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Abstract. This paper studies a special class of non-uniform cellular au-
tomata (CAs) that contain only single length cycle (point) attractors in
their state space. These CAs always converge to some point attractors. A
number of theorems and lemmas are reported in this paper to character-
ize this class of CAs. Reachability tree, a discrete tool for characterizing
1-d CA, has been utilized to develop theories for these types of CAs.
We finally report an algorithm that synthesizes a non-uniform cellular
automaton having only point attractors.

Keywords: Single length cycle attractor (point attractor), multi state
attractor, reachability tree, cyclic states.

1 Introduction

Synthesis of a non-uniform cellular automaton (CA) refers to a process that
selects individual rules for cells. Aim of this paper is to synthesize a non-uniform
CA that always converges to some point attractors. The boundary condition is
assumed here as null. This type of CAs attracted the researchers due to their
utility in several applications, like pattern classification and recognition [1,6,3],
design of associative memory, etc. [4].

However, to ensure that the CA will always converge to point attractors,
we have to explore the state space of the CA to see whether it contains any
multi-length cycle attractor. To efficiently synthesize our required CA, we first
characterize them. An introductory characterization has already been reported
in [5]. We use reachability tree [2], a mathematical tool, in our characterization.
The tool is further utilized to develop synthesis algorithm.
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Table 1. The rules 5, 73, 200 and 80

Present state : 111 110 101 100 011 010 001 000 Rule
(RMT ) (7) (6) (5) (4) (3) (2) (1) (0)

(i) Next state : 0 0 0 0 0 1 0 1 5
(ii) Next state : 0 1 0 0 1 0 0 1 73
(iii) Next state : 1 1 0 0 1 0 0 0 200
(iv) Next state : 0 1 0 1 0 0 0 0 80

0  1  1  0

0  1  1   1 1  0   1   1

0  1   0   0

0  1   0   1

 1  1   0   0

0  0  0  1 

0  0   0   0

1  0   0   0

1  0   0  1

0   0  1  0

1   1   0  1

1  0  1   0 1 1  1   01  1   1  1

0   0  1  1

Fig. 1. State Transition Diagram of CA 〈5, 73, 200, 80〉

2 Preliminaries

The cellular automata (CAs) we consider here are the elementary cellular au-
tomata that use null boundary condition. The next state functions of these CAs,
known as ‘rule’ [7], are commonly represented through a tabular form (Table 1).
The first row of the Table 1 lists the possible 8 combinations of the present
states of left, self and right neighbor of a cell. The last four rows indicate the
next states of the cell for the rules 5, 73, 200 and 80 respectively.

Traditionally, the cells of an automaton follow same rule. Such a CA is uniform
CA. In a non-uniform CA, the cells may follow different rules. We refer a rule
vector R = 〈R0, · · ·Ri, · · · Rn−1〉 for an n-cell non-uniform CA, where the cell
i follows Ri. Obviously, uniform CAs are special case of non-uniform CAs.

The first row of Table 1 notes the combinations of the present states of three
neighbors. Borrowing vocabulary from Switching Theory, we refer each combi-
nation as a Rule Min Term (RMT) [2]. Here we introduce a set Zi

8 that contains
the valid RMTs of Ri. That is, Z

i
8 = {k | RMT k of Ri is valid}. Since we have

8 RMTs (Table 1), generally |Zi
8| = 8.

The state transition diagram (see Fig. 1) of an automaton may contain cyclic
and acyclic states. The states 0000, 1100, 0100, 1000, 0111 and 1011 are the cyclic
states, and they form attractors. The 0000, 1100 and 0100 form an attractor of
length 3, whereas the rest three states form three attractors of length 1 (point
attractors). In this work, we put our attention on those CA which contain only
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Table 2. Relationship between ith and (i+ 1)th RMTs

ith RMT (i+ 1)th RMTs

0, 4 0, 1
1, 5 2, 3
2, 6 4, 5
3, 7 6, 7

point attractors. However, the acyclic states can be of two types - reachable and
non-reachable. A state is reachable if it has at least one predecessor. The acyclic
states 1001 and 0011 are reachable, whereas the 0010, 1010, 0110, 1111 (Fig. 1)
are non-reachable.

