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Preface

Information systems are becoming increasingly complex, involving massive
amounts of data coming from different sources. Information is often inconsis-
tent, incomplete, heterogeneous, and pervaded with uncertainty.

The International Conference on Scalable Uncertainty Management (SUM)
conferences series provides an international forum about the management of
uncertain, incomplete, or inconsistent information.

This volume contains the papers presented at the 8th International Confer-
ence on Scalable Uncertainty Management (SUM 2014), which was held at St
Anne’s College, Oxford, UK, from the 15th to the 17th of September, 2014.

The call for papers solicited submissions in two categories: regular research
papers and short papers, where the latter report on interesting work in progress
or provide system descriptions. The call for papers resulted in 47 submissions.
Based on the review reports and discussions, 26 papers were accepted for pub-
lication and presentation at the conference, among which 20 regular papers and
6 short papers. The conference program also included invited lectures by three
leading researchers: Anthony Hunter (Department of Computer Science, Univer-
sity College London), Jens Lehmann (Department of Computer Science, Univer-
sity of Leipzig), and Dan Olteanu (Department of Computer Science, University
of Oxford).

A conference such as this can only succeed as a team effort. We would like to
thank: the authors of submitted papers, the invited speakers, and the conference
participants; the members of the Program Committee and the external referees;
Alfred Hofmann and Springer for providing assistance and advice in the prepa-
ration of the proceedings; the University of Oxford for providing local facilities;
the creators and maintainers of the conference management system EasyChair.
All of them made the success of SUM 2014 possible.

July 2014 Umberto Straccia
Andrea Cal̀ı
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Possibilistic Networks:
A New Setting for Modeling Preferences

Nahla BenAmor1, Didier Dubois2, Héla Gouider1, and Henri Prade2

1 LARODEC, Université de Tunis, ISG de Tunis, 41 rue de la Liberté, 2000 Le Bardo, Tunisia
2 IRIT – CNRS, 118, route de Narbonne, Toulouse, France

nahla.benamor@gmx.fr, {dubois,prade}@irit.fr,
gouider.hela@gmail.com

Abstract. Possibilistic networks are the counterpart of Bayesian networks in the
possibilistic setting. Possibilistic networks have only been studied and developed
from a reasoning-under-uncertainty point of view until now. In this short note,
for the first time, one advocates their interest in preference modeling. Beyond
their graphical appeal, they can be shown to provide a natural encoding of pref-
erences agreeing with the inclusion-based partial order applied to the subsets of
preferences violated in the different situations. Moreover they do not encounter
the limitations of CP-Nets in terms of representation capabilities. They also enjoy
a logical counterpart that may be used for consistency checking. This short note
provides a comparative discussion of the merits of possibilistic networks with
respect to other existing preference modeling frameworks.

1 Introduction

Preferences are usually expressed by means of local pieces of information, rather than
as a complete preorder between the different possible states of the world. This state
of facts has led AI researchers to propose compact representation formats for prefer-
ences and procedures for computing a plausible ranking between completely described
situations from such representations, in the last fifteen years. Conditional preference
networks [6] (CP-Nets for short) have emerged as a popular reference setting for repre-
senting preferences, leading to different refinements [5,15], as well as some alternative
approaches [4,8,13] (see [7] for a brief overview). Inspired from Bayesian networks,
CP-Nets inherit their graphical nature, and besides, rely on a simple, apparently natural
principle, named ceteris paribus, which allows to extend any contextual preference “in
context c, I prefer a to¬a” (denoted for short c : a � ¬a), to any particular specification
b of the other variables used for describing the considered situations, i.e., the preference
is understood as ∀b, cab is preferred to c¬ab. The CP-net approach perfectly exem-
plifies the ingredients needed for a satisfactory representation of preferences, stated in
a conditional manner, into a partial order useful for a user: i) a simple representation
setting, preferably having a graphical counterpart for elicitation ease, ii) a natural prin-
ciple for making explicit the preferences between completely described situations, and
iii) an algorithm for determining how to compare two complete situations according to
the existence of a path of worsening flips linking them. In spite of their appealing fea-
tures, CP-Nets have some limitations. First, there exist preorders that make sense and

U. Straccia and A. Calı̀ (Eds.): SUM 2014, LNAI 8720, pp. 1–7, 2014.
c© Springer International Publishing Switzerland 2014



2 N. BenAmor et al.

for which there does not exist any CP-net that can be associated to them. They also tend
to enforce some debatable priorities between the preferences associated to nodes in the
CP-Nets, beyond what is really expressed by these preferences [11,12].

In this short paper, we advocate possibilistic networks as a valuable tool for repre-
senting preferences. First, possibilistic networks are the counterpart of Bayesian net-
works in possibility theory, based on a possibilistic Bayesian-like conditioning rule.
Although they have been only used for uncertainty modeling until now, they can serve
preference modeling purposes as well, as shown in the following, without having the
CP-Nets limitations mentioned above. The paper is organized as follows. Section 2
provides a brief background on possibilistic networks. Then Section 3 proposes and
explains their use in preference modeling and establishes some properties. The paper
ends with a short discussion comparing CP-Nets and preference possibilistic networks.

2 Possibilistic Networks

Possibility theory [9,16] relies on the idea of a possibility distribution π, which is a
mapping from a universe of discourse Ω to the unit interval [0, 1], or to any bounded
totally ordered scale. π(ω) = 0 means that ω is fully impossible, while π(ω) = 1
means that ω is fully possible. Nothing forbids to have ω �= ω′, π(ω) = π(ω′) = 1. π
is normalized if ∃u, π(u) = 1, which expresses that not all values in Ω are somewhat
impossible, and thus consistency. Given a normalized possibility distribution π, the un-
certainty about the occurrence of an eventA ⊆ Ω is assessed via a possibility measure
Π(A) = supω∈A π(ω) and its dual necessity measure N(A) = 1−Π(A) (where A is
the complement of A). Π(A) (resp. N(A)) is the extent to which A is consistent with
(resp. implied by) the information represented by π. Conditioning in possibility theory
is defined from the Bayesian-like equation Π(A ∩ B) = Π(A|B) ⊗ Π(B), where ⊗
stands for the product in a quantitative setting (using the full power of the unit interval
[0, 1]), or for min in a qualitative setting where only the ordinal value of the grades
makes sense. Possibilistic networks [2,3] are counterparts of Bayesian networks [14]
which are based on the decomposition of a joint possibility distribution as a combination
of conditional possibility distributions. Namely, given a set of variables {V1, ..., Vn}, or-
dered arbitrarily, π(V1, ..., Vn) = π(Vn|V1, ..., Vn−1) ⊗ ... ⊗ π(V2|V1) ⊗ π(V1). The
conditional possibility distributions are normalized as soon as the joint possibility dis-
tribution is normalized. This decomposition can be further simplified by assuming con-
ditional independence between variables [1]. For instance, if Vn is independent from
V1, ..., Vi given Vi+1, ..., Vn−1 then π(Vn|V1, ..., Vn−1) = π(Vn|Vi+1, ..., Vn−1).

Thus, a possibilistic network has (i) a graphical component which is a DAG (Directed
Acyclic Graph) G= (V , E) where V is a set of nodes representing variables and E a set
of edges encoding conditional (in)dependencies between them; (ii) a data component
associating a local normalized conditional possibility distribution to each variable Vi ∈
V in the context of its parents (denoted by pa(Vi)). The joint possibility distribution
is then given by the chain rule: π(V1, . . . , Vn) = ⊗i=1,...,n π(Vi | pa(Vi)) where
⊗ is either the min or the product operator ∗ depending on the semantics underlying
it. In the following, each variable Vi has a value domain D(Vi), vi denotes any value
of Vi, and Ω = {ω1, . . . , ωm} denotes the set of interpretations corresponding to the
Cartesian product of all variable domains in V .
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3 Modeling Preferences with a Possibilistic Network

In this section, we introduce a new approach, briefly suggested in [10], based on product-
based possibilistic networks, for representing preferences. The product has a greater
discriminating power than the minimum operator. In this approach, possibility degrees
may remain symbolic but stand for numbers. As we shall see, the representation is
particularly faithful to the user’s preferences. The ordering between interpretations ob-
tained from this compact representation fully agrees with the inclusion ordering asso-
ciated with the violation of preference statements, in the sense that if an interpretation
ω violates all the preferences violated by another interpretation ω′ plus some other(s),
then ω′ is strictly preferred to ω. Moreover, the relative importance of preferences can
be easily taken into account when available. To illustrate the idea of representing prefer-
ences by means of possibilistic networks, we use the following example inspired from
the CP-net literature [6].

Example 1 Let us consider a simple example about a party suit with 4 variables stand-
ing for shirt (S), trousers (T ), jacket (J) and shoes (H) s.t. D(S) = {black(s),
red(¬s)}, D(T ) = {black(t), red(¬t)}, D(J) = {red(j), white(¬j)} and D(H) =
{white(h), black(¬h)}. The preference conditional set is:

The user prefers to wear a black shirt to a red one.
He prefers to wear black trousers to red ones.
If he wears a black shirt and black trousers, he prefers to wear a red jacket to a white one.
If he wears a black shirt and red trousers, he prefers to wear a white jacket.
If he wears a red shirt and black trousers, he prefers to wear a red jacket.
If he wears a red shirt and red trousers, he prefers to wear a white jacket.
If he wears a red jacket, he prefers to wear white shoes to black ones.
If he wears a white jacket, he prefers to wear black shoes.

The universe of discourse associated to this example is:
Ω = {ω1 = tjsh, ω2 = tjs¬h, ω3 = tj¬sh, ω4 = tj¬s¬h, ω5 = t¬jsh, ω6 = t¬js¬h,
ω7 = t¬j¬sh, ω8 = t¬j¬s¬h, ω9 = ¬tjsh, ω10 = ¬tjs¬h, ω11 = ¬tj¬sh, ω12 =
¬tj¬s¬h, ω13 = ¬t¬jsh, ω14 = ¬t¬js¬h, ω15 = ¬t¬j¬sh, ω16 = ¬t¬j¬s¬h}.

The preference description is assumed to be given under the form of conditional state-
ments of the form c : a � ¬a where c stands for the specification of a context in terms
of Boolean variable(s) and a is a Boolean variable. Unconditional preferences corre-
spond to the case where c is the tautology �. The graphical structure of the network
is then directly determined from this description (as in the CP-net case). Namely each
variable corresponds to a node and conditional preferences are expressed by means of
edges. The possibilistic preference table (πP -table for short) associated to a node is
defined in the following way. To each preference of the form c : a � ¬a, pertaining to
a variable A whose domain is {a,¬a}, is associated the conditional possibility distri-
bution π(a|c) = 1 and π(¬a|c) = α where α is a symbolic weight such that α < 1. We
write π(·|�) = π(·).

Figure 1 gives the possibilistic graph associated to the Example 1. For instance, the
corresponding conditional possibility distribution of the variable H is π(h|j) = 1 and
π(¬h|j) = ε1, π(¬h|¬j) = 1 and π(h|¬j) = ε2. Thanks to conditional independence
relations as exhibited by the graph, and using the product-based chain rule, we have:
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π(t) π(¬t)
1 α ST

J

H

π(s) π(¬s)
1 β

π(.|.) ts t¬s ¬ts ¬t¬s
j 1 δ2 1 δ4
¬j δ1 1 δ3 1

π(.|.) j ¬j
h 1 ε2
¬h ε1 1

Fig. 1. A possibilistic network

ω8 

ω1 

ω9 ω6 ω2 

ω3 ω10 ω5 ω14 ω16 ω7  

ω13 ω15 ω4 ω11 

ω12 

Fig. 2. The Inclusion-based ordering

π(TSJH) = π(H |J) ∗ π(J |TS) ∗ π(T ) ∗ π(S). We are then in position to compute
the symbolic possibility degree expressing the satisfaction level of any interpretation.
For instance, π(ω4) = π(¬h|j) ∗π(j|t¬s) ∗π(t) ∗π(¬s) = ε1δ2β. Similarly, π(ω3) =
π(h|j) ∗ π(j|t¬s) ∗ π(t) ∗ π(¬s) = δ2β. Then, based on the fact that ∀ α, α < 1, and
∀α, β, α ∗ β < min(α, β), we can define a partial order �π between interpretations
under the form of a possibility distribution. In fact, given two interpretations ωi, ωj ∈
Ω, ωi �π ωj iff π(ωi) > π(ωj). Thus, for instance, ω3 �π ω4. Besides, π(ω6)= δ1
and π(ω14) = αδ3, thereby ω6 and ω14 remain incomparable. However, if we further
assume α < δ1 expressing that the unconditional preference associated with node T is
more important than the preference ts : j � ¬j, we become in position to establish
that ω6 �π ω14. Therefore, the approach leaves the freedom of specifying the relative
importance of preferences.

Assume that for each node, i.e. each variable Vi ∈ V , two distinct symbolic weights
are used, one for the context where the preferences associated with each parent nodes
are satisfied, one smaller for all the other contexts. For instance, the symbolic weights
of the variable J become δ1 > δ2 = δ3 = δ4 and those of the variable H become
ε1 > ε2. The partial order induced from the possibilistic network (without adding other
constraints between symbolic weights) is then faithful to the inclusion order associated
to the violated constraints. It is, in fact, exactly the same ordering. This is due to the
non comparability between some symbolic weights (following from the use of product).
Figure 2 shows the inclusion-based order induced by the possibilistic graph with these
additional assumptions.

4 Comparison with CP-Nets and Concluding Remarks

CP-Nets [6] are based on the ceteris paribus principle. As can be seen on the previous
example (where ω6 and ω14 are incomparable, while � : t � ¬t), possibilistic net-
works do not obey that latter principle. The order induced by the CP-net is a refinement
of the possibilistic order �π, if no constraints about the relative importance of pref-
erences are added. CP-Nets are, in some sense, too bold and too cautious. Too bold
since, as a result of the systematic application of the ceteris paribus principle, some
priority is given to preferences associated to parent nodes, which cannot be questioned
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nor modified, as already said. Too cautious since they usually lead to a partial order
while a complete preorder may be more useful in practice. The basic ordering associ-
ated to a possibilistic network is just the inclusion-based ordering, which can then be
completed by adding relative importance constraints. In particular, a complete order-
ing of the symbolic weights leads to a complete preordering of the interpretations. It
is unknown whether CP-net orderings also respect the inclusion-based order, as it has
apparently never been investigated.

Example 2 Figures 3 and 4 show, respectively, the order induced by the CP-net and
the possibilistic network of Figure 1. Here we assume α = β < δ1 < δ2 = δ3 =
δ4 < ε1 < ε2. For instance, let us consider the interpretations ω7 and ω16. In contrast
to the possibilistic network, which gives a total preorder, the CP-net considers these
two interpretations as incomparable. We notice that both interpretations violate two
preferences: associated to a parent and to a grandchild for ω7, and to two parents
preferences for ω16. As expected, ω7 is preferred to ω16 in the possibilistic network as
their possibility degrees are respectively π(ω7) = βε2 and π(ω16) = αβ.

ω9 
ω1  

ω10 

ω2 

 ω13  ω7  

ω8  

ω3  

ω6 

ω15  

ω11 

ω12  

ω14  ω5  
ω16 

ω4  

Fig. 3. The order induced by the CP-net Fig. 4. The order induced by the possibilistic network

Moreover, CP-Nets are sometimes unable to represent some user preferences.

Example 3 Let us consider two binary variables A and B standing respectively for
“vacations” and “good weather”. Suppose that we have the following preference or-
dering (where one may have two variable switches between two successive interpre-
tations in the ordering) : ab � ¬a¬b � a¬b � ¬ab. We observe that this complete
preorder cannot be represented by a CP-net, while the possibilistic network can dis-
play it. Such preferences can be represented by a joint possibility distribution such that:
π(ab) > π(¬a¬b) > π(a¬b) > π(¬ab). Since any joint possibility distribution can
be decomposed into conditional possibility distributions as shown by the possibilistic
chain rule, any complete preorder can be represented by a possibilistic net. Here, we
can take� : a � ¬a, a : b � ¬b and¬a : ¬b � b. Note that encoding these preferences
in a CP-Net way would lead to reverse some preferences, and to get a¬b � ¬a¬b. It
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corresponds to a network with two nodes with their corresponding conditional possi-
bility distributions: π(a) = 1, π(¬a) = α, π(b|a) = 1, π(b|¬a) = γ, π(¬b|a) = β and
π(¬b|¬a) = 1. This yields π(ab) = 1 > π(¬a¬b) = α > π(a¬b) = β > π(¬ab) =
αγ taking α > β and β = γ.

Lastly, it is important to mention that one of the advantages of the possibilistic graph
is its ability to be translated into a possibility logic base [3,11,12] that can be used for
executing the preference queries. This bridges the approach presented here with the di-
rect representation of preferences by a possibilistic logic base, e.g. [11,12]. This short
note has outlined a preliminary presentation of possibilistic networks as providing a
convenient setting for acyclic preference representation. This setting remains close to
the spirit of Bayesian networks since it relies on directed acyclic graphs, but is flexi-
ble enough, thanks to the introduction of symbolic weights, for capturing any ordering
agreeing with the inclusion-based ordering. Further research is still needed for investi-
gating their potential in greater detail.
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7. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: An overview. Artif.
Intell. 175(7-8), 1037–1052 (2011)

8. Dubois, D., Kaci, S., Prade, H.: Approximation of conditional preferences networks
“CP-nets” in possibilistic logic. In: Proc. FUZZ-IEEE 2006, Vancouver, pp. 16–21 (2006)

9. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Un-
certainty. Plenum Press (1988)

10. Dubois, D., Prade, H.: Qualitative possibility theory in information processing. In: Nikravesh,
M., Kacprzyk, J., Zadeh, L.A. (eds.) Forging New Frontiers: Fuzzy Pioneers II. STUDFUZZ,
vol. 218, pp. 53–83. Springer, Heidelberg (2008)

11. Dubois, D., Prade, H., Touazi, F.: Conditional Preference-nets, possibilistic logic, and the
transitivity of priorities. In: Bramer, M., Petridis, M. (eds.) Research and Development in
Intelligent Systems XXX, pp. 175–184 (2013)

12. Kaci, S., Prade, H.: Mastering the processing of preferences by using symbolic priorities in
possibilistic logic. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.)
Proc. ECAI 2008, Patras, pp. 376–380. IOS Press (2008)

13. Kaci, S., van der Torre, L.: Reasoning with various kinds of preferences: logic, non-
monotonicity, and algorithms. Annals of Operations Research 163(1), 89–114 (2008)



Possibilistic Networks: A New Setting for Modeling Preferences 7

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco (1988)

15. Wilson, N.: Computational techniques for a simple theory of conditional preferences. Artif.
Intell. 175(7-8), 1053–1091 (2011)

16. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets & Sys. 1, 3–28
(1978)



Min-based Assertional Merging Approach
for Prioritized DL-Lite Knowledge Bases

Salem Benferhat1, Zied Bouraoui1, Sylvain Lagrue1, and Julien Rossit2

1 Univ Lille Nord de France, F-59000 Lille, France
UArtois,CRIL - CNRS UMR 8188, F-62300 Lens,France

{benferhat,bouraoui,lagrue}@cril.fr
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Abstract. DL-Lite is a powerful and tractable family of description log-
ics specifically tailored for applications that use huge volumes of data. In
many real world applications, data are often provided by several and
potentially conflicting sources of information having different levels of
priority. Possibility theory offers a very natural framework to deal with
ordinal and qualitative uncertain beliefs or prioritized preferences. Thus,
to encode prioritized assertional facts, a possibility DL-Lite logic is more
suited.

We propose in this paper a min-based assertional merging operator
for possibilistic DL-Lite knowledge bases. We investigate in particular
the situation where the sources share the same terminological base. We
present a syntactic method based on conflict resolution which has a mean-
ingful semantic counterpart when merging possibility distributions. We
finally provide an analysis in the light of a new set of postulates dedicated
to uncertain DL-Lite merging.

1 Introduction

Description Logics (DLs) provide a powerful formalism for representing and rea-
soning on ontologies [2]. A DL knowledge base is formed by a terminological
base, called TBox, and an assertional base, called ABox. The TBox contains
intentional (or generic) knowledge of the application domain whereas the Abox
stores data (or individuals or constants) that instantiate terminological knowl-
edge. In the last years, there has been an increasingly interest in Ontology-based
Data Access (OBDA), in which a TBox is used to reformulate posed queries to
offer a better access to the set of data encoded in the ABox [16]. Recently, a lot
of attention was given to DL-Lite, a family of lightweight DLs specifically fitted
towards OBDA [9]. DL-Lite is especially dedicated for applications that use huge
volumes of data, in which query answering is the most important reasoning task.
DL-Lite offers a very low computational complexity for the reasoning process.
In particular query answering is in LogSpace for spatial complexity (w.r.t. the
overall size of the ABox). Moreover knowledge base consistency test and all DLs
standard reasoning services are polynomial for combined complexity (w.r.t. the
overall size of the knowledge base) [1].

U. Straccia and A. Cal̀ı (Eds.): SUM 2014, LNAI 8720, pp. 8–21, 2014.
c© Springer International Publishing Switzerland 2014
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In many real OBDA applications, assertional facts are often provided by sev-
eral and potentially conflicting sources of information having different reliability
levels. Moreover, a given source may provide its set of data with different con-
fidence levels. Possibilistic theory (e.g. [11]) offers a very natural framework to
deal with ordinal and qualitative uncertain beliefs or prioritized preferences. This
framework allows to deal with non-probabilistic information and is particularly
appropriate when the uncertainty (or priority) scale only reflects a priority rela-
tion between different pieces of information. An important problem that arises
in such a situation is how to aggregate these different sets of data. This problem
is closely related to the belief merging problem (e.g. [8,14]), largely studied when
knowledge bases are encoded in propositional logic framework. Belief merging
focuses on aggregating pieces of information issued from distinct, and possibly
conflicting or inconsistent, sources of information. This process produces a global
point of view over considered problems by taking advantage of pieces of informa-
tion provided by each source. Within the possibility theory framework, several
merging operators (e.g. [10,6,7]) have been proposed for merging pieces of infor-
mation. These merging operators lead to combine multiple possibility distribu-
tions, that encode information provided by different sources, to obtain a unique
possibility distribution which represents the global point of view from available
information. Syntactic counterparts have been introduced for most of them.

Recently, a possibilistic extension ofDL-Lite, denotedDL-Liteπ, was proposed
in [3]. In particular, DL-Liteπ guarantees a computational complexity that is
identical to the one of standard DL-Lite. In this paper, we use DL-Liteπ to
encode and reason with available knowledge. Merging possibilistic DLs knowledge
bases has been recognized as an important issue [17]. Recently, in [4], a min-
based merging operator dedicated to possibilistic DL-Lite knowledge bases was
proposed as an adaptation of the well-known idempotent conjunctive operator
lastly introduced within possibilistic logics setting. This latter, suitable when
sources are assumed to be dependent, is very cautious in the sense where it leads
to ignore too many axioms in order to ensure the consistency of the resulting
knowledge base.

In this paper, we go one step further in the definition of merging operators
for DL-Liteπ knowledge bases by investigating the aggregation of assertional
bases (ABox) which are linked to the same terminological base. The rest of
this paper is organized as follows. Section 2 gives brief preliminaries on DL-
Liteπ as extension of DL-Lite within possibility theory setting. In Section 3,
we first introduce a syntactic merging operator, namely a min-based assertional
operator based on conflict resolution. We show that such a merging operator
gives a more satisfactory result compared with the one proposed in [4]. We then
study, in Section 4, merging at a semantic level, and we show that our operator
has a natural counterpart when combining several possibility distributions. We
also rephrase within DL-Lite framework the set of postulates proposed in [15]
to characterize the logical behavior of belief bases merging operators. Thus, we
provide a postulates-based logical analysis of the min-based assertional operator
in the light of this new set of postulates dedicated to the uncertain DL-Lite
framework. Section 5 concludes the paper. Two important results of this study
are: (i) our merging approach based on conflict resolution can be easily extended
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to define others merging operators and (ii) the computational complexity ofmin-
based assertional fusion outcome is polynomial.

2 Possibilistic DL-Lite

In this section, we recall main notions of possibilistic DL-Lite framework [3],
denoted by DL-Liteπ, as an extension of DL-Lite within a possibility theory set-
ting. DL-Liteπ provides an excellent mechanism to deal with uncertainty and to
ensure reasoning under inconsistency while keeping a computational complexity
identical to the one used in standard DL-Lite.

2.1 A Brief Refresh on DL-Lite

For the sake of simplicity, we only present DL-Litecore the core fragment of all
the DL-Lite family [9]. However, results of this paper are valid for DL-LiteR and
DL-LiteF , the two main fragments of the DL-Lite family.

A DL-Lite knowledge base K=〈T ,A〉 is composed of a set of atomic concepts
(i.e. unary predicates), a set of atomic roles (i.e. binary predicates) and a set of
individuals (i.e. constants). Complex concepts and roles are built as follows:

B −→ A|∃R R −→ P |P− C −→ B|¬B

where A (resp. P) is an atomic concept (resp. role). B (resp. C) is called basic
(resp. complex) concept and role R is called basic role. The TBox T includes a
finite set of inclusion assertions of the form B � C where B and C are concepts.
The ABox A contains a finite set of assertions on atomic concepts and roles of
the form A(a) and P (a, b) where a and b are two individuals.

The semantics of DL-Lite is given by an interpretation I=(Δ, .I) which con-
sists of an infinite and non-empty domain, denoted Δ, and an interpretation
function, denoted .I . The function .I associates with each individual a an el-
ement aI of ΔI , to each concept C a subset CI of ΔI and to each role R
a binary relation RI over ΔI . Furthermore, the interpretation function .I is
extended in a straightforward way for complex concepts and roles as follows:
(¬B)I=ΔI\BI , (P−)I={(y, x) ∈ ΔI×ΔI |(x, y) ∈ P I} and (∃R)I={x ∈ ΔI |∃y ∈
ΔI such that (x, y) ∈ RI}.

An interpretation I is said to be a model of an inclusion assertion B � C,
denoted by I � B � C, iff BI ⊆ CI . Similarly, we say that an interpretation I
is a model of a membership assertion A(a) (resp. P (a, b)), denoted by I � A(a)
(resp. I � P (a, b)), iff aI ∈ AI (resp. (aI , bI) ∈ P I). I is a model of K=〈T ,A〉,
denoted by I � K, iff I � T and I � A where I � T (resp. I � A) means that I is
a model of all axioms in T (resp. A). A knowledge base K is said to be consistent
if it admits at least one model, otherwise K is said to be inconsistent. A DL-Lite
TBox T is said to be incoherent if there exists at least a concept C such that
for each interpretation I which is a model of T , we have CI=∅. Note that within
a DL-Lite setting, the inconsistency problem is always defined with respect to
some ABox since a TBox may be incoherent but never inconsistent.
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2.2 Possibility Distribution over DL-Lite Interpretation

Let Ω be a universe of discourse composed by a set of DL-Lite interpretations
(I=(Δ, .I) ∈ Ω). The semantic counterpart of a DL-Liteπ knowledge base is
given by a possibility distribution, denoted by π, which is a mapping from Ω
to the unit interval [0, 1] that assigns to each interpretation I ∈ Ω a possibility
degree π(I) ∈ [0, 1] that represents its compatibility or consistency with respect
to the set of available knowledge. When π(I)=0, we say that I is impossible and
it is fully inconsistent with the set of available knowledge, whereas when π(I)=1,
we say that I is totally possible and it is fully consistent with the set of available
knowledge. For two interpretations I and I ′, when π(I) > π(I ′) we say that I is
more consistent or more preferred than I ′ w.r.t available knowledge. Lastly, π is
said to be normalized if there exists at least one totally possible interpretation,
namely ∃I ∈ Ω, π(I)=1, otherwise, we say that π is sub-normalized. The con-
cept of sub-normalization reflects the presence of conflicts in the set of available
information.

Given a possibility distribution π defined on a set of interpretations Ω, one
can define two measures on a DL-Lite axiom ϕ: A possibility measureΠ(ϕ)=max

I∈Ω

{π(I) : I � ϕ} that evaluates to what extent an axiom ϕ is compatible with the
available knowledge encoded by π and a necessity measure N(ϕ)=1−max

I∈Ω
{π(I) :

I � ϕ} that evaluates to what extent ϕ is certainty entailed from available knowl-
edge encoded by π.

2.3 DL-Liteπ Knowledge Base

Let L be a DL-Lite description language, a DL-Liteπ knowledge base is a set of
possibilistic axioms of the form (ϕ, α) where ϕ is an axiom expressed in L and
α ∈ ] 0, 1] is the degree of certainty of ϕ. Namely, a DL-Liteπ knowledge base
K is such that K={(ϕi, αi) : i = 1, ..., n}. Only somewhat certain information
are explicitly represented in a DL-Liteπ knowledge base. Namely, axioms with
a null degree (α = 0) are not explicitly represented in the knowledge base. The
weighted axiom (ϕ, α) means that the certainty degree of ϕ is at least equal to
α (namely N(ϕ) ≥ α). A DL-Liteπ knowledge base K will also be represented
by a couple K=〈T ,A〉 where both elements in T and A may be uncertain. It
is important to note that, if we consider all αi = 1 then we found a classical
DL-Lite knowledge base: K∗={ϕi : (ϕi, αi) ∈ K}.

Given K=〈T ,A〉 aDL-Liteπ knowledge base, we define the α-cut of K (resp. T
and A), denoted by K≥α (resp. T≥α and A≥α), the subbase of K (resp. T and A)
composed of axioms having weights at least greater than α. We say that K is con-
sistent if the standard knowledge base obtained from K by ignoring the weights
associated with axioms is consistent. In case of inconsistency, we attach to K an
inconsistency degree. The inconsistency degree of a DL-Liteπ knowledge base
K, denoted by Inc(K), is syntactically defined as follow: Inc(K)=max{α:K≥α is
inconsistent}.

Given a DL-Liteπ knowledge base K, one can associate to K a joint pos-
sibility distribution, denoted by πK, defined over the set of all interpretations
I=(Δ, .I) by associating to each interpretation its level of consistency with the
set of available knowledge, that is, with K. Namely:
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Definition 1. The possibility distribution induced from a DL-Liteπ is defined

as follows: ∀I ∈ Ω : πK(I) =

{
1 if ∀ (ϕi, αi) ∈ K, I � ϕi

1−max{αi : (ϕi, αi) ∈ KI � ϕi} otherwise

A DL-Liteπ knowledge base K is said to be consistent if its joint possibil-
ity distribution πK is normalized. If not, K is said to be inconsistent and its
inconsistency degree is defined semantically as follow: Inc(K)=1−max

I∈Ω
{πK(I)}.

It was shown in [3] that computing the inconsistency degree of a DL-Liteπ

knowledge base comes from the extension of the algorithm presented in [9] by
modifying it to query for individuals with a given certainty degree.

Example 1. Let K=〈T ,A〉 be a DL-Liteπ knowledge base where T ={(A�B, 1),
(B�¬C, .9)} and A={(A(a), .6), (C(b).5)}. The possibility distribution πK asso-
ciated to K is computed using Definition 1 as follows where Δ={a, b}:

Table 1. Example of a possibility distribution induced from a DL-Liteπ KB

I .I πK
I1 A={a},B={},C={b} 0
I2 A={a},B={a},C={b} 1
I3 A={},B={},C={a,b} .4
I4 A={a,b},B={a,b},C={} .5

One can observe that πK(I2)=1 meaning that πK is normalized, and thus, K
is consistent.

3 Syntactic Merging of DL-Liteπ Assertional Bases

Let us consider A1,...,An a set of assertional bases (ABox) where each Ai repre-
sents assertional facts provided by a single source of information. We assume that
we have a well-formed and coherent terminological base (TBox) T where each Ai

is consistent with T . This is not a restriction. This particular case can be han-
dled outside the fusion problem considered in this paper. Note that this choice is
motivated by the fact that such situation is widely occurring in Ontology-Based
Data Access. Throughout the rest of this paper, we cast available information
within the DL-Liteπ framework. For the sake of simplicity, we omit the weights
notation attached to the TBox axioms considered as the ones having the highest
certainty level, namely, an axiom in T is of the form (ϕ,1). We only represent
explicitly weights attached to Ai assertions. An assertion f in Ai is of the form
f=(ϕ, α) where α ∈ [0, 1]. Note that copies of the same assertions ϕ are al-
lowed in several Ai and they are considered as different in the sense of priorities
or certainty and not in terms of interpretations since we use the unique name
assumption. In this section, we study syntactic merging of n assertional bases
A1,...,An that are linked to the same TBox T .

Let us consider S1, ..., Sn be the signatures of A1,...,An and T . Recall that a
signature S of a knowledge base K is the set of concept names and role names
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used in K. We assume that all Ai’s and T share the same signature. Namely if a
concept name (resp. role name) A appears in S1 and S2 then A is assumed to be
the same. We look to identify a syntactical merging operator on the Ai’s w.r.t
a TBox T which will be semantically meaningful. Merging at semantic level will
be presented in Section 4.

3.1 Merging using the Classical min-based Operator

In this section, we perform merging of A1,...,An a set of ABox w.r.t a TBox
T using the classical min-based merging operator proposed in [4] to aggregate
DL-Liteπ knowledge bases. This operator is a direct extension of the well-known
idempotent conjunctive operator (e.g. [6]) within possibilistic DL-Lite setting. It
is recommended when distinct sources that provide information are assumed to
be dependent.

Let T be a TBox and A1, ...An be a set of ABox provided by n distinct sources
of information to be linked to T . The min-based merging operator, denoted by
⊕ considers the union of all ABox. Namely:

A⊕=A1 ∪ A2 ∪ . . . ∪ An.

The merging of two consistent knowledge bases is not guaranteed to be con-
sistent. Namely, the resulting knowledge base K⊕=〈T ,A⊕〉 may be inconsistent.
To restore the consistency of the resulting knowledge base a normalization step
is required. The following definition gives the formal logical representation of the
normalized knowledge base.

Definition 2. Let T be a TBox and A⊕ be the aggregation of A1, ...An, n ABox
using classical min-based operator. Let x=Inc(〈T ,A⊕〉). Then, the normalized
knowledge base, denoted, KN⊕ is such that:

KN⊕=〈T , {(ϕ, α) : (ϕ, α) ∈ A⊕ andα > x}〉
Example 2 (continued). Let us continue with the TBox T ={A � B, B � ¬C}
presented in Example 1 while assuming that the certainty degree of each ax-
ioms is set to 1. Let us consider the following set of ABox to be linked to T :
A1={(A(a), .6), (C(b), .5)}, A2={(C(a), .4), (B(b), .8), (A(b), .7)} and
A3={(A(b), .2), (A(c), .5), (B(c), .4)}. We have A⊕={(A(a),.6), (C(b),.5), (C(a),
.4), (B(b),.8), (A(b),.7), (A(b),.2), (A(c), .5), (B(c),.4)} where Inc(〈T ,A⊕〉)=.5.
Then KN⊕=T ∪{(A(a),.6),(B(b), .8), (A(b),.7)}.

According to Definition 2, merging operation does not modify the certainty
degrees of the DL-Liteπ knowledge base. It just permits to ignore the presence of
contradictions (or conflicts) and maintain all the assertions ofA⊕ whose certainty
degrees are higher than the inconsistency degree of 〈T ,A⊕〉. It is clear that
the formal expression of the normalized DL-Liteπ knowledge base K⊕ given in
Definition 2 provides a consistent knowledge base. However, this result is not very
satisfactory, since many assertions in A1,...,An, which are not involved in any
conflict are thrown out. As pointed in [5], restoring consistency in possibilistic
logics suffers generally from an important drawback problem in the sense that
some axiom from A⊕-A⊕>Inc(T ∪A⊕)

that are not involved in any conflict are

inhibited as we can see in the above example.
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Example 3 (continued). One can see that the assertions (A(c), .5) and (B(c), .4)
are not involved in any conflict, but they are nor integrated in the merging result.

In the next section, we investigate a new approach to merge assertional base
based on conflict detection. This approach allows recovering of all elements, non
involved in any conflict and inhibited when restoring consistency using the clas-
sical min-based merging operator.

3.2 Min-based Assertional Merging Using Conflict Resolution

Let K=〈T ,A〉 be aDL-Liteπ knowledge base. In [3] it was shown that computing
the inconsistency degree of K comes down to compute the one of 〈π − neg(T ),A〉
where π-neg(T ) is the negated closure of T . The negated closure will contain all
the possibilistic negated axioms of the form (B1�¬B2,α) that can be derived
from T . The set π-neg(T ) is obtained by applying a set of three rules that
extend the ones defined in standard DL-Lite. For instance after adding all NI
of T to π-neg(T ) a rule said that If (B1�B2,α1) ∈ T and (B2�¬B3, α2) in π-
neg(T ) then add (B1�¬B3,min(α1,α2)) to π-neg(T ). See [3] for a more detailed
description ofDL-Liteπ. Indeed, computing inconsistency degree of K consists on
calculating the maximal weight attached to minimal inconsistent subsets involved
in inconsistency. More formally, a minimal inconsistent set is defined as follows.

Definition 3. A minimal inconsistent subsetM⊆K is a subset of 〈π − neg(T ) ,
A〉 of the form: {(B1�¬B2,α1),(B1(a),α2),(B2(a),α3)} where (B1�¬B2,α1)∈
π-neg(T ), (B1(a),α2)∈A and (B2(a),α3)∈A.

Clearly, a minimal inconsistent subset is a subset of information involving
three elements: an axiom of π-neg(T ) and two assertions of A up to a particular
case where B1=B2 belongs to π-neg(T ). This corresponds to the situation of
insatisfiable concept. Namely, no way to find an individual that belongs to B. In
this case B1=B2 is minimal inconsistent subset composed only of two elements:
an axiom of π-neg(T ) and an assertions of A. Within a DL-Lite setting, the
inconsistency problem is always defined with respect to some ABox, since a TBox
may be incoherent but never inconsistent. Recall that in this paper, we assume
that T is coherent. So, from the definition of minimal inconsistent subset, we
define the notion of conflict as a minimal inconsistent subset of assertions that
contradict a negative inclusion axiom. More formally:

Definition 4. Let K=〈T ,A〉 be an inconsistent DL-Liteπ knowledge base where
axioms in T are set to 1. A sub-base C⊆A is said to be an assertional conflict
set of K iff

– Inc(〈T , C〉) > 0 and
– ∀ f∈C, Inc(〈T , C − {f}〉)=0 with f=(ϕ, α)

It is clear that in Definition 4, removing any assertion ϕ from C restores the
consistency of 〈T , C〉. Recall that when the TBox is coherent, a conflict involves
exactly two assertions.
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Example 4 (Example continued). Let us consider T and A⊕ from the above ex-
ample. The π-neg(T )={A�¬C, B�¬C}. One can compute the following con-
flict sets: C1={(A(a), .6), (C(a), .4)}, C2={(C(b), .5), (B(b), .8)}, C3={(C(b), .5),
(A(b), .7)} and C4={(C(b), .5), (A(b), .2)}.

Let us assume that A1,...,An are assertional bases provided by n sources of
information to be linked to the same TBox T and they use the same scale to
represent uncertainty. Let denote by f=(ϕ,α) an assertion or a fact in Ai, we
define the notion of conflict vector as follows:

Definition 5. Let T be a TBox and A1,...,An be a set of ABox provided by n
distinct sources of information to be linked to T . Then ∀f∈Ai we define a conflict
vector associated with f=(ϕ, α)∈Ai:V(f)=〈ν1, ν2, ..., νn〉 such that

∀j = 1..n : Vj(f) =
{
1 if 〈T , {(ϕ, 1) ∪ Ai}〉 is consistent
Inc(〈T , {(ϕ, 1) ∪Ai}〉) otherwise

Where Vi represents the ith component of the vector V.

Intuitively, for each assertion provided by an information source we built upon
a vector that represents to what extend this latter contradicts other ones provided
by other source. To this end, we add first the assertion with a highest prescribed
level in each source and then we compute the inconsistency degree of this one.
It is obvious that the conflict vector of a non conflicting assertion is equal to
V(f)=〈1, 1, ..., 1〉. However assertions that are involved in conflict will have at
least a νi strictly less than 1.

Example 5 (continued).One can obtain the following conflict vectors:V((A(a),.6))
=〈1, .6, 1〉,V((A(b), .7))=〈.5, 1, 1〉,V((A(b), .2))=〈.5, 1, 1〉,V((A(c), .5))=〈1, 1, 1〉, V
((B(b), .8))=〈.5, 1, 1〉, V((B(c), .4))=〈1, 1, 1〉,V((C(a), .4))=〈.4, 1, 1〉 and ν((C(b),
.5))=〈1, .2, .8〉

From now on, we give the way to aggregate assertional bases using conflict
vectors attached to each assertion. Let denote by Σ the set of conflict vectors,
we define the min-based assertional merging operators, denoted by Λ as follows:

Definition 6. Let T be a TBox and A1,A2, ...,An be a set of ABox provided by
n sources to be linked to T . Let Σ be the collection of conflict vectors associated to
each assertion on Ai. Then the min-based assertional merging operator, denoted
by Λ, is defined on Σ as follows:

∀V(f)∈Σ: Λ(f)=min{νi(f)}

Let us denote by ΣΛ, the vector resulting by min aggregation of conflict
vectors.

Example 6 (Example continued).ΣΛ contains the following elements:Λ((A(a), .6))
=.6, Λ((A(b), .7))=.5, Λ((A(b), .2))=.5, Λ((A(c), .5))=1, Λ((B(b), .8)) =.5, Λ
((B(c), .4))=1, Λ((C(a), .4)) =.4 and Λ((C(b), .5))=.2
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According to conflict vectors, one can associate to the set of assertions a new
pre-order by attaching to each of them a new weight (i.e. ∀(ϕ, α)∈Ai:(ϕ, α)=(ϕ,
Λ(f))). According to this new pre-order, we define the knowledge base resulting
from fusion operation as follows.

Definition 7. Let T be a TBox and A1, ...,An be a set of n ABox to be linked
to T . Let AΛ={(ϕ,Λ(f)):f = (ϕ, α)∈Ai andΛ(f) ∈ ΣΛ}. Let x=Inc(〈T ,AΛ〉).
Then the resulting knowledge base KΛ is such that:

KΛ=〈T , {(ϕ, α) : (ϕ, α) ∈ AΛ andα > x}〉
Example 7 (continued). One can obtain AΛ={(A(a), .6), (A(b), .5), (A(b), .5),
(A(c), 1), (B(b), .5), (B(c), 1), (C(a), .4), (C(b), .2)} where Inc(〈T ,AΛ〉=.4. Then
KΛ = T ∪ {(A(a), .6), (A(b), .5), (A(b), .5), (A(c), 1), (B(b), .5), (B(c), 1)}.

According to Definition 7, it is clear that method based on conflict vectors is
more productive that the classical definition of the min-based merging opera-
tor proposed in Definition 2. Note that this approach can easily propose others
aggregation modes such as product-based merging or sum-based merging. The
definition of this merging operator is based on a notion of conflict measure be-
tween sources of information. However, one can observe that original weights
attached to assertions are lost. Regarding for instance assertion B(c), it is pro-
vided by only one where its initial weight was .4. This means that B(c) is not
a totally reliable information. In the new knowledge base its weight is raised to
1. This can be justified by the fact that such assertion is not involved in any
conflict. However when we need to an iteration process this approach may not be
very useful. To overcome such limitation while preserving the same productivity
of the fusion result, we propose the following definition.

Definition 8. Let T be a TBox and A1, ...,An be a set of n ABox to be linked
to T . Let AΛ={(ϕ,Λ(f)):(ϕ, α)∈Ai}. Let x=Inc(〈T ,AΛ〉). Then the resulting
knowledge base K′

Λ is such that:

K′
Λ=〈T , {f = (ϕ, α) ∈ Ai : i ∈ {1, ..., n}, (ϕ,Λ(f)) ∈ AΛ andΛ(f) > x}〉

4 Semantic Counterpart

Let us consider A1,...,An a set of assertional bases (ABox) where each Ai rep-
resents data of a single source of information. We assume that we have a well-
formed and coherent terminological base (TBox) T where each Ai is consistent
with the T . Let π1,...,πn be the set of possibility distributions associated with
K1,...,Kn where each Ki=〈T ,Ai〉. Namely each DL-Liteπ knowledge base Ki is
associated with a possibility distribution πi which is its semantic counterpart.
In this section, we investigate fusion of weighted DL-Liteπ assertional bases at
semantic level. We show that such merging operation is the natural semantic
counterpart of the Λ merging operators (presented in Section 3) used to merge
DL-Liteπ ABox A1,...,An w.r.t a T . More formally, given (π1,...,πn) possibility
distributions associated with (K1,...,Kn) DL-Lite

π knowledge bases, then for the
proposed operator Λ applied to aggregate A1,...,An w.r.t T , we look for a DL-
Liteπ possibility distribution πΛ constructed from the aggregation of (π1,...,πn)
with the semantic counterpart of Λ that corresponds to the possibility distribu-
tion πKΛ induced from KΛ. Namely πΛ=πKΛ .
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4.1 Min-based Assertional Merging of Possibility Distributions

Let us assume that π1,...,πn share the same domain of interpretations (namely
Δ1=...=Δn), and that all possibility distributions use the same scale to rep-
resents uncertainty. In [4], the semantic counterpart of the classical min-based
operator or idempotent conjunctive operator, denoted by ⊕, was defined as a
mapping from a vectors of possibility values (∀I∈Ω,ν(I)=〈π1(I), ..., πn(I)〉) to an
interval [0, 1] as follows: π⊕(I)=min{νi(I)}. Generally merging two normalized
possibility distributions gives an sub-normalized one. Normalizing π⊕ consists in
maintaining only axioms having certainty degrees higher than the inconsistency
degree deduced from π⊕. In this section, we deal with assertional bases merging
at semantic level. We propose the natural semantic counterpart of the min-based
assertional merging operator, denote Λ, presented in Section 3.2 which is based
on conflict resolution. The following definition introduces the semantic definition
of conflict vectors.

Definition 9. Let A1,...,An be a set of ABox and π1,...,πn be a the set of possibil-
ity distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉. Then ∀f∈Ai with
f=(ϕ,α), we define semantically a conflict vector, denoted by V(f), as follows:

V(f)=〈Ππ1(ϕ), Ππ2(ϕ), ..., Ππn(ϕ)〉
where ∀i=1..n:Ππi(f) denotes the possibility measure of ϕ induced from the pos-
sibility distribution πi

Intuitively, a conflict vector associated to anyABox assertion represents to what
extent this latter is compatible with available knowledge provided by each source.

Example 8 (continued). Assuming that Δ={a, b, c}, let us consider the following
possibility distributions π1, π2 and π3 to be merged. Note that we have only
considered interpretations model of T .

Table 2. Possibility distributions induced from three knowledge bases

I .I π1 π2 π3

I1 A={a},B={a},C={b,c} 1 .2 .5
I2 A={b},B={b},C={a,c} .4 1 .5
I3 A={c},B={c},C={a,b} .4 .2 .8
I4 A={a,b},B={a,b},C={c} .5 .6 .5
I5 A={a,c},B={a,c},C={b} 1 .2 .8
I6 A={b,c},B={b,c},C={a} .4 1 1
I7 A={a,b,c},B={a,b,c},C={} .5 .6 1
I8 A={},B={},C={a,b,c} .4 .2 .5

One can compute the following conflict vectors for each assertion:
V(A(a))=〈max(1, .5, 1, 1),max(.2, .6, .2, .6),max(.5, .6, .8, 1)〉=〈1, .6, 1〉,
V(A(b))=〈max(.4, .5, .5, 5),max(1, .6, .1, .6),max(.5, .5, 1, 1)〉=〈.5, 1, 1〉,
V(A(c))=〈max(.4, 1, .4, .5),max(.2, .2, 1, .6),max(.8, .8, 1, 1)〉=〈1, 1, 1〉,
V(B(b))=〈.5, 1, 1〉, V(B(c))=〈1, 1, 1〉, V(C(a))=〈.4, 1, 1〉 and V(C(b))=
〈1, .2, .8〉 which are equal the ones computed syntactically in Example 5.
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Let us denote byΣ the collection of conflict vectors associated to each assertion
of Ai. The next definition introduces min-based assertional merging operator,
denoted Λ, on the conflict vectors of Σ.

Definition 10. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉. Let Σ
the collection of conflict vectors associated to each assertion on Ai computed
using Definition 9. Then the min-based assertional merging operator, denoted by
Λ, is defined on Σ as follows: ∀V(f)∈Σ:V(f)=〈Ππ1(ϕ), Ππ2(ϕ), ..., Ππn(ϕ)〉,

Λ(f)= min{νi(f) ∈ V(f)}

Let us denote by ΣΛ, the vector resulting bymin-based aggregation of conflict
vectors.

Example 9 (Example continued). One can compute the setΣΛ as follow: Λ((A(a),
.6))=.6, Λ((A(b), .7))=.5, Λ((A(b), .2))=.5, Λ((A(c), .5))=1, Λ((B(b), .8)) =.5,
Λ((B(c), .4))=1, Λ((C(a), .4)) =.4 and Λ((C(b), .5))=.2

From Definition 10, one can associate to each assertion a new weight that
represents its compatibility with others assertions provided other sources.

Definition 11. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉. Then
the possibility distribution πΛ as follows:

∀I ∈ Ω : πΛ(I) =

{
1 if ∀ (ϕ, α) ∈ Ai, I � ϕ
1−max{Λ((ϕ, α)) : (ϕ, α) ∈ Ai, and I � ϕ} otherwise

where Λ(ϕi) is the compatibility measure of ϕi computed using definition 10

Example 10. From Example 3, we have (A(c),.1), (B(c),1), (A(a),.6), (A(b),.5),
(B(b),.5), (C(a),.4), (C(a),.2). Then:

Table 3. Possibility distributions resulting from assertional min-based merging of pos-
sibility distributions

I I1 I2 I3 I4 I5 I6 I7 I8

πΛ 0 0 .4 0 .5 .4 .6 0

One can check that merging normalized possibility distributions may lead to
sub-normalized possibility distribution. This is the case with our example. Indeed,
we focus on the normalization problem when the use of min-based assertional
operators min provides a subnormal possibility distribution.

Definition 12. Let us consider: h(πΛ)=max
I∈Ω

{πΛ(I)}. Then for every I∈Ω and

h(πΛ)>0, πNΛ(I) =

{
1 if πΛ(I) = h(πΛ)

πΛ(I) otherwise
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Example 11 (continued). From previous Example, we have:

Table 4. Normalized possibility distributions resulting from assertional min-based
merging

I I1 I2 I3 I4 I5 I6 I7 I8

πΛ 0 0 .4 0 .5 .4 .6 0
πΛ 0 0 .4 0 .5 .4 1 0

The following proposition states the equivalence between the semantic and
syntactic approaches.

Proposition 1. Let A1,...,An be a set of ABox and π1,...,πn be a the set of
possibility distributions induced from K1,...,Kn where each Ki=〈T ,Ai〉.Then the
possibility distribution

πNΛ(I) =

{
1 if πΛ(I) = h(πΛ)

πΛ(I) otherwise

is associated with

KΛ=〈T , {(ϕ,Λ(f)) : (ϕ,Λ(f)) ∈ AΛ andΛ(f) > x}〉

4.2 Logical Properties

Let us use E={K1, ...,Kn} to denote a multi-set, called belief profile, that rep-
resents the knowledge bases to be merged (where each Ki is associated with a
possibility distribution πi). Let us use � to denote a merging operator. This
merging operator can be parametrized by an integrity constraint, being a kon-
wledge base K, and �K(E) denotes the result of the merging operator under this
constraint K. A logical characterization of integrity constraint merging operators
has been proposed in [14] through a set of rational postulates extended from the
ones proposed for belief revision [12]. The following postulates rephrase the ones
proposed in [14] within DL-Lite framework.

(Mπ
0) �K(E) |= K

(Mπ
1) if K is consistent, then �K(E) is consistent

(Mπ
2) if K ∪

⋃
Ki∈E Ki is consistent, then �K(E)=K ∪

⋃
Ki∈E Ki

(Mπ
3) if E1 ≈ E2 and K1 ≡ K2, then �K1(E1) ≡ �K2(E2).

(Mπ
4) if K1 |= K and K2 |= K, then �K(K1 ∪ K2) is consistent implies that
�K(K1 ∪ K2) ∪ K2 is consistent

(Mπ
5) �K(E1) ∪�K(E2) |= �K(E1 � E2)

(Mπ
6) if �K(E1)∪�K(E2) is consistent, then �K(E1�E2) |= �K(E1)∪�K(E2)

(Mπ
7) �K(E) ∪ K′ |= �K∪K′(E)

(Mπ
8) if �K(E) ∪ K′ is consistent, then �K∪K′(E) |= �K(E) ∪ K′

(Mπ
maj) ∃n �K(E1 � En

2 ) |= �K(E2)

(Mπ
I ) ∀n �K(E1 � En

2 ) ≡ �K(E1 � E2)
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With:

1. K1 |= K2 iff argmaxI πK1(I) ⊆ argmaxI πK2(I)
2. K1 ≡ K2 iff K1 |= K2 and K2 |= K1

3. E1 ≈ E2 if and only if there exists a bijection g from E1 to E2 such that
∀K ∈ E1 : πK=πg(K)

4. � is the union of multisets [13]
5. En = E � ... � E︸ ︷︷ ︸

n times

Note that in the special case where we only consider only one TBox T1 for E,
these postulates are equivalent with the ones proposed in [18], by considering the
revision of T1 by the shared TBox T . Hence, our postulates extend (with very
few adaptations) the notion of Revision of [18].

For the merging process considered in the present paper, the integrity con-
straint is K=〈T , ∅〉 where T is the set of TBox axioms of each Ki ∈ E and
Ki = 〈T ,Ai〉.

Proposition 2. Our min-based assertional merging merging satisfies (Mπ
0),

(Mπ
1), (Mπ

2), (Mπ
3), (Mπ

5), (Mπ
6), (Mπ

7), (Mπ
8), (Mπ

I ) and falsifies (Mπ
4),

(Mπ
maj).

For the counter-examples, let us consider K=〈T , A〉 where T ={A�¬B}, A1 =
{(A(a), .9)} and A2={(B(a), .5)}. In this case, KΛ=〈{A�¬B}, {(A(a), .9)}〉. KΛ

is consistent, contrary to KΛ∪{(B(a), .5)}, which falsifies (Mπ
4). Moreover, re-

peating A2 will not change the result: (Mπ
maj) is also falsified.

5 Conclusion

We propose in this paper a new operator for merging multiple sources ABoxes
sharing a same terminology in the context of DL-Liteπ. We propose a syntactic
version of this operator and its semantic counterpart. This operator turns out
to be more productive than the operator previously proposed in [4], without
increasing the complexity of the merging process. In particular, it picks any pieces
of information that is not in contradiction with other bases: it is not affected by
the drowning effect. We finally provide an analysis in the light of a new set of
postulates dedicated to uncertain DL-Lite merging.

This paper opens several perspectives. For instance, we focus on a min oper-
ator for aggregating conflict vectors, in order to preserve possibilistic semantics.
Nevertheless, other aggregation operators can be considered (e.g. the product op-
erator) or direct comparisons from vectors (e.g. G-max based operator). From a
postulate point of view, other postulates dedicated to DL knowledge bases could
be studied and adapted (e.g. arbitration [15]).

Acknowledgement. This work has been supported by the french Agence Na-
tionale de la Recherche for the ASPIQ project ANR-12-BS02-0003.
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Abstract. DL-Lite is a tractable family of description logics particu-
larly suitable for query answering. One of the fundamental issues in this
area is the dynamics of the knowledge base which is a problem closely
related to the belief revision one. This paper investigates revision of pri-
oritized DL-Lite knowledge bases when a new input piece of information,
possibly conflicting or uncertain, becomes available. To encode the priori-
tized knowledge, we use a possibility theory-based DL-Lite logic. We first
study revision at the semantic level consisting in directly conditioning
possibility distributions. In particular, we show that such conditioning
provides in some situations some counterintuitive results compared with
the ones of conditioning directly the knowledge base syntactically. We
then study revision at the syntactic level of possibilistic DL-Lite knowl-
edge bases. Finally, we show that such revision process has a meaningful
semantic counterpart.

1 Introduction

There is an increasing use of ontologies in many application areas in the last
years. Description Logics (DLs) represent a powerful formalism for encoding and
reasoning on ontologies. Recently, a lot of attention is given to DL-Lite, a family
of lightweight DLs specifically designed for applications using huge volumes of
data such as Web applications where query answering is the most important
reasoning task [6]. DL-Lite guarantees an efficient computational complexity of
the reasoning process. In many applications, the available knowledge is often
affected by uncertainty especially when it is provided by several and poten-
tially conflicting sources. Generally, concatenating them gives a prioritized or a
stratified knowledge base [3]. In [9], it was shown that handling priorities is in
a complete agreement with possibility theory. This latter offers a very natural
framework to deal with ordinal and qualitative uncertainty or preferences and
priorities. Recently, a particular attention was given to the extension of DLs and
DL-Lite within the possibility theory setting (e.g. [12,1]). One of the interesting
aspects of possibilistic knowledge bases and more generally weighted knowledge
bases is the ability of reasoning with partially inconsistent knowledge.

Originally DLs have been proposed to represent the static knowledge of a
domain of interest. However in some applications (like Web-based ones), the

U. Straccia and A. Cal̀ı (Eds.): SUM 2014, LNAI 8720, pp. 22–36, 2014.
c© Springer International Publishing Switzerland 2014
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knowledge may be non static and may evolve and change from one situation to
another in order to take into account and integrate the changes that occur over
time [16]. Dynamics of a DL-based knowledge base gave rise to increasing interest
(e.g. [15,14,13]) and often concerns the situation where a new information should
be incorporated while ensuring the consistency of the results. This issue is closely
related to the belief revision problem where old beliefs are revised to take into
account the newly available pieces of information. Revision here is often seen
as knowledge change and is characterized for instance by the well-known AGM
postulates in the propositional logic setting, or by the Hansson’s postulates for
revising belief bases.

Recently, several works have dealt with revising DL-Lite knowledge bases
[16,7,2]. Unfortunately, there is to the best of our knowledge no approach for
revising prioritized DLs or DL-Lite knowledge bases when a new uncertain infor-
mation is available. This paper fills this gap and investigates revising prioritized
DL-Lite knowledge bases. In order to encode and reason with the available pri-
oritized knowledge, a possibilistic DL-Lite logic [1], denoted π-DL-Lite, is more
appropriate. In particular, this extension guarantees a computational complexity
identical to the one of standard DL-Lite. We first study revision of π-DL-Lite
knowledge bases semantically by conditioning the possibility distribution asso-
ciated to DL-Lite interpretations by the new information. We start by adapting
the standard conditioning proposed in the possibilistic setting to the π-DL-
Lite setting. We show in particular that conditioning the possibility distribution
within DL-Lite differs from the one proposed by [4] within the standard possi-
bilistic setting in the sense that a direct adaptation of conditioning to π-DL-Lite
framework is not satisfactory. Roughly speaking, according to the interaction be-
tween the new information and the knowledge base, we identify situations where
conditioning in DL-Lite differs from the one of the standard possibilistic setting.
To this end, we study revision at syntactic level of π-DL-Lite knowledge bases.
We propose two other definitions that generalize and refine the classical one. An
important result is that revision operation is done efficiently without additional
extra computational costs.

2 Possibilistic DL-Lite

In this section, we recall the main notions of possibilistic DL-Lite logic [1],
denoted π-DL-Lite. This formalism is an extension of DL-Lite within the possi-
bility theory setting. π-DL-Lite provides a powerful and natural mechanism to
deal with uncertainty and to ensure reasoning under inconsistency while keeping
a computational complexity identical to the one used in standard DL-Lite.

2.1 DL-Lite Logic

We briefly recall DL-Litecore fragment which is the core fragment for all the
DL-Lite family [6] in order to introduce possibilistic DL-Lite.
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Syntax A DL-Lite knowledge base (KB) K=〈T ,A〉 is built upon a set of atomic
concepts (i.e. unary predicates), a set of atomic roles (i.e. binary predicates)
and a set of individuals Complex concepts and roles are formed as follows:

B −→ A|∃R C −→ B|¬B R −→ P |P−

where A (resp. P) is an atomic concept (resp. role). B (resp. C) are called basic
(resp. complex) concepts and role R is called basic role. The TBox T consists of
a finite set of inclusion axioms between concepts of the form: B � C. The ABox
A consists of a finite set of membership assertions on atomic concepts and on
atomic roles of the form: A(ai), P (ai, aj), where ai and aj are two individuals.

Semantics The DL-Lite semantics is given by an interpretation I=(Δ, .I) which
consists of a nonempty domain Δ and an interpretation function .I . The func-
tion .I assigns to each individual a an element aI∈ΔI , to each concept C a
subset CI⊆ΔI and to each role R a binary relation RI⊆ΔI×ΔI over ΔI .
The interpretation function .I is extended for all the constructs of the DL-
LiteR. Namely: (¬B)I=ΔI\BI , (∃R)I={x∈ΔI |∃y∈ΔI such that (x, y)∈RI} and
(P−)I={(y, x)∈ΔI×ΔI |(x, y)∈P I}. For the TBox, we say that I satisfies a con-
cept inclusion axiom, denoted by I|=B�C iff BI⊆CI . For the ABox, we say
that I satisfies a concept (resp. role) membership assertion, denoted by I|=A(ai)
(resp. I|=P (ai, aj)), iff aIi ∈ AI (resp. (aIi , a

I
j )∈P I ). Note that we only consider

DL-Lite with unique name assumption. Lastly, an interpretation I is said to
satisfy a KB K=〈T ,A〉 iff I satisfies every axiom in T and every axiom in A.
Such interpretation is said to be a model of K.

2.2 Possibility Theory and DL-Lite

Let L be a DL-Lite description language, Ω be a universe of discourse consisting
of a set of DL-Lite interpretations (I=(Δ, .I)∈Ω). An epistemic state is repre-
sented by a possibility distribution π which is a mapping fromΩ to the unit inter-
val [0, 1] that assigns to each interpretation I∈Ω a possibility degree π(I)∈[0, 1].
π(I) represents the compatibility or consistency of I with respect to the set of
available knowledge about the real world. When π(I)=0, I is said impossible and
it is fully inconsistent with the set of available knowledge, whereas when π(I)=1,
I is said totally possible and it is fully consistent with the available knowledge
(namely nothing prevents I from being the real world). For two interpretations
I and I ′, when π(I)>π(I ′) we say that I is more consistent or more preferred
than I ′ w.r.t the available knowledge. Lastly, π is said normalized if there exists
at least one totally possible interpretation, namely ∃I∈Ω, π(I)=1, otherwise,
we say that π is sub-normalized. Note that the concept of sub-normalization
reflects the presence of conflicts in the set of available information. Given a pos-
sibility distribution π defined on a set of interpretations Ω, two dual measures
are generally used to assess the uncertainty of any event of interest φ⊆Ω: the
possibility Π and the necessity N measures such that Π(φ)=maxω∈φ(π(ω)) and
N(φ)=1-Π(¬φ). These two measures are extended for a DL-Lite axiom φ as
follows:
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Possibility Measure: Π(φ)=max
I∈Ω

{π(I) : I � φ} evaluates to what extent an

axiom φ is compatible with the available knowledge encoded by π.

Necessity Measure: The necessity degree N(φ)=1-max
I∈Ω

{π(I) : I � φ} evalu-

ates to what extent φ is certainty entailed from the available knowledge encoded
by π where I � φ means that I is not a model of φ.

2.3 π-DL-Lite Knowledge Bases

Syntactic representation Let L be a DL-Lite description language, a π-DL-Lite
KB is a set of possibilistic axioms of the form (φ, α) where φ is an axiom expressed
in L and α ∈ ] 0, 1] is the degree of certainty of φ. Formally,K={(φi, αi): i=1...n}.
Only somewhat certain information (α>0) is explicitly represented in a π-DL-
Lite KB. A weighted axiom (φ, α) means that the certainty degree of φ is at
least equal to α (namely, N(φ)≥α). A π-DL-Lite KB K will also be represented
by a couple K=〈T ,A〉 where both elements in T and A may be uncertain. It
is important to note that if for every axiom φi, we have αi=1 then this gives a
classical DL-Lite KB denoted K∗={φi : (φi, αi) ∈ K}.

Given K=〈T ,A〉 a π-DL-Lite KB, we define the α-cut of K (resp. T and A),
denoted by K≥α (resp. T≥α, A≥α), the sub-base of K (resp. T and A) composed
of axioms having weights αi that are at least equal to α and the strict α-cut
of K (resp. T and A), denoted by K>α (resp. T>α, A>α), as a sub-base of K
(resp. T and A) composed of axioms having weights αi strictly greater than α.
We say that K is consistent if the standard base obtained from K by ignoring
the weights associated with axioms is consistent. In case of inconsistency, we
associate to K an inconsistency degree defined as follows:

Definition 1. The inconsistency degree of a π-DL-Lite KB K, denoted Inc(K),
is syntactically defined as follows: Inc(K)=max{α:K≥α is inconsistent}.

In [1], the computation of the inconsistency degree of a π-DL-Lite KB is per-
formed using an extension of the algorithm proposed in [6]. This extension con-
sists first on computing the negated closure of the KB, denoted π-neg(T ), using
the rules presented in [1]. This π-neg(T ) is transformed to weighted queries per-
formed over the set of individuals in A in order to compute the inconsistency
degree. The inconsistency associated with a query and a given tuple of asser-
tions provided as an answer for the query is the maximum weight among all
the certainty degrees of the query and this tuple. The maximum among these
inconsistency degrees is the inconsistency degree associated with the KB.

Semantics Given a π-DL-Lite KB K, one can associate to K a joint possibility
distribution, denoted by πK, defined over the set of all interpretations I=(Δ, .I)
by associating to each interpretation I its level of consistency with the set of
available knowledge encoded in K.
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Definition 2. The possibility distribution πK induced from a π-DL-Lite KB K
is defined as follows: ∀I∈Ω:

πK(I)=

{
1 if ∀ (φi, αi) ∈ K, I � φi

1−max{αi : (φi, αi) ∈ K, I � φi} otherwise

A π-DL-Lite KB K is said consistent if its joint possibility distribution πK
is normalized, otherwise K is said inconsistent and its inconsistency degree is
defined semantically as follows:

Definition 3. The inconsistency degree of a π-DL-Lite KB K, denoted Inc(K),
is semantically defined as follows: Inc(K)=1−max

I∈Ω
{πK(I)}.

