Computational Methods in Applied Sciences

David Greiner

Blas Galvan

Jacques Périaux
Nicolas Gauger
Kyriakos Giannakoglou
Gabriel Winter Editors

Advances in Evolutionary
and Deterministic Methods
for Design, Optimization
and Control in Engineering
and Sciences

@coms @ Springer

European Commmunity
on Computational Mothods.
In Applied Sciences



Computational Methods in Applied Sciences

Volume 36

Series editor

Eugenio Onate, Barcelona, Spain



More information about this series at http://www.springer.com/series/6899


http://www.springer.com/series/6899

David Greiner - Blas Galvan

Jacques Périaux - Nicolas Gauger
Kyriakos Giannakoglou - Gabriel Winter
Editors

Advances in Evolutionary
and Deterministic Methods
for Design, Optimization
and Control in Engineering
and Sciences

@ Springer



Editors

David Greiner Nicolas Gauger
Blas Galvan RWTH Aachen University
Gabriel Winter Aachen
SIANI Germany
Universidad de Las Palmas
de Gran Canaria Kyriakos Giannakoglou
Las Palmas de Gran Canaria National Technical University of Athens
Spain Athens
Greece

Jacques Périaux
University of Jyvéskyld
Jyviéskyla

Finland

and

CIMNE

Universitat Politécnica de Catalunya
Barcelona

Spain

ISSN 1871-3033
ISBN 978-3-319-11540-5 ISBN 978-3-319-11541-2  (eBook)
DOI 10.1007/978-3-319-11541-2

Library of Congress Control Number: 2014953590
Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

EUROGEN 2013, the tenth in the international series of Conferences was organized
by the Institute of Intelligent Systems and Numerical Applications in Engineering
(STANI) of Universidad de Las Palmas de Gran Canaria (ULPGC), Spain, in
association with the European Community on Computational Methods in Applied
Sciences—ECCOMAS (Thematic Conference series) and the European Research
Community on Flow, Turbulence and Combustion—ERCOFTAC (Special Group
of Interest), and took place in the Industrial and Civil Engineering School at the
Tafira Campus of ULPGC in October 7-9, 2013.

This event gathered experts from Universities, Research Institutions and
Industries developing or applying evolutionary and deterministic methods in design
optimization with emphasis on industrial and societal applications.

Additionally to the traditional themes and applications in the Series, EUROGEN
2013 focused particularly on:

o Intelligent systems for multidisciplinary design optimization (MDO) problems
based on multi-hybridized software

Adjoint-based and one-shot methods

Uncertainty quantification and optimization

Multidisciplinary design optimization

Applications of game theory to industrial optimization problems

Applications in structural and civil engineering optimum design

Offshore, coastal and marine applications

Surrogate models-based optimization methods in aerodynamic design

Neural networks applied to logistic transport

Among the 75 presentations of the EUROGEN 2013 Conference, 34 extended
full papers were selected for publication in this volume after peer-review by
members of the European Scientific Program Committee and classified in the
following sections:



vi Preface

e Theoretical and Numerical Methods and Tools for Optimization:

— Theoretical Methods and Tools
— Numerical Methods and Tools

e Engineering Design and Societal Applications:

— Turbo machinery

— Structures, Materials and Civil Engineering
— Aeronautics and Astronautics

— Societal Applications

— Electrical and Electronics Applications

This volume presents up-to-date material on the state of the art in Evolutionary
and Deterministic Methods for Design, Optimization and Control with Applications
to Industrial and Societal Problems from Europe, Asia, North and South America.

The Scientific Organizing Committee and the Local Organizing Committee
acknowledge the sponsorship of the following organizations through financial sup-
port or/and assistance during the development of the event: Catedra Endesa-Red,
European Community on Computational Methods in Applied Sciences (ECCO-
MAS), European Research Community on Flow, Turbulence and Combustion
(ERCOFTAC), European Community (EC), Research Project E-CAERO, Center for
Numerical Methods in Engineering (CIMNE), Plataforma Oceanica de Canarias
(PLOCAN), CEANI Division—Institute of Intelligent Systems and Numerical
Applications in Engineering (STANI)—Universidad de Las Palmas de Gran Canaria
(ULPGC), Gobierno de Canarias.

The two Committees above are grateful to all the members of the European
Scientific Committee, the European Technical Committee and the International
Corresponding members.

Special thanks are also addressed to Dr. Dietrich Knoerzer, Project Officer EC
DG Aeronautics who initialized the EUROGEN series through the INGENET
Networking EC project and has been continuously participating in this two-year
frequency event since 1995.

Finally, the editors acknowledge Nathalie Jacobs, Springer, and Eugenio Ofiate
for the interest to this series in publishing the most representative scientific and
industrial material presented in the EUROGEN 2013 ECCOMAS Thematic Con-
ference in the Springer—ECCOMAS Series entitled: Computational Methods in
Applied Sciences.

David Greiner

Blas Galvan

Jacques Périaux
Nicolas Gauger
Kyriakos Giannakoglou
Gabriel Winter
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Part I
Theoretical and Numerical Methods

and Tools for Optimization:
Theoretical Methods and Tools



Chapter 1

Multi-objective Evolutionary Algorithms
in Real-World Applications: Some Recent
Results and Current Challenges

Carlos A. Coello Coello

Abstract This chapter provides a short overview of the most significant research
work that has been conducted regarding the solution of computationally expensive
multi-objective optimization problems. The approaches that are briefly discussed
include problem approximation, function approximation (i.e., surrogates) and evo-
lutionary approximation (i.e., clustering and fitness inheritance). Additionally, the
use of alternative approaches such as cultural algorithms, small population sizes and
hybrids that use a few solutions (generated with optimizers that sacrifice diversity
for the sake of a faster convergence) to reconstruct the Pareto front with powerful
local search engines are also briefly discussed. In the final part of the chapter, some
topics that (from the author’s perspective) deserve more research, are provided.

Keywords Evolutionary algorithms - Multi-objective optimization - Metaheuristics

1.1 Introduction

In real-world applications, most problems have several (often conflicting) objectives
that we aim to optimize at the same time. Such problems are called “multi-objective”
and their solution gives rise to a set of solutions that represent the best possible trade-
offs among all the objectives (i.e., the so-called Pareto optimal set). The image of the
Pareto optimal set (i.e., the objective function values corresponding to this set) forms
to so-called Pareto front of the multi-objective optimization problem being solved.

Starting in the mid-1980s, Evolutionary Algorithms (EAs) have become a popular
search engine to solve multi-objective optimization problems, mainly because of
their ease of use, and wide applicability (i.e., they require little domain-specific
information to operate) [11, 15].

The author acknowledges the financial support obtained through a “Catedra Marcos
Moshinsky”.

C.A. Coello Coello ()
CINVESTAV-IPN (Evolutionary Computation Group), 07360 Mexico, D.F., Mexico
e-mail: ccoello@cs.cinvestav.mx

© Springer International Publishing Switzerland 2015 3
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods

in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_1
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Modern multi-objective evolutionary algorithms (MOEAS) consist of two main
components:

1. A selection mechanism that is normally (but not necessarily) based on Pareto
optimality. Performance indicators can also be used for selecting solutions in a
population and that has been, indeed, a relatively popular research trend in recent
years [3].

2. A density estimator, which is responsible for producing different elements of the
Pareto optimal set in a single run of a MOEA. Different options are available
for this mechanism, such as: fitness sharing [16], entropy [82], clustering [79],
adaptive grids [31] and crowding [17], among others.

Additionally, all modern MOEAs are elitist, which means that they retain the non-
dominated solutions generated at each iteration, so that at the end of a run, the user
can have the globablly nondominated solutions that had been produced. Elitism is
normally implemented through the use of an external archive, but the use of the main
population for this purpose is also possible.

In spite of their popularity, one of the main limitations of MOEAs, when used for
solving real-world problems, is their high computational cost, which is associated
to the relatively high number of objective function evaluations that most current
MOEAs require [62]. Although there are several remarkable efforts in this regard,
several challenges still lie ahead, and the purpose of this chapter is precisely to review
some of the most representative research that has been conducted in this area.

The remainder of this chapter is organized as follows. In Sect. 1.2, we present basic
concepts related to multi-objective optimization. Then, in Sect. 1.3, we discuss the
main schemes that have been proposed for dealing with expensive multi-objective
optimization problems. In Sect. 1.4, we explore other ideas that havel also been
used for dealing with real-world applications having objective functions that are
computationally expensive. Section 1.5, provides some potential paths for future
research in this area. Finally, the conclusions of this chapter are presented in Sect. 1.6.

1.2 Basic Concepts

We are interested in solving problems of the type!:

minimize f(x) := [/1(X), /2(X), ..., fi(X)] (1.1)

subject to:
gix)<0 i=12,...,m (1.2)
hix)=0 i=1,2,...,p (1.3)

! Without loss of generality, we will assume only minimization problems.
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where x = [x1, x2, ..., x,]7 is the vector of decision variables, fi:R" > R,i =
1, ..., k are the objective functions and g;, h; : R" - R,i=1,...,m,j=1,...,p
are the constraint functions of the problem.

To describe the concept of optimality in which we are interested, we will introduce
next a few definitions.

Definition 1 Given two vectors X,y € R*, we say that x < y if x; < y; for
i =1, ..., k, and that x dominates y (denoted by x < y) if x < yand x # y.

Definition 2 We say that a vector of decision variables x € 2~ C R” is non-
dominated with respect to 2, if there does not exist another x' € 2~ such that
f(x) < f(x).

Definition 3 We say that a vector of decision variables x* € .% C R”" (. is the
feasible region) is Pareto-optimal if it is nondominated with respect to .%.

Definition 4 The Pareto Optimal Set &7* is defined by:
P* = {x € F|xis Pareto-optimal}
Definition 5 The Pareto Front &2.7* is defined by:
PF* = {f(x) e RF|x € 2%}

Therefore, we wish to determine the Pareto optimal set from the set .% of all the
decision variable vectors that satisfy (1.2) and (1.3). In practice, however, not all the
Pareto optimal set is normally desirable or even achievable.

1.3 Dealing with Expensive Problems

In general, MOEAS can be unaffordable for an application when:

e The evaluation of the fitness functions is computationally expensive (e.g., it takes
several hours).

e The total number of fitness function evaluations that can be performed is limited
(e.g., we only have a certain computational budget available).

According to [29], there are three main schemes that can be used to deal with expen-
sive problems:

Problem approximation: Inthiscase, theideais toreplace the original (expensive)
statement of the problem by another one which is easier (and less expensive) to
solve.

Functional approximation: In this case, instead of using the original objective
function(s) (which is/are expensive to evaluate), an alternative expression(s) is
adopted. The new expression(s) is built based on the previous data obtained from
evaluating the real objective function(s). The models that are obtained from the
data that is currently available are called meta-models or surrogates.
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Evolutionary approximation: This is an approach that is specific to EAs, and that
aims to save fitness function evaluations by estimating the fitness of an individual
using information from other (similar) individuals. The two main approaches in
this class are: fitness inheritance and clustering.

Next, we will provide a short discussion of each of these schemes, as well as some
real-world problems in which they have been adopted.

1.3.1 Use of Problem Approximation

As indicated before, in this case, the idea is to replace the original problem by
another one which is easier to solve. This sort of approach has been relatively pop-
ular in aeronautical/aerospace engineering, in which complex Computational Fluid
Dynamics (CFD), Computational Aero-Acoustics (CAA) and Computational Struc-
tural Mechanics (CSM) are adopted. When using such tools, it is possible to approx-
imate the original problem by using different resolutions in the flow or structural
simulation, adopting either coarse or fine grids. For CFD simulations is also possible
torely on Euler flows instead of (the more expensive) Navier-Stokes flow simulations.

An example of this sort of approach is the work of Lee et al. [41, 42]. In
this case, the authors applied the HAPMOEA (Hierarchical Asynchronous Paral-
lel Multi-Objective Evolutionary Algorithm) [24] to the robust design optimization
of an ONERA M6 wing shape. The authors considered uncertainties in the design
environment, related to the flow Mach number, and the Taguchi method was used to
transform the problem into one with two objectives to be minimized: (1) the mean
value of an objective function with respect to variability of the operating conditions,
and (2) the variance of the objective function of each solution candidate, with respect
to its mean value. HAPMOEA uses an evolution strategy as its search engine, incor-
porating the concept of Covariance Matrix Adaptation (CMA). It also incorporates a
distance-dependent mutation operator, and a hierarchical set of CFD models (varying
the grid resolution of the solver). Small populations are evolved using fine mesh CFD
solutions in order to exploit the search space, while large populations are evolved
with coarse mesh CFD solutions for exploring the search space. Good solutions from
the coarse mesh populations (in which evaluations have a low computational cost) are
transferred to the fine mesh populations (in which evaluations are computationally
expensive).

For more information on this topic, the interested reader must refer to: [6, 62, 68]

1.3.2 Use of Functional Approximation

The use of meta-models or surrogate models has been very popular in engineering.
In order to build a meta-model, a set of data points that lie on the local neighborhood
of the design is required. The accuracy of the meta-model relies on the number of
samples provided (from the real objective function evaluations), as well as on the
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accuracy of the model that is used to approximate the objective functions. Such an
approximate model must also have alow computational cost, since it will be evaluated
many times during the search.

There are several techniques available for constructing surrogate models, from
which the main ones are [62]: response surface methods, Gaussian processes
(or Kriging), radial basis functions, artificial neural networks and support vector
machines.

An example of this sort of approach is the work of Voutchkov et al. [81], in
which the Nondominated Sorting Genetic Algorithm-II (NSGA-II) [17] was used
to perform a robust structural design of a simplified jet engine model. The aim was
to find the best jet engine structural configuration that minimized: the variation of
reacting forces under a range of external loads, the mass for the engine and the
engine’s fuel consumption. The evaluation of the structural response was done in
parallel by means of finite element simulations. The authors adopted a kriging based
response surface method in order to reduce the computational time required to solve
this problem. Four objectives were minimized: (1) standard deviation of the internal
reaction forces, (2) mean value of the internal reaction forces, (3) engine’s mass,
and (4) mean value of the specific fuel consumption. The first two objectives were
computed over 200 external load variations. Due to the many combinations of loads
and finite element thicknesses, the multi-objective optimization problem would have
taken on the order of one year of computational time on a single 1 GHZ CPU, if no
effort had been made to perform a more efficient search. When using the surrogate
model that they report, combined with parallel processing, the total optimization
time was reduced to about 26 h, in a cluster with 30 cores.

For more information on this topic, the interested reader must refer to: [32, 43,
45, 51, 53].

1.3.3 Use of Evolutionary Approximation

In this case, two main approaches are considered: clustering and fitness inheritance.
Next, we will briefly discuss each of them.

Clustering is a term used to refer to the unsupervised classification of paterns into
groups (which are called clusters). The idea is to partition data into different groups
either in a hard way (i.e., into well-defined groups) or in a fuzzy way (i.e., using a
certain degree of membership to each of the groups) [27].

Although clustering is normally not used as a specific technique to reduce objective
function evaluations, this sort of technique is normally adopted in combination with
surrogates in order to reduce the size of the training data set. This is an important task,
since the use of very large training data sets makes prohibitive the cost of a surrogate
method. Clustering is normally adopted in this context to split the data set into several
small groups, and then an independent local model is built from each of them.

An example of the use of clustering is the work of Langer et al. [38], in which an
integrated approach that adopts computer aided design modeling is combined with a
MOEA for solving structural shape and topology optimization problems. The authors
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were interested in optimizing an instrument panel of a satellite, considering two
objectives: (1) minimize the instrument panel mass, and (2) maximize the first eigen-
frecuency. The authors solved the optimization problem for three shape and topology
optimization cases: (a) a panel without instruments, (b) a panel with instruments at
fixed positions, and (c) a panel with instrumental placing. They adopted polynomial
based response surface methods in order to reduce the computational cost, and mul-
tiple local approximation models were constructed using a clustering technique. The
use of parallel techniques was also required in this case (a cluster with 32 processors
was adopted by the authors).

Fitness inheritance was originally introduced by Smith et al. [71], with the moti-
vation of reducing the total number of fitness function evaluations performed by an
evolutionary algorithm. The idea is that, when assigning fitness to an individual,
some times we evaluate the objective function as usual, but the rest of the time, we
assign a fitness value equal to the average of the fitness values of its parents. This
saves one fitness function evaluation, and is based on the assumption of similarity of
an offspring to its parents.

