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Abstract. Cellular automata are discrete mathematical models that
have been proven useful as representations of a wide variety of systems
exhibiting emergent behavior. Detection of emergent behavior is typically
computationally expensive as it relies on computer simulations. We pro-
pose to specify cellular automata using a suitable Temporal Description
Logic and we show that we can formulate queries about the evolution of
a cellular automaton as reasoning tasks in this logic.

1 Introduction

Cellular automata are discrete mathematical models that have been proven use-
ful as representations of a wide variety of systems that feature non-linear dynam-
ics. Initially cellular automata were introduced by John von Neumann as a formal
model for cellular growth and replication. These automata have been successfully
applied to model complex systems in physics, biology and many other scientific
disciplines. Applications can be found in fluid dynamics, biological pattern for-
mation, neural networks, cooperative systems, etc. Cellular automata have also
been intensively studied in dynamical systems theory and computation theory,
and they have been considered as discrete dynamical systems as well as a model
for parallel computation [9,4,7].

We focus on complex systems exhibiting emergent behavior, where the prop-
erties at the larger scale are qualitatively different from those at the smaller
scale. New functionalities may emerge when small components (like cells) are
aggregated into larger entities (tissues and organs). We understand emergence
as a property of a composite system (i.e., not just a component of the system)
that arises through the interaction of the components and that persists over a pe-
riod of time. Examples of emergence are plentiful and varied, and they typically
involve some form of oscillation and pattern formation. Detection of emergent
phenomena is typically computationally expensive as it involves the exploration
of possible parameter settings and the corresponding phase space of the system.
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The challenge we encounter is the description of interesting temporal system
properties and their verification in an automated way. The general aim of this
work is to develop a logic-based modeling language that is suited for describing
such phenomena but that still allows effective reasoning. Our method of specify-
ing properties of the evolution of cellular automata is using a suitable Temporal
Description Logic. Queries about the evolution of a cellular automaton can then
be formulated as reasoning tasks in this logic.

Description Logics (DLs) are a well-known family of logic-based knowledge
representation formalisms [2]. They are designed to describe and reason about
static aspects of an application domain. DLs form the logical basis of the web
ontology language OWL 2, which is the current recommendation of the World
Wide Web Consortium (W3C) [8]. Ontology languages based on DLs have been
widely adopted for modeling a large class of domains, and an increasing number
of ontologies is made available in dedicated repositories. To represent dynamical
patterns, combinations of DLs and temporal logics have been proposed resulting
in Temporal Description Logics [1,5]. In this paper, we describe cellular automata
using the Temporal DL LTLALCO, which is a combination of Linear-time Tem-
poral Logic (LTL) [6] and the basic DL ALC extended with nominals [2]. The
idea is to use the standard reasoning tasks in this logic such as subsumption and
satisfiability checking w.r.t. a knowledge base to derive properties of the evolu-
tion of the cellular automaton. In particular, we aim at describing and verifying
emergent properties such as oscillation and drift.

Expressive Temporal DLs tend to exhibit high worst-case reasoning complex-
ity [5]. However, it remains to be seen whether reasoning in practice is actually
unfeasible. An alternative to using expressive logics is to design a Temporal DL
that is expressive enough to enable us to specify interesting queries on cellular
automata while, at the same time, allowing for efficient reasoning. Finding the
right balance between expressivity and computational complexity is at the core
of research in DL.

2 Cellular Automata

We consider two-dimensional synchronous cellular automata that are based on
a regular rectangular finite lattice.

Definition 1. A 2-D finite regular cellular automaton is a tuple Λ = 〈S, n, f〉
where S is a finite set of states, n ∈ N is the diameter of the automaton, and
f : Sk×k → S is the local transition function, where k ≤ n is an odd number. �

We refer to 2-D finite regular cellular automata simply as CA, and we refer to
matrix coordinates as cells.

Definition 2. A configuration of the CA Λ is a matrix C ∈ Sn×n. Let m = k−1
2

and � = n + 2m. A boundary condition for Λ is an operator ∗ : Sn×n → S�×�

such that for all C ∈ Sn×n and all (i, j) ∈ {1, ..., n}2, C∗[i+m, j+m] = C[i, j].
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Fig. 1. The temporal realization for the execution triplet (Λ1, ∗, C0)

Given a boundary condition ∗, a configuration C and a cell (x, y) ∈ {1, ..., n}2,
the neighborhood of (x, y) w.r.t. (Λ,C∗) is N(x,y),C∗ ∈ Sk×k with

N(x,y),C∗[i, j] = C∗[i+ (x− 1), j + (y − 1)].

