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Abstract. The principle of maximum entropy allows to define the se-
mantics of a knowledge base consisting of a set of probabilistic relational
conditionals by a unique model having maximum entropy. Using the con-
cept of a conditional structure of a world, we define the notion of weighted
conditional impacts and present a two-level approach for maximum en-
tropy model computation based on them. Once the weighted conditional
impact of a knowledge base has been determined, a generalized itera-
tive scaling algorithm is used that fully abstracts from concrete worlds.
The weighted conditional impact may be reused when only the quanti-
tative aspects of the knowledge base are changed. As a further extension
of previous work, also deterministic conditionals may be present in the
knowledge base, and a special treatment of such conditionals reduces the
problem size.

1 Introduction

When enriching propositional logic with probabilities for modeling uncertainty
(e.g. [15,18,4,9]), can play a vital role. Relational probabilistic conditionals are
useful for modeling uncertain knowledge in scenarios where relations among in-
dividual objects are important. For instance, given a set of connected personal
computers, stating that the probability that a malware infected PC sends a
message to another PC is 0.7 while for a non-infected PC it is only 0.1, could
be formally denoted by the conditionals (sendsMail (X,Y )|infected(X))[0.7] and
(sendsMail (X,Y )|¬infected(X))[0.1]. Having a knowledge base R consisting of
a set of such conditionals, there may be many different probability distribu-
tions satisfying them. The idea of the principle of maximum entropy (ME)
[20,17,10,11] is to select among all models the model adding as little information
as possible and thus being the most unbiased one. Recently, different approaches
to applying the ME principle not only to the propositional case, but also in a
relational first-order setting have been proposed [13,2]. In these approaches, ME
reasoning amounts to compute the probability of a formula F under the ME
model of R, and determining the ME model of a knowledge base is the most
crucial step for reasoning under ME semantics.

In this paper, we present AggME, a system that implements the ME model
computation for probabilistic relational conditionals under aggregating ME se-
mantics [13] which requires solving a complex optimization problem. In [5], a
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generalized iterative scaling (GIS) algorithm is proposed for this task. The ap-
proach implemented in AggME refines and extends the proposal of [5] in several
directions. While in [5] only non-deterministic conditionals are allowed,AggME
also treats deterministic conditionals having probability 0 or 1 which is required
in many application scenarios. While [5] uses conditional structures introduced
by Kern-Isberner [10] for defining equivalences of worlds, AggME extends the
use of conditional structures and introduces a two-phase ME computation. For
the first phase, an algorithm WCI is developed for computing what we call the
weighted conditional impact of R; this algorithm is based solely on the qualita-
tive parts of the conditionals in R. The second phase employs a GIS algorithm
GISγR

� that fully abstracts from worlds by just using the weighted conditional
impact and the probabilities given in the conditionals in R. The modular design
of AggME allows for an easy exchange of alternative computation methods
for both phases. It also supports the reuse of the weighted conditional impact
of R for a modified knowledge base R′ obtained from R by just changing the
probabilities of the conditionals, a situation that is quite common when devel-
oping a knowledge base. AggME is implemented in Java and is available as a
plugin for KReator1 [6], an integrated development environment for relational
probabilistic logic.

After briefly recalling the basics of aggregating semantics (Sec. 2), Sec. 3
addresses the treatment of deterministic conditionals under ME semantics. In
Sec. 4, weighted conditional impacts are defined and illustrated, leading to an
alternative formulation of the ME optimization problem solved by the AggME
algorithms presented in Sec. 5. Some examples and first evaluation results are
given in Sec. 6, and in Section 7 we conclude and point out further work.

2 Background

We consider a quantifier-free first-order language L over a set of predicates Pred
and a finite set of constants Const. For formulas A,B ∈ L, AB abbreviates
the conjunction A ∧ B, and gnd(A) denotes the set of ground instances of A.
By introducing the operator |, we obtain the language (L|L)prob of probabilistic
conditionals of the form (B(X)|A(X))[d] with X containing the variables of
the formulas A and B, and where d ∈ [0, 1] is a probability; (B(X)|�))[d] is a
probabilistic fact. The conditional is deterministic iff d = 0 or d = 1; otherwise,
it is non-deterministic. A finite set R ⊆ (L|L)prob is called a knowledge base. We
always implicitly consider R together with the respective sets Pred and Const.

