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Abstract. A multi-agent system is considered, comprised of a square
2D cell field of cells with uniform agents controlled by finite state ma-
chines (FSMs). Each cell contains a particle with one out of four colors,
which can be changed by the agents. Initially the agents and colors are
randomly distributed. The objective is to form a specific target pattern
belonging to a predefined pattern class. The target patterns (path pat-
terns) shall consist of preferably long narrow paths with the same color.
The quality of the path patterns is measured by a degree of order, which
is computed by counting matching 3 x 3 patterns (templates). The used
agents can perform 32 actions, combinations of moving, turning and col-
oring. They react on the own color, the color in front, and blocking
situations. The agents’ behavior is determined by an embedded FSM
with 6 states. For a given 8 x 8 field, near optimal FSMs were evolved by
a genetic procedure separately for k = 1 .. 48 agents. The evolved agents
are capable to form path patterns with a high degree of order. Agents,
evolved for a 8 x 8 field, are able to structure a 16 x 16 field successfully,
too. The whole multi-agent system was modeled by cellular automata. In
the implementation of the system, the CA-w model (cellular automata
with write access) was used in order to reduce the implementation effort
and speed up the simulation.

Keywords: Multi-Agent System, Cellular Automata Agents, Pattern
Formation, Evolving and Learning FSM Behavior, CA-w.

1 Introduction

The Agents’Task. Given is a square field of N =n x n cells with border, and
we assume an even number for n. Each cell, except the border cells, contains
a particle with a certain color € {0,1,2,3}. A given number k of agents can
move around in the field and can change the colors at the sites they are situated
on. Initially the colors, the agents, and the agent’s directions are randomly dis-
tributed. The task is to end up in a global state where a certain target pattern
appears, belonging to a predefined pattern class. As an example we defined the
path pattern class which is characterized by preferably long paths of width = 1,
where all the neighboring cells have another color or are border cells. The paths
may have branches and may form loops (as shown in Fig. 5b). The objective is
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to find the behavior of the agents that can solve this task with a certain quality.
The capabilities of the agents shall be constrained, e.g. the number of control
states, the action set, and the details of the perceived environment.

Motivation. The original idea for this research was to find artificial patterns
which are to a certain extend creative and impressive from the artistic point
of view. As artistic patterns are difficult to evaluate in a formal way, the more
modest objective was to find patterns with a certain interesting or valuable
structure. Then experiments were conducted to find certain global patterns, like
a black box in the center of the field, or with a global symmetry. It turned
out, until now, that it is very difficult to find agents that can comply with such
strict global objectives. Then, the objective was even more relaxed, namely to
find global patterns that obey to intrinsic local rules (local matching patterns,
templates). For this work, the Moore-Neighborhood (3 x 3) was used for the
templates, but it could be enlarged in order to form more interesting global
patterns. — Benefit of the presented results could also be taken when nano-
structures have to be constructed by nano-robots or by beaming focused energy
onto certain cells in order to change their physical state [1-3]. Other applications
of this research can be imagined when the task is to form biological [14], chemical
or computational structures with specific properties.

Why Agents? What is the advantage to solve this task by agents? Generally
speaking, agents can behave very flexible, powerful and coordinated because of
their intelligence and their specific sensors and actuators. Important properties
that can be achieved by agents are

— Scalability. The problem can be solved with a variable number of agents, and
faster or better with more agents.
— Tuneability. Increasing the agent’s intelligence, the problem can be solved
faster or more effective (better quality of solutions).
— Versatility. Similar problems can be solved by the same agents, e.g. by chang-
ing the shape or size of the environment.
— Updating-tolerance. Usually the time-evoluted global state depends only mar-
ginally on the updating-scheme (synchronous, asynchronous).
— Fault-tolerance. When obstacles are introduced or not all agents work cor-
rectly, the problem can still be solved in a gracefully degraded way.
Because agents are very flexible, they can be employed to design, model, analyze,
simulate, and solve problems in the areas of complex systems, real and artificial
worlds, games, distributed algorithms and mathematical questions.