Evidently, fitness inheritance cannot be applied all the time, since it is required to
have information from true fitness function evaluations in order to guide the search in
a proper way. The percentage of time in which fitness inheritance is applied is called
inheritance proportion. Clearly, this proportion should be less than one in order to
avoid premature convergence [4].

A theoretical model of fitness inheritance was presented by Sastry et al. [69].
Such model was used to obtain the convergence time, the optimal population size
and the optimal inheritance proportion (the authors found that values between 0.54
and 0.558 worked best for the inheritance proportion in problems of moderate and
large size).

The work of Sastry et al. [69] was extended to the multi-objective case by Chen
etal. [4]. In this case, the authors used fitness sharing to maintain diversity in the pop-
ulation with the aim of covering a larger extension of the Pareto front. The problem
they solved was a bi-objective extension of the OneMax problem originally solved
by Sastry et al. [69] in their study. The authors also presented a generalization (for
the multi-objective case) of the theoretical work reported by Sastry et al. [69] regard-
ing convergence time, optimal population sizing and optimal inheritance proportion.
The experiments reported by the authors showed that savings of up to 40 % of the
total number of evaluations could be achieved when using fitness inheritnance alone.
When combining fitness inheritance with fitness sharing, savings of up to 25 % were
obtained.

Reyes-Sierra and Coello Coello proposed the use of dynamic rules to assign the
inheritance proportion in a multi-objective particle swarm optimizer [55]. Such rules
produced savings that were from 19 up to 78 % of the total number of evaluations.
However, as expected, the greater the savings in the number of evaluations, the greater
was the degradation in the quality of the results. Nevertheless, the authors showed
it was possible to obtain savings of up to 49 % without having a significant loss in
the quality of the results. The authors adopted the Zitzler-Deb-Thiele (ZDT) test
problems in their experiments [89].
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It is worth mentioning that some researchers have considered fitness inheritance to
be an inappropriate mechanism in complex or real-world problems (see for example
[20], in which the authors concluded that fitness inheritance was not useful when the
shape of the Pareto front is nonconvex or discontinuous). Such conclusions are valid
for the proposal reported in [20]. However, in [56] it is shown that these limitations
of fitness inheritance can be overcome, so that this approach can be applied to Pareto
fronts having any kind of shape.

For more information on this topic, the interested reader must refer to: [19, 23,
37, 52, 56].

1.4 Other Approaches

There are some other ideas that can be used to tackle problems with computation-
ally expensive objective functions, and which do not fall into any of the categories
analyzed in the previous section. Here, we will focus on three types of approaches:

1. Cultural algorithms
2. Use of very small population sizes
3. Use of efficient search techniques

Next, we will briefly discuss each of these three types of approaches.

1.4.1 Cultural Algorithms

Cultural algorithms were originally proposed by Robert Reynolds in the mid-1990s
[57, 60]. The core idea behind cultural algorithms is to incorporate domain knowledge
extracted during the search to an evolutionary algorithm. Cultural algorithms use,
in addition to the population space commonly adopted in evolutionary algorithms,
a belief space, which encodes the knowledge obtained from the search points that
have been evaluated so far. The belief space is used to influence the evolutionary
operators, with the aim of guiding the search in a very efficient way.

At each generation, a cultural algorithm selects some individuals from the popula-
tion, in order to extract information from them. Such information will then be used to
speed up the search. Evidently, the belief space requires some sort of scheme to repre-
sent the knowledge extracted during the evolutionary process and this representation
is normally specific for each particular problem (or class of problems). It is also nec-
essary to design mechanisms that allow to use this extracted knowledge to influence
the way in which the evolutionary operators explore and exploit the search space.

Although cultural algorithms have been adopted for single-objective optimization
by several authors (see for example [7, 28, 35, 58, 59]), their use in multi-objective
optimization has been very limited until now.

The first proposal to design a cultural algorithm for solving multi-objective opti-
mization problems is the framework described in [12], which uses Pareto ranking,
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and an approximation of the dimensions of the Pareto front in the belief space. In this
proposal, the belief space works as a guide for the individuals to reach regions where
nondominated solutions have been found. The belief space includes also a mecha-
nism to obtain a good distribution of the resulting points along the Pareto front (i.e.,
a density estimator).

The earliest attempt to solve multi-objective optimization problems using cultural
algorithms was based on the use of the e-constraint method [36], since this sort of
approach uses a single-objective optimizer rather than a MOEA (the cultural algo-
rithm with differential evolution proposed in [35] was adopted for this sake). This
approach turned out to be computational expensive, due to the high number of objec-
tive function evaluations required to generate a good approximation of the Pareto
front. However, the authors showed that if the aim was to solve very difficult multi-
objective optimization problems, then this additional computational cost was worth
it. This was illustrated by solving several problems from the Deb-Thiele-Laumanns-
Zitzler (DTLZ) [18] and the Walking-Fish-Group (WFG) [25, 26] test suites.

More recently, Best and his collaborators [1, 2] proposed a more general frame-
work for using cultural algorithms with any sort of MOEA. This approach is interest-
ing and incorporates several sources of knowledge, but it did not show a significant
reduction of objective function evaluations, which is one of the main motivations
for using cultural algorithms. Additionally, the results presented by the authors are
not competitive with respect to those obtained by traditional MOEAs using the same
number of objective function evaluations, which suggests that it is still required to
conduct more research in this area. In fact, the incorporation of knowledge into
MOEAs (using any sort of scheme), with the aim of making them more efficient is
indeed a very promising research area [37].

1.4.2 Use of Very Small Population Sizes

The use of small population sizes is unusual in the evolutionary algorithms literature
in general, mainly because of the evident loss of diversity that is associated to small
population sizes, and which normally leads to premature convergence. However, in
the genetic algorithms literature, it is known that the use of very small population sizes
is possible, if an appropriate reinitialization process is adopted (such approaches are
called micro-genetic algorithms (micro-GAs) [13, 14, 34] and they use populations
with no more than five individuals).

Krishnakumar [34] proposed the first implementation of a micro-GA. The first
micro-GA for multi-objective optimization was introduced in [ 13, 14]. This approach
uses a population size of four individuals, and three forms of elitism: (1) an external
archive that adopts the adaptive grid from the Pareto Archived Evolution Strategy
(PAES) [33], (2) a population memory, in which randomly generated individu-
als are replaced by evolved individuals, and (3) a mechanism that retains the two
best solutions generated by each run of the micro-GA. The main advantage of this
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approach is its efficiency (its authors showed that their approach was up to an order
of magnitude faster than the NSGA-II [17]). This is the reason why this approach
has been used in computationally expensive real-world applications (see for example
[8, 9]).

In a further paper, Coello Coello and Pulido introduced the micro-GA? [78], which
is a fully self-adaptive MOEA that adopts a parallel strategy to adapt the crossover
operator and the type of encoding (binary or real numbers) to be used. This approach
can even stop automatically (it uses a mechanism based on a performance indicator
to decide when to stop the search).

Over the years, other authors have adopted micro-genetic algorithms for solving
a variety of problems (see for example [5, 30, 46, 47, 61, 72, 76, 77]). Additionally,
the use of very small population sizes has also been attempted with other bio-inspired
metaheuristics, such as particle swarm optimization (see [22]).

1.4.3 Use of Efficient Search Techniques

During the last few years, some researchers have proposed schemes that allow a
more efficient exploration of the search space through the use of aggressive search
engines that produce a few points from the Pareto front and then adopt a local
search engine to reconstruct the rest of the front. One example of this sort of hybrid
MOEA is DEMORS (differential evolution (DE) for multi-objective optimization
with local search based on rough set theory) [64]. This approach operates in two
phases. In the first one, a DE-based MOEA produces a rough approximation of the
Pareto front using a relatively low number of objective function evaluations (65 % of
the total number of objective function evaluations adopted by DEMORS are spent
in the first phase). In the second phase, the remainder 35 % of objective function
evaluations still available, are spent on the use of a local search procedure based on
rough set theory [49, 50], whose task is to reconstruct the missing parts of the Pareto
front. DEMORS was validated using several standard test problems taken from the
specialized literature, as well as in a real-world problem having 8 objective functions
and 160 decision variables in which it was able to outperform NSGA-II.

The same authors experimented with other (similar) hybrids in which DE was
replaced by particle swarm optimization [66, 67] or rough sets were replaced by
scatter search [65]. All these approaches were found to be very efficient multi-
objective optimizers, and seem particularly suitable for real-world applications in
which the use of surrogates is not appropriate.

In further related work [63], the same authors compared different surrogate meth-
ods (namely, artificial neural networks, radial basis functions and support vector
machines) coupled to a MOEA and combined the best performer of them (support
vector machines) with rough sets. This sort of scheme was proposed as an alternative
for dealing with multi-objective problems that are very expensive (computationally
speaking).
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1.5 Future Research Paths

There are a number of possible research paths in this area that are worth exploring:

e Parallel Approaches: Although parallel MOEASs have been used for several years
[11, 48], most of the papers published in that area focus on discussing applications
and normally, such papers put little emphasis on the development of innovative
algorithmic designs. Nowadays, the use of grid computing and Graphics Process-
ing Units (GPUs) opens new and promising venues for future research in this
area (see for example [21, 70, 73-75, 80, 88]), particularly regarding the solu-
tion of real-world problems having computationally expensive objective functions.
The incorporation of surrogate models into parallel MOEAs is another interesting
topic that deserves more research and that has been only scarcely explored in the
specialized literature until now (see for example [54]).

e Hybridization: Coupling gradient-based or direct search methods to MOEAs is
another alternative way for dealing with computationally expensive problems.
In recent years, several promising hybrids of this sort have been proposed (see
for example [39, 40, 44, 83-85]). These approaches can also be combined with
surrogates for further efficiency (see for example [86, 87]). However, the use of
such hybrid approaches in real-world applications is still rare (see for example
[8]). Nevertheless, this situation is expected to change as more research results in
this area become available.

e Sampling techniques: Surrogate methods heavily rely on the sample and updat-
ing technique adopted. In many real-world applications that use surroages, latin
hypercubes have been adopted for the initial sampling, with the aim of covering
as much as possible of the design (i.e., decision variable) space. At later stages of
the search, it may be more relevant to explore the neighborhood of a good solution
(see for example [8]). However, sampling is also relevant in other approaches,
such as when using small population sizes or when hybridizing a MOEA with
a local search engine. Nevertheless, the impact of the sampling technique in the
performance of such approaches has not been properly addressed so far, to the
author’s best knowledge.

1.6 Conclusions

This chapter has provided a quick overview of the most relevant research tools that
are currently available to tackle computationally expensive problems using multi-
objective evolutionary algorithms. Breadth has been emphasized over depth in the
discussions provided herein. However, several additional references have been pro-
vided for those interested in getting an in-depth knowledge about any of the topics
that have been addressed in this chapter.

One aspect that is worth mentioning is that the presence of computationally expen-
sive objective functions is clearly not the only relevant aspect when solving real-world
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problems. Other issues such as scalability (in decision variable space or in objective
function space, or in both), uncertainty and incorporation of user’s preferences, just
to name a few, have not been addressed here, mainly because of obvious space
limitations. Readers interested in information about these and other relevant topics
are invited to visit the EMOO repository [10], which is available at: http://delta.cs.
cinvestav.mx/~ccoello/EMOO/EMOObib.html.
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Chapter 2
Hybrid Optimization Algorithms and Hybrid
Response Surfaces

George S. Dulikravich and Marcelo J. Colaco

Abstract In this paper we will present some hybrid methodologies applied to
optimization of complex systems. The paper is divided in two parts. The first
part presents several automatic switching concepts among constituent optimizers
in hybrid optimization, where different heuristic and deterministic techniques are
combined to speed up the optimization task. In the second part, several high dimen-
sional response surface generation algorithms are presented, where some very basic
hybridization concepts are introduced.

Keywords Multiobjective optimization + Response surfaces + Hybrid optimizers

2.1 Introduction

Design of complex nonlinear engineering systems usually requires a large computa-
tional effort in the case of simulation, or a large amount of human and experimental
resources in the case of experiments. Multi-dimensional topology of the objective
function space of such problems has multiple local minima and large domains of pos-
sible variations of the design variables search space. A typical approach to finding
the global minimum is to start with a large search space utilizing an entire population
of initial guesses and advancing them simultaneously using any of the evolutionary
optimization algorithms. Once the search space has narrowed sufficiently, the search
process is switched to a fast and accurate gradient-based search algorithm to con-
verge on the minimum. However, this simplistic semi-manual approach to sequential
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hybrid optimization is not reliable since it utilizes only one evolutionary optimizer
and one gradient-based optimizer, each of which has its own intrinsic deficiencies.
A more robust and faster hybrid optimization approach utilizes a collection of sev-
eral evolutionary optimizers and several gradient-based optimizers and automatically
switches among them. This chapter will focus on these types of hybrid optimizers.

When systems having large number of design variables, objective functions and
constraints need to be optimized, this implies the evaluation of thousands and even
millions of candidate solutions, which can make this task impossible from a very
practical point of view, especially if each such high fidelity evaluation of the objective
function is time-consuming or expensive. Thus, it is important to develop surrogate
models, also called metamodels, which approximate the response of the original
problem, but using a much simpler mathematical formulation. The objective of this
chapter is to present several common response surface models existing in the liter-
ature, and some hybridization among them. Some hybrid optimizers are also pre-
sented, based on heuristic and deterministic methods, which take advantage of these
hybrid response surface models to improve the efficiency of the optimization task of
complex engineering systems.

2.2 Hybrid Optimization Algorithm Concepts

It is well known that each optimization algorithm provides a unique approach to
optimization with varying degrees of convergence, reliability, and robustness at dif-
ferent stages during the iterative process. The “no free lunch theorem” states [1] that
no individual optimization algorithm is better than all the other optimization algo-
rithms for all classes of optimization problems (Fig.2.1). A natural response to this
problem is to use hybrid optimization algorithms that combine individual constituent
optimization algorithms in a sequential or parallel manner so that resulting software
can utilize the specific advantages of each constituent algorithm. That is, a variety
of individual constituent optimization algorithms that rely on different principles of
operation are combined in a hybrid optimization algorithm as subroutines where a set
of specified heuristic measures of the iterative convergence process is used to perform
automatic switching among the constituent algorithms. This allows for automatic use
of the most appropriate constituent optimization algorithm at each step of the global
iterative optimization process. The automatic back-and-forth switching [2] among
the constituent optimization algorithms can also be viewed as an automatic backup
strategy so that, if one optimization algorithm fails, another optimization algorithm
can automatically take over.

The key to the success of this hybrid optimization concept is the automatic
switching strategy [2, 3] among the constituent optimization algorithms. One of the
early single-objective hybrid optimization algorithms [4, 5] had three gradient-based
(Davidon-Fletcher-Powell algorithm, Sequential Quadratic Programming and quasi-
Newton algorithm of Pshenichny-Danilin) and three non-gradient-based
(Genetic Algorithm, Nelder-Mead simplex algorithm, and Differential Evolution
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Fig.2.1 Convergence histories for Griewank’s test function no. 8 using (from left to right) individ-
ual: BFGS algorithm, differential evolution, simulated annealing, particle swarm, and our hybrid
optimizer [27]. The last figure illustrates the convergence history of one hybrid optimizer using
automatic switching process [5]

algorithm) constituent optimization algorithms that were automatically switching
back-and-forth each time when a particular heuristic prescribed convergence mea-
sure was reached [5].

This hybrid single-objective optimizer only restarts with a single design (the
“best” from the “previous” iteration). In other words, when switching from one of the
population-based constituent optimizers to a gradient-based constituent optimizer,
only the best design from that population, and not the entire population, is used as
the initial guess for the gradient-based constituent algorithm.

For population-based constituent optimizers used in this hybrid optimizer, the
population matrix was updated every iteration with new designs and ranked according
to the value of the objective function. The optimization problem was completed
when: (1) the maximum number of iterations or objective function evaluations was
exceeded, or (2) the best design in the population was equivalent to a target design,
or (3) the optimization program tried all four algorithms, but failed to produce a
decrease in the objective function.