H denotes the Herbrand base, i.e. the set containing all ground atoms over
Pred and Const, and Ω = P(H) is the set of all possible worlds (i. e. Herbrand
interpretations), where P is the power set operator. The probabilistic interpre-
tations for (L|L)prob are given by the set PΩ of all probability distributions
P : Ω → [0, 1] over possible worlds. P is extended to ground formulas A(a),
with A(a) ∈ gnd(A(X)), by defining P (A(a)) :=

∑
ω|=A(a) P (ω). The aggrega-

tion semantics [13] extends P to conditionals and resembles the definition of a

1 KReator and AggME can be found at http://kreator-ide.sourceforge.net/
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conditional probability by summing up the probabilities of all respective ground
formulas; it defines the satisfaction relation |=� for r = (B(X)|A(X))[d] by

P |=� r iff

∑

(B(a)|A(a))∈gnd(B(X)|A(X))

P (A(a)B(a))

∑

(B(a)|A(a))∈gnd(B(X)|A(X))

P (A(a))
= d (1)

Where
∑

(B(a)|A(a))∈gnd(B(X)|A(X)) P (A(a)) > 0. If P |=� r holds, we say that
P satisfies r or P is a model of r. P satisfies a set of conditionals R if it
satisfies every element of R, and Mod(R) := {P ∈ PΩ | P |=� R}. R is
consistent iff Mod(R) �= ∅. The entropy H(P ) := −∑

ω∈Ω P (ω) logP (ω) of
a probability distribution P measures the indifference within P . The principle
of maximum entropy (ME ) chooses the distribution P where H(P ) is maximal
among all distributions satisfying R [17,10]. The ME model P ∗

R for R based
on aggregation semantics is uniquely defined [13] by the solution of the convex
optimization problem

P ∗
R := arg max

P∈PΩ :P |=�R
H(P ) (2)

3 Null-Worlds and Maximum Entropy

For illustrating knowledge bases with relational probabilistic conditionals and as
a running example, we consider the following scenario:

Example 1 (Antivirus, Rvir). Suppose we want to model some knowledge about
virus infected computers (cf. Sec. 1): If an infected computer sends mail to
another computer without antivirus protection, the other computer is likely to
get infected (with probability 0.9). Computers with antivirus on very rarely get
infected (probability 0.01). Infected computers are likely to send email to any
computer (0.7), while uninfected computers do this only with probability 0.1.
Moreover, we know that in our scenario to be modeled, computers do not send
email to themselves. The following knowledge base Rvir represents this:

r1 : (infected(Y )|sendsMail (X,Y ) ∧ infected(X) ∧ ¬antiVirOn(Y ))[0.9]

r2 : (infected(X)|antiVirOn(X))[0.01]

r3 : (sendsMail (X,Y )|infected(X))[0.7]

r4 : (sendsMail (X,Y )|¬infected(X))[0.1]

r5 : (sendsMail (X,X)|�)[0.0]

Note that r5 is a deterministic conditional, and the presence of the determin-
istic conditionals prohibits applying the GIS algorithm approach of [5] directly
to Rvir. In the following, we will show how the restriction to nondeterministic
conditionals required in [5] can be removed. For the rest of this paper, we assume

R := R≈ ∪R=, R≈ := {r1, . . . , rm},
︸ ︷︷ ︸

m non-deterministic

R= := {rm+1, . . . , rm+M}
︸ ︷︷ ︸
M deterministic

(3)
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Where R is a consistent set consisting of m non-deterministic and M deter-
ministic conditionals. Furthermore, let R=0 := {ri ∈ R= | di = 0} and
R=1 := {ri ∈ R= | di = 1} denote the set of deterministic conditionals with
probability 0 and 1, respectively.

For a relational conditional ri = (Bi(X)|Ai(X))[di], the counting functions
(cf. [12] and also [5]) ver i, fal i : Ω → N0 are given by:

ver i(ω) :=
∣
∣
{
(Bi(a)|Ai(a)) ∈ gnd(Bi(X)|Ai(X)) | ω |= Ai(a)Bi(a)

}∣
∣ (4)

fal i(ω) :=
∣
∣
{
(Bi(a)|Ai(a)) ∈ gnd(Bi(X)|Ai(X)) | ω |= Ai(a)¬Bi(a)

}∣
∣ (5)

For a world ω ∈ Ω, ver i(ω) yields the number of ground instances of the qual-
itative part of ri which are verified by ω; and analogously, fal i(ω) yields the
number of ground instances of the qualitative part of ri which are falsified by
ω. In the following, when talking about a conditional, we will not distinguish
explicitly the qualitative part of a conditional and the conditional and we may
just drop the probability if the context is clear.

