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Abstract. A new assumption is assumed to explain the mechanisms of
traffic flow that in the noiseless limit, vehicles’ space gap will oscillate
around the desired space gap, rather than keep the desired space gap,
in the homogeneous congested traffic flow. It means there are no steady
states of congested traffic and contradicts with the fundamental diagram
approach and three-phase traffic flow theory both of which admit the
existence of steady states of congested traffic. In order to verify this
assumption, a cellular automaton model with non-hypothetical congested
steady state is proposed, which is based on the Nagel-Schreckenberg
model with additional slow-to-start and the effective desired space gap.
Simulations show that this new model can produce the synchronized flow,
the transitions from free flow to synchronized flow to wide moving jams,
and multiple congested patterns observed by the three-phase theory.

Keywords: Cellular automaton, three-phase traffic flow, fundamental
diagram.

1 Introduction

In order to understand the mechanism of traffic congestion, many models and
analysis have been carried out to explain the empirical findings [1–5]. Generally
speaking, these models can be classified into the fundamental diagram approach
or the three-phase theory. The fundamental diagram is the idealized form of
the flow-density curve in traffic flow, which goes through the origin with at
least one maximum. It describes the theoretical relationship between density
and flow in the stationary homogeneous traffic, i.e., the steady state of identical
driver-vehicle units[5]. In the last century, almost all traffic flow models belong
to the fundamental diagram approach. In microscopic models, the fundamental
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diagram is linked to the steady states of car-following (CF) or cellular automaton
(CA) models. For example, in the Optimal Velocity Model (OV model) [6],
the fundamental diagram corresponds to the optimal velocity function itself.
In the Nagel-Schreckenberg cellular automaton model (NaSch model), it could
be derived in terms of the steady state in the deterministic limit [7]. In the
macroscopic or mesoscopic models, it has been directly applied (e.g. the LWR
theory [8, 9]) or incorporated into the momentum equation (e.g. the PW theory
[10]).

The majority of models in fundamental diagram approach belongs to the
two-phase models [6–13], which refers to the free flow phase (F) and the jammed
phase (J). The phase transitions involved are the transition from free flow to
jams (F→J transition) and the transition from jam to free flow (J→F transi-
tion). The fundamental diagram approach explains the jam formation mainly by
excess demand, i.e., the traffic inflow exceeds the static capacity defined by the
maximum of the fundamental diagram. Additionally, instabilities of traffic flow,
which are caused by finite speed adaption time (due to finite accelerations) or
reaction time, can lead to jam formation even before static capacity is reached.
For the detailed discussion of stability, one can refer to [5, 14].

Based on the long-term empirical analysis, Kerner [3, 4] argues that two-
phase models could not reproduce the empirical features of traffic breakdown as
well as the further development of the related congested region properly. Then
the three-phase theory is introduced, in which there are (1) free traffic flow (2)
synchronized flow and (3) wide moving jams. The fundamental hypothesis of
the three-phase theory is that the hypothetical steady states of the synchronized
flow cover a two-dimensional region in the flow-density plane1 , in other words
there is no fundamental diagram of traffic flow. Over the time, many models
within the framework of three-phase theory are proposed [15–25].

In three-phase traffic theory, traffic breakdown is a phase transition from free
flow to synchronized flow (F→S transition). Wide moving jams can occur spon-
taneously in synchronized flow only (S→J transition), i.e. due to a sequence of
F→S→J transitions. Empirical observations show that General Patterns (GPs)
and Synchronized Patterns (SPs) are two main types of congested patterns at an
isolated bottleneck. After the synchronized flow occurs upstream of the bottle-
neck, the wide moving jams continuously emerge in that synchronized flow and
propagate upstream, and then this congested pattern is often called as the Gen-
eral Patterns (GP). However, if the wide moving jams discontinuously emerge
on the road, there will just have one or few wide moving jams appearing in
that synchronized flow, then this congested pattern is often called as the dis-
solving General Patterns (DGP). If there is only synchronized flow upstream of
the bottleneck, no wide moving jams emerge in the synchronized flow, then this
congested pattern is often called as the Synchronized Patterns. And as a result
of the F→S transition, various synchronized flow patterns can occur at the bot-

1 Two-dimensional steady states refer to a two-dimensional manifold of steady states
parameterized by the associated flow and density. In the flow-density diagram, this
is represented by a two-dimensional area of possible states, hence the name.
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tleneck, such as the widening synchronized pattern (WSP), local synchronized
pattern (LSP), and moving synchronized pattern (MSP).