Another hybrid single-objective optimization algorithm was developed by com-
bining three of the fastest gradient-based and evolutionary optimization algorithms
[5], namely: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm, the
Differential Evolution algorithm, and the Particle Swarm algorithm. It was found
that the most often automatically used constituent optimization module is the Particle
Swarm algorithm. When a certain percentage of the particles find a minimum, the
algorithm switches automatically to the Differential Evolution algorithm and the
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particles are forced to breed. If there is an improvement in the objective function,
the algorithm returns to the Particle Swarm method, meaning that some other region
is more likely to have a global minimum. If there is no improvement in the objec-
tive function value, this can indicate that this region already contains the global
value expected and the algorithm automatically switches to the Broyden-Fletcher-
Goldfarb-Shanno algorithm in order to quickly and accurately find the location of
the minimum.

One of the most recent switching algorithms is the Search Vector-based Hybrid
(SVH) [2] which automatically changes search directions during the optimization
process. During each iteration, the SVH will generate the SVs based on a predeter-
mined formula or quality. Some examples of the SVs include:

1. Global Best vector (GB) which is the fittest design vector currently in the popu-
lation.

2. Population Weighted Average vector (PWA): The population is ranked from best
to worst, with the best receiving a rank equal to the population size, and the
worst having a rank of one. The ranks are then used as weights, and the standard
weighted arithmetic mean procedure is used to create this SV.

After the SVs have been evaluated, the fittest SV is selected as the SV for that
iteration. Once the SV has been selected, the constituent algorithm selection process
begins. First, each constituent algorithm is executed so that it generates a temporary
small population. This temporary population will not be evaluated. Instead, it will be
used as an indication of the behavior of the constituent algorithm for a given topology.
For example, suppose the SVH has two constituent algorithms called CA1 and CA2
where CA1 will use the current population to generate a temporary population which
will be situated in one part of the space of design variables, while CA2 will create
a temporary population shifted to another part of the space of design variables. In
order to select the most appropriate constituent optimization algorithm, the Euclidean
distance between the endpoint of each centroid vector of the temporary populations
and the selected SV is calculated and stored. Then, each centroid is evaluated. The
constituent algorithms are then ranked using the Pareto dominance scheme based
on two objectives: (1) minimize distance between the centroid and the SV, and (2)
minimum objective function value of the centroid. The constituent algorithm to be
used is randomly selected from the Pareto front. In order for the centroids of the
temporary populations for the constituent algorithms to be statistically meaningful,
the constituent algorithms are executed 10x each iteration. Once a constituent algo-
rithm has been selected, it is then executed one last time. This time, the population is
permanently changed, and the objective function for each design vector is evaluated.
This completes one full iteration of the SVH. This strategy [2] differs from any other
known work in that it uses a collection of different search directions, each with its
own unique formulation, and chooses among them. The method presented by Ahrari
et al. [6], like most other hybrid algorithms, generates the search direction and keeps
it fixed throughout the entire optimization process.

In multi-objective optimization it would be onerous to use a single value and
compare the quality of one Pareto approximation to another [7]. Instead, multiple
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attributes of two successive Pareto approximations should be considered to determine
if a multi-objective optimizer is converging on non-dominated set. Since “no free
lunch theorem” applies to multi-objective optimizers as well as single-objective opti-
mizers, hybrid optimization is highly advisable in the multi-objective optimization
problems. Such hybridization can be implemented by using a suite of multi-objective
optimization algorithms in the form of either High-level Relay Hybrid (HRH) algo-
rithms where each of the constitutive algorithms run on its own in a sequential
non-parallelized scheme, or as High-level Teamwork Hybrid (HTH) metaheuristic
algorithms [8] where constitutive optimization algorithms run in parallel and con-
tribute a portion of each new generation’s population. The portion that each search
contributes to the new generation is dependent on the success of the algorithm to
provide past useful solutions to the search. One such HTH algorithm is AMALGAM
[9], which utilizes NSGA-II [7] and outperforms NSGA-II.

A robust and accurate HRH type concept is Multi-Objective Hybrid Optimizer
(MOHO) [10] which currently uses three multi-objective optimization algorithms:
Strength Pareto Evolutionary Algorithm (SPEA-2), a multi-objective implementa-
tion of the single objective Particle Swarm, and a Non-Sorting Differential Evolu-
tion (NSDE) algorithm which is a low level hybrid metaheuristic search combining
NSGA-II [7] and Differential Evolution. MOHO starts by creating the population
that will be used for the optimization run. The population contains the decision vector
and the objective vector for all population points and stores the Pareto approximation
and clustering routine. Clustering is performed by the population on the object vec-
tors of the Pareto approximation. The decision vectors of all population points are
evenly distributed over the decision space using Sobol’s pseudo random sequence
generator [11]. The software then passes the population from optimization routine to
optimization routine as the switching criteria dictates. The constitutive algorithm that
is selected at each generation makes a new generation using any or all of the informa-
tion provided to it: the last generation’s population and the latest non-dominated set.
Then MOHO combines the new generation and the latest non-dominated set to create
a new non-dominated set. The switching algorithm compares the non-dominated set
from the current generation to the non-dominated set of the previous generation. The
comparison process consists of looking at five desired improvements to the Pareto
approximation [10]. The improvements are actually gains in five performance crite-
ria (quality factors). If the particular search algorithm can achieve at least two of any
of the five specified improvements [10], this algorithm is allowed to create the next
generation. The five criteria (aspects) are:

1. The new population changes the number of points in the Pareto set. When this
happens, either points are being added to the approximation, or, more importantly,
a new point is found that causes points to be deleted from the Pareto set.

2. The new population has at least one point that dominates a point, or points, in the
current Pareto approximation. This means that the Pareto approximation is being
improved.

3. The hyper volume of the dominated space changes. When the optimization soft-
ware starts, it picks a worst case objective vector from its initial population guess.
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At each constituent optimization algorithm iteration, hyper cubes are created,
with one vertex of the diagonal being a point on Pareto approximation and the
other vertex of the diagonal being the worst case objective vector. Then the vol-
ume of the union of all the hyper cubes is calculated. The union is defined as the
Boolean union of the cubes; in the same sense as this operation is performed in
Constructive Solid Geometry for CAD applications. When this occurs, the Pareto
approximation is changing geometry.

4. The new population generation causes the average distance of Pareto approxi-
mation from the objective space origin to change. This also denotes a change on
the Pareto approximation geometry. This is a backup to criterion (3) where two
approximations may have the same volume, but different average distances.

5. The new population causes the maximum spread of the Pareto approximation to
increase. The formula for calculating the spread developed by Zitzler is shown
by Deb [7].

At the end of each iteration, the population of design vectors assigns itself a grade
point for each of the above criteria that its new generation meets. If the new population
earns a grade of 2 or more, the current optimization routine is allowed to continue
running. When the grade falls below 2, the software switches to the next optimizer
in its repository. If the grade is O or 1, the reason to switch to another constituent
optimizer is because the currently used constituent algorithm is not contributing to
improving the Pareto approximation. As an example, the population gives itself
a grade of 1 because it meets criterion 4. This change could be caused just by
clustering of the previous Pareto approximation and the new population. While this
type of change in the Pareto approximation has its uses, it has been found that the
multi-objective routines used here can cause these kind of changes to the Pareto
approximation ad infinitum, when the Pareto approximation is very near the actual
non-dominated set of the objective space. It has been found that by enforcing at least
2 of the criteria, these situations are avoided.

The other limiting factor on how many consecutive iterations a given optimization
routine can run is the sub-iteration limit. Although a routine may be able to score a
grade of at least 2 indefinitely, for each new generation, there may be an optimization
method available that can do a better job. For this reason, each constituent optimizer
is limited to a user defined maximum sub-iteration limit. This limit gives all the
constituent optimizers a chance to run.

2.3 Hybrid Response Surface Generation Concepts

Optimization of systems with a large number of design variables where the objective
function is given in a pointwise fashion requires creation of a hypersurface that
fits through the given values of the objective function in a multi-dimensional space
where dimensionality corresponds to the number of the design variables. It is well
known that the locations of the training points are crucial for the proper construction
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of the response surface. When we are given a freedom to choose the locations of
the support points of a multi-dimensional response surface, a typical approach is to
use Design of Experiments (DoE) for this purpose. For high dimensional problems,
strategies such as Latin Hypercube Sampling [11], Sobol quasi-random sequences
of numbers [12], and a variety of de facto random number generators are most often
used. However, when we do not have freedom to choose the number and the locations
of the support points for generation of a response surface, all existing methods for
generating response surfaces have serious problems with accuracy and robustness.
This is mainly because arbitrary data sets provide inadequate uniformity of coverage
of space of the design variables and clustering of the support points that leads to
spurious oscillations of the response surfaces.

2.3.1 Polynomial Regression

The use of polynomial regression is one of the earliest attempts to generate response
surface models [13, 14]. The idea is to approximate an unknown function f{x) by an
approximation s(x) in the following general form

n n n
fX) ~s(x) =ag+ D aixi + > D ajxix;

n n n
+ 202> ajxixixg + - -

i=1j<ik<j

2.1)

where n is the number of dimensions of the problem. Notice that we can write
Eq.(2.1) as

f=Xa+¢ 2.2)

where ¢ is an approximation error with zero mean and variance, o2, If the functions
are given at certain known locations, the unknowns a can be found by least squares

a= (XTX)_1 X7t 2.3)

It is well known that the locations of the training points are crucial for the proper
construction of the response surface. Such choice is known in the literature as Design
of Experiments (DoE). For low dimension problems, the classical method of choice
was the factorial design [13], which is not practical for high dimensional problems.
Other strategies for high dimensions include the Latin Hypercube Sampling [11],
Sobol quasi-random numbers [12], etc.

Although the polynomial regression technique seems very attractive in view of its
simplicity, it is not practical when the number of dimensions of the problem becomes
very high. In this case, there are other relatively recent techniques more appropriate.
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Among those techniques, the most used are Kriging [15], Radial Basis Functions
[16], and Neural Networks [17], among others.

2.3.2 Self Organizing Algorithms [19, 20]

Self-organizing algorithms come from the field of cybernetics [18]. The idea is that
the program “learns” the black box model as it is trying to mimic and makes the
response surface as complex as is required. By allowing the program to gradually
complicate the final model, the construction and evaluation time of the surrogate
model is automatically optimized for a given task. The black box model is the test
function being used to evaluate the RSM method.

The self-organizing algorithm presented here [19], is the multilayer algorithm
where the design variables are permutated, in pairs, to form nodes. At each node
a least squares regression is performed using the two variables input to the nodes.
These are variable vectors that are the size of the sample population. Thus, the output
of the node is a vector of the predicted values from the regression. The polynomial
used for the regression is a first order or second order polynomial. For instance, a
second order basis polynomial would be:

k.n k, k k, k.n_k,
yi,j _a071+a kn n+a2kn n+a knxi nxj,n
+a4kn k,n ki1+ak11 knx]kn y 2.4)
where i,j = 1,2, ..., number of inputs to a given layer, k is the current layer, and

n is the node number at current layer. Equation (2.4) would then be a row in the
Vander Monde matrix for a regression using a second order basis polynomial of two
variables. The output of the node is the vector of predicted y values for the given
input. The output of a node in layer kK — 1 becomes the input (provides an x; vector)
for layer k.

The notation in Eq.(2.4) is designed to inform the reader that the functions and
polynomial coefficients pertain to a particular layer and particular node in the layer.
The notation should also give the reader a feel for the computational resources needed
to create and maintain a multilayer self-organizing model.

Figure 2.2 shows a possible multilayer surrogate model for a three variable engi-
neering model. In the bottom layer (the zero layer) actual design variables are the
nodes in the layer. These become the x inputs to layer 1. The nodes for layer 1 are
created by permuting the input variables and performing a least squares fit using
Eq.(2.4), and the actual responses from the actual function (that is, objective func-
tion, engineering simulation, etc.). Once layer 1 is made, layer 2 is created, but now
the nodes of layer 1 provide the x’s to make the new nodes using Eq.(2.4). When
layer 3 is to be created, the 3" node of layer 2 is not included. For now, we will just
say that the results of that regression were not good enough to be used to make the
3" Jayer. Since only two nodes from layer 2 were used to make layer 3, only one
node can be created in layer 3 and the model making process ends there.
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Fig. 2.2 Sample multilayer
model for self-organizing Layer 3
response surface creation [19]
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The third node in layer 2 is not used to make nodes in layer 3 in Fig.2.2. A
selection criterion is used to determine if the information in a node gets passed on
to the next layer. Madalaand and Ivakhnenko [18] suggest that using the following
equation is an appropriate means for checking the quality of a node and can be a
selection criterion

Input Variables

> peny O — V)

AB) = SF——F
ZPENB (y[l - y)2

(2.5)

where y, are the desired values, 3’\ are the predicted values and y are the mean of
the desired values. In the multilayer algorithm a threshold is set for the maximum
acceptable value of Eq. (2.5). Nodes that are within the threshold are passed on to the
next layer. For each new layer the threshold is made smaller. This serves to minimize
the amount of nodes in each layer to only the information that is needed to improve
the network. This trimming of nodes is crucial to keeping the method compact and
efficient [19]. The reader is urged to follow the example in Fig.2.2, but first setting
the number of input variables to 4. The rate of the growth of layers can be very large.

The building of the multilayer network can be terminated in two ways (in practice):
A) Build a predetermined number of layers and chose the node in the last layer with
the best value of Eq.(2.5) to be the model output. B) Build layers until all nodes
are unable to meet the threshold value, chose the best-valued node as the output of
the model. Once the output node is chosen, the polynomial coefficients pertaining
to all the nodes used to create the output node are stored for evaluation of the model
(extraction of a predicted value).
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2.3.3 Kriging

The Kriging technique was named after the initial work of the South African mining
engineer Krige [20]. Details of this technique can be found in the classical papers of
Sacksetal. [21, 22] and Matheron [15]. Itis worth mentioning also the excellent work
of Jones et al. [23] where they proposed an efficient method to global optimization.
Later, Huang et al. [24] extended Jones et al. work to deal with model uncertainties.
Following procedure described in the works of Jones et al. [23] and Sacks et al. [21,
22], the Kriging method starts by constructing a stochastic process model for the
function as

7 (x') = jz::ajgj (x') Ty (2.6)

where the superscript 7 is used to denote the ith point in the space of design variables
x. InEq. (2.6), g; is a set of m linear or non-linear functions and ¢ is an approximation
error with zero mean and variance, o2. In the classical Kriging model, the approxi-
mation error is supposed to be function of the design variables, such that &’ = g(x?).
Some recent works [24] also include a measurement error in Eq. (2.6), but this will
not be discussed here. A usual hypothesis in this model is that if two points x’ and
¥ are close, then their approximation errors &(x’) and (x/) are also close, meaning
that e(x’) and &(¥') are correlated. The correlation function between those two errors
can be given as a function of the weighted distance between then [21, 22].

d (xi, xj) = i@k
k=1

i ijk
X — X O >0, P, e[l,2] 2.7)

where 7 is the number of dimensions of the problem. The correlation is given as

cor[e () ¢ (¥)] = exp [ (x. )] 28

According to Jones et al. [23], such model is so powerful that we can rewrite
Eq.(2.6) in terms of the mean of the stochastic process u, such that

f (xi) =u+e (xi) (2.9)
Following Jones et al. [23] we can then obtain the approximate function for a new
point x* as

f(x*)=a+r" R (f-1p) (2.10)

where 1 is vector of ones, R;; = Corr[e(x'), e(x/)], rj = Corr[e(x*), e(x')], f is the
vector of functions at the known locations, and
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@2.11)

Kriging also predicts the mean squared error of the estimates [21-23] and this
has been used as a predictor to locations where to add points in the response surface
model. Locations of the domain where the mean squared error of the estimates are
large, usually require the addition of extra points to increase the local accuracy.

2.3.4 Radial Basis Functions

The use of Radial Basis Functions (RBFs), initially proposed in the work of Hardy
[25] on multivariate approximation, is now becoming an established approach. RBFs
may be classified into two main groups:

e The globally supported ones namely the multiquadrics (MQ, ,/ (x — xj)2 + c},
where c; is a shape parameter), the inverse multiquadrics, thin plate splines, Gaus-
sians, etc;

e The compactly supported ones such as the Wendland [26] family (for example,
(I = r)'} + p (r) where p(r) is a polynomial and (1 — r)"} is O for r greater than
the support).