Example 2. Consider the five conditionals of Rvir from Example 1 together with
the set of constants Const = {a, b, c}. Then each of the conditionals r1, r3, and
r4 has nine ground instances and both r2 and r5 have three ground instances.
When abbreviating infected by in, antiVirOn by an, and sendsMail by se, these
ground instances are:

r1,1 : (in(a)|se(a, a) ∧ in(a) ∧ ¬an(a))
r1,2 : (in(a)|se(b, a) ∧ in(b) ∧ ¬an(a))
r1,3 : (in(a)|se(c, a) ∧ in(c) ∧ ¬an(a))
r1,4 : (in(b)|se(a, b) ∧ in(a) ∧ ¬an(b))
r1,5 : (in(b)|se(b, b) ∧ in(b) ∧ ¬an(b))
r1,6 : (in(b)|se(c, b) ∧ in(c) ∧ ¬an(b))
r1,7 : (in(c)|se(a, c) ∧ in(a) ∧ ¬an(c))
r1,8 : (in(c)|se(b, c) ∧ in(b) ∧ ¬an(c))
r1,9 : (in(c)|se(c, c) ∧ in(c) ∧ ¬an(c))

r3,1 : (se(a, a)|in(a))
r3,2 : (se(a, b)|in(a))
r3,3 : (se(a, c)|in(a))
r3,4 : (se(b, a)|in(b))
r3,5 : (se(b, b)|in(b))
r3,6 : (se(b, c)|in(b))
r3,7 : (se(c, a)|in(c))
r3,8 : (se(c, b)|in(c))
r3,9 : (se(c, c)|in(c))

r4,1 : (se(a, a)|¬in(a))
r4,2 : (se(a, b)|¬in(a))
r4,3 : (se(a, c)|¬in(a))
r4,4 : (se(b, a)|¬in(b))
r4,5 : (se(b, b)|¬in(b))
r4,6 : (se(b, c)|¬in(b))
r4,7 : (se(c, a)|¬in(c))
r4,8 : (se(c, b)|¬in(c))
r4,9 : (se(c, c)|¬in(c))

r2,1 : (in(a)|an(a))
r2,2 : (in(b)|an(b))
r2,3 : (in(c)|an(c))

r5,1 : (se(a, a)|�)
r5,2 : (se(b, b)|�)
r5,3 : (se(c, c)|�)

For the world ω′ = {in(a), in(b), an(c), se(a, c), se(b, c)}, we have

ω′ |= in(a) ∧ se(a, c) and ω′ |= in(a) ∧ ¬se(a, b)

Since in(a) ∈ ω′, se(a, c) ∈ ω′, and se(a, b) �∈ ω′. Thus, ω′ verifies the
ground instance r3,3 : (se(a, c)|in(a)), and ω′ falsifies the ground instance
r3,2 : (se(a, b)|in(a)). Overall, ω′ verifies two and falsifies four ground instances
of r3, i. e. ver 3(ω

′) = 2 and fal3(ω
′) = 4 holds.

For characterizing the behavior of P ∗
R on R≈ and R=, we employ the counting

functions (4) and (5).
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Definition 1 (Null-Worlds and Potentially Positive Worlds). The set

Ωnull(R) :=
{
ω ∈ Ω | (∃ri ∈ R=0 : ver i(ω) > 0

) ∨ (∃ri ∈ R=1 : fal i(ω) > 0
)}

is called the set of null-worlds with respect to R . The set of potentially positive
worlds with respect to R is given by Ωpos(R) := Ω \Ωnull(R).

Extending Paris’ open-mindedness principle [17], we can show:

Proposition 1 (Null-Worlds and ME). If P ∈ Mod(R), then P (ω) = 0 for
all ω ∈ Ωnull(R), and P ∗

R(ω) > 0 for all ω ∈ Ωpos(R).

Thus, for the ME model P ∗
R and for any null-world ω, P ∗

R(ω) = 0 holds, but
for every potentially positive world, P ∗

R yields a non-zero probability, i. e. the
worlds in Ωpos(R) are indeed positive under P ∗

R.

Example 3. For Rvir from Example 2 the world

ω′
0 = {an(b), in(c), se(a, a), se(b, c)}

Is a null-world, because ω′
0 verifies the ground instance r5,1 : (se(a, a)|�) of the

deterministic conditional r5, i. e. ver5(ω
′
0) > 0 holds. So every world containing

a ground atom se(a, a), se(b, b), or se(c, c) is a null-world due to r5. In fact,
28, 672 (= 7 · 212) of the 32, 768 (= 215) worlds contained in Ω are null-worlds,
i. e. there are merely 4, 096 (= 212) potentially positive worlds.

4 Weighted Conditional Impact

For propositional conditionals, the satisfaction relation can be expressed by using
feature functions (e. g. [7]). For a relational conditional ri = (Bi(X)|Ai(X))[di],
the feature function fi : Ω → R with

fi(ω) := ver i(ω)(1 − di)− fal i(ω)di (6)

given in [5] uses the counting functions (4), (5). While the satisfaction relation
(1) can be expressed using these feature functions by observing

P |=� ri iff
∑

ω∈Ω

P (ω)fi(ω) = 0, (7)

Here we will transform the fi so that they do not have to consider worlds any
more.

