedure

Reducing the maximum velocity to limit erosion is an essential and unique objective
to be addressed in the design of the primary pump. Up to this date, such pumps have
only been designed for Soviet Alfa class nuclear submarines during the 1970s and
no detailed reports on the design of such pumps exists. Hence one cannot rely on
any previous experience for the design, necessitating a thorough study of how the
particular requirements can be met.

As a design process evolves over time, more and more design parameters are
fixed limiting the remaining degrees of freedom. However, knowledge on the design
is gathered over the course of the design process and builds up mainly after the
preliminary design stage, as shown graphically in Fig. 11.2. This means that important
decisions have to be taken at early stages in the design process where only limited
information is available, which may lead to poorly informed decisions. It is therefore
advisable to limit as much as possible the decisions made early in the design process
while gathering as much knowledge as possible.

In this work it was therefore intended to limit the degree of freedom as much as
possible in the early design phase. To this end, the design process was split in two
sequential phases, each relying on modern optimization techniques. The first stage
consisted of a preliminary design phase where the type of pump and global dimen-
sions were fixed. The following phase consisted in a detailed design optimization of
the pump shape, keeping only few parameters fixed as defined from the preliminary
design phase. Such approach allows to prevent premature conclusions to be drawn
in the early design phase where only limited models are used, but on the other hand
still allows for a reasonably manageable optimization problem in the detailed design
phase where the main interactions between the different design parameters is limited.
Indeed, it is well known that the complexity of optimization problems increases the
higher the degree of interaction is between the different design variables. Within this
work, the most interfering design parameters have been fixed during the preliminary
analysis, which is possible since they can be well represented by lower accuracy
analysis tools.
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Fig. 11.2 Degrees of
freedom and acquisition of
knowledge during design

A fully detailed design optimization from the start, without any preliminary design
phase, is practically impossible. The large degree of freedom, combined with high
order interactions between several parameters, lead to a very complicated design
space that requires a high level of evaluations to accurately cover the myriad of
design options.

11.3 Preliminary Design Optimization

11.3.1 Machine Type

The preliminary design phase starts by the selection of the machine type. For pumps
a wide choice of different machine types exists. In the present work volumetric (or
positive displacement) pumps are ruled out for maintenance and other reasons. The
most attractive pump type is a rotodynamic pump which still has a large choice of
machine type (axial flow, mixed flow, or radial flow). This choice is mainly related
to the design requirements of the pump, i.e. to the flow rate Q and the total head ΔH.
A classical parameter in the selection of hydraulic machinery is the specific speed

Ns = RPM
√

Q

ΔH3/4 . (11.1)
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Fig. 11.3 Specific speed chart

This specific speed is used as a guideline for the selection of the machine type
based on a large database of existing designs. It suggests a type of machine that
should deliver the highest efficiency for the required specific speed. This should be
viewed as a strong suggestion, however one may deviate from the suggested type
with the risk of having a lower efficiency.

Based on the design requirements of the MYRRHA pump provided by SCK·CEN
the specific speed is in the range of mixed to axial-flow pumps Ns ≈ 156 (see
Fig. 11.3). Although towards lower RPM a mixed-flow configuration might provide
higher efficiency, an axial-flow pump is regarded as the best trade-off solution due
its lower mechanical complexity and simplified manufacturing.

The use of charts as Fig. 11.3 is very helpful in the preliminary design phase, as it
gives a clear indication for the choice of machinery in terms of global performance
parameters. Such charts do however not guarantee the identification of a global
optimum and provide no detailed shape. Moreover, no chart exists for the erosion
induced requirement of low relative velocity with respect to the walls.

With respect to this requirement, it was decided to analyze various design options
in this preliminary design phase. For that reason a simple one-dimensional model
has been applied in the hub, mid, and tip section of the rotor to assess the meridional
flow path and its rotational speed (Fig. 11.4, left). This rather simple model based
on velocity triangles up- and downstream of the rotor blade allows a rapid screening
of several design parameters, such as blade angles, rotational speed (RPM), and hub
and tip radii, Rhub and Rti p, respectively. Although it does not include complex flow
features, e.g. flow deviation or even flow separation, it provides a good estimation
of the initial rotor design as an input for the following detailed 3D-optimization.

Input parameters to the 3D-optimization are the hub and tip radii (Rhub and Rti p)
and the RPM of the rotor as illustrated in Fig. 11.4 (right). These parameters were
unchanged in the subsequent detailed high fidelity 3D-optimization, in which the
three dimensional design of the pump comprising the inlet section, the rotor and stator
rows, and the diffuser has been performed. It is important to note that these three
design variables have a large effect on all other design parameters for the detailed
design process. Flow angles will change for instance with different rotational speeds,
as well as with higher or lower hub and tip radii. To account for such changes, a much
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Fig. 11.4 Design procedure

wider range for the blade metal angles will be needed, which is increasing the design
space. Additionally, the optimal value for blade angle will depend largely on these
three parameters, and hence will require a much larger number of design evaluations
with the used methodology to find the optimal value. This can be easily understood
as follows: Suppose a sampling technique is used to find the optimum, i.e. the design
space is probed in discrete points. When two design variables have no interaction, it
is sufficient to put experiments on the diagonal of the design space spanning these
two design variables to find the optimum. However, if a strong interaction exists,
only sampling the diagonal is not sufficient as it would not allow to see the effect
of changing one design variable while keeping the other constant (and necessary
if the optimum is in an opposite corner of the diagonal). As such, the entire 2D
space spanned by both design variables will need to be sampled. It can be reasonably
assumed that most parameters in a 3D design of the axial pump, as will be shown
later, have only a low level of interaction with other parameters, and hence result in
a relatively easy optimization process. This situation would dramatically change if
hub and tip radii and RPM would be added as design variables.

11.3.2 Computational Model

The 1D computational model is illustrated in Fig. 11.5. Input parameters are the hub
and tip radii, Rhub and Rti p, and the RPM, next to the pump requirements (ΔH and
Q). The axial velocity Vx is derived from the hub and tip radius for the specified
flow rate Q. It is assumed at this stage that the axial velocity upstream of the rotor
is constant from hub to tip although the pump will have a radial inlet bend (see
Fig. 11.1).

The peripheral speed U is computed at three sections (hub, mid and tip) from the
rotational speed and the respective radii. The mid section is positioned in the middle
of the hub and tip radius: Rmid = 0.5 · (Rhub+ Rti p).
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Fig. 11.5 1D computational
model

The inlet absolute velocity V1 is assumed to be axial (no pre-rotation), which
allows to compute the relative velocity W1 and the relative flow angle β1.

The quantities downstream of the rotor (index 2) are computed based on the
required total head ΔH and assuming no losses (ηhyd = 1.0) using the Euler-equation
for pure axial inlet flow (V1θ = 0)

g · ΔH

ηhyd
= U2V2θ − U1V1θ = U2V2θ . (11.2)

and assuming the axial velocity Vx to maintain constant through the rotor (i.e. free
vortex design). The absolute velocity downstream of the rotor V2, the absolute flow
angle α2, the relative velocity W2, and the relative flow angle β2 are computed as
illustrated in Fig. 11.5.

11.3.3 Objectives and Constraints

Three design parameters (hub radius Rhub, tip radius Rti p, and RPM) can be chosen to
obtain the required total head ΔH and flow rate Q. However, additional requirements
need to be imposed:
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• The turning of the flow in the rotor (β2 − β1) needs to be limited to reduce the
losses, not accounted for in this preliminary design phase. According to [9] the
turning is limited to 30–25◦.

• The diffusion in the rotor (W2/W1) needs to remain feasible. A limit of 0.72 is
often used, known as the de Haller number [8].

• The maximum relative velocity in the rotor Wmax needs to remain at low values
(10–20 m/s) to limit erosion.

• The absolute exit flow angle (α2) needs to be small (from axial direction) to perform
a feasible diffusion in the subsequent stator [9].

The corresponding optimization problem is formulated as:

Minimize: Obj1 = W tip
1 (11.3)

Obj2 = −W hub
2 /W hub

1 (11.4)

Subject to: Constr1 = abs(βhub
2 − βhub

1 ) ≤ Δβmax (11.5)

Constr2 = Vx ≤ Vx, max (11.6)

The first objective Obj1 (Eq. 11.3) reduces the maximum relative velocity in the rotor,
which is in the tip section at the inlet. A value in the range of Wti p

1 = 10–20 m/s is
considered as feasible, although lower values are preferred, as they would increase the
lifetime with respect to erosion. The second objective Obj2 (Eq. 11.4) maximizes the
diffusion ratio near the hub to prevent an excessive diffusion. For a free vortex design
the highest diffusion occurs in the hub section. The first constraint (Eq. 11.5) restricts
the turning at the hub, where the largest relative flow turning will take place, while
the second constraint (Eq. 11.6) puts an additional limitation on the axial velocity to
limit the erosion risk in the meridional passage.

11.3.4 Methodology

Three different design variables are allowed to be changed during the preliminary
design phase, i.e. the hub and tip radii (Rhub and Rti p) and the rotational speed RPM.
Each design variable is allowed to change within a specified range. For each choice of
the hub radius Rhub, tip radius Rti p, and RPM, the velocity triangles can be computed
by the 1D model and the requirements can be evaluated. In order to find the three
design parameters that give a suitable compromise for the diffusion W2/W1, turning
Δβ, and maximum velocity Wmax requirements, a Differential Evolutionary (DE)
algorithm [10] has been used. Figure 11.6 illustrates schematically the optimization
flowchart.
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11.3.5 Results

The results of the 1D optimization are illustrated in Fig. 11.7, showing both the
diffusion in the hub section Whub

2 /Whub
1 (left) and the flow turning βhub

2 − βhub
2

(right) with respect to the relative velocity in the rotor tip section Wti p
1 . A Pareto front

is found with non-dominated designs, in which one objective cannot be improved
without worsening the other.

In Fig. 11.7 (left), a clear Pareto front (towards the upper left hand corner) is visi-
ble indicating that a lower maximum velocity Wti p

1 comes at the expense of a larger
diffusion near the hub (lower Whub

2 /Whub
1 ). This evidently results also in a higher

flow turning near the hub, as can be seen in Fig. 11.7 (right). The resulting Pareto
front allows the designer to select designs depending on the weight given to each
objective. In the present case, it was decided to select the design with a hub diffu-
sion ratio (Whub

2 /Whub
1 ) close to the minimum limit as indicated in Fig. 11.7 (left).
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Fig. 11.8 NASA axial pump
rotor for liquid rocket
application (hub-to-tip ratio
ν = 0.9) [11]

This design has a specific speed of Ns ≈ 70 with a high hub-to-tip ratio of
ν = Rhub/Rti p = 0.88, which is larger than commonly used for axial (propeller-like)
pumps in the range of ν = 0.3–0.7 [9]. However, this is due to the very low velocity
requirement (i.e. low Vx and Wti p

1 ) and high diffusion (i.e. low Whub
2 /Whub

1 ) for a
single stage pump. Similar conclusions were drawn within a design study of axial
pump rotors for liquid rocket application [1, 3, 11]. Several rotors (see Fig. 11.8)
were designed and tested with hub-to-tip ratios between ν = 0.4–0.9 for a spec-
ified diffusion, which confirms the results obtained from this preliminary design
optimization.

11.4 Detailed Design Optimization

11.4.1 Methodology

The 3D design of the primary pump is performed with the optimization algorithm
developed at the von Karman Institute (VKI) with special focus on turbomachinery
applications. The system (Fig. 11.9) makes use of a Differential Evolution algorithm
(DE), a metamodel based on an Artificial Neural Network (ANN), a database, and
high fidelity simulation tools for the flow analysis (CFD).

The basic approach of this method is that the Artificial Neural Network substitutes
the computational expensive tools for the CFD in the Generation Loop (see Fig. 11.9)
and provides less accurate but very fast performance predictions to evaluate the
large number of geometries necessary by the DE during its search for the optimum.
However, the metamodel requires a validation which is then performed in the Iteration
Loop according to Fig. 11.9. After a specified number of generations, the optimum
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Fig. 11.9 VKI optimization
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geometries according to the ANN predictions are analyzed by the more accurate but
much more computationally expensive CFD calculations to verify the accuracy of
the metamodel. The results of the accurate performance analysis are added to the
database and a new Generation Loop is started after a new training of the metamodel
on the enlarged database. In this way the whole system is self-learning, resulting in
a more accurate ANN.

The Differential Evolution algorithm used was developed by Storn and Price [10].
In present optimization, 1,000 generations are created with a constant population
size of 40 individuals. To validate the ANN predictions in each Iteration Loop eight
individuals were selected and reassessed by the high fidelity tools.

The initial sampling of the database was performed by means of a Design of
Experiments (DOE) [4]. The DOE is based on statistical methods and considers,
that k design variables can take two values fixed at a specified position in the design
space (here: 20 and 80 % plus one central case = 50 %). Further, to reduce the number
of required evaluations, the fractional factorial design approach [4] is used: 2(k−p)

with (k − p) = 6, thus resulting in 64 experiments plus the central case, which are
the initial sampling of the database. This clearly illustrates that this method is only
working properly if a low level of interactions between the different parameters is
present. This justifies the choice of keeping the Rhub, Rtip and RPM parameters
constant after the preliminary analysis.

11.4.2 Parametrization

The 3D model of the rotor of the pump (cf. Fig. 11.1) is based on Bézier and B-spline
curves and surfaces and is defined by:
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Fig. 11.10 Meridional parametrization of the inlet section and the rotor

1. the meridional contour,
2. the blade camber line at hub and tip,
3. the thickness distribution, which is added normal to the camber line at hub and

tip, and
4. the number of blades.

The definition of the meridional contour is shown in Fig. 11.10. The meridional
flow path is subdivided into different patches: an inlet patch (90◦-bend and swan
neck), a blade patch, and an outlet patch. The blade patch corresponds to where the
rotor blade is located in the meridional plane. The coordinates of the control points
are the geometrical parameters which can be modified by the optimization program
and the possible variation in axial and radial direction is indicated by arrows. In order
to have a good control about the geometry and to avoid undesirable shapes, lengths
and angles are used (e.g. L1 to L10, Hinlet , αhub and αshroud ). In total 15 parameters
define the meridional flow path.

The rotor blade is defined by the blade camber line of the hub and tip section, each
separately defined by the blade angle βm-distribution with respect to the meridional
plane. The βm-distribution is parametrized by a Bézier curve with three control
points, one at the leading and trailing edge and one intermediate control point. This
results in a total of 6 degrees of freedom.

The final blade with the pressure and suction side surfaces is created by adding
a thickness distribution normal to the camber line at hub and tip. In the present
optimization study, a NACA 65 thickness distribution at hub and tip has been chosen,
which shape is kept constant during the optimization process.

The number of blades, which defines the full rotor, is introduced as an optimization
parameter within this design study. This parameter has a major effect on solidity, i.e.
on the blade loading and on the blockage of the flow in case of accidents with no
pump rotation, in which cooling needs to be guaranteed by natural convection in the
reactor.

In total 22 parameters define the geometry of the pump and will be subject to
optimization.
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11.4.3 Flow Analysis

Every geometry in the Iteration Loop according to Fig. 11.9 has been analyzed at the
design operating point using the commercial flow solver fineTurbo™. The incom-
pressible Reynolds-Averaged Navier-Stokes (RANS) equations are solved using a
Runge-Kutta scheme in conjunction with accelerating techniques such as variable-
coefficient implicit residual smoothing and a multi-grid scheme. Discretization is
based on finite volumes with a cell-centered scheme stabilized by artificial dissipa-
tion. For the turbulence closure the one equation model of Spalart and Allmaras [12]
is used with the assumption of fully turbulent flow with an inlet Reynolds number of

Reinlet = Vinlet Rinletρ

μ
= 6.5 · 105 (11.7)

where Vinlet and Rinlet are the absolute inlet velocity and the inlet radius, respectively.
The flow properties of lead-bismuth eutectic (LBE) according to [5] have been used
for the CFD simulations.

11.4.4 Objectives and Constraints

The optimization of the inlet section and the rotor has two objectives:

1. Maximizing the hydraulic efficiency

Obj1 = ηhyd = ΔPtot

ρ · Δ(VθU )
(11.8)

where ρ is the density of LBE, ΔPtot the mass-flow averaged absolute total
pressure rise, and Δ(VθU ) the difference of the mass flow averaged angular
momentum between inlet and outlet.

2. Reducing the maximum isentropic velocity (W/W0)max,SS on the blade suction
side at 90 % span. The isentropic velocity objective aims at reducing the maxi-
mum relative velocity in the tip section (90 %-span) as shown in Fig. 11.11 and
is computed as follows:

Obj2 = (W/W0)max,SS = √
1 − C p|min,SS (11.9)

with the pressure coefficient C p:

CP = P − Pre f

0.5 · ρ · W 2
re f

(11.10)
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Fig. 11.11 Illustration of negative incidence resulting in a velocity peak on the pressure side

The two objectives are subject to two constraints:

Constr1 = ΔH ≥ ΔHmin (11.11)

and

Constr2 = [
(W/W0)max,ps − (W/W0)max,ss

] ≤ 0 . (11.12)

The first constraint (Eq. 11.11) ensures that the designs generated by the opti-
mization program supply the required total head for the design flow rate. The sec-
ond constraint (Eq. 11.12) prevents that the isentropic velocity objective Obj2 is not
improved at the expense of a higher velocity on the pressure side at the leading edge
due to negative incidence, i.e. if the flow impinges on the suction side, which results
in a velocity peak on the pressure side (Fig. 11.11).

11.4.5 Results

The results of the optimization are presented in Fig. 11.12, showing both the total
head ΔH (Fig. 11.12, left) and the maximum isentropic velocity on the suction side
(W/W0)max,SS (Fig. 11.12, right) with respect to the hydraulic efficiency ηhyd . Each
symbol in Fig. 11.12 represents one design that has been analyzed by CFD. The square
symbols represent the geometries analyzed for the initial database (DOE) prior to
the optimization to train the metamodel. The designs generated during the optimiza-
tion process are the diamond shape symbols. From the initial scattered distribution
of the DOE (Fig. 11.12, left), the optimizer generated a large number of designs
with high hydraulic efficiency ηhyd and minimum required total head (indicated
with the horizontal line in Fig. 11.12, left). The selected design of this optimization
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supplies a total Head, which is above the minimum required value, with high
hydraulic efficiency. The reason why this particular design has been chosen is more
obvious from Fig. 11.12 right, showing the two-dimensional objective space, i.e. the
maximum isentropic velocity on the suction side (W/W0)max,SS with respect to the
hydraulic efficiency ηhyd .

In this plot only designs which satisfy the constraints according to Eqs. (11.11)
and (11.12) are presented such that the apparent front of designs towards the lower
right hand corner is the Pareto front comprising non dominated designs, i.e. no other
designs outperform the Pareto optimal designs with respect to both higher efficiency
and lower relative velocity. Higher hydraulic efficiency comes at the expense of
higher relative velocity due to positive incidence resulting in a velocity peak on the
suction side leading edge. In this optimization reducing the isentropic velocity on
the suction side, i.e. the relative velocity to limit erosion had a higher priority than
improving the efficiency, resulting in the selected design, which is considered as the
best trade-off solution of both objectives.
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The selected design, which is presented in Fig. 11.13 left, is a high staggered, low
aspect ratio rotor (h/ctip ≈ 0.36) with a solidity in the tip section of (c/p)ti p ≈ 1.26.
It is a mid-loaded blade with an equal loading in the hub and tip section and with
a smooth diffusion on the suction side as illustrated in Fig. 11.13 middle, showing
the isentropic velocity distribution at 10 and 90 % span. Additionally, as illustrated
already in the 2-dimensional objective space in Fig. 11.12 right, this design has a
rather low velocity on the suction side which limits the erosion risk. Figure 11.13
(right) illustrates the mass-flow averaged span-wise distribution of the rotor Diffusion
Factor (DF) at design operating conditions. Although the Diffusion Factor introduced
by [2]

DF = 1 − W2

W1
+ ΔWθ

2σ W1
(11.13)

using the relative velocities up- and downstream of the rotor and the solidity σ is
strictly valid for two-dimensional flows, it is a suitable parameter to estimate off-
design tendencies. Except close to the side walls where the flow is overturned due
to secondary flows (i.e. due to the hub and shroud passage vortices), the computed
rotor Diffusion Factor is below DF ≤ 0.5, which indicates a sufficient margin towards
lower flow rates.

11.4.6 Stator-Diffuser Optimization

Subsequently to the inlet-rotor design optimization, the stator-diffuser has been
designed and optimized. A similar parametrization as for the inlet-rotor optimization
is used with 18 degrees of freedom, comprising the meridional flow path and blade
shape. The design of the rotor is kept constant during this process, but the inlet and
rotor are modeled in the CFD during this design effort. The objectives of the opti-
mization are to diffuse as much as possible inside the diffuser with limited losses,
while reducing as much as possible the velocity peak on the suction side of the stator
vane to limit erosion. The outcome of this optimization is illustrated in Fig. 11.14,
showing the meridional velocity with a span-wise distribution upstream of the rotor
and the isentropic velocity distribution at 10 and 90 % span of the stator vane.

11.4.7 Performance Map

The selected design (Fig. 11.14) has been analyzed further regarding its off-design
performance. Although the pump was designed primarily for the design point, it has
good off-design characteristics, which is illustrated in Fig. 11.15, showing the Head
coefficient
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Fig. 11.15 Performance map of the pump

ψ = g . ΔH

U 2
ti p

(11.14)

and the efficiency based on the torque

ηT orque = ṁΔHg

ω · T orque
(11.15)
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with respect to the flow coefficient

φ = Vx

Utip
. (11.16)

The reason for the good off-design behavior is related to the chosen design strategy.
The optimization was aiming at limiting the diffusion in the rotor and stator and
reducing the incidence of both blade rows resulting in a robust design with an entirely
sufficient negative slope (≡Δψ /Δφ) of the characteristics curve.

11.5 Conclusions

A hydrodynamic optimization based on evolutionary methods is used to design the
primary pump of the MYRRHA nuclear reactor. The design approach is aimed at

• maximizing the hydraulic efficiency of the rotor,
• minimizing the pressure losses in the stator and diffuser, and
• reducing the relative velocity in the rotor tip section.

Based on the preliminary 1D optimization, the rotor and stator have been designed
in two successive steps keeping the number of design parameters and objectives to
feasible values in each optimization run. The outcome is a pump, which supplies
the required Head and is respecting the design target of low relative velocity to limit
erosion.

The pump has been realized as a moderate specific speed, high hub-to-tip ratio
axial pump (Ns = 70, Rhub/Rtip = 0.88), although a mixed-flow pump would pro-
vide higher hydraulic efficiency according to classical specific speed charts. However,
due to the additional complexity of a mixed flow configuration in the manufacturing
process, an axial configuration is more attractive.

Although the pump was designed primarily for the design operating point, it has
a good off-design behavior, which is the result of the chosen design strategy. The
optimization was aiming at limiting the diffusion in the rotor and stator and reducing
the incidence of both blade rows resulting in a robust design.

Finally, the use of a two phase approach consisting of a preliminary design phase
and a detailed 3D design optimization allows for a strong reduction of the degree of
interactions of the design variables, which significantly reduces the design optimiza-
tion problem at hand. The use of a preliminary search with optimization techniques
on a reduced model allows a rapid selection of optimal design variables that are well
predicted by the reduced model. The authors advise that a well-thought use of phys-
ical models in the early stages of the design process is a prerequisite for a successful
detailed design optimization.
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Chapter 12
Direct 3D Aerodynamic Optimization
of Turbine Blades with GPU-Accelerated CFD

Philipp Amtsfeld, Dieter Bestle and Marcus Meyer

Abstract Secondary flow features of turbine blade flows are only assessable by
3D computational fluid dynamics (CFD) which is a time-consuming task. In this
paper a fast automatic optimization process for the aerodynamic improvement of
three-dimensional turbine blades is described and applied to a two-stage turbine
rig. Basically, standard tools are used where the 3D CFD analysis, however, is sig-
nificantly accelerated by a novel CFD solver running on graphics processing units
(GPU) and the entire blade is parameterized in 3D. This approach shows that three-
dimensional optimization of turbine blades is feasible within days of runtime and
finds an improved blade design.

Keywords Turbine blade design · GPU flow solver · Shape optimization ·
Aerodynamic optimization · Parameter reduction

12.1 Introduction

Although turbomachinery aerodynamics has been already extensively improved over
recent years, further optimization is still desirable to reduce emissions and fuel con-
sumption.Typically, the aerodynamic designprocess of turbine blades is split into two
phases: optimal design of 2D blade sections and then stacking them optimally along
a three-dimensional stacking line. This separation of section design and stacking
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is due to high computational costs of 3D flow simulation. Splitting the two phases
reduces the number of design parameters and eases the design tasks. However, some
loss mechanisms like secondary flow can only be assessed in 3D. Therefore, turbine
blade design will be tackled as a real 3D problem in this paper.

Section design by automatic optimization processes iswell-established sincemore
than one decade [3, 4, 6, 13]. Various section parameterization approaches have been
presented which are mainly based on physical design parameters and/or free form
curves [5]. Flow simulation on stream surfaces is usually performed by Euler or
Navier-Stokes solvers, where the former can be enhanced with a boundary layer
model. Many kinds of optimization algorithms such as Evolutionary Algorithms
have been used. Often the optimizer is coupled with a surrogate model to reduce the
number of function evaluations.

There are also many reports about stacking optimization [1, 14]. Usually the
sections are arranged in radial direction along the stacking linewhich is parameterized
as a polynomial or free form curve. Keskin et al. [10] report on stacking optimization
in an industrial environment with GPU-accelerated CFD.

Of course, also fully three-dimensional aerodynamic optimization has already
been performed [9, 11, 12]. Blade parametrization or modification can be based
on stacked sections, free form surfaces or free form deformation (FFD). These
approaches are mainly limited by large number of design parameters and huge 3D
evaluation time. If indicated, runtime of 3D blade optimization so far is in the order
of many weeks.

In this work we present a fully 3D optimization of a turbine blade as part of a
two-stage turbine research rig, where runtime is just a few days although hundreds
of 3D design evaluations are performed. Aerodynamic design evaluation is signifi-
cantly accelerated by a rapid flow solver running on GPUs. All computations run on
a workstation equipped with four high-performance NVIDIA Tesla C2050 GPUs.
Each of these GPUs offers 448 stream processors with up to 515 GFLOPs double
precision peak computational power and 3GB on-boardmemory. Apart from that the
design process is built up from standard components. Design parameters are chosen
according to a sensitivity analysis. The following sections describe the optimiza-
tion problem, CFD analysis, parameterization, parameter reduction and optimization
results.

12.2 Problem Formulation

The main goal in aerodynamic turbine blade design is to maximize the component
efficiency η:

max
pl≤p≤pu

η. (12.1)
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However, this is constrained by keeping given operation conditions and engine
properties like inlet capacity ṁref

cor and degrees of reaction ρref
1 and ρref

2 of both stages
of the considered two-stage turbine which are set in preliminary design phases:

ṁcor = ṁref
cor

ρ1 = ρref
1 (12.2)

ρ2 = ρref
2 .

Inlet capacity is associated with the mass flow at turbine inlet. Usually the inlet
capacity determines the mass flow through the whole turbomachine and is kept fixed
in this design phase. The degree of reaction of a turbomachinery stage is defined
as fraction of fluid temperature drop across the rotor in relation to the temperature
drop of the corresponding stage. This is a measure for the fluid work on the rotor
and related to axial bearing loads. Thus, the reactions might affect other engine
components which is why they may not be changed.

More constraints, e.g. on geometry or aerodynamics would be applicable, too.
However, this is omitted here to keep problem formulation and CFD post-processing
as simple as possible. For simplification of numerical optimization, constraints (12.2)
are only enforced to be fulfilled within small tolerances εi , i.e.,

∣
∣
∣ṁcor − ṁref

cor

∣
∣
∣ ≤ ε0,

∣
∣
∣ρ1 − ρref

1

∣
∣
∣ ≤ ε1, (12.3)

∣
∣
∣ρ2 − ρref

2

∣
∣
∣ ≤ ε2.

The constrained scalar optimization problem (12.1), (12.3) may then be solved with
a penalty strategy. The blade parameterization and choice of design parameters is
explained in more detail in Sect. 12.4.

12.3 CFD Analysis with a GPU-Accelerated Flow Solver

In this work, CFD analyses are performed with the fast flow solver Turbostream [2]
which is a massively parallel re-implementation of an existing CFD solver for
flows in turbo-machinery to optimally run on modern multi-core hardware like
high-performance GPUs. Turbostream solves the Reynolds-averaged Navier-Stokes
(RANS) equations with the finite volume method in cylindrical polar coordinates.
Turbulence is modeled by a mixing length model and wall shear stresses are com-
puted with a wall function. Unsteady multi-stage effects are modeled with a mixing
plane approach.

Boundary conditions are specified by radial distributions of total pressure PI (r),
total temperature TI (r), yaw angle αt (r) and pitch angle αr (r) at the inlet and by



200 P. Amtsfeld et al.

PI(r)

TI(r)

αt(r)

αr(r) pE(r)

Fig. 12.1 Computational domain of the investigated turbine with boundary conditions at inlet and
exit

static pressure distribution pE (r) at the exit, see Fig. 12.1. Extra inlet patches are
used for film cooling and cooling flows at the hub cavities and trailing edge slots.
The initial flow field is generated from rough aerodynamic data based on preliminary
design.

The structuredmesh has amulti-block topologywith arbitrary patches. In general,
a HOH mesh topology is used for each blade. On the blade surface, y+ values are
in the order of 20. Furthermore, geometric features like fillets, stub cavities, trailing
edge slots and tip gaps are represented by the mesh. The resulting mesh generated by
the rapid Rolls-Royce in-house meshing system PADRAM [15] has 2.6 million cells
for four blade rows. This mesh size fits into the memory of one GPU card used for
this project. Thus four CFD analyses may be performed in parallel on the machine
described in Sect. 12.1.

12.4 Parametric Blade Model

Parameterization is a key driver for successful optimization. The concept of the
three-dimensional blade description chosen here is based on sections which are
defined on stream surfaces at several radial heights from hub to casing, see Fig. 12.2a.
Each section is defined by circular arc segments for the leading and trailing edge,
respectively, andB-splines for suction and pressure side, respectively. Typical section
parameters are the chord length c, stagger angle ξ , metal angles β j , wedge angles
μ j , circle radii r j , tangential spline control points tk

j and free spline control points

(sk
i ; nk

i ), Fig. 12.2b, where j ∈ {I, E} denotes inlet or exit, k ∈ {S, P}marks suction
or pressure side and i is a numbering of spline control points. This concept is imple-
mented as an industrial parametric blade design tool [7]. In this case, the suction and
pressure side are defined with four and two free control points, respectively.

The radial height of every section is determined by the stream surface it is defined
on. To account for optimal stacking, a section can be moved on its stream surface
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Fig. 12.2 Turbine blade consisting of stacked sections (a) and a parameterized section (b). Labels
of section parameters which are not modified in this investigation are colored in gray

in axial and circumferential directions by axial shift x and circumferential shift θ ,
respectively. The three-dimensional blade is then obtained by arranging the sections
above each other and interpolating the section shapes.

So far, section design and stacking would be described separately. For a three-
dimensional parametric blade model the section parameters need to be coupled in a
proper way to fulfill two goals:

• the output of the parametric model shall be compatible with an existing blade and
section storage system

• the resulting blade shape shall be smooth.

In order to achieve this, the change of every section parameter Δ • (r̃) along the
normalized radial coordinate r̃ relative to a reference design is parameterized with a
second-order B-spline with an arbitrary number of control points. The first and last
control point can move only along hub (r̃ = 0) and casing (r̃ = 1), respectively,
whereas the others are free to move in both directions, Fig. 12.3. Usually only three
control points are used for each section parameter described above. However, cir-
cumferential shift is parameterized with five control points as it is considered to be
important and to allow for more design freedom.

These moves of the control points are used as design variables summarized in the
design vector p of problem formulation (12.1) and limited by lower and upper bounds
pl and pu , respectively. The parametric model requires that the reference design is
already smooth and roughly adapted to flow conditions. Changed design parameters
are translated to modified sections which are saved, converted to a three-dimensional
blade and passed to the meshing system and CFD analysis (Sect. 12.3).
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Fig. 12.3 Exemplary radial
parameterization of the
change of stagger angle Δξ

relative to the reference
design by a B-spline with
three control points
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12.5 Parameter Reduction

The used 3D parametric model has much more degrees of freedom than could
reasonably be handled in a direct optimization. In order to decide on the most
important parameters, a design of experiments (DoE) with Optimal Latin Hyper-
cube sampling is performed. The varied parameters are the control points of the
radial B-splines determining changes of axial and circumferential shifts, stagger
angle, metal angles, free control points of suction and pressure side and tangential
control points at the trailing edge. In total this yields 76 design parameters. 500 design
evaluations are performed within 2.4days, where four evaluations are computed in
parallel in approximately 40min and 82% of the designs are analysed successfully.

Based on these DoE results a sensitivity analysis is performed to assess the influ-
ence of every design parameter on the objective and the constraints. Due to the large
number of parameters and relatively small number of samples, the Spearman correla-
tion coefficient is used. It provides a measure for the monotone dependence between
two sampled variables.

According to Fig. 12.4a, turbine efficiency shows the strongest correlations with
changes to circumferential and axial shifts and free control points on suction side.
Free control points on pressure side and exit metal angle have smaller influence. Inlet
metal angle and tangential control points only have insignificant correlations. Inlet
capacity is mostly influenced by variations of stagger angle, free control points on
suction side near the throat and exit metal angle, Fig. 12.4b. Changes of tangential
shift and others have small influence on inlet capacity.

A similar interpretation can be done for the degrees of reaction of both stages,
Fig. 12.5. The reaction of stage 1 also has the strongest correlation with changes to
stagger angle, free control points on suction side near the throat and exit metal angle.
Reaction of stage 2 is mostly influenced by changes of tangential shift, free control
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Fig. 12.4 Normalized absolute values of Spearman correlation coefficients as measure of correla-
tion between exemplary design parameters and (a) turbine efficiency and (b) inlet capacity
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Fig. 12.5 Normalized absolute values of Spearman correlation coefficients as measure of correla-
tion between exemplary design parameters and reaction of (a) stage 1 and (b) stage 2

points on suction side and stagger angle. A small correlation can be noticed for exit
metal angle.

Consequently, parameters associated to changes of inlet metal angle, tangential
control points and control points on the pressure side seem to have only small influ-
ence on the objective and constraints. Therefore, the 28 parameters associated with
these quantities will not be used as design parameters in the following optimization
runs.

12.6 Optimization

The automated aerodynamic design evaluation can be employed in an
optimization process. For optimization the algorithm CMA-ES [8] is used which
is a stable, derivative-free, black box evolution strategy for unconstrained single-
objective problems. Itsmost important property is the de-randomized change of strat-
egy parameters which means that they are adapted deterministically. The step-size σ

is adapted based on the evolution path of previous generations. Themulti-variate
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Fig. 12.7 Inlet capacity of optimal (�), feasible (◦) and infeasible (+) designs relative to baseline

normal search distribution is controlled by an adapted covariance matrix of success-
ful previous designs. Furthermore, CMA-ES has some invariance properties which
make it very robust.

Based on the sensitivity analysis in Sect. 12.5, the selected design parameters for
optimization are associated with axial and circumferential shifts, stagger angle, exit
metal angle and free control points of suction side. This yields 48 design parameters
of the 3D blade model. The population size of CMA-ES is reduced from the default
value of 13 to 12 to optimally exploit parallel evaluation capability of the used GPU
workstation. Several optimization runs were performed where Figs. 12.6 and 12.7
represent a typical result.
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Fig. 12.8 Step size σ of
CMA-ES during optimization
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In total 768 design evaluation respectively 64 generations are performed in four
and a half days. The optimization is terminated prematurely when the maximum
number of generations is reached. All design evaluations converge where 40.7%
are feasible w.r.t. the optimization constraints (12.3). In the first 400 iterations large
variations in objective and constraints can be observed. After that the optimization
algorithm has reduced its step-size to a more successful order (Fig. 12.8) and begins
to converge which results in a further decreasing step size, increased number of
feasible designs and a continuous improvement of efficiency. The finally best feasible
design (�) is found in the early phase already. However, if the optimization runs
longer, the optimization will converge and reach such an efficiency level again.

The optimal design is shown in Fig. 12.9. It fulfills the constraints (12.3) and has a
slightly improved efficiency. Major design changes are that the tip section is moved

baseline

optimum

Fig. 12.9 Two views of a comparison between the blade shapes of baseline (light grey transparent)
and optimal (dark gray) design
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in circumferential direction of the suction side whereas the midsection is moved
towards the opposite direction. In addition to the modifications of the stacking there
are also significant modifications of the section parameters like a varying increase
of the exit metal angle along the blade height or an decrease of the stagger angle.

12.7 Conclusions

A fast optimization process for the aerodynamic improvement of three-dimensional
turbine blades is achieved by assessing the aerodynamic quality of a multi-stage
turbine by a novel CFD solver running on GPUs. Wall-clock time of one 3D CFD is
reduced to approximately 40min, however, further speed-up is achieved by parallel
design evaluation using multiple GPUs. Only standard tools are used for optimiza-
tion, mesh generation and blade modification, where the three-dimensional blade
parameterization is based on a well-known section parameterization. This allows to
implement the proposed design approach in an industrial design environment.

A consequence of three-dimensional blade parameterization is the large number
of design parameters. Therefore, a DoE is performed on all appropriate blade para-
meters and the design vector for optimization can be reduced to 48 design variables
showing most significant influence on objective and constraints assessed by Spear-
man correlation coefficients. The optimization is characterized by a large variation
of constraint values at the beginning and a steady improvement of efficiency after
that. All optimization runs are terminated prior to convergence when the maximum
number of generations is reached. Nevertheless, this paper shows that a fully three-
dimensional optimization of turbine blades is feasible within days of runtime and
finds improved blade designs.
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Chapter 13
Evaluation of Surrogate Modelling Methods
for Turbo-Machinery Component Design
Optimization

Gianluca Badjan, Carlo Poloni, Andrew Pike and Nadir Ince

Abstract Surrogate models are used to approximate complex problems in order to
reduce the final cost of the design process. This study has evaluated the potential
for employing surrogate modelling methods in turbo-machinery component design
optimization. Specifically four types of surrogate models are assessed and compared,
namely: neural networks, Radial Basis Function (RBF) Networks, polynomial mod-
els and Kriging models. Guidelines and automated setting procedures are proposed
to set the surrogate models, which are applied to two turbo-machinery application
case studies.

Keywords Surrogate models · Neural networks · Turbo-machinery

13.1 Introduction

This paper is based on aMSc thesis inMechanical Engineering (University of Trieste)
[1]. The main author was a research student at the University and is now employed
as an Aerodynamics Methods Engineer at ALSTOM Power UK, facilitating tailored
applied research collaboration between the University and the Company. The aim of
the research was to evaluate the possibility of employing surrogate modelling meth-
ods for turbo-machinery component design optimization. Themain idea behind these
methods is to replace expensive to compute physical models with surrogate models,
in order to speed up the entire design optimization process. These surrogate models

G. Badjan (B) · A. Pike · N. Ince
ALSTOM Power Ltd, Newbold Road, Rugby CV21 2NH, UK
e-mail: gianluca.badjan@power.alstom.com

A. Pike
e-mail: andrew.pike@power.alstom.com

N. Ince
e-mail: nadir.ince@power.alstom.com

C. Poloni
University of Trieste, Via Valerio 8, 34127 Trieste, Italy
e-mail: poloni@units.it

© Springer International Publishing Switzerland 2015
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_13

209



210 G. Badjan et al.

are required to be cheap to compute and easy to use, whilst providing an adequate
representation of the real problem. Four different surrogate models were employed
in this study: Feed-Forward Backpropagation Neural Networks (FFBP NN), Radial
Basis Function (RBF) Networks, Kriging models and polynomial models.

In the first part of this paper the surrogate modelling methods will be summarized,
providing guidelines and automated procedures for their setting. Surrogate models
will subsequently applied to two turbo-machinery case studies.

13.2 Neural Networks

The FFBP NNs employed in this study are multilayer networks with a single hidden
layer. FFBP NNs are characterized by a very complex setting process, due to the
high number of parameters to be set and their multi-modal performance function [2].
A critical choice for the neural network is the number of hidden neurons, since it
determines the “flexibility” of themodel. This parameter is usually chosen directly by
the user. Unfortunately, the complexity of the modelled process is usually unknown,
and FFBP NNs are tested for different architectures in order to find the best fitting
for a particular dataset. This “Trial and Error” procedure is very time consuming,
making it desirable to automate the setting of neural networks.

There are two main approaches to design a FFBP NN in an automatic fashion [1]:

• Constructive Methods
• Pruning Methods

Thepruningmethods appear to be themost convincing, since they allowamore tai-
lored neural networks setting than the constructive methods. Two pruning techniques
are evaluated in this paper: the Optimal Brain Surgeon (OBS) and the MATLAB
trainbr algorithm.

13.2.1 Optimal Brain Surgeon

The OBS algorithm is a pruning technique developed by Hassibi [3] and imple-
mented by Noorgard [4]. Each pruning session returns a certain number of pruned
(partially connected) networks, one for each OBS algorithm iteration. Consequently,
a neural network must be chosen according to some criteria, which are provided by
Noorgard [4].

In addition, a new criteria was introduced by Badjan [1]:

Balanced Valid. Error = Valid. Error + ‖Valid. Error − Train. Error‖2 (13.1)
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called balanced validation error, which takes into account both the error on the
estimation subset and on the validation subset (note that Valid. and Train. error are
≥ 0 by definition).

According to this criteria, FFBPNNswith a low validation error that show similar
performances on both the estimation and the validation subsets are preferred to the
other networks.

13.2.2 MATLAB trainbr

In MATLAB trainbr [13], the following cost function is implemented:

MSEreg = αMSW + βMSE (13.2)

where MSE is the mean square error, MSW is the sum of the squares of the network
weight and biases, α and β are regularization parameters.

Minimizing Eq. (13.2) leads to lower values of the network weights and biases,
making the network response smoother and less prone to overfit. In fact, assigning
low values to the free parameters may be viewed as equivalent to pruning the neural
network.

13.2.3 Dynamic Threshold Neural Networks

The Dynamic Threshold Neural Network (DTNN) was originally proposed by Chi-
ang and Fu [5] for pattern recognition purposes, but it was also successfully applied
to function approximation problems by Pediroda [6] and Poloni et al. [7]. The DTNN
was designed to employ Static Threshold Quadratic Sigmoidal Neurons in the hidden
layer and Dynamic Threshold Quadratic Sigmoidal Neurons in the output layer.

This network configuration produces outputs in the range [0, 1], which is ade-
quate for pattern recognition purposes, but it could represent a limitation for function
approximation purposes. In the view of the Authors, having an output range limited
between two fixed values implies that the training-set contains both the minima
and the maxima of the objective function. If the training-set targets are normalized
between [0, 1], then other new input configurations will always produce target val-
ues included between [0, 1]. An example may illustrate the concept: considering a
training-set with the maximum objective function value 12 and the minimum objec-
tive function value −5, after the data normalization 12 will correspond to 1 and −5
to 0; if there is a maxima (or minima) somewhere in the input domain with a value
15 (−7), then the corresponding output will be again 1 (0). It can be noticed that
even if the objective value is saturated, the input configuration might represent the
true maxima (minima). In any case, no robust analysis could be performed using the
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surrogate model on that point, since it would not be possible to approximate in a
proper way the shape of the objective function in the saturated zone.

For these reasons, in this study it was decided to rearrange the architecture of the
DTNN, employing the Dynamic Threshold Quadratic Sigmoidal neurons directly in
the hidden layer and the standard linear transformation in the output layer, thereby
removing the output limits.

The setting process of the DTNN presents some differences with respect to classic
FFBP NNs. In fact, fewer neurons are generally required to fit a dataset, since they
have a higher approximation capability than the neurons of classic FFBP NNs [5]. It
was therefore decided to use a constructivemethodology to train this type of network.

The proposed setting process for DTNNs consists in:

1. Set the DTNN with n hidden neurons.
2. Train the network m times from different initial configurations.
3. Check the performance on the validation subset.
4. Set a new DTNN with n + 1 hidden neurons.
5. Train the new network a couple of times and check the performance on the vali-

dation subset.
6. If the validation error increases stop the procedure, otherwise go to point 4.

13.3 RBF Networks

In this paper, Gaussian, multiquadrics and inverse-multiquadrics functions were cho-
sen to build RBF Networks, since they have a shape parameter σ used to control the
domain of influence of the radial basis function. There are various strategies in the
literature for selecting an appropriate value for the shape parameter σ. The leave-
one-out (LOO) error is a well known criteria for setting RBFNetworks. However, the
computational cost can be very high, of order O(N 4), which becomes prohibitively
expensive even for problems of modest size. Fortunately, Rippa [8] proposed a tech-
nique to reduce the computational cost of the LOOmetric to O(N 3), which was here
implemented.

Based on the LOO error, an iterative procedure to select the optimal shape para-
meter for interpolating RBF Network is proposed in this paper:

1. Initialize σ to 1 and evaluate the LOO error.
2. Set σnew to 0.5 and evaluate the corresponding LOO error.
3. If LOO σnew < LOO σ then σ = σnew and σnew = σ/a, otherwise σ = σnew and

σnew = σ ∗ b.
4. Evaluate the LOO error for the RBF Network set with σnew.
5. Repeat the procedure from point 3 until the maximum number of iterations is

reached.
6. Return the RBF Network which scored the minimum LOO error.
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The parameters a, b can be set by the user, determining how much σ is increased
or decreased at each iteration. In addition, there is also the possibility to vary these
parameters during the iterations, to gradually reduce or increase the step size of the
shape parameter. The Authors suggest to set a = 1.5 and b = 1.8. The maximum
number of iterations should take into account the time required to solve a single LOO
measure. However, 20 iterations should be an appropriate number for the majority
of the problems.

RBF Networks can also perform a regression of the data, introducing the reg-
ularization parameter λ in a similar way as for the Kriging model [9]. Keane and
Nair [10] suggest to set λ to the variance of the noise in the response data, but since
this information in usually unknown. The remaining option is to add it to the list
of parameters to be estimated. In this study, both the shape parameter σ and the
regularization parameter λ were searched throughout their domain using a Genetic
Algorithm (GA). Suitable upper and lower bounds for the search of λ are 10−6 and
1 respectively [10].

13.4 Polynomial Models

Polynomialmodels can be applied tomulti-dimensional problems taking into account
interaction terms [9]. In this paper, optimal values for global and interaction orders
are found by applying cross-validation.

13.5 Kriging Models

Kriging models are powerful methods based on Gaussian processes. They can per-
form either interpolation or regression of data. In this paper, Kriging models are set
via maximizing the marginal likelihood function [9].

13.6 Assessment Criteria for Surrogate Models

If the observational data are abundant, a randomly selected subset (Hastie et al. [11]
recommend around the 25% of the total x → y pairs) should be set aside for model
testing purposes. These observations must not be touched during the previous stages,
as their sole purpose is to allowus to evaluate the testing error (based on the difference
between the true and approximated functionvalues at the test sites) once themodel has
been built. Standard assessment criteria for surrogate models are Normalized Root
Mean Square Error (NRMSE) and Coefficient of Determination (r2). According to
[9], good surrogate models should have NRMSE<10% and r2 > 0.8.
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Furthermore, a new criteria is introduced in this paper, called RANKING [1], the
aim of which is to assess the capability of surrogate models to replicate the trend
expressed by the underlying function.

The RANKING is evaluated using the following procedure:

1. Sort the true solutions of a particular dataset in ascending order.
2. Check if the corresponding approximated solutions increase their valuesmonoton-

ically.
3. A score of 1 is given to the solutions that increase step by step, referring to the

previous highest value (absolute RANKING).
4. Finally the score is divided by the number of points in the dataset and multiplied

by 100.

A numerical example may illustrate the steps:

• Assuming the following true solutions y: [12, 43, 2, 33, 30, 31]
and the surrogate model approximations ŷ: [10, 45, 3, 32, 35, 31].

• Now sorting the true solutions y in an ascending order: [2, 12, 30, 31, 33, 43]
with the corresponding original index: [3, 1, 5, 6, 4, 2].

• Then the corresponding approximation ŷ will be: [3, 10, 35, 31, 32, 45].
• The scores for each point are [1, 1, 1, 0, 0, 1] and their sum is 4, it should be
noticed that this metric is done on the absolute ascending order.

RANKING = 4

6
100 = 67% (13.3)

The higher the value of the RANKING, the better the surrogate model can follow
the underlying response trend. However, this criteria in isolation is insufficient to
determine the overall accuracy of the model.

13.7 Optimization Case Studies

Two optimization case studies were chosen to evaluate the application of surrogate
models in turbo-machinery component design optimization:

• Mono-objective optimization of the operating conditions of a turbine cascade.
• Mono-objective optimization of a turbine labyrinth seal.

The optimization procedure consisted in two consecutive steps:

1. Global search of the optima, over all the design space.
2. Local search of the optima, refining the result obtained from the global search.

This optimization strategy combines both robustness and accuracy.
In particular, a Genetic Algorithm was chosen as the global optimizer, since it is

a robust and reliable algorithm widely used in optimization [7, 12]. The subsequent
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local optimization was done using the Sequential Quadratic Programming (SQP)
method [13].

13.7.1 Turbine Cascade Case

The performance of a steam turbine cascade [14]was analyzed for different operating
conditions employing an ALSTOM in-house CFD code.

The design space was defined by three input variables:

• Incidence Angle
• Inlet Total Pressure (for adjusting Mach Number)
• Fluid Viscosity (for adjusting Reynolds Number)

The objective of the optimization was to maximize the efficiency of the turbine
profile. A dataset of 150 points was obtained running an Optimized Latin Hypercube
DOE. Each simulation took about three minutes on a PC (Quad Core CPU running
@ 2.66Ghz, 3.25GB RAM). Afterwards, the dataset was normalized in the range
[−1, 1] and randomly split into a training-set of 120 points and a test-set of 30 points.

13.7.1.1 Performance of Surrogate Models

Different setting approaches were adopted for each type of surrogate model. Five
FFBP NNs were created using the trainbr algorithm and the OBS technique. It is
worth reminding that FFBPNNs have amulti-modal performance function, therefore
finding the best network configuration for a particular dataset usually requires to train
the network from different initial weights/biases configurations. The same concept
applies to the OBS technique, since the setting of the first oversized neural network
influences the results of the subsequent pruning process. The validation subset was
the 20% of the training-set. The DTNN was built finding the optimal number of
hidden neurons via “trial and error” procedure. Eventually, five DTNNswere created
with the optimal architecture. As described for neural networks, five polynomial
models were built using cross-validation with 10 subsets, in order to investigate
how the random splitting affects the setting process. The same global order and
interaction order were obtained for all five models, confirming that cross-validation
is a robust procedure to set polynomial models. The interpolating RBF Networks
were built only once, using the iterative procedure previously described in Sect. 13.3,
with 20 steps. However, the setting procedure for regressive RBF Networks was
different. In fact, these models were tuned using the GA, which was set with a
population of 30 individuals and 30 generations. In this case, five regressive RBF
Networkswere built for each basis function, resulting in broadly similar performance.
Finally, five Kriging models were also built. The likelihood function employed to
build the Kriging models was optimized setting the GA with a population of 50
individuals and 100 generations. The adopted setting configuration produced almost
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Table 13.1 Surrogate models performance on the blade test-set

Test Test Test

RMSE (%) r2 RANKING (%)

FFBP NN OBS 0.505 0.9996 90.00

FFBP NN trainbr 3.069 0.9848 56.67

DTNN 0.712 0.9993 93.33

RBF G 1.908 0.9943 73.34

RBF IM 1.668 0.9965 73.34

RBF M 1.803 0.9965 76.67

Reg. RBF G 1.740 0.9954 73.34

Reg. RBF IM 1.620 0.9962 73.34

Reg. RBF M 1.501 0.9967 73.34

Kriging 1.888 0.9960 66.67

Reg. Kriging 1.034 0.9983 76.67

Polynomial 1.389 0.9967 83.34

G Gaussian, IM inverse-multiquadrics and M multiquadrics

Table 13.2 Optimized and validated results for the blade study case

Incidence Tot. inlet Fluid viscosity Optimized Validated

angle (deg) pressure (bar) (Ns/m2) (10−6) solution (−) solution (−)

FFBP NN OBS −27.4056 190.10 1.8 0.93319 0.93378

FFBP NN trainbr −8.4097 188.06 1.8 0.93115 0.93360

DTNN −24.2300 189.31 1.8 0.93330 0.93383

RBF G 3.3989 191.63 1.8 0.93213 0.93304

RBF IM −32.2721 189.11 1.8 0.93247 0.93376

RBF M −32.0508 189.01 1.8 0.93250 0.93377

Reg. RBF G −23.5060 190.59 1.8 0.93240 0.93375

Reg. RBF IM −22.8310 190.87 1.8 0.93219 0.93372

Reg. RBF M −32.5122 188.99 1.8 0.93267 0.93376

Polynomial −14.2838 190.56 1.8 0.93389 0.93364

Reg. Kriging −28.9457 189.05 1.8 0.93409 0.93382

The maximum efficiency in the DOE dataset is 0.93099, G Gaussian, IM inverse-multiquadrics and
M multiquadrics

identical models, the small differences were related to the GA obtaining only the
neighbourhood of the maximum as opposed to maximum of the likelihood function.

For each type of surrogate model, only the best performing model was chosen for
the comparison summarized below.

It can be noticed from Table13.1 that all the models performed very well, with
low values for the NRMSE and high values for r2 and RANKING.

Once the surrogate models were built, then it was possible to use them to evaluate
all the other input configurations required by the optimizer algorithm. The constraints
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Fig. 13.1 Blade case—DTNN

of the optimization were represented by the design space boundaries, which were
defined by the highest and lowest values of each input variable in the DOE.

As can be seen in Table13.2, all the surrogate models gave very similar validated
solutions. In particular, the DTNN produced the best results, which was chosen to
plot a graphic representation of the problem, fixing the viscosity to its lowest value
in the dataset (see Fig. 13.1). It is also interesting to note that the DTNN had the best
RANKING score on the test-set. However, almost the same validated solution was
obtainedwith theRegressiveKriging,whichwas also definitely far quicker to set than
DTNNs and FFBP NNs. Polynomial model and RBF Networks were also quicker
and easier to set than neural networks. In the opinion of the authors, the simplicity
of the setting process should be always considered in the assessment of surrogate
modelling methods. In practical applications, a quick-to-set surrogate model should
be preferred to other models with time consuming and non-robust setting processes,
especially when the results are almost the same, as in this case.

Finally, it should be considered that the efficiency improvements obtained from
the initial DOE were small from the numerical point of view, but very important in
engineering design.

13.7.2 Turbine Seal Case

The leakage of a labyrinth seal of the high-pressure stage of a steam turbine was
evaluated via CFD simulations, which were performed with the commercial code
ANSYS FLUENT [15]. Seven geometric parameters were originally chosen in order
to determine the key variables for prediction of leakage, such as fin height, thickness,
angle, etc. These input variables were screened using full-factorial DOEs and Pareto
Charts (based on polynomial regression). Finally four top parameters were selected
to be included in the surrogate modelling and subsequent model based optimization
(minimization) of seal leakage:
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• a1, Angle parameter
• a2, Angle parameter
• L1, Length parameter
• L2, Length parameter

A full-factorial DOE of 5 levels per variable (resulting in 54 = 625 points) was
originally planned to investigate the problem, but some simulations failed due to
technical issues in the CFD solver, obtaining a reduced dataset composed of 517
points. Each simulation took about eight minutes on a PC (12 Core CPU running @
2.92Ghz, 24GB RAM). The dataset was randomly split into a training-set of 414
points and test-set of 103 points. The surrogate models were built adopting the same
methodology employed for the turbine cascade case.

The subsequent optimizations were run setting the GA with 100 individuals and
30 generations, and allowing a maximum of 30 iterations for the local optimizer. As
for the turbine cascade case, the design space boundaries were defined by the highest
and lowest values of each variable in the DOE.

All the values shown in the tables and pictures regarding the seal case were
normalized in the range [−1, 1], for the purpose of protecting commercially sensitive
information.

13.7.2.1 Performance of Surrogate Models

Table13.3 shows that the surrogate models did not perform very well in this case,
scoring high NRMSE values and low r2 values. Also the scores for the RANKING
were very low. In the opinion of the authors, the RANKING criteria should be applied
to the cases where surrogate models perform very similarly, as for the blade case.

Table 13.3 Surrogate models performance on the seal test-set

Test Test Test

NRMSE (%) r2 RANKING (%)

FFBP NN OBS pruned 10.490 0.7554 5.83

FFBP NN trainbr 10.181 0.7704 9.71

DTNN 11.903 0.6871 5.83

RBF G 13.339 0.6072 8.74

RBF IM 11.880 0.6924 8.74

RBF M 11.530 0.7103 7.77

Reg. RBF G 11.246 0.7267 8.74

Reg. RBF IM 11.420 0.7164 7.77

Reg. RBF M 11.544 0.7093 7.77

Polynomial 11.573 0.7108 7.77

Kriging 14.199 0.5573 9.71

Reg. Kriging 10.749 0.7504 7.77

G Gaussian, IM inverse-multiquadrics and M multiquadrics
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Fig. 13.2 Full factorial cubic spline interpolations: a2 and L2 are fixed to different values

The validated solutions were generally worse than the “best solution” contained
in the DOE (which was equal to −1 following normalization). However, very small
reductions of the leakage were obtained with RBF Networks (surrogate model based
optimal solution −1.001, validated CFD code solution −1.0067), but not enough to
consider the optimization a success.

It was also found that most of the optimized solutions were found for the low-
est value of a2 and L2. Recalling that a generic full-factorial DOE consists in a
multi-dimensional grid, Fig. 13.2 was generated fixing some variables and using
MATLAB cubic spline interpolation [13].

As can be seen fromFig. 13.2, the underlying function shows very different scenar-
ios varying the values of the same fixed variables, making it difficult to be modelled
even with a full-factorial DOE of 517 points. This behavior is probably due to the
fact that the input variables are highly correlated. However, it should be noted that
the cubic spline interpolation does not correspond to the true function, which is
obviously unknown, and the underlying function might be even more complex.

In addition, Figs. 13.3 and 13.4 show a comparison between some surrogate mod-
els and the corresponding full factorial cubic spline. It is clear from Fig.13.3 that

Fig. 13.3 FFBP NN OBS pruned versus full factorial cubic spline interpolation, a2 = −1 and
L2 = −1
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FFBP NNs pruned with OBS overfitted the data. In fact, it appeared that the high
flexible structure of FFBP NNs can fit the data in a large variety of ways (i.e. with
very different configurations for weights/biases), generating approximations with
good values for NRMSE and r2 but also with very strange shapes. On the contrary,
the FFBP NN trained with trainbr gave a good representation of the problem, as can
be seen in Fig. 13.4. In fact, the trainbr algorithm increases the level of regression
of neural networks, making them smooth and less prone to overfit [16]. RBF Net-
works and Kriging showed less flexibility than neural networks, since their structure
is directly anchored to the points in the dataset.

After these observations, it was decided to adopt a different strategy for the seal
case, aimed to obtain an optimized solution similar to the best solution contained in
the full-factorial DOE of 517 points, but using less CFD computations.

13.7.2.2 Further Investigation with Alternative Datasets

An Optimized Latin Hypercube DOE of 100 points was run with the objective to
gather information over all the design space using less points. Again, some points
failed to produce a result, obtaining a reduced dataset composed of 94 points. Surro-
gatemodelswere built with the new dataset, employing all the points as a training-set.

The new validated solutions were not better than the solutions obtained in the
previous optimization. However, it can be noticed that the majority of the regressive
models gave again the optimized solutions for the lowest value of a2 and L2.

It was therefore decided to run a further Optimized Latin Hypercube DOE of 50
points with a2 and L2 fixed to their lowest value, in order to reduce the dimensionality
of the problem. Finally a dataset composed of 47 points was obtained. The surrogate
models were built employing all the 47 points as the training-set.