Let us suppose that we have a function of L variables x;,i = 1, ..., L. One possible
RBF approximation [27] can be written as

N M L
FORs®) =D ¢ (x=x])+ D> Birrk () + o (2.12)
j=1 k=1 i=1
where x = {x1,..., X;, ..., x1,} and f(x) is known for a series of points x . Here, pi(x;)
is one of the M terms of a given basis of polynomials [28]. This approximation is
solved for the c; and B; x unknowns from the system of N linear equations, subject
to the conditions (for the sake of uniqueness)

N
2.k (xi) =0

j=1
(2.13)
N
Zi ap (xp) =0
=
N
> =0 (2.14)
j=1

One of the possible RBFs are the multiquadrics radial functions
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2
o (%) = /(5 )+ 2 @.15)
where the shape parameter ¢; must be adjusted. According to Baxter [29], usually
large values of ¢; provide the best approximations.

2.3.5 Wavelet Based Neural Networks [31, 32]

Wavelets occur in the family of functions generated from a mother wavelet 1 (x).
Each wavelet in it is defined by dilatation vector, a;, which controls the scaling, and
translation vector, #;, which controls the position. Given a training set, the overall
response of a WNN can be arithmetically written as

N, -
s () = Wo+ D Wit (x&_t) (2.16)

i=1

where Np is the number of wavelet nodes in the hidden layer and w; is the synaptic
weight for each hidden node in the WNN. The dilatation and translation vectors have
size equal to the number of variables in the estimated function. Such a network can
be used to approximate any function

fX)=sx) +e¢ 2.17)

where s is a regression function and the error term ¢ is a zero-mean random variable
of disturbance.

One of the well known approaches for constructing WNN [30] requires the gen-
eration of a wavelet library, W. This library is composed of discretely dilatated and
translated versions of mother wavelet function, v (x). The next step is selecting the
best wavelets based on the training data from this library to build the regression. This
approach for building WNN becomes prohibitively computationally expensive when
the estimated function has a large number of variables. This is due to exponential
increase of the size of the wavelet library W with the dimension of the estimated
function. Searching such a huge library one-by-one is computationally redundant.
Therefore, a stochastic approach should be used for searching the best wavelets for
the WNN hidden nodes [31].

2.4 Hybrid Methods for Response Surfaces

In this section we will present some hybrid response surface methods. The accuracy of
these methods, along with their comparison against other strategies, will be presented
in the next section.



2 Hybrid Optimization Algorithms and Hybrid Response Surfaces 31

2.4.1 Fittest Polynomial Radial Basis Function (FP-RBF) [28]

The FP-RBF hybrid method [27] consists of choosing the best possible combination
of RBF, polynomial order, variable scaling, and shape parameter for a given problem.
In the work of Colaco et al. [27], the polynomial part of Eq. (2.12) was taken as

pr () = xf (2.18)

and the radial basis functions were selected among the following

Multiquadrics: ¢ (|xi — xj|) = /(i — )cj)2 + cjz (2.19)

Gaussian: ¢ (|x,~ — xj|) = exp [—cjz (x,- — xj)2] (2.20)

Squared multiquadrics: ¢ (|x; — xj|) = (xi — xj)2 + cj2 2.21)

3
Cubical multiquadrics: ¢ (|x,~ — xj|) = |:,/ (x,- — xj)z + C]2i| (2.22)

Some tests were made using the cross-product polynomials (x;x;xx...), but the
improvements on the results were found out to be irrelevant [27]. Also, other types
of RBFs were previously considered by the authors [27], but no improvement in the
accuracy of the interpolation was observed.

Therefore, a polynomial of order M is added to the radial basis function. After
inspecting Egs. (2.12)—(2.14), (2.18), one can easily check that the final linear system
has [(N+M*L)+1] equations that can be solved by any traditional technique.

In the technique presented by Colaco et al. [27], initially all variables have to be
normalized. Then, the initial guess for the shape parameter c is set as the minimum
distance between two points in the training set of variables. Shape parameter, c,
is then increased until the best solution is obtained. Also, different scaling of the
variables are tried to give the best fit for the function. The choice of which polynomial
order, which shape parameter and scaling of the variables, and which RBF are the
best for fitting a specific data set was made based on a cross-validation procedure.
Let us suppose that we have PTR training points, which are the locations in the
multidimensional space where the values of the function are known. Such set of
training points is equally subdivided into two subsets of points, named PTR1 and
PTR2. The Egs. (2.12)—(2.14) are solved for a polynomial of order zero and for one
of the RBF expression given by Eqgs. (2.19)—(2.22) using the subset PTR1. Then, the
value of the interpolated function is checked against the known values of the function
that are in the subset PTR2. The error is recorded as

Prro
RMSprrim=orsrt = D [s(xi) — f&x)]’ (2.23)

i=1
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Then, the same procedure is repeated by using the subset PTR2 to solve the
equations and the subset PTR1 to calculate the error as

Prri

RMSprrom=0.r8F1 = D [s(xi) —f )] (2.24)
i=1

Finally, the total error for the polynomial of order zero using one of the RBF
expressions given by Eqgs. (2.19)—(2.22) is obtained as

RMSp1=0,rBF1 = /RMSpPTRI, m=0,RBF1 + RMSPTR2, m=0,RBF1 (2.25)

This procedure is repeated for all polynomial orders, up to M = 10 and for each
one of the RBF expressions given by Egs. (2.19)—(2.22). The best combination is the
one that returns the lowest value of the RMS error. Although this cross-validation
procedure is quite simple, it worked very well for practical test cases including opti-
mization of chemical compositions of alloys [32, 33] ,maghnetohydrodynamic flow
in cavities [34], energy/exergy optimization [35, 36] and Bayesian inverse problems
in heat transfer [37].

2.4.2 Kriging Approximation with Fittest Polynomial Radial
Basis Function (KRG-FP-RBF)

A new method is proposed in this paper, which combines the very high accuracy of
the FP-RBF approximation with the stochastic appealing of the Kriging method. The
idea is conceptually simple, although the computational implementation requires
some effort. Results presented in this paper are still preliminary and need further
investigation.

Referring to Jones et al. [23], the Kriging approximation given by Eq.(2.6) is
so powerful that the base function g(x) can be written as the mean of the stochastic
process, ;. However, we propose to extend even more such accuracy by using the FP-
RBF approximation as a base function for the Kriging process. In other words, once
the FP-RBF method has been adjusted and fitted to a particular set of data, we use this
approximation as the g(x) function in the Kriging model given by Eq. (2.6). Inserting
the FP-RBF definition given by Eq.(2.12) into the Kriging model of Eq. (2.6), we
have the following stochastic process model for the function as

f (x’) —a s(xf) Ty (2.26)
Notice that s(x) has to be built using the FP-RBF model explained earlier. By

doing this, we are assuming that ¢ is the FP-RBF approximation error, which has
(by hypothesis) zero mean and variance 2. Once the approximation was built by
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the FP-RBF method, the Kriging approximation is used to model such error in a
stochastic way. Then, following Sacks et al. [21, 22] derivations, adapted to our
nomenclature, we can obtain the best linear unbiased predictor at a new point x*
as (mathematical details are omitted for lack of space, but the interested readers are
urged to read publications by Sacks et al. [21, 22] for all details of this derivation)

§(x*) =as(x*) +r’ (x*)R7'[F—aS§] (2.27)

where F is the vector of the exact function evaluated at the training points locations
and S is vector of FP-RBF approximation at these same locations. Notice that if
a = 1, and F =8, then the Kriging model reduces to the FP-RBF model. Thus, the
second term gives some measure of the error between the real data and the FP-RBF
approximation. In this equation, R is the full correlation matrix between the training
points, given by Eq. (2.8) and r is the correlation vector between the evaluation point
x* and the training points, also given by Eq. (2.8). The parameters 6 and P, appearing
in Eq.(2.7) can be obtained by minimizing [(detR)l/ "ma2] where m is the number
of training points [21, 22]. In this paper, such minimization was performed by the
Particle Swarm method. The other parameters appearing in these equations are given
as [21, 22]

o’ = l(F—aS)TR—l F—a¥) (2.28)
m
—1
a= (STR‘IS) STR™IF (2.29)

where Eq.(2.28) gives the maximum likelihood estimation of the variance and
Eq.(2.29) is the generalized least-squares estimate [21, 22] of a. Thus, this pro-
cedure uses the Kriging method to model the approximation error of the FP-RBF
approximation.

2.4.3 Hybrid Self Organizing Model With RBF [20]

The best known application of self-organizing method is in the commercial software
I0SO [38] which uses quadratic local fitting polynomials. A more general idea is
to use the self-organizing method given by Eq. (2.4) to choose the best local fitting
functions (linear, quadratic, cubic or quadratic) to generate a response surface thus
capturing the major topology of the response multi-dimensional hyper-surface. How-
ever, this metamodel does not force the hyper-surface to pass exactly through the
provided support points. The difference between the actual values of the objective
function at the support points and the fitted values at the support points represents a
much less challenging topology which it then fitted using RBF method [19]. Such a
combined response surface fitting method is much more robust and accurate (Figs. 2.3
and 2.4) than either of the separate methods used in this hybrid [19]. This hybrid
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Fig. 2.3 Self-organizing method using quadratic local polynomials applied to a medium size data
set; model accuracy [19]

method is simple to implement, although computationally costly, where computing
cost is mainly due to the self-organizing method. This suggests a need for research
into reducing the computing cost of the self-organizing method by using more effi-
cient pruning algorithms to eliminate those branches in the genetic tree that are
terminating.

2.4.4 Genetic Algorithm Based Wavelet Neural Network
(HYBWNN) [31, 32]

Another hybrid method used for fitting high dimensional functions is the Genetic
Algorithm Wavelet Based Neural Network (WNN) model presented by Sahoo and
Dulikravich [31] with 5 neural subnets. Typically, the mother wavelet used in the
WNN is Mexican Hat wavelet given by

2
¥ (x) = (%ﬂlm) (1 - xZ) exp (TX) (2.30)

Gaussian wavelets were also used along with this mother wavelet to construct
the WNN [31]. For each node of the WNN, genetic algorithm was used to search
the best Mexican Hat wavelet and the best Gaussian wavelet. The one having a
lower norm of residue after performing multiple linear regression was selected and
used in the WNN architecture. The concept of binary genetic algorithm was used to
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Hybrid Multi-Layer Self-Organizing Model with RBF on Residual
Medium Sample Size - Percent Predicted Points by Bins
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Fig. 2.4 Self-organizing method followed by RBF used on residuals applied to a medium size data
set; model accuracy [19]
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Fig. 2.5 Binary string representation of a 2-D wavelet

search for the wavelets required for the hidden nodes in the WNN. The dilatation
and translation factors (binary representation) in Eq.(2.16) for each dimension of
the wavelet were concatenated to form the chromosomes in the GA population. A
typical representation of a wavelet in 2-D function estimation is shown in Fig.2.5.
It has two dilatation factors specifying the scaling and two translation factors
specifying the position of the wavelet in each dimension. The variables space is
normalized so the translation factors can vary within [—1, 1] and the dilatation factors
can vary within [0.1, 0.8]. The fitness for selecting the wavelet was defined as the
norm of the residue obtained by doing multiple linear regression of the values given
by the wavelet transform of the training data versus the real function values. The
GA was run for a sufficient number of generations to select a wavelet. Subsequent
wavelets were searched by the GA based on the residue obtained in former step set
as target values. This approach was unable to search for proper wavelets when the
number of variables in the estimated function went beyond ten. The chromosome
length for such functions was huge and the binary GA became inefficient. Therefore,
a real numbers GA search was proposed where the wavelet is represented as a string
of real number instead of a binary string. The range for searching for the values of
dilation factors was relaxed to [0.005, 5.00]. This gave more flexibility to the GA for
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Fig. 2.6 Real string representation of a 4-D wavelet

searching appropriate wavelets [31]. A typical example of a wavelet representation
in 4-D function estimation is shown in Fig.2.6.

The fitness assignment was similar to the previous method. In addition, whole
arithmetic crossover and floating point mutation operators were used. Separate GAs
were run serially [36] for finding the activation function in each node of the WNN
architecture.

2.5 Comparison Among Different Response Surface Algorithms

Performance of different hybrid response surface algorithms was evaluated on data
sets containing either scarce (3L), small (10L), medium (30L) or large (50L) number
of points, where L designates the dimensionality of the problem [39, 40].

2.5.1 Fittest Polynomial RBF Versus Hybrid Wavelet Neural
Network [42]

In order to compare the accuracy of the FP-RBF [27] model against the Hybrid
Wavelet Neural Network (WNN) [31], 13 test cases were used, representing linear
and non-linear problems with up to 16 variables. These test cases, defined as problems
1-13 were selected by Jin et al. [41] in a comparative study among different kinds
of meta-models. Such problems were selected from a collection of 395 problems
(actually 296 test cases), proposed by Hock and Schittkowski [42] and Schittkowski
[43]. For the other comparison presented in this paper, all 296 test cases will be
presented. The reason is the very high computational cost associated with the WNN
method that restricted us to these 13 test cases initially. Also, for these test cases,
the polynomial degree of the FP-RBF model was fixed in a pre-specified value, and
the shape parameter was set to 1/N, where N is the number of training points. For the
other sections of this paper, those two parameters were allowed to vary according to
the cross-validation procedure defined previously.

The first 12 problems do not have random errors added to the original function,
while the problem no. 13 has a noise added with the following form

e(x1,x) =or (2.31)
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where o is the standard deviation and ris arandom number with Gaussian distribution
and zero mean.

For accuracy, the goodness of fit obtained from “training” data is not sufficient to
assess the accuracy of newly predicted points. For this reason, additional confirma-
tion samples are used to verify the accuracy of the metamodels. To provide a more
complete picture of metamodel accuracy, two different metrics are used: R Square,
and Relative Average Absolute Error (RAAE) [41].

(a) R Square (R2)

Si (i=$8)° | MSE

2 __
R2=1- __ M
S i —3)? variance

(2.32)

where y; is the corresponding predicted value for the observed value y;; y is the
mean of the observed values. While MSE (Mean Square Error) represents the
departure of the metamodel from the real simulation model, the variance captures
how irregular the problem is. The larger the value of R2, the more accurate the
metamodel.

(b) Relative Average Absolute Error (RAAE)

i |yi - §i|
n*STD

RAAE = (2.33)

where STD stands for standard deviation. The smaller the value of RAAE, the
more accurate the metamodel.

The FP-RBF model presented here was compared against the WNN method for the
13 selected analytical test cases. In order to check the accuracy of the metamodel
when different samples were employed, three different sets of training points were
used, as suggested by Jin et al. [41]. Table2.1 gives the number of training points,
testing points, minimum and maximum value of each test function, as well as the
standard deviation and average value of each test function.

Initially, the results obtained with the FP-RBF model, with a polynomial of order
10 using a large number of training points and the results obtained with a polynomial
of order 1 for small and scarce sets of training points were compared with the results
obtained by using WNN method [44]. Only problems no. 1-5 were tested for a scarce
set of training points, as suggested by Jin et al. [41].

Figure 2.7 demonstrates that when considering R2 metric, for large and small sets
of training points, the RBF was better than the WNN, while for a scarce number of
training points, the WNN was more accurate. On the contrary, it appears that when
considering RAAE metric, for large and small sets of training points, the WNN was
better than the RBF, while for a scarce number of training points, the RBF was more
accurate.
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Fig. 2.7 R2 and RAAE metrics for WNN and FP-RBF
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Fig. 2.8 R2 results with WNN for a large number of variables (WNN with five subnets)

However, one of the major problems with WNN is its rapidly decreasing accuracy
with increasing dimensionality of the problem. Figure2.8 demonstrates the results
for test problem no. 2 when using the WNN. One can see that the accuracy, given
by the R2 metric, decreases rapidly when using 100 training points. Also, for 400
training points, the R2 goes to a negative value when using more than 100 variables.
Colaco et al. [39] demonstrated that the RBF model was able to maintain a very high
accuracy even when the number of variables increased to 500.