A CA state can also be viewed as a sequence of RMTs. For example, the state
1110 in null boundary condition can be viewed as 〈3764〉, where 3, 7, 6 and 4
are corresponding RMTs on which the transition of first, second, third and forth
cells can be made. For an n-bit state, we get a sequence of n RMTs. However,
two consecutive RMTs in an RMT sequence (RS) are related [2]. The relation is
noted in Table 2. We call two RMTs r and s (r �= s) equivalent to each other if 2r
(mod 8) = 2s (mod 8). Therefore, RMTs 0 and 4 are equivalent to each other.
Similarly, RMTs 1 and 5, RMTs 2 and 6, and RMTs 3 and 7 are equivalent to
each other.

3 Reachability Tree (RT) and State Transition

Definition 1. Reachability tree for an n-cell cellular automaton under null
boundary condition is a rooted and edge-labeled binary tree with n + 1 levels,
where Ei.2j = (Ni.j , Ni+1.2j , li.2j) and Ei.2j+1 = (Ni.j , Ni+1.2j+1, li.2j+1) are the
edges between nodes Ni.j ⊆ Zi

8 and Ni+1.2j ⊆ Zi+1
8 with label li.2j ⊆ Ni.j, and

between nodes Ni.j and Ni+1.2j+1 ⊆ Zi+1
8 with label li.2j+1 ⊆ Ni.j respectively

(0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1). Following relations are maintained in the tree:

1. li.2j ∪ li.2j+1 = Ni.j

2. ∀r ∈ li.2j (resp. ∀r ∈ li.2j+1), RMT r of Ri is 0 (resp. 1) and RMTs 2r
(mod 8) and 2r + 1 (mod 8) of Ri+1 are in Ni+1.2j (resp. Ni+1.2j+1)

3.
⋃

0≤j≤2i−1 Ni.j = Zi
8, (0 ≤ i ≤ n− 1)

Fig. 2 shows the reachability tree for the CA of Fig. 1. Under the null boundary
condition, only 4 RMTs are valid for left most and right most cells, and Z0

8 =
{0, 1, 2, 3} and Z3

8 = {0, 2, 4, 6}. Hence, the root N0.0 = Z0
8 . The label of edge

E0.0 is {1, 3}, as RMTs 1 and 3 of rule 5 are 0. We write RMTs of a label on the
edge within a bracket. However, the label of edge E2.7 is empty, that is l2.7 = φ.
This edge is non-reachable. Fig. 2 marks such nodes as black. Since Zn

8 = φ for
an n-cell CA, the leaf nodes are empty. Number of leaves (excluding black leaves
as they don’t exit) is 8, which is the number of reachable states. We call edge
Ei.2j as 0-edge and Ei.2j+1 as 1-edge where 0 ≤ j ≤ 2i − 1. A sequence of edges
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0, 1, 2, 3

(0, 2)(1, 3)

0, 1, 4, 52, 3, 6, 7

(1, 4, 5) (0)(2 ,7) (3, 6)

0, 1 , 2, 3 0, 1

(0, 1, 2)(6, 7)(4, 5) (0, 1)( 3)

0, 2 4, 6 60, 2 0, 2

(0,2) (0, 2)(6)

N2.1 N2.6

4, 5, 6, 7 4, 5, 6, 7

(6, 7)(4, 5)

4, 6 0, 2, 4

(4)(0, 2)(4, 6) (0, 2) (4, 6)

E0.0 E0.1

N0.0

E3.0

E3.4

E3.12

E1.1

E1.3

E2.1
E2.2

E2.6 E2.7

Fig. 2. Reachability Tree of CA 〈5, 73, 200, 80〉. The links are also shown.

from the root to a leaf node represents a reachable state, when 0-edge and 1-edge
are replaced by 0 and 1 respectively. For example, 0011 is a reachable state in
Fig. 2. On the other hand, the states 1110 and 1111 are non-reachable.