As can be seen in Table13.4, the Krigingmodel and the Regressive RBFGaussian
Network improved the best solution contained in the first dataset of 517 points. Thus,
the computational budget was reduced from 600 points to 150 points. Unfortunately
the FLUENT solver failed to converge at the optimized solution of the Regressive
Kriging.

In addition, a further full-factorial DOE of 400 points (20 levels per variable)
was run fixing a2 and L2 to their lowest value, in order to investigate in detail the

Fig. 13.4 FFBP NN trainbr versus full factorial cubic spline interpolation, a2 = −1 and L2 = −1
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Table 13.4 Optimized and validated results for the seal study case using the dataset composed of
47 points

a1 (−) L1 (−) Optimized solution Validated solution

OBS pruned −0.9350 −0.4219 −1.2282 −0.8986

trainbr −0.5230 0.0042 −1.0246 −0.9818

DTNN −0.7167 0.0274 −1.0073 −0.9966

RBF G −0.7374 0.6752 −1.0303 −1.0013

RBF IM −0.5981 −0.0644 −1.0210 −0.9943

RBF M −0.6270 −0.0109 −1.0195 −1.0188

Reg. RBF G −0.7383 0.6797 −1.0292 −1.0196

Reg. RBF IM −0.5976 −0.0651 −1.0210 −0.9982

Reg. RBF M −0.3396 0.1970 −1.1035 −0.9693

Kriging −0.6989 0.5896 −1.1035 −1.0286

Reg Kriging −0.5494 1 −1.0054 N/A

Polynomial −0.7461 0.7949 −1.0454 −0.9824

Leakage normalized w.r.t. the first dataset, G Gaussian, IM inverse-multiquadrics and M multi-
quadrics

Fig. 13.5 Regressive Kriging versus FF interpolation, DOE 50 points

Fig. 13.6 Polynomial model versus FF interpolation, DOE 50 points

morphology of the underlying function. The final dataset was composed of 384 points
(with 16 points failing to converge).

As can be seen in Figs. 13.5 and 13.6, regressive models developed with 47 points
were capable to detect the general trends of the real problem, which was highly irreg-
ular with many peaks (see the full factorial cubic spline interpolations). In particular,
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the Polynomial model was able to define the “borders” of the underlying function
verywell. On the contrary, FFBPNNprunedwithOBSandDTNNoverfitted the data.

In engineering design, the visualization of a problem is extremely useful, since it
can provide an indication of promising regions thatmay yield a robust optimal design.
Flat zoneswith stable performancewill be preferred to peaky zones,where small vari-
ations of the input variables lead to high variation of the output. For example, the blue
valley in Fig. 13.6 represents a stable zone, where small variations of a1 and L1 do not
particularly affect the leakage. In fact, the geometric parameters defining a labyrinth
seal are subject to manufacturing tolerances. Thus, it is clear that an important aspect
in industrial design is managing the uncertainties, to find solutions which are insen-
sitive to the stochastic fluctuations of the parameters (Robust Design) [10, 17].

Summarizing, the seal casewas significantlymore challenging than the blade case.
FFBP NNs pruned with OBS and DTNNs performed poorly, overfitting the surface.
Instead, the FFBP NNs trained with trainbr were able to detect the main trends of
the underlying function. However, other surrogate models such as RBF Networks,
Kriging and Polynomial, gave better results with less training. In particular, the
Kriging model produced the best numerical result and the Polynomial model gave
the best representation.

In addition, it appeared that a good strategy in optimization assisted by surrogate
models may consist in:

1. Run a small global DOE, according to the available computational budget.
2. Build regressive surrogate models and visualize the problem where possible.
3. Validate the optimized solutions.
4. Evaluate the possibility of reducing the dimensionality of the problem, or at least

to define a small promising zone in the domain.
5. Run a reduced/local DOE, according to the available computational budget.
6. Validate the new optimized solutions.

13.8 Conclusion

This paper has demonstrated the utility of Surrogate Models in turbo-machinery
design optimization. In the first instance, different surrogate modelling methods
should be used when dealing with unknown problems, in order to find the model
that best fits a particular dataset. In addition, surrogate models should be assessed
on the basis of their ease of configuration. From this point of view, FFBP NNs
and DTNNs present too many drawbacks to be considered a valid methodology
in turbo-machinery component design optimization. They did not show any clear
advantage compared to other methodologies in terms of accuracy, but their setting
process presented many issues. However, neural networks are widely applied in
control engineering and signal processing, where their flexibility represents a benefit
in modelling of dynamic systems.
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Finally for the considered case studies, Kriging models were assessed as being
the most promising surrogate model among those evaluated in this paper, combining
high performance with a relatively easy setting process.
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Chapter 14
Robust Aerodynamic Design Optimization
of Horizontal Axis Wind Turbine Rotors

Marco Caboni, Edmondo Minisci and Michele Sergio Campobasso

Abstract The work reported in this paper deals with the development of a design
system for the robust aerodynamic design optimization of horizontal axis wind
turbine rotors. The system developed is here used to design a 126-m diameter,
three-bladed rotor, featuring minimal sensitivity to uncertainty associated with blade
manufacturing tolerances. In particular, the uncertainty affecting the rotor geometry
is associated with the radial distributions of blade chord and twist, and the airfoil
thickness. In this study, both geometric and operative design variables are treated
as part of the optimization. Airfoil aerodynamics and rotor aeroelasticity are pre-
dicted by means of XFOIL and FAST codes, respectively, and a novel deterministic
method, the Univariate Reduced Quadrature, is used for uncertainty propagation.
The optimization is performed by means of a two-stage multi-objective evolution-
based algorithm, aiming to maximize the rotor expected annual energy production
and minimize its standard deviation. The design optimization is subjected to a single
structural constrain associated with the maximum out-of-plane blade tip deflection.
The results of this research highlight that a lower sensitivity to uncertainty tied to
manufacturing tolerances can be achieved by lowering the angular speed of the rotor.
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14.1 Introduction

By the late 20th century, wind power has become one of the most promising new
energy sources worldwide, achieving a rapid global growth in installed capacity.
Considerable efforts have been put into wind turbine design in order to improve
performance and reduce costs, making wind power a competitive energy source. In
recent years, several studies have focused on the aerodynamic and structural design
optimization of horizontal axis wind turbines (HAWTs) [1–6], encompassing differ-
ent approaches to increasing the annual energy production (AEP) and reducing the
cost of energy. However, an optimized design can become inefficient in the presence
of environmental, operation, manufacturing or assembly uncertainties. Therefore,
one of the ways to further improve the design of modern wind turbines is to consider
the effect of the aforementioned sources of uncertainty throughout the optimization
process, leading to the design of more effective devices with minimal sensitivity to
uncertainties. The design optimization under uncertainty, aiming to maximize the
expected value of one of more objective functions (e.g., AEP), while minimizing
the effect of uncertainties, is often denoted by the attribute “robust”. Incorporating
sources of uncertainty into a robust optimization process implies the use of a suit-
able technique for uncertainty propagation, which should keep computational costs
affordable while maintaining an acceptable accuracy.

Petrone et al. [7] developed a comprehensive multi-physics computational model
to study the impact of wind condition variability, manufacturing tolerances and
roughness induced by insect contamination on HAWT aerodynamic performance
and noise. In this framework, the Latin Hypercube Sampling (LHS) and the Sto-
chastic Simplex Collocation (SSC) methods were successfully used to propagate
uncertainties throughout the computational model. In a more recent work, Petrone
et al. [8] developed a system for the robust optimization ofHAWT rotors under uncer-
tainty represented by insect contamination. Uncertainty was propagated by means of
the SSC method. The proposed design strategy was coupled with a multi-objective
genetic algorithm.

Minisci et al. [9] demonstrated a methodology for the aerodynamic optimization
of HAWT rotors under geometric uncertainty of the blade geometry caused by man-
ufacturing and assembly tolerances. Chord and twist distributions, and the angular
speed of the rotor were included in the optimization process. Uncertainty propaga-
tion was conveniently performed by means of the Univariate Reduced Quadrature
(URQ) approach [10]. The adopted optimization method was based on a two-stages
multi-objective optimization strategy.

The work described in this paper aims to improve the current state-of-art in robust
aerodynamic design optimization of HAWT rotors by including the effect of a com-
prehensive range of geometric uncertainties associated with blade manufacturing
tolerances in the design process. In this context, blade chord and twist distrib-
utions as well as airfoil thickness are considered affected by uncertainty. Design
variables include blade chord and twist distributions, airfoil shape, and the angular
speed of the rotor. The URQmethod for uncertainty propagation, and the two-stages
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multi-objective optimization strategy developed byMinisci et al. [9] are used to carry
out the robust design process.

The first part of the paper provides a general description of the optimization
system, including: (a) the blade geometric module, (b) the aeroelastic module, (c)
the URQ uncertainty propagation method, and (d) the procedure and algorithms used
to carry out the optimizations. In the second part, the optimization process set-up is
presented in detail, and the obtained results are described and discussed in the third
part. A conclusion section summarizes the key findings of this work, and suggests
some directions for future developments.

14.2 Optimization System

The integrated design system developed within the framework of this work con-
sists of four main components, including: a blade geometric module defining airfoil
shapes and blade chord and twist distributions, an aeroelastic module including air-
foil aerodynamics and wind turbine rotor aeroelasticity, an algorithm for uncertainty
propagation, and a two-stage multi-objective evolution-based optimizer.

14.2.1 Blade Geometric Module

Blade geometric module defines airfoil shapes and blade chord and twist distribu-
tions. The airfoil shape parametrization is achieved through a composite third order
Bezier curve. More specifically, airfoil suction and pressure sides are described by
four third order Bezier curves joined with C0, C1 and C2 continuity. This solution
provides a flexible airfoil parametrization within the context of the optimization
process by actively using a total number of eleven design variables, corresponding
to the degrees of freedom of the Bezier curve control points. Figure14.1 shows the
control points of the composite third order Bezier curves used to parametrize the
airfoil shape. Along the suction side, points from p1 to p4 define the first third order
Bezier curve, while points from p4 to p7 define the second one. In the pressure side,
points from p7 to p10 define the third Bezier curve, and points from p5 to p7 define
the fourth one. Thus, a total of 13 control points are used.

The leading and the trailing edges (points p1 and p7, respectively) are fixed.
The degrees of freedom of the Bezier curve control points are the y-coordinate of
point p6, and the x- and y-coordinates of points p2, p3, p5, p11, and p12. x and
y-coordinates of all the remaining control points are determined by the algorithmic
to keep the tangent and the curvature continuity between consecutive Bezier curves.

Blade chord and twist distributions are each defined by four design variables,
representing chord and twist at four fixed radial sections. Blade chord and twist
distributions are reconstructed by using the MATLAB shape-preserving piecewise
cubic (pchip) interpolation function over the four radial stations.
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Fig. 14.1 Airfoil shape parametrization through a composite third order Bezier curve

14.2.2 Aeroelastic Module

The aeroelastic module consists of twomain components, which are used to compute
airfoil aerodynamic loads, as well as rotor power extraction and structural deforma-
tions. Lift and drag coefficients of the airfoil, as a function of the Reynolds number
and the angle of attack, are calculated using the viscous-inviscid airfoil analysis code
XFOIL [11]. XFOIL is a rapid and efficient way of calculating airfoil performance,
however it may overestimate lift coefficient, and it does not provide reliable predic-
tion beyond stall. Moreover, two-dimensional (2D) aerodynamic data calculated by
means of XFOIL need to be corrected to account for the complex three-dimensional
(3D) physics occurring over rotating blades, especially in the stall regime. Based on
empirically derived equations, AERODAS [12] provides a method for calculating
stall and post-stall lift and drag characteristics of rotating airfoils, using as input a
limited amount of pre-stall 2D aerodynamic data of the airfoils used by the turbine
under investigation.

The calculation of rotor power extraction and structural deformations is per-
formed by means of the NREL aeroelastic design code FAST [13]. FAST solves
the rotor aerodynamics through the AeroDyn code, employing the blade-element
momentum (BEM) [14] theory and several corrections including those to account
for tip and hub losses, axial induction factors exceeding the maximum theoretical
limit of 0.5, and dynamic stall. FAST model uses a linear modal representation to
model flexible blades [13]. Blade modes depend on the blade span-variant struc-
tural properties, which are tied to the blade external shape and the internal layup of
composite laminates.
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14.2.3 Method for Uncertainty Propagation

Uncertainty propagation is performed by means of the non intrusive URQ determin-
istic sampling technique, requiring 2nu + 1 evaluations, where nu is the number of
uncertain variables. URQ has a computational cost comparable to that of the lin-
earization method, but allows a higher accuracy. More details about this method can
be found in [10], and its validation against Monte Carlo method for wind turbine
design can be found in [9].

14.2.4 Optimization Algorithms

Evolutionary Algorithms (EAs) solve optimization problems by making a genera-
tion of individuals evolve subject to selection and search operators. In this study,
an individual denotes a HAWT rotor configuration, defined by the geometry of the
bladed rotor and its rotational speed. This iterative process eventually leads to a pop-
ulation containing the fittest possible individuals (best rotor configuration designs),
or individuals who are significantly fitter than those of the starting population. The
role of the selection operators is to identify the fittest or most promising individuals
of the current population, whereas search operators such as crossover and mutation
attempt to generate better offspring starting from suitably selected individuals of the
current generation. Each individual is defined by genes, which correspond to design
variables in design optimization. The solution of the optimization problems reported
in this study is based on a two-stage approach using the Multi-Objective Parzen-
based Estimation of Distribution (MOPED) [15] and the Inflationary Differential
Evolution Algorithm (IDEA) [16].

MOPED belongs to a subset of EAs and was developed to circumvent certain
algorithmic problems of conventional EAs, which can be ineffective when the prob-
lem at hand features a high level of interaction among the design variables. This is
mainly due to the fact that the recombination operators are likely to disrupt promis-
ing sub-structures that may lead to optimal solutions. Additionally, the use of the
crossover and mutation operators may result in slow convergence to the solution
of the optimization; that is, it may require a large number of generations to obtain
very fit individuals. MOPED was developed to circumvent shortfalls of this kind.
Its use of statistical tools enables it to preserve promising sub-structures associ-
ated with variable interaction from one generation to another (automatic linkage
learning). Such statistical tools also replace the crossover and mutation operators of
conventional EAs, and they allow a faster convergence of MOPED with respect to
the latter class of optimizers. Starting from the individuals of the current population,
MOPED builds an approximate probabilistic model of the search space. The role of
the crossover and mutation operators is replaced by sampling of this probabilistic
model. There exist similar other evolutionary methods that use the aforementioned
strategy, and they are called Estimation of Distribution Algorithms (EDAs) [17].
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MOPED is a multi-objective optimization EDA for continuous problems that uses
the Parzen method [18] to build a probabilistic representation of Pareto solutions,
and can handle multivariate dependencies of the variables [15, 19]. MOPED imple-
ments the general layout and the selection techniques of the Non-dominated Sorting
Genetic Algorithm II (NSGA II) [20], but traditional crossover and mutation search
approaches of NSGA-II are replaced by sampling of the Parzen model. NSGA-II
was chosen as the base for MOPED mainly due to its simplicity, and also for the
excellent results obtained for many diverse optimization problems [21, 22].

The Parzen method utilizes a non-parametric approach to kernel density estima-
tion, and results in an estimator that converges asymptotically to the true Probability
Density Function (PDF) over the whole design space. Additionally, when the true
PDF is uniformly continuous, the Parzen estimator can also be made uniformly con-
sistent. TheParzenmethod allocates Nind identical kernels (where Nind is the number
of individuals of the current population), each centered on a different element of the
sample. A probabilistic model of the promising search space portion is built on the
basis of the statistical data provided by the Nind individuals through their kernels,
and τE Nind new individuals (τE ≤ 1) are sampled. The variance of each kernel
depends on (i) the location of the individuals in the search space and (ii) the fitness
value of these individuals, and its construction leads to values that favor sampling in
the neighborhood of the most promising solutions.

The features of MOPED often prevent the true Pareto front from being achieved,
particularly when the front is broad and the individuals of the population are spread
over different areas, which are far apart from each other in the feasible space. This
circumstance has prompted couplingMOPEDwith another EA,which has better con-
vergence properties. To this aim, the Inflationary Differential Evolution Algorithm
(IDEA) [16] has been selected. IDEAwas first developed for the design optimization
of interplanetary trajectories, and it is an improved variant of the differential evolution
(DE) algorithms [16]. The IDEA algorithm is based on a synergistic hybridization
of a standard DE algorithm and the strategy behind the monotonic basin hopping
(MBH) [23]. The resulting algorithm was shown to outperform both standard DE
optimizers and the MBH algorithm in the solution of challenging space trajectory
design problems, featuring a multiple funnel-like structure. In this paper, a modified
version of IDEA has been used to move the individuals of the approximate Pareto
front obtained with MOPED closer to the true front.

The main features of the original IDEA algorithm are reported in [16]. The IDEA
algorithmworks as follows: aDEprocess is performed several times and each process
is stopped when the population contracts below a predefined threshold. At the end of
each DE step, a local search is performed in order to get closer to the local optimum.
In the case of non-trivial functions, where there is a high likelihood of converging
to local optima, the combined DE/local search is usually iterated several times,
performing either a local or a global restart on the basis of a predefined scheduling.

The design optimization presented in this study is constrained. Therefore, the DE
step has been modified so that the fitness assessment of the individuals during the DE
process also takes into account the constraints. The constraint handling technique
used herein is one of the approaches that can be adopted in evolutionary computing,
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and is similar to the approach used by MOPED. In the unconstrained DE algo-
rithm [24], and also in the unconstrained IDEA algorithm [16], each parent solution
is compared with its offspring, and the solution with a better value of the objective
function is passed to the next generation. In the constrained case, on the other hand,
when parents and offspring are compared, the solutions are first evaluated in terms
of constraint compatibility cp. Its definition is:

cp(x) =
m∑

j=1

s j (x) (14.1)

where x is the array of design variables, m is the number of constraints, and the
constraint factor s j is:

s j (x) = max g j (x), 0 (14.2)

The constraint factor equals 0 when the constraint (g j (x) ≤ 0) is satisfied and is
strictly positive when the constraint is violated. The solution with the better values
of cp is then passed to the next generation.When the cp values of parent and offspring
are the same, the selection is performed on the basis of the objective function. In the
current implementation, MOPED and IDEA are used sequentially. When MOPED
has reached a given number of generations, its final population represents a first
and good approximation to the sought Pareto front. Then, clustered sub-populations
of such a population are used as initial solutions of the single-objective constraint
IDEA optimizer. this algorithm “pushes” the individuals of a sub-population of the
MOPED front towards a better local approximation of the sought Pareto front. The
resulting two-stage optimizer blends the exploratory capabilities of MOPED (global
exploration) and the favorable convergence characteristics of IDEA (exploitation of
local information).

14.3 Optimization Set-Up

In this study, two optimizations have been performed: a robust optimization, and
a deterministic one (i.e., without considering uncertainties throughout the design
process) for comparison purposes.

14.3.1 General Settings

All optimizations performed in this research aimed at maximizing the AEP of a
three-bladed HAWT based on the NREL 5-MW reference turbine [25]. The yearly
wind distribution was represented by a Weibull distribution with scale parameter of
7m/s and shape parameter of 2 (Fig. 14.2). The wind turbine was regulated through
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Fig. 14.2 Weibull distribution with scale parameter of 7m/s and shape parameter of 2, and hour
bins for the wind speeds considered between cut-in and cut-out

variable rotational speed before rated wind speed, and variable blade pitch thereafter.
Cut-in, rated and cut-out wind speeds were fixed to 3, 12 and 25m/s, respectively.
Blade root radius was set equal to 1.5m, while blade tip radius was set equal to
63m. From root to tip, each blade was modeled through seventeen radial sections,
including two cylindrical sections near the root, one section transitioning from the
last cylindrical section to the first airfoil section, and fourteen airfoil sections over
the remainder.

Excluding the cylindrical and transitioning sections near the root, the airfoil distri-
bution along the blade span was defined exclusively by a single aerodynamic shape.
Airfoil lift and drag coefficientswere computed throughXFOIL for a singleReynolds
number of 1.2 · 107 over an angle of attack range spanning form −5 to 25◦. XFOIL
polars were then extended for angles of attack ranging from −180 to 180◦, and cor-
rected to account for 3D aerodynamic effects by means of the AERODAS model.
In XFOIL, transition from laminar to turbulent flow along the airfoil is simulated
by the eN method, through the parameter NCRIT. For all optimizations reported in
this paper, NCRIT was fixed to 9. The airfoil shape and the twist and chord distrib-
utions at the airfoil sections were treated as part of the optimization. Lift and drag
coefficients of the cylindrical sections near the hub were assumed to be equal to 0
and 0.5, respectively. Lift and drag coefficients for the transitioning section were
obtained by interpolating between the neighboring sections. Blade chord and twist
distributionswere defined at four radial sections r1, r2, r3 and r4 fixed to 11.75, 28.15,
48.65 and 61.6333m, respectively. The blade shape was parametrized by means of
eleven design parameters defining the airfoil shape (x1 to x11), four design parameters
defining the chord distribution (x12 to x15), and four design parameters defining the
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twist distributions (x16 to x19). Wind turbine operating conditions were completely
determined by one design variable defining the rotational speed associated with the
rated wind speed x20. Indeed, the optimal rotational speed at the given rated wind
speed defined the constant optimal tip speed ratio at which the turbine operated
between cut-in and rated wind speeds. Thus, the total number of design parame-
ters was equal to 20. Design variables and their ranges of variability are shown in
Table14.1. All optimizations were subject to a structural constraint tied to the maxi-
mum out-of-plane blade tip deflection (BTD), which was assumed to be equal to 2/3
of the total clearance in unloaded conditions [3]. Tower diameter was assumed to be
constant and equal to 6m. Rotor overhang, rotor shaft tilt angle, and blade precone
angle were fixed to 5.0191m, 5◦, and 2.5◦, respectively. Maximum BTD allowed
was therefore equal to 6.8m.

FAST is able to account for flexible bodies, including tower, blades and drive
shaft. However, since this work focuses only on the design of bladed rotors, tower and
drive shaft deflections were neglected. Moreover, during the optimization process,
the adopted hypothesis was to change the internal layup of each turbine in such a

Table 14.1 Range of design variables

x1 ∈ [0.001, 0.2] y(p6)

x2 ∈ [0.001, 0.2] x(p5)

x3 ∈ [0.001, 0.2] y(p5))

x4 ∈ [0.3, 0.6] x(p3)

x5 ∈ [0.1, 0.5] y(p3)

x6 ∈ [0.7, 0.9] x(p2)

x7 ∈ [0.001, 0.1] y(p2)

x8 ∈ [0.6, 0.8] x(p11)

x9 ∈ [−0.1, 0.01] y(p11)

x10 ∈ [0.8, 0.99] x(p12)

x11 ∈ [−0.05, 0.1] y(p12)

x12 ∈ [4, 5.5]m c(r1)

x13 ∈ [3.5, 5]m c(r2)

x14 ∈ [2, 3.5]m c(r3)

x15 ∈ [0.5, 2]m c(r4)

x16 ∈ [11, 16]◦ θT (r1)

x17 ∈ [5, 10]◦ θT (r2)

x18 ∈ [0, 5]◦ θT (r3)

x19 ∈ [0, 3]◦ θT (r4)

x20 ∈ [5, 15] RPM Ω(Urated)

x(p5), x(p3), x(p2), x(p11), and x(p12) represent the x-coordinates of control points p5, p3,
p2, p11 and p12, respectively. y(p6), y(p5), y(p3), y(p2), y(p11) and y(p12) represent the
y-coordinates of control points p6, p5, p3, p2, p11 and p12, respectively. c(r1), c(r2), c(r3) and
c(r4) represent the chord length at r1, r2, r3 and r4, respectively. θT (r1), θT (r2), θT (r3), and θT (r4)
are the twist angles at r1, r2, r3 and r4, respectively. Ω(Urated) represents the rotational speed at the
rated wind speed
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way that the span-variant structural properties remained constant. Therefore, blade
modes were considered constant throughout the optimization process.

To avoid intersection between airfoil suction and pressure sides, and more than
one change in their curvatures, two constraints were enforced. For practical purposes
tied to blade manufacturing, a monotonicity constraint was enforced on both chord
and twist distributions.

For both MOPED optimization process, the size of the population have set to 100
and the fitness parameter α f and the sampling proportion τE have been set to 0.5 and
1, respectively. Themaximum number of generationwas set 100 for the deterministic
process and 300 for the robust one. In both IDEA-based optimizations, the weighting
factor F and the crossover probability CR have been set to 0.6 and 0.9, respectively.
The IDEA search has used a random population of 40 individuals, and has stopped
when the population has contracted to 25% of the maximum expansion during the
evolution.

14.3.1.1 Robust Design Optimization

The 8 design parameters defining chord and twist distributions as well as the air-
foil thickness were assumed to be affected by normally distributed uncertainty. The
Gaussian distribution of these parameters was centered at their nominal values. Stan-
dard deviations were set to 3◦ for twist, and 30cm for chord. At a given radial section,
standard deviation for thickness was considered equal to 1% of the chord. The robust
optimization described in this paper aimed to maximize the mean value of the AEP
and minimize its standard deviation, by varying the twenty aforementioned design
variables and propagating the uncertainties affecting the nine variables described
above. Robust optimization was achieved by minimizing the following objective
functions:

F1 = −μAEP (14.3)

F2 = σ 2
AEP (14.4)

where μAEP is the mean value of the AEP in kWh, and σ 2
AEP is its variance in kW h2.

The robust optimization was subject to the following constraints:

C1 : μAEP ≥ 5e6 (14.5)

C2 : σ 2
AEP ≤ 1e11 (14.6)

C3 : (μBTD + 3 · σBTD) ≤ 6.8 (14.7)

where μBTD and σBTD represent maximum BTD main value and standard deviation
inm, respectively. AEPwas computed for each turbine by integrating its power curve
against the givenWeibull distribution. In order to save computational sources, power
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curve of eachwind turbinewas determined through three FAST runs, by interpolating
between the power values computed at cut-in wind speed, rated wind speed, and at
one intermediate wind speed of 8m/s. This interpolation was performed by a cubic
spine. For each turbine, one additional FAST run was required to determine the
maximum BTD. According to Ghedin [3], maximum blade deflections occur when
the wind turbine works at rated conditions under a severe gust. In these conditions,
the gust occurs so suddenly that the blades cannot be pitched. The gust intensity a
wind turbine can withstand depends on its class. The NREL 5-MW reference turbine
belongs to the 1A IEC wind class [3], which means it is able to withstand gusts up to
21% above its rated wind speed. Therefore, maximum BTDwas computed at a wind
speed equal to 14.52m/s.

The robust optimization was performed considering identical geometric errors
affecting all blades. Each robust analysis performed by means of the URQ technique
required 19 computations of AEP, namely 76 FAST runs.

14.3.1.2 Deterministic Design Optimization

Along with the robust optimization, a deterministic optimization was performed. In
the deterministic optimization uncertainty sources where not included, and therefore
the following objective function was minimized:

F1 = −AEP (14.8)

The enforced constraints were:

C1 : AEP ≥ 5e6 (14.9)

C2 : BTD ≤ 6.8 (14.10)

14.4 Results and Discussions

14.4.1 Robust Optimization

The robust design optimization problem led to a Pareto front arising from the trade-
off between the mean and the standard deviation of AEP. Figure14.3 shows the
URQ Pareto front obtained by means of MOPED. In Fig. 14.3, the performance of
a nominal rotor, labeled “URQ ref.”, obtained by using the IDEA local refinement
is also represented. Given the final population of the MOPED optimization, the
IDEA refinement was performed selecting a sub-population containing a solution
with maximum μAEP, and using it as starting point of the IDEA optimization. This
optimization aimed at maximizing μAEP subject to the constraints (14.5)–(14.7).
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Fig. 14.3 Airfoil shapes of deterministic and robust designs

14.4.2 Robust and Deterministic Optimal Rotors

The deterministic optimization problem led to an optimal rotor which has a nominal
AEP of 13.3352GWh and μAEP = 13.1474GWh. This rotor configuration, denoted
by “det. opt.”, is compared to the “URQ ref.” rotor, which has a nominal AEP
of 12.1435GWh, and μAEP = 12.0732GWh. The AEP standard deviation of the
“det. opt.” rotor is σAEP = 0.2305GWh, and is lower than that of the “URQ ref.”
rotor, which is equal to σAEP = 0.2924GWh. These results do not meet the usual
expectations as the AEP standard deviation of the rotor designed taking into account
stochastic geometry errors due to manufacturing tolerances is higher than that of
the rotor designed neglecting such errors. The structural constrain on the maximum
BTD is the explanation for these results. The robust rotor has a nominal maximum
BTD equal to 5.6550m, and maximum BTD mean and standard deviation equal to
5.6533 and 0.3797m, respectively. The nominal maximum BTD associated with the
deterministic design is equal to 6.788m, while its mean value and standard deviation
are 6.7435 and 0.4915m, respectively. As can be seen, the constraint (14.7) is verified
only for the robust optimization. To demonstrate that the obtained results are strongly
influenced by the constraint, a new uncertainty based optimization was performed
replacing the reliability constraint (14.7) with the following:

C3 : μBTD ≤ 6.8 (14.11)

The rotor obtained through this new optimization, denoted by “URQ ref. 2”, has a
nominal AEP of 13.2751GWh, μAEP = 13.1263GWh and σAEP = 0.1816GWh.
The “URQ ref. 2.” rotor has an AEP standard deviation which is lower than that of
the “det. opt.” rotor by about 20%.
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The airfoil shapes obtained through (i.e., “URQ ref.” and “URQ ref. 2”) and
deterministic (i.e. “det. opt.”) optimizations are shown in Fig. 14.4. The radial profiles
of the chord c and the pitch angle θp of the three rotors are reported in the top
left and bottom left subplots, respectively, of Fig. 14.5. Chord distributions of the
deterministic and robust designs have the same shape near the root because the
cylindrical sections, not treated as part of the optimization, were considered constant.
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The rotational speed of the three rotors for all considered wind speeds is reported in
the right subplot of Fig. 14.5, which highlights that the probabilistically optimized
rotors have lower Ω values than the deterministically optimized one.

In light of the above analysis, as it was also reported by Minisci et al. [9], a lower
sensitivity of AEP to rotor geometry errors can be achieved by lowering rotational
speeds. Further analyses are needed, and have been carrying out by the authors to
demonstrate that these results meet the findings obtained in [9]. In this paper it was
explained and demonstrated that the reduction of power due to lower circumferential
velocities is compensate by an increase of blade aerodynamic loading (i.e., radial lift
coefficient distribution), achieved by increasing the angle of attack. This increase is
due to the reduced circumferential speed itself, which results in higher values of the
relative wind angle. In such conditions, the overall level of angle of attack is in a
region where the slope of the angle of attack/lift coefficient curve starts to decrease
with respect to the linear part corresponding to lower angles of attack. Therefore, the
variation of the lift coefficient caused by a given variation of the angle of attack is
smaller for robust rotors.

14.5 Conclusions

A cascade of evolutionary algorithms has been applied to the robust aerodynamic
design of a wind turbine rotor to maximize the annual energy production and, at
the same time, minimize its variations due to blade manufacturing tolerances. The
deterministic URQ sampling approach has been adopted for uncertainty propaga-
tion instead of the much more expensive Monte Carlo sampling. The performed
robust optimizations and the comparison with the reference deterministic optimiza-
tion stress the influence of the structural constraint on the achievable results. When
the considered constraint limits the magnitude of the mean value of the maximum
out-of-plane blade tip deflection, the robust optimization procedure can obtain a
rotor producing the same annual energy of the deterministic one, but with a standard
deviation which is 20% lower. On the other hand, if a reliability constraint on the
maximum out-of-plane blade tip deflection is considered, the average performance
of obtained rotors decrease significantly.

Both robust optimization processes performed in this paper confirm that the search
for the lower sensitivity to geometry errors is pursued by adopting lower rotational
speeds, and further investigations are needed to demonstrate that robustness is actu-
ally obtained by moving to a range of higher values of the angle of attack where the
slope of the angle of attack/lift coefficient curve is lower than for lower values of the
angle of attack.

For this work, low fidelity models such as XFOIL and FAST have been adopted.
If the use of low fidelity models allows preliminary design procedures requiring a
huge number of model evaluations, on the other hand, the search space should be
heavily bounded, to avoid regions of the design space where the (low fidelity) models
can not provide correct results. The next step of this work will regard the integration
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of the current optimization approach with a multi-fidelity method, which will allow
one to achieve a true global design optimization.
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Chapter 15
Horizontal Axis Hydroturbine Shroud Airfoil
Optimization

Elia Daniele, Elios Ferrauto and Domenico P. Coiro

Abstract The present work concerns the optimization of the shroud of an horizontal
axis hydro turbine (HAHT). The main aim is to improve the hydro-turbine efficiency
by designing a new shroud airfoil through an optimization process that maximize,
as objective function, the power coefficient. The optimization process is carried
out by MATLAB© on the supercomputing infrastructure SCoPE of the University
of Naples, “Federico II”. Results are obtained with CFD calculations, namely by
STARCCM+ for an axisymmetric model, taking advantage of the symmetry of the
problem, to minimize the computational time; in addition the HAHT is simulated
with an actuator disk that gave reliable results in good agreement with previous
works, developedwith different software, andwith experimental results. The original
airfoil was designed for high-lift regimes, so it already gave excellent performance
in these kind of applications. For that reason, is not expected a very high increase
of the power coefficient. Nevertheless the optimization process results into a power
coefficient increase of 4.5%, with respect to the original airfoil.

Keywords Horizontal axis hydro turbine · Shroud · Optimization · Genetic
algorithm · CFD

15.1 Introduction

One of the most promising fields in energy production from renewable sources is
related to the intensive exploitation of marine and river currents [5]. The marine
current resource has a major advantage over other renewable energy resources in

E. Daniele (B)

Ammerländer Heerstraße 136, 26129 Oldenburg, Germany
e-mail: elia.daniele@iwes.fraunhofer.de

E. Ferrauto · D.P. Coiro
Department of Industrial Engineering (DII), University of Naples, “Federico II”,
Via Claudio 21, 80125 Naples, Italy
e-mail: e.ferrauto@studenti.unina.it

D.P. Coiro
e-mail: domenico.coiro@unina.it

© Springer International Publishing Switzerland 2015
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_15

241



242 E. Daniele et al.

that it is essentially non-intermittent and predictable over long time periods. Having
a density of approximately 830 times that of air, water allows for greater kinetic
energy extraction over that of wind at similar flow speeds and rotor size. Given a
suitable site of concentrated flow and high speed velocities, ocean currents can offer
up to four times the energy density of a good wind site, and 30 times the energy
density of a solar plant in the Sahara Desert [17]. Ocean currents are consistent, and
their strength and directional frequency can be predicted. Flow speed velocities in
ocean currents vary little from average flow velocities, and the source availability
differentiates it from other renewable technologies. Many configurations have been
proposed so far to extract amounts of energy from water currents.

This paper is related to the optimization of an innovative system configuration for
clean energy applications whose concept has been already tested on a preliminary
prototype model at the University of Naples. The research activities, upon which
the present work is based, directly follows the preliminary testing phase oriented
to explore the feasibility of plants based on such concept [6]. The original system
configuration consists of a submerged floating body linked to the seabed by means
of a tether. Electrical generators and auxiliary systems are housed within the hulls
of the floating bodies. Two turbines are installed on a support structure exposed to
the flow. The system under development is suitable for applications in sea and rivers.
According to what has been observed at this stage of development, it possesses also
the desirable characteristics of constructive simplicity and ease of operation. This is
the basic concept of what we call here “GEM system” (Generatore Elettrico Marino,
Marine Electrical Generator) or “Ocean’s kite” configuration, and starting from such
patented concept a scale model has been realized and tested (see Figs. 15.1 and 15.2).

The proposed configuration, due to a relatively safe and easy self-orienting behav-
ior, is a goodcandidate to solve someproblems involvedwith oscillating and reversing
streams. An additional major advantage of this configuration is related to the possi-
bility of avoiding the use of expensive submarine foundations on the seabed. The use
of diffuser augmented turbines is intended to reduce the dimensions of actuator disks
for a given rated power and to increase the rotational speed, respect of a rotor with
higher diameter, reducing the torque. To extract energy from the wind, a thrust force

Fig. 15.1 A CAD image of
GEM hydro-turbine
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Fig. 15.2 A picture of GEM
hydro-turbine full-scale
prototype installed in
Venice’s lagoon. The
prototype has been sponsored
by a consortium of Venetian
companies and by the Veneto
regional authority (source
http://www.adag.unina.it)

T directed downstream must be generated. On a horizontal axis turbine the thrust is
obtained by rotating blades, which create a pressure drop across the rotor disk. The
extracted power is the product of the airflow through the disk (m3/s) and the pressure
drop across the disk. Increasing the thrust increases the pressure drop but decreases
the airflow through the disk. An optimum exists for the power coefficient C p, which
is the ratio between the extracted power and the available power. This optimum for
a bare turbine (without a diffuser) is known as the Betz limit [24],

CPmax = 16

27
. (15.1)

However, if a mechanism is used to increase the airflow through the rotor disk, the
Betz limit can be exceeded. According to [13], a ring vortex of the appropriate sign
around the rotor plane would induce (by the Biot-Savart law) a velocity vector to
increase the mass flow through the disk. This effect can be obtained by placing a
diffuser around the rotor. If the cross-section of the diffuser is shaped as an aerofoil,
the generated lift will give the circulation of a ring vortex. The more lift that can
be achieved, the more the air will be sucked through the disk. The amount of lift is
limited by separation of the boundary layer on the diffuser wall, so the geometry of
the diffuser plays an important role in the overall performance of the shrouded wind
turbine (see Fig. 15.3 on the following page). The radial distribution of the axial flow
is also important in order to ensure a uniform speed-up factor.

Conversely, Van Bussel [25] asserts that, with a simple momentum theory, devel-
oped along the lines of momentum theory for bare turbines, power augmentation is
proportional to the mass flow increase generated at the nozzle of the diffuser aug-
mented turbine. Such mass flow augmentation can be achieved through two basic
principles: increase in the diffuser exit/inlet ratio and/or by decreasing the negative
back pressure at the exit. The power increase could results in a misleading overcom-
ing of the Betz limit. As shown by Van Bussel this is due to an incorrect choice
of the reference area. In this case the suitable reference area should be the shroud
exit area. From this momentum theory, it can be seen that the achievable power

http://www.adag.unina.it
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Fig. 15.3 Lift force on the
shroud airfoil and pitch
angle θ
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is comparable with the power of a normal Horizontal Axis Wind Turbine (HAWT)
having a diameter equal to the exit diameter of the diffuser. But from this momentum
model it can also be seen that larger performances are possible when a substantial
low back pressure level can be achieved at the diffuser exit. As shown by Tognaccini
in [24] the power augmentation is proportional to the thrust exerted by the flow on the
diffuser. The shroud design criteria were based on themaximization of this thrust. An
high lift airfoil has been opportunely chosen, and theworking angle of attack has been
numerically estimated by Scherillo et al. [18]. The experimental results achieved in
that work, both in the wind tunnel and in the towing tank, show a remarkable increase
of the thrust for the shrouded configurations. Besides, according to the theory, the
power increases remarkably with the diffuser. The power coefficient of the shrouded
configuration, computed referring to the turbine area is almost 0.8, and shows an
increase of about twice compared to the bare turbine, that has a CP = 0.4. Referred
the power coefficient of the shrouded configuration to the diffuser exit area, the CP

increase is about 7%.
The main target of this work is to exploit this limit with the use of an optimization

process for the shape of the airfoil onwhich is based the annular diffuser. In Sect. 15.2
the numerical methodology is described, in Sect. 15.3 the results are summarized,
then in Sect. 15.4 the conclusions and future works are highlighted.

15.2 Method

Both in aircraft design and in turbine design, the choice of airfoils is critical because
it affects overall project performance. Often, an ad hoc designed airfoil is used.
The aim of this section is to apply numerical optimization concepts to the airfoil
design problem. One of the most important ingredients in numerical optimization
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is the choice of design variables and the parametrization of the system by using
these variables. In general, an airfoil is given by its coordinates, typically a set of
150–200 points for panel codes; evidently, it is not suitable to use directly the airfoil’s
coordinates as design variables, because, even if it is the easier method to implement,
there is a large number of design variables to represent 2D or 3D geometries, and
displacement of a single mesh point can lead to unsmooth shapes and cause the flow
solver to become ill-conditioned, as observed in [4, 27].

In order to reduce the number of parameters to take into account necessary to
describe the airfoil’s shape, but without geometrical information loss, several math-
ematical formulations have been proposed in literature as Bezier [12], PARSEC [21,
22] and Legendre polynomials as suggested by Hicks and Van der Plaats in [14,
15]. The latter one has been chosen among the others because of its capability of
describing only limited change in the airfoil shape by summing polynomials on the
original airfoil coordinates. A Legendre polynomial is a function that satisfies the
Legendre’s differential equation whose expression is shown in Eq.15.2:

d

dx

[

(1 − x2)
d

dx
P(x)

]

+ n(n + 1)P(x) (15.2)

The ordinary differential equation is quite frequent in mathematics and physics
since it allows to solve Laplace’s equation in spherical coordinates and several partial
derivative differential equation. Legendre’s differential equation can be solved trough
standard methods applying power series so that converging solutions are obtained if
|x | < 1. Converging solutions are obtained also if x = ±1 and n is a natural integer
(i.e. n = 0, 1, 2, . . . ). In such cases the solutions according to n form a polyno-
mial succession called Legendre’s polynomials succession. The generic Legendre’s
polynomial Pn(x) of n degree can be expressed trough the following Eq.15.3:

Pn(x) = (
2nn!)−1 dn

dxn

[(
x2 − 1

)n]
(15.3)

Several artifices have been adopted in order to use Legendre’s polynomials for
the optimization process according to [14]. Airfoil thickness distributions are given
by summing a perturbation on the original geometry as shown in Eq.15.4

y(x)new = y(x)old + Δy(x)(up/ low) (15.4)

where y(x)old represents the original airfoil y coordinate and Δy the perturbation
term for the upper and lower surfaces ordinates. This term is evaluated according to
Eqs. 15.5 and 15.6

Δy(x)up = (1 − x)3
[√

a1x + a2 (P2 + 1) + a3 (P3 − 1)

+ a4 (P4 + 1) + a5 (P5 − 1) + a6 (P6 + 1)
]

(15.5)
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Δy(x)low = (1 − x)3
[√

b1x + b2 (P2 + 1) + b3 (P3 − 1)

+ b4 (P4 + 1) + b5 (P5 − 1) + b6 (P6 + 1)
]

(15.6)

where and P2, . . . , P6, are Legendre polynomials given by Eq.15.7 and shown in
Fig. 15.4. The coefficients a1, . . . , a6 and b1, . . . , b6 are the design variables per-
turbed by the optimization program to achieve optimum design. The square root
term in Eqs. 15.5 and 15.6 allows a blunt leading edge and assures matching of
upper-surface and lower-surface derivatives of all orders at the leading edge. The
term (1− x)3 allows to optimize the airfoil in a chosen chord range. This term could
be removed by specify that whole the airfoil wants be optimized.

P2 = 2 (x/c) − 1

P3 = 6 (x/c)2 − 6 (x/c) + 1

P4 = 20 (x/c)3 − 30 (x/c)2 + 12 (x/c) − 1 (15.7)

P5 = 70 (x/c)4 − 140 (x/c)3 + 90 (x/c)2 − 20 (x/c) + 1

P6 = 252 (x/c)5 − 630 (x/c)4 + 560 (x/c)3 − 210 (x/c)2 + 30 (x/c) − 1

During years, a lot of optimization methods have been proposed and developed,
often starting from theoretical concepts and logics very far each from each other.
In general it is very difficult to state which method is the best because each one
has several advantages and, at same time, disadvantages; just referring to a particu-
lar application, or problem, it is possible to operate this choice. Genetic algorithms
(GA) is a heuristic search method derived from natural selection and evolution. At
the start of a GA optimization, a set of decision variable solutions are encoded as
members of a population. There are multiple ways to encode elements of solutions
including binary, value, and tree encodings. Crossover andmutation, operators based
on reproduction, are used to create the next generation of the population. One of
advantages of GA is that multiple areas of the search space are explored to find a
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Fig. 15.5 Base airfoil used for the shroud

global minimum. Through the use of the crossover operator, GA are particularly
strong at combining the best features from different solutions to find one global solu-
tion. Through observation of these crossover combinations, the user gains insight
about how parts of the simulation interact. The non-dominated SortingGenetic Algo-
rithm [1] is aMultiple ObjectiveOptimization (MOO) algorithm and is an instance of
an Evolutionary Algorithm from the field of Evolutionary Computation [8]. NSGA is
an extension of the Genetic Algorithm for multiple objective function optimization.
There are two versions of the algorithm, the classical NSGA and the updated and
currently canonical form NSGA-II [9]. The objective of the NSGA algorithm is to
improve the adaptive fit of a population of candidate solutions to a Pareto front con-
strained by a set of objective functions. The algorithm uses an evolutionary process
with surrogates for evolutionary operators including selection, genetic crossover,
and genetic mutation. The population is sorted into a hierarchy of sub-populations
based on the ordering of Pareto dominance. Similarity between members of each
sub-group is evaluated on the Pareto front, and the resulting groups and similarity
measures are used to promote a diverse front of non-dominated solutions. NSGA-II
[8, 9] is an improved version of NSGAwhich alleviates main criticisms of the NSGA
approach. NSGA-II is here used in its single objective functionality. Parametrization
and optimization setup for this numerical optimization will be now presented in
detail.

The base airfoil selected for the optimization process is a high-lift airfoil for
low Reynolds number (see Fig. 15.5 [19]). It is a quite suitable airfoil for a
shroud that maximize the hydroturbine power coefficient [11, 16]. In this type of
problem, a suitable method of reconstruction is that based on Legendre polynomials,
because, as explained before, it performs geometric reconstruction by applying small
perturbation on the original geometrical coordinates of the airfoil. Three cases have
been analysed, with different abscissa variation ranges in percent of the chord; for
each of them variation on 90% of chord length are imposed: BC = ±0.01, ±0.05
and ±0.10. No geometric and aerodynamic constraints are setted in these analysis.
Concerning numerical optimization, the chosen method is NSGA-II [20], executed
by use of MATLAB©. A single-objective optimization was performed, the aim of
which is maximize the hydro-turbine power coefficient.

The population size of the algorithmwas setted to 40, while the generation limit is
20. Three analysis are carried out, by changing the airfoil pitch angle, that is defined
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Initial airfoil
S1223

Legendre
parametrization

Legendre
reconstruction

Macro.java
rewriter

STARCCM+solver
Evaluate

CP

Optimum airfoil

NSGA-II

Fig. 15.6 Numerical optimization routine

as the angle between the turbine axis and the chord of the airfoil, as explained in
Fig. 15.3. Starting from a pitch angle of 26◦ (that is the best angle in this analysis
conditions for the base airfoil, as proved by [26]) a variation of ±3◦ was provided
for the optimization process.

Finally three pitch angles are implemented: θ = 23, 26, 29◦; considering the
fact that the airfoil resulting from the optimization process could work better with
different pitch angle. Moreover, an airfoil with good performance in a range of ±3
deg can have good performance also in off-design conditions.

The analysis solver is STAR-CCM+, and, to carry out the analysis, the axisym-
metric model was chosen. As a matter of fact, this model is the less computationally
expensive one, but results are consistent with previous thesis works [26] and exhibit
the same ratio between shrouded and non-shrouded configuration (slightly more than
2) as measured experimentally in [18]. Hence it is the most suitable model to carry
out a very expensive calculation as an optimization analysis. The logic diagram of
the optimization algorithm used is shown in Fig. 15.6.

The analysis was performed with the parameters illustrated in Table15.1. The
Turbulent Viscosity Ratio (TVR) has the default value present in STAR-CCM+ [3]
simulation set-up, and it represents the sole parameter that characterizes the turbu-
lence using the Spalart-Allmaras model [23].

In Table15.2 mesh parameters are shown. Base size is setted to have the same
chord order of magnitude. Prism layer thickness is calculated by XFOIL software
[10], and the other prism layer parameters are such as to have a y+ value in the first
laminar sublayer less than one. Figure15.7 shows the mesh around the airfoil with
the prism layermesh. Physical boundary conditions are setted as shown in Table15.3.

The pressure difference in the fan interface is setted as a constant value to simulate
the nominal condition of the hydroturbine, as done in previous simulations based on
different CFD solver [26].
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Table 15.1 Axisymmetric
model: physics data of the
simulation

Parameter Value or type

Fluid Water

Density 997.561 (kg/m3)

Dynamic viscosity 8.8871 ×10−4 (Pa · s)
Turbulence model Spalart–Allmaras

T V R 10.0

Tu 0.52 (%)

CT 0.89

ΔP 1137.15 (Pa)

Shroud airfoil Selig 1223

Chord 1.6 (m)

Gap 0.05 (m)

Pitch angle 26◦

Reynolds number 2.87 ×106

V∞ 1.6 (m/s)

Table 15.2 Axisymmetric
model: mesh characteristics,
general parameters

Parameter Value or type

Model Polyhedral

Base size 1.0 (m)

Number of prism layers 40

Prism layer stretching 1.2

Prism layer thickness 0.0060 (m)

Mesh cells 50449

Fig. 15.7 Axisymmetric
model: mesh around the
airfoil
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Table 15.3 Axisymmetric model: physical description of the boundaries

Boundary Type Physical quantity Value

Inlet Velocity inlet Velocity 1.6 (m/s)

Outlet Pressure outlet Pressure 0.0 (Pa)

Wall Velocity inlet Velocity 1.6 (m/s)

Fan Fan interface Pressure difference −1137.15 (Pa)

Table 15.4 Axisymmetric model: physical quantities for the original diffuser airfoil Selig 1223

Velocity at disk (m/s) CPref θ (deg) CP (Δre f ) CPexit (Δre f )

2.1494 0.615 23 1.197 (+95%) 0.707 (+15%)

2.2028 0.615 26 1.226 (+99%) 0.696 (+13%)

1.8911 0.615 29 1.054 (+71%) 0.575 (−6.5%)

15.3 Results

Most of the analysis has been executed on the supercomputing infrastructure SCoPE,
in the University of Naples Federico II. This infrastructure consists of a grid of
computer, where is possible to use hundreds of parallel processors. Further details
about SCoPE can be found in [7], while concerning the programming language, it
can be consulted in [2].

The objective function of the analysis is the turbine power coefficient, defined,
in the hypothesis of actuator disk, by the Eq.15.8, and evaluated with respect to the
diffuser exit area, defined in the Eq.15.9 [26], where the exit area is a function of
the airfoil pitch angle. This latter value is the most important to evaluate the real
advantage of the shrouded configuration with respect to a not-shrouded HAHT with
an area equal to the exit area of the shroud [25].

CP = CT

(
Vd

V∞

)

, (15.8)

CPexit = CP

(
Ad

Aexit

)

, (15.9)

where the subscript d stands for disk, CT is the disk thrust coefficient, V∞ is the
free-stream or inlet velocity, Aexit is the shroud exit area. In Table15.4 the pressure
and velocity values, evaluated as surface average on the actuator disk interface, are
indicated. The power coefficients are also specified, respectively, the reference CPref

of the not-shrouded case, and theCP for shrouded configuration evaluated using both
the actuator disk and shroud exit area (see Eqs. 15.8 and 15.9) for the original diffuser
airfoil Selig 1223 at three different pitch angles. The pitch angle of the prototype
installed in Venice lagoon is 26◦ because of the greater extracted power for a given
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Fig. 15.8 Axisymmetric
model: velocity field around
the original airfoil for a pitch
angle θ = 26◦. The
streamlines are indicated by
the continuos solid lines.
Actuator disk is located at the
throat

pressure drop across the actuator disk. The power coefficient values suggest that
using a shroud implies an increasing in power generated of 99%, if evaluated with
respect to the throat area, but of only 13%, with respect to the outlet area. By using
the shroud there is a little zone of separation flow, and not a complete stall of the
airfoil, despite the high pitch angle. This is due to two factors:

• the presence of the actuator disk (or of the turbine, in the real case), deviates
upwards the streamlines, reducing the effective angle of attack of the airfoil (see
Fig. 15.8 in which the velocity field around the original airfoil for a pitch angle θ

equal to 26◦ is shown).Without actuator disk, therewould be a complete separation
of the flow behind the disk along the diffuser surface.

• The gap between shroud and actuator disk generates a channel that energizes the
flow and avoids separation. By reducing the gap, the actuator disk interacts with
the shroud boundary layer, the velocity profile is altered, and the separation of the
flow occurs, as proven in [26].

In this section the optimization results are shown, for each of the three boundary
conditions analysed: BC = ±0.02, ±0.05 and ±0.10. The values of the power
coefficient with respect to the generations show a tendency of the CP to compact the
region with elevate values, by increasing the generations, because of the automatized
procedure that avoid replication of bad performing airfoil or bad reconstructed ones
(the CADmodeler within STARCCM+ is not always capable of correctly reconstruct
the parametrized shape produced by Legendre polynomials). The genetic algorithm
used for the optimization process, namely the NSGA-II, has been employed with the
characteristics summarized in table Table15.5.

This trend is evident in all of the cases, thanks to the generations limit imposed
in the optimization process. The most interesting case is the one with boundary
condition amounting to 2% of the airfoil chord for which after 10 generations the
algorithm stabilizes the population’s objective function range (see Fig. 15.9).

In Table15.6 are summarized the results of the optimization process. The choice
of the Selig 1223 as starting airfoil derives from its own already excellent perfor-
mance. Thus, the optimization process, conducted for different diffuser pitch angle
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Table 15.5 Genetic algorithm characteristics

Parameter Value or type

Chromosome Simulated binary string

Crossover Multi-cut

Mutation probability 10 (%)

Population size 40

Mating-pool 50 (%)

Generations limit 20

Table 15.6 Summary table with power coefficients

θ (deg)

CPexit (ΔCPexit ) 23 26 29

BC 0.02 0.712 (+0.7%) 0.727 (+4.2%) 0.695 (+17.3%)

0.05 0.713 (+0.8%) 0.725 (+4.0%) 0.699 (+17.8%)

0.10 0.711 (+0.5%) 0.723 (+3.8%) 0.699 (+17.7%)

CPexit Selig 1223a 0.707 0.696 0.575
a See Table15.4

0 2 4 6 8 10 12 14 16 18 20

0.66

0.68

0.7

0.72

Generation (-)

CPexit (-)

Fig. 15.9 BC = ±0.02: variation of the power coefficient, θ = 26◦

and boundary coefficient for Legendre polynomials to be added on the original shape
(see Figs. 15.10, 15.11 and 15.12), returns as best solution the one characterized by
a pitch angle equal to 26◦ and the minimum modification of the airfoil shape, i.e.
limiting it to the ±0.02% of the airfoil chord. The maximum improvement with
respect to the initial condition is obtained for a pitch angle of 29◦ and modification
of the airfoil shape fixed to the ±0.05% of the airfoil chord (Fig. 15.12).

It is important to remarks that all the results refer to an axisymmetric model with
an actuator disk modelling the turbine. This means that all the power coefficient
should be scaled for taking in consideration the difference between actuator disk
and real turbine. From previous experimental tests [18] and forthcoming numerical
simulations of the authors, is has been observed that this scaling factor is about 2/3,
having finally that from a bare turbine maximum power coefficient of about 0.41,



15 Horizontal Axis Hydroturbine Shroud Airfoil Optimization 253

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

x/c (-)

y/c (-)

Fig. 15.10 Optimized airfoils, θ = 23◦:—Original airfoil, · · · ±0.02,− − ±0.05,− · − ±0.10
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Fig. 15.11 Optimized airfoils, θ = 26◦:—Original airfoil, · · · ±0.02,− − ±0.05,− · − ±0.10

with the old diffuser shape based on Selig 1223 airfoil grows up to about 0.46, and
it reaches with the optimized diffuser shape the value of 0.48.

Concerning the computational time the following considerations could be done. It
should be divided into two phases: the meshing and simulation. The meshing phase
is performed in serial mode, having the STARCCM+ 7.06 version here used a not
very reliable management of parallel meshing tools, expected to be improved in a
future version. It takes about 7.5min, while the simulation phase for a parallel run
on 16 cpus lasts about 3.5min. Since the number of evaluations for the objective
functions is 800 with a serial use of the NSGA-II code the total optimization time is
about 6 days for a single angle of pitch and a single boundary condition relative to
Legendre polynomials. This computational time is abruptly reduced by virtue of the
JobCollection utility available on the SCoPE distributed grid computing resource: it
is an object with the main purpose of allowing the execution of collective operations
on sets of independent jobs, being just a logical container, in which both not yet
submitted and already submitted jobs can be inserted in. A job collection is somehow
orthogonal with respect to a job cluster being a set of dependent jobs (e.g. all jobs
spawned by the same father process). The parallel use of the NSGA-II code leads
to a total optimization time of only 3.7h. Further reduction in the computational
time could be obtained by means of a different meshing technique as suggested in
Sect. 15.4.
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Fig. 15.12 Optimized airfoils, θ = 29◦:—Original airfoil, · · · ±0.02,− − ±0.05,− · − ±0.10

15.4 Conclusions and Future Works

The main objective of this work has been the optimization process of an airfoil shape
for the shroud of a horizontal axis hydro turbine that that would increase the power
extracted from marine currents. To achieve the target, an optimization routine has
been developed: starting from the input base airfoil, a geometry parametrization
method is chosen, in this case Lagrange polynomial, and a numerical optimization
method as NSGA evaluates the objective function, namely theCP , with a CFD solver
giving in output, through an automated process, a new airfoil that improves the objec-
tive function. The base airfoil is designed for high-lift regimes, so it gives excellent
performance in these kind of applications. For that reason, was not expected a very
high increase of the power coefficient. The airfoil obtained as a result of the opti-
mization process shows a higher power coefficient of 4.5%. This result is quite in
agreement with the expectations, so it is a satisfying result. The CFD analysis, in
axisymmetric flow field and actuator disk hypothesis, gave reliable results, in agree-
ment with previous works, developed with different software, and with experimental
results. Future works will aim to reduce computational time in optimization process,
and to enhance the general robustness of the developed numerical code in order to
increase its versatility and use in more complex contexts. In particular, by virtue of
the use of the overlapping grid tool, recently incorporated in the STARCCM+ distri-
bution, it is possible to design a single grid for more than one diffuser position and or
orientation, so that a multi-objective optimization (considering the power coefficient
at several pitch angle as objective functions) could be implemented saving the time
consuming fraction related to mesh generation.

In addiction, further analysis on curved plate would be performed, following the
preliminary promising results of Reinecke [17] for an even more efficient diffuser
shape, not more constrained to a classical airfoil shape, exploiting the expansion ratio
and simplifying the manufacturing process. At the end of this process two candidates
would be ready for testing and then prototyping a new diffuser solution for GEM.
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Chapter 16
Parametric Blending and FE-Optimisation
of a Compressor Blisk Test Case

Kai Karger and Dieter Bestle

Abstract Due to raising demands from aviation industry concerning weight
reduction and increased efficiency, compressor front stages of jet engines are designed
as blade integrated disks (blisks). However, a major drawback of blisks is that small
cracks from foreign object impacts occurring in service may propagate into the whole
disk causing burst at worst case which is unacceptable. As a damaged blade of a blisk
cannot easily be replaced, there is a need for repair. For example, borescope blisk
blending may be applied on-wing to ensure safe on-going operation. To determine
best solutions for the blending shape, process integration and optimisation tools are
used which modify a parametric model and examine its impact on fatigue criteria by
FEM.

Keywords Blisk · Blending · FEM · Process integration · Optimisation

16.1 Introduction

Actually, modern civil jet engines are developed towards higher efficiency and
lower weight. Especially at the front stages of compressors, blade integrated disks
(blisks) may contribute to both demands since they have less leakage flow and lower
weight than bladed disks. However, such blisks are characterised by low vibration
damping and they need a higher foreign object damage resistance to ensure rotor
integrity. Therefore, stricter design criteria for vibration resistance and static stresses
are required. Further, single blades cannot be replaced easily in case of damage
demanding repair strategies such as blending which is investigated in this paper
within an industrial test case. A fictional elliptical dent at the leading edge of an
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aerofoil is used to represent the damage causing a strong decay of the fatigue criteria
below demanded lower bounds. By smoothly cutting out the damaged area, the
fatigue criteria shall be recovered to original conditions.