A function F : Sn×n → Sn×n is the global transition function of Λ w.r.t. ∗ if
for all C ∈ Sn×n it holds that F (C)[i, j] = f(N(i,j),C∗). The infinite sequence
C=(C0, C1, C2, ...) where Ci ∈ Sn×n and Ci = F (Ci−1) for all i ∈ N is the
temporal realization of the automaton, with C0 as its initial configuration. �

Since a temporal realization is uniquely determined by a cellular automaton
Λ, a boundary condition ∗ and an initial configuration C0, we denote it with
C(Λ, ∗, C0). Moreover, we refer to (Λ, ∗, C0) as execution triplet.

Example 3. Let R = R1 ∪R2, where

R1 =

{⎛
⎝x1 x2 x3

0 1 0
x4 x5 x6

⎞
⎠

∣∣∣∣∣xi ∈ Z2 for i ∈ {1, ..., 6}
}
, and

R2 =

{⎛
⎝x1 x2 x3

x4 0 x5

x6 x7 x8

⎞
⎠

∣∣∣∣∣xi ∈ Z2 for i ∈ {1, ..., 8}, x2 = 1 or x7 = 1

}
.

Consider Λ1 = 〈Z2, 4, f〉 with f : Z3×3
2 → Z2 given by

f(N) =

{
1 if N ∈ R
0 if N /∈ R,

the boundary condition ∗ : Z4×4
2 → Z

6×6
2 where C∗[i, j] = 0 holds for every

(i, j) ∈ {1, . . . , 6}2 \ {2, 3, 4, 5}2, and the initial configuration

C0 =

⎛
⎜⎜⎝

0 0 0 0
1 0 1 0
0 0 0 0
0 1 0 1

⎞
⎟⎟⎠ .

Figure 1 provides a graphical representation of the temporal realization of this
CA. After the fourth step, the configuration cycles back to the third configura-
tion, i.e. C4 = C3. This means that the remainder of the temporal realization
cycles between two global states. This property is called a global oscillation (of
period 2). �
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We formally define some characteristic emergent properties of cellular automata.

Definition 4. Let Λ be a CA. The temporal realization C(Λ, ∗, C0) results in a
global oscillation of period τ > 0 if there exists a t0 ∈ N such that for every
t1 ≥ t0, Ct1 = Ct1+τ . We call the smallest such t0 the starting moment of the
global oscillation. �

Every temporal realization of a CA Λ results in a global oscillation of some
period. The total number of configurations of Λ = 〈S, n, f〉 is |S|n2

. Since every
configuration of Λ has a unique successor, the starting moment t0 of the global
oscillation of a temporal realization satisfies t0 < |S|n2

.

Definition 5. Let Λ be a CA. The temporal realization C(Λ, ∗, C0) leads to a
fixed point if it results in a global oscillation of period 1. C(Λ, ∗, C0) yields
a phase transition if it leads to a fixed point with starting moment t0, where
Ct0 [i, j] = Ct0 [i

′, j′] for all (i, j), (i′, j′) ∈ {1, ..., n}2. �

We now discuss oscillating patterns that appear only at a part of the grid. We use
the notion of a block element of a matrix, which is a connected submatrix. LetM
be an n×nmatrix. An s1×s2 matrixM0, for s1, s2 ≤ n, is a block element ofM if
there is a tuple (x, y, s1, s2) ∈ {1, ..., n}4 such thatM0[i, j] = M [x−1+i, y−1+j]
for all (i, j) ∈ {1, ..., s1} × {1, ..., s2}. The tuple (x, y, s1, s2) denotes the block
coordinates of M0 in M , and C(x, y, s1, s2) denotes the block element of the
matrix C with block coordinates (x, y, s1, s2). Note that x and y describe the
position of the block element, while s1 and s2 refer to the size of the block
element. We also represent the tuple (x, y, s1, s2) with two vectors x = 〈x, y〉,
s = 〈s1, s2〉, and we write C(x, s).