Example 1. Let K=〈T ,A〉 be a π-DL-Lite KB where T ={(A�B,.4)} and
A={(A(a), .5),(C(a), .7)}). One can compute πK the possibility distribution in-
duced from K using Definition 2.

Table 1. Example of a possibility distribution πK computed using Definition 2

I .I πK I .I πK
I1 A = {},B = {},C = {} .3 I2 A = {a},B = {},C = {} .3

I3 A = {},B = {a},C = {} .3 I4 A = {},B = {},C = {a} .5

I5 A = {a},B = {a},C = {} .3 I6 A = {a},B = {},C = {a} .6

I7 A = {},B = {a},C = {a} .5 I8 A = {a},B = {a},C = {a} 1

One can observe that πK(I8)=1 meaning that the KB is consistent. Note that we
have chosen a simple example in order to enumerate all interpretations. This will
be helpful to illustrate the conditioning of a π-DL-Lite possibility distribution.

3 Revising the πK Distribution

Let K=〈T ,A〉 be a π-DL-Lite KB where πK is its joint possibility distribution
computed according to Definition 2. For the sake of simplicity, we assume that
K is consistent (namely πK is normalized). Let us denote by (ϕ, μ) the new
information to be accepted. Within the π-DL-Lite setting, ϕmay be an assertion
of the form A(a) or P (a, b), a positive inclusion axiom (PI) of the form B1�B2 or
a negative inclusion axiom (NI) of the formB1�¬B2 and μ∈] 0, 1]. The new input
can be a totally reliable information (i.e. μ=1) or uncertain (i.e. 0<μ<1). In π-
DL-Lite, revision comes down to add the new information with its prescribed
level of certainty while ensuring the consistency of the revision results.

In the following, we investigate revision at the semantic level. It consists
in conditioning the original possibility distribution πK by the new informa-
tion (ϕ, μ). This operation takes as input a possibility distribution πK and the
new information (ϕ, μ) and transforms πK to a revised possibility distribution
π′=πK(.|(ϕ, μ)). Here, the input (ϕ, μ) is considered as a constraint that must
be satisfied in π′. More precisely, the revised distribution is such that Π ′(ϕ)=1
(in the possibilistic setting, in order for an event ϕ to have a certainty degree
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greater than zero, it must be totally possible, hence Π ′(ϕ)=1) and N ′(ϕ)≥μ
meaning that the axiom ϕ is certain at least to the degree μ. Here Π ′ (resp.
N ′) is the possibility (resp. necessity) measure induced by the revised possibility
distribution π′.

3.1 Logical Properties

In [4], conditioning in the possibilistic logic setting is characterized with the
following properties. A revised possibility distribution π′ is considered eligible
for revising the initial distribution πK with the new input (ϕ, μ) if it satisfies the
following properties.

(A1) maxI∈Ω(π
′(I))=1.

(A2) Π ′(ϕ)=1 and N ′(ϕ)≥μ.
(A3) ∀I1�ϕ, I2�ϕ, if πK(I1)≤πK(I2) then π′(I1)≤π′(I2).
(A4) ∀I1�ϕ, I2�ϕ, if πK(I1)≤πK(I2) then π′(I1)≤π′(I2).
(A5) If NK(ϕ)>0 then ∀I�ϕ: πK(I)=π′(I)
(A6) If πK(I)=0 then π′(I)=0.

Property A1 ensures the consistency of the revised possibility distribution
by guaranteeing a normalized distribution π′. A2 guarantees that the added
information should be inferred from the revised distribution π′ with a weight
at least equal to its prescribed priority level. A3 ensures that the relative order
between the interpretations that falsify ϕ is preserved. A4 states that the new
possibility distribution π′ should preserve the previous pre-order between inter-
pretations which are models of ϕ. A5 means that the revision process does not
affect models of ϕ when ϕ is a priori fully accepted. A6 states that every im-
possible interpretation remains impossible after conditioning. In order to satisfy
properties A3 and A4, it is clear that the revision operation should condition
both the interpretations satisfying ϕ and those falsifying ϕ. According to prop-
erties A1-A6, two different types of possibility distribution conditioning when
Π(ϕ)>0 are proposed in [8], namely in an ordinal setting and in a quantitative
setting. These conditionings are extended to the case where the new input is
uncertain in [10] and studied in [5]. In this paper, we only focus on conditioning
in the ordinal setting, well-known as min-based conditioning [4].

Belief revision with uncertain information was studied in many works and its
close relation to Jeffrey’s rule [11] (generalizing probability theory’s conditioning)
is pointed out. In [4] the possibilistic counterpart was given for belief revision
with uncertain inputs when dealing with belief bases encoded in possibilistic
logics. The authors show that the revision process comes down syntactically to
adding the new information with a prescribed level of certainty while maintain-
ing the consistency of the resulting base and semantically to conditioning the
possibility distribution representing the current epistemic state in order to add
the new input.
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3.2 Min-based π-DL-Lite Possibility Distribution Conditioning

In order to define conditioning of possibility distribution πK, let us first recall
that in standard propositional possibilistic logic, the necessity measure is the
dual of the possibility measure and it is defined by N(φ)=1-Π(¬φ) where φ
is a propositional formula. In possibilistic DL-Lite, a necessity measure cannot
be defined as the dual of the possibility measure because the negation of an
axiom in DL-Lite is not allowed. Instead, we define Πn(ϕ)=max

I∈Ω
{π(I):I�ϕ}.

One can see that Πn(ϕ) is intuitively similar to Π(¬φ) where ω�¬φ with ω is
a propositional logic interpretation (and it denotes in DL-Lite an interpretation
I falsifying ϕ, denoted I � ϕ). The following definition rephrases conditioning
within the possibilistic DL-Lite setting.

Definition 4. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
distribution. Let (ϕ,μ) be the new information. The min-based conditioning is
extended to the π-DL-Lite setting as follows:

– ∀I�ϕ, πK(.|m(ϕ, μ))=

{
1 if πK(I)=Π(ϕ)

π(I) otherwise

– ∀I�ϕ, πK(.|m(ϕ, μ))=

⎧⎪⎨
⎪⎩
1-μ if π(I)=Πn(ϕ)

1-μ if πK(I)>1-μ
π(I) otherwise

According to Definition 4, accepting the input consists in raising the degree
of the most plausible model of ϕ to 1. This allows to deal only with axioms that
are consistent with the input. For the counter-models, it is clear that the most
plausible is set to 1-μ and all the interpretations that are more compatible than
1-μ should be shifted down to 1-μ.

Proposition 1. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
possibility distribution. Let (ϕ, μ) be the new information. Then π′=πK(.|(ϕ, μ))
computed using Definition 4 satisfies postulates (A1)-(A6).

Example 2. Let us consider πK presented in Example 1. Assume that we have
in this example separately two cases of new information pieces to be accepted.
The first one is (B�¬C, .9) and the second one is (B�¬C, .2). Using Definition
4, the min-based revised possibility distribution π′=πK(I|m(B�¬C,.9)) (resp.
π′=πK(I|m(B�¬C,.2)) is as follows:

In this example, the first scenario is revising πK associated to K with the
input (B�¬C,.9). Given that in πK, we have a priori Π(B�¬C)=.6 (hence it’s
necessity is 0) then the new input requires to be satisfied to increase the necessity
of the axiom B�¬C until .9. In the second scenario, the necessity of the axiom
B�¬C has to be shifted down to .2. One can observe in πK that the interpre-
tations {I1, I2, I3, I4, I5, I6}�B�¬C where Π(B�¬C)=.6 while {I7,I8}�B�¬C
where Πn(B�¬C)=1. ��

Definition 4 is a direct adaptation of conditioning in possibilistic logic [8] to π-
DL-Lite framework. As it will be shown in the following example, conditioning of
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Definition 4 is not satisfactory as it provides somehow counterintuitive results.
More precisely, conditioning of Definition 4 works when the new information
is inconsistent with the KB or it is a priori inferred with a weight less than
its prescribed level μ. Hence revision here consists in simply adding the new
information to the old knowledge (it is a kind of knowledge expansion). However,
conditioning of Definition 4 does not work properly when the input is a priori
inferred with a weight greater than its prescribed level μ. The following example
illustrates this situation.

Example 3. Assume that we have a π-DL-LiteKBK where the TBox T ={(A�B,
.4), (B�C,.7)} and the ABox A={(A(a),.3)}. One can easily check that we have
a priori K�π(A�C,.4) (indeed, as it is shown in Table 3, the axiom A�C has
a necessity degree of .4 in the possibility distribution πK associated to K). Now
assume the two following situations: In the first one, the information piece to
be accepted by K is (A�C,.9) while in the second situation K is revised with
(A�C,.2). Let π′=πK(I|m(A�C,.9)) (resp. π′′=πK(I|m(A�C,.2))) the condi-
tioned min-based possibility distribution using Definition 4. The interpreta-
tions {I1, I2, I3, I4, I5, I6} satisfy the input axiom A�C and we have a priori
Π(A�C)=1 and Πn(A�C)=.6. The possibility degrees of the interpretations
{I7, I8} are set to (1-.9)=.1 in order to ensure that N ′(A�C)=.9. It is easy to
check that properties (A1)-(A6) are satisfied by the distribution π′ computed
according to Definition 4. However when the input is (A�C,.2), there is a prob-

Table 2. Example of possibility distribution revision by two information pieces

I .I πK πK(I |m(B�¬C,.9)) πK(I |m(B�¬C,.2))

I1 A = {},B = {},C = {} .3 .3 .3

I2 A = {a},B = {},C = {} .3 .3 .3

I3 A = {},B = {a},C = {} .3 .3 .3

I4 A = {},B = {},C = {a} .5 .5 .5

I5 A = {a},B = {a},C = {} .3 .3 .3

I6 A = {a},B = {},C = {a} .6 1 1

I7 A = {},B = {a},C = {a} .5 .1 .5

I8 A = {a},B = {a},C = {a} 1 .1 .8

Table 3. Second example of possibility distribution revision by two information pieces

I .I πK π′=πK(I |m(A�C,.9)) π′′=πK(I |m(A�C,.2))

I1 A={}, B={a}, C={} .3 .3 .3

I2 A={a}, B={}, C={a} .6 .6 .6

I3 A={}, B={}, C={} .7 .7 .7

I4 A={}, B={}, C={a} .7 .7 .7

I5 A={}, B={a}, C={a} .7 .7 .7

I6 A={a}, B={a}, C={a} 1 1 1

I7 A={a}, B={}, C={} .6 .1 .8

I8 A={a},B={a},C={} .3 .1 .3
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lem regarding the possibility degree associated to I2 in π
′′. Indeed, we have A�C

is implied by the fact A�B and B�C. Hence, in order to have a necessity de-
gree of A�C of .2 then one has to shift down at least the necessity degree of
the axiom A�B down to .2 as it has a lower priority than B�C. However, if
the necessity of A�B is shifted down to .2 then the corresponding πK after this
modification will not be equivalent to the one given in Table 3. For instance, the
interpretation I2 will be associated with a degree of .8 instead of .6 currently.
Clearly revision with conditioning of Definition cannot fully capture syntactic
revision detailed in the following section. ��

It is important to note that in the DL-Lite framework, it is not guaran-
teed that any set of interpretations represents a DL-Lite axiom [1]. In the next
section, we analyze revision at syntactic level. We then provide a definition of
conditioning possibility distributions that refines Definition 4.

4 Syntactic Revision

In this section, we study revision with the new information (ϕ, μ) at the syntac-
tic level. Revision here consists in obtaining from a π-DL-Lite KB K=〈T ,A〉
associated to a possibility distribution πK and an uncertain input information
(ϕ, μ), a new π-DL-Lite KB K′=〈T ′,A′〉. As in possibilistic logic, in π-DL-
Lite, revision comes down to add the new information with its prescribed level
of certainty while ensuring the consistency of the revision results. When adding
the new information to the KB, several situations may be encountered, namely
when the input is consistent or inconsistent with the the original knowledge.

4.1 The Input (ϕ,μ) is Inconsistent with K
We address here the situation where the new information (ϕ,μ) is inconsistent
with the KB K, namely ΠK(ϕ)<1 (recall that in possibility theory, if Π(ϕ)<1
then N(ϕ)=0). There are two situations to be considered. The first one is when
(ϕ,μ) is implicitly inhibited by higher priority TBox or ABox axioms that contra-
dict it. The second one is when (ϕ,μ) is not inhibited by higher priority axioms
that contradict it. For these two cases, the construction of the augmented π-
DL-Lite KB K′ is performed according to the following steps: (1) Add the input
ϕ to the KB K with the highest prescribed level (i.e. μ=1). (2) Compute the
inconsistency degree β=Inc(K1) with K1=K∪{(ϕ, 1)}. (3) Drop every axiom in
K1 having a priority less than or equal to the inconsistency degree β. Let K2

the obtained consistent KB. (4) Add ϕ with its prescribed level μ to K2. Let
K′=K2∪{(ϕ, μ)}.

These steps ensure the consistency of the resulting KB after adding the input
(ϕ,μ) with its prescribed level. The following proposition relates the resulting
KB K′ with the possibility distribution πK′ associated to K′ with the results of
conditioning at the semantic level using Definition 4.

Proposition 2. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
distribution. Let (ϕ, μ) be the added uncertain input information and β=Inc(K1)
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where K1=K∪{(ϕ, 1)}. Let K′=〈T ′,A′〉 such that K′={(ϕ, μ)}∪{(φ, α) : (φ, α) ∈
K andα > β} and let πK′ be the possibility distribution associated to K′. Then,

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, μ)),

where πK(I|m(ϕ, μ)) denotes the revised possibility distribution πK computed us-
ing min-based conditioning defined in Definition 4.

Example 4. (examples 1 and 2 continued) Let us first assume a new in-
put (B�¬C, .9) and then another input (B�¬C, .2). One can easily check
that Inc(K∪{(B�¬C, 1)}=.4. So, (B�¬C, .2) (resp. (B�¬C, .9)) is inhib-
ited (resp. not inhibited) by higher priority axioms that contradict it. For
the first case, it is easy to check that K′={(B�¬C, .2), (A(a), .5), (C(a),
.7)} is such that πK′(I)=πK(I|m(B�¬C, .2)) presented in Example 2. For
the second case however, K′={(B�¬C, .9), (A(a), .5), (C(a), .7)}) such that
πK′(I)=πK(I|m(B�¬C, .9)) presented in Example 2. ��

4.2 The Input (ϕ,μ) is Consistent with K
When the input (ϕ,μ) is consistent with the KB K (namely Π(ϕ)=1), two situ-
ations are to be considered: The first one is when (ϕ, μ) is a priori inferred from
the KB K, namely K�πφ, the second one is when (ϕ, μ) cannot be inferred from
K, namely K�πφ. Here, revision is performed with a simple expansion of K with
the input (ϕ, μ), namely K′=K∪(ϕ, μ).

Let us first discuss the situation where the input (ϕ, μ) is a priori inferred
from the KB K. In this situation, two scenarios can hold depending on the a
priori necessity measure of ϕ (denoted N(ϕ)=ν), and its prescribed posterior
necessity N ′(ϕ)=μ. Namely: (i) When ν≤μ meaning that the new information
is inferred with a certainty degree ν less than its prescribed one μ. Note that
this situation is similar to the case of revising with a certain input (namely case
where μ=1). (ii) When ν>μ meaning that the new information is inferred with
a certainty degree ν that is greater than its prescribed one μ.

In π-DL-Lite, to determine to what extent the input (ϕ) is inferred from
the KB, namely K�π (ϕ,ν) with ν≥μ or ν<μ, we first add to K the assump-
tion that ϕ is false encoded by the following statements: {(Y � C1, 1), (Y �
¬C2, 1), (Y (y), 1)} if ϕ=C1 � C2 and {(Y � ¬C1, 1), (Y (a), 1)} if ϕ=C1(a)
where Y (resp. y) is a new concept (resp. individual) not appearing in K.
Then we compute the inconsistency degree of the augmented KB. This in-
consistency degree corresponds to ν. Namely K �π (ϕ,ν) iff Inc(K1)=ν where
K1=〈T1,A1〉 with T1=T ∪ {(Y � C1, 1), (Y � ¬C2, 1)} and A1={(Y (y), 1)} or
T1=T ∪ {(Y � ¬C1, 1)} and A1=A ∪ {(Y (a), 1)}. Now, the construction of the
augmented π-DL-Lite KB K′ is performed using the following steps: (1) Add the
assumption that ϕ is false to K with the highest prescribed level (i.e. μ = 1). (2)
Compute the inconsistency degree of the augmented KB (i.e. Inc(K1)=ν). (3) If
μ≥ν, then the revision outcome is K′=K∪{(ϕ, μ)}. (4) if (μ < ν) two solutions
can be proposed. (4.1) The first one is to shift down the weights of axioms in K
which are between μ and ν to μ. (4.2) The second solution is to compute first
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the set X⊆K of axioms in K that imply ϕ. Then we shift down the weights of
axioms in X which are between μ and ν to μ.

These steps ensure inferring the new input ϕ from the resulting KB K′ with
its prescribed level μ. Following these steps, it is clear that the revision process
does not change the initial weights attached to axioms of K if K�π (ϕ, ν) with
ν≤μ. However it changes the initial weights attached to some axioms responsible
or not for inferring ϕ from K with the weight μ when ν>μ. According to the
Example 3 presented in the previous section, conditioning proposed by Definition
4 is counterintuitive when (μ < ν). To this end, we fit Definition 4 before giving
the formal representation of K′.

4.3 Semantic Counterpart

Let us start with the case where ν>μ. The following definition gives a min-based
conditioning of π-DL-Lite possibility distribution generalizing Definition 4.

Definition 5. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
possibility distribution. Let (ϕ,μ) be the new information. The min-based condi-
tioning is extended to the π-DL-Lite setting as follows:

– ∀I�ϕ, πK(.|m(ϕ, μ))=

⎧⎪⎨
⎪⎩
1 if πK(I)=Π(ϕ)

1− μ if Πn(ϕ)≤πK(I)≤1-μ
π(I) otherwise

– ∀I�ϕ, πK(.|m(ϕ, μ))=

⎧⎪⎨
⎪⎩
1-μ if π(I)=Πn(ϕ)

1-μ if πK(I)>1-μ
π(I) otherwise

According to Definition 5, accepting the input consists in raising the degree
of the most plausible model of ϕ to 1. Moreover when N(ϕ)>μ, some models
of ϕ will all be set to 1-μ. For the counter-models, the most plausible is set to
1-μ and all interpretations that are more compatible than 1-μ should be shifted
down to 1-μ. Moreover, when N(ϕ)=ν > μ the interpretations that falsify less
priority axioms inferring ϕ will be revised.

Proposition 3. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
possibility distribution. Let (ϕ,μ) be the new information. Then π′=πK(.|(ϕ, μ))
computed using Definition 5 satisfies postulates (A1), (A2), (A3), (A4), (A6).

The following proposition relates the resulting KB K′ with the possibility
distribution πK′ associated to K′ with the results of conditioning at the semantic
level using Definition 5

Proposition 4. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
distribution. Let (ϕ, μ) be the added uncertain input information and ν=Inc(K1)
where K1 is the augmented KB by the assumption that ϕ is false. Then the revised
π-DL-Lite KB K′=〈T ′,A′〉 such that:
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K′={(ϕ, μ)}∪{(φ, α):(φ, α)∈K andα>ν}∪{(φ, α):(φ, α)∈K andα<μ} ∪
{(φ, μ):(φ, α) ∈ K andμ≤α≤ν}

The possibility distribution πK′ associated to K′ is such that:

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, μ)),

where πK(I|m(ϕ, μ)) denotes the revised possibility distribution of πK using the
min-based conditioning of Definition 5.

Example 5 (Examples 3 continued). We have T ={(A�B,.4), (B�C,.7)} and
A={(A(a),.3)}. Let us consider (A�C,.9) and (A�C,.2). One can easily check
that Inc(K1)=.4 where K1=〈T ∪ {(Y � A, 1), (Y � ¬C, 1)}, {(Y (y), 1)}〉 . So
K�π(A�C,.4). When the input is (A�C,.9), then K′={(A�B,.4), (B�C,.7),
(A�C,.9), (A(a), .3)} such that πK′(I)=πK(I|m(A�C,.9) presented in Example
3. Now, when the input is (A�C,.2), then K′={(A�B,.2), (B�C,.7), (A�C,.2),
(A(a), .2)} such that πK′(I)=πK(I|m(A�C,.2) presented in Example 3 becomes
as follows:πK′(I1)=.3,πK′(I2)=.8, πK′(I3)=.8, πK′(I4)=.8, πK′(I5)=.8, πK′(I6)=1,
πK′(I7)=.8 and πK′(I8)=.3. ��

Proposition 4 leads to shift down the weights of axioms in K which are between
μ and ν to μ. However, one can improve the result with a minimal change
consisting in revising only the weights of some axioms responsible of implying the
new information. Given the set X⊆K of axioms in K that infer ϕ, we distinguish
semantically four sets of interpretations when the new information ϕ is satisfied:
(1) Interpretations that are models of X and K-X , (2) Interpretations that are
models of X but are not models of K-X , (3) Interpretations that are models of
K-X but are not models of X and (4) Interpretations that are neither models of
K-X nor X . The following definition provides another min-based conditioning
of π-DL-Lite possibility distribution that also adapts Definition 4.

Definition 6. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
possibility distribution. Let (ϕ, μ) be the new information. Let X⊆K be the set
of axioms inferring ϕ. Let μ′=max{α : (φ, α) ∈ K−X and I � φ}. In an ordinal
setting, we define the min-based conditioning as follows:

– ∀I�(ϕ∪X ), π(.|m(ϕ,μ))=

{
1 if π(I)=Π(ϕ)

π(I) otherwise

– ∀I�ϕ∪(K-X ), I�X , π(.|m(ϕ,μ))=

{
1-μ if π(I)=Πn(ϕ)

π(I) otherwise

– ∀I � ϕ,I � X , I � K− X ,π(.|m(ϕ, μ))=

⎧⎨
⎩
1-μ if π(I)=Πn(ϕ) and 1− μ′≥1-μ

1-μ′ if π(I)=Πn(ϕ) and 1− μ′≤1-μ

π(I) otherwise

– ∀I � ϕ,π(.|m(ϕ, μ))=

⎧⎪⎨
⎪⎩
1-μ if π(I)=Πn(ϕ)

1-μ if π(I)>1-μ

π(I) otherwise
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Proposition 5. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
possibility distribution. Let (ϕ, μ) be the new information. Then π′=πK(.|(ϕ, μ))
computed using Definition 6 satisfies postulates (A1),(A2),(A3) and (A6).

The following proposition relates the resulting KB K′ with the possibility
distribution πK′ associated to K′ with the results of conditioning at the semantic
level using Definition 6.

Proposition 6. Let K=〈T ,A〉 be a π-DL-Lite KB and πK be its joint possibility
distribution. Let (ϕ, μ) be the added uncertain input information and ν=Inc(K1)
where K1 is the augmented KB by the assumption that ϕ is false. Then the revised
π-DL-Lite KB K′=〈T ′,A′〉 such that

K′={(ϕ, μ)} ∪ {K − X} ∪ {(φ, α) : (φ, α) ∈ X andα > ν} ∪ {(φ, μ) : (φ, ν) ∈
X and ν = α}

The possibility distribution πK′ associated to K′ is such that:

∀I ∈ Ω, πK′(I)=πK(I|m(ϕ, μ)),

where πK(I|m(ϕ, μ)) denotes the revised possibility distribution of πK using the
min-based conditioning defined in Definition 6.

Example 6 (Examples 3 continued). When the input is (A�C,.9), then K′=
{(A�B,.4), (B�C,.7), (A�C,.9), (A(a), .3)} such that πK′(I)=πK(I|m(A�C,.9)
presented in Example 3. Now, when the input is (A�C,.2), then K′={(A�B,.2),
(B�C,.7), (A�C,.9), (A(a), .3)} such that πK′(I)=πK(I|m(A�C,.2) becomes as
follows: πK′(I1)=.3, πK′(I2)=.8, πK′(I3)=.7, πK′(I4)=.7, πK′(I5)=.7, πK′(I6)=1,
πK′(I7)=.8 and πK′(I8)=.3. ��

Let us now discuss the case where μ≥ν. It is similar to the revision by a totally
reliable information (i.e. μ=1). In this case, it is natural that all the interpre-
tations that are models of ϕ must be preserved and all the interpretations that
falsify ϕ must be set as impossible (the necessity degree of the input equals 0).
In this case the conditioning operation follows from Definitions 5 and 6. More-
over conditioning according Definitions 5 and 6 agrees with Definition 4. Finally
when (ϕ, μ) cannot be inferred from K, this means that the revision process
is performed simply with an expansion of K with the input. In such situation,
conditioning follows trivially according to Definitions 5 and 6 and coincides with
Definition 4. It is similar to the case where the input is inconsistent with K.

5 Discussions and Concluding Remarks

This paper addressed revision of π-DL-LiteKBs when a new piece of information
(ϕ, μ), possibly conflicting or uncertain, becomes available. We first studied
revision at the semantic level by adapting conditioning of possibility distributions
proposed within the possibilistic setting. We have shown that such conditioning
provides a counterintuitive results. We then investigated revision at the syntactic
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level of π-DL-LiteKBs. Finally, we proposed two others definitions of π-DL-Lite
possibility distribution conditioning that generalize the first one.

According to the new definition, conditioning of π-DL-Lite possibility dis-
tribution with (ϕ, μ) establishes a new pre-order between counter-models and
models of ϕ. This new ranking depends on the a priori necessity measure of
ϕ, and the prescribed posterior necessity measure of ϕ. Roughly speaking, if
N(ϕ)≤μ then with a min-based conditioning every interpretation that falsifies
ϕ and that is more compatible than 1-μ is shifted down to 1-μ. This means that
some a priori pre-order on these interpretations will be lost. Moreover, the fact
that within π-DL-Lite framework, the necessity measure is not the dual of the
possibility measure, some a priori pre-order on interpretations which are models
of ϕ will also be lost. This is a consequence of shifting down to 1-μ some more
compatible counter-models of ϕ when N(ϕ)≤μ. Regarding the computational
complexity of the syntactic revision, it is obvious that it is polynomial since
computing the inconsistency degree of a π-DL-Lite KB is polynomial using the
algorithm proposed in [1]. To compute the revision outcome, we need one step
further when (ϕ, μ) is inferred from the KB. Namely, we need to compute the set
of axioms responsible for deducing the input. The computational complexity of
this subset is also polynomial. A future works will focus on the assertional-based
revision as well as terminological-based revision within the π-DL-Lite setting.
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Abstract. In this paper, we study foundations of interval-based possibilistic net-
works where possibility degrees associated with nodes are no longer singletons
but sub-intervals of [0,1]. This extension allows to compactly encode and rea-
son with epistemic uncertainty and imprecise beliefs as well as with multiple
expert knowledge. We propose a natural semantics based on compatible possi-
bilistic networks. The last part of the paper shows that computing the uncertainty
bounds of any event can be computed in interval-based networks without extra
computational cost with respect to standard possibilistic networks.

1 Introduction

Graphical models are powerful tools for modeling and reasoning with uncertain and
complex information [7]. They are compact and expressive representations of beliefs
that can be elicited from an agent or automatically learnt from empirical data. How-
ever, the difficulty for an agent to provide precise and reliable crisp belief degrees has
led researchers to the development of alternative and flexible formalisms for represent-
ing and managing ill-known beliefs. An example of flexible frameworks is the one of
interval-based representations of uncertainty which is justified in many situations by
the availability of few information pieces and knowledge, the existence of multiple and
potentially contradictory information sources, the impreciseness of sensors’ outputs,
etc. Several alternative theories are now developed to encode ill-known beliefs like im-
precise probabilities [18], belief functions and evidence theory [17], etc. Interval-based
representations are widely adopted to encode ill-known beliefs but there is no con-
sensus on the semantics and interpretations underlying belief intervals. Existing works
on interval-based graphical models deal only with probabilistic networks1 and they are
mostly interested in inference issues [8] [9] [10]. One of the major problems of interval-
based probabilistic networks is their exorbitant computational complexity for inferring
posterior probability intervals while in practice the obtained intervals are often too large
to be exploited [13]. As it will be shown in the inference section, min-based possibilis-
tic networks have different behaviors due to the idempotence property of the min and
max operators of possibility theory.

While the possibilistic setting is more appropriate for dealing with partial ignorance
and incomplete information, interval-based possibilistic networks have not been in-
vestigated. In [4], we proposed three-valued possibilistic networks where only three

1 Note that in the probabilistic setting, interval-based networks are called credal networks [6]
[14].

U. Straccia and A. Calı̀ (Eds.): SUM 2014, LNAI 8720, pp. 37–50, 2014.
c© Springer International Publishing Switzerland 2014
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possibility levels (namely, fully accepted, fully rejected or unknown) are used to en-
code incomplete information. In the logical setting, there is only our work dealing with
interval-based logic bases proposed in the possibility theory framework [2]. However,
as it will be shown later, this work cannot be used for the purpose of our paper. Besides,
different extensions of standard possibilistic logic have been proposed to deal with mul-
tiple source information or with temporal information using intervals [12]. Again, these
works cannot be used for the purpose of this paper.

Interval-based possibilistic networks (IPNs) generalize standard possibilistic net-
works [5][1] to encode ill-know beliefs where these latter are encoded by means of
sub-intervals of [0, 1]. More precisely, IPNs allow to compactly encode families of
standard joint possibility distributions. The motivation of interval-based possibilistic
representations is to encode and reason with ill-known and imprecise beliefs, confi-
dence intervals, multi-source information, etc. In particular, standard possibility theory
does not allow incomparability since the possibility of any two events are comparable.
This may appear as a strong assumption in some applications. Besides, in practice it is
not always possible to have necessity/possibility bounds for every proposition. Intervals
offer more flexibility to represent and to handle incomparable events. The objective of
this paper is to analyze foundational issues of IPNs and its main contributions are:

– We propose a definition of IPNs which extend standard possibilistic ones. This
flexible model has not been addressed before.

– We extend the definition of chain rule for IPNs. We show that contrary to standard
possibility theory, an IPN can neither be faithfully represented by an interval-based
possibility distribution nor by an interval-based possibilistic logic knowledge base.

– We propose a natural semantics for IPNs based on compatible standard possibilis-
tic networks. We provide precise relations between a set of compatible standard
possibilistic networks and an interval-based possibility distribution induced by the
extended chain rule.

– Lastly, we show that computing the uncertainty bounds of any event, given in terms
of guaranteed possibility measure Δ and possibility measure Π can be computed
in IPNs without extra computational cost with respect to standard possibilistic
networks.

2 A Brief Refresher on Possibility Theory
and Possibilistic Networks

2.1 Possibility Theory

Possibility theory [19] provides a powerful and simple alternative to probability theory
in particular for dealing with qualitative uncertainty where only the plausibility ordering
between events is important. One of the fundamental concepts of possibility theory
is the concept of possibility distribution π which is a mapping from the universe of
discourse Ω to the unit interval [0, 1]. A possibility degree π(wi) expresses to what
extent wi∈Ω can be the real world. π(wi)=1 means that wi is totally possible and
π(wi)=0 denotes an impossible event. The relation π(wi)>π(wj) means thatwi is more
possible than wj . A possibility distribution π is normalized if maxwi∈Ωπ(wi) = 1. A
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possibility measure Π(φ) evaluates the possibility degree relative to an event φ⊆Ω. It
is defined as follows:

Π(φ) = max
wi∈φ

(π(wi)). (1)

Another important concept, introduced in [11][3], is the one of guaranteed possibility
measure Δ(φ) which evaluates to which extent the possibility degree of an event is
guaranteed:

Δ(φ) = min
ωi∈φ

(π(wi)). (2)

The two measuresΔ(φ) andΠ(φ) allow to define the minimal and maximal possibility
degrees associated with the event φ given a joint possibility distribution π. When π
encodes a set of preferences,Π(φ) represents the most satisfactory solution whileΔ(φ)
represents the least satisfactory solution where φ is true.
The other fundamental notion in possibility theory is the one of conditioning defined as
follows [15]: ∀φ⊆Ω,

π(wi|φ) =
⎧⎨
⎩

1 if π(wi)=Π(φ) and wi ∈ φ;
π(wi) if π(wi)<Π(φ) and wi ∈ φ;
0 otherwise.

(3)

2.2 Possibilistic Networks

A possibilistic network G=<G,Θ> is specified by:

i) A graphical component G consisting of a directed acyclic graph (DAG ) where
vertices represent the variables and edges represent direct dependence relationships
between variables. Each variable Ai is associated with a domainDi containing the
values ai taken by a variable Ai.

ii) A numerical component Θ allowing to assess the uncertainty relative to each vari-
able using local possibility tables. The possibilistic component consists in a set
of local possibility tables Θi={θai|ui

} where ai∈Di and ui is an instance of Ui

denoting the parent variables of Ai in the network G.

We will use the notations π(Ai) and θAi interchangeably to denote the local possibility
table of variable Ai whenever no confusion arises. Note that all the local possibility
distributionsΘi must be normalized, namely ∀i=1..n, ∀ui∈DUi , maxai∈Di(θai|ui

)=1.

Example 1. Figure 1 gives an example of a possibilistic network over four Boolean vari-
ables A, B, C and D. The structure of G encodes a set of independence relationships
I={I(Ai, Ui, Y )} where each variable Ai in the context of its parents Ui is indepen-
dent of its non descendants Y . For example, in the network of Figure 1, variable C is
independent of B and D in the context of A.

In the qualitative possibilistic setting, the joint possibility distribution is factorized using
the min-based chain rule:

π(a1, a2, .., an) =
n

min
i=1

(π(ai|ui)). (4)
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A B

C D

A π(A)

T 1
F .4

B π(B)

T .1
F 1

C A π(C|A)

T T .3
F T 1
T F .2
F F 1

D B A π(D|AB)

T T T .4
F T T 1
T T F .2
F T F 1
T F T 1
F F T 1
T F F 1
F F F .1

Fig. 1. Example of a possibilistic network

3 Interval-Based Possibilistic Networks: Definitions

In order to encode ill-known beliefs, interval-based representations rely on sub-intervals
[α, β] of [0, 1]. When the plausibility of an event φ is encoded by the interval [α, β],
this is interpreted as the actual but ill-known plausibility of φ is a unique value within
the interval [α, β]. Here β represents the upper bound of Π(φ) (denoted Π(φ)) and
α its lower bound (denoted Π(φ)). The underlying interpretation is disjunctive in the
sense that Π(φ)∈[α, β]. This is in opposite interpretation of intervals used in [12] in
the context of handling temporal information where Π(φ)∈[α, β] means that Π(φ) is
true in the period between time instants α and β.

Definition 1. An IPN I=<G,ΘI> is a network where the uncertainty is represented
by intervals. Namely, I consists of

1. a directed acyclic graph G encoding direct independence relationships between
variables I(Ai, Ui, Y ) and

2. a set of local interval-based possibility tablesΘI where ∀θIai|ui
∈ΘI , θIai|ui

⊆[0, 1].

It is clear that in case where all the parameters of the network are singletons (pointwise-
based possibilities), then the network is a standard (pointwise-based) network. Hence,
an IPN I is a possibilistic network where the graphical component has the same rep-
resentation while local possibility tables contain intervals allowing to encode some im-
precision on the encoded beliefs.

Example 2. Figure 2 is an example of an IPN over two Boolean variables A and B.

A

B

A π(A)

T [.8, 1]
F [.4, 1]

B A π(B|A)

T T [.2, .6]
F T [ 1, 1 ]
T F [.4, 1 ]
F F [.8, 1 ]

Fig. 2. I: Example of an IPN

In the following, we introduce on the concepts of compatible and coherent possibilistic
networks.
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3.1 Compatible Possibilistic Networks

Let us define the concept of compatible network.

Definition 2. Let I=<G,ΘI> be an IPN. A pointwise-based possibilistic network
G=<G,Θ> is compatible with I iff

1. I and G have exactly the same graph and
2. ∀θai|ui

∈Θ, θai|ui
∈θIai|ui

with θIai|ui
∈ΘI .

In Definition 2, a possibilistic network G is compatible with an IPN I if they have
the same structure (hence encode the same conditional independence relationships)
and every local possibility distribution θai|ui

of G is compatible with its correspond-
ing interval-based distribution θIai|ui

in the IPN I.

Example 3. Let us consider the interval-based network of Figure 2 over two Boolean
variablesA andB. One can easily check that the network of Figure 3 is normalized and
compatible with the interval-based network of Figure 2.

A π(A)
T .8
F 1

��

��
A

��

��
B

�
�

��

B A π(B|A)
T T .5
F T 1
T F .4
F F 1

Fig. 3. Example of a possibilistic network compatible with the network I of Figure 2

3.2 Coherent Interval-Based Possibilistic Networks

In standard possibilistic networks, the normalization condition prevents inconsistencies.
In IPNs, we refer to the existence of compatible networks with the concept of coherent
IPN defined as follows:

Definition 3. An IPN I=<G,ΘI> is coherent iff

– there is at least one pointwise-based possibilistic network G which is compatible
with I and

– all the values composing the parameters θIai|ui
are feasible. Namely ∀θIai|ui

∈ΘI
i ,

∀α∈θIai|ui
, there exists a compatible network G=<G,Θ> such that θai|ui

=α.

A π(A)
T [.8, 1 ]
F [.4, .6]

��

��
A

��

��
B

�
�

��

B A π(B|A)
T T [.2, .6]
F T [ 1, 1 ]
T F [.4, 1 ]
F F [.8, 1 ]

Fig. 4. Example of an incoherent IPN
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Example 4. The IPN of Figure 2 is coherent since there exists at least the pointwise-
based network of Figure 3 which is compatible with it. However, the network of Figure
4 is incoherent since it is impossible to build a normalized pointwise-based network
where the possibility degree of A=T is 0.8.

In the following, we only consider coherent IPNs.

4 IPNs: 2 Alternative Semantics

The previous section dealt with the syntax of IPNs and the coherence concept. This
section proposes two semantics for coherent IPNs.

4.1 Semantics Based on Compatible Models

The semantics views a coherent IPN I as a family of compatible pointwise-based net-
works. Each of these compatible networks encodes a joint pointwise-based distribution
we call simply c-model (for compatible model).

Definition 4. A possibility distribution π is a c-model for an IPN I=<G, ΘI> if there
exists a standard network G=<G, Θ> compatible with I such that

∀a1..an∈Ω, π(a1..an)=minn
i=1(θ

G
ai|ui

),

where ui is the parent of ai in a1..an.

Definition 4 states that the c-models π are those possibility distributions associated with
the compatible possibilistic networks G using the min-based chain rule of Equation 4.

Example 5. The possibility distribution π of Table 1 is the c-model corresponding to
the network of Figure 3, obtained using the min-based chain rule.

Table 1. A c-model corresponding to network of Figure 3

B A π(AB)

T T .5
F T .8
T F .4
F F 1

Let us use FC to denote the set of c-models of the IPN I. Clearly, if FC is empty then
the network I is incoherent.
There is another way to define a compatible joint distribution based on the concept of
π-model, defined as follows:

Definition 5. A pointwise-based distribution π is a π-model of the IPN I iff it re-
trieves all the parameters of I and satisfies all the independence relations encoded
by I, namely:

- Condition 1: ∀θIai|ui
∈ΘI , Π(ai|ui)∈θIai|ui

.
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- Condition 2: ∀I(Ai, Ui, Y )∈I , Π(Ai|Ui,Y )=Π(Ai|Ui).

Definition 5 states that a pointwise-based distribution π is a π-model of an I if the
possibility of any event ai in the context of its parents ui computed from π (namely
Π(ai|ui)) is in the interval θIai|ui

(Condition 1). In addition to retrieving2 the network’s
parameters, a distribution is a π-model if it satisfies also all the independence relation-
ships encoded by the network (Condition 2). Then we have the following finding:

Proposition 1. A distribution π is a π-model of an IPN I=<G, ΘI> iff π is a c-model
of I, namely, π∈FC .

Proof. The proof of Proposition 1 is straightforward. Indeed, recall that in the stan-
dard possibilistic setting, given a possibilistic network G, the possibility distribution
obtained using the min-based chain rule of Equation 4 allows to retrieve all the parame-
ters of G and satisfies the independence relations. Hence, if one starts with a compatible
network with the IPN I, then its associated distribution π satisfies the two conditions
of Definition 5, which means that π is also π-model of the IPN. The converse is also
true. Assume that π1 is a π-model of the IPN I. Let us construct a standard network G
where G and I have the same graph and where the parameters θai|ui

are those computed
from π1, namely θai|ui

=Π1(ai|ui). Clearly, the construction of such a network gives a
compatible network and since applying the min-based chain rule exactly gives π1 we
conclude that π1∈FC . �

4.2 Semantics Based on Extending the Chain Rule

In the above section, we presented a semantics for IPNs based on a family of possibility
distributions FC . Here we discuss if an IPN can be seen as an interval-based joint
possibility distribution. This latter is defined as follows:

Definition 6. An interval-based joint distribution πI is a mapping from the universe of
discourseΩ to the set of sub-intervals of [0, 1] which associates with each interpretation
ωi∈Ω an interval [αi, βi]⊆[0, 1].
Let us now define compatible possibility distributions:

Definition 7. A pointwise-based possibility distribution π is compatible with the
interval-based one πI iff ∀∈ωiΩ, π(ωi)∈πI(ωi).

By definition a compatible distribution must be normalized.
Let FI

C denote the set of pointwise-based joint possibility distributions that are compat-
ible with the interval-based distribution πI . Given an interval-based distribution πI , the
plausibility of an event φ is assessed as follows:

Definition 8. Let φ⊆Ω be an arbitrary event and let πI be an interval-based distribu-
tion. Then the possibility interval associated with φ, computed from πI , is the interval
defined as follows:

ΠI(φ) = [ min
π∈FI

C

(Π(φ)), max
π∈FI

C

(Π(φ))]. (5)

2 A possibility distribution π retrieves some parameter α associated with some conditional event
a|b, if Π(a|b)=α where Π is computed from π. If α is an interval then the property requires
that Π(a|b) belongs to that interval.
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Similarly, the conditional possibility of φ⊆Ω given an evidence ψ⊆Ω is defined as an
interval as follows:

ΠI(φ | ψ) = [ min
π∈FI

C

(Π(φ | ψ)), max
π∈FI

C

(Π(φ | ψ))]. (6)

A natural question raises here about how to induce from an IPN I an interval-based
joint distribution πI . Namely, what is the counterpart of the min-based chain rule of
Equation 4 in the interval-based setting? Two methods can be considered:

1. Extending the min-based chain rule of Equation 4 to the interval-based setting di-
rectly using the associativity property of the minimum operator, stated as follows:

min([α1, β1], [α2, β2]) = [min(α1, α2),min(β1, β2)]. (7)

Using Equation 7, the min-based chain rule of Equation 4 is extended to the interval-
based setting as follows:

πI(a1, a2, .., an) = [
n

min
i=1

π(ai|ui),
n

min
i=1

π(ai|ui)]. (8)

2. Using the compatible networks, a joint interval-based distribution can be directly
computed from the compatible networks. Interestingly enough, this is equivalent to
the extended chain rule of Equation 8. Namely,

Proposition 2. Let FI
C denote the set of compatible pointwise-based networks G

with the interval-based one I. Then ∀ω∈Ω,

πI(ω) = [ min
π∈FI

C

(Π(ω)), max
π∈FI

C

(Π(ω))]. (9)

It is easy to show that the joint distributions computed from Equations 8 and 5 are
equivalent (just apply Equation 5, the min-based chain rule of Equation 4 and the asso-
ciativity property of Equation 7). It is important to note that in the joint interval-based
distribution πI , for the upper bound distribution πI there exists a compatible pointwise-
based network while there may exist situations where there does not exist a compatible
pointwise-based network for the lower bound distribution πI as shown in the following
example.

Example 6. Let I be IPN having the unique nodeA with the domainDA={a1, a2}. Let
the distribution associated withA be πI(a1)=[.3, 1] and πI(a2)=[.2, 1]. Using Equations
8 and 5, the lower bound distribution is πI(a1)=.3 and πI(a2)=.2. It is clear that the
distribution πI={.3, .2} is sub-normalized and there is no compatible network with I
that encodes πI .

Now, given an interval-based joint distribution πI over a set of variables A1..An, is it
possible to encode πI by an IBN I? This issue is addressed in the following section.

5 Analysis of IPNs Semantics

5.1 Relating the Extended Chain Rule with the Compatible Distributions

The following proposition relates the set of pointwise-based distributions FC induced
by the compatible standard networks and the set FI

C of pointwise-based distributions
compatible with the interval-based possibility distribution πI .
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Proposition 3. Let I=<G,ΘI> be an IPN and let πI be the induced interval-based
distribution from I. Then

FC⊆FI
C but FI

C �⊆FC .

Let us provide an example showing that considering compatible pointwise-based dis-
tributions with the interval-based distribution πI induced from the network I does not
necessarily retrieve the network’s parameters.

Example 7. Let A and B be two Boolean variables and let I be the IPN of Figure 5.

A

B

A π(A)

T [.8, 1 ]
F [.2, 1]

B A π(B|A)

T T [.4, 1 ]
F T [.4, 1 ]
T F [.2, 1 ]
F F [ 0, 1 ]

Fig. 5. Counter example IPN I

The interval-based distribution πI induced from the IPN I of Figure 5 using the
interval-based chain rule of Equation 8 is the following (left side table):

A B πI(AB)
T F [.4, 1 ]
T T [.4, 1 ]
F F [.2, 1 ]
F T [ 0, 1 ]

A B π(AB)
T F .5
T T .5
F F 1
F T 1

From the distribution π (right side table), it follows that Π(A=T )=.5. One can check
that π is compatible with πI but it is impossible to build a compatible network with the
IPN I of Figure 5 that encodes π since in the IPN I the possibility degree of A=T is at
least .8.

From this example, one can claim that the semantics of an IPN is not an interval-
based joint distribution. The semantics that can be associated with an IPN is the set of
possibility distributions induced from the pointwise-based possibilistic networks
G1..Gn compatible with I.

5.2 Can an Interval-Based Network Encode a Joint Interval-Based Distribution?

The above section shows that an IPN can be represented by a family of compatible dis-
tributions FC but not by an interval-based joint distribution πI . This section addresses
the converse problem, namely:

(1) Given an interval-based possibility distribution πI , is it possible to build from πI
an IPN I such that ∀ω∈Ω, πI(ω)= πI(ω)?

(2) Given a family of compatible possibility distributions F , can we build an IPN I
such that F=FI

C?
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The interesting point is that we get the converse of the results obtained in the previous
section. Indeed, the statement (2) is false as shown in the following example.

Example 8. Consider one binary variable A and assume that F is composed of the
following two possibility distributions π1 and π2.

A π1(A)
T 1
F .5

A π2(A)
T 1
F .7

Clearly, it is impossible to build an IPN I such that F=FI
C . Indeed, assume that such an

IPN I exists. Then we have two cases: i) either the intervals associated with the variable
A are singletons then there exist a single compatible possibility distribution and this
contradicts the fact thatF contains two distributions, ii) or the intervals associated with
A are not singletons, then the set of compatible possibility distributions is infinite and
this contradicts the fact that F is finite.

However, statement (1) is true as it is shown in the following proposition:

Proposition 4. An interval-based possibility distribution πI can be represented by an
IPN I. Namely,

∀ωiΩ, πI(ωi)=πI(ωi),

where πI(ωi) is the interval computed from the IPN I using the interval-based chain
rule of Equation 8.
Proof. The proof is immediate since one can use the well-known chain rule in graphical
models to factorize any belief distribution. In fact, one can always build an IPN I that
encodes the interval-based distribution πI . This can be done as follows:

i) For the structure of the IPN I, select the complete graph G where for each vari-
able Ai, set its parents Ui={Ai+1, .., An}. One can easily show that the obtained
network is a DAG.

ii) For the parameters of I, one has just to associate with θIai|ui
the set of values

πIC(ai|ui) where πIC is a possibility distribution compatible with πI . One can check
that for any ai and ui, θIai|ui

is an interval. �

Example 9. Table 2 is an example of interval-based joint possibility distribution πI over
two binary variables A1 and A2. Following our proof, we can build the interval-based
network I given in Figure 6 which encodes the distribution πI of Table 2.

Table 2. Example of interval-based joint distribution πI

A1 A2 πI(A1A2)

T T [.3, 1 ]
F T [.2, .3]
T F [.2, .3]
F F [.6, 1 ]
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A1 θI
A1

T [.3, 1]
F [.6, 1]

��

��
A1

��

��
A2

�
�

��

A2 A1 θI
A2|A1

T T [.3, 1 ]
F T [.2, .3]
T F [.2, .3]
F F [.6, 1 ]

Fig. 6. IPN encoding πI of Table 2

One can easily check that the interval-based joint distribution πI computed from the
IPN I of Figure 6 using the interval-based chain rule of Equation 8 is equivalent to the
interval-based joint distribution πI of Table 2.

6 Inferring Uncertainty Bounds from IPNs

Inference is an important task for reasoning with belief networks. It is well-known
that it is a hard task even in standard probabilistic networks [8]. This task becomes
harder for an IPN since we consider the family of standard networks compatible with
the IPN. In this section, we show that it is possible to compute two uncertainty bounds
of any event of interest from an IPN I without extra complexity with respect to standard
networks thanks to the ordinal nature of qualitative possibility theory3. More precisely,
we show that for any event φ⊆Ω, the upper bound of the possibility degreeΠI(φ) and
the guaranteed possibility degree ΔI(φ) can be computed from two special standard
networks, hence the uncertainty interval is computed using only two calls for an
inference algorithm in standard networks.

Recall that we are interested here in computing the interval [ΔI(φ),ΠI(φ)] for a
given event φ⊆Ω. Recall also that Δ(φ) represents the lowest possibility degree as-
sociated with φ (see Equation 2). When we reason with an IPN I, we define ΔI(φ)=
{minπ∈FC(π(φ))}. It turns out that computingΔI(φ) can be performed using a partic-
ular pointwise-based network, namely the lower bound ΔI(φ) can be computed from
the standard network GL defined as follows:

Proposition 5. Let I=<G, ΘI> be an IPN. Let GL=<G, Θ> be the standard possi-
bilistic network such that

1. I and GL have the same graphical structure and
2. ∀ai∈DAi , θ

GL

ai|ui
= θI(ai|ui).

Then ∀φ⊆Ω, ΔI(φ)=ΠGL(φ).

Proof sketch. The proof is based on the fact that if ΠGL(φ)=α then there always exists
a compatible network G such that ΠG(φ)=α and there is no way to build another com-
patible network G′ such that ΠG′

(φ)<α. �

Similarly to computing ΔI(φ), given an IPN I, the upper bound ΠI(φ) can be
computed from the standard network GU defined as follows:

3 Namely, because of the idempotence property of the max and min operators used in the qual-
itative possibilistic setting.
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Proposition 6. Let I=<G, ΘI> denote an IPN. Let GU=<G, Θ> be the standard
possibilistic network such that

1. I and GU have the same graph and

2. ∀ai∈DAi , θ
GU

ai|ui
= θ

I
(ai | ui).

Then, ∀φ⊆Ω, ΠI(φ)=ΠGU (φ).

Proof sketch. It is easy to show from the interval-based chain rule of Equation 8 that
the upper bound is computed only by considering the upper bounds of ai|ui over all the
compatible networks G with I. It is also straightforward to show that the network GU is
a compatible network. �

This section shows that computing the uncertainty bounds ΠI(φ) and ΔI(φ) from
interval possibilistic networks has the same computational complexity as the inference
process in standard possibilistic networks. Hence, the expressive power of possibilistic
networks is extended without increasing their computational complexity.

7 Discussions and Concluding Remarks

This paper provided foundations of interval-based possibilistic networks. It addressed
both semantics and inference issues. More precisely, it provided two semantics for IPNs
where the first one is based on compatible possibilistic networks while the second is
based on interval-based joint possibility distributions. The paper related the two se-
mantics and showed that they are not equivalent. The semantics that can be associated
with an IPN is the family of possibility distributions induced from the pointwise-based
compatible possibilistic networks. As a first consequence, inference algorithms like the
well-known junction tree algorithm [16] cannot directly be adapted for the interval-
based setting since such algorithms rely on local distributions unless they are adapted
to consider the set of possibility distributions. Indeed, given that an interval-based net-
work I cannot be represented by an interval-based joint distribution πI but with FC ,
the junction tree algorithm will associate with each clique an interval-based potential
(a kind of joint distribution over a subset of variables) while the associated semantics
should be a family of compatible distributions. For instance, if we consider an interval-
based network with two variables A and B where the graph contains the unique de-
pendence relation A→B. Using the junction tree algorithm, the potential associated
with the clique (A, B) is the interval-based joint distribution over A and B. Clearly,
existing propagation algorithms cannot be directly adapted using interval-based joint
distributions.

Like possibilistic graphical models, possibilistic logic offers an efficient and com-
pact framework of representing and reasoning with partial ignorance. A possibilistic
knowledge base Σ is a set of weighted formulas {(φi, αi), i=1, ., n} where φi is a
propositional formula and αi∈]0, 1] is the necessity degree associated with φi. In [2]
we proposed interval-based possibilistic logic where each propositional logic formula
φi is associated with an interval [αi, βi] containing the actual necessity degree of φi. It
is shown that inference in interval-based possibilistic knowledge bases does not imply
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extra complexity in comparison with inference in standard possibilistic logic. A nat-
ural question then is whether it is possible to transform an IPN I into an equivalent
interval-based possibilistic logic knowledge base such that inference can be performed
efficiently. There are basically two issues making it impossible to rely on transforma-
tions from graphical representations to possibilistic logic knowledge bases in order to
encode and reason with IPNs. The first issue is that in interval-based possibilistic logic,
formulas associated with the necessity degree 0 are ignored which is not the case if we
transform an IPN where we have upper bounds equal to 1 (because of the normalization
condition). The second issue is related to the semantics underlying the two interval-
based representations. While an IPN is seen as a collection of normalized pointwise-
based networks, hence consistent, an interval-based possibilistic knowledge base is
seen as a collection of potentially inconsistent pointwise-based possibilistic logic
knowledge bases.

To sum up, the main findings of this paper are:

– We viewed an interval-based possibilistic network as a family of compatible and
coherent standard possibilistic networks. We provided two semantics for IPNs:
i) The first one is based on standard possibility distributions induced by the coherent
possibilistic networks.
ii) The second one is based on the interval-based possibility distribution induced
by the extended chain rule.

– We provided precise relationships between these two semantics. In particular, we
showed that the semantics behind IPNs cannot be an interval-based joint possibil-
ity distribution. Hence, interval-based possibility distributions cannot be used for
answering queries from IPNs.

– We pointed out that interval-based possibilistic logic cannot be used to perform
inference in IPNs since an interval-based possibilistic logic base cannot encode an
interval-based possibilistic network.

– Interestingly enough, computing the uncertainty bounds in terms of possibility de-
gree and guaranteed possibility degree of any event can be done using two special
standard networks without any extra complexity.

As future works, in addition to real applications with IPNs, we will extend our frame-
work to penalty logic where each conditional event is attached with a weight represent-
ing a penalty to pay if it is violated. In some applications, this penalty may be provided
with intervals.
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2. Benferhat, S., Hué, J., Lagrue, S., Rossit, J.: Interval-based possibilistic logic. In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, pp. 750–755 (2011)

3. Benferhat, S., Kaci, S.: Logical representation and fusion of prioritized information based
on guaranteed possibility measures: application to the distance-based merging of classical
bases. Artif. Intell. 148, 291–333 (2003)



50 S. Benferhat, S. Lagrue, and K. Tabia

4. Benferhat, S., Tabia, K.: Three-valued possibilistic networks. In: 20th European Conference
on Artificial Intelligence, Montpellier, France, August 27-31, pp. 157–162. IOS Press (2012)

5. Kruse, R., Borgelt, C., Gebhardt, J.: Possibilistic graphical models. In: International School
for the Synthesis of Expert Knowledge (ISSEK 1998), Udine (Italy), pp. 51–68 (1998)

6. Cozman, F.G.: Credal networks. Artif. Intell. 120(2), 199–233 (2000)
7. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University

Press (2009)
8. de Campos, C.P.: New complexity results for map in bayesian networks. In: Proceedings of

the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona,
Catalonia, Spain, July 16-22, pp. 2100–2106 (2011)

9. de Campos, C.P., Cozman, F.G.: The inferential complexity of bayesian and credal networks.
In: IJCAI 2005, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, Edinburgh, Scotland, UK, July 30-August 5, pp. 1313–1318 (2005)

10. de Campos, L., Huete, J., Moral, S.: Uncertainty management using probability intervals.
In: Bouchon-Meunier, B., Yager, R.R., Zadeh, L.A. (eds.) IPMU 1994. LNCS, vol. 945,
pp. 190–199. Springer, Heidelberg (1995)

11. Dubois, D., Hájek, P., Prade, H.: Knowledge-driven versus data-driven logics. J. of Logic,
Lang. and Inf. 9, 65–89 (2000)

12. Dubois, D., Lang, J., Prade, H.: Timed possibilistic logic. Fundam. Inf. 15, 211–234 (1991)
13. Guo, P., Tanaka, H.: Decision making with interval probabilities. European Journal of

Operational Research 203(2), 444–454 (2010)
14. Ha, V.A., Doan, A., Vu, V.H., Haddawy, P.: Geometric foundations for interval-based

probabilities. Annals of Mathematics and Artificial Intelligence 24, 1–21 (1998)
15. Hisdal, E.: Conditional possibilities independence and non interaction. Fuzzy Sets and

Systems, 283–297 (1978)
16. Jensen, F.V.: An Introduction to Bayesian Networks. UCL Press, London (1996)
17. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton

(1976)
18. Walley, P.: Statistical reasoning with imprecise probabilities (1991)
19. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 100

(suppl. 1), 9–34 (1999)



Tractable vs. Intractable Cases of Query Answering
under Matching Dependencies

Leopoldo Bertossi1 and Jaffer Gardezi2

1 Carleton University, SCS ,Ottawa, Canada
2 University of Ottawa, SITE., Ottawa, Canada

Abstract. Matching Dependencies (MDs) are a recent proposal for declarative
entity resolution. They are rules that specify, on the basis of similarities satisfied
by values in a database, what values should be considered duplicates, and have
to be matched. On the basis of a chase-like procedure for MD enforcement, we
can obtain clean (duplicate-free), and possibly several, resolved instances. The
resolved answers to a query are invariant under the class of resolved instances.
Previous work identified classes of queries and sets of MDs for which resolved
query answering is tractable, with special emphasis on cyclic sets of MDs. In
this work we further investigate the complexity of this problem, identifying in-
tractable cases, and exploring the frontier between tractability and intractability.
We concentrate mostly on acyclic sets of MDs. For a special case we obtain a
dichotomy result relative to NP-hardness.

1 Introduction

A database may contain several representations of the same external entity, i.e. “dupli-
cates”, which may be undesirable; and the database has to be cleaned. The problem of
duplicate- or entity-resolution (ER) is about (a) detecting duplicates, and (b) merging
duplicate representations into single representations. It is a classic and complex prob-
lem in data management and data cleaning, in particular [7, 9, 3]. In this work we deal
with the merging part of the problem, in a relational context.

The problem can be approached by specifying what attribute values have to be
matched (made identical) under what conditions. For this, a declarative language with
a precise semantics can be used. In this direction, matching dependencies (MDs) have
been recently introduced [10, 11]. They represent rules for resolving pairs of duplicate
representations (two tuples at a time). When certain similarity relationships between
attribute values hold, an MD indicates what attribute values have to be made the same.
Example 1. The similarities of phone and address indicate that the tuples refer to the
same person, and the names should be matched. Here, 723-9583 ≈ (750) 723-9583 and
10-43 Oak St. ≈ 43 Oak St. Ap. 10.

People Name Phone Address
John Smith 723-9583 10-43 Oak St.

J. Smith (750) 723-9583 43 Oak St. Ap. 10

This MD captures this resolution policy: (with P standing for predicate People):
P [Phone] ≈ P [Phone ]∧P [Address ] ≈ P [Address ] → P [Name]

.
= P [Name]. It

involves only one database predicate, but an MD may involve two different relations.
We can also have several, interacting MDs on the schema. �

U. Straccia and A. Cal` (Eds.): SUM 2014, LNAI 8720, pp. 51–65, 2014.
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The framework for MD-based ER we use was introduced in [12], with a precise, chase-
based semantics for the MDs originally introduced in [11]. The problem of resolved
query answering (RQA) was introduced in [12]. For a fixed set of MDs, and a fixed
query, it is about deciding, given an “unresolved” instance, and a candidate query an-
swer ā, whether ā is an answer to the query under all admissible ways of resolving the
duplicates as dictated by the MDs. This problem is generally intractable [12].

The RQA problem was studied further in [14, 13]. A class of tractable cases of RQA
was identified [14], for which a technique based on query rewriting into stratified Dat-
alog with aggregation was developed [13]. In those tractable cases, we find conjunctive
queries with certain restrictions on joins, and sets of MDs that cyclically depend on each
other. These are the (cyclic) HSC sets identified in [14]. It was shown that, in general,
cyclic dependencies on MDs make the problem tractable, because the requirement of
chase termination imposes a relatively simple structure on the clean instances [14].

We concentrate here on acyclic sets of MDs, which completely change the picture
wrt. previous work. As just mentioned, for HSC sets, tractability of RQA holds [14].
This is the case, e.g., for the cyclic M = {R[A] ≈ R[A] → R[B]

.
= R[B], R[B] ≈

R[B]→ R[A]
.
= R[A]}. However, as we will show, for the following acyclic, somehow

syntactically similar example, M ′ = {R[A] ≈ R[A] → R[B]
.
= R[B], R[B] ≈

R[B] → R[C]
.
= R[C]}, RQA can be intractable. This example, and our general

results, show that, possibly counter-intuitively, the presence of cycles in sets of MDs
tends to make resolved query answering easier in comparison with the acyclic case.

We further explore the complexity of RQA. Instead of considering isolated intractable
cases as in [12, 14], we take a more systematic approach, developing syntactic criteria
on sets of two MDs that, when satisfied by a given pair of MDs, implies intractability
of RQA. We show, under an additional assumption about the similarity operators, that
RQA is tractable for sets of MDs not satisfying these criteria, leading to a dichotomy
result. We extend these results also considering (in)tractability of sets of more than two
MDs. All the results apply to acyclic sets of MDs, and are complementary to those in
[14, 13], providing a broader picture of the complexity of RQA.

Summarizing, in this paper, we undertake a systematic investigation of the data com-
plexity of the problems of deciding and computing resolved answers to conjunctive
queries under MDs. This sheds light on the intrinsic computational limitations of re-
trieving, from a database with unresolved duplicates, the information that is invariant
under the ER process as captured by MDs. Our contributions are the following:

1. We identify a class of conjunctive queries that are relevant for the investigation of
tractability vs. intractability of RQA. Intuitively, these queries return data that can be
modified by application of the MDs. We call them changeable attribute queries.

2. Having investigated in [13, 14] cases of cyclic sets of MDs, we complement these
results by studying the complexity of RQA for sets of MDs that do not have cycles.

3. For certain pairs of MDs that satisfy a syntactic condition, we establish an intractabil-
ity result, proving that deciding resolved answers to changeable attribute queries is NP-
hard in data.

4. For similarity relations that are transitive (a special case), we establish that the con-
ditions for hardness mentioned in the previous item, lead to a dichotomy result: pairs of
MDs that satisfy them are always hard, otherwise they are always easy (for RQA). This
shows, in particular, that the result mentioned in item 3. cannot be extended to a wider
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class of MDs for arbitrary similarity relations. We also prove that the dichotomy result
does not hold when the hypothesis on similarity is not satisfied.

5. Relying on the results for pairs of MDs, we consider acyclic sets of MDs of arbitrary
size. In particular, we prove intractability of the RQA problem for certain acyclic sets
of MDs that have the syntactic property of non-inclusiveness.

The structure of the paper is as follows. Section 2 introduces notation, terminology,
and previous results. Section 3 identifies classes of MDs, queries and assumptions that
are relevant for this research. Sections 3.1 and 4 investigate the complexity of the prob-
lem of computing resolved answers for sets of two MDs. Section 5 extends those results
to sets of MDs of arbitrary size. Section 6 summarizes results, and makes comparisons
with consistent query answering. Full proofs of our results can be found in [6].

2 Preliminaries

In this work we consider relational database schemas and instances. Schemas are usu-
ally denoted with S, and contain relational predicates. Instances are usually denoted
with D. Matching dependencies (MDs) are symbolic rules of the form:∧

i,j

R[Ai] ≈ij S[Bj] →
∧
k,l

R[Ak]
.
= S[Bl], (1)

where R,S are relational predicates in S, and the Ai, ... are attributes for them. The
LHS captures similarity conditions on a pair of tuples belonging to the extensions of R
and S in an instance D. We abbreviate (1) as: R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē].

The similarity predicates (or operators)≈ are domain-dependent and treated as built-
ins. For them we assume symmetry and reflexivity, but not transitivity.

MDs have a dynamic interpretation requiring that those values on the RHS should
be updated to some arbitrary value in common (of the database domain). Attributes on a
RHS of an MD are called changeable. MDs are expected to be “applied” iteratively until
duplicates are solved, through chase sequences. In order to keep track of the changes
and comparing tuples and instances, we use global tuple identifiers, a non-changeable
surrogate key for each database predicate. The auxiliary, extra attribute (when shown)
appears as the first attribute in a relation, e.g. t is the identifier in R(t, x̄). A position is
a pair (t, A) with t a tuple id, and A an attribute (of the relation where t is an id). The
position’s value, t[A], is the value for A in tuple (with id) t.

2.1 MD Semantics

The semantics of MDs acting on database instances [12] is based on a chase procedure
that is iteratively applied to the original instance D. A resolved instance D′ is obtained
from a finitely terminating sequence of database instances:

D =: D0 �→ D1 �→ D2 �→ · · · �→ Dn =: D′. (2)
D′ satisfies the MDs as equality generating dependencies [1], i.e. replacing

.
= by =.