Existing guidelines for borescope blending repair use circular scallops to be
applied perpendicularly to the blades if a damage occurs at the mid height area [6].
Rules for geometric limits have been determined within aerodynamic investigations
[5, 12] where the strongest limitation is that the fillet region must not be blended. In
order to provide fast results for maintenance, typically the creation of a database for
standard blending procedures is suggested [3].

The scope of this work is to find optimal blending shapes for a given damage by an
automated optimisation process where a parametric blending shape is modified, rel-
evant endurance measures for a blisk are evaluated by FEM, and optimisation objec-
tives and constraint criteria are computed. To speed up optimisation, Kriging-based
surrogate models are used which allow to use genetic algorithms.

16.2 Parametric Model and Evaluation Process

Borescope blending is an in-situ-abrade procedure to repair aerofoils suffering from
small foreign object damages. This can be done during regular visual engine inspec-
tions using borescopes without time-consuming disassembly of the engine and by
supervising the repair process with cameras. Due to space limitations simple cutout
geometries are realised on-wing. A flexible motor driven shaft is inserted through
borescope ports. At the end of the shaft diverse tool kits can be mounted for nick,
dent or crack removal. They are then positioned for blend repair according to engine
manufacturer guidelines. In this paper, the resulting contour for damage removal
is chosen as a D-shape (Fig. 16.1), where a tool with radius R starts at an adjust-
ment height A with an attack angle α, permeates the aerofoil with depth D and ends
at height H. These blending shape parameters may be summarised in the design
vector

p = [D A H R α]T (16.1)

to be determined by an optimisation process.

Fig. 16.1 Parametric
blending shape model

H  
D

R

A 

α
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A major goal of the repair process is to ensure structural feasibility. Here, fatigue
criteria [10, 11] for regular conditions are used as constraints where the maximum
stresses σmax of the blade must not exceed the yield stress Rm , i.e.,

σmax ≤ Rm, (16.2)

to prevent it from plastic deformation. Another endurance measure is flutter stability.
Flow excited vibrations of the blades can be avoided most likely if the ratioλof natural
blade frequency 2π f and flow excitation frequency vrel,75 %/c75 %is above a mode
dependent lower bound λc found from experimental tests [11]:

λ j := 2π f j · c75 %

vrel,75 %
≥ λc

j , j ∈ {1F, 1T}. (16.3)

Especially critical are the first flap (1F) and the first torsion (1T) mode resulting
in constraints λ1F ≥ λc

1F, λ1T ≥ λc
1T. Equation (16.3) considers the relative flow

velocity vrel,75 % and the chord length c75 % at 75 % radial blade height.
Besides static stresses, also dynamic stresses due to vibration must be taken into

account. The af-strength is a combination of static and dynamic stresses according
to the Goodman-diagram regarding fatigue stress R f , dynamic stresses σdyn, static
stresses σstat, and yield stress Rm , which has to be kept above an experience based
level a f c:

a f j := R f

σ j ,dyn

(

1 − σ j ,stat

Rm

)

≥ a f c
j , j ∈ {1F, 1T, 1 . . . 4}. (16.4)

Again, first flap and first torsion modes are identified as critical using specific lower
bounds a f c

1F, a f c
1T, whereas four other modes use a common lower bound a f c

1 =
· · · = a f c

4 := a f c.
In addition to the regular load case, also gas loads of a numerical surge event

representing worst case running conditions are taken into account. Here, maximum
stresses during surge should not exceed yield stress Rm :

σ
surge
max ≤ Rm . (16.5)

Flutter stability and af-strength from Eq. (16.3) respectively Eq. (16.4) are not used
as constraints for numerical surge conditions, since surge events happen for a short
period of time only. Both values define endurance levels and it is not intended to run
an engine permanently at surge.

In order to get the necessary information on constraint functions (16.2)–(16.5) for
specific design values (16.1), the blended rotor blisk is evaluated by the commercial
FE-software ANSYS 13.0 [1]. Typically, aerofoil shapes are defined at running condi-
tions, and a hot-to-cold transformation is required to determine the unloaded aerofoil
shape before blending can be performed and various loads can be applied. This cold
manufacturing geometry needs to be computed only once and was delivered by an
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Fig. 16.2 Process flow for FE blisk evaluation

industrial partner. The cold blended blisk model is then used as input for non-linear
static analyses and subsequent pre-stressed modal analyses to deliver relevant fatigue
criteria [8]. The second step is an FE-analysis for surge conditions resulting in a dif-
ferent stress distribution, and hence changed fatigue criteria. A rough scheme of this
FE-evaluation process is shown in Fig. 16.2.

In order to get some reference results, the FE-evaluation is firstly carried out for
the undamaged and the damaged rotor blisk, respectively. The damaged blade is
simulated by an elliptical damage of depth 2 mm and height 1 mm at 25 % radial
blade height. For the damaged blade many of the endurance measures decay below
the undamaged values, see Fig. 16.3 which shows normalised endurance measures
a f j := a f j/a f c

j , λ1F := λ1F/λc
1F, λ1T := λ1T/λc

1T, σ̄max := Rm/σmax,

and σ̄
surge
max := Rm/σ

surge
max . Especially the maximum stress for surge loads is highly

increased which would lead to serious blade damage. Obviously also the required
values of af-strength for lower modes a f1F, a f1T, a f1, a f2 cannot be fulfilled by
the damaged blade anymore, whereas the values of flutter stability λ1F, λ1T and
af-strengths a f3, a f4 change only slightly and still meet the required limits. The
question arises if proper blending can bring up the violated criterion values above
the necessary level.

16.3 Optimisation Problem and Automated Design Approach

In order to find a proper repair geometry, different blending shapes have to be created
and evaluated within an optimisation process where each iteration step involves
several subtasks to be coupled. Such a process integration may be done e.g. within
the software package Isight 4.0 [2] which eases automation of computational tasks.
Each design evaluation starts with a modification of the blending shape parameters
(16.1) in an expression file which acts as input to the CAD programme Unigraphics
NX 6.0. The CAD programme is used to adapt the model geometry and to determine
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the blade mass. The blended geometry is then updated in a template of the FE-model
and analysed with ANSYS 13.0. Based on the results, the objective and constraint
values are written to files which are then parsed to the optimisation algorithm which
suggests a new design vector for the next loop. In the following, an overview on the
design objectives and the implemented optimisation strategy is given.

To ensure minimal impact on aerodynamic performance and minimal rotor imbal-
ance, the blending volume should be as small as possible. However, structural fea-
sibility has to be met as well. Regarding fatigue criteria, a bigger cutout leads to
lower blade mass and greater notch radii which may result in lower stresses and
better fatigue criteria. In order to meet both design goals, two conflicting targets are
defined. For keeping the cutout size low, the ratio between undamaged blade mass
mref and blade mass after blending mblend is minimised:

f1 = mref

mblend . (16.6)

The second objective aims to improve the surge vibration resistance for constant
surge conditions. Of course, in reality surge conditions are not steady-state, since
the reversed flow is a shockwave which interrupts the regular flow and stops right
after reaching pressure balance between the combustion chamber and the inlet of the
engine. However, also a comparison of undamaged and blended objective values for
steady conditions can show the right trend of improvement or degradation. Here, the
surge af-strengths for the six modes in Fig. 16.3 are normalised with respect to the
lower bounds used in (16.4), respectively. For minimisation these ratios are inverted
and averaged resulting in the objective

f2 = 1

6

6∑

i=1

a f c
i

a fi,surge
. (16.7)

1Faf
1Ta f

surge
max

damaged 

1a f 2
a f

3
a f 4a f 1F 1T maxσλλ σ

Fig. 16.3 Degradation of normalised endurance measures from undamaged (�) to damaged (◦)
blisk aerofoil
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Simultaneously, the endurance measures (16.2)–(16.5) have to be fulfilled, which
may be summarised in a vector of implicit constraints:

h :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a f c
j /a f j − 1

σmax/Rm − 1

σ
surge
max /Rm − 1

λc
1F/λ1F − 1

λc
1T/λ1T − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0. (16.8)

Finally, a multi-criterion optimisation problem based on (16.1) and (16.6)–(16.8)
may be formulated as

min
p ∈ P

[
f1
f2

]

where P =
{

p ∈ R
5|h (p) ≤ 0, pl ≤ p ≤ pu

}
. (16.9)

Such type of problems may be solved by multi-objective genetic algorithms.
However, these algorithms usually require a huge number of design evaluations
and a single FE-evaluation already takes about 10–90 min depending on the mesh
size at the cutout and hence on the cutout size. Response surface methods help to
resolve this problem. They are based on only few evaluated supporting points and
are computationally much cheaper than direct FE-analyses. Therefore, the optimi-
sation problem (16.9) is not solved directly, but adaptive, Kriging-based response
surfaces are applied which are implemented in the DACE toolbox [9] of MATLAB.
Such strategies based on surrogate models are always recommendable in case of
computationally expensive problems [4].

A Kriging response surface models a deterministic response function value f (p)

as normally distributed random number characterised by mean value μ f (p) and
standard deviation s f (p). Then, the most probable realisation of the unknown true
function value f (p) is μ f (p); however, if minimising μ f (p) only, the algorithm
may get stuck in a local minimiser. Therefore, the strategy “Minimising a Statistical
Lower Bound” [7] is implemented where the artificial objective f̃ (p) = μ f (p) −
κs f (p), κ ∈ R, is minimised instead. Design points minimising f̃ (p) are worth to
be evaluated since they either are points with low function values expressed by low
μ f or high uncertainty expressed by large s f values. Therefore, the response surface
is refined iteratively at these points, where in the following κ = 3 will be used.

To illustrate this strategy, Fig. 16.4a shows a 1D-example where the unknown
original function f (p) is approximated by estimated mean values μ f (p) found from
a set of supporting points (◦). In combination with the predicted standard deviation
s f (p), the implemented strategy delivers the goal function f̃ (p) in Fig. 16.4b with
minimiser p∗ which serves as additional supporting point in the next iteration step.
This strategy is applied to both objectives fi resulting in statistical estimates μ f,i ,
s f,i and constraints h j resulting in μh, j , sh, j .
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Fig. 16.4 1D-example of
Kriging models (a) and
“Minimising a Statistical
Lower Bound” (b)
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Before solving the optimisation problem (16.9) by the mentioned Kriging strat-
egy, another modification needs to be done to obtain an unconstrained optimisation
problem

min
p ∈ P

[
f̂1 (p)

f̂2 (p)

]

. (16.10)

Within a penalty strategy, both objectives f̃i (p) described above are artificially
degraded with the same penalties wh(p) and wdist (p) as

f̂i (p) := μ f,i (p) − 3s f,i (p) + (wh(p) + wdist (p))2 (16.11)

where the first penalty term

wh(p) =
∑

j

wh, j (p),

wh, j (p) =
{

μh, j (p) − 3sh, j (p) + 1,000 if μh, j (p) − 3sh, j (p) > 0

0 else
(16.12)

deals with constraints (16.8). If the statistical lower bound μh, j (p)−3sh, j (p) violates
the constraint, the real value h j (p) is unlikely to fulfil it and a high penalty value of
1,000 is added. This value is chosen to guarantee that even feasible designs with poor
objective values are rated better than infeasible designs with good objective values.

The second penalty term is intended to avoid designs within the FE-evaluation
process where the associated blade cannot be created or analysed. That is why the
term wdist (p) in Eq. (16.11) deteriorates the objectives if the distance of a new design
suggestion p is too close to any already known non-converged design pk which is
stored in an archive:

wdist (p) =
{

1,000 if mink |p − pk | ≤ ε

0 else .
(16.13)

The unconstrained surrogate optimisation problem (16.10) is solved within the
Isight process shown in Fig. 16.5. Firstly, a design of experiments (DoE) defines
an initial set of designs which are evaluated by direct analysis. The obtained data
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Fig. 16.5 Scheme of
optimisation process flow
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are used for building up first Kriging models for both criteria (16.6), (16.7) and
for the constraints (16.8). Based on these surrogate models a genetic algorithm
determines Pareto-optimal solutions in MATLAB for the Kriging-based problem
(16.10)–(16.13). The model is then refined iteratively by evaluating and adding the
Pareto-optimal solutions with the biggest distance to already converged designs in a
user-defined number of loops.

16.4 Optimisation Results

In the following, the settings and the obtained results of the optimisation strategy are
described. The initial DoE for creating the first set of Kriging-based surrogate models
of objective and constraint functions consists of a Latin hypercube sample of 150
random points. After analysing the function values for these designs, the MATLAB
DACE toolbox builds up Kriging models with zero-order polynomial regression
models and cubic spline correlation models [9]. The converged points are used as
input data whereas non-converged designs cannot contribute since they provide no
useful information on objective and constraint functions. The latter points are stored
in an archive of non-converged designs to be avoided. The Kriging-based optimi-
sation problem (16.10)–(16.13) is solved by the optimisation algorithm NSGA-II
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f1

f2

min

m
in

1%

2%

Fig. 16.6 Admissible designs in criterion space (◦), Pareto-optimal solutions (•), and examples for
optimally blended aerofoil shapes

1Faf 1Ta f surge
max1a f 2a f 4a f 1F 1T max3a f λ λ σσ

Fig. 16.7 Range of normalised endurance measures for all Pareto-optimal solutions (I) compared
to the undamaged reference design (�)

implemented in MATLAB where population size and number of generations are set
to 100, respectively. A single solution of the Pareto-optima is chosen such that it
has the biggest distance to the already used supporting points. This design point is
evaluated according to Fig. 16.5 and used as additional supporting point in the next
loop. If it cannot be evaluated, it is assigned to the archive of non-converged designs
and the next best Pareto solution is checked. Altogether, 1500 iteration loops are run
to update the surrogate models.

The design parameters of the described blending model are limited by confidential
geometric bounds pl , pu . The use of these parameter limits and the implemented
optimisation strategy are able to recover the endurance measures and result in a wide
range of different cutout sizes. Figure 16.6 shows the obtained results in the criterion
space defined by original objectives (16.6) and (16.7) as non-dominated solutions
and some examples of associated blending shapes. All of the Pareto-optima fulfil the
endurance constraints and cope with the initial violation of some endurance measures
(Fig. 16.7). From these solutions an engineer may choose a specific blending shape
for maintenance repair, where further investigations may be done on aerodynamics
to account for the impact on compressor efficiency and surge margin.
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Chapter 17
Modular Automated Aerodynamic
Compressor Design Process

Fiete Poehlmann, Dieter Bestle, Peter Flassig and Michèl Hinz

Abstract Designing complex and challenging machines demands the use of
sophisticated methods such as multi-objective optimization. In this paper the aero-
dynamic design process of a jet engine compressor is used to demonstrate how
process automation and optimization may support engineers to find better designs.
The design process is divided into four sub-processes starting with a correlation-
based 1D meanline code and ending with a 3D CFD analysis. These sub-processes
of different fidelity are automated and coupled to enable a cascaded, sequential opti-
mization. This approach allows to start with few basic assumptions and ends with a
complete 3D geometry and flow field of an axial jet engine compressor.

Keywords Multi-criterion optimization · Compressor design · Multi-fidelity
processes · Process coupling · Meanline · Throughflow · Blading

17.1 Introduction

Increasing air traffic and its negative impact on the environment, e.g. by NOX or
CO2 emissions, demand for more efficient jet engines. Faster design methods are
necessary to enable jet engine manufacturers to cope with these challenges and
to stay competitive. Process integration and optimization are powerful tools which
may help to account for contradicting requirements on modern jet engines, where
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the compressor is one of the most complex and challenging components. The flow
through a compressor is rather sensitive since it is forced to flow in the direction
of increased pressure. These machines, therefore, are designed with great effort
using various codes of different fidelity, where from one design step to the next
computation time increases. Therefore, it is necessary to exploit the full potential of
the fast low-fidelity codes in the beginning and to generate good starting solutions
for the subsequent higher fidelity codes.

The first design step is based on a 1D Meanline evaluation where the flow field
values are determined along themid-line of the annulus [7]. The next design step uses
a 2D streamline curvaturemethod called Throughflow resulting in radial distributions
for the flow quantities [13].With the given flow field the next step is to create a proper
blade for each stage which can handle the requirements of the flow field. This may
be done by section-wise stacking of designed airfoils [8] or by a 3D approach to
define the whole blade at once [4]. Finally, stacking and fine tuning of the blade
shape is performed to cope with 3D flow effects requiring sophisticated tools such
as 3D CFD.

In this paper, a fully automated aerodynamic compressor design process is pre-
sented. It is composed of various analysis codes with different fidelity which are
integrated by the process integration tool Isight [5] and coupled in a sequential over-
all optimization process. It allows to generate a complete geometry and flow field of
a compressor based on few basic assumptions and a rough outline of the compressor.
At each step the level of detail is increased until the compressor is finally defined.
Recent investigations [4, 7, 8, 13] have focused on automation of the sub-design
processes only, whereas feasibility of a design related to the overall aerodynamic
design process has been considered only partially. Therefore, this paper focuses on
a stronger coupling between the design sub-processes.

17.2 Integrated Optimization Processes for Compressor Design

The first sub-process to be integrated in the overall design process is based on a
Meanline code determining the outline of a compressor [6]. Typically performance
requirements like mass flow or the overall pressure ratio are already defined and a
design engineer has more or less design freedom to change parameters within the
compressor in order to improve the design. Typical optimization goals are improve-
ment of compressor efficiency ηM L and simultaneously of surge margin SMM L ,
both calculated with Meanline (ML).Variations are performed on mid-line values
of pressure ratios Πi , solidities σi , axial chord lengths cax,i and stator exit angles
αS

E,i for each stage, as well as annulus shape defined by a superposition of mid-
line and compressor height, whereas compressor length and outlet area are main-
tained. All variations are performed by proper parameterizations of these quantities
to keep variations smooth and the number of design parameters small [7]. The total
number of parameters pM L changed during Meanline optimization is 43. Constraints
are applied to prevent the code from running into unacceptable designs, where limits
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on deHaller numbers [2], diffusion factors [10],Mach numbers, load coefficients [1],
and Koch parameter [9] are summarized as constraints hM L (pM L) ≤ 0. The opti-
mization problem finally reads as

max
pM L∈PM L

[
ηM L

SMM L

]

, PM L =
{

pM L ∈ R
43 |hM L ≤ 0

}
. (17.1)

The second code used in the design chain is a 2D streamline curvature method
called Throughflow (TF). In general, the requirements within an optimization are
similar to those of Meanline. E.g. criteria are the same, i.e., maximization of effi-
ciency ηTF and surge margin SMTF, however, now estimated with the higher fidelity
Throughflow code. Also constraints are almost the same, but now obtained for sev-
eral streamlines at different radial heights and not only at the mid-line. Therefore,
variations during this optimization sub-process regard radial distributions, whereas
mid-line values are maintained due to the assumption that they are already an opti-
mal result from the Meanline optimization. The varied quantities are the same as for
Meanline apart from the axial chord length which in Throughflow is calculated from
other quantities. The number of parameters pTF used in Throughflow optimization is
significantly reduced to a total of 27. The problem reads as

max
pTF∈PTF

[
ηTF

SMTF

]

, PTF =
{

pTF ∈ R
27 |hTF ≤ 0

}
. (17.2)

After solving this Throughflow optimization problem optimized flow fields are
available which need to be realized by filling the annulus with proper blades. For
the evaluation of a specific blade the 2D solver Mises is used [3] which calculates
the 2D flow between blades on the S1 stream surface [15]. This is done for three
sections, one near hub, one near casing and one at the blademid-section.However, the
parameterization pB describes the complete 3D blade at once and the airfoil sections
used for analysis are obtained by blending the 3D blade with the three streamlines of
interest coming from Throughflow. This quasi-3D approach guarantees smooth blade
geometries due to direct 3D blade parameterization and quick results by use of the
fast 2D Mises solver. The blade is described by a superposition of a dimensionless
3D camber-line angle distribution with a dimensionless 3D thickness distribution,
and radial distributions of blade inlet angle, blade outlet angle and thickness to chord
ratios which are varied during blade optimization [4]. The optimization criteria are
chosen as minimization of the loss coefficients calculated by Mises at the design
point ωD P and at off-design conditions towards stall ωSt and choke ωCh [4]. Off-
design conditions are defined as change of inlet flow angle by ±2◦. The maximum
of the two off-design losses is used as second criterion to be minimized. Constraints
hB (pB) ≤ 0 for the optimization involve proper flow conditions along the blade,
i.e., avoidance of suction sided flow separation and achievement of the flow field
predicted by Throughflow. This yields the optimization problem
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min
pB∈PB

[
ωD P

max (ωCh, ωSt )

]

, PB =
{

pB ∈ R
33 |hB ≤ 0

}
. (17.3)

All of the presented stand-alone optimization processes aremulti-objective optimiza-
tion problems which here are solved with the genetic algorithm AMGA [14].

17.3 Coupling of Design Sub-processes

In the presented work these optimization processes are not considered as stand-alone
tasks, but a complete process chain is set up which requires a coupling of the codes,
respectively the sub-optimization tasks. An efficient way of coupling Meanline and
Throughflow has been investigated in [12] and is shortly recapitulated hereafter. For
the Meanline optimization problem (17.1) it is necessary to include an immediate
Throughflow evaluation. However, due to the nature of the Meanline optimization
design variables pM L concern only the mid-line but no radial dependence. There-
fore, Throughflow parameters pTF are chosen such that the radial distributions are
considered to be constant, upper left of Fig. 17.1. This avoids the implementation
of pTF as design variables which would increase the number of optimization vari-
ables to 70 and could not be managed by genetic optimization algorithms properly
[12]. However, the Throughflow evaluation needs to be performed in order to check
whether constraints defined for Throughflow optimization (17.2) are achievable by a
specific design proposed during Meanline optimization. It is assumed to be the case
if Throughflow constraints hTF are already satisfied within a certain tolerance ε for
those preliminary radially constant designs. This prevents Meanline from running
into critical solutions which cannot be handled by a subsequent Throughflow opti-
mization. Since only these relaxed constraints hTF ≤ ε are transferred from problem
(17.2), parameters, objectives and the remaining constraints are still according to
formulation (17.1) yielding the coupled Meanline optimization problem

max
pM L∈P M L

[
ηM L

SMM L

]

, P M L =
{

pM L ∈ R
43

∣
∣
∣
∣

[
hM L

hTF

]

≤
[

0
ε

]}

. (17.4)

The result of this coupled Meanline optimization is not only a single design but
a set of several Pareto optimal design trade-offs. Picking a specific design for fur-
ther optimizationwould corrupt the idea ofmulti-objective optimization, whereas the
optimization of every Pareto design would increase computation time enormously. In
order to copewith the demands ofmulti-objective optimizationwithout an increase of
computation time, the Throughflow optimization problem (17.2) is extended accord-
ing to an approach proposed by [12]. The idea is not to start from just a single optimal
design, but investigate all optimal designs in parallel during one single Throughflow
optimization sweep, see upper right of Fig. 17.1. This is done by tagging the opti-
mal Meanline solutions with an integer parameter iM L ∈ {1, 2, . . . , K } which is
used as an additional design variable andmodified during Throughflow optimization.
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The Throughflow optimization problem then handles both, real parameters pTF and
the integer parameter iM L resulting in a challenging, so calledmixed integer problem.
This kind of problem, when attacked with a genetic algorithm like AMGA, has the
tendency of premature convergence and thus lack of diversity. To avoid premature
convergence and guarantee diversity over all possible integer values, each repre-
senting a specific Meanline design as basis for Throughflow, a new strategy [12] is
applied that extends the problem formulation (17.2) to an unconstrained problem
formulation

max
p

⎡

⎢
⎢
⎢
⎢
⎣

η∗
TF

SM∗
TF

i∗M L .pos
i∗M L .neg

h∗

⎤

⎥
⎥
⎥
⎥
⎦

, p =
[

pTF

iM L

]

(17.5)

with additional objectives:

i∗M L ,pos =
{

iM L

K
if j ≤ νNE

else
(17.6)

i∗M L .neg =
{−iM L

1
if j ≤ νNE

else
(17.7)

η∗
TF(p) =

{
ηTF(p)

ηT F,min

if hTF(p) ≤ 0
else

(17.8)

SM∗
TF(p) =

{
SMTF(p)

SMT F,min

if hTF(p) ≤ 0
else

(17.9)

h∗(p) =

⎧
⎪⎨

⎪⎩

0
NC∑

j=1
min

{−hT F, j (p), 0
} if hTF(p) ≤ 0

else
(17.10)

Objectives (17.6) and (17.7) are in contradiction (i.e. all values of iM L are optimal
by definition) and therefore guarantee diversity over different Meanline solutions as
long as the actual number of evaluations j is lower than a part ν of design evaluation
limit number NE . Thus Meanline solutions are treated equally and improved accord-
ing to objectives (17.8)–(17.10) which are a kind of multi-criterion penalty strategy.
Only in the second phase the different Meanline solutions have to compete and the
iM L value is ignored. The penalty strategy chosen here is not the classical one, but
violation of constraints is considered as additional objective (17.10). To ensure that
feasible solutions are always rated better than infeasible ones, the original objec-
tives ηTF and SMTF are allocated with lowest possible numbers in case of constraint
violation resulting in modified constraints (17.8) and (17.9). Thus, the optimization
algorithm is forced to firstly achieve feasibility and secondly improve designs [12].

Although the Throughflow optimization results are a Pareto set like the Meanline
results, at this stage it is rather difficult to transfer each design to the blading design
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Fig. 17.1 Automated Isight modules within the aerodynamic compressor design process

step and optimize it in parallel like the Throughflow optimization strategy described
above. The necessity of choosing a specific Throughflow design for the subsequent
blading process may be motivated as follows. Both Meanline and Throughflow are
codes that handle the complete compressor, whereas the blading process is performed
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for each blade row separately. Therefore, the boundaries between the separate blade
rows have to match, i.e., exit flow angles of one blade row have to match with inlet
flow angles of the blade row downstream. If multiple Throughflow solution were
allowed, each blade optimization would prefer another Throughflow solution for
the specific blade row. This would result in a corrupt annulus where neither flow
angles nor hub and casing walls would match. Consequently a specific Throughflow
solution, i.e., flow field and annulus, has to be selected prior to the blading process.

After selecting a specific optimal flow field from the Throughflow solutions, it is
converted and split into flow field information for each blade row, called aero block.
This defines boundary conditions for the automatic blade generation sub-process
shown in the lower right of Fig. 17.1. The blade generation uses knowledge based
rules depending on aerodynamic and geometric boundary conditions as e.g. inlet
Mach number or solidity, to select blade shapes from an industrial database [11].
Then, these generated blades serve as references for subsequent quasi-3D blade
optimizations as can be seen in the lower left of Fig. 17.1. Typically the automati-
cally generated blades show already good aerodynamic performance, but they are
unlikely to fulfill the constraints. For the blading process the constraints are split into
two groups of different importance. Constraints concerning general flow conditions
like separation are considered first-rate, whereas constraints insuring matching with
the flow field provided by Throughflow are considered second-rate. Further Mises
calculations for off-design points are calculated only if first-rate flow condition con-
straints for design point conditions are already satisfied. However, a calculation of
off-design points has to be performed before second rate constraints are achieved to
avoid running into designs that are feasible at design point, but do not converge at
off-design conditions.

Figure17.1 shows the modular structure of the complete design process. For each
design step an Isight module was developed which enables automated optimization
of designs on a specific design level, but already takes into account coupling effects
if necessary. Due to the modular process flow the engineer has the opportunity to
verify designs on each level and to adapt the problem formulation if required.

Fig. 17.2 Evolution of optimization results by Meanline and Throughflow to final blading result
shown for first rotor
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17.4 Application to an Industrial Compressor

For validation, the described process is applied to a modern 9-stage high pressure
research compressor. Just a few performance requirements like mass flow and basic
assumptions like tip clearances are provided to start the design process. Seven Mean-
line optimal solutions are proposed by the first design step by solving the optimization
problem (17.4), see Fig. 17.2. These Meanline results are completely transferred to
the extended Throughflow optimization problem (17.5) and further optimized in par-
allel. The resulting Pareto front consists of 32 designs which, however, originate
from only two of the seven Meanline results. As described above now a selection
of a specific design is necessary to continue with the blading step. Here, the design
with the highest efficiency is selected from the Throughfow Pareto front. The blade
optimization is performed for all blade rows on a cluster in parallel. Figure17.3
shows rotor blades of the first stage for reference design in comparison with the
quasi 3D optimized blade. Typical design changes can be associated with the spe-
cific sub-process involved. E.g. the final annulus inlet is located at smaller radii
ropt

j < rre f
j , j ∈ {hub, cas} and the annulus shows a steep contraction which is a

result of Meanline optimization. The radial distribution of the axial chord length is a
result ofThroughflow optimization and the optimized blade shows a significant differ-
ence compared to the reference design. The blade optimization sub-process changed
the contour of the blade by changing the dimensionless camber-line angle and thick-
ness distributions. The different contours of both blades can be seen in Fig. 17.3b,
where casing near airfoil sections of the blades are displayed. The optimized airfoil
is longer, flow angles are different and flow turning has increased. The flow turning
of the optimized airfoil is focused on the rear in contrary to the reference design.
Finally the stacking of the reference design is applied to the optimized blade and
all necessary input files for a 3D CFD are generated. Figure17.4 shows the meshed
blade and annulus, generated for a 3D CFD analysis.

Fig. 17.3 Comparison of a blades and b airfoil sections for reference front rotor and optimized
front rotor
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Fig. 17.4 Mesh of optimized
blade and annulus for front
rotor

17.5 Conclusions

The paper describes a completely automated design process including all steps of
an industrial design approach: basic decisions based on Meanline and Throughflow
calculations, blading and final 3D CFD analysis. In order to avoid back-loops, higher
fidelity Throughflow analysis are already included in the first Meanline design step.
By transferring all optimized Meanline solutions to Throughflow, the intermediate
results are as good as if all Meanline results would have been optimized separately,
but computational costs are cut down. The final blading needs to be performed on a
single Throughflow solution in order to guarantee consistency and results in smooth
blades which can be immediately analyzed by 3D CFD. The generation of such
optimal blades for the whole compressor can be done on a small-size computer
cluster within five days starting almost from scratch.
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Chapter 18
Design-Optimization of a Compressor Blading
on a GPU Cluster

Konstantinos T. Tsiakas, Xenofon S. Trompoukis, Varvara G. Asouti
and Kyriakos C. Giannakoglou

Abstract This paper presents the design/optimization of turbomachinery blades
using synchronous and asynchronous metamodel-assisted evolutionary algorithms
on a GPU cluster. Asynchronous EAs overcome the synchronization barrier at the
end of each generation and exploit better all available computational resources. Ra-
dial basis function networks are used as on-line trained surrogate evaluation models
(metamodels) according to the inexact pre-evaluation (IPE) concept. With the ex-
ception of a few initial evaluations, which are based on the exact evaluation tool,
each new candidate solution is approximately evaluated using local metamodels and
only the most promising among them are, then, re-evaluated using the exact tool.
Suggestions about the number of population members to be re-evaluated on the CFD
tool, in the framework of the IPE scheme, are provided. The effect of using more
than one GPUs to evaluate each candidate solution in the optimization turnaround
time is discussed.
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18.1 Introduction

Nowadays, evolutionary algorithms (EAs) are successfully applied tomany scientific
fields including engineering sciences, since they can handle single-ormulti-objective,
unconstrained or constrained optimization problems by accommodating any evalu-
ation software as a black-box. EAs main disadvantage is related to the great number
of evaluations required to reach the optimal solution(s). In engineering problems,
based on evaluation software which is computationally demanding (for instance, a
CFD code), this noticeably increases the optimization turnaround time.

To decrease the CPU cost and/or the turnaround time of an EA-based optimiza-
tion, the concurrent evaluation of candidate solutions and/or the implementation of
surrogate evaluation models (or metamodels) can be used. Generation-based EAs,
to be referred as “synchronous” in this paper, usually implement the master-worker
paradigm to concurrently evaluate the generationmembers. Each populationmember
can optionally be evaluated on many processors, provided that a parallel evaluation
software (such as a parallel CFD code, in CFD-based optimization) is available.
By overcoming the notion of “generation”, the so-called asynchronous EAs (AEAs)
have been developed [1, 2]. AEAsmay exploit the available computational resources
better than a synchronous EA relying upon the master-worker paradigm.

On the other hand, metamodels are tools providing low-cost approximations to
the results of costly problem-specific evaluation models. In this work, metamodel-
assistedEAs (MAEAs)with on-line trained localmetamodels (radial basis function—
RBF networks) are used according to the Inexact Pre-Evaluation (IPE) scheme of
the candidate solutions. IPE starts after running and archiving a number of individ-
uals using exclusively the problem-specific evaluation model, in order to collect the
minimum number of samples to be used to train the metamodels. In the synchronous
EA, during the IPE phase [9, 10], all population members of each generation are
pre-evaluated on surrogate models built in purpose and only a few top individuals
undergo re-evaluation on the exact model. In the asynchronous EAs, [1, 2], instead
of generating and evaluating a single new individual every time a CPU becomes idle,
a number of trial solutions are generated and pre-evaluated on the metamodel. Then,
the best among them, according to the metamodel, is exactly re-evaluated.

In aerodynamic optimization, additional gain is expected from the use of a GPU-
enabled Navier-Stokes solver to perform the CFD-based evaluation. Many of the
existing CFD solvers running onGPUs use structured grids [4, 11, 15] and thus profit
of the aligned access to the GPU memory, leading to high speed-ups. Applications
based on unstructured grids are still limited and usually based on cell-centered finite
volumes [15]. The GPU-enabled software used in this work solves the Navier-Stokes
equations on unstructured grids using the vertex-centered finite volume technique
[3, 8, 14]. Though this is the most difficult case regarding GPU memory access,
compared to the use of either structured or unstructured grids with cell-centered
finite volumes, the optimization of memory access, discussed in [3, 14], along with
the use of mixed precision arithmetics [8] make the code running 50× faster on a
single GPU than on a single CPU core.
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In this paper, synchronous and asynchronous metamodel-assisted EAs (MAEAs
and AMAEAs) are used for the design optimization of a compressor blading on a
GPU-cluster which consists of four interconnected server blades, with 3 NVIDIA
TeslaM2050 each. In this 12 GPU configuration, various parallelization schemes are
investigated in order to minimize the optimization turnaround time. These include
MAEAs and asynchronous MAEAs (AMAEAs) allowing up to 12 (as many as
the available GPUs) concurrent evaluations. Regarding MAEAs, the impact of the
number of individuals to be re-evaluated on the CFD model is investigated.

An additional investigation of the effect of parallelizing the CFD software on
many GPUs in the optimization turnaround time is also carried out, for both the
MAEA and AMAEA.

18.2 The Navier-Stokes Equations Solver—Implementation
on Many GPUs

AGPU-enabled Navier-Stokes solver [3, 8, 14] is used for steady 3D incompressible
flows for the evaluation of candidate solutions. The GPU-solver may use GPUs
associated with the same or different computational nodes.

18.2.1 The Navier-Stokes Equations

The pseudo-compressibility approach, introduced by Chorin [5], is used to handle
incompressible fluid flows. By introducing the artificial compressibility β, the mean
flow equations with respect to the rotating frame of reference become

R(W) = ∂W
∂t

+ ∂Finv
j

∂x j
− ∂Fvis

j

∂x j
− S = 0 (18.1)

where W = [p w1 w2 w3] is the vector of the unknowns, wi , i = 1, 2, 3 are the
relative velocity components and p is the static pressure. Finv, Fvis are the inviscid
and viscous fluxes respectively and S is the vector of source terms containing the
Coriolis and centripetal forces,

Finv
j =

⎡

⎢
⎢
⎣

βw j

w j w1 + pδ1 j

w j w2 + pδ2 j

w j w3 + pδ3 j

⎤

⎥
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⎢
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τ3 j

⎤

⎥
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⎦
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τi j = (ν + νt )

(
∂wi

∂x j
+ ∂w j

∂xi

)

Si = 2εk ji wkΩ j + ε jklεhliΩhΩ j xk

Ωi , i = 1, 2, 3 are the components of the angular velocity vectors. The mean-flow
equations are coupledwith the one-equation low-Reynolds number Spalart–Allmaras
[13] turbulence model. The viscosity coefficient is given by νt = ν̃ fv1 , where ν̃ is
the solution variable in the state turbulence equation, Rν̃ = 0, where

Rν̃ = ∂(wi ν̃)

∂xi
− ∂

∂xi

[(

ν + ν̃

σ

)
∂ν̃

∂xi

]

− cb2

σ

(
∂ν̃

∂xi

)2

− ν̃ P (ν̃)+ ν̃D (ν̃) (18.2)

The production P(ν̃) and destruction D(ν̃) terms alongwith fv1 , fw, S̃, and constants
cb1 , cb2 , cw1 and σ are all defined in [13].

18.2.2 Boundary Conditions and Discretization

Concerning the boundary conditions, the no-slip condition is applied along the solid
walls. At the inlet, the velocity vector profiles are imposed, while at the outlet a
fixed mean pressure value is applied. A zero value of ν̃ is specified along the solid
boundaries.

The discretization of the governing PDEs is based on the time-marching tech-
nique and the vertex-centered finite volume method. Thus, in each pseudo-time step,
Eqs. 18.1 and 18.2 are integrated over the finite volumes formed around mesh nodes.
The CFD-solver used may handle unstructured/hybrid meshes consisting of tetrahe-
dra, pyramids, prisms and hexahedra.

The inviscid numerical fluxes are computed using theRoe’s approximateRiemann
solver [12] with second-order accuracy. The stresses on the finite volume faces are
computed based on the velocity gradients, the computation of which at the mid-point
of each edge (PQ) is given by

∂wi

∂x j

∣
∣
∣
∣

P Q
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∂x j
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P
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∂x j

∣
∣
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Q

]

n j − wQ
i − wP

i

(P Q)

]

n j

(18.3)

where n j is the normal to the finite volume interface. Coriolis and centripetal forces
are added as source terms.
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18.2.3 Numerical Solution

The discretized Navier-Stokes equations are solved iteratively according to the
scheme

∂R
∂W

ΔW = −R(W), Wk+1 = Wk + ΔW (18.4)

with k denoting the pseudo-time iteration. The pseudo-time step is calculated locally
at each mesh node, based on stability criteria.

In order to maximize the parallel efficiency of the GPU-enabled solver and re-
duce the device memory requirements, the solver uses Mixed Precision Arithmetics
(MPA) [8], which does not harm the accuracy of the results, due to the delta formu-
lation presented in Eq.18.4. In the proposed MPA scheme, DPA (Double Precision
Arithmetics) is used for computing both the LHS and RHS terms. Then, SPA (Single
Precision Arithmetics) is used to store the memory-consuming LHS terms, whereas
DPA is used for the RHS (i.e. the residuals) of Eq.18.4.

18.2.4 Implementation on Many GPUs

The flow solver, written in the CUDA programming environment, uses the MPI
protocol for the inter-node communications. Each CPU-process is executed on a
different computing node and controls theGPUs associatedwith this node.Generally,
the number of CPU-processes is not equal to the number of mesh partitions since
each CPU-process controls many on-node GPUs each of which is associated with
a single mesh partition. For the communication between the on-node GPUs, event-
stream synchronizations have been employed. Besides, GPUs on the same node use
the common CPU (pinned) memory for data interchange. In order to increase the
parallel efficiency of the CFD solver, data interchange overlap with computations;
thus, GPU cores remain active even while data are transferred through the available
devices.

In the beginning, the CPU-process with rank 0 reads and broadcasts the data input
which include the flow conditions, the nodal coordinates and the connectivity ofmesh
elements per subdomain. It also constructs the necessary lists of mesh nodes shared
by adjacent subdomains, for which data communications are necessary. Then, each
CPU-process performs the computation of topology andmesh related data supporting
the finite volumemethod for the subdomains associated with the GPUs controlled by
this CPU-process. The computed data are copied to the GPUs, where the numerical
solution of the Navier-Stokes equations takes place through successive GPU kernel
launches, data interchange and synchronizations.

As already mentioned, the flow solver uses unstructured grids and the vertex-
centered finite volume technique. This is the most difficult case regarding GPU
memory access, because (a) the use of unstructured grids leads to “unstructured”
memory access due to the random grid element numbering and (b) in the vertex-
centered approach the number of neighboring nodes per grid node varies from node
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to node. On the other hand, in the cell-centered finite volume technique the number
of neighboring elements per element is a priori known; for instance, in 3D grids
with tetrahedral elements, each internal tetrahedron has 4 adjacent tetrahedra. The
optimization of memory access [3, 14] together with the use of mixed precision
arithmetics (MPA) [8] make the flow solver running on a single GPU about 50 times
faster than its counterpart running on a single CPU core.

18.3 The EA-Based Optimization Platform

The design optimization of the compressor blading presented in this work is based
on EAs, using the capabilities of the optimization platform EASY [6] developed by
the authors’ group. In order to decrease the computational cost of the EA-based op-
timization, the concurrent evaluation of candidate solutions together with surrogate
evaluation models (or metamodels) are implemented. Synchronous and asynchro-
nous metamodel-assisted EAs (MAEAs and AMAEAs) are used to quantify the
parallel efficiency from the concurrent evaluation of candidate solutions.

In both MAEA and AMAEA, all evaluated individuals, paired with the corre-
sponding objective function values, are stored in a database (DB). Once a predefined
minimum number of DB entries has been archived, the IPE phase (implemented
differently in the synchronous and asynchronous mode) starts. On-line trained meta-
models are used during the IPE phase. Radial basis function (RBF) networks are
trained separately for each new individual on its closest (in terms of Euclidean dis-
tances in the normalized design space) DB entries.

In constrained problems, such as the one studied herein, candidate solutions vio-
lating one or more constraints are penalized using an exponential penalty function.

In the following sections, the basic features of the MAEA and AMAEA, with
emphasis on the parallelization model and the IPE implementation, are described.

18.3.1 Metamodel-Assisted EA

The synchronous or generation-based (μ, λ)EA and (μ, λ)MAEA, [7]) in each
generation handle three populations, namely the parent (with μ members), the off-
spring (with λ members) and the elite (with ε members) ones. The μ parents result
from the application of the parent selection operator to the offspring and elite popu-
lations of the previous generation. The λ offspring are formed from the parents, via
the application of evolution operators, such as crossover, mutation, etc., including
elitism.

The first few generations are performed as a conventional EA and the MAEA
starts once there are “enough” training patterns in the DB. During the IPE phase all
population members are pre-evaluated on surrogate models trained on-the-fly and
only a few (λIPE << λ) top population members, i.e. the most promising based
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Fig. 18.1 Schematic representation of the IPE phase in a (synchronous) MAEA

on the metamodel, are re-evaluated on the CFD model (Fig. 18.1). The λIPE value
may vary between a lower (λIPE,min) and an upper (λIPE,max) user-defined bound.
Initially, only the λIPE,min top individuals are re-evaluated; then, some more, up to
λIPE,max in total, may be re-evaluated too, based on a number of criteria.

The parallelization of EA and MAEA is based on the master-worker paradigm
where themaster assigns theλ evaluations to the availableGPUs (NGPU ). The number
of CPU processes (NCPU ) is equal to NGPU if the evaluation of a candidate solution
is assigned to a single GPU or NCPU < NGPU if assigned to more than one GPUs,
as described in Sect. 2.4. In the general case where λ < NGPU , the first NGPU

evaluations are assigned to the NGPU devices. The remaining evaluations within the
same generation are then assigned to GPUs that become idle anew. The master waits
for allGPUs to complete their evaluations before proceeding to the next generation. In
the case of a MAEA, the master undertakes the IPE and assigns the λIPE evaluations
to the available GPUs.

18.3.2 Asynchronous Metamodel-Assisted EA (AMAEA)

In the asynchronous EA (AEA) and AMAEA, [1, 2], the population members are
associated with the nodes of a supporting mesh which is periodic along its opposite
sides. The mesh is subdivided into demes of six nodes each, namely a pole, which
acts as the deme’s front-end where the best individual of the deme is stored, and

http://dx.doi.org/10.1007/978-3-319-11541-2_2
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Fig. 18.2 Topology of a 4× 4 supporting mesh of an asynchronous EA or MAEA. For the deme
associated with pole P , agents A1 to A4 are shared with its four neighbouring demes whereas agent
A5 is the only non-shared one

five evaluation agents, Fig. 18.2. Demes interact through the shared supporting grid
nodes. The application of the evolution operators is restricted within each deme.

Asynchronous EAs overcome the notion of generation and better exploit the avail-
able computational resources, in comparison to the master-worker paradigm. In par-
ticular, the optimization starts by randomly generating individuals and assigning their

Fig. 18.3 Schematic representation of the IPE phase as implemented by an AMAEA
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evaluation to the available GPUs. Upon completion of the evaluation of any indi-
vidual, the corresponding GPU becomes idle. Instantaneously, a new individual to
undergo evaluation is generated through intra- and inter-deme operations. An intra-
deme operation, based on dominance criteria, decides whether the just evaluated
individual must displace the corresponding pole(s) storing the best so-far computed
solution on the deme. Then, an inter-demeoperation selects, based on priority criteria,
the next agent to undergo evaluation, [1].

In AMAEAs, the metamodels are activated only after completing and archiving a
user-defined minimum number of exact evaluations. From this point on (Fig. 18.3),
for each idle processor, NIPE trial individuals are instantaneously generated by the
evolution operators applied within the corresponding deme. For each one of them, a
local metamodel is trained and an approximate (“inexact”) fitness value is computed.
Then, the “best” among the NIPE individuals, according to the metamodel, is the one
to undergo re-evaluation by the problem-specific (CFD) tool.

18.4 Design-Optimization of a Compressor Blade

This section presents the optimization of a peripheral compressor cascade. The ex-
isting (reference) compressor comprises 12 blades and operates at 1,300 rpm. Air in
axial direction enters at velocity of 15.28m/s. The blades are mounted on the hub,
with a hub-to-tip radius ratio equal to 0.6 and form a 0.005m clearance with the
stationary shroud. In this paper, the blade is redesigned for minimum viscous losses
defined as the averaged relative total pressure difference between the rotor inlet and
outlet (ΔPt R). A constraint to maintain the operating point of the reference con-
figuration is imposed in terms of the mass averaged difference of the total pressure
between the cascade outlet and inlet (ΔPt ).

18.4.1 Parameterization and Grid Generation

The blade shape is defined by superimposing parameterized thickness profiles on a
parameterized mean-camber surface. Bezier control polygons are used to specify the
distributions of all geometrical quantities. The design variables, 38 in total, are the
coordinates of the control points of Bezier curves used to:

1. generate the meridional projection of the leading (LE) and trailing (TE) edges,
as well as the hub and shroud generatrices (Fig. 18.4),

2. parameterize the spanwise distributions of (a) the mean-camber surface angles at
the LE and TE, (b) the circumferential position of the blade LE and TE and (c)
the mean-camber surface curvature,

3. parameterize the non-dimensional thickness profiles at a number of spanwise
positions (Fig. 18.5, left) and
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Z

R

Fig. 18.4 Parameterization of the hub and shroud generatrices and the meridional projection of the
leading and trailing edges. Curves and their corresponding Bezier polygons are shown

Fig. 18.5 Parameterization of a non-dimensional thickness profile, at certain spanwise positions
(left) and the spanwise maximum thickness distribution (right)

4. dimensionalize the thickness distribution along the spanwise direction (Fig. 18.5,
right).

For the evaluation of each candidate solution, a 3D unstructured mesh with about
400,000 nodes is generated using an in-house grid-generation software. The final
grid comprises hexahedra and prisms over the blade surface, prisms over the casing
and tip region, tetrahedra at the inner part of the domain and a zone of pyramids at
the interface between hexahedra and tetrahedra. The CFD evaluation relies on the
solver described in Sect. 18.2.

18.4.2 Optimization Results and Discussion

This case is studied using both MAEA and AMAEAwith 12 concurrent evaluations,
i.e. with NCPU = NGPU = 12, i.e. each evaluation is assigned to one GPU. For the
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Fig. 18.6 Comparison of the convergence history of MAEA and AMAEA

MAEA λ = 48, μ = 16 were used. The offspring population size (λ) was selected
to be a multiple of NGPU in order to get the “maximum” parallel efficiency from
the master-worker model. In the AMAEA, a 8 × 8 supporting mesh (18.2) is used,
which corresponds to 16 poles and 48 evaluation agents.

For both synchronous and asynchronous variants, 27–40 training patterns are
used for each RBF network and the IPE started once the first 80 (non-penalized, i.e.
feasible) individuals were evaluated and stored in the DB. Using the MAEA, two
different optimization runs were carried out. In the first one, λIPE = 12 members
are selected to be re-evaluated on the CFD code whereas, in the second one, λIPE

value was allowed to vary between λIPE,min = 5 and λIPE,min = 8. This range was
decided so as to have some idle GPUs and measure the effect on the optimization
turnaround time. For the AMAEA, NIPE = 8 trial individuals are generated and
pre-evaluated before assigning the “best” of them to the idle G PU for evaluation on
the flow solver.

The convergence histories in terms of computational CPU cost units of the three
optimization runs are presented in Fig. 18.6. The AMAEA performs better for the
same computational cost. It is interesting to comment on the differences between the
two MAEA runs. The use of variable λIPE value is beneficiary for the optimization
algorithm (though some GPUs remain idle during the re-evaluation) compared to the
λIPE = NGPU option.

Comparison of the relative total pressure losses between the reference and the
optimal blading at two transverse cross-sections at axial positions z = 0.59 cax and
z = 1.80 cax (the z-origin is at the LE and cax is the axial chord) are shown in
Figs. 18.7 and 18.8. It can be seen that, in the optimal blade, the high pressure losses
region, corresponding to the tip clearance vortex, is minimized.
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Fig. 18.7 Comparison of the relative total pressure between the reference (left) and the optimal
(right) cascade at a transverse cross-section located at axial position z = 0.59 cax . The Pt R field at
z = 0.59 cax subtracted from the average inlet Pt R value is shown

Fig. 18.8 Comparison of the relative total pressure between the reference (left) and the optimal
(right) cascade at a transverse cross-section located at axial position z = 1.80 cax . The Pt R field at
z = 1.80 cax subtracted from the average inlet Pt R value is shown

Table 18.1 Comparison of the objective function and constraint values between the reference and
the optimized blade

Reference blade Optimized blade

Objective Losses (ΔPt R) 0.329 0.224

Constraint ΔPt 0.53 0.54

The corresponding objective function and constraint values are compared in
Table18.1. The pressure distribution on the optimal geometry is shown in Fig. 18.9.

18.4.3 Concurrent Evaluations Using CFD on Many GPUs

Aiming at further minimizing the optimization turnaround time, apart from the
“smart” use of metamodels and the concurrent evaluations discussed thus far, the
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Fig. 18.9 Pressure distribution on the optimal geometry obtained by the AMAEA-based optimiza-
tion

parallelization of the evaluation software on many GPUs is also considered. In this
paper, for parallelizing the evaluation software, one should take into account the
search method (synchronous or asynchronous), the possible use of IPE and the com-
putational system in hand (4 computational nodes with 3 TeslaM2050 GPUs on each
node).

If an evaluation can be carried out on a single GPU (depending on the computa-
tional domain size and the memory of each GPU) the use of asynchronous search
with IPE is recommended, as described in the previous section.

Should the computational domain be partitioned and run on many GPUs, things
become more complicated. As described in Sect. 18.2.4, running the Navier-Stokes
solver on many GPUs can be done using a single CPU thread for the GPUs on the
same node, MPI for GPUs on different nodes or a combination of both if more than
3 GPUs are involved. So, one should also select the “best” configuration, i.e. which
GPUs (devices) from which node should undertake each evaluation.

Now, assume that a computational domain is partitioned into two subdomains. In
such a case, 6 concurrent evaluations should be carried out. The CFD software may
runon twoGPUsof either the samenodeor different nodes.Using a singleCPU thread
to manage more than one GPUs on the same node, the parallel speed-up is greater
than that of usingMPI for GPUs on different nodes. So, for the asynchronous search,
assigning as many evaluations as possible to pairs of GPUs belonging to the same
node (4 in the GPU cluster under consideration) is the best practice in terms of the
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optimization turnaround time. For the synchronous search, if the offspring population
is a multiple of 6 (as many as the concurrent evaluations), all combinations will
practically lead to the same optimization turnaround time, since the synchronization
barrier is determined by the slowest evaluation.

If 3 GPUs are required at minimum for each evaluation, then assigning 4 con-
current evaluations on the 3 GPUs of each node is the optimal choice for both
synchronous and asynchronous search on the available GPU cluster.

18.5 Conclusions

In this paper, metamodel-assisted evolutionary algorithms, synchronous (MAEA)
and asychronous (AMAEA), are used in combination with a parallel GPU-enabled
CFD solver, in order to reduce the overall optimization time of a low speed com-
pressor blading. The overall turnaround time is shown to be greatly reduced by (a)
appropriately tuning the IPE scheme, (b) using asynchronous search in order to min-
imize the idle time, (c) using GPUs for the exact evaluation tool (CFD) instead of
CPUs, and (d) “smartly” distributing the concurrent evaluations on the available
GPUs of the cluster, especially in cases where the CFD solver is obliged to run on
more than one GPUs. Thus, by appropriately combining all the above techniques and
features, the use of evolutionary algorithms for aerodynamic optimization problems,
can be made very appealing, in terms of optimization turnaround time, even in large
scale industrial applications.
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Chapter 19
Immune and Swarm Optimization of Structures

Tadeusz Burczyński, Arkadiusz Poteralski and Miroslaw Szczepanik

Abstract The paper is devoted to applications of two bio-inspiredmethods: artificial
immune systems and particle swarm optimizers to selected shape and topology
optimization problems of structures. It contains numerical examples and compar-
isons of immune and swarm approaches with evolutionary optimization.

Keywords Particle swarm optimizer (PSO) · Artificial immune system (AIS) ·
Optimization · Finite element method (FEM) · Computational intelligence · Shape
and topology optimization

19.1 Introduction

Shape and topology structural optimization is a very active research area. Several
competing approaches for topology optimization exist.

Intelligent optimal design techniques based on evolutionary algorithms (EA) have
found applications to structural optimization problems. The evolutionary methods
are based on the theory of evolution. Themain feature of thosemethods is to simulate
biological processes based on heredity principles and the natural selection (the theory
of evolution) to create optimal individuals (solutions) presented by single chromo-
somes.
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More recently, other bio-inspired approaches, alternative to EA, as the Artifi-
cial Immune Systems (AIS) and the Particle Swarm Optimizers (PSO) have gained
popularity.

The paper is devoted to applications of two these approaches to selected shape and
topology optimization problems of structures.A short description of biological aspect
of natural immune systems and behaviour of swarm living creatures are described
in the context of optimization procedures. The clonal selection algorithm which
represents one of the main features of the artificial immune system is described.
Standard and modified versions of artificial immune systems and swarm algorithms
and their applications in different optimization problems of mechanical structures
were widely presented by the authors [1–5]. In the present paper applications of these
algorithms to topology optimization problems of structures are demonstrated. The
paper contains also comparisons of immune and swarm approacheswith evolutionary
optimization and advantages and drawbacks of both methods are identified.

19.2 Artificial Immune Systems

The artificial immune systems (AIS) are developed on the basis of a mechanism
discovered in biological immune systems [6].An immune system is a complex system
which contains distributed groups of specialized cells and organs. The main purpose
of the immune system is to recognize and destroy pathogens—funguses, viruses,
bacteria and improper functioning cells. The lymphocytes cells play a very important
role in the immune system. The lymphocytes are divided into several groups of
cells. There are two main groups B and T cells, both contains some subgroups (like
B-T dependent or B-T independent). The B cells contain antibodies, which could
neutralize pathogens and are also used to recognize pathogens. There is a big diversity
between antibodies of the B cells, allowing recognition and neutralization of many
different pathogens. The B cells are produced in the bone marrow in long bones.
The B cell undergoes a mutation process to achieve big diversity of antibodies. The
T cells mature in thymus, only T cells recognizing non self cells are released to the
lymphatic and the blood systems. There are also other cells like macrophages with
presenting properties, the pathogens are processed by a cell and presented by using
MHC (Major Histocompatibility Complex) proteins. The recognition of a pathogen
is performed in a few steps. First, the B cells or macrophages present the pathogen
to a T cell using MHC, the T cell decides if the presented antigen is a pathogen. The
T cell gives a chemical signal to B cells to release antibodies. A part of stimulated B
cells goes to a lymph node and proliferate (clone). A part of the B cells changes into
memory cells, the rest of them secrete antibodies into blood. The secondary response
of the immunology system in the presence of known pathogens is faster because of
memory cells. The memory cells created during primary response, proliferate and
the antibodies are secreted to blood. The antibodies bind to pathogens and neutralize
them. Other cells like macrophages destroy pathogens. The number of lymphocytes
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in the organism changes, while the presence of pathogens increases, but after attacks
a part of the lymphocytes is removed from the organism.

The artificial immune systems [7–10] take only a few elements from the biological
immune systems. The most frequently used are the mutation of the B cells, prolifera-
tion, memory cells, and recognition by using the B and T cells. The artificial immune
systems have been used to optimization problems in classification and also computer
viruses recognition. The cloning algorithm presented by von Zuben and de Castro
[8, 9] uses some mechanisms similar to biological immune systems to global
optimization problems. The unknown global optimum is the searched pathogen.
The memory cells contain design variables and proliferate during the optimization
process. The B cells created from memory cells undergo mutation. The B cells eval-
uate and better ones exchange memory cells. In Wierzchoń [10] version of Clonalg
the crowding mechanism is used—the diverse between memory cells is forced. A
new memory cell is randomly created and substitutes the old one, if two mem-
ory cells have similar design variables. The crowding mechanism allows finding
not only the global optimum but also other local ones. The presented approach
is based on the Wierzchoń algorithm [10], but the mutation operator is changed.
The Gaussian mutation is used instead of the nonuniform mutation in the presented
approach [22].

The Fig. 19.1 presents the flowchart of an artificial immune system.
The memory cells are created randomly. They proliferate and mutate creating

B cells. The number of clones created by each memory cell is determined by the
memory cells objective function value.

The objective functions for B cells are evaluated. The selection process exchanges
some memory cells for better B cells. The selection is performed on the basis
of the geometrical distance between each memory cell and B cells (measured by

Fig. 19.1 An artificial
immune system
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using design variables). The crowding mechanism removes similar memory cells.
The similarity is also determined as the geometrical distance between memory cells.
The process is iteratively repeated until the stop condition is fulfilled. The stop con-
dition can be expressed as the maximum number of iterations.

The unknown global optimum is represented by the searched pathogen. Themem-
ory cells contain design variables and proliferate during the optimization process.

19.3 Particle Swarm Optimizers

The particle swarm algorithms [11], similarly to the evolutionary and immune algo-
rithms, are developed on the basis of mechanisms discovered in the nature. The
swarm algorithms are based on models of the animals social behaviours: moving and
living in the groups. The animals relocate in the three-dimensional space in order to
change their stay place, the feeding ground, to find the good place for reproduction
or to evading predators. We can distinguish many species of the insects living in
swarms, fishes swimming in the shoals, birds flying in flocks or animals living in
herds.

A simulation of the bird flocking was published by Reynolds [12]. They assumed
that this kind of the coordinated motion is possible only when three basic rules are
fulfilled: collision avoidance, velocity matching of the neighbours and flock center-
ing. The computer implementation of these three rules showed very realistic flocking
behaviour flaying in the three dimensional space, splitting before obstacle and rejoin-
ing again after missing it. The results of this biological examination where used by
Kennedy and Eberhart [11], who proposed Particle Swarm Optimizer—PSO. This
algorithm realizes directed motion of the particles in n-dimensional space to search
for solution for n-variable optimization problem. PSO works in an iterative way.
The location of one individual (particle) is determined on the basis of its earlier
experience and experience of whole group (swarm). Moreover, the ability to mem-
orize and, in consequence, returning to the areas with convenient properties, known
earlier, enables adaptation of the particles to the life environment. The optimiza-
tion process using PSO is based on finding the better and better locations in the
search-space (in the natural environment that are for example hatching or feeding
grounds).