Reachability tree gives us information about reachable states. A sequence of
edges 〈E0.j0E1.j1 · · ·Ei.jiEi+1.ji+1 · · ·En−1.jn−1〉 from root to a leaf associates a
reachable state and at least one RS 〈r0r1 · · · riri+1 · · · rn−1〉, where ri ∈ li.ji and
ri+1 ∈ li+1.ji+1 (0 ≤ i < n−1, 0 ≤ ji ≤ 2i−1, and ji+1 = 2ji or 2ji+1). That is,
the sequence of edges represents at least two CA states. Note that if RMT ri is 0
(resp. 1) then Ei.ji is 0-edge (resp. 1-edge). Therefore, the reachable state is the
next (resp. present) state of the state (resp. predecessor), represented as RMT
sequence. Interestingly, there are 2n RSs in the tree, but number of reachable
states may be less than 2n. However, a sequence of edges may associate m-
number of RSs (m ≥ 1), which implies, this state is reachable from m-number
of different states.

Since the RSs and the states, both of an automaton can be traced in the
tree, which RS corresponds to what state can be identified. To identify this
correspondence, we form links among edges. The links are formed for each RMT
r ∈ li.j , present on edge Ei.j (0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1). By the processing
of reachability tree, we find the links among the edges for each individual RMT
on the tree. The links are formed depending on whether the RMTs are self
replicating (defined below) or not.

Definition 2. An RMT x0y (resp. x1y) is said to be self replicating if RMT
x0y (resp. x1y) is 0 (resp. 1).

For example, RMT 2 (010) of rule 5 is self replicating, whereas all the RMTs
except RMT 2 of rule 200 are self replicating (see Table 1). If an RMT r ∈ li.j
is not self replicating, then there is a link from the edge Ei.j to Ei.k (j �= k).
Depending on the values of j and k, we can classify the links in the following
way: forward link (when j < k), backward link (when j > k) and self link (when
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j = k). The rules, followed to form links in a reachability tree, are noted below:

1) If RMT r ∈ l0.j is self replicating (j = 0 or 1),
The edge E0.j is self linked for RMT r.

Otherwise, if j = 0,
there is a forward link from E0.0 to E0.1 for RMT r;

else, there is a backward link from E0.1 to E0.0 for RMT r.

2) If Ei−1.j is self linked for RMT r ∈ li−1.j ,
and if s is self replicating
where s ∈ li.2j (resp. s ∈ li.2j+1) is 2r (mod 8) or 2r + 1 (mod 8),

then Ei.2j (resp. Ei.2j+1) is self linked.
But if s is not self replicating,

then there is a forward link from Ei.2j to Ei.2j+1 (resp. backward link
from Ei.2j+1 to Ei.2j).

3) If there is a link from Ei−1.j to Ei−1.k (j �= k) for RMT r ∈ li−1.j ,
and s ∈ li.2j (resp. s ∈ li.2j+1) is 2r (mod 8) or 2r + 1 (mod 8),

then there is a link from Ei.2j (resp. Ei.2j+1) to Ei.2k while s ∈ {0, 1, 4, 5}
or to Ei.2k+1 while s ∈ {2, 3, 6, 7}.

[It is forward link if j < k, backward link if j > k]

Example 1. We apply the above rules on each RMT of each edge to get the
links in the tree. Fig. 2 shows the links of edges caused by RMTs of the CA
〈5, 73, 200, 80〉. There is a (forward) link from E0.0 to E0.1 for RMT 3 (form-
ing links using rule 5), so a dotted line is drawn from RMT 3 of E0.0 to E0.1.
Now, we get a forward link from E1.1 to E1.3 for RMT 6 (forming links using
rule 73). However, no lines are shown in Fig. 2 for RMTs involved in self links.
Now, we can get links from E2.2 to E2.6 for RMT 4 (forming links using rule
200), and from E3.4 to E3.12 for RMT 0 (forming links using rule 80). Therefore,
for the RS 〈3640〉, we can get a sequence of links, hence a sequence of edges
〈E0.1E1.3E2.6E3.12〉, which points to 1100. Note that the RS 〈3640〉 corresponds
to the state 1100. The sequence 〈E0.0E1.1E2.2E3.4〉 associates the state 0100, as
well as the RS 〈3640〉. The RS 〈3640〉, hence the state 1100, is the predeces-
sor of the state 0100. See Fig. 1 for verification. Therefore, the links establish
relationships among the states.

Lemma 1. There exist only two links to Ei.j, for any j,from Ei.k and from Ei.l

when 0 ≤ i ≤ n − 1, and only one link to Ei.j from Ei.m when i = n − 1 in a
reachability tree (0 ≤ k, l,m ≤ 2i − 1).