In this paper, another assumption is conceived to explain the mechanisms of
traffic flow that in the noiseless limit, vehicles’ space gap will oscillate around
the desired space gap, rather than keep the desired space gap, in the homoge-
neous congested traffic flow, which means there are no steady states of congested
traffic. In order to validate this assumption, a new cellular automation model is
established in section 2. Empirical findings of three-phase theory are simulated
and discussed in section 3. Finally, the conclusion is given in section 4.

2 The New Model

In the fundamental diagram approach, the unique relationship between the equi-
librium space gap and speed is assumed in the stationary homogeneous traffic:
if the equilibrium space gap is smaller than the actual gap, vehicles tend to
accelerate; if the equilibrium space gap is greater than the actual gap, vehicles
tend to decelerate; otherwise vehicles tend to keep the uniform speed. However
in the three-phase traffic theory, there is no unique relationship between the
equilibrium space gap and speed in the stationary homogeneous traffic: if the
actual gap is greater than the synchronized gap, vehicles tend to accelerate; if
the actual gap is smaller than the safe gap, vehicles tend to decelerate; otherwise
vehicles tend to adjust their speed according to the speed of their formers. Al-
though three-phase traffic theory denies the fundamental diagram, both admit
the existence of stationary homogeneous traffic in the congested traffic.

Comparing with taking the unique relationship between the equilibrium space
gap and speed into the models within the fundamental diagram approach, models
in the framework of the three-phase traffic theory are often complicated due to
the two-dimensional region, which makes them less practical. We wonder whether
there is another assumption that considers more reality than the fundamental
diagram approach but less complicated than the three-phase traffic theory. Since
there is seldom any evidence confirming the existence of stationary homogeneous
traffic in the congested traffic that tends to keep oscillating in reality, the follow-
ing assumption is proposed: in the noiseless limit, vehicles’ space gap will
oscillate around the desired space gap, rather than keep the desired
space gap, in the homogeneous congested traffic flow, which means
there are no steady states of congested traffic.

In order to validate this assumption, the following cellular automaton model is
proposed whose main mechanisms incorporating this assumption are embodied
in the randomization process of vehicles. The parallel update rules are as follows.

1. Determination of the randomization parameter pn(t + 1) and deceleration
extent Δv:

pn(t+ 1) =

⎧
⎨

⎩

pa : if deffn (t) < d∗n(t)
pb : if vn(t) = 0 and tstn (t) ≥ tc
pc : in all other cases

(1)
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Δv(t+ 1) =

{
bdefens : if deffn (t) < d∗n(t)

1 : in all other cases
(2)

2. Acceleration:
vn(t+ 1) = min(vn(t) + 1, vmax)

3. Deceleration:
vn(t+ 1) = min(deffn (t), vn(t+ 1))

4. Randomization with probability:
if(rand() < pn(t+ 1)) then vn(t+ 1) = max(vn(t+ 1)−Δv(t+ 1), 0)

5. The determination of tstn (t+ 1):
if(vn(t+ 1) = 0) then tstn (t+ 1) = tstn (t) + 1
if(vn(t+ 1) > 0) then tstn (t+ 1) = 0

6. Car motion:
xn(t+ 1) = xn(t) + vn(t+ 1)

where dn(t) is the space gap between vehicle and its preceding vehicle n + 1,
dn(t) = xn+1(t) − xn(t) − Lveh, xn(t) is the position of vehicle n (here vehicle
n+ 1 precedes vehicle n) and Lveh is the length of the vehicle. vn(t) is the speed
of the vehicle n, and vmax is the maximum speed. d∗n(t) = Tvn(t) is the effective
desired space gap between vehicle n and n+1, and T is the effective safe time gap
between vehicle n and n+1 at the steady state. deffn (t) is the effective gap, deffn (t) =
dn(t) + max(vanti(t) − gsafety, 0), where vanti = min(dn+1(t), vn+1(t) + 1, vmax)
is the expected speed of the preceding vehicle in the next time step. gsafety is the
parameter to control the effectiveness of the anticipation. Accidents are avoided
only if the constraint gsafety ≥ bdefens is satisfied. The speed anticipation effect is
considered in order to reproduce the real time headway distribution, which has a
cut off at the small time headway less than one second [22]. tstn (t) denotes the time
since the last stop for standing vehicles, while tstn (t) = 0 for moving vehicles.