The semantics specifies the one-step transitions or updates applied to go from Di−1

to Di, i.e. “ �→” in (2). Only modifiable positions within the instance are allowed to
change their values in such a step, and as forced by the MDs. Actually, the modifiable
positions syntactically depend on the set M of MDs and the instance at hand; and can
be recursively defined (see [12, 14] for the details).1 Intuitively, a position (t, A) is

1 As a consequence, a changeable attribute may not necessarily give rise to a corresponding
modifiable position for a given instance at hand.
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modifiable iff: (a) There is a t′ such that t and t′ satisfy the similarity condition of an
MD with A on the RHS; and (b) t[A] has not already been resolved (it is different from
one of its other duplicates).

Example 2. For schema R(A,B), consider the MD R[A] = R[A] → R[B]
.
= R[B],

and the instance R(D) below. The positions of the underlined values in D are modifi-
able, because their values are unresolved (wrt the MD and instance R(D)).

R(D) A B
t1 a b
t2 a c

�→
R(D′) A B
t1 a d
t2 a d

D′ is a resolved instance since it satisfies
the MD interpreted as the FD R : A→ B.
Here, the update value d is arbitrary.

D′ has no modifiable positions with unresolved values: the values forB are already the
same, so there is no reason to change them (and we don’t). �
More formally, the single step semantics ( �→ in (2)) is as follows. Each pair (Di, Di+1)
in an update sequence (2), i.e. a chase step, must satisfy the set M of MDs modulo
unmodifiability, denoted (Di, Di+1) |=um M , which holds iff: (a) For every MD in
M , say R[Ā] ≈ S[B̄]→ R[C̄]

.
= S[D̄] and pair of tuples tR and tS , if tR[Ā] ≈ tS [B̄]

in Di, then tR[C̄] = tS [D̄] in Di+1; and (b) The value of a position can only differ
between Di and Di+1 if it is modifiable wrt Di. Accordingly, in (2) we also require
that (Di, Di) �|=um M , for i < n, and (Dn, Dn) |=um M (the stability condition).2

This semantics captures as close as possible the spirit of MDs as originally, and rather
informally introduced in [11], and also uncommitted in the sense that the MDs do not
specify how the matchings have to be realized (also as in [11]).

Example 3. Consider the instanceR(D) below and the set of MDs: {R[A] = R[A]→
R[B]

.
= R[B]; R[B] = R[B] → R[C]

.
= R[C]}. Attribute R(C) is changeable.

Position (t2, C) is not modifiable wrt. M and D: There is no justification to change its
value in one step on the basis of an MD and D. Position (t1, C) is modifiable. D has
two resolved instances, R(D1) and R(D2). R(D1) cannot be obtained in a single (one
step) update (the underlined value is for a non-modifiable position). But R(D2) can.

R(D) A B C
t1 a b d
t2 a c e
t3 a b e

R(D1) A B C
t1 a b d
t2 a b d
t3 a b d

R(D2) A B C
t1 a b e
t2 a b e
t3 a b e �

For arbitrary sets of MDs, some (admissible) chase sequences may not terminate.
However, it can be proved that there are always terminating chase sequences. As a
consequence, for some sets of MDs, there are both terminating and non-terminating
chase sequences. In any case, the class of resolved instances is always well-defined.

We prefer resolved instances that are the closest to the original instance. A minimally
resolved instance (MRI) of D is a resolved instance D′ whose number of changes of
attribute values wrt. D is a minimum. In Example 3, instance D2 is an MRI, but not
D1 (2 vs. 3 changes). We denote with Res(D,M) and MinRes(D,M) the classes of
resolved, resp. minimally resolved, instances of D wrt M .

Infinite chase sequences may occur when the MDs cyclically depend on each other,
in which case updated instances in a such a sequence may alternate between two or
more states [14, Example 6]. However, for the chase sequences that do terminate in

2 The case D′ = D0 occurs only when D is already resolved.
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a minimally resolved instance, the chase imposes a relatively easily characterizable
structure [14, 13], allowing us to obtain a query rewriting methodology. So, cycles help
us achieve tractability for some classes of queries [13] (cf. Section 2.2).

On the other side, it has been shown that if a set of MDs satisfies a certain acyclicity
property, then all chase sequences terminate after a number of iterations that depends
only on the set of MDs and not on the instance [12, Lemma 1] (cf. Theorem 1 below).
But the number of resolved instances may still be “very large”. Sets of MDs considered
in this work are acyclic.

2.2 Resolved Query Answers

Given a conjunctive queryQ, a set of MDsM , and an instanceD, the resolved answers
to Q from D are invariant under the entity resolution process, i.e. they are answers to
Q that are true in all MRIs of D:

ResAnsM (Q, D) := { ā | D′ |= Q[ā], for every D′ ∈ MinRes(D,M)}. (3)

The resolved query answering (RQA) corresponding decision problem is RA(Q,M) :
= {(D, ā) | ā ∈ ResAnsM (Q, D)}.

In [13, 14], a query rewriting methodology for computing resolved answers to
queries under MDs was presented. In this case, the rewritten queries turn out to be
Datalog queries with counting, and can be obtained for two main kinds of sets of
MDs: (a) MDs do not depend on each other, i.e. non-interacting sets of MDs [12];
(b) MDs that depend cyclically on each other, e.g. R[A] ≈ R[A] → R[B]

.
= R[B] and

R[B] ≈ R[B]→ R[A]
.
= R[A]

For these sets of MDs, a conjunctive query can be rewritten to retrieve, in polynomial
time in data, the resolved answers, provided the queries have no joins on existentially
quantified variables corresponding to changeable attributes. The latter form the class of
unchangeable attribute join conjunctive (UJCQ) queries [14].

For example, for the MD R[A] = R[A] → R[B,C]
.
= R[B,C] on schema

R[A,B,C],Q : ∃x∃y∃z(R(x, y, c)∧R(z, y, d)) is not UJCQ; whereasQ′ : ∃x∃z(R(x,
y, z) ∧ R(x, y′, z′) is UJCQ. For queries outside UJCQ, the resolved answer problem
can be intractable even for one MD [14].

The set of MDs (4), which is neither non-interacting nor cyclic, is not covered by the
positive cases for Datalog rewriting above.

R[A] ≈ R[A]→ R[B]
.
= R[B], (4)

R[B] ≈ R[B]→ R[C]
.
= R[C],

Actually, for this set RQA becomes intractable for very simple queries, like Q(x, z) :
∃yR(x, y, z), that is UJCQ [12]. Sets of MDs like (4) are the main focus of this work.

3 Intractability of RQA

We just briefly described classes of queries and MDs for which RQA can be done in
polynomial time in data (via the Datalog rewriting). We showed that there are intractable
cases, by pointing to a specific query and set of MDs. Natural questions that we start
addressing are: (a) What is the complexity of RQA outside the Datalog rewritable
cases? (b) Do the exhibited query and MDs fall into a more general intractable class?
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For all sets M of MDs we consider below, we assume that at most two relational
predicates, say R,S, appear in M , e.g. as in M = {R[A] ≈ S[B] → R[C]

.
= S[E]}.

In same cases we assume that there are exactly two predicates. The purpose of this
restriction is to simplify the presentation. All results can be generalized to sets of MDs
with more than two predicates. To do this, definitions and conditions concerning the
two relations in the MDs can be extended to cover the additional relations as well.

At the other extreme, when a single predicate occurs in M , say R, as in Example
3, the results for at most two predicates can be reformulated and applied by replacing
S with R′. Although R and R′ are the same relation in this case, the prime is used to
distinguish between the two tuples to which the MD refers.

All the sets of MDs considered below are both interacting (non-interaction does not
bring complications) and acyclic. Both notions and others can be captured in terms of
the MD graph, MDG(M), of M . It is a directed graph, such that, for m1,m2 ∈ M ,
there is an edge fromm1 tom2 if there is an overlap between RHS(m1) and LHS(m2)
(the right- and left-hand sides of the arrows as sets of attributes) [12]. Accordingly,M
is acyclic when MDG(M) is acyclic. In fact, the sets of MDs in this work satisfy a
stronger property, defined below, which we call strong acyclicity.

Definition 1. [12] 1. Let M be a set of MDs on schema S. (a) The symmetric binary
relation

.
=r relates attributes R[A], S[B] of S whenever there is m ∈ M in which

R[A]
.
= S[B] occurs. (b) The attribute closure of M is the reflexive and transitive

closure of
.
=r. (c)ER[A] denotes the equivalence class of attribute R[A] in the attribute

closure of M .
2. The augmented MD-graph of M , denoted AMDG(M), is a directed graph with a
vertex labeled with m for each m ∈ M , and with an edge from m to m′ iff there is an
attribute, say R[A], with R[A] ∈ RHS(m) and ER[A] ∩ LHS(m′) �= ∅.
3. M is strongly acyclic if AMDG(M) has no cycles. �
Because R[A] ∈ ER[A], for any set M of MDs, all edges in MDG(M) are also edges
in AMDG(M). So, strong acyclicity implies acyclicity, but the converse is not true.

Example 4. The set M of MDs m1 : R[F ] ≈ S[G] → R[A]
.
= S[H ]; m2 : R[A] ≈

S[B] → R[C]
.
= S[E]; m3 : R[C] ≈ S[E] → R[I]

.
= S[H ] is acyclic but not

strongly acyclic. MDG(M) has three vertices, m1,m2,m3, and edges (m1,m2) and
(m2,m3). AMDG(M) has the additional edge (m3,m2), because ER[I] = {R[I],
S[H ], R[A]} ∩ LHS (m2) = {R[A]}. �
In this work, we consider strongly acyclic sets of MDs. In particular, two interesting and
common kinds that form large classes of sets M of MDs: linear pairs, which consist
of two MDs such that MDG(M) contains a single edge from one to the other (c.f.
Definition 5); and acyclic sets that are pair-preserving (c.f. Definition 7). From the
definitions of these two kinds of sets of MDs it will follow that they are strongly acyclic.

Theorem 1. [12] Let M be a strongly acyclic set of MDs on schema S, and D an
instance for S. Every sequence of M -based updates to D as in (2) terminates with a
resolved instance after at most d+ 1 steps, where d is the maximum length of a path in
AMDG(M). �
As mentioned previously, there may be infinite chase sequences whenM is not acyclic.
For the cyclic case, Theorem 1 only tells us about the chase termination and lengths, but
not about the data; and does not guarantee tractability for RQA. This leaves room for
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tractable and intractable cases. Actually, it can still be the case that there are exponen-
tially many MRIs. A reason for this is that the application of an MD to an instance may
produce new similarities among the values of attributes in RHS(m1) that are not strictly
required by the chase, but result from a particular choice of update values. Such “acci-
dental similarities” affect subsequent updates, resulting in exponentially many possible
update sequences. This is illustrated in the next example.

Example 5. Consider the strongly acyclic set M : R[A] ≈ R[A] → R[B]
.
= R[B];

R[B] ≈ R[B] → R[C]
.
= R[C]. When the following instance is updated according to

M , the sets of value positions {t1[B], t2[B]} and {t3[B], t4[B]} must be merged.

R(D1) A B C
t1 a m e
t2 a d f
t3 b c g
t4 b k h

�→

R(D1) A B C
t1 a m e
t2 a m f
t3 b m g
t4 b m h

One possible update is as above. The similarities between the attribute B values of
the top and bottom pairs of tuples are accidental, because they result from the choice
of update values. In the absence of accidental similarities, there is only one possible
set of sets of values that are merged in the second update, namely {{t1[C], t2[C]},
{t3[C], t4[C]}}.

Accidental similarities increase the complexity of query answering over the instance
by adding another possible set of sets of merged values, {{t1[C], t2[C], t3[C], t4[C]}}.
More generally, for an instance with n sets of merged value positions in the B column,
the number of possible sets of sets of value positions in the C column that are merged
in the second update is Ω(2n

2

). �
We want to investigate the frontier between tractability and intractability. For this rea-
son, we make the assumption that, for each similarity relation,≈, there is an infinite set
of mutually dissimilar values. Actually, without this assumption, the resolved answer
problem becomes immediately tractable for certain similarity operators (e.g. transitive
similarity operators). This is because, for these operators, the whole class of minimal
resolved instances of an instance can be computed in polynomial time.

Proposition 1. For strongly acyclic sets of MDs, if the similarity predicates are transi-
tive and there is no infinite set of mutually dissimilar values, the set of minimal resolved
instances for a an instance D can be computed in polynomial time in the size of D. �
Our next results require some terms and notation that we now introduce.

Definition 2. For a set M of MDs with predicates R and S, a changeable attribute
query Q is a (conjunctive) query in UJCQ, containing a conjunct of the form R(x̄) or
S(ȳ) all whose variables are free and none occur in another conjunct of the form R(x̄)
or S(ȳ). Such a conjunct is a join-restricted free occurrence of the predicate R or S.�

By definition, the class of changeable attribute queries (CHAQ) is a subclass of UJCQ.
Both depend on the set of MDs at hand. For example, for the MDs in (4), ∃yR(x, y, z) ∈
UJCQ�CHAQ, but ∃w∃t(R(x, y, z)∧S(x,w, t)) ∈ CHAQ. We confine our attention

to UJCQ and subsets of it, because, as mentioned in the previous section, intractability
limits the applicability of the duplicate resolution method for queries outside UJCQ.
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The requirement that the query contains a join-restricted free occurrence of R or
S eliminates from consideration certain queries in UJCQ for which the resolved an-
swer problem is immediately tractable. For example, for the MDs in (4), the query
∃y∃zR(x, y, z) is not CHAQ, and is tractable simply because it does not return the val-
ues of a changeable attribute (the resolved answers are the answers in the usual sense).
The restriction on joins simplifies the analysis while still including many useful queries.

In order to eliminate queries like ∃y∃zR(x, y, z) wrt M in (4), CHAQ imposes a
strong condition. Actually, the condition can be weakened, requiring to have at least
one of the variables satisfying the condition in the definition for CHAQ. Weakening the
condition makes the presentation much more complex since a finer interaction with the
MDs has to be brought into the picture. (We leave this issue for an extended version.)

Definition 3. A set M of MDs is hard if, for every CHAQ Q, RA(Q,M) is NP-hard.
M is easy if, for every CHAQ Q, RA(Q,M) is in PTIME. �
Of course, a set of MDs still may not be hard or easy. For the resolved answer problem,
membership of NP is open. However, for strongly acyclic sets, the bound on the length
of the chase implies an upper bound of ΠP

2 [12, Theorem 5].
In the following we give some syntactic conditions that guarantee hardness for

classes of MDs. To state them we need to introduce some useful notions first.

Definition 4. For an MD m, the symmetric binary relation LRel(m) (RRel(m)) re-
lates pairs of attributesR[A] and S[B] whenR[A] ≈ S[B] (resp.R[A]

.
= S[B]) appears

in m. An L-component (R-component) of m is an equivalence class of the reflexive,
transitive closure LRel(m)=+ (resp. RRel(m)=+) of LRel(m) (resp. RRel(m)). �
Example 6. ForR[A] ≈ S[B]∧R[A] ≈ S[C] → R[E]

.
= S[F ]∧R[G] .= S[H ], there

is only one L-component: {R[A], S[B], S[C]}; and two R-components: {R[E], S[F ]}
and {R[G], S[H ]}. �

3.1 Hardness of Linear Pairs of MDs

Most of the results that follow already hold for pairs of MDs.

Definition 5. A set M = {m1,m2} of MDs is a linear pair, denoted (m1,m2), if its
graph MDG(M) consists of verticesm1 and m2 with only an edge from m1 to m2. �
Notice that if (m1,m2) is a generic linear pair, say

m1 : R[Ā] ≈1 S[B̄]→ R[C̄]
.
= S[Ē], (5)

m2 : R[F̄ ] ≈2 S[Ḡ]→ R[H̄ ]
.
= S[Ī],

then, from the definition of the MD graph, it follows that (R[C̄] ∪ S[Ē]) ∩ (R[F̄ ] ∪
S[Ḡ]) �= ∅, whereas (R[H̄ ] ∪ S[Ī]) ∩ (R[Ā] ∪ S[B̄]) = ∅. In the following we have to
analyze other different forms of (non-)interaction between the attributes in linear pairs.

Definition 6. Let (m1,m2) be a linear pair as in (5). (a) BR is a binary (reflexive
and symmetric) relation on attributes of R: (R[U1], R[U2]) ∈ BR iff R[U1] and R[U2]
are in the same R-component of m1 or the same L-component of m2. Similarly for
BS . (b) An R-equivalent set (R-ES) of attributes of (m1,m2) is an equivalence class
of TC (BR), the transitive closure of BR, with at least one attribute in the equivalence
class belonging to LHS(m2). The definition of an S-equivalent set (S-ES) is similar,
with R replaced by S. (c) An (R or S)-ESE of (m1,m2) is bounded if E ∩LHS(m1)
is non-empty. �
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Example 7. Consider the schema R[A,C, F,H, I,M ], S[B,D,E,G,N ], and the lin-
ear pair (m1,m2) with:
m1 : R[A] ≈ S[B]→ R[C]

.
= S[D] ∧R[C] .= S[E] ∧ R[F ] .= S[G]∧R[H ]

.
= S[G],

m2 : R[F ] ≈ S[E]∧R[I] ≈ S[E] ∧ R[A] ≈ S[E]∧R[F ] ≈ S[B] → R[M ]
.
= S[N ].

It holds: (a) BR(R[F ], R[H ]) due to the occurrence of R[F ]
.
= S[G], R[H ]

.
=

S[G]. (b) BR(R[F ], R[I]) due to R[F ] ≈ S[E], R[I] ≈ S[E]. (c) BR(R[I], R[A])
due to R[I] ≈ S[E], R[A] ≈ S[E]. (d) {R[A], R[F ], R[I], R[H ]} is an R-ES, and
since {R[A], R[F ], R[I], R[H ]} ∩ LHS (m1) = {R[A]} �= ∅, it is also bounded. �

Theorem 2. Let (m1,m2) be a linear pair, with relational predicatesR and S. LetER,
ES be the sets of R-ESs and S-ESs, resp. The pair (m1,m2) is hard if RHS(m1) ∩
RHS(m2) = ∅, and at least one of (a) and (b) below holds: (a) All of the following
hold: (i) Attr(R) ∩ (RHS(m1) ∩ LHS (m2 )) �= ∅. (ii) There are unbounded ESs in
ER. (iii) For some L-componentL ofm1, Attr(R)∩ (L∩LHS (m2)) = ∅. (b) Same
as (a), but with R replaced by S. �

Theorem 2 says that a linear pair of MDs is hard unless the syntactic form of the MDs
is such that there is a certain association between changeable attributes in LHS(m2)
and attributes in LHS(m1) as specified by conditions (ii) and (iii).

For pairs of MDs satisfying the negation of (a)(ii) or that of (a)(iii) (or the negation
of (b)(ii) or that of (b)(iii)) in Theorem 2, the similarities resulting from applying m2

are restricted to a subset of those that are already present among the values of attributes
in LHS (m1), making the problem tractable. However, when condition (ii) or (iii) is
satisfied, accidental similarities among the values of attributes in RHS(m1) cannot be
passed on to values of attributes in RHS(m2).

Example 8. The linear pair (m1,m2), with m1 : R[A] ≈ S[B] → R[C]
.
= S[D];

m2 : R[C] ≈ S[D]→ R[E]
.
= S[F ], is hard. In fact, first: RHS(m1)∩RHS(m2) = ∅.

Now, it satisfies condition (a): Condition (a)(i) holds, because R[C] ∈ RHS(m1) ∩
LHS (m2 ). Conditions (a)(ii) and (a)(iii) are trivially satisfied, because there are no
attributes of LHS(m1) in LHS(m2). �
As mentioned above, Theorem 2 generalizes to the case of more or fewer than two
database predicates. It is easy to verify, for the former case, that if there are more than
two predicates in a linear pair, then there must be exactly three of them, one of which
appears in both MDs. In this case, hardness is implied by condition (a) in Theorem 2
alone, with R the predicate in common.

Example 9. The linear pair (m1,m2) with three predicates m1 : R[A] ≈ S[B] →
R[C]

.
= S[E]; m2 : R[C] ≈ P [B]→ R[F ]

.
= P [G] is hard if it satisfies condition (a)

in Theorem 2, which it does: (i) Attr(R) ∩ (RHS(m1) ∩ LHS (m2 )) = {R[C]}. (ii)
The ES {R[C]} is unbound. (iii) Part (iii) holds with L = {R[A], S[B]}. �
With only one predicate R in the linear pair, in order to apply Theorem 2, we need to
derive from it a special result, Corollary 1 below. It is obtained by first labeling the dif-
ferent occurrences of the (same) predicate inM , and then generating conditions (four of
them, analogous to (a) and (b) in Theorem 2) for the labeled version,M ′. WhenM ′ sat-
isfies those conditions, the original set M is hard. An algorithm, Conditions, (described
in detail in [6]) does both the labeling and the condition generation to be checked on
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M ′. After the labeling, there is still only one predicate in M ′. The labeling simply pro-
vides a convenient way to refer to different sets of attributes. Example 10 demonstrates
in informal terms the use of the algorithm and the application of the corollary.

Corollary 1. A linear pair containing one predicate is hard if it satisfies RHS(m1) ∩
RHS(m2) = ∅ and at least one of the four sets of three conditions (i)-(iii) generated by
Algorithm Conditions. �
Example 10. Consider the linear pair M : m1 : R[A] ≈ R[B] ∧ R[C] ≈ R[E] →
R[F ]

.
= R[G]∧R[B]

.
= R[G]; m2 : R[G] ≈ R[H ]∧R[B] ≈ R[I]∧R[L] ≈ R[I]→

R[J ]
.
= R[K]. Algorithm Conditions produces the following labeling:

m′
1 : R

1
1[A] ≈ R2

1[B] ∧R1
1[C] ≈ R2

1[E]→ R1
1[F ]

.
= R2

1[G] ∧R1
1[B]

.
= R2

1[G],

m′
2 : R

1
2[G] ≈ R2

2[H ] ∧R1
2[B] ≈ R2

2[I] ∧R1
2[L] ≈ R2

2[I]→ R1
2[J ]

.
= R2

2[K].

With the above labeling, R1 (R2)-equivalent sets can be defined analogously to R
(S)-equivalent sets in the two relation case, except that they generally include at-
tributes from two “relations”, R1

1 and R1
2 (R2

1 and R2
2), instead of one. For example,

in {m′
1,m

′
2}, one R1-ES is {R1

1[F ], R
1
1[B], R1

2[B], R1
2[L]}.

The conditions output by Conditions for the combination X = 1, Y = 2 is the
following: (i) Attr(R2

1) ∩ Attr(R1
2) ∩ (RHS(m1) ∩ LHS (m2 )) �= ∅, (ii) There are

R1-equivalent sets that do not contain attributes in Attr(R2
1) ∩ LHS(m1), and (iii) For

some L-componentL of m1, Attr(R2
1) ∩ Attr(R1

2) ∩(L ∩ LHS(m2)) = ∅.
These conditions are satisfied by M ′. In fact, for (i) this set is {R2

1[G]}; for (ii) the
R1-ES {R1

2[G]} satisfies the condition; and for (iii) L = {R1
1[C], R

2
1[E]} satisfies the

condition. Thus, by Corollary 1, M is hard. �
Example 11. (example 5 cont.)M is hard by Corollary 1. In fact, Algorithm Conditions
produces the following labeled set M ′: R1

1[A] ≈ R2
1[A]→ R1

1[B]
.
= R2

1[B]; R1
2[B] ≈

R2
2[B]→ R1

2[C]
.
= R2

2[C], which satisfies the conditions (i)-(iii) for the choiceX = 1,
Y = 2: for (i) this set is {R[B]}; for (ii) the R1-ES {R1

1[B], R1
2[B]} satisfies the

property; and for (iii) we use L = {R1
1[A], R

2
1[A]}.

As mentioned in Section 2.2, for the given M and the query Q(x, z) : ∃yR(x, y, z),
RQA is intractable [12]. This query is in UJCQ � CHAQ. Now, we have just obtained
that RQA for that M is also intractable for all CHAQ queries. �
Example 12. Consider M consisting of m1 : R[A] ≈ R[A] → R[B]

.
= R[B];

m2 : R[A] ≈ R[A] ∧ R[B] ≈ R[B] → R[C]
.
= R[C]. It does not satisfy the condi-

tions of Theorem 2 (actually, Corollary 1). The sole L-component ofm1 is {R[A]}, and
all attributes of this set occur in LHS (m2). M is easy, because the non-interacting set
{R[A] ≈ R[A] → R[B]

.
= R[B], R[A] ≈ R[A] → R[C]

.
= R[C]} is equivalent to it

in the sense that, for any instance, the MRIs are the same for either set. This is because
applying m1 to the tuples of R and S results in an instance such that all pairs of tuples
satisfying the first conjunct to the left of the arrow in m2 satisfy the entire similarity
condition. �
Theorem 2 gives a syntactic condition for hardness. It is an important result, because it
applies to simple sets of MDs such as that in Example 5 that we expect to be commonly
encountered in practice. Moreover, in Section 5, we use Theorem 2 to show that similar
sets involving more than two MDs are also hard. The conditions for hardness in The-
orem 2 are not necessary conditions. Actually, the set of MDs in Example 13 below is
hard, but does not satisfy the conditions of this theorem.
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4 A Dichotomy Result

All syntactic conditions/constructs on attributes above, in particular, the transitive clo-
sures on attributes, are “orthogonal” to semantic properties of the similarity relations.
When similarity predicates are transitive, every linear pair not satisfying the hardness
criteria of Theorem 2 is easy.

Theorem 3. Let (m1,m2) be a linear pair with RHS(m1) ∩ RHS(m2) = ∅. If the
similarity operators are transitive, then (m1,m2) is either easy or hard. More precisely,
if the conditions of Theorem 2 hold, M is hard. Otherwise, M is easy. �

This result does not hold in general when similarity is not transitive (c.f. Proposition 2
below). The possibilities for accidental similarities are reduced by disallowing that two
dissimilar values are similar to a same value. Actually, the complexity of the problem
is reduced to the point where the resolved answer problem becomes tractable.

Example 13. The linear pair M consisting of m1 : R[A] ≈ S[B] ∧ R[I] ≈ S[J ] →
R[E]

.
= S[F ]; m2 : R[E] ≈ S[F ] ∧ R[A] ≈ S[J ] ∧ R[I] ≈ S[B] → R[G]

.
=

S[H ] does not satisfy the conditions of Theorem 2, becausem1 has two L-components,
{R[A], S[B]} and {R[I], S[J ]}. Since LHS(m2) includes one attribute of R and S
from each of these L-components, conditions (a)(iii) and (b)(iii) are not satisfied. Then,
by Theorem 3, M is easy when ≈ is transitive. �

Example 12 showed that a pair of MDs is easy for arbitrary ≈ by exhibiting an equiv-
alent non-interacting set. This method cannot be applied in Example 13, because the
similarity condition of m1 is not included in that of m2. The set of MDs in Example 13
can be hard for non-transitive similarity relations, as the following proposition shows.

Proposition 2. There exist (non-transitive) similarity operators ≈ for which the set of
MDs in Example 13 is hard. �

5 Hardness of Acyclic Sets of MDs

We consider now acyclic sets of MDs of arbitrary finite size, concentrating on a class
of them that is common in practice.

Definition 7. A set M of MDs is pair-preserving if for every attribute appearing in M ,
say R[A], there is exactly one attribute appearing in M , say S[B], such that R[A] ≈
S[B] or R[A]

.
= S[B] (or the other way around) occurs in M . �

It is easy to verify that pair-preserving, acyclic sets of MDs are strongly acyclic. Pair-
preservation typically holds in ER, because values for pairs of attributes are compared
only if they hold the same kind of information (e.g. both addresses or both names).

Example 14. M in Example 12 is pair-preserving. The set of MDs in Example 13 is
not pair-preserving, because S[B] is paired with both R[A] and R[C] in m1. It is also
possible for cyclic sets of MDs to be pair-preserving. For example, the set R[A] ≈
R[A]→ R[B]

.
= R[B]; R[B] ≈ R[B]→ R[A]

.
= R[A] is pair-preserving. �
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Now, recall from the previous section that syntactic conditions on linear pairs (m1,
m2), like the absence of certain attributes in LHS(m1) from LHS (m2) (c.f. conditions
(a)(iii) or (b)(iii)), imply hardness. Non-inclusiveness wrt. subsets of M is a syntactic
condition on acyclic, pair-preserving sets M of MDs that generalizes those conditions
that ensure hardness for linear pairs.

Definition 8. Let M be acyclic and pair-preserving, B an attribute in M , and M ′ ⊆
M . B is non-inclusive wrt. M ′ if, for every m ∈M�M ′ with B ∈ RHS(m), there is
an attribute C such that: (a) C ∈ LHS (m), (b) C �∈

⋃
m′∈M ′ LHS (m′), and (c) C is

non-inclusive wrt. M ′. �
This is a recursive definition, with base case when C is not in RHS(m) for anym (then
is inclusive, i.e. not non-inclusive). Since C ∈ LHS(m) in the definition, for any m1

with C ∈ RHS(m1), there is an edge from m1 to m. Therefore, we are traversing an
edge backwards with each recursive step, and the recursion terminates by acyclicity.

Example 15. In the acyclic, pair-preserving set {m1 : R[I] ≈ S[J ] → R[A]
.
= S[E];

m2 : R[A] ≈ S[E] → R[C]
.
= S[B]; m3 : R[G] ≈ S[H ] → R[I]

.
= S[J ]}, R[A] is

non-inclusive wrt. {m2} because R[A] ∈ RHS(m1) and there is an attribute, R[I], in
LHS(m1) that satisfies conditions (a), (b), and (c) of Definition 8. Conditions (a) and
(b) are obviously satisfied. Condition (c) is satisfied, becauseR[G] is non-inclusive wrt.
{m1}. This is trivially true, since R[G] �∈ RHS(m1) ∪ RHS(m3). �
Non-inclusiveness is a generalization of conditions (a) (iii) and (b) (iii) in Theorem 2 to
finite sets of MDs. It expresses a condition of inclusion of attributes in the LHS of one
MD in the LHS of another. In particular, suppose M = (m1,m2) is a pair-preserving
linear pair, and takeM ′ = {m2}. It is easy to verify that the requirement that there is an
attribute in RHS(m1) that is non-inclusive wrt. M ′ is equivalent to conditions (a)(iii)
and (b)(iii) of Theorem 2. Theorem 4 tells us that a non-inclusive set of MDs is hard.

Theorem 4. Let M be acyclic and pair-preserving. Assume there is {m1,m2} ⊆ M ,
and attributesC ∈ RHS(m2),B ∈ RHS(m1)∩LHS(m2) with: (a)C is non-inclusive
wrt {m1,m2}, and (b) B is non-inclusive wrt {m2}. Then, M is hard. �
Example 16. (example 15 cont.) The set of MDs is hard. This follows from Theorem 4,
with {m1,m2} andC,B in Theorem 4 being {m1,m2} andR[C], R[A] in the example,
resp. Part (b) of Theorem 4 was shown in the first part of this example. Part (a) holds
trivially, since R[C] �∈ RHS(m3). �
Example 17. Consider M = {m1,m2,m3} with m1 : R[G] ≈ S[H ]→ R[I]

.
= S[J ];

m2 : R[G] ≈ S[H ] ∧ R[I] ≈ S[J ] → R[A]
.
= S[E]; m3 : R[G] ≈ S[H ] ∧ R[A] ≈

S[E]→ R[C]
.
= S[B]. It does not satisfy the condition of Theorem 4. The only candi-

dates for {m1,m2} in Theorem 4 are {m1,m2} and {m2,m3} in this example, because
of the requirement that RHS(m1) ∩ LHS(m2) �= ∅. In the first case, B in the Theo-
rem 4 is R[I] (or S[J ]), which does not satisfy (b) because LHS(m1)\LHS (m2) = ∅.
In the second case, B in Theorem 4 is R[A] (or S[E]). Because R[G] and S[H ] are
in LHS(m3), R[A] can only satisfy (b) if R[I] does. R[I] does not satisfy (b), since
LHS(m1)\LHS(m3) = ∅.

Actually, M is easy, because it is equivalent to the non-interacting set m′
1 : R[G] ≈

S[H ] → R[I]
.
= S[J ]; m′

2 : R[G] ≈ S[H ] → R[A]
.
= S[E]; m′

3 : R[G] ≈ S[H ] →
R[C]

.
= S[B]. This can be shown as in Example 12. �
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Our dichotomy result applies to linear pairs (and transitive similarities). However, trac-
tability can be obtained in some cases of larger sets of MDs for which hardness cannot
be obtained via Theorem 4 (because the conditions do not hold). The following is a
general result concerning sets such as M in Example 17.

Theorem 5. Let M be an acyclic, pair-preserving set of MDs. If, for each m ∈M , all
changeable attributes A ∈ LHS(m) are inclusive wrt {m}, then M is easy. �
Example 18. (example 17 cont.) As expected, the set M of MDs {m1,m2,m3} satis-
fies the requirement of Theorem 5. To show this, the only attributes to be tested for in-
clusiveness wrt. an MD are R[A] and R[I]. Specifically, it must be determined whether
R[I] is inclusive wrt {m2} and whether R[A] is inclusive wrt {m3}. R[I] is inclusive
wrt {m2}, because all attributes in LHS(m1) are in LHS (m2). R[A] is inclusive wrt
{m3}, since R[G] ∈ LHS (m3) and R[I] is inclusive wrt {m3}. �

Example 19. (example 16 cont.) {m1,m2,m3} in Example 15 was shown to be hard
in Example 16. As expected, it does not satisfy the requirement of Theorem 5. This is
because R[A] is changeable, R[A] ∈ LHS(m2), and R[B] is non-inclusive wrt {m2}
since R[I] ∈ LHS(m1), R[I] �∈ LHS (m2), and R[I] is non-inclusive wrt {m2}. �

The conditions of Theorems 4 and 5 are mutually exclusive:B in Theorem 4 is change-
able (since B ∈ RHS(m1)), B ∈ LHS(m2), and B is non-inclusive wrt {m2}. To-
gether, they do not provide a dichotomy result, as the following example shows.

Example 20. The set formed by m1 : R[E] ≈ R[E] → R[B]
.
= R[B]; m2 : R[B] ≈

R[B] → R[C]
.
= R[C]; m3 : R[E] ≈ R[E] → R[C]

.
= R[C] does not satisfy the

condition of Theorem 5, becauseR[B] is changeable and non-inclusive wrt. {m2}. Nor
condition (a) of Theorem 4, becauseC is inclusive wrt. {m1,m2} (R[E] ∈ LHS (m1)).

The tractability of this case cannot be determined through the theorems above, but
it is easy, because, for any update sequence that leads to an MRI, each set of merged
duplicates must be updated to a value in the set (to satisfy minimality of change). It
is easily verified that, with this restriction, the second update to the values of R[C] is
subsumed by the first, and therefore this update has no effect on the instance. Thus, sets
of duplicates can be computed in the same way as with non-interacting sets. �
Notice that the condition of Theorem 2 that there exists an ES that is not bounded does
not appear in Theorem 4. This is because, for pair-preserving, acyclic sets of MDs, this
condition is always satisfied by any subset of the set that is a linear pair. Indeed, for such
a subset (m1,m2), if all its ESs are bounded, then by the pair-preserving requirement,
LHS(m2) ⊆ LHS(m1). Since (m1,m2) is a linear pair, LHS (m2) ∩ RHS(m1) �= ∅.
This implies LHS (m1)∩ RHS(m1) �= ∅, contradicting the acyclicity assumption.

For linear pairs, Theorem 4 becomes Theorem 2. For such pairs, condition (a) of
Theorem 4 is always satisfied. If the (acyclic) linear pair is also a pair-preserving, as
required by Theorem 4, the conditions of Theorem 2 reduce to conditions (a)(iii) and
(b)(iii), which, as noted previously, are equivalent to condition (b) of Theorem 4.

6 Conclusions

We have shown that RQA is typically intractable when the MDs have non-cyclic de-
pendencies on each. Our results depend on our chase-based semantics. Alternatives to
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this chase have been considered [6]. A quite different chase, which applies one MD at
a time and uses matching functions, is presented in [5, 2].

The definition of resolved answer reminds us of consistent query answering (CQA)
[4], where much research has been about (polynomial-time) query rewriting method-
ologies. In all the cases identified in the literature (see [4, 18] for recent surveys), the
rewritings have been first-order. For MDs, the exhibited rewritings are in Datalog [13].

RQA brings many new challenges in comparison to CQA, and results for the latter
cannot be applied (at least not in an obvious manner): (a) MDs contain usually non-
transitive similarity relations. (b) Enforcing consistency of updates requires computing
the transitive closure of such relations. (c) Tuple-based repairs are usually considered
in CQA [4]. The minimality of value changes, not always used in CQA, has not been
considered for consistent rewritings. (d) The semantics of resolved query answering for
MD-based ER is given, in the end, in terms of a chase procedure.3 However, the se-
mantics of CQA is model-theoretic, given in terms of non-operationally defined repairs
that arise from set-theoretic conditions. For additional discussions of differences and
connections between CQA and RQA, see [12, 14].

We have presented the first dichotomy result for the complexity of RQA. Its cases
depend on the set of MDs, for a fixed class of queries. In CQA with FDs, dichotomy
results have been obtained for limited classes of conjunctive queries [15, 16, 18]. How-
ever, in CQA the cases depend mainly on the queries, as opposed to FDs.

Some open problems for ongoing and future research are: (a) Extending the class of
CHAQ queries, considering additional projections, and also boolean queries. (b) Deriv-
ing a dichotomy result for acyclic, pair-preserving sets analogous to the one for linear
pairs. (c) Since, FDs (and other equality generating dependencies) can be expressed as
MDs, with equality as a transitive symmetry relation, applying the dichotomy result in
Theorem 3 to CQA under FDs under a value-based repair semantics [4].
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Abstract. The formal modeling of analogical proportions (i.e., statements of the
form “a is to b as c is to d”) has led in the last past years to different proposals for
classification algorithms, which have been quite successful on benchmarks where
data are described by binary or nominal features. As far as we know and up to
one exception, numerical data have never been considered. We propose here a
new algorithm for handling numerical data. Starting from multiple-valued logical
modelings of analogical proportions, more or less strongly encoding the idea that
the change from a to b is the same as the change from c to d, we investigate
different implementations leading to very good results on classical benchmarks.

1 Introduction

The study and the use of analogical reasoning has a long history in artificial intelli-
gence [7,8]; see for a recent survey the introductory chapter of [18]. In the last decade,
a renewal of the interest for the modeling of analogical proportions [9,23,22], i.e., state-
ments of the form “a is to b as c is to d”, often denoted a : b :: c : d, has motivated a
series of successful applications to classification, and more generally machine learning
[11,13,21], among other works.

The use of analogical proportions in classification has only been investigated for
binary attributes until recently, which corresponds to the case where analogical propor-
tions involve Boolean variables. Two approaches to the case of nominal attributes have
been proposed recently [4,3], while the case of numerical attributes was the topic of a
preliminary study a few years ago [20].

Indeed, the handling of numerical data by means of analogical proportions raises
specific problems. While the question of deciding if an analogical proportion holds
for a Boolean, or a nominal attribute between four situations, may receive a yes-or-no
answer, it should become a matter of degree for a numerical attribute. Indeed, if one
considers that for instance 0.30 : 0.80 :: 0.30 : 0.80 is a perfect analogical proportion,
one may expect that 0.30 : 0.80 :: 0.30 : 0.79 is still an analogical proportion to a high
degree, rather than being completely false. It turns out that there are several potentially
meaningful ways for computing this degree [15].

In this paper, we propose a new algorithm for the classification problem, in the case
of numerical data, based on graded analogical proportions. The paper is organized as
follows. The next section presents a background on the logical modeling of analogical
proportions, with a special emphasis on its extension to intermediary degrees of truth.
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The third main section presents an overview of the existing analogical proportion-based
algorithms for classification of binary, nominal and numerical data. Then in the next
section a new approach and two algorithms are proposed for numerical data. The last
main section reports experimental results obtained on benchmarks for binary or multiple
classes problems, and provides a detailed, comparative discussion of the results that
show the interest of the new approach.

2 Background on Analogical Proportions

Arithmetical (resp. geometrical) numerical proportions assert equality between two dif-
ferences: a− b = c− d (resp. ratios: a

b = c
d ), where a, b, c, d are numbers. They are at

the root of the idea of analogical proportions. More generally, a (symbolic) analogical
proportion is a statement of the form “a is to b as c is to d” (denoted a : b :: c : d and
where the type of a, b, c, d is not specified for now), expressing informally that “a differs
from b as c differs from d” and vice versa. As it is the case for numerical proportions,
this “analogical” statement is supposed to still hold when the pairs (a, b) and (c, d) are
exchanged, or when the mean terms b and c are permuted (see [16] for a detailed dis-
cussion). In the following subsections, we shall first focus on the case where a, b, c, d
are Boolean truth variables, i.e. taking their values in B = {0, 1}. Then, we will recall
how analogical proportions can be extended to graded truth values when variables take
their value in [0, 1].

2.1 Boolean Case

When considering Boolean variables, a simple way to abstract the symbolic counterpart
of numerical proportions has been given in [14] by focusing on indicators that capture
the ideas of “similarity” and “dissimilarity”. Namely, for a pair (a, b) of Boolean vari-
ables, four indicators are associated to such a pair, namely the Boolean functions:
− a∧ b and ¬a∧¬b : they are respectively positive similarity and negative similarity

indicators ; a ∧ b (resp. ¬a ∧ ¬b) is true iff only both a and b are true (resp. false);
− a ∧ ¬b and ¬a ∧ b : they are dissimilarity indicators ; they are true iff only one of

a or b is true and the other is false.
Then, a logical proportion (see [17] for a thorough investigation of this notion) is a

conjunction of two equivalences between such indicators, and the best “clone” of the
numerical proportion is the analogical proportion defined as:

(a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d) (1)

This logical expression of an analogical proportion, using only dissimilarities, could be
informally read as what is true for a and not for b is exactly what is true for c and not for
d, and vice versa. It perfectly fits with the reading “a differs from b as c differs from d
and vice versa”. As such, a logical proportion is a Boolean formula involving 4 variables
and it can be easily checked on its truth table (Table 1) that the logical expression of
a : b :: c : d satisfies symmetry (a : b :: c : d ⇒ c : d :: a : b) and central permutation
(a : b :: c : d ⇒ a : c :: b : d), which are key properties of an analogical proportion,
acknowledged for a long time, while a : b :: a : b (and a : a :: b : b) always hold true.
Thus, in terms of generic patterns, we see that analogical proportion always holds for
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Table 1. Valuations where a : b :: c : d is true

a b c d a : b :: c : d

0 0 0 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 1

0 1 0 1 1

1 0 1 0 1

the three following patterns: s : s :: s : s, s : s :: t : t and s : t :: s : t where s and t are
distinct values.

Thanks to properties of Boolean algebra, it can be easily seen that definition (1) is
equivalent to:

((a→ b) ≡ (c→ d)) ∧ ((b→ a) ≡ (d→ c)) (2)

but also, which is less obvious, that (1) is equivalent to:

((a ∧ d) ≡ (b ∧ c)) ∧ ((¬a ∧ ¬d) ≡ (¬b ∧ ¬c))

and thus to
((a ∧ d) ≡ (b ∧ c)) ∧ ((a ∨ d) ≡ (b ∨ c)) (3)

where there is no negation operator [12]. Note that the last two expressions now refer
to similarity indicators. Moreover, the analogical proportion “a is to b as c is to d”
now reads “what a and d have in common, b and c have it also (both positively and
negatively)”, which is a less straightforward reading of the idea of analogy than the one
associated with (1) or (2).

One of the side product of geometrical proportions is the well-known “rule of three”
allowing to compute a suitable 4th item x = d in order to complete a proportion a

b = c
x .

This property has a counterpart in the Boolean case where the problem can be stated as
follows. Given a triple (a, b, c) of Boolean values, does it exist a Boolean value x such
that a : b :: c : x = 1, and in that case, is this value unique? It is easy to see that there
are cases where the equation has no solution since the triple a, b, c may take 23 = 8
values, while a : b :: c : d is true only for 6 distinct 4-tuples. Indeed, the equations
1 : 0 :: 0 : x = 1 and 0 : 1 :: 1 : x = 1 have no solution. It is easy to prove that the
analogical equation a : b :: c : x = 1 is solvable iff (a ≡ b) ∨ (a ≡ c) holds true. In
that case, the unique solution is given by x = a ≡ (b ≡ c).

Representing objects with a single Boolean value is not generally sufficient and we
have to consider situations where items are represented by vectors of Boolean values,
each component being the value of a binary attribute. A simple extension of the previous
definitions to Boolean vectors in Bn of the form −→a = (a1, · · · , an) can be done as
follows:

−→a :
−→
b :: −→c :

−→
d iff ∀i ∈ [1, n], ai : bi :: ci : di

Obviously, all the basic properties (symmetry, central permutation) still hold for vectors.
On top of that, the equation solving process is still valid and provides a new insight
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about analogical proportion: analogical proportions are creative. Indeed, let us consider
the following example where −→a = (1, 0, 0),

−→
b = (0, 1, 0) and −→c = (1, 0, 1). Solving

the analogical equation −→a :
−→
b :: −→c : −→x yields −→x = (0, 1, 1), which is a new vector

different from −→a ,−→b and −→c .

2.2 Multiple-valued Models

If we consider the Boolean expression of the analogical proportion given by formula (1),
one may think of many possible multiple-valued extensions, depending on the choice of
the connectives associated to ¬, ∧ and ≡. Then, it is important to make proper choices
that are in agreement with the intended meaning of analogical proportion. Some prop-
erties seem very natural to preserve, such as

– i) the independence with respect to the positive or negative encoding of properties
(one may describe a price as the extent to which it is cheap, as well as it is not
cheap), which leads to require that ¬a : ¬b :: ¬c : ¬d holds if a : b :: c : d holds
(as it is already the case with Boolean truth values);

– ii) the definition should agree with the Boolean definitions in the limit case where
a, b, c, d take their values in {0, 1}.

In [19], a careful analysis of these requirements, ensuring that the value of b can be
retrieved from the value of a and the ones of a∧¬b and ¬a∧ b, leads to choose (for the
sake of simplicity, we keep the same notation for a variable and its truth value):

– Łukasiewicz implication: a → b = min(1, 1 − a + b) (or equivalently a ∧ ¬b =
max(0, a− b));

– conjunction: a ∧ b = min(a, b);
– equivalence: a ≡ b = min(a→ b, b→ a) = 1− |a− b|.

When starting from definition (2), this leads to the following expression which both
generalizes the Boolean case to multiple-valued entries and introduces a graded view
of the analogical proportion:

a : b :: c : d = 1− |(a− b)− (c− d)| if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

a : b :: c : d = 1−max(|a− b|, |c− d|) otherwise (A)

As can be seen, a : b :: c : d = 1 if and only if (a − b) = (c − d). We thus recognize
the arithmetical proportion.1

1 The geometrical proportion could be retrieved as well, choosing Goguen implication s → t =
min(1, t/s) and s → t = 1 if s = 0, product conjunction s ∧ t = s · t, and equivalence
s ≡ t = min(s/t, t/s) [12]. It yields

a : b :: c : d = min

(
min(1, b

a
)

min(1, d
c
)
,
min(1, d

c
)

min(1, b
a
)

)
.min

(
min(1, a

b
)

min(1, c
d
)
,
min(1, c

d
)

min(1, a
b
)

)
.

with the convention 0/0 = 1. Clearly, a : b :: c : d = 1 if and only if a/b = c/d. In spite of
this nice property, it can be checked that 1/2 : 0 :: 1 : 0 = 1, which is not satisfactory, since
we expect here a value less than 1 [19]. For this reason, we do not consider this option further
in this paper.
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When starting from definition (3), involving the operator ∨ defined as

a ∨ b = ¬(¬a ∧ ¬b) = 1−min(1− a, 1− b) = max(a, b)

we get another expression:

a : b :: c : d = min(1− |min(a, d)−min(b, c)|, 1− |max(a, d)−max(b, c)|)

which can be rewritten as:

a : b :: c : d = 1−max(|min(a, d)−min(b, c)|, |max(a, d)−max(b, c)|) (A∗)

Unfortunately, the equivalence between the 2 definitionsA andA∗ is no longer valid
in the multiple-valued case. Roughly speaking, for A∗ to hold (i.e. to have value 1), the
pair (a, d) and the pair (b, c) should have the same min and max, so A∗(0, 0.5, 0.5, 1)
has the value 0.5 and then does not hold at degree 1. But applying the definition of A
shows that A(0, 0.5, 0.5, 1) = 1.

In fact, A∗ provides a more restrictive view of analogical proportion than A: for
instance, in the case of a tri-valued semantics where the domain of the variables is
reduced to {0, 0.5, 1}, the truth table of A has 19 lines leading to 1 but A∗ has only 15
such lines [15]. Moreover, as discussed in detail in [6],A agrees with the ideas of linear
interpolation and extrapolation, since, in particular, the solution of A(a, x, x, b) = 1 is
x = a+b

2 , which is not the case of A∗.
Lastly, we can extend the notion of “true” proportion to vectors in [0, 1]n as in the

Boolean model with (where P denotes A or A∗):

P (−→a ,−→b ,−→c ,−→d ) = 1 iff ∀i ∈ [1, n], P (ai, bi, ci, di) = 1

In the frequent case where P (ai, bi, ci, di) ∈]0, 1[ for some index i, P (−→a ,−→b ,−→c ,−→d )
is not defined and we have different options to allocate a truth value to the whole pro-
portion. Obviously, one option is to compute the min of the truth values, another option
may be to compute their mean Σn

i=1P (ai,bi,ci,di)
n . We will further discuss these options

in the next section.

3 Analogical Proportions and Classification

Numerical proportions are closely related to the ideas of extrapolation and of linear
regression, i.e., to the idea of predicting a new value on the ground of existing values.
Analogical proportions may serve similar purposes. The equation solving property re-
called above is at the root of a brute force method for classification. It is based on a kind
of “proportional continuity principle”: if the attributes of 4 objects are componentwise
in analogical proportion, then this should still be the case for their classes. Let us briefly
recall the Boolean case, before considering the numerical attribute case.
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3.1 Boolean and Discrete Cases

Having a 2-class classification problem, and 4 Boolean objects −→a ,−→b ,−→c ,−→d over Bn,
the proportional continuity principle can be stated as follows:

−→a :
−→
b :: −→c :

−→
d

cl(−→a ) : cl(−→b ) :: cl(−→c ) : cl(−→d )

In the case where −→a ,−→b ,−→c are in the training set with known classes and
−→
d being the

object to be classified, if the equation cl(−→a ) : cl(−→b ) :: cl(−→c ) : x = 1 is solvable, we

can allocate its solution to cl(
−→
d ) just by applying the continuity principle.

The case of attributes on discrete domains and of a number of classes larger than 2
can be handled as easily as the binary case. Indeed, consider a finite attribute domain
{v1, · · · , vm} (note that the attribute may also be the class itself). This attribute, say
A, can be straightforwardly binarized by means of the m properties “having value vi,
or not”. Consider the partial description of objects −→a ,

−→
b , −→c , and

−→
d wrt A. Assume,

for instance, that objects −→a and −→c have value v1, while objects
−→
b and

−→
d have value

v2. This situation is summarized in Table 2 where the respective truth-values of the
four objects wrt each binary property “having value vi” are indicated. As can be seen
on this table, an analogical proportion holds true between the four objects for each bi-
nary property, and in the example, can be more compactly encoded as an analogical
proportion between the attribute values themselves, namely here: v1 : v2 :: v1 : v2.
More generally, x and y denoting possible values of a considered attribute A, the
analogical proportion between objects −→a ,

−→
b , −→c , and

−→
d holds for A iff the 4-tuple

(A(−→a ),A(−→b ),A(−→c ),A(−→d )) is equal to one 4-tuple having one of the three forms
(s, s, s, s), (s, t, s, t), or (s, s, t, t). This continuity principle has led to diverse imple-
mentations that we recall now.

– In [1], the authors use a measure of analogical dissimilarity between 4 objects. It
estimates how far 4 objects are from being in analogical proportion. Roughly speak-
ing, the analogical dissimilarity ad between 4 Boolean values is the minimum num-
ber of bits that have to be switched to get a proper analogy. Thus ad(1, 0, 1, 0) =
0,ad(1, 0, 1, 1) = 1 and ad(1, 0, 0, 1) = 2. Thus, a : b :: c : d holds if and only
if ad(a, b, c, d) = 0. Moreover ad differentiates two cases where analogy does not
hold, namely the 8 cases with an odd number of 0 and an odd number of 1 among
the 4 Boolean values, such as ad(0, 0, 0, 1) = 1 or ad(0, 1, 1, 1) = 1, and the two
cases ad(0, 1, 1, 0) = ad(1, 0, 0, 1) = 2. When we deal with 4 Boolean vectors in
Bn, adding the ad evaluations componentwise generalizes the analogical dissimi-
larity to Boolean vectors, and leads to an integer belonging to the interval [0, 2n].

Table 2. Handling non binary attributes
v1 v2 v3 · · · vm−→a 1 0 0 · · · 0 | v1−→

b 0 1 0 · · · 0 | v2−→c 1 0 0 · · · 0 | v1−→
d 0 1 0 · · · 0 | v2
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It is used in [1] in the implementation of a classification algorithm where the input
parameters are a set TS of classified items, an integer k, and a new item d to be
classified. It proceeds as follows:

Step 1: Compute the analogical dissimilarity ad between d and all the triples in
TS3 that produce a solution for the class of d.
Step 2: Sort these n triples by the increasing value of ad wrt with d.
Step 3: Let p be the value of ad for the k-th triple, then find k′ as being the greatest
integer such that the k′-th triple has the value p.
Step 4: Solve the k′ analogical equations on the label of the class. Take the winner
of the k′ votes and allocate this winner as the class of d.

This approach provides remarkable results and, in several cases, outperforms the
best known algorithms [11].

– In the algorithm proposed in [14], there is no use of a dissimilarity measure
but a straightforward implementation of the continuity principle, keeping flexibil-
ity by allowing to have some components where analogy does not hold. Triples of
Boolean vectors (a, b, c) are considered such that the class equation
cl(a) : cl(b) :: cl(c) : x is solvable and such that the number of component-
wise analogies card({i ∈ {1, n}| ai : bi :: ci : di holds}) is maximal. Then the
label solution of the corresponding class equation is allocated to d, implementing
a majority vote in case of multiple candidate triples.

– In [13], flexibility is introduced via an integer p indicating how many components
we tolerate with a failure of the analogical proportion. In that case, a candidate
voter is just a triple of Boolean vectors a, b, c such that the class equation cl(a) :
cl(b) :: cl(c) : x is solvable and

card({i ∈ {1, n}| ai : bi :: ci : di holds}) ≥ n− p
Still a majority vote is applied among the candidate voters. The main difference
with the approach of [1] is that there is no distinction between the cases where
analogy does not hold. In terms of complexity, all these approaches are cubic in the
size of the training set, leading to high runtime. In terms of accuracy, there is no
significant differences between the three implementation techniques.

– A completely different approach has been recently proposed where the building
blocks are pairs rather than triples [4]. To each pair of examples is associated a
“change” (resp. “no change”) rule if the two examples are in different classes (resp.
are in the same class). Then the observed change in some of the attribute values
(while the other attributes keep the same value in the two examples of the pair) is
considered as responsible for the change in classes, or as having no influence (if the
two examples are in the same class). This gives birth to rules that are then applied
to pairs made of one example and of the item to classify in such a way that an
analogical proportion holds componentwise between the pair associated with the
rule and the pair involving the item. It turns out that many rules are applicable in
this way, and a majority vote is applied between the different predictions obtained
for the class of the item. Again good results are obtained for the case of binary and
nominal attributes. Although in this paper we shall not extend such a rule-based
view to numerical attributes, we shall keep in mind the idea of working with pairs.
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– Let us also mention the work of [22] although it does not deal with Boolean vectors
strictly speaking, since they are the first authors to suggest the proportional conti-
nuity principle as an underlying mechanism for building analogical learners. They
propose an algebraic framework for defining analogical proportions between struc-
tured data: lattices, free monoids and trees. In these universes, they introduce the no-
tion of factorization allowing the decomposition of items into smaller parts bound to
satisfy diverse constraints. For instance, in the case of words, this allows to consider
“viewing : reviewer :: searching : researcher” as a valid proportion, generalizing the
work of [9]. To solve analogical equations in such universes, diverse heuristic ap-
proaches are used, but with the advantage of making analogical inference tractable
even for large databases. Their approach provide satisfactory results [21].

All the previous works are focused on discrete data and none of them tackles the issue
of dealing with numerical values.

3.2 Numerical Case

In that situation, we consider 4 real-valued vectors −→a ,−→b ,−→c ,−→d over [0, 1]n (the nu-
merical values are previously normalized in the unit interval through a linear transfor-
mation, if necessary), but still with discrete classes. Then, we interpret the value of an
attribute as a truth value (corresponding to the extent to which the property underlying
the attribute holds): thus the value of P (ai, bi, ci, di) can always be computed and be-
longs also to [0, 1]. Actually, this truth value is rarely equal to 1 but can be close to 1.
So the following inference principle, cloning the Boolean case:

P (−→a ,−→b ,−→c ,−→d ) = 1

cl(−→a ) : cl(−→b ) :: cl(−→c ) : cl(−→d )

has to be adapted for a proper implementation.
As far as we know, the work presented in [20] is the only one to deal with numerical

data. Starting from datasets coming from UCI repository [10], the data are normalized
in order to get values in [0, 1] considered as truth degrees which allows the application of

the graded semantics previously described in this paper. Given a new data
−→
d to be clas-

sified, the main idea is to consider all the triples (−→a ,−→b ,−→c ) such that the corresponding
class equation is solvable. We denote Solv(TS3) this set. Actually, these triples are the

only ones able to provide a prediction for the unknown label of
−→
d . We compute for each

of these triples the vector (P (a1, b1, c1, d1), . . . , P (ai, bi, ci, di), . . . , P (an, bn, cn, dn)).
Then we order these vectors of truth values using the leximin2 as a total order. The best
triple, i.e. the one maximizing (P (a1,b1,c1,d1),. . . ,P (ai,bi,ci,di),. . . ,P (an,bn,cn,dn))

w.r.t. leximin is then chosen to allocate a label to the new item
−→
d . As highlighted in

[20], the accuracy results of the corresponding classifier are quite good, and in some
cases, outperform well-known algorithms.

2 (u1, . . . , ui, . . . , un) >leximin (v1, . . . , vi, . . . , vn), once the components of each vector
have been increasingly ordered, iff ∃j < n ∀i = 1, j ui = vi and uj+1 > vj+1.
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4 Implementation

In this paper, we suggest another viewpoint in order to drastically reduce the number
of triples to be investigated. Instead of systematically surveying Solv(TS3), we first

consider the nearest neighbours −→c of
−→
d (w.r.t. the 1-norm distance). This idea of first

building a pair with the new item
−→
d and one of its nearest neighbors has also been

successfully investigated in the case of binary and nominal attributes in a companion
paper [3].

We then apply exactly the same decision rule restricted to the subset of Solv(TS3)

where −→c is one of the nearest neighbours of
−→
d . More formally, let us assume we

have computed a numerical value for P (−→a ,−→b ,−→c ,−→d ). In our case, we use for P the
definition as the mean of the truth values obtained in componentwise manner (given
above). This use (in place of leximin) is inspired from practice in information retrieval
(see [2] for comparisons and possible refinements). Then we can associate with −→c the
finite subset of [0, 1]:

{P (−→a ,−→b ,−→c ,−→d )|(−→a ,−→b ,−→c ) ∈ Solv(TS3)}

At this stage, we have 2 options:

1. The first option is to consider the union of all these finite subsets, getting a new
finite subset of [0, 1], then having a unique maximum element m0 corresponding

to a triple (−→a0,
−→
b0 ,
−→c0) such that the class equation cl(−→a0) : cl(

−→
b0) :: cl(

−→c0) : x= 1
is solvable. Still keeping the same philosophy as with the Boolean case and con-
sidering (−→a0,

−→
b0 ,
−→c0) as the “best” triple to predict the class, we allocate to

−→
d the

solution of this class equation. In the quite unlikely case (we are in a numerical
setting) where we would have more that one triple corresponding to this maximum
element m0, we use a majority vote among the corresponding triples.

2. The second option is to consider, for each finite subset, the triple (−→a0,
−→
b0 ,
−→c0) corre-

sponding to its maximum elementm0,−→c . This triple generates a candidate label for
−→
d . Finally we get a set of candidate labels, one per neighbour−→c : we implement a
majority vote to get the final label.

It is quite straightforward to implement the previous options leading to the algorithms
1 and 2. In the latter algorithm, we use a function vote(E,−→c ,−→d ) whose input is a
set of pairs of numerical vectors E and 2 numerical vectors, returning as output the
label given by the triple maximizing the number P (−→a ,−→b ,−→c ,−→d ), with (−→a ,−→b ) ∈ E.

candidate(
−→
d ) is just the list of class vote for cl(

−→
d ): obviously, the class having the

maximum number of occurrences (nbocc) is the allocated label for
−→
d as expressed by

the last command cl(
−→
d ) = argmaxl{nbocc(l) in candidate(

−→
d )}.

Note that, as we have seen with [20], it is not absolutely necessary to define a global
truth value for P (−→a ,−→b ,−→c ,−→d ): the only thing we need is a total order on the set
Solv(TS3) (or more generally TS3).
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Algorithm 1. Numerical Analogical Classifier without majority vote

Input: k > 1,
−→
d /∈ TS a new instance to be classified

cl(
−→
d ) = undefined;maxTruthV alue = 0

for each −→c ∈ TS do compute ||−→c −−→
d ||1

sort by increasing order the list L of values {||−→c −−→
d ||1|−→c ∈ TS}

build up the set NNk(
−→
d ) = {−→c ∈ TS s.t. rank(||−→c −−→

d ||1) in L ≤ k}
for each −→c in NNk(

−→
d ) do

for each pair (−→a ,
−→
b ) such that: cl(−→a ) : cl(

−→
b ) :: cl(−→c ) : x has solution l do

if maxTruthV alue < P (−→a ,
−→
b ,−→c ,−→d ) then

maxTruthV alue = P (−→a ,
−→
b ,−→c ,−→d );

cl(
−→
d ) = l

end if
end for

end for
return cl(

−→
d )

Algorithm 2. Numerical Analogical Classifier with majority vote among the nearest
neighbors

Input: k > 1,
−→
d /∈ TS a new instance to be classified

candidate(
−→
d ) = nil;

for each −→c ∈ TS do compute ||−→c −−→
d ||1

sort by increasing order the list L of values {||−→c −−→
d ||1|−→c ∈ TS}

build up the set NNk(
−→
d ) = {−→c ∈ TS s.t. rank(||−→c −−→

d ||1) in L ≤ k}
for each −→c in NNk(

−→
d ) do

build E = (−→a ,
−→
b ) s.t. cl(−→a ) : cl(

−→
b ) :: cl(−→c ) : x has solution

candidate(
−→
d ) = vote(E,−→c ,−→d ).candidate(

−→
d )

end for
cl(

−→
d ) = argmaxl{nbocc(l) in candidate(

−→
d )}

return cl(
−→
d )

5 Experimental Results and Comparison

In order to evaluate the efficiency of analogical proportion-based classifiers with nu-
merical data, we have tested the two algorithms on 8 data sets taken from the UCI
machine learning repository [10]. A brief description of these data sets is given in Ta-
ble 3 where we focus on classification problems involving numerical attributes only. In
terms of classes, we deal with a maximum number of 8 classes. In order to apply our
multiple-valued semantics framework, all attribute values are normalized in a standard
way to get numbers in [0,1]: a real value is thus changed into a number that may be
understood as a truth value. In terms of protocol, we apply a standard 10 fold cross-
validation technique and we run our tests both for A and A∗ definitions of the graded
analogical proportion.
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Table 3. Description of datasets

Datasets Instances Attributes Classes
Diabetes 768 8 2
W. B. Cancer 699 9 2
Heart 270 13 2
Iris 150 4 3
Wine 178 13 3
Satellite Image 346 36 6
Glass 214 9 7
Ecoli 336 7 8

Table 4. Classification accuracies given as mean and with standard deviation

Datasets Algo. A A*
value of k 1 3 5 11 1 3 5 11
Diabetes Algo 1 65.4±4.4 64.8± 4.1 65.7± 4.4 65.2±4.5 65.4±4.6 64.8±5.3 65.0±5.2 64.3± 5.0

Algo 2 68.5±4.6 71.0±4.3 73.0±4.8 67.5±5.0 69.7±4.7 71.7± 5.2
W. B. Cancer Algo 1 96.0±1.9 95.2±2.0 95.1 ±1.9 94.7±2.3 96.2±1.8 96.0±2.0 95.8±2.1 95.5 ±2.4

Algo 2 96.7±2.0 96.7±1.9 96.6±2.3 97.0±2.0 96.8±1.9 96.8±2.1
Heart Algo 1 73.3±7.1 71.7±8.7 72.2±7.9 72.4±7.3 72.9±7.9 71.4±8.5 70.9±7.9 70.6±7.6

Algo 2 77.1±6.8 78.2±6.9 82.1±6.1 77.3±6.9 78.7±6.7 79.8±6.1
Iris Algo 1 94.2±5.3 95.7±4.6 94.5±5 93.0±5.5 94.2±5.0 93.4±5.7 93.1±5.8 93.2±4.9

Algo 2 95.8±4.8 95.3±5.1 96.9 ±4.5 95.7±4.5 95.2±4.9 94.9±4.9
Wine Algo 1 95.3±4.0 96.1± 3.6 96.2± 4.2 95.8±4.3 95.8± 4 95.8± 3.9 95.3± 4.3 95.9±3.8

Algo 2 96.6±3.2 96.9 ± 3.3 98.2±2.7 97.1±3.5 97.3±3.4 97.1±3.5
Sat. Image Algo 1 94.1± 3.6 95.3±3.4 95.1±3.2 94.8±2.9 93.5±3.8 94.2±3.8 94.4±3.8 94.7±4.0

Algo 2 95.1±3.9 94.4±4.1 94.5±3.9 94.8±3.7 94.1±4.2 93.5±4.3
Glass Algo 1 71.7±8.9 70.2±8.6 70.7±8.6 71.3±9.1 73.7±8.9 73.4±8 73.8±7.8 74.4±8.2

Algo 2 72.0±8.2 74.1±8 72.1±9.8 74.2±8.4 74.6±8.7 73.6±9.3
Ecoli Algo 1 79.6±6.8 77.4±7.8 77.2±7.4 76.7±5.8 79.7±5.5 78.9±6.2 78.2±6.5 78.6±6.2

Algo 2 82.3±6.6 84.6±5.6 86.8±6.0 81.7±5.7 83.1±5.9 83.9±5.7

Table 5. Comparison with classification results of some well-known classifiers

Datasets SVM JRip IBK(K=1,k=10) [20] Algo2 with A and k=11
Diabetes 77.3 76.0 70.0, 71.1 71 73.0
Cancer 97.1 96.0 96.2 , 96.9 - 96.6
Heart 83.7 81.1 74.8, 81.4 - 82.1
Iris 96.0 95.3 95.3, 96.0 99 96.9
Wine 98.3 92.7 94.9, 95.5 - 98.2
Sat. Image 94.2 93.9 94.2, 92.2 90 94.5
Glass 57.9 69.1 70.5, 64.5 - 72.1
Ecoli 84.2 81.2 80.3, 86.0 - 86.8

In Table 4, we provide mean accuracies and standard deviations for diverse values
of k (k = 1 means that we apply the algorithm without vote, k being the number of
nearest neighbors of

−→
d used: in that case, Algo 1 is just Algo 2).