The algorithm with continuous representation of design variables and constant
constriction coefficient (constricted continuous PSO) has been used in presented
research. In this approach each particle oscillates in the search space between its
previous best position and the best position of its neighbours, hopefully finding new
best locations on its trajectory. When the swarm is rather small (swarm consists of
several or tens particles) it can be assumed that all the particles stay in neighbourhood
with currently considered one. In this case we can assume the global neighbourhood
version and the best location found by swarm so far is taken into account—current
position of the swarm leader (Fig. 19.2b).
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Fig. 19.2 Particle swarm optimizer: a blok diagram, b the optimization idea

The position of the ith particle is changed by stochastic velocity vi , which is
dependent on the particle distance from its earlier best position and position of the
swarm leader. This approach is given by the following equations:

vi j (k+1) = wvi j (k)+φ1 j (k)
[

pi j (k) − di j (k)
]+φ2 j (k)

[
p̂i j (k) − di j (k)

]
(19.1)

di j (k + 1) = di j (k) + vi j (k + 1), i = 1, 2, . . . , m ; j = 1, 2, . . . , n (19.2)

where:
φ1 j (k) = c1r1 j (k); φ2 j (k) = c2r2 j (k),

m number of the particles,
n number of design variables (problem dimension),
w inertia weight,

c1, c2 acceleration coefficients,
r1, r2 random numbers with uniform distribution [0,1],
di (k) position of the ith particle in kth iteration step,
vi (k) velocity of the ith particle in kth iteration step,
pi (k) the best found position of the ith particle founf so far,
p̂i (k) the best position found so far by swarm—the position of the swarm leader,

k iteration step.
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The flowchart of the particle swarm optimiser is presented in Fig. 19.2a. At the
beginning of the algorithm the particle swarm of assumed size is created randomly.
Starting positions and velocities of the particles are created randomly. The objective
function values are evaluated for each particle. In the next step the best positions of
the particles are updated and the swarm leader is chosen. Then the particles velocities
are modified by means of Eq. (19.1) and particles positions are modified according
to Eq. (19.2). The process is iteratively repeated until the stop condition is fulfilled.
The stop condition is typically expressed as the maximum number of iterations.

19.4 Topology Optimization

The distribution of the mass density ρ (X), (X) ∈ �t in a structure is described by
a hyper surface Wρ (X) , (X) ∈ H3 [13, 14]. The hyper surface Wρ (X) is stretched
under H3 ⊂ E3 and the domain �t is included in H3, i.e.

(
�t ⊆ H3

)
. The shape of

the hyper surface Wρ (X) is controlled by parameters d j , j =1,2,…,G, which create
a B-cell receptor or a Particle position:

B − cell
Particle

}
= 〈

d1, d2, . . . , d j , . . . , dG〉
,

dmin
j ≤ d j ≤ dmax

j (19.3)

where: dmin
j , dmax

j —are minimum and maximum values of parameters of B-cell or
Particle.

B-cell or Particle parameters are the values of the function Wρ (X) in the control
points (X) j of the hyper surface, i.e. d j = Wρ

[
(X) j

]
, j = 0, 1, 2, . . . , G. The finite

elementmethodvii is applied in analysis of the structure.Thedomain�of the structure
is discretized using the finite elements, � = ⋃E

e=1 �e [15]. The assignation of the
mass density to each finite element �e, e = 1, 2, . . . , E is adequately performed
by the mappings ρe = Wρ

[
(X)e

]
, (X)e ∈ �e, e = 1, 2, . . . , E . It means that each

finite element can have the different mass density.When the value of themass density
for the e-th finite element is included in the interval 0 ≤ ρe < ρmin, the finite element
is eliminated and the void is created and when in the interval ρmin ≤ ρe < ρmax,
the finite element remains. The illustration of this ideaviii of immune or swarm
optimization for a 2-D structure is presented in Fig. 19.3.

In the next step the Young’s modulus for the e-th finite element is evaluated using
the following equation

Ee = Emax

(
ρe

ρmax

)r

(19.4)

where: Emax, ρmax—Young’s modulus and mass density for the same material,
respectively, and r—parameter which can change from 1 to 9.

http://dx.doi.org/10.1007/978-3-319-11541-2_2
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Fig. 19.3 The illustration of the idea of topology optimization for a 2-D structure

The bio-inspired process proceeds in the environment inwhich the structure fitness
is described by the minimization of the mass of the structure

J =
∫

�

ρd� (19.5)

with constraints imposed on equivalent stresses σeq and displacements u of the struc-
ture

σeq (x, y, z) ≤ σ ad , (x, y, z) ∈ � (19.6)

|u (x, y, z)| ≤ uad , (x, y, z) ∈ � (19.7)

The proposed approach can be consider as the kind of the level set-based structural
optimization method. The idea is to parameterize the level set surface by a set of
control points defining a B-cell from the population or Particle of the swarm. In this
method the level set function represents a boundary between the material and void
domains. The boundary is expressed by means of the level set function ϕ(X):

⎧
⎨

⎩

ϕ(X) > ρmin ∀X ∈ �\�
ϕ(X) = ρmin ∀X ∈ �

ϕ(X) < ρmin ∀X ∈ Hd\�
(19.8)
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In the level set-based methods, the changes of boundaries are defined by solving
the Hamilton-Jacobi partial differential equation [16]. Allarie et al. [17] discussed
that obtained in this way optimal solutions are strongly dependent on the initial
configurations. Our idea, to overcome this problem, is based on the application of
the bio-inspired algorithm, which works on the population of individuals (potential
solutions). Then changes of the boundaries are realized by an intelligent procedure
of the B-cells during the immune or swarm process (without necessity to solve
the Hamilton-Jacobi partial differential equation). In order to improve optimization
results two different additional procedures have been introduced:

• the additional procedure aiding the topology optimization,
• the smoothing procedure.

Using the describedmethod, one can changematerial properties of finite elements
during the immune or swarm optimization process and some elements are eliminated.
As a result optimal shape, topology and material of structure are obtained.

19.5 Immune and Swarm Optimization Examples

The numerical examples present the comparison among the particle swarm optimizer
(PSO), the artificial immune system (AIS) and the sequential (SEA) and distributed
evolutionary algorithms (DEA). The comparison is performed on the base of opti-
mization of:

• the known mathematical function, i.e. the Rastrigin function with 20 design vari-
ables (Example 1),

• a plate in plane stress (Example 2),
• a 3-D solid body (Example 3).

19.5.1 Optimization of Rastrigin Function (Example 1)

The optimization problem of the Rastrigin function (Fig. 19.4a) with 20 design vari-
ables is considered. The parameters of AIS, PSO and SEA (Sequential EA) and DEA
(Distributed EA) are included in the Table19.1. The numbers of the objective func-
tion evaluations needed to achieve of the value below 0.1 for the Rastrigin function,
have been compared. Ten tests have been made with application of each optimization
algorithm and the average number of the objective function evaluations have been
computed. The result of the comparison are shown in Fig. 19.4b.
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Fig. 19.4 Optimization of multimodal mathematical function: a Rastrigin function for 2 design
variables, b effectiveness comparison among AIS, PSO, SEA and DEA

Table 19.1 Parameters of bioinspired methods (Example 1)

AIS PSO SEA DEA

No. of memory
cells = 2,

No. of the
particles =
74,

No. of the subpopulations = 2, No. of the
chromosomes =
20,

No. of the
clones = 4,

Inertia weight
w = 1.0,

No. of the chromosomes in
subpopulation = 10,

The probability of
simple crossover =
95%,

Crowding
factor = 0.45,

Acceleration
coefficients
c1 = c2 = 1.9

The probability of simple
crossover = 95%,

The probability of
Gaussian
mutation = 50%

The probability
of Gaussian
mutation=40%

The probability of Gaussian
mutation = 50%

Table 19.2 The input data to optimization task of a plate in plane stress (Example 2)

a × b (mm) Thickness (mm) σmin ; P (MPa) Q (N) Range of ρe (g/cm3) existence or elim-
ination of the finite element

200 × 100 4.0 8.0 ; 1.0 4000 7.3 ≤ ρe < 7.5 elimination

7.5 ≤ ρe ≤ 7.86 existence

19.5.2 Optimization of a Plate in Plane Stress (Example 2)

A rectangular 2-D structure in plane stress loaded with the concentrated force Q
in the centre of the lower boundary and fixed on the bottom corners is considered
(Fig. 19.5a) [18]. In order to obtain the symmetrical results a half of the structure has
been analyzed. The input data to the optimization program are included in Table19.2.
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Fig. 19.5 The plate (example 1); a the geometry; b the distribution of the control points of the
interpolation surface; c result of the optimization process

Figure19.5c shows results of the optimization process for the distribution of
control points presented in Fig. 19.5b (the symmetry of the structure is taken into
account).

To present and compare the effectiveness of the proposed intelligent bio-inspired
methods the numbers of the objective function evaluations needed to achieve themass
below 0.14kg (Fig. 19.5c) [the mass of initial structure equals 0.628kg (Fig. 19.5a)]
were computed (mass reduction 78%). The results obtained for the sequential and
the distributed evolutionary algorithm, artificial immune system and the particle
swarm optimizer are presented as the histograms of average number of the objective
function evaluation obtained on the basis of 10 tests (Fig. 19.6). The parameters of
the algorithms are presented in Table19.3.

19.5.3 Optimization of 3D L-Solid (Example 3)

Topology optimization of 3D elastic structure like L-solid (Fig.19.7a) by the min-
imization of the mass of the structure and with imposed stress or displacement
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Fig. 19.6 The result of the
comparison among PSO, AIS
and the SEA and DEA for the
design optimization problem

Table 19.3 Parameters of bio-inspired methods (Example 2)

AIS PSO SEA DEA

No. of memory cells = 5, No .of the
particles = 20,

No. of the
subpopulations = 2,

No. of the
chromosomes = 20,

No. of the clones = 5, Inertia weight w =
0.73,

No. of the
chromosomes in
subpopulation = 10,

The probability of
simple crossover =
95%,

Crowding factor = 0.45, Acceleration
coefficients c1 =
c2 = 1.47

The probability of
simple crossover =
95%,

The probability of
Gaussian mutation =
50%

The probability of
Gaussian mutation =
50%

The probability of
Gaussian mutation =
50%

Table 19.4 The input data to optimization task of a plate in plane stress (Example 3)

a×b×c×d×e
(mm)

Maximal
displacement (mm)

Maximal
stress (MPa)

Q (N) Range ofρe (g/cm3) existence or
elimination of the finite element

48×48×24×
24 × 24

0.8 600 8450 0 ≤ ρe < 3.14 elimination

3.14 ≤ ρe ≤ 7.85 existence

constraints [19]. The input data to the optimization task are included in Table19.4.
Numerical results are presented in Fig. 19.7b. The comparison of the effectiveness
among PSO, AIS and the SEA and DEA for this design optimization problem has
been also performed. The parameters of the algorithms are presented in Table19.5.
Figure19.8 shows the comparison of efficiency.
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(a) (b)

Fig. 19.7 3-D structure like L solid: a geometry and scheme of loading of 3-D L solid, b optimiza-
tion result

Table 19.5 Parameters of bioinspired methods (Example 3)

AIS PSO SEA DEA

No. of memory
cells = 10,

No. of the
particles = 30

No. of the
subpopulations = 2,

No. of the
chromosomes = 20,

No. of the
clones = 10,

Inertia weight
w = 0.75,

No. of the chromosomes
in subpopulation = 10,

The probability of
simple
crossover = 95%,

Crowding
factor = 0.5,

Acceleration
coefficients
c1 = c2 = 1.45

The probability of
simple
crossover = 95%,

The probability of
Gaussian
mutation = 50%

The probability of
Gaussian
mutation = 50%

The probability of
Gaussian
mutation = 50%

Fig. 19.8 The result of the
comparison among PSO, AIS
and the SEA and DEA for the
design optimization problem
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19.6 Conclusions

In the paper, a description of two bio-inspired methods: immune and swarm
approaches are presented and applied to optimization of structures.

These bio-inspired approaches can be simply implemented because they need
only the values of objective functions. An important feature of these approaches is a
strong probability of finding the global optimal solutions. The described approaches
are free from limitations of classic gradient optimization methods.

Both approaches belong to methods based on population of solutions and they
have some interesting features which can be considered as alternative to evolutionary
algorithms.

Described approaches have applied to simultaneous shape, topology and material
optimization of 3D structures.

Efficiency of presented approaches and comparison with evolutionary algorithms
are performed. One can observe that PSO is generally the most efficient approach.

There are possibilities of further efficiency improvement of the proposed meth-
ods by parallelization of computing or hybridization by using sensitivity analysis
information [20, 21].
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Chapter 20
Investigation of Three Genotypes
for Mixed Variable Evolutionary
Optimization

Rajan Filomeno Coelho, Manyu Xiao, Aurore Guglielmetti,
Manuel Herrera and Weihong Zhang

Abstract While the handling of optimization variables directly expressed by
numbers (continuous, discrete, or integer) is abundantly investigated in the literature,
the use of nominal variables is generally overlooked, despite its practical interest in
plenty of scientific and industrial applications. For example, in civil engineering,
the designers of a structure made out of beams might have to select the best cross-
section shapes among a list of available geometries (square, circular, rectangular,
etc.), which can be modeled by nominal data. Therefore, in the context of single-
and multi-objective evolutionary optimization for mixed variables, this study inves-
tigates three genetic encodings (binary, real, and real-simplex) for the representation
of mixed variables involving both continuous and nominal parameters. The com-
parison of the genotypes combined with the instances of crossover is performed on
six analytical benchmark test functions, as well as on the multi-objective design
optimization of a six-storey rigid frame, showing that for mixed variables, real (and
to a lesser extent: real-simplex) coding provides the best results, especially when
combined with a uniform crossover.
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20.1 Introduction

Real-life engineering applications are often characterized by data of versatile natures.
Formally, design variables in parameterization/optimization can be divided into five
classes:

• continuous variables are defined over an interval Ic ⊆ R (e.g. length, curvature
radius);

• discrete variables are continuous variables available only within a finite set
Id = {d1, . . . , dn} where all di ∈ R (e.g. cross-section areas from a catalog
of beam profiles). It is interesting to note that gradient-based optimizers can be
adapted to discrete variables, as developed for instance by [3] through dual for-
mulations and subgradient-based algorithms;

• integer variables are defined over an interval Ii ⊆ N or Z (e.g. number of holes
in a plate). In engineering problems, they differ from discrete variables by the fact
that no intermediate values between two integer variables can be defined (e.g. a
plate can contain two or three holes, but not 2.5), which has an impact both on the
simulation and optimization sides. Binary variables are a particular case of integer
variables;

• ordinal categorical variables, or simply ordinal variables, take their values (called
attributes) among non-numerical values endowed with a ranking, as in the set
{‘tiny’, ‘small’, ‘medium-sized’, ‘large’, ‘huge’};

• nominal categorical variables, or simply nominal variables, are non-numerical
variables characterized by no explicit ordering, as the shape of a beam profile:
{ › ; — ; “ ; š }, the choice of a material: {‘steel’, ‘aluminum’, ‘titanium’}, etc.

According to the nature of the variables, distinct fields of optimization have been
developed; they can be roughly classified as continuous versus combinatorial opti-
mization. Interestingly, due to their flexibility in data representation, evolutionary
optimization algorithms are ideally suited when both types of data are involved. Addi-
tionally, since the categorical variables are characterized by non-numerical entries,
they represent a challenging issue for the parameterization—and eventually for the
optimization—since they require a careful investigation of the conversion procedure
onto a chromosome. The optimization algorithms proposed in the literature for mixed
variables have been summarized by the authors in [8], confirming that bio-inspired
algorithms are an efficient option for single- and multi-objective optimization, as
illustrated for example by [12]. However, a systematic examination of data struc-
tures for mixed variables is still missing.

Based on all these considerations, the goal of this paper is to investigate three
genotypes (binary, real, and real-simplex) in combination with three types of
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crossover (line, uniform, and two-site) in order to extract information about the
mutual interaction between encoding and genetic operators.

The paper is organized as follows: first, a systematic representation of mixed vari-
ables is introduced in Sect. 20.2. Then, the genetic operators used in the evolutionary
algorithms are described in Sect. 20.3. Afterwards, six analytical test cases includ-
ing continuous and nominal variables are thoroughly studied (Sect. 20.4), followed
by the multi-objective design optimization of a rigid frame (Sect. 20.5). Finally, the
conclusions and future prospects are discussed in Sect. 20.6.

20.2 Data Structures for Mixed Variables

Historically, the initial conversion of design variables to genetic encoding has been
done through binary coding [4, 9], as illustrated in Fig. 20.1. After conversion, the
converted binary strings for all variables can seamlessly be concatenated in a chro-
mosome, regardless of the various natures of the actual variables.

Another popular and straightforward encoding consists in modeling all variables
through real values, as shown in Fig. 20.2.

While these operations are straightforward for numerical values (not only
continuous, but also discrete and integer), they require an arbitrary mapping for
nominal variables, as shown in Table 20.1.

Fig. 20.1 Conversion of a mixed-variable vector to a binary chromosome

Fig. 20.2 Conversion to a real vector
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Table 20.1 Conversion of a
nominal variable: two
legitimate mappings onto
real/binary values

Nominal variable Mapping 1 Mapping 2

Real Binary Real Binary

› 1 (0,0) 2 (0,1)

— 2 (0,1) 4 (1,1)

“ 3 (1,0) 1 (0,0)

š 4 (1,1) 3 (1,0)

Fig. 20.3 Mapping of a
three-attribute nominal
variable onto a regular
simplex (the Euclidean
distance between each pair of
attributes in the regular
simplex space is always equal
to 1)

Indeed, since there is no intrinsic ordering between attributes, both mappings
mentioned in Table 20.1 are legitimate, but they might not exhibit the same behavior
in the genetic algorithm. Therefore, another conversion is proposed here for nominal
values, constraining the attributes of a nominal variable to be equidistant. This con-
straint can be ensured by assigning to each of the n attributes the coordinates of the
vertex of a regular simplex in a (n − 1)-space, as depicted in Fig. 20.3. Largely used
in learning and classification theory [1] with categorical data, this approach was first
introduced by the authors for approximation purposes [7].

To summarize, three encodings are analyzed in this paper:

1. binary;
2. real;
3. real-simplex, i.e. conversion to real numbers for continuous, discrete, integer,

and ordered categorical variables, and regular simplex mapping for the nominal
parameters.

Since the relation between coding and crossover is critical in genetic algorithms,
the next section lists the types of crossovers investigated in this study.

20.3 Genetic Operators for Mixed Variables

In all three genotypes proposed here above, the conversion finally leads to a real-
valued vector (the chromosome), on which three popular types of crossover can be
applied [2]:

1. line crossover (LCX): for each pair of parents (p1, p2) selected among the pop-
ulation of the previous generation, the offspring are created as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

b(c1)
i = b(p1)

i + α1

(
b(p2)

i − b(p1)
i

)

b(c2)
i = b(p1)

i + α2

(
b(p2)

i − b(p1)
i

) (20.1)

where bi are the components of the chromosome (a bit or a real value depending
on the coding), p1, p2 refer to the parents, c1, c2 to the children, and α1, α2 are
random numbers uniformly sampled in [0, 1], and constant for the whole chro-
mosome. Geometrically speaking, the children are generated on the line joining
the parents (in a space depending on the data structure, viz. the type of coding);

2. uniform crossover (UCX): each child c is generated as follows:

b(c)
i =

⎧
⎪⎨

⎪⎩

b(p1)
i if α < 0.5

b(p2)
i if α ≥ 0.5

(20.2)

where α is sampled independently for each component of the chromosome;
3. two-site crossover (TSX): the children are generated by swapping pieces of

parental chromosomes between two sites randomly chosen within the chromo-
some.

After the crossover operation, if values are found that do not correspond to
available values (depending on the coding and/or crossover implemented, this prob-
lem can happen for discrete, integer, or categorical variables), they are repaired in
the chromosome by replacing the wrong value by the closest existing value. The
remainder of the paper is devoted to an empirical analysis of the interaction between
data structure and crossover on several test cases. Nevertheless, the following condi-
tions can already be devised, and serve eventually as guidelines to analyze the results
obtained:

• Condition of exploration: the crossover should be able to produce children different
from their parents.

• Condition of invariance: the children generated from crossover have to be inde-
pendent from the ranking of the attribute values.

20.4 Analytical Benchmark Test Cases

The first six test functions aim at showing the relation between genotypes and types
of crossover for real, nominal, and mixed (real-nominal) variables. Their analyti-
cal expression is detailed in Table 20.2. For each test function, three situations are
examined: (1) ten real variables, no nominal variables (nz = 10, nc = 0), (2) ten
nominal variables, no real variables (nz = 0, nc = 10), and (3) five real variables,
five nominal variables (nz = 5, nc = 5).



314 R.F. Coelho et al.

Table 20.2 Definition of the six analytical benchmarks with mixed variables
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Table 20.3 Numerical errors obtained for the six analytical benchmark test functions for 10 real
variables (the error values, averaged over 10 independent runs, are normalized between 0 and 1)

Coding Binary Real Real-simplex

Crossover LCX UNX TSX LCX UNX TSX LCX UNX TSX

T C1 1 5.45e-01 4.58e-01 0 3.39e-02 6.13e-02 5.17e-02 1.81e-01 2.36e-01

T C2 1 3.85e-01 4.87e-01 0 2.97e-02 1.85e-02 1.17e-01 1.79e-01 1.48e-01

T C3 1 3.34e-01 3.71e-01 0 5.77e-02 2.42e-02 6.66e-02 1.21e-01 1.37e-01

T C4 1 2.20e-01 2.43e-01 2.32e-03 9.24e-03 0 4.22e-02 6.35e-02 6.58e-02

T C5 4.59e-01 1 9.24e-01 0 3.43e-02 2.28e-02 4.87e-02 6.39e-02 7.62e-02

T C6 1 3.94e-01 4.06e-01 0 3.76e-03 1.13e-03 1.40e-01 1.99e-01 1.05e-01

Since the goal is to compare the interactions between the type of crossover and the
data structure (coding), the probability of mutation is set to 0 (no mutation). Moreover,
a tournament selection is used; the population size is set to 100, and the number of
generations to 50. 10 independent runs are performed for each configuration.

The results are collected in Tables 20.3, 20.4 and 20.5, showing the normalized
error between the worst and best solutions (averaged over the ten independent runs).
In other words, on each line, 0 corresponds to the best solution found (in average),
while 1 refers to the worst.
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Table 20.4 Numerical errors obtained for the six analytical benchmark test functions for 10 nominal
variables (the error values, averaged over 10 independent runs, are normalized between 0 and 1)

Coding Binary Real Real-simplex

Crossover LCX UNX TSX LCX UNX TSX LCX UNX TSX

T C1 1 8.43e-01 8.03e-01 6.86e-02 0 2.47e-02 1.51e-01 4.17e-02 9.79e-02

T C2 1 9.79e-01 7.98e-01 9.16e-02 2.95e-03 0 1.23e-01 4.28e-02 6.20e-02

T C3 1 9.38e-01 9.02e-01 6.78e-02 0 1.37e-02 5.67e-02 3.87e-02 9.19e-02

T C4 9.61e-01 9.35e-01 1 1.36e-01 0 6.78e-02 1.45e-01 1.11e-01 1.19e-01

T C5 9.08e-01 1 8.55e-01 1.74e-01 0 5.60e-02 1.66e-01 1.29e-01 1.39e-01

T C6 8.85e-01 8.22e-01 1 3.74e-02 0 9.77e-02 3.17e-01 2.73e-01 3.21e-01

Table 20.5 Numerical errors obtained for the six analytical benchmark test functions for 10 mixed
(viz. 5 real and 5 nominal) variables (the error values, averaged over 10 independent runs, are
normalized between 0 and 1)

Coding Binary Real Real-simplex

Crossover LCX UNX TSX LCX UNX TSX LCX UNX TSX

T C1 1 6.05e-01 6.51e-01 7.92e-02 2.90e-03 0 2.46e-01 1.19e-01 1.08e-01

T C2 1 7.40e-01 6.80e-01 1.29e-01 0 1.48e-02 1.26e-01 1.16e-01 7.87e-02

T C3 1 3.74e-01 4.44e-01 1.81e-02 1.85e-02 0 1.63e-01 3.14e-02 3.68e-02

T C4 1 6.44e-01 4.77e-01 9.18e-02 0 2.77e-02 1.44e-01 7.74e-02 1.54e-01

T C5 6.25e-01 7.53e-01 1 0 3.39e-02 7.73e-02 4.90e-02 1.86e-01 9.40e-01

T C6 1 7.00e-01 8.78e-01 1.57e-03 0 7.27e-02 2.53e-01 1.95e-01 9.43e-02

In the six analytical test functions, it appears that the conversion to real numbers
is the most effective for the cases with either continuous or nominal variables only.
As intuition would have suggested, the line crossover allows for a better exploration
of the design space for continuous variables, while the uniform crossover is more
effective with nominal variables, where the swapping of variable values is performed
independently and randomly for each variable. The binary coding with line crossover
provides the worst results, which could be expected since the linear combination of
parental chromosomes is not a meaningful operation for values converted into binary
digits. Finally, the real-simplex coding generally provides reasonably good results
in comparison with the real coding.

20.5 Application: Structural Design of a Rigid Frame

To analyze the efficiency of the proposed algorithmic instances on a structural design
example, a 3D rigid frame is investigated [11]. The quantities of interest are the mass
and the compliance, the latter being post-processed from a finite element linear
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Fig. 20.4 Six-storey rigid
frame (with numbering of the
beam elements): the five
groups of cross-sections are
displayed with various shades
of gray color. Each node
connecting two (or more)
elements is a rigid
connection. The
multi-objective optimization
consists in finding the best
compromise (Pareto) designs
with respect to two
conflicting objectives, namely
the mass and the compliance
for the whole structure

analysis with beam elements [6]. The loads are derived from Eurocode 3 [10], and
consist in:

• the dead load of the beams and columns;
• the gravity load on the floors (19.16 kPa);
• the lateral load due to the wind (110 kN).

The beams or columns are classified in five groups of common cross-sections (as
depicted in Fig. 20.4):

• group 1: {4, 5, 9, 10, 14, 15, 18, 21, 24, 28, 29, 33, 34, 38, 39, 42, 45, 48};
• group 2: {49, 51, 52, 54, 55, 57, 58, 60, 62};
• group 3: {50, 53, 56, 59, 61, 63};
• group 4: {1, 2, 3, 6, 7, 8, 11, 12, 13, 25, 26, 27, 30, 31, 32, 35, 36, 37};
• group 5: {16, 17, 19, 20, 22, 23, 40, 41, 43, 44, 46, 47}.

Ten design variables are necessary to parameterize a given structure:

• for each of the five groups of profiles, a categorical variable c defines the cross-
section geometry among seven attributes: { š ; — ; › ; ˜ ; “ ; • ; ” };

• for all groups of profile, one continuous bounded variable defines the maximum
length l of the cross-section (either height or diameter) with 0.09 m ≤ l 0.11 m,
and with a fixed thickness (when applicable) set to 0.0025 m. For the rectangular
cross-section, the width is defined as half of the height; for the š—section, the
width is equal to the height.

The geometry of the cross-section is typically a nominal variable, since no ordering
of the available cross-section types can be made a priori. The choice of the cross-
section has a direct impact on the calculation of the quantities (area, moments of
inertia) necessary to get the normal efforts, shear forces, and bending moments.
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Fig. 20.5 Rigid frame: Pareto fronts obtained for the nine combinations of coding and crossover
types

The multi-objective implementation of the genetic algorithm is based on the
second version of the Nondominated Sorting Genetic Algorithm, or NSGA-II [5].
The corresponding Pareto fronts obtained for the nine possible combinations of cod-
ing and type of crossover are depicted in Fig. 20.5.

In this problem, the uniform and two-site crossovers clearly outperfom the line
crossover to obtain dense and nondominated Pareto fronts. In particular, the uniform
crossover provides comparable results for all codings.

In terms of designs obtained, a close examination of the Pareto set reveals that the
optimal cross-sections are mostly circular (›) or I-shaped (š), and square (—) to a
lesser extent. The tubular shapes constitute the best compromise between lightness
and stiffness.

20.6 Conclusions and Future Prospects

In this paper, three genotypes, along with three types of crossover, are analyzed
in order to extract their properties in the modeling of mixed (continuous + nom-
inal) variables. For the analytical test functions, the real coding furnishes the best
results in almost all configurations (real, nominal, or mixed variables), while the
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Fig. 20.6 Clustering procedure: considering for example the static structural analysis of a beam
with respect to the shape of its cross-section (square, circular, or I-shaped), a priori calculations can
build clusters of attributes depending on their impact on output quantities of interest (here: bending
moment and torsion effect)

real-simplex performs fairly, and the binary coding poorly. The type of crossover
also has a significant influence on the results, and this aspect is mostly visible in the
multi-objective design optimization of a rigid frame, where the uniform crossover
consisting in randomly swapping genes in the parental chromosome is the most
effective one to find dense and widely distributed Pareto fronts.

Future studies are guided by the need for better accounting for the relations
between attributes of nominal variables. In the simplex mapping representation of
nominal variables, the hypothesis that all attributes are equidistant is acceptable when
no information is known a priori about their correlations with the output quantities
of interest (objectives and constraints). However, when knowledge about the physics
is available, a non-regular simplex might be preferable, with distinct pairwise dis-
tances between attributes. For instance, the square and circular cross-section shapes
of beam profiles might exhibit a closer behavior than the I-shaped profiles, which
might be taken into account directly in the coding. This crucial step (under inves-
tigation) requires a clustering phase to identify these pairwise relationships to be
performed before the optimization process (see Fig. 20.6), by using physical insight
from the input-output model.
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Chapter 21
A Study of Nash-Evolutionary Algorithms
for Reconstruction Inverse Problems
in Structural Engineering

D. Greiner, J. Périaux, J.M. Emperador, B. Galván and G. Winter

Abstract In this paper we deal with solving inverse problems in structural
engineering (both the reconstruction inverse problem and the fully stressed design
problem are considered). We apply a game-theory based Nash-evolutionary algo-
rithm and compare it with the standard panmictic evolutionary algorithm. The proce-
dure performance is analyzed on a ten bar sized test case of discrete real cross-section
types structural frame, where a significant increase of performance is achieved using
the Nash approach, even achieving super-linear speed-up.

Keywords Structural optimization · Evolutionary algorithms · Nash equilibrium
21.1 Introduction

The use of population based global meta-heuristics as optimizers in real world
and complex engineering design problems has been widespread during the last
two decades, in single- and multi-objective problems. Among the tools oriented to
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improve the efficiency of this methods, parallelization and use of game-theory based
algorithms have been highlighted in fields like aeronautical engineering, where the
computation of fitness is associated frequently with high computational CPU costs
(see e.g. [1]). Here we propose to introduce the use of Nash-Evolutionary Algorithm
[2–5], to speed up solving inverse problems in structural engineering.

21.2 Nash-Evolutionary Algorithms

Nash-Evolutionary algorithmswere introduced in [2] for solving computational fluid
dynamics problems.They are based in hybridizing themathematical concepts ofNash
equilibrium [6, 7] (competitive game theory where players maximize their payoffs
while taking into account the strategies of their competitors) in the evolutionary
search: A set of subpopulations co-evolve simultaneously each of which deals only
with a partition of the search variables. These subpopulations interact to evolve
towards the equilibrium; when dealing with a single objective problem, a virtual
Nash game approach has been applied in inverse shape optimization computational
fluid dynamics problems as an improvement technique versus the standard panmictic
evolutionary algorithm [4, 8]. This approach has been successfully applied in the case
of inverse problems where the fitness function objective is a sum of separable terms
(such as the case of many shape optimization problems).

21.3 The Structural Problem

Structural inverse problems are handled here. The objective is to obtain the structure
which most fits the maximum stresses of reference. The optimum structural bar
design is defined as a design in which some location of every bar member in the
structure has a maximum stress value as accurately equal as the maximum stress of
reference for that bar.

Fitness Function = Min

√
√
√
√

Nbars∑

i=1

(σMAX−i − σMAX−Ri )2 (21.1)

where σMAX-i is the maximum calculated stress and σMAX-Ri the maximum stress of
reference, both corresponding to bar i.

A value of zero means a perfect fit in maximum stresses between our searched
solution and the solution of reference.

In case we define as maximum stresses of reference, the set of a previously known
structural design, the problem is a reconstruction inverse (RI) problem. In case we
define as maximum stresses of reference, the material admissible stress, the problem
is the fully stressed design (FSD) problem.
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21.4 Test Case Definition

The purpose of this benchmark is to set a simple test case with frame bar structures
based on one which has been applied before to the problem of fully stress design
in [9, 10] and following the template of the Finnish design test case database as in
http://jucri.jyu.fi. We consider the case of discrete cross-section type variables.

Objective of this benchmarking scenario is to test and compare different opti-
mization approaches for structural design, e.g. see [11]. The computational domain,
boundary conditions, loadings and design variable groping set are shown in Fig. 21.1.
Boundary conditions consist in three pinned connections at the bottom joining the
columns of the structure to the ground.

Table21.1 show the variable numbering, variable grouping (which is intended to
guarantee the structural symmetry), as well as the variable search space of each bar,
which is constituted by standard HEB cross-section types. Geometry dimensions
of Height H and width W are shown in Table21.2. Table21.3 show the material
properties, which correspond to those of standard construction steel.

The structural type is a frame bar structure, where the stresses are evaluated by
a standard stiffness matrix calculation (rigid nodes: resisting moment capabilities)
and elastic behaviour of steel is assumed. The sideways permitted buckling effect
case will be investigated in this paper.

Two loading cases are included (see Fig. 21.1):
Case 1 with D = 19674.2N/m and P = 0N, own weight is included.
Case 2 with D = 13768.65N/m and P = 852kN, own weight is included.

Fig. 21.1 Illustration of computational domain, boundary conditions, loadings and design variable
set groupings [10]

http://jucri.jyu.fi
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Table 21.1 Variable search space

Bar number Bar variable Cross-section type set

1 V1 From HEB260 to HEB1000

2 V2 From HEB100 to HEB450

3 V1 From HEB260 to HEB1000

4 V2 From HEB100 to HEB450

5 V3 From HEB260 to HEB1000

6 V4 From HEB100 to HEB450

7 V5 From HEB260 to HEB1000

8 V6 From HEB100 to HEB450

9 V3 From HEB260 to HEB1000

10 V4 From HEB100 to HEB450

Table 21.2 Geometry
parameters

Geometry parameters Value (m)

Column length (Height)—H 3.29

Beam length (Width)—W 3.66

Table 21.3 Material
properties (standard steel)

Parameter Value

Density 7,850 (kg/m3)

Young modulus 2.1× 105 (MPa)

Maximum stress 2,600 (kg/cm2)

The quantities of interest are:

• Values of the fitness function
• Cross-section type sizing for each bar.
• Maximum stress of each bar.

With respect to theRI problem, the cross-section types corresponding to the design
shown in Table21.4 have been taken as reference, where also the correspondent
maximum value of each bar stress is shown. With respect to the FSD problem, the
maximum stresses of reference are the yield stresses values (2,600kp/cm2) in all
bars.

21.5 Results and Discussion

21.5.1 Nash Variable Territory Splitting

The considered split territory of variables among Nash players is divided in two
subpopulations: v1, v3, v5 (subpopulation 1—Nash player 1, P1) and v2, v4, v6
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Fig. 21.2 Nash variable
territory splitting

(subpopulation 2—Nash player 2, P2), being equally sized both in terms of vari-
able set grouping and number of bars of the structure, as represented in Fig. 21.2.
Therefore, the bottom part of the structure is optimized by player—subpopulation P1
and the upper part of the structure is optimized by player—subpopulation P2. This
territory splitting does not include boundary conditions in each player.

21.5.2 Experiment Definition: Nash Genetic Algorithm

Statistical metrics obtained from one hundred independent executions for each case
will be considered to measure the relative increased performance of the game theory
based evolutionary algorithm approach versus the standard approach.

Results corresponding to a population size of 100 individuals, uniform crossover,
a mutation rate of 3% and an elitist generational replacement strategy keeping the
two best individuals are considered here. Gray codification is used, in accordance
with its good behaviour in structural frame optimum design (e.g., see [11–14]).

The performance of the panmictic GA strategy versus the Nash GA strategy (as
described in Sect. 21.5.1) has been compared. In each case, also results from two
standard panmictic populations (Panmictic P1 and Panmictic P2) evolving in parallel
without interaction are shown for comparison, each of them having been executed
100 independent times to perform the following figures and statistics.

21.5.3 Results: Nash Genetic Algorithm

In relation with the reconstruction inverse problem, Fig. 21.3 shows the evolution
of the fitness function average, Fig. 21.4 shows the evolution of the fitness function
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Fig. 21.3 100 population size, 3% mutation rate, elitist generational strategy; Average over 100
executions (Reconstruction Inverse Problem)

Fig. 21.4 100 population size, 3% mutation rate, elitist generational strategy; Standard Deviation
over 100 executions (Reconstruction Inverse Problem)

standard deviation and Fig. 21.5 shows the evolution of the fitness function best,
all of them over 100 executions. In relation with the fully stressed design problem,
Figs. 21.6, 21.7 and 21.8 show the evolution of fitness function average, standard
deviation and best, respectively, all of them over 100 executions also.
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Fig. 21.5 100 population size, 3% mutation rate, elitist generational strategy; Best over 100 exe-
cutions (Reconstruction Inverse Problem)

Fig. 21.6 100 population size, 3% mutation rate, elitist generational strategy; Average over 100
executions (Fully Stressed Design Problem)

Tables 21.5 and 21.6 show N, the number of times out of 100 independent runs
where the optimum solution of each problem (RI in Table21.5 and FSD in Table21.6)
was achieved after a maximum stopping criterion of 100,000 fitness function evalu-
ations; in addition, the average, standard deviation and best values of the number of
fitness evaluations required to reach the optimum solution are included in each case.
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Fig. 21.7 100 population size, 3% mutation rate, elitist generational strategy; Standard Deviation
over 100 executions (Fully Stressed Design Problem)

Fig. 21.8 100 population size, 3% mutation rate, elitist generational strategy; Best over 100 exe-
cutions (Fully Stressed Design Problem)

21.5.4 Discussion: Nash Genetic Algorithm

In case of the reconstruction inverse problem, seen Table21.5, the Nash-GA strategy
requires much less number of average and best evaluations, in a factor of 2.50 in case
of the average and of 1.17 in case of the best value. The lower average value corre-
sponds to the case Nash P2, which requires an average of 1059.4 fitness evaluations
to reach the optimum (null value). Both algorithms were able to achieve the optimum
solution in 100 out of 100 of the independent runs.
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Table 21.5 Fitness Evaluations statistics of number of times out of 100 independent executions
where optimum solution is achieved (N); reconstruction inverse problem

Algorithm N Aver. St. dev. Best

Panmictic P1 100 2647.0 833.7 688

Panmictic P2 100 2884.2 930.1 982

Nash P1 100 1177.0 390.6 394

Nash P2 100 1059.4 358.5 590

Table 21.6 Fitness Evaluations statistics of number of times out of 100 independent executions
where optimum solution is achieved (N); fully stressed design problem

Algorithm N Aver. St. Dev. Best

Panmictic P1 97 7083.3 6705.6 1178

Panmictic P2 96 7957.4 8157.0 1178

Nash P1 86 1354.6 579.4 198

Nash P2 86 1399.1 603.8 394

In case of the fully stressed design problem, seen Table21.6, the Nash-GA strat-
egy requires much less number of average and best evaluations, in a factor of 5.06 in
case of the average and of 11.12 in case of the best value. The lower average value
corresponds to the case Nash P1, which requires an average of 1354.6 fitness evalu-
ations to reach the optimum (a fitness function of 239.946 stress value, see detailed
design solution in Table21.7). A super-linear speed-up is achieved when compared
the best fitness evaluations required to achieve the best fitness value (2.99 speed-up);
this speed-up is even enhanced if the comparison is based in the fitness evaluations
required to achieve the best average/standard deviation value, which evidences an
increased robust behaviour of the Nash approach in this problem. The standard pan-
mictic algorithmwas able to find the optimum in 97 and 96 times out of 100, while the
Nash algorithm found the optimum both in 86 times out of 100 executions (slightly
lower than panmictic algorithm).

In summary, the Nash GA approach allows a super-linear improvement in terms
of convergence speed up of the algorithm, requiring much less time to reach the
optimum design.

21.6 Conclusions

The performance of Nash genetic algorithms in inverse problems in structural
engineering (both the reconstruction inverse problem and the fully stressed design
problem) has been tested in a ten bar sized frame test case showing a remarkable
increased speed-up, even achieving super-linear gains in terms of fitness function
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evaluations in certain circumstances when compared with the standard panmictic
genetic algorithm. In addition, it should be considered the benefits coming from
enhanced parallel implementation capability of this type of algorithms.

Extension of experiments to other test cases and other related structural engineer-
ing problems will be performed in future works to explore the potential of this game
theory based evolutionary algorithms in the field of structural optimum design, as
well as other kinds of hybridized games like Stackelberg or Pareto games for mul-
tiobjective optimization problems and their implementation in parallel computing
environments.
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Chapter 22
A Comparative Study on Design Optimization
of Polygonal and Bézier Curve-Shaped Thin
Noise Barriers Using Dual BEM Formulation

Rayco Toledo, Juan J. Aznárez, Orlando Maeso and David Greiner

Abstract The inclusion of sound barriers for abating road traffic noise is a broadly
used strategy that is often constrained by the requirements associatedwith its effective
height. Due to this fact, the searching process has to deal with compromise solutions
between the effective height and the acoustic efficiency of the barrier, assessed by the
insertion loss (IL) in this paper. Two different barrier designs are studied herein for
two different receivers configurations and for three clearly distinguishable regions
in terms of closeness to the barrier. These models are based on the optimization
of the IL of thin-cross section profiles proposed by an Evolutionary Algorithm. The
special nature of these sorts of barriers makes necessary the implementation of a dual
BEM formulation in the optimization process. Results obtained show the usefulness
of representing complex thin-cross section barrier configurations as null boundary
thickness-like models.

Keywords Thin noise barriers · Shape optimization · Genetic algorithms · Dual
boundary element formulation

22.1 Introduction

The inclusion of sound barriers for abating the negative effects of road traffic noise
near residential areas is a broadly used strategy. Considerable research work and
studies focused on sound diffraction around barriers have been carried out in the past
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two decades, specifically in the prediction of the performance and the development
of more efficient designs. Amongst all of the different theoretical methods proposed
concerning the issue, the Boundary Element Method (BEM hereinafter) has been
previously used by the authors of this work [6] in the analysis of complex barrier
configurations.

Evolutionary Algorithms (EA) have been widely used for Shape Design
Optimization problems in numerous Engineering fields. The combined use of
optimization problems using EA with a BEM code has been implemented in
sound barriers design problems within the institute where this work is developed
(see [2–4]).

The Insertion Loss coefficient (IL henceforward) is a valuable estimator to assess
the acoustic efficiency of the barrier. This parameter represents the sound pressure
level difference in the situation with and without the presence of the barrier at a
particular point (receiver). Whilst the parameters involving the efficiency are numer-
ous, the effective height of the barrier (heff) is the factor with greatest influence.
Constraints related to this factor force the searching process to find compromise so-
lutions between the effective height and the acoustic efficiency of the barrier. These
profiles generally feature complex configurations and its implementation in opti-
mization processes is often found to be difficult in terms of validating its topological
feasibility. Two different barrier designs are studied in this work. These models are
based on the optimization of the acoustic efficiency of thin-cross section profiles,
idealized as null boundary thickness, proposed by an EA. The special nature of these
sorts of barriers makes necessary the implementation of a dual BEM formulation in
the optimization process.

22.2 Modelling and Discretization by Implementing
a Dual BEM Formulation

The next lines are devoted to the implementation of a dual BEM formulation in thin
noise barriers idealized as null boundary thickness profile (see Fig. 22.1). The special
nature of these sorts of barriers makes necessary the addition of a complementary
formulation (hyper-singular) that coupled with the conventional BEM formulation
yields a compatible system of equations.

22.2.1 Singular BEM Formulation

The integral equation for the i boundary point to be solved by the singular BEM
formulation can be expressed as follows:
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Fig. 22.1 a Idealization of a
generic thin-cross section
noise barrier profile as null
thickness boundaries. b
Strategy used to avoid the
singularity around the
collocation point in BEM
formulation

(a) (b)

ci pi + −
∫

Γb

p
∂p∗

∂n j
dΓ = p∗

0 +
∫

Γb

∂p

∂n j
p∗ dΓ (22.1)

This integral equality just involves the boundary of the barrier under investigation.
The −

∫
symbol represents the integral along the boundary to be understood in the

Cauchy principal value sense, once the singularity around the collocation point i has
been extracted (ci ). In Eq. (22.1), p is the acoustic pressure field over the barrier
surface and p∗ is the half-space fundamental solution [the acoustic pressure field
when the source is placed at the collocation point i over a plane with admittance
βg (ground admittance)] and ci is the free term. On the whole: ci = θ/2π , where
θ represents the inner angle to the boundary measured in radians. It is easily shown
that ci = 0.5 for smooth boundaries.

The expressions of the fundamental solution and its derivative for a perfectly
reflective ground for bi-dimensional, harmonious problems are:

p∗(k, r) = 1

2π
[K0(ikr) + K0(ikr)]

∂p∗

∂n
= − ik

2π

[

K1(ikr)
∂r

∂n j
+ K1(ikr)

∂r

∂n j

]

(22.2)

being i the imaginary unit, k the wave number, r and r the distances from the source
and the image point to the observation point respectively, and K0 and K1 the Bessel
modified functions of order 0 and 1 respectively.

By discretizing the boundary, the integral kernels of the fundamental solution of
the singular BEM formulation are yielded:

hi j
k =

∫

Γ j

∂p∗

∂n j
φkdΓ j ; gi j

k =
∫

Γ j

p∗ φk dΓ j (22.3)

A system of equations is obtained from this process and leads to values of acoustic
pressure on the barrier boundary.
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22.2.2 Hyper-Singular BEM Formulation

The integral equation for the i boundary point to be solved by the hyper-singular
BEM formulation can be written as follows:

ci

(
∂pi

∂ni

)

+ =
∫

Γ

p
∂2 p∗

∂ni∂n j
dΓ = −

∫

Γ

∂p∗

∂ni

∂p

∂n j
dΓ + ∂p∗

0

∂ni
(22.4)

where the =∫ and −
∫

symbols represent the integral along the boundary to be
understood in the Hadamard finite part integral and in the Cauchy principal value
sense, respectively. The hyper-singular formulation of the method demands that the
source placement (collocation point i) to be inside the element (non-nodal collocation
point) (see [8]). Thus, in (22.4) it is satisfied that ci = 0.5.

Expression (22.5) shows the values of the fundamental solution and its derivative
for the hyper-singular formulation:
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2π
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∂nI

]
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r
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)

+
(

K2 (ikr)
∂r

∂nI

∂r

∂n j
+ K1(ikr)

r
nI · n j

)]

(22.5)

Similarly to Eq. (22.2), i is the imaginary unit, k the wave number and r , r the
distances to the observation point from the collocation point and its symmetric point
with respect to the ground plane, respectively. It is worth making a distinction here
regarding the normal vectors involved in the expressions above. n j is the normal
to the boundary at the integration point and ni (ni

x , ni
y), nI (ni

x , −ni
y) represent the

normal vectors to the real boundary at the collocation point (i) and at its symmetric
point (I) placed on a fictitious, symmetric boundary with respect to the ground plane,
respectively. K1 and K2 represent the Bessel modified functions of order 1 and 2,
respectively.

After a discretization process along the boundary, expression (22.4) yields a
numerical solution from which the integral kernels of the hyper-singular BEM for-
mulation are obtained, for i collocation point when integrated over j element:

mi j
k =

∫

Γ j

∂2 p∗

∂ni ∂n j
φk dΓ j ; li j

k =
∫

Γ j

∂p∗

∂ni
φk dΓ j (22.6)

The numerical resolution of these integrals deserve a thorough treatment and can
be consulted in [7, 8].
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22.2.3 Dual BEM Formulation

Figure22.1 represents a generic thin-cross section noise barrier to be solved by
dual BEM formulation. After a discretization process, each node holds the values
of pressure and flux with respect to the boundary normal, i.e., both at the left and
at the right according to the direction of travel on the boundary (p+, q+, p−, q−
hereinafter).

Figure22.1b represents the strategy used to isolate the singularity of the method
in this sort of domains. Thus, the matrix equality of the singular BEM formulation
for thin-cross section noise barriers can be expressed as follows:

ci
(

p+
i + p−

i

)+
N∑

j=1

(
H+

j p+
j +H−

j p−
j

)
=

N∑

j=1

(
G+

j q+
j +G−

j q−
j

)
(22.7)

being N the overall nodes number of the discretization over the boundary. Consid-
ering that n+ = n− at the collocation point j , it is easily shown that:

H+
j = −H−

j ; G+
j = G−

j (22.8)

For internal noise sources and smooth boundaries, the final expression can be
written as follows (see [1]):

(
1

2

)

Σpi +
N∑

j=1

H+
j Δp j =

N∑

j=1

G+
j Σq j + p∗

0 (22.9)

where:

Σpi = p+
i + p−

i ; Δp j = p+
j − p−

j ; Σq j = q+
j + q−

j (22.10)

Deriving (22.7) with respect to n+
i an integral equality of the hyper-singular BEM

formulation is obtained:

ci

(
∂p+

i

∂n+
i

+ ∂p−
i
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i
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(
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j q+
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j q−
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(22.11)

where:

∂p−
i

∂n+
i

= −qi ; M+
j = −M−

j ; L+
j = L−

j (22.12)

The hyper-singular formulation of the method requires that the collocation point i
to be inside the element (see [8]) what assurances that the inner angle to the boundary
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at that point is always θ = π . In this way, the final dual BEM expressions for internal
noise sources for both the singular and hyper-singular formulation are:

(
1

2

)

Σpi +
N∑

j=1

H+
j Δp j =

N∑

j=1

G+
j (A+Σp j + A−Δp j )

+ p∗
0

(
1

2

)

(A−Σpi + A+Δpi ) +
N∑

j=1

M+
j Δp j

=
N∑

j=1

L+
j (A+Σp j + A−Δp j ) + ∂p∗

0
∂ni

(22.13)

being:

Δq j = A−Σp j + A+Δp j ; Σq j = A+Σp j + A−Δp j

A+ = −(1/2) ik (β+ + β−) ; A− = −(1/2) ik (β+ − β−) (22.14)

Finally, expression (22.13) can be expressed matricially as:
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⎦ (22.15)

22.3 Problem Definition

Figure22.2 represents the general configuration of the model under study. It deals
with a two-dimensional model concerning an infinite, coherent mono-frequency
source of sound, placed parallel to an infinite noise barrier of thin cross-section that

Fig. 22.2 Two-dimensional configuration for thin cross-section acoustic barriers
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Table 22.1 Data concerning regions under study

Region ds(m) dp(m) dr1 (m) dr2 (m) 
x(m) 
y(m)

1 0.5 10.0 2.0 1.0

2 10.0 1.0 10.5 40.0 8.0 2.0

3 50.5 50.0 10.0 5.0

stands on a flat plane (ground) of uniform admittance at ds = 10m. Both the ground
and the barrier feature a perfectly reflective surface in this article (βg = βb = 0). A
trapezoidal section holds the area for feasible profiles, defined by the barrier projec-
tion to the ground, that is constant and dp = 1m, and the maximum effective height
to be achieved, that is heff = 3m at the median of the rectangle trapezium.

Two different receiver configurations are studied. In one configuration (Ca) a
group of four receivers placed on the ground and separated 
x from one another is
considered. In the other configuration (Cb), four groups of four receivers are studied.
The first group is laid on the ground and the remaining ones are placed at different
heights, separated among them by a distance of 
y. In accordance with the former
configuration, the horizontal distance among the receivers of a group is 
x.

In addition to this, three clearly distinguishable regions in terms of closeness to
the median of the feasible region (dr1 ) are proposed for both receiver configurations.
Table22.1 holds the data concerning these regions.

The results achieved are given in terms of insertion loss (IL), defined as follows:

IL = −20 log10

(
PB
PHS

)

(dB) (22.16)

on every frequency of the band spectra, and represents the sound pressure level
at the receiver points as a difference between the situation with (PB) and without
(PHS) considering the barrier. This parameter is a widely used estimator to assess the
acoustic efficiency of sound barriers.

22.4 Methodology

This section provides an overview of the proposed methodology for the optimization
of thin-cross section noise barriers idealized as null boundary thickness-like models.
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Fig. 22.3 Design variables and models under study

22.4.1 Shape Optimization

Shape design optimization is carried out by the combined use of an EA and a code
that implements a dual BEM formulation. The EA software used in this work applies
the GAlib package [9]. This library is a collection of C++ genetic algorithm (GA)
components from which it is possible to quickly construct GA’s to attack a wide
variety of problems.

In this paper, a steady-state genetic algorithm is used replacing the two worst
individuals (in terms of their fitness function) at every generation, with a population
size of 100 individuals. A single-point crossover operator is used in this study, with a
crossover rate of 0.9. The consideredmutation rate is 1/nch, where nch is the chromo-
some length (nch = 8 × n, being n the overall number of the design variables—of
8 bits precision each). Five independent executions of the optimization process are
considered for each model and configuration. The stop-criterion condition is met for
20,000 evaluations of the fitness function (FF).

A transformed domain is considered (see [3]). This domain holds the set of design
variables of the model under study, denoted by (ξi , ηi ), and represents the rectangular
search space for the GA (see left part of Fig. 22.3). Every (ξi , ηi ) point in the trans-
formed domain has its image (xi, yi) in the Cartesian space, that is the real domain
where the barrier operates. In this paper heff = 3m is proposed. This generates a
trapezoidal search space in the Cartesian barrier domain (see right part of Fig. 22.3).

Two acoustic barrier designs are studied along this paper (Fig. 22.3). The horizon-
tal projection (dp) and the effective height (heff ) are identical for each design. Both
models are built from seven points, being the first and the last one on the ground
and on the effective height line respectively. The vertical distance among the points
is di = 1/6 in the search space (transformed domain) and they are just allowed to
feature horizontal movements. Model A is a polygonal curve-shaped barrier built
from points through which straight slopes pass. Model B is a 6th degree Bézier
curve-shaped barrier built from seven control points of which only the first (0) and
the last (7) belong to it.



22 A Comparative Study on Design Optimization of Polygonal … 343

22.4.2 Assessment of the Insertion Loss

Taking into account the overall value of the IL of the frequency band spectrum
analyzed for each receiver seems to be a more realistic estimator to evaluate the
efficiency of a sound barrier. Consequently, (22.17) represents the average IL value
for each frequency and receiver when using the ISO 717.2 normalized traffic noise
spectra for third-octave band center frequencies [5], ranging from 100 to 2,000Hz.

IL = −10 · log10

⎛

⎜
⎝

∑NF

i=1
10(Ai−ILi)/10

∑NF

i=1
10Ai/10

⎞

⎟
⎠ (dBA) (22.17)

being NF the studied spectra number of frequencies, i.e. NF = 14, Ai the spectra
A-weighted noise level and ILi the insertion loss value for sources pulsing at every
frequency of the spectra.

22.4.3 Definition of the Fitness Function

Shape optimization is carried out entirely based on the overall IL mean value of all
receiver points.

FF =
NR∑

j=1

ILj/NR (22.18)

being ILj the IL mean value for each receiver (see (22.18)) and NR the total number
of receivers. This value corresponds to the fitness function (FF) to be maximized, so
the higher its value the higher the acoustic efficiency of the sound barrier.

22.5 Results and Discussion

Tables22.2 and 22.3 collect the acoustic efficiency and the coordinates of the
design variables (see Fig. 22.3) of the best individuals respectively, for each receiver
configuration, region and model.

Figures22.4 and 22.5 show the barrier profile of the best individuals of the models
under study, in terms of its acoustic efficiency as well as the average frequential IL
evolution of the receivers for each region and model.

Figures22.6 and 22.7 show the evolution of the average of the fitness function
(FFAverage), the best individual (FFBest) and the average of the standard deviation for
both models under study and every receiver configuration.
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Table 22.2 Acoustic efficiency of the models under study

RC∗ Region Model Lc(m) ΔLc(m) FFbest(dBA) ΔFFbest(dBA)

Ca 1 A 4.08177 +1.08177 17.92628 +4.32966

B 3.60547 +1.60547 16.77495 +3.17833

2 A 3.97839 +0.97839 12.93384 +1.02711

B 3.51863 +0.51863 14.08611 +2.17938

3 A 3.52785 +0.52785 12.46634 +1.04716

B 3.84417 +0.84417 13.57048 +2.15130

Cb 1 A 4.10065 +1.10065 16.95941 +2.41822

B 3.41333 +0.41333 16.83553 +2.29434

2 A 3.63842 +0.63842 14.36767 +0.92615

B 3.71865 +0.71865 14.87088 +1.42936

3 A 3.60034 +0.60034 13.64344 +0.88584

B 3.68994 +0.68994 13.75215 +0.99450

RC Receiver configuration

Table 22.3 Design variables of the best individuals

Design variables

RC∗ Region Model ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

Ca 1 A −0.48824 0.06078 0.01765 0.35098 0.02941 0.49608 −0.31961

B −0.01373 0.05882 −0.48235 −0.57647 0.17647 −1.23529 0.50000

2 A −0.39412 −0.02549 0.39020 0.08824 0.04902 0.48039 0.34314

B −0.50000 0.36471 −1.44706 −0.01176 0.38823 −1.02353 0.40980

3 A −0.44902 −0.08039 −0.22549 0.35490 0.44510 0.26078 0.32353

B 0.43726 −0.95294 0.15294 −1.30588 0.38824 −1.23529 0.31177

Cb 1 A 0.50000 0.22941 −0.15882 0.32745 −0.03333 0.37843 −0.44118

B −0.06078 −0.17647 0.10588 −0.92941 0.74118 −0.90588 0.50000

2 A −0.22156 −0.50000 0.29216 0.37451 0.50000 0.50000 0.31569

B −0.46470 −0.67059 2.05882 −0.95294 1.37647 −0.90588 0.50000

3 A −0.25294 −0.50000 0.24902 0.37843 0.50000 0.50000 0.29608

B −0.48039 −0.62353 2.01176 −1.04706 1.49412 −0.88235 0.50000

RC Receiver configuration

In the light of the results the following analysis is carried out:

• The polygonal-shaped barrier outperforms the acoustic efficiency of the 6th degree
Bézier curve-shapedmodel for the near regionwhen the receivers are placed on the
ground (Ca configuration). However, the latter model performs a better acoustic
behaviour for non-near regions (over 1dBA).

• Both models under study display similar acoustic performances when a grid of
receivers is considered in the shadow region of the barrier, with the exception
of the intermediate region in which the Bézier model outperforms the polygonal
design in half a decibel.
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Fig. 22.4 Ca receiver configuration. Left barrier profile of the best individuals for each region and
model. Right average frequential IL evolution for models A and B and for the 3m height straight
barrier
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Fig. 22.5 Cb receiver configuration. Left barrier profile of the best individuals for each region and
model. Right average frequential IL evolution for models A and B and for the 3m height straight
barrier
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Fig. 22.6 Ca receiver configuration. Left model A. Right model B

• According to the comparative analysis between the optimized models and the
straight barrier the need to study designs alternative to the latter is suggested, even
for far regions.

• Model B displays a wider variety among best individuals of the population than in
the case for Model A according to the evolution of the highest standard deviation
(Figs. 22.6 and 22.7), meaning that the convergence of the optimization process
turns out to be more cumbersome in Model B (optimization process is easier in
Model A).
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Fig. 22.7 Cb receiver configuration. Left model A. Right model B

22.6 Conclusions

A methodology to successfully optimize thin cross-section noise barriers by
idealizing their profiles as null cross-section boundaries has been presented. This
procedure has been applied to two specific noise barrier models although its ap-
plicability covers a wide designs spectra, ranging from complex straight boundary
configurations to curve-shaped profiles like those built from Spline expressions,
amongst others.
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The versatility of the algorithm responsible for the geometry generation of the
barriermakes the buildingof the profile to be easily accomplished.This is a significant
advantage over the case when dealing with geometries of real barrier profiles, as the
evaluation process for the feasibility of the design proposed by the EA is often
complex and difficult to establish.