In [10], Kern-Isberner investigates the behavior of worlds with respect to
propositional conditionals and introduces the concept of conditional structure,
formalized as a product in a free Abelian group, of a world with respect to a
set of propositional conditionals. Kern-Isberner’s idea of a conditional structure
carries over to the relational case by employing the functions ver i, fal i counting
the number of verified and falsified ground instances [12]. In the following, we
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will employ the conditional structure of a world in a relational setting and ex-
tend it to the case where also deterministic conditionals may be present. Instead
of a free Abelian group notation as in [12], we will use a concrete representation
using ordered tuples of pairs of natural numbers as in [5] and call these tuples
conditional impact.

Definition 2 (Conditional Impact). Let R = R≈ ∪ R= be as in (3). The
conditional impact caused by a world ω is given by the function

γR : Ωpos(R) → (N0 × N0)
m

with

γR(ω) :=
((

ver 1 (ω) , fal1 (ω)
)
, . . . ,

(
verm (ω) , falm (ω)

))
(8)

Note that the conditional impact caused by a world does neither take any
deterministic conditionals nor any probabilities into account, i. e. it just considers
the logical part of non-deterministic conditionals in R.

Example 4. As in Example 2, consider again the world

ω′ = {in(a), in(b), an(c), se(a, c), se(b, c)}. (9)

Then γR(ω′) = ((0, 0), (0, 1), (2, 4), (0, 3)) holds, because ω′

– neither verifies nor falsifies any ground instances of r1,
i. e. ver1(ω

′) = 0, fal1(ω
′) = 0, and

– verifies none and falsifies one ground instance of r2,
i. e. ver2(ω

′) = 0, fal2(ω
′) = 1, and

– verifies two and falsifies four ground instances of r3,
i. e. ver3(ω

′) = 2, fal3(ω
′) = 4, and

– verifies none and falsifies three ground instances of r4,
i. e. ver4(ω

′) = 0, fal4(ω
′) = 3, .

So one can say that γR(ω′) indicates the conditional impact on ground instances
caused by the world ω′. Now consider the worlds

ω′′ = {in(b), in(c), an(a), se(b, a), se(c, a)} (10)

ω′′′ = {in(a), in(c), an(b), se(a, b), se(c, b)} (11)

Then determining the values of ver i and fal i for ω
′′ and ω′′′ reveals that all three

worlds have the same conditional impact

γ′ : = ((0, 0), (0, 1), (2, 4), (0, 3)) (12)

= γR(ω′) = γR(ω′′) = γR(ω′′′)

Since each of these worlds verifies and falsifies, respectively, the same number of
ground instances with respect to each conditional. Note that it does not matter
which concrete ground instances of a conditional are verified and falsified, but
just the numbers of verified and of falsified ground instances of a conditional
are relevant. For instance, each of the three worlds falsifies exactly one ground
instance of r2, i.e., ω

′ falsifies (in(c)|an(c)), ω′′ falsifies (in(a)|an(a)), and ω′′′

falsifies (in(b)|an(b)).
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We now fully abstract from worlds by introducing weighted conditional im-
pacts obtained from the images of γR and their preimage cardinalities.

Definition 3 (Weighted Conditional Impact). Let R = R≈∪R= as in (3).

– A tuple γ ∈ (N0 × N0)
m is a conditional impact of R iff there is a world ω

with γR(ω) = γ.
– For such a γ, wgt(γ) := |γ−1

R (γ)| is the weight of γ, and wgt is called the
weighting function of R.

– ΓR denotes the set of all conditional impacts of R.
– (ΓR,wgt) is called the weighted conditional impact of R.

Example 5. As in Example 4, consider again γ′ = ((0, 0), (0, 1), (2, 4), (0, 3)) as
given in (12). This tuple γ’ is a conditional impact of Rvir, i. e. γ

′ ∈ ΓR holds,
because for instance γR(ω′) = γ′ where ω′ is as in (9).

Overall, there exist 328 different conditional impacts of Rvir, i. e. the set ΓR
has 328 elements. However, the tuple

((0, 0), (3,2), (2, 4), (0, 3)) ∈ (N0 × N0)
m

(13)

Is not in ΓR. In fact, (13) cannot be a conditional impact of Rvir, because r2 has
only 3 ground instances and therefore it is not possible that both ver2(ω) = 3
and fal2(w) = 2 holds for any world ω ∈ Ωpos(R). Furthermore, also the tuple

((0, 0), (0, 1), (1,4), (0, 3)) ∈ (N0 × N0)
m (14)

Is not a conditional impact of Rvir either. Here, the reason is not as obvious as
it is for (13). A closer lock at the ground instances of r3 reveals that ver3(ω) +
fal3(w) ∈ {0, 3, 6, 9} must hold for every world ω ∈ Ωpos(R), since always three
ground instances of r3 share the same antecedence, implying that ver3(ω) +
fal3(w) must be a multiple of 3. Thus, (14) cannot be a conditional impact of
Rvir, since it cannot be caused by any world.