From Table 4, we can notice that:

– Algorithm 2 with k = 11 and using definition A performs generally better than
Algorithm 1: in that case, the voting procedure to get a label for

−→
d includes triples
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(−→a ,−→b ,−→c ) where −→c could be quite far from
−→
d . It appears that it is better to

consider a majority vote, allowing each neighbor to provide a candidate label, than
to only consider the neigbor providing the triple (−→a ,−→b ,−→c ) with the highest P .

– It is quite clear that we get (except in 1 case) better results when using A definition
than when using A∗ definition for analogical proportion. It could be the case that
A∗, providing a more restrictive view of analogical proportion thanA, removes too
many candidates from the voting triples. It remains to investigate if there is a way
to qualify a target dataset as being more suitable for classification using A or using
A∗. This is an open problem.

In Table 5, we provide the known accuracy results for standard machine learning al-
gorithms: the SVM, JRip an optimized propositional rule learner and the k-Nearest
Neighbors IBk (with k = 1 and k = 10). Accuracy results for SVM, JRip and IBk are
obtained by applying the free implementation of Weka software.

– This table highlights the fact that our analogical classifiers perform more or less
in the same way as the best known algorithms, but without using any optimization
trick. Especially, Algorithm2, using A, with k = 11 outperforms all other classi-
fiers for data sets “Iris”, “Sat.Image”, “Glass” and “Ecoli” and have performances
similar to SVM for datasets “Cancer” and “Wine”.

– The classification success of Algorithm 2 for “Iris”, “Sat.Image”, “Glass” and
“Ecoli” (which have multiple classes) demonstrates its ability to deal with multiple
class data sets.

– The analogy-based classifiers seem to be efficient when classifying data sets with a
large number of attributes as in the case of “Sat.Image” for example.

– Contrary to multiple class data sets, the analogy-based classifiers seems to be less
efficient when classifying some binary data sets such as “Diabetes” specially with
small values of k. For this reason we tested the behavior of Algorithm 2 with defini-
tion A when using larger number of neighbors, we get an accuracy of 74.9 (instead
of 73.0 for k = 11) just by increasing k to 13. We can conclude that, for binary data
sets, the classifier requires to investigate more neighbors to be able to distinguish
between classes. It is still an open question to identify the optimal k suitable for
each data set.

– Although, our algorithms do not use the same order on TS3 as the approach de-
veloped in [20], we note that our results are better than the results obtained by the
previous approach for numerical data, for the tested data sets “Diabetes” and “Sat.
Image”.

– To compare our analogical classifier to the IBk classifier, we used the Wilcoxon
Matched-Pairs Signed-Ranks Test as proposed by Demsar [5]. It is a non-parametric
alternative to the paired t-test that enables us to compare the two classifiers over
multiple data sets. In our case, the null hypothesis, states that our algorithm per-
forms as IBk. This hypothesis leads to a p-value = 0.0179 and then has to be re-
jected. Algorithm 2 thus performs significantly better than IBk classifier.

– Lastly, we also computed the frequency that examples −→a or
−→
b ∈ (−→a ,−→b ) are

among k nearest neighbors −→c of
−→
d . We get a very low average frequency (1.2%

on 8 benchmarks). Thus we can conclude that −→a and
−→
b are usually far from the
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example
−→
d to be classified. This shows once again that analogical classifiers are

not just another view of k-nn algorithm.

6 Conclusion

In this paper, we have presented a new way to classify data with numerical attributes
using analogical proportions. The procedure can be summarized in the following way.
Inspired by the k-nn algorithm, we avoid a brute-force investigation of all the triples
−→a ,−→b ,−→c to build up a valid proportion with the new item

−→
d to be classified. We

first look for a neighbor −→c of
−→
d . Then, we compute for all pairs (−→a ,−→b ), the n truth

values P (ai, bi, ci, di), i ∈ [1, n], P being one of two multiple-valued definitions of an
analogical proportion w.r.t. each attribute, getting a n-dimensional real vector of truth
values. Such pairs, associated with −→c constitute the candidate voters provided that the
corresponding class equation is solvable. For such triple, we compute a global value for
P by adding componentwise the value of P , thus associating to each triple a unique
real number. This provides a complete ordering of the triples. One option is to choose,
among the candidate voters, the triple with the greatest P value as the ultimate voter.
Another option is to extend the number of candidate voters by allowing each nearest
neighbor to provide a unique voter and to implement a majority vote for the final label.
Our implementation of the two options, using each of the 2 multiple-valued definitions
of an analogical proportion exhibits very good results on 8 UCI benchmarks. Ultimately,
the second option provides better results than the first one.

While classifiers like k-nn focus on the neighborhood of the target item, analogi-
cal classifiers go beyond this neighborhood. Rather than just “copying” what emerges
among close neighbors of−→c , they “take inspiration” of relevant information that is usu-
ally far from this immediate neighborhood. Indeed this information comes from pairs
of examples (−→a ,−→b ) that are not among nearest neighbors. We think that this way to
proceed with analogical proportions is paving the way to what could be called “creative
machine learning”.
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Abstract. This paper presents a novel approach for lazy classification
based on the notion of analogical proportions. Our starting point is a
method from the literature based on a measure of analogical dissimi-
larity. Based on some observations about the effectiveness of different
analogical proportion situations for classification purposes, we optimize
this method, considerably reducing the size of the training set. These
results raise some questions about the reasons of the effectiveness of the
analogical approach, which are briefly discussed at the end of the paper.

1 Introduction

Several lazy classification algorithms based on the notion of an analogical propor-
tion [6] have been proposed in the literature, see for instance [7,4]. An analogical
proportion is a statement of the form “A is to B as C is to D” which (implicitly)
states that the way two objects A and B, otherwise similar, differ is the same
way as the two objects C and D, which are similar in some respects, differ.

In this paper, we consider the method of “classification by analogy” intro-
duced in [7] where the authors describe an algorithm named Fadana. This
algorithm uses a measure of analogical dissimilarity between four objects, which
estimates how far these objects are from being in analogical proportion. We
show that a modification of the algorithm aimed to favor a certain situation of
analogical proportion makes it possible to considerably reduce the size of the
training set while preserving (and sometimes slightly improving) the accuracy of
the approach, even in the case where the dataset involves numerical attributes
(whereas the basic Fadana algorithm is limited to Boolean features).

The remainder of the paper is structured as follows. Section 2 provides a
refresher on the notion of analogical proportion and presents the principle of
Fadana. Section 3 describes our optimized algorithm. Experimental results are
presented and discussed in Section 4. Section 5 deals with the relationship be-
tween the optimized version of Fadana and a classification method based on the
k nearest neighbors technique (kNN). Section 6 recalls the main contributions
and outlines perspectives for future work.
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2 Analogical Proportion

The following presentation is mainly drawn from [3]. An analogical proportion
is a statement of the form “A is to B as C is to D”. This will be denoted
by (A : B :: C : D). In the context considered, A, B, C, and D are assumed
to correspond to descriptions of objects such as sets, multisets, vectors, strings
or trees. In the following, A, B, C, and D are tuples having n attributes, i.e.,
A = 〈a1, . . . , an〉, . . . , D = 〈d1, . . . , dn〉, and we shall say that A, B, C, and
D are in analogical proportion if and only if for each component i an analogical
proportion “ai is to bi as ci is to di” holds.

We now have to specify what kind of relation an analogical proportion may
mean. Intuitively speaking, we have to understand how to interpret “is to” and
“as” in “A is to B as C is to D”. A may be similar (or identical) to B in some
respects, and differ in other respects. The way C differs from D should be the
same as A differs from B, while C and D may be similar in some other respects,
if we want the analogical proportion to hold. This view is enough for justifying
three postulates that date back to Aristotle’s time, i.e., i) (A : B :: A : B), ii)
(A : B :: C : D)⇔ (C : D :: A : B), and iii) (A : B :: C : D)⇔ (A : C :: B : D),
where the first and second property express reflexivity and symmetry for the
comparison “as” respectively, while the latter allows for central permutation.

A logical proportion [5] is a particular type of Boolean expression T (a, b, c, d)
involving four variables a, b, c, d, whose truth values belong to B = {0, 1}. It is
made of the conjunction of two distinct equivalences, involving a conjunction of
variables a, b on one side, and a conjunction of variables c, d on the other side of
≡, where each variable may be negated. Analogical proportion is a special case
of a logical proportion, and its expression is [3]: (ab ≡ cd) ∧ (ab ≡ cd). The six
valuations yielding true are (0, 0, 0, 0), (1, 1, 1, 1), (0, 0, 1, 1), (1, 1, 0, 0), (0,
1, 0, 1) and (1, 0, 1, 0). Using the terminology from [4], one may group these
situations in three classes: (i) similarity (a : a :: a : a), (ii) pairwise identity
(a : a :: b : b), and (iii) identity of change (a : b :: a : b).

As noted in [6], the idea of proportion is closely related to the idea of extrap-
olation, i.e., to guess/compute a new value on the ground of existing values. In
other words, if it is known that a logical proportion holds between four binary
elements, three being known, then one may try to infer the value of the fourth
one (corresponding to its class in the context considered in the following).

Analogical dissimilarity [7] indicates how far four objects are from being in
analogical proportion. In the Boolean case, ad indicates the minimum num-
ber of bits that have to be switched to get a proper analogy. For instance,
ad(1, 0, 1, 0) = 0, ad(1, 0, 1, 1) = 1, and ad(1, 0, 0, 1) = 2. Thus, denoting byA
the relation of analogical proportion, we have A(a, b, c, d) ⇔ ad(a, b, c, d) = 0.

In [1], we showed how analogical proportions relaxed by considering an ap-
proximate equality relation between the values could be applied to the predict
missing numerical attribute values. Analogical proportion in this case is defined
as a : b :: c : d ⇔ (((a ≈ b) ∧ (c ≈ d)) ∨ ((a ≈ d) ∨ (b ≈ d))), where x ≈ b is
interpreted as |x − y| ≤ λ, λ being a threshold in [0, 1] (the numerical values
have been normalized into [0, 1] beforehands).
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3 Making Analogical Classification more Efficient

Our work is inspired from the algorithm Fadana [7], which handles Boolean
vectors, adding the ad evaluations componentwise to get the analogical dissimi-
larity, leading to an integer in the interval [0, 2n]. This algorithm takes as input
a training set S of classified items, a new item d to be classified, and an integer
k. It proceeds as follows: 1) for every triple (a, b, c) of S3, compute ad(a, b, c, d);
2) sort these n triples by increasing value of their ad when associated with d; 3)
if the k-th triple has the integer value p for ad, then let k′ be the greatest integer
such that the k′-th triple has the value p; 4) solve the k′ analogical equations on
the label of the class. Take the winner of the k′ votes as the class of d.

3.1 Some Remarks about Fadana

The computation of ad for each triplet ∈ S3 completed by a given di is the most
expensive part of the algorithm — it takes around 80% of the overall processing
time with the datasets we used. In [2], it is shown that a training set comprising
40 items is in general sufficient to reach quasi optimal precision. Taking into
account the symmetry and central permutation properties (cf. Section 2), the
number of triples formed is c ∗ (c − 1) ∗ (c − 2)/2 where c is the cardinality of
the training set. For instance, with c = 40, 29.640 triples are generated.

In [1] we applied this principle to predict null values in the numerical case.
Analyzing the results obtained in each step of the process, we noticed two facts:
(i) The number of chosen triples (step 2 and 3) containing attributs whose ad

— when compared to d — is 2 is minimal, and what is more revealing, (ii) the
accuracy of similarity proportions (a : a :: a : a) is considerably higher than that
of the pairwise identity (a : a :: b : b) and identity of change (a : b :: a : b).
The average accuracy rates for the similarity, pairwise identity and identity of
change proportion over the four datasets tested are 88.3 ±2.21 , 77 ±7.74, and
77.8 ±7.34, respectively.

We used this information for i) reducing the size of the training set, ii) giving
priority to the similarity type of analogical proportions when classifying a new
item. The corresponding algorithm is described hereafter.

3.2 An Optimized Algorithm

Our algorithm takes as input a training set S, a set D of items to be completed
as they contain null attribute values (this corresponds to a generalization of the
classification problem), and two integers k and r. The steps are:

1. discard from S3 all the triples (a, b, c) such that (ai �= bi ∧ bi = ci) is true
for at least one feature;

2. let s(t) be the number of features on which t = (a, b, c) agrees, i.e, (ai =
bi = ci); discard from S3 all the triples t such that s(t) � r;

3. for every object d involving at least one missing attribute value, do:
(a) for every triple (a, b, c) of S3, compute ad(a, b, c, d);
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(b) sort these n triples by increasing value of their ad;
(c) if the k-th triple has the integer value p for ad, let E be the set of triples

(a, b, c) such that ad(a, b, c, d) ≤ p
(d) for each attribute Aj such that dj = null, do:

i. let Es
j ⊆ E be the set of triples for which a similarity1 proportion

holds for dj , and E
n
j ⊆ E the set of triples for which one of the other

two types of proportion holds; if |Es
j | > 0, then use Es

j to solve the
analogical equations for dj ; use E

n
j otherwise.

ii. if Ai is a numerical attribute, compute v as the average of the |Es
j |

(resp. |En
j ) votes; if Ai is Boolean, compute v as the winner of the

|Es
j | (resp. |En

j |) votes.
iii. choose v as the value of dj .

Step 1 means that we eliminate all the triples containing attribute values for
which no analogical answer exists: the patterns (0, 1, 1, x) and (1, 0, 0, x) have
no analogical solution no matter what the value of x is. Step 2 discards the
triples where the proportion of attributs validating an equality relation is too
low. Step 3.d.i means that for each missing attribute of each incomplete object,
only the triples satisfying a similarity type of proportion are used in the case
where there exists at least one such triple. The other triples are used otherwise.

4 Experimental Results

The main objective of our experimentation is to assess the extent to which a
lazy analogical classification method can be optimized by giving priority to the
similarity type of analogical proportion. We thus compare our results with those
obtained using a classical Fadana implementation [7]. The comparison is both
in terms of accuracy and processing time, the latter being strongly related to the
size of the training set.

In order to evaluate the approach, four datasets from the UCI machine learn-
ing repository2, namely adult, blood, cancer, and energy have been used. Each
dataset is composed of both categorical and numerical attributes, the latter being
treated with the approximate equality relation — cf. section 2. For each dataset,
a sample E has been extracted by randomly choosing 1000 tuples, and a sample
M of 50 tuples has been modified (40% of the attribute values of its tuples have
been replaced by null). Then, Fadana, kNN, and our algorithm (named oF for
“optimized Fadana” hereafter) have been run so as to predict the missing val-
ues: for each tuple d involving at least one missing value, a random sample D of
E−M (thus made of complete tuples) has been chosen. This sample D (training
set) was used for running the three algorithms. The size of the training set has

1 For Boolean attributes, a similarity proportion is satisfied by a quadruple (x, y, z, t)
if all four elements are equal. For numerical attribute, we use the tolerant view
mentioned at the end of Section 2 and we only impose that the absolute pairwise
difference between the four elements is at most equal to λ = 0.05.

2 http://http://archive.ics.uci.edu/ml/datasets.html

http://http://archive.ics.uci.edu/ml/datasets.html
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Table 1. Results obtained

Adult Blood Cancer Energy

Fadana
accuracy 72.17 88.21 85.09 89.12
nbtriples 29640 29640 29640 29640

oF (r=0)
accuracy 75 88 87 87.7
nbtriples 4432 11136 10578 4387

oF (r=1)
accuracy 74.18 88 86 86.2
nbtriples 4138 5923 7059 1963

oF (r=2)
accuracy 74.18 87.68 85.94 82.69
nbtriples 4093 3464 3177 901

kNN accuracy 72.5 87.8 86.9 84.9

been set to 40, and the value of k to 10 (complementary experimentations that
cannot be presented here due to lack of space showed that these are the param-
eter values yielding the best classification results in general). The numbers in
the table are average values (10 runs have been performed on each dataset). For
each method, the first line gives the accuracy (percentage of correct predictions)
and the second line indicates the number of triples generated by the algorithm
for each value to predict.

As Fadana does not preprocess the training set, its size remains constant.
A remarkable result is that, even though oF generates much less triples than
Fadana, its accuracy is quite similar. The best performances were obtained by
oF (75%), Fadana (88.21%), oF (87%) and Fadana (89.12%) for the datasets
adult, blood, cancer, and energy respectively.

5 What Makes Analogy Work ?

The experimental results described above seem to indicate that the strength
of the analogical approach reside mainly in the similarity case. However, some
questions remain open: i) what is the role of the other two cases ? ii) what are
the main differences with the kNN approach ?

Suppose we want to classify an object x. In order to use the “pairwise identity”
or the “identity of change” cases, one needs an object b such that b  x, and
two elements a and a′ such that a  a′. One can then build the quadruples
(a : b :: a′ : x) and (a : a′ :: b : x). How valuable is the information extracted
from it ? The preliminary experimental results reported above tend to show
that such quadruples are not as useful as the similarity ones for a classification
purpose, but it is not clear why. Notice that the elements a and a′ do not need
to be similar to x, so it is reasonable to suppose that they would not be used by
a kNN approach (which only exploits the elements that are the closest to x).

In the similarity case, one generates quadruples of the form (a : b :: c : x)
such that all four elements are pairwise similar on every attribute. On the other
hand, the kNN approach looks for those elements d that are the closest to x as
possible, which does not imply that they are close enough in the sense of the
relation  used by the analogical approach. Notice also that kNN uses a global
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(Euclidean) distance whereas analogy — as defined in our approach — imposes
a local proximity on every attribute (for ad to be equal to 0).

Let us emphasize that these questions concern the view of analogical pro-
portion based on approximate equality (which handles numerical values in a
way similar to Boolean ones, only relaxing the comparison operator). On the
other hand, if one uses arithmetic analogical proportions as defined in [4], i.e.,
(a : b :: c : d) ⇔ (a − b) = (c − d), one just needs three elements a, b, and
c such that |a − b|  |c − x| in order to form a valid analogical quadruple.
However, we have shown in [1] that this view does not always perform better
than the approximate-equality-based one. The respective performances of the
two approaches depend on the datasets, and further experiments and analyzes
are necessary to understand what properties of the data makes one approach
more effective than the other.

6 Conclusion

In this paper, we have shown how a classical “classification by analogy” algo-
rithm from the literature could be improved by focusing first on a certain type
of analogical proportion. A preliminary experimentation reported here, carried
out on four datasets from the UCI machine learning repository, shows that the
improvement in terms of processing time is between 62% and 97%, without any
loss in terms of accuracy (we even observed an improvement in three cases).

Perspectives concern, among other things, an indepth study, completing the
discussion that could only be started here, of the relationship between analogical
proportions and kNN in a classification context.
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Abstract. In this paper we introduce polyhedral labellings associated to an argu-
mentation framework. The name suggests the use of ideas from Polyhedral Com-
binatorics, an important topic in Combinatorial Optimization, mainly concerned
with encoding combinatorial problems by means of systems of linear equations
and inequalities, making these problems accessible to linear programming tech-
niques. A polyhedral labelling for an argumentation framework AF = (A,D) is
a polytope PAF , that is, a bounded set of solutions x ∈ RA (xa is the label of the
argument a ∈ A), to a system of linear constraints, such that the set of integral
vectors in PAF are exactly the incidence vectors of some specific type of Dung’s
extensions. The linear constraints vary from the obvious xa = 1 for each non at-
tacked argument a, or xa + xb ≤ 1 for each attack (a,b) ∈ D (in order to assure
Dung’s conflict-free condition), to more deep inequalities of the form ”the sum
of the label of an argument and the labels of all its attackers is at least 1 ” or if
(b,a) is an attack then ”the label of a is not greater than the sum of the labels of
all attackers of b”.

1 Introduction

The graph-theoretic model of argumentation frameworks introduced by Dung [5] fo-
cuses on the manner in which a specified set A of abstract arguments interact via an
attack binary relation D on A. If (a,b) ∈ D (argument a attacks argument b) we have a
conflict. A conflict-free set of arguments is a set T ⊆ A such that there are no a,b ∈ T
with (a,b)∈D. An admissible set of arguments is a conflict-free set T ⊆ A such that the
arguments in T defend “collectively” against any attack: for each (a,b)∈D with b∈ T ,
there is c ∈ T such that (c,a) ∈ D. Let us denote A ⊆ 2A the family of all admissible
sets in AF .

In this model, the main aim of argumentation is in deciding the status of some ar-
gument by presenting a justification for this. More precisely, the acceptability of an
argument a is defined based on its membership in an admissible set of arguments satis-
fying certain properties. A family S ⊆A of sets of arguments is defined (the predicate
S ∈ S is called semantics in this context) and a is considered acceptable if there is
S ∈S such that a ∈ S – credulous acceptance – or if a ∈ S for all S ∈S – skeptical
acceptance. This kind of rationality, based on the possibility of extending the analyzed
argument to a set of “collectively acceptable” arguments, is called extension based se-
mantics. A justification for an argument a is an admissible set containing a and satis-
fying additional properties. In this case the argument a is considered acceptable. The
grounded, preferred and stable semantics defined by Dung (see Section 2) formalizes
different intuitions about which arguments to accept on the basis of a given framework.

U. Straccia and A. Calì (Eds.): SUM 2014, LNAI 8720, pp. 86–99, 2014.
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The popularity of the Dung’s graph based model of argumentation is explained by
its simplicity and generality, due to the abstract nature of the arguments, and the rela-
tionship with non-monotonic reasoning formalisms such as Default Logic and Logic
Programming (see, for example, [15]).

An important intuitive way to express Dung’s extension-based semantics is using
argument labellings, as proposed by Caminada [4] (originally introduced in [14]). The
idea is to consider symbolic vectors1 λ ∈ {I,O,U}A, such that if a ∈ A is an argument,
then λa is the label of a, with the intuitive meaning: λa = I (i.e. In) if and only if a is
accepted, λa = O (i.e. Out) if and only if a is rejected, and λa = U (i.e. Undecided)
if and only if one abstains from an opinion on whether the argument a is accepted
or rejected. Constraining the labels of arguments with respect to the attack relation
D of the argumentation framework, Caminada characterized the subsets of {I,O,U}A

corresponding to Dung’s semantics (see Section 2).
Another interesting approach to the semantics of argumentation frameworks was in-

troduced by Gabbay in [6, 7, 8] under the name equational approach, and independently
by Gratie and Florea in [9] under the name fuzzy labellings. The idea is to consider
solutions x ∈ [0,1]A of some non-linear systems of equations associated to the argu-
mentation framework and to relate them to Caminada labellings. Using this approach,
Gabbay proposes an interesting method to avoid the semantics problems caused by the
odd circuits in argumentation frameworks.

In this paper we introduce polyhedral labellings associated to an argumentation
framework. The name suggests the use of ideas from Polyhedral Combinatorics, an
important topic in Combinatorial Optimization, mainly concerned with encoding com-
binatorial problems by means of systems of linear equations and inequalities. The inter-
est in such representation is that it makes the corresponding combinatorial optimization
problems accessible to linear programming techniques (see, for example [16]). More
precisely, if χS ∈ {0,1}A is the incidence vector of a set S ⊆ A of arguments (that is,
χS

a = 1 if a∈ S and χS
a = 0 if a �∈ S), and S is a collection of sets of arguments, then the

convex hull of their incidence vectors, conv{χS|S ∈S }, is a polytope in RA, therefore
there exist a matrix C ∈Rm×|A| and a vector b ∈ Rm such that

conv{χS|S ∈S }= {x ∈ RA|Cx≤ b}.

If w : A → R is a weight function on A, and we are interested in finding a member
S∗ of S of maximum weight (where the weight of S is w(S) = ∑a∈S w(a)), since S
is finite and the weight function can be viewed as a linear function on RA, we could
maximize over the convex hull conv{χS|S ∈S }, that is, by the above representation,
finding max{wT x|x ∈ RA,Cx≤ b}. This is computationally worthwhile when S is too
large to evaluate the weight of each member S in S , but the description Cx ≤ b of the
above polytope has polynomial size. Then, we can solve in polynomial time the equiv-
alent linear programming problem obtained (for example, using the ellipsoid method
[10]). An illustration of this approach is discussed in Section 3, where we describe an

1 Throughout this paper, if A is a finite set, we make no distinction between the set BA of all
functions from A to B and the set B|A| of all vectors with components from B and indexed by the
elements of A. Supposing a fixed ordering of A, there is an obvious one to one correspondence
between them, and we use the notation BA for both sets.
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interesting polytope encoding the non-attacked sets of arguments in an argumentation
framework.

In several cases, the desired system of inequalities, Cx ≤ b, turns out not to be a
complete description, but just gives an approximation of the polytope conv{χS|S∈S }.
This can still be useful, since in that case the linear programming problem gives a
(hopefully good) upper bound for the combinatorial maximum. These bounds are used
in designing branch-and-bound algorithms for the combinatorial problem, which are
implemented in state-of-the-art integer programming solvers (e.g. CPLEX [13]). In fact,
exploiting integer programming encodings of the problems is an usual modeling method
in areas related to argumentation, such as non monotonic reasoning ([2]), satisfiability
([11]), or answer set programming ([12]).

Summarizing, a polyhedral labelling for an argumentation frameork AF = (A,D) is
a polytope PAF , that is, a bounded set of solutions x∈RA (xa is the label of the argument
a ∈ A), of a system of linear inequalities (and equations), such that the set of integral
vectors in PAF are exactly the incidence vectors of various Dung’s admissibility based
extensions. The linear constraints varies from the obvious xa = 1 for each non attacked
argument a, or xa + xb ≤ 1 for each attack (a,b) ∈ D (in order to assures the Dung’s
conflict-free condition), to more sophisticated inequalities of the form ”the label of an
argument plus the labels of all its attackers is at least 1 ” or if (b,a) is an attack then
”the label of a is not greater than the sum of the labels of all attackers of b”.

The remainder of this paper is organized as follows. In Section 2, we discuss basic
notions of Dung’s theory of argumentation. In Section 3, we illustrate the polyhedral
approach by a simple but interesting problem in an argumentation framework. In Sec-
tion 4, we discuss elements of the Gabbay’s equational approach, which is the starting
point of our labellings polytopes, introduced and studied in Section 5. Finally, Section
6 concludes the paper.

2 Dung’s Theory of Argumentation

In this section we present the basic concepts used for defining classical semantics in
abstract argumentation frameworks introduced by Dung in 1995, [5]. All notions and
results, if not otherwise cited, are from this paper (even some of them are not literally
the same).

Definition 1. An Argumentation Framework is a digraph AF = (A,D), where A is a
finite and nonempty set; the vertices in A are called arguments, and if (a,b) ∈ D is a
directed edge, then argument a defeats (attacks) argument b.

Let AF = (A,D) be an argumentation framework. For each a ∈ A we denote a+ =
{b ∈ A| (a,b) ∈ D} the set of all arguments attacked by a, and a− = {b ∈ A| (b,a) ∈
D} the set of all arguments attacking a. These notations can be extended to sets of
arguments. The set of all arguments attacked by (the arguments in) S ⊆ A is S+ =⋃

a∈S a+, and the set of all arguments attacking (the arguments in) S is S− =
⋃

a∈S a−.
We also have /0+ = /0− = /0.

The set S of arguments defends an argument a∈ A if a− ⊆ S+ (i.e. any a’s attacker is
attacked by an argument in S). The set of all arguments defended by a set S of arguments
is denoted by F(S).
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For M ⊆ 2A, max(M) denotes the set of maximal (w.r.t. inclusion) members of M
and min(M) denotes the set of its minimal (w.r.t. inclusion) members.

The main admissibility extension-based acceptability semantics are defined below.

Definition 2. Let AF = (A,D) be an argumentation framework.

– A conflict-free set in AF is a set S ⊆ A with property S∩ S+ = /0 (i.e. there are no
attacking arguments in S). We will denote cf(AF) = {S⊆ A|S is conflict-free set }.

– An admissible set in AF is a set S ∈ cf(AF) with property S− ⊆ S+ (i.e. defends its
elements). We will denote adm(AF) = {S⊆ A|S is admissible set }.

– A complete extension in AF is a set S ∈ cf(AF) with property S = F(S). We will
denote comp(AF) = {S⊆ A|S is complete extension }.

– A preferred extension in AF is a set S∈max(comp(AF)). We will denote pref(AF) :=
max(comp(AF)).

– A grounded extension in AF is a set S ∈min(comp(AF)). We will denote gr(AF) :=
min(comp(AF)).

– A stable extension in AF is a set S ∈ cf(AF) with the property S+ = A− S. We will
denote stab(AF) = {S⊆ A|S is stable extension }.

An equivalent way to express Dung’s extension-based semantics is using argument
labellings as proposed by Caminada [4] (originally introduced in [14]). The idea un-
derlying the labellings-based approach is to assign to each argument a label from the
set {I,O,U}. The label I (i.e. In) means the argument is accepted, the label O (i.e. Out)
means the argument is rejected, and the label U (i.e. Undecided) means one abstains
from an opinion on whether the argument is accepted or rejected.

Definition 3. [4] Let AF = (A,D) be an argumentation framework. A complete la-
belling of AF is a function Lab : A→ {I,O,U} such that ∀a ∈ A:
• Lab(a) = I if and only if a− ⊆ Lab−1(O),
• Lab(a) = O if and only if a−∩Lab−1(I) �= /0,
• Lab(a) =U if and only if a−∩Lab−1(I) = /0 and a−∩Lab−1(U) �= /0 .
A grounded labelling of AF is a complete labelling Lab such that there is no complete
labelling Lab1 with Lab−1

1 (I) ⊂ Lab−1(I). A preferred labelling of AF is a complete
labelling Lab such that there is no complete labelling Lab1 with Lab−1(I)⊂ Lab−1

1 (I).
A stable labelling of AF is a complete labelling Lab such that Lab−1(U) = /0.

In [4] it was proved that, for any argumentation framework AF = (A,D) and any
semantics σ ∈ {comp,gr,pref,stab}, a set S ⊆ A satisfies S ∈ σ(AF) if and only if
there is a σ -labelling Lab of AF such that S = Lab−1(I).

3 The Non-attacked Sets Polytope

Definition 4. Let AF = (A,D) be an argumentation framework. A non-attacked set of
arguments is a set N ⊆ A such that N− ⊆ N. Let NAF := {N|N ⊆ A,N− ⊆ N}.

Trivial non-attacked sets are /0,A ∈ NAF for any argumentation framework AF =
(A,D). The interest in such sets of arguments is given by the following proposition (see
also the "directionality principle" in [1]).
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Proposition 5. Let a∈ A be an argument in the argumentation framework AF = (A,D)
and X ∈NAF be a non-attacked set containing a. There is an admissible set S in AF
such that a ∈ S if and only if there is an admissible set S′ in AF ′ such that a ∈ S′, where
AF ′ is the argumentation framework induced by X in AF.

Proof. Let S an admissible set in AF such that a∈ S. Then S is conflict-free and S− ⊆ S+.
Then, SX = S∩X is a conflict-free set in AF ′, and a ∈ SX . If SX is not an admissible
set in AF ′, then there is b ∈ S−X ∩X− S+X . Since S is an admissible set in AF , b ∈ S+. It
follows that there is c ∈ S−X such that (c,b) ∈D, that is c ∈ X−−X , contradicting the
hypothesis that X is a non-attacking set in AF .

Conversely, if S′ ⊆ X is an admissible set in AF ′ such that a ∈ S′, then it is a conflict-
free set in AF . Since in AF we have S′− ⊆ X− ⊆ X , it follows that in AF we have
S′− ⊆ S′+, that is, S′ is an admissible set in AF . �

We show now that NAF has an interesting polyhedral characterization. For each X ∈
NAF we consider its incidence vector χX ∈ {0,1}A, with χX

a = 1 if and only if a ∈ X .
Let NAF = {x ∈RA|x satisfies (∗)} be the polyhedron defined by

(∗)
{

0≤ xa ≤ 1 ∀a ∈ A,

xa− xb ≥ 0 ∀(a,b) ∈ D.

Hence, if x ∈ NAF then each argument a ∈ A is labeled with the real number xa ∈ [0,1]
such that xa ≥ xb whenever the argument a attacks the argument b. This type of con-
straints are used to model preferences (see, for example, "value-based argumentation
frameworks", [3]).

Theorem 6. Let AF = (A,D) be an argumentation framework. Then,

NAF = conv{χX |X ∈NAF}.

Proof. For X ∈NAF , let y = χX . Since ya ∈ {0,1}, the first group of inequalities in (∗)
is satisfied. Let (a,b) ∈D. If |{a,b}∩X | �= 1, then ya = yb and the second constraint in
(∗) for (a,b), is satisfied with equality. If a ∈ X and b �∈ X then 1 = ya > yb = 0. Since
X ∈NAF , we can not have a �∈ X and b ∈ X . Hence χX ∈ NAF for each X ∈NAF . It
follows that

conv{χX |X ∈NAF} ⊆ NAF .

To prove the converse inclusion, we observe that the integer vectors in NAF are ex-
actly the incidence vectors of non-attacked sets. Hence it is sufficient to prove that the
vertices of NAF are integral. Let x be a vertex of NAF .
Suppose that Frac(x) = {a ∈ A|0 < xa < 1} �= /0, and let α = min{xa|a ∈ Frac(x)}.
Take ε > 0 such that α− ε > 0 and α + ε < xa for all a ∈ A such that xa > α . Then, let
x′,x′′ ∈RA be such that:

x′a =

{
α− ε if xa = α,
xa if xa �= α

and x′′a =

{
α + ε if xa = α,
xa if xa �= α.

By the choosing of ε , x′ and x′′ satisfy the first group of inequalities in (∗). Since the
order of the components in x′ and x′′ is the same as in x, and since x ∈ NAF , it follows
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that the second group of inequalities are satisfied by x′ and x′′. Hence, x′,x′′ ∈ NAF ,
x′ �= x′′, and x = 1

2 x′+ 1
2 x′′, contradicting the hypothesis that x is a vertex in NAF . �

From Proposition 5, it follows that in order to decide the σ -acceptability of a given
argument a in an argumentation framework , for σ ∈ {comp,gr,pref}, is worthwhile to
find a minimum cardinality non-attacked set containing a. This can be obtained with a
simple polynomial algorithm (similar to one used for obtaining the grounded extension),
but also using a linear programming solver, as a consequence of the Theorem 6.

Indeed, if we solve the linear program min{cT x|x ∈ NAF , xa0 = 1}, for c ∈ RA we
obtain min{∑a∈X ca|X ∈NAF , a0 ∈ X}. In particular, for c = 1 (the vector with all com-
ponents 1), the minimum value obtained is the minimum cardinality of a non-attacked
set of arguments containing a0. If we solve (in polynomial time) the above linear pro-
gram and x0 is the optimal solution, then the set X = {a|a ∈ A,x0

a > 0} is the minimum
cardinality non-attacking set containing a0.

4 Gabbay’s Equational Approach

An interesting approach to the semantics of argumentation frameworks was introduced
in [6, 7, 8] called the equational approach. Let AF = (A,D) be an argumentation
framework, and let A0 be the set of arguments not attacked in AF: A0 = {a∈ A|a−= /0}.
We consider for each argument a ∈ A a real variable xa ∈ [0,1] and we are searching for
real solutions of the following system of non-linear equations:

Eqmax(AF)

{
xa = 1, if a ∈ A0

xa = 1−max
b∈a−

xb, otherwise.

The following theorem holds.

Theorem 7. ([7]) If λ : A→ {I,O,U} is a Caminada complete labellings of AF, then
taking xa = 0 if λ (a) = O, xa =

1
2 if λ (a) =U, and xa = 1 if λ (a) = I, we obtain a solu-

tion to the system of equations Eqmax(AF). If x is a solution to the system Eqmax(AF),
then taking λ (a) =O if xa = 0, λ (a) =U if 0< xa < 1, and λ (a) = I if xa = 1 we obtain
a Caminada complete labelling λ : A→ {I,O,U}.

Example. For argumentation framework AF in Figure 1 below,

a

1
2

b

1
2

c

1
2

d

1
2

e

1
2

f

1
3

i

2
3

h

1
3g

2
3

j

1
3 + ε

k

2
3 − ε

Fig. 1. Eqmax(AF) labellings. ε is a small positive number
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the Eqmax system is

Eqmax(AF)

⎧⎪⎨
⎪⎩

xa = 1−xc, xb = 1−xa, xc = 1−xb, xd = 1−xb,

xe = 1−max(xb,x f ), x f = 1−max(xd ,xe,xi),

xg = 1−x f , xh = 1−xg, xi = 1−xh,

and a set of solutions to Eqmax(AF) are suggested.
We can observe that if we translate them to Caminada labellings as in Theorem 7,

the result is not so good since, in this case gr(AF) = { /0}, and there are odd loops2. In
order to avoid this, Gabbay [7] proposes the so called perturbation method to solve a
system of the form Eq(AF). Essentially, by this method, some variables xa are forced to
be 0 by extending the system Eq(AF) with these new equations. The idea for choosing
this forcing is to destroy the loops of AF . This gives rise to interesting semantics (which
are, in general, not admissibility based), called LB-semantics in [8].

If we make the convention that for X = /0 then maxx∈X = 0 and minx∈X = 1, then the
following proposition holds.

Proposition 8. Let AF = (A,D) an argumentation framework. If x is a solution in [0,1]
of the system Eqmax(AF) then xa = minb∈a− maxc∈b− xc, for each a ∈ A.

Proof. Let x be a solution in [0,1] of the system Eqmax(AF). With our convention,
it follows that the second group of equations in Eqmax(AF) is satisfied for each a ∈ A,
that is xa = 1−max

b∈a−
xb. Then, we have successively,

xa = 1−max
b∈a−

xb = 1−max
b∈a−

(1−max
c∈b−

xc) =−max
b∈a−

(−max
c∈b−

xc) = min
b∈a−

max
c∈b−

xc. �

We note that the converse of the above proposition is not true. More precisely, if
for a given argumentation framework AF = (A,D), the labelling x ∈ [0,1]A satisfies
xa = minb∈a− maxc∈b− xc for each a ∈ A, then x is not necessary a solution in [0,1] of
the system Eqmax(AF). For example, if AF = (A,D) is a circuit, taking xa = 1 for each
a ∈ A, then x satisfies xa = minb∈a− maxc∈b− xc, but it is not a solution of Eqmax(AF).

If, instead of searching the solutions of the system Eqmax(AF), we are searching for
real solutions in [0,1] of the following system of non-linear inequalities,

Ineqmax(AF)

{
xa = 1, if a ∈ A0

xa ≤ 1−max
b∈a−

xb, if a ∈ A−A0,

then, is not difficult to prove this set of solutions is convex. Moreover, we can easily
translate it as the set of solutions to

PAF

⎧⎪⎨
⎪⎩

0 ≤ xa ≤ 1,∀ a ∈ A

xa = 1, if a ∈ A0

xa + xb ≤ 1,∀(b,a) ∈ D,

2 In Gabbay’s terminology, a loop is a circuit (see the discussion after Theorem 17).
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that is, this set is a polytope. It is not difficult to show that the integral vectors in this
polytope are exactly the incidence vectors of the conflict-free sets in AF containing
the set A0 of non-attacked arguments, therefore loosing the nice semantics property in
Theorem 7.

In the next section, using linear constraints suggested by Proposition 8, we restrict
the above polytope in order to obtain argumentation significance of the corresponding
set of integral vectors.

5 Labellings Polytopes

Throughout this section we consider only argumentation frameworks AF =(A,D) with-
out isolated arguments, that is without arguments a ∈ A such that a−∪a+ = /0. Clearly,
adding or deleting an isolated argument does not influence the acceptability status of
the other arguments.

Definition 9. Let AF = (A,D) be an argumentation framework. The admissible sets
polytope of AF is the set Padm(AF) of all vectors in RA satisfying:

(1) xa ≥ 0 ∀a ∈ A,

(2) xa + xb ≤ 1 ∀(b,a) ∈D,

(3) xa− ∑
c∈b−

xc ≤ 0 ∀(b,a) ∈D.

We make the convention that if b− = /0, then the sum ∑c∈b− xc in constraints (3) is 0.

Example 1. In Figure 2 we consider a simple argumentation framework AF = (A,D)
with A = {a,b}. We have two constraints of type (2), corresponding to the two attacks
in D = {(a,a),(a,b)}. Note that in any argumentation framework if a is a self-attacking
argument, then xa ∈ [0,1/2] due to the type (2) constraint xa + xa ≤ 1. The are two type
(3) constraints, but the type (3) constraint for a gives xa ≤ xa which is trivially satisfied.
It follows that all constraints giving Padm(AF) are those given in the middle of Figure
2 and a graphic illustration of the admissible sets polytope is at right. Its vertices are
(0,0),( 1

2 ,0), and ( 1
2 ,

1
2). The only integer point in Padm(AF) is (0,0).

a b

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xa,xb ≥ 0

xa +xa ≤ 1

xa +xb ≤ 1

xb ≤ xa

AF Constraints Padm(AF)

xb

xa

1
2

1
2

Fig. 2. An argumentation framework and its admissible sets polytope
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Example 2. Let AF = (A,D) illustrated in Figure 3 with A = {a,b,c} and D = {(a,b),
(b,a),(b,c)}. The two mutual attacks (a,b) and (b,a) generate a single type (2) con-
straint xa + xb ≤ 1. The only non-trivial type (3) constraint is xc ≤ xa. It follows that all
constraints giving Padm(AF) are those given in the middle of Figure 3 and its graphic
representation appears at the right. Its vertices are the integral vectors (0,0,0)T ,(0,1,0)T ,
(1,0,0)T , and (1,0,1)T (where, xT denotes the transpose of the row vector x).

a b c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xa,xb,xc ≥ 0

xa +xb ≤ 1

xb +xc ≤ 1

xc ≤ xa

AF Constraints Padm(AF)

xb

xa

xc

1

1

1

Fig. 3. An admissible sets polytope with integer vertices

In both above examples the integral vectors in Padm(AF) are exactly the incidence
vectors of the admissible sets of the argumentation framework. We will prove next that
this holds in general and this justifies the name of the considered polytope.

Lemma 10. Let AF = (A,D) be an argumentation framework without isolated argu-
ments. If x ∈ ZA satisfies the constraints (1) and (2) then x is a 0 -1 vector.

Proof. For each a∈ A there is b∈ A such that (a,b)∈D or (b,a)∈D. By constraint (2),
xa + xb ≤ 1 and, by constraint (1), xb ≥ 0. It follows that xa ≤ 1, and, since xa ∈ Z, we
have xa ∈ {0,1}. �

Lemma 11. Let AF = (A,D) be an argumentation framework without isolated argu-
ments. An integral vector x ∈ ZA satisfies the constraints (1) and (2) if and only if x is
the incidence vector of a conflict-free set in AF.

Proof. Let x∈ ZA be an integral vector satisfying the constraints (1) and (2). By Lemma
10, x is a 0 -1 vector, and there is X ⊆ A such that χX = x. There is no (a,b) ∈ D with
a,b ∈ X , since then xa = xb = 1 and the constraint (2) for (a,b) is not satisfied. Hence
X is a conflict-free set in AF .

Conversely, if X is a conflict-free set in AF and x = χX , then x is a 0 -1 vector, hence
constraints (1) are trivially satisfied. For any attack (a,b) ∈ D at most one of a and b
are in X , therefore xa + xb ∈ {0,1} and the constraints (2) are satisfied. �

Lemma 12. Let AF = (A,D) be an argumentation framework without isolated argu-
ments. A 0 -1 vector x satisfies the constraints (3) if and only if x is the incidence vector
of a set X ⊆ A with the property that X− ⊆ X+.

Proof. Let x be a 0 -1 vector satisfying the constraints (3) and let X ⊆A such that χX = x.
Let b ∈ X−, that is there is a ∈ X such that (b,a) ∈ D. By constraint (3), we have
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1 = xa ≤ ∑c∈b− xc. It follows that b− ∩X �= /0 and there is a ′ ∈ A such that a′ ∈ b− and
xa ′ = 1. Hence for each b ∈ X− there is a ′ ∈ X such that (a ′,b) ∈ D, that is X− ⊆ X+.

Conversely, let X ⊆ A with the property that X− ⊆ X+ and let x = χX . Let (b,a)∈D.
If a �∈X , then xa = 0, and the constraint (3) trivially holds since x is a 0 -1 vector. If a∈X
then b ∈ X−, and by the hypothesis there is a ′ ∈ X such that (a ′,b) ∈ D. It follows that
∑c∈b− xc ≥ xa ′ = 1 = xa, that is the corresponding constraint (3) is satisfied. �

By Lemmas 10, 11 and 12, the following theorem holds.

Theorem 13. Let AF = (A,D) an argumentation framework without isolated argu-
ments. The integral vectors of Padm(AF) are exactly the incidence vectors of the ad-
missible sets of AF.

We introduce a set of linear constraints in order to enforce the "directionality principle":
the non-attacked arguments must receive label 1, all their attackers must receive label
0, all arguments attacked only by 0 labeled arguments must receive label 1, and so on.

Definition 14. Let AF = (A,D) be an argumentation framework. The stable extensions
polytope of AF is the set Pstab(AF) of all vectors in RA satisfying:

(1) xa ≥ 0 ∀a ∈ A,

(2) xa + xb ≤ 1 ∀(b,a) ∈D,

(4) xa + ∑
b∈a−

xb ≥ 1 ∀a ∈ A.

Example 3. In Figure 4 the P stab(AF) for the argumentation framework in Example
2 is illustrated. Note that in this particular argumentation framework each argument
is attacked by exactly one argument, and constraints (2) and (4) gives the equality
constraints in the middle of the Figure. The polytope P stab(AF) is in this case the
line segment {λ x1 +(1− λ )x2|0 ≤ λ ≤ 1} = {(1− λ ,λ ,1− λ )T |0 ≤ λ ≤ 1}, where
x1 = (0,1,0)T and x2 = (1,0,1)T are its vertices.

a b c

⎧⎪⎨
⎪⎩

xa,xb,xc ≥ 0

xa +xb = 1

xb +xc = 1

AF Constraints Pstab(AF)

xb

xa

xc

1

1

1

Fig. 4. A stable extensions polytope with integer vertices

In order to relate the vectors in Pstab(AF) to complete extensions, we can use Theo-
rem 7 and the following observation.
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Proposition 15. Let AF = (A,D) an argumentation framework without isolated argu-
ments. The set of solutions in [0,1] to the system of equations Eqmax(AF) is contained
in Pstab(AF).

Proof. Let x ∈ [0,1]A be a solution to the system of equations Eqmax(AF). Constraints
(1) are clearly satisfied. Since xa = 1−maxc∈a− xc for all a ∈ A, it follows that if
(b,a) ∈ D we have xa + xb ≤ xa +maxc∈a− xc = 1−maxc∈a− xc +maxc∈a− xc = 1, that
is constraints (2) are satisfied by x. Also constraints (4) are satisfied, since for any a∈ A
we have xa +∑b∈a− xb ≥ xa +maxc∈a− xc = 1. �

The integral vectors of Pstab(AF) are interesting as the following Lemma shows.

Lemma 16. Let AF = (A,D) be an argumentation framework without isolated argu-
ments. A 0 -1 vector x satisfies the constraints (4) if and only if x is the incidence vector
of a set X ⊆ A with the property that A−X ⊆ X+.

Proof. Let x be a 0 -1 vector satisfying the constraints (4) and let X ⊆A such that χX = x.
Let a ∈ A−X , that is xa = 0. By constraint (4), we have xa +∑b∈a− xb ≥ 1, and since
xa = 0, we have ∑b∈a− xb ≥ 1. It follows that there is b ∈ a− such that xb = 1, that is
there is b ∈ X such that (b,a) ∈ D. Therefore A−X ⊆ X+.

Conversely, let X ⊆ A with the property that A−X ⊆ X+ and let x = χX . We prove
that the constraint (4) holds for every a ∈ A. If a ∈ X , then xa = 1 and, since x is a 0 -1
vector, the constraint (4) holds trivially for a. If a �∈X , then xa = 0 and since A−X ⊆X+,
there is b0 ∈ a− ∩X . Since xb0 = 1 it follows that xa +∑b∈a− xb ≥ 0+ xb0 = 1, that is
the constraint (4) holds for a. �

By Lemmas 10, 11 and 16, the following theorem holds.

Theorem 17. Let AF = (A,D) an argumentation framework without isolated argu-
ments. The integral vectors of Pstab(AF) are exactly the incidence vectors of the stable
extensions of AF.

The structure of Pstab(AF) is strongly dependent on the combinatorial structure of
AF , more precisely on its family of circuits. We represent here a circuit in AF = (A,D)
as a sequence C = (a1,a2, . . . ,ak) of distinct arguments ai ∈ A such that (ai,ai+1) ∈ D,
for each i∈ {1, . . . ,k−1}, and (ak,a1) ∈D. C is an even (odd) circuit if k is even (odd).

If AF has no circuits, then it is well known that the grounded extension is also a
stable extension, so its incidence vector belongs to Pstab(AF), by Theorem 17.
For x ∈ Pstab(AF) we denote by

Frac(x) = {a ∈ A|0< xa < 1}

its set of fractional components. Observe that if a ∈ Frac(x) then, by constraint (2),
we have xb < 1 for all b ∈ a−. Since, by constraint (4), we have xa +∑b∈a− xb ≥ 1, it
follows that there is b ∈ Frac(x) such that (b,a) ∈ D. Similarly, there is c ∈ Frac(x)
such that (c,b) ∈ D. Since Frac(x) is a finite set, continuing the above argument we
find a circuit C = (a1,a2, . . . ,ak) with all ai ∈ Frac(x). Hence, if AF has no circuits,
then all vectors in Pstab(AF) are integral. Since Pstab(AF) is non-empty (containing the
incidence vector of the grounded extension), it follows by convexity that it has exactly
one point. Hence, the following Corollary of the Theorem 17 holds.
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Corollary 18. Let AF = (A,D) an argumentation framework without circuits. Then
Pstab(AF) has exactly one point, the incidence vector of the grounding extension of AF.

In order to characterize the incidence vectors of complete extensions of an argu-
mentation framework AF , let us note that, in general, these vectors are not members
of P stab(AF) as Lemma 16 shows. On the other hand, in the discussion preceding
Corollary 18, we have argued that if x ∈ P stab(AF) is such that Frac(x) �= /0 then
each argument in Frac(x) has an attacker in the same set. Furthermore, if xa = 1 then
a+ ∩Frac(x) = /0 and a− ∩ Frac(x) = /0 (by constraints (2)). These facts justify the
following definition.

Definition 19. Let AF = (A,D) be an argumentation framework and Padm(AF) be its
stable extensions polytope. A vector x∈ Pstab(AF) is called a complete vector if for each
a ∈ A such that xa = 0 there is b ∈ A such that (b,a) ∈ D and xb = 1.

Note that if x ∈ P stab(AF) is such that Frac(x) = A, then x is a complete vector. The
following characterization of comp(AF) holds.

Theorem 20. Let AF = (A,D) an argumentation framework without isolated argu-
ments. The integral vectors obtained from complete vectors of Pstab(AF) by replacing
the fractional components with 0 are exactly the incidence vectors of the complete ex-
tensions of AF.

Proof. Let S be a complete extension of AF and y = χS. Let x ∈ RA defined by

xa =

⎧⎪⎨
⎪⎩

ya if ya = 1,

0 if ya = 0 and ∃b ∈ S s.t. (b,a) ∈ D,
1
2 otherwise.

Clearly, y is obtained from x by replacing its fractional components with 0. We show
that x is a complete vector of P stab(AF). x trivially satisfies the constraints (1), and
constraints (2) hold since S is a conflict-free set. Let a ∈ A. If xa = 1 then constraint (4)
holds trivially. If xa = 0 then a �∈ S and there is b ∈ S such that (b,a) ∈ D. It follows
that yb = xb = 1 and ∑c∈a− xc ≥ xb = 1, hence constraint (4) holds. If xa =

1
2 it follows

that a �∈ S and there is no b ∈ S such that (b,a)∈D. Since S is a complete extension, we
have F(S) = S. Since a �∈ S, there is b ∈ A− S∪S+ such that (b,a) ∈ D. It follows that
xb =

1
2 . Hence xa +∑c∈a− xc ≥ xa + xb =

1
2 +

1
2 = 1, that is, the constraint (4) holds.

Conversely, let x ∈ P stab(AF) be a complete vector, and let y ∈ {0,1}A be the vector
obtained from x by replacing its fractional components with 0. Let S ⊆ A such that
χS = y. We show that S is a complete extension in AF . Clearly, S is a conflict-free
set because x satisfies the constraints (2). Let a ∈ S−, that is, there is b ∈ S such that
(a,b) ∈ D. Then a �∈ S, hence ya = 0, and moreover xa = 0, because xa + xb ≤ 1 and
xb = 1. Since x is a complete vector, it follows that there is c ∈ S with xc = 1 such that
(c,a) ∈ D. Hence, we proved that S− ⊆ S+, that is S is an admissible set. Suppose that
there is a �∈ S∪S+ such that a−−(S∪S+) = /0. Since a �∈ S+, we must have a∈ Frac(x)
and from the constraint (4) for a we have xa+∑b∈a− xb = xa+0= xa≥ 1, contradiction.
Hence we have obtained that S is an admissible set and F(S) = S, that is S is a complete
extension. �



98 C. Croitoru

6 Discussion

In this paper, two polytopes associated with an argumentation framework AF are intro-
duced in order to represent Dung’s classical extensions of AF . The first one, Padm(AF),
has as integral points exactly the set of incidence vectors of the admissible sets of AF .
That is, a 0-1 vector is the incidence vector of a conflict-free set of arguments defend-
ing collectively against any attack if and only if it belongs to Padm(AF). The second,
Pstab(AF), characterizes the stable extensions: a 0-1 vector is the incidence vector of a
conflict-free set of arguments attacking all others arguments if and only if is a mem-
ber of Pstab(AF). Furthermore, it is proved that Pstab(AF) encodes also the complete
extensions: a set of arguments is a complete extension if and only if it is the set of 1-
coordinates of a point x in P stab(AF) with the property that each 0-coordinate of x is
attacked by an 1-coordinate of x.

These characterizations open the way of using techniques from (integer) linear pro-
gramming to select such extensions after considering appropriate weights for argu-
ments. As future work we intend to study the vertices of the above polytopes. For ex-
ample, we believe that P stab(AF) has integer vertices for argumentation frameworks
AF with no odd circuits. Also, consequences of linear duality theorems may be of in-
terest. Beside the computational motivation, the approach introduced in this paper can
be viewed as a new attempt to relate abstract argumentation to game theory, where the
different solution concepts are studied using linear programming techniques.
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Abstract. This paper investigates the definition of belief revision operators that
correspond to the IAR and ICR inconsistency tolerant semantics in the Ontology
Based Data Access (OBDA) setting. By doing this equivalence our long term goal
is to provide an axiomatic characterisation of the above mentioned semantics.

1 Introduction and Motivation

We position ourselves in the Ontology Based Data Access (OBDA) setting where a
query is being asked over a set of knowledge bases defined over a common ontology.
When the union of knowledge bases along with the ontology is inconsistent, several
semantics have been defined [5,11] which are tolerant to inconsistency. They all rely
on computing repairs, i.e. maximal (in terms of set inclusion) subsets of the knowl-
edge bases. The inconsistency tolerant semantics (Intersection of All Repairs: IAR, All
Repairs: AR, Intersection of Closed Repairs: ICR) have been studied [5,11], from a
productivity point of view and a complexity point of view.

In this paper we take a new point of view. Our long term aim is to define axiomatic
characterisations of two such semantics (IAR and ICR). We argue that such charac-
terisation can provide an alternative way of comparing the semantics and can provide
new insights into their properties. Furthermore such axiomatisation can be used when
proposing a generalisation of inconsistency tolerant semantics.

In order to provide the axiomatic characterisation we define belief revision operators
that correspond to IAR and ICR. The belief revision operator corresponding to the AR
semantics is left for future work. Please note that while a lot of work has been done
in belief revision and OBDA, none of the approaches deal with the final goal of their
axiomatic characterisations. The paper is structures as follows: Section 2 introduces the
rule based OBDA language used in the paper, Section 3 defines the revision operators
that correspond to ICR and IAR. Based on the axiomatic characterisation of the be-
lief operators we can provide the axiomatic characterisation of IAR and ICR. Finally,
Section 4 concludes the paper.

2 Rule Based Knowledge Representation

There are two major approaches in the literature used to represent an ontology for the
OBDA problem and namely Description Logics (such as EL([3]) and DL-Lite [7] fami-
lies) and rule based languages. The most notable rule based language is the Datalog+ [6]
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language, a generalization of Datalog that allows for existentially quantified variables
in the head of the rules. Despite Datalog+ undecidability when answering conjunctive
queries, there exist decidable fragments of Datalog+ are studied in the literature [4].
These fragments generalize the above mentioned Description Logics families.

In this paper we represent the ontology via rules. We consider a (potentially inconsis-
tent) knowledge base composed of a set F of facts corresponding to existentially closed
conjunctions of atoms, which can contain n-ary predicates; a set of negative constraints
N which represent the negation of a fact and an ontology composed of a set of rulesR
that represent general implicit knowledge that can introduce new variables in their head
(conclusion).

A rule is applicable to set of factsF if and only if the set entails the hypothesis of the
rule. If ruleR is applicable to the set F , the application ofR onF produces a new set of
facts obtained from the initial set with additional information from the rule conclusion.
We then say that the new set is an immediate derivation of F by R denoted by R(F).
Let F be a set of facts and let R be a set of rules. A set Fn is called an R-derivation
of F if there is a sequence of sets (derivation sequence) (F0,F1, . . . ,Fn) such that: (i)
F0 ⊆ F , (ii) F0 is R-consistent, (iii) for every i ∈ {1, . . . , n − 1}, it holds that Fi is
an immediate derivation of Fi−1.

Given a set {F0, . . . , Fk} and a set of rules R, the closure of {F0, . . . , Fk} with
respect to R, denoted ClR({F0, . . . , Fk}), is defined as the smallest set (with respect
to ⊆) which contains {F0, . . . , Fk}, and is closed for R-derivation (that is, for every
R-derivation Fn of {F0, . . . , Fk}, we have Fn ⊆ ClR({F0, . . . , Fk})). Finally, we say
that a set F and a set of rules R entail a fact G (and we write F ,R |= G) iff the
closure of the facts by all the rules entails G (i.e. if ClR(F) |= G). Given a set of facts
{F1, . . . , Fk}, and a set of rulesR, the set of facts is calledR-inconsistent if and only if
there exists a constraint N = ¬F such that ClR({F1, . . . , Fk}) |= F . A set of facts is
said to beR-consistent iff it is notR-inconsistent. A knowledge baseK = (F ,R,N ) is
said to be consistent if and only if F isR-consistent. A knowledge base is inconsistent
if and only if it is not consistent.

Several semantics have been proposed to handle consistency based in the concept of
data repairs [5,11]. Once the repairs are computed, various strategies can be adapted to
answer a query. We can consider querying all repairs (AR-semantics), the intersection
of all repairs (IAR-semantics) or the intersection of closed repairs (ICR-semantics).

Definition 1. [5,11] Let K = (F ,R,N ) be a knowledge base and let α be a query.
Then α is AR-entailed fromK, writtenK |=AR α iff for every repairA′ ∈ Repair(K),
it holds that ClR(A′) |= α.

Definition 2. [5,11] Let K = (F ,R,N ) be a knowledge base and let α be a query.
Then α is IAR-entailed from K, written K |=IAR α iff ClR(

⋂
A′∈Repair(K)) |= α.

Definition 3. [5,11] Let K = (F ,R,N ) be a knowledge base and let α be a query.
Then α is ICR-entailed from K, written K |=ICR α iff

⋂
A′∈Repair(K) ClR(A′) |= α.
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3 Belief Revision Operators

In the context of Belief Revision, the problem of making an inconsistent belief base
consistent was solved by Hanson in [10] who proposed a new operation called Con-
solidation. An inconsistent belief base can be consolidated by removing some of its
elements. The consolidation of a belief base B is denoted B!. A plausible way to per-
form consolidation is to contract by falsum (contradiction), i.e. B! = B ÷ ⊥. In order
to express this notion more precisely, we need to introduce the concept of remainder set
proposed by Alchourrón and Makinson in [2]. For any belief base B and any formula
α, the remainder set of B by α, B ⊥ α, is the set of maximal subsets of B that do not
imply α. In other words, in our language:

Definition 4. (Updated AM81 [2]) Let (F ,R,N ) a knowledge base and α a fact in F .
The set F ⊥ α (read “F less α”) is the set such that A belongs to F ⊥ α if and only if
A ⊆ F , ClR(A) �|= α and there is no set A′ such thatA ⊂ A′ ⊆ F and ClR(A′) �|= α.

Definition 5. A selection function is a function γ such that for every set F of formulae
and any fact α it holds: γ(F⊥α) is a non-empty subset of F⊥α if this set is non-
empty, and, on the contrary, γ(F⊥α) = {F}.

Definition 6. (Updated AGM85 [1]) Let F be a set of facts in a knowledge baseK. Let
F⊥α and γ be the set of all maximal subsets of F that do not imply α and a selection
function, respectively. The partial meet contraction on F that is generated by γ is the
operation∼γ such that for all facts α:

F ∼γ α = ∩γ(F⊥α)

Two limiting cases have been very well studied: when γ gives back either only one
element of F⊥α or all members of F⊥α. In the first case, we are talking about Maxi-
choice contraction and in the second it is called Full meet contraction.

There are other special and interesting cases when the selection function is based on
a relation (that may be thought of a preference relation).

Definition 7. A selection function γ for a belief baseF in a knowledge baseK, and the
contraction operator based on it, are

1. relational if and only if there is a binary relation� such that for all fact α, if F⊥α
is non-empty, then

γ(F⊥α) = {A ∈ F⊥α | C � A for all C ∈ F⊥α}

2. transitively relational if and only if there is such a relation that is transitive.

Based on partial meet contraction, one can define a partial meet consolidation as
F ∼γ ⊥ which is the intersection of the “most preferred” maximal consistent subsets
of F , i.e. F ! = F ∼γ ⊥ = ∩γ(F⊥⊥) where⊥ denotes logical contradiction.

Partial meet consolidation has been axiomatically characterized as follows:



Update Operators for Inconsistent Query Answering: A New Point of View 103

Theorem 1. ( Updated [9]) An operation is a partial meet consolidation if and only if
for all sets F of facts the following are satisfied:

Consistency: F ! isR-consistent.
Inclusion: F ! ⊆ F .
Relevance: If α ∈ F \ F !, then there is some F ′ with F ! ⊆ F ′ ⊆ F , such that F ′ is

R-consistent and F ′ ∪ {α} isR-inconsistent.

In addition, it is a full meet consolidation if and only if it also satisfies:

Core identity: β ∈ F ! if and only if β ∈ F and there is no F ′ ⊆ F such that F ′ is
R-consistent but F ′ ∪ {β} isR-inconsistent.

On the other hand, an operator is a maxi-choice consolidation if and only if it satisfies
the postulates consistency, inclusion, and:

Fullness: If β ∈ F and β /∈ F ! then F ! ∪ {β} isR-inconsistent.

There are five ways to characterise a belief revision function: axiomatic, using re-
mainder sets, using kernel sets, epistemic entrenchment and spheres system. In the fol-
lowing we will define the operators corresponding to the inconsistency tolerant seman-
tics above using its axiomatic characterisation.

3.1 Consolidation Operators for Existing Semantics

We want to define an operator of consolidation that given a inconsistent knowledge base
K = (F ,R,N ), returns a new consistent knowledge base K! = (F !,R,N ).

As a first step, we consider the maximal consistent subsets (repairs or remainders) of
F denotedK ⊥ ⊥. More precisely:

K ⊥ ⊥ = {M|M ⊆ F , (M,R,N ) maximal consistent set }

We are now able to define an operator of consolidation as K! = Op(Ch(K ⊥ ⊥))
where Ch is a choice function and Op an intersection operator (or an any operator
defined over the results of choice). It is easy to check the following:

1. If Ch returns all elements and Op is the intersection of sets then we get the IAR
semantics.

Note that in this case we are talking about a full meet consolidation and it allows us
to give immediately an axiomatic characterization of IAR semantics.

In order to obtain the equivalent of ICR semantics we need to work on sets closed by
ClR. First, we have to introduce some properties.

Observation 1 If M ∈ K ⊥ ⊥ then ClR(M) ∩ F ⊆ M. Hence, if F is closed by
R-derivation (i.e. F = ClR(F)) thenM is as well.

We now define the remainders or repairs sets closed by ClR in the following way:

K ⊥ClR ⊥ = {M|M ⊆ ClR(F), (M,R,N ) maximal consistent set }
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We are now able to define a new family of consolidation operators using these re-
mainders. This kind of operators defined over closed sets byR-derivations will be called
closure partial meet consolidation operators and denoted by †. We also cover the ICR
semantics as follows:

2. If Ch returns all elements and Op is the intersection of sets over {M|M ∈
K ⊥ClR ⊥} then we get the ICR semantics.

Note that we describe a full meet consolidation but over remainders closed by R-
derivations. In order to give an axiomatization of this kind of consolidations, we need
to included an axiom which mirrors this fact. This will be done in the next section.