Definition 6. The temporal realization C(Λ, ∗, C0) results in a localized oscil-
lation of period τ if there exist a t0 ∈ N and block coordinates (x, y, s1, s2) such
that for every t1 ≥ t0, it holds that Ct1(x, y, s1, s2) = Ct1+τ (x, y, s1, s2). �

We also consider the drifting of a particle during a temporal realization of a CA,
where by particle we mean a structure of oscillating size and shape. To this end,
we require the additional notions of velocity, trajectory and size oscillation. A
velocity function with period τ is a function v : N → Z

2 such that v(t+τ) = v(t)
for all t ∈ N. If v is a velocity function of period τ , given an initial position
x0 ∈ N

2, a function g : N → Z
2 with g(0) = x0 and g(t) = x0 +

∑t−1
κ=0 v(κ) for

t > 0, is called a drifting trajectory. A size oscillation of period τ is a function
s : N → N

2 such that s(t+ τ) = s(t) for all t ∈ N.

Definition 7. Let Λ be a CA. The temporal realization C(Λ, ∗, C0) exhibits a
drift of period τ for t ≥ τ time steps if there exist a t0 ∈ N, a drifting trajectory
g and a size oscillation s such that for every t1 ∈ N with t0 ≤ t1 < t0 + t− τ , it
holds that C∗

t1

(
g(t1 − t0), s(t1 − t0)

)
= C∗

t1+τ

(
g(t1 − t0 + τ), s(t1 − t0 + τ)

)
. �
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3 Temporal Description Logic

We use LTLALCO to describe CA. As we will see, there is a clear and strong
correlation between a certain class of knowledge bases defined in this language,
and the cellular automata described in the previous section.

Let NC , NR and NI be mutually disjoint sets of concept-, role- and individual
names, respectively. Concepts C in LTLALCO are built using the grammar rule:

C ::= � | A | {a} | ¬C | C �C | ∃r.C | ©C | C U C

where A ∈ NC , r ∈ NR, and a ∈ NI . The symbols � (“truth”), {a} (“nominal”),
¬ (“negation”), � (“conjunction”) and ∃ (“existential restriction”) are logical
operators of the Description Logic ALCO, whereas © (“next”) and U (“until”)
are temporal operators of the Temporal Logic LTL. We use the usual abbrevi-
ations ⊥ = ¬� (“falsehood”), C � D = ¬(¬C � ¬D) (“disjunction”), ∀r.C =
¬∃r.¬C (“universal restriction”), �C = �UC (“eventually”), and �C = ¬�¬C
(“always”).

An expression of the form C � D, where C and D are concepts, is called a
concept inclusion. A finite set of concept inclusions is a TBox. An expression of
the form C(a), where C is a concept and a ∈ NI , is called a concept assertion.
For r ∈ NR and a, b ∈ NI , an expression of the form r(a, b) is called a role
assertion, and �r(a, b) is a rigid role assertion. A finite set of concept and role
assertions is called an ABox. A pair K = (T ,A) consisting of an TBox T and
an ABox A is called a knowledge base.

We are interested in describing the evolution of a CA. In particular, we want
to describe how the states of its cells evolve over time. LTLALCO can naturally
express relevant properties of CAs, as it is illustrated by the following example.

Example 8. The fact that every cell eventually reaches a fixed point can be
expressed in LTLALCO using the concept inclusion

� � ��B ���¬B,

stating that every cell (�) is either (�) at some point in the future (�) going to
stay forever (�) black, or it will eventually remain forever white (¬B). On the
other hand, the property that no cell reaches a fixed point can be expressed as

� � ��B ���¬B.

To express that after t transitions, every cell has at least one neighbor that is
black we use

� � ©t∃rn.B,

where ©t indicates t steps and ∃rn.B the existence of a black neighbor. �

We want to use individual names to refer to the cells of a CA. As the set of cells
does not change over time, we use a fixed-domain semantics for LTLALCO. A
temporal interpretation is a pair I = (Δ, ·I), where Δ is a non-empty domain
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and ·I is a function that maps every a ∈ NI to aI ∈ Δ, under the unique
name assumption (i.e., no two individual names are mapped to the same domain
element); every A ∈ NC to AI ⊆ N×Δ, and every r ∈ NR to rI ⊆ N×Δ×Δ.
Then ·I is extended to concepts by setting �I = N×Δ, (¬C)I = (N×Δ) \CI ,
(C �D)I = CI ∩DI , {a}I = N× {aI},

(∃r.C)I ={(t, x) ∈ N×Δ | ∃y ∈ Δ. (t, x, y) ∈ rI ∧ (t, y) ∈ CI},
(©C)I ={(t, x) ∈ N×Δ | (t + 1, x ) ∈ CI}, and

(CUD)I ={(t , x ) | ∃t0 > t. (t0, x) ∈ DI ∧ ∀t′ : t ≤ t′ < t0. (t
′, x) ∈ CI}.