When determining the conditional impacts of Rvir caused by each world, it
becomes evident that apart from the three worlds ω′, ω′′, and ω′′′ given in (9),
(10), and (11), there is no other world ω ∈ Ωpos(R) with γR(ω) = γ′. Therefore,
wgt(γ′) = 3 holds, i. e. the weight of γ is 3 since there are exactly three worlds
which cause the conditional impact γ’.

Figure 1 shows some conditional impacts of Rvir and their weights, together
with the worlds causing these impacts.

For γ = ((ver 1, fal1), . . . , (verm, falm)) ∈ ΓR let γ|i,v denote the value ver i
and let γ|i,f denote the value fal i. Then for ri ∈ R≈, the feature function fΓ

i :
ΓR → R on conditional impacts is given by:

fΓ
i (γ) := γ|i,v · (1− di)− γ|i,f · di (15)

As in [5], we get normalized feature functions f̂Γ
i : ΓR → [0, 1] and an additional

correctional feature function f̂Γ
m̂ : ΓR → [0, 1] with m̂ = m+ 1 by

f̂Γ
i (γ) :=

fΓ
i (γ) + digi

G
and f̂Γ

m̂(γ) := 1−
m∑

i=1

f̂Γ
i (γ) (16)
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γ ∈ ΓR wgt(γ) ω ∈ Ωpos(R) with γR(ω) = γ

((0, 0), (0, 1), (2, 4), (0, 3)) 3 {in(a), in(b), an(c), se(a, c), se(b, c)},
{in(b), in(c), an(a), se(b, a), se(c, a)},
{in(a), in(c), an(b), se(a, b), se(c, b)}

((0, 0), (0, 0), (0, 9), (0, 0)) 1 {in(a), in(b), in(c)}
((0, 0), (0, 2), (0, 3), (0, 6)) 3 {in(a), an(b), an(c)},

{in(b), an(a), an(c)},
{in(c), an(a), an(b)}

. . . . . . . . .

Fig. 1. Some conditional impacts of Rvir and their weights (Example 5)

where gi denotes the number of ground instances of ri ∈ R≈ and G :=∑
ri∈R≈ gi. The expected values of these functions remain as in [5]:

ε̂i =
digi
G

and ε̂m̂ = 1−
m∑

i=1

ε̂i (17)

Example 6. As in Example 4, consider again the conditional impact γ′ =
((0, 0), (0, 1), (2, 4), (0, 3)) of Rvir as given in (12). The four feature functions
on conditional impacts fΓ

1 to fΓ
4 corresponding to the four probabilistic condi-

tionals r1 to r4 have the following values on γ′:

fΓ
1 (γ′)=0 · (1− 0.9) −0 · 0.9 = 0 fΓ

3 (γ′)=2 · (1− 0.7) −4 · 0.7=− 2.2

fΓ
2 (γ′)=0 · (1− 0.01) −1 · 0.01=− 0.01 fΓ

4 (γ′)=0 · (1− 0.1) −3 · 0.1=− 0.3

Since the conditionals have g1 = g3 = g4 = 9 and g2 = 3 ground instances,
respectively, there is an overall number of G = 30 ground instances (cf. Exam-

ple 2). Therefore, the corresponding normalized feature functions f̂Γ
i have the

following values on γ′ and the following expected values ε̂i:

f̂Γ
1 (γ′) = ( 0 + 0.9 ·9) / 30 = 0.27 and ε̂1 = 0.9·9

30 = 0.27

f̂Γ
2 (γ′) = (− 0.01 + 0.01 ·3) / 30 = 0.0006 and ε̂2 = 0.01·3

30 = 0.001

f̂Γ
3 (γ′) = (− 2.2 + 0.7 ·9) / 30 = 0.136 and ε̂3 = 0.7·9

30 = 0.21

f̂Γ
4 (γ′) = (− 0.3 + 0.1 ·9) / 30 = 0.02 and ε̂4 = 0.1·9

30 = 0.03

So for the correctional feature function f̂Γ
m̂ and the expected value ε̂m̂ we get:

f̂Γ
m̂(γ′) = 1− (0.27 + 0.0006 + 0.136 + 0.02) = 0.5726

ε̂m̂ = 1− (0.27 + 0.001 + 0.21 + 0.03) = 0.489

For every ω′, ω′′ ∈ γ−1
R (γ), we have P ∗

R(ω′) = P ∗
R(ω′′) (cf. Corollary 1 in [5]).