The procedure here presented is a useful method to assess the behaviour of com-
plex noise barriers configurations and yields conclusions that might have been hardly
drawn without its implementation.
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Chapter 23
A Discrete Adjoint Approach for Trailing-Edge
Noise Minimization Using Porous Material

Beckett Y. Zhou, Nicolas R. Gauger, Seong R. Koh and Wolfgang Schröder

Abstract In this paper, we present a discrete adjoint-based optimization framework
to obtain the optimal distribution of the porous material over the trailing edge of a
3-D flat plate. The near-body strength of the noise source generated by the unsteady
turbulent flowfield is computed using a high-fidelity large-eddy simulation (LES).By
optimally controlling thematerial porosity andpermeability, it is possible tominimize
the turbulence intensity responsible for noise generation at the trailing edge and thus
significantly reduce the radiated noise. We demonstrate, using a simple geometry as
a first step, the efficacy of the discrete adjoint method in achieving minimum-noise
design via optimal distribution of porous media, with future applications to aircraft
high-lift devices.

Keywords Discrete adjoint method · Noise reduction · Automatic differentiation ·
Large-eddy simulation · Turbulence

23.1 Introduction

In its 2012 annual report, the US Federal Aviation Administration (FAA) predicted
the air travel to nearly double over the next 20years for US carriers alone [1]. How-
ever, the ability of the aviation industry to meet such growing demands, is limited
by the increasingly stringent noise emission requirements imposed by the FAA and
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European regulatory bodies, due to high population densities around major airports.
Consequently, accurate prediction and subsequentlyminimization of noise are recog-
nized as an important issue in aircraft design and have garnered much research inter-
ests in the recent years.

Two major noise sources of modern aircraft are the engine and airframe noises,
with the former playing the dominant role during the turbojet era. The introduction
of high bypass ratio turbofan engines has led to a drastic reduction of engine noises.
As a result, the airframe noise is now generally on-par with the engine noise, even
surpassing it under certain operating conditions. This is particularly true during the
landing phase of the flight in which the aircraft is operating at reduced thrust with the
engines throttled down and the high-lift devices such as slats and flaps deployed.Note
that the noise produced by the aircraft is extremely hazardous during this particular
phase of the flight given its proximity to the ground population. Therefore in this
work, we focus on airframe noise minimization in low speed operating conditions.

The airframe noises are generated primarily due to the interaction of unsteady tur-
bulent flows with solid boundaries such as aerodynamic surfaces and landing gears.
Due to the 3-D, unsteady and turbulent nature of noise generation, high-fidelity
simulations are required to sufficiently resolve the turbulent structures for accurate
predictions. In addition, to obtain physically meaningful far-field noise prediction
the computational mesh must extend on the order of one hundred chord-length in
at least the normal direction from the body. Other numerical challenges related to
artificial dissipation and boundary conditions are discussed in a review by Colo-
nius and Lele [2]. Consequently, high-fidelity aeroacoustic simulation remains a
computational daunting task. This perhaps serves to explain partially why examples
involving aeroacoustic optimizations are rare in literature while in comparison, sig-
nificant progresses have been made on aerodynamic design optimization. It has been
shown however, that while the aerodynamic and aeroacoustic design objectives are
not mutually conflicting (i.e. a design optimized for aerodynamic efficiency typically
also results in noise reduction from its baseline configuration and vise versa), the two
optimizations do not lead to the same optimal designs [3, 4]. In landing situation, it
is sensible to judiciously adopt a design biased towards the aeroacoustic objective
for airframe noise minimization, provided that aerodynamic performance constraints
are minimally satisfied. Therefore, it is by incorporating aeroacoustic considerations
in the initial design stage that the aircraft industry can meet the increasingly strin-
gent noise reduction requirements. Three predominant approaches exist for airframe
noise minimization—via shape optimizations [4–6], injection of gas mixtures [7, 8],
and modification of the trailing edge with porous materials [9, 10]. In this work, we
adopt the last approach.

Porous media modifies the surface in such a way so as to reduce the discontinu-
ity that the fluid convecting over a trailing-edge experiences as it transitions from
a wall-bounded flow to a free-shear flow. In essence, the porous media makes the
trailing-edge ‘acoustically soft’, thereby reducing the near-body turbulence inten-
sity and the strength of vortex-shedding responsible for noise generation. However,
applying porous media to the trailing-edge in practice is not a trivial matter, in that
no clear design guidelines exist for the ideal placement of the porous media. Existing
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experimental investigations indicate that the spatial distribution of the porous media
strongly influences the extent of noise reduction [11]. An uninformed porous trailing-
edge design may even lead to an amplification of far-field noise. To that end, numer-
ical optimization algorithms can be used to search for the optimal distribution of the
porous material in noise reduction.

In this paper,we present a discrete adjoint-based optimization framework to obtain
the optimal distribution of the porous material over the trailing edge of a 3-D flat
plate. The near-body strength of the noise source generated by the unsteady turbu-
lent flow field is computed using a high-fidelity large-eddy simulation (LES). By
optimally controlling the material porosity and permeability, it is possible to min-
imize the turbulent intensity responsible for noise generation at the trailing edge
and thus significantly reduce the radiated noise signal. The objective of this work
is to demonstrate, using a simple geometry as a first step, the efficacy of the dis-
crete adjoint method in achieving minimum-noise design via optimal distribution of
porous media, with future applications to aircraft high-lift configurations.

The remainder of the paper is organized as follows. In Sect. 23.2, the LES aeroa-
coustic solvers for flows over a flat plate with porous trailing edge as well as the
optimization framework based on discrete adjoint and automatic differentiation (AD)
are presented. Results are presented in Sect. 23.3 while conclusion and future work
are outlined in Sect. 23.4.

23.2 Aeroacoustic Optimization Methodology

23.2.1 Flow Through Porous Media

To simulate the flow field containing porous media, we employ the Brinkman penal-
izationmethod in which the flow inside the permeable material as well as the external
flow are modelled in a monolithic fashion as a continuum. Therefore, a single set
of equations governs the entire computational domain containing multi-phases with
fluid, solid and homogeneous porous medium, eliminating the cumbersome task to
specify interface conditions directly. Developed on the basis of the Brinkman equa-
tion [12], Liu and Vasilyev [13] extended the method by modelling the influence
of material permeability as penalizations to both the momentum and energy equa-
tions, as well as accounting for the effect of porosity in the continuity equation. The
Navier-Stokes equations for flows through porous media can be written as follows:

∂ρ

∂t
= −[1 + (

1

ε
− 1)χ]∂ρu j

∂x j
(23.1)

∂ρui

∂t
= − ∂

∂x j
(ρui u j ) − ∂p

∂xi
+ 1

Rea

∂τi j

∂x j
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∂
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(μ

∂T
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) − χ
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where ρ is the fluid density, ui is the fluid velocity, p is the pressure, τi j is the shear
stress, μ is the dynamic viscosity, e is the total energy and T is the temperature.
The two nondimensional numbers Rea = ρoco L

μ
and Pr = μcp

k are the acoustic
Reynolds number and Prandtl number respectively. Uoi and Ti are the velocity and
the temperature of the body respectively. χ is a step function that takes the value of
1 within the permeable media and 0 outside.

The influence of the permeable material is modeled using three parameters ε,
Kv and Kt . ε is the material porosity defined as the ratio of the volume occupied
by fluid to the total material volume. ε = 1 represents void space where only fluid
and no solid material is present. On the other hand as ε → 0, the material volume
approaches that of a pure solid with no passages for fluid flow. Note that ε = 0
leads to a singularity in the continuity equation, therefore it is constrained in the
range ε ∈ (0, 1]. Kv is the viscous permeability and Kt is the thermal permeability.
They provide a measure of flow conductance indicating how easy it is for fluid to
flow through the material at a given porosity ratio. It is clear from the momentum
equations that the term involving the viscous permeability acts as a retarding force
to the flow in the porous media. Analogous effect by the thermal permeability can
also be seen in the energy equation. As Kv, Kt → 0, the material approaches an
impenetrable solid. Note that when ε → 1, Kv → ∞ and Kt → ∞, the above
equations reduce to the classical Navier-Stokes equations describing pure fluid flow.

23.2.2 LES Solvers

Two LES solvers developed by the Aachen Institute of Aerodynamics (AIA) are used
in this study. The first is an unsteady incompressible solver with a dynamic subgrid
scale model proposed by Germano et al. [14]. The inviscid fluxes are discretized by
a high-order scheme based on the summation-by-parts operator for a sixth-order dis-
persion preserving relation (DRP) scheme by Johansson [15]. An explicit four-stage
Runge-Kutta method is used for time integration. The second and more elaborate
LES solver solves the unsteady compressible Navier-Stokes equations. It is based
on a finite-volume method, in which the inviscid fluxes are spatially discretized by
the AUSM scheme with the MUSCL approach and a centered approximation for the
pressure term. The viscous terms are approximated by a centered discretization. For
the temporal integration an explicit five-step Runge-Kutta formulation is used. The
numerical details are described in Meinke et al. [16]. To eliminate undesirable wave
reflections on the boundaries, a sponge layer is imposed.

23.2.3 Optimization Framework

As discussed in Sect. 23.1, near-body turbulence is the main source responsible
for the far-field noise generation. It is therefore of practical importance to control
the turbulence intensity via optimal distribution of permeable material in the plate
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trailing edge. The objective function of this study is defined as the temporally and
spatially averaged normal velocity components at Np user-defined locations over all
Nt time steps:

J = 1

Nt Np

Nt∑

j

Np∑

i

|v j
i | (23.4)

J thus defined provides an indication of the level of the turbulence intensity in the
near-field source region.

The design variables are the spatially-varying material properties of the surface,
namely ε, Kv and Kt . The evaluation of the gradient of the objective function with
respect to these design variables is based on the discrete adjoint method, making its
computational cost independent of the number of design variables.

Furthermore, the implementation of the discrete adjoint formulation in thiswork is
eased by the use of automatic differentiation (AD),1 eliminating the error-prone hand-
differentiation of the discretized equations. AD was developed based on the obser-
vation that any simulation code, regardless of its complexity is merely a sequence
of elementary operations whose differentiation rules are well known. Therefore, by
successive applications of the chain-rule through the computer program, it is possible
to compute both the simulation output and its derivative with respect to prescribed
design variables simultaneously. A remarkable feature of AD, owing to its construc-
tion, is that it does not incur any truncation errors compared to the traditional finite
difference method. In particular, the derivatives are accurate to machine accuracy.
TheAD can be performed in the forward and reversemode. The forwardmode, albeit
exact, requires one evaluation for each component of the gradient vector. In contrast,
the reverse mode is capable of computing the entire gradient vector in one stroke,
at the expense of high memory requirement due to the need to save all intermediate
variables. A good discussion of these two AD modes can be found in [18].

A quasi-Newton optimizer in which an estimate of the inverse Hessian based on
the BFGS (Broyden-Fletcher-Goldfarb-Shanno) rank-two update formula is used to
compute a search direction [19]. The step size is determined using a line search,
which enforces the strong Wolfe conditions [19]. To enforce physically meaningful
solutions, box constraints are imposed on the design variables during the line search.

23.3 Results

23.3.1 Minimization of Trailing Edge Vortex Shedding at Startup

Turbulent flow over a flat plate with thickness h, a free-stream Mach number of
0.06 and a Reynolds number of 13,500 is considered in this work. Furthermore,
porous material is used in the last 12% chord (d = 0.12c) of the flat plate as

1 Performed using AD tool TAPENADE [17].
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Fig. 23.1 Flat plate with
porous trailing edge
consisting of porous strips
laid in the spanwise direction
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shown on Fig. 23.1. Within this area, ten porous strips are laid along the spanwise
direction. While the porosities (ε) are allowed to vary from strip to strip, they are
considered uniformwithin each strip. The material permeability is also held constant
over the entire porous domain. Along the streamwise direction, the computational
mesh extends 330h in front of the leading-edge and 300h behind the trailing-edge.
In the normal direction it extends 330h and 37h in the spanwise direction. A total
of 2.5 million nodes are used. The computational domain is divided into 16 blocks
and parallelized with the Message Passing Interface (MPI). The first, incompressible
LES solver discussed in Sect. 23.2.2 is used for this test case.

The objective function is defined by Eq.23.4 where the Np = 11 user-defined
observation points are equispaced along a line in the spanwise direction at a distance
of 1% chord behind the upper corner of the trailing-edge (x = 1.01c, y = h/2).
This objective function gives a direct indication of the vorticity at the trailing-edge.
For such blunt trailing edge, periodic vortext shedding contributes to strong tonal
noises.

The simulation is started from free-stream at a step size of Δt = 10−5 for Nt =
80 time steps. The first 30 time steps in each optimization iterate are omitted in
the objective function and gradient computations to bypass the unphysical transient
due to the change of design parameters. The next 50 time steps are optimized (see
Fig. 23.3). The design gradient is computed using the forward and reverse modes of
AD and compared with the second-order finite difference (FD) results. It can be seen
on Table23.1 that FD gradient incurs significant error after merely 100 time steps.
The highlighted digits show the discrepancy of the gradient values as compared to
the forward AD gradient which is known to be exact. It should be stressed that the
reverse AD, aside from being more accurate than FD is also (and more importantly)
far more efficient, capable of obtaining all 10 components of the gradient vector in
one stroke. The second-order FD on the other hand, requires 20 unsteady evaluations.
Therefore, reverse AD gradients is used to perform efficient unsteady optimization
in this case.

The optimization is started with a baseline design with 10 strips of equal porosity:
εi = 0.1, i = 1, . . . , 10. (i.e. ‘nearly’ hard plate). Quasi-Newton optimization using
the BFGS algorithm is performed for 10 iterations which achieves a 92% reduction
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Table 23.1 Comparison between the gradients computed using 2nd order finite difference
(δ = 10−5), forward-mode and reverse-mode of AD, over 100 time steps

i Finite difference Forward AD Reverse AD

1 1.599252978309873E-6 1.599242842229384E-6 1.599242842229349E-6

2 1.175208229342583E-5 1.175208354564064E-5 1.175208354564077E-5

3 1.612330616240776E-5 1.612332568496750E-5 1.612332568496753E-5

4 3.118079878496050E-5 3.118079812541050E-5 3.118079812541059E-5

5 5.342393276895618E-5 5.342392467928700E-5 5.342392467928717E-5

6 9.228763434877828E-5 9.228763273798646E-5 9.228763273798641E-5

7 1.940379114329094E-4 1.940379225337220E-4 1.940379225337226E-4

8 4.980055826921126E-4 4.980055913482977E-4 4.980055913482987E-4

9 1.302111566139907E-3 1.302111561659751E-3 1.302111561659750E-3

10 4.517035093404634E-3 4.517035119303520E-3 4.517035119303535E-3

Fig. 23.2 Convergence
history over 10 optimization
iterations. Note that the
objective function is scaled by
its initial value
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in objective function compared to the baseline design (see Fig. 23.2). This is also
reflected on Fig. 23.3 which shows that the instantaneous turbulence intensity mea-
sure of the optimized design is drastically reduced from its baseline values over the
entire optimization window.

The effect of the optimization can be visualized by comparing the normal velocity
fields of the baseline and optimal designs near the trailing edge at the end of the
optimization window as shown on Fig. 23.4. Note that the noise-generating trailing
edge vortex pair clearly visible in the baseline design has been removed completely
in the optimal design.

A comparison on the strip porosities between the baseline and optimized designs
is show on Fig. 23.5. Note that the results indicate that highly porous material with as
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Fig. 23.3 Instantaneous trailing-edge turbulence intensity measure at each time step
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Fig. 23.4 Comparison of trailing edge normal velocity field between baseline and optimal design.
Note that dashed lines outline the boundaries of the porous trailing edge. a Baseline. b Optimized

much as 85% porosity should be used in the immediate vicinity of the trailing-edge
while the porosities of the 3 strips further upstream largely remain unchanged from
the baseline design. This promotes a ‘smoother’ transition from the wall-bounded
flow to free-shear flow and hence reducing the noise generation. Although the result
appears to be intuitively obvious, it serves as a validation for our optimization
methodology.

Since the incompressible flow solution is used, the acoustic pressure fluctuation
cannot be distinguished from the hydrodynamic pressure. Therefore we defer the
computations of the acoustic pressure fluctuation and the sound pressure level to the
next test case which employes a compressible LES solver.
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Fig. 23.5 Comparison of
strip porosities between
baseline and optimal design
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23.3.2 Minimization of Trailing Edge Turbulence Intensity

Having validated our methodology using a simple test case in the previous section,
we now proceed to a noise minimization problem over a longer simulation time.
The same geometry and flow conditions discussed in Sect. 23.3.1 are used. Within
the porous domain, five porous strips are laid along the spanwise direction. In this
study we fix the porosity (ε) and thermal permeability (Kt ) and allow the viscous
permeability (Kv) to vary from strip to strip. A total of 3.5 million grid points are
used. The computational domain is divided into 32 blocks and parallelized with the
Message Passing Interface (MPI).

The objective function is defined by Eq.23.4 where the Np = 5 measurement
points are equi-spaced at a height h along themid-span over the last 12%chordwhere
the porous material is used. The aim is to enhance the overall noise performance via
the optimization of a near-body objective function—the turbulence intensitymeasure
over the modified porous trailing edge.

In each optimization cycle, 1,000 time steps of the flow solution are computed
at a constant CFL number of CFL = 1. In this case, a prohibitively large memory
overhead arises in the reverse mode AD due to its need to store all the many mil-
lions of intermediate solutions and transitional variables over such large number of
time steps. This challenge will be addressed in our future work by employing more
advanced techniques such as reverse accumulation and checkpointing. Instead, in
this work we opt to use the forward AD for the gradient computations which still
affords us the exact derivatives. The reduction in computational efficiency from the
one-stroke reverse AD is negligible since only 5 design variables are used. A com-
parison between the forward AD gradient and finite difference gradient are shown
on Table. 23.2.
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Table 23.2 Comparison between the gradients computed using 2nd order finite difference
(δ = 10−6) and forward-mode of AD, over 100 time steps

i Finite difference Forward AD

1 1.167141014946083 1.167141550726590

2 0.979045005067292 0.979047994868520

3 −0.037741010316950 −0.037741196023650

4 −0.172801009057366 −0.172800017556677

5 2.172569004699199 2.172574472509500

Fig. 23.6 Convergence
history over 10 optimization
iterations. Note that the
objective function is scaled by
its initial value
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The optimization is started with a baseline design with 5 strips of equal viscous
permeability: K i

v = 0.1, i = 1, . . . , 5 as control variables while the porosity and
thermal permeability are held constant throughout the optimization at ε = 0.2 and
Kt = 0.05 respectively. The BFGS algorithm is performed for 10 iterations which
achieves a 27% reduction in trailing edge noise measure compared to the baseline
design (see Fig. 23.6). This is also clearly seen on Fig. 23.7 that the instantaneous
trailing edge turbulence intensity measure of the optimized design is drastically
reduced from its baseline values at almost every time step of the simulation horizon.

Figure 23.8 compares the vorticity fields between the baseline and optimized
design at a later time t = 4 c

U∞ . The baseline design exhibits a strong trailing edge
roller with a strong spanwise correlation. Since the plate thickness is much larger
than the boundary layer thickness in this test case, such roller is known to generate
very strong tonal noise. In contrast, the coherent turbulent structure in the wake
region is broken up in the optimized design, indicating a weaker noise source. This
is clearly demonstrated by Fig. 23.9 which shows that the pressure fluctuation is
noticeably reduced in the optimal design over the entire domain. Consequently, the
overall sound pressure level (OASPL) computed at a radius R = 1.5c around the
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Fig. 23.7 Instantaneous
trailing-edge turbulence
intensity measure at each time
step
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Fig. 23.9 Pressure fluctuation field of the baseline (a) and optimized design (b) at t = 4 c
U∞

Fig. 23.10 Overall sound
pressure level of three designs
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plate trailing edge shows a 2dB reduction in the transverse direction, as seen on
Fig. 23.10. Note that sound pressure level of a third design with uniform ε = 0.5
and Kv = 0.5 over the entire porous domain is also shown on the same figure (in
dash) and appears to have a far more impressive noise reduction of 10–12dB in
the transverse direction. This indicates that one may obtain more superior designs
by performing optimization at a higher ε value or even controlling both ε and Kv .
It should be noted, however that the degradation of aerodynamic performance and
structural integrity at higher values of porosity must be also be carefully taken into
account for practical high-lift applications envisaged beyond current work.

A remarkable feature of the optimized design, as shown on Fig. 23.11 is that
except for the 4-th strip, all other strips have their respective Kv reduced significantly
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Fig. 23.11 Comparison of
strip viscous permeabilities
between baseline and optimal
design
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below the baseline value of 0.1. In particular, the Kv of the last strip of the trailing
edge is decreased to almost zero. In fact, a box constraint is imposed so that K i

v >

0.003, i = 1, . . . , 5 to prevent singularity in the flow solution. The optimizer pushes
K 5

v right up to this bound over the 10 design iterations. This indicates that it is
advantageous from the noise-reduction standpoint to use non-permeable material
at the very end of the trailing edge. From the physical point of view, it is unclear a
priori why such distribution would be favorable—onewould assume that the optimal
distribution would adopt a trend as exhibited in the porosity case in the previous test
case (see Fig. 23.5) which increase towards trailing edge where wall-bounded flow
transitions into free-shear flow. This serves to highlight the power of combining high-
fidelity flow simulations with numerical optimization algorithms—non-intuitive and
unconventional designs may be explored, particularly in areas such as this where no
clear design guidelines exist.

23.4 Conclusion

We present in this paper the development of a discrete adjoint-based optimization
framework to obtain the optimal distribution of the porous material over the trail-
ing edge of a flat plate. The near-body strength of the noise source generated by
the unsteady turbulent flow field is computed using a high-fidelity LES solver. By
optimally controlling the material porosity and permeability, it is possible to mini-
mize the turbulence intensity responsible for noise generation at the trailing edge and
therefore significantly reduce the radiated noise. In this work, exact design gradients
are computed by applying AD to the LES code. The results suggest that the proposed
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framework is effective in achieving minimum-noise designs via optimal distribution
of porous media.

To the best of our knowledge, this is the first work in the direction of noise-
minimization that couples the discrete adjoint approach with a high-fidelity three-
dimensional unsteady LES solver. This new venture presents unique challenges.
Ideally, to ensure optimal performance over long times, one must perform the opti-
mization over a few cycles of fundamental frequency of the trailing edge noise.
However, due to the low speed nature of the problem and the plate thickness, such
frequency is very low which calls for many thousands of time steps just to capture
one cycle. For a high-fidelity setup with millions of grid nodes explored in current
work, this presents an impossible task for the reverse mode AD due to the mem-
ory overhead and can only be accomplished using advanced AD techniques such as
reverse accumulation and checkpointing, which we intend to implement next.

Furthermore, we intend to perform far-field noise minimization at observation
locations many tens of chord lengths away from the plate. This will involve applying
our optimization framework to an efficient hybrid noise prediction approach devel-
oped by Ewert and Schröder [20, 21] in which the near-body turbulent flow field is
computed using a high-fidelity LES solver to obtain the noise source which is then
propagated to the far-field using the acoustic perturbation equations (APE).

Finally, from the applications standpoint, as the turbulence responsible for the
noise generation is typically 3-D by nature, we plan to apply porous tiles in both
streamwise and spanwise directions with the aim of further reducing the far-field
noise from the current porous strips.

Acknowledgments The funding of all authors by the German Research Foundation (DFG) is
gratefully acknowledged. In addition, the first author would like to acknowledge the partial funding
by the Natural Science and Engineering Research Council of Canada.

References

1. Federal Aviation Administration (2012) FAA Aerospace Forecast
2. Colonius T, Lele SK (2004) Computational aeroacoustics: progress on nonlienar problems of

sound generation. Prog Aerosp Sci 40:345–416
3. Jones BR, Crossley WA, Lyrintzis AS (2000) Aerodynamic and aeroacoustic optimization of

rotorcraft airfoils via a parallel genetic algorithm. J Aircr 37(6):1088–1096
4. RumpfkeilMP, ZinggDW (2010) A hybrid algorithm for far-field noiseminimization. Comput

Fluids 39(9):1516–1528
5. Economon TD, Palacios F, Alonso JJ (2012) A coupled-adjoint method for aerodynamic and

aeroacoustic optimization. AIAA paper 2012-5598
6. Marsden AL, Wang M, Dennis JE, Moin P (2007) Trailing-edge noise reduction using

derivative-free optimization and large-eddy simulation. J Fluid Mech 572:13–36
7. Koh SR, Schröder W, Meinke M (2011) Airframe-noise reduction by suppressing near-wall

turbulent structures. AIAA paper 2011-2904
8. Koh SR, Schröder W, Meinke M (2009) Sound generation control by fluid bleeding. AIAA

paper 2009-3225



23 A Discrete Adjoint Approach … 365

9. Choudhari M, Khorrami MR (2003) Computational study of porous treatments for altering
flap side-edge flow field. AIAA paper 2003-3113

10. Schulze J, Sesterhenn J (2013) Optimal distribution of porous media to reduce trailing edge
noise. Comput Fluids 78(20):41–53

11. Geyer T, Sarradj E, Fritzsche C (2010) Measurement of the noise generation at the trailing
edge of porous airfoils. Exp Fluids 48:291–308

12. Brinkman HC (1949) A calculation of the viscous force exerted by a flowing fluid on a dense
swarm of particles. Appl Sci Res 1(1):27–34

13. Liu Q, Vasilyev O (2007) A Brinkman penalization method for compressible flows in complex
geometries. J Comput Phys 227:946–966

14. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity
model. Phys Fluids 3(7):1760–1765

15. Johansson S (2004) High order finite difference operators with the summation by part property
based on DRP schemes. Technical report 2004-035, Uppsala University

16. Meinke M, Schröder W, Krause E, Rister T (2002) A comparison of second- and sixth-order
methods for large-eddy simulations. J Comput Phys 31:695–718

17. Hascoet L, Pascual V (2004) Tapenade 2.1 users guide. Technical report 0300, INRIA
18. Nemili A, Özkaya E, Gauger N, Carnarius A, ThieleF (2011) Optimal control of unsteady

flows using discrete adjoints. AIAA paper 2011-3720
19. Nocedal J, Wright S (2006) Numerical optimization, 2nd edn. Springer, New York
20. Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition

via source filtering. J Comput Phys 188:365–398
21. Ewert R, Schröder W (2004) On the simulation of trailing edge noise with a hybrid LES/APE

method. J Sound Vib 270:509–524



Part V
Engineering Design and Societal

Applications: Aeronautics
and Astronautics



Chapter 24
Conceptual Design of Single-Stage Launch
Vehicle with Hybrid Rocket Engine Using
Design Informatics

Kazuhisa Chiba, Masahiro Kanazaki, Koki Kitagawa and Toru Shimada

Abstract A single-stage launch vehicle with hybrid rocket engine has been
conceptually designed by using design informatics, which has three points of view
as problem definition, optimization, and data mining. The primary objective of the
design in the present study is that the sufficient down range and the duration time in
the lower thermosphere are achieved for aurora scientific observation whereas the
initial gross weight is held down. Multidisciplinary design optimization and data
mining were performed by using evolutionary hybrid computation under the con-
ditions that polypropylene as solid fuel and liquid oxygen as liquid oxidizer were
adopted and that single-time ignition is implemented in sequence. Consequently, the
design information regarding the tradeoffs and the behaviors of the design variables
in the design space was obtained in order to quantitatively differentiate the advantage
of hybrid rocket engine.
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24.1 Introduction

Single-stage rockets have been being researched and developed for the scientific
observations and the experiments of high-altitude zero-gravity condition, whereas
multi-stage rockets havebeenbeing also studied for the orbit injection of payload.The
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration
Agency (JAXA) has been operating K, L, and M series rockets as the representatives
of solid rocket in order to contribute to the space scientific research.Anext-generation
single-stage rocket as well as multi-stage rocket is necessary due to the retirement
of M-V in 2008 and in order to promote space scientific research. In fact, E rocket
will begin to be operated from August 2013. On the other hand, the launch vehi-
cle with hybrid rocket engine using solid fuel and liquid oxidizer has been being
researched and developed as an innovative technology in mainly Europe and United
States [12, 19]. The present study will investigate the conceptual design in order
to develop a next-generation single-stage launch vehicle with hybrid rocket engine.
Since the technologies of hybrid rocket engine for single-stage andmulti-stage are not
independent, the solution of the fundamental physics regarding single-stage hybrid
rocket is also the knowledge for multi-stage. Although three-stage hybrid rocket is
parallel studied, design requirements are different because of the difference of the
operation objectives. A hybrid rocket offers the several advantages as higher safety,
lower cost, and environmental friendly. In fact, the SpaceShipOne successfully uses
a hybrid rocket engine for a private manned space flight.1 The multi-time ignition is
the especial advantage of hybrid rocket engine [17]. On the other hand, the disad-
vantage of a hybrid rocket engine is in its combustion. As a hybrid rocket engine has
low regression rate of solid fuel, the thrust of hybrid rocket engine is less than that of
pure solid and pure liquid engines. Multidisciplinary design requirements should be
considered in order to surmount the disadvantage of hybrid rocket engine. Moreover,
design information will be obtained in order to exhaustively grasp the design space.

Design informatics is essential for practical design problems. Although solving
design optimization problems is important under the consideration of many disci-
plines of engineering [1], the most significant part of the process is the extraction of
useful knowledge of the design space from results of optimization runs. The results
produced by multiobjective optimization (MOO) are not an individual optimal solu-
tion but rather an entire set of optimal solutions due to tradeoffs. That is, the result
of a MOO is not sufficient from the practical point of view as designers need a con-
clusive shape and not the entire selection of possible optimal shapes. On the other
hand, this set of optimal solutions produced by an evolutionary MOO algorithm
can be considered a hypothetical design database for design space. Then, data min-
ing techniques can be applied to this hypothetical database in order to acquire not
only useful design knowledge but also the structurization and visualization of design
space for the conception support of basic design. This approach was suggested as

1 “Scaled Composites, LLC” available online at http://www.scaled.com/projects/tierone/ [retrieved
24 May 2013].

http://www.scaled.com/projects/tierone/
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the design informatics [5]. The goal of this approach is the conception support for
designers in order to materialize innovation. This methodology is constructed by the
three essences as (1) problem definition, (2) efficient optimization, and (3) structur-
ization and visualization of design space by data mining. A design problem including
objective function, design variable, and constraint, is strictly defined in view of the
background physics (it takes several months because this process determines the
quality of the design space), then optimization is implemented in order to acquire
nondominated solutions (quasi-Pareto solutions) as hypothetical database. Data min-
ing is performed for this database in order to obtain design information. Mining has
the role of a postprocess for optimization.Mining result is the significant observations
for next design phase and also becomes the material to redefine a design problem.

In the present study, a single-stage launch vehicle with hybrid rocket engine of
solid fuel and liquid oxidizer for the scientific observation of aurora will be con-
ceptually designed by using design informatics approach in order to quantitatively
reveal the ascendancy and in order to discover the fundamental physics regarding
hybrid rocket engine. As a first step, an optimization problem on single-time igni-
tion, which is the identical condition of the current solid rocket, is defined under
the present studying constructions, and then the design information, which is the
correlation among objective functions (design requirements) and the influence of
design variables, is obtained. As a second step, the implication of solid fuels in per-
formance of hybrid rocket will be revealed because the regression rate is one of the
key elements for the performance of hybrid rocket. The validity of the problem defi-
nition will be considered by using the design information from the two-step results.
Finally, the sequence using multi-time ignition, which is the great advantage of a
hybrid rocket, will be investigated in order to reveal the ascendancy of hybrid rocket
and also practically contribute to space science. The standing point of the present
research is on the first step as the milestone to observe the quantitative difference of
performance between conventional solid rocket and the present hybrid rocket. More-
over, the present research investigates the role as the reference result to quantitatively
show the ascendancy of multi-time ignition.

24.2 Design Informatics

Design informatics after the definition of detailed problem is constructed by two
phases as optimization and data mining. Evolutionary computation is used for opti-
mization. Although a surrogate model [11] like as the Kriging model [16], which is
a response surface model developed in the field of spatial statistics and geostatistics,
can be employed as optimization method, it will not be selected because it is diffi-
cult to deal with a large number of design variables. In addition, since the designers
require to present many exact optimum solutions for the decision of a compromise
one, an evolutionary-based Pareto approach as an efficient multi-thread algorithm,
which the plural individuals are parallel conducted, is employed instead of gradient-
based methods. The optimizer used in the present study is the evolutionary hybrid
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method between the differential evolution (DE) and the genetic algorithm (GA) [4].
Moreover, global design information is primarily essential in order to determine a
compromise solution. Therefore, a self-organizing map (SOM) [13] is used as a data
mining technique in the present study because SOM extracts the global information
in design space [6].

24.2.1 Hybrid Optimization Method

The view of hybridization is inspired by the evolutionary developmental biology [2].
When there is the evolution which the Darwinism cannot explain in the identical
species, each individual might have a different evolutionary methodology. When the
practical evolution is imitated for the evolutionary computation, the different evolu-
tionary algorithms might ultimately be applied to each individual in population. The
making performance of next generation for each methodology depends on not only
their algorithms but also the quality of candidate of parent in the archive of non-
dominated solutions. The present hybridization is intended to improve the quality of
candidate of parent by sharing the nondominated solutions in the archive among each
methodology. In the present study, the evolutionary hybrid optimization methodol-
ogy between DE and GA is employed. It was confirmed that this methodology had
the high performance regarding the convergence and diversity, as well as the strength
for noise [4]. Note that noise imitates the error on computational analyses and exper-
iments and is described as the perturbation on objective functions. It is an important
factor when the optimization for practical engineering problem is considered.

The flowchart of the present hybrid methodology is shown in Fig. 24.1. First,
multiple individuals are generated randomly as an initial population. Then, objective
functions are evaluated for each individual. The population size is equally divided into

Fig. 24.1 Conceptual
flowchart of the present
evolutionary hybrid
methodology
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sub-populations between DE and GA (although sub-population size can be changed
at every generations on the optimizer, the determined initial sub-populations are fixed
at all generations in the present study). New individuals generated by each opera-
tion are combined in next generation. The nondominated solutions in the combined
population are archived in common. It is notable that only the archive data is in com-
mon between DE and GA. The respective optimization methods are independently
performed in the present hybrid methodology.

24.2.2 Configurations of Operators for Optimizer

The present optimization methodology is a real-coded optimizer [14]. Although
GA is based on the real-coded NSGA-II (the elitist nondominated sorting genetic
algorithm) [7], it is made several improvements on in order to be progressed with
the diversity of solutions. Fonseca’s Pareto ranking [8] and the crowding distance [7]
are used for the fitness value of each individual. The stochastic universal sampling
[3] is employed for parents selection. The crossover rate is 100%. The principal
component analysis blended crossover-α (PCABLX) [20] and the confidence interval
based crossover using L2 norm (CIX) [10] are used because of the high performance
for the convergence and the diversity as well as the strength for noise [4]. The
subpopulation size served by GA is equally divided for these two crossovers. The
mutation rate is set to be constant as the reciprocal of the number of design variables.
For alternation of generations, the Best-N selection [7] is used. DE is used as the
revised scheme [15] for multiobjective optimization from DE/rand/1/bin scheme.
The scaling factor F is set to be 0.5. The present optimizer has the function of
range adaptation [18], which changes the search region according to the statistics of
better solutions, for all design variables. In the present study, the range adaptation is
implemented at every 20th generations.

24.2.3 Data-Mining Technique

In the present study, SOM is selected as a data-mining technique because the primary
objective of data mining is the acquisition of global design information in order to
implement the structuring of design space. The previous study [6] indicated that SOM
extracted the global design information for whole design space. The distinguishing
feature of SOM is the generation of a qualitative description. The advantage of
this method includes the intuitive visualization of two-dimensional colored maps of
design space using bird’s-eye-views. As a result, SOM reveals the tradeoffs among
objective functions.Moreover, SOMaddresses the effective design variables and also
reveals how a specific design variable gives effects on objective functions and other
design characteristics. One SOM is colored for one variable of objective function,
design variable, and other characteristic value so that the coloring pattern is compared
each other. In the present study, SOMs are generated by using commercial software
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Viscovery® SOMine 4.0 plus produced by Eudaptics, GmbH.2 The uniqueness of the
map generated by SOMine is assured due to Kohonen’s Batch SOM algorithm and
search of the best-matching unit for all input data and adjustment of weight vector
near the best-matching unit.

24.3 Problem Definition

The conceptual design for a single-stage hybrid rocket, simply composed of a payload
chamber, an oxidizer tank, a combustion chamber, and a nozzle is considered in the
present study. A single-stage hybrid rocket for aurora scientific observation will be
focused because the rocket for more efficient scientific observation is desired for
successfully obtaining new scientific knowledge on the aurora observation by ISAS
in 2009. In addition, a single-stage hybrid rocket problem fits for the resolution of
the fundamental physics regarding hybrid rocket engine and for the improvement of
the present design problem due to its simplification.

24.3.1 Objective Functions

Three objective functions are defined in the present study. First objective is the max-
imization of the down range in the lower thermosphere (altitude of 90 to 150km)
Rd (km) (obj1). Second is the maximization of the duration time in the lower ther-
mosphere Td (s) (obj2). It recently turns out that atmosphere has furious and intricate
motion in the lower thermosphere due to the energy injection, which leads aurora,
from high altitude. The view of these objective functions is to secure the horizontal
distance and time for the competent observation of atmospheric temperature and the
wind for the elucidation of atmospheric dynamics and the balance of thermal energy.
Note that the priority between the down range and the duration time depends on sci-
entific mission requirement. The present study investigates the correlation between
them on the definition of the exhaustive design space because of no concrete mission
requirement. Third objective is the minimization of the initial gross weight of launch
vehicle Mtot(0) (kg) (obj3), which is generally the primary proposition for space
transportation system.

24.3.2 Design Variables

Seven design variables are used as the initial mass flow of oxidizer ṁoxi(0) (kg/s)
(dv1), fuel length L fuel (m) (dv2), the initial radius of port rport(0) (m) (dv3),
combustion time tburn (s) (dv4), the initial pressure in combustion chamber

2 “Eudaptics” available online at http://www.eudaptics.com [retrieved 19 October 2012].

http://www.eudaptics.com
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Table 24.1 Limitation of upper/lower values of each design variable

Serial number Design variable Design space

dv1 Initial mass flow of oxidizer 1.0≤ ṁoxi(0) (kg/s) ≤30.0

dv2 Fuel length 1.0≤ L fuel (m) ≤10.0

dv3 Initial radius of port 0.01≤ rport(0) (m) ≤0.30

dv4 Combustion time 10.0≤ tburn (s) ≤40.0

dv5 Initial pressure in combustion chamber 3.0≤ Pcc(0) (MPa) ≤6.0

dv6 Aperture ratio of nozzle 5.0≤ ε (−) ≤8.0

dv7 Elevation at launch time 50.0≤ φ(0) (deg) ≤90.0

Pcc(0) (MPa) (dv5), the aperture ratio of nozzle ε (−) (dv6), and the elevation at
launch time φ (deg) (dv7). Note that there is no constraint except the limitations
of upper/lower values of each design variable summarized in Table24.1. These
upper/lower values are exhaustively covering the region of the design space which is
physically admitted.When there is a sweet spot (the region that all objective functions
proceed optimum directions) in the objective-function space, the exploration space
would intentionally become narrow due to the operation of the range adaptation on
the evolutionary computation.

24.3.3 Evaluation Method

First of all, the mixture ratio between liquid oxidizer and solid fuel O/F(t) is com-
puted by the following equation.

O

F
(t) = ṁoxi(t)

ṁfuel(t)

ṁfuel(t) = 2πrport(t)L fuelρfuelṙport(t) (24.1)

rport(t) = rport(0) +
∫

ṙport(t) dt

ṁoxi(t) and ṁfuel(t) are the mass flow of oxidizer (kg/s) and the mass flow of fuel
(kg/s) at time t , respectively. rport(t) is the radius of port (m) at t , L fuel describes fuel
length, and ρfuel is the density of fuel (kg/m3). ṙport(t) describes the regression rate
of fuel. After that, an analysis of chemical equilibrium is performed by using NASA-
CEA (chemical equilibrium with applications)3 [9], then trajectory, thrust, aerody-
namic, and structural analyses are respectively implemented. The present rocket is
assumed as a point mass. As the time step is set to be 0.5 s in the present study, it takes
roughly 10s for the evaluation of an individual using a general desktop computer.
The contents of each analysis are briefly summarized as follows.

3 “Chemical Equilibrium with Applications” available online at http://www.grc.nasa.gov/www/
ceaweb/ceahome.htm [retrieved 8 November 2012].

http://www.grc.nasa.gov/www/ceaweb/ceahome.htm
http://www.grc.nasa.gov/www/ceaweb/ceahome.htm
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24.3.3.1 Trajectory/Thrust Analysis

The following equation of motion, which ignores the influence of atmosphere,
described by using T (t) (N) and drag D(t) (N) is computed for rocket motion.

Mtot(t)(a(t) − g) = (T (t) − D(t)) sin φ(t) (24.2)

Mtot(t) is the gross weight (kg) at t , a(t) describes acceleration (m/s2) at t , and g is
gravity (m/s2). T (t) is evaluated by using the following equation.

T (t) = ηT
{
λṁprop(t) · ue + (Pe − Pa) · Ae

}
(24.3)

where, ηT is total thrust loss coefficient, λ is momentum loss coefficient at nozzle exit
by friction, ṁprop(t) is the mass flow of propellant, ue is the velocity at nozzle exit,
Pe is the pressure at nozzle exit, Pa is the pressure of atmosphere at flight altitude,
and Ae describes the area of nozzle exit. φ(t) describes the Euler angle at t , that is,
the inclination against the ground. φ(0) describes the elevation at launch time.

ṁprop(t) = −(ṁoxi(t) + ṁfuel(t)) (24.4)

A combustion chamber is filled with solid fuel with a single port at the center to
supply oxidizer. As the regression rate to the radial direction of the fuel ṙport(t) (m/s)
generally governs the thrust power of hybrid rocket engine, it is a significant para-
meter. The following empirical model [21] is used in the present study.

ṙport(t) = afuel × Gnfuel
oxi (t)

= afuel ×
(

ṁoxi(t)

πr2port(t)

)nfuel (24.5)

where, Goxi(t) is oxidizer mass flux [kg/(m2 s)] and it has upper limitation of 1,000 in
the present study. afuel (m/s) and nfuel (−) are the constant values empirically deter-
mined by fuels. In the present study, liquid oxygen as liquid oxidizer and polypropy-
lene as thermoplastic resin for solid fuel in order to adopt swirling flow for the supply
mode of oxidizer. Therefore, afuel and nfuel are respectively set to be 8.26×10−5 m/s
and 0.5500.

24.3.3.2 Structural Analysis

Body is divided into the components as combustion chamber, oxidizer tank, and
nozzle in order to decide weight and shape. First, total length L tot is defined by
using the length of combustion chamber Lcc, the length of oxidizer tank Loxi, and
the length of nozzle Lnoz as follows;

L tot = 1.5 × (Lcc + Loxi + Lnoz) (24.6)



24 Conceptual Design of Single-Stage Launch Vehicle … 377

It is assumed that the outside radius of fuel rfuel is equal to the inside radius of
combustion chamber. The outside radius of rocket Rtot is also defined as the outside
radius of oxidizer tank by using the radius of fuel rfuel and the thickness of oxidizer
tank toxi.

Rtot = rfuel + toxi (24.7)

where, oxidizer tank and combustion chamber are assumed as thin cylindrical/
spherical structure. The thickness of oxidizer tank toxi is defined as the following
equation.

toxi = fs · Poxi · rfuel
σoxi

(24.8)

fs is the safety factor (in the present study, the constant value of 1.25 is set), Poxi is
the internal pressure of oxidizer tank, σoxi is the allowable stress for oxidizer tank.
The internal pressure of combustion chamber Pcc(t) is described as the following
equation.

Pcc(t) = (ṁoxi(t) + ṁfuel(t)) · c∗(t)
Athroat

(24.9)

where, c∗(t) and Athroat respectively represents characteristic exhaust velocity and
the area at nozzle throat. c∗(t) is estimated by NASA-CEA. Note that there is no
constraint regarding the structural requirements for strength and vibration due to the
simplification of the present problem. Initial gross weight Mtot(0) is evaluated by
the following equation.

Mtot(0) = Mprop(0)

0.65
+ Mpay

= Moxi(0) + Mfuel(0)

0.65
+ Mpay (24.10)

Moxi(0) =
tburn∫

0

ṁoxi(t) dt

Mfuel(0) =
tburn∫

0

ṁfuel(t) dt

Mprop(0), Moxi(0), and Mfuel(0) are the mass of propellant, the mass of oxidizer, and
the mass of fuel, respectively. Mpay describes the mass of payload. The present Mpay
is the constant value of 40kg. The constant value of 0.65 in Eq. (24.9) represents that
the mass of propellant assumes 65% of the initial gross weight Mtot(0). Total weight
is defined as the summation of all components. The weight of each component is
calculated by the product of volume and density.
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24.3.3.3 Aerodynamic Analysis

D(t) is described by using pressure drag Dp(t) and friction drag D f (t), which are
respectively estimated by using the flight data of S-520 as the solid rocket in ISAS.

D(t) = Dp(t) + D f (t)

Dp(t) = 1

2
ρV 2SrefC

(S−520)
Dp

(24.11)

D f (t) = 1

2
ρV 2StotCD f

where, Sref is reference area and Stot is total surface area. Pressure drag coefficient
CDp and friction drag coefficient CD f are calculated as follows;

C (S−520)
Dp

= C (S−520)
D − C (S−520)

D f
· S(S−520)

tot

S(S−520)
ref

C (S−520)
D f

= 0.455

(log10 Re)2.58
· 1

(1 + 0.144M2)0.655
(24.12)

Re = V L(S−520)
tot

ν

M = V√
γ RT

Re, M , and V respectively describe Reynolds number, Mach number, and velocity.
Total length L(S−520)

tot = 8.715m, specific heat ratio γ = 1.4, and gas constant
R = 287J/(kg·K).

CD f = 0.455

(log10 Re)2.58
· 1

(1 + 0.144M2)0.655

Re = V L tot

ν
(24.13)

Kinematic viscosity coefficient ν (m2/s) and atmospheric temperature T (K) are vari-
ables for altitude, referring International Standard Atmosphere.

24.4 Results

24.4.1 Optimization Result

The population size is set to be 18 and evolutionary computation is performed until
3,000 generations when the evolution is roughly converged. The plots of acquired
nondominated solutions are shown in Fig. 24.2, which reveals that there generates
no multimodal and clean convex curved surface.
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(a)

(b) (c) (d)

Fig. 24.2 Plots of nondominated solutions derived by optimization, a plotted in three dimensional
objective-function space, b projected plot onto two dimension as down range Rd (obj1) versus
duration time Td (obj2), c projected plot onto two dimension as duration time Td (obj2) versus initial
gross weight Mtot(0)(obj3), and (d) projected plot onto two dimension as down range Rd (obj1)
versus initial gross weight Mtot(0)(obj3)

There is no tradeoff between the down range Rd and the duration time Td in the
lower thermosphere shown in Fig. 24.2b. This figure also shows that there are upper
limitations of roughly 250km for the down range Rd and of roughly 220s for the
duration time Td . Therefore, the projection plots onto two dimension between the
down range Rd and the duration time Td do not converge in one point. In the present
study, the initial mass flow of oxidizer ṁoxi(0) (dv1) has the limitation of upper/lower
values. Since the regression rate of fuel ṙport(t) as an empirical model uses the mass
flow of oxidizer ṁoxi(t), ṙport(t) has constraints. As a result, the limitations are
generated for the down range Rd and the duration time Td .

There is an incomplete tradeoff between the duration time Td and the initial gross
weight Mtot(0) shown in Fig. 24.2c. The convex nondominated surface to optimum
direction with incompleteness is generated due to the limitation of the duration time
Td . As the inclination�Mtot(0)/�Td is small on the convex curve, the duration time
Td can be substantially improved when trifling initial gross weight Mtot(0) would
be sacrificed. In addition, Fig. 24.2c shows that the minimum initial gross weight to
reach the limitation of the duration time (roughly 220s) is approximately 700kg.
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And also, the minimum initial gross weight to attain to the lower thermosphere
(altitude of 90km) is approximately 350kg. As these values are better than those of
the solid rockets which are operated at present for scientific observation, it suggests
that hybrid rocket has an advantage evenwhen hybrid rocket does not have a sequence
of multi-time ignition.

There is a severe tradeoff between the down range Rd and the initial gross weight
Mtot(0) shown inFig. 24.2d (although thedown range strictly has the upper limitation,
it seems that the clean convex curve is generated because the limitation is on the edge
of the nondominated surface). This figure shows that the maximum down range is
roughly 130km when the minimum initial gross weight to reach the limitation of
the duration time Td (roughly 700kg) is adopted. The initial gross weight Mtot(0)
should be absolutely increased in order to have more down range Rd (greater than
130km) despite no increase of the duration time Td (remaining roughly 220s). This
fact suggests that the design strategies for the maximizations of the down range Rd

and the duration time Td are different.

24.4.2 Data-Mining Result Using SOM

Figure24.3 shows SOMs colored by the objective functions and the design variables.
As this SOM learning is implicated based on the values of the objective functions as
the indicator for the similarity on the neural network, SOMs colored by the objective
functions have absolutely gradation shown in Fig. 24.3a. Figure24.3b is the SOMs
colored by the design variables. The upper/lower values of coloring range are set to
be upper/lower values defined in the problem summarized in Table24.1.

obj1 obj2 obj3

dv1 dv2 dv3 dv4 dv5 dv6 dv7

(b)

(a)

Fig. 24.3 SOMs generated by the objective-function values a colored by the objective functions,
b colored by the design variables, upper/lower values are set to be those in problem definition in
Table24.1
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24.4.2.1 Acquired Information Regarding Relationship
Among Objective Functions

The comparison of the coloring pattern in Fig. 24.3a reveals the tradeoffs among the
objective functions. When obj1 is high value (red region), obj2 absolutely becomes
high. However, as obj1 does not always become high whenever obj2 is high, this
relationship is irreversible. This is because not only the down range Rd (obj1) but
also the attained maximum altitude gives the effect on the duration time Td (obj2).
In contrast, when obj2 is low value (blue region), obj1 absolutely becomes low.
However, as obj2 does not always become lowwhenever obj1 is low, this relationship
is similarly irreversible. Although there is no tradeoff in the global space of the
objective functions, there is locally tradeoff at the right bottom of Fig. 24.3. This local
tradeoff is caused by the limitation of the duration time Td (obj2), that is, reaching the
maximum value of the duration time Td (obj2) is easier than achieving the maximum
value of the down range Rd (obj1).

Since the initial gross weight Mtot(0)(obj3) is theminimization function, there are
severe tradeoffs among obj3 and the others. It especially reveals the severe problem
that the optimum direction of the down range Rd (obj1) and the pessimum direction
of the initial gross weight Mtot(0)(obj3) accord (observing the upper left on SOM
regarding obj1 and obj2 reveals that the better obj1 and the worse obj3 accord).
The structural constraints and the combustion mode should be reconsidered in order
to avoid this problem. On the other hand, the optimum region of the duration time
Td (obj2) and the pessimumdirection of the initial gross weight Mtot(0)(obj3) overlap
only in part. Therefore, the initial gross weight Mtot(0) can become low when the
duration time Td is the primary objective. On the other hand, the minimum initial
gross weight is decided by the expected down range when the down range Rd is the
primary objective, that is, the minimum initial gross weight depends on the mission
requirement as the necessary down range.

24.4.2.2 Acquired Information Regarding Behavior of Design Variables

Figure24.3b reveals the behavior of each design variable in the design space with the
defined wide range which is physically available in order to become the nondomi-
nated solution. All nondominated solutions have higher dv1 than the lower bound of
dv1 defined in Table24.1. This fact suggests that the minimum initial mass flow of
oxidizer is necessary in order to attain to the lower thermosphere (altitude of 90km).
Themass flowof oxidizer ṁoxi(t) affects the structural weight because of the increase
of the filling pressure of oxidizer tank and the pressure of the combustion chamber
Pcc(t). Threfore, the initial mass flow of oxidizer ṁoxi(0)(dv1) is essential in order
to improve the initial gross weight Mtot(0)(obj3).

The value of dv2 does not have both high and low. As the minimum fuel length is
necessary in order to attain to the lower thermosphere (altitude of 90km), dv2 does
not have low. On the other hand, as it is considerable that the fuel length L fuel(dv2)
does not affect strongly on the maximization of the down range Rd and the duration
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time Td rather than the initial mass flow of oxidizer ṁoxi(0)(dv1), the fuel length
L fuel(dv2) does not have high value.

The value of dv3 is roughly constant. This fact indicates that there is the optimum
initial radius of port rport(0)(dv3), which might be determined by the combustion
mode and the swirl intensity. The other combustion mode should be investigated in
order to confirm it.

The value of dv4 is in the narrow region of the design space. But, the combustion
time tburn(dv4) becomes high when the initial gross weight Mtot(0)(obj3) is high.
That is, the combustion time tburn(dv4) has identical behavior of the initial radius of
port rport(0)(dv3) in the design space except the direct affection on the initial gross
weight Mtot(0)(obj3). Threfore, the implication of other fuels should be investigated.

The value of dv5 has lowvalue. The high value of the initial pressure in combustion
chamber Pcc(0)(dv5) fundamentally gives high thrust. As it is expected that the
structural requirement is not fulfilled due to high pressure, the structural fulfillment
should be confirmed by the parametric study regarding the structural safety factor. In
addition, the time fluctuation regarding the pressure in combustion chamber Pcc(t)
should be observed in the next-step design problem.

The value of dv6 has the coloring pattern in a muddle which is similar to that
of dv5, although there is the difference of color. Since the aperture ratio of nozzle
ε(dv6) becomes high in order to keep the high thrust, ε(dv6) indirectly give the effect
on the objective functions. In fact, the high value of dv6 is on the upper left of SOM,
which is the region to become high objective functions.

The coloring pattern of SOM by dv7 is similar to that by obj1. As the vertical
launch would be implemented when the elevation at launch time φ(dv7) becomes
high, it is easily understandable that the down range Rd (obj1) is low. The definition
of the next-step design problem will be discussed by all designers using the above
design information.

24.5 Conclusions

The next-generation single-stage launch vehicle with hybrid rocket engine of solid
fuel and liquid oxidizer on behalf of the present pure solid-fuel rockets has been
conceptually designed by using design informatics in order to contribute to the low
cost launch vehicle system and efficient space scientific observation. The objective
functions as the design requirements in the design problem is the maximization of
the down range and the duration time in the lower thermosphere as well as the min-
imization of the initial gross weight. The evolutionary hybrid computation between
the differential evolution and the genetic algorithm is employed for the efficient
exploration in the design space. A self-organizing map is used in order to structurize
and visualize the design space.

As a result, the design information has been revealed regarding the tradeoffs
among the objective functions and the behavior of the design variable in the design
space. Consequently, the design strategy for the maximizations of the down range
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and the duration time is different because the duration time can easily attain the
limitation rather than the down range. The characteristics as the regression rate of
fuel and structure coefficients shound be investigated as a next design phase in order
to reveal the performance limitation of single-time ignition on hybrid rocket eingine.
And also, these results indicate that the ascendancy of multi-time ignition as the
advantage of hybrid rocket will be quantitatively shown. The results show the quan-
titative data to compare the performances of solid-fuel rocket in present and hybrid
rocket with multi-time ignition.
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Chapter 25
Robust Optimization of a Helicopter Rotor
Airfoil Using Multi-fidelity Approach

F. Fusi, P.M. Congedo, A. Guardone and G. Quaranta

Abstract A robust optimization technique is developed for the aerodynamic shape
optimization of a helicopter rotor airfoil considering uncertain operating conditions.
Both a CFD model and a coupled panel/integral boundary layer model of the aerody-
namics are coupled with an optimization code based on Genetic Algorithms. In order
to reduce the computational cost of the robust optimization, a multi-fidelity strategy
is developed which employs both aerodynamic models inside the optimization loop.

Keywords Helicopter rotor airfoil design · Multi-fidelity optimization · Robust
Optimization

25.1 Introduction

Shape optimization is a very powerful tool for aerodynamic design: it is well-suited
to indicate possible directions of improvement of actual design, explore unusual
design and deal with multiple operating conditions and objectives [9]. However, the
employment of a theoretical model of the actual system is based on assumptions and
simplifications that introduce errors in the prediction of the performance. In addi-
tion, a large portion of the data necessary to build the numerical model is affected
by numerous sources of uncertainties. A very active research field is devoted to the
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development of robust optimization techniques, namely algorithms that seek an opti-
mal design capable of satisfactory performances when considering the variability of
system parameters [1]. The application of uncertainty-based analysis is very attrac-
tive in the field of aerospace vehicle design where reliability and performance are
important issues; a crucial point is to design stable configurations without loss of
performance in off-design conditions [20]. In particular, one challenging area for the
application of robust optimization techniques is the aerodynamic design of helicopter
rotor blades. As a matter of fact, rotors feature a very complex aerodynamics with
unsteady effects due to the blade motion, as well as the presence and interaction of
tip vortices and wakes trailed from each blade [12] (see Fig. 25.1). These phenomena
require an accurate prediction, which could be achieved by means of high fidelity
analysis tools, i.e. Computational Fluid Dynamics (CFD) codes. Unfortunately, CFD
codes can be very expensive from a computational point of view, especially when
employed in the design stage where many computations are needed. In addition,
rotor blades should deliver an adequate level of performance both in hover and for-
ward flight, two operating conditions which are characterized by extremely different
flows: in the former the velocity variation along the blade is azimuthally axisymet-
ric and radially almost linear, so that the flow on each section of the blade can be
considered as steady; in the latter, in addition to the radial variation the flow varies
with respect to blade azimuth angle and the freestream velocity adds to or subtracts
from the rotational velocity of the blade, yielding an unsteady periodically chang-
ing flow. In most cases, good performance in hover is unlikely to be carried over to
forward flight and this problem can only be tackled by a multi-objective approach
in the design of the blade. Even in the case of a single operating conditions opti-
mization, the complex flowfield around the helicopter rotor puts each section of the
blades under largely variable operating conditions; this variability makes the blade
aerodynamic optimization a very interesting case for the development and applica-
tion of robust approaches. All these elements undoubtedly aggravate the numeri-
cal cost of the optimization procedure to the extent that comprehensive algorithms
with the computational efficiency and robustness of those developed for fixed-wing
design optimization have not emerged yet [3]. In such a context, taking into account
the variability of the model parameters in the optimization procedure has a great
impact on the computational cost, because of the higher number of evaluations of the

Dynamic stallTail and fuselage
interaction

Blade dynamics
and aeroelasticity

Wakes and blade
vortex interaction

Transonic
flow

Fig. 25.1 Characteristics of the complex flowfield around a helicopter rotor
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aerodynamic performance required to compute the optimal design. It is then required
to develop optimization strategies capable to reduce the computational burden with-
out jeopardizing the accuracy of the results. A possibility is then replacing the high-
fidelity model of the aerodynamics provided by the accurate, yet expensive CFD
codes with low-fidelity models; examples of these models are potential flow mod-
els, which have been employed in the past both in fixed wing [8] and rotor airfoil
design [6, 18], as well as approximate models of the performance, such as response
surfaces [13, 16]. These models require small amount of CPU time, but can have a
small range of applicability. Another option is given by the development of a pro-
cedure that employs models of different fidelity and level of approximation in the
attempt to balance pros and cons of each model; in the literature this solution is
usually referred to as multi-fidelity optimization and it has been applied to achieve
accurate results with lower computational cost [4, 15].

The present work is devoted to the assessment of the numerical efficiency of the
proposed robust optimization techniques with application to the problem of rotor
airfoil design. A genetic algorithm is coupled with a non-intrusive uncertainty prop-
agation technique to solve the robust optimization problem of finding the optimal
airfoil which maximizes the aerodynamic efficiency under uncertain operating con-
dition. Two different aerodynamic models with different fidelity are employed in
order to assess the effect of the choice of the model on the optimal design as well as
the computational cost: (i) a high-fidelity CFD code and (ii) an aerodynamic code
coupling a panel method and integral boundary layer method. A controlled multi-
fidelity strategy is then implemented in order to reduce the computational cost of the
optimization procedure. Finally, a comparison among the design obtained with the
various approaches is performed.