Related Work. (i) F'SM controlled agents: In former investigations we have
tried to find the best algorithms for the Creature’s Exploration Problem [4],
in which the agents have the task to visit all empty cells in shortest time, for
the All-to-All Communication Task [5], in which each agent has to distribute
its information to all the others, and for the Target Searching Task [7]. The
FSMs for these tasks have been evolved using, i.e., genetic algorithms, genetic
programming [6], and sophisticated enumeration methods. Other related works
are a multi-agent system modeled in CA for image processing [8], and modeling
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the agent’s behavior by an FSM with a restricted number of states [9]. An
important pioneering work about FSM controlled agents is [10].

(ii) Pattern-formation: Agent-based pattern formations in nature and physics
are studied in [15, 16]. A programming language is presented in [17] for pattern-
formation of locally-interacting, identically-programmed agents; as example the
layout of an CMOS inverter is formed by agents. In [19] a general framework
is proposed to discover rules that produce special spatial patterns based on a
combination of Machine Learning strategies including Genetic Algorithms and
Artificial Neural Networks. In [20] a methodology based on different learning-
techniques is introduced that helps the designer to model the behavior of the
agents for a multi-agent system.

(iii) Modeling moving agents/particles: Here the agents are modeled by classi-
cal CA or CA-w as described in Sect. 3. Other modeling concepts related to CA
are lattice-gas cellular automata, block substitutions, or partitioned CA as used
in [5]. The concept of transactional CA was proposed in [18] to implement agent
mobility in CA, and it was shown that scheduling policies and conflict resolution
strategies have an impact on the global behavior of the system.

2 Target Patterns and Degree of Order

How can the class of target patterns be characterized? The idea is to use a set of
small local matching patterns as building blocks, also called templates, that can
successfully tile the field (with overlaps). In the color structures arranged by the
agents such templates are expected with a high frequency. The 41 templates used
here are shown in Fig. 1a. They describe the target path patterns. E.g. the plank
template means that there are 3 consecutive cells of the same color (depicted in
black), enclosed by 3 + 3 cells in another color (depicted in grey). The plank can
be rotated by 90 degrees, giving the second form of this type. Altogether, under
reflection and rotation, there are 41 distinct templates. The templates can be de-
picted in a condensed form (Fig. 1b), using don’t care neighbors that can have any
color. E.g. the template T4 does not care about the West and East neighbor.

The patterns created by the agents have to be evaluated, how well do they
fit into the defined path pattern class. In order to evaluate a given pattern, all
templates are applied (tested) on each cell. If a match (hit) is found, a dot is used
to mark this cell. Then, all dots are summed up which gives the total number
of hits h. This number is also called degree of order. The terminal cells of a
path will not be taken into account when the path length is computed. Thus a
consecutive path of 3 cells has only a length count of 1. The reason is to avoid
searching for very short paths of length < 2. The theoretically maximum order is
himaz = n X n— 4. The relative order is h/hmqe- The maximum could be reached
by nesting squares with different colors into each other. In Fig. 1b there are 6
templates that match, leading to 9 hits.

It can be observed that the testing for templates hits corresponds to the
application of an equivalent CA rule. From the formal language point of view,
the templates can be seen as the generators of a 2D pattern language.
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Fig. 1. (a) Templates are small building blocks which are expected to appear in a target
pattern. A path cell is colored in black. Grey represents another color. The number of
symmetric templates by rotation and reflection is given in the brackets. (b) The same
templates, described in condensed form. (c¢) A path (part of the target pattern) can be
tiled (with overlaps) by matching templates. Each matching template produces a hit
(dot). All hits are summed up and give the degree of order.

3 Modeling the System by Cellular Automata

Standard in CA is that the cells are uniform, meaning that they are all similar
and obey to the same rule. The rule changes the state of each cell by taking
into account the own cell’s state and the states of its neighbors. Nevertheless
the cell’s rule has to react on non-uniform situations, e.g. whether there is an
agent situated on a cell or not. Therefore the cell’s state is modeled as record
(T'ype, Color, Agent) comprising a type tag, where

Type € {Border, Particle, Agent AndParticle}, and

Agent = (Identifier, Direction, ControlState).