As an example, edge E0.0 of Fig. 2 has only two links, one from E0.0 for RMT
1 (self link) and another from E0.1 for RMT 0 (backward link). Same is true for
E0.1 for RMTs 2 and 3. In the next level, each edge has two links for two RMTs.
To E1.0 link from E1.3 (for RMT 0) and E1.2 (for RMT 1), to E1.1 link from
E1.0 (for RMT 2) and E1.1 (for RMT 3). In the leaf, however E3.0 has only one
link from E3.12 for RMT 0.
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Cross link: Applying the following rules of links, we can get a forward (or
backward) link, like Ei.j1(r1) → Ei.j2 (r2) → · · · → Ei.jq−1 (rq−1) → Ei.jq . Now,
for some values of i (0 ≤ i ≤ n − 1), we may find forward links and backward
links which combined form a loop. That is, a cycle of links like Ei.j1(r1) → · · · →
Ei.jq (rq) → · · · → Ei.jm(rm) → Ei.j1 can be observed. We refer this link as cross
link. We define the length of a cross link as the number of RMTs involved in the
link (here, it is m).

Example 2. Let us consider Fig. 2 for the CA 〈5, 73, 200, 80〉. We get a cross link:
E0.0(2) → E0.1(1) → E0.0. It is noticed that at each level of Fig. 2, a cross link
exists. Finally we get a cross link among E3.js: E3.0(0) → E3.4(0) → E3.12(0) →
E3.0 (Fig. 2). Length of the cross link is 3, and it can be noted that length of
multi state attractor of the CA is also 3 (Fig. 1).

From Example 2, we can see that the cross link plays an important role in
forming multi state attractors. In this part, we report some characteristics of
cross link which affect multi state attractors.

Theorem 1. An n-cell CA contains multi state attractor, if a cross link among
En−1.ks exists.

Example 3. There exists a cross link of length 3 in Fig. 2: E0.0(2) → E0.1(1) →
E0.0. Corresponding CA (Fig. 1) has a multi state attractor of length 3.

Theorem 2. An RMT r ∈ li.j can not be a part of a cycle, if the RMT is not
involved in a self link or cross link (0 ≤ i ≤ n− 1, 0 ≤ j ≤ 2i − 1).

Corollary 1. An n-cell CA contains m number of point attractors, if m number
of self-linked En−1.ks exist.

Example 4. According to Fig. 2, at leaf level there is 3 self linked at E3.7(6),
E3.8(0) and E3.11(6), and also from state transition diagram (Fig. 1) we can see
that there are three point attractors. Hence, only self links form point attractors
at leaf level.

Theorem 3. An n-cell CA contains at least one multi state attractor, if a set
of RMTs form cross link among the edges Ei.j1 , Ei.j2 , · · ·, Ei.jk where 0 ≤ jk ≤
2i − 1, and the edges are not involved in any self link.

Corollary 2. An n-cell CA contains at least one multi state attractor if a RMTs
r1, r2, · · · , rs of Ri form cross link among edges Ei.js and RMTs 2r1 (mod 8),
2r1 + 1 (mod 8), 2r2 (mod 8), 2r2 + 1 (mod 8), · · ·, 2rs (mod 8), 2rs + 1
(mod 8) also participate a cross link among Ei+1.ks.

Based on the theories developed, we next report the synthesis of non-uniform
CA that always converges to point attractors.
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4 Synthesis of CA Having only Point Attractors

In this section, we discuss the procedure of getting a rule vector R of a non-
uniform cellular automaton that contains only point attractors in its state space.
According to Theorem 1, Theorem 2 and Corollary 1, we can identify following
characteristics of reachability tree of an n-cell CA that contains only point at-
tractors.

1. There exists at least one self-linked edge En−1.k for any value of k.
2. There is no cross-link among the edges En−1.ks.

In the proposed synthesis scheme what we do is,
1. we first select R0, from root node of the reachability tree, get edges from the
root, identify links between edges following rule 1 of link formation, and get the
nodes of level 1,
2. then we select R1 and get the edges from the nodes and identify the links,
3. next we select R2 and repeat step 2, and so on. We finally get the tree and
then verify if En−1.ks contain only self links and no cross links.