25.2 Optimization Problem

The robust optimization technique is applied to the optimal design of helicopter rotor
airfoil in hovering condition. Only one flight condition is considered in this paper.
Instead of considering a deterministic, known-a-priori operating condition for hover,
it is assumed that the freestream condition is affected by some uncertainties, such as
the uncertainty arising from modeling errors (e.g. the blade inflow model), as well as
by other physical sources of uncertainty like blade structural flexibility or variation
in the environmental condition. In particular, since the airfoil operating condition
in design is typically given by the blade pitch angle θ and the induced velocity Vi ,
uncertainties on these two system variables are considered in the present analysis.

The objective of the aerodynamic optimization is to maximize the lift-to-drag
ratio E , which is the measure of the aerodynamic efficiency of the airfoil, in order
to ensure greater aerodynamic lift while reducing the aerodynamic drag. Thus,
the objective of this analysis is to find an optimal airfoil shape that could be
robust: this means that the design parameters x defining the shape of the airfoil
simultaneously permit to optimize the mean value μE and to minimize the variance
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σ 2
E of the objective function, computed when taking into account the uncertainties

of the operating conditions. Unlike a single-objective optimization where there is
only one global optimum, in multi-objective optimization there is a set of optimal
solutions (the so-called Pareto front) corresponding to various trade-offs between a
high mean value and a low variance.

Furthermore, constraints g need to be set in order to obtain reasonable design;
in this sense, the pitching moment coefficient computed at quarter-chord location is
restrained to prevent excessive loads on the blade structure, whereas the geometry of
the airfoil is constrained in such a way that only airfoils having one inflection points
per surface are allowed, so that geometries unfeasible from a structural point of view
are discarded.

In mathematical terms, the resulting optimization problem can be stated as:

optimize:
(
μE (x, ξ) , σ 2

E (x, ξ)
)

subject to: g (x, ξ ) ≤ 0 (25.1)

with respect to the design variables x varying in the solution space σ 2 and with
uncertain system parameters ξ = {θ, Vi } varying in the stochastic space Ω .

25.2.1 Shape Parameterization

It is necessary to parameterize the airfoil shape by using a finite set of design vari-
ables. In this work, the airfoil is described by means of a parameterization called
Class/Shape function Transformation (CST) [11]. This strategy is very efficient for
representing rounded-nose airfoils with a small number of parameters. The parame-
terization is well-defined by specifying a geometry class function (which determines
a group or a class of geometries) and a shape function that defines the actual shape
of the geometry. The former is defined as

C(ψ) = ψ N1(1 − ψ)N2, (25.2)

where ψ is the chordwise coordinate divided by chord length (ψ = x/c) and N1 and
N2 are appropriate coefficient that determine the class; in the case of an airfoil with
a rounded nose and a sharp trailing edge: N1 = 0.5 and N2 = 1 (see Ref. [11] for
further details). The shape function S(ψ) is given by a Bernstein polynomial of order
n. The CST is applied to the camber mean-line ζc and to the thickness distribution
ζt of the airfoil and it reads

ζc(ψ) = C(ψ) · S(ψ) + ψζTc

= C(ψ) ·
n∑

i=0

Aci Sn,i (ψ) + ψζTc
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ζt (ψ) = C(ψ) · S(ψ)

= C(ψ) ·
n∑

i=0

Ati Sn,i (ψ) (25.3)

where the coefficients Aci , Ati and the coordinate of the trailing edge of the mean
camberline ζTc represent the design variables of the optimization x (please note
that the coordinate of the trailing edge of the thickness distribution is set to zero to
consider closed trailing edge airfoil). The order of the polynomial is set to seven after
an analysis of the ability of the CST to represent a group of typical helicopter rotor
airfoils; the resulting design variables are 17. Finally, from the meanline and camber
distribution the upper surface ζu and lower surface ζl are then computed as follows

ζu = ζc + 1

2
ζt ζl = ζc − 1

2
ζt . (25.4)

25.2.2 Aerodynamic Models

The evaluation of the objective function is performed by means of two aerodynamic
models. The high-fidelity model is the ROtorcraft Software ITAlia (ROSITA) flow
solver [2], which is a numerical solver of the Reynolds-Averaged Navier Stokes
equations coupled with the turbulence model of Spalart-Allmaras. The solver pro-
vides space discretization schemes, such as cell-centered finite-volume implemen-
tation of either Roe’s or Jameson’s scheme, with scalar and matricial numerical
viscosity; second order accuracy is obtained through the use of MUSCL extrapola-
tion supplemented with a modified version of the Van Albada limiter introduced by
Venkatakrishnan [17]. Time advancement is carried out with a dual-time stepping
scheme, employing a second-order backward differentiation scheme to approximate
the time derivative and an implicit scheme in pseudo-time. The generalized conjugate
gradient, in conjunction with a block preconditioner, is used to solve the resulting
system. The solver is integrated in the optimization loop and each computation of
the flowfield of a new design is obtained starting from a baseline computation and
applying a suited displacement to the airfoil boundary of the mesh; the solver pro-
vides a mesh deformation tool based on Inverse Distance Weighting [21] that prop-
agates the displacement of the boundary to the mesh volumes. Computations with
the ROSITA solver are performed on a C-mesh built around the wing section which
is smoothly refined in radial sense from the far-field boundary to the body; the mesh
extends ±20 chords both chordwise and in the airfoil thickness direction with 41,961
volumes.

The low-fidelity model is XFOIL, which is an aerodynamic code with coupled
panel and integral boundary layer methods developed for the analysis of subsonic,
isolated airfoils [8]. In particular, an inviscid linear-vorticity panel method is cou-
pled to the viscous layers represented by the two-equation lagged dissipation integral
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method in order to correct the potential flow with the viscous boundary layer. Tran-
sition of the boundary layer from laminar to turbulent flow is predicted with the en

criterion, while compressible effects for low Mach numbers are take into account
with the Karman-Tsien correction. Computations with XFOIL are performed on a
unit-chord airfoil with maximum number of panel and a refinement of the trailing
and leading edge; at each iteration loop the optimization algorithms passes the new
design to the solver, which computes the aerodynamic loads.

25.2.3 Operating Conditions

Modelling uncertain variables is very challenging in robust or uncertainty-based opti-
mization. This is especially true in the application of helicopter rotor blade sections
with uncertain operating conditions, because small uncertainties can yield strong
variations in the flowfield characteristics. In fact, critical sections of rotor blades
operate in flow conditions where the combination of Reynolds number, Mach num-
ber and angle of attack may lead to instability of the boundary layer, large separation
of the flow and complex compressibility effects. Therefore, a careful analysis of
the uncertain operating conditions is needed, which must also take into account the
applicability of the chosen fluid dynamics model.

In this work a nominal operating condition is first chosen, which represents a
typical condition for a section of a blade in hover; to this end data from Ref. [19] are
employed, considering the blade section at 40 % of the span (see Table 25.1). From
the data, the induced velocity and blade pitch angle are computed with the Blade
Element Momentum theory [12] using a uniform inflow model. Then, an estimate of
the uncertainty on each variable is added to and subtracted to the nominal value. In
particular, for the blade pitch angle a variation of ±2◦ is estimated due to longitudinal
cyclic and lateral cyclic pitch. A value of ±0.5◦ is added in order to model the effect of
blade flexibility with an uncertainty in the torsional stiffness. This level of uncertainty
has also been found on the pitch measures taken during the HART II experimental
campaign [19]. Concerning the induced velocity, a variation of ±15 % of the nominal
value is considered in order to approximate the effects of the losses due to the wakes
trailed from the blades and other tridimensional effects of the rotor which are not yet
known in the design stage of the blade.

The uncertainties of the induced velocity Vi and the blade pitch angle θ affect
both the freestream speed V∞ and the angle of attack α of the airfoil. Even though the
change in freestream speed slightly changes the Reynolds number, its influence on the
Mach number is the most significant to the extent that it jeopardizes the applicability

Table 25.1 Nominal operating condition from Ref. [19]

Vi (m/s) θ (deg) α (deg) M∞ (−) Re (−)

10.8 16.76 9.7 0.2582 1.6e6
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of the low-fidelity model. Likewise, both the uncertainty on the induced velocity
and pitch angle may increase the angle of attack up to values slightly below the
stall angle. Note that higher angles of attack are encountered for higher value of
the blade pitch angle but lower downwash, which implies lower values of induced
velocity. As a final remark, the extreme cases in terms of flow physics are not those
with highest or lowest value of induced velocity and pitch angle, but those which
maximize and minimize freestream Mach number and angle of attack.

25.3 Robust Optimization Method

In the present work, the optimization strategy is based on the Nondominated Sorting
Genetic Algorithm (NSGA) [5, 8]. Main tuning parameters of the algorithm are the
population size, the number of generations, the crossover and mutation probabilities
pc, pm and the so-called sharing parameter r used to take into account the relative
isolation of an individual along a dominance front. Typical values for pc, pm are,
respectively, 0.9 and 0.1; values of r are retained following a formula given in Ref. [7]
that takes into account the population size and the number of objectives.

25.3.1 Uncertainty Quantification

Let us consider a stochastic differential equation of the form:

L (x, ξ , φ) = f (x, ξ) (25.5)

where L is a non-linear spatial differential operator (for instance, L is the steady
Navier-Stokes operator) depending on a set of uncertainties, defined with a random
vector ξ (whose dimension depends on the number of uncertain parameters in the
problem) and f (x, ξ) is a source term depending on the design parameters x and
on the uncertain parameters ξ . The solution of the stochastic equation (25.5) is the
unknown dependent variable φ(x, ξ). In this paper, we assume a uniform probability
density function for each uncertainty. The complete stochastic problem is solved
using a quasi-Monte Carlo method (QMC). QMC is similar to the usual Monte Carlo
simulation but uses quasi-random sequences instead of (pseudo) random numbers;
these sequences are deterministic and fill the space more uniformly than random
sequences (known as low discrepancy sequences, i.e. the Sobol sequences). Main
advantage of this method is that the coupling between GA and the stochastic strategy
is very simple, since a non-intrusive method is used. Mean and variance are then
computed for each individual (i.e. for each geometry) by using the classical formula-
tion based on a summation over the samples. These values are then directly exploited
by the GA algorithm.
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25.3.2 Evolution Control Strategy

The coupling of the uncertainty quantification analysis with the optimization algo-
rithm yield an increase of the computational cost of the robust optmization. In the
case of the low-fidelity model, the global cost is feasible, but it becomes huge when
more accurate models are used. In order to reduce this cost, a hybrid optimization
algorithm is developed, which is based on Evolution Control [10]. The underlying
idea is that the employment of evolutionary algorithms in industrial application may
be effective in the design stage to find new unusual design or to explore the design
variable space; once a set of new solutions is found, it is possible to refine that design
or examine its performance by means of a solver with higher accuracy. A possibility
is based on the use of a lower fidelity model in the optimization process in order to
speed up the initial procedure, where many solutions have to be assessed. During the
final steps of the optimization, then only a small set of design can be validated with
the higher fidelity model. However, the aerodynamic models inevitably affect the
optimization results and may yield false optima; to avoid this problem, a technique is
developed which employes the low-fidelity model but drives the evolution of the gen-
erations inside the optimization loop by leveraging the estimate of the performance
computed with the high-fidelity model. This technique is called Evolution Control
and it has been applied in aerospace application with CFD solvers and surrogate
models [10, 14]. Usually, either a certain number of individuals within a generation
or a certain number of generations in an evolution is evaluated with the high-order
fitness function. In the application to robust optimization, we propose to control each
individual of every generation by computing the fitness function with the high-fidelity
model for a subset of samples of the operating conditions. This subset includes the
most significant and critical operating conditions, which are the nominal operating
condition and the conditions with minimum/maximum Mach number and angle of
attack. So, for each individual in a generation, the following steps are performed:

• compute the performance for each operating conditions in the complete set of
samples S in the stochastic space by means of the low-fidelity algorithm and

obtain the mean and variance to get an estimate of the objectives
(

J̃1, J̃2

)
;

• employ the high-fidelity model to compute the performance for the operating
conditions belonging to the subset of critical operating conditions Sc;

• compare the ranking of the individuals obtained with the two approaches and

penalize the objective function
(

J̃1, J̃2

)
of the i th individual depending on the

ranking of the individual based on the high-fidelity computations. Since a two-
objectives optimization is considered, the penalization is carried out as follows

J1,i = J̃1,i + c1 R1,i/Nind

J2,i = J̃2,i + c2 Nind/R2,i , (25.6)
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where Ri is the ranking of the i th individual (e.g. R1,i = 1 for the individ-
ual having highest mean value in the generation), Nind is the number of indi-
vidual in the current generation and c1, c2 are scale factors chosen as c1 =(

maxi ( J̃1,i ) − mini ( J̃1,i )
)

and c2 =
(

maxi ( J̃2,i ) − mini ( J̃2,i )
)

.

25.4 Results

Three robust optimization loops are performed: one with the hybrid approach, and
the other loops by using only XFOIL and ROSITA, respectively. For each loop,
the genetic algorithm is run first imposing just the geometrical constraint for five
generations of 100 individuals. Then, one generation of 100 individuals is computed
evaluating the aerodynamic performance of the individuals that satisfy the geometri-
cal constraint; this step is performed to explore the design parameters space. Finally,
five generation of 40 individuals are computed.

Results obtained from robust optimization using the XFOIL solver are presented
in Fig. 25.2 where the red color is used for the individual with higher mean value
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population (left) and airfoils belonging to Pareto front (right)
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Table 25.2 Comparison of optimization results with deterministic approach and robust approach
coupled with the low-fidelity model

Airfoil A1 Airfoil B1 Airfoil C1 Airfoil D1 Airfoil E1 Airfoil F1 Deterministic

μE 103.28 89.57 95.34 93.89 93.18 95.31 103.95

σ 2
E 38.89 16.26 38.79 18.89 18.05 26.31 85.73

and higher variance, the blue color is used for the airfoil with lowest variance and a
scale of dark grey color is used for trade-off solutions. Pareto front is flattened and
characterised by low values of the variance of the performance. To assess the validity
of the robust approach, a deterministic optimization is performed, considering only
the nominal operating condition; after the optimization, the mean and variance of the
lift-to-drag ratio of the deterministic optimal airfoil are computed on the same set of
uncertain operating conditions considered in the robust approach and the comparison
presented in Table 25.2 shows the efficiency of the robust approach.

The robust optimization is then performed with the ROSITA solver and results
are presented in Fig. 25.3; in this case, the Pareto front is more spread and the vari-
ance of the performance appears greater with respect to the results obtained of the
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Fig. 25.4 Mean values (top) and standard deviation (bottom) of the Mach number of airfoil A2

low-fidelity model. Such difference is due to the fact that ROSITA solver is more
accurate in representing the flowfield at high angles of attack whereas the XFOIL
code may be less sensitive to the change in operating conditions at high angle of
attack due to the boundary layer treatment. In terms of computational cost, the
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Fig. 25.5 Mean values (top) and standard deviation (bottom) of the Mach number of airfoil B2

coupling of the optimization procedure with the ROSITA solver requires about 23 h
using 192 cores to evaluate one generation, whereas the XFOIL code takes about
15 min on 8 cores. In Figs. 25.4 and 25.5 the mean value and standard deviation of
the local Mach number are presented for airfoil A2 which has highest variance and
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Fig. 25.6 Results of robust optimization with the hybrid approach: objective functions of global
population (left) and airfoils belonging to Pareto front (right)

mean efficiency and airfoil B2 which has lowest variance and mean value of E . This
feature translates in the mean value and deviation of the local Mach number which
has higher standard deviation and maximum negative value in the case of airfoil A2.
It is also interesting to note that the deviation is very low everywhere in the flowfield
except for the area close to the leading edge of the airfoil and in the wake; in fact, a
change in the operating conditions affect the stagnation point location, the peak of
the pressure coefficient next to the leading edge and the thickness of the boundary
layer close to the trailing edge.

The results of the hybrid approach are presented in Fig. 25.6, where the controlled
fitness functions are shown. In this case, the values of J1, J2 are very different
due to the application of the control strategy in Eq. (25.6); also, it appears that the
controlled strategy requires more generation to build a dense Pareto front and more
iterations are still needed to get reliable results. It is worth noting that the Pareto
front of the controlled strategy shares two airfoils (namely B3 and C3) with the
Pareto front obtained with the ROSITA solver (airfoils B2 and C2), although these
airfoils belong to the first generation and are mantained in the Pareto front due to
the low variability of the performance. To assess the effectiveness of the controlled
approach, a computation of the mean value and variance of the lift-to-drag ratio based
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on the ROSITA solver is performed which actually proves that the airfoil A3 belong to
the Pareto front obtained with the high-fidelity model. In particular the values of the
objectives are μE = 99.24 and σ 2

E = 141.01, so that airfoil A3 would belong to the
Pareto front obtained with the high-fidelity solver (Fig. 25.3); computation of further
generations could explore individuals with higher mean efficiency that belong to
the Pareto front. The computational cost of the multi-fidelity approach is a trade-off
value between the previous two methods: the computation of one generation takes
about 4 h using 192 cores.

25.5 Conclusion

In conclusion, this work is the first step in the development of a low-cost hybrid
robust optimization tecnhique for the aerodynamic shape optimization of helicopter
rotor blade airfoil. Two different models of the aerodynamics are considered, and
used in an hybrid optimization strategy aiming at reducing the global computational
cost when uncertainties are taken into account. Results of this strategy are compared
with the reference results obtained by performing a classical robust optimization with
the high-fidelity model. Moreover, they are compared with the results coming from
the fast low-fidelity based optimization. Results show the effect of the aerodynamic
model on the set of robust optima in the Pareto front. Preliminary results display the
good performances of the hybrid approach, that is capable to capture some elements
of the real Pareto front, obtained by means of the high-fidelity model optimization.
Further developments are demanded for improving the control criterion, and for
improving the computational cost associated to the uncertainty quantification.
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Chapter 26
Computational Results for Flight Test Points
Distribution in the Flight Envelope

Lina Mallozzi, Pierluigi De Paolis, Gabriele Di Francesco
and Alessandro d’Argenio

Abstract In this paper we present a computational methodology to solve the
problem of the proper design of the test matrix for an envelope expansion test cam-
paign,where bothflutter and systems testing are required (i.e. a newstore integration).
There are two different stakeholders involved: Structural Engineers (StE), who want
to verify their predictions about the flutter free area, and the Systems Engineers
(SyE), who want to investigate environmental aspects in the entire operational flight
envelope. The test matrix, representing the test points distribution in the flight enve-
lope, can be found solving an optimization problem with hard constraints (flight
envelope boundaries) and different objective functions for the two stakeholders StE
and SyE. Given the goals of the two stakeholders, the problem is formulated as a
noncooperative game, where StE control M distribution and SyE control H distrib-
ution, according to their respective strategies. The two players make their decision
about test points location simultaneously, playing a spatial competition game and a
genetic algorithm is adopted to estimate the Nash equilibrium solutions to the multi-
ple test points location problem. Results for a multiple test points location problem
are shown.
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26.1 Introduction

In this paper we describe the design of a test matrix in an envelope expansion flight
test activity, called flight envelope. The Flight Envelope is a region defined by aircraft
limits. It represents the area where A/C flying is allowed. Outside the flight envelope
flight could be conducted only under a restricted and controlled test environment;
for example in order to define and certify the flight envelope flight test pilots and
engineers have to fly also outside its limits, that actually during the first flight still
do not exist if not by analysis or modeling and simulation: flight envelope is always
a result of interpolation of the flown test points, never an extrapolation. Figure26.1
shows an example of flight envelope typical of a fighter type aircraft and the limiting
factors per each area where flying the A/C is forbidden.

• A: Stall limit/High AoA (angle of attack)
• B: Engine performance (service altitude)
• C: Compressibility effects (Mach effect)
• D: Dynamic pressure effects (structural limits)

Classical methods used in this kind of test are the so called Economy Method,
which consists on a choice of a subset of flight conditions in accordance with the
build-up approach principle in dynamic pressure, and the Extensive Method, which
basically attempts to cover the most part of the flight envelope, resulting very expen-
sive and time consuming. We considered that the main driving factors to be consid-
ered in this kind of test are the requirements to be demonstrated by two categories
of engineers: Structural Engineers and Systems Engineers. Test matrix is designed
in order to give the opportunity to flight test engineers to gather all relevant data,
necessary for the new store certification process.

Section26.2 describes the specific test points location problem in the flight test
envelope for a store integration certification program. The competition between
SyE and StE test requirements is presented according to the Game Theory as a

Fig. 26.1 The flight envelope
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non-cooperative two players facility location problem. Section26.3 is dedicated to
the analyticmodel that represents the basis of the case study solution. The two players
objective functions and a detailed demonstration about how to face the location prob-
lem as a potential game are presented in this section. Sections26.4 and26.5 present
the results and conclusions of the genetic algorithm used to solve the proposed case
study and leave an open eye on future possible follow on activities and way-ahead
to face the same problem using different tools and modeling.

26.2 A Location Problem: Test Points Identification

The design of a test matrix in an envelope expansion flight test activity is an
experimental design problem [5]. We present the problem from a different point
of view, namely we look for the design of a test matrix as a facility location problem.
The classical facility location problem deals with determining the site of a num-
ber of centers that serve the market places or communities in a given region of the
plane where the facilities are considered as dimensionless points [7]. A typical sit-
uation is to minimize the distance between facilities and their assigned customers
(minsum problem). Sometimes a one-dimensional space is used as in the case that
includes competition between firms: recall the pioneering Hotelling problem where
two ice-cream seller on a beach compete in prices [2, 8, 10]. In [12], a minsum
facility location problem in a bidimensional region has been studied by using game
theoretical equilibrium solutions.

In this paper we consider that the requirements of the different engineers cat-
egories can be formalized with two different objective functions. The StE, being
more interested on combined true airspeed, load factor and compressibility effects
on the structures, want to optimize distribution in Mach range, while SyE, being
more focused on environmental effects on the aircraft and store systems, want to
optimize distribution in Pressure Altitude range.

However, not all the test points in the flight envelope have the same importance.
Flight test engineers need to investigate and report the effects at different flight con-
ditions in the entire flight envelope, but they also know that at high dynamic pressure,
both structure and systems face their worst environmental and aerodynamic condi-
tions (Fig. 26.2). That is why an additional requirement is to test at the conditions
corresponding to the maximum equivalent airspeed, which is a function of both
M and H. The dichotomy of the requirements can be interpreted as a particular
non-cooperative game, a spatial competition that is also known as Hotelling com-
petition where the two groups of engineers represent the two players. The facility is
identified with each single test point and the spatial domain corresponds to the flight
envelope.

We want to decide the design variables V 1, V 2, whose values are in suitable real
intervals, for n experiments E1, . . . , En. Two players StE and SyE decide for each
experiment i the values of V 1i and V 2i in the spatial domain optimizing a payoff
function.
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Fig. 26.2 Flying in the hot spot
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In our contest, the aim of the StE is to optimize distribution in Mach (M) range;
the aim of SyE is to optimize distribution in Pressure Altitude (H) range; both of
them want to maximize test points density near maximum equivalent airspeed (VE )
area. Because of their own aim, players StE and SyE are in competition, so we will
define in the next section the Flight Test Location Game.

26.3 The Model

Letn be afixed natural number (n ≥ 1) that is the number of the prescribedflight tests.
We consider the two-player normal form game [2, 8] Γ FT = 〈2; Xn

1 , Xn
2 ; f1, f2〉

where player 1 is the StE team and player 2 is the SyE team. The sets X1, X2
are real intervals and represent the variable ranges: for each i ∈ [1, n] (we
denote [1, n] = {1, . . . , n}), player 1 choses the Mach number Mi in the set
X1 = [ML , MU ] and player 2 the pressure altitude Hi in X2 = [HL , HU ]. The i th
flight test point has coordinates (Mi , Hi ) and (M, H) is the 2n-dimensional vector
(M1, . . . , Mn, H1, . . . , Hn). Player 1 (resp. player 2) has to choose a n-dimensional
vector M ∈ Xn

1 (resp. H ∈ Xn
2 ). The objective functions are real valued functions

defined on Xn
1 × Xn

2 and defined by
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f1(M, H) =
n∑

i=1

[√
α1(Mi − ML)2 + α2(Mi − MU )2 + δ(VU − Vi )

− min
j∈[1,n], j �=i

√
(Mi − M j )2

M2
U

+ (Hi − Hj )2

H2
U

]

(26.1)

and

f2(M, H) =
n∑

i=1

[√

β1(Hi − HL)2 + β2(Hi − HU )2 + δ(VU − Vi )

− min
j∈[1,n], j �=i

√
(Mi − M j )2

M2
U

+ (Hi − Hj )2

H2
U

]

(26.2)

where α1, α2, β1, β2, δ are positive real numbers, VU = 400 KCAS and Vi =
VE (Mi , Hi ) is the equivalent airspeed that is a function of Mi and Hi under the
assumption of International Standard Atmosphere [1]. Here the equivalent airspeed
is given by VE (Mi , Hi ) = aMi

√
(1 − bHi )c with a, b, c positive constants.

The first term of each objective function represents the position of the points with
respect to the lower bound and the upper bound of the variable range, the second
term is the distance in terms of equivalent airspeed and the last one considers the
opposite distance from the closest test point. So that each player asks to minimize
his own objective function in order to obtain an optimal points distribution: the task
is to distribute the points maximizing their dispersion in the flight envelope and in
the same time to be close as possible to the right lower corner of the envelope.

In ourmodel the optimal flight test distributionwill be aNash equilibrium solution
of the game Γ FT , i.e. a vector (M̄, H̄) ∈ Xn

1 × Xn
2 such that

f1(M̄, H̄) ≤ f1(M, H̄), ∀ M ∈ Xn
1

f2(M̄, H̄) ≤ f2(M̄, H), ∀ H ∈ Xn
2

In termsof facility location problems, the payoff functions of theflight test location
game present a minsum part as well a minmax one [7, 9].

In order to prove the existence of Nash equilibria of the game Γ FT , we recall
the definition of potential game, a class of games that have pure Nash equilibrium
strategies under suitable assumptions on the data.

Let 〈A, B, K , L〉 be a two-person gamewith strategy space A for player 1, strategy
space B for player 2, and K : A × B 
→ R, L : A × B 
→ R the payoff real valued
function of player 1, 2 respectively. If the players 1 and 2 choose a ∈ A and b ∈ B
respectively, then player 1 obtains a payoff K (a, b) and player 2 obtains L(a, b).

Such a game is called a potential game [13, 14] if there is a (potential) function
P : A × B 
→ R such that
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K (a2, b) − K (a1, b) = P(a2, b) − P(a1, b), for all a1, a2 ∈ A and for each b ∈ B,

L(a, b1) − L(a, b2) = P(a, b1) − P(a, b2), for each a ∈ A and for all b1, b2 ∈ B.

Clearly, elements of argmax(P) are Nash equilibria of the game.
The next lemma will be useful [3]. It states that for a two-person potential game

the payoff function of player 1 (player 2) can be written as the sum of a potential
and a function on the Cartesian product of the strategy spaces, which only depends
on the strategy choice of player 2 (player 1).

Lemma 26.1 Let 〈A, B, K , L〉 be a potential game with potential P. Then there
exist functions h : A 
→ R and g : B 
→ R such that

K (a, b) = P(a, b) − 2g(b),

L(a, b) = P(a, b) − 2h(a)

for each a ∈ A and b ∈ B.

In the next section we present the existence of Nash equilibria of the flight test
location game together with computational results.

26.4 The Results

The following results guarantees that the flight test location game Γ FT admits at
least a Nash equilibrium thanks to the potential structure of the considered game.

Theorem 26.1 Γ FT = 〈2; Xn, Y n; f1, f2〉, where X, Y are real intervals and
f1, f2 given as before, is a potential game with potential function

P(M, H) =
n∑

i=1

[√
α1(Mi − ML)2 + α2(Mi − MU )2

+
√

β1(Hi − HL)2 + β2(Hi − HU )2

+ δ(VU − Vi ) − min
j∈[1,n], j �=i

√
(Mi − M j )2

M2
U

+ (Hi − Hj )2

H2
U

]

.

Then, Γ FT admits at least a Nash equilibrium solution.

Proof By using Lemma 26.1, the function P is a potential function since the function

f1(M, H) − P(M, H)
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does not depend on M and

f2(M, H) − P(M, H)

does not depend on H. Moreover P admits a minimum point.

The problemof the testmatrix design is now reduced to the following optimization
one: finding a pair (M̄, H̄) s.t.

P(M̄, H̄) = min
(M,H)∈Xn×Y n

P(M, H).

From the analysis of the two objective functions representing the pillars of the
problem, it turns out that we are facing a potential game; this reduces its resolution
to the determination of the minimum of the potential function, which represents a
Nash Equilibrium (NE) solution [11, 13, 14].

A Genetic Algorithm, consisting in a heuristic search technique modeled on the
principle of evolution with natural selection, by reproduction of the best elements
with possible crossover and mutation, was used in order to find the minimum values
of the potential function. The following Table26.1 shows the parameters setup used
in order to achieve a fast convergence; this setup refers to “ga” function setting
in MatLab MathWorks software application. After generating the solution of the
proposed problem the output was analyzed to evaluate the goodness of the result and
robustness of the solution iterating the process applying step by stepminor changes to
the setup configuration. Furthermore, results validationwas accomplished comparing
the test cases results with the test matrix structure given by other standard empirical
testing method, as the Economy method already mentioned in this study.

A typical store integration test campaign requires a test matrix dimension ranging
from 10 to 30 test points. Figure26.3 shows the test matrix plot in the flight envelope
for a 30-test points distribution. From a quick analysis of Fig. 26.3 is possible to verify
that the initial requirements of the test team have been met by the solution in terms
of test points distribution and compliance to the buildup approach philosophy. At
higher altitude the test points are more spaced than at low altitude where is possible
to appreciate that test conditions range from low to high dynamic pressure portions
of the flight envelope.

Table 26.1 GA details Parameter Setup value

Population size 200

Crossover fraction 0.80

Mutation fraction 0.20

Fitness scaling Rank

Selection function Tournament

Crossover mode Scattered

Mutation mode Adaptive feasible
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Fig. 26.3 The optimal distribution for 30 flight test points

26.5 Conclusions and Future Works

A solution is presented for a multiple test points location problem, based on a GA
algorithm. By means of this tool is possible to approach the optimal test points dis-
tribution for a test campaign of a new store integration, where optimality is assessed
in terms of prescribed objective functions [6]. Flutter, which represents one of the
most dangerous aero-elastic instability (divergent induced oscillations), and systems
test can be performed simultaneously in an effective way. All procedures imple-
mented in the algorithm presented in this paper and relative results were deemed
to be reliable, also compared with studies of previous literature and test philosophy
[4, 12, 15]. One of the subject that could be the focus for future studies is the defini-
tion of newmethodologies to translate in math the attractiveness of the portion of the
flight envelope with higher dynamic pressure; in this paper the proposed way is to
assign weights to the reference corner points, but other modeling tools are currently
being developed.

A way-ahead could be represented by a computational methodology for an exper-
imental design problem based on the concept of potential and repulsive fields. Each
test point could be assumed to be the source of different fields which expose all other
points to repulsive forces acting in different directions. The result of the mutual
repulsive forces would be a dynamic evolution of the configuration of test points in
the two-dimensional domain (pursuant to hard constraints—permitted boundaries of
the domain, and soft constraints—minimization of potential), which eventually con-
verges to a condition of minimum potential, where forces are balanced. Furthermore,
it is not unusual during a test campaign that the total amount of flight test point needs
to be cut drastically, due to time and cost constraints. Therefore, it is paramount,
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when a change of the number of test points (either an increment or reduction) is
needed, to create a method to dynamically relocate the remaining test points, after
an initial subset has been performed. A method and an algorithm showing effective-
ness and computationally efficiency are required in order to allow an easy tuning of
the process to match flexibility and generalization of the case study treated in this
document.
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Chapter 27
Optimal Separation Control on the Flap of a 2D
High-Lift Configuration

Anil Nemili, Emre Özkaya, Nicolas R. Gauger, Felix Kramer
and Frank Thiele

Abstract Flow separation on the flap of a high-lift device degrades the overall aero-
dynamic performance and hence results in a drop in the lift coefficient. However,
by employing the active flow control techniques, separation can be delayed and thus
the lift can be enhanced. In these methods, the flow is controlled by varying the
parameters of actuation. In the present work, the optimal set of actuation parameters
is found using the gradient-based optimisation algorithms combined with an accu-
rate and robust discrete adjoint method for unsteady RANS. Numerical results are
presented for the optimal separation control on the flap of a high-lift configuration
over a large time interval.
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27.1 Introduction

It is well-known that the trailing edge flap of a high-lift device is prone to turbulent
flow separation on the suction side, which results in a rapid fall in the lift while
the drag increases enormously. In order to delay the flow separation and to enhance
the lift coefficient, blowing and suction type of active flow control techniques can
be used [2, 12]. In these techniques, the flow control is realised by actuators that
apply blowing and/or suction on the suction side of the flap surface. The additional
momentum due to actuation delays the separation further downstream and hence
increases the lift. Typically, the separation is controlled by varying the parameters
of actuation like the amplitude, the direction and the phase shift.

In previous studies [5, 7], the strategies employed to find these parameters are
often heuristic in nature and are limited to either simple cases, or involved only small
quantities of actuators. With the increase in the number of actuation parameters, an
efficient way of finding the optimal set of parameters is by employing gradient-based
optimisation algorithms combined with discrete adjoint methods.

In general, a discrete adjoint method for optimal active flow control can be devel-
oped either by using hand-discrete approach [11] or by employing Algorithmic Dif-
ferentiation (AD) [9, 10]. In the hand-discrete approach, the adjoint equations are
first hand-derived and a computer code is then written to solve the unsteady adjoint
equations and to compute the sensitivity gradients. In AD based approach, the adjoint
code is generated by applying AD techniques [4] to the corresponding primal CFD
code. Accurate computation of sensitivity gradients require the exact differentia-
tion of all discrete residual terms. However, the hand differentiation of higher order
scheme for convective terms, limiters and residuals due to turbulence models is quite
complex and often prone to errors. Any approximationmade by neglecting the differ-
entiation of these terms will result in inaccurate computation of sensitivity gradients.
In fact, in unsteady flows, the effect of these approximations on the accuracy of sen-
sitivities will be much more significant as the errors generated in the adjoint solution
accumulate while solving the adjoint equations in the backward-in-time integration.
On the other hand, AD performs the exact differentiation of all residual terms with
much ease and thus computes the functional gradients that are always accurate and
consistent with primal solutions. Since all the terms in the primal solver are differen-
tiated exactly, the adjoint solver inherits the robustness and asymptotic convergence
rate of the primal solver.

In this paper, an attempt has been made to find the optimal actuation parameters
for a three-element 2D high-lift configuration by employing an accurate unsteady
discrete adjoint Reynolds-averaged Navier Stokes (RANS) solver based on AD.

This paper is organised as follows. In Sect. 27.2, the governing unsteady incom-
pressible RANS equations are presented. Section27.3 presents the development of
an accurate discrete adjoint approach for optimal active flow control. In Sect. 27.4,
the three-element high-lift configuration and the actuation boundary condition are
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described. Details concerning the primal and adjoint solvers are also presented. In
Sect. 27.5, numerical results are shown for the un-actuated and optimal actuated
flows. Finally, conclusions are drawn in Sect. 27.6.

27.2 Governing Equations

The unsteady Reynolds-averaged Navier Stokes (RANS) equations that govern the
incompressible turbulent flows are given by

∂u
∂t

+ u · ∇u = −∇ p + ∇ ·
(
(ν + νt )

[
∇u + ∇uT

])
(27.1)

∇ · u = 0

Here u is the time-averaged velocity vector, p is the time-averagedmodified pressure
divided by the constant density ρ, ν is the molecular kinematic viscosity and νt is
the kinematic turbulent or eddy viscosity. In the present work, the unknown eddy
viscosity is approximated by the SST k − ω turbulence model [8].

27.3 Unsteady Discrete Adjoint Method for Optimal Active
Flow Control

Consider the optimisation problem of finding the actuation parameters that result in
effective separation control on the suction side of the flap surface and maximum lift.
The objective function is defined as the maximisation of the time-averaged (mean)
lift coefficient over the interval [0, T ], which in the discrete form is given by

Cl = 1

N

N∑

n=1

I n (
Un,α

)
, I n = Cn

l (27.2)

where Un = (un, pn, kn, ωn)T and I n are respectively the state vector and lift
coefficient at time iteration n. The state variables k and ω are the turbulent kinetic
energy and its specific dissipation rate respectively. α is the control vector consisting
of the actuation parameters. N is the number of time iterations that span the given
time interval, which can be obtained from the relation T = NΔt . Here, Δt is the
step size of the time discretisation. At each time iteration n, the state vector Un has
to satisfy the discretised unsteady incompressible RANS equations with SST k − ω

turbulence model as constraints. In the semi-discrete form, the constraints based on
a pressure velocity coupling scheme can be written as
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du
dt

+ Ru
(
Un,α

) = 0

Rp
(
Un,α

) = 0

dk

dt
+ Rk

(
Un,α

) = 0 (27.3)

dω

dt
+ Rω

(
Un,α

) = 0

Here Ru is the discrete spatial residual vector corresponding tomomentumequations,
while Rp, Rk and Rω are the spatial residuals due to pressure Poisson, turbulent
kinetic energy and specific dissipation rate equations respectively. Approximating
the transient terms in the above equations using a second-order implicit backward
difference formula, the constraints can be rewritten as

Rn
u

(
Un, Un−1, Un−2,α

)
:= 3un − 4un−1 + un−2

Δt
+ Ru

(
Un,α

) = 0

Rp
(
Un,α

) = 0

Rn
k

(
Un, Un−1, Un−2,α

)
:= 3kn − 4kn−1 + kn−2

Δt
+ Rk

(
Un,α

) = 0 (27.4)

Rn
ω

(
Un, Un−1, Un−2,α

)
:= 3ωn − 4ωn−1 + ωn−2

Δt
+ Rω

(
Un,α

) = 0

where Rn
u, Rn

k and Rn
ω are the discrete residuals of the unsteady momentum, turbu-

lent kinetic energy and specific dissipation rate equations respectively. At each time
iteration n, the residual equations are solved for the solution of the state vector Un

by a contractive fixed point iterative scheme of the form

Un
i+1 = Gn

(
Un

i , Un−1, Un−2,α
)

, n = 1, . . . , N . (27.5)

Here, Gn represents an iteration of the pressure-velocity coupling scheme based on
the SIMPLE algorithm [13]. Un−1 and Un−2 are the converged state vectors at time
iterations n − 1 and n − 2 respectively. The fixed point iteration converges to the
numerical solution Un , given by

Un = Gn
(

Un, Un−1, Un−2,α
)

, n = 1, . . . , N . (27.6)

The discrete optimisation problem defined by Eqs. (27.2) and (27.4) can then be
posed as

max
α

Cl = 1

N

N∑

n=1

I n (
Un,α

)

subject to Un = Gn
(

Un, Un−1, Un−2,α
)

, n = 1, . . . , N . (27.7)
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The Lagrangian associated with the above constrained optimisation problem is given
by

L = 1

N

N∑

n=1

{
I n (

Un,α
)} −

N∑

n=1

{(
U

n
)T (

Un − Gn
(

Un, Un−1, Un−2,α
))}

(27.8)

where U
n
is the vector of Lagrangian multipliers or the adjoint state vector at time

iteration n. The first order necessary conditions for optimality (KKT) are given by

∂L

∂U
n = 0, n = 1, . . . , N . (State equations) (27.9a)

∂L

∂Un = 0, n = 1, . . . , N . (Adjoint equations) (27.9b)

∂L

∂α
= 0 (Control equation) (27.9c)

From Eq. (27.9b), the unsteady discrete adjoint equations can be derived in the fixed
point form as

U
n
i+1 =

(
∂Gn

∂Un

)T

U
n
i +

(
∂Gn+1

∂Un

)T

U
n+1 +

(
∂Gn+2

∂Un

)T

U
n+2

+ 1

N

(
∂ I n

∂Un

)T

, for n = N , . . . , 1 (27.10)

where U
n+1

and U
n+2

are the converged adjoint state vectors at time iterations
n +1 and n +2 respectively. It can be observed that the adjoint solution U

n
requires

the flow solution Un to compute ∂Gn

∂Un and ∂ I n

∂Un . This clearly shows that the primal
solution Un must be available at all time iterations a priori as the adjoint equations

are solved in backward-in-time integration from n = N , . . . , 1. Note that ∂Gn+1

∂Un and
∂Gn+2

∂Un result in constant Jacobians as the spatial residuals inside Gn+1 and Gn+2 do
not depend on Un . The above fixed point iteration converges to the adjoint solution
U

n
, given by

U
n =

(
∂Gn

∂Un

)T

U
n +

(
∂Gn+1

∂Un

)T

U
n+1 +

(
∂Gn+2

∂Un

)T

U
n+2

+ 1

N

(
∂ I n

∂Un

)T

, for n = N , . . . , 1 (27.11)

The solution of the adjoint equations is then substituted in Eq. (27.9c) to compute
the sensitivity gradients as
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d L

dα
=

N∑

n=1

{
1

N

∂ I n

∂α
+

(
∂Gn

∂α

)T

U
n

}

(27.12)

In the present work, at the first step, AD is applied in a black-box fashion to generate
the adjoint code by differentiating the unsteady incompressible RANS code with
respect to the control vector α. An advantage of the black-box AD approach is that
all terms in the pressure-velocity coupling scheme and time discretisation are differ-
entiated exactly and therefore the adjoint code computes the sensitivity gradients that
are always accurate and consistent to the primal solutions. Further, the adjoint solver
inherits the robustness and asymptotic convergence of the primal solver. However, a
major disadvantage of the black-box AD approach is that the adjoint code demands
prohibitively expensive memory and computational time, thus making it unfeasible
to use in practical applications. In order to circumvent the excessive memory and
run-time costs, various advanced AD strategies like binomial checkpointing [3] for
adjoining the unsteady time iterations and reverse accumulation technique [1] for
adjoining the fixed point schemes in the incompressible solver are employed. The
resulting adjoint code exactly performs the fixed point scheme in (27.10) and the
sensitivity evaluation in (27.12). Note that the implementation of these techniques
does not effect the accuracy and robustness of the adjoint solver, as the exact differ-
entiation of the fixed point iterator G is still maintained. Numerical investigations
have shown that the run-time of the unsteady discrete adjoint RANS code is around
a factor of 6 compared to the primal code. Although this AD based adjoint code
may not be as computationally efficient as the hand differentiated code, the lack of
efficiency is well compensated by accuracy, robustness and easy maintenance.

27.4 Computational Setup

27.4.1 Description of the High-Lift Configuration

The geometry of interest is the three-element Swept Constant Chord Half (SCCH)
model high-lift configuration, as shown in Fig. 27.1. The flap angle and the angle of
attack are chosen such that the un-actuated flow separates distinctively at the flap
shoulder. More details on this configuration are described in [5, 7], where extensive

Fig. 27.1 Sketch of the SCCH high-lift configuration
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numerical and experimental investigations are performed to control the flow separa-
tion.

27.4.2 Actuation

In the present work, the flow control is realised by applying synthetic jet actuation
boundary condition at 27 slots, that are distributed starting right in front of the
shoulder and passing nearly the whole of the flap surface, as shown in Fig. 27.2. The
actuation boundary condition at a slot face is defined by

(
u
v

)

= A · u∞

(
cos θ
tan β

− sin θ
sin θ
tan β

+ cos θ

)

sin[2π F · (t − t0)] (27.13)

Here u and v are components of the actuation velocity vector, A is the non-
dimensional amplitude of actuation, u∞ is the free-stream velocity, β is the blowing
angle, F is the non-dimensional frequency, t is the non-dimensional physical time
and t0 is the non-dimensional phase shift. The angle of the slit face, θ is fixed by the
geometry of the airfoil. The named quantities are appropriately non-dimensionalised
by u∞. The flap length lflap = 0.254lc, where lc is the chord length.

27.4.3 Primal and Adjoint Solvers

In the present work, the unsteady RANS calculations are performed using the multi-
purpose incompressible finite volume code ELAN [5, 7]. The mean flow equations
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Fig. 27.2 Location of the actuation slots on the surface of the flap of SCCH high-lift configuration
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are solvedwith the pressure correction schemeSIMPLE coupledwith theRhie-Chow
interpolation method on a collocated grid. The code is fully implicit and is of second
order accuracy both in space and time. The convective fluxes are approximated by a
total variation diminishing (TVD) scheme. In addition, the codeoffers various options
for RANS/LES turbulence models. It is parallelised by domain decomposition and
uses the MPI library for communication.

The unsteady discrete adjoint RANS code [9, 10] is generated by differentiating
the ELAN code with the AD tool Tapenade [6]. The adjoint code retains all the
features of the primal code ELAN.

27.5 Results and Discussion

27.5.1 Un-actuated Flow

We first consider the base flow without actuation around the two-dimensional SCCH
high-lift configuration. The unsteady RANS simulations are performed over the
time interval [0, 118] with the SST k − ω turbulence model at Reynolds number
Re = lcu∞/ν = 106 and angle of attack AoA = 6◦. The step size in the time
discretisation scheme is chosen as Δt = 7.874×10−3l f lap/u∞. The computational
domain consists of a block-structured grid with 43,098 finite volumes. Figure27.3
shows the grid around the high-lift configuration and the flap region. Figures27.4
and 27.5 show the corresponding vorticity contours. It can be observed that the high
flap deflection angle has caused massive flow separation on the suction side, starting
from the flap’s leading edge. The early separation reduces the circulation around the
flap and hence the lift contribution from the flap decreases.

Fig. 27.3 Computational mesh for the RANS simulations. a Entire high-lift configuration. b Flap
region
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Fig. 27.4 Un-actuated base flow. Vorticity contours on the entire high-lift configuration

Fig. 27.5 Un-actuated base flow. Vorticity contours on the flap

27.5.2 Initial Actuation and Sensitivity Validation

In order to delay the flow separation and to enhance the mean lift coefficient, sinu-
soidal blowing and suction with zero net mass flux is applied at 27 actuation faces
along the suction side of the flap, as shown in Fig. 27.2. In the computational domain,
each slot is resolved by a single cell face. Initially, the values of actuation parame-
ters are chosen as amplitude A = 0.3, angle β = 90◦, frequency F = 0.508 and
phase shift t0/T = −0.25. Here T is the period of actuation. Note that the chosen
frequency matches the natural separation frequency of the un-actuated flow. From
Fig. 27.6, it can be observed that the actuation has significantly improved the mean
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Fig. 27.6 Comparison of the lift coefficient for the un-actuated and initial actuated flows

lift coefficient over the un-actuated flow. However, the mean lift thus achieved need
not be maximum as the actuation control parameters may not be optimal. To find the
optimal actuation parameters, we pose the maximisation of mean lift as an optimal
control problem. The actuation parameters A, β and t0 at all the 27 slots are chosen
as control variables. The actuation frequency F is kept constant. We then have a total
of 81 control variables.

The lift profile in Fig. 27.6 shows a typical initial transient phase, after which a
periodic behaviour of the flow field is observed. For the objective function evalua-
tion, we exclude this transient phase and consider the contributions from the fully
developed unsteady flow. The time-averaged lift coefficient is then defined as

Cl = 1

N − N∗
N∑

n=N∗+1

Cn
l

(
Un,α

)
(27.14)

while the Lagrangian reduces to

L = 1

N − N∗
N∑

n=N∗+1

Cn
l −

N∑

n=1

{(
U

n
)T (

Un − Gn
(

Un, Un−1, Un−2,α
))}

(27.15)

Here N∗ is the number of time iterations for the transient phase. By choosing
N∗ =10,000 and N =15,000, the mean lift is evaluated from time iteration 10,001–
15,000.

We first validate the sensitivity gradients computed using the unsteady discrete
adjoint RANS solver. Figure27.7 shows a comparison of the sensitivity gradients of
the mean lift with respect to amplitude at eight randomly selected slot faces on the
flap. It can be observed that the sensitivities based on the adjoint code are in excellent
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Fig. 27.7 Comparison of the amplitude sensitivity gradients based on consistent discrete adjoint
method and second order accurate finite differences

agreement with second order accurate finite differences, as the errors in sensitivities
are found to be within 0.04%.

27.5.3 Optimal Actuated Flow

To find a maximum of the mean lift coefficient, the unsteady discrete adjoint RANS
solver is combinedwith the BFGS quasi-Newton optimisation algorithm. Figure27.8
shows the variation of the lift coefficient after 10 cycles of optimisation. The enhance-
ment in the mean lift with respect to the optimisation cycles is shown in Fig. 27.9.
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Fig. 27.8 Comparison of the lift coefficient for the un-actuated, initial actuated and optimal actuated
flows
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Fig. 27.9 Variation of the mean lift coefficient with the number of optimisation cycles

Table 27.1 Comparison of the mean lift coefficient for un-actuated, initial actuated and optimal
actuated flows

Flow Mean lift coefficient

Un-actuated 2.1802

Initial actuated 2.4728

Optimal actuated 2.8207

Fig. 27.10 Optimal actuated flow. Vorticity contours on the entire high-lift configuration

From Table27.1, it can be observed that the optimal actuation has resulted in 14%
improvement in themean lift compared to the initial actuation and 29% enhancement
over the un-actuated flow. Figures27.10 and 27.11 show the vorticity contours for
the optimal actuated flow. It is clearly evident that the optimal actuation has delayed
the separation point further downstream.
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Fig. 27.11 Optimal actuated flow. Vorticity contours on the flap
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Fig. 27.12 Comparison of the initial and optimal distribution of amplitude at actuation slot faces
on the flap surface

Figures27.12, 27.13 and 27.14 respectively show the optimal distribution of
amplitude, angle and phase shift at the actuation faces. From these plots, it can
be observed that the actuation slots from index 1–6 are within the region, where the
flow stays attached. Actuation at these slots is unfavourable as it triggers the separa-
tion. Therefore, the amplitudes at these slots are tending towards zero. At slot 7, the
amplitude increases rapidly and causes the flow to counteract the periodic separation
present around this region, which spans the large downstream. For slots with indices
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Fig. 27.14 Comparison of the initial and optimal distribution of phase shift normalised by the
period of actuation at slot faces on the flap surface

8–13, the optimal amplitudes are observed to be smaller. For many slots with indices
above 13, where the flow is separated for large time frames, the sensitivities are
found to be very small compared to other actuation slots. It is not clear whether the
flow is insensitive to the actuation at these slots or it is a required part of the optimal
actuation. In future, this will be investigated by introducing a suitable cost function
that accounts for the saving of energy at slots where the actuation has no effect.
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27.6 Conclusions

In this paper, we presented the optimal active separation control on the flap of a
three-element high-lift configuration. The optimal set of actuation parameters is
obtained by combining an accurate unsteady discrete adjoint RANS solver with
the BFGS quasi-Newton optimisation algorithm. Numerical results have shown that
the optimal actuation has delayed the separation point further downstream and thus
enhanced the lift coefficient significantly. Overall, the optimisation procedure has
yielded 14% enhancement in themean lift coefficient compared to the non-optimised
initial actuation and 27% gain over the un-actuated base flow.
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Chapter 28
New Challenges and Opportunities
in Reliability and Risk Based Optimization

Sebastian Martorell, Maryory Villamizar, Isabel Martón, Ana Sánchez
and Sofia Carlos

Abstract Safety (S) improvement of industrial installations leans on the optimal
allocation of designs that use equipment that is more reliable and testing and main-
tenance activities to assure a high level of reliability, availability and maintainability
(RAM) for their safety-related systems. However, this also requires assigning a cer-
tain amount of resources (C) that are usually limited. Therefore, the decision-maker
in this context faces in general a multiple-objective optimization problem (MOP)
based on RAMS+C criteria where the parameters of design, testing and maintenance
act as decision variables. A general framework for such MOP based on RAMS+C
criteria was proposed in [1]. There, a number of alternatives were proposed based on
the use of a combination of RAMS+S formulation and Genetic Algorithms (GAs)
based optimization to solve the problem of testing and maintenance optimization
based only on system unavailablity and cost criteria. The results showed the capa-
bilities and limitations of alternatives. Based on them, challenges were identified
in this field and guidelines were provided for further research. In [2], a full scope
application of RAMS+S based optimization using GAs was reported. Since then,
the reliability and risk based optimization of design and operation of equipment and
facilities has evolved into a set of technical documents, conference contributions and
technical papers published elsewhere. Many of them have already addressed to some
extent the effect of both random and epistemic uncertainties within this reliability
and risk informed decision-making framework. This paper discusses the importance
of appropriate formulation, treatment and analysis of model and parameter uncer-
tainties in reliability and risk informed decision-making. It faces on how treatment
and analysis of uncertainties should be integrated within an approach for evaluation
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of reliability and risk impact of safety issues, i.e. equipment design, operational
requirements, etc. The approach would consist of modeling, assessment and analy-
sis of the safety concern, which is intended to be used within an optimization context
to support the decision-making on the most effective safety requirements. The paper
focuses on Reliability and Risk of Nuclear Installations, where particular attention
is paid to address the effect of uncertainties in the reliability and risk informed opti-
mization of testing and maintenance of safety related equipment. Similar challenges
can be observed for many other complex installations, such as energy generation and
distributions, process industry, aeronautics, etc.

Keywords Reliability · Risk informed · Optimization · Nuclear power plant

28.1 Introduction

At the last decades many studies have been developed aimed at improving safety
systems, with the main focus on implementing an appropriate surveillance andmain-
tenance policy to assure that an acceptable standard of reliability, availability and
maintainability (RAM) of the safety systems is kept during all the plant operational
life (e.g. testing and preventive maintenance optimization).

Probabilistic Risk Assessment (PRA) is a standard method for assessing, main-
taining, assuring and improving plant safety, which integrates RAMmodels and data.
It is the most effective and efficient tool for safety and risk management in Nuclear
Power Plants (NPPs). PRA studies not only evaluate risk/safety of systems but also
their results are very useful in safe, economical and effective design and operation
of NPPs. The latter application is known as Risk-Informed Decision Making.

The risk informed approaches are intended to make design, requirements and
activitiesmore risk effective and at the same time utilizing fewer resources bymaking
use of PRA results to focus better on what is critical to safety. The optimization of the
test surveillance and maintenance intervals is one of the main issues in risk-informed
applications.

28.2 Risk-Informed Decision-Making Regulation

The Nuclear Community has been encouraging the use of PRA to support a risk-
informed decision-making framework. In this context, the NRC issued the first draft
of Regulatory Guide RG 1.174 in 1998 [3], which remains a major milestone in
the NRC initiative to risk-inform the regulations on changes to licensing basis for
operation of NPPs.

Since then, the risk-informed process introduced in RG 1.174 has evolved into a
suite of regulatory guides and NUREG reports that define an integrated approach to
risk-informed regulation [3–9]. Nowadays, there are draft versions of Revision 3 to
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RG 1.174 (DG-1285) and Revision 2 to RG 1.177 (DG-1287). RG 1.174 [3] presents
a framework umbrella for using PRA in risk-informed decision-making on specific
changes to licensing basis, while RG 1.177 [7] proposes a more specific approach
that focuses, in particular, on plant specific changes to Technical Specifications (TS),
e.g. Limiting Conditions for Operation (LCO) and Surveillance Requirements (SR),
which are parts of the licensing basis.

28.3 Overview of Previous Work

The original US NRC policy statement in 1995 and the first drafts of RG 1.174
and RG 1.177 in 1998 already established that all sources of uncertainty must be
identified and analysed such that their impacts are understood.

Prior work in this field has already faced the problem of addressing uncertain-
ties in reliability and risk based decision making on changes to licensing basis and
particularly to TS [10–16]. However, comprehensive guidance on the systematic
treatment of epistemic uncertainties associated with the specific use of the PRA in
risk-informed decision making of changes to licensing basis has expanded mainly
in the last years [4, 17, 18]. Moreover, no specific guidance has been proposed yet
for the treatment and analysis of epistemic uncertainties particularly in evaluating
the risk impact of changes to TS based on the use of the PRA; therefore, there was
a need of adapting the generic guidance to this particular PRA based application.
This was the aim of the work published in Refs. [19–21], which show the origins of
a methodology that has evolved into the integrated RIDM approach proposed in this
paper.

28.4 An Approach for Evaluation of Reliability and Risk Impact
of TS Changes Addressing Uncertainties

RG 1.174 [3] establishes that licensee’s risk assessment may be used to address the
fourth principle of the integrated risk informed decision-making on plant-specific
changes to the licensing basis, where the necessary sophistication of the evaluation
of the risk impact of the change depends on themagnitude of the potential risk impact.
It discusses the use of PRA results in decision-making consisting of three parts:

1. A fundamental element is a PRA of sufficient scope, level of detail, and technical
acceptability for the intended application.

2. PRA results are to be used in two ways, i.e. to assess the overall baseline
CDF/LERF and to assess the CDF/LERF impact of the proposed change as com-
pared to the acceptance guidelines.

3. One of the strength of the PRA framework is its ability to characterize the impact
of the uncertainty in the analysis, and it is essential that these uncertainties be
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recognized when assessing whether the fourth principle is being met, so that
guidelines on how the uncertainty has to be addressed must be provided.

What concerns the third part, RG 1.174 [3] introduces the following sources of
uncertainty linked to PRA. Uncertainties can be categorized as either random or
epistemic. Random uncertainty reflects our inability to predict random observable
events. Epistemic uncertainty represents our confidence in the model and in the
numerical values of its parameters. This type of uncertainty is also called ‘state-of-
knowledge’ uncertainty or just ‘uncertainty’. Epistemic uncertainties can be split
into three categories [3]:

1. Parameter uncertainty is that which relates to the parameters of the PRA, given
a choice of model. Even with a known model, the parameter values may still be
unknown. Examples of parameter uncertainties include equipment failure rates,
initiating-event frequencies, and human error probabilities.

2. Model uncertainty relates to the uncertainty in the assumptions made in the analy-
sis and the models used. In many cases, there is limited knowledge and some
disagreement on the proper model to represent a system. The result is that for a
particular process, there are multiple competing models, each of which necessar-
ily produces a different approximation of the same real-world system. Because
the correct model is unknown, there is additional uncertainty in the output of any
model, representing the uncertainty in the model’s itself.

3. Completeness uncertainty represents the uncertainty due to the portion of risk
that is not explicitly included or modeled in the PRA.

General guidance on addressing uncertainties frommodeled andnon-modeled risk
contributors in the context of RG 1.174, i.e. identification of sources key to decision,
treatment and analysis of uncertainties, are specifically addressed in NUREG-1855
[4] andEPRI-1026511 [17].While the analysis of parametric uncertainty and, to some
extent, model uncertainty is fairly mature, the analysis of completeness uncertainty
cannot be handled in a similar formal manner. So that, only parameter and model
uncertainties will be addressed in detail in the approach proposed in this paper.

Figure28.1 presents the three steps based approach proposed for the evaluation of
reliability and risk impact of changes to Technical Specifications, i.e. risk modelling,
risk assessment and risk analysis, which is based on the use of the PRA and includes
identification, treatment and analysis of uncertainties in an integrated manner. The
approach proposed is coherent with the general principles of risk-informed decision-
making framework on plant-specific changes to the licensing basis as introduced
above.

What concerns reliability and risk modelling, it emphasizes first the identification
of not only the usually addressed sources of uncertainty linked to PRA models and
data but also the sources of model and parameter uncertainties associated with the
assumptions in Surveillance Requirement change evaluation [7].
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Fig. 28.1 Schematic view of the PRA based approach to analyzing changes to Technical Specifi-
cations

Reliability and risk assessment is proposed by formulating the usual reliability
and risk metrics for analyzing Surveillance Requirement changes in the literature
[5, 22, 23]. It is proposed treatment of model and parameter uncertainties based
on traditional sensitivity studies and uncertainty assessment respectively, the latter
based of the probabilistic approach for uncertainty formulation and propagation by
standard Monte Carlo Sampling technique [21].