Figure2.9a shows the computational time required to run this test case using the
FP-RBF model. The code was written in Fortran 90 and the CPU was an Intel T2300
1.66 Ghz (Centrino Duo) with 1 Gb RAM. Figure 2.9b shows the computational time
required by the WNN where one can notice the extremely high computational cost.
The code for the WNN was written in Matlab 7.0.4 and the CPU was an Intel T2300
1.66 Ghz (Centrino Duo) with 1 Gb RAM. Some improvement in the performance
could be expected by converting this code to Fortran90 or C++. However, the compu-
tational cost for the WNN for a problem with 300 variables and 400 training points,
even with different programming languages (Matlab and Fortran90) was approxi-
mately 6,000 times greater than for the RBF.
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Fig. 2.9 Computing time for a large number of variables: (a) RBF with M =1, (b) WNN with five
subnets
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2.5.2 Fittest Polynomial RBF Versus Kriging

In this section we will compare the accuracy and computing time requirement of the
FP-RBF model against the one given by the Kriging model proposed by Jones et al.
[23]. From now on, 296 test cases will be used, representing linear and non-linear
analytical problems with up to 100 variables. These test problems were selected from
a collection of 395 (actually 296) test cases proposed by Hock and Schittkowski [42]
and Schittkowski [43]. Figure 2.10 shows the number of variables of each test case
analyzed. To verify the accuracy of the interpolation over different number of training
points, two sets were defined. Also, the number of testing points varied, according to
the number of training points. Table 2.2 presents these two sets, based on the number
of dimensions (variables) L of the problem.

Initially, Fig.2.11 presents the values of R2 and RAAE metrices for the FP-RBF
model, considering a scarce set of data. As one can see, most of the test cases
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Fig. 2.13 CPU time for the FP-RBF method. a scarce set of data, b small set of data

have high values of R2 and low values of RAAE, indicating a good approximation,
even for such small number of training points. When the number of training points is
increased from scarce to small, results look better, as one can notice from the analysis
of Fig.2.12 for the R2 and RAAE metrics.

Figure2.13 shows the CPU time for FP-RBF method. All test cases ran on an
Intel i7 2GHz with 4 Gb of RAM (Windows XP emulated under Mac OS X 10.8.4)
and codes were written in Fortran 90. Besides running on different processors, CPU
times in these test cases are a little higher than in previous one, since now we are also
optimizing the shape parameter, the RBF polynomial degree and the scaling of the
variables, as discussed before. Notice that computing time increased only slightly by
going from a scarce data set to a small data set.

Figure2.14 shows difference of R2 and RAAE metrics between the Kriging
method and the FP-RBF model for 296 test-cases studied in this section, using the
scarce set of data. Since higher R2 and lower RAAE values indicate a good accuracy,
in these graphics, negative values of Delta R2 and positive values of RAAE indicate
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Fig. 2.14 Difference of the R2 and RAAE metrices between the Kriging model proposed by Jones
et al. [23] and FP-RBF methods for the scarce set of data (negative values of Delta R2 and positive
values of Delta RAAE indicates superiority of the FP-RBF method)
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Fig. 2.15 Difference of the R2 and RAAE metrics between the Kriging model proposed by Jones
et al. [23] and FP-RBF methods for the small set of data (negative values of Delta R2 and positive
values of Delta RAAE indicates superiority of the FP-RBF method)

the superiority of the FP-RBF method. As a general trend, the FP-RBF method per-
forms better than the original Kriging method, given by Eq. (2.9), for most of the test
cases, although there are some functions were Kriging has a better accuracy. For the
small set of data, such comparison is presented in Fig.2.15, where one can notice
the superiority of the FP-RBF method over Kriging.

Figure2.16 shows the CPU time ratio between Kriging and FP-RBF for scarce
and small sets of data. In this figure, values greater than one indicate how many
times the Kriging is slower than the FP-RBF. As a general trend, for the scarce set
of data, Kriging is one order of magnitude slower than the FP-RBF, whereas for the
small set of data it is two orders of magnitude slower. Two factors contribute for
the high computing cost of Kriging: (i) the need to invert the covariance matrix R
in Eqs. (2.27)—(2.29) and the minimization of [(detR)!/"2] by the Particle Swarm
method. We intend to investigate ways to reduce this computational cost, since Krig-
ing seems to have some advantage over FP-RBF model when applied to certain
functions, as shown above. It is also worth noting that the CPU time ratio is almost
constant over all test problems. In fact, going from test function number 200-295 the
CPU time ratio decreases, when the number of dimensions of the problems varies
considerably, as one can check from Figs.2.10 and 2.16.
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Fig. 2.16 CPU time ratio between the Kriging model proposed by Jones et al. [23] and FP-RBF
methods for the scarce and small sets of data (values higher than one indicate the Kriging method
is more expensive than FP-RBF)
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Fig. 2.17 Difference of the R2 and RAAE metrics between the HYBSORSM and FP-RBF methods
for the scarce sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)
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Fig. 2.18 Difference of the R2 and RAAE metrics between the HYBSORSM and FP-RBF methods
for the small sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

2.5.3 Fittest Polynomial RBF Versus Hybrid Self Organizing
Response Surface Method—HYBSORSM

Results in Fig. 2.17 indicate better accuracy of the FP-RBF method over HYBSORM.
From the analysis of this figure it is clear the superiority of FP-RBF model. Compar-
ing Fig.2.17 with Fig.2.14, it is evident that for this set of data, the Kriging model
is also superior to HYBSORSM. However, when the small set of data is used (see
Fig.2.18) the HYBSORM method improves its performance, but is still outperformed
by the FP-RSM method. Comparing now Figs.2.15 and 2.18, the HYBSORM has a
better performance than the Kriging model for the small sets of data.
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Fig.2.19 CPU time ratio between the HYBSORSM and FP-RBF methods for the scarce and small
sets of data (values higher than one indicate the method is more expensive than FP-RBF)
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Fig.2.20 Difference of the R2 and RAAE metrics between the KRG-FP-RBF and FP-RBF methods
for the scarce sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Figure 2.19 shows some interesting results regarding the CPU time ratio between
HYBSORM and FP-RSM model. In some cases, the first method is faster then the
FP-RBF model, whereas it is slower for other ones. Comparing Figs.2.10 and 2.19,
it is interesting to notice that the CPU time ratio follows the same behaviour as the
number of variables. Thus, opposite to the Kriging model, where the CPU time was
almost constant with the number of variables, the HYBSORSM method requires
more computational effort for problems where the number of dimensions is high.

2.5.4 Fittest Polynomial RBF Versus Kriging Approximation with
Fittest Polynomial Radial Basis Function—KRG-FP-RBF

This section compares the results of the FP-RBF method with the ones obtained
by the combined (hybrid) KRG-FP-RBF method. Figures2.20 and 2.21 show Delta
R2 and Delta RAAE for the scarce and small sets of data. In general, the hybrid
KRG-FP-RBF method does not modify the accuracy of the FP-RBF method, except
in a few cases. Although for some cases the performance decreases, for most of the
cases where the hybrid KRG-FP-RBF method changes the FP-RBF performance, it
improves the solution. These results are still in a very early stage of development
and we believe this approach might improve the overall performance of the FP-RBF
method if some better strategy to minimize [(detR)]/ ma2] is used.
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Fig.2.21 Difference of the R2 and RAAE metrics between the KRG-FP-RBF and FP-RBF methods
for the small set of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)
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Fig. 2.22 CPU time ratio between the KRG-FP-RBF and FP-RBF methods for the scarce and small
sets of data (values higher than one indicate the method is more expensive than FP-RBF)

Finally, Fig.2.22 shows the CPU time ratio between the KRG-FP-RBF method
and the FP-RBF method. This ratio can be reduced if better optimization procedures
are used in the Kriging part of the code.

2.6 Conclusions

A number of concepts for constructing hybrid optimization algorithms with focus on
automatic switching logic have been described. Also, a number of multi-dimensional
response surface fitting algorithms and their hybrids have been described and their
performances compared for scarce, small and medium data sets. Fittest polyno-
mial radial basis function (FP-RBF) method appears to offer the best overall perfor-
mance concerning high accuracy of fitting arbitrary data sets and low computing time
requirements. Possible hybridization of Kriging and FP-RBF was also thoroughly
tested showing its promises as far as increased robustness of such hybrids, although
at significant increase in the computing time.
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Chapter 3
A Genetic Algorithm for a Sensor Device
Location Problem

Egidio D’Amato, Elia Daniele and Lina Mallozzi

Abstract In this paper we present a noncooperative game theoretical model for the
well known problem of experimental design. A virtual player decides the design
variables of an experiment and all the players solve a Nash equilibrium problem by
optimizing suitable payoff functions. We consider the case where the design variables
are the coordinates of n points in a region of the plane and we look for the optimal
configuration of the points under some constraints. Arising from a concrete situation,
concerning the ARGO-YBJ experiments, the goal is to find the optimal configuration
of the detector, consisting of a single layer of resistive plate counters. Theoretical
and computational results are presented for this location problem.

Keywords Facility location - Nash equilibrium - Constrained optimization

3.1 Introduction

The scope of the ARGO-YBJ project is to study cosmic gamma radiation, identifying
transient emissions and performing a systematic search of steady sources [1]. The
detection of very small size air showers (at low energy < 7TeV), is needed to reach this
scope, because standard ones would sample only a small percentage of the shower
particles. The achieving of the objective is committed to a new instrument located in
Yangbajing Laboratory (Tibet, China), at a very high altitude (4,000 m a.s.1.) in order
to approach the maximum size development of low energy showers. This detector

E. D’Amato

Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Universita
degli Studi di Napoli, Via Roma 29, 80039 Aversa, Italy

e-mail: egidio.damato@unina?2.it

E. Daniele

Fraunhofer Institut fiir Windenergie und Energiesystemtechnik - IWES, Ammerlénder
Heerstralle 136, 26129 Oldenburg, Germany

e-mail: elia.daniele @iwes.fraunhofer.de

L. Mallozzi (<)

Department of Mathematics and Applications “R.Caccioppoli”’, University of Naples
“Federico II”, Via Claudio 21, 80125 Naples, Italy

e-mail: mallozzi @unina.it

© Springer International Publishing Switzerland 2015 49
D. Greiner et al. (eds.), Advances in Evolutionary and Deterministic Methods for Design,
Optimization and Control in Engineering and Sciences, Computational Methods

in Applied Sciences 36, DOI 10.1007/978-3-319-11541-2_3



50 E. D’ Amato et al.

uses a full coverage layer of Resistive Plate Counters (RPCs) that can provide a high
granularity sampling of particle showers. It covers an area of about 6,700 m? and
allows a detailed space-time picture of the shower front.

This work is related to the optimization of RPCs location on the layer, to capture
a uniform cosmic source distribution, constrained by a limited number of receivers
due to a budget limitation.

Considering the capture surface of a single receiver shaped as a circular area,
the problem has many points in common with a classic sphere packing problem
[5, 13, 18]. The problem of packing circles in different geometrical shapes in the
plane has always attracted researchers for the large amount of fields on which it
can be applied. In the last decades many results, mainly for small packings, were
obtained. The increasing performance of computing systems and the development
of new optimization algorithms for large problems have recently brought to the fore-
front this kind of problems. Usually the circle packing problem can be stated as that
of spreading points and it’s needed to find a configuration of points in the given region
such that the minimum mutual distance between the points is as large as possible. The
packing problem is dual to the covering one, in which the optimal location of points
is needed to cover as much as possible the area of interest. Typical solutions can
be found in several fields and are addressed using several algorithmic optimization
procedures [3, 11, 14, 16, 19].

In this paper we are interested in finding the optimal location of a limited number of
receivers to maximize the total detection area. This experimental design problem can
be faced as a Nash equilibrium problem as stated in Game Theory: the choice of the
variables in n experiments is made by n players, each of them has to decide his loca-
tion far as possible from the opponents and also from the border of the region. On this
model, it is possible to compute the equilibria by using a numerical procedure based
onagenetic algorithm [4, 6, 10, 15, 17, 20]. In Sect. 3.2 the constrained location prob-
lem is introduced and the procedure to solve it by a Nash game is shown; in Sect. 3.3
the Nash genetic algorithm for the facility location game is presented with several test
cases. In Sect. 3.4 concluding remarks and some further developments are discussed.

3.2 Constrained Location Problem

3.2.1 Preliminaries

Let us consider an n-player normal form game I" (n € .4, where .4 is the set of
natural numbers), that consists of a tuple

F:(N;Xls"'vxn;fls"'vfn)
where N = {1, 2, ..., n}1is the finite player set, for eachi € N the set of playeri’s

strategiesis X; (i.e.thesetof playeri’sadmissiblechoices)and f;: X1 X - - - x X, > Z
isplayeri’s payofffunction (Z isthe set of real numbers). We suppose here that players
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arecostminimizing, sothatplayeri hasacost f; (x1, x2, . . ., x,) whenplayer I chooses
x1 € X1, player 2 chooses x» € X», ..., player n chooses x, € X,,.

We define X = Xy x --- x X, andfori € N: X ; = Hjen\()X;. Let x =
(x1,x2,...,x,) € X and i € N. Sometimes we denote x = (x;,X_;), where
X_; = (xl, s X1 X1y e ,xn).

A Nash equilibrium [2, 12] for I' is a strategy profile X = (X1, X2, ..., X,) € X
such that for any i € N and for any x; € X; we have that

fi®) < filxi, X).

Such a solution is self-enforcing in the sense that once the players are playing
such a solution, itis in every player’s best interest to remain in his strategy. We denote
by N E(I") the set of the Nash equilibrium strategy profiles.

Any X = (X1,...,X,) € NE(I')is a vector such that forany i € N, X; is solution
to the optimization problem

min f;(x;, X—).
xieX;

3.2.2 The Facility Location Game

We consider the unit square £2 = [0, 1]*: the problem is to decide for two variables
x and y the values of n available experiments (n € .4~ given).

Problem 1 Experimental Design (ED)
The problem is to sattle n points P;, P», ..., P, in the square §2 in such a way
that they are far as possible from the rest and from the boundary of the square.

This implies to maximize the dispersion of the points in the interior and the
distance from the boundary of §2 as in experimental design ([9]). Various concrete
situations satisfy these requirement, for example the location of sensor device to
capture cosmic rays in a region that will be discussed in the next section.

There is a competition between the points in the square, because the dispersion
depends on the mutual position of all the points, also with respect to the boundary
of £2, so we use a game theoretical model and assign each point to a virtual player,
whose decision variables are the coordinates and whose payoff function translates
the dispersion in terms of distances.

As it happens in applications, forbidden places may be present inside the square.
We consider the location problem in the constrained case depending on the admissible
subregion of £2, say £2, C 2.

In the constrained case we define the following n-player normal form game
I'. = (N;$2,...,8¢ fi1,..., fn) where each player in N = {1,2,...,n}, for
each i € N, minimizes the cost f; : A. — % defined by

1 1
(P, ..., Py) = +
fi (P ) 1<j§j7&i d(P;, Pj) 2d(P;, 052)
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being A, = {(P],...,Pn) e P e(0,1D2 P #Pj Vi, j=1,...,n,j ;éi}
and d is the Euclidean metric in %2. The first n — 1 terms in the definition of f;
give the distance between the point P; and the rest of the points, the last term an
decreasing function of the distance of P; from the boundary of the square.

Definition 1 Any (X, y1, ..., X, ¥») € A, that is a Nash equilibrium solution of
the game I, is an optimal solution of the problem (ED). For any i € N, (X;, y;) is
solution to the optimization problem

min _ fi(X1, 91, ..., Xic1, Jie1s Xis Yio Xig 1, Jid1s oy Xns Yn)
(xi,Yi)€S2

with (x1, Y1, ..., Xn, Yn) € Ac.

A very common situation is to consider 2. = £2\T with T a closed subset of
£2 (a triangle, a circle, etc.) that corresponds to a facility location problem with an
obstacle (a lake, a mountain, etc.). Other concrete cases for the admissible region £2.
can be considered: in the following Section we will examine the location problem
when the admissible region is given by a set of segments.

3.2.3 Location of Sensor Devices on a Grid

Given the set {h1, ..., hi} (h; €10, I[,1 =1, ..., k) we consider the set of possible
location of n sensor devices able to capture cosmic particles

2. ={[0, 1] x {h1}, ..., [0, 1] x {hi}}.

We are obliged to locate the sensors on the given k& segments in the square: for
example because of electricity constraints.

In terms of coordinates, if P; = (x;, y;),i € N the distance of a point P = (x, y)
from the set 02, the boundary of £2, is

d(P,32) = min d(P, Q) = min{x,y,1 —x,1—
( ) leang( Q) = min{x, y x v}

€
and we have for (x, y1, ..., x4, yn) € A¢
1
f‘i(-xl’yla cees Xn, yn) =
I<j<n,j#i \/(xz' —xj)*+ i —yj)?