3.2 Axiom Compliance

In this section we go one step further in the definition of consolidation operators in
relationship with ICR semantics through a set of postulates. In order to give logical
properties of that kind of consolidation operators, we first rephrase Hansson’s postulates
within our framework. LetK = (F ,R,N ) be a knowledge base, the original postulates
can be rewritten in following way:

Closure: F† = ClR(F†).
Consistency: K† = (F†,R,N ) is consistent.
Inclusion: K† = (F†,R,N ) � K = (F ,R,N ).
Core identity: If f ∈ F† if and only if f ∈ ClR(F) and �X ⊆ ClR(F), such that X

isR-consistent and X ∪ f does not.

Theorem 2. An operator † is an operation of closure full meet consolidation if and
only if it satisfies Closure, Consistency, Inclusion and Core identity.

Proof Checking that operations of closure full meet consolidation satisfy postulates:
Closure, Consistency and Inclusion follow directly from definition and Observation 1.
To see that closure full meet consolidation satisfies Core identity, let f ∈ ClR(F). Then
f �∈ F† if and only if there is some X ∈ K ⊥ClR ⊥ such that f �∈ X . Since X is a
maximalR-consistent set it follows that X ∪f does not. Hence,X satisfies the required
properties by Core Identity.

On the contrary direction, let † be an operator that satisfies the four postulates men-
tioned in the theorem. We need to show that F† =

⋂
K ⊥ClR ⊥. We assume again,

that f ∈ ClR(F). Suppose that f �∈
⋂
K ⊥ClR ⊥ then there is X ∈ K ⊥ClR ⊥ such

that f �∈ X . Since X is maximal R-consistent then X ∪ {f} does not. From that and
Core Identity we conclude that f �∈ F†. On the other hand, since † satisfies Inclusion
we can conclude that F† ⊆ ClR(F). In addition, because † satisfies Closure and Con-
sistency, we may assume that there exists f �∈ F†. It follows by Core Identity that for
each f �∈ F† there exists X ⊂ ClR(F) such that X is R-consistent and X ∪ f does
not. In the usual way we are able to extend X to a maximal R-consistent set X ′ such
that f �∈ X ′. Since X ⊂ ClR(F) then X ′ ⊂ ClR(F) and X ′ ∈ K ⊥ClR ⊥. From the
last, we may conclude that f �∈ K ⊥ClR ⊥. This finishes the proof.
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4 Conclusion and Future Work

In this paper we showed how to get first results towards an axiomatic characterisation of
the IAR and ICR semantics in the OBDA setting. We did this by covering the semantics
using known consolidation operators from belief revision. The AR semantics poses
some problems. Indeed, to cover the AR semantics let {Chi} with 1 ≤ i ≤ #(K ⊥ ⊥)
be a family of choice functions such that each Chi returns only one different element
of K ⊥ClR ⊥, i.e. we enumerate the elements of K ⊥ClR ⊥ and each Chi gives
back only one of it. If we consider the family of maxichoice consolidation defined by
{Chi} and we take the intersection among the classical consequence closure of eachKi!
then we get the AR semantics. In this case, we are considering a family of maxichoice
consolidations which have also a well known axiomatic characterization. But it is not
clear how to axiomatize the combination proposed here. This will be left for future
research. Note that by using the equivalence showed in [8] we also obtained here an
axiomatic characterisation of some argumentation semantics.

Acknowledgements. The first author was funded by the ANR ASPIQ project.

References

1. Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet
contraction and revision function. Journal Symbolic Logic 50, 510–530 (1985)

2. Alchourrón, C., Makinson, D.: Hierarchies of regulations and their logic. In: Hilpinen, R.
(ed.) Deontic Logic:Introductory and Systematic Readings, pp. 125–148. Reidel Publishing
Company, Dordrecht (1981)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: Proc. of IJCAI 2005 (2005)
4. Baget, J.F., Mugnier, M.L., Rudolph, S., Thomazo, M.: Walking the complexity lines for gen-

eralized guarded existential rules. In: Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI 2011), pp. 712–717 (2011)

5. Bienvenu, M.: On the complexity of consistent query answering in the presence of simple
ontologies. In: Proc of AAAI (2012)

6. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query
answering over ontologies. In: Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pp. 77–86. ACM (2009)

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The dl-lite family. J. Autom. Reason-
ing 39(3), 385–429 (2007)

8. Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology query an-
swering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078,
pp. 15–29. Springer, Heidelberg (2013)

9. Hansson, S.: Belief Base Dynamics. Ph.D. thesis, Uppsala (1991)
10. Hansson, S.: Semi-revision. Journal of Applied Non-Classical Logics 7(1-2), 151–175 (1997)
11. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant semantics

for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333,
pp. 103–117. Springer, Heidelberg (2010)



Conflicts of Belief Functions:

Continuity and Frame Resizement

Milan Daniel1 and Jianbing Ma2

1 Institute of Computer Science, Academy of Sciences of the Czech Republic
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Abstract. Plausibility and pignistic conflict of belief functions are
briefly recalled in this study. These measures of conflict are based on
two different probability transformations of belief functions, normalised
plausibility of singletons P l C and Smets’ pignistic probability BetP .

Continuity properties and relationship of these conflict measures to
extension and refinement of a frame of discernment are investigated here.
A new continuous improvement of both the measures which is preserved
by a frame extension is introduced. A relation of the new conflict mea-
sures to refinement of a frame of discernment is also discussed. Finally a
comparison between the new measure and the two original measures as
well as W. Liu’s degree of conflict cf is presented.

Keywords: Belief functions, Dempster-Shafer theory, uncertainty, plau-
sibility conflict, pignistic conflict, degree of conflict, continuity, extension
of a frame of discernment, refinement of a frame of discernment.

1 Introduction

When combining belief functions (BFs) by the conjunctive rules of combination,
conflicts often appear (which are assigned to ∅ by non-normalised conjunctive
rule ∩© or normalised by Dempster’s rule of combination ⊕). Combination of
conflicting BFs and interpretation of conflicts are often questionable in real ap-
plications. Thus a series of papers were published on alternative combination
rules, conflicting belief functions, e.g. [2,4,13,15,16,22], and measures of conflicts,
e.g. [12,17,18].

A new interpretation of conflicts of BFs was introduced in [6]. Important
distinction of conflicts between BFs due to internal conflict of a single BF, and
due to the difference between BFs was introduced there. The most elaborated
perspective of the three approaches initiated in [6] — plausibility conflict of BFs
— was analysed in [9] and improved in [10]. An alternative pignistic conflict
based on Smets’ pignistic probability BetP was introduced there as well.

The presented study investigates plausibility and pignistic conflicts from the
point of view of continuity and resizement of a frame of discernment: extension

U. Straccia and A. Cal̀ı (Eds.): SUM 2014, LNAI 8720, pp. 106–119, 2014.
c© Springer International Publishing Switzerland 2014
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and refinement of the frame. New improvements of both the measures of conflicts
between BFs with respect to these properties are presented.

Similarly to [6,9,10] we use W. Liu’s assumption that conflict between BFs
appears when the BFs strongly support mutually non-compatible hypotheses
[16], and also the assumptions from [6] that there is no conflict between BFs when
the BFs (strongly) support same or compatible hypotheses. Moreover, starting
from Section 4, we assume continuity of conflict measures defined in Section
3; starting from Section 5, we assume keeping of conflictness/non-conflictness
when extending a frame of discernment; and further, starting from Section 6,
we assume also keeping of conflictness/non-conflictness when refining the frame.
Section 7 compares and summarizes the presented results, several ideas for a
future research are stated in Section 8.

2 State of the Art

We assume classic definitions of basic notions from theory of belief functions [19]
on finite frames of discernment Ωn = {ω1, ω2, ..., ωn}. Due to a limited space we
do not repeat all the notions used in [6,9,10], but only the important of those,
which were introduced there.

A basic belief assignment (bba) m : P(Ω) −→ [0, 1],
∑

A⊆Ωm(A) = 1, its val-
ues are called basic belief masses (bbms); a belief function (BF) Bel : P(Ω) −→
[0, 1], Bel(A)=

∑
∅�=X⊆Am(X). A plausibility function Pl(A)=

∑
∅�=A∩X m(X).

There is a unique correspondence between m and the corresponding Bel and Pl;
thus we often speak about m as a belief function. A focal element is a subset X
of the frame of discernment such that m(X) > 0. Normalised plausibility of sin-

gletons corresponding to Bel: Pl P (ω) = Pl({ω})∑
ω′∈Ω Pl({ω′}) [3,5] (this is normalised

contour function); pignistic probability: BetP (ω) =
∑

ω∈X⊆Ω
1

|X|
m(X)

1−m(∅) [20].

We say that ω ∈ Ω is supported or preferred by a belief function Bel defined
on Ωn when Pl P (ω) > 1

n , ω is opposed by Bel if Pl P (ω) < 1
n . Analogously

for BetP (ω) if Smets pignistic probability is used. Un is a BF on Ωn such that
m(ω) = 1

n for all ω ∈ Ωn.
Conflict between BFs is distinguished from internal conflict in [6,9,10], where

internal conflict of a BF is included inside the individual BF. Total conflict
of two BFs Bel1, Bel2, which is equal to sum of all conflicting belief mases:
m∩©(∅) =

∑
X∩Y =∅m1(X)m2(Y ), includes internal conflicts of individual BFs

Bel1, Bel2 and a conflict between them. Thus two definitions were introduced
in [6]; we are interested in conflict between belief BFs in this study.

Definition 1. The internal plausibility conflict Pl-IntC of BF Bel is defined as

Pl-IntC(Bel) = 1−maxω∈ΩPl({ω}),
where Pl is the plausibility corresponding to Bel.

Definition 2. Let Bel1, Bel2 be two belief functions on Ωn given by bbms m1

and m2 which have normalised plausibility of singletons Pl P1 and Pl P2. The
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conflicting set ΩPlC(Bel1, Bel2) is defined to be the set of elements ω ∈ Ωn

with conflicting Pl P masses it is conditionally extended with union of sets
max Pl Pi value elements under condition that they are disjoint. For-
mally we have ΩPlC(Bel1, Bel2) = ΩPlC0(Bel1, Bel2) ∪ ΩsmPlC(Bel1, Bel2),
where ΩPlC0(Bel1, Bel2) = {ω ∈ Ωn | (Pl P1(ω) − 1

n )(Pl P2(ω) − 1
n ) < 0},

ΩsmPlC(Bel1, Bel2) = {ω∈Ωn | ω∈{maxω∈ΩnPl P1(ω)} ∪ {maxω∈ΩnPl P2(ω)}
& {maxω∈ΩnPl P1(ω)} ∩ {maxω∈ΩnPl P2(ω)} �= ∅}.
Plausibility conflict between BFs Bel1 and Bel2 is then defined by the formula

Pl-C(Bel1, Bel2) = min(Pl-C0(Bel1, Bel2), (m1 ∩©m2)(∅) ),
where1

Pl-C0(Bel1, Bel2) =
∑

ω∈ΩPlC(Bel1,Bel2)

1

2
|Pl P (Bel1)(ω)− Pl P (Bel2)(ω)|.

There are two reasons for minimising with (m1 ∩©m2)(∅) (briefly with m∩©(∅)
if Bel1 and Bel2 are clear from a context): at first the original from [6], see
Example 1, where two obviously non-conflicting BFs have non-empty conflicting
set and positive Pl-C0, whereasm∩©(∅) = 0; the second is that m∩©(∅) was found
to be an upper bound for conflict between BFs [10].

Example 1. Let us suppose two categorical BFs on Ω6 given by m1({ω1}) =
1 and m2({ω1, ω2, ω3, ω4}) = 1, thus Pl P1 = (1, 0, 0, 0, 0, 0) and Pl P2 =
(0.25, 0.25, 0.25, 0.25, 0, 0) thus ΩPlC = {ω2, ω3, ω4} as Pl P1(ωi) = 0 < 1

6 and
Pl P2(ωi) = 0.25 > 1

6 for i = 1, 2, 3, 4 (other elements are non-conflicting), hence
Pl-C0 = 0.375 and this should be minimised with m∩©(∅) = 0.

Four variants of ΩPlC(Bel1, Bel2) are defined and analysed in [10]: ΩsmPlC ,
ΩspPlC = ΩsmPlC(Bel1, Bel2) ∪ ΩPlC0(Bel1, Bel2) (as above),ΩcpP lC which in-
cludes ω with different order of Pl Pi(ω) values, andΩcbP lC =ΩcpP lC(Bel1, Bel2)
∪ ΩPlC0(Bel1, Bel2). I.e., ΩPlC is constructed using either max Pl Pi values,
ordering Pl Pi values, support/opposition of elements of the frame of discern-
ment (+ max Pl Pi values), or combination of these options; for detail see [10].
(All of these variants coincide on Ω2).

Example 2. Four variants of conflicting sets. Let us suppose Bel1, Bel2 on Ω5.
X : {ω1} {ω2} {ω3} {ω4} {ω5} {ω1,ω2}{ω2,ω4}{ω1– ω3}{ω1.. ω4} Ω5

m1(X) : 0.225 0.195 0.19 0.19 0.01 0.02 0.01 0.03 0.11 0.02
m2(X) : 0.110 0.410 0.16 0.00 0.01 0.03 0.04 0.02 0.09 0.05

We obtain Pl P1=(0.27, 0.25, 0.24.0.22, 0.02),Pl P2=(0.20, 0.40, 0.24.0.12, 0.04),
and ΩsmPlC = {ω1, ω2}, ΩPlC0 = {ω4}, ΩspPlC = {ω1, ω2, ω4}, ΩcpP lC = {ω1, ω2,
ω3}, and ΩcbP lC = {ω1, ω2, ω3, ω4}, hence Bel1 and Bel2 are considered to be
mutually conflicting by all variants of Pl-C, but values of conflict are different in
this case: smPl-C(Bel1, Bel2) = 0.11, spP l-C = 0.16, cpP l-C = 0.11, cbP l-C =
0.16. (ω3 has different order of Pl Pi values thus it is included in both ΩcpP lC and
ΩcbP lC but both its Pl Pi values are the same: Pl P1(ω3) = Pl P2(ω3) = 0.24,
thus smPl-C = cpP l-C and spP l-C = cbP l-C in this special case.

1 P l-C0 is not a separate measure of conflict in general; it is just a component of P l-C.
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Definition 3. Let Bel1, Bel2 be two belief functions on Ωn given by bbms m1

and m2 which have pignistic probabilities BetP1 and BetP2. The pignistic con-
flicting set ΩBetC(Bel1, Bel2) is defined analogously to plausibility conflicting set
ΩPlC(Bel1, Bel2), having analogously four variants ΩsmBetC , ΩspBetC , ΩcpP lC

and ΩcbP lC , see [10].

Pignistic conflict between BFs Bel1 and Bel2 is then defined by the formula

Bet-C(Bel1, Bel2) = min(Bet-C0(Bel1, Bel2), (m1 ∩©m2)(∅) ),
where2

Bet-C0(Bel1, Bel2) =
∑

ω∈ΩBetC(Bel1,Bel2)

1

2
|BetP1(ω)−BetP2(ω)|.

Quantitative aspect of conflict — conflictness/non-conflictness is classified by
emptyness/non-emptyness of related conflicting set by both Pl-C and Bet-C.
Quantitative conflict is then computed only for mutually conflicting BFs.

Whereas qualitative values are computed for any pair of BFs by Liu’s two-
component degree of conflict cf=(difBetP

mj
mi ,m∩(∅)) [10,16], where difBetPmj

mi

= maxA⊆Ω(|BetPmi(A) − BetPmj (A)|), m∩(∅) = (m1 ∩©m2)(∅). Qualitative
question of conflictness/non-conflictness is not addressed there, in fact; and ’high
conflictness’ / ’not high conflictness’ is determined from the qualitative values us-
ing empirically/heuristically given threshold of conflict tolerance ε.

Unfortunately, jumps of Pl-C and Bet-C values were observed, see the fol-
lowing examples. Such a jump in conflict values is counter-intuitive, moreover
neither m∩(∅) nor the other component difBetP

mj
mi of Liu’s degree of conflict cf

have similar jumps. Hence, we are interested in how to remove the jumps from
conflict measures in this study, i.e., how to modify measures of conflict Pl-C and
Bet-C to be continuous, or jump-free.

Example 3. Let us suppose two BFs on Ω2: Bel1 = (m1({ω1}),m1({ω2}) =
(0.8, 0.1) (m1({ω1, ω2}) = 1 − m1({ω1}) −m1({ω2}) = 0.1), Bel2 = (0.3, 0.3),
thus we obtain Pl P1 = (0.888, 0.111), Pl P2 = (0.5, 0.5), hence these two BFs
are non-conflicting. Let us suppose a very small change of Bel2, thus we ex-
pect zero conflict again or a very small conflict value corresponding to the
very small change. Let Bel′2 = (0.3, 0.31), thus Pl P ′

2 = (0.4964, 0.5036), hence
ΩPlC(Bel1, Bel

′
2) = Ω2 and Pl-C(Bel1, Bel

′
2) = 0.3925, which is significantly

higher than the slight changes made on m2({ω2}) and m2({ω1, ω2}) by 0.01.
Analogously, we have BetP1 = (0.85, 0.15), BetP2 = (0.5, 0.5), and BetP ′

2 =
(0.495, 0.505), which leads to BetP -C(Bel1, Bel2) = 0, BetP -C(Bel1, Bel

′
2) =

0.355.

Let us suppose a free BF Bel1 = (a1, b1) and a fixed BF Bel2 = (a2, b2) on
Ω2, such that Pl P2 = (u, 1 − u) where u ≥ 1

2 . We can show how the value

Pl-C(Bel1, Bel2) depends on the value Pl P1(ω1) (i.e., Pl P1(ω1) =
1−b1

2−a1−b1
, as

Pl P1(ω2) = 1−Pl P1(ω1) and u is fixed). A jump is obvious at Pl P1(ω1) =
1
2 ,

see Fig. 1. For another example of jumps of conflict see Example 4.

2 Bet-C0 is again not a separate measure of conflict in general; it is just a component
of Bet-C.
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Fig. 1. Jump of P l-C Fig. 2. A comparison of approaches

Example 4. Let us suppose BFs on Ω4 given by the following table now:
X : {ω1} {ω2} {ω3} {ω4} {ω1, ω2} {ω4, ω3} Ω4

m1(X) : 0.15 0.15 0.15 0.15 0.01 0.39
m2(X) : 0.15 0.15 0.15 0.15 0.01 0.39
m3(X) : 0.20 0.15 0.10 0.05 0.15 0.05 0.30
m4(X) : 0.90 0.03 0.02 0.01 0.01 0.03

Pl C1 = (0.2523, 0.2523, 0.2477, 0.2477),Pl C2 = (0.2477, 0.2477, 0.2523, 0.2523),
Pl C3 = (0.3095, 0.2857, 0.2143, 0.1905),Pl C4 = (0.8468, 0.0631, 0.0541, 0.0360),
Pl-C(Bel1, Bel3) = 0, Pl-C(Bel2, Bel3) = 0.0998, which is about ten times
larger than the changes on {ω1, ω2} and {ω3, ω4} by 0.01.
smPl-C(Bel1, Bel4) = cpP l-C(Bel1, Bel4) = 0, spP l-C(Bel1, Bel4) =
cbP l-C(Bel1, Bel4) = 0.2027, smPl-C(Bel2, Bel4) = 0.5068, cpP l-C(Bel2, Bel4)
= 0.5991, spP l-C(Bel2, Bel4) = 0.5068, cbP l-C(Bel2, Bel4) = 0.5991, all the
changes on conflict values are significantly greater than the difference between
m1 values and m2 values (i.e., 0.01).

3 Continuity of Measures of Conflict between Belief
Functions

Let us define continuity of a measure of conflict using the conventional ε − δ
way. That is, we first define a δ-surrounding for any BF, and we then use δ-
surrounding to define continuity of conflict measures.

Formally, we have the following definitions.

Definition 4. We say that a belief function Bel′ is in δ surrounding of a belief
function Bel (briefly Bel′ ∈ δ(Bel)) if |m(X)−m′(X)| ≤ δ.

Definition 5. We say that a measure of conflict of belief functions conf is con-
tinuous if for any ε > 0 and any BFs Bel1, Bel2, there exits a δ surrounding of
Bel1, such that for any Bel′∈δ(Bel1), |conf(Bel′, Bel2)− conf(Bel1, Bel2)| ≤ε.
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Lemma 1. (i) (m1 ∩©m2)(∅) is continuous measure of conflict.
(ii) min(conf(Bel1, Bel2), (m1 ∩©m2)(∅)) is continuous for any continuous mea-
sure of conflict conf and any pair of BFs Bel1, Bel2 given by m1 and m2.
(iii) min(difBetBel2

Bel1
, (m1 ∩©m2)(∅)) is a continuous measure of conflict of BFs.

Proof. Proofs are verifications of the statements, for detail see [11].

4 Continuous Improvement of Plausibility and Pignistic
Conflicts

There is a non-conflicting area around any BF (a half of the belief triangle in the
case of BFs on Ω2; there is a possibility of different variants of such areas using
different conflicting sets ΩPlC (or ΩBetC) for BFs on Ωn, n > 2). The idea is that
conflict is zero on the border of conflicting area and it should continually increase
without any jump behind the border. In the case of Ω2, we compute a difference
of Pl P (or BetP ) from U2; for obtaining continuity we use minimal difference.
Its value should be doubled to obtain normalised conflict, i.e. to obtain conflict
between (1, 0) and (0, 1) equal to 1; see green line in Fig. 2, for simple (non
doubled) difference see blue line. This is equal to the sum of minimal differences
over ΩPlC (it is ∅ or entire Ω2 in the case of Ω2). Thus we obtain the following
modification of Pl-C0:

Pl-C1(Bel1, Bel2) = Pl-C0(Bel1, Bel2) = 0,

if (Bel1({ω1})−Bel1({ω2}))(Bel2({ω1})−Bel2({ω2})) ≥ 0.

P l-C1(Bel1, Bel2) = 2 min ( |Pl P (Bel1)(ω1)−
1

2
|, |Pl P (Bel2)(ω1)−

1

2
| )

=
∑
i=1,2

min ( |Pl P (Bel1)(ωi)−
1

2
|, |Pl P (Bel2)(ωi)−

1

2
| );

as Pl P (Beli)(ω2) = 1− Pl P (Beli)(ω1) for i = 1, 2.
The situation is more complicated on Ωn = {ω1, ω2, ...ωn}: We have to dis-

tinguish two parts of ΩPlC(Bel1, Bel2): Ω
opp
PlC(Bel1, Bel2) ... ω’s which are op-

posed by Bel1 and Bel2 (i.e. where (Bel1(ω) − 1
n )(Bel2(ω) −

1
n ) < 0) and

Ωord
PlC(Bel1, Bel2) = ΩPlC(Bel1, Bel2) \ Ωopp

PlC(Bel1, Bel2) ... ω’s from corre-
sponding ΩcpP lC and ΩcbP lC which have different order of Pl P (Beli)(ω) values,
but they are not opposed by Bel1 and Bel2, thus we have to handle them sepa-
rately.

Let us assume that all ω’s from ΩPlC(Bel1, Bel2) are opposed by Bel1 and
Bel2, i.e. Ω

ord
PlC(Bel1, Bel2) = ∅, now. We can compute Pl-C1(Bel1, Bel2) ’per

elements’ directly in the same way as it is computed on Ω2:

Pl-C1(Bel1, Bel2) =
∑

ω∈ΩPlC(Bel1,Bel2)

min ( |Pl P (Bel1)(ω)−
1

n
|, |Pl P (Bel2)(ω)−

1

n
| ).

Let us look at the following example of belief functions Bel1, ..., Bel4 on
Ω10 = {ω1, ω2, ..., ω10} such that, Pl P1(ω1) = 1, Pl P2(ω10) = 1. In this case,



112 M. Daniel and J. Ma

we obtain ΩPlC(Bel1, Bel2) = Ωopp
PlC(Bel1, Bel2) = {ω1, ω10}, Pl-C1(Bel1, Bel2)

=
∑

ω∈ΩPlC
min (|Pl P1(ω)− 1

10 |, |Pl P2(ω)− 1
10 |) =

1
10 + 1

10 = 2
10 .

Pl P3(ω1) = Pl P3(ω2) =
1
2 , Pl P4(ω9) = Pl P4(ω10) =

1
2 , ΩPlC(Bel3, Bel4)

= Ωopp
PlC(Bel3, Bel4) = {ω1, ω2, ω9, ω10}, thus Pl-C1(Bel3, Bel4) = 4 · 1

10 = 4
10 .

The conflict between two different categorical singletons Pl-C1(Bel1, Bel2) should
be maximal/greatest (as different elements (disjoint hypotheses) are fully (cat-
egorically) supported). More precisely, it should be equal to 1 for normalised
conflict. Moreover conflict Pl-C1(Bel1, Bel2) should be the same or greater than
conflict Pl-C1(Bel3, Bel4), definitely not a half of it.

Considering the above example, we have to proportionalise comparison of
Pl P (Belj)(ωi) with 1

n ; i.e., to multiply |Pl P (Belj)(ωi) − 1
n | by appropriate

coefficient(s):
- a coefficient n

2 determined by the size of frame of discernment;
this factor is equal to 2

2 = 1 for n = 2;
- a coefficient 1

2 (Pl P (Bel1)(ωi) + Pl P (Bel2)(ωi)),
i.e., by the relative size of sum of relative plausibilities of corresponding ωi.

Thus we obtain:

Pl-C11(Bel1, Bel2) =
∑

ω∈ΩPlC(Bel1,Bel2)

n

2

Pl P1(ω) + Pl P2(ω)

2
mini=1,2 (|Pl Pi(ω)−

1

n
|).

For proving of continuity of Pl-C11 we will use the following technical lemma,
for proofs see [11].

Lemma 2. (i) For any BFs Bel and Bel′ on Ωn such that Bel′ ∈ δ(Bel) for
δ = ε

2n−1 it holds that |Pl P (ω)− Pl P ′(ω)| ≤ ε for any ω ∈ Ωn.
(ii) For any BFs Bel1, Bel2 and Bel′ on Ωn such that Bel′ ∈ δ(Bel1) for δ ≤
minωi∈Ωn |Pl P1(ωi)− 1

n | it holds that ΩPlC(Bel
′, Bel2) = ΩPlC(Bel1, Bel2).

Analogously to the original version Pl-C0 we need to minimize m∩©(∅) (also
for Pl-C11), see BFs and ΩPlC from Example 1 again. From the previous proof
and Lemma 1 we obtain also continuity of min(Pl-C11,m∩©(∅)).

For ω ∈ Ωord
PlC we cannot use min of (Pl P (ω) − 1

n ) as both the BFs are in
accordance with respect to ω, and both of them support (or oppose) ω (thus
min may be relatively high for BFs with same or similar Pl P (ω) and, on the
other hand, it is very small for Pl P1(ω) close to 1

n and Pl P2(ω) close to 0 or
1.) Hence we have to use difference of differences, i.e., we have ||Pl P1(ω)− 1

n |−
|Pl P2(ω)− 1

n || = |Pl P1(ω)− Pl P2(ω)| as it is in Pl-C (see [10]).
Thus we obtain the following formula:

Pl-C12(Bel1, Bel2) =
∑

ω∈Ωopp
PlC(Bel1,Bel2)

n

2

Pl P1(ω)+Pl P2(ω)

2
mini=1,2(|Pl Pi(ω)−

1

n
|)

+
∑

ω∈Ωord
PlC(Bel1,Bel2)

( |Pl P1(ω)− Pl P2(ω)| ).
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A difference of Pl P values is continuous, thus continuity is not lost upgrading
Pl-C11 to Pl-C12.

The situation is analogous for Bet-C. For proving of continuity of Bet-C12,
where BetP ’s are used instead of Pl P ’s; we use the analogy of Lemma 2:

Lemma 3. (i) For any BFs Bel and Bel′ on Ωn such that Bel′ ∈ δ(Bel) for
δ = ε

2n−1 it holds that |BetP (ω)−BetP ′(ω)| ≤ ε for any ω ∈ Ωn.
(ii) For any BFs Bel1, Bel2 and Bel′ on Ωn such that Bel′ ∈ δ(Bel1) for δ ≤
minωi∈Ωn |BetP1(ωi)− 1

n | it holds that ΩBetC(Bel
′, Bel2) = ΩBetC(Bel1, Bel2).

For proofs see [11].

5 Extension of a Frame of Discernment

We have to note a relationship of Pl-C12(Bel1, Bel2) to resizement of a frame
of discernment. An extension of a frame of discernment is to add one or more
elements into the frame of discernment but keeping the BFs not changed. More
precisely, let us suppose a frame Ωm = {ω1, ω2, ..., ωm} and BFs Beli’s given by
bbms mi’s. Let us extend the frame with {ωm+1, ..., ωm+k} for m ≥ 2, k ≥ 1.
Let Bel′i’s be given by m′

i’s such that m′
i(X) = mi(X) for X ⊆ Ωm, m′

i(X) = 0
for X ∩ {ωm+1, ..., ωm+k} �= ∅. Thus we have Pl P ′

i (ω) = Pl Pi(ω) for ω ∈ Ωm

and Pl P ′
i (ω) = 0 for ω ∈ Ωm+k \ Ωm. Comparing Pl P ′

i (ω) with 1
m+k < 1

m
some ω’s may be opposed by one of both Beli’s but supported by Bel′i’s. If
such ω is opposed by just one of Beli’s and supported by both Bel′i’s, or it
is opposed by both Beli’s and supported just by one of Bel′i’s, there may be
Ω′opp

PlC � Ωopp
PlC or Ω′opp

PlC � Ωopp
PlC (or Ω′opp

PlC = Ωopp
PlC of course). Hence conflict may

be increased or decreased with greater or less conflicting set on the extended
frame of discernment. Ω′ord

PlC = Ωord
PlC as Pl P ′

i (ω) = Pl Pi(ω) for ω ∈ Ωm and
Pl P ′

i (ω) = 0 out of Ωm. See the following example:
Let Ωm = Ω3, Ωm+k = Ω4 and Beli’s are given by mi’s as follows:

X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

m1(X) : 0.60 0.10 0.1 0.2
m2(X) : 0.20 0.05 0.35 0.3 0.1
m3(X) : 0.45 0.15 0.10 0.1 0.2
m4(X) : 0.25 0.40 0.2 0.15

Thus we obtain the following normalised plausibilities:
Pl P1 = (0.6, 0.2, 0.2) ... Pl P ′

1 = (0.6, 0.2, 0.2, 0.0),
Pl P2 = (0.2, 0.3, 0.5) ... Pl P ′

2 = (0.2, 0.3, 0.5, 0.0).
Only ω1 is supported on both the frames by Bel1 and Bel′1; ω2, ω3 (and ω4)
are opposed. Only ω3 is supported by Bel2 on Ω3, but ω2 and ω3 are supported
by Bel′2 on Ω4, thus we obtain different conflicting sets on the frames, namely,
ΩPlC(Bel1, Bel2) = {ω1, ω3} on Ω3, whereas ΩPlC(Bel

′
1, Bel

′
2) = {ω1, ω2, ω3}

on Ω4, as
1
4 < Pl P2(ω2) = 0.3 = Pl P ′

2(ω2) <
1
3 and Pl P1(ω2) = 0.2 < 1

4 <
1
3 .

Hence conflicting set was increased with the extension of the frame.
AnalogouslyΩPlC(Bel3, Bel4) = {ω1, ω2, ω3} � ΩPlC(Bel

′
3, Bel

′
4) = {ω1, ω3}.
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Behaviour of conflict Pl-C12 may be even more different on the original and
extended frames in some cases. Let us look at the following example:

X : {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} {ω1, ω2, ω3}

m5(X) : 0.15 0.05 0.15 0.2 0.1 0.35
m6(X) : 0.20 0.6 0.2
m7(X) : 0.50 0.05 0.05 0.3 0.1
m8(X) : 0.20 0.20 0.2 0.4

Thus we obtain the following normalised plausibilities:
Pl P5 = (0.35, 0.35, 0.3) ... Pl P ′

5 = (0.35, 0.35, 0.3, 0.0),
Pl P6 = (0.5, 0.4, 0.1) ... Pl P ′

6 = (0.5, 0.4, 0.1, 0.0).
ω1 and ω2 are supported by both Bel5 and Bel6 on both the frames, ω3 is
opposed by both BFs on Ω3 but only by Bel′6 on Ω4 whereas supported by Bel′5,
thus conflicting set {ω3} appears when extending the frame. Hence the extension
makes conflict between two originally Pl-C12 non-conflicting BFs Bel5 and Bel6.
AnalogouslyΩPlC(Bel7, Bel8)={ω3} becomes empty when extending the frame.

A very simple example is Pl-C12 from BFs (0.4, 0.6) and (0.65, 0.35) on Ω2

which becomes non-conflicting by any extension of the frame.
The above problem of Pl-C12 with a change of conflicting sets when extending

the frame of discernment is related only to Ωopp
PlC not to Ωord

PlC as orderings of
Pl P (ωi) values are the same on the original Ωm and on corresponding extended
Ωm+k. Thus the problem is related only to spP l-C, cbP l-C, not to smPl-C,
cpP l-C. Hence we have obtained a new argument for using the latter versions of
Pl-C.

We have either to accept a strange behaviour of Pl-C12 when extending the
frame of discernment, or to change the definition of supporting/opposing ele-
ments by BFs to be independent of extension of the frame of discernment or to
concentrate ourselves to smPl-C, cpP l-C versions, as it is in the following.

Unfortunately, we are again at the beginning of the continuity problems. As
smPl-C((0.5, 0.5), (0.9, 0.1) is zero for BFs on Ω2 as ω1 has maximal Pl P
for both of them, but smPl-C((0.49, 0.51), (0.9, 0.1) = 1

2 (0.41 + 0.41) = 0.41.
Moreover we have the same results and same problem regardless computing
1
2 (|Pl P1(ω1)−Pl P2(ω1)|+|Pl P1(ω2)−Pl P2(ω2)|) or 1

2 (|Pl P1(ω1)−Pl P1(ω2)|
+|Pl P2(ω1)− Pl P2(ω2)|) on Ω2; thus regardless whether we use differences of
Pl Pi per elements or differences between max and max but one value of the
same Pl P per BFs.

Nevertheless, we can apply the ’min idea’ from Pl-C1 to differences of the max
Pl P ’s values from max but one values of Pl P ’s (Pl P1 and Pl P2) instead of
differences of these values from 1

n . Thus we obtain

Pl-C13(Bel1, Bel2) = min ( |Pl P1(ω1)−Pl P1(ω2)|, |Pl P2(ω1)−Pl P2(ω2)| )

for Bel1, Bel2 on Ω2 such that ΩsmPlC(Bel1, Bel2) = Ω2 on Ω2; and generally

Pl-C13(Bel1, Bel2) = min ( |Pl P1(ωi)−Pl P1(ωj)|, |Pl P2(ωk)−Pl P2(ωl)| )
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for Bel1, Bel2 on general finite frame Ωn, where max Pl P (ω) values appear for
ωi and ωk, i �= k, and Pl P1(ωj), Pl P2(ωl) are max but one values of Pl P ’s;

Pl-C13(Bel1, Bel2) = 0

if sets of max values of Pl P1 and Pl P2 are not disjoint.

A proof of continuity. Let suppose a pair of BFs Bel1, Bel2 and a BFs Bel′ in
δ surrounding of Bel1, such that |m1(X) −m′(X)| ≤ δ = ε

2n , thus |Pl1(X) −
Pl′(X)| ≤ 2n−1 ε

2n = ε
2 for anyX ⊆ Ω and sequently also |Pl P1(ω)−Pl P ′(ω)| ≤

ε
2 for any ω ∈ Ω, hence we obtain |Pl P1(ωi) − Pl P1(ωj)| − |Pl P ′(ωi) −
Pl P ′(ωj)| ≤ |Pl P1(ωi)−Pl P ′(ωi)|+|Pl P1(ωj)−Pl P ′(ωj)| ≤ ε and sequently
|Pl-C13(Bel1, Bel2) − Pl-C13(Bel

′, Bel2)| = |min(|Pl P1(ωi) − Pl P1(ωj)|,
|Pl P2(ωk)−Pl P2(ωl)|)−min(|Pl P ′(ωi)−Pl P ′(ωj)|, |Pl P2(ωk)−Pl P2(ωl)|)|
≤ ε (for detail see [11]). Hence Pl-C13 is continuous.

Values of m, Bel, Pl and of Pl P are kept with an extension of the frame of
discernment, thus also conflictness/non-conflictness and the size of Pl-C13 are
kept with a frame extension. Thus using Pl-C13 instead of Pl-C0 we obtain a
continuous improvement min(Pl-C13,m∩(∅)) of Pl-C which is preserved when
extending the frame of discernment.

Pl-C13 is a modification or analogy of smPl-C in fact: if max but one value
of Pl P1 appears for element(s) which has/have the max value of Pl P2 and vice
versa then Pl-C13 coincides with sm version of Pl-C in some cases, but not in
general. Thus, it seems neither easy nor useful useful to try to define a similar
continuous improvement which is a modification of cpP l-C.

The above problems of Ωopp
PlC and Pl-C12 are in the same way relevant also

to Ωopp
BetC (not to Ωord

BetC) and Bet-C12. Thus completely analogously to Pl-C13,
just using BetP ’s instead of Pl P ’s we can define Bet-C13. Having Lemma 3,
we can use also the above proof of continuity substituting Pl P ’s with BetP ’s.
Values of BetP are also kept with an extension of the frame of discernment,
thus conflictness/non-conflictness and the size of Bet-C13 are kept with a frame
extension as well. Thus using Bet-C13 instead of Bet-C0 we obtain a continuous
improvement min(Bet-C13,m∩(∅)) of Bet-C which is preserved when extending
the frame of discernment.

As in the case of Pl-C13, Bet-C13 is a modification of sm version conflict
measure and it does not seems to be useful to try to define similar modification
of cpBet-C.

6 Refinement of a Frame of Discernment

There is a completely different case of resizement of a frame of discernment, or
the refinement of a frame. In this case, there are no new elements added but some
of the original is/are split into one or more new one(s), thus bbm(s) of the split
singleton(s) is/are transferred to the corresponding resulting set(s) and bbms of
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sets containing split element(s) are transferred to the corresponding larger sets.
Pl P and BetP have different behaviour in this case, hence Pl-C and Bet-C as
well.

We can easily show that using neither Bet-C12 or Bet-C13 conflictness or
non-conflictness of a pair of BFs is kept when refining the corresponding frame
of discernment. It is enough to show the simple examples of BFs on Ω2 and its
refinement to {ω11;ω12;ω2}. Let us suppose a non-conflicting pair (0.6, 0.4) and
(0.8, 0.2) where both the BFs support ω1 and oppose ω2. Refining the frame, we
obtain m′

1({ω11, ω12}) = 0.6, m′
2({ω11, ω12}) = 0.8 and BetP ′

1 = (0.3, 0.3,0.4),
BetP ′

2 = (0.4,0.4, 0.2), where ω11, ω12 are supported by Bel′2 but opposed by
Bel′1 and ω2 is supported by Bel′1 but opposed by Bel′2. Thus Bet-C12 conflict
has appeared when refining the frame. ω2 has max BetP ′

1 value, but max BetP ′
2

value appears at ω11 and ω12, hence also Bet-C13 conflict has appeared.
Let us further suppose Bel3 given by (0.2,0.8) on Ω2. Refining the frame we

obtain m′
3({ω11, ω12}) = 0.2 and BetP ′

3 = (0.1, 0.1,0.8). Thus ω11, ω12 are op-
posed byBel′3 and ω2 is supported byBel

′
3, as byBel

′
1; moreovermaxBetP ′

3 value
appears at ω2 as in the case of BetP ′

1. Hence two conflicting BFs Bel1 and Bel3
became both Bet-C12 and Bet-C13 non-conflicting when the frame was refined.

Note that we can use the same examples to show the same property for Bet-C
and Bet-C11.

On the other hand the Pl-C13 conflictness/non-conflicteness is preserved by
refinement of the frame (see Corollary 2; for proof of the lemma see [11]):

Lemma 4. Ordering of Pl P values is not changed with a refinement of a frame
of discernment.3

Corollary 1. The sets of elements with the maximal (minimal) value of Pl P
are the same (up to refinement) for a belief functions Bel and Bel′ on an ex-
tended frame of discernment.

Corollary 2. Measure of conflict Pl-C13 keeps conflictness/non-conflictness of
a pair of belief functions when the frame of discernment is refined.

The situation is more complicated for Pl-C, Pl-C11 and Pl-C12: Orderings
of the Pl P values (and max/min values) are kept when refining a frame; thus
also sm and cp versions of conflictness/non-conflictness. But there is possibility
of change of support/opposition of other elements; thus change of spΩPlC and
cbΩPlC and also of sp and cb versions of Pl-C, Pl-C11 and Pl-C12 conflictness/
non-conflictness.

7 A Comparison of the Presented Measures of Conflict

Comparing the series of Pl-C using Pl-C0, Pl-C11, Pl-C12, Pl-C13 (and analo-
gously Bet-C using Bet-C0, Bet-C11, Bet-C12, Bet-C13) we see step-wise
improvement from Pl-C0 to Pl-C13 (and from Bet-C0 to Bet-C13) from the
point of view of the investigated properties, see Table 1.

3 Unfortunately, after completion of this text, we have realized, that Lemma 4 and its
corollaries hold true only under a special condition; for correction see [11].
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Table 1. A comparison of properties of conflict measures and their components

property → Cont.Conf/NonCSmallVal BigVal Extens. Extension Refinement Refin.

measure ↓ distinguish. equal. Conf/NonCConf/NonC equal.

∅ (Diff P l P ) + - - +/- = = +/- / N.A. �=
cf + - - +/- = = C↔N/N.A. �=
P l-C - + - +/- �= C↔N (*) �=
Bet-C - + - +/- �= C↔N C↔N �=
P l-C11 + + +/- +/- �= C↔N (*) �=
Bet-C11 + + +/- +/- �= C↔N C↔N �=
P l-C12 + + +/- +/- �= C↔N (*) �=
Bet-C12 + + +/- +/- �= C↔N C↔N �=
P l-C13 + + +/- +/- = = + �=
Bet-C13 + + +/- +/- = = C↔N �=

Explanation:
+ property is satisfied,
- property is not satisfied / values are not acceptable,

+/- we can accept the values as an approximation of values of conflict,
C↔N conflicting pair of BFs may become a non-conflicting (and vice versa)

when resizing the frame of discernment,
(*) elements with maximal preprerence / opposition are the same,

nevertheless the property is not satisfied in general (cp and cb conflicts).
Further we have to note that:
”∅ (Diff Pl P )” is a Pl P version of cf (is has not been mentioned anywhere, it
is here just for a comparison of the properties);
each of Pl-C, Bet-C, Pl-C12, Bet-C12 have four variants (sm, sp, cp, cb according
to 4 variants of conflicting sets ΩPlC or ΩBetC);
Pl-C11, Bet-C11 suppose Ωord

PlC = ∅, Ωord
BetC = ∅, thus there are two variants of

each of them (sm and sp);
Pl-C13, Bet-C13 classify conflictness/non-conflictness according to max and max
but one values of Pl Pi, BetPi (there is the only variant analogous to sm but
not the same as 2–4 elements play their role here).

The conflict measures using Pl-C13 and Bet-C13 are also simpler in compari-
son with previous both theoretically and from the computational point of view.
Only a modified version of simple conflicting set is used there, hence there are
not four variants (sm, sp, cp, cb) and thus the computation is also simpler or
equal in comparison with the previous measures.

In the case of the series of the measures based on BetP , Bet-C using Bet-C13

is also improvement of Liu’s degree of conflict cf from the point of view all these
properties, whereas original version using Bet-C0 was improvement only from the
point of view better and clearer distinguishing of conflictness/non-conflictness
and using m∩© as upper bound, on the other hand continuity and robustness
with respect to an extension of a frame of discernment was lost.

When comparing Pl-C with Bet-C we have obtained a new argument in
favour of Pl-C, that is its keeping of conflictness/non-conflictness when a frame
of discernment is refined. The original arguments mentioned already in [10] are
better interpretation of Pl-C and its compatibility with Dempster’s rule based
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on commutativity of Pl P with Dempster’s rule [3,5]. It is also strengthened by
keeping zero/non-zero values by difP l P

mj
mi (a Pl P version of difBetP

mj
mi when

a frame of discernment is refined, see value ”+/- / N.A.” in ”∅” row of Table 1.

8 Open Problems and Ideas for a Future Research

Investigating and improving measures of conflicts of BFs we have met the fol-
lowing open problems:

– Pl-C13 does not use conflicting sets, there is no problem with BFs from
Example 1, thus there is a question whether it holds Pl-C13(Bel1, Bel2) ≤
(m1 ∩©m2)(∅) or not.

– Analogously whether it holds Bet-C13(Bel1, Bel2) ≤ (m1 ∩©m2)(∅) or not.
– To look for an alternative support/opposition of ω by a BF not depending

from resizement of a frame of discernment.
– Investigation of an idea to use Pl P or BetP for classification of conflictness/

non-conflictness only, and look for an appropriate distance of BFs (not trans-
formed to probabilities) to use it for determination of conflict of BFs which
were already classified as conflicting, i.e., which are in some positive conflict.
(This partial ”step back” may be either useful or a dead end procedure).

9 Conclusion

A series of gradual improvements of two measures of conflict between belief
functions, plausibility conflict Pl-C and pignistic conflict Bet-C, are presented
in this theoretical contribution. The measures are improved from the point of
view of their continuity and robustness with respect to resizing of a frame of
discernment: its extension and refinement. Bet-C is now a real improvement of
Liu’s degree of conflict cf .

Higher robustness of Pl-C with respect to frame refinement is a new argument
in favour of the measure based on normalised plausibility of singletons against
the measure based on Smets’ pignistic probability.

Improved conflict measures both increase our general understanding of the
nature of belief functions and can be applied in better combination of conflicting
belief functions in numerous applications of the real world.
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Abstract. Over the years, inconsistency management has caught the at-
tention of researchers of different areas. Inconsistency is a problem that
arises in many different scenarios, for instance, ontology development or
knowledge integration. In such settings, it is important to have adequate
automatic tools for handling potential conflicts. Here we propose a novel
approach to belief base consolidation based on a refinement of kernel
contraction that accounts for the relation among kernels using clusters.
We define cluster contraction based consolidation operators as the con-
traction by falsum on a belief base using cluster incision functions, a
refinement of (smooth) kernel incision functions. A cluster contraction-
based approach to belief bases consolidation can successfully obtain a be-
lief base satisfying the expected consistency requirement. Also, we show
that the application of cluster contraction-based consolidation operators
satisfy minimality regarding loss of information and are equivalent to
operators based on maxichoice contraction.

Keywords: Inconsistency Management, Belief Consolidation, Minimal
Loss of Information.

1 Introduction

Inconsistency management is admittedly an important problem that has to be
faced, e. g., when knowledge provided by different users is expected to be ex-
ploited by a reasoning process. Although the integrated knowledge may be in-
consistent, it is obvious there is still value in that information even in the presence
of (potential) conflicts, and it is highly possible the existence of information that
is not related and/or affected by those conflicts. Consider the following simple
example that we use in the rest of the paper as the running example.

Suppose that we are gathering information about sports activities of early
alumnus of a college and some official records have been lost. We are particularly
interested in several remarkable students for which we wish to compile their
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doings and achievements in the college. As the first step for this activity we ask
for help from staff and faculty members; for a particular alumni, called Martin,
we obtain the following information from three different people that were in the
college at the same time as Martin:

� Staff member S1 tells us Martin used to play soccer, and he thinks he re-
members he also coached the school’s basketball team; let’s denote the first
proposition with p and the second with q .

� P.E. professor S2, who used to be one of Martin’s college mates, states that
he thinks Martin used to play in the basketball team; we will refer to this
proposition as r.

� An old class mate of Martin is not sure but she remembers the soccer team
used to be very proud and demanding at that time, so definitely if Martin
played soccer he did not play basketball; let this be proposition s.

We have not yet provided a formal definition of consistency, however, it is
rather intuitive that it is not possible for all these statements to hold together.
Several important approaches used to address the handling of inconsistency had
been proposed in Artificial Intelligence (AI), specially in the areas of belief re-
vision and argumentation. In particular, belief revision deals with the general
problem of the dynamics of knowledge, i.e., how belief states change and evolve
through time, solving possible inconsistencies in the process. One particular way
to deal with the above situation is to try to modify the information contained
in the knowledge base as little as possible in order to make it consistent; this
is known as knowledge consolidation in the belief revision community. In this
work, we define consolidation operators that takes an inconsistent belief base
and apply special functions, called incisions functions, so that inconsistencies
are resolved. The main contributions of this paper are:

– We first analyze a class of consolidation operators based on kernel contrac-
tion [11,12]; these operatorsmake incisions on the minimal conflictive subsets
of the inconsistent belief base. In Section 3 we demonstrate the operators’ be-
havior and show there are cases in which such operatorsmay not yieldminimal
loss of information; we also show that this problem arises from treating incon-
sistency in a localizedway, isolatingminimal conflicting sets in the consistency
restoration process.

– In order to prevent unnecessary loss of information, we develop an alternative
and novel class of consolidation operators, called cluster contraction-based
consolidation operators ; these operators aim to address conflicts globally by
means of the use of clusters [18] instead of minimal conflictive sets.

– In Section 4, we show that cluster incision functions are refinements of
smooth kernel incision functions [11], therefore the application of cluster
contraction-based consolidation operators produces in general, the deletion
of a smaller number of formulæ from the original knowledge base than any
smooth kernel contraction-based operators would produce.

– Finally, in Section 5 we show that cluster incision functions satisfy the min-
imality requirement regarding loss of information and we conclude that a
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consolidation operator is a cluster contraction-based consolidation operator
if and only if it is a maxichoice contraction-based consolidation operator,
completing in this way the spectrum of possibilities arising from the treat-
ment of inconsistency by means of minimal conflicts.

2 Preliminaries

We begin by introducing the notation necessary for our presentation and the
required concepts that will be used throughout the paper. Also, we present the
research context of belief change theory from which revision operators had arisen.

We assume a propositional language L built from a set of propositional sym-
bols P . This language is closed under the classical propositional logic symbols
¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (equiv-
alence). We denote propositional letters using lower-case Latin letters, possibly
using subscripts (e. g., a, b, c, a1, a2) and propositional formulæ using lower-case
Greek letters, possibly using subscripts (e. g., α, β, γ, α1, α2); but, we reserve ρ
and � to represent incision functions.

An interpretation is a total function from P to {0, 1}, and the set of all
interpretations is denoted with W . An interpretation ω ∈ W is a model of a
formula α iff it makes α true in the classical way, denoted with ω |= α. The set
of all models of a formula α is denoted with mods(α), i.e., mods(α) = {ω ∈
W | ω |= α}. Finally, & stands for the usual deduction relation on propositional
logic, and ⊥ stands for an arbitrary contradiction.

We assume finite sets of propositional formulæ {α1, α2, . . . , αn}, which are
called belief bases and are denoted with upper-case Latin letters, usually K . We
extend the notion of models of a formula to sets of formulæ in the natural way,
i.e., mods(K ) = {ω ∈ W | ω |= α for all α ∈ K}. Additionally, KL denotes the
set of every belief base K containing formulæ in L. Finally, a consistent belief
base K must have at least one model; formally, we say that K is consistent iff
mods(K ) �= ∅. Also, K is inconsistent iff K is not consistent.

The work of Alchourrón, Gärdenfors and Makinson where the AGM model is
presented [1], is currently considered the cornerstone from which belief change
theory has evolved (see [19]). In the AGM model, three basic change operators
are defined; these can be defined over a knowledge base K as follows: the result
of expanding K by a sentence α is a possibly larger set that infers α, the result of
contracting K by α is a possibly smaller set that does not infer α, and finally, the
result of revising K by α is a set K ′ that infers α and possibly neither extends
nor is part of the set K . In particular, if K infers ¬α then the result of the revi-
sion of K by α is a consistent set K ′ that infers α. AGM provides an axiomatic
characterizations of contraction and revision in terms of rationality postulates.
AGM contractions can be realized by partial meet contractions, which are based
on a selection among (maximal) subsets of K that do not imply α (the input
sentence). Particular cases of partial meet contractions are full meet contrac-
tions and maxichoice contractions. The former stands for an approach that is as
cautious as possible (i.e., only retaining formulæ that belong to every maximal
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consistent subset), while the latter has the desirable property that it minimizes
the loss of information, in the sense that it preserves as most formulæ as possi-
ble, since basically it selects one among all maximal consistent subsets. Another
possible approach for contraction is based on a selection among the (minimal)
subsets of K that contribute to make K imply α; kernel contraction [11] is one of
such approaches and it is known to be more general than partial meet contrac-
tion, and hence to the AGM approach to contraction [11,12]. Finally, Hansson
presents a refinement of kernel contraction, known as smooth kernel contrac-
tion, that aims to solve a problem attached to the generality of the former, as
sometimes kernel contraction may produce unnecessary deletions.

In this work we focus on a different belief change operation called consolida-
tion; this operation is inherently different from contraction and revision as the
ultimate goal of consolidation is to obtain a consistent belief base rather than
revising the knowledge base by a specific formula or removing a particular for-
mula from it. A natural way of achieving this is to take an inconsistent belief
base and restore its consistency by attending every conflict in it, a process that
is known in the belief revision literature as contraction by falsum [10].

3 Kernel and Cluster Contraction-based Belief Base
Consolidation

The work of Hansson in [11] describes how a contraction operation on belief
bases can be modeled by defining incision functions. These functions contract
a belief base, by a formula α by taking minimal sets that entail α (called α-
kernels) and producing “incisions” on those sets so they no longer entail α. The
resulting belief base is formed by the union of all formulæ that are not removed
by the function. This approach is known as kernel contraction.

Here, we define the consolidation process as the application of incision func-
tions over the minimal inconsistent subsets of a belief base. Following the termi-
nology proposed by Hansson [11] we will call such sets ⊥-kernels, or kernels for
short; in the following we recall the formal definition from [11].

Definition 1 (Kernels). Let K be a belief base. The set of kernels of K , de-

noted K⊥⊥⊥, is the set of all X ⊆ K such that mods(X) = ∅ and for every
X ′ � X it holds that mods(X ′) �= ∅.

Example 1. Consider the inconsistent belief base K = {a, b → ¬a, b, c,¬c, d}.
For K we have two kernels: K⊥⊥⊥ = {κ1, κ2}, with κ1 = {a, b → ¬a, b} and
κ2 = {c,¬c}. As expected by the definition of kernels, if we remove at least one
formula from them, the result is consistent.

Once the set of kernels is identified, we need to establish how the inconsis-
tencies are to be resolved. A kernel incision function takes a set of kernels and
selects formulæ in them to be deleted from K [11].
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Definition 2 ((Smooth) Kernel Incision Function). Let K be a belief base

and K⊥⊥⊥ be the set of kernels for K . A kernel incision function is a function
ρ : 2KL �→ KL such that the following conditions hold:

– ρ(K⊥⊥⊥) ⊆
⋃
(K⊥⊥⊥), and

– for all X ∈ K⊥⊥⊥, if X �= ∅ then (X ∩ ρ(K⊥⊥⊥)) �= ∅.

A kernel incision function ρ is said to be smooth if and only if for all X ⊂ K

such that X & β and β ∈ ρ(K⊥⊥⊥), we have then X ∩ ρ(K⊥⊥⊥) �= ∅.

The second condition on Definition 2 requires from the incision function to select
at least one formula to be deleted from every kernel. An incision function may
remove several formulæ from a kernel; however, note that given the minimality
of kernels, removing only one formula from each kernel suffices to restore its con-
sistency. The last condition ensures that a kernel incision function is smooth [11].
Smoothness is characterized by the relative closure postulate [11] that aims to
retain as much from the original knowledge base as possible; it states that the
result of contracting a knowledge base K must contain those of its own logical
consequences that are also elements of K . Intuitively, smoothness captures the
set of incisions that yield contractions that can be obtained by performing the
contraction by any incision function and then adding back the elements from K
that were unnecessarily dropped by the incision function.

Based on (smooth) kernel incision functions we define kernel contraction-based
belief consolidation operators as follows.

Definition 3 (Kernel Contraction-based Consolidation Operator). Given

belief base K , let K⊥⊥⊥ be the set of kernels for K and ρ a kernel incision
function. A kernel contraction-based consolidation operator Υρ for K is defined
as:

Υρ(K ) = K \ ρ(K⊥⊥⊥)
Furthermore, if ρ is a smooth kernel incision function then Υρ is a smooth kernel
contraction-based consolidation operator.

Note that operator Υρ(·) is parameterized by the incision function ρ; the result
of applying such operator will be a consistent belief base since every conflict is
attended to by the kernel incision function. However, if we strive for minimal
loss of information (as it is usually assumed in the management of inconsistent
information), then this operator defined as it is, has the important drawback of
solving conflicts locally to every kernel; even if the function only removes one
formula from each kernel, the incisions may be too drastic from a global point of
view and the operator might end up giving up more formulæ than the ones that
are absolutely necessary. To see this problem, consider the following example:

Example 2. Consider K = {p, q, r, p → ¬r,¬(q ∧ r)}. This KB comes from our
running example, regarding Martin’s sports activities. The fourth proposition
corresponds to proposition s. Furthermore, we have added one more proposition,
namely ¬(q ∧ r); it is common sense to assume that it is not possible for the
same person to be both a player and the coach of a basketball team. Clearly, K
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is inconsistent. As we want to obtain a consistent belief base, we will apply a
kernel contraction-based consolidation operator. For belief base K we have that

K⊥⊥⊥ = {κ1, κ2}, where κ1 = {p, r, p→ ¬r} and κ2 = {q, r,¬(q ∧ r)}.
The following table shows all possible incision functions that delete exactly

one formula for each kernel (other incisions are possible deleting more than one
formula from each kernel):

Possible Kernel Incision Functions

ρ(κ1) = {p} and ρ(κ2) = {q} ρ(κ1) = {p} and ρ(κ2) = {r}
ρ(κ1) = {p} and ρ(κ2) = {¬(q ∧ r)} ρ(κ1) = {r} and ρ(κ2) = {q}

ρ(κ1) = {r} and ρ(κ2) = {r} ρ(κ1) = {r} and ρ(κ2) = {¬(q ∧ r)}
ρ(κ1) = {p → ¬r} and ρ(κ2) = {q} ρ(κ1) = {p → ¬r} and ρ(κ2) = {r}

ρ(κ1) = {p → ¬r} and ρ(κ2) = {¬(q ∧ r)}
All the above possibilities restore consistency in K , but clearly there are

some choices that are better with respect to the amount of information lost
in the process. For instance, suppose we choose the functions that perform the
following incisions ρ(κ1) = {r} and ρ(κ2) = {q}; we then have that: Υρ(K ) =

K \ ρ(K⊥⊥⊥) = K \ {q, r}. As we can see, for κ2 we have deleted q from K in
order to solve the conflict. However, this is not actually necessary, as r (i.e., the
proposition that says that Martin played at the school’s basketball team) will
not be in the final belief base anyway, since it is deleted to solve the conflict in
κ1, and thus the conflict in kernel κ2 is already resolved, that is there is no need
to further remove propositions from κ2. The reason behind this choice is that a
kernel contraction-based operator solves conflicts locally to the kernels and there
is no mechanism in its definition to consider any interaction among them.

Clearly, it is possible to address the problem described above by analyzing
all possible incisions and computing the combination that makes the best choice
globally. However, this would involve traversing the (possibly) enormous search
space of all possible incision functions; in the following we present an approach
that avoids this by contemplating only incisions that are globally optimal with
respect to the amount of information loss. The proposal is based on the use
of clusters, first introduced in [18] and further analyzed as a foundation for
inconsistency management in [16,17]. This construction will allow us to have
a more global vision of conflicts, and, as we shall see latter, will also have a
direct impact on the consolidation process. Clusters are obtained by defining an
overlapping relation among kernels.

Definition 4 (Overlapping Kernels, Equivalence). Let K be a belief base,

and K⊥⊥⊥ be the set of kernels for K . Given kernels κ1, κ2 ∈ K⊥⊥⊥ we say
they overlap, denoted κ1θκ2, iff for some α ∈ κ1 and β ∈ κ2 it holds that
α |= β. Furthermore, we denote as θ∗ the equivalence relation obtained over

K⊥⊥⊥ through the reflexive and transitive closure of θ.

Example 3. Consider a belief base K such that K⊥⊥⊥ = {κ1, κ2} where κ1 =
{a,¬a ∧ ¬b} and κ2 = {b ∨ a,¬a ∧ ¬b}. Clearly: κ1θκ2, as ¬a ∧ ¬b |= ¬a ∧ ¬b.
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As another example of overlapping, consider belief baseK ′ such that K ′⊥⊥⊥ =
{κ1, κ2, κ3} where κ1 = {a ∧ b,¬b}, κ2 = {a,¬a} and κ3 = {a ∧ b,¬a}. Then, it
holds that for instance κ1θκ2 because a ∧ b |= a.

Below, we recall the notion of clusters, that formalizes the way in which conflicts
will be structured; intuitively, a cluster groups together kernels that stand for
related conflicts, in a transitive way.

Definition 5 (Clusters [18]). Let K be a belief base, K⊥⊥⊥ be the set of
kernels for K , and θ the overlapping relation. A cluster of K is a set ς =

⋃
κ∈[κ] κ,

where [κ] ∈ K⊥⊥⊥/θ∗. We use K⊥⊥⊥⊥ to denote the set of all clusters for K .

Example 4. Consider a belief base K such that K⊥⊥⊥ = {κ1, κ2, κ3}, with κ1 =
{α, β}, κ2 = {β, γ}, and κ3 = {δ, ε}. Then, we have the following set of clusters

K⊥⊥⊥⊥ = {ς1, ς2}, where ς1 = {α, β, γ} and ς2 = {δ, ε}. Note that, κ3 does

not overlap with any other kernel in K⊥⊥⊥, but [κ3] ∈ K⊥⊥⊥/θ∗ is such that
[κ3] = {κ3}, then it constitutes a cluster in itself (i.e., ς2 = {δ, ε}).
The use of clusters instead of kernels can help in preventing situations like the
one in Example 2 since the cluster structure allows us to identify kernels that
overlap; thus, we can contemplate incisions that make global considerations of
optimality. Moreover, the proposed notion of overlapping helps to identify only

useful clusters. To see this consider belief base K ′′ such that K ′′⊥⊥⊥ = {κ1, κ2}
where κ1 = {a∧b,¬b∧¬c} and κ2 = {b∧c,¬b∧¬d}. Formulæ a∧b and b∧c share
models, however they do not overlap under Definition 4. Considering these two
kernels together does not help in improving the consistency restoration process
as, for instance, the removal of a ∧ b does not resolve the conflict in κ2. We
have chosen to not consider these cases as overlaps in this work, but clearly this
decision depends directly on the way conflicts are allowed to be resolved; for a
consistency restoration technique not based on deleting entire formulæ from the
clusters a different notion of overlapping could prove more useful.

Remember that by design the simple removal of any single formula within
a kernel makes the set no longer inconsistent; however, this is not necessarily
the case for clusters [16]. Therefore, in order to define incision functions over
clusters, we cannot simply reuse Definition 2, as the following example shows.

Example 5. Continuing with Example 4, consider a kernel incision function ρ

and the cluster ς1 ∈ K⊥⊥⊥⊥. We could have, for instance, that ρ(ς1) = {α}.
Then, the intersection between the cluster and the result of the incision function
is non empty and the selected formula belongs to the union of clusters, fulfilling
the conditions on the definition of kernel incision functions, but the inconsistency
remains as κ2 = {β, γ} still is an inconsistent set.

We now introduce cluster incision functions; these functions are refinements of
the ones introduced earlier in the paper.

Definition 6 (Cluster Incision Function). Let K be a belief base and K⊥⊥⊥
and K⊥⊥⊥⊥ be the set of kernels and clusters for K , respectively. A cluster inci-
sion function is a function � : 2KL �→ KL such that:
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– �(K⊥⊥⊥⊥) ⊆
⋃
(K⊥⊥⊥⊥), and

– for all X ∈ K⊥⊥⊥⊥ and Y ∈ K⊥⊥⊥ such that Y ⊆ X it holds that for some

α ∈ Y , Y ∩ �(K⊥⊥⊥⊥) = {α}.
From Definition 6, we have that for any kernel Y included in some cluster X in
a belief base a cluster incision function selects exactly one formula to remove,

(i.e., {Y ∩�(K⊥⊥⊥⊥)} is a singleton). Now, based on cluster incision functions we
define a new operator, namely cluster contraction-based consolidation operator.

Definition 7 (Cluster Contraction-based Consolidation Operator). Given a

belief base K , let K⊥⊥⊥ and K⊥⊥⊥⊥ be the set of kernels and clusters for K ,
respectively, and � be a cluster incision function. A cluster contraction-based
operator Ψ� for K is defined as follows:

Ψ�(K ) = K \ �(K⊥⊥⊥⊥)
The last condition in Definition 6 ensures that all conflicts are resolved once
we delete the selected formulæ. Example 6 shows the behavior of a cluster
contraction-based operator Ψ� over the belief base K from Example 2.

Example 6. Consider once again belief base K from Example 2; we have the fol-

lowing set of clusters K⊥⊥⊥⊥ = {ς1}, with ς1 = {p, q, r, p→ ¬r,¬(q∧r)}, because
r belongs to both kernels in K⊥⊥⊥; thus, r |= r. For a cluster contraction-based
operator Ψ� based on a cluster incision function �, we have the following possible
incisions, narrowing the previous ones shown in Example 2:

Possible Cluster Incision Functions

�(ς1) = {p, q} �(ς1) = {p,¬(q ∧ r)}
�(ς1) = {r} �(ς1) = {p → ¬r, q}

�(ς1) = {p → ¬r,¬(q ∧ r)}

Consider option �(ς1) = {p, q}. Thus, Ψ�(K ) = K \ �(K⊥⊥⊥⊥) = K \ {p, q}.
Note that, even if we prefer proposition r over proposition q, the minimal loss
of information principle is still fulfilled, as the non-minimal options in Example
2 are not even considered by any cluster incision function. For example, if we
were to choose r for deletion then to also choose q (i.e., the option considered in
Example 2) is no longer a viable option for a cluster incision function, as if we

choose both formulæ then the set �(K⊥⊥⊥⊥) ∩ κ2 will no longer be a singleton
set, violating the second condition from Definition 6.