When designing a system with agents (multi-agent system MAS), then the
capabilities of the agents have to be defined before designing or searching for
the behavior of the agents to solve a given task. The main capabilities are: The
perceivable inputs from the environment, the actions an agent can perform, and
the size of its memory (number of possible control states, optionally additional
data states). In our system, an agent shall react on the following inputs in a
certain combination

— the own color C of the cell the agent is situated on
— the color in front Cr (in moving/viewing direction)
— a border cell in front
— the blocked situation/condition, caused either by a border, another agent
in front, or when another prior agent can move to the front cell in case of a
conflict. The inverse condition is called free.
An agent has a moving/viewing Direction = D € {0,1,2,3} ={toN, toFE, toS,
toW}. Note that in the used model an agent cannot observe the direction and
control state of another agent in the neighborhood. The actions that an agent
shall be able to perform are
— move: move € {0,1} = {wait, go}
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— turn: turn € {0, 1, 2,3}. The new direction is D(t+1) = (D(t)+turn) mod 4.
— set color: setcolor € {0,1,2,3}. The new color is C(t + 1) = setcolor.

The move, turn and set color actions can be performed simultaneously (32
combinations). There is only one constraint: when the agent’s action is go and
the situation is blocked, then the agent cannot move and has to wait, but still it
can turn and change the color. In case of a moving conflict, the agent with the
lowest identifier (ID = 0 .. kK — 1) gets priority. Instead of using the identifier for
prioritization, it would be possible to use other schemes, e.g. random priority,
or a cyclic priority with a fixed or space dependent base.

How can an agent move from A to B in the cellular automata (CA) model?
Two rules have to be performed, a delete-rule that deletes the agent on A, and
a copy-rule that copies the agent to B. In CA both rules have to compute the
same blocking condition, this means a redundant computation. In order to avoid
this redundancy, a two-phase updating scheme could be used (first compute
the moving condition, second use it in cell A and B), or the cellular automata
with write-access model (CA-w) [11]. When using the CA-w model, the moving
condition is computed by cell A, and if it is true, A applies a rule that deletes
the agents on A and copies it to B. The simulation program was implemented
by the CA-w model, although it is possible to implement the system in standard
CA with redundant computation.

The CA-w model was introduced in order to describe moving agents, moving
particles or dynamic changing activities. This model allows to write information
onto a neighbor. This method has the advantage that a neighbor can directly
be activated or deactivated, or data can be sent actively to it by an agent. The
CA-w model is a restricted case of the more general, “Global’ GCA-w model
[12, 13]. In GCA-w any cell of the whole array can be modified whereas in the
CA-w model only the local neighbors can be. Usually the cells of these models
are a composition of (data, pointers). The neighbors are accessed via pointers,
that can be changed dynamically like the data by an appropriate rule from
generation to generation. Comparing CA and CA-w, a CA equivalent to a CA-w
with neighborhood N; can be found by extending Ny to Na (N; extended by
write-distance). For example, an 1D CA-w with neighborhood distance 1 (read
and write) is equivalent to a CA with neighborhood distance 2.

The behavior of an agent shall be determined by an embedded finite state
control automaton (FSM) (Fig. 2). We also formulate that an agent has/obeys
to a certain (control) algorithm. Each CA cell contains an FSM which is active
when an agent is situated on it. The FSM contains a state table (also called next
state/output table). Outputs are the actions (move, turn, setcolor) and the next
control state. Inputs are the control state and the relevant input situations z. The
input mapping reduces all possible input combinations of (border, blocked, color,
front color) to an index € X = {0,1,...,|X]| — 1} that is used in combination
with the control state to select the actual line of the state table.

The following input mapping is used. If the situation is free the index x is the
color in front: = Cp. If the situation is blocked by a border cell in front, then
x = 4. If the blocking is caused by another agent in front, or by a prior agent in
the case of a conflict, then the own color is directly mapped to the index with
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an offset x = C' + 5. It is possible to choose other input mappings, with less or
more x values, or other assignments, e.g. in the case of blocking, the direction
of the agent could be used (x = D + 5), instead of the own color.

The used updating scheme is synchronous; exemplarily simulation experi-
ments showed, that the results with asynchronous updating are quite similar.