Thus, setting P ∗
R(γ) := P ∗

R(ω′) for an arbitrary ω′ ∈ γ−1
R (γ) yields a well-defined

function P ∗
R : ΓR → [0, 1]. Using this function, we can express the satisfaction

relation (7) with respect to the ME model P ∗
R as follows:
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Proposition 2 (Satisfaction for P ∗
R). Let R = R≈ ∪ R= be as in (3). Then

for any probabilistic conditional ri ∈ R≈, we have

P ∗
R |=� ri iff

∑

γ∈ΓR

f̂Γ
i (γ) · wgt(γ) · P ∗

R(γ) = ε̂i (18)

Compared to (1) and (7), the satisfaction relation (18) employs feature func-
tions on conditional impacts. Thereby it allows us to solve the ME optimization
problem induced by (2) by a two-level algorithmic approach: First, the weighted
conditional impact (ΓR,wgt) is determined, then a generalized iterating scaling
algorithm working on (ΓR,wgt) is used to determine the ME distribution P ∗

R.

In the following, we omit the index Γ of fΓ
i and f̂Γ

i in order to ease our
notation as it will be clear from the context when we use feature functions
operating on the set of conditional impacts ΓR rather than on worlds.

5 Computing ME Models using Weighted Conditional
Impacts

The algorithm WCI implemented in AggME for computing the weighted condi-
tional impact (ΓR,wgt) of any R is given in Fig. 2. The algorithm starts with an
empty set ΓR in step (1). Then the elements of the set ΓR and the values for the
weighting function wgt are successively determined by performing the following
steps once for each world ω ∈ Ω: In step (2a), the deterministic conditionals are
exploited to check if ω is a null-world. If ω is a null-world, no further steps are
performed on ω. Otherwise ω is a positive world and in step (2b), the conditional
impact γR(ω) is determined. In step (2c), γR(ω) is appended to ΓR if its not
already there, and its weight wgt(γR(ω)) is adjusted.

Having determined (ΓR,wgt) for a knowledge base R, the algorithm GISγR
�

given in Fig. 3 is used for the second phase of computing the ME model P ∗
R. As

in [5], a generalized iterative scaling approach is used, but GISγR
� fully abstracts

from worlds. Instead of referring to worlds as the algorithms GISα� and GIS≡R�
in [5], GISγR

� performs all steps on (ΓR,wgt). That way, GISγR
� can also cope

with deterministic conditionals which are not allowed in [5].
For any consistent set R of probabilistic conditionals as in Fig. 3, GISγR

�
computes values α0, α1, . . . , αm+M . Based on the method of Lagrange multipliers
[3], these alpha-values determine the ME model as a Gibbs distribution [8] by

P ∗
R(ω) = α0

m+M∏

i=1

α
fi(ω)
i (19)

With the feature functions fi as given in (6).

6 Examples and First Evaluation Results

We apply the two-phase ME model computation implemented in AggME to
different knowledge bases; the results are shown in Fig. 4.



A Two-Level Approach to Maximum Entropy Model Computation 171

Input: a set R = {r1, . . . , rm} ∪ {rm+1, . . . , rm+M}
of m non-deterministic and M deterministic probabilistic conditionals

Output: the weighted conditional impact (ΓR,wgt) of R

1. ΓR := ∅ // initialize value

2. for each ω ∈ Ω:

(a) // check if ω is a null-world by evaluating deterministic conditionals

for each rj = (Bj(X)|Aj(X)) ∈ R=: // for determ. cond. rj, m+1 ≤ j ≤ M

// consider all ground instances of rj
for each (Bj(a)|Aj(a)) ∈ gnd(Bj(X)|Aj(X)):

if (rj ∈ R=0)

if (ω |= Aj(a)Bj(a)) // if ω verifies this ground conditional

then break to step 2 // ω is a null-world, so check is finished

else // rj ∈ R=1 holds

if (ω |= Aj(a)Bj(a)) // if ω falsifies this ground conditional

then break to step 2 // ω is a null-world, so check is finished

end loop

end loop

// ω is a positive world, since no determ. cond. proved ω to be a null-world

(b) // determine γR(ω)

γR(ω) := ((0, 0) , . . . , (0, 0)) // initialize all vf-pairs with (0, 0)

for each ri = (Bi(X)|Ai(X)) ∈ R≈: // for non-determ. cond. ri, 1 ≤ i ≤ m

// consider all ground instances of ri
for each (Bi(a)|Ai(a)) ∈ gnd(Bi(X)|Ai(X)):

if (ω |= Ai(a)Bi(a)) // if ω verifies this ground conditional

then γR(ω)|i,v := γR(ω)|i,v + 1 // then increment verify count

if (ω |= Ai(a)Bi(a)) // if ω falsifies this ground conditional

then γR(ω)|i,f := γR(ω)|i,f + 1 // then increment falsify count

end loop

end loop

(c) // check if value γR(ω) is already contained in ΓR

if γR(ω) ∈ ΓR

then wgt(γR(ω)) := wgt(γR(ω)) + 1 // increment cardinality of γR(ω)

else
ΓR := ΓR ∪ {γR(ω)} // add new value γR(ω) to ΓR

wgt(γR(ω)) := 1 // initialize cardinality of γR(ω) with 1

end loop

Fig. 2. Algorithm WCI computing the weighted conditional impact of R
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Input: - a consistent set R = {r1, . . . , rm} ∪ {rm+1, . . . , rm+M} of
m non-deterministic and M deterministic probabilistic conditionals