The basis of the new model is the rules of the NaSch model with randomiza-
tion parameter pc to which a slow-to-start rule and the effective desired space gap
d∗n(t) has been added. The slow-to-start effect is characterized by an increase of
the randomization parameter from pc to pb (> pc), which is the element to realize
the transition from synchronized flow to wide moving jams. The new model as-
sumes the driver tends to keep the effective gap no smaller than d∗n(t), otherwise
the driver will become defensive. The actual behavioral change is characterized
by increasing the spontaneous braking probability from pc to pa. Moreover, the
associated deceleration will change from 1 to bdefens (≥ 1). This effect is the
factor to reproduce the transition from free flow to synchronized flow in the new
model.

In the following, the steady states of the new model are analyzed in the
unperturbed, noiseless limit. For microscopic traffic flow models, the steady state
requires that the model parameters are the same for all drivers and vehicles. In
that case, the steady state is characterized by the following two conditions [5]:

1) Homogeneous traffic: All vehicles move at the same speed and keep the
same gap behind their respective leaders.

2) No accelerations: all vehicles keep a constant speed.



614 J. Tian et al.

Since the mechanisms associated with the hypothetical congested steady state
analysis are all embodied in the randomization process, the noiseless limit should
be taken as pa = 1, pb = 0, pb = 1 or pa = 1, pb = 1, pc = 1. However, all vehicles
will keep a constant speed no matter how long distance between vehicles is in
the latter case, which is obviously unrealistic. Thus, we consider the former.
According to the model rules, if deff/T ≥ vmax, all vehicles will move with vmax;
if deff/T < vmax, all vehicles’ speed will take turns to change simultaneously
over time between max(v − bdefens, 0) and v, where v ∈ [deff/T,min(vmax, d

eff)]
and max(v − 1, 0) < deff/T . It means there are no steady states of congested
traffic in the new model. Vehicles space gaps oscillate around the desired gap, i.e.,
deviations from the steady state are caused by local instabilities (representing the
inability of the drivers to keep the desired gap), not by the driver heterogeneity
2, which is consistent with the empirical findings by [27]. Therefore, this model
is named the cellular automaton model with non-hypothetical congested steady
state (NH model).

3 Simulation Investigation

In this section, simulations are carried out on a road with the length Lroad =
1000Lcell. Both the cell length and vehicle length are set as 7.5m, i.e. Lcell =
7.5m and Lveh = 1Lcell = 7.5m. One time step corresponds to 1s. During the
simulations, the first 50000 time steps are discarded to let the transients die out.
The parameters are shown in Tab.1.

Table 1. Model parameters of NH model

Parameters Lcell Lveh vmax T bdefens pa pb pc gsafety tc
Units m Lcell Lcell/s s Lcell/s

2 - - - Lcell s

Value 7.5 1 5 1.8 1 0.95 0.55 0.1 2 8

Traffic patterns that emerge near an on-ramp are studied under open bound-
ary condition. The vehicles drive from left to right. The left-most cell corresponds
to x = 1. The position of the left-most vehicle is xlast and that of the right-most
vehicle is xlead. At each time step, if xlast > vmax, a new vehicle with speed vmax

will be injected to the position min(xlast − vmax, vmax) with probability qin/3600
and qin is the traffic flow entering the main road. At the right boundary, the lead-
ing vehicle moves without any hindrance. If xlead > Lroad, the leading vehicle
will be removed and the following vehicle becomes the leader.

2 Driver heterogeneity, or, more specifically, inter-driver heterogeneity, refers to differ-
ent parameterizations of every vehicle representing variations of the individual driv-
ing style and vehicle performances. If there is no inter-driver heterogeneity (identical
drivers and vehicles), all deviations from a steady state are either due to intrinsic
randomness (a random term in the accelerations as in the NaSch Model with the ran-
domization probability p �= 1 or zero), or dynamic instabilities. In the deterministic
case of our model, we have only the latter, i.e. ”no” internal/intrinsic randomness.
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We adopt a simple method to model the on-ramp, which is similar to that of
[26]. Assuming the position of the on-ramp is xon, a region [xon, xon + Lramp] is
selected as the inserting area of the vehicle from on-ramp. At each time step, we
find out the longest gap in this region. If the gap is large enough for a vehicle,
then a new vehicle will be inserted at the cell in the middle of the gap with
probability qon/3600 and qon is the traffic flow from the on-ramp. The speed
of the inserted vehicle is set as the speed of its preceding vehicle, and the stop
time is set to zero. In this paper, the parameters are set as xon = 0.8Lroad and
Lramp = 10Lcell.