4.1 Dealing with Self Link

It is obvious from the rules 1 and 2 of link formation that to get self linked edge
En−1.k for some k, there has to exist at least one self-linked edge Ei.k for any
value of k, where 0 ≤ i ≤ n − 1. To get the point attractors from reachability
tree, we allow only self link. If we only allow self link, like as rule 204, where
all the RMTs belongs to self link, then at leaf 2n nodes (for an n-cell CA) are
reachable and form 2n point attractors.

Generally for a n-cell CA (n > 2), we observe that many of the nodes carry
same property, as well as all the RMTs of the nodes are in self link. If we get two
or more nodes with same property at any level, then we can consider only one
for further processing. Two nodes are said to be sub-node of each other if all the
RMTs of one node are same or equivalent RMTs of another node. As an example,
in Fig. 3, N2.0 and N2.3 are sub-node of each other because the RMTs of N2.0

(N2.0 = {0, 1, 2, 3}) are same or equivalent ofN2.3 (N2.3 = {4, 5, 6, 7}). Therefore,
we only take one node for further processing. To maintain the characteristics (1),
we use following condition.

Condition 1. If RMTs r1, r2, · · · , rk of Ri participate in self links, then either
RMTs 2r1, 2r2, · · · , 2rk (mod 8) or RMTs 2r1+1, 2r2+1, · · · , 2rk+1 (mod 8)
of Ri+1 are self replicating.

4.2 Dealing with Cross Link

To maintain the characteristics (2), we can deal with only self links and do not
allow any cross link at any level. If we do not allow any cross link at intermediate
levels, then only self link can exist. Therefore we get the all attractors as a point
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0, 3 1, 2

0, 6 2, 4

2, 40 6

Fig. 3. Reachability tree 〈106, 220, 102, 96〉 with links

attractor, but its a trivial case and then we will get very limited number of CA.
So, we allow cross links at intermediate levels. But before the leaf level the cross
links have to be disappeared.

Lemma 2. If there is a cross link at level i of a reachability tree which trigger
cross links at level (i+ 1), level (i+ 2), level (i+ 3), then there always exists at
least one cross links at level j of the tree where 0 ≤ i ≤ n−1 and i+3 < j ≤ n−1.

Since we want to synthesize a CA that does not have any multi state attrac-
tors, we select Ri+1 such a way that the cross link of level i, if any, can not
trigger any cross link at level (i+ 3). To guarantee this, we select Ri+1 in such
a fashion that the RMTs of the rule follow Condition 2.

Condition 2. If RMTs r1 and r2 of Ri participate in a cross link at level i,
then RMTs 2r1 (mod 8) and 2r2 + 1 (mod 8) of Ri+1 are self replicating
(resp. non self replicating), and RMTs 2r1 + 1 (mod 8) and 2r2 (mod 8) of
Ri+1 are non self replicating (resp. self replicating).

4.3 The Weight

A RMT r (r ∈ li.j) may be involved in more than one link, whether the links
are forward or backward (part of cross link) or self. This situation comes, when
an edge li.j = {0, 4} where RMT 0 is self linked and RMT 4 makes a forward
link to Ei.k. Then li+1.2j or li+1.2j+1 contains RMTs 0 and 1 (as per Table 2).
So, RMT 0 or 1 comes twice (one from RMT 0 and one from RMT 4), whether
the link will be self (follow the link of RMT 0 of Ei.j) or forward (follow the link
of RMT 4 of Ei.j). As an example, in Fig. 2, the RMT 2 of E2.4 and RMT 3 of
E2.5 has two links.

To handle this situation, We introduce wr
i.j as the weight of RMT r ∈ li.j .

The weight wr
i.j is the total number of links from Ei.j to itself or to some other

edges for RMT r. If li.j = φ (for some j), the edge Ei.j is non-reachable. Now,
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for each s ∈ li.k, we decrease w
s
i.k by 1 if Ei.k(s) → Ei.j for any value of k. After

this decrement, if the weights of all RMTs of li.k have become 0, we consider
the edge as non-reachable. Note that ws

i.k can never be 0 if RMT s is involved
in a self or cross link. In here, we will not consider those RMTs (s ∈ li.j) which
weight is 0 (ws

i.j = 0). So, weight of an RMT may be more than one in some
cases. As an example, in Fig. 2, weight of all RMTs of l0.js and l1.js is 1. But
in l2.js, we find the RMTs which weight is 2 (w2

2.4 = w3
2.5 = 1), therefore those

RMTs have two links.