- the weighted conditional impact (ΓR,wgt) of R
Output: - alpha-values α0, α1, . . . , αm+M determining the ME-distribution P ∗

R

1. for each 1 ≤ i ≤ m̂: α̂(0),i := 1 // initialize normalized α̂-values

2. for each γ ∈ ΓR: P(0)(γ) :=
1

∑
γ′∈ΓR wgt(γ′)

// initial. to uniform probabilities

3. k := 0 // initialize iteration counter

4. repeat until an abortion condition holds:

(a) k := k + 1 // increment iteration counter k

(b) for each 1 ≤ i ≤ m̂: // determine current scaling factors β(k),i

β(k),i :=
ε̂i

∑
γ∈ΓR wgt(γ)P(k−1)(γ)f̂i(γ)

(c) for each γ ∈ ΓR: // scale all probabilities P
′
(k)(γ)

P
′
(k)(γ) := P(k−1)(γ)

m̂∏

i=1

(
β(k),i

)f̂i(γ)

(d) for each α̂(k),i, 1 ≤ i ≤ m̂: // scale all α̂-values α̂(k),i

α̂(k),i := α̂(k−1),i · β(k),i

(e) for each γ ∈ ΓR: // normalize all probabilities P(k)(γ)

P(k)(γ) :=
P

′
(k)(γ)

∑
γ′∈ΓR wgt(γ′)P ′

(k)(γ)

end loop

5. for each 1 ≤ i ≤ m̂: α̂i := α̂(k),i // define final α̂-values

α̂0 :=

⎛

⎝
∑

γ∈ΓR

wgt(γ)

m̂∏

i=1

α̂
f̂i(γ)
i

⎞

⎠

−1

// define α̂0-value

6. for each 1 ≤ i ≤ m: αi :=
(

α̂i
α̂m̂

) 1
G

// define α-values for R≈

for each 1 ≤ j ≤ M : αm+j := 0 // define α-values for R=

α0 := α̂0α̂m̂

∏m
i=1 α

digi
i // define α0-value

Fig. 3. Algorithm GISγR
� for aggregation semantics operating on (ΓR,wgt)

Example 7 (Rvir (cont.)). When considering Rvir from Example 1 together with
five constants, the size ofΩ is 235 and evenΩpos(R) still contains 2

30 worlds. Since
the method given in [5] for computing the ME model requires to keep all worlds
in memory, it cannot be applied to that example due to memory limitations.
However, the algorithms WCI and GISγR

� can easily cope with the example,
since they just require to keep 18,720 conditional impacts in memory. Fig. 4
also illustrates that for increasing sizes of Ω, the computation of the weighted
conditional impact becomes the dominating part in the overall computation time.
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Size of Iteration Computation Time

KB |Const| Ω Ωpos(R) ΓR Steps WCI GISγR
�

Rmky 4 220 6,561 ≈ 212 156 6,721 < 1 sec < 1 sec

Rmky 5 230 1,419,857 ≈ 220 530 7,912 6 min 41 sec 1 sec

Rcty 3+4 221 1,404,928 ≈ 220 992 4,228 5 sec 1 sec

Rcty 4+4 228 157,351,936 ≈ 227 3,601 4,947 9 min 41 sec 3 sec

Rvir 4 224 1,048,576 = 220 2,742 5,730 13 sec 4 sec

Rvir 5 235 1,073,741,824 = 230 18,720 4,088 4 h 36 min 15 sec

Fig. 4. Results for example knowledge bases (GIS accuracy threshold: δβ = 0.001)