1
+ =
J2min{x;, yi, T —x;, 1 — y;}

for (x1, Y1, .-+, Xn, Yn) € 2N Ac.

The optimal location of the sensors will be the Nash equilibrium solutions of the
game [, = (N; $2¢, ..., 82¢; f1, ..., fn), where each playerin N = {1,2,...,n},
foreachi € N, minimizes the cost f; : A, — Z for (x1, y1, ..., Xn, Yn) € 2:NA;.
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3.3 Nash Genetic Algorithm for the Location Problem

3.3.1 Genetic Algorithm

Let X1, X», ..., X, be compact subsets of an Euclidean spaces, denoted as search
space. Let f1, f2, ..., fu be real valued functions, defined on X1 x X» X - -+ X X,
representing the objective functions to be maximized.

Lets = x1, x2, ..., x,, be the individual (or chromosome) representing a feasible
solution in the search space. A finite set of individuals make up a population. It can
be viewed as a sampling of the problem domain that generation by generation maps
zones with an higher probability of presence of the optimum ([10]).

A typical genetic algorithm consists of several steps:

e Population initialization: at the first step, a random population is set to map the
search domain.

e Selection: on the sorted population, a probabilistic based selection of parents is
made to permit coupling of best individuals without wasting worst chromosomes
that may be useful to move towards unexplored zones of search space.

e Crossover: on selected parents, a crossover operator is applied to create two new
individuals. This operator may be applied in several forms.

e Mutation: to avoid premature stagnation of the algorithm a mutation operator is
used, randomly changing a bit of the just created chromosomes.

e Fitness computation: objective function and constraints must be evaluated to sort
individuals in the population.

e Termination criterion: usually two criteria are defined in a GA, one on the max-
imum number of total generations and one on the maximum number of total
generations without improvements on the best chromosome.

3.3.2 Nash Equilibrium Game

According to the definition of Nash equilibrium presented in 3.2.3, the algorithm for
a n players Nash equilibrium game is presented [6-8, 15].

The algorithm is based on the Nash adjustment process [12], where players take
turns setting their outputs, and each player’s chosen output is a best response to the
output that his opponent chose the period before. If the process does converge, the
solution is an optimal location of the n sensor devices.

Let x = x4, ..., x, be a feasible solution for the n player Nash problem. Then
x; denotes the subset of variables handled by player i, belonging to a metric space
X;, and optimized by an objective function called f;. Player i search the optimal
solution with respect to his objective function by modifying x;.

At each step k of the optimization algorithm, player i optimizes xlk using xé‘_

k—1 k=1 _k—1 k—1
Ao Xy X Xy

L _
i)
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The first step of the algorithm consists of creating n different populations, one
for each player. Player i’s optimization task is performed by population i. Let gi‘ -1
be the best value found by player i at era k — 1. At era k, player i optimizes if(
using £1:1 in order to evaluate the chromosome. At the end of kth era optimization
procedure players —i communicate their own best value x* ; to player i who will use
itatera k 4 1 to generate their entire chromosome, using only gf‘ for common GAs
crossover and mutation procedures. A Nash equilibrium is reached when no player
can further improve his objective function, or a generation number limit is reached.

3.3.3 Test Cases

In this section, numerical results for the constrained location model are shown. They
have been obtained using the Nash Genetic Algorithm presented above, with para-
meters summarized in Table 3.1.

First results are relative to the grid constrained case, in which RPCs can be located
only at defined values of the second coordinate %1, .. ., h. In this case, the genetic
algorithm is modified to handle a discrete variable y € Y, where Y = {hy, ..., hi}
is the set of feasible bands.

In Figs.3.1, 3.2 and 3.3 the comparison for uncostrained and constrained cases
are shown, changing the number of rows on which the RPCs are contrained case
by case, depending on the results of the unconstrained cases. The optimal location
points are denoted by blue circles in the unconstrained case, and by red squares in
the constrained case.

Table 3.1 Genetic

- o Parameter Value or type
algorithms characteristics - -
Chromosome Binary string
Crossover Multi-cut
Mutation probability 0.01
Population size 100
Mating-pool 50
1 T T T T 1 T T T T
08| : 08| :
° L]
» a L] |}
0.6 1 0.6 1
= = »
04} : 04} :
' s ) n
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02} : 02} :
0 | | L | 0 | | L |
0 02 04 06 08 1 0 02 04 06 08 1

Fig. 3.1 Casesn =4and Y ={0.3,0.7};n =5and Y = {0.3, 0.5, 0.7}
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Fig. 3.2 Casesn =6,7and Y = {0.2,0.4, 0.6, 0.8}
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Fig. 3.3 Casesn =8and Y = {0.2,0.4,0.6,0.8};n = 10 and Y = {0.15, 0.35, 0.5, 0.65, 0.85}

3.4 Conclusions

In this paper the problem of locating a given number of sensor devices has been solved
by means of a facility location problem whose solutions are the Nash equilibrium
profiles of a suitable normal form game. The objective functions are given according
to physical requirements. For such a problem a numerical procedure based on a
genetic type of algorithm has been used to compute the final configurations. We
considered the special case where the admissible region is made by a set of parallel
segments, due to operative constraints (for example, electricity lines).

Other possible cases could be examined, for example the case where in the
admissible region a convex obstacle is present. In this case the optimal location
of the sensors will be the Nash equilibrium solutions of the game I, = (N;
¢, ...,82¢ f1,..., fa), where each playerin N = {1,2,...,n}, foreachi € N,
minimizes the cost f; : A, — Z for (x1, y1,...,Xn, yn) € 2:.NAcand 2, = 2\T
with T a closed subset of §2 (a triangle, a circle, etc.). In the numerical procedure
the objective functions can been modified to handle obstacles as penalty functions
applied to the principal objective. In particular, f; the objective function relative to
the ith player, it is penalized by:
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Fig. 3.5 Cases for n = 5, 10 with box shaped obstacle T = [0, 0.5]°

fi= ﬁ/fpen

where fpe, € [0, 1] is a suitable penalty function.

For example, for a circular obstacle fp., = d(x,y)/r., where d(x, y) is the
minimum distance between the sensor (x, y) and the center of the circular obstacle,
r¢ s the radius of the circle. Two test cases are shown in Fig. 3.4 with 7' given by the
circle centered at (0.5, 0.5) with radius 0.25.

In other cases, for example if we have a rectangular obstacle, a constant penalty
(fpen = 0.1) can be applied for each sensor located in the unfeasible region. Two
test cases are shown in Fig.3.5.

A more systematic study of the constrained case from a theoretical as well as from
a numerical point of view will be the object of future research.
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Chapter 4
The Role of Artificial Neural Networks

in Evolutionary Optimisation: A Review

M. Maarouf, A. Sosa, B. Galvan, D. Greiner, G. Winter, M. Mendez
and R. Aguasca

Abstract This paper reviews the combination of Artificial Neural Networks (ANN)
and Evolutionary Optimisation (EO) to solve challenging problems for the academia
and the industry. Both methodologies has been mixed in several ways in the last
decade with more or less degree of success, but most of the contributions can be
classified into the two following groups: the use of EO techniques for optimizing the
learning of ANN (EOANN) and the developing of ANNS to increase the efficiency of
EO processes (ANNEO). The number of contributions shows that the combination
of both methodologies is nowadays a mature field but some new trends and the
advances in computer science permits to affirm that there is still room for noticeable
improvements.

Keywords Artificial neural networks - Evolutionary optimisation + Evolutionary
algorithm

4.1 Introduction

Artificial Neural Network (ANN) and Evolutionary Algorithm (EA) are relatively
young research areas that were subject to a steadily growing interest nowadays; rep-
resent two evolving technologies that are inspired by biological information science.

ANN is derived from brain theory to simulate learning behavior of an individual,
which is, used for approximation and generalization, while EA is developed from
the evolutionary theory raised by Darwin to evolve the whole population for better
fitness. Evolutionary Algorithm is actually used as an optimisation algorithm, and
not a learning algorithm.

In particular, EO has been used to search for the design and structure of the
network and to select the most relevant features of the training data. It is well known
that to solve nonlinearly separable problems, the network must have at least one
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hidden layer; but determining the number and the size of the hidden layers is mostly
a matter of trial and error. EOs has been used to search for these parameters, to
generate the appropriate network to solve specific problems.

On the other hand, ANN has yield many benefits solving a lot of problems in fields
as diverse as biology, physics, computer science and engineering. In many applica-
tions, the real-time solutions of optimisation problems are widely required. However,
traditional algorithms may not be efficient since the computing time required for a
solution is greatly dependent on the structure of the problems and there dimension.

A promising approach to solving such problems in real time is to employ artificial
neural networks based on circuit implementation [133]. ANNs possess many desir-
able properties such as real-time information processing. Therefore, neural networks
for optimisation, control, and signal processing received tremendous interests. The
theory, methodology, and applications of ANNs have been widely investigated.

The present work focuses on Evolutionary Algorithms (EO), Artificial Neural
Networks (ANN) and their joint applications as a powerful tool to solve challeng-
ing problems for the academia and the industry. In this section the essentials and
importance of both methodologies are presented.

4.1.1 Evolutionary Algorithms

Since 1960s, there has been an increasing interest in emulating evolutionary process
of living beings to solve hard optimisation problems [34, 101]. Simulating these fea-
tures of living beings, yields stochastic optimisation procedures called Evolutionary
Optimisation (EO). EO belongs to global search meta-heuristics methods since, by
its own nature, explores the whole decisional space for global optima.

Evolutionary algorithms (EAs) are a class of stochastic and probabilistic optimi-
sation methods that are inspired by some presumed principles of evolution; attempt
to emulate the biological process of evolution, incorporating concepts of selection,
reproduction, and mutation.These techniques, inspired in Darwinian evolution pos-
tulates, consider a population of individuals on which selection and diversity gen-
eration procedures are performed, guaranteeing better fitted individuals to survive
through successive iterations [12, 46, 47]. Each individual is a potential solution of
the optimisation problem, so it belongs to decision space. Every iteration (genera-
tion), individual features are combined by means of recombination operators such
selection, crossover and mutation, driving solutions to global optima. By mimicking
this process, EAs are able to evolve solutions to real world problems, if they have
been suitably encoded.

Evolutionary Optimisation has demonstrated to be effective in engineering and sci-
ence optimisation problems in several fields such as: Aerospatiale applications [15],
energy [9], transport planning, RAMS [87, 96, 97, 111], task scheduling and so on.

The applications mentioned above usually results in high dimensional search
spaces, highly non-linear optimisation problems, non-convex optimisation, highly
constrained problems, uncertainty effects and/or multicriteria paradigm. These
numerical difficulties are commonly tackled by these meta-heuristics, which usually
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outperforms traditional optimisation strategies with lower probability of being
stacked in local optima, and being able to yield a Pareto set in a single run of the
algorithm (multi-objective approach). Because of this, Evolutionary Optimisation
has been an important R&D matter in the last decade.

Among the variety of EO meta-heuristics, the most relevant nowadays are: Genetic
Algorithm (GA), Evolutionary Strategy (ES), Evolutionary Programming (EP), Col-
lective Intelligence, Memetic Algorithms, and Differential Evolution.

In recent years, there has been an increase in the use of evolutionary approaches
in the training and optimisation of artificial neural networks(ANNSs). Different works
are presented in Sect.4.2.1.

4.1.2 Artificial Neural Networks ANN

Artificial neural networks (ANNSs) are biologically inspired computer programs,
inspired from the morphological and biophysical properties of neurons in the brain.
ANNSs are designed to simulate the way the human brain processes information.
Neural networks are similar to the human brain in the following two ways:

1. A neural network acquires knowledge by learning.
2. The knowledge of a neural network is stored in the connections between neurons
known as synaptic weights.

[98] were the first patterned biological neurons from the binary automata. A second
generation of neurons integrates a nonlinear activation function that has allowed
growing up the interest in ANNs [69], allowing to solve nonlinear problems.

The power and utility of artificial neural networks have been shown in several
applications including speech synthesis, diagnostic problems, medicine, business
and finance, control, robotics, signal processing, computer vision and many other
industrial problems that are included in the category of pattern recognition. But
knowing that there exists a suitable network for a specific problem is interesting,
finding it proved to be difficult. Although there exist some algorithms to set the
weights by learning from data training given a fixed topology, even if get stuck in
local minima. To lead to good results, they strongly depend on problem specific
parameter settings and on the topology of the network.

Training procedures of neural networks are optimisation algorithms aim to mini-
mize the global error output respect to connection weights under conditions of noise,
qualitative uncertainty, nonlinearity, etc. Therefore training procedures of neural net-
works provide a common approach to the optimisation task in process optimisation
and control applications [149]. However, this is an important issue because there are
strong biological and engineering evidences to support that an ANN is determined
by its architecture. Using EOs as a procedure to assist neural network design and
training seems to be a straightforward idea. Branke in [23] explain how EO improve
design and training ANNSs.
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Today, significant progress has been made in the field of neural networks, enough
to attract a lot of attention and research funding. Research in the field is advancing
on many fronts. New neural concepts are emerging and applications to complex
problems developing. Clearly, today is a period of transition for neural network
technology.

ANNGs are inherently parallel architectures which can be implemented in software
and hardware. One important implementation issue is the size of the neural network
and its weight adaptation. This makes the hardware implementation complex and
software learning slower.

ANNSs has two distinct steps [172];

1. Choosing proper network architecture.
2. Adjusting the parameters of a network so as to minimize certain fit criterion.

Even if, the most of problems treated in real study are complex, so the unknown
architecture of the ANN is set arbitrarily or by trial and error [121], and small
networks cannot achieve the solution in much iteration, but if the network is too
large, it leads to overfitting and a bed generalization, and the majority of neural
networks suffers of premature convergence and low global convergence speed etc.
In order to overcome these limitations, some improvements were made for EOs in
the last decade on ANNSs.

4.2 Different Use of ANNEO and EOANN

In the last decade, there has been a great interest combining learning and evolutionary
techniques in computing science to solve complex problems for different fields.
Different works presented how ANNS are an optimisation tools [33, 120, 131, 136,
173, 175]. In this paper we just limit this review to several ways in which EOs and
ANNs may be combined.

The next section presents different approaches of combining EOs and ANNSs.

4.2.1 The Use of EOs in ANNs: EOANN

In recent years, evolutionary algorithms (EAs) have been applied to the ANN'’s
optimisation. The first applications of EAs to ANN parameter learning date back to
the late 80s in the fields of Genetic Algorithms (GAs) [45, 47] and Evolutionary
Programming (EP) [47, 103]. EAs are powerful search algorithms based on the
mechanism of natural selection. Since the 90s, EAs have been successfully used for
optimizing the design and the parameters of ANNs [132, 150]. This special class of
ANNSs in which evolution is another fundamental form of adaptation in addition to
learning creating an EOANN [40, 167]. EOANN are used to find the best data subset
which optimizes the ANN training for a specific problem.

The result of EOANN is an ANN with optimal performance to estimate the value of
one or more variables and the estimation error is strongly related to the quality of the
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training set in terms of size and treatment of the possible outputs. Another approach is
the evolutionary weight training process, to optimizing connection weights, learning
rules, and optimizing the network architecture by identifying how many inputs neu-
rons, hidden neurons, hidden layers we have to use, to get a good performance [18, 39,
88, 92, 128]. Considerable research has been conducted on the evolution of topolog-
ical structures of networks using evolutionary algorithms [3, 6, 13, 14, 20, 73, 84].

In the other hand, an essential issue is to improve generalization of the neural net-
work training models. Early stopping, weight decay and curvature-driven smooth-
ing and other techniques are been used to resolve this problem, another approach is
including an additional term in the cost function of learning algorithms, which penal-
izes overly high model complexity. Regularization of neural training was treated with
Eosin [1, 75].

In general, constructing neural network consists of two major steps, design and
training component networks, combining of the component networks predictions to
produce the neural networks solutions. ANN training method has some limitations
associated with overfitting, local optimum problems and slow convergence rate. In
order to overcome the limitations, some scientist proposed particle evolutionary
algorithm to train ANN.