In Fig.1(a), the reproduced spatial-temporal features of the congested pattern
named moving synchronized flow (MSP) are shown (see the empirical figure
7.6 in [4]). In this pattern, synchronized traffic flow spontaneously emerges in
the free flow. Fig.1(b) exhibits the widening synchronized flow (WSP, see the
empirical figure 7.4 in [4]). For this pattern, wide moving jams do not emerge
in synchronized flow. The downstream front of WSP is fixed at the on-ramp
and the upstream front of WSP propagates upstream continuously over time. In
Fig.1(c), both the downstream and the upstream front of synchronized flow are
fixed at the on-ramp, thus, it belongs to the local synchronized pattern (LSP).
Moreover, the width of LSP in the longitudinal direction changes over time,
which is in accordance with empirical observations (see the empirical figure 7.2
in [4]). Fig.1(d) shows the dissolving General Patterns (DGP) in which just one
wide moving jam emerges in the synchronized flow. Fig.1(e) shows the spatial-
temporal features of General Pattern (GP).

In order to emphasize the significance of the two-dimensional steady states
of synchronized flow, Kerner and Klenov (2006) proposed the Speed Adaption
Models (SAMs) in the framework of fundamental diagram approach. The basic
hypothesis of SAMs is the double Z-characteristic for the sequence of phase
transitions from free flow to synchronized flow to wide moving jams (F→S→J
transitions). Based on this hypothesis, SAMs can reproduce both the traffic
breakdown and the emergence of wide moving jams in synchronized flow as
found in empirical observations. However, SAMs are not able to reproduce the
local synchronized patterns (LSPs) consistent with empirical results as well as
some of empirical features of synchronized flow between wide moving jams within
general patterns (GPs). Kerner et al. attribute these drawbacks of SAMs to the
lacking of the two-dimensional steady states of synchronized flow.

Although only free outflow exists in the downstream of wide moving jams in
GP of the NH model, it can be easily improved if we decrease the slow-to-start
probability pb or adjust the values of T and bdefens, see Fig.1(f),(g). Thus, all the
above simulation results are well consistent with the well-known results of the
three-phase traffic theory. Therefore it is reasonable to conclude that the two-
dimensional steady states of synchronized flow are not an essential requirement
for the spatiotemporal dynamics.

Moreover, in Fig.1(a) and (d), one could obtain the propagation velocity of
the downstream MSP front is nearly −26.8km/h and the propagation velocity
of the downstream jam front is nearly −13km/h which is about half that of
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Fig. 1. Trajectories of every 20th vehicle of the NH model. (a) qin = 2339, qon = 19
(MSP), (b) qin = 1728, qon = 968 (WSP), (c) qin = 1440, qon = 823 (LSP), (d) qin =
1134, qon = 1123 (DGP), (e) qin = 920, qon = 1304 (GP), (f) qin = 931, qon = 1304
(GP), (g) qin = 933, qon = 1011 (GP) (unit: veh/h). The horizontal direction (from left
to right) is time and the vertical direction (from down to up) is space. (f) Pb = 0.5, (g)
Pb = 0.55, T = 1.6, gsafety = bdefens = 2. ’SOF’ and ’FOF’ represent the synchronized
outflow and free outflow of wide moving jams, respectively.
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the downstream MSP front. This is better than the results in most three-phase
models which often have propagation velocities as negative as −40km/h or even
more negative.

4 Conclusion

The fundamental diagram approach and three-phase traffic flow theory were
established to explore the mechanisms of traffic flow. The fundamental diagram
approach assumes the existence of the unique space-gap-speed relationship, while
the three-phase theory presumes drivers can make arbitrary choice of the space
gap within some gap range. One of the most important similarities between both
theories is that they both admit the existence of stationary homogeneous traffic
in the congested traffic.

In this paper, another assumption is assumed to explain the mechanisms of
road traffic flow that in the noiseless limit, vehicles’ space gap will oscillate
around the desired space gap, rather than keep the desired space gap, in the ho-
mogeneous congested traffic flow. It means there are no steady states of congested
traffic. In order to verify this assumption, a new model named as the cellular
automaton model with non-hypothetical congested steady state (NH model) is
proposed. Simulations obtained from an open road with an on-ramp show that
NH model can produce the synchronized flow, two kinds of phase transitions i.e.
F→S transition and S→J transition, and multiple congested patterns observed
by the three-phase theory.

In summary, the NH model produces the same spatiotemporal dynamics as
many of the more complex three-phase models. Besides many aspects that are
consistent with traffic data, it also includes a feature that is at variance with
observations: the propagation velocity of MSP is twice than that of the down-
stream jam front, while observations indicate that both velocities are of the
same order (with values between −20 and −15km/h). It illustrates that the two-
dimensional steady states of synchronized flow are not an essential requirement
for the spatiotemporal dynamics.
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