Reliability and risk analysis is based on the well established comparison of the
assessment of reliability and risk impact of the change including treatment of uncer-
tainties with acceptance guidelines [3]. In addition, it is proposed also the use of
both traditional importance measures and uncertainty importance measures (sen-
sitivity analysis) in order to analyze respectively how basic events and parameter
uncertainties influence the reliability and risk impact of the change proposed and
its uncertainty [24, 25]. The former helps to identify the main risk contributors and
eventually the chance for adopting compensatory measures in order to the make
the proposed change acceptable. Uncertainty importance measures help to identify
which of uncertain parameters are most significant contributors to reliability and risk
impact uncertainty and eventually the need of limiting the impact of the effect of
particular uncertainties or of developing additional treatment of uncertainties.
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Table 28.1 SIL for low
demand mode of operation

SIL PFDavg

4 ≥10−5 to <10−4

3 ≥10−4 to <10−3

2 ≥10−3 to <10−2

1 ≥10−2 to <10−1

28.5 Example of Evaluation of Reliability Impact of a TS Change
for the Reactor Protection System

The Reactor Protection System (RPS) is a very important system for NPP safety,
as it is responsible for shutting down the NPP by means of reactor trip in case of
accidental conditions. So that, current regulation requires a very high reliability of
the system in performing its vital and required safety function, i.e. reactor trip.

The RPS is a sort of Safety Instrumented System (SIS) [26]. A SIS is defined
as an “instrumented system used to implement one or more safety instrumented
control functions. A SIS is composed of any combination of sensors, logic solver
andfinal elements”. The standard IEC61508 requires every safety function to achieve
a determined Safety Integrity Level (SIL). For low demand operating systems the
SIL levels are defined in terms of average probability of failure on demand (PFDavg,
see Table28.1) [27, 28].

Surveillance Requirements (SR) are part of Technical Specifications that are
included into the Licensing Basis (LB) for operation of Nuclear Power Plants.
Surveillance tests aim at limiting risk of undetected downtimes of safety related
equipment by imposing equipment operability checks, which consist of testing of
equipment operational parameters with established Surveillance Frequency (SF) and
Test Strategy.

Surveillance testing is executed periodically, and can be implemented using
several strategies. The strategy establishes how the tests of the redundant compo-
nents are scheduled with respect to one another. IEC 61508 (1998–2005) [27, 28]
defines proof test as a “periodic test performed to detect failures in a safety-related
systems so that the system can be restored to an ‘as new’ condition or as close as
practical to this condition”. This standard establishes the need of routinemaintenance
action in order to detect unrevealed failures, being proof test one of these activities.
It thus has an important role in the achievement of safety integrity.

Surveillance requirements were established taking into account mainly determin-
istic criteria. A number of problems have been identified connected to SR that can
jeopardize plant safety. The development of Probabilistic Risk Assessment and its
application since the early 80s to analyze SR changes has brought the opportunity to
review SR consistency from a reliability-risk viewpoint, i.e. addressing the impact of
the changes on plant safety on the basis of the reliability-risk information provided by
the PRA, with particular attention to the role of the Surveillance Frequency included
within Surveillance Requirements.
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The case study presents the results of the evaluation of the risk impact of a
Surveillance Frequency change of circuit breakers of the Reactor Protection Sys-
tem of a PWR Nuclear Power Plant, which could be used to obtain a refined model
for the MC-GA based SF optimization.

28.5.1 Problem Description

Figure28.2 shows a schematic view of the RPS, which consists of two redundant
and identical channels, A and B. The RPS can be actuated manually from the control
room or automatically after a signal requiring reactor trip. This signal opens circuit
breakers 52RTA and 52RTB. Manual or automatic actuation of the RPS deenergizes
control rods, which are inserted in the reactor core by gravity. The by-pass breakers
52BYA and 52BYB allows testing of the main circuit breakers above using manual
trip/rep.

Surveillance Requirements of the RPS establish a functional test of the redundant
channelswith a SurveillanceTest Interval (TI), i.e. 1/SF, of twomonths and sequential
testing. This means the first circuit breaker, e.g. 52RTA, is tested the first month and
the second one, 52RTB, is tested the next month. The TI change consist of extending
the current TI from 2–3months; i.e. 1,440–2,160h.

Fig. 28.2 Schematic view of
the RPS
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Fig. 28.3 Fault tree for RPS failure

28.5.2 Plant Specific PRA

Figure28.3 shows a fault tree representing the failure of theRPS as top event included
in the Level 1 PRA. Basic events representing control rods mechanism fail to insert,
i.e. 1MBPRCRDMF, common cause failure (CCF) of the circuit breakers 52RTA
and 52RTB, i.e. 1IKPR0BRKL, and human error to disconnect motor generators
MG1-A yMG1-B, i.e. 1FOCAATWSH, are highlighted in addition to the AND gate
representing occurrence of independent failures of RPS channels A and B.

Tables28.2 and 28.3 present models and data used for modeling the basic events
and their corresponding parameters in current PRA only for most important basic
events belonging to the RPS that appear in the final Boolean equation after generating
the minimal cut sets using a cut-off criteria 10−12.

28.5.3 Reliability Assessment of the RPS Before and After the SF
Change as Compared to SIL Levels

Current regulation requires a very high reliability of the RPS in performing its vital
safety function, i.e. reactor trip. Table28.4 shows there is no significant reduction
of the RPS reliability after the SF extension (base case), which remains very high.
See also the results in Figs. 28.4 and 28.5. Table28.4 summarizes also the results of
a number of sensitivity studies performed in order to estimate the impact of model
uncertainties on the assessment of risk impact of the SF change including parameter
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Table 28.2 More important basic events

Basic event Description BE model Unavailability
formula (u)

1MBPRCRDMF Control rods mechanisms
fail to insert

Standby 1/2*λR*MTBRT

1FOCAATWSH Operator fails to deenergize
generators

Demand ρD

1IKPR0BRKL Circuit breakers common
cause fail to open (CCF)

Standby 1/2*λC*TI
(sequential tests)

1IKPR0RTAA Circuit breaker independent
fail to open

1IKPR0RTBA Standby 1/2*λI*TI

1IKPR0BYAA

1IKPR0BYBA

1FOPRATWSH Operator fails to manually
scram reactor

Demand ρS

1P1PR0RTAP Downtime for testing Test τ/TI

1P1PR0RTBP

Table 28.3 Data and parameters of basic events

Parameter Description Parameter type Parameter/value

λR (h−1) Control rods mechanisms
failure rate

PDF Gamma (4.32× 10−9; 0.49;
1.13× 108)

ρD (−) Human error probability to
deenergize generators

PDF Log-normal (1.05× 10−1;
5)

λC (h−1) Circuit breakers common cause
failure rate

PDF λC = β * λI Log-normal
(1.21× 10−7; 3)

β (−) β-factor for Circuit breakers
common cause failure rate

Constant 0,1277 (sequential tests)

λI (h−1) Circuit breaker independent
failure rate

PDF Gamma (9.47× 10−7; 1.49;
1.57× 106)

ρS (−) Human error probability to
manually scam reactor

PDF Log-normal (1.66× 10−1;
5)

MTBRT (h) Mean time between reactor
trips

Constant 2,160 (true trips) [Max
TBRT = 13,140]

TI (h) Test Interval (1/SF) Constant 1,440 (current TI in TS)

τ (h) Test time Constant 1.37

uncertainty as well (see also Fig. 28.4). In addition, comparing results in Table28.4
(Fig. 28.4) with SIL requirements in Table28.1, the highest SIL level 4 is achieved
any case.
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Table 28.4 Results of quantification of unavailability for the base case and sensitivity studies

Unavailability RPS—2months Unavailability RPS—3months

Mean 5% 95% Mean 5% 95%

Base case 1.38E-5 1.64E-6 3.97E-5 1.83E-5 2.19E-6 5.78E-5

Sensitivity

MTBRT 3.74E-5 2.83E-6 1.18E-4 4.20E-5 3.66E-6 1.36E-4

FFNCT 1.38E-5 1.66E-6 3.56E-5 1.61E-5 1.92E-6 4.21E-5

HEP “rookie” 2.29E-5 2.15E-6 7.53E-5 3.20E-5 3.63E-6 1.122E-4

Test strategy staggered 7.11E-6 5.31E-7 2.21E-5 8.33E-6 7.71E-7 2.60E-5

Fig. 28.4 Unavailability of RPS before and after SF change

28.5.4 Measures of Importance of Basic Events and Parameters

Table28.5 summarizes the results derived for the traditional importance measures
for RPS Unavailability before the SF change (2months) and ranked according to
RAW.

Reference [29] proposes also the use of threshold values to determine the value
of RAW below which we deem the basic event to be not risk-important. Threshold
values of RAW are given for RPS Unavailability as compared to SIL levels using the
following equations:

RAWU, SIL x = USIL x

U
(28.1)
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Fig. 28.5 PDF of
unavailability RPS for the
base case

Table 28.5 Traditional importance measures of basic events (2months)

Basic event Unavailability FV RAW RRW

1MBPRCRDMF 4.67× 10−6 3.38× 10−1 72330 1.51

1IKPR0BRKL 8.70× 10−5 6.61× 10−1 7596 2.95

1BLBC0G1CF 2.24× 10−6 1.41× 10−5 7.3 1

1FOCAATWSH 1.05× 10−1 6.63× 10−1 6.65 2.96

The following set of threshold RAW values for U is obtained using Eq. (28.1) and
corresponding SIL levels:

R AWU , SI L x = {7246; 724.6; 72.46; 7.26} (28.2)

Comparing RAW of basic events in Table28.5 with threshold values in Eq. (28.2)
it is found that uncertainty of basic events 1MBPRCRDMF and 1IKPR0BRKL is
very significant, e.g. RAW beyond 7300, which means RPS reliability could move
from current SIL 4 to SIL 1.

Table28.6 summarizes the results derived for the uncertainty importancemeasures
for RPS Unavailability before the SF change (2months). In particular, Sobol and
Spearman indices are presented. Both Spearmen and Sobol indices rank parameters
in the same position.

Table28.6 results show, based on Sobol indices, the probability of fail to insert
control rods mechanisms is the parameter uncertainty, which influence the most
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Table 28.6 Global sensitivity analysis (2month)

Parameter Si STi STi − Si Spearman

ρD 0.612 0.601 −0.01 0.576

λR 0.186 0.188 0.002 0.566

λC 0.187 0.216 0.029 0.422

Total 0.980 – – –

uncertainty of RPS unavailability. Since the sum of all indices Si is less than 1,
then, the model is non-additive and, therefore, there are interactions among input
parameters above.

28.6 The Opportunity: Reliability and Risk Based Optimization
of TS Changes Addressing Uncertainties

Accounting for the state-of-art, there is an opportunity to make significant progress
in this field by means of the integration of the previous approach for evaluation of
reliability and risk impact into a multi-objective optimization problem of TS changes
addressing uncertainties.

For sake of clarity in the sequel only a simplified A[U]+C problem is consid-
ered because of the generalization is straightforward. The general multi-objective
optimization problem (MOP) can be formulated for the A[U]+C problem based on
the tolerance interval method to minimize the vector of multi-objective uncertain
functions, f(x), subject to the vector of uncertain constraints, g(x):

f(x) = {U {U(x)}γ / β,U {C(x)}γ/ β}
g(x) = {U {U(x)}γ / β ≤ UL,U {C(x)}γ/ β ≤ CL}

Figure28.6 shows the U-C plot of the possible solutions to the MOP considering
herein uncertain objectives and constraints.

Figure28.7 shows the framework adopted in previous works (see for example
Ref. [30]) for the reliability and risk based optimization of Technical Specification
changes addressing uncertainties using the principles depicted in Fig. 28.6.

In Fig. 28.7 it is shown that only comparison of the reliability and risk assessment
results against safety goals, which is a small part of the reliability and risk analysis,
third step, in Fig. 28.1, is considered by means of the formulation of the constraint
function. Thus, only steps 1 and 2, of the three steps based approach proposed in this
paper, were fully accounted for in previous work.

Figure28.8 shows a new framework proposed in this paper for the reliability and
risk based optimization of Technical Specification changes addressing treatment and
analysis of uncertainties in an integrated manner.



28 New Challenges and Opportunities in Reliability and Risk Based Optimization 441

Fig. 28.6 Objective space of feasible solutions for MOP

Fig. 28.7 Basic optimization approach

28.7 Future Challenges

The framework depicted in Fig. 28.8 introduces consideration of step 3, i.e. reliability
and risk analysis, in full.

Thus, major challenge involves integration of the three steps based approach
within the reliability and risk based optimization of TS changes addressing uncer-
tainties. In particular, the following topics bring new challenges requiring further
research.
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Fig. 28.8 Extended optimization approach

• Integration of the above approach within a reliability and risk based optimization
framework can benefit of previous results presented on the combined use of MC-
GA.

• Decisionvariables:New (additional) variablesmaybe introduced into the decision-
making because of the analysis of the importance of uncertainties, e.g. adoption
of design changes like a sort of compensatory measure.

• Modeling: Move from model to parameter uncertainty as much as possible. In
addition, use of surrogate models may be necessary to reduce computational cost
based on the results of classical and uncertainty importancemeasures computation.

• Assessment: Account for uncertainty introduced by meta-models as compared
with PRA based models. Adoption of uncertainty reduction methods.

• Analysis: Use of traditional versus uncertainty importance measures. Link to
global sensitivity analysis with/without meta-modeling.

• Optimization: Introduce additional variables in the decision-making. Introduce
the results of not only the reliability and risk assessment but also the results of
reliability and risk analysis in the decision making, for example, include classical
and uncertainty importance measures as part of the objective and/or constraint
functions.

• Optimizer: Develop efficient EA to cope with previous MOP formulation.
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Chapter 29
Bi-objective Discrete PSO for Service-Oriented
VRPTW

Julio Brito, Airam Expósito and José A. Moreno-Pérez

Abstract In this paper we deal with a variant of the VRPTW that is oriented to the
quality of service to customers. In this model, we incorporate a measure of quality
associated with the time the vehicles reach customers within their time window as
an objective. We apply a bi-objective discrete PSO to deal with the problem. The
procedure performance is analyzed on classical and real data based instances.

Keywords Multicriteria optimization · Vehicle routing · Particle swarm
optimization

29.1 Introduction

Distribution route planning plays an important role in supply chain management,
among other reasons, because it improves quality of service and customer satisfac-
tion while reducing costs. Vehicle Routing Problems (VRPs) is a well-known class
of problems consisting in finding the best set of routes for a set of vehicles in order
to serve the demand for goods of a set of geographical scattered customers [39]. The
usual objective of these problems is to determine the set of feasible routes for the
available vehicles that minimizes the total cost of operations, generally expressed
in term of distances or times. However, in order to guarantee a minimum quality
of service, in the variant Vehicle Routing Problem with Time Windows (VRPTW),
each customer fixes a time window within which the service has to be completed.
However, with present-day competitive markets, companies strategically increase
their interest in the quality of service by increasing customer satisfaction. Thus,

J. Brito (B) · A. Expósito · J.A. Moreno-Pérez
I.U.D.R., University of La Laguna, 38271 La Laguna, Spain
e-mail: jbrito@ull.es

A. Expósito
e-mail: aexposito@ull.es

J.A. Moreno-Pérez
e-mail: jamoreno@ull.es

© Springer International Publishing Switzerland 2015
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods
in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_29

445



446 J. Brito et al.

instead of guaranteeing a minimum quality of service by completing the service
within the customers time windows, companies try to service them as soon as possi-
ble within their corresponding time windows. Therefore we consider a bi-objective
VRPTW where, in addition to the classical cost reduction, we consider a second
minimization objective by measuring the quality of service through the average pro-
portion on the time windows that customers have to wait for service.

VRP models can be found in the literature whose aims are to prioritize the satis-
faction of customers needs. These models tackle the problem as an urgent supply of
goods, that is, situations such as logistics under natural disasters, picking up children
to go to school or maintenance services, all of which can be formulated with objec-
tives and constraints that are similar to the proposed model. Among the models that
can be found include the Multiple Travelling Repairmen Problem (M-TVRP) whose
objective is tominimize total time delay or customer arrival [18]; The bus school rout-
ing problem [14] whose objectives, among others, is to minimize average distance
travelled, or the average time used by students in arriving to their school; and the
cumulative capacitated vehicle routing problem (CCVRP) a transportation problem
which objective is to minimize the sum of arrival times at customers, instead of the
classical route length, subject to vehicle capacity constraints. This type of problem
is associated with the satisfaction of customer need, e.g. vital goods supply or rescue
after a natural disaster [10, 31]. The orientation of these models does not emphasize
the need for insertion of time window constraints are they are not considered, hence
no references with these constraints appear in the literature. In these models, just as
in the proposed model in this paper, the vehicles must arrive to all of the customers
as soon as possible. In our model we specifically identify this objective, that is, to
arrive as soon as possible within the established time window .

The approach considered for the problem is a bi-objective and discrete version
of the Particle Swarm Optimization method. Particle Swarm Optimization (PSO) is
a bio-inspired evolutionary metaheuristic proposed by Kennedy and Eberhart [19].
Similar to Genetic Algorithms, PSO is a population-based technique, inspired by the
behavior of a population in the search for an optimum. PSO has been successfully
applied to a wide range of industrial optimization problems due to its relatively easy
implementation and high performancewith lowdemand for computational resources.
An extensive survey of PSO applications can be found in [15, 34].

Several adaptations of PSO that deal with discrete and multi-objective problems
have been tested in the Literature. Particular domains with discrete space solutions,
such as VRPTW, require to redefining how a particle moves in a discrete space and
hence to redefining themechanism for updating the velocity and position of particles.
Kennedy and Eberhart proposed a discrete variant of the original PSO [20] limited
to binary-valued solution elements. They interpreted changes of velocity in terms of
probabilities by encoding the particle’s position as a binary vector and using a sto-
chastic velocity scheme. Since then, several authors have used this approach (e.g. [8,
28]). Other implementations of Discrete Particle Swarm Optimization (DPSO) have
been introduced e.g.Yang et al. [43] that suggest a differentway to update the velocity
of particle. Al-kazemi and Mohan [4] use a method whose particles are influenced
alternatively by the best position of their particular route and its neighbourhood.
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Pampara et al. [32] use the angular modulation with four parameters in continuous
PSO.

DPSO has also been applied to the VRP, however it has hardly ever been con-
sidered in the VRPTW case. Some references apply this metaheuristic to the VRP
and its variants in [35]. Chen et al. [9] proposed a hybrid approach with Simulated
Annealing (SA) to tackle the VRP. Ai and Kachitvichyanuku [2] solve the Capaci-
tated VRP with two specific representations of solutions for the PSO, an extension
of the same algorithms is applied to the VRPTW [1] and to the simultaneous Pick
and Delivery VRP [3]. Zhen et al. [44] and Wang et al. [41] present other versions of
the DPSO for Open VRP. In addition, Zhu et al. [45] show an improved adaptation
of PSO for the VRPTW, a very basic implementation of the DPSO applied to some
short made-up instances of the VRPTW . Sun et al. [38] developed a DPSO for this
problem using a number of heuristics for the initialization of solutions and solution
generations. Other recent versions of the DPSO for the VRPTW are proposed in [17,
23–26, 42]. One paper that stands out for its results is Marinakis et al. [26] who
proposed another alternative to tackle the VRP which combine a DPSO with three
other algorithms.

In multi-objective problems such as the proposed VRPTW it is necessary to com-
pare the solutions in their different objectives. Several papers have suggested the
adaptation of PSO to the Multiple Objective Optimization (MOO). Coello et al. [11]
state that three main considerations must be taken into account when dealing with
MOO using PSO:

1. The selection of the particles that will act as leaders.
2. The storage of non-dominated solutions found by the swarm.
3. The preservation of diversity within the swarm.

An important number of multi-objective PSO have been proposed in the literature
with diverse approaches to tackle these considerations. In [5] and [36] a review of
multi-objective PSO and its applications can also be found, including the VRPTW.
In 2011, Li [22] proposed a multi-objective DPSO to solve a VRPTW.More recently
others multi-objective DPSO that tackle the VRPTW, such as those proposed by
Muñoz-Zavala et al. [30, 33], Shurog et al. [46] and Castro et al. [6, 7].

We consider a version known as Jumping Frog Optimization that can be used for
this kind of discrete problems, the VRPTW. The Jumping Frog Optimization (JFO)
approach proposed in [13, 27, 29] is based on the particles point of view instead of the
solutions or particle’s position. JFO have been applied to solve diverse optimization
problems [12, 16, 37, 40] including the VRPTW [6, 7].

The remainder of this paper is organized as follows. Section29.2 describes the
formulation of the problem, the service oriented VRPTW. Section29.3 describes
the algorithm proposed JFO, a discrete variant of PSO which is used in this paper
to tackle the problem. Next Sect. 29.4 analyses the performance of the proposed
approach. Finally, in Sect. 29.5, we give some concluding remarks.
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29.2 Formulation of the Problem

The VRPTW is given by a set of k vehicles to serve a set of n customers within given
time windows, to find the set of corresponding routes that minimizes the operational
costs. Each vehicle goes by a route that starts and ends at a depot visiting a number
of nodes satisfying their demands. The assumptions of the VRPTW model are:

• Each vehicle is assigned to only one route.
• Each customer is visited by one and only one vehicle.
• Each route begins and ends at the depot.
• Each vehicle has a container with a capacity limitation and the total loading of
each vehicle cannot exceed its capacity.

• Each customer is served within the time window.

We consider the following indices and model parameters:

• The vehicles indexes are: k = 1, . . . , m;
• The customers indexes are: i = 1, . . . , n;
• The depot index is i = 0;
• The amount of customer demand i is qi , i = 1, . . . , n;
• The capacity of vehicle k is Qk, k = 1, . . . , m;
• The cost (distance or time) of traveling from customer i (or depot 0) to j is

ci j , i, j = 0, . . . , n;
• The unloading time at customer i is ui , i = 1, . . . , n;
• The time window of customer i is [ei , li ]; i = 1, . . . , n; ei and li are the respective
earliest and latest time for serving customer i .

The decision variables are:

• Binary variables xk
i j , i, j ∈ [1, . . . , n], k ∈ [1, . . . , m], where xk

i j = 1 if vehicle k

goes from i to j and xk
i j = 0 otherwise.

• Continuous variables rk
i representing the vehicle k load when it reaches customer

i . If vehicle k goes from i to j (xk
i j = 1) then rk

j = rk
i − qi .

• Continuous variables sk
i representing the time when vehicle k starts to serve cus-

tomer i . Analogously, if xk
i j = 1 then sk

j = max{e j , sk
i + ui + ti j }.

The objectives are to optimize the operational costs and ameasure of the quality of
service based on the time that customers have to wait within their time windows for
service; namely, we use the weighted average of these times. Then the three-indices
formulation of the bi-objective extension of the VRPTW as an LP problem is as
follows:

Minimize
m∑

k=1

n∑

i=0

n∑

j=0

ci j xk
i j (29.1)
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Minimize
1

n

m∑

k=1

n∑

i=0

sik − ei

li − ei
(29.2)

Subject to:

m∑

k=1

n∑

i=0

xk
i j = 1, j = 1, . . . , n (29.3)

m∑

k=1

n∑

i=0

xk
ji = 1, j = 1, . . . , n (29.4)

n∑

i=0

xk
i j =

n∑

i=0

xk
ji = 1, j = 1, . . . , n, k = 1, . . . , m (29.5)

n∑

i=1

xk
0i = 1, k = 1, . . . , m (29.6)

n∑

i=1

xk
i0 = 1, k = 1, . . . , m (29.7)

rk
j −qi −rk

i ≤ M(1−xk
i j ), i = 0, . . . , n, j = 1, . . . , n, k = 1, . . . , m (29.8)

rk
0 ≤ Qk, k = 1, . . . , m (29.9)

sk
i + ti j + ui − sk

j ≤ M ′(1 − xk
i j ), i, j = 1, . . . , n, k = 1, . . . , m (29.10)

ei ≤ sk
i , sk

i + ui ≤ li , j = 1, . . . , n, k = 1, . . . , m (29.11)

xk
i j ∈ {0, 1}, rk

i ≥ 0, sk
i ≥ 0, k = 1, . . . , m, i, j = 0, . . . , n (29.12)

Equations (29.1) and (29.2) represent the objective functions in terms of costs
and quality, respectively. Constraints (29.3) and (29.4) guarantee that only one
route/vehicle enters and leaves from one node or that each customer is served exactly
once. Constraints (29.5) establish the conditions to maintain continuity of the route,
if a vehicle leaves a customer then it has reached it. Constraints (29.6) and (29.7)
ensure that each vehicle leaves the depot and returns to it, thereby limiting vehicle
use to one trip. Constraints (29.8) and (29.9) where M is a large scalar, establish
the relationships between variables rk

i and ensure that total customer demand in any
route does not exceed the corresponding vehicle capacity Qk . Constraints (29.10)
state that a vehicle k cannot arrive at j before sk

i + ti j if it is travelling from i
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to j and guarantee subtours eliminations (M ′ is a large scalar). Constraint (29.11)
ensure that time windows are observed. Finally (29.12) establish the conditions of
the variables.

29.3 The Jumping Frog Optimization

Particle Swarm Optimization (PSO) is a nature-inspired metaheuristic that has been
applied with success in many areas and appears to be a suitable approach for a wide
range of optimization problems [21]. PSO is a population-based technique, inspired
by the social behaviour of individuals (or particles) inside swarms in nature (for
example, flocks of birds or schools of fish). It is easy to implement, requiring few
parameter settings and computational memory. The original PSO algorithm can only
optimize problems in which the elements of the solution are continuous real numbers
since, in words of the inventors of PSO, it is not possible to “throw to fly” particles
in a discrete space. Several modifications of the PSO algorithm for solving problems
with discrete variables have been proposed in the literature. They are referred to as
Discrete Particle Swarm Optimization (DPSO) methods [20].

The standard PSO considers a swarm S containing n particles (S = 1, 2, . . . , n)
in a d-dimensional continuous solution space. Each i th particle of the swarm has
a position xi = (xi1, xi2, . . . , xi j , . . . , xid), and a velocity vi = (vi1, vi2, . . . ,

vi j , . . . , vid). The position xi represents a solution to the problem, while the veloc-
ity vi gives the rate of change for the position of particle i at the next iteration.
Indeed, considering iteration k, the position of particle i is adjusted according to
xk

i = xk−1
i + vk

i .
Each particle i of the swarm communicates with a social environment or neigh-

bourhood, N (i) ⊆ S, representing the group of particleswithwhich it communicates,
and which could change dynamically. In nature, a bird adjusts its position in order
to find a better position, according to its own experience and the experience of its
companions. In the same manner, considering iteration k of the PSO algorithm, each
particle i updates its velocity reflecting the attractiveness of its best position so far
(bi ) and the best position (gi ) of its social neighbourhood N (i), according to the
equation:

vk
i = c1ξvk−1

i + c2ξ(bi − xk−1
i ) + c3ξ(gi − xk−1

i ) (29.13)

The parameters ci are positive constant weights representing the degrees of confi-
dence of particle i in the different positions that influence its dynamics, while ξ refers
to a random number with uniform distribution [0, 1] that is independently generated
at each iteration and for each term.

The spirit of nature to deal with some real-life problems is often based on simple
processes. Simple phenomena, easy ideas, sometimes works better than too elab-
orated and intricate ones. Trying to emulate this aspect of life, the Jumping Frog
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Optimization (JFO) is a discrete PSO that keeps it its easy implementation and sim-
plicity and can be applied to any combinatorial problem.

JFO considers a swarm S containing n particles (S = 1, 2, . . . , n) whose positions
xi evolve in the solution space, jumping from one solution to another. The number of
particles in the swarm is chosen, typical values are between 20 and 50. The position
of a particle is encoded as a feasible solution to the problem. At each iteration, each
particle has a random behaviour, or jumps to another solution in a manner guided by
the effect of some attractors.

JFO considers three attractors for the movement of each particle i : its own best
position to date (bi ), the best position of its social neighbourhood (gi ),and the best
position to date obtained by all the particles, which is called the global best position
(g∗). A jump approaching an attractor consists of changing the current solution
by using some feature of the attractor. Each particle is further allowed to behave
randomly and perform random jumps. A random jump consists of performing a
random move on the solution. Algorithm 1 gives the main steps of the proposal.

The Discrete Particle Swarm Optimization named JFO has been applied to a
multiobjective VRPTW problem in [6]. In this paper a large number of objectives is
considered in order to show that incorporating some principles from multi-objective
optimization allow particles to conduct a dynamic trade-off between objectives in
order to reach feasibility. They show that without incorporating tailored heuristics
or operators to tackle infeasibility, it is possible to evolve very poor infeasible route-
plans to very good feasible ones using swarm intelligence.

In our implementation for the Service-Oriented VRPTW we consider the usual
moves for VRPTW; i.e., to move one or more customers to other position of the
route planning. The attractors are considered as the best particle taking into account,
alternatively, each objective.Aparticle performs a jump towards the selected attractor
by selecting a route from the selected attractor and applying a local search. The
local search is based on the simplest move; i.e., to move one customer to other
position of the route planning. We consider an archive consisting on a short set of
disperse efficient solutions. The archive is updated taking into account the dominance
relationship and the distance between the solutions in the archive.

Initially we generate a initial swarm by constructing feasible solutions at random.
For each particle we keep the value of both objectives: the quality of service measure
and the distance travelled.We get the average values of the two objectives in the initial
swarm to normalize them, since the difference between the values of both objectives
are quite large. From the initial we get a set of disperse good solutions as follows.
First the two particles with best values for each one of the objectives are selected,
and the distance between them, in the objective space, is computed. In order to get a
reduced set of solutions uniformly scattered between them, the corresponding points
in the objective space are obtained. The particles that are closest to each one of this
point is used as initial archive set.

An attraction move of a particle consists of choosing a route of the attractor and
insert it into the solution. The customers of this route are eliminated from the route
that contains them in the solution. Then we explore the resulting particle solution
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Algorithm 1: Bi-objective Discrete Particle Swarm Optimization for the
Service-Oriented VRPTW

Input: VRPTW data
Output: Route Planning R;
Initialization:
- Set the size ns of the swarm S;
begin

- Generate the initial swarm S at random;
- Update the vector A of the best positions;
- Extract the best position g∗ in S;
- Generate the social neighborhoods Ni ⊆ S;
repeat

for i = 1 to ns do
- Initialize the best social positions: gi ← xi ;

end
for i = 1 to ns do

- Select ξ at random: ξ ← random(0, 1)
end
;
if ξ ∈ [0, c1) then

- attractor ← xi ;
else if ξ ∈ [c1, c1 + c2) then

- attractor ← bi ;
else if ξ ∈ [c1 + c2, c1 + c2 + c3) then

- attractor ← gi ;
else if ξ ∈ [c1 + c2 + c3, 1) then

- attractor ← g∗;
- Move xi : xi ← Move(xi , attractor);
- Apply the local search: xi ← LS(xi );
if xi is better than bi then

- Update bi ← xi ;
end
if xi ∈ N j and xi is better than g j then

- Update g j ← xi ;
end
if xi is better than g∗ then

- Update g∗ ← xi ;
end
if not A ≺ xi then

- Update the archive A;
end
//xi dominant

until termination conditions;
end

to try to redistribute the customers of the smallest resulting routes in other routes in
order to reduce the number of routes.

In order to decide if a new solution is included in the archive we proceed as
follows. We traverse the archive checking if this solution is dominated for some
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solution already in the archive. In that case the new solution is discarded. Otherwise,
we traverse again the archive looking for a solution dominated by the new one that
will be replaced by the new solution. If the new solution dominates more than one
solution in the archive, it replaces the nearest one (in the objective space). If the new
solution is not dominated by any solution the archive and there is not solution in the
archive that dominates the new one then we proceed as follows. We get the solution
of the archive that is nearest to the new one. The new solution substitute the found
solution in the archive if and only if the second nearest solution of the new solution
is farther than the second nearest solution of the found solution.

The neighbourhoods are selected at random given their size that is stated to 1/5
the size of the swarm. The neighbourhoods are generated again each time the global
best solution does not change from a generation to the next one.

29.4 Experimentation

This section describes the results from the computational experiments that were
carried out in our study. The aim of the experiment is to evaluate the accuracy of
the proposed JFO metaheuristic procedure, which is used to solve the bi-objective
VRPTW oriented towards quality of service.

Two types of instances were used in the experiment for comparative purposes.
One instance uses data from an actual planning case from a distribution company.
The data provides the location of a set of customers which must be serviced on a
specific day. We used available data from a randomly chosen set of 25, 50 and 75
customers, as well as their respective demand and time windows. The source of the
second instance was the classic Solomon instances. Specifically we chose at random
an instance from RCxxx, namely the RC207. The RCxxx instances combine the
geographical distribution of the customers grouped in areas with customers located at
randomwith a uniform distribution. In addition the RCxxx have wide large windows.
Experiments used with these instances were carried out on 75 customers. Vehicle
capacity was 1,000 load units.

The experimentation under the proposed JFOmetaheuristic used different swarms
and neighbourhood sizes. Specifically swarms of 10, 30 and 50 particles and 2, 4
and 6 particles for the neighbourhoods were used. In order to collect the results that
used the JFO procedure for each one of the swarms and instances we compute 20,
50 and 70 iterations. In addition one instance and swarm were tested, specifically on
a larger number of iterations if improvements were noticed, which will be discussed
later on.

The JFO metaheuristic was implemented using a uniform combination of values
ci , with equal weights of 0.25 for each of the four types of movements (random,
cognitive, social and global). That is we have considered that each movement has an
equal probability during each one of the iterations.
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Table 29.1 Computational results with real instances

Swarm-generations Best Average

TQs TDist TQs TDist

25 Customers

S10 
 NG20 0.3729 579.0 0.3775 648.45

S30 
 NG50 0.2815 526.2 0.2997 538.27

S50 
 NG70 0.2294 422.7 0.3100 472.03

50 Customers

S10 
 NG20 0.4272 1140.3 0.4457 1267.18

S30 
 NG50 0.3221 1081.1 0.3483 1253.39

S50 
 NG70 0.3340 1036.2 0.3522 1234.31

75 Customers

S10 
 NG20 0.3805 1703.0 0.3932 1743.64

S30 
 NG50 0.3542 1505.4 0.3660 1747.98

S50 
 NG70 0.3361 1358.2 0.3501 1548.31

Table 29.2 Comparative results with real and Solomon instances

Swarm-generations First iteration Last iteration

Best Average Best Average

TQs TDist TQs TDist TQs TDist TQs TDist

Real instances 75 customers

S10 
 NG20 0.4432 1318.8 0.5039 1583.96 0.3805 1703.0 0.3932 1743.64

S30 
 NG50 0.4802 1280.3 0.5137 1553.12 0.3324 1625.8 0.3660 1747.98

S50 
 NG70 0.5232 1190.2 0.5175 1558.93 0.3126 1358.5 0.3501 1548.31

Solomon inst. 75 customers

S10 
 NG20 0.4852 1969.5 0.5439 2212.47 0.3742 2134.4 0.4273 2279.07

S30 
 NG50 0.4764 1937.1 0.5513 2169.95 0.2977 2056.1 0.3444 2287.45

S50 
 NG70 0.5264 1848.7 0.5481 2154.84 0.2252 2117.7 0.2733 2277.44

Table29.1 shows a summary of the experimental results for each one of the actual
instances with 25, 50 and 75 customers and with different swarm sizes 10, 30 and
50 respectively, and the total number of iterations on them 20, 50 and 70. The table
shows the best solutions obtained with the values from the quality of service and the
distance objectives. In addition to the average obtained values of these objectives are
those for all particles of the swarm in the respective iteration.

Thus we carried out a comparison (Table29.2) of the results from a real instance
of 75 customers with the instance from the Solomon RC207 instance with the same
amount of customers. In order to do so we used the same number of swarms and
iterations as in the previous table and then compared the results from the first iteration
with the results from the last iteration (producing the best solution).

Figures29.1, 29.2 and 29.3 show the evolution of the solution archive for real
instances for 25, 50 and 75 customers with swarm of 50 particles and 70 iterations.
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Fig. 29.1 Evolution of solution archive:real instance 25 customers, 50 particles and 70 iterations

Fig. 29.2 Evolution of solution archive: real instance 50 customers, 50 particles and 70 iterations

Each figure represents the solution archive for iterations 1, 30 and 70. Improvement
in the solution is clearly apparent as iterations increase.

An experiment using the actual instance of 50 customers and 50 swarms was
carried out for the purpose of valuing the increase of iterations on the solution
search. It was executed with 235 iterations. Table29.3 shows the solution archive.
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Fig. 29.3 Evolution of solution archive: real instance 75 customers, 50 particles and 70 iterations

Table 29.3 Current state of the solution archive with real instances of 50 customers 50 particles
and 235 iterations

First Iteration Iteration 70 Iteration 140 Iteration 235

Quality Distance Quality Distance Quality Distance Quality Distance

0.4799 1633.5 0.3040 1242.1 0.2955 1089.6 0.2955 1089.6

0.5146 1472.5 0.4157 1057.2 0.3533 1045.5 0.3248 956.1

0.5405 1530.2 0.3018 1293.5 0.2777 1277.7 0.2777 1277.7

0.5767 1307.4 0.4306 1039.2 0.4306 1039.2 0.3333 937.2

0.5950 1333.9 0.4333 1025.3 0.4333 1025.3 0.3037 1019.3

0.4834 1542.7 0.3706 1071.8 0.3248 1034.8 0.3030 977.9

0.4853 1100.0 0.4686 947.5 0.4686 947.5 0.3374 926.7

Table 29.4 Computational resultswith real instances of 50 customers 50 particles and 235 iterations

Real Inst. First Iteration Iteration 70 Iteration 235

Objectives Best Average Best Average Variation Best Average Variation

Quality 0.469 0.499 0.370 0.389 �20.9 �22.1 0.303 0.311 �18.2 �20.1

Distance 947.5 1278.7 1071.8 1096.6 �13.1 �14.2 977.9 1026.4 �8.8 �6.4

Table29.4 presents the results of the experimentation. Figure29.4 is also included
which displays the evolution of the solution archive by iteration.
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Fig. 29.4 Evolution of solution archive: real instance 75 customers, 50 particles and 235 iterations

29.5 Conclusions

This paper has tackled a new model of the bi-objective VRPTW which deals
with seeking improvement of service quality. We approach this problem by not
only looking at the objective of finding minimal distance routes but also consider
factors such as maximizing customer satisfaction that is associated with the criteria
of vehicles serving the customers as soon as possible within their time window. This
paper provides the formulation for that model. A version of a PSO metaheuristic for
discrete problems, JFO, is used to solve this problem.

The algorithm has been tested in the classical instances used for VRPTW and
in a battery of instances obtained from real data of a distribution company. The
experimental results reveal that the proposed procedure helps solve models with
time windows and objectives which focus on the quality service. The results shows
that the approach is suitable to offer the decision maker a reduced set of disperse
non-dominated solutions. Future studies include improvements in the implemented
metaheuristics by adjusting parameters.
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Abstract This paper presents an approach for the evaluation of risk impact of
Surveillance Requirement changes addressing identification, treatment and analysis
of uncertainties in an integrated manner, which is intended to be used in an optimiza-
tion context. It is also presented an example of application of the methodology to
study a SF change of the Reactor Protection System of a Nuclear Power Plant.
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30.1 Introduction

The Reactor Protection System (RPS) is a very important system for Nuclear Power
Plant (NPP) safety, as it is responsible for shutting down the NPP bymeans of reactor
trip in case of accidental conditions. So that, current regulation requires a very high
reliability of the system inperforming its vital and required safety function, i.e. reactor
trip. The RPS is a sort of Safety Instrumented System (SIS) [1]. A SIS is defined as
an “instrumented system used to implement one or more safety instrumented control
functions. A SIS is composed of any combination of sensors, logic solver and final
elements” [2]. The standard IEC 61508 requires every safety function to achieve a
determined Safety Integrity Level (SIL). For low demand operating systems the SIL
levels are defined in terms of average probability of failure on demand (P F Davg ,
see Table30.1).

Surveillance Requirements (SR) are part of Technical Specifications that are
included into the Licensing Basis (LB) for operation of Nuclear Power Plants.
Surveillance tests aim at limiting risk of undetected downtimes of safety related
equipment by imposing equipment operability checks, which consist of testing of
equipment operational parameters with established Surveillance Frequency (SF) and
Test Strategy (TS).

Surveillance testing is executed periodically, and can be implemented using sev-
eral strategies. The strategy establishes how the tests of the redundant components
are scheduled with respect to one another. IEC 61508 (1998–2005) [3] defines proof
test as a “periodic test performed to detect failures in a safety-related systems so that
the system can be restored to an “as new” condition or as close as practical to this
condition”. This standard establishes the need of routine maintenance action in order
to detect unrevealed failures, being proof test one of these activities. It thus has an
important role in the achievement of safety integrity.

Surveillance requirements were established taking into account mainly deter-
ministic criteria. A number of problems have been identified connected to SR that
can jeopardize plant safety. The development of Probabilistic Risk Assessment
(PRA) and its application since the early 80s to analyze SR changes has brought
the opportunity to review SR consistency from a reliability-risk viewpoint, i.e. ad-
dressing the impact of the changes on plant safety on the basis of the reliability-risk
information provided by the PRA, with particular attention to the role of the Surveil-
lance Frequency included within Surveillance Requirements.

Table 30.1 SIL for low
demand mode of operation [3]

SIL PFDavg

4 ≥10−5 to <10−4

3 ≥10−4 to <10−3

2 ≥10−3 to <10−2

1 ≥10−2 to <10−1
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In this context, the NRC issued the first draft of Regulatory Guide RG 1.174 in
1998 [4], which remains a major milestone in the NRC initiative to risk-inform the
regulations on changes to licensing basis (LB), which particularizes to analyze SR
changes in RG 1.177 (1998) [5]. RG 1.174 and RG 1.177 require that all sources of
uncertainty be indentified and analyzed such that their impacts are understood at the
technical element level. It is only recently when some guidance is being proposed on
the systematic treatment of uncertainties associated with the use of the PRA in risk-
informed decision making of LB changes, NUREG-1855 [6] and EPRI-1016737 [7].

30.2 Types of Uncertainty

Uncertainties can be categorized as either random or epistemic. Random uncertainty
reflects our inability to predict random observable events. Epistemic uncertainty
represents our confidence in the model and in the numerical values of its parame-
ters. This type of uncertainty is also called “state-of-knowledge” uncertainty or just
“uncertainty”. Epistemic uncertainties can be split into three categories [4]:

1. Parameter uncertainty is that which relates to the parameters of the PRA, given
a choice of model. Even with a known model, the parameter values may still be
unknown. Examples of parameter uncertainties include equipment failure rates,
initiating-event frequencies, and human error probabilities.

2. Model uncertainty relates to the uncertainty in the assumptions made in the analy-
sis and the models used. In many cases, there is limited knowledge and some
disagreement on the proper model to represent a system. The result is that for a
particular process, there are multiple competing models, each of which necessar-
ily produces a different approximation of the same real-world system.

3. Completeness uncertainty represents the uncertainty due to the portion of risk
that is not explicitly included or modeled in the PRA.

30.3 Framework for SR Change Optimization Addressing
Uncertainties

Figure30.1 shows the framework proposed in this paper for the optimization of
Surveillance Requirements changes based on RAMS+C simulation and addressing
treatment and analysis of uncertainties minimize in an integrated manner.

For sake of clarity in the sequel only a simplified A[U]+C problem is consid-
ered because of the generalization is straightforward. The general multi-objective
optimization problem (MOP) can be formulated for the A[U]+C problem based on
the tolerance interval method to minimize the vector of multi-objective uncertain
functions, f(x), subject to the vector of uncertain constraints, g(x) [8]:
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Fig. 30.1 Schematics of the
RAMS+C based optimization
problem under uncertain
objective and constraints

Fig. 30.2 Objective space of
feasible solutions for MOP

f(x) = {U {U (x)}γ /β, U {C(x)}γ /β} (30.1)

g(x) = {U {U (x)}γ /β ≤ UL , U {C(x)}γ /β ≤ CL} (30.2)

Figure30.2 shows the U–C plot of the possible solutions to the MOP considering
herein uncertain objectives and constraints.

30.4 Evaluation of Risk Impact of SR Change Addressing
Parameter and Model Uncertainties

A fundamental part of the framework proposed in the previous section is the eval-
uation/simulation of the RAMS+C impact of the Surveillance Requirement change
used to formulate f(x) and g(x) functions.
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A three steps based approach for the evaluation of risk impact of changes to
Surveillance Requirements is proposed: modeling, assessment and analysis, which
is based on the use of the PRA and includes identification of sources key to decision,
treatment and analysis of uncertainties in an integrated manner. Risk evaluation
is undestood herein with a general meaning of RAMS+C, while the example of
application will focus on RPS system reliablity only.

While the analysis of parametric andmodel uncertainty is fairlymature, the analy-
sis of completeness uncertainty cannot be handled in a similar formalmanner. So that,
only parameter and model uncertainties will be addressed in detail in the approach
proposed in this paper. Guidance on addressing uncertainties from modeled and
non-modeled risk contributors is given in NUREG-1855 [6] and EPRI-1026511 [9].

What concerns risk modeling, not only the usually addressed sources of uncer-
tainty linked to PRA models and data but also the sources of model and parameter
uncertainties associated with the assumptions in Surveillance Requirement change
evaluationmust be indentified,whichwill be classified in twomain groups: parameter
and model uncertainty [5].

Risk assessment is proposed by formulating the usual risk metrics for analyzing
Surveillance Requirement changes in the literature [10–12]. It is proposed treatment
of model and parameter uncertainties based on traditional sensitivity studies and
uncertainty assessment respectively, the latter based of the probabilistic approach
for uncertainty formulation and propagation by standard Monte Carlo Sampling
(MCS) technique [13, 14].

Risk analysis is based on the well established comparison of the assessment of
risk impact of the change including treatment of uncertainties with acceptance guide-
lines [15]. In addition, it is proposed also the use of both traditional importance mea-
sures and uncertainty importance measures (sensitivity analysis) in order to analyze
respectively how basic events and parameter uncertainties influence the risk impact
of the change proposed and its uncertainty [16, 17]. The former helps to identify the
main risk contributors. Uncertainty importance measures help to identify which of
uncertain parameters are most significant contributors to risk impact uncertainty and
eventually the need of limiting the impact of the effect of particular uncertainties or
of developing additional modeling and treatment of uncertainties (see Fig. 30.1).

A reasonable way of addressing epistemic uncertainties may consist of evolving
from model to parametric uncertainties as much as possible, with an aim at allowing
model refinement prior to use the results of the risk assessment to support quantifi-
cation of objective and constraint functions. This paper focuses on demonstrating
how the results of risk analysis, with application to study SR changes, can help in the
achievement of such a model refinement (see internal loop of simulator in Fig. 30.1).
By so doing, it is possible to build an optimization strategy based on the traditional
use of MC simulation and GA optimization, i.e. MC-GA.
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30.5 Case Study

The case study presents the results of the evaluation of the risk impact of a Surveil-
lance Frequency (SF) change of circuit breakers of the Reactor Protection System of
a PWR Nuclear Power Plant, which could be used to obtain a refined model for the
MC-GA based SF optimization.

30.5.1 Problem Description

Figure30.3 shows a schematic view of the RPS, which consists of two redundant
and identical channels, A and B. The RPS can be actuated manually from the control
room or automatically after a signal requiring reactor trip. This signal opens circuit
breakers 52RTA and 52RTB. Manual or automatic actuation of the RPS deenergizes
control rods, which are inserted in the reactor core by gravity. The by-pass breakers
52BYA and 52BYB allows testing of the main circuit breakers above using manual
trip/rep.

Surveillance Requirements of the RPS establish a functional test of the redundant
channelswith a SurveillanceTest Interval (TI), i.e. 1/SF, of twomonths and sequential
testing. This means the first circuit breaker, e.g. 52RTA, is tested the first month and
the second one, 52RTB, is tested the next month. The TI change consist of extending
the current TI from 2 to 3 months; i.e. 1,440–2,160h.

Fig. 30.3 Schematic view of
the RPS



30 An Approach for the Evaluation of Risk Impact of Changes Addressing … 467

Fig. 30.4 Fault tree for RPS
failure

30.5.2 Plant Specific PRA

Figure30.4 shows a fault tree representing the failure of theRPS as top event included
in the Level 1 PRA. Basic events representing control rods mechanism fail to insert,
i.e. 1MBPRCRDMF, common cause failure (CCF) of the circuit breakers 52RTA
and 52RTB, i.e. 1IKPR0BRKL, and human error to disconnect motor generators
MG1-A yMG1-B, i.e. 1FOCAATWSH, are highlighted in addition to the AND gate
representing occurrence of independent failures of RPS channels A and B.

Tables30.2 and 30.3 present models and data used for modeling the basic events
and their corresponding parameters in current PRA only for most important basic
events belonging to the RPS that appear in the final Boolean equation after generating
the minimal cut sets (MCS) using a cut-off criteria 10−12.

30.5.3 Reliability Assessment of the RPS Before and After the SF
Change as Compared to SIL Levels

Current regulation requires a very high reliability of the RPS in performing its vital
safety function, i.e. reactor trip. Table30.4 shows there is no significant reduction
of the RPS reliability after the SF extension (base case), which remains very high.
See also the results in Figs. 30.5 and 30.6. Table30.4 summarizes also the results of
a number of sensitivity studies performed in order to estimate the impact of model
uncertainties on the assessment of risk impact of the SF change including parameter
uncertainty as well (see also Fig. 30.5). In addition, comparing results in Table30.4
(Fig. 30.5) with SIL requirements in Table30.1, the highest SIL level 4 is achieved
any case.
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Table 30.2 More important basic events

Basic event Description BE model Unavailability formula (u)

1MBPRCRDMF Control rods mechanisms
fail to insert

Standby 1/2*λR*MTBRT

1FOCAATWSH Operator fails to deenergize
generators

Demand ρD

1IKPR0BRKL Circuit breakers Common
Cause fail to open (CCF)

Standby 1/2*λC*TI (sequential tests)

1IKPR0RTAA Circuit breaker independent
fail to open

Standby 1/2*λI *TI

1IKPR0RTBA

1IKPR0BYAA

1IKPR0BYBA

1FOPRATWSH Operator fails to manually
scram reactor

Demand ρS

1P1PR0RTAP Downtime for testing Test τ /TI

1P1PR0RTBP

Table 30.3 Data and parameters of basic events

Parameter Description Parameter type Parameter/value

λR (h−1) Control rods mechanisms
failure rate

PDF Ga(4.32 ×10−9; 0.49; 1.13 ×108)

ρD (-) Human error probability to
deenergize generators

PDF Ln(1.05 ×10−1; 5)

λC (h−1) Circuit breakers Common
Cause fail to open (CCF)

Standby λC = β* λI Ln(1.21 ×10−7; 3)

β (-) β -factor for Circuit break-
ers Common Cause failure
rate

Constant 0.1277 (sequential tests)

λI (h−1) Circuit breaker indepen-
dent failure rate

PDF Ga(9.47 ×10−7 ; 1.49; 1.57 ×106)

ρS(−) Human error probability to
manually scam reactor

PDF Ln(1.66 ×10−1; 5)

MTBRT (h) Mean Time Between Re-
actor Trips

Constant 2160 (true trips) [Max TBRT = 13140]

TI (h) Test Interval (1/SF) Constant 1440 (current TI in TS)

τ(h) Test time Constant 1.37

30.5.4 Measures of Importance of Basic Events and Parameters

Table30.5 summarizes the results derived for the traditional importance measures
for RPS Unavailability before the SF change (2 months) and ranked according to
RAW.
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Table 30.4 Results of quantification of unavailability for the base case and sensitivity studies

Case Mean 5% 95% Mean 5% 95%

Base case 1.38 ×10−5 1.64 ×10−6 3.97 ×10−5 1.83 ×10−5 2.19 ×10−6 5.78 ×10−5

Sensitivity

MTBRT 3.74 ×10−5 2.83 ×10−6 1.18 ×10−4 4.20 ×10−5 3.66 ×10−6 1.36 ×10−4

FFNCT 1.38 ×10−5 1.66 ×10−6 3.56 ×10−5 1.61 ×10−5 1.92 ×10−6 4.21 ×10−5

HEP rookie 2.29 ×10−5 2.15 ×10−6 7.53 ×10−5 3.20 ×10−5 3.63 ×10−6 1.122 ×10−4

TS staggered 7.11 ×10−6 5.31 ×10−7 2.21 ×10−5 8.33 ×10−6 7.71 ×10−7 2.60 ×10−5

Fig. 30.5 Unavailability of RPS before and after SF change

Reference [18] proposes also the use of threshold values to determine the value
of RAW below which we deem the basic event to be not risk-important. Threshold
values of RAW are given for RPS Unavailability as compared to SIL levels using the
following equations:

R AWU,SI Lx = USI Lx

U
(30.3)

The following set of threshold RAW values for U is obtained using Eq. (30.3) and
corresponding SIL levels:

R AWU,SI Lx = {7246; 724.6; 72.46; 7.26} (30.4)

ComparingRAWof basic events inTable30.6with threshold values inEq. (30.4) it
is found that uncertainty of basic events 1MBPRCRDMF and 1IKPR0BRKL is very



470 S. Martorell et al.

Fig. 30.6 PDF of unavailability RPS for the base case

significant, e.g. RAW beyond 7,300, which means RPS reliability could move from
current SIL 4 to SIL 1. Table30.6 summarizes the results derived for the uncertainty
importance measures for RPS Unavailability before the SF change (2 months). In
particular, Sobol and Spearman indices are presented. Both Spearmen and Sobol
indices rank parameters in the same possition.

Table30.6 results show, based on Sobol indices, the probability of fail to in-
sert control rods mechanisms is the parameter uncertainty which influence the most
uncertainty of RPS unavailability. Since the sum of all indices Si is less than 1,

Table 30.5 Traditional importance measures of basic events (2 months)

Basic event Unavailability FV RAW RRW

1MBPRCRDMF 4.67 ×10−6 3.38 ×10−1 72330 1.51

1IKPR0BRKL 8.70×10−5 6.61 ×10−1 7596 2.95

1BLBC0G1CF 2.24 ×10−6 1.41 ×10−5 7.3 1

1FOCAATWSH 1.05 ×10−1 6.63 ×10−1 6.65 2.96

Table 30.6 Global sensitivity analysis (2 month)

Parameter Si ST i ST i − Si Spearman

ρD 0.612 0.601 −0.01 0.576

λR 0.186 0.188 0.002 0.566

λC 0.187 0.216 0.029 0.422

Total 0.980 – –
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then, the model is non-additive and, therefore, there are interactions among input
parameters above.

30.6 Concluding Remarks

This paper presents an approach for the evaluation of risk impact of Surveillance
Requirement changes addressing identification, treatment and analysis of uncertain-
ties in an integrated manner, which is intended to be used in an optimization context.
The case study demonstrates how the results of risk analysis can help in the achieve-
ment of a model refinement by focussing on most significant risk contributors and
uncertainties. By so doing, it may be possible to build an optimization strategy based
on the use of MC simulation—GA optimization, by evolving first from model to
parametric uncertainties accounting for the most relevant contributors.
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Chapter 31
Scalable Deployment
of Efficient Transportation Optimization
for SMEs and Public Sector

Pekka Neittaanmäki and Tuukka Puranen

Abstract Transportation planning is central activity in logistic network design. In
this study,we examine the deployment of optimizationmethodology to transportation
planning. More specifically, we examine the adoption of system solving the well-
known combinatorial optimization problem, the vehicle routing problem (VRP). Its
application has resulted in efficiency gains in transportation logistics, but they have
not been very widespread, and especially small-scale operators have not yet bene-
fited from these systems. In this paper, we present a prospective case study on the
issues during deployment of optimization, especially in the context of small and
medium enterprises (SMEs). We propose a novel perspective to analyzing vehicle
routing systems (VRSs), and complement the previous research on real-life aspects
of commercial routing. In this study, we suggest a framework for analyzing VRS
deployment, from a viewpoint frequently identified in enterprise architecture (EA)
theory. To our knowledge, EA theory has not been applied to study the requirements
of VRP solution methods. This new viewpoint allows us to identify new needs for
widespread adoption of vehicle routing systems, and to derive additional require-
ments for the optimization methodology for SMEs. In practice, we identify several
adoption barriers for VRSs and suggest potential strategies for lowering them.

Keywords Combinatorial optimization · Vehicle routing problem · Transportation
planning ·Metaheuristics · System deployment

31.1 Introduction

Transportation logistics is a major area of activity in the logistics field. Efficient
transportation requires both efficient flow of material and people, as well as careful
coordination of the entities performing the transportation. It is the issue of coordina-
tion that has especially been addressed by the academic logistic problem, the vehicle
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routing problem [1], in which the task is to simultaneously divide transportation
activities to transporting entities and design optimal transportation routes for these
entities. The goal is typically to minimize the number of entities (for example vehi-
cles) and the total distance they travel.

Vehicle routing problem has several variants, each of which address a different
set of properties encountered in real-life transportation planning. The most common
variants include vehicle routing problem with time windows, pickup and delivery
problem, multi-depot vehicle routing problem, and vehicle routing problem with
backhauls. One of the main challenges in deploying optimization methodology to
the VRP is this heterogeneity of these details. Operators have differing requirements
[2], and different models typically require different solution methods to be solved
efficiently and effectively [3].

Vehicle routing problems have been solved with a large array of optimization
methods, ranging from exact methods [1] to metaheuristics [4] and hyperheuristic
[5] methods. The most successful approaches to date have combined several meta-
heuristic components with a set of strong local search operators [6]. The downside
of this diversity is the complexity of choosing efficient methods for the problem at
hand [3].

A third challenge for a widespread utilization of optimization methodology is
the fact that many logistic operators are relatively small. This results, due to the
complexities mentioned, in an inability to acquire the necessary expertise to select,
configure and deploy vehicle routing systems in general. In this paper, we attempt to
provide a lightweight process for easier deployment of thesemethods, and discuss the
implications of the process to the future of the optimization solution methodology.

The paper is structured as follows. In Sect. 31.2, we provide a context for the
study, in Sect. 31.3, we describe briefly the research approach used, in Sect. 31.4 we
propose a framework for examining the adoption of routing systems, and in Sect. 31.5
describe the key findings so far in the context of the proposed framework. Finally in
Sect. 31.6, we conclude and suggest areas for further study.

31.2 Background and Contribution

The presented study is conducted as a part of a larger research project which aims
to significantly lower the costs of deploying optimization in small and medium
enterprises and public sector. There are two main hypotheses that form the basis of
the project. Firstly, the utilization of optimization would provide value to SMEs and
public sector institutions, and secondly, the observed lack of utilization is due to
problems in deployment, and not in the optimization models and methods them-
selves.

The reasons for the above mentioned hypotheses are twofold: first, we have noted
the success stories of the large-scale entities in deployment of optimization, indicating
that the state of the art has advanced sufficiently for practical use, and second, the
problems found in SMEs and public sector institutions exceed the efficient planning
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capabilities of the human dispatchers, i.e., they are non-trivial in most cases. In
addition, our preliminary results indicate that there is a widespread demand for
optimization solutions within SMEs, due to, for example, cost and environmental
pressures.

It is still not clear which are the main reasons for the difficulty of the deployment
in a scalable manner, and this paper presents the preliminary findings of our study.
We have applied the process described in this paper in several cases, in organizations
of different sizes and types. More specifically, we attempt to answer the following
questions: why has commercial vehicle routing problem not been widely adopted,
what are the barriers for the technology adoption, and especially, how do the findings
affect the requirements for new vehicle routing problem models and solution meth-
ods. We propose a novel perspective to vehicle routing, and complement the already
identified real-life aspects of commercial routing [7]. Our objective is to provide the
SMEs with efficient tools for transportation planning in a scalable manner.

By efficient we mean accounting for the individual characteristics of the different
cases well—unlike many of the current off-the-shelf routing systems which assume
that one rich enough model and versatile enough algorithm set suffices. This has led
to situation where systems either handle the simple cases (but as such do not provide
enough value over the manual planning), or result in too complicated deployment
and use in the complex cases. This has, effectively, lead to inefficient use of routing
systems where most users do not benefit from the recent advances in the vehicle
routing research. Thus to provide the efficiency needed by the heterogeneity of the
SMEs, we derive additional requirements for the optimization methodology in this
context.

To understand the scalability of the deployment, we identify several adoption
barriers from the studied cases, and utilize a distinction frequently identified in EA
frameworks: the domains—or layers—of business, data, and applications [8].1 We
build our deployment framework according to these three layers, categorize the bar-
riers according to thess proposed framework, and suggest strategies for lowering
them.