4 Evolving the Agent’s Behavior by a Genetic Procedure

The goal is to find a general applicable FSM which is optimal for a large set
of different initial configurations covering the whole area of applications (dif-
ferent size and shape of the field, different number of agents). As we cannot
optimize for a very large set of initial configurations within a limited amount of
computation time, we used a fixed field size of 8 x 8 and optimized separately
for kK =1,2,4,8,16,32,48 agents, and used 100 training fields for each k. This
means that we searched for specialists and not for all-rounders.

As the search space for different FSMs (algorithms) is very large, we are not
able to check all possible behaviors by enumeration. The number of FSMs which
can be coded by a state table is Z = (|s||y|){*/I*]) where |s| is the number of
control states, |z| is the number of different inputs and |y| is the number of
different outputs. As the search space increases exponentially, we use a genetic
procedure in order to find the best behavior with reasonable computational cost.
Even with a genetic approach the number of states, inputs and outputs have to
be kept low in order to find a good solution in acceptable time.

A possible solution (genome of one individual in the genetic) corresponds to
the contents of the FSM’s state table (Fig. 2b). The column index j is defined
by a certain combination of (z, s). Each column j defines (s’, y) = (nextstate,
setcolor, move, turn). The used genetic procedure per iteration is

1. A" + mutate(A)

2. (A, B) « deleteDuplicates(sort(A, A’, B))

3. (A, B) < exchange(b, A, B).

One population of N individuals is stored in two lists (A, B) with N/2 individuals
each. (Step 1) During each iteration N/2 offspring are produced from list A by
mutation. (Step 2) The union of the current N individuals and the N/2 offspring
are sorted according to their fitness, duplicates are deleted and the number of
individuals is then reduced to the limit of N in the pool. (Step 3) In order not to
get stuck in local minima and to allow a certain diversity in the gene pool, the
first b individuals from B are exchanged with the last b individuals from A. We
used N = 20 and b = 3, therefore the individuals 8, 9, 10 are exchanged with
the individuals 11, 12, 13, when the individuals are numbered from 1 to N.

An offspring is produced by modifying separately with a certain probability
p each action € {nextstate, setcolor, move, turn}:

action < (action + 1) mod Ngction.-

We restricted the number of states to Ngates = 6, and used Nsetcolor = 4,
Nipove = 2, and Nyyrn = 4. We tested different probabilities, and we achieved
good results with p = 35%.
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setcolor 221323 322022 220322 022202 212322 202130 132222 123132 213221
move lo01011 011011 010111 100000 100101 001010 101001 100111 110010
turn ©V22230 312001 131231 231133 323110 330110 001021 033203 303203

Fig. 2. (a) Finite state machine (FSM). The state table defines the next control state,
the setting of the color, the agent’s new direction, and whether to move or not. (b)
Example for a state table. It represents the best found, near optimal TopFSM(16) for
a 8 x 8 field with 16 agents.

The fitness of our multi-agent system is defined as the number ¢ of time
steps which is necessary to emerge successfully a target pattern with a given
degree h; of order, averaged over all given randomized initial configurations
(color distribution, position and directions of the agents). As the behavior of the
whole system depends on the behavior of the agents, we search for the agents’
FSM that can solve the problem successfully with a minimum number of steps for
a large number of initial configurations. Successfully means that a target pattern
with h > h1 was found. The fitness function F' is evaluated by simulating the
agent system with a tentative FSM on a given initial configuration.

TimeSteps if successful within TimeLimit

F(FSM,config) = { (1)

HighConstant otherwise

Then the mean fitness F'(F.SM) is computed by averaging over all given initial
configurations. The mean fitness F' is then used to rank and sort the FSMs.
The parameters used were TimeLimit = 5,000 and HighConstant = 100, 000.
The genetic procedure starts with NV = 20 random FSMs. Usually there is no
FSM in the initial population that is successful. After some generations, some
successful FSMs are found. Then, after further generations, FSMs are expected
to be evolved that are completely successful on all or most of the given initial
configurations. It turned out, that it is very difficult and time consuming to find
good solutions. Therefore the genetic procedure was divided into several phases
with increasing difficulty. (1) The system with & = 16 agents was optimized
(1a) on 10 initial configuration (may also be called field for short) with an
increasing degree of order (hy = 30,40, 48), then (1b) on 20 fields with hy = 48,
and then (1c) on 100 fields with hy = 48. Then (2 .. 7) the other systems with
k=1,2,4,8,32,48 were optimized in the same way. Note that the highest degree
of order is hy,q = 60 for the 8 x 8 field. Thus the aimed relative degree of order
was h1/hmax = 48/60 = 80%. Experiments showed that a higher h can be
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Fig. 3. Time to form the desired patterns with an 80% degree of order by the TopFSMs
specifically evolved for k =1 .. 48 agents. Field size is 8 x 8.