The research use EOs to evolve and design the structure architecture or the selec-
tion of the training algorithms and optimisation of its synaptic weight initialization,
thresholds, training ratio, momentum factor, etc., of neural network roundly. The
scientist object is to accelerate the convergence speed of network and optimize the
result in case of trapping into local optimal value, and a better searching space is
found out in the solution space.

The initial set of weights to be used in learning of ANN has a strong influence
in the learning speed and in the quality of the solution obtained after training. An
inadequate initial choice of the weight values may cause the training process to get
stuck in a poor local minimum or more time to converge. Inappropriate topology
selection and learning algorithm are frequently bed; there is little reason to expect
that one can find a uniformly best algorithm for selecting the weights in an ANN
[94]. This kind of topology was chosen for the following main reasons:

1. Additional links that skip adjacent layers allow the genetic algorithm to remove
a whole layer of nodes while still keeping the network functional.

2. Some additional shortcut connections, e.g., those between the network input and
output, may ease training and therefore the whole genetic topology optimisation
may become faster.

There are different ways to evaluate weights of the component networks. For example
Jimenez [74] use weights determined by confidence of the component networks.
Zhou [184] utilize the genetic algorithm to find proper weights for each member of
an ensemble. In [143], present and define many operators and crossover applied to
weights of an ANN. The importance of a good choice for the initial set of weights is
stressed by Kolen and Pollak [83].

ANN:Gs strongly depend on the network topology, the neurons activation function,
the learning rule, etc. optimisation for these factors are usually unknown a priori
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because they depend mainly on the particular training set to be considered and on
the nature of the solution [137]. So, for practical purposes, the learning rule should
be based on optimisation techniques that employ local search to find the optimal
solution [124, 126].

Evolutionary approaches have been shown to be very effective as an optimisa-
tion technique, their efficiency could he exploited in training and constructing neural
networks, there architecture/design and learning, they can evolve towards the opti-
mal architecture without outside interference, thus eliminating the tedious trial and
error work of manually finding an optimal network, adapting the connection weights
and learning algorithms according to the problem environment. Many considerable
efforts at obtaining optimal ANNs based on EAs have been reported in the literature
[4-7, 10, 13, 24-28, 31, 52, 53, 58, 63-67, 82, 99, 117, 122, 132, 139, 144, 166,
168-171].

The EAs are using diver methods to encode ANNs for the purpose of training
and design. The common approach is to encode the ANN weights into genes that
are then concatenated to build the genotype. Encoding methods can be divided in
three main groups according to the process of creating the network from the encoded
genome: direct, parametric and indirect encoding. A real coded genetic algorithm
is used to optimize the mean square of the error produced by training a neural
network established by Aljahdali in [11]. Benaddy et al. [17] present a real coded
genetic algorithm that uses the appropriate operators type to train feed-forward neural
network. Larranaga et al. [86] describes various methods used to encode artificial
neural networks to chromosomes to be used in evolutionary computation.

Another important point to note is the use of EOs to extract rules from neural
networks trained. Rule extraction from neural networks is attracting wide attention
because of its computational simplicity and ability to generalize [49-51, 141].

4.2.2 The Use of ANNs in EO: ANNEO

In real world applications, sometimes it is not easy to obtain the objective value.
Therefore we needs complicated analysis or time consuming simulation to evaluate
the performance of design variables [147]. As ANNs represent a nonlinear robust
modeling technique which are developed, or trained, based on analytical or simulated
results of a subset of possible solutions [35], give to ANNs an important role in
solving problems with extremely difficult or unknown analytical solution. ANNs
can be used with a huge reduction of cost in terms of objective function evaluations
[22]. One of the first pioneers in ANNEO were Hopfield and Tank who presented
an ANN for solving combinatorial problems, that was mapped into a closed-loop
circuit [68, 133], named Hopfield Neural Network (HNN). HNN is a continuously
operating model very close to analog circuit implementation. Since 1985 a wide
variety of ANNs have been designed for improving the performance of HNN.

In ANNEO fast objective functions evaluations are performed using pre-trained
ANN. Normally in iterative process subsets of objective function values obtained
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using exact procedures are used in an embedded EOANN algorithm, and some of
the new objective function evaluations are performed using the ANN. The result is
an EO which evolves faster than conventional ones but special care must be paid to
the selection of appropriate training subsets and the number of objective functions
evaluated using ANN in order to avoid convergence problems. Acceleration of the
convergence speed is done in [176] as an ANN model trained to approximate the fit-
ness function according to an adaptive scheme for increasing the number of network
fitness calculation.

EOs usually needs a large number of fitness evaluations before a satisfying result
can be obtained. And as an explicit fitness function does not exist, or his evaluation
is computationally very expensive. It is necessary to estimate the fitness function by
constructing an approximate model or presenting an interpolation of the true fitness
function via some interpolation technique as ANNs [22, 55] employ a Feedforward
neural networks for fitness estimation, reduce the number of expensive fitness func-
tion evaluations in evolutionary optimisation. The idea of the implementation of an
ANN, that approximates the fitness function, comes from the universal approximation
capability of multi-layer neural networks [69]. An artificial neural networks model
is used in order to reduce the number of time-consuming fitness evaluations [55].

Real-time solutions to resolve problems are often needed in engineering applica-
tions. Solve many problem of optimisation in real time usually contain time-varying
parameters, such in signal processing, robotic, time series, etc., and we have to reduce
and optimize the performance. The numbers of decision variables and constraints are
usually very large and large-scale optimisation problems are even more challenging
when they have to be solved in real time to optimize the performance of dynamical
systems. For such applications, Conventional numerical methods may not be effec-
tive at all due to the problem dimensionality and stringent requirement on computa-
tional time [16]. The employment of ANNs techniques as Recurrent Neural Networks
(RNN)[21, 33, 48, 79, 89, 91, 113, 115, 127, 133, 145, 146, 160, 165, 177] (Pap-
ers below proposed neural networks guaranteed to be globally convergent in finite
time to the optimal solutions), Fuzzy Neural Network (FNN) are a promising
approach to resolve this inefficiency [123].

Application of ANNs algorithms receive increase interests for optimisation as we
see in [21, 32, 33, 37, 79, 93, 105-107, 118, 133, 134, 151, 154, 156, 157, 182],
using gradient and projection methods [91, 104], Bouzerdoum and Pattison [21] pre-
sented a neural network for solving quadratic optimisation problems with bounded
variables only, which constitutes a generalization of the network described by Sud-
harsanan [127]. Rodrguez-Vzquez et al. [118] proposed a class of neural networks
for solving optimisation problems, in which their design does not require the calcu-
lation of a penalty parameter. To avoid using finite penalty parameters, many other
studies have been done in [21, 56, 70, 78, 118, 134, 148, 153, 156, 157, 159, 182,
183]. In [151-154], the authors presented several neural networks for solving linear
and quadric programming problems with no unique solutions, which are proved to
be globally convergent to exact solutions, and in which there is no variable parameter
to tune.
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Romero [119] approached optimisation problems with a multilayer neural net-
work. Da Silva [36] coupled fuzzy logic with Hopfield Neural Networks to solve
linear and non-linear optimisation problems. Case studies with convex and non-
convex optimisation problems are studied in illustrate the approach with a trained
Multilayer neural networks [143]. Xia et al. [155, 158, 160] proposed a general
projection neural network, that includes projection neural network, the primal-dual
neural network, and/or the dual neural network, as special cases, for solving a wider
class of variational inequalities and related optimisation problems.

A reliability network reflect a network optimized whose topology is optimist,
at minimal cost, under the constraint that every pair of neurons can communicate
with each other. Abo El fotoh et al. [2] presents an ANN for solving this problem
o reliability, by constructing an energy function whose minimization process drives
the neural network into one of its stable states.

An ANN aided with other algorithms as simulated-annealing (SA) algorithm, can
be usefully used to resolve optimisation problems as they do in [85]. Chaotic artificial
neural are studied and established as optimisation model in [8, 85]. Another point to
be mentioned is the use of ANNSs to re-optimisation online as it presented in [138] .

4.3 Some Applications Using ANNEO and EOANN

Many academic papers show the applicability of EOANN to optimize different para-
meters of ANN, to improve their training and their stability [13, 20, 43, 71-73,
76, 84] and the papers cited below in Sect.4.2.2. Other EOANN applications were
performed in several fields such as Financial Engineering [41, 59], grammatical
inference [19], Chemical Reaction [178], Hydrochemistry [142], Time series pre-
diction [77, 81, 180], Classification Process [29, 30, 44, 80, 90, 95, 109, 112, 135],
Medicine [54], Diagnosis problems [17, 72, 129, 130], Diverse Engineering Appli-
cations [57, 100, 125, 135, 174], Robotic [161], Monitoring [38], Traffic Prediction
[114], Control Systems [181], Neutron spectrometry and Dosimetry research areas
[108], Multi-agent systems [81], Regression problems [61], Chaos dynamics Prob-
lem [179, 180], Reliability [62], etc.

Also, the role of ANNs in EO is presented in many academic papers as in
[22, 147, 176], and in many fields like Reliability Systems [35], Electromagnetics
optimisation [22], pressure vessel design problem [147], aerodynamic design opti-
misation [73], Electric-Field optimisation [85, 116, 164], Cybernetics [162], Design
optimisation [102, 163], Diagnosis [60], Power Technology [110, 140], Resource
Management optimisation [42], etc.
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4.4 Conclusions

We can deduce that if the purpose of using ANNSs is to find the best network configu-
ration for solving particular problems, is has been possible employing EOs, as it have
mentioned above in several works. EOs provides good approximation to get success
and speed of training of neural network based on the initial parameter settings, such
as architecture, initial weights, learning rates, and others.

In the other hand, ANNSs based objective function allows the fitness to be evaluated
in a small fraction of the time taken to perform first principles analysis and permits
the EAs to complete in a reasonably small amount of time.

Due to the last advances in both methodologies, there are several chances for
future develops of joint procedures especially when complex industrial applications
are addressed. Anyway the use of big computing facilities will continue being still
necessary for that applications.
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Chapter 5

Reliability-Based Design Optimization
with the Generalized Inverse
Distribution Function

Domenico Quagliarella, Giovanni Petrone and Gianluca Iaccarino

Abstract This paper presents an approach to optimization under uncertainty that
is very well and naturally suited to reliability-based design optimization problems
and it is a possible alternative to traditional approaches to robust design based on the
optimization of statistical moments. The approach shown here is based on the direct
use of the generalized inverse distribution function estimated using the empirical
cumulative distribution function (ECDF). The optimization approach presented is
illustrated with the application to some test functions for both robust optimization
and reliability-based design optimization. In the robust optimization test case, the
bootstrap statistical technique is used to estimate the error introduced by the usage
of the ECDF for quantile estimation.

Keywords Optimization under uncertainty - Reliability based design + Robust
design - Generalized inverse distribution function * Bootstrap method

5.1 Introduction

Many industrial optimization processes must take account of the stochastic nature of
the system and processes to design or re-design and consider the variability of some of
the parameters that describe them. Thus it is necessary to characterize the system that
is being studied from various points of view related to the treatment of uncertainty.
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In particular, it is necessary to consider the sensitivity of the system to the uncertain
parameters and assess its reliability. Having established the ability to characterize
the system from this point of view, it is necessary to build an optimization loop that
can improve its reliability, or that is capable of providing a robust optimum, or that
could withstand acceptably random perturbations of design parameters or operating
conditions. The classical approach to this problem is the so-called “robust design
optimization” (RDO), which tries to maximize the performance and simultaneously
to minimize the performance sensitivity with respect to random parameters. Instead,
the “reliability based design optimization” (RBDO) tries to find the optimum design
by explicitly assigning a specific level of risk and a given level of reliability. This
is equivalent to assigning a quantile of the function to be optimized as the actual
objective function and, for example, to minimize its value. Therefore, if the goal is
that a given objective function is less than a specific value g in 75 % of possible
cases, this will translate into the following constraint on the corresponding quantile:
q%7> < g. Alternatively, the problem can be set as the minimization of ¢%7> and
a function is thus obtained which is less than or equal to the value obtained by
optimization of the quantile in 75% of cases. If, instead, the objective is ming!,
then the purpose of the optimization procedure is to protect against the worst case
scenario, as it happens when the problem is of minimax type.

In this work an approach to robust and reliable design optimization based on
the use of the generalized inverse distribution function is presented. The robust
optimization framework is illustrated and the commonly used techniques to face
the problem are briefly summarized making reference to the related literature. A
very simple evolutionary multi-objective optimization algorithm based on the usage
of the inverse cumulative distribution function is illustrated and discussed with the
help of some test problems.

5.2 Robust Optimization

Let Z be a metric space and z € Z the vector of design variables. Let also X : £2 —
Z C R be areal valued random variable defined in a given (2, .%, P) probability
space. We want to deal with an optimization problem where an objective is optimized
with respect to z € Z and depends on the realizations x of X. In other terms we have:

vz, X):z€Z, X — Y ()

with Y (z) a new random variable, e.g. a new mapping of (£2, .%#, P) into R, that
depends on z. Solving an optimization problem involving Y (z) = y(z, X) means
that we want to find a value z € Z such that the random variable Y (z) is optimal. To
establish the optimality of a given Y (z) with respect to all Y (z), Vz € Z, aranking
criterion must be defined such that for any couple z1, z» € Z it is possible to state
that Y (z;) is better or worse than Y (z2) (from now on, Y (z1) < Y (z2) will mean that
Y (z1) is better or equivalent to Y (z2)).
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Recalling that a random variable is a measurable function, it seems natural to
introduce measures that highlight particular features of the function. This leads to
the classical and widely used approach of using the statistical moments to define the
characteristics of the probability distribution that are to be optimized. More generally,
let’s consider an operator

Py Y(2)=y(z,X)e€eZx(2,%,P)— ®(z) e VCR

that translates the functional dependency on the random variable, Y, into a real valued
function of z that represents a deterministic attribute of the function, Y (z). This makes
possible to formulate the following optimization problem

Pgp:min @(z)
J V4

Without loss of generality, it is possible to identify the random variable Y through its
distribution function fy (y) or its cumulative distribution function Fy (y). If @ (-) is
assumed as the expected value of the objective function (IE), the classical formulation
of first moment optimization is retrieved:

Pg:min / fy (v, 2dy
z€Z
R

that in terms of the CDF becomes:

Py :min / vdFy(y, z)
zeZ
R

It should be noted that here the distribution function depends also on z, that is the
vector of the design variables.

For the purposes of the definition of the problem, it is not necessary to know
exactly the distribution fy (or Fy). Indeed, it is possible, as will be shown below,
to use an estimate of the distribution having the required accuracy. In particular, the
Empirical Cumulative Distribution Function (ECDF) will be used in this work as
statistical estimator of the CDF.

The first order moment method is also called mean value approach, as the mean is
used as objective to reduce the dependency on Y. This method is widely used, mostly
because the mean is the faster converging moment and relatively few samples are
required to obtain a good estimate. Often, however, the mean alone is not able to
capture and represent satisfactorily the uncertainties embedded in a given design
optimization problem. To overcome this drawback, a possible approach is the intro-
duction in the objective function of penalization terms that are function of higher
order moments. The drawback of this technique is that the ideal weights of the penal-
ization terms are often unknown. Furthermore, in some cases, an excessive number
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of higher order moments may be required to adequately capture all the significant
aspect of the uncertainty embedded into a given problem. Finally, a wrong choice
of the penalties may lead to a problem formulation that does not have any feasible
solution. Instead of penalization terms, explicit constraints can be introduced in the
robust optimization problem, and the same considerations apply for the advantages
and the drawbacks of the technique.

Another possibility is the minimax criterion, very popular in statistical decision
theory, according to which the worst case due to uncertainty is the objective for
optimization. This ensures protection against worst case scenario, but it is often
excessively conservative.

The multi-objective approach [7] based on constrained optimization is also widely
adopted. Here different statistical moments are used as independent trade-off objec-
tives. The obtained Pareto front allows an a-posteriori choice of the optimal design
between a set of equally ranked candidates. In this case a challenge is posed by
the increase in the dimensionality of the Pareto front when several statistical mo-
ments are used. The research related to the multi-objective method has led to several
extensions of the classical Pareto front concept. In [10], for example, the Pareto front
exploration in presence of uncertainties is faced introducing the concept of proba-
bilistic dominance, which is an extension of the classical Pareto dominance. While
in [6], a probabilistic ranking and selection mechanism is proposed that introduces
the probability of wrong decision directly in the formula for rank computation.