A temporal interpretation I satisfies a concept C if CI �= ∅; I satisfies a concept
inclusion C � D if CI ⊆ DI ; I satisfies a concept assertion C(a) if (0, aI) ∈ CI ,
a role assertion r(a, b) if (0, aI , bI) ∈ rI and a rigid role assertion �r(a, b) if
(t, aI , bI) ∈ rI , for every t ∈ N. We say that I is a model of a TBox T or
an ABox A if it satisfies every concept inclusion in T or every assertion in A,
respectively; and I is a model of a KB K = (T ,A) if I is a model of both, T
and A. If there is a model of a KB K that satisfies C, then C is satisfiable w.r.t.
K. If every model of K satisfies C � D, then C is subsumed by D w.r.t. K.

In the next section, we show a correspondence between CA as defined in Sec-
tion 2 and LTLALCO KBs describing them. To this end, we require the following
notion of isomorphism.

Definition 9. Two temporal interpretations I = (ΔI , ·I), J = (ΔJ , ·J ) are
isomorphic if there is a bijection h : ΔI → ΔJ , called isomorphism, such that
h(aI) = aJ for every a ∈ NI , and for all x, y ∈ ΔI , and t ∈ N, it holds that:

(a)
(
t, x

)
∈ AI iff

(
t, h(x)

)
∈ AJ , for every A ∈ NC; and

(b)
(
t, x, y

)
∈ rI iff

(
t, h(x), h(y)

)
∈ rJ , for every r ∈ NR. �

Lemma 10. If I and J are two isomorphic temporal interpretations, then:

(i) A concept C is satisfied by I iff C is satisfied by J ;
(ii) I satisfies C � D iff J satisfies C � D; and
(iii) I is a model for a TBox T , an ABox A or a KB K iff J is a model for T ,

A or K, respectively. �

4 Reasoning about CA with TDL

In the following, we focus on a specific class of CA. We use Z2 as the set of states
and a neighborhood of size 3×3. The boundary condition ∗ is such that for all
configurations C, C∗[i, j] = 0 for every (i, j) ∈ {1, ..., n + 2}2 \ {2, ..., n + 1}2,
where n is the diameter of the automaton. Hence, from now on, when referring
to a CA Λ we mean a tuple of the form 〈Z2, n, f〉, where f : Z3×3

2 → Z2. We use
the following signature to describe such a CA Λ:

NI =
{
axy | x, y ∈ {1, . . . , �}

}
,
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NC =
{
B
}
,

NR =
{
rr, rl, rd, ru

}
,

where � = n+2 is a parameter that depends on the diameter n of Λ. The intended
meaning of these symbols is as follows. The individual names in NI represent the
cells of the automaton, the concept name B states that a cell is black (formally,
its state is 1 ∈ Z2) and the four role names in NR represent the right, left, up and
down neighbors, respectively, as they are found in the neighborhood matrix. We
use a symbol for the bijection between Z2 and {B,¬B}. Let χ : {B,¬B} → Z2

with χ(B) = 1 and χ(¬B) = 0.
A neighborhood concept is a complex concept of the form, where Xi, for 1 ≤

i ≤ 9, ranges over {B,¬B}:
∃rl.∃ru.X1 � ∃ru.X2 � ∃rr.∃ru.X3 � ∃rl.X4 �X5 �

� ∃rr.X6 � ∃rl.∃rd.X7 � ∃rd.X8 � ∃rr.∃rd.X9.

We denote such concepts as N(M) where M =

(
χ(X1) χ(X2) χ(X3)
χ(X4) χ(X5) χ(X6)
χ(X7) χ(X8) χ(X9)

)
.