4.4 Algorithm

According to Theorem 2, only those RMTs can be part of cycle which participate
in cross link or make a self link. Therefore, we deal with only those RMTs which
either in self link or cross link. The algorithm deals with the labels of edges
and we do not form whole tree at a time. Rather we deal with two labels –
{li.0, li.1, · · · li.2i−1} and {li+1.0, li+1.1, · · · li+1.2i+1−1}. We proceed with only non-
empty labels, l0, l1, · · · and l′0, l′1, · · ·. Here, lj corresponds to the label of Ei.j

and l′k correspond to the label of Ei+1.ks (0 ≤ i ≤ n− 1). We report the desired
CA (rule vector) that only contain point attractors.

Algorithm 1. SynPointStateAttrCA
Input: n (CA size).
Output: 〈R0,R1, · · · ,Rn−1〉 (n-cell CA).
Step 1: Select R0 so that at least one RMT is self replicating. Put each valid
RMT r of R0 in l0 (resp. l1) if RMT r is 0 (resp. 1).
Step 2: For i = 1 to n− 1, repeat Step 3 to Step 11.
Step 3: If i equals to n− 1, then goto Step 9.
Step 4: Find and store 2r (mod 8) and 2r + 1 (mod 8) for all RMTs r, that
are self linked at (i− 1)th level and set RMTs at ith level using Condition 1.
Step 5:Check whether a cross link exists for any RMTs of ljs.

If exists, goto Step 7.
Otherwise, goto Step 6.

Step 6: Set all blank RMTs of Ri arbitrarily, goto Step 10 and discard all for-
ward and backward links.
Step 7: For each cross link at (i− 1)th level, set RMTs at ith level using Condi-
tion 2 and fill remaining blank RMTs of Ri arbitrarily.
Step 8: Check whether any overlapping situation occur for any RMT of Ri.

If exists, goto Step 9.
Otherwise, goto Step 10.

Step 9: Find a Ri, that discard all cross link.
Step 10: For each non-empty labels lk

Find l′2k and l′2k+1 so that, if r ∈ lk and s = 2r (mod 8) or 2r + 1
(mod 8), then s ∈ l′2k (resp. l′2k+1) when RMT s of Ri is 0 (resp. 1).
Step 11:Assign non-empty and unique l′j to lk so that the links among l′j for each
RMT is maintained.
Step 12:Report the CA 〈R0,R1, · · · ,Rn−1〉.
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Theorem 4. If cross links does not exist in ith level of Algorithm 1, then at ith

level maximum number of self linked edges is 4 (0 ≤ i ≤ n− 1).

Corollary 3. Complexity of Algorithm 1 is O(n).

Proof. The complexity of the algorithm depends on n only (Step 2). We set rules
within Step 4 to Step 8. In Step 4 we set Rule Ri for i

th level depending on self
link of (i−1)th. Step 5 checks existence of cross link. If cross link does not occur,
then according to Theorem 4, there are maximum 4 unique edge. So, at the leaf
level we can get maximum 4 unique edge (because in leaf level, there is no cross
link). Therefore, complexity of the algorithm is O(n).

Example 5. Let us consider the synthesis of a 4-cell CA. First, we select 102
as R0 randomly which has at least one self replicating RMT (RMTs 0 and 3
are self replicating). One cross link is formed between E0.0 and E0.1 [E0.0(2)
→ E0.1(1) → E0.0] (See Fig. 3 for verification). Now, using Step 4 and Step 7
rule 220 is selected as R1. In rule 220, most of the equivalent RMTs have same
values, therefore, there is no cross link among E1.js. Number of unique non-
empty set (node) is reduced to one. We now select rule 102 as R2 (using Step 4
and Step 6). Finally, we select rule 96 as R3 (using Step 9). Therefore, the CA
is 〈106, 220, 102, 96〉, which contains only point attractors (Fig. 3 has no cross
link at leaf level).
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