Proposition 1 shows that the consistency restoration process based on cluster
contraction fulfils the consistency requirement.

Proposition 1. Let K be a belief base, and Ψ� be a cluster contraction-based
consolidation operator. Then, mods(Ψ�(K )) �= ∅.
For space reasons we do not include the proof of results. The formal proof for
Proposition 1 relies on the fact that, by definition, cluster incision function select
one formula for every kernel that composes every clusters, effectively resolving
the inconsistency for each one since kernels are minimal inconsistent sets.
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4 Relationship with Kernel Contraction-Based
Consolidation

In the previous section we introduced an approach for belief base consolidation
that works as a refinement of the approach based on kernel contraction. In this
section we focus on the relationship between (smooth) kernel contraction-based
consolidation and cluster contraction-based consolidation. Specifically, we seek
to establish this relationship from the point of view of loss of information.

We first show that cluster incision functions are refinements of kernel incision
functions, that is, we have that every cluster contraction-based consolidation
operators is also a kernel contraction-based one.

Proposition 2. Let Ψ� be a cluster contraction-based consolidation operator.
Then, Ψ� is a kernel contraction-based consolidation operator.

To prove that Ψ� is a kernel contraction-based merging operator it is enough
to show that cluster incision functions are also kernel incision functions; if we
consider the tables in Examples 5 and 6 showing all possible kernel and cluster
incisions, respectively, we can see that every possible cluster incision is indeed
a kernel incision. The converse from Proposition 2 does not hold, as kernel inci-
sion functions are not necessarily cluster incision functions, since the former not
always satisfy the last condition from Definition 6 as we illustrate below.

Example 7. Consider belief base K from Example 2 and suppose we have

Υρ(K ) = K \ ρ(K⊥⊥⊥) = K \ {q, r}. The kernel incision function that gives rise
to this operator performs the following incisions: ρ(κ1) = {r} and ρ(κ2) = {q}.
Note that ρ is not a valid cluster incision function since |κ2∩ρ(K⊥⊥⊥⊥)| = {q, r},
i.e., |κ2 ∩ ρ(K⊥⊥⊥⊥)| > 1. Furthermore, it is not possible for any valid cluster
incision function to yield this result.

As hinted by Examples 2 and 6, a benefit of using cluster-based consolidation
operators over (smooth) kernel-based ones is that unnecessary deletions can be
avoided by clustering conflicts. The characteristics of the choices made by cluster
incision functions have an important impact on the number of formulæ deleted:
we can show that for any kernel contraction-based consolidation operator there
is a cluster contraction-based one that removes at most the same number of
formulæ than the former; the following proposition formalizes the result.

Proposition 3. Let K be a belief base. Then, for any kernel contraction-based
consolidation operator Υρ over K there exists a cluster contraction-based consol-
idation operator Ψ� over K such that Υρ(K ) ⊆ Ψ�(K ).

Above, we have shown that cluster-based operators are refinements of “pure”
kernel contraction-based ones. We can shown that cluster incision functions re-
fines smooth incision functions as well, and hence the operators based on them.

Proposition 4. If Ψ� is a cluster contraction-based consolidation operator, then
Ψ� is a smooth kernel contraction-based consolidation operator.
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The converse of Proposition 4 does not hold; consider the following example.

Example 8. Consider a belief base K = {p, q, r, p→ ¬q, p→ ¬r}. We have that

K⊥⊥⊥ = {κ1, κ2} where κ1 = {p, q, p → ¬q} and κ2 = {p, r, p → ¬r}}, and
thus ⊥⊥⊥(K ) = {ς1} where ς1 = {p, q, r, p → ¬q, p → ¬r}. Now, consider an

incision function ρ(K⊥⊥⊥) = {p, r}. We can see that ρ satisfies smoothness (cf.

Def. 2). However, we have that ρ(K⊥⊥⊥) ∩ κ2 is not a singleton. Then, ρ is not
a cluster incision function. Note that, once we choose to remove p from K , it is
unnecessary to remove r, and any valid cluster incision function will avoid that.

From the previous example we can conclude that smooth incision functions,
although a proper refinement of kernel incision functions, can still produce un-
necessary loss of information. In the next section we characterize a notion of
optimality of incision functions and position our proposal with respect to AGM-
based approaches to consolidation.

5 Connection with Maxichoice Contraction-Based
Consolidation

In this section we further analyze cluster incision functions and the consoli-
dation operators based on them; particularly, we focus in the relationship with
maxichoice contraction-based consolidation, as maxichoice contractions [1] are as
conservative as possible. Maxichoice contraction is based on the use of selection
functions that select one among all possible maximal consistent subsets of the
knowledge base. Maxichoice contraction-based consolidation operators are those
based on maxichoice contraction in the same manner as the operators defined
previously. To formally characterize optimality of incision functions, we recall
the notion of minimality from [9] and adapt it for cluster incision functions.

Definition 8 (Minimality). An incision function � for a belief base K is min-

imal if no proper subset of �(K⊥⊥⊥⊥) defines an incision function.

Next we show that cluster incision functions are minimal.

Proposition 5. Let � be an incision function. Then, � is a cluster incision
function iff it is a minimal incision function.

The proof for Proposition 5 is based on the fact that for every cluster X ∈
K⊥⊥⊥⊥ such that X ∩ �(K⊥⊥⊥⊥) = A no proper subset of A in itself restores
consistency, and hence no subset of it gives raise to a proper incision function.

The relationship between selection and incision functions was previously an-
alyzed in [9]. As noted there, minimality of incision functions corresponds to
maximality of contraction; a direct result of this is the following proposition.

Proposition 6 (adapted from [9]). Let � be an incision function, Ψ� be its
associated consolidation operator and K a belief base. Then, � is a minimal
incision function iff there exists H ⊆ K such that H = K \ Ψ�(K ) where (1) H
is consistent, and (2) there is no H � H ′ � K such that H ′ is consistent.
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Proposition 6 states that there is a one-to-one correlation between maximal
consistent subsets of a K and minimal incision functions. More specifically, the
result in [9] shows that any kernel contraction-based on minimal incision func-
tions is a maxichoice contraction. The proof in [9] can be slightly modified for
our setting; intuitively the validity of this result relies on the fact that if there is
a subset H of K that is maximally consistent, then adding any further formulæ
will make it inconsistent, thus, any incision � such that �∩K = H must be min-
imal; if this were not the case then there would exist a subset �′ � � such that
K \ �′ is consistent, and therefore H would not be maximally consistent since
K \H � K \ �′. Conversely, if an incision � is minimal then it generates a max-
imally consistent subset because no proper subset of � is an incision function,
i.e., for any A � � it holds that K \A is inconsistent.

Although Falappa et al. elaborate on the relationship between kernel and
maxichoice contractions further, no class of incision functions satisfying mini-
mality (thus corresponding to maxichoice contractions) is identified. As a corol-
lary of the previous results we can conclude that our approach is equivalent
to consolidation through maxichoice contraction, but arising from minimal in-
cision functions, which means that operators retain as much information as
possible.

Corollary 1. Ψ� is a cluster contraction-based consolidation operator iff Ψ� is
a maxichoice contraction-based consolidation operator.

Discussion. Corollary 1 completes the spectrum of possibilities arising from
the treatment of minimal conflicts. Nevertheless, it is important to note that,
although our approach is equivalent to consolidation through maxichoice con-
traction in terms of the final belief base obtained, there is still importance in the
difference in how this belief base is obtained. While maxichoice operators have
to deal with maximal consistent subsets, ours deal with minimal inconsistent
ones. There is an interesting ongoing discussion about which approach is better.
In [20] examples are shown that indicate that for some instances it is faster to use
kernel contraction while for others it is faster to use partial meet (or maxichoice)
contraction. As noticed in [20], whether it is possible to detect when it is better
to use one or the other method is still an open problem. It can be argued that
the final choice will depend on the application environment and the language
selected; clearly, different needs from the point of users prompt choosing one
approach over the other. As an example, consider the setting from [17], where
knowledge bases are relational databases considered together with functional de-
pendencies, there it is possible to efficiently (polynomial time in the number of
tuples in the database, assuming a fixed schema) compute and maintain the set
of clusters by means of indexes; alternatively, in such setting an inconsistency
management approach based on the manipulation of maximal consistent subsets
(other than simply computing one of them) would require higher computational
effort and possibly the utilization of tools outside the DBMS.
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6 Related Work

The problem of inconsistency handling has been addressed differently over the
years in diverse environments, e. g., relational databases, propositional knowl-
edge bases or fragments of first order logics such as logic programming.

As stated in the introduction, the area of Belief Revision has undoubtedly
produced great advances in the handling of inconsistencies. Particularly, the work
by Hansson [11] is the foundation and inspiration for this paper. More recently,
the work in [13] presents an approach for merging belief bases, stemming from
inconsistency minimization, which removes exactly one formula in each minimal
inconsistent subset of formulas. As shown, to remove one formula from minimal
inconsistent sets may not be sufficient to ensure that nothing is given up without
reason: it is still important how such formula is chosen, considering other minimal
inconsistent sets as well (cf. Examples 2 and 6). As shown in the paper, the
structure of cluster helps in such choice by only considering optimal incisions,
minimizing loss of information. In [8] an approach for revising a propositional
knowledge base by a set of sentences is presented, where every sentence in the
input set can be independently accepted but there may exist inconsistencies
when considering the whole set. The main difference between this work and ours
is that they first solve inconsistencies in the set of sentences, in this manner they
can decide which subset of it will characterize the revision. Furthermore, in our
approach no preponderance to particular formulæ is given in the process as our
proposal is based on consolidation instead of revision.

Also within Artificial Intelligence, the works by Baral et al. in knowledge bases
combination [3], Brewka’s preferred subtheories [7], and several other works on
entailment from inconsistent knowledge bases such as [4,5], are based on the
idea of selecting maximal subsets of the knowledge base (or the combination
of several ones) that are consistent w.r.t. a set the integrity constraints. All
of these approaches can be defined in the AGM framework as specific partial
meet contraction functions by adequately specifying the selection function. As
shown in the previous section, our operators are equivalent to operators based
on maxichoice contraction, a specific class of partial meet contraction.

In the area of Databases one of the most influential works is the one by Arenas
et al. [2] on Consistent Query Answering. Their treatment of inconsistencies does
not attempt to obtain a consistent database, instead, the consistent answers to
a query correspond to the set of (classical) answers to the query in every repair
of the inconsistent database, which are the consistent subsets (or supersets,
depending on the type of integrity constraints) of the original database that
differs minimally from it. Similar in spirit are some of the syntactic approaches
analyzed in [6]. Unlike our approach, these approaches can be seen as an “on the
fly” consistency restoration, guided for particular queries, targeting the subset
of the knowledge that matters for that query and not the whole knowledge base.

Finally, regarding the use of clusters the most closely related research to
the work presented here is the one by Lukasiewicz et al. [16]. There, the au-
thors define a general framework for inconsistency-tolerant query answering in
Datalog+/– ontologies based on the notion of incision functions. Besides the
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obvious difference in the language, the aims of their work and ours are clearly
different; their work follows the same idea of Arenas et al. [2], focusing on en-
forcing consistency at query time obtaining (lazy) consistent answers. Clearly,
this process must be carried on for every query posed to the system, while our
approach allows to obtain a new knowledge base that can be queried without
considering inconsistency issues. As usual the choice of one approach over the
other heavily depend on the application environment.

7 Conclusions and Future Work

In this paper we focus on an approach to consistency restoration (consolidation)
of belief bases defined on terms of belief base contractions [1]. We developed
a new class of belief consolidation operators, called cluster contraction-based
operators, based on incision functions that aims for a globally efficient conflict
resolution. The results show that a cluster contraction-based consolidation op-
erator do not only yields a consistent belief base, as expected, but also does it
satisfying minimality requirements regarding loss of information.

This family of operators are defined based on cluster incision functions. We
have shown that cluster incision functions are refinements of smooth kernel in-
cision functions, which implies that cluster contraction-based operators are at
least as efficient as (smooth) kernel contraction-based operators from the point
of view of minimal loss of information in the consolidation process. Furthermore,
we show that our operators are equivalent to consolidation operators based on
maxichoice contraction, completing the spectrum of possibilities for approaches
arising from the treatment of minimal conflicts. As recent findings indicates
[20], in some cases it is better to use kernel-based approaches, while in others
the contrary holds. Clearly, the choice of one approach over the other depend on
particular aspects of the application environment.

For future work, we plan to implement the different operators and perform
empirical trials over different scenarios. Also, in this first step towards the for-
malization of this new class of consolidation operators we have not considered
any form of ranking in the definition of the incision functions. In the future,
we plan to define entrenchment relations in terms of orderings among formulæ
based on generic measures, and to study the merits of extensions of cluster inci-
sion function to account for such orderings. Furthermore, we intend to analyze
the behavior of the operators for particular measures, for instance measures of
amount of information in a knowledge base in the presence of inconsistency
(e. g., [15]) and measures of the degree of inconsistency (as considered in [14]).
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Abstract. Abstract argumentation is nowadays a vivid field within artificial in-
telligence and has seen different developments recently. In particular, enrich-
ments of the standard Dung frameworks have been proposed in order to model
scenarios where probabilities or uncertain information have to be expressed. As
for standard approaches of abstract argumentation, a uniform logical formaliza-
tion for such frameworks is of great help in order to understand and compare
different approaches. In this paper, we take a first step in this direction and char-
acterize different semantics from the approach of Li et al in terms of probabilistic
logic. This not only provides a uniform logical formalization but also might pave
the way for future implementations.

1 Introduction

Within the last decade, abstract argumentation has emerged as a central field in Artifi-
cial Intelligence [2]. Hereby, it is only the relation between arguments which is taken
into account when evaluating a certain scenario; the actual contents of the arguments
do not play a role. The most simple objects used in abstract argumentation are Dung’s
argumentation frameworks (AFs) [6]. AFs are just directed graphs where vertices rep-
resent the arguments and edges indicate a certain conflict between the two connected
arguments. The goal is to identify jointly acceptable sets of arguments for which a
large selection of different semantics is available. One particular line of research in
abstract argumentation concerns the formalization of such argumentation semantics in
terms of logics, see e.g. [1,3,12,11,15]. Such formalizations not only provide a uniform
definition of the different semantics, they also can lay the foundations for efficient sys-
tems (see e.g. [4,9,25] where SAT-solvers are used to evaluate formulas of propositional
logic which express certain argumentation problems). Another benefit of logically char-
acterizing argumentation problems is the potential of direct derivation of important
properties (for example, complexity results based on characterizations in Monadic
Second-Order Logic are given in [8,10]).

For many applications, Dung’s AFs appear too simple in order to conveniently model
all aspects of an argumentation problem. One such shortcoming is the lack of handling
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levels of uncertainty, an aspect which typically occurs in domains, where diverging
opinions are raised. This calls for augmenting simple AFs with probabilities. Several
proposals have been recently made [7,17,20,24]. The most detailed overview is proba-
bly the article by Hunter [18].

As for standard abstract argumentation, a uniform logical formalization for AFs with
probabilities is of great help in order to understand and compare these different ap-
proaches. Not surprisingly, the most suitable logic for this purpose is probabilistic logic
[13,22]. In this paper, we want to take a first step towards such a unified view. Actually,
we focus here on the approach of Li, Oren and Norman [20]. Hereby, an argumentation
framework is enriched by probabilities assigned to both arguments and conflicts. These
probabilities are then used to calculate probabilities of subgraphs of the given AF via
the “independency” assumption. The probability for a given set S to be an extension
(with respect to a particular semantics) is obtained from the sum of the probabilities of
the subgraphs for which S is such an extension in the standard way. Our main goal is to
express this entire process by logical means.

More specifically, our main contributions are as follows:

– We start with propositional formulae which allow us to handle subgraphs of AFs in
a direct way. These encodings follow a different approach than the standard ones
from [3] and will be the basis for our characterizations in terms of probabilistic
logic.

– We build a probabilistic logic suitable for modelling probabilistic argumentation
frameworks. In order to define semantics for the logic, we characterize the class
of probability measures induced by the “independence” assumption. We apply the
probabilistic operators to the constructed propositional formulas in order to for-
mally represent the probabilities of different extensions.

– In particular, for a given set of arguments, we associate to an argumentation frame-
work a formula whose models correspond to probabilistic extensions of the frame-
work, under a given semantics. We also check if a set of arguments is acceptable
with a given probability (w.r.t. a given semantics) by checking satisfiability of the
corresponding formula.

2 Background

Dung’s Abstract Argumentation Frameworks. We first introduce (abstract) argumenta-
tion frameworks [6] and recall the semantics we study in this paper.

Definition 1. An argumentation framework (AF) is a pair F = 〈A,R〉 whereA is a set
of arguments and R ⊆ A × A is the attack relation. The pair (a, b) ∈ R means that a
attacks b. We say that an argument a ∈ A is defended (in F ) by a set S ⊆ A if, for each
b ∈ A such that (b, a) ∈ R, there exists a c ∈ S such that (c, b) ∈ R.

Semantics for argumentation frameworks are given via a function σ which assigns to
each AF F = 〈A,R〉 a set σ(F ) ⊆ 2A of extensions. We consider for σ the functions
stb, adm , com, grd and prf , which stand for stable, admissible, complete, grounded
and preferred extensions, respectively.
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Definition 2. Let F = 〈A,R〉 be an AF. A set S ⊆ A is conflict-free (in F ), if there are
no a, b ∈ S, such that (a, b) ∈ R. cf (F ) denotes the collection of conflict-free sets of
F . For a conflict-free set S ∈ cf (F ), it holds that

– S ∈ stb(F ), if, for all a ∈ A \ S, there exists a b ∈ S, such that (b, a) ∈ R;
– S ∈ adm(F ), if each a ∈ S is defended (in F ) by S;
– S ∈ com(F ), if S ∈ adm(F ) and for each a defended (in F ) by S, a ∈ S;
– S ∈ grd(F ), if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T .

We recall that for each AF F , the grounded semantics yields a unique extension, while
all other semantics might yield multiple extensions. The only semantics where an empty
set of extensions is possible, is the stable semantics.

Definition 3. A set S of arguments is consistent in an AF F w.r.t. a semantics σ if it is
a subset of an extension Γ ∈ σ(F ).

Example 1. Let F = 〈A,R〉, where A = {a, b, c, d} and R = {(a, b), (b, a), (b, c),
(d, c)}. Then:

– cf (F ) = {∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}};
– stb(F ) = {{a, d}, {b, d}};
– adm(F ) = {∅, {a}, {b}, {d}, {a, d}, {b, d}};
– com(F ) = {{d}, {a, d}, {b, d}};
– grd(F ) = {{d}};
– prf (F ) = {{a, d}, {b, d}}.

Thus, the set {b} is consistent in F w.r.t. to the stable, admissible, complete and pre-
ferred semantics, but it is not consistent w.r.t. grounded semantics; {a, b} is not consis-
tent w.r.t. any semantics, and {d} is consistent with respect to all the semantics.

Subgraphs of Argumentation Frameworks. Next, we provide a few definitions con-
cerned with subgraphs of AFs. The intuition of these subgraphs is to express possible
interpretations of the original AF F , whereby it is not sure that all arguments from F
(or all its attacks) actually belong to the framework.

Before making this concept formal, we need one definition. For an AF F = 〈A,R〉
and a set of arguments A′ ⊆ A, we denote by RA′ the restriction of the attack relation
R to A′ ×A′, i.e. RA′ = {(a, b) ∈ R | a, b ∈ A′}.

Definition 4. Let F = 〈A,R〉 be an AF. A subgraph G of F (in symbols G � F ) is
any pair 〈A′, R′〉 such that A′ ⊆ A and R′ ⊆ RA′ . We denote by s(F ) the set of all
subgraphs of F , i.e. s(F ) = {G | G � F}. A subgraph G = 〈A′, R′〉 of F is a full
subgraph of G (in symbols G �f F ) if R′ = RA′ . The set of full subgraphs of F is
denoted by fs(F ).

Remark 1. EveryA′ ⊆ A induces a unique full subgraph.
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Example 2. If F is the AF from Example 1, then fs(F ) = {F, 〈{a, b, c}, {(a, b), (b, a),
(b, c)}〉, 〈{a, b, d}, {(a, b), (b, a)}〉, 〈{a, c, d}, {(d, c)}〉, 〈{b, c, d}, {(b, c), (d, c)}〉,
〈{a, b}, {(a, b), (b, a)}〉, 〈{a, c}, ∅〉, 〈{a, d}, ∅〉, 〈{b, c}, {(b, c)}〉, 〈{b, d}, ∅〉, 〈{c, d},
{(d, c)}〉, 〈{a}, ∅〉, 〈{b}, ∅〉, 〈{c}, ∅〉, 〈{d}, ∅〉, 〈∅, ∅〉}.

Subgraphs are obtained by the full subgraphs by deleting any set of attacks. For ex-
ample, 〈{a, b, c}, {(a, b), (b, c)}〉 ∈ s(F ), and 〈{a, b, c}, {(a, b), (b, c), (c, b)}〉 �∈ s(F ).

Given a potential extension Γ we are now able to use the concept of subgraphs in
order to determine which subframeworks of a given AF are having Γ as its extension.
This will serve as a basis for probabilistic AFs which we introduce later in Section 3.

Definition 5. Let F = 〈A,R〉 be an AF, Γ ⊆ A, and σ a semantics. The set of sub-
graphs of F for which Γ is a σ-extension is denoted by

Qσ
F (Γ ) = {G ∈ s(F ) | Γ ∈ σ(G)}.

Likewise, we define Qσ
F,f(Γ ) = Qσ

F (Γ ) ∩ fs(F ) as the set of full subgraphs of G for
which Γ is a σ-extension.

Example 3. Let F be the AF from Example 1, and let Γ = {a, c}. Considering the
preferred semantics, we have:

Qprf
F (Γ ) = { 〈{a, b, c}, {(a, b), (b, a), (b, c)}〉, 〈{a, b, c}, {(a, b), (b, c)}〉,

〈{a, b, c}, {(a, b), (b, a)}〉, 〈{a, c}, ∅〉};
Qprf

F,f(Γ ) = { 〈{a, b, c}, {(a, b), (b, a), (b, c)}〉, 〈{a, c}, ∅〉}.

Finally, analogous concepts can be defined for the weaker notion of consistency.

Definition 6. Let F = 〈A,R〉 be an AF, Γ ⊆ A, and σ a semantics. The set of sub-
graphs of F for which Γ is consistent w.r.t. σ is denoted by

Cσ
F (Γ ) = {G ∈ s(F ) | Γ is consistent in G w.r.t. σ}.

Likewise, we define Cσ
F,f (Γ ) = Cσ

F (Γ ) ∩ fs(F ).

Probability measures and distributions. Let S be a nonempty set, and let A be an
algebra of subsets of S, i.e., a set of subsets of S such that (i) S ∈ A, (ii) ifH1, H2 ∈ A,
then Hc

1 ∈ A and H1 ∪H2 ∈ A.
A finitely additive probability measure is a function Pr : A −→ [0, 1], such that the

following equations hold:

1. Pr(S) = 1,
2. Pr(H1 ∪H2) = Pr(H1) + Pr(H2), wheneverH1 ∩H2 = ∅.

The triple (S,A, Pr) is called a probability space, and elements of A are called mea-
surable sets. For any probability measure Pr and H,H ′ ∈ A such that Pr(H) > 0, the
conditional probability Pr(H ′|H) is defined in the usual way, i.e.

Pr(H ′|H) =
Pr(H ′ ∩H)

Pr(H)
. (1)
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It is known that the function Pr(·|H) is also a probability measure. In this paper, we
will denote the induced measure Pr(·|H) by PrH . For a finite set S, a probability
distribution is any function p : S −→ [0, 1] such that

∑
s∈S

p(s) = 1.

Each probability distribution p on a finite set S induces a function Pr on the set
of all subsets of S, Pr(H) =

∑
s∈H p(s), which is a (finitely additive) probability

measure. Also, any probability measure Pr on the power set of S induces a distribution
p(s) = Pr({s}) (i.e. on finite sets “measures=distributions”).

Probabilistic logic. Probabilistic logic can be understood as a tool for reasoning with
unreliable, incomplete or imprecise knowledge, where the uncertainty of the premises
is expressed by qualitative or quantitative probabilistic statements. The typical form
of the qualitative statement is “α is more probable than β”, and the typical form of
the quantitative probabilistic statements is “the probability of α is at least r”. In this
paper, we suppose that (non-probabilistic) knowledge is represented by propositional
formulas. We will use the probabilistic operators P≥r from the papers [22,23].

Suppose that that P is a set of propositional letters and ForP the corresponding
set of propositional formulas. The set of probabilistic formulas is built over the set of
propositional formulas ForP .

Definition 7. If α ∈ ForP and r ∈ [0, 1], then P≥rα is a basic probabilistic formula.
The set of probabilistic formulas is the smallest set containing the basic probabilistic
formulas, closed under boolean connectives.

We can also formally introduce other types of inequalities from the basic formulas,
as abbreviations: P<rα is ¬P≥rα, P≤rα is P≥1−r¬α, P>rα is ¬P≤rα and P=rα is
P≥rα ∧ P≤rα.

For instance, P=0(α ∧ β) → P� 1
2
β, is read as “If the probability of α ∧ β is zero,

then the probability that β holds is at most one half.” There are also various more
complex logical languages, which can formalize higher order probabilities, conditional
probabilities or qualitative probabilities.

The notion of satisfiability of a propositional formula α ∈ ForP under a valuation
v : P −→ {�,⊥} (v |= α) is introduced in the standard way. Semantics of probabilistic
logic consists on probability measures μ on sets of valuations. The class of measurable
sets is (or, alternatively, includes) the set {[α] | α ∈ ForP}, where [α] = {v | v |= α}.
In the following definition, we take conjunction and negation as primitive connectives.

Definition 8. The satisfiability of a probabilistic formulas is defined recursively, as
follows:

– μ |= P≥rα iff μ([α]) � r,
– μ |= ¬α iff μ �|= α,
– μ |= α ∧ β iff μ |= α and M |= β.
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3 Probabilistic Argumentation Frameworks

We start with an overview of [20] and [18].

Definition 9. A probabilistic argumentation framework (PAF)Fpr is a tuple 〈A,R, PA,
PR〉, where 〈A,R〉 is an argumentation framework, PA : A −→ (0, 1] and PR : R −→
(0, 1].

The intuition hereby is as follows: for a ∈ A, PA(a) is the probability that a belongs
to an arbitrary subgraph of 〈A,R〉 (while 1 − PA(a) is the probability that a does not
belong to an arbitrary subgraph); for r = (a, b) ∈ RA, whenever a, b ∈ A′ ⊆ A,
PR(r) is the probability that r belongs to an arbitrary subgraph of 〈A′, RA′〉. Using the
independency assumption, those probabilities allow calculation of the probability of a
subgraph.

Definition 10 ([20], slightly modified). Let Fpr = 〈A,R, PA, PR〉 be a probabilistic
argumentation framework and G = 〈A′, R′〉 � 〈A,R〉, then pFpr(G), the probability
of the subgraph G, is

(
∏
a∈A′

P (a))(
∏

a∈A\A′

(1− P (a)))(
∏
r∈R′

PR(r))(
∏

r∈RA′\R′

(1− PR(r))).

Remark 2. In [18], Hunter only considers probabilistic argumentation frameworks of
the form 〈A,R, PA〉, PA : A −→ [0, 1], and corresponding full subgraphs G =
〈A′, R′〉. Thus, he defines the probability of G as

(
∏
a∈A′

P (a))(
∏

a∈A\A′

(1− P (a))).

This value is equal to pFpr(G), where Fpr = 〈A,R, PA, PR〉 extends 〈A,R, PA〉 such
that PR(r) = 1, for every r ∈ R.

Example 4. Let F 〈A,R〉 be the AF from Example 1, and let Fpr = 〈A,R, PA, PR〉 be
the PAF, where PA and PR are defined in the following way:

– PA(a) = PA(b) = PA(c) = 1, PA(d) = 0.7;
– PR((a, b)) = PR((b, a)) = PR((d, c)) = 1, PR((b, c)) = 0.4.

Then there are only four subgraphs with nonzero probability: G1 = F , G2 =
〈{a, b, c, d}, {(a, b), (b, a), (d, c)}〉, G3 = 〈{a, b, c}, {(a, b), (b, a), (b, c))}〉 and G4 =
〈{a, b, c}, {(a, b), (b, a))}〉. Their probability values are pFpr(G1) = 0.28, pFpr (G2)
= 0.42, pFpr(G3) = 0.12 and pFpr(G4) = 0.18.

Theorem 1 ([20]). For any PAF Fpr = 〈A,R, PA, PR〉, the function pFpr is a proba-
bility distribution on the set s(〈A,R〉), i.e., a nonnegative function such that∑

G�〈A,R〉 pFpr(G) = 1.

Now the probability that a given set of arguments is an extension, or a consistent
subset, of the framework can be defined as follows.
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Definition 11. Let F = 〈A,R〉 be an AF and let Fpr = 〈A,R, PA, PR〉 be a PAF. The
probability that Γ ⊆ A is a σ extension (where σ = {cf, ad, co, pr, gr, st}) is defined
as

P σ
Fpr

(Γ ) =
∑

G∈Qσ
F (Γ )

pFpr(G),

and the probability of S ⊆ A being consistent according to σ semantics is defined as

CnσFpr
(S) =

∑
G∈Cσ

F (S)

pFpr(G).

CnσFpr
is defined in [20], while P σ

Fpr
is defined in [18] (for the full subgraphs only).

Example 5. Continuing Example 4, let Γ = {a, c}. Let us calculate the probability
that Γ is a preferred extension of Fpr . Since P prf

Fpr
(Γ ) =

∑
G∈Qprf

F (Γ ) pFpr(G), using

Qprf
F (Γ ) from Example 3 and the fact that only G1, G2, G3 and G4 have nonzero

probability, we obtain

P prf
Fpr

(Γ ) = pFpr(G3) + pFpr (G4) = 0.12 + 0.18 = 0.3.

We now relate these concepts to certain probability measures. By Theorem 1, for any
probabilistic argumentation framework Fpr = 〈A,R, PA, PR〉, pFpr is a probability
distribution on the set s(F ), where F = 〈A,R〉. Thus, the function PrFpr on subsets
of s(F ), defined by PrFpr (H) =

∑
G∈H pFpr(G) is a probability measure. We can

reformulate Definition 11 as follows.

Lemma 1. Let Fpr be a PAF, Γ a set of arguments. Then, P σ
Fpr

(Γ ) = PrFpr(Q
σ
G(Γ )),

CnσFpr
(S) = PrFpr (C

σ
G(S)).

For a ∈ A, we define Ha as the set of all subgraphs of 〈A,R〉 whose sets of argu-
ments contain a:

Ha = {G = 〈A′, R′〉 ∈ s(F ) | a ∈ A′}.
Also, for B ⊆ A, let HB denotes he set of all subgraphs whose sets of arguments
contain B as subset. Then

HB = {G = 〈A′, R′〉 ∈ s(F ) | B ⊆ A′} =
⋂
a∈B

Ha.

Finally, by HB we denote the set (
⋂

a∈B Ha) ∩
⋂

a/∈B(Ha)
c (the superscript c denotes

the set operator “complement”).

Lemma 2. PrFpr (HB) =
∏

a∈B PA(a). In particular, PrFpr (Ha) = PA(a).

As in the case of arguments, we define setsHr (the set of all subgraphs whose attacks
contain r) as

Hr = {G = 〈A′, R′〉 ∈ s(F ) | r ∈ R′},
and HR′′ for R′′ ⊆ R as

HR′′ = {G = 〈A′, R′〉 ∈ s(F ) | R′′ ⊆ R′} =
⋂

r∈R′′

Hr.
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Lemma 3. For A′ ⊆ A and R′′ ⊆ RA′ , PrFpr(HR′′ |HA′) =
∏

r∈R′′ PR(r). In par-
ticular, for r ∈ RA′ , PrFpr(Hr|HA′) = PR(r).

But it is not the case that all probability measures are defined by probabilistic ar-
gumentation frameworks. Thus, we introduce the following definition that describe all
probability measures that correspond to probabilities of arguments and attacks in the
sense of Definition 10.

Definition 12. Let F = 〈A,R〉 be an argumentation framework. A probability measure
Pr on subsets of s(F ) is F -independent, iff the following conditions hold:

1. For every a ∈ A and B ⊆ A \ {a}, Pr(Ha|HB) = Pr(Ha).
2. For every A′ ⊆ A, r′ ∈ RA′ and R′′ ⊆ RA′ \ {r′} such that Pr(HR′′ ) > 0,
PrHA′ (Hr′ |HR′′) = PrHA′ (Hr′).

Thus, F -independency means that arguments are independent, and attacks are indepen-
dent within every set of arguments.

Theorem 2 (Representation theorem for PAFs). For a given argumentation frame-
work F = 〈A,R〉, a probability measure on subsets of s(F ) is induced by some proba-
bilistic argumentation framework 〈A,R, PA, PR〉, iff it is F -independent.

4 Expressing Subgraphs of AFs in Propositional Logic

In this section, we provide propositional formulae which allow us to reason about sub-
graphs of AFs. In particular, we want to characterize the sets Qσ

F (Γ ) (resp. Qσ
F,f(Γ ),

Cσ
F (Γ ), and Cσ

F,f (Γ )) as models of propositional formulas for a given extension candi-
date Γ . Note that in contrast to the encodings from [3] (where the framework remains
fixed and the extensions are characterized by models), we fix here the extension and
want to characterize the appropriate subgraphs.

We start with some basic notation for propositional logic which are required for our
purpose.

Definition 13. For a given set of arguments A, the set of propositional letters PA is
A∪{rab| a, b ∈ A}, and the set of formulas ForA is the set of all Boolean combinations
of PA.

Definition 14. Let A be a set of arguments and v : PA −→ {�,⊥} a valuation (over
PA). We define the argumentation framework characterized by v as Fv = 〈Av, Rv〉,
where Av = {a ∈ A | v(a) = �} and Rv = {(a, b) ∈ A2

v | v(rab) = �}.
Our goal here in formal terms is as follows: given a semantics σ ∈ {cf , stb, adm ,

com , grd , prf }, an AF F = 〈A,R〉 and a set Γ ⊆ A, we want to construct a formula
ψσ
F (Γ ) ∈ ForA which corresponds to the setQσ

F (Γ ), in the sense that, for all valuations
v over PA,1

v |= ψσ
F (Γ ) iff Fv ∈ Qσ

F (Γ ).

For this purpose, we first need to express a restriction to 〈A′, R′〉 of an AF F such
that Γ ⊆ A′.

1 As usual, we write v |= φ to denote that a valuation v is a classical model of φ.
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Proposition 1. For F = 〈A,R〉 and Γ ⊆ A, let

ϕF (Γ ) =
∧
a∈Γ

a ∧
∧

(a,b)∈A2\R
(rab → (¬a ∨ ¬b)).

Then, for all valuations v over PA, v |= ϕF (Γ ) iff Fv ∈ {〈A′, R′〉 ∈ s(F ) | Γ ⊆ A′}.
The next result collects the required formulas for characterizing subgraphs which –

seen as AF — possess a given extension.

Theorem 3. For an F = 〈A,R〉 and Γ ⊆ A, let

1. ψcf
F (Γ ) = ϕF (Γ ) ∧

∧
a,b∈Γ ¬rab

2. ψstb
F (Γ ) = ψcf

F (Γ ) ∧
∧

b∈A\Γ (b→
∨

a∈Γ rab)

3. ψadm
F (Γ ) = ψcf

F (Γ ) ∧
∧

c∈A\Γ (c→
∧

a∈Γ (¬rca ∨
∨

b∈Γ rbc))

4. ψcom
F (Γ ) = ψadm

F (Γ ) ∧
∧

a,b∈A\Γ ((a ∧ b)→ (rab → ((
∨

c∈Γ rcb)
∧

c∈Γ ¬rca)))
5. ψgrd

F (Γ ) = ψcom
F (Γ ) ∧

∧
Γ ′⊂Γ ¬ψcom

F (Γ ′)
6. ψprf

F (Γ ) = ψadm
F (Γ ) ∧

∧
A⊇Γ ′⊃Γ ¬ψadm

F (Γ ′)

Then, for all valuations v overPA, v |= ψσ
F (Γ ) iffFv ∈ Qσ

F (Γ ) (σ ∈ {cf , stb, adm ,
com , grd , prf }).

Note that the formulas for cf , stb, adm , and com can be constructed in linear time
in the size of F . This does not hold for the formulas for grd and prf . In fact, one can
efficiently construct QBFs for these two semantics, but for the sake of simplicity and
uniformity, we decided to stay in propositional logic.

We now provide an adaptation of the encodings for full subgraphs, i.e. we define for-
mulae ψσ

F,f (Γ ) which correspond to the sets Qσ
F,f (Γ ) in such a way that v |= ψσ

F,f (Γ )
holds iff Fv ∈ Qσ

F,f(Γ ).

Theorem 4. For an F = 〈A,R〉, Γ ⊆ A, and σ ∈ {cf , stb, adm , com , grd , prf }, let

ψσ
F,f(Γ ) = ψσ

F (Γ ) ∧
∧

(a,b)∈R

(
(a ∧ b)→ rab

)
.

Then, for all valuations v over PA v |= ψσ
F,f (Γ ) iff Fv ∈ Qσ

F,f(Γ ).

Consequently, we can state for given F = 〈A,R〉 and Γ ⊆ A,

Qσ
F (Γ ) = {Fv | v : PA −→ {�,⊥}, v |= ψσ

F (Γ )}, (2)

and respectively,

Qσ
F,f (Γ ) = {Fv | v : PA −→ {�,⊥}, v |= ψσ

F,f(Γ )}.
For a subgraph G = 〈A′, R′〉 of the argumentation framework F = 〈A,R〉, we

define the formula αG that specifies G:

αG =
∧

a∈A′

a ∧
∧

a∈A\A′

¬a ∧
∧

(a,b)∈R′

rab ∧
∧

(a,b)∈RA′\R′

¬rab.

It is easy to check that v |= αG iff G = Fv . The following result follows in straightfor-
ward way.
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Corollary 1. LetF = 〈A,R〉,G ∈ s(F ) (G ∈ fs(F )), Γ ⊆ A and σ ∈ {cf , stb, adm ,
com , grd , prf }. Then Γ is a σ extension of G iff the formula ψσ

F (Γ ) ∧ αG (ψσ
F,f(Γ ) ∧

αG, respectively) is satisfiable.

Our final results of this section are concerned with the notion of consistency. For a
set of arguments S ⊆ A, and AF F = 〈A,R〉 and σ ∈ {cf , stb, adm , com, grd , prf },
we define the formulas θσF (S) =

∨
Γ :S⊆Γ ψ

σ
F (Γ ) and θσF,f (Γ ) =

∨
Γ :S⊆Γ ψ

σ
F,f (Γ ).

Proposition 2. Let σ ∈ {cf , stb, adm , com, grd , prf }, F = 〈A,R〉 and S ⊆ A, then

Cσ
F (S) = {Fv | v : PA −→ {�,⊥}, v |= θσF (S)},

Cσ
F,f (S) = {Fv | v : PA −→ {�,⊥}, v |= θσF,f (S)}.

Corollary 2. Let σ ∈ {cf , stb, adm , com , grd , prf }, F = 〈A,R〉, G ∈ s(F ) (G ∈
fs(F )) and S ⊆ A, then S in consistent w.r.t. σ in G iff the formula θσF (S) ∧ αG

(θσF,f(S) ∧ αG, respectively) is satisfiable.

5 A Logic for Probabilistic Argumentation

In this section, we use probabilistic logic to express whether a set of arguments is ac-
ceptable with some given probability value.

To this end, we require the following logical framework. For given argumentation
framework F = 〈A,R〉, we define the language and class of models for the logic
LPR

F . We choose the set of propositional formulas ForA = A ∪ {rab| a, b ∈ A}
from Definition 13. The set of probabilistic formulas is built over ForA, using the
probabilistic operators P≥r, as in Definition 7.

The corresponding semantics for probabilistic logics generally consist of probability
measures on sets of valuations of ForA. In order to interpret probabilities on subgraphs
of F , we restrict the class of models of the logic LPR

F to those probability measures μ
such that

μ(([a] ∩ [b])c ∩ [rab]) = 0, (3)

for all a, b ∈ A, and

μ([rab]) = 0, whenever (a, b) /∈ R. (4)

The relation |= is defined as in Definition 8. The notions of satisfiability and validity
are as usual. Also, for a probability measure μ and a set of valuations V , we denote by
μV the measure μ(·|V ).

Now we introduce the logic LPR

F,ind which has the same syntax as LPR

F , but re-
stricted semantics. In order to capture the properties of Definition 12, we restrict the
set of models of the logic LPR

F,ind to consist of those probability measures μ from
semantics of LPR

F such that

μ([a]|[
∧
b∈B

b]) = μ([a]), (5)
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wheneverB ⊆ A \ {a}, and

μ[
∧

a∈A′ a∧∧
a/∈A′ ¬a]([rab]|[

∧
(c,d)∈R′′

rcd]) = μ([rab]), (6)

wheneverA′ ⊆ A, (a, b) ∈ RA′ andR′′ ⊆ RA′\{(a, b)} such thatμ([
∧

(c,d)∈R′′ rcd])>
0. By Theorem 2, the introduced class of models corresponds to the measures induced
by probabilistic argumentation frameworks.

Remark 3. If we want to work with full subgraphs only, as in [18], it is enough to
restrict to the set of models μ such that μ([rab]) = 1, whenever (a, b) ∈ R.

Definition 15. If F = 〈A,R〉 is an argumentation framework and μ a probability mea-
sure on sets of valuations of ForA, we define the probabilistic argumentation frame-
work Fμ = 〈A,R, Pμ

A , P
μ
R〉, where:

– Pμ
A(a) = μ([a]) for all a ∈ A,

– Pμ
R((a, b)) = μ([rab]), for all (a, b) ∈ R.

Similarly as in Section 4, for a given argumentation framework F = 〈A,R〉, a set
of arguments Γ ⊆ A, σ ∈ {cf , stb, adm , com , grd , prf } and r ∈ [0, 1], we want to
construct the probabilistic formula ρσF (Γ, r) such that the models μ of ρσF (Γ, r) corre-
spond to probabilistic argumentation frameworks Fμ for which Γ is σ extension with
probability at least r, i.e.,

μ |= ρσF (Γ, r) iff Pσ
Fμ

(Γ) ≥ r.

where |= denotes the satisfiability relation of the logic LPR

F,ind.

Theorem 5. Let F = 〈A,R〉 be a given argumentation framework, Γ ⊆ A, σ ∈
{cf , stb, adm , com, grd , prf } and r ∈ [0, 1]. Then

ρσF (Γ, r) = P≥rψ
σ
F (Γ ).

Remark 4. In the previous theorem, as well as in the propositions below, we can replace
≥ r with = r, > r, ≤ r and < r.

Definition 16. For Fpr = 〈A,R, PA, PR〉 a PAF, define μFpr as a probabilistic mea-
sure on ForA, such that

– μFpr({v}) = pFpr(Fv), if Fv ∈ s(〈A,R〉),
– μFpr({v}) = 0, otherwise;

where Fv = 〈{a ∈ A | v |= a}, {(a, b) ∈ A2 | v |= rab}〉.

Lemma 4. μFpr (V ) = PrFpr ({Fv | v ∈ V }).

Corollary 3. For a given AF 〈A,R〉 and σ ∈ {cf , stb, adm , com, grd , prf }, the set
of probabilistic argumentation frameworks with the set of arguments A and the set of
attacks R such that the probability that Γ ⊆ A is a σ extension is at least r is given by
{Fμ | μ |= P≥rψ

σ
F (Γ )}.
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For a probabilistic argumentation framework Fpr = 〈A,R, PA, PR〉, we define

χFpr =
∧
a∈A

P=PrFpr (Ha)a ∧
∧
r∈R

P=PrFpr (Hr)r.

Corollary 4. For a PAF Fpr and σ ∈ {cf , stb, adm , com , grd , prf }, the set of argu-
ments Γ is a σ extension of Fpr with probability at least r iff the formula P≥rψ

σ
F (Γ ) ∧

χFpr is satisfiable.

Remark 5. All the previous results about probability of extensions can be transformed
to probability of consistency of S w.r.t. σ, by replacing the formulasψσ

F (S) with θσF (S).

6 Discussion

In this work we extended ideas of Besnard and Doutre [3] (who addressed the problem
of acceptability of sets of arguments under Dung’s semantics via propositional logic) to
probabilistic argumentation. We have focused on the approaches from [20,18], where
argumentation frameworks 〈A,R〉 are enriched with probabilities on A and R. Those
probabilities determine certain probabilities of subgraphs of 〈A,R〉, using the “indepen-
dency” assumption. We have provided a logical formalization in terms of propositional
probabilistic logic using set of formulae depending on a given PAF and class of models
that correspond to the probability measures induced by PAFs.

Although we follow the initial paper on probabilistic argumentation frameworks
[20], it is easy to modify our results to cover the more general case, where the indepen-
dency assumptions are not used (e.g. [19]). In that case, the probability of a subgraph
cannot be calculated from the probabilities of the arguments and attacks. Instead it has
to be taken as a constituent of the framework. In other words, instead of using PA and
PR, the frameworks are of the form 〈A,R, p〉, where p is a probability distribution on
the set of subgraphs of 〈A,R〉. Using p, the probability of an extension is then defined
as in Definition 11. Consequently, one can now omit the independency constraints (5)
and (6) from the semantics of probabilistic logic. All results then carry over, with the
difference that in Corollary 4 we cannot use χFpr as syntactic description of framework,
but the formula

∧
G�〈A,R〉 P=p(G)αG.

We propose three avenues for further research on this topic. First, we plan to extend
our results constructing formulas which can be used to formally compare the probabili-
ties of different extensions. For example, we wish to express statements like “Γ1 is more
probably a stable extension than Γ2”, or “the probability that Γ is preferred extension
is less then the probability that it is grounded extension” and to check truthfulness of
the statements by checking satisfiability of associated probabilistic formulas. The natu-
ral choice would be to enrich the logic from this paper with the qualitative probability
operator [21,5].

Second, we plan to investigate how our logical representation of probabilistic argu-
mentation can be exploited for implementing systems. Recent complexity results from
the area [14] show that for stable and admissible semantics, the problem of computing
the probability that a set of argument is an extension is tractable, while for the other
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semantics the problem is hard. This suggests to study how these insights can be used to
improve our encodings.

Third, we want to extend our approach to other realizations of probabilistic argu-
mentation. For example, Grossi and van der Hoek [16] give a probabilistic account on
Dung’s game for grounded semantics. They consider several graphs over a given set of
arguments, and a probability distribution on the set of graphs. Another example is the
work by Thimm [24] who has a different starting point. For a given framework 〈A,R〉,
he does not consider uncertainty that elements of the graph belong to the graph, but
uses probability distributions on subsets of A. Although our approach is not directly
applicable to these works, we plan to study logical characterizations for them as well.

Acknowledgment. This work was supported by the National Research Fund (FNR)
of Luxembourg through project PRIMAT, and by the Austrian Science Fund (FWF):
project I1102.
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Abstract. The skyline operator is a powerful means in multi-criteria
decision-making since it retrieves the most interesting objects according
to a set of attributes. On the other hand, uncertainty is inherent in many
real applications. One of the most powerful approaches used to model
uncertainty is the evidence theory. Databases that manage such type of
data are called evidential databases. In this paper, we tackle the problem
of skyline analysis on evidential databases. We first introduce a skyline
model that is appropriate to the evidential data nature. We then develop
an efficient algorithm to compute this kind of skyline. Finally, we present
a thorough experimental evaluation of our approach.

1 Introduction

Skyline analysis has been shown to be a powerful means in multi-criteria decision-
making. Given a set of database objects, defined on a set of attributes, an object
oi is said to dominate (in the Pareto sense) another object oj if and only if oi is
better than or equal to oj in all attributes and better in at least one attribute.
The skyline comprises those objects that are not dominated by any other object.

On the other hand, due to the exploding number of information stored and
shared over Internet, and the introduction of new technologies to capture and
transit data, uncertain data analysis is an important issue in many applica-
tions such as decision-making and data integration, to name just a few. To deal
with uncertain values of database attributes, several models were proposed. The
most studied and known models are: probabilistic databases [11,12,1], possibilis-
tic databases [7,8] and evidential databases (based on Dempster-shafer theory)
[19,22,23,4,3]. The advantage of the evidential databases model is twofold: (i)
it allows modeling both uncertainty and imprecision (due to the lack of infor-
mation) in data; and (ii) it represents a generalization of both probabilistic and
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possibilistic models. Considering the example borrowed from [19] about the lo-
cation of some conferences for the next year, which should be either in Europe
or U.S.A. Assume that we know the following probability distribution 〈Europe,
0.5〉 and 〈U.S.A, 0.5〉. Now, if it is in Europe, it will be in Paris or London. If it is
in US.A., it will be in Phoenix, Iowa City or Kansas City. But we don’t know any
probability distribution for these locations. It is then natural to represent this
information as 〈{Paris, London}, 0.5〉 and 〈{Phoenix, Iowa City, Kansas City},
0.5〉. One can observe that data are pervaded both by uncertainty and impre-
cision. Imprecision is due to the lack of information of probability distribution
between cities. Modeling this kind of lack of information is one of motivations be-
hind Dempster-Shafer theory of evidence. Probabilistic and possibilistic models
cannot support the presence of imperfection in data.

Substantial research work has addressed the problem of skyline analysis on un-
certain data from different perspectives and within various communities, includ-
ing, databases; e.g., [24,18,20,31,6], Web services; e.g., [28,5], and so on. These
works are important and useful, but they focus on either probabilistic data or
possibilistic data. However, as mentioned above, these models (i.e., probabilistic
and possibilistic) have some limitations.

In sharp contrast with these approaches, in this paper, we tackle the problem
of skyline analysis on evidential data. To the best of our knowledge, this is the
first attempt to introduce skyline queries on uncertain data where uncertainty
is modeled thanks to evidential theory. Specifically, we address two main chal-
lenges. The first is about modeling skyline on evidential data: how can we capture
the dominance relationship between the objects of an evidential database? And
what should be the skyline on those objects? The second is about computing
this kind of skyline: can we provide techniques for computing the skyline on
evidential data efficiently?

Contributions: We tackle the above-mentioned challenges with the following
major contributions.

– Given two objects of an evidential database, we calculate the belief that
each object dominates the other. Based on this dominance relationship, we
propose the notion of b-dominant skyline, which comprises the objects that
are not dominated with some belief threshold b.

– We develop a suitable algorithm based on an efficient comparison method
between two objects for computing efficiently the b-dominant skyline.

– We perform an extensive experimental evaluation to demonstrate the scala-
bility of the algorithm proposed for the evidential skyline .

The rest of the paper is organized as follows. Section 2 contains a reminder
about skyline on certain data and provides the basic notions of evidential theory
and evidential databases. In Section 3, we formally define the dominance rela-
tionship and the skyline on evidential data, while in Section 4 we present our
algorithm. Our experimental experimental evaluation is reported in Section 5.
Related work is presented in Section 6. Finally, Section 7 concludes the paper.
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2 Background

In this section, we first present a reminder about skyline on certain data. Then,
we provide the basic notions of evidence theory and evidential databases.

2.1 Skyline on Certain Data

Consider a set of objects O = {o1, o2, . . . , on} defined on a set of attributes
A = {a1, a2, . . . , ad}. We use oi.ak to denote the kth attribute of object oi. For
simplicity, we assume throughout this paper that the higher the value, the more
preferable.

Definition 1. (Dominance)
Given two objects oi, oj ∈ O, oi dominates oj, denoted as oi � oj, if and only if
oi is as good or better than oj in all attributes and better in at least one attribute,
i.e., ∀ak ∈ A : oi.ak ≥ oj .ak ∧ ∃a� ∈ A : oi.a� > oj .a�.

Definition 2. (Skyline)
The skyline of O, denoted by SkyO, comprises those objects in O that are not
dominated by any other object, i.e., SkyO = {oi ∈ O | � oj ∈ O, oj � oi}.

Example 1. Consider a set of weight-loss products O = {o1(18, 70), o2(15, 60),
o3(13, 80), o4(17, 20)} and assume that the values of each product denote the
amount of weight loss per month (kilograms) and the repayment (%) if the user
is not satisfied, respectively. We have, product o1 dominates product o3 and o4;
and products o1 and o2 are not dominated, they thus form the skyline of O.

2.2 Basic Notions about Evidence Theory

In order to access to the most accurate and reliable information, we need to
represent and reason with uncertain, imprecise and incomplete information. In
this context, Shafer [25] introduced in 1976 the mathematical theory of evidence
which is a subjective evaluation used to characterize the truth of a proposition.
The theory of evidence, also known in the literature as the “theory of belief
functions” and “theory of Dempster-Shafer”, is a generalization of the Bayesian
theory of subjective probability [14]. This theory represents a set of propositional
hypotheses by a frame of discernment.

Definition 3. (Frames of Discernment)
A frame of discernment, usually denoted as Θ where Θ = {h1, h2, . . . , hm} con-
tains mutually exclusive and exhaustive propositional hypotheses, one and only
one of which is true.

Definition 4. (Mass Function)
A function, m : 2Θ −→ [0, 1], is called a basic probability assignment on a frame
Θ if it satisfies the following two conditions: m(∅) = 0 and

∑
A⊆Θ

m(A) = 1.
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Definition 5. (Belief function)
For every subset A of Θ, the belief of A, denoted as bel(A), is defined as the sum
of the masses assigned to every subset B of A, i.e., bel(A) =

∑
B⊆A

m(B).

Definition 6. (Plausibility function)
For every subset A of Θ, the plausibility of A, denoted as pl(A), is defined as
the sum of the masses assigned to every subset B of Θ that intersects A, i.e.,
pl(A) =

∑
B∩A �=∅

m(B).

2.3 Evidential Databases

As mentioned above, many real-world applications deal with imperfect data. Ev-
idential databases allow representing missing, uncertain or imprecise information
thanks to the evidence theory. An evidential database, is a collection of objects
O = {o1, o2, . . . , on} defined on a set of attributes A = {a1, a2, . . . , ad} where
each attribute ak has a domain Dom(ak), and each attribute ak of an object oi,
denoted by oi.ak contains a normalized basic probability assignment called mass
function. That is: oi.ak = {〈A,mik(A)〉 | A ⊆ Dom(ak),mik(A) > 0}, where
mik : 2Dom(ak) −→ [0, 1], with mik(∅) = 0 and

∑
A⊆Dom(ak)

mik(A) = 1. Each

set A ⊆ Dom(ak) : mik(A) > 0 is called an item set; and each tuple 〈A,mik(A)〉,
i.e., an item set associated with its mass function, is called a focal element.

We obtain such a database, by collecting different experts opinions. Experts
are first grouped into schools of thought, then opinions are aggregated [17]. The
following example depicts an evidential database.

Table 1. Evidential data example

Product Weight loss per month (kilograms) Repayment (%)

o1 〈{15, 16, 18}, 0.1〉, 〈{19, 20}, 0.9〉 〈90, 0.3〉, 〈{90, 100}, 0.7〉
o2 〈7, 0.7〉 〈{8, 9}, 0.3〉 〈{70, 80}, 0.8〉, 〈80, 0.2〉
o3 〈{1, 4}, 0.1〉, 〈5, 0.9〉 〈{70, 80}, 0.7〉, 〈100, 0.3〉
o4 〈10, 0.2〉, 〈12, 0.2〉, 〈{13, 14}, 0.6〉 〈100, 1〉
o5 〈{12, 13, 14}, 0.2〉, 〈17, 0.4〉, 〈19, 0.4〉 〈{20, 30}, 0.6〉, 〈30, 0.4〉

Example 2. Consider in Table 1 a set of weight-loss products, defined over two
attributes; weight loss per month and repayment (if the user is not satisfied).
Each product may have one or more focal elements w.r.t. each attribute. For
example, the weight loss per month of product o1 comprises two focal elements
〈{15, 16, 18}, 0.1〉 and 〈{19, 20}, 0.9〉. That is, we believe that the attribute value
is either 15, 16 or 18 with mass function 0.1 or one of the values 19 or 20 with
mass 0.9. However, we do not know how credible each single element is. We use
this example throughout the rest of the paper.
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3 Skyline on Evidential Data

In this section, we extend the dominance relationship to evidential data, then,
we introduce the notion of evidential skyline.

Given a set of objects O = {o1, o2, . . . , on} defined on a set of attributes
A = {a1, a2, . . . , ad}, with oi.ak denoting the set of focal elements of object oi
w.r.t. attribute ak; for example1, o1.wl = {〈{15, 16, 18}, 0.1〉}, 〈{19, 20}, 0.9〉 and
o1.r = {〈90, 0.3〉, 〈{90, 100}, 0.7〉}. The belief that an object oi is better than or
equal to another object oj w.r.t. an attribute ak is given by [4]:

bel(oi.ak ≥ oj .ak) =
∑

A⊆Dom(ak)

(mjk(A)
∑

B⊆Dom(ak),A≤∀B

mik(B)) (1)

Where A ≥∀ B stands for a ≥ b for all (a, b) ∈ A × B. For instances, in our
example, we have, bel(o1.wl ≥ o3.wl) = 0.3 · (0.1 + 0.9) + 0.7 · (0.1 + 0.9) = 1,
and bel(o1.r ≥ o3.r) = 0.7 · 0.7 + 0.3 · 0.7 = 0.7.

Let us now extend the dominance relationship to evidential data. Given two
objects oi and oj in O : oi �= oj , the belief that oi dominates oj is given by:

bel(oi � oj) =
∏

ak∈A
bel(oi.ak ≥ oj .ak) (2)

For example, since bel(o1.wl ≥ o3.wl) = 1 and bel(o1.r ≥ o3.r) = 0.7, the
belief that o1 dominates o3 is bel(o1 � o3) = 1 · 0.7 = 0.7. Table 2 shows the
dominance belief that each object in lines dominates another object in columns.

Table 2. Dominance beliefs

Objects o1 o2 o3 o4 o5
o1 1 1 0.7 0 0.92
o2 0 1 0.7 0 0
o3 0 0 1 0 0
o4 0 1 1 1 0
o5 0 0 0 0 1

Observe that this definition (equation 2) boils down to the usual dominance
relationship when the descriptions of the objects are certain, i.e., the belief is 1
if oi � oj and 0 otherwise. This is because the condition ≥ is sufficient for an
object oi to dominate another object oj �= oi.

Based on this relationship, we define the notion of b-dominance as follows.

Definition 7. (b-dominance)
Given two objects oi, oj ∈ O and a belief threshold b, oi b-dominates oj, denoted
by oi �b oj if and only if bel(oi � oj) ≥ b.

1 For short, we use wl and r to denote the weight loss per month and the repayment
attributes, respectively
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For instance, o1 0.9-dominates both o2 and o5. However, it does not 0.9-
dominate o4 since bel(o1 � o4) = 0 < 0.9.

We can now use this b-dominance relationship to define the notion of evidential
skyline. Intuitively, an object is in the evidential skyline if it is not dominated
with some threshold. Thus, we define the notion of b-dominant skyline as follows.

Definition 8. (b-dominant skyline)
The b-dominant skyline of O, denoted by b-SkyO, comprises those objects in O
that are not b-dominated by any other object, i.e., b-SkyO = {oi ∈ O | � oj ∈
O, oj �b oi}.

For example, the 0.4-dominant skyline comprises objects o1 and o4, since they
are not 0.4-dominated by any other object, while the 0.2 contains only o1 as o4
is 0.2 dominated by o1. From, this observation, we illustrate a key property of
the b-dominant skyline.

Theorem 1. Given two belief thresholds b and b′, if b < b′ then the b-dominant
skyline is a subset of the b′-dominant skyline, i.e., b < b′ ⇒ b-SkyO ⊆ b′-SkyO.

Proof. Assume that there exists an object oi such that oi ∈ b-SkyO and oi /∈ b′-
SkyO. Since oi /∈ b′-SkyO, there must exists another object, say oj , that b

′-
dominates oi. Thus, bel(oj � oi) > b′. But, b < b′. Therefore, bel(oj � oi) > b.
Hence, oj �b oi, which leads to a contradiction as oi ∈ b-SkyO.

Theorem 1 indicates that the size of the b-dominant skyline is smaller than
that of the b′-dominant skyline if b < b′. Roughly speaking, from Theorem 1,
we can see that users have the flexibility to control the size of the retrieved
evidential skyline by varying the belief threshold.

4 Computing the b-Dominant Skyline

In this section, we first propose an appropriate algorithm to compute the evi-
dential skyline, minimizing the dominance checks. We then devise an efficient
method for optimizing the dominance checks.

A straightforward algorithm to compute the b-dominant skyline is to compare
each object oi against the other objects. If oi is not b-dominated, then it belongs
to the evidential skyline. However, this approach results in a high computational
cost (see Section 5) as it needs to compare each object with every others.

Also, consider the objects depicted in Table 3. We have, bel(ox � oy) = 0.3,
bel(oy � oz) = 0.4 and bel(ox � oz) = 0.035. Observe that, ox 0.3-dominates oy
and oy 0.3-dominates oz , but ox does not 0.3-dominate oz . Thus, the b-dominance
relationship is not transitive. Therefore, an object cannot be eliminated from the
comparison even if it is b-dominated since it will be useful for eliminating other
objects. For this reason, we propose a two phase algorithm (see Algorithm 1)
that follows the principle of the two scan algorithm [9].

Our proposed algorithm, named TPA, computes the evidential skyline through
two phases. In the first phase (lines 2–13), a set of candidate objects b-SkyO is
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Table 3. Evidential data example

Product Weight loss per month (kilograms) Repayment (%)

ox 〈{10, 11}, 0.5〉, 〈{19, 20}, 0.5〉 〈70, 0.3〉, 〈{80, 90}, 0.7〉
oy 〈{17, 18}, 1〉 〈{60, 70}, 0.6〉, 〈100, 0.4〉
oz 〈{9, 12}, 0.7〉, 〈{15, 16}, 0.3〉 〈80, 0.1〉, 〈{90, 100}, 0.9〉

selected by comparing each object oi in O with those selected in b-SkyO. If an
object oj in b-SkyO is b-dominated by oi, then oj is removed from the set of
candidate objects since it is not part of the evidential skyline. At the end of the
comparison of oi with objects of b-SkyO, if oi is not b-dominated by any object
then, it is added to b-SkyO as a candidate object. After the first phase, b-SkyO
comprises a set of objects that may be part of the b-dominated skyline.

To avoid the situation illustrated by the example in Table 3, a second phase
is needed (lines 14–17). To determine if an object oi in b-SkyO is indeed in the
b-dominant skyline it is sufficient to compare oi with those in O \ {b-SkyO ∪
undom(oi) ∪ {oi}} that occurs earlier than oi since the other ones have been
already compared against oi, where undom(oi) is the set of objects that occurs
before oi and that do not b-dominate oj . This set is computed in the first phase
in order to reduce the dominance checks in the second phase.

Applying TPA to our example (see Table 2), with b = 0.4, both objects o1
and o4 will be inserted into b-SkyO in the first phase, then o1 and o4 are not
0.4-dominated, thus after the second phase o1 and o4 will be returned. However,
applying TPA to the objects in Table 3, with b = 0.3, both ox and oz will be
inserted in b-SkyO in the first phase, but oz will be eliminated by oy in the
second phase. Thus the algorithm returns only ox.

Even if, TPA minimizes the number of dominance checks. It also may result
in a high computational cost. In particular, when the average number of focal
elements per object is large. Thus, it is crucial to optimize the dominance checks
to improve the performance of TPA. In the following, we devise an efficient
method that overcomes this problem using the minimum and the maximum
values of each object w.r.t. each attribute. Given an object oi, we denote by
oi.a

−
k and by oi.a

+
k respectively the minimum value and the maximum value of

oi on attribute ak. For example, o1.wl
− = 15 and o1.wl

+ = 20. Next, we delve
into some useful properties that help us improve the dominance checks. Given
two objects oi, oj ∈ O, and an attribute ak ∈ A it is easy to check the following
properties.

Property 1. if oi.a
+
k < oj .a

−
k then bel(oi � oj) = 0 since bel(oi.ak ≥ oj .ak) = 0.

Property 2. if oi.a
−
k > oj .a

+
k then bel(oi � oj) =

∏
a�∈A\{ak} bel(oi.a� ≥ oj .a�)

since bel(oi.ak ≥ oj .ak) = 1.

To determine if an object oi b-dominates another object oj Property 1 and
Property 2 show that it is not necessary to iterate the focal elements of all at-
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Algorithm 1. TPA

Input: Objects O; belief threshold b;
Output: Evidential skyline b-SkyO;
begin1

foreach oi in O do2

isSkyline ← true;3

foreach oj in b-SkyO do4

if isSkyline then5

if oj �b oi then6

isSkyline ← false;7

else8

undom(oi) ← undom(oi) ∪ {oj};9

if oi �b oj then10

remove oj from b-SkyO;11

if isSkyline then12

insert oi in b-SkyO;13

foreach oi in b-SkyO do14

foreach oj in O \ (b-SkyO ∪ undom(oi) ∪ {oi}), pos(oj) < pos(oi) do15

if oj �b oi then16

remove oi from b-SkyO;17

return b-SkyO ;18

end19

tributes. Based on these properties, we propose an efficient method (Algorithm 2)
that checks if a given objet oi b-dominates or not another object oj .

The details of the b-dominates function are as follows. For each attribute
ak ∈ A, oi.a+k is compared against oj .a

−
k . If there is any attribute ak for which

oi.a
+
k < oj .a

−
k holds then return false (loop in line 1); since oi cannot b-dominate

oj according to Property 1. Otherwise, the belief that oi dominates oj , bel, is
computed by considering only the attributes where oi.a

−
k ≤ oj .ak+ (loop in line

5); since if oi.a
−
k > oj .a

+
k then bel(oi.ak ≥ oj .ak) = 1 and thus it does not affect

the result; see Property 2. The method returns “false” as soon as bel is less than
the threshold b; since bel × bel(oi.ak ≥ oj .ak) (line 7) will be less than b for the
rest of iterations. Finally, if bel is greater than b, the function returns true.