Definition 11. Let (Λ, ∗, C0) be an execution triplet. The knowledge base for
(Λ, ∗, C0) is defined as K(Λ,∗,C0) = (T(Λ,∗,C0),A(Λ,∗,C0)), where

T(Λ,∗,C0) =
{
N(M) � ©X | M ∈ Z

3×3
2 , X = χ−1

(
f(M)

)}
∪{

� �
{
aij | i, j ∈ {1, . . . , �}

}}
,

A(Λ,∗,C0) =
{
�rr(axy, azw) | x, y, z, w ∈ {1, . . . , �}, x = z, w = y + 1

}
∪{

�rl(axy, azw) | x, y, z, w ∈ {1, . . . , �}, x = z, w = y − 1
}
∪{

�rd(axy, azw) | x, y, z, w ∈ {1, . . . , �}, y = w, z = x+ 1
}
∪{

�ru(axy, azw) | x, y, z, w ∈ {1, . . . , �}, y = w, z = x− 1
}
∪{

(�∀r .⊥)(a) | r ∈ NR,�r(a, b) /∈ A1, a, b ∈ NI

}
∪{

X(aij) | i, j ∈ {2, . . . , �− 1}, X = χ−1(C0[i− 1, j − 1])
}
∪{

�¬B(aij) | (i, j) ∈ {1, . . . , �}2 \ {2, . . . , �− 1}2
}
. �

We show below that there is a one-to-one correspondence between the knowledge
base for (Λ, ∗, C0) and the temporal realization of this execution triplet. To this
end, we employ the notion of a canonical interpretation defined as follows.

Definition 12. The canonical interpretation for the execution triplet (Λ, ∗, C0)
is defined as J = (ΔJ , ·J ), where ΔJ = {1, . . . , �}2, BJ = {(t , (i, j)) | C∗

t [i, j] =
1}, aijJ = (i, j) for every aij ∈ NI , and

rr
J = {(t, (x, y), (z, w)) | t ∈ N, x = z, w = y + 1},

rl
J = {(t, (x, y), (z, w)) | t ∈ N, x = z, w = y − 1},

rd
J = {(t, (x, y), (z, w)) | t ∈ N, y = w, z = x+ 1},

ru
J = {(t, (x, y), (z, w)) | t ∈ N, y = w, z = x− 1}. �

First we show that this canonical interpretation is the unique model of
K(Λ,∗,C0), up to isomorphism.
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Lemma 13. Let (Λ, ∗, C0) be an execution triplet. The canonical interpretation
J is a model of K(Λ,∗,C0), and every model of K(Λ,∗,C0) is isomorphic to J . �

We now show how to decide the existence of emergent properties in CA through
standard reasoning in LTLALCO. We use the following notation: ©1 := © and
©n+1 := ©©n, (∃r)1 := ∃r and (∃r)n+1 := ∃r.(∃r)n, for all n ∈ N. In addition,
for any concept C, we set (∃r)0.C := C and ©0C := C.

Proposition 14. Let Λ be a CA. The temporal realization C(Λ, ∗, C0) results
in a global oscillation of period τ iff � is subsumed by ��

(
(B �©τB) � (¬B �

©τ¬B)
)
w.r.t. K(Λ,∗,C0). �

Corollary 15. The temporal realization C(Λ, ∗, C0) yields a fixed point iff � is
subsumed by ��

(
(B �©B)�(¬B�©¬B)

)
w.r.t. K(Λ,∗,C0). C(Λ, ∗, C0) yields a

phase transition iff � is subsumed by either ��(B �©B) or by ��(¬B �©¬B)
w.r.t. K(Λ,∗,C0). �

The complex concept Dτ =
(
(B �©τB) � (¬B �©τ¬B)

)
for arbitrary τ ∈ N

will be used to model local oscillation. We call it individual τ-repetition. We
can then define the concept of (i, j)-sized τ-repetition inductively: D1×1

τ = Dτ ,

D
(i+1)×1
τ = Di×1

τ � (∃rd)i.Dτ and D
i×(j+1)
τ = Di×j

τ � (∃rr)j .Di×1
τ .

Proposition 16. Let Λ be a CA and C(Λ, ∗, C0) be a temporal realization.
C(Λ, ∗, C0) results in local oscillation of period τ iff K(Λ,∗,C0) satisfies

�
⊔

(i,j)∈{1,...,n}2

�Di×j
τ

�

Let r = (r1, r2, ..., rn) be a finite sequence of role symbols. We call r a composite
role and we abbreviate with ∃r the syntactic entity of the form ∃r1.∃r2 . . . ∃rn.
Let n = |r| be the length of r. We consider the empty sequence as a composite role
of length 0. To model the drift property we use the complex conceptDτ,r =

(
(B�

©τ∃r.B) � (¬B �©τ∃r.¬B)
)
where r is a composite role and τ ∈ N. We call it

individual r-drifting τ-repetition. The concept of (i, j)-sized r-drifting τ-repetition

is then defined inductively: D1×1
τ,r = Dτ,r, D

(i+1)×1
τ,r = Di×1

τ,r � (∃rd)i.D1×1
τ,r and

D
i×(j+1)
τ,r = Di×j

τ,r � (∃rr)j .Di×1
τ,r .