Previous studies has identified the need to consider commercial setting in general,
andmany of the publications on richVRP variants have addressed the issue ofmodel-
ing the aspects commonly found in real-life routing cases [7], as well as constructing
systems capable of incorporating these aspects [9]. However to our knowledge, EA
theory has not been applied to analyzing VRP solution methodology in this manner.

31.3 Research Method

The research is ongoing and is conducted as a prospective case study. More
specifically, we offer optimization for deployment, pilot use, and operational use
to several small and medium enterprises and public sector institutions and observe
issues during the process.

1 The technology domain is excluded at this stage of the study.
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In practice, we have studied the adoption (or the reason for not adopting in some
cases) of routing systems in 12 distinct cases at this point of the study. We refer
to these cases with letters from A to L. The characteristics of the cases are briefly
described as follows:

• A—A medium-sized enterprise operating nationally with more than hundred
trucks for serving several distribution centers.

• B—A newspaper with internal transportation activity of less than ten trucks for
daily deliveries of the publication on a regional level.

• C—A regional transportation company with less than 30 trucks for delivering
goods and distributing free papers.

• D—A public sector entity with mission critical transportation tasks with several
dozens of vehicles at a time.

• E—A public sector entity with 30 vehicles performing mission critical people
transportation on a regional level.

• F—A regional transportation company with less than 20 trucks for delivering
goods and packages.

• G—A food production establishment employing an internal fleet of less than 20
vehicles for transporting perishable goods with strict time limits.

• H—A medium sized municipality for providing school transportation service.
• I—A small municipality for providing school transportation service.
• J—A medium sized municipality providing school transportation service within
both urban and peripheral areas.

• K—Amedium sized nationally operating enterprise employing a fleet of 25 tanker
trucks.

• L—A single vehicle courier service providing internal post delivery service for a
municipality.

The cases were studied by analyzing the requirements, performing the deploy-
ment and observing and interviewing the case stakeholders, both end users and the
individuals responsible for the procurement of ICT systems. From the studied cases
we formulated a framework for analyzing the barriers of adoption and describe the
identified barriers along with suggestions for lowering them. These are described in
the two subsequent sections, respectively.

31.4 Proposed Framework

Although the stage of the research does not allow for quantitative analysis of the
issues, we present the preliminary findings of the study with respect to the emerging
process. One interesting finding is that the connection to the enterprise architecture
theory also affects the optimization methodology design in a subtle manner, which
we explain in detail shortly.

The proposed framework is designed to answer the necessary hypotheses for
vehicle routing system adoption in a given case. The first hypothesis is the hypothesis
of value, which assumes that the vehicle routing system can provide added value to
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Fig. 31.1 The deployment process framework and the related aspects of the enterprise architecture
layers

the operation of the enterprise. The second hypothesis is the hypothesis of data,
which assumes that the data needed for the transportation optimization exists or
can be generated in sufficient quality (EA data layer). The third hypothesis is the
hypothesis of process, which assumes that the way of working does not change such
that it undermines the other operations of the enterprise (EA business layer). The final
hypothesis is the hypothesis of system, which assumes that the existing systems in the
enterprise can be complemented by the new vehicle routing system (EA applications
layer).

The deployment framework and process is outlined in Fig. 31.1. The process
consists of the following steps. First a Concept Check is performed to ensure that
the operator does actually require a VRP optimization solution (hypothesis of value).
In Configuration Selection, the requirements of the operator are mapped with the
aid of an optimization expert. Configuration is defined as the state of the variable
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settings of the system, including, most significantly, the optimization model and the
optimization methods and their parameters. In Test Computation, the main aim is
to ensure that the data required for the optimization process does exist and is valid
(hypothesis of data). In addition, Evaluation is done for the selected configuration,
based on the quality of the optimization results. After Pilot Use, the process of the
operator has been adjusted to the use of automated transportation planning, and can
be put into Operational Use (hypothesis of process). This finishes the deployment
by integrating the other systems used by the operator with the optimization solution
(hypothesis of system).

As we observe, there are three integration phases in the process: data, process,
and system integration, which are also frequently identified in enterprise architecture
theory.

Data required for optimization includes the necessary elements to construct the
decision variables, constraints and objective of the optimizationmodel. An important
aspect is also the quality of data, more specifically, the data has to have a structure
suitable for automated planning. One major issue has been data in free-form text
where formal rules would be needed (e.g., incompatibility rules).

Process integration requires adjustments in the operational environment, some
of which provide new opportunities for improvements. These include changes in
planning frequencies, order processing capabilities, and the planning effort, allwhich,
in many cases, affect the core of the operations of the logistic operator.

System integration consists of connecting the existing systems to the newly
introduced planning tool. This includes introducing methods for data exchange and
adjusting the necessary interfaces between the systems.

We have observed that the three phases of the process can bemore easily managed
during the deployment by keeping them separated. This also allows the operator to
invest in the deployment gradually, as there is no need to start process integration if
the data integration cannot be completed.

The successful deployment of the optimization system requires data, process, and
system integration. However, all these phases require involvement of an optimization
expert, which is prohibiting investment for SMEs. In order to make the deployment
scalable, the process needs to be automated to be usable by a regular user. Note that
this involves the change management during operations. In practice, changes in the
requirements should be accommodated by the optimization model and methodology.
This is a major requirement for the optimization methodology in the context of small
and medium enterprises and public sector institutions.

31.5 Results

After formulating the deployment process framework, we attempted to identify the
problems encountered in cases and pinpoint the exact phase of the encounter. This
enables us to gather requirements and assumptions on not only the vehicle routing
system itself, but also the optimization methods needed to solve the VRP instances
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in each case. We define barrier as a reason that prevents the user to start using a
routing system unless changes to the system are made or other necessary manual
activities are performed.We classified these reasons according to the phase of the
deployment process it occurs.

31.5.1 Data Integration

We identified nine different data integration barriers for adopting the vehicle routing
system. The most frequent problems concerned either the fact that some subset of
the needed data was missing or there was not enough expertise to extract the data
from existing systems. The following barriers were identified in the data integration
phase:

• D.1—Lack of data in digital form. The data needed for building the optimization
model is available, but is not in a digital form.

• D.2—Missing structure of data. The data needed for building the optimization
model is available, but does not have a formal structure for automatic interpretation
in the model building. Examples include descriptions of the compartment loading
constraints in free-form text.

• D.3—Missing task data elements. The data needed to describe the tasks of the route
planning has missing elements, such as missing or partial schedule information,
e.g., time windows.

• D.4—Missing resource data elements. The data needed to describe the resources
used on the routes, such as vehicles, has missing elements, such as speed profiles
for different vehicle types.

• D.5—Missing geographical information. The data needed to describe the geo-
graphic area where the transportation takes place is missing necessary data, such
as digital map or some key characteristics of the road network.

• D.6—Missing cost structure data. The data needed to formally evaluate the quality
of the optimized plan is not available. Examples include hidden costs on loading
and unloading vehicles and changes on the workflow on, e.g., warehouses due to
changes in the routing procedures.

• D.7—Inability to acquire data from existing system. The data needed for modeling
and solving the VRP is available, but it cannot be transferred from the existing
system for utilization of optimization.

• D.8—Inability to combine data from several existing systems. The data needed for
modeling and solving the VRP is available, but it is stored on several systems and
not enough expertise is available to combine the data.

• D.9—Low quality of existing data. The data needed for modeling and solving the
VRP is available, but the quality of the data is not sufficient. Examples include
error in addresses, order quantities or schedule constraints.

When data integration barriers have been cleared, we may proceed to the process
integration phase.
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31.5.2 Process Integration

We identified six process integration barriers for adopting vehicle routing systems.
Many of the barriers resulted from the physical reality that cannot be captured by the
vehicle routingmodels, including complex changes in costs, procurement procedures
and perceived quality by both the users and their customers.

• P.1—Inability to describe the required operating process characteristics to the
system due to lack of expertise. The process of loading, packing, transporting
and unloading involves operations whose cost, duration etc. depends on functions
whose inclusion to the optimizationmodel requiremore expertise than is available.

• P.2—Prohibiting personnel role changes or other human resource issues. The
employment of a vehicle routing system results in changes in the roles of the
personnel, such that the enterprise is unable to adapt to the changes. Examples
include the inability to train, e.g., order management personnel to the increasingly
centralized transportation planning.

• P.3—Customer satisfaction decrease due to change in processes. The employment
of a vehicle routing system results in a perceived decrease in quality of service,
such as differing driver visiting the customer in subsequent days.

• P.4—Prohibiting changes in the physical operations. The employment of a vehicle
routing system results in prohibiting changes in the physical operations, such as
need to manually reorder deliveries in warehouses as an additional process step.

• P.5—Lack of resulting plan quality. The plans produced by the vehicle routing
system are not satisfying for the end user. Examples include underutilization of
the fleet and obviously inefficient route sequences.

• P.6—Opaqueness of the decision support leading distrust to plans. The plans
produced by vehicle routing system indicate efficiency, but the user is unable to
evaluate the feasibility of the plans in reality.

After the changes resulting from the routing system adoption have been incorporated
to the existing processes, the vehicle routing system can be integrated to the rest of
the systems of the enterprise.

31.5.3 System Integration

In the system integration phase, the routing system is set to operational use. We
identified three major barriers for adoption in this phase.

• S.1—Inability to invest into a completely new system. The system integration
requires a prohibiting investment into a new system as a necessary supporting
system is required before the vehicle routing system can be utilized.

• S.2—Inability to integrate to existing systems. The system integration to existing
systems cannot be performed due to lack of resources or knowledge.
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Table 31.1 Barriers by case

A B C D E F G H I J K L

D.1 •
D.2 − • •
D.3 • • • •
D.4 • • • • • • • • •
D.5 •
D.6 − + +
D.7 +
D.8 • •
D.9 •
P.1 − • + •
P.2 +
P.3 + + + + +
P.4 +
P.5 − • − − − − − −
P.6 + +
S.1 + − • • • • • • + •
S.2 − • + +
S.3 − − − − − − − − − − − −
Each row represents an identified barrier, and each column a studied case. Empty cell indicates
that the barrier was not present in the case, + indicates that the barrier was identified as a potential
problem, but has not yet confirmed as realized, • indicates that the barrier was realized, and –
indicates that the barrier has not been assessed in the case

• S.3—Inability to propagate changes to the system from the operational environ-
ment. In practice, the operating environment of the enterprise changes frequently,
and any planning tool needs to accommodate those changes. Examples include
opening a new terminal and changing the cost structure of the transportation. The
inability to incorporate these changes is a major concern as this is a hidden cost
factor to the usefulness of the routing system, which is difficult to evaluate.

31.5.4 Barriers by Case

After identifying barriers for deployment,we identified the cases inwhere the barriers
exist. The objective is to understand the implications of the barriers to different types
of enterprises. The identified barriers by case are given in Table31.1.

We can make several observations from the cases. First, in all cases, there is a
realized barrier, and most of the cases have at least two active barriers. Most of the
barriers are in the data integration phase, but almost all cases have also identified a
barrier in the system integration. Process integration has themost variability between
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cases, and this may prove to be an interesting observation, although at this stage of
the research it has to be yet verified.

On the data integration phase, only one case had no digital data available (D.1),
andmost data integration issues are related to resources,mainly vehicles (D.4), which
are easier to generate than task data, as the data does not change frequently. Relatively
few cases identified geographical information (D.5), cost structure (D.6), or existing
data (D.7–D.9) as a barrier for data integration. On the process integration phase the
identified potential problems relate most frequently decrease in customer satisfaction
(P.3). In mission critical environments, the inability to trust the optimization results
(P.6) was also identified as a possible barrier. As can be seen, the system integration
has one major obstacle—inability to invest into completely new system in order to
obtain a routing system (S.2)—in many of the cases. Note also that at this stage
of the research, we have not been able to evaluate the change requirements during
operational use (S.3).

31.5.5 Implications for Routing Models and Algorithms

From a data integration perspective, the most direct implication is the need for the
algorithms to be able to accommodate manual changes by the user. This interactivity
can help to adapt the system in situations where some of the data is not available or
cannot be formalized to the system. From the modeling viewpoint, this means the
ability to accept custom constraints during potentially interactive optimization.

From a process integration perspective, the ability to automatically select the
algorithm parameters robustly to meet the differing needs of the different cases, is
implied by the heterogeneity of the processes in the studied cases. This includes the
ability to accommodate open planning in a continuous fashion, select algorithm para-
meters according to the optimization need and availability of the computational bud-
get. In addition, the support for interactively performing manual changes, adjusting
parameters and modifying constraints are likely to increase the planners’ confidence
in the produced plans.

From a system integration perspective, the main barrier in the studied cases is
the inability to invest into a completely new system, which implies that a comple-
mentary subsystem or a service may be needed. This, in turn, implies a need for a
case-specific routing system. However, scalability would require a generic routing
system. To reconcile these requirements in the current context, we suggest using
an optimization system that (1) uses an automatically adapting, e.g., hyper heuris-
tic solution methodology and (2) complements the existing systems as a separate
service.
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31.6 Conclusions and Further Research

In this paper, we addressed the deployment of the vehicle routing problem
optimization into operational use. We have suggested that the deployment of opti-
mization to the SMEs, or the “long tail” of operators would yield large-scale benefits
to society.

We argue, based on the preliminary findings in this study, that the self-adaptation
and interactivity of the optimization methodology is necessary, not only from the
viewpoint of the optimization results, but also that of large-scale system deployment
and change management. In this light, priority should be given to methods that are
capable of adapting to wide array of optimization problems, such as hyper heuristic
solutions that combine the methodology from efficient metaheuristic components,
instead of methods that improve a narrow set of results.

Although we are still at the early stage of the study, a number of patterns have
emerged on the deployment of the optimization solutions. We certainly do not have
solutions for each of the identified barriers, but we nevertheless feel that publish-
ing the preliminary findings is beneficial for other researchers struggling to increase
the adoption of routing systems. The next step of the study will be evaluation of the
process after a large enough sample of operational use has been collected. In practice,
we should verify that the VRP modeling and solution methodology approaches pro-
posed here lower the identified barriers.

In addition, further studies are required especially in automation of the config-
uration selection and tuning from the viewpoint of the deployment process. This
may have implications to the qualities required from optimization methods, which
should be critically evaluated in the future. From the modeling viewpoint, interac-
tive approaches may provide to be a fruitful direction, especially when formal data
is not properly available. One option is to examine if it is possible to deduce and
suggest missing constraints from the manual changes the users make to the solutions
frequently.
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Chapter 32
Estimation of the Electricity Demand
of La Palma Island (Spain)

Begoña González, Antonio Pulido, Miguel Martínez and Gabriel Winter

Abstract Historical data of electricity demand in La Palma island (Spain) were col-
lected and electricity demand estimates conducted by different organizations were
sought. Some factors that could affect these data were studied and its predictions
by the next years were looked for. The idea was to use these factors as explanatory
variables in order to predict the values of electricity demand in the next years. More-
over, with the aim of minimizing the limitation of predicting the future based only
on relationships between variables that occurred in the past, it has been considered
the annual demand forecast for various scenarios, taking into account, for each of
them, different variations of the explanatory variables. All that with the goal that the
estimate band of the demand for each year includes the real future demand with high
probability. This provided a prediction model that takes into account population and
gross domestic product. Results and their graphical representation along with the
other estimates found are presented. A similar approach was carried out to predict
peak powers.
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32.1 Introduction

In this paper the current and projected supply and demand energy, along with energy
needs in the 2025 time horizon, are tackled adopting a conservative prognosis. Such
evolution should include significant increases in future energy demand, in response
to growth in the high band, both the population and the activity of the different
economic sectors: tourism, transport, etc. However it would be better to determine
peak powers than demand energy, because they will indicate the requirements of
power available at the thermal power station. Because of the fact that the electricity
discharged into the grid at every instant must be equal to that consumed (because the
electric parameters, both the frequency and the voltage, must be kept within a narrow
range) it makes necessary to know the peak powers in order to determine the power
that must produce the conventional generation park. It will be the peak power plus
a specific reservation considering the possibility of failure of a group of generation
and/or that another is in maintenance. Nowadays there are many unknowns for the
immediate future. Rising oil prices and technical improvements could be the cause
of slowing or increasing the sale and implantation of electric vehicles. That could
convert the oil consumption into electrical one. The electricity self-generation in
low or medium voltage is something unstoppable. Elements of electrical energy
storage that may provide support at certain times, in order to smooth the curves of
consumption and reduce the need for conventional power generating groups in peak
times, are needed. Climate change and the rise in temperature in the Canary Islands,
as well as the reduction of rainfall levels will lead to an increase in consumption. On
the one hand by the needs of air conditioning and industrial refrigeration production,
on the other hand by the great power consumption that presents the water cycle in
the Canary Islands, where over half the population and the tourism sector demand
large amount of desalinated water as well as purification and pumping requirements,
resulting in over 10% of the total demand. An improvement in process efficiency is
imminent because new designs and an increasingly restrictive legislation. In fact a
European target is to reach 20% of efficiency in 2020. Smart electricity meters that
differentiate the consumption prices according to the time interval at which it takes
place are emerging. Also the rise of the price of electricity will cause a change in
the behavior of consumers. The factor economic crisis is affecting economic activity
very significantly, and therefore, this leads to a bias in the projected gross domestic
product (GDP), which is greatly diminished compared to the boom years economy
before 2008. It is also necessary to point out that the reference quantities of GDP
from 2006, from which estimates are made, are not definitive, they are subject to
revision. Thus the forecast for the next few years could be altered.

After this introduction, in Sect. 32.2 an assessment of the situation of energy
demand from the information contained in the updated PECAN2006 (Canary Energy
Plan 2006) is carried out and in Sect. 32.3 a prediction exercise is made in order to
knowwhat could be the annual electricity consumption and peak powers in the period
2012–2025.
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32.2 Electricity Demand Past and Future

In the following, annual demand is considered in power station bars, i.e. the energy
discharged in the grid from the conventional and renewable generators, not including
direct consumption nor consumption supplied by own production. That is, the energy
resulting from subtracting from the gross energy or the alternator terminals, auxil-
iary consumption of the various power stations and that generated by cogenerators,
self-generators or renewable energy installations associated with consumption, for
consumption of own premises (industry, hotels, homes, …). Therefore, the energy
actually injected into the transporting electricity grid for the whole generation: power
stations, cogeneration, renewable energy installations, etc.

In order to be specific about the evolution of electricity demand in La Palma
island, different sources of demand estimation have been analyzed, among them the
updated PECAN2006 from 2004 until the 2015 horizon. If estimates of the PECAN
central scenario (scenario 2) made on the basis of an annual growth of regional GVA
(Gross Value Added) of 2.8% in 2005 and 2.9% from 2006–2015, are compared
with the real data of electricity demand on the island of La Palma between 2001 and
2011, provided by UNELCO-ENDESA (the only generator in ordinary regime in
the Canary Islands) we can see that they are lower than demand data for the years
2004–2008, although the effect of the “economic crisis”, which has been suffering
since 2008, has not been taken into account in making these estimates. However,

Fig. 32.1 Annual electricity demand in power station bars (GWh): historical data and forecasts by
different sources
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Fig. 32.2 Annual average hourly peak powers in power station bars (MW): historical data and
forecasts by different sources

although the 2009 estimate still slightly underestimates the real demand, estimates
from 2010 onwards overestimate it. Both historical data and forecasts of different
annual electricity demand and peak power are shown in power station bars for the
period 1998–2020 in Figs. 32.1 and 32.2, respectively. Estimates correspond to dif-
ferent companies predicting in different time intervals, although there is a significant
interface between 2008 and 2015. Furthermore, historical data considered for the
different forecasts not mach. In fact, while forecasts of PECAN (2004–2015) and
RETELGAS (2006–2016) predate the economic crisis, those ofUNELCO-ENDESA
(2010–2020) andREE (2010–2015) are later. The update PECAN2006 assumedREE
predictions for annual electricity demand and peak powers.

32.3 Electricity Demand and Peak Power Forecasting

To forecast demand over a time horizon, it must have historical values of explana-
tory variables and minimize the limitation of predicting the future based only on
relationships between variables that occurred in the past.

This limitation is more severe in longer-term predictions. Therefore it has to be
considered the annual demand forecast for various scenarios, taking into account, for
each of them, different variations of the explanatory variables that contribute most
to the demand. Considering likewise, if any, results predicted by different sources
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and with different methodologies, and contrasting the deviations of these results with
reality occurred in recent years if possible.All thatwith the goal that the estimate band
of the demand for each year includes the real future demand with high probability.

32.3.1 Model Selection

The process of selecting a model for predictive or explanatory purposes involves
several procedures. One of them is to select the “best” subset of explanatory variables
that explains the data in the simplest way. Data of electricity demand, population,
GDP, consumption price index and electricity price were collected from 2001 to 2011
but so far, only long-term forecasts for population and GDP were found from official
sources. For this reason only population and GDP were considered as explanatory
variables.

When we looked for models to estimate load demand in the long term we found
mainly econometric methods and methods based on neural networks [2–4]. From
our point of view the advantage of the former is its transparency and explicit depen-
dency from different explanatory variables. Figure32.3 shows that there is a simple
linear relationship between electricity demand (GWh) and both population and GDP
(millions euros). The estimated simple linear regression functions are

Electricity_Demand ≈ − 1, 262.181 + 0.01748 × Population (32.1)

Electricity_Demand ≈ − 198.7699 + 0.01083 × GDP (32.2)

An alternative approach is to consider a log–log model where the dependent
variable as well as all explanatory ones are transformed to natural logarithms. In our

84500 85500 86500

20
0

22
0

24
0

26
0

Population

E
le

ct
ric

ity
 D

em
an

d 
(G

W
h)

36000 38000 40000 42000

20
0

22
0

24
0

26
0

GDP (millions euros)

E
le

ct
ric

ity
 D

em
an

d 
(G

W
h)

Fig. 32.3 Scatterplot of electricity demand (GWh) versus population and GDP (millions euros).
In both cases, the piecewise line represents the fitted regression line
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Fig. 32.4 Scatterplot of electricity demand (GWh) versus population and GDP (millions euros).
In both cases, the solid circles represent the values fitted with the log–log model

case, as all the observations in the data set are positive the natural log transformation
is applicable and the estimated simple linear regression functions are (see Fig. 32.4)

ln(Electricity_Demand) ≈ − 67.976 + 6.465 × ln(Population) (32.3)

ln(Electricity_Demand) ≈ − 14.526 + 1.885 × ln(GDP) (32.4)

These two functional forms give parameter estimates that have different eco-
nomic interpretation. For example, the slope of the simple linear model gives us
directly the change in electricity demand for a one-unit change in population or
GDP and will vary depending on the data. In contrast, when a log–log model is
considered the interpretation is given as an expected percentage change in electricity
demand when population or GDP increases by some percentage. Such relationships
are commonly referred to as elastic in econometrics, and the slope of the log–log
model is referred to as an elasticity. According to Eqs. 32.3 and 32.4, to get the
proportional change in electricity demand associated with a p percent increase in
population or GDP, we have to calculate α = log[(100 + p)/100] and take e6.465α

or e1.885α , respectively. For example, a 1% increase in population multiplies elec-
tricity demand by e6.465×log(1.01) = 1.0664, i.e. increases the expected electricity
demand by about 6.64%, and a 1% increase in GDP multiplies electricity demand
by e1.885×log(1.01) = 1.0189, i.e. increases the expected electricity demand by about
1.89%.

Summarizing, elasticity measures how changing one variable affects others. If
elasticity is equal to 0, demand is perfectly inelastic (i.e., demand does not change
when explanatory variable changes). Values between zero and one indicate that
demand is inelastic (this occurs when the percent change in demand is less than the
percent change in explanatory variable). When elasticity equals one, demand is unit
elastic (the percent change in demand is equal to the percent change in explanatory
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Fig. 32.5 Scatterplots of electricity demand data versus values fitted with multiple linear and log–
log regression. In both cases, the piecewise line represents the line where the abscissa corresponds
to the ordinate

variable). Finally, if the value is greater than one, demand is perfectly elastic (demand
is affected to a greater degree by changes in explanatory variable).

Figure32.5 shows scatterplots of electricity demand data versus values fitted with
multiple linear and log–log regression:

Electricity_Demand ≈ − 369.323

+ 0.0023 × Population + 0.0102 × GDP (32.5)

ln(Electricity_Demand) ≈ − 20.768

+ 0.627 × ln(Population) + 1.802 × ln(GDP)

(32.6)

According to Eq.32.6, a 1% increase in population multiplies electricity demand
by e0.627×log(1.01) = 1.0063, i.e. increases the expected electricity demand by about
0.63%, and a 1% increase in GDPmultiplies electricity demand by e1.802×log(1.01) =
1.0181, i.e. increases the expected electricity demand by about 1.81%.

32.3.2 Population

For estimation of the evolution of the population on the island of La Palma in the
period 2012–2025 it was considered the projection of the population of Spain in the
mid-term (2010–2020) of the Statistics National Institute (INE), according to which
the Canarias population will go from growing 23.92% in the period between 2000
and 2011 to grow just 2.71% between 2011 and 2020. Although in the case of the
island of La Palma, the population would decrease (see Table32.1).
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Table 32.1 Projection of the population on the island of La Palma

2001 (Datum) 2011 (Datum) 2015 2020 2025

84,319 87,163 86,649 86,285 86,135

Table 32.2 Gross domestic
product at market prices of
Canary Islands (period
2004–2011)

Canary Islands Spain

2001/2000 4.9 3.6

2002/2001 2.8 2.7

2003/2002 3.8 3.1

2004/2003 2.4 3.3

2005/2004 3.1 3.6

2006/2005 3.1 4.0

2007/2006 3.2 3.6

2008/2007 0.3 0.9

2009/2008 −4.2 −3.7

2010/2009 −0.8 −0.1

2011/2010 2.1 0.7

The projected evolution by the INE is based on the classical method of compo-
nents, which part of the resident population and the observed data for each of the
basic demographic components of mortality, fertility and migration, obtaining the
evolution of the population under some assumptions on the becoming of these three
phenomena.

32.3.3 Gross Domestic Product at Market Prices

In terms of Canarian economic growth from 2004 to present (period 2004–2011),
Table32.2 shows annual growth rates of real GDP at market prices based on official
data from the Regional Accounting of Spain by INE. Clarify that the values for the
three latest years are still provisional in greater or lesser degree and could be revised.

With respect to forecasts of GDP growth (Deputy Ministry of Economy, and
Economic Affairs with the EU. Ministry of Economy and Treasure) for the period
2010–2013 (see Table32.3) it is necessary to clarify that the calculation of these
forecasts has beenmade in the absence of additional financial shocks, and in a context
of uncertainty both over the intensity of the crisis effects and over the extension in
time and magnitude of the economic recovery. That is why these forecasts could
be revised in shorter time periods than usual in another circumstances. Anyway, we
considered GDP data for the 2010 and 2011.

Regarding long-term forecasts of Canary’s GDP for the period 2014–2020, in
line with the observations made in the mid-term scenario, to comment that economic
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Table 32.3 Gross domestic
product forecasts (Canary
Islands)

2010 2011 2012 2013

−0.4 0.4–0.9 1.1–1.6 1.8–2.3

uncertainty levels are amplified. That is why it has chosen to establish annual aver-
age growth for the whole period. It has established three growth scenarios. First, it
established a central scenario in which the upside and downside risks are balanced.
Secondly it considers a downside scenario in which the hypothesis is an output from
the crisis more slow than anticipated, and with potential shocks in the price of raw
materials. The opposite hypothesis would be good as basis for the estimate of the
third scenario, named at random. These long-term forecasts for the period 2014–2020
are 2.5, 1.5 and 3.0 for central, downside and upside scenarios, respectively.

32.3.4 Evolutionary Algorithm

A Genetic Algorithm (GA) has been used as an optimizing tool, with selection and
mutation associated with an expert system, called Flexible Evolution Algorithm
(FEA) [5]. The FEA is subdivided into several functions, called engines. These
subroutines have been designed to group the diverse actions that are to be executed
during the optimization depending on their objectives. In this way, all the learning
tasks will be clustered in a learning engine, and something similar will happen with
all the selection schemes, sampling strategies or decision mechanisms. A general
scheme of the FEA can be seen in Fig. 32.6. Starting with the initial population IP,
and for all the iterations of the population obtained earlier, we evaluate the fitness
function of each candidate solution and from here, and for each generation, the
Decision Engine acts over all the different stages of the algorithm. So the decision
engine will decide what kind of learning, selection and/or sampling strategy will be
used in every generation until the stop criterion is reached, which is also determined
by the Decision Engine. The Learning Engine stores everything that could be useful
afterwards, such as information about the variables or statistics. The intention is to
use this information to learn about the process and even to establish rules that could
be fruitful and will be included in the decision engine afterwards. The Selection
Engine chooses which solutions are to be sampled and the sampling method that
will be used, whereas the sampling engine carries out the mutation and crossover
processes over the variables. Finally, the Filtering Engine removes the possible errors
in the solutions before entering in the next iteration.

Main ingredients of the implementation of the FEA are: a Dynamic Structure
of Operators (DSO), an Enlargement of the Genetic Code (EGC) of individuals
and the use of a Central Control Mechanism (CCM). In order to obtain an efficient
DSO two unique classes of operators have been defined: Selection and Sampling.
Most existing crossover and mutation operators have been included in the Sampling
class and the definition of two additional characteristics of all members of this class
was also advisable: the Nature and the Range. The DSO enables the use of any
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Fig. 32.6 General scheme of the flexible evolution algorithm (FEA)

of the operators at each step along every optimization run depending on operator’s
previous contribution to the common task (to get the optimum). The genetic code
of the individuals must be enlarged (EGC) in order to include useful information
for the process control included in the CCM. After several implementations, the
identification of the sampling method used to obtain each variable of the individuals
has proved to be the most useful information, but only when a simple Probabilistic
Control Mechanism (PCM) based on rules IFTHEN- ELSE is used as a CCM. The
joint use of the DSO, the EGC and the CCM has permitted the elimination of the
crossover andmutation probabilities. The PCM is responsible for reaching a trade-off
between the exploration and the exploitation of the search space, which is equivalent
to achieving a competitive and cooperative balance among the sampling operators.

32.3.5 Robust Design Optimization

Robust Design Optimization (RDO) is a method of minimizing the effect of input
parameter uncertainty on the solution without eliminating the causes. There are
different approaches to perform robust optimization in practice [1]. We had opted for
a mean-variance robustness approach that consist in consider as FEA fitness function
the following one:
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Fig. 32.7 Annual electricity demand in power station bars (GWh): historical data and forecasts by
different sources including our result (CEANI forecasts)

f (x) = μ(f ∗(x)) + W × σ 2(f ∗(x)), (32.7)

where x represents an individual of any population of the FEA, f ∗(x) represents a
set of different values of the real fitness function evaluated at the individual x if the
input parameters with uncertainty change a little bit, W is a real number (weight), μ
denotes the mean and σ 2 the variance.

32.3.6 Log–Log Econometric Model

Estimates of the annual electricity demand and annual average hourly peak power
(in power station bars) were calculated from a log–log econometric model where
population and GDP at market prices are the explanatory variables (see Figs. 32.7
and 32.8):

log(y) = a + b × log(population) + c × log(GPD), (32.8)

The a, b and c parameters were fitted by least squares using the evolutionary
algorithmdescribed in Sect. 32.3.4with robust design optimization (see Sect. 32.3.5).
The y parameter represents both annual electricity demand and annual average hourly
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Fig. 32.8 Annual average hourly peak powers in power station bars (MW): historical data and
forecasts by different sources including our result (CEANI forecasts)

peak power. The prevailing uncertainty around some explanatory variables (GDP at
market prices) justifies the incorporation of robust design to FEA in order to obtain
a, b and c parameters of the model considered. Figure32.9 shows scatterplots of both
electricity demand data and average hourly peak powers data versus the values fitted
with the log–log econometrics models obtained:

ln(Electricity_Demand) ≈ − 15.526

+ 0.308 × ln(Population) + 1.698 × ln(GDP)

(32.9)

ln(Hourly_Peak_Powers) ≈ − 54.265

+ 3.951 × ln(Population) + 1.272 × ln(GDP)

(32.10)

According to Eq.32.9, a 1% increase in population multiplies electricity demand
by e0.308×log(1.01) = 1.0031, i.e. increases the expected electricity demand by about
0.31%, and a 1% increase in GDPmultiplies electricity demand by e1.698×log(1.01) =
1.0170, i.e. increases the expected electricity demand by about 1.7%.

According to Eq.32.10, a 1% increase in population multiplies average hourly
peak powers by e3.951×log(1.01) = 1.0401, i.e. increases the expected average hourly
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Fig. 32.9 Scatterplots of both electricity demand data and average hourly peak powers data versus
the values fitted with the obtained log–log econometrics models. In both cases, the piecewise line
represents the line where the abscissa corresponds to the ordinate

peak powers by about 4.01%, and a 1% increase in GDP multiplies average
hourly peak powers by e1.272×log(1.01) = 1.0127, i.e. increases the expected average
hourly peak powers by about 1.27%.

32.4 Conclusions

Thiswork arose from the need of an energy plan for each island of the Canary Islands.
Because this plan would have to anticipate the amount of land required for energetic
facilities through 2025, electricity demand projection during that period of time was
necessary.

For economic reasons the islands must be self-sufficient in the largest extent
possible because energy cannot come from abroad. So if forecasts are not as accu-
rate as possible, energy self-sufficiency may be compromised. When we looked for
models to estimate load demand in the long term we found mainly econometric
methods and methods based on neural networks. From our point of view the
advantage of the former is its transparency and explicit dependency from different
explanatory variables.

The current economic situation and job insecurity precariousness as well as price
increases in energy can bring great changes in the use of electricity in coming years.
Therefore we consider necessary to incorporate these variables into the model. And
now we are working in that sense.
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Chapter 33
Optimization of the Dimensionless Model
of an Electrostatic Microswitch Based
on AMGA Algorithm

Jorge Santana-Cabrera, José Miguel Monzón-Verona,
Francisco Jorge Santana-Martín, Santiago García-Alonso
and Juan Antonio Montiel-Nelson

Abstract In this paper a micro genetic algorithm for multi-objective optimization
(AMGA) is used to minimize the number of function evaluations of the dimensionless
model of an electrostatic microswitch. A non-dimensional dynamic model is pro-
posed, and three objective functions are defined: the closing dimensionless time of
the first impact, the maximum dimensionless speed and the maximum dimensionless
displacement of the first impact. This work has been carried out using dimensional
analysis. Results demonstrate an interesting methodology based on AMGA for opti-
mizing the closing time and displacement of the first impact in a microswitch.
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33.1 Introduction

MEMS electrostatic microswitches possess high insulation of the electromechanical
switches and ultra-low losses. They also have low power consumption and small size
and the advantages of low cost of solid state relays manufactured with microelec-
tronic technology. Besides, electrostatic microswitches operate in a large range of
frequencies. These properties make possible the massive application of these MEMS
devices to wide technology fields, in particular, to the telecommunication industry,
to wireless devices such as microswitches for antennas and switches for reception-
transmission, among others.

One of the main subjects in resistive microswitch design is related to the interaction
between the tip and the substrate, and the damage accumulated produced by the
bouncing of the tip on the substrate. It is well known that the tip of a resistance
microswitch bounces several times on the substrate before reaching a permanent
contact [1].

We have used dimensional analysis for measured performance of some dimen-
sionless parameters. The use of a dimensionless model is a valuable procedure used
to study engineering problems [2]. By applying Buckingham [3] theorem, dimen-
sionless parameters are obtained.

Π Buckingham theorem applied to dimensionless analysis establishes that, an
equation with a number of variables related between them that defines a physical
problem is reduced to another similar dimensionless equation but with a lower num-
ber of variables. A dimensionless parameter consists in a group of variables joined
in a way that the dimensionless expression is the unit. The number of dimensionless
sets for a particular problem is equal to the difference between the total number of
variables minus the number of fundamental dimensions.

Our contribution in this work consists in designing a microswitch with the follow-
ing goal: minimize the time of the first contact tip-substrate to increment the working
frequency and, at the same time, minimize the maximum velocity and the oscillation
of the first bouncing to decrease the number of bounces.

These goals are in contradiction because if we decrease the closing time, then,
the velocity of the first impact increases and, hence, there is a greater bouncing, see
Fig. 33.1. This fact indicates that we are dealing with a multiobjective optimization
problem.

This paper is organized as follows. Section 33.2 presents the theoretical funda-
ments of the optimization multiobjective of a microswitch. Section 33.3 provides the
results and discussion. Finally, in Sect. 33.4 conclusions are presented.

33.2 Theoretical Fundaments of the Optimization
Multiobjective of a Microswitch

In general, the optimization multiobjective problem is defined as follows: find the
vector −→x ∗ = [x∗

1 , x∗
2 , . . . , x∗

n ]T that satisfaces the m restrictions of the inequalities
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Fig. 33.1 Dimensionless analysis of the velocity for A1 = 0.1

gi (
−→x ) ≥ 0 i = 1, 2, . . . , m

the p restrictions of the equalities

h j (
−→x ) = 0 j = 1, 2, . . . , p (33.1)

and optimizes the vector of functions

f(−→x ) = [ f1(
−→x ), f2(

−→x ), . . . , fk(
−→x )]T (33.2)

where x = [x1, x2, . . . , xr ]T is the vector of variable decision.
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Multiobjective optimization problems require three basic elements:

• A conflicting trade-off between two or more objective functions. They are a quan-
titative measure of the system to be optimized.

• The variables that affect the objective functions.
• The restrictions: a set of relations, equations and inequalities that some variables

must satisfy.

For obtain an optimal design of the microswitch the dinamic behavior of the system
is modelled and analyzed. A cantilever beam represents a basic physical model of
microswitch. We have analyzed this beam through a lumped parameter model of
mass-spring-friction and two state variables (velocity and position). In this model,
we stress the interaction between the tip of the beam and the substrate that has been
modeled introducing a “Lennard–Jones” force [1]. In our work, see Fig. 33.1, the
three objective functions are:

• f1(
−→x ): The closing time—to increase the working frequency of the microswitch.

• f2(
−→x ): The first impact velocity.

• f3(
−→x ): The first impact displacement.

We have identified six dimensionless parameters. In first place, A1, which is a pro-
portion between the impeller electrostatic force and the elastic force associated to
the cantilever beam. Second, the quality factor Q which is inversely proportional to
friction coefficient.

From the dynamical analysis, we have obtained two performance related to the
time domain, the velocity and the position. From this performance we obtain impor-
tant data for the design of the microswitch: the time Tmin to establish the first contact
tip/substrate, the maximum velocity for the first contact, ṽmax, and the maximum
elongation after the first impact, r̃max.

The MEMS switch is modeled as a one-degree of freedom system which is the
position of the tip of the cantilever r . It consists on a mass m, initially placed at a
distance g0 from the substrate, a spring with elastic constant k, and a dashpot with
damping coefficient b. Thus, the motion of the system is described by the classical
second order linear Eq. 33.3, where FE L is the electrostatic actuation force and FL J

the Lennard-Jones force that provides the mechanical interaction between two fac-
ing surfaces. FE L and FL J is expressed as 33.4 and 33.5, respectively. In this work,
the area of interaction has been assumed as A = 100 µm2, C1 = 10−20 Nm and
C2 = 10−80 Nm [1].

m
d

2
r

dt 2 + b
dr

dt
+ k r = FE L + FL J (33.3)

FE L =
1
2ε0 A0V 2

(
g0 + dε

εr
− r

)2 (33.4)

FL J = C1 A

(g0 − r)3 − C2 A

(g0 − r)9 (33.5)
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The dimensionless equations of the dynamic model are:

d ṽe

dt̃
=

[
A1

(1 + A4 − r̃)2

[
1 + A5 (1 − r̃)

] − ṽe

Q
− r̃

+ A2

(1 − r̃)3 − A3

(1 − r̃)9

]

(33.6)

dr̃e

dt̃
= ṽe (33.7)

where A1, A2, A3, A4 and A5 are non dimensional parameters and Q is the quality
factor.

A1 and Q are expressed as follows:

A1 = ε0 A0V 2

2kg3
0

(33.8)

and

Q =
√

km

b
(33.9)

33.3 Results and Discussion

The proposed optimization problem is described as follows

min ( f1(
−→x ), f2(

−→x ), f3(
−→x )) (33.10)

where

−→x = (A1, Q) (33.11)

is the decision variable vector that corresponds to the dimensionless parameters A1
and Q described previously.

f1(
−→x ) corresponds to the first dimensionless bounce time. At this instant the

microswitch contacts the substrate for first time, f1(
−→x ) = Tmin, see Fig. 33.1.

f2(
−→x ) is ṽemax , which is the velocity for the first bounce at Tmin value; in this

time instant, the velocity V1 for T −
min is equal to V2 at T +

min, see Fig. 33.1. Note that
the velocity senses are opposite.

f3(
−→x ) is r̃max which is the dimensionless maximum position of the first bounce

and correspond to a V = 0 velocity.
The instants Tmin and Tmax are determined in the execution time of the numerical

solution. For this reason, we have analyzed two consecutive instants of the simulation,
comparing the value of the variables r̃e and ṽe.
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Table 33.1 Execution time
of the experiments

Population Generation Evaluations Time (s)

80 10 800 2,405

80 50 4,000 20,566

80 62 4,960 25,568

100 62 6,200 31,996

60 200 12,000 62,245

Differential Eqs. 33.6 and 33.7 have been solved using a RKF with fixed step pro-
grammed in C++ [4] wich uses the algorithm AMGAII-Archive-based Microgenetic
Algorithm. We have chosen a real codification for each chromosome composed by
the design variables A1 and Q. In general, the precision is better than the binary
codification [5]. This is improved adding more bits, but it increases the simulation
time. The used time step Δ was 10−6 s and is constant during the whole simulation.

All the simulation results were obtained in a SunFire X2200, with 2 CPU AMD
Opteron 2214 Dual Core (2,2Ghz), 4 GB RAM, using the O. S. Red Hat Enterprise
Linux Server 5.3.

We have solved this problem based on the concept of Pareto optimal solution
applying genetic multiobjective algorithms. The numerical solution of the objective
functions is highly time consuming, see Table 33.1. Hence, we have reduced the
number of evaluations of the objective functions.

We propose the use of Archieve based Micro Genetic Algorithm (AMGA) [6]
method because this algorithm generates a small number of new solutions in each
evaluation, improving the total time for the evaluation [7].

Taking into account the first group of results of the dimensionless dynamic model,
we conclude that the most important dimensionless parameters are A1 and Q. A1
represents the quotient between the minimum electrostatic force and the maximum
elastic force and Q represents the quotient between the maximum energy stored in
the spring and mass, and the friction looses.

Figure 33.2 illustrates the Pareto optimum with the objective functions closing
time for the first impact versus the maximum velocity in the first impact. Figure 33.3
shows the Pareto optimum and represents the three objective functions mentioned
in the previous section [6]. Figures 33.4 and 33.5 represent the influence of A1 in
the closing time and velocity of the first impact. As A1 increases the closing time
decreases and the closing speed increases.

Figure 33.6 shows the influence of the dimensionless parameter Q in the maximum
oscillation of the first impact. As Q increases the closing position increases.

In this work, we have developed a methodology based on AMGA for optimiz-
ing the closing time and displacement of the first impact in a microswitch. From
Figs. 33.2, 33.3, 33.4, 33.5 and 33.6, the relationship between dimensionless para-
meters A1 and Q and closing time and displacement is illustrated.
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33.4 Conclusions

Based on a dimensionless model of a microswitch for the closing time and displace-
ment, we have analyzed the sensitivity of this Micro Electro Mechanical System—
MEMS—to the variation of the dimensionless parameters of the model. In this way,
we predict the dynamic behavior of a microswitch. By using multiobjective Genetic
Algorithms we have optimized the bouncing of the microswitch which is one of the
major designing concern. We have used the AMGA multi-objective GA for obtaining
the Pareto front of the design space.

Acknowledgments This work was funded by project BATTLEWISE—TEC2011-29148-C02-
01—of the Spanish Ministry of Economy and Competitiveness.
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Chapter 34
Generation of New Detection Codes
for GPS Satellites Using NSGA-II

J. Sosa, Tomás Bautista, Daniel Alcaraz, S. García-Alonso
and Juan A. Montiel-Nelson

Abstract In this paper we obtain new detection codes, to determine whether a
GPS satellite in particular is visible, using NSGA-II as multi-objective optimization
engine. Our approach takes into consideration the length of the code and the sampling
frequency in comparison with other approaches found in the literature that fix those
design parameters. The obtained new detection codes produce an improvement of
the 19 % in terms of CPU execution time. Results demonstrate that both design
parameters must be taken in consideration to obtain high quality detection codes.

Keywords Genetic algorithms · GNSS · Gold codes · Low computational effort ·
Multi-objective optimization

34.1 Introduction

Nowadays, the detection of GPS signals for performing location tasks is one of
the most commonly demanded applications [1]. In particular, the fast expansion
of the mobile telephony, the increasing of the CPU capabilities and the reduced
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battery charging times provide a wide market where GPS applications are potentially
explored [2, 3]. However, in this scenario, since the GPS receiver just becomes one
application running concurrently with some others in a single device, the require-
ments of low computational effort and low power consumption are mandatory [4].
Reducing the computational effort to determine whether a GPS satellite is visible
or not is a hot topic in this research area [5–7]. In the existing literature three ba-
sic approaches are presented to cope with this problem. The first one consists in
reusing most of the computation with additional hardware. This approach is called
split-sum methodology [8]. Other authors propose to obtain a single detection code
that allows to know if more than one satellite is visible or not [9]. Finally, in another
approach [10] authors present a methodology to obtain GPS detection codes of 341
bits achieving a lower computational effort. In this paper we explore the idea of
obtaining reduced length detection codes for GPS satellites presented in [10] using a
multi-objective approach and we introduce as new optimization variables the length
of the reduced code and the sampling frequency.

34.2 Problem Definition

In order to detect whether a satellite is visible or not, receivers compare the incoming
GPS identifiers (at a frequency L1 of 1,575.42 MHz), with all the possible GPS
satellite identifiers [11]. A satellite identifier is a Pseudo Random Number (PRN).
Basically, a PRN is an array of binary digits where each digit is called chip. The
length of the PRN array is 1,023 chips [12]. Each satellite has assigned an unique
PRN as identifier. Every satellite transmits its own PRN identifier every millisecond.
The comparison function is as follows:

Comp(PRNsat, Drx) = [a1, a2, . . . , aL] (34.1)

ai =
L∑

j=1

PRNsat
modL(i+j) ∗ Drx

i

where L is the length of the PRN, that is, 1,023 chips for each GPS satellite. Drx is the
incoming radio frequency data that is acquired by the GPS analog front-end receiver.
PRNsat is the PRN identification of the GPS satellite (sat). This function takes in
consideration all the possible alignments between the incoming GPS identification
data and the compared PRN. Therefore, this is the reason to obtain an array of
values and not only a single value. The size of array Comp(PRNsat, Drx) is L, one
value for each possible alignment between the incoming data and the compared
PRN.

Following the theory, when a satellite is visible the array Comp(PRNsat, Drx)

has an unique maximum. This maximum value is called Detection Peak (DP). The
location/index where the DP is placed in the comparison array is called code-phase.
The code-phase determines the starting chip of the PRN sequence. The other values
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in this array are lower than the DP value. These lower values are called Noise (N). If
the compared satellite (PRNsat) is not visible, all values in array Comp(PRNsat, Drx)

are noise.
Nowadays, in the literature there exist multiple approaches to implement the

detection Eq. 34.1. For instance, it is quite easy to translate this Eq. 34.1 from the
time domain to the frequency domain and use the Fast Fourier Transform (FFT) and
its inverse (IFFT) to obtain the same results. However, in practical GPS receivers there
exist only two basic detection techniques [13]. Their main key in comparison with
other approaches are their implementation simplicity and the required computational
effort.

In one of these approaches the L1 incoming signal is oversampled, that is, every
chip of the PRN is sampled more than once, so the DP grows with the increasing sam-
pling frequency. In terms of Eq. 34.1, implementing the oversampling only requires
to set the correct value to L.

The other solution, instead of increasing the sampling frequency, increases the
sampling period. As a consequence, the recorded incoming GPS data contains more
than one complete PRN sequence. Therefore, the Detection Peak increases its value
in proportion to the increment of the sampling period, that is, the signal recording
time is increased.

Stepping up the sampling frequency and/or the sampling period increases the
sensibility of a GPS receiver when the GPS signal-to-noise ratio is too low. How-
ever, ordinary applications like open-sky navigation systems, i.e., typical GPS re-
ceiver for car tracking, only takes one of both methodologies with reduced increasing
factors.

In this research, we propose to obtain new detection codes to determine whether
a satellite is visible or not. The main feature of those new codes is their reduced
length in comparison with the original PRN. Proposed new codes require lower
computational effort than the traditional PRN [15]. Moreover, we are based on the
approach presented in [10] where authors introduce a novel methodology to obtain
new PRN detection codes using GA. In this previous approach, the research is focused
in determining what kind of multi/single objective algorithm is more suitable for this
type of application. However, in order to narrow the search space of the problem,
authors fix the length of the new detection codes to a submultiple of the original
length. This submultiple is 341 chips (341 × 3 = 1,023).

Our proposal in this work is redefining the problem presented in [10] with two
new variables to optimize. The first is the length of the detection code and the second
is the sampling ratio. We define the sampling ratio as the size of the new detection
code divided by 1,023 chips. Since we reduce the sampling ratio below the unity,
we will use the term dropping ratio as a more adequate concept or definition. The
approach presented in [10] has a length of 341 and a dropping ratio of 3 (that is, to
take 1 sample and drop 2 for every 3 samples of the incoming signal). This results
in a sampling ratio of 1/3 as shown in Fig. 34.1.
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Fig. 34.1 Example of 1/3 sampling ratio

34.3 Problem Codification

Based on the approaches found in the literature, we choose the NSGA-II [14] as GA
multi-objective optimization engine. The codification for the individual is as follows.
Each individual represents a new detection code. The individual is made by an array
of Boolean values (see Fig. 34.2). The status of each Boolean value can be only a
logic zero and a logic one. The unknown or error states are forbidden in this engine.
The length of the individual array determines the length of the new detection code.
Finally, each element of the individual array corresponds with an element of the new
detection code; this makes that the index is the same in both arrays.

Unsurprisingly, the cost function is basically the Eq. 34.1. As before mentioned,
this cost function is an array of comparison values. However we are not interested
in all these values but our attention is focused on the Detection Peak and the Noise.
Moreover, we know that the dropping ratio determines the total number of Detection
Peaks in the comparison array. For example, if the length of the new detection code
is set to 341 and the dropping ratio is set to 3, then there exist 3 different Detection
Peaks. So the comparison array contains as many Detection Peaks as set the dropping
ratio. Other values on this comparison array are Noise values.

Detection
Code

Proposal 1

Detection
Code

Proposal 2

Detection
Code

Proposal 3

Detection
Code

Proposal 4

Detection
Code

Proposal p

Population

p Individuals

1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 11 n Binary Numbers

Individual

n = Detection Code Length

Fig. 34.2 Problem codification
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We are interested in obtaining new reduced GPS detection codes with a low Noise
and high Detection Peaks. In order to obtain those values, after evaluating each
individual with Eq. 34.1, the evaluation function extracts the minimum Detection
Peak and the maximum Noise from the computed comparison array.

34.4 Experiments

We assume that the search space of this problem grows with the length of the new
detection codes and dropping ratio used. If we provide all the degrees of freedom
on all our problem variables, the required computational effort is increased in great
matter. The magnitude of this computational effort produces non-practical CPU ex-
ecution times. In this sense, in order to obtain the solutions in a practical CPU time,
we include the following rule:

|Proposed length × Dropping Ratio − 1,023| < ξ (34.2)

where ξ is the maximum allowed deviation between the original PRN and new
proposed PRN.

Table 34.1 presents the NSGA-II optimization engine setup. We define two objec-
tive functions to optimize. The first one is to maximize DP (minimize −DP) and the
second is to minimize the Noise (N). The NSGA-II optimization engine is controlled
by a program written in C that proposes lengths and sizes randomly using the rule
introduced in Eq. 34.2.

In other words, our application (C program) proposes different lengths and
dropping ratios and the NSGA-II optimization engine obtains new detection codes.
That is, the application starts with a proposal of a new length and dropping ratio to
obtain a new detection code. Then the NSGA-II optimization engine takes the control
and produces a Pareto-Front curve for those parameters. Once the optimization is
finished, our application extracts the best solution of the Pareto-Front. This proce-
dure starts over and over with several lengths and dropping ratios. In addition, after
extracting the best solution our application evaluates the convergence of the proposed

Table 34.1 NSGA-II setup
in our experiments

Parameter Value

Num. objectives 2

OBJ1 −DP

OBJ2 N

Population 40

Generations 10 k/100 k

Crossover 0.8

Mutation 1/PRN length

Seed Random/uniform distribution
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parameters. If the application determines that the solution can be refined/improved
the NSGA-II is executed again with more generations (from 10 k to 100 k).

In order to measure the quality of new detection codes we introduce some con-
cepts. We define the Detection Gap (DG) as follows:

DG = min(DP) − max(N) (34.3)

This means that the Detection Gap is the distance between the minimum Detection
Peak (min(Dp)) and the maximum Noise (max(N)). Bigger Detection Gaps give
better detection codes.

We also need to evaluate the required mathematical operations. For this pur-
pose, we label the number of required multiplication/addition operations to execute
Eq. (34.1) as CPU Operations (CPUO). In this case, fewer CPU Operations require
lower resources for hardware implementation.

Moreover, we define the CPU Effort (CPUE) as the CPU Operations per Detection
Gap, that is:

CPUE = CPUO

DG
= num. required mul/add

min(DP) − max(N)
(34.4)

In our experiments we compare our proposal with the traditional methodol-
ogy [15]. This traditional methodology consists of implementing Eq. (34.1) directly
without any of our proposed improvements.

Table 34.2 presents some results of our application when we look for reduced
codes of GPS satellite ID 1. In this experiment, we set ξ to a maximum of 400
chips. The first and second columns of the table contain the proposed code length
and the dropping ratio. The number of generations are shown in the third column (in
times of 1k generations). The fourth column gives the value of the rule defined in
Eq. (34.2). The following two columns exhibit the best optimized minimum Detection
Peak (min(DP)) and maximum Noise (max(N)). The seventh column indicates the
Detection Gap (DG). The following column measures the CPU Operations (CPUO).
Ninth column evaluates the CPU Effort CPUE . Finally, the last column presents the
difference (CPUDiff ) between our proposal and the traditional methodology for the
CPU Effort (CPUE(our)− CPUE(traditional)). In addition, please note that the last
two rows in this Table 34.2 show the best solution obtained in [10] and also using
the traditional methodology, respectively.

As expected, results from Table 34.2 are better as greater is the total number
of generations in terms of maximum Noise and/or minimum Detection Peak. Last
column presents a comparison between the traditional methodology and our new
reduced detection code. The comparison is done in terms of required computational
effort and detection gap to determine whether a satellite is visible or not. The negative
values in this column denote better solutions than using the traditional methodology.

From Table 34.2, we observed that, for instance, the combination 320 × 3 (length
× dropping ratio) with 100 k generations and 212 × 3 with 10 k generations have
similar values in last column, −73 and −76, respectively. The first one has the double
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Table 34.2 NSGA-II experiments for Satellite ID 1 and ξ < 400

Code Dropping Generations Rule min(DP) max(N) DG CPUO CPUE CPUDiff

length ratio (× 1 k) value

384 2 10 768 206 64 142 147,456 1038.4 −59

448 2 10 896 236 66 170 200,704 1180.6 84

480 2 10 960 250 70 180 230,400 1280.0 183

512 2 10 1,024 276 72 204 262,144 1285.0 188

212 3 10 636 90 46 44 44,944 1021.5 −76

288 3 10 864 116 54 62 82,944 1337.8 241

304 3 10 912 126 56 70 92,416 1320.2 223

320 3 10 960 134 56 78 102,400 1312.8 216

336 3 10 1,008 140 60 80 112,896 1411.2 314

341 3 10 1,023 141 59 82 116,281 1418.1 321

256 4 10 1,024 90 52 38 65,536 1724.6 628

512 2 100 1,024 276 70 206 262,144 1272.5 176

288 3 100 864 136 54 82 82,944 1011.5 −85

304 3 100 912 148 56 92 92,416 1004.5 −92

320 3 100 960 156 56 100 102,400 1024.0 −73

341 3 100 1,023 177 57 120 116,281 969.0 −128

256 4 100 1,024 98 52 46 65,536 1424.7 328

341 3 40 1,023 177 89 88 116,281 1321.4 224a

1,023 1 – 1,023 1,023 69 954 1,046,529 1097.0 0b

min(DP) minimum Detection Peak, max(N) maximum noise, DG Detection Gap, CPUO CPU
Operations, CPUE CPU Effort, CPUDiff CPU Effort Difference
aData from [10]
bTraditional methodology [15]

of detection gap than the second one, but the second proposal requires a half of the
CPU Operations to evaluate Eq. (34.1). Therefore, this comparison demonstrates that
there exist several combinations of code lengths and dropping ratios that have similar
ratios of CPU effort and detection gap.

The results obtained with our application, as shown on Table 34.2, are always
better than the presented in a previous work [10] in terms of maximum Noise. In
case of the Detection Peaks our approach obtains at least the same or better values
than those in the referred work [10].

Table 34.3 presents the summary of the results for all checked lengths. The first col-
umn shows the PRN length. The second, the third and the fourth columns provide the
maximum, minimum and average computational effort difference (CPU difference)
between our proposal presented in this document and the traditional methodology.
The last column in this table gives the obtained improvement in percentage. A neg-
ative value here means that our proposal is better than the traditional methodology
in the case referred to.
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Table 34.3 Obtained results
from experiments for all
satellites

PRN CPUDiff Improvement (%)

length Max Min Avg

256 114.26 −159.25 −44.38 4.05

264 27.13 −339.43 −202.94 18.50

272 −40.09 −342.06 −208.95 19.05

280 −65.42 −328.37 −170.86 15.57

288 55.00 −267.56 −173.64 15.83

296 26.28 −270.43 −135.58 12.36

304 303.24 −241.30 −116.91 10.66

312 −38.91 −227.86 −115.25 10.51

320 40.78 −229.20 −98.23 8.95

328 47.51 −215.16 −80.58 7.35

341 114.26 −159.25 −44.38 4.05
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Fig. 34.3 Results comparison in terms of PRN length and CPU effort improvement

Figure 34.3 display graphically the data on Table 34.3. On the left vertical axis is
represented the computational effort difference units. In addition, on the right vertical
axis the average improvement in percentage is shown. The horizontal axis gives the
detection code length (proposed PRN length). In this Fig. 34.3, each vertical bar
represents the maximum, minimum and average obtained improvement (left vertical
axis). Finally, the × symbol identifies the improvement in percentage (right vertical
axis).



34 Generation of New Detection Codes for GPS Satellites Using NSGA-II 519

The ideal goal in our application is to obtain a set of detection codes where
the obtained improvement is equal for all satellites. In addition, due to hardware
restrictions, all detection codes must have with the same length. These are moved to
Fig. 34.3 looking for a bar (set of detection codes with same length) and its maximum
and minimum as close as possible to the bottom of the figure. In this sense, there
are two solutions very close with similar results, lengths 264 and 272, where the
improvement in average is 18.50 and 19.05 % respectively. The advantage of length
272 set is not only the better percentage, but also this set provides improvements in
all its detection codes (maximum, minimum and average improvements are negative
values).

34.5 Conclusions

In this paper a methodology is proposed to take into account new design parameters
to obtain reduced GPS detection codes to determine whether a satellite is visible
or not. Those new design parameters are the length of the reduced detection code
and the dropping ratio. New optimal detection codes are obtained using NSGA-II as
optimization engine. In addition, we present a new metric to evaluate the performance
of new detection codes in terms of required CPU effort. Results demonstrate that new
detection codes exist that exhibit both similar or better performance in terms of CPU
effort, detection gap, code length and/or dropping ratio.

Acknowledgments This work is patent pending and was funded under project BATTLEWISE
(TEC2011-29148-C02-01) of the Ministry of Economy and Competitiveness.
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