For example, comparing object o1 against object o2 in our example. The
method can quickly identify that bel(o1 � o2) = 1 and returns true, without
iterating on the focal element of each attribute. Similarly, to compare o2 against
o1, it directly returns false.

5 Experimental Evaluation

In this section, we present an extensive experimental evaluation of our approach.
More specifically, we focus on two issues: (i) the size of the evidential skyline;
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Algorithm 2. b-dominates(oi, oj , b)

foreach ak in A do1

if oi.a
+
k < oj .a

−
k then2

return false;3

bel ← 1;4

foreach ak in A do5

if oi.a
−
k ≤ oj .a

+
k then6

bel ← bel × bel(oi.ak ≥ oj .ak);7

if bel < b then8

return false;9

return true;10

and (ii) the scalability of our proposed techniques for computing the evidential
skyline. For comparison purposes, we also implemented a baseline algorithm
referred to as BA (baseline algorithm). In addition, to show the benefits resulting
from the use of the dominance check function, we also implemented TPA without
this function; we refer to this algorithm as BTPA (basic TPA).

5.1 Experimental Setup

Due to the limited availability of real evidential databases, existing approaches
use synthetically generated datasets for their evaluation; we also follow this di-
rection. The generation of the sets of evidential data is controlled by the param-
eters in Table 4, which lists the parameters under investigation, their examined
and default values. In each experimental setup, we investigate the effect of one
parameter, while we set the remaining ones to their default values. The data
generator and the algorithms, i.e., BA, BTPA and TPA were, implemented in
Java, and all experiments were conducted on a 2.3 GHz Intel Core i5 processor,
with 8GB of RAM, running Mac OS X.

Table 4. Parameters and Examined Values

Parameter Symbol Values Default

Number of objects n 1K, 5K, 10K, 50K, 100K 10K
Number of attributes d 2, 3, 4, 5, 6 4

belief threshold b 0.001, 0.002, 0.003, 0.004, 0.005 0.003
Number of focal elements/attribute f 8, 9, 10, 11, 12 10

5.2 Size of the Evidential Skyline

Fig. 1 shows the size (i.e., the number of objects returned) of the b-dominant
skyline w.r.t. n, d, b and f . Fig. 1a shows that the size on the evidential skyline
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Fig. 1. Size on the evidential skyline

increases with higher n since when n increases more objects have chances not
to be dominated. As shown in Fig. 1b the cardinality of the evidential skyline
increases significantly with the increase of d. This is because with the increase of
d an object has better opportunity to be not dominated in all attributes. Fig. 1c
shows that the size of the evidential skyline increases with the increase of the
b since the b-dominant skyline contains the b′-dominant skyline if b > b′; see
Theorem 1 – recall that from this property users have the flexibility to control
the size of the returned objects. In contrast to n, d, and b, f has no apparent
effect on the size of the evidential skyline as shown in Fig. 1d varying f some
objects have better chances not to be dominated, while other have better chances
to be dominated.

5.3 Performance and Scalability

Fig. 2 depicts the execution time of the implemented algorithms w.r.t. n, d, b and
f . Overall, TPA outperforms BA and BTPA. More specifically, TPA is faster
than BTPA, which in turn is faster than BA. As expected, Fig. 2a shows that
the performance of the algorithms deteriorates with the increase of n. Observe
that TPA is one order of magnitude faster BA and BTPA since it can quickly
identifies if an object is dominated or not. As shown in Fig. 2b BTPA does not
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Fig. 2. Elapsed time to compute the evidential skyline

scale with d. This is because when d increases the size of the evidential skyline
becomes larger, thus a large number of objects will be selected to the second
phase. Hence, BTPA performs a large number of dominance checks with a basic
function. Even if TPA performs the same number of dominance checks than
BTPA, TPA is efficient than BTPA since it can detect immediately whether an
object dominates or not another. As shown in Fig. 2c, BA is not affected by
b as it computes the belief dominance between all objects. However, TPA and
BTPA increases slightly because the size of the evidential skyline increases with
the increase of b, thus, less objects will be eliminated. Fig. 2d shows that the
execution time of the algorithm slightly with the increase of f as the size of the
skyline is not very affected by f , each algorithm performs practically the same
number of dominance check. Still, observe that, TPA is more than one order of
magnitude faster than BA and BTPA.

6 Related Work

Our proposal can be related to the previous work on modeling uncertainty and
computing skyline from uncertain data. Below we provide a brief overview on
works done in both of these two topics.
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Several models were proposed to represent uncertainty in Databases. The
most studied and known models are : probability theory, possibility theory [15]
and evidential theory [26]. Probability theory is surely the oldest theory allow-
ing to model uncertainty. It is a quantitative model and generally used to model
uncertainty due the variability of observed natural phenomena (i.e., random-
ness). Possibility theory which is rather a qualitative model, is used to represent
uncertainty due to the lack of knowledge or missing information (i.e., incomplete-
ness). It is less demanding than single probability distributions. Dempster-Shafer
theory of evidence is used to model both imprecision and uncertainty in data.
This model makes sense in the applications where the nature of information is
uncertain and the complete information is often not available (for instance, in
the example about conference location given in the Introduction, imprecision is
present in the probability distribution between the cities). Note also that the
evidential model can generalize both probabilistic and possibilistic models. For
more details about uncertainty theories, the reader can refer to [16].

Since its proposal, the skyline queries have been recognized as a useful and
practical technique to help users make intelligent decisions over complex data. In
the years that followed the emergence of the concept of skyline queries, comput-
ing the skyline was the major concern, most of the works were about designing ef-
ficient evaluation algorithms under different conditions and in different contexts,
see for instance [9] [10] [29] [13]. In the last decade, skyline computation over
uncertain data has also attracted the interest of many researchers. Probabilistic
skyline on uncertain data is first tackled by Pei et al [24] where skyline objects
are retrieved based on skyline probabilities. This idea is also developed and im-
proved in [18]. Efficient techniques are proposed following the bounding-pruning-
refining framework. There are other studies which have adopted the probabilistic
skyline model. Lian et al. [21] combine reverse skyline with uncertain semantics
and study the probabilistic reverse skyline problem in both monochromatic and
bichromatic fashion. Atallah and Qi [2] develop sub-quadratic algorithms to com-
pute skyline probabilities for every object. Zhang et al. [31] tackle the problem
of efficiently on-line computing probabilistic skyline over sliding windows. Yong
et al. [27] studied the problem of supporting skyline queries for uncertain data
with maybe confidence. This paper is the first skyline work considering maybe
confidence semantics, where each uncertain tuple is associated with the proba-
bility of existence. In [30], a novel variant of skyline, called stochastic skyline,
is proposed. It captures the preference of users and guarantees to provide the
minimum set of candidates for the optimal solutions over all possible monotonic
multiplicative utility functions.

As for uncertain data modeled by possibilistic distributions, the only work
proposed in the literature is the one by Bosc et al [6]. It aims at computing
the possibility that a given tuple is not dominated by any other tuple. While
in this work, we addressed the problem of computing skyline from evidential
databases.
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7 Conclusion

In this paper, we have addressed the problem of skyline analysis on evidential
data. We introduced a novel kind of skyline for this problem, and we developed
an efficient algorithm for computing this skyline. Our experimental evaluation
demonstrated the flexibility of the proposed evidential skyline and the scalability
of our algorithm. An interesting future direction is to develop techniques for
ranking the objects retrieved by the evidential skyline.
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Abstract. The principle of maximum entropy allows to define the se-
mantics of a knowledge base consisting of a set of probabilistic relational
conditionals by a unique model having maximum entropy. Using the con-
cept of a conditional structure of a world, we define the notion of weighted
conditional impacts and present a two-level approach for maximum en-
tropy model computation based on them. Once the weighted conditional
impact of a knowledge base has been determined, a generalized itera-
tive scaling algorithm is used that fully abstracts from concrete worlds.
The weighted conditional impact may be reused when only the quanti-
tative aspects of the knowledge base are changed. As a further extension
of previous work, also deterministic conditionals may be present in the
knowledge base, and a special treatment of such conditionals reduces the
problem size.

1 Introduction

When enriching propositional logic with probabilities for modeling uncertainty
(e.g. [15,18,4,9]), can play a vital role. Relational probabilistic conditionals are
useful for modeling uncertain knowledge in scenarios where relations among in-
dividual objects are important. For instance, given a set of connected personal
computers, stating that the probability that a malware infected PC sends a
message to another PC is 0.7 while for a non-infected PC it is only 0.1, could
be formally denoted by the conditionals (sendsMail (X,Y )|infected(X))[0.7] and
(sendsMail (X,Y )|¬infected(X))[0.1]. Having a knowledge base R consisting of
a set of such conditionals, there may be many different probability distribu-
tions satisfying them. The idea of the principle of maximum entropy (ME)
[20,17,10,11] is to select among all models the model adding as little information
as possible and thus being the most unbiased one. Recently, different approaches
to applying the ME principle not only to the propositional case, but also in a
relational first-order setting have been proposed [13,2]. In these approaches, ME
reasoning amounts to compute the probability of a formula F under the ME
model of R, and determining the ME model of a knowledge base is the most
crucial step for reasoning under ME semantics.

In this paper, we present AggME, a system that implements the ME model
computation for probabilistic relational conditionals under aggregating ME se-
mantics [13] which requires solving a complex optimization problem. In [5], a
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generalized iterative scaling (GIS) algorithm is proposed for this task. The ap-
proach implemented in AggME refines and extends the proposal of [5] in several
directions. While in [5] only non-deterministic conditionals are allowed,AggME
also treats deterministic conditionals having probability 0 or 1 which is required
in many application scenarios. While [5] uses conditional structures introduced
by Kern-Isberner [10] for defining equivalences of worlds, AggME extends the
use of conditional structures and introduces a two-phase ME computation. For
the first phase, an algorithm WCI is developed for computing what we call the
weighted conditional impact of R; this algorithm is based solely on the qualita-
tive parts of the conditionals in R. The second phase employs a GIS algorithm
GISγR

� that fully abstracts from worlds by just using the weighted conditional
impact and the probabilities given in the conditionals in R. The modular design
of AggME allows for an easy exchange of alternative computation methods
for both phases. It also supports the reuse of the weighted conditional impact
of R for a modified knowledge base R′ obtained from R by just changing the
probabilities of the conditionals, a situation that is quite common when devel-
oping a knowledge base. AggME is implemented in Java and is available as a
plugin for KReator1 [6], an integrated development environment for relational
probabilistic logic.

After briefly recalling the basics of aggregating semantics (Sec. 2), Sec. 3
addresses the treatment of deterministic conditionals under ME semantics. In
Sec. 4, weighted conditional impacts are defined and illustrated, leading to an
alternative formulation of the ME optimization problem solved by the AggME
algorithms presented in Sec. 5. Some examples and first evaluation results are
given in Sec. 6, and in Section 7 we conclude and point out further work.

2 Background

We consider a quantifier-free first-order language L over a set of predicates Pred
and a finite set of constants Const. For formulas A,B ∈ L, AB abbreviates
the conjunction A ∧ B, and gnd(A) denotes the set of ground instances of A.
By introducing the operator |, we obtain the language (L|L)prob of probabilistic
conditionals of the form (B(X)|A(X))[d] with X containing the variables of
the formulas A and B, and where d ∈ [0, 1] is a probability; (B(X)|�))[d] is a
probabilistic fact. The conditional is deterministic iff d = 0 or d = 1; otherwise,
it is non-deterministic. A finite set R ⊆ (L|L)prob is called a knowledge base. We
always implicitly consider R together with the respective sets Pred and Const.
H denotes the Herbrand base, i.e. the set containing all ground atoms over

Pred and Const, and Ω = P(H) is the set of all possible worlds (i. e. Herbrand
interpretations), where P is the power set operator. The probabilistic interpre-
tations for (L|L)prob are given by the set PΩ of all probability distributions
P : Ω → [0, 1] over possible worlds. P is extended to ground formulas A(a),
with A(a) ∈ gnd(A(X)), by defining P (A(a)) :=

∑
ω|=A(a) P (ω). The aggrega-

tion semantics [13] extends P to conditionals and resembles the definition of a

1 KReator and AggME can be found at http://kreator-ide.sourceforge.net/

http://kreator-ide.sourceforge.net/
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conditional probability by summing up the probabilities of all respective ground
formulas; it defines the satisfaction relation |=� for r = (B(X)|A(X))[d] by

P |=� r iff

∑
(B(a)|A(a))∈gnd(B(X)|A(X))

P (A(a)B(a))

∑
(B(a)|A(a))∈gnd(B(X)|A(X))

P (A(a))
= d (1)

Where
∑

(B(a)|A(a))∈gnd(B(X)|A(X)) P (A(a)) > 0. If P |=� r holds, we say that
P satisfies r or P is a model of r. P satisfies a set of conditionals R if it
satisfies every element of R, and Mod(R) := {P ∈ PΩ | P |=� R}. R is
consistent iff Mod(R) �= ∅. The entropy H(P ) := −

∑
ω∈Ω P (ω) logP (ω) of

a probability distribution P measures the indifference within P . The principle
of maximum entropy (ME ) chooses the distribution P where H(P ) is maximal
among all distributions satisfying R [17,10]. The ME model P ∗

R for R based
on aggregation semantics is uniquely defined [13] by the solution of the convex
optimization problem

P ∗
R := arg max

P∈PΩ :P |=�R
H(P ) (2)

3 Null-Worlds and Maximum Entropy

For illustrating knowledge bases with relational probabilistic conditionals and as
a running example, we consider the following scenario:

Example 1 (Antivirus, Rvir). Suppose we want to model some knowledge about
virus infected computers (cf. Sec. 1): If an infected computer sends mail to
another computer without antivirus protection, the other computer is likely to
get infected (with probability 0.9). Computers with antivirus on very rarely get
infected (probability 0.01). Infected computers are likely to send email to any
computer (0.7), while uninfected computers do this only with probability 0.1.
Moreover, we know that in our scenario to be modeled, computers do not send
email to themselves. The following knowledge base Rvir represents this:

r1 : (infected(Y )|sendsMail (X,Y ) ∧ infected(X) ∧ ¬antiVirOn(Y ))[0.9]

r2 : (infected(X)|antiVirOn(X))[0.01]

r3 : (sendsMail (X,Y )|infected(X))[0.7]

r4 : (sendsMail (X,Y )|¬infected(X))[0.1]

r5 : (sendsMail (X,X)|�)[0.0]

Note that r5 is a deterministic conditional, and the presence of the determin-
istic conditionals prohibits applying the GIS algorithm approach of [5] directly
to Rvir. In the following, we will show how the restriction to nondeterministic
conditionals required in [5] can be removed. For the rest of this paper, we assume

R := R≈ ∪R=, R≈ := {r1, . . . , rm},︸ ︷︷ ︸
m non-deterministic

R= := {rm+1, . . . , rm+M}︸ ︷︷ ︸
M deterministic

(3)
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Where R is a consistent set consisting of m non-deterministic and M deter-
ministic conditionals. Furthermore, let R=0 := {ri ∈ R= | di = 0} and
R=1 := {ri ∈ R= | di = 1} denote the set of deterministic conditionals with
probability 0 and 1, respectively.

For a relational conditional ri = (Bi(X)|Ai(X))[di], the counting functions
(cf. [12] and also [5]) ver i, fal i : Ω → N0 are given by:

ver i(ω) :=
∣∣{(Bi(a)|Ai(a)) ∈ gnd(Bi(X)|Ai(X)) | ω |= Ai(a)Bi(a)

}∣∣ (4)

fal i(ω) :=
∣∣{(Bi(a)|Ai(a)) ∈ gnd(Bi(X)|Ai(X)) | ω |= Ai(a)¬Bi(a)

}∣∣ (5)

For a world ω ∈ Ω, ver i(ω) yields the number of ground instances of the qual-
itative part of ri which are verified by ω; and analogously, fal i(ω) yields the
number of ground instances of the qualitative part of ri which are falsified by
ω. In the following, when talking about a conditional, we will not distinguish
explicitly the qualitative part of a conditional and the conditional and we may
just drop the probability if the context is clear.

Example 2. Consider the five conditionals of Rvir from Example 1 together with
the set of constants Const = {a, b, c}. Then each of the conditionals r1, r3, and
r4 has nine ground instances and both r2 and r5 have three ground instances.
When abbreviating infected by in, antiVirOn by an, and sendsMail by se, these
ground instances are:

r1,1 : (in(a)|se(a, a) ∧ in(a) ∧ ¬an(a))
r1,2 : (in(a)|se(b, a) ∧ in(b) ∧ ¬an(a))
r1,3 : (in(a)|se(c, a) ∧ in(c) ∧ ¬an(a))
r1,4 : (in(b)|se(a, b) ∧ in(a) ∧ ¬an(b))
r1,5 : (in(b)|se(b, b) ∧ in(b) ∧ ¬an(b))
r1,6 : (in(b)|se(c, b) ∧ in(c) ∧ ¬an(b))
r1,7 : (in(c)|se(a, c) ∧ in(a) ∧ ¬an(c))
r1,8 : (in(c)|se(b, c) ∧ in(b) ∧ ¬an(c))
r1,9 : (in(c)|se(c, c) ∧ in(c) ∧ ¬an(c))

r3,1 : (se(a, a)|in(a))
r3,2 : (se(a, b)|in(a))
r3,3 : (se(a, c)|in(a))
r3,4 : (se(b, a)|in(b))
r3,5 : (se(b, b)|in(b))
r3,6 : (se(b, c)|in(b))
r3,7 : (se(c, a)|in(c))
r3,8 : (se(c, b)|in(c))
r3,9 : (se(c, c)|in(c))

r4,1 : (se(a, a)|¬in(a))
r4,2 : (se(a, b)|¬in(a))
r4,3 : (se(a, c)|¬in(a))
r4,4 : (se(b, a)|¬in(b))
r4,5 : (se(b, b)|¬in(b))
r4,6 : (se(b, c)|¬in(b))
r4,7 : (se(c, a)|¬in(c))
r4,8 : (se(c, b)|¬in(c))
r4,9 : (se(c, c)|¬in(c))

r2,1 : (in(a)|an(a))
r2,2 : (in(b)|an(b))
r2,3 : (in(c)|an(c))

r5,1 : (se(a, a)|�)
r5,2 : (se(b, b)|�)
r5,3 : (se(c, c)|�)

For the world ω′ = {in(a), in(b), an(c), se(a, c), se(b, c)}, we have

ω′ |= in(a) ∧ se(a, c) and ω′ |= in(a) ∧ ¬se(a, b)

Since in(a) ∈ ω′, se(a, c) ∈ ω′, and se(a, b) �∈ ω′. Thus, ω′ verifies the
ground instance r3,3 : (se(a, c)|in(a)), and ω′ falsifies the ground instance
r3,2 : (se(a, b)|in(a)). Overall, ω′ verifies two and falsifies four ground instances
of r3, i. e. ver 3(ω

′) = 2 and fal3(ω
′) = 4 holds.

For characterizing the behavior of P ∗
R onR≈ andR=, we employ the counting

functions (4) and (5).
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Definition 1 (Null-Worlds and Potentially Positive Worlds). The set

Ωnull(R) :=
{
ω ∈ Ω |

(
∃ri ∈ R=0 : ver i(ω) > 0

)
∨
(
∃ri ∈ R=1 : fal i(ω) > 0

)}
is called the set of null-worlds with respect to R . The set of potentially positive
worlds with respect to R is given by Ωpos(R) := Ω \Ωnull(R).

Extending Paris’ open-mindedness principle [17], we can show:

Proposition 1 (Null-Worlds and ME). If P ∈ Mod(R), then P (ω) = 0 for
all ω ∈ Ωnull(R), and P

∗
R(ω) > 0 for all ω ∈ Ωpos(R).

Thus, for the ME model P ∗
R and for any null-world ω, P ∗

R(ω) = 0 holds, but
for every potentially positive world, P ∗

R yields a non-zero probability, i. e. the
worlds in Ωpos(R) are indeed positive under P ∗

R.

Example 3. For Rvir from Example 2 the world

ω′
0 = {an(b), in(c), se(a, a), se(b, c)}

Is a null-world, because ω′
0 verifies the ground instance r5,1 : (se(a, a)|�) of the

deterministic conditional r5, i. e. ver5(ω
′
0) > 0 holds. So every world containing

a ground atom se(a, a), se(b, b), or se(c, c) is a null-world due to r5. In fact,
28, 672 (= 7 · 212) of the 32, 768 (= 215) worlds contained in Ω are null-worlds,
i. e. there are merely 4, 096 (= 212) potentially positive worlds.

4 Weighted Conditional Impact

For propositional conditionals, the satisfaction relation can be expressed by using
feature functions (e. g. [7]). For a relational conditional ri = (Bi(X)|Ai(X))[di],
the feature function fi : Ω → R with

fi(ω) := ver i(ω)(1 − di)− fal i(ω)di (6)

given in [5] uses the counting functions (4), (5). While the satisfaction relation
(1) can be expressed using these feature functions by observing

P |=� ri iff
∑
ω∈Ω

P (ω)fi(ω) = 0, (7)

Here we will transform the fi so that they do not have to consider worlds any
more.

In [10], Kern-Isberner investigates the behavior of worlds with respect to
propositional conditionals and introduces the concept of conditional structure,
formalized as a product in a free Abelian group, of a world with respect to a
set of propositional conditionals. Kern-Isberner’s idea of a conditional structure
carries over to the relational case by employing the functions ver i, fal i counting
the number of verified and falsified ground instances [12]. In the following, we
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will employ the conditional structure of a world in a relational setting and ex-
tend it to the case where also deterministic conditionals may be present. Instead
of a free Abelian group notation as in [12], we will use a concrete representation
using ordered tuples of pairs of natural numbers as in [5] and call these tuples
conditional impact.

Definition 2 (Conditional Impact). Let R = R≈ ∪ R= be as in (3). The
conditional impact caused by a world ω is given by the function

γR : Ωpos(R) → (N0 × N0)
m

with

γR(ω) :=
((

ver 1 (ω) , fal1 (ω)
)
, . . . ,

(
verm (ω) , falm (ω)

))
(8)

Note that the conditional impact caused by a world does neither take any
deterministic conditionals nor any probabilities into account, i. e. it just considers
the logical part of non-deterministic conditionals in R.

Example 4. As in Example 2, consider again the world

ω′ = {in(a), in(b), an(c), se(a, c), se(b, c)}. (9)

Then γR(ω′) = ((0, 0), (0, 1), (2, 4), (0, 3)) holds, because ω′

– neither verifies nor falsifies any ground instances of r1,
i. e. ver1(ω

′) = 0, fal1(ω
′) = 0, and

– verifies none and falsifies one ground instance of r2,
i. e. ver2(ω

′) = 0, fal2(ω
′) = 1, and

– verifies two and falsifies four ground instances of r3,
i. e. ver3(ω

′) = 2, fal3(ω
′) = 4, and

– verifies none and falsifies three ground instances of r4,
i. e. ver4(ω

′) = 0, fal4(ω
′) = 3, .

So one can say that γR(ω′) indicates the conditional impact on ground instances
caused by the world ω′. Now consider the worlds

ω′′ = {in(b), in(c), an(a), se(b, a), se(c, a)} (10)

ω′′′ = {in(a), in(c), an(b), se(a, b), se(c, b)} (11)

Then determining the values of ver i and fal i for ω
′′ and ω′′′ reveals that all three

worlds have the same conditional impact

γ′ : = ((0, 0), (0, 1), (2, 4), (0, 3)) (12)

= γR(ω′) = γR(ω′′) = γR(ω′′′)

Since each of these worlds verifies and falsifies, respectively, the same number of
ground instances with respect to each conditional. Note that it does not matter
which concrete ground instances of a conditional are verified and falsified, but
just the numbers of verified and of falsified ground instances of a conditional
are relevant. For instance, each of the three worlds falsifies exactly one ground
instance of r2, i.e., ω

′ falsifies (in(c)|an(c)), ω′′ falsifies (in(a)|an(a)), and ω′′′

falsifies (in(b)|an(b)).
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We now fully abstract from worlds by introducing weighted conditional im-
pacts obtained from the images of γR and their preimage cardinalities.

Definition 3 (Weighted Conditional Impact). Let R = R≈∪R= as in (3).

– A tuple γ ∈ (N0 × N0)
m is a conditional impact of R iff there is a world ω

with γR(ω) = γ.
– For such a γ, wgt(γ) := |γ−1

R (γ)| is the weight of γ, and wgt is called the
weighting function of R.

– ΓR denotes the set of all conditional impacts of R.
– (ΓR,wgt) is called the weighted conditional impact of R.

Example 5. As in Example 4, consider again γ′ = ((0, 0), (0, 1), (2, 4), (0, 3)) as
given in (12). This tuple γ’ is a conditional impact of Rvir, i. e. γ

′ ∈ ΓR holds,
because for instance γR(ω′) = γ′ where ω′ is as in (9).

Overall, there exist 328 different conditional impacts of Rvir, i. e. the set ΓR
has 328 elements. However, the tuple

((0, 0), (3,2), (2, 4), (0, 3)) ∈ (N0 × N0)
m

(13)

Is not in ΓR. In fact, (13) cannot be a conditional impact of Rvir, because r2 has
only 3 ground instances and therefore it is not possible that both ver2(ω) = 3
and fal2(w) = 2 holds for any world ω ∈ Ωpos(R). Furthermore, also the tuple

((0, 0), (0, 1), (1,4), (0, 3)) ∈ (N0 × N0)
m (14)

Is not a conditional impact of Rvir either. Here, the reason is not as obvious as
it is for (13). A closer lock at the ground instances of r3 reveals that ver3(ω) +
fal3(w) ∈ {0, 3, 6, 9} must hold for every world ω ∈ Ωpos(R), since always three
ground instances of r3 share the same antecedence, implying that ver3(ω) +
fal3(w) must be a multiple of 3. Thus, (14) cannot be a conditional impact of
Rvir, since it cannot be caused by any world.

When determining the conditional impacts of Rvir caused by each world, it
becomes evident that apart from the three worlds ω′, ω′′, and ω′′′ given in (9),
(10), and (11), there is no other world ω ∈ Ωpos(R) with γR(ω) = γ′. Therefore,
wgt(γ′) = 3 holds, i. e. the weight of γ is 3 since there are exactly three worlds
which cause the conditional impact γ’.

Figure 1 shows some conditional impacts of Rvir and their weights, together
with the worlds causing these impacts.

For γ = ((ver 1, fal1), . . . , (verm, falm)) ∈ ΓR let γ|i,v denote the value ver i
and let γ|i,f denote the value fal i. Then for ri ∈ R≈, the feature function fΓi :
ΓR → R on conditional impacts is given by:

fΓi (γ) := γ|i,v · (1− di)− γ|i,f · di (15)

As in [5], we get normalized feature functions f̂Γi : ΓR → [0, 1] and an additional

correctional feature function f̂Γm̂ : ΓR → [0, 1] with m̂ = m+ 1 by

f̂Γi (γ) :=
fΓi (γ) + digi

G
and f̂Γm̂(γ) := 1−

m∑
i=1

f̂Γi (γ) (16)
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γ ∈ ΓR wgt(γ) ω ∈ Ωpos(R) with γR(ω) = γ

((0, 0), (0, 1), (2, 4), (0, 3)) 3 {in(a), in(b), an(c), se(a, c), se(b, c)},
{in(b), in(c), an(a), se(b, a), se(c, a)},
{in(a), in(c), an(b), se(a, b), se(c, b)}

((0, 0), (0, 0), (0, 9), (0, 0)) 1 {in(a), in(b), in(c)}
((0, 0), (0, 2), (0, 3), (0, 6)) 3 {in(a), an(b), an(c)},

{in(b), an(a), an(c)},
{in(c), an(a), an(b)}

. . . . . . . . .

Fig. 1. Some conditional impacts of Rvir and their weights (Example 5)

where gi denotes the number of ground instances of ri ∈ R≈ and G :=∑
ri∈R≈ gi. The expected values of these functions remain as in [5]:

ε̂i =
digi
G

and ε̂m̂ = 1−
m∑
i=1

ε̂i (17)

Example 6. As in Example 4, consider again the conditional impact γ′ =
((0, 0), (0, 1), (2, 4), (0, 3)) of Rvir as given in (12). The four feature functions
on conditional impacts fΓ1 to fΓ4 corresponding to the four probabilistic condi-
tionals r1 to r4 have the following values on γ′:

fΓ1 (γ′)=0 · (1− 0.9) −0 · 0.9 = 0 fΓ3 (γ′)=2 · (1− 0.7) −4 · 0.7=− 2.2

fΓ2 (γ′)=0 · (1− 0.01) −1 · 0.01=− 0.01 fΓ4 (γ′)=0 · (1− 0.1) −3 · 0.1=− 0.3

Since the conditionals have g1 = g3 = g4 = 9 and g2 = 3 ground instances,
respectively, there is an overall number of G = 30 ground instances (cf. Exam-

ple 2). Therefore, the corresponding normalized feature functions f̂Γi have the
following values on γ′ and the following expected values ε̂i:

f̂Γ1 (γ′) = ( 0 + 0.9 ·9) / 30 = 0.27 and ε̂1 = 0.9·9
30 = 0.27

f̂Γ2 (γ′) = (− 0.01 + 0.01 ·3) / 30 = 0.0006 and ε̂2 = 0.01·3
30 = 0.001

f̂Γ3 (γ′) = (− 2.2 + 0.7 ·9) / 30 = 0.136 and ε̂3 = 0.7·9
30 = 0.21

f̂Γ4 (γ′) = (− 0.3 + 0.1 ·9) / 30 = 0.02 and ε̂4 = 0.1·9
30 = 0.03

So for the correctional feature function f̂Γm̂ and the expected value ε̂m̂ we get:

f̂Γm̂(γ′) = 1− (0.27 + 0.0006 + 0.136 + 0.02) = 0.5726

ε̂m̂ = 1− (0.27 + 0.001 + 0.21 + 0.03) = 0.489

For every ω′, ω′′ ∈ γ−1
R (γ), we have P ∗

R(ω′) = P ∗
R(ω′′) (cf. Corollary 1 in [5]).

Thus, setting P ∗
R(γ) := P ∗

R(ω′) for an arbitrary ω′ ∈ γ−1
R (γ) yields a well-defined

function P ∗
R : ΓR → [0, 1]. Using this function, we can express the satisfaction

relation (7) with respect to the ME model P ∗
R as follows:
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Proposition 2 (Satisfaction for P ∗
R). Let R = R≈ ∪ R= be as in (3). Then

for any probabilistic conditional ri ∈ R≈, we have

P ∗
R |=� ri iff

∑
γ∈ΓR

f̂Γi (γ) · wgt(γ) · P ∗
R(γ) = ε̂i (18)

Compared to (1) and (7), the satisfaction relation (18) employs feature func-
tions on conditional impacts. Thereby it allows us to solve the ME optimization
problem induced by (2) by a two-level algorithmic approach: First, the weighted
conditional impact (ΓR,wgt) is determined, then a generalized iterating scaling
algorithm working on (ΓR,wgt) is used to determine the ME distribution P ∗

R.

In the following, we omit the index Γ of fΓi and f̂Γi in order to ease our
notation as it will be clear from the context when we use feature functions
operating on the set of conditional impacts ΓR rather than on worlds.

5 Computing ME Models using Weighted Conditional
Impacts

The algorithm WCI implemented in AggME for computing the weighted condi-
tional impact (ΓR,wgt) of any R is given in Fig. 2. The algorithm starts with an
empty set ΓR in step (1). Then the elements of the set ΓR and the values for the
weighting function wgt are successively determined by performing the following
steps once for each world ω ∈ Ω: In step (2a), the deterministic conditionals are
exploited to check if ω is a null-world. If ω is a null-world, no further steps are
performed on ω. Otherwise ω is a positive world and in step (2b), the conditional
impact γR(ω) is determined. In step (2c), γR(ω) is appended to ΓR if its not
already there, and its weight wgt(γR(ω)) is adjusted.

Having determined (ΓR,wgt) for a knowledge base R, the algorithm GISγR
�

given in Fig. 3 is used for the second phase of computing the ME model P ∗
R. As

in [5], a generalized iterative scaling approach is used, but GISγR
� fully abstracts

from worlds. Instead of referring to worlds as the algorithms GISα� and GIS≡R�
in [5], GISγR

� performs all steps on (ΓR,wgt). That way, GISγR
� can also cope

with deterministic conditionals which are not allowed in [5].
For any consistent set R of probabilistic conditionals as in Fig. 3, GISγR

�
computes values α0, α1, . . . , αm+M . Based on the method of Lagrange multipliers
[3], these alpha-values determine the ME model as a Gibbs distribution [8] by

P ∗
R(ω) = α0

m+M∏
i=1

α
fi(ω)
i (19)

With the feature functions fi as given in (6).

6 Examples and First Evaluation Results

We apply the two-phase ME model computation implemented in AggME to
different knowledge bases; the results are shown in Fig. 4.
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Input: a set R = {r1, . . . , rm} ∪ {rm+1, . . . , rm+M}
of m non-deterministic and M deterministic probabilistic conditionals

Output: the weighted conditional impact (ΓR,wgt) of R

1. ΓR := ∅ // initialize value

2. for each ω ∈ Ω:

(a) // check if ω is a null-world by evaluating deterministic conditionals

for each rj = (Bj(X)|Aj(X)) ∈ R=: // for determ. cond. rj, m+1 ≤ j ≤ M

// consider all ground instances of rj
for each (Bj(a)|Aj(a)) ∈ gnd(Bj(X)|Aj(X)):

if (rj ∈ R=0)

if (ω |= Aj(a)Bj(a)) // if ω verifies this ground conditional

then break to step 2 // ω is a null-world, so check is finished

else // rj ∈ R=1 holds

if (ω |= Aj(a)Bj(a)) // if ω falsifies this ground conditional

then break to step 2 // ω is a null-world, so check is finished

end loop

end loop

// ω is a positive world, since no determ. cond. proved ω to be a null-world

(b) // determine γR(ω)

γR(ω) := ((0, 0) , . . . , (0, 0)) // initialize all vf-pairs with (0, 0)

for each ri = (Bi(X)|Ai(X)) ∈ R≈: // for non-determ. cond. ri, 1 ≤ i ≤ m

// consider all ground instances of ri
for each (Bi(a)|Ai(a)) ∈ gnd(Bi(X)|Ai(X)):

if (ω |= Ai(a)Bi(a)) // if ω verifies this ground conditional

then γR(ω)|i,v := γR(ω)|i,v + 1 // then increment verify count

if (ω |= Ai(a)Bi(a)) // if ω falsifies this ground conditional

then γR(ω)|i,f := γR(ω)|i,f + 1 // then increment falsify count

end loop

end loop

(c) // check if value γR(ω) is already contained in ΓR

if γR(ω) ∈ ΓR

then wgt(γR(ω)) := wgt(γR(ω)) + 1 // increment cardinality of γR(ω)

else
ΓR := ΓR ∪ {γR(ω)} // add new value γR(ω) to ΓR

wgt(γR(ω)) := 1 // initialize cardinality of γR(ω) with 1

end loop

Fig. 2. Algorithm WCI computing the weighted conditional impact of R
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Input: - a consistent set R = {r1, . . . , rm} ∪ {rm+1, . . . , rm+M} of
m non-deterministic and M deterministic probabilistic conditionals

- the weighted conditional impact (ΓR,wgt) of R
Output: - alpha-values α0, α1, . . . , αm+M determining the ME-distribution P ∗

R

1. for each 1 ≤ i ≤ m̂: α̂(0),i := 1 // initialize normalized α̂-values

2. for each γ ∈ ΓR: P(0)(γ) :=
1∑

γ′∈ΓR
wgt(γ′)

// initial. to uniform probabilities

3. k := 0 // initialize iteration counter

4. repeat until an abortion condition holds:

(a) k := k + 1 // increment iteration counter k

(b) for each 1 ≤ i ≤ m̂: // determine current scaling factors β(k),i

β(k),i :=
ε̂i∑

γ∈ΓR
wgt(γ)P(k−1)(γ)f̂i(γ)

(c) for each γ ∈ ΓR: // scale all probabilities P
′
(k)(γ)

P
′
(k)(γ) := P(k−1)(γ)

m̂∏
i=1

(
β(k),i

)f̂i(γ)
(d) for each α̂(k),i, 1 ≤ i ≤ m̂: // scale all α̂-values α̂(k),i

α̂(k),i := α̂(k−1),i · β(k),i

(e) for each γ ∈ ΓR: // normalize all probabilities P(k)(γ)

P(k)(γ) :=
P

′
(k)(γ)∑

γ′∈ΓR
wgt(γ′)P ′

(k)(γ)

end loop

5. for each 1 ≤ i ≤ m̂: α̂i := α̂(k),i // define final α̂-values

α̂0 :=

⎛
⎝ ∑

γ∈ΓR

wgt(γ)

m̂∏
i=1

α̂
f̂i(γ)
i

⎞
⎠

−1

// define α̂0-value

6. for each 1 ≤ i ≤ m: αi :=
(

α̂i
α̂m̂

) 1
G

// define α-values for R≈

for each 1 ≤ j ≤ M : αm+j := 0 // define α-values for R=

α0 := α̂0α̂m̂

∏m
i=1 α

digi
i // define α0-value

Fig. 3. Algorithm GISγR
� for aggregation semantics operating on (ΓR,wgt)

Example 7 (Rvir (cont.)). When considering Rvir from Example 1 together with
five constants, the size ofΩ is 235 and evenΩpos(R) still contains 2

30 worlds. Since
the method given in [5] for computing the ME model requires to keep all worlds
in memory, it cannot be applied to that example due to memory limitations.
However, the algorithms WCI and GISγR

� can easily cope with the example,
since they just require to keep 18,720 conditional impacts in memory. Fig. 4
also illustrates that for increasing sizes of Ω, the computation of the weighted
conditional impact becomes the dominating part in the overall computation time.
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Size of Iteration Computation Time

KB |Const| Ω Ωpos(R) ΓR Steps WCI GISγR
�

Rmky 4 220 6,561 ≈ 212 156 6,721 < 1 sec < 1 sec

Rmky 5 230 1,419,857 ≈ 220 530 7,912 6 min 41 sec 1 sec

Rcty 3+4 221 1,404,928 ≈ 220 992 4,228 5 sec 1 sec

Rcty 4+4 228 157,351,936 ≈ 227 3,601 4,947 9 min 41 sec 3 sec

Rvir 4 224 1,048,576 = 220 2,742 5,730 13 sec 4 sec

Rvir 5 235 1,073,741,824 = 230 18,720 4,088 4 h 36 min 15 sec

Fig. 4. Results for example knowledge bases (GIS accuracy threshold: δβ = 0.001)

Example 8 (Monkeys, Rmky). Suppose we have a zoo with a population of mon-
keys exhibiting a peculiar feeding behavior. The predicate feeds(X,Y ) expresses
that a monkey X feeds another monkey Y and hungry(X) says that a monkey
X is hungry. Rmky contains the following conditionals:

r1 : (feeds(X,Y ) | ¬hungry(X) ∧ hungry(Y )) [0.80]
r2 : (¬feeds(X,Y ) | hungry(X)) [1.0]
r3 : (¬feeds(X,Y ) | ¬hungry(X) ∧ ¬hungry(Y )) [0.90]
r4 : (feeds(X, charly) | ¬hungry(X)) [0.95]
r5 : (feeds(X,X) | �) [0.0]

r1 states that is very likely that a not-hungry monkey feeds a hungry monkey. r2
expresses the certain knowledge that a hungry monkey never feeds another one.
r3 says that it is very probable that a not-hungry monkey is not fed by another
one. r4 makes a statement about an individual monkey: it is most probable that
if a monkey is not hungry, he feeds the monkey Charly, i. e. albeit Charly is
hungry or not (perhaps because Charly is an underfed baby monkey suffering
from an eating disorder). Thus, r4 describes a special case for Charly, because
according to r3, one would have suspected that the feeding of Charly (by a not-
hungry monkey) depends on whether Charly is hungry or not. r5 expresses that
a monkey does not feed itself.

Example 9 (European Cities, Rcty). This example makes use of typed constants
and predicates; there are a certain number of constants of type Person , and
the constants london , paris , rome, and vienna are of type EuropeanCity . The
predicate visitsEUcity(P ,E ) expresses that a person P visits a European city
E . The predicates likesSightseeing(P), livesInEurope(P), and likesChurches(P)
express that a person P likes sightseeing, lives in Europe, and likes churches,
respectively. The set Rcty contains four conditionals:

r1 : (visitsEUcity(P,C) | �) [0.1]
r2 : (visitsEUcity(P,C) | likesSightseeing(P )) [0.3]
r3 : (visitsEUcity(P,C) | livesInEurope(P )) [0.6]
r4 : (visitsEUcity(P, rome) | likesChurches(P ) ∧ likesSightseeing(P )) [1.0]

Looking at Examples 7–9 and the corresponding numbers in Fig. 4, we would
like to point out the following aspects. By allowing deterministic conditionals,
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there is no more need to approximate probabilities 0 or 1 as a workaround. For
instance, if the probabilities of r2 and r5 inRmky were approximated by 0.999 and
0.001, respectively, then Ωpos(R) = Ω would hold and, in case of five constants,
more than a billion worlds would have to be processed in the expensive step 2b
of algorithm WCI. Furthermore, the size of ΓR would increase significantly as
well, increasing the runtime of GISγR

� .
Using weighted conditional impacts (ΓR,wgt) and pre-computing them re-

duces the overall computation time. For instance, computing the ME model for
Rcty with 3 constants of type Person and 4 constants of type EuropeanCity by
a straightforward implementation of a GIS algorithm on Ωpos(R), requires over
17 min., compared to just 6 sec. overall for WCI and GISγR

� as shown in Fig. 4.
Another important benefit of pre-computing (ΓR,wgt) is that it can be reused

if the probabilities of some conditionals of R≈ are modified since (ΓR,wgt) only
depends on the logical part of R≈. Since |ΓR| is much smaller than |Ωpos(R)|,
working with (ΓR,wgt) also reduces the memory requirements for the ME model
computation significantly. In fact, while the algorithm from [5] has a memory
requirement of O(|Ωpos(R)|), preventing it to handle some of the examples given
in Fig. 4, the memory requirements during all phases of the ME computation in
AggME are limited by O(|ΓR|).

As pointed out in Ex. 7, the numbers in Fig. 4 illustrate that increasing the size
of Const and thus the size of Ω is the limiting factor for ME model computation
in the current AggME version. An advantage of the two-level approach is that
WCI can be replaced by another algorithm computing the weighted conditional
impact of R more efficiently without having to change GISγR

� .

7 Conclusions and Further Work

For knowledge bases R with probabilistic relational conditionals, we presented a
two-level approach for computing the ME model P ∗

R under aggregation seman-
tics, thereby improving on previous work. While our approach can handle larger
examples and also deterministic conditionals, it is desirable to develop alterna-
tive methods for computing the weighted conditional impact ofR without having
to enumerate all possible worlds as in step (2.) of the WCI algorithm. Therefore,
we are currently working on employing a combinatorial approach to construct
(ΓR,wgt) directly, without considering worlds explicitly. That way, the exponen-
tial blow-up in Ω could be circumvented when computing (ΓR,wgt), allowing
to handle domains with significantly more constants. We are also investigating
which alternative algorithms could be employed to solve the ME optimization
problem on (ΓR,wgt). For instance, instead of using a generalized iterative scal-
ing approach as in our GISγR

� algorithm, an alternative approach like L-BFGS
[21] could be considered.

Furthermore, we will exploit the concept of weighted conditional impacts for
actual ME inference, i. e. for determining the probability of an arbitrary con-
ditional under the ME model P ∗

R. To accomplish that, a technique should be
developed which operates on the impact of an arbitrary conditional, i. e. the
actual query, and the already determined weighted conditional impact of R; for
this, methods of lifted inference [19,14] might be applicable.
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Abstract. Hidden-Mode Markov Decision Processes (HM-MDPs) were
proposed to represent sequential decision-making problems in non-statio-
nary environments that evolve according to a Markov chain. We intro-
duce in this paper Hidden-Semi-Markov-Mode Markov Decision Process
es (HS3MDPs), a generalization of HM-MDPs to the more realistic case
of non-stationary environments evolving according to a semi-Markov
chain. Like HM-MDPs, HS3MDPs form a subclass of Partially Observ-
able Markov Decision Processes. Therefore, large instances of HS3MDPs
(and HM-MDPs) can be solved using an online algorithm, the Partially
Observable Monte Carlo Planning (POMCP) algorithm, based on Monte
Carlo Tree Search exploiting particle filters for belief state approxima-
tion. We propose a first adaptation of POMCP to solve HS3MDPs more
efficiently by exploiting their structure. Our empirical results show that
the first adapted POMCP reaches higher cumulative rewards than the
original algorithm. However, in larger instances, POMCP may run out of
particles. To solve this issue, we propose a second adaptation of POMCP,
replacing particle filters by exact representations of beliefs. Our empirical
results indicate that this new version reaches high cumulative rewards
faster than the former adapted POMCP and still remains efficient even
for large problems.

1 Introduction

Markov Decision Processes (MDPs) provide a general formal framework for se-
quential decision-making under uncertainty. They have proved to be powerful for
solving many planning problems [14]. However, MDPs run under the assump-
tion that the environment is stationary, i.e., the transition function and/or the
reward function do not evolve through time. In many real-world applications,
this assumption does not hold and the sources of non-stationarity are diverse.
For instance, the environment may change due to external events. In finance,
when investing on the stock market, a financial crisis changes the dynamics of
stock prices. Another example of non-stationary environment concerns multi-
agent systems. Indeed, from the viewpoint of one agent, a change of behavior
(e.g., due to learning) of another agent may affect the environment of the first
agent.
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Planning in a non-stationary environment is a difficult problem to tackle
in the general case. We focus instead on a subclass of problems where non-
stationary environments evolve according to a small number of non-observable
modes, which are modeled as MDPs and represent different possible dynamics
and rewards of that environment. An example of problem belonging to this sub-
class is that of elevator control [6] where the environment can typically be in
three modes: morning rush-hour, late-afternoon rush-hour and non-rush-hour.
Planning in such non-stationary environments has already been studied in the
MDP framework [8] and in the reinforcement learning framework [7,9,15]. In all
those works, non-stationary environments are represented with multiple modes.
The model of Hidden-Mode Markov Decision Processes (HM-MDPs) proposed
by Choi et al.[8] formalizes this idea. HM-MDPs constitute a subclass of Partially
Observable MDPs. In HM-MDPs, the environmental changes are described by a
Markov chain and thus occur at each decision step. However, we argue that this
assumption is not always realistic. Indeed, in the elevator problem for instance,
allowing, even with a small probability, the environment to be able to change
between different rush modes at every move of the elevator is debatable.

In this paper, we propose a natural extension of HM-MDPs, called Hidden-
Semi-Markov-Mode Markov Decision Process (HS3MDP), where the non-statio-
nary environment evolves according to a semi-Markov chain. This new model is
to hidden semi-Markov models [17] what HM-MDPs are to hidden Makov mod-
els. In HS3MDPs, when the environment stochastically changes to a new mode,
it stays in that mode during a stochastically drawn duration. While HM-MDPs
assume that environmental changes follow a geometric law, this assumption is
relaxed in HS3MDPs.

In order to solve large-sized HS3MDPs, we exploit the Partially Observable
Monte Carlo Planning (POMCP) algorithm [16], an online algorithm proposed
for approximately solving POMDPs, based on Monte Carlo Tree Search and
particle filters for belief state approximation. We present two improvements of
POMCP for solving HS3MDPs more efficiently. The first adaptation exploits
the special structure of HS3MDPs and the second furthermore represents belief
states exactly instead of using particle filters. Finally, we experimentally validate
those algorithms showing their effectiveness on a diverse range of domains.

In Sect. 2, we recall the necessary notations and definitions. Then, in Sect. 3,
we introduce our new model. In Sect. 4, we present two adapted algorithms for
solving HS3MDPs. Experimental results are presented in Sect. 5. Finally, we
conclude in Sect. 6.

2 Background

Markov Decision Process. A Markov Decision Process (MDP) [14] is defined
by 〈S,A, T, R〉 where S is a finite set of states, A is a finite set of actions,
T (s, a, s′) is the probability of reaching state s′ from s after executing action
a and R(s, a) ∈ IR is the immediate reward obtained after performing action a
in s. A policy π is a sequence (δ0, δ1, . . . , δt, . . .) of decision rules such as each
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Fig. 1. HM-MDP representation with 3 modes and 4 states

decision rule δt : S→ A dictates which action to take for each state at timestep
t. In a state s, a policy π can be valued by the expected discounted total reward
it yields:

V π(s) = Eπ(
∑
t

γtR(St, At) |S0 = s) . (1)

where γ ∈ [0, 1[ is a discount factor. Function V π is called the value function
of π. Solving an MDP consists in finding an optimal policy, i.e., a policy that
maximizes the expected discounted sum of rewards. One of the main limitations
of the standard MDP framework is that it requires the transition and reward
functions to be stationary.

Hidden-ModeMDP. Hidden-Mode MDPs (HM-MDPs) formalize a subclass of
non-stationary problems where environmental changes are limited to a fixed and
known number n of modes. Each mode represents a possible stationary environ-
ment, formalized as an MDP. Transitions between modes represent environmen-
tal changes. Formally, an HM-MDP is defined as follows [8]. For i ∈ {1, . . . , n},
let mi = 〈S,A, Ti, Ri〉 be a mode, i.e., an MDP. An HM-MDP is characterized
by 〈M, C〉 where M = {m1, . . . ,mn} and C : M ×M → [0, 1] is a transition
function over modes. Notice that S and A are shared by all mi’s and that an
HM-MDP with n = 1 is a standard MDP. In HM-MDPs, the only observable
information is the current state s ∈ S, the current mode m ∈M is not observ-
able. Figure 1, showing a 3-mode, 4-state HM-MDP, depicts how HM-MDPs can
be visualized. To illustrate further the definition of an HM-MDP, we present a
simple example:

Example 1. The elevator problem consists in controlling e elevators in a f -floor
building. At each decision step, a user may call an elevator at any floor and, once
inside, select any desired floor to go. The number of states is then 2f(e+1) × fe.
The modes are the different types of rush-hour and therefore have an influence
on which buttons are pressed, which is described by different transition functions
over states. Three actions can be applied to each elevator: go up/down by one
floor and open the doors, leading to an action set of size 3e. Finally, in this
problem, the reward function is identical for all modes, the controller receives a
penalty for each unsatisfied user.
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Considering an office building of 2 floors with 1 elevator: M = {morning
rush-hour, late-afternoon rush-hour, non-rush-hour}, S = {1st floor call button
states} × {2nd floor call button states} × {1st floor drop-off button states}
× {2nd floor drop-off button states} × {elevator positions}, A = {open, up,
down}. In this small example, there are 32 states, 3 actions and 3 modes. The
transition function in the morning rush-hour mode describes the situation where
it is more probable for the elevator to be called at the first floor. In the late-
afternoon rush-hour mode, it describes the opposite situation where users tend
to leave the office. For the non-rush-hour mode, the transition function models
the normal operating situation.

Partially Observable MDP. Partially Observable MDPs (POMDPs) extends
MDPs to partially observable settings [14] and are defined by 〈S,A,O, T , Q,R〉
where S is a set of POMDP states, A a set of actions, O a set of observations,
T : S × A× S → IR is a transition function over POMDP states, Q : S × O →
IR is a probability distribution over observations and R : S × A → IR is a
reward function. Since the agent does not observe the POMDP state, she has
to act based on her only available information (i.e., at step t, the probability
distribution over the initial states and her history of observations and actions
up to the current step t) which can be represented as a probability distribution
over states, called belief state [2]. Optimal algorithms have been proposed to
solve POMDPs [10,3], but they do not scale to large-sized problems. Indeed,
finding an optimal policy for infinite-horizon POMDPs is PSPACE-Complete
[13].

Choi et al. have shown that an HM-MDP can be seen as a POMDP 〈S,A,O,
T ,Q,R〉 where S = M×S, A = A, O = S, T (〈m, s〉, a, 〈m′, s′〉) = Tm(s, a, s′) ×
C(m,m′), Q(〈m, s〉, a, o) = 1 if s = o and 0 otherwise, R(〈m, s〉, a) = Rm(s, a).
They have also proposed algorithms to optimally solve HM-MDPs [6,8]. They
have adapted exact POMDP solving methods in order to exploit the structure
of HM-MDPs. Those adapted methods can solve larger instances of HM-MDPs
than the original ones, but they also suffer from the curse of dimensionality.
Indeed, solving an HM-MDP is still PSPACE-Complete [5]. Like exact POMDP
solving algorithms, exact HM-MDP solving algorithms does not scale. In that
case, one has to resort to approximate algorithms like POMCP.

POMCP. The Partially Observable Monte-Carlo Planning (POMCP) algorithm
[16] is one of the most efficient online algorithms to approximately solve large-
sized POMDPs. To choose an action at a given timestep, POMCP (Alg. 1) runs
an effective version of Monte-Carlo Tree Search (MCTS), called UCT (Upper
Confidence Bounds (UCB) applied to Trees) [11], using a black-box simulator of
the environment and a particle filter to approximate a belief state. This search
tree is built iteratively. POMCP uses the simulator to run a fixed number of
simulations in order to evaluate the actions before performing in the real envi-
ronment the best action found in the search tree. At one decision step, to choose
which action to perform, search(τ) is invoked with τ the current history, i.e.,
the sequence of past observations and actions. This history can be expanded with
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an action a giving τa and an observation o giving τao. The root of the search
tree is a node matching the last seen observation. Its children are all possible
actions, whose own children are the respective possible observations given an
action. A node of the tree is a triplet 〈N(τ), V (τ), B(τ)〉 associated to τ where
the components are respectively the number of times τ has been visited, its
mean value and the set of particles (i.e., POMDP states) for this history. During
a simulation, the algorithm randomly draws a particle p from the particle set
B(τ) and uses the simulator G(p, a) to get the new particle p′, the observation
o and the reward r. Actions are selected (Line 19 of Alg. 1) following the UCB1
procedure guaranteeing a good exploration-exploitation compromise. Once all
simulations have been done, a step is performed in the real environment with
the action returned by search, i.e., the best action found in the search tree. The
algorithm sets the new root to the node matching this observation and prunes
the tree.

At the beginning, POMCP is initialized with an empty history and an initial
(e.g., uniform) distribution I over states. Two important parameters have to be
set to guarantee that a good action is selected: the tree depth and the number
of simulations. The tree depth d can be deduced from the discount factor γ for
a given precision ε > 0 as follows: d = 'log(ε)/ log(γ)(. The higher the num-
ber of simulations, the better the estimation of the values of the actions but
the longer it takes to run. This parameter is generally determined by time con-
straints. However, as the number of simulations tends to infinity, this algorithm
is theoretically guaranteed to choose the optimal action at each step. Finally,
notice that the size of the initial particle filter is generally set in function of the
number of simulations.

3 HS3MDP

The HM-MDP framework is not always the most suitable model for represent-
ing sequential decision-making in non-stationary environments as it assumes that
the environment may change at every timestep. For instance, modeling the el-
evator problem with an HM-MDP is problematic as decisions have to be made
every (say) second, while a mode (rush hour or not) can last several hours. In
a problem where this assumption does not hold, the usual modeling trick is to
set a low probability of transition between modes. However, from a theoretical
viewpoint, this is more than questionable when mode transitions are not geo-
metrically distributed. One of the main contributions of this paper is to propose
a more natural model for such cases where the environment dynamics evolve
according to a semi-Markov chain. More precisely, the new model we propose,
called Hidden-Semi-Markov-Mode MDP, represents environmental changes with
hidden semi-Markov models [17] while in HM-MDPs, they were represented with
hidden Makov models.

Definition of HS3MDP. Formally, Hidden-Semi-Markov-Mode Markov Deci-
sion Process (HS3MDP) is defined by 〈M, C,H〉 where M = {m1, . . . ,mn} is
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Algorithm 1. POMCP

procedure search(τ)
1 foreach simulations do
2 if τ = empty then
3 p ∼ I
4 else
5 p ∼ B(τ )

6 simulate(p, τ, 0)

7 return argmax
b

V (τb)

procedure rollout(p, τ, depth)

8 if γdepth < ε then
9 return 0

10 a ∼ πrollout(τ, ·)
11 (p′, o, r) ∼ G(p, a)
12 return r + γ.rollout(p′, τao, depth+ 1)

procedure simulate(p, τ, depth)

13 if γdepth < ε then
14 return 0

15 if τ /∈ Tree then
16 forall the a ∈ A do
17 Tree(τa) ← (Ninit(τa), Vinit(τa), ∅)
18 return rollout(p, τ, depth)

19 a ← arg max
b

V (τb) + c
√

logN(τ)
N(τb)

20 (p′, o, r) ∼ G(p, a)
21 R ← r + γ.simulate(p′, τao, depth+ 1)
22 B(τ ) ← B(τ ) ∪ {p}
23 N(τ ) ← N(τ ) + 1
24 N(τa) ← N(τa) + 1

25 V (τa) ← V (τa) + R−V (τa)
N(τa)

26 return R

a set of modes, C : M ×M → [0, 1] is a transition function over modes and
H : M×M× IN→ [0, 1] is a mode duration function. Transition C(m,m′) repre-
sents the probability of moving to new mode m′ from current mode m knowing
that the duration in m (i.e., the number of remaining timesteps to stay in m) is
null. Value H(m,m′, h) represents the probability of staying h timesteps in new
mode m′ when the current mode is m. Both the mode and the duration are not
observable.
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At each timestep, after a state transition in current mode m, the next mode
m′ and its duration h′ are determined as follows:⎧⎨

⎩
if h > 0 m′ = m and h′ = h− 1
if h = 0 m′ ∼ C(m, ·)

h′ = k − 1 where k ∼ H(m,m′, ·)
(2)

where h is the duration of current mode m. If h is positive, the environment does
not change. But, if h is null, the environment evolves according to transition
function C and the number of steps to stay in the new mode is drawn following
conditional probability H .

Like HM-MDPs, HS3MDPs form a subclass of POMDPs. An HS3MDP can
be reformulated as a POMDP 〈S,A,O, T ,Q,R〉 whose components are defined
by: S = M × S × IN, A = A, O = S, T (〈m, s, h〉, a, 〈m′, s′, h′〉) = αTm(s, a, s′)
with

α =

⎧⎨
⎩
C(m,m′)×H(m,m′, h′) if h = 0,
1 if h′ = h− 1 and m′ = m,
0 otherwise

(3)

Q(〈m, s, h〉, a, o) = 1 if s = o and 0 otherwise, R(〈m, s, h〉, a) = Rm(s, a).

Discussions. When considering non-stationary environments in MDPs, an en-
vironmental change may impact each component of the quadruplet 〈S,A, T, R〉.
Indeed, some states may become impossible or new states may become reachable,
some actions may become infeasible or new actions may appear, the transition
function and the reward function can of course also change after the environ-
ment evolves. Interestingly, a change in the set of states and/or the set actions
may always be modeled by a change in the transition and reward functions by
considering the set of all possible states for S and the set of all possible actions
for A at the beginning.

It is easy to notice that HM-MDPs form a subclass of HS3MDPs. In fact, a
problem represented as an HS3MDP can also be exactly represented as an HM-
MDP by augmenting the modes. The two models are equivalent in the following
sense. A modelM is equivalent to a modelM′ if and only if a problem that can
be represented in model M can also be exactly represented in model M′ and
vice-versa.

Proposition 1. HM-MDPs are equivalent to HS3MDPs.

Proof. ⇒ Given an HM-MDP, we can define an equivalent HS3MDP by setting a
mode duration function H such that ∀m,m′, H(m,m′, 1) = 1 and H(m,m′, h) =
0, ∀h �= 1. At each timestep, h = 0, thus leading only to the first alternative of
3. This turns out to be the exact formulation of an HM-MDP.
⇐ Given an HS3MDP, we show how to build an equivalent HM-MDP. To

that aim, we build a sequence of equivalent HS3MDPs. Denote 〈M1, C1, H1〉 the
initial HS3MDP. We repeat the following operation to build the sequence: If, for
〈Mi, Ci, Hi〉, there exist m,m′ ∈Mi and h �= 1 such that Hi(m,m

′, h) > 0, we
define the next HS3MDP 〈Mi+1, Ci+1, Hi+1〉 as follows:
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Mi+1 = Mi ∪
⋃

h′ �=1{m′
0, . . . ,m

′
h′−1|Hi(m,m

′, h′) > 0}
Ci+1(m,m

′
h′−1) = Ci(m,m

′)×H(m,m′, h′)
Ci+1(m

′
j ,m

′
j−1) = 1, ∀j > 0

Ci+1(m1,m2) = Ci(m1,m2), ∀(m1,m2) �= (m,m′)
Hi+1(m,m

′
h′−1, 1) = Hi+1(m

′
j ,m

′
j−1, 1) = 1, ∀h′ > 0, j > 0

Hi+1(m1,m2, h
′) = Hi(m1,m2, h

′), ∀(m1,m2) �= (m,m′), ∀h′

(4)

Where for all j,m′
j is a duplicate of m′ and Ci+1 and Hi+1 are null for the

unspecified cases. When this operation cannot be iterated, in the last HS3MDP,
unreachable modes can be removed. Finally, the resulting HS3MDP corresponds
to an equivalent HM-MDP. ��

However, representing HS3MDPs in such a way feels unnatural and leads to a
higher number of modes, which moreover, would have a negative impact on the
solving time. It is also obvious that, if the maximum duration is unbounded, the
equivalent HM-MDP would have an infinite number of modes, making it difficult
to solve.

As a final note, the models of HM-MDPs and HS3MDPs are particular in-
stances of Mixed-Observable MDPs (MOMDPs) [12,1], a subclass of POMDPs.
Therefore, MOMDPs algorithms could be used for solving HS3MDPs. We chose
to base our solving method on POMCP, because it tends to be more efficient than
specialized algorithms on MOMDPs and more generally on factored POMDPs,
even when POMCP is run on the non-factored representations [16].

4 Solving an HS3MDP

As HM-MDPs form a subclass of HS3MDPs, solving exactly an HS3MDPs is a
PSPACE-complete problem [5]. In order to be able to tackle large instances of
problems, we therefore focus on an approximate solving algorithm. A first naive
approach is to apply POMCP (see Sect. 2) to directly solve the POMDP derived
from an HS3MDP. In that case, a particle in POMCP represents a mode m, a
state s and a duration h of the HS3MDP. We propose in this section two possible
improvements to this naive approach. Notice that, as a subclass of HS3MDPs,
these solving methods can also be applied to HM-MDPs. In the remaining of the
paper, we will therefore focus only on HS3MDPs.

Adaptation to the Structure. In large instances, POMCP can suffer from a
lack of particles to approximate the belief state especially if the number of states
in the POMDP and/or the horizon are large. To tackle this issue, a particle
reinvigoration technique can be used in the original algorithm. However, it is
often insufficient. When POMCP runs out of particles, it samples the action
set according to a uniform distribution, which obviously leads to suboptimal
decisions.

We propose a first adaptation of POMCP that exploits the structure of
HS3MDPs to postpone the lack of particles. In fact, in the derived POMDP,
as the agent observes a part of the state of the POMDP, a particle needs only
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to represent non-observable information, that is, the mode m and the number
of steps to stay h. This adaptation allows us to initially distribute particles over
a set whose cardinality is much smaller. However, the size of the particle set
|B(τ)| still depends on the number of simulations. This modification of POMCP
is introduced at line 3 of Alg. 1.

Exact Representation of the Belief State. When solving large-sized prob-
lems, the above adaptation of POMCP still suffers from lack of particles. We thus
propose a second adaptation where we replace the particle set B by an exact
representation of the belief state. This representation consists of a probability
distribution μ over M× IN (modes and duration in the current mode).

Lines 3 and 5 of Alg. 1 are modified as particles are now drawn according
to a probability distribution. Line 22 is not needed anymore. This probability
distribution is updated after a new observation using the following equation:

μ′(m′, h′) =
1

K

(
Tm′(s, a, s′)× μ(m′, h′ + 1) + (5)∑

m∈M

C(m,m′)× Tm(s, a, s′)× μ(m, 0)×H(m,m′, h′ + 1)
)
.

where K is the normalization term and elements s, s′, a are respectively the
previous observation, the new observation given by the real environment and the
action performed and given by the procedure search. This update is performed
after every action executed in the real environment.

In HM-MDPs we can rewrite the above equation knowing μ(m′, h′ + 1) =
0, ∀m′, h′ and H(m,m′, 1) = 1. We then obtain:

μ′(m′) =
1

K

( ∑
m∈M

C(m,m′)× Tm(s, a, s′)× μ(m)
)
. (6)

We fall back to the HM-MDP update equation described by [8].
Unlike the previous adaptation, the spatial complexity of this one does not

depend on the number of simulations. Indeed, μ is a probability distribution
over M × IN. Assuming a finite maximum number hmax of timesteps to stay
in a mode, which is often the case in practice, there always exists a number of
simulations N for which the size of the particle set is greater than the length of
this distribution. In such a case, this second adaptation will be more interesting
to consider. The time complexity of the update of the exact representation is
O(|M| × hmax). It is to be compared to the particle invigoration of the original
POMCP and the first adaption which is O(N) with N being the number of
simulations.

5 Experimental Results

We tested POMCP and our two adapted versions on four non-stationary prob-
lems. The first three environments are problems of the literature [8]. We solved
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an extended version of each problem modeled as an HS3MDP. Recall that those
adapted versions of the problems cannot be represented as efficiently with HM-
MDPs (see Prop. 1). Results for this model are thus not reported.
H(m,m′, ·) is defined as a truncated Gaussian probability distribution on

duration h of the mode m′ after a transition from m. The mean of the Gaussian
is uniform randomly drawn between 1 and 5 when creating the environment.