reached sometimes, but not always within the limited capabilities of the agents,
the system, and the time limit. — 4500 generations (simulations with 10 mutated
FSMs on up to 100 fields) were computed for each k. The overall computation
time on a processor Intel Xeon QuadCore 2 GHz was around two weeks. The
implementation language was Object Pascal under the platform Lazarus.

The Evolved top FSMs. The best found FSM for 16 agents (TopFSM(16))
is shown in Fig. 2b. All found TopFSM(k) for k = 1,2,4,8,16, 32,48 are able
to form a target pattern with an 80% degree of order for all 100 random initial
configurations. The time to form the patterns reaches a minimum for 16 agents
(Fig. 3), and a maximum for 48 agents. No solution within the constraints was
found for 64 agents (fully packed, agents cannot move — only turn). It can be
observed that a certain density of the agents (here 25% = 48/64) is optimal in
order to reach the minimal time. It can be concluded that an agent can work
only optimal if it is responsible for a certain “personal” local area (here 4 cells).
One explanation could be that an agent uses the colors in its neighborhood in
a stigmergic way (like pheromones, indirect communication mainly with itself
— self-feedback memory) to be at last successful. If the field is overcrowded or
sparsely populated, the performance is lowered. It was also interesting to observe,
that the task can even be solved by one agent only. From the cost investment
point of view (cost = time x agents), one agent alone is most economical.

Simulations. (Fig. 4) The evolved TopFSM(k) were simulated and visualized.
The snapshots show how the path patterns are being built. It can be seen that
at the end two colors are dominating (red and yellow). The other two colors
rapidly decrease and may disappear at the end. In the optimization procedure
and simulation it was not forbidden to reduce the number of colors (to require an
almost even color distribution of the 4 colors at the end is a too hard condition
as experiments have shown). It can be seen, that the agents prefer to move on
a path with the same color. Note that the degree of order was set to > 80%.
When this limit is surpassed the simulation is successful and terminates.

Versatility Test. (Fig. 5) This test was undertaken in order to prove that
agents, which are optimized for special field, can be successful on another given
(here larger) field with another number of agents (here larger). The test was
really successful and showed that agents (as usually) can cope with different
environments. The original field was of size 8 x 8, with 16 agents. The test field
was of size 16 x 16, with 64 agents (the same density as in the original field).
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Fig. 4. Snapshots showing how path patterns are formed by k agents; k = 1 (top row),
16 (middle row), 48 (bottom row). h = degree of order. Dots represent template hits.
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Fig. 5. The TopFSM(16) evolved on a 8 x 8 field can also solve the problem on a 16 x
16 field. (a) Agents and colors, (b) colors only, (c) template hits.

The degree of order was also set to 80%. The mean time to successfully form
a path pattern for the larger field was to = 1259, averaged over 100 random
initial configurations. For comparison, the mean time on the original field was
t; = 236. The ratio of the field areas is 4, and the ratio t3/t; = 5.33, which is
not extremely more.

5 Conclusion

The objective was to find FSM controlled agents that can form specific path
patterns. The class of path patterns was defined by a set of templates, small 3 x
3 local patterns. The number of templates that can be found in a given pattern
defines the degree of order. For a 8 x 8 field near optimal FSMs were evolved for
a different number of agents. The agents are able to form successfully with an
80% degree of order the aimed path patterns. The task can be solved fastest with
16 agents (density 25%), and around five times slower with one agent only. The
FSM(16) evolved for a 8 x 8 field can also handle a 16 x 16 field with the same
density of agents. This means that an evolved specialist can also be successful on
another field size. The general result is that specific pattern generation by CA
agents can be constructed in a methodic way. It would be of interest to enhance
and apply this method in order to generate more complex patterns.
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