An interesting approach, similar in some aspects to the one here described, is
found in [5] where a quantile based approach is coupled with the probability of
Pareto nondominance (already seen in [6]). Here, contrary to the cited work, the
optimization technique introduced relies on direct estimation of the quantile function
obtained through the Empirical Cumulative Distribution Function.

5.3 The Generalized Inverse Distribution Function Method

In the methodology presented herein, the operator that is used to eliminate the
dependence on random variables is the quantile function of the objective function to
be optimized, calculated in one or more points of its domain of definition.

Before going into the details of the exposure, the definitions of Cumulative Distri-
bution Function (CDF) and Generalized Inverse Distribution Function (GIDF) that
will be used are reported.

The “cumulative distribution function” (CDF), or just “distribution function”,
describes the probability that a real-valued random variable Q with a given proba-
bility distribution will be found at a value less than or equal to ¢. Intuitively, it is
the “area so far” function of the probability distribution. The CDF is one of the most
precise, efficient and compact ways to represent information about uncertainty, and
a new CDF based approach to robust optimization is described.

If the CDF is continuous and strictly monotonic then it is invertible, and its inverse,
called quantile function or inverse distribution function, returns the value below
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which random draws from the given distribution would fall, s x 100 percent of the
time. That is, it returns the value of g such that

Fo(q) =Pr(Q =q)=s (5.1

Hence F~1(s), s € [0, 1] is the unique real number ¢ such that Fp(q) = s.

Unfortunately, the distribution does not, in general, have an inverse. If the proba-
bility distribution is discrete rather than continuous then there may be gaps between
values in the domain of its CDF, while, if the CDF is only weakly monotonic, there
may be “flat spots” in its range. In general, in these cases, one may define, for
s € [0, 1], the “generalized inverse distribution function” (GIDF)

q° = Q(s)=Fy' (s) =inf{g e R: F(g) > 5}

that returns the minimum value of s for which the previous probability statement
(5.1) holds. The infimum is used because CDFs are, in general, weakly monotonic
and right-continuous (see [15]).

Now that the CDF and the GIDF have been introduced, it becomes easy to define,
within the framework of multi-objective optimization, a robust optimization problem
in terms of an arbitrary number of quantiles to optimize:

Po(sH:ming* (z) = mininf {g (z) e R: Fp (g () =si} i=1,....n (52)
zeZ zeZ

where n is the number of objectives chosen. The approach, then, can be further
extended by introducing objectives that are arbitrary functions of quantiles.

Of course, the problem now is focused on how to satisfactorily calculate the
quantiles required by the method. In this work the Empirical Cumulative Distribution
Function (ECDF) is used for this purpose. The definition of ECDF, taken from [16],
is reported here for the sake of completeness.

Let X1,..., X, be random variables with realizations x; € R, the empirical
distribution function is an indicator function that estimates the true underlying CDF
of the points in the sample. It can be defined by using the order statistics X ;) of X;
as:

0 if x <uxqy
% if x(1)§x<x(2),1§k<2;
% if xo <x<x3),2<k<3;

I?n(x» ) =

L if x@ <x <xyn,i <k<i+ 1

]

kl if x = X(n);
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where x(; is the realization of the random variable X ;) with outcome (elementary
event) w € 2.

From now on, therefore, when the optimization algorithm requires the calculation
of the Fp(s), it will used instead its estimator F, 0, (s), where n indicates the number
of samples used to estimate this ECDF.

Note that each indicator function, and hence the ECDF, is itself a random variable.
This is a very delicate issue to consider. Indeed, if the EDCF is used to approximate
the deterministic operator Q(s), a direct residual influence of the random variables
that characterize the system under investigation remains on Pg(s). In other words
Q(s) behaves as arandom variable, but with the important difference that its variance
tends to zero when the ECDF approximates the CDF with increasing precision. It
is possible to demonstrate that the estimator F, 0,(s) is consistent, as it converges
almost surely to Fp(s) as n — oo, for every value of s [11]. Furthermore, for the
Glivenko-Cantelli theorem [8], the convergence is also uniform over s. This implies
that, if the ECDF is calculated with sufficient accuracy, it can be considered and
treated as a deterministic operator. On the other hand, if the number of samples, or
the estimation technique of the ECDF, do not allow as such, one can still correlate
the variance of the ECDF with the precision of the obtained estimate. Of course,
if the ECDF is estimated in a very precise way, it is possible to use an algorithm
conceived for deterministic problems, provided that it has a certain resistance to
noise. Conversely, if the ECDF is obtained from a coarse sample, its practical use is
only possible with optimization algorithms specifically designed for that purpose.

For the same reason, it is often convenient, especially in applications where the
ECDEF is defined with few samples, to use ¢° instead of ¢°, with ¢ > 0 and small,
but such that a not excessive variance of the estimate of ¢* is ensured.

5.4 A Robust Optimization Test Case

The function reported in Table 5.1, taken from [13], is used as a benchmark to test the
GIDF based approach to robust optimization. With respect to the function reported in
the reference, the following changes have been introduced: the ranges of design and
uncertain parameters have been changed as reported in table, and a multiplicative
factor equal to 1/n has been introduced to make easier the result comparison when the
dimension of the parameter space changes. The random variables u have a uniform
distribution function. Table 5.2 reports the solutions to the optimization problems

min d u
deD,ucU f( )

min max f(d, u)
deD uelU

over the cartesian product of D and U. The first problem represents the best pos-
sible solution obtainable if the u are considered as design parameters varying in
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Table 5.1 Benchmark functions table
ID Function Ranges Dimension

n
MV4 f= % > (27 —u;i)cos (u; — d;) uel[0,3]",de[0,2x]" 1,2and 6
i=1

Table 5.2 Benchmark functions table results

I oty 1@ O
d u f d u f
MV4 [3.1416]" [01" —6.283185... [4.6638]" [0]" —0.305173....

U. The second one, instead, minimizes the maximum possible loss or, alternatively,
maximizes the minimum gain, according to the framework of decision theory [12].
These solutions have been obtained analytically and verified by exhaustive search
for n = 1. It is worth to note that these particular optimal solutions are the same
whatever is the dimension of the search space.

The optimization algorithm used here is a simple multi-objective genetic algo-
rithm not specially conceived for optimization under uncertainty. The algorithm is
based on the Pareto dominance concept and on local random walk selection [14]. The
crossover operator is the classical one-point crossover which operates at bit level,
while mutation operator works at the level of the design vector parameters (which
are real numbers). A parameter, called mutation rate controls the operator activa-
tion probability for each variable vector element, while a further parameter, called
strength, is the maximum relative value for the uniform word mutation. The word
mutation value is given by strength - (r — 0.5)(u —[) where r € [0, 1] is the uniform
random number, u is the upper variable bound and / is the lower variable bound. An
elitist strategy was adopted in the optimization runs. It consists in replacing 20 % of
the population calculated at each generation with elements taken at random from the
current Pareto front. Obviously, the elements of the population are used to update the
current Pareto front before the replacement, in order to avoid losing non-dominated
population elements.

The multi-objective runs were performed using 100 % crossover activation prob-
ability and word mutation with mutation rate equal to 50 % and strength equal to
0.06. The initial population was obtained using the quasi-random low-discrepancy
Sobol sequence [1]. The ECDF used to estimate the CDF was obtained with 2,500
Montecarlo samples in all runs. The population size was set to 4,000 elements for
all runs, while the number of generations was set to 10 for n = 1, 200 for n = 2 and
1,000 for n = 6. The problem solved was nélg (qs , ql_g).

z

Figure5.1 reports the Pareto fronts and the deterministic min and min max
solutions obtained for the MV4 test case at different values of the design space
size n. It can be easily observed that, in the case n = 1, the extremes of the front are
practically coincident with the deterministic solutions, while, in the case n = 2, the
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MV4 - ECDF with 2500 Montecarlo samples
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Fig. 5.1 Pareto fronts and deterministic min and min max solutions for the MV4 test case

solution of the Pareto front which minimizes the second objective (' %) underesti-
mates the min max solution. The trend is even more evident in the case n = 6, where
also the extreme of the front that minimizes the first goal (¢°) overestimates the value
obtained from the min problem. This can be explained by the fact that the two de-
terministic solutions are located in correspondence with the extremes of variation of
the random variables of the problem. Therefore, as the number of random variables
increases, in accordance with the central limit theorem [9], it becomes less likely that
all random variables are located in correspondence of one of their limits of variation.
However, as illustrated in Fig.5.2, when the Pareto front obtained with the sample
size m equal to 2,500 is re-evaluated with a larger Montecarlo sample, the curve is
a quite acceptable approximation of the Pareto front obtained with m =100,000.

Figures 5.3 and 5.4 show the ECDF corresponding to the extremes of the Pareto
front, respectively for the cases n = 1 and n = 6. It is noted, again in accordance
with the central limit theorem, that, in the case n = 6, the ECDF curves are very
close to those related to a Gaussian distribution.

5.5 Evaluating and Improving the Quantile Estimation

The example in the previous section shows very clearly that the results of the proposed
method may depend in an essential way on the quality of estimation of quantiles that
is obtained through the ECDF. This leads in a natural way to deal with two issues: how
to evaluate the quality of the estimation of the quantiles used in the multi-objective
optimization problem, and how to possibly get a better quantile estimate with a given
computational effort.
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MV4 - ECDF with Montecarlo samples of different sizes
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Fig. 5.2 Pareto fronts for the MV4 test case obtained with different sizes for Montecarlo sampling
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Fig. 5.3 Optimal ECDF curves for the MV4 with n = 1

The approach here proposed for assessing the quality of the estimate of the quantile
is based on the bootstrap method introduced by Efron in 1977 [3, 4].

This method represents a major step forward in the statistical practice because it
allows to accurately assess the variability of any statistical estimator without mak-
ing any assumption about the type of distribution function involved. Suppose that a
statistic T (xq, x2, ..., X,) is given, evaluated on a set of data x1, x2, ..., x, be-
longing to an assigned space X. The bootstrap essentially consists in the repeated

recalculation of the statistic 7 employing a tuple of new samples x, x3, ..., x;
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Fig. 5.4 Optimal ECDF curves for the MV4 withn = 6

obtained by selecting them from the collection {xy, x2, ..., x,,} by replacement. The
repeated calculation of T (xi*, X3, ..., x;‘) gives a set of values that is a good indi-
cation of the distribution of 7.

Therefore, to calculate the accuracy of a generic quantile ¢*, obtained by the
estimator F, 0, (s), the bootstrap procedure can be applied to the samples that define
the estimator. This allows to calculate the corresponding distribution of ¢° for a fixed
value of s.

Figure 5.5 reports the ECDF related to the solution labeled as “MOST ROBUST”
in Fig.5.4. The bootstrap was applied to this ECDF repeating the sampling process
2,000 times. The area in gray color represents the superposition of all the curves

obtained in this way. From the bootstrap data it is then possible to evaluate the
accuracy of a given quantile estimate. According to [3], an accuracy measure for ¢°
can be obtained considering the central 68 % of bootstrap samples. These values lay
between an interval [g;, g;;] centered on the observed value ¢°. Half the length of
this interval gives a measure of the accuracy for the observed value that corresponds
to the traditional concept of “standard error”. Here this value is indicated with SEto

distinguish it from the true standard error SE.

Table 5.3 reports the computed accuracy values for the considered quantiles for
the above cited “MOST ROBUST” solution obtained from an ECDF with 2,500
Monteiggrlo samples. The fourth column reports, finally, the maximum estimated

error ME.
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Fig. 5.5 ECDF corresponding to the most robust solution and related bootstrap coverage

Table 5.3 Quantile estimates and related accuracy for MV4 “MOST ROBUST” solution with
n==6

N q° SE ME

0.001000 —4.630433 £0.090423 +0.117169
0.500000 —3.230388 +0.018834 +0.054983
0.999000 —1.425868 £0.013192 +0.136330

5.6 Single and Multi-objective Reliability Optimization Tests

A very complete review of reliability-based optimization and of the solution tech-
niques based on evolutionary algorithms can be found in [2].
A reliability based single or multi-objective problem can be written as follows:

min f(x, z)
Z,X

s.to: gi(z,x) <0 i=1,....n (5.3)
xeX, zeZ

with x representing deterministic and z stochastic design variables. In order to find
a solution to this problem, a reliability measure R is introduced that means that the
probability of having an infeasible solution instance will be at most (1 — R), and the
problem is reduced to the following one:
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min f(x, uz)
Z,X

s.to: P; (gi(z,x) <0)>R i=1,...,n (5.4)
xeX, zeZ

where 1, is the mean vector of the uncertain variables z, and P; () is the probability
that the ith constraint is feasible. The constraints in problem (5.4) can be immediately
expressed in terms of generalized inverse distribution function:

min f(x, ()
Z,X

s.to: R (gi(z,x)) <0 i=1,...,n (5.5)
xeX, zeZ

Problem 5 can be further transformed by introducing penalty functions into:

min £(x, 1)+ > I (" (12 %)) (5.6)

i=1
with I defined, for example, as:

0 if x<0
F(x):[kxz,k>0 if x>0 5.7)

Considering that I (qR = 0) = g® (I" (g;(z,x))) it is possible to write, finally:

min ¢ " (f(x, o)+ DT (g x))) (5.8)

i=1

In the subsequent examples, problem (5.8) is solved using a simple multi-objective
genetic algorithm for unconstrained problems. Of course, more sophisticated and
efficient algorithms could be used to reduce the computational effort.

The first example considered is taken from [2]. It involves two variables, x and
y, and two objectives, f1 and f>:

min fi=x

min fzzlj;—y

s. to: y+9% —-6>0 5.9)
—y+9% —-1>0

0.l <x<1,0<y<5

with both variables uncertain and characterized by a normal distribution with o =
0.03.
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Fig. 5.6 Pareto front for the simple two-objectives reliability problem obtained with three different
reliability indexes

The optimization runs have been carried out with three different reliability levels,
namely 90 % (B" = 1.28),97.725% (B" = 2.00) and 99.875 % (B" = 3.00), where

B is the reliability index computed according to R = 50 (1 + erf (f}’ / \/5)) The

results are reported in Fig. 5.6. The multi-objective genetic algorithm crossover and
mutation settings are the same that have been used in the previous test case. For each
different reliability level, a population of 100 individuals evolved for 400 generations.
For g7 = 1.28 and 87 = 2.00 the Montecarlo sample size was set to 1,000, while
for the 8" = 3.00 case the sample size was set to 10,000.

The second problem presented is a car side-impact problem related to vehicle
crash-worthiness and dealing with vehicle safety rating scores related to human safety
issues. The problem is reported in [17] and, in a slightly different form, in [2]. The
reader is referred to the references above for more details on the physical nature of
the model used and the role and significance of variables and parameters. In extreme
synthesis, eleven random variables are involved in the optimization problem, whose
characteristics and nature is reported in Table 5.4 for the sake of completeness. The
random variables z1o and z;; are not regarded as design variables, because they are
related to aspects that define the type of the problem but which can not be controlled
in any way by the designer. The objective function and constraints of the problem
are given below:
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Table 5.4 Properties of design and random parameters of vehicle side impact model

Random variable Std dev. Distr type. Lower limit Upper limit
71 (B-pillar inner) 0.030 Normal 0.500 1.500
77 (B-pillar reinforce) 0.030 Normal 0.500 1.500
z3 (Floor side inner) 0.030 Normal 0.500 1.500
z4 (Cross member) 0.030 Normal 0.500 1.500
z5 (Door beam) 0.030 Normal 0.500 1.500
z6 (Door belt line) 0.030 Normal 0.500 1.500
z7 (Roof rail) 0.030 Normal 0.500 1.500
zg (Mat. B-pillar inner) 0.006 Normal 0.192 0.345
z9 (Mat. floor side inner) 0.006 Normal 0.192 0.345
z10 (Barrier height) 10.0 Normal —30.0 30.0
z11 (Barrier hitting) 10.0 Normal -30.0 30.0

f(z) =198 4+49z1 +6.67z0 +6.9823 +4.01z4 + 1.78z5 + 2.73z7

g1(z) = 1.16 — 0.3717z2z4 — 0.00931z2z10 — 0.48473279
+0.01343z6z10 < 1 kKN
82(z) = 0.261 — 0.0159z1z2 — 0.188z1z8 — 0.019z227

4 0.0144z3z5 4+ 0.0008757