Example 8 (Monkeys, Rmky). Suppose we have a zoo with a population of mon-
keys exhibiting a peculiar feeding behavior. The predicate feeds(X,Y ) expresses
that a monkey X feeds another monkey Y and hungry(X) says that a monkey
X is hungry. Rmky contains the following conditionals:

r1 : (feeds(X,Y ) | ¬hungry(X) ∧ hungry(Y )) [0.80]
r2 : (¬feeds(X,Y ) | hungry(X)) [1.0]
r3 : (¬feeds(X,Y ) | ¬hungry(X) ∧ ¬hungry(Y )) [0.90]
r4 : (feeds(X, charly) | ¬hungry(X)) [0.95]
r5 : (feeds(X,X) | �) [0.0]

r1 states that is very likely that a not-hungry monkey feeds a hungry monkey. r2
expresses the certain knowledge that a hungry monkey never feeds another one.
r3 says that it is very probable that a not-hungry monkey is not fed by another
one. r4 makes a statement about an individual monkey: it is most probable that
if a monkey is not hungry, he feeds the monkey Charly, i. e. albeit Charly is
hungry or not (perhaps because Charly is an underfed baby monkey suffering
from an eating disorder). Thus, r4 describes a special case for Charly, because
according to r3, one would have suspected that the feeding of Charly (by a not-
hungry monkey) depends on whether Charly is hungry or not. r5 expresses that
a monkey does not feed itself.

Example 9 (European Cities, Rcty). This example makes use of typed constants
and predicates; there are a certain number of constants of type Person , and
the constants london , paris , rome, and vienna are of type EuropeanCity . The
predicate visitsEUcity(P ,E ) expresses that a person P visits a European city
E . The predicates likesSightseeing(P), livesInEurope(P), and likesChurches(P)
express that a person P likes sightseeing, lives in Europe, and likes churches,
respectively. The set Rcty contains four conditionals:

r1 : (visitsEUcity(P,C) | �) [0.1]
r2 : (visitsEUcity(P,C) | likesSightseeing(P )) [0.3]
r3 : (visitsEUcity(P,C) | livesInEurope(P )) [0.6]
r4 : (visitsEUcity(P, rome) | likesChurches(P ) ∧ likesSightseeing(P )) [1.0]

Looking at Examples 7–9 and the corresponding numbers in Fig. 4, we would
like to point out the following aspects. By allowing deterministic conditionals,
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there is no more need to approximate probabilities 0 or 1 as a workaround. For
instance, if the probabilities of r2 and r5 inRmky were approximated by 0.999 and
0.001, respectively, then Ωpos(R) = Ω would hold and, in case of five constants,
more than a billion worlds would have to be processed in the expensive step 2b
of algorithm WCI. Furthermore, the size of ΓR would increase significantly as
well, increasing the runtime of GISγR

� .
Using weighted conditional impacts (ΓR,wgt) and pre-computing them re-

duces the overall computation time. For instance, computing the ME model for
Rcty with 3 constants of type Person and 4 constants of type EuropeanCity by
a straightforward implementation of a GIS algorithm on Ωpos(R), requires over
17 min., compared to just 6 sec. overall for WCI and GISγR

� as shown in Fig. 4.
Another important benefit of pre-computing (ΓR,wgt) is that it can be reused

if the probabilities of some conditionals of R≈ are modified since (ΓR,wgt) only
depends on the logical part of R≈. Since |ΓR| is much smaller than |Ωpos(R)|,
working with (ΓR,wgt) also reduces the memory requirements for the ME model
computation significantly. In fact, while the algorithm from [5] has a memory
requirement of O(|Ωpos(R)|), preventing it to handle some of the examples given
in Fig. 4, the memory requirements during all phases of the ME computation in
AggME are limited by O(|ΓR|).

As pointed out in Ex. 7, the numbers in Fig. 4 illustrate that increasing the size
of Const and thus the size of Ω is the limiting factor for ME model computation
in the current AggME version. An advantage of the two-level approach is that
WCI can be replaced by another algorithm computing the weighted conditional
impact of R more efficiently without having to change GISγR

� .

7 Conclusions and Further Work

For knowledge bases R with probabilistic relational conditionals, we presented a
two-level approach for computing the ME model P ∗

R under aggregation seman-
tics, thereby improving on previous work. While our approach can handle larger
examples and also deterministic conditionals, it is desirable to develop alterna-
tive methods for computing the weighted conditional impact ofR without having
to enumerate all possible worlds as in step (2.) of the WCI algorithm. Therefore,
we are currently working on employing a combinatorial approach to construct
(ΓR,wgt) directly, without considering worlds explicitly. That way, the exponen-
tial blow-up in Ω could be circumvented when computing (ΓR,wgt), allowing
to handle domains with significantly more constants. We are also investigating
which alternative algorithms could be employed to solve the ME optimization
problem on (ΓR,wgt). For instance, instead of using a generalized iterative scal-
ing approach as in our GISγR

� algorithm, an alternative approach like L-BFGS
[21] could be considered.

Furthermore, we will exploit the concept of weighted conditional impacts for
actual ME inference, i. e. for determining the probability of an arbitrary con-
ditional under the ME model P ∗

R. To accomplish that, a technique should be
developed which operates on the impact of an arbitrary conditional, i. e. the
actual query, and the already determined weighted conditional impact of R; for
this, methods of lifted inference [19,14] might be applicable.
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