Proposition 17. Let Λ be a CA. The temporal realization C(Λ, ∗, C0) exhibits
a drift of period τ for t time steps iff K(Λ,∗,C0) satisfies

�
⊔

|r|<n2

τ−1�

t1=0

⊔
|p|<n2

( ⊔
(i,j)∈{1,...,n}2

( μ�

t2=0

©t1+t2τ (∃r)t2 .∃p.Di×j
τ,r

))

where p and r are composite roles and μ =
⌊
t−t1
τ

⌋
. �
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The study of combinations of Temporal Logics and Description Logics has
a long history. In particular, the combination of the basic DL ALC with LTL,
and some of their extensions, has been studied in [3,10]. For these logics, it has
been shown that all the standard reasoning problems, such as satisfiability and
subsumption between concepts, are ExpSpace-complete. For our reductions,
we have included two kinds of additional expressivity into our temporal DL:
nominals and rigid role assertions.

At first sight, the use of rigid role assertions may seem problematic. Indeed, it
is known that reasoning in LTLALC w.r.t. TBoxes is undecidable whenever rigid
roles are allowed; even if no TBox is used, the problem is still non-elementary [3].
However, in our case, the rigidness of a role is limited to the few named indi-
viduals that describe the cells of the automaton. Indeed, the rigid role assertion
�r(a, b) is merely a syntactic variant of the concept inclusion {a} � ∃r.{b}. The
only remaining question is the cost of including nominals into our formalism.

To the best of our knowledge, the precise complexity of reasoning in LTLALCO
has never been settled. While we provide no formal proof for this, we conjec-
ture that reasoning in LTLALCO should not be harder than for LTLALC , i.e.,
it should remain ExpSpace-complete. This conjecture is supported by the fact
that typically nominals do not increase the complexity of reasoning in description
logics. Moreover, at this high complexity, it is possible to guess exponentially
large structures without leaving the complexity class. Unfortunately, for practi-
cal matters, the efficiency of reasoning algorithms is typically negatively affected
by the amount of nominals used. Whether this is indeed an issue in our case and
whether it can be improved upon remains a topic for future work.

5 Conclusions

We have proposed to describe cellular automata using a Temporal Description
Logic. Queries about the temporal evolution of a cellular automaton can then
be formulated as reasoning tasks in this logic. In particular, we have described
the emergent properties of global oscillation, local oscillation, and drift in the
Temporal DL LTLALCO. We have shown that verifying these properties w.r.t. a
cellular automaton can be formulated as subsumption and satisfiability checking
problems in that logic (cf. Propositions 14, 16 and 17).

There are also other relevant properties of a cellular automaton that would
be interesting to describe and verify, which require to define different reasoning
tasks for the Temporal DL. For instance, properties of the local transition rules
that hold for all initial conditions, or derive the set of initial conditions that lead
to a given configuration.

The study of computational complexity of the reasoning tasks can possibly
help to further classify cellular automata in terms of the types of queries that
can be answered within certain resource bounds. For future work, it would be
interesting to analyze in detail the computational complexity of LTLALCO, and
also to find other logics that possibly offer a better compromise between expres-
sivity and computational complexity. It is also important to check whether the
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full expressivity of LTLALCO is needed for expressing the class of CA that we
consider, and whether the same results can be achieved using fewer or different
logical operators.

An interesting potential application could be the prediction of catastrophic
events, here regarded as emergent behavior, in multi-component dynamic sys-
tems. To illustrate our perspective, electronic malfunctions can emerge from
micro-circuit interactions. Typically, CA can be used to model such systems.
Monitoring is the golden standard for identifying potential malfunctions. Our
envisaged logic-based language, combined with system monitoring, could iden-
tify signatures in the CA rules and improve the predictability of such catastrophic
events.

Another prospective application motivated by Temporal DL reasoning on cel-
lular automata could be in clinical praxis. In particular, cardiograms or en-
cephalograms provide a short-time observation of hearts or brains, respectively.
Extensions of our methodology could potentially extract essential properties of
that system and the reasoner could provide a prediction of dangerous emergent
behaviour such as heart attacks or epileptic seizures.
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