We present the results for the original POMCP and for our adaptations of
POMCP: the Structure Adapted (SA) and Structure Adapted combined with
the Exact Representation (SAER) of belief states. We also show the results of
the optimal policy when it could be computed, using Finite Grid [4] and MO-
IP [1]. We also used MO-SARSOP [12] with one hour of policy computation
time when the model could be generated for offline computing. We present the
performances of the algorithms for several numbers of simulations to study how
the quality of the solutions evolves. For each number of simulations we averaged
the cumulative discounted rewards over 1000 runs. We reported results that could
be obtained within one hour on a computer equipped with an Intel XeonX5690
4.47 Ghz core. We chose to present the raw results for the original POMCP and
percentages for the others. Reported percentages correspond to the improvement
in the average cumulated discounted rewards between our modified versions and
the original POMCP.

Traffic Light. In the traffic light problem, the environment is a two-way road
where the system has to choose which side to let pass. It has to decide which
traffic light to switch on, knowing only the current state of the lights and the
presence or not of cars on each side of the road. In this problem, the HS3MDP
has two modes: rush on the left or on the right and two actions to choose which
light to switch on. The model contains eight states depending on the presence or
not of cars on the left, on the right and on the light state. The reward function
gives a negative reward when a car waits on a side of the road whose light is
shut off. At each timestep, the environment has a probability of 0.9 to stay in
the same mode and 0.1 to change. Finally, the transition function over the state
depends on the probability of cars arriving on each side, according to the current
mode. Exact probabilities for the original problem can be found in [6].

Table 1 describes results for the traffic light problem, using different algo-
rithms: original POMCP (orig.), Structure Adapted (SA), Structure Adapted
combined with Exact Representation of belief states (SAER) and Finite Grid,
MO-IP and MO-SARSOP. The last three algorithms yield the same results,
which are presented in column “Opt.” to give an idea of the optimal value. The
performances of the original POMCP almost strictly increase with the number
of simulations. They therefore get closer to the optimal value, which translates
into decreasing percentages in Column “Opt.” of Table 1. Since our modified
versions of POMCP performs better than the original one (positive percentages
for columns “SA” and “SAER”), they also get closer to the optimal. For in-
stance, with 512 simulations, 4.7% of improvement for SAER compared to 9.3%
for Column “Opt.” means that the performances of SAER are half-way between
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Table 1. Results for traffic light

Sim. Orig. SA SAER Opt.

1 -3,42 0.0% 0.0% 38.5%

2 -2,86 3.0% 4.0% 26.5%

4 -2,80 8.1% 8.8% 25.0%

8 -2,68 6.0% 9.4% 21.7%

16 -2,60 8.0% 8.0% 19.2%

32 -2,45 5.3% 6.9% 14.3%

64 -2,47 10.0% 9.1% 14.9%

128 -2,34 4.3% 3.4% 10.4%

256 -2,41 8.5% 10.5% 12.7%

512 -2,32 5.6% 4.7% 9.3%

1024 -2,31 5.1% 7.0% 9.3%

2048 -2,38 9.0% 10.5% 11.8%

Table 2. Results for sailboat (7×7 grid)

Sim. Orig. SA SAER MO

1 60 11.7% 6.7% 408.3%

2 63 30.2% 30.2% 384.1%

4 55 38.2% 54.5% 454.5%

8 70 8.6% 27.1% 335.7%

16 59 13.6% 88.1% 416.9%

32 66 28.8% 92.4% 362.1%

64 90 21.1% 45.6% 238.9%

128 94 53.2% 71.3% 224.5%

256 119 48.7% 76.5% 156.3%

512 159 31.4% 27.0% 91.8%

1024 177 20.9% 28.8% 72.3%

2048 206 13.6% 10.2% 48.1%

4096 226 12.4% 16.4% 35.0%

8192 227 20.7% 25.6% 34.4%

those of the original POMCP and the optimal value. Note that a decreasing
percentage does not mean a raw decrease in the performances. It means that
the increase of the performances of the original POMCP is higher than those of
the other algorithms. Nonetheless, the percentages being positive, the later still
perform better.

Theoretically, POMCP converges towards the optimal solution while the num-
ber of simulations increases. Experimental results (Table 1) show that it is also
the case for our adapted versions whose performances are always at least as good
as the original POMCP.

In the traffic light problem, both adaptations of POMCP are roughly even.
In fact, the size of the problem is quite small so the original POMCP and the
structured adapted POMCP do not lack particles. Moreover, there are enough
particles to draw a high quality estimation of the belief state. That is why,
the exact representation of belief states does not significantly outperform other
POMCP versions. Nonetheless, our adaptations of POMCP both outperform
the original version since exploiting the structure of the HS3MDP leads to more
accurate belief states.

Sailboat. The sailboat problem is about controlling a boat from a corner of a
finite grid to the opposite corner. The states are possible positions in the grid and
the modes are the different wind directions, limited to North, South, West and
East. Two possible actions manage the sail orientation between North-South and
East-West. The transition function over states depends on the sail orientation
given the wind direction. The environment has a probability of 0.5 to stay in the
same mode, 0.2 to go to an adjacent one and 0.1 to go to the opposite one. The
reward function gives a reward of 1 when the goal is reached. This problem can
be enlarged as needed by increasing the size of the grid. Results for a 7× 7 grid
are reported in Table 2.
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Table 3. Results for elevator
(f = 7, e = 1)

Sim. Orig. SA SAER

1 -10.56 0.0% 1.1%

2 -10.60 0.0% 0.0%

4 -10.50 2.2% 3.6%

8 -10.49 4.2% 3.9%

16 -10.44 5.2% 5.0%

32 -10.54 6.2% 6.2%

Table 4. Results for elevator
(f = 4, e = 2)

Sim. Orig. SA SAER

1 -7.41 1.0% 0.4%

2 -7.35 0.3% 0.0%

4 -7.44 1.5% 1.3%

8 -7.35 0.4% 0.0%

16 -7.30 19.1% 17.2%

32 -7.25 22.1% 21.6%

64 -7.17 24.3% 24.3%

128 -7.22 27.0% 27.0%

Due to probabilities of transition between modes, the environment can stay
several steps in the same mode thus giving the same wind direction. When the
boat is on an edge of the grid, it cannot move until the wind changes to a more
favorable configuration. This particularity of the environment leads to a big set
of runs where the boat cannot reach the goal and gets stuck on an edge until the
end of the run. Moreover, the small drops in the original POMCP performances
can be explained with the low number of simulations. If this number is not
high enough to explore efficiently, the impact of the random can lead to a high
variance. Results show that our adaptations always perform better than the
original method and that SAER performs almost always better than SA. Column
“MO” stands for the results of MO-SARSOP. We can see that SAER converges
toward those results as the number of simulations increases.

Elevators. In the elevator problem, the environment can stay in the current
mode (see Example 1) with a probability of 0.1 and has a probability 0.45 to
change to the other two when the duration is null. Table 3 contains results
for an instance with 7 floors and 1 elevator whereas Table 4 shows results for
a 4 floors and 2 elevators instance. We were not able to compute the optimal
policy for these instances because of their high dimensionality. The results of our
adaptations are roughly even since the size of the problem remains quite limited
and does not lead to lack particles. However, it is important to note that our
methods always outperform the original POMCP whose performances increase
with the number of simulations and converge to the optimal solution.

The low number of simulations reached during the computation time is ex-
plained by the representation of the transition function. In this problem, transi-
tions are not represented by a matrix of probabilities because of the high number
of state components. The transitions are based on a set of rules, leading to a
longer computation time.

Randomly Generated Environments. These environments allow us to study
in a controlled setting the scalability of our algorithms. To create an instance,
a number of states ns, actions na and modes nm have to be defined. Random
MDPs are then automatically generated such that, in each state, each action can

lead to ' |S|10 ( states and '
|S|
5 ( states can yield a positive reward. To enlarge those
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Table 5. Results for ran-
dom environments with
ns = 50, na = 5 and
nm = 5

Sim. Orig. SA SAER

1 0.41 0.0% 5.6%

2 0.41 4.9% 51.4%

4 0.42 11.5% 140.9%

8 0.44 30.9% 209.6%

16 0.48 34.6% 234.7%

32 0.58 46.0% 223.0%

64 0.77 53.1% 187.2%

128 1.08 45.7% 123.4%

256 1.52 33.5% 70.0%

512 1.98 19.6% 34.5%

1024 2.30 12.5% 17.3%

Table 6. Results for random
environments with ns = 50,
na = 5 and nm = 10

Sim. Orig. SA SAER

1 0.39 0.1% 8.9%

2 0.39 21.0% 57.5%

4 0.40 9.9% 149.0%

8 0.41 24.0% 224.6%

16 0.43 33.0% 261.3%

32 0.48 58.2% 275.8%

64 0.60 76.2% 248.7%

128 0.83 75.4% 184.5%

256 1.16 64.1% 115.9%

512 1.61 41.5% 61.5%

1024 2.05 2.2% 28.8%

Table 7. Results for ran-
dom environments with
ns = 50, na = 5 and
nm = 20

Sim. Orig. SA SAER

1 0.39 0.8% 11.9%

2 0.40 2.6% 51.1%

4 0.40 2.7% 138.9%

8 0.41 11.8% 225.2%

16 0.41 22.3% 270.8%

32 0.45 42.9% 290.3%

64 0.51 77.5% 305.5%

128 0.63 102.2% 261.1%

256 0.85 102.7% 186.8%

512 1.23 73.3% 107.7%

1024 1.66 43.6% 55.3%

environments, we varied the size of the sets of states, actions and modes. We
averaged results from 10 different instances with different state/mode transition
and reward functions for each parameter set.

Tables 5, 6 and 7 describe results for randomly generated environments with
respectively 5, 10 and 20 modes. We were not able to compute the optimal policy
for these instances because of their high dimensionality. We can see that our
methods significantly outperform the original POMCPmethod. In fact, the exact
representation of belief states always outperforms POMCP versions based on
particles filter on sufficiently large environments. Indeed, these methods quickly
lack particles to accurately represent the belief state.

Moreover, the computation time of our adaptations are promising for appli-
cation to large-sized real life problems. For instance, in the random environment
with 20 modes (Table 7), one run of 1024 simulations took 1.15 seconds for solv-
ing the HS3MDP with structured adapted POMCP and 1.48 seconds for solving
the HS3MDP with POMCP and exact representation of the belief state.

6 Conclusion and Discussions

In this paper, we introduced Hidden-Semi-Markov-Mode Markov Decision Pro-
cesses (HS3MDPs), a new generalization of Hidden-Mode Markov Decision Pro-
cesses (HM-MDPs) to handle in a more natural and efficient way non-stationary
environments. We proposed to use the Partially Observable Monte-Carlo Plan-
ning algorithm as a solving method for HS3MDPs. As a subclass of our model,
HM-MDPs can be solved efficiently using the same methods. However, this algo-
rithm does not solve large-sized problems modeled with HS3MDPs in the most
efficient way. We developed two adaptations of POMCP to improve its perfor-
mances. The first adaptation exploits the structure of HS3MDPs to alleviate
particle deprivation. The second adaptation uses an exact representation of the
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belief state to reach better results with less simulations than the other two meth-
ods. Experimental results on various domains of the literature show that those
adaptation significantly improve the performance.

As future work, different research directions could be explored. In HM-MDPs
and HS3MDPs, transition functions over modes do not depend on the performed
action. This assumption does not hold in environments like stock markets where
buying big volumes may influence the market. An extension of HS3MDPs to
handle such situations would be interesting. Another research direction is to
relax the assumption that the transition function between modes is known and
to learn it in a multi-armed bandit or reinforcement learning setting.

Acknowledgments. Funded by the French National Research Agency under
grant ANR-10-BLAN-0215.

References
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Probabilistic Strategies

in Dialogical Argumentation

Anthony Hunter
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Abstract. In dialogical argumentation, a participant is often unsure
what moves the other participant(s) might make. If the dialogue is pro-
ceeding according to some accepted protocol, then a participant might
be able to determine what are the possible moves that the other might
make, but the participant might be unsure as to which move will be cho-
sen by the other agent. In this paper, propositional executable logic is
augmented with probabilities that reflect the probability that any given
move will be chosen by the agent. This provides a simple and lucid lan-
guage that can be executed to generate a dialogue. Furthermore, a set
of such rules for each agent can be represented by a probabilistic finite
state machine (PFSM). For modelling dialogical argumentation, a PFSM
can be used by one agent to model how the other agent may react to
any dialogical move. An agent can then analyze the PFSM to determine
the most likely outcomes of a dialogue given any choices it makes. This
can be used by the agent to determine its choice of moves in order to
optimize its outcomes from the dialogue.

1 Introduction

Dialogical argumentation involves agents exchanging arguments in activities such
as discussion, debate, persuasion, and negotiation. Dialogue games are now a
common approach to characterizing argumentation-based agent dialogues (e.g.
[1, 11]). In order to compare and evaluate dialogical argumentation systems, we
proposed in a previous paper that first-order executable logic could be used as
common theoretical framework to specify and analyze dialogical argumentation
systems [12]. Then in [13], propositional executable logic was presented as a
special case, and for which a finite state machine (FSM) can be generated. An
FSM is a useful structure for investigating various properties of the dialogue,
including conformance to protocols, and application of the minimax strategy.

We can improve on analyzing argumentation strategies by harnessing proba-
bilistic information about an opponent to offer better decision making. In this
paper, we address this need by introducing a probability assignment to the ar-
gumentation moves. For this, we introduce probabilistic executable logic and
show how a specification for the protocols for a pair of agents in probabilistic
executable logic can be represented and analyzed in the form of a probabilistic
finite state machine (PFSM). By using Markov chains, we can determine the
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expected utility of such a specification, and we can optimize the expected utility
for one of the agents by changing its specification to be deterministic.

2 Probabilistic Executable Logic

We assume a set of atoms A which we use to form propositional formulae in
the usual way using disjunction, conjunction, and negation connectives. We con-
struct modal formulae using the �, �, ⊕, and * modal operators. We only allow
literals to be in the scope of a modal operator. If α is a literal, then each of ⊕α,
*α, �α, and �α is an action unit.

Informally, we describe the meaning of action units as follows: ⊕α means that
the action by an agent is to add the literal α to its next private state; *α means
that the action by an agent is to delete the literal α from its next private state;
�α means that the action by an agent is to add the literal α to the next public
state; and �α means that the action by an agent is to delete the literal α from
the next public state.

We use the action units to form action formulae as follows using the disjunc-
tion and conjunction connectives. If α1, . . . , αn are action units, and v ∈ [0, 1],
then (v : α1 ∧ . . . ∧ αn) is an action option. As we will see later, v denotes
the probability that an agent will undertake the actions α1, . . . , αn. We compose
the action options into action rules as follows. If β is a classical formula, and
γ1 = (v1 : α1

1∧ . . .∧α1
n), . . ., γm = (vm : αm

1 ∧ . . .∧αm
n ) are action options, where

v1 + . . .+ vm = 1, then β ⇒ γ1 ∨ . . . ∨ γm is an action rule. So an action rule
has a consequent in “disjunctive normal form”. Each disjunct is action option,
and the sum of the probabilities is 1.

Example 1. Let A = {b(a1), b(a2), c(a1), c(a2)}. So the following is an action
rule (which we might use in an example where b denotes belief, and c denotes
claim, and a1 and a2 are some items of information).

b(a1) ∧ b(a2)⇒ (0.2 : �c(a1) ∧�c(a2)) ∨ (0.5 : �c(a1)) ∨ (0.3 : �c(a2))

Implicit in the definitions for the language is the fact that we can use it
as a meta-language [14]. For this, the object-language will be represented by
terms in this meta-language. For instance, the object-level formula p(a, b) →
q(a, b) can be represented by a term where the object-level literals p(a, b) and
q(a, b) are represented by constant symbols, and→ is represented by a function
symbol. Then we can form the atom belief(p(a, b) → q(a, b)) where belief

is a predicate symbol. Note, in general, no special meaning is ascribed to the
predicate symbols or terms. They are used as in classical logic. Also, the terms
and predicates are all ground, and so it is essentially a propositional language.

We use a state-based model of dialogical argumentation with the following
definition of an execution state. To simplify the presentation, we restrict consid-
eration in this paper to two agents. An execution represents a finite or infinite
sequence of execution states. If the sequence is finite, then t denotes the terminal
state, otherwise t =∞.
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Definition 1. An execution e is a tuple e = (s1, a1, p, a2, s2, t), where for each
n ∈ N where 0 ≤ n ≤ t, s1(n) is a set of ground literals, a1(n) is a set of ground
action units, p(n) is a set of ground literals, a2(n) is a set of ground action units,
s2(n) is a set of ground literals, and t ∈ N∪ {∞}. For each n ∈ N, if 0 ≤ n ≤ t,
then an execution state is e(n) = (s1(n), a1(n), p(n), a2(n), s2(n)) where e(0)
is the initial state. We assume a1(0) = a2(0) = ∅. We call s1(n) the private
state of agent 1 at time n, a1(n) the action state of agent 1 at time n, p(n) the
public state at time n, a2(n) the action state of agent 2 at time n, s2(n) the
private state of agent 2 at time n.

In general, there is no restriction on the literals that can appear in the private
and public state. The choice depends on the specific dialogical argumentation
we want to specify. This flexibility means we can capture diverse kinds of in-
formation in the private state about agents by assuming predicate symbols for
their own beliefs, objectives, preferences, arguments, etc, and for what they know
about other agents. The flexibility also means we can capture diverse information
in the public state about moves made, commitments made, etc.

Example 2. The first 5 steps of an infinite execution where each row in the table
is an execution state where b denotes belief, and c denotes claim.

n s1(n) a1(n) p(n) a2(n) s2(n)

0 b(a) b(¬a)
1 b(a) �c(a),�c(¬a) b(¬a)
2 b(a) c(a) �c(¬a),�c(a) b(¬a)
3 b(a) �c(a),�c(¬a) c(¬a) b(¬a)
4 b(a) c(a) �c(¬a),�c(a) b(¬a)
5 . . . . . . . . . . . . . . .

We define a system in terms of the action rules for each agent, which specify
what moves the agent can potentially make based on the current state of the
dialogue. In this paper, we assume agents take turns, and at each time point the
actions are from the head of just one rule (as defined in the rest of this section).
We also assume in this paper that at most one rule can have an antecedent
satisfiable at any time.

Definition 2. A system is a tuple (Rulesx, Initials) where Rulesx is the set
of action rules for agent x ∈ {1, 2}, and Initials is the set of initial states.

For an agent x, the information it has available at any point n in the dialogue
is determined by the private state sx(n) and public state p(n). We augment this
set of atoms by the closed world assumption as follows.

Definition 3. Let sx(n) be the private state of agent x at time n, and let p(n)
be the public state of agent x at time n. The knowledge of agent x at time
n, denoted kx(n), is defined as follows.

kx(n) = sx(n) ∪ p(n) ∪ {¬α | α ∈ A and α �∈ sx(n) ∪ p(n)}
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Example 3. Let A = {b(a), b(¬a), b(b), b(¬b), c(a), c(¬a), c(b), c(¬b)}. Also let
s1(2) = {b(a)} and p(2) = {c(a)}. Therefore, k1(2) = {b(a), ¬b(¬a), ¬b(b),
¬b(¬b), c(a), ¬c(¬a), ¬c(b), ¬c(¬b)}.

We give two constraints on an execution to ensure that they are well-behaved.
The first (propagated) ensures that each subsequent private state (respectively
each subsequent public state) is the current private state (respectively current
public state) for the agent updated by the actions given in the action state. The
second (engaged) ensures that an execution does not have one state with no
actions followed immediately by another state with no actions (otherwise the
dialogue can lapse) except at the end of the dialogue where neither agent has
further actions.

Definition 4. An execution (s1, a1, p, a2, s2, t) is propagated iff for all x ∈
{1, 2}, for all n ∈ {0, . . . , t− 1}, where a(n) = a1(n) ∪ a2(n)

1. sx(n+ 1) = (sx(n) \ {φ | *φ ∈ ax(n)}) ∪ {φ | ⊕φ ∈ ax(n)}
2. p(n+ 1) = (p(n) \ {φ | �φ ∈ a(n)}) ∪ {φ | �φ ∈ a(n)}

Definition 5. Let e = (s1, a1, p, a2, s2, t) be an execution and a(n) = a1(n) ∪
a2(n). e is finitely engaged iff (1) t �= ∞; (2) for all n ∈ {1, . . . , t − 2}, if
a(n) = ∅, then a(n+ 1) �= ∅; (3) a(t− 1) = ∅; and (4) a(t) = ∅. e is infinitely
engaged iff (1) t =∞; and (2) for all n ∈ N, if a(n) = ∅, then a(n+ 1) �= ∅.

The next definition shows how a system provides the initial state of an ex-
ecution and the actions that can appear in an execution. It also ensures turn
taking by the two agents. Given the current state of an execution n, the fol-
lowing definition captures which rules are fired. For agent x, these are the rules
that have the condition literals satisfied by the current knowledge of the agent
(i.e. kx(n)). We use classical entailment, denoted |=, for satisfaction, but other
relations could be used (e.g. Belnap’s four valued logic). Also recall that in this
paper we assume that the antecedents of the rules for an agent are such that
at most one rule can fire for any point of the execution. In general, this is not
essential, but it makes the definitions simpler.

Definition 6. Let S = (Rulesx, Initials) be a system and e = (s1, a1, p, a2, s2, t)
be an execution. S generates e iff (1) e is propagated; (2) e is finitely engaged
or infinitely engaged; (3) e(0) ∈ Initials; and (4) for all m ∈ {1, . . . , t− 1}

1. If m is odd, then a2(m) = ∅ and either a1(m) = ∅ or there is an φ ⇒ (v1 :
ψ1)∨ . . .∨ (vj : ψj) ∈ Rules1 where k1(m) |= φ and there is an i ∈ {1, . . . , j}
where ψi = α1 ∧ . . . ∧ αp and a1(m) = {α1, . . . , αp}

2. If m is even, then a1(m) = ∅ and either a2(m) = ∅ or there is an φ⇒ (v1 :
ψ1)∨ . . .∨ (vj : ψj) ∈ Rules2 where k2(m) |= φ and there is an i ∈ {1, . . . , j}
where ψi = α1 ∧ . . . ∧ αp and a2(m) = {α1, . . . , αp}

The rules for each agent constitute the protocol for each agent. So the set of
executions generated by a system is the set of executions allowed by the protocols
of the two agents.
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Example 4. We can obtain the execution in Example 2 with the following rules
where the first is for agent 1, and the second is for agent 2. The first action
option of the first rule is used in steps 1 and 3, and the first action option of the
second rule is used in steps 2 and 4.

– b(a)⇒ (0.6 : �c(a) ∧�c(¬a)) ∨ (0.4 : ��)
– b(¬a)⇒ (0.8 : �c(¬a) ∧�c(a)) ∨ (0.2 : ��)

Note, for the second action option, we have �� as the only action. This denotes
an “empty action”, or a “skip action”, since there is no material effect on the
public or private states by this choice of action.

So far we have not considered the probabilities. Given a system and an exe-
cution state e, for each execution state e(n), we can obtain the probability that
this state will result in execution state e(n+ 1). We obtain this from the action
rule, by taking the probability of the action option, as follows.

Definition 7. Let S = (Rulesx, Initials) be a system and e = (s1, a1, p, a2, s2, t)
be an execution. A probability function for execution e, denoted pr, is
defined as follows. For all m ∈ {1, . . . , t− 1}

1. If m is odd, and a1(m) = ∅, then pr(e(m), e(m+ 1)) = 1.
2. If m is odd, and there is an φ ⇒ (v1 : ψ1) ∨ . . . ∨ (vj : ψj) ∈ Rules1 s.t.
k1(m) |= φi, then pr(e(m), e(m+ 1)) = vi, where i ∈ {1, . . . , j}.

3. If m is even, and a2(m) = ∅, then pr(e(m), e(m+ 1)) = 1.

4. If m is even, and there is an φ ⇒ (v1 : ψ1) ∨ . . . ∨ (vj : ψj) ∈ Rules2 s.t.
k2(m) |= φi, then pr(e(m), e(m+ 1)) = vi, where i ∈ {1, . . . , j}.

Example 5. Using the action rules in Example 4 to generate the execution in
Example 2, we obtain the following for the steps 1 to 5: pr(e(1), e(2)) = 0.6,
pr(e(2), e(3)) = 0.8, pr(e(3), e(4)) = 0.6, and pr(e(4), e(5)) = 0.8.

Executable logic can be used to formalize a diverse range of dialogical argu-
mentation where agents exchange arguments and attacks [12, 13]. It is straight-
forward to formalize the exchange of a wide range of moves and content for both
abstract and logical argumentation, and richer notions, such as value-based ar-
gumentation [15]), can be captured.

3 Probabilistic Finite State Machines

Probabilistic finite state machines (PFSMs) are an important approach in com-
puter science for modelling behaviours of interacting modules when there is
uncertainty in the choices made by those modules. The formalization augments
finite state machines with a probability distribution over the transitions coming
out of each state [16]. In this section, we show how a executable logic system,
together with a choice of initial state, can be used to generate a PFSM.
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Definition 8. A tuple M = (States, Arcs, Start, Prob) is a probabilistic fi-
nite state machine (PFSM) where States is a set of states, Start ∈ States,
Arc ⊆ States × States is a set of arcs, Prob : Arcs → [0, 1] is a probability
function such that

∑
s′∈States s.t. (s,s′)∈Arcs Prob(s, s

′) = 1 for each s ∈ States.

The Prob assignment is the probability that that arc is chosen. The transitions
out of a state sum to 1.

Definition 9. Let M be a PFSM, and let ρ = σ1, . . . , σk ⊆ States be a sequence
of states. ρ is a walk in M iff (1) if k = 1, then σ1 is the node reached imme-
diately from the Start node and (2) if k > 1, then σ1, . . . , σk−1 is a walk in M
and (σk−1, σk) ∈ Arcs.
Example 6. The following is an PFSM where the probability of each transition
labels the arc. For this, σ1, σ2, σ3, σ2, σ3, σ4 is a walk.

σ1start σ2 σ3 σ4

σ5

σ6

σ7

σ8

σ9

1
1

0.2
0.3

0.5

1

1

1

1

We can construct an FSM that represents the set of executions for an initial
state for a system. For this, each state is a tuple (y, s1(n), p(n), s2(n)), where n
is an execution step and y is the agent holding the turn when n < t and r is 0
when n = t. The probability that any given actions are executed is given by the
probability assignment to the rule. So each execution is a Markov chain.

Definition 10. A PFSM M = (States, Arcs, Start, Prob) represents a sys-
tem S = (Rulesx, Initials) for an initial state I ∈ Initials iff

(1) States = {(y, s1(n), p(n), s2(n)) | S generates e = (s1, a1, p, a2, s2, t)

and I = (s1(0), a1(0), p(0), a2(0), s2(0))
and y = 0 when n = t
and y = 1 when n < t and n is odd
and y = 2 when n < t and n is even }

(2) Start = (1, s1(0), p(0), s2(0)) where I = (s1(0), a1(0), p(0), a2(0), s2(0))

(3) Arcs is the smallest subset of States × States s.t. for all executions e and
for all n < t there is a transition τ ∈ Arcs such that

τ = ((x, s1(n), p(n), s2(n)), (y, s1(n+ 1), p(n+ 1), s2(n+ 1)))

where x is 1 when n is odd, x is 2 when n is even, y is 1 when n+ 1 < t and n
is odd, y is 2 when n+ 1 < t and n is even, and y is 0 when n+ 1 = t.

(4) Prob is the smallest subset of Arcs× [0, 1] s.t. for all τ ∈ Trans,

if τ = ((x, s1(n), p(n), s2(n)), (y, s1(n+ 1), p(n+ 1), s2(n+ 1)))
then Prob(τ) = pr(e(n), e(n+ 1))
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where e(n+ 1) = (s1(n + 1), a1(n+ 1), p(n+ 1), a2(n+ 1), s2(n + 1), q(n+ 1)),
e(n) = (s1(n), a1(n), p(n), a2(n), s2(n), q(n)), and pr is the execution probability
function.

Example 7. Consider the PFSM in Example 6 where the states are defined as
follows.

σ1 = (1, ∅, {a}, ∅) σ4 = (2, ∅, {d}, ∅) σ7 = (1, ∅, {e}, ∅)
σ2 = (2, ∅, {b}, ∅) σ5 = (2, ∅, {e}, ∅) σ8 = (0, ∅, {d}, ∅)
σ3 = (1, ∅, {c}, ∅) σ6 = (1, ∅, {d}, ∅) σ9 = (0, ∅, {e}, ∅)

This can be obtained from the following set of rules for each agent so that the
PFSM represents the system: (1) a⇒ (1 : �b∧�a); (2) b⇒ (1 : �c∧�b); and
(3) c⇒ (0.2 : �b ∧�c) ∨ (0.3 : �d ∧�c) ∨ (0.5 : �e ∧�c).

Example 8. Consider the following set of action rules. For this, let h(a) denote
that an agent holds an argument a in its private state, let a(a) denote that
argument a has been posited in the public state, and let e(a, b) denote that
argument a attacks argument b.

– h(a) ∧ h(b)⇒ (0.5 : �a(a)) ∨ (0.5 : �a(b))
– h(a) ∧ ¬a(a) ∧ a(b) ∧ e(a, b)⇒ (1 : �a(a) ∧�e(a, b))
– h(b) ∧ ¬a(b) ∧ a(a) ∧ e(a, b)⇒ (1 : �a(b) ∧�e(a, b))

The first action rule adds the argument a to the public state or adds the argument
b to the public state. The second action rule adds a to the public state if it has
not already been added, and it adds the attack by a on b to the public state.
The third action rule adds b to the public state if it has not already been added,
and it adds the attack by a on b to the public state.

With this set of action rules, and the initial state ({h(a), h(b)}, {}, {}, {}, {}),
we obtain the following PFSM, with the states defined below.

σ1start

σ2

σ3

σ4

σ5

σ6 σ7 σ8

0.5

0.5

1

1

1

1

1 1

σ1 = (1, {h(a), h(b)}, {}, {}) σ5 = (1, {h(a), h(b)}, {a(b)}, {})
σ2 = (2, {h(a), h(b)}, {a(a)}, {}) σ6 = (2, {h(a), h(b)}, {a(a), a(b), e(a, b)}, {})
σ3 = (2, {h(a), h(b)}, {a(b)}, {}) σ7 = (1, {h(a), h(b)}, {a(a), a(b), e(a, b)}, {})
σ4 = (1, {h(a), h(b)}, {a(a)}, {}) σ8 = (0, {h(a), h(b)}, {a(a), a(b), e(a, b)}, {})

So this set of action rules implicitly constructs an abstract argument graph in
the public state. The end state is σ8 and it contains the specification of the
abstract argument graph a→ b.

Proposition 1. For each S = (Rulesx, Initials), there is a PFSM M such that
M represents S for an initial state I ∈ Initials.
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In the next definition, we provide the conditions under which a walk over k
states is equivalent to the k steps of an execution after the initial state.

Definition 11. A sequence of states ρ = σ1, . . . , σk reflects an execution e =
(s1, a1, p, a2, s2, t) iff for each i ∈ {1, . . . , k − 1},

1. σi = (s1(i), p(i), s2(i))

2. Prob((σi, σi+1)) = pr(e(i), e(i+ 1))

So for each initial state for a system, we can obtain a PFSM that is a concise
representation of the executions of the system following that initial state.

Proposition 2. Let S = (Rulesx, Initials) be a system, and let M be a PFSM
that represents S for I ∈ Initials:

1. For all ρ s.t. ρ is a walk in M , there is an execution e s.t. S generates e and
e(0) = I and ρ reflects e.

2. For all finite executions e s.t. S generates e and e(0) = I, then there is a ρ
such that ρ is a walk in M and ρ reflects e.

A PFSM provides a more efficient representation of all the possible executions
than the set of executions for an initial state. For instance, if there is a set of
states that appear in some permutation of each of the executions then this can
be more compactly represented by an PFSM.

Furthermore, we can ask simple questions such as is termination possible,
is termination guaranteed, and is one system subsumed by another? Then by
analyzing the Markov chains, we can answer questions such as what is the prob-
ability that we leave a state and never return, or the probability that we visit a
state infinitely often? So by translating a system into a PFSM, we can harness
substantial theory and tools for analyzing PFSMs.

There are various options we have for dealing with cycles in PFSMs. Here, we
consider dropping arcs so as to remove cycles. For this, when there is a walk that
is looping back to a state that has already been visited on the walk, that arc is
dropped. Then the probability of the arcs that are dropped are redistributed to
any remaining arcs.

Definition 12. Let M be a PFSM. M ′ = (States, Arcs′, Start, Prob) is de-
rived from M = (Starts, Arcs, Start, Prob) iff

1. Arcs′ is a maximal subset of Arcs s.t. for every walk σ1, . . . , σn in M , if
σ1 = σn, then (σn−1, σn) �∈ Arcs′.

2. For each σi ∈ States, if (σi, σj) ∈ Arcs′, let Prob′((σi, σj)) =

Prob((σi, σj))∑
(σi,σk)∈Arcs′ Prob((σi, σk))

Example 9. Consider the PFSM in Example 6. The following is derived from it.
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σ1start σ2 σ3 σ4

σ5

σ6

σ7

σ8

σ9

1 1 0.375

0.625

1

1

1

1

Proposition 3. If M is a PFSM, and M ′ is derived from M , then M ′ is an
acyclic PFSM.

We can regard each walk in M as a Markov chain. Hence, if the graph is
acyclic, then we can calculate the probability of walk σ1, . . . , σk as follows.∏

i∈{1,...,k−1}
Prob((σi, σi+1))

For acyclic graphs, the probability that a dialogue is in any particular end
state (i.e. state with no arcs out of the state) is the sum of the probabilities
of the walks that terminate in that end state. Let Walks(M,σ) = {ρ | ρ =
σ1, . . . , σk is a walk in M and σk = σ} be the set of walks with σ as end state.

Proposition 4. Let M be an PFSM, and let End(M) be the set of end states
in M . If M is acyclic, then

∑
σ∈End(M)

∑
ρ∈Walks(M,σ) Prob(ρ) = 1

Example 10. For the PFSM in Example 9, Prob(σ1, σ2, σ3, σ5, σ7, σ9) = 0.625,
and Prob(σ1, σ2, σ3, σ4, σ6, σ8) = 0.375.

In the rest of the paper, we assume that we will have an acyclic PFSM. So if
a system gives a cycle, we use the above method to get an acyclic PFSM.

4 Analyzing Outcomes through Search

A PFSM generated by a system and an initial state represents the uncertainty
that an agent will make any move allowed by the protocol at each point in the
dialogue. By exhaustively constructing a search tree, we can analyze an acyclic
PFSM. A search tree T for an acyclic PFSMM is the smallest tree where every
walk ρ inM that terminates in an end state inM (i.e. a state with no transitions
out of the state) corresponds to a branch in T . So for each walk ρ = τ1 . . . τt−1,
the source node in τ1 is the root of the tree, and the destination node in τt−1 is
a leaf node. The probability of a leaf is the product of the probability values on
the arcs from root to leaf.

We use a utility function to measure the value of each leaf in a search tree.
For argumentation, there is a wide range of utility functions. In the example
below, we have used grounded semantics to determine whether a specified ar-
gument (i.e. a goal argument) is in the grounded extension of the argument
graph in the public state of the leaf node. A refinement is the weighted utility
function which weights the utility by 1/d where d is the depth of the leaf. This
favours shorter dialogues. Further definitions arise from using other semantics
and richer formalisms such as valued-based argumentation [15].
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Definition 13. For an PFSM M , where Prob is the probability function, let the
search tree be T , let U be a utility function, and let E be a function defined as
follows.

– If σ is a leaf node in T , then E(σ) is U(σ).
– If σ is a non-leaf node in T , σ has children σ1, . . . , σk, where for each
i ∈ {1, . . . , k}, the transition from σ to σi, is τi, and the probability of the
transition is Prob(τi), then E(σ) =

∑
i∈{1,...,k} Prob(τi)× E(σi).

If σ is the root of the search tree T , then the expected tree utility of T ,
denoted E(T, Prob, U), is E(σ).

Example 11. In this example, we assume that agent 1 has a goal of making an
argument c hold in the grounded extension of the abstract argument graph that
exists in the end state of the execution. This goal is represented by the predicate
g(c) in the private state of agent 1. In its private state, each agent has zero or
more arguments that it holds represented by the predicate h(c), where c is an
argument, and zero or more attacks e(d, c) from argument d to argument c. In
the public state, each argument c is represented by the predicate a(c). Each
agent can add attacks e(d, c) to the public state, if the attacked argument is
already in the public state (i.e. a(c) is in the public state), and the agent also
has the attacker in its private state (i.e. h(d) is in the private state). Note, r(c)
is used to denote that the agent has used its right to present argument c.

¬a(a) ∧ h(a)⇒ (1 : �a(a))
¬r(b) ∧ ¬a(b) ∧ h(b) ∧ a(a) ∧ e(b, a)⇒ (0.5 : �a(b) ∧�e(b, a)) ∨ (0.5 : ⊕r(b))
Let M be the following PFSM representing the system defined by the above
action rules.

σ1start σ2

σ3σ4σ5σ6 σ7 σ8 σ9

1

1

0.5 0.511 1 1

Below we give states for the PFSM. Note, in the end state σ6 the public state
contains the abstract argument graph containing a(a), a(b), and e(b, a) (i.e. the
graph is a ← b). and in the end state σ9 the public state contains the abstract
argument graph a(a) (i.e. the graph is a).

σ1 = (1, {h(a), h(b), a(b, a)}, {}, {})
σ2 = (2, {h(a), h(b), a(b, a)}, {a(a)}, {})
σ3 = (1, {h(a), h(b), a(b, a)}, {a(a)}, {})
σ4 = (2, {h(a), h(b), a(b, a)}, {a(a), a(b), e(b, a)}, {})
σ5 = (1, {h(a), h(b), a(b, a)}, {a(a), a(b), e(b, a)}, {})
σ6 = (0, {h(a), h(b), a(b, a)}, {a(a), a(b), e(b, a)}, {})
σ7 = (2, {h(a), h(b), a(b, a), r(b)}, {a(a)}, {})
σ8 = (1, {h(a), h(b), a(b, a), r(b)}, {a(a)}, {})
σ9 = (0, {h(a), h(b), a(b, a), r(b)}, {a(a)}, {})
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Suppose the utility of a being in the grounded extension of the graph in the
end state is 10, and the utility of a not being in the grounded extension of the
graph in the end state is -5. There are two leaves of the search tree to consider:
E(σ6) = −5 and E(σ9) = 10. Hence, the expected tree utility is 2.5.

We can characterize expected tree utility in terms of expected utility of a
lottery. We start by briefly reviewing the notion of a lottery. A lottery is a
probability distribution over a set of possible outcomes. A lottery with pos-
sible outcomes π1,..,πn, that occur with probabilities p1, .., pn respectively, is
written as [p1, π1; ....; pn, πn]. Note, each outcome can be a lottery. For a util-
ity function U , the expected utility of a lottery L, denoted E(L,U), is
E(L,U) =

∑n
i=1 pi × U(πi).

Definition 14. Let M be a PFSM, with probability function Prob, and let T be
a search tree for M . We define the coding function L as follows:

– If σ is a leaf node, then L(σ) = σ;

– If σ is a non-leaf node with children σ1, . . . , σk, and transitions τ1, . . . , τk
respectively, then L(σ) = [Prob(τ1) : L(σ1), . . . , P rob(τk) : L(σk)].

If σ is the root of the search tree T , then the tree lottery for T , denoted
L(T, Prob), is L(σ).

Example 12. Let T be a search tree for the PFSM in Example 11. So L(T, Prob)
= [1, [1, [0.5, [1, [1, σ6]; 0.5, [1, [1, σ9]]]]]].

The following result shows that evaluating the expected tree utility (i.e. Def-
inition 13) corresponds to evaluating the expected utility of a tree lottery (i.e.
Definition 14).

Proposition 5. Let M be a PFSM, with probability function Prob, and let T
be a search tree for M , Let U be a utility function. If E(T, Prob, U) is the ex-
pected tree utility of T , and E(L(T, Prob), U) is the expected utility of tree lottery
L(T, Prob), then E(T, Prob, U) = E(L(T, Prob), U).

An agent can then analyze the PFSM to determine the most likely outcomes of
a dialogue given any choices it makes. This can be used by the agent to determine
its choice of moves in order to optimize its outcomes from the dialogue. It does
this by changing its probabilities on its action rules. So that for each action
rule, only one action option has probability 1, and the other action options have
probability 0 (i.e. we make it deterministic).

Example 13. Consider Example 11. The following set of deterministic rules is
the optimal set of rules for agent 1.

¬a(a) ∧ h(a)⇒ (1 : �a(a))
¬r(b) ∧ ¬a(b) ∧ h(b) ∧ a(a) ∧ e(b, a)⇒ (0 : �a(b) ∧�e(b, a)) ∨ (1 : ⊕r(b))



Probabilistic Strategies in Dialogical Argumentation 201

In general for a set of action rules Rules1, let Rules
i
1 contain a deterministic

version of each rule in Rules1. For each set Rulesi1, together with the set Rules2,
and starting state, we obtain the PFSM M i, and calculate expected tree utility
of the search tree T i. A set Rulesi1 that gives the maximum expected tree utility
is an optimal set of deterministic rules for agent 1, and thereby specifies the
actions that agent 1 should do to maximize its utility from the dialogue with
agent 2 (assuming that Prob is a good estimate of the moves that agent 2 would
make).

5 Discussion

In this paper, we have provided a simple, yet expressive language, for specifying
the argumentation protocols of agents, and for representing the likelihood that
an agent will make any specific move. We have shown how a specification in exe-
cutable logic can be represented by a PFSM. This can be analyzed to determine
expected utility for an agent, and it can be adjusted to optimize the performance
of one agent over the other with respect to expected utility.

Some general frameworks for dialogue games have been proposed [17, 7], but
they lack sufficient detail to formally analyze or implement specific systems. A
more detailed framework, that is based on situation calculus, has been proposed
by Brewka [18], though the emphasis is on protocols, and not on the likelihood
of moves, or of strategies. Probability theory (for example [19–21]) and utility
theory (for example [22–25, 20]) have been considered in other frameworks for
multi-agent argumentation though none of these offers a general logical language
for specifying diverse protocols for dialogical argumentation with abstract and
logic-based arguments, and for representing the uncertainty of moves made by
each agent in argumentation. We believe this is the first paper that provides a
general framework for specifying probabilistic protocols for dialogical argumen-
tation, and for using them for optimizing the probabilistic strategies in terms of
the expected utility of the Markov chains that can be obtained by the protocols.
Potentially, this is a powerful tool for assessing agents in dialogical argumenta-
tion, and optimizing their outcomes from the argumentation.
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Abstract. This paper introduces probabilistic databases with unmerged dupli-
cates (DBud), i.e., databases containing probabilistic information about instances
found to describe the same real-world objects. We discuss the need for efficiently
querying such databases and for supporting practical query scenarios that require
analytical or summarized information. We also sketch possible methodologies
and techniques that would allow performing efficient processing of queries over
such probabilistic databases, and especially without the need to materialize the
(potentially, huge) collection of all possible deduplication worlds.

1 Introduction

Entity Deduplication is the task of processing a data set in order to create entities by
merging the data set instances that describe the same real-world objects. Traditional
deduplication techniques [4] are based on an a-priori merging of instances: they first de-
tect the possible matches between instances, and then, given a threshold, decide which
instances to merge into entities. The entities resulting from the merges are then used
for replacing the coreference instances in the original data set. Query processing is per-
formed over the updated data set.

To handle the new resolution challenges, the recently introduced approaches (e.g.,
[1], [6], and [9]) moved towards databases that maintain and incorporate unmerged du-
plicates. These approaches perform only the first part of the resolution process, which is
the identification of the possible matches between the instances. This is the deduplica-
tion information, and it corresponds to a set of possible linkages between instances. In
some approaches each linkage is accompanied with a probability that reflects the belief
of the deduplication technique that the specific two instances describe the same real-
world object. The resulting information is not used for performing entity merges (using
a given threshold), but is stored alongside the original data. The complete deduplication
is performed during query processing, and thus answers reflect the different real-world
situations that are encoded in the deduplication information. In case the deduplication
information is probabilistic, as for instance in [1] and [6], then the probabilities are used
for computing the overall probability of each query answer.

Although answering queries over unmerged duplicates is important, it is still just
a first step towards a complete solution to the problem. The typical situation is that
the unmerged duplicates are part of a large database that of course contains other ta-
bles. Consequently, users would require retrieving information related to all data in the
database, duplicated or not. However, this would require generating and considering all
the possible worlds, which is typically huge [2] and will overwhelm the user instead
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Buyer
id name surname loc. gender year
r1 Marion Smith GR female 2009
r2 Marion Smith DE female 2010
r3 Mary Smith DE female 2011

Deduplication
id inst 1 inst 2 pr

lr1 ,r2 r1 r2 0.95
lr1 ,r3 r1 r3 0.55

Order
id buyer items amount
t1 r1 1 100
t2 r2 2 300
t3 r2 4 250
t4 r3 2 250

Fig. 1. A fragment of a probabilistic database with unmerged duplicates

of providing useful information. In addition, users might not care about the exact enti-
ties but rather on obtaining insights through analytical and summarizing queries, as for
example performed in the online analytical processing.

In this paper, we introduce DBud : a database containing probabilistic information
about instances found to describe the same real-world objects. DBud adopts the most
expressive form of deduplication information (i.e., probabilistic linkages between in-
stances – also accounting for transitivity), and significantly extends its scope by
considering the deduplication information as part of a database with other tables provid-
ing entity-related data. In the following sections, we first introduce analytical queries
for retrieving information of the entities in DBud (Section 2), and then sketch possible
methodologies and techniques for efficiently processing queries over such a probabilis-
tic database with unmerged duplicates (Section 3).

2 Modeling Data and Queries

A probabilistic database with unmerged duplicates DBud contains deterministic rela-
tional tables T 1, ..., T n as well as tables with duplicates R1, ..., Rk, i.e., some instances
of Ri describe the same real-world objects. The deduplication information for table Ri is
given in table Li. More specifically, Li contains probabilistic linkages over the instances
in Ri: lrα,rβ∈Li means that instances rα and rβ from Ri describe the same real-world
object with probability pl.

To process queries over DBud we must be able to support joins between the tables
with unmerged duplicates and the deterministic tables. For example, answering queries
over the DBud fragment shown in Figure 1 requires considering the join between ta-
ble Buyer with Order. Since table Buyer contains duplicates, we must first derive the
possible entities using the deduplication information provided in table Deduplication.
Each linkage from the Deduplication table can be either accepted or rejected, e.g., we
can accept lr1,r3 with probability 0.55 or reject it with probability (1-0.55). Rejecting the
linkage means that the database has two entities, one for each of the instances. Accept-
ing the linkage implies a new entity, with identifier e1,3, that replaces both r1 and r3.
Creating a single entity given these two instances maybe performed using different se-
mantics. For example, if we assume that we keep the instance with the highest value on
the year attribute, the tuple for the merge between instances r1 and r3 is 〈e1,3, “Mary”,
“Smith”, “DE”, “female”, “2011”〉.

For creating the possible entities of a table with unmerged duplicates Ri we need to
consider the acceptance and rejection of each linkage of Li. Deciding which linkages
from Li (e.g., table Deduplication from Figure 1) to accept or reject leads to a huge
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Table 1. The possible deduplication worlds with the entities created when requesting the join
between Order with Buyer and summation over the Order’s “amount” for each entity

Linkages Prob. Entities (with summation over Order’s amount)
I1 lr1 ,r2 & lr1 ,r3 0.5225 〈e1,2,3, ..., 2009, DE, 900〉
I2 lr1 ,r2 & ¬lr1 ,r3 0.4275 〈e1,2, ..., 2010, DE, 650〉, 〈e3, ..., 2011, DE, 250〉
I3 ¬lr1 ,r2 & lr1 ,r3 0.0275 〈e1,3, ..., 2011, DE, 800〉, 〈e2, ..., 2010, DE, 550〉
I4 ¬lr1,r2 & ¬lr1 ,r3 0.0225 〈e1, ..., 2009, GR, 100〉, 〈e2, ..., 2010, DE, 550〉,

〈e3, ..., 2011, DE, 250〉

(exponentially-large) number of situations, termed possible deduplication worlds. Gen-
erating all these situations is infeasible. In addition, the huge volume of results that
would arise when processing queries over all possible worlds would make it impossible
for users to derive any meaningful information.

We suggest to address these issues by applying analytical operators and qualifiers
over the possible deduplication worlds. In particularly, we introduce the following two
levels of aggregation:

– First Aggregation Level: performs aggregation within each possible deduplication
world and uses conventional SQL aggregate semantics over the merged entities.
For example, consider again the data from Figure 1. Accepting both linkages of
table Buyer leads to entity e1,2,3, which would join with tuples t1, t2, t3 and t4 from
table Order. The summation over the Order’s “amount” is thus 900. Table 1 shows
the four deduplication worlds created when requesting the join between Order and
Buyer with summation over the Order’s “amount” for each entity. Note that we also
need to identify and ignore the deduplication worlds in which the entities created
by the accepted linkages are not satisfied by the rejected linkages. For example, the
deduplication world with entity eα,β,γ is invalid if it was created by accepting the
linkages lα,β and lα,γ and rejecting linkage lβ,γ.

– Second Aggregation Level: performs aggregation across all possible deduplication
worlds and over all the records created by the first level and based on one (or more)
query attributes of interest. The goal is to further reduce the number of information
that is created by the first aggregation level, which would help users to reach vital
business decisions easier and faster.

As an example, consider again the data from Figure 1 and that a manager wants to
retrieve the range of possible total Order amounts per location. The manager poses the
following query:

SELECT Buyer.location, range(entity amount), prob
FROM Order entity-join Buyer based on Deduplication

using sum(Order.amount) as entity amount
WHERE GROUP BY Buyer.location

Although not directly expressed in the query, the entity-join implies aggregation of
the records corresponding to each entity in the possible worlds by assuming an implicit
group-by operator over the entities (i.e., first aggregation level). Evaluating the (explicit)
group by clause over the resulting records gives two locations: “GR” and “DE” (i.e.,
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second aggregation level). Consider now all entities in the possible worlds, i.e., I1−4 of
Table 1. The amount summation for location “GR” is 100, and for location “DE” it is
between 250 and 900, and thus the range is [250-900]. The probability for each location
is the summation of the possible worlds in which they participate. The location-range
pairs along with their probabilities that compose the answer set are {〈“GR”, [100-100],
0.0225〉, 〈“DE”, [250-900], 1〉}.

The manager also wants to retrieve the two most likely aggregate amounts spent by
buyers in 2010, along with their respective probabilities. This is basically an iceberg
query as it allows users to find the high-probability deduplication scenarios satisfying
specific selection predicates. The query posed by the manager is now the following:

SELECT top-2 entity amount, prob
FROM Order entity-join Buyer based on Deduplication

using sum(Order.amount) as entity amount
WHERE Buyer.year=2010

The entities satisfying the where conditions are e2 from possible worlds I3 and I4,
e1,2 from I2. The probability of each entity is the summation of the probabilities of
the worlds in which it participates, i.e., 0.05 for e2 and 0.4275 for e1,2. By default, the
entities are ordered by probability, thus, the answer for this query is {〈650, 0.4275〉,
〈550, 0.05〉}.

Our vision is to provide complex aggregation and iceberg queries that will allow
users to efficiently retrieve statistical information about the possible deduplicated enti-
ties. As shown in the above examples, a vital operator is a novel entity-join, which will
allow expressing joins between a table with unmerged duplicates Ri and deterministic
database table T j. Entities are created using summation, count, minimum, or maximum
aggregation over the T j tuples. The entity-join can be used for query analytics using
either aggregation operators (e.g., range, mean and variance1) or iceberg operators
(e.g., top-k). Instead of top-k, we could also consider simply specifying a lower bound
on the probability of the returned aggregate values.

Users might also be interested in retrieving results with more details, probably after
executing aggregation queries, which basically implies reversing parts of the performed
summarization. This can be performed with a “drill down” qualifier, similar to the
corresponding qualifier of online analytical processing.

Providing efficient operators for constructing entities given a set of instances is also
useful for query processing over DBud. The majority of the existing deduplication ap-
proaches either do not deal with this issue or simply return the most recent instance or
the union of all instances. To provide such operators, we could for example consider
the [11] approach from information extraction, which constructs entities by detecting a
canonical value for each attribute given the corresponding values from all the instances.

3 Possible Mechanisms for Efficient Query Processing

For providing analytics over DBud, we need to introduce new mechanisms and tech-
niques that exploit processing of aggregation and iceberg queries without the need to

1 Mean can be used for retrieving the average value over the ranges of all possible merges and
variance for indicating the typical discrepancy of the expected value.
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materialize the possible worlds. Other important aspects that we must consider, include
the efficient computation of probabilities over the resulting answers, and the linkage
transitivity requirement that, among other things, implies the need for reasoning at
query time.

Aggregation Queries. This type of queries has been so far studied only by very few
approaches. For example, processing aggregation queries is the main goal of [5]. It is
achieved by the structural decompositions of expressions into sub-expressions that are
independent and mutually exclusive. DBud needs to support a more expressive form of
aggregation, which captures two aggregation levels.

Another existing approach that targets aggregate operators is [9]. However, there ex-
ist crucial differences with the aggregate operators required for DBud. One difference is
that the model followed in [9] assumes that the algorithm is provided with fixed clusters
of instances, which allows focusing on basic query-time aggregation. In sharp contrast
to [9], DBud follows a more generic deduplication model that requires dealing also with
linkages between instances as well as linkage transitivity. In addition, DBud also con-
siders probabilistic linkages, in order to capture the relevant entity-linkage uncertainty.
Another difference is that DBud supports a more expressive query syntax in comparison
to [9], which includes two aggregation levels and additional aggregation functions.

Processing aggregation queries over DBud could be efficiently achieved by limiting
the number of possible worlds to be materialized or by partially materializing possible
worlds. For instance, for minimum and maximum aggregates we do not need to use
all the records but rather only one record from Ti for each instance from Ri. As an
example, consider again the data of Order from Figure 1. When processing a query with
a maximum aggregate, we can safely ignore all tuples related to a specific ri except the
one with the highest amount, i.e., for r2 we keep only tuple t2 since this provides the
highest amount among all tuples related to r2.

Iceberg Queries. In contrast to deterministic data, iceberg queries (i.e., top-k) for un-
certain data have different interpretations [10]: the top-k tuples from the possible world
with the highest probability, the set of k tuples that have the highest aggregated proba-
bility to appear together across all possible worlds [8, 10] (called “U-Topk”), and the k
tuples from any possible world as long as they have the highest probabilities [10] (called
“U-kRanks”). For DBud, this query type corresponds to retrieving the k single-item an-
swers with the highest probabilities (i.e., Topk from [8], k U-Top1 from [10]). Ré et
al. [8] process U-Topk through Monte-Carlo simulation. They maintain probability in-
tervals that are then tightened by generating random possible worlds. Soliman et al. [10]
introduced a framework that navigates the space of possible worlds in order to generate
the top-k tuples. More recent top-k related approaches are [7] and [3]. The approach
in [7] shares the probability computation of detected subqueries with several query an-
swer, and further extends for the computation of bounds. The goal of [3] is similar, but
here the authors achieve the computation of bounds without materialization.

One option for processing iceberg queries over DBud, is to create an indexing struc-
ture that detects and maintains the entities with the highest probabilities. Ideally, the
indexing structure would provide efficient access to the information encoded through
the linkages (i.e., potential merges) and allow easy construction of possible worlds (or
partial possible worlds), as well as the fast retrieval of their probabilities. Thus, DBud
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would not need to perform a full on-the-fly materialization, but rather directly retrieve
query answers, or part of them, from the indexing structure.

4 Summary

In this paper we have presented probabilistic databases with unmerged duplicates, i.e.,
databases with duplicated instances and probabilistic linkages between duplicated in-
stances. We discussed the need for efficiently supporting practical query scenarios that
do not require retrieving the huge collection of all possible deduplication worlds, but
rather analytical or summarized information. This primarily involves query analytic,
including aggregation and iceberg queries. We have also sketched possible method-
ologies and techniques that would allow the efficient processing of queries over such
probabilistic databases, and especially without the need to materialize the collection of
all possible deduplication worlds.
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Abstract. Qualitative and comparative preference statements of the form “pre-
fer α to β” are useful components of many applications. This statement leads to
the comparison of two sets of alternatives: the set of alternatives in which α is
true and the set of alternatives in which β is true. Different ways are possible to
compare two sets of objects leading to what is commonly known as preference
semantics. The choice of the semantics to employ is important as they differ-
ently rank-order alternatives. Existing semantics are based on philosophical and
non-monotonic reasoning grounds. In the meanwhile, they have been widely and
mainly investigated by AI researchers from algorithmic point of view. In this
paper, we come to this problem from a new angle and complete existing theo-
retical investigations of the semantics. In particular, we provide a comparison of
the semantics on the basis of their psychological plausibility by evaluating their
closeness to human behavior.

1 Introduction

Preferences are fundamental in many scientific researches as well as applications. One
of the main problems an individual faces when expressing her/his preferences may be
due to the number of variables (or attributes) that she/he must take into account to
evaluate the different alternatives. This is because the number of alternatives increases
exponentially with the number of variables, making the direct assessment of individ-
ual preferences over the whole set of alternatives simply infeasible. Fortunately it is
commonly acknowledged that individuals generally express preferences over partial
descriptions of alternatives. They often take the form of qualitative comparative pref-
erence statements, e.g., “I like London more than Paris” and “I prefer tea to coffee”.
Individuals may express their comparative statements w.r.t. some context, e.g., “If fish
is served, then I prefer white wine to red wine”. Therefore comparative preference state-
ments allow to express general preferences (e.g., “I prefer fish to meat”) and specific
preferences in particular contexts (e.g., “If red wine is served, I prefer meat to fish”).

AI researchers have developed compact preference representation languages to cope
with comparative preference statements. They use more or less strong ways to compare
two sets of alternatives. These ways are referred to as preference semantics. So far these
semantics have been studied in AI on entirely technical grounds, mainly by character-
izing a unique rank-ordering of alternatives. It goes without saying that the choice of
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a particular semantics to employ is important as crucial decisions may be made on the
basis of the rank-ordering of the alternatives induced by the semantics. While we know
a lot about the technical machinery of existing semantics, we know relatively much less
how the latter would be close to individuals preferences if the individuals were able to
rank-order the whole set of alternatives. Our aim in this paper is to address the issue of
psychological plausibility of the main semantics studied in the literature. Cognitive psy-
chology is a research discipline which aims to understand human cognitive functions
such as reasoning, judgment and decision-making. It has not a normative but a descrip-
tive stance. Based on experiments, cognitive psychology provides hints on the validity
of hypotheses one may have on the sources of human behavior. It has already been used
to evaluate non-monotonic reasoning approaches [1,5,9] and decision theories [10].

2 Background

Let V = {X1, . . . , Xh} be a set of h variables, each takes its values in a finite domain
Dom(Xi). A possible alternative, denoted by ω, is the result of assigning a value in
Dom(Xi) to each variable Xi in V . Ω denotes the set of all possible alternatives. We
suppose that this set is fixed and finite. Let L be a language based on V and the symbols
∧,∨ and¬which respectively correspond to conjunction, disjunction and negation. For-
mulas are built on L using atomic formulas of the formXi = Ai, withAi ∈ Dom(Xi).
When there is no ambiguity, Xi = Ai is replaced with Ai. Mod(α) denotes the set of
alternatives that make the formula α true. It is also called α-alternatives.

A preference relation - on Ω is a binary relation. For ω, ω′ ∈ Ω, the statement
ω - ω′ stands for “ω is at least as preferred as ω′”. The notation ω � ω′ means that
ω is strictly preferred to ω′. We have ω � ω′ if ω - ω′ holds but ω′ - ω does not. -
is total if and only if ∀ω, ω′ ∈ Ω, either ω - ω′ or ω′ - ω holds. We suppose that a
preference relation - is a preorder (reflexive and transitive). - is cyclic if and only if
∃ω, ω′, · · · , ω′′ ∈ Ω such that ω � ... � ω′ � ω′′ � ω holds. Otherwise it is acyclic.

For convenience, an acyclic total preorder - can also be represented by a well or-
dered partition ofΩ. A set of sets of alternatives of the form (E1, . . . , En) is a partition
of Ω if and only if (i) ∀i, Ei �= ∅, (ii) E1 ∪ . . . ∪ En = Ω, and (iii) ∀i, j, Ei ∩ Ej = ∅
for i �= j. A sequence (E1, ..., En) is an ordered partition of (Ω,-) if (E1, ..., En) is a
partition of Ω and (∀ω, ω′ ∈ Ω with ω ∈ Ei, ω

′ ∈ Ej we have i ≤ j iff ω - ω′).
Given an acyclic total preorder- onΩ and its associated ordered partition (E1, · · · ,

En), a ranking of outcomes can be defined. Preferred outcomes w.r.t. - receive the
rank 1. They are alternatives in E1. Next preferred ones receive the rank 2 (they are
alternatives in E2), and so on.

3 Comparative Preference Statements

Individuals express their preferences in different forms. Often, these preferences im-
plicitly or explicitly refer to qualitative comparative preference statements of the form
“prefer α to β”, where α and β are formulas. This statement serves to rank-order the set
of alternatives. Let- be the underlying preference relation. Given the statement “prefer
α to β”, α-alternatives are expected to be preferred to β-alternatives w.r.t. -. Dealing
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with the statement “prefer α to β” is easy when both α and β refer to an alternative.
However this task becomes more complex when α and β refer to sets of alternatives and
share some alternatives. In order to prevent this situation von Wright [11] interprets the
statement “prefer α to β” as a choice problem between α∧¬β-alternatives and β∧¬α-
alternatives. Particular situations are those whenα∧¬β (resp. β∧¬α) is a contradiction
or not feasible, i.e. there is no alternative in Ω which satisfies α ∧ ¬β (resp. β ∧ ¬α).
In both cases, α ∧ ¬β (resp. β ∧ ¬α) is replaced with α (resp. β) following [11,6]. For
simplicity we suppose that both α ∧ ¬β and β ∧ ¬α are consistent and feasible.

Comparative preference statements may be expressed w.r.t. some context. They are
of the form “if γ, prefer α to β”. This means that we prefer γ ∧ α ∧ ¬β-alternatives
to γ ∧ β ∧ ¬α-alternatives which corresponds to “prefer γ ∧ α to γ ∧ β”. Indeed for
simplicity and without loss of generality, we focus on statements of the form “prefer
α to β”, denoted α 	 β. There are several ways to compare α ∧ ¬β-alternatives and
β ∧ ¬α-alternatives. They are called preference semantics.

Definition 1. Let- be a preference relation onΩ, and two formulas α and β. Consider
α	 β.

– Strong semantics [4,12]
- satisfies α 	 β following strong semantics, denoted by -|= α 	st β, iff
∀ω ∈Mod(α ∧ ¬β), ∀ω′ ∈Mod(β ∧ ¬α), ω � ω′.

– Ceteris paribus semantics [6]
- satisfies α 	 β following ceteris paribus semantics, denoted by -|= α 	cp β,
iff ∀ω ∈ Mod(α ∧ ¬β), ∀ω′ ∈ Mod(β ∧ ¬α), ω � ω′ if ω and ω′ have the same
valuation of variables which do not appear in α ∧ ¬β and β ∧ ¬α1.

– Optimistic semantics [4]
- satisfies α 	 β following optimistic semantics, denoted by -|= α 	opt β, iff
∃ω ∈Mod(α ∧ ¬β), ∀ω′ ∈Mod(β ∧ ¬α), ω � ω′.

– Pessimistic semantics [2]
- satisfies α 	 β following pessimistic semantics, denoted by -|= α 	pes β, iff
∃ω′ ∈Mod(β ∧ ¬α), ∀ω ∈Mod(α ∧ ¬β), ω � ω′.

A preference set of type 	∗, denoted by P�∗ , is a set of preferences of the form {pi	∗
qi|i = 1, . . . , n}, with ∗ ∈ {st, cp, opt, pes}. An acyclic preorder- is a model of P�∗

if and only if - satisfies each preference pi 	∗ qi in P�∗ . A preference set P�∗ is
consistent if it has a model.

Generally we have to deal with several comparative preference statements expressed
by an individual. There are mainly two kinds of queries in preference representation: ei-
ther one looks for the maximally preferred alternatives or compares two alternatives. In
many applications individuals are more concerned with the preferred alternatives. In the
case where these alternatives are not satisfactory (e.g. preferred menus are too expen-
sive), then we need to compute the preferred alternatives among remaining ones, and
so on. In order to accommodate these considerations, we associate a total preorder to

1 This is the definition of ceteris paribus the most used in the literature. Other definitions have
also been proposed. See [6].
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a preference set. Different total preorders may satisfy (i.e., are models of) a preference
set given a semantics. However it is widely acknowledged that, for decision purposes, it
is more convenient to characterize a unique total preorder [4]. Specificity principle has
been commonly used to characterize a unique model per semantics.

Definition 2. [13] Let - and -′ be two total preorders on Ω represented by ordered
partitions (E1, . . . , En) and (E′

1, . . . , E
′
n′) respectively. We say that - is less specific

than -′, written as -�-′, iff ∀ω ∈ Ω, if ω ∈ Ei and ω ∈ E′
j then i ≤ j. - belongs to

the set of minimally (resp. maximally) specific preorders, among a set of total preorders,
if and only if there is no preorder in the set that is strictly less (resp. more) specific than
-. If- is the unique minimally (resp. maximally) specific total preorder then it is called
the least (resp. most) specific preorder.

It is worth noticing that strict statements “prefer α to β” have been extended with equal
preference statements of the form “α and β are equally preferred” [3,8], denoted α =∗
β with ∗ ∈ {st, cp, opt, pes}. Therefore the computation of unique models applies on
the set P�∗ ∪ P=∗ . Proposition 1 summarizes existing results about the uniqueness of
models (which are total preorders) for each semantics.

Proposition 1. [3,8] Let P�∗ ∪ P=∗ be a consistent preference set.

– The least specific model of P�opt ∪P=opt (resp. P�st ∪P=st , P�cp ∪P=cp) exists.
– The most specific model of P�pes ∪P=pes (resp. P�st ∪P=st , P�cp ∪P=cp ) exists.
– The most (resp. least) specific model of P�opt ∪ P=opt (resp. P�pes ∪ P=pes) does

not always exist.

Due to space limitation we do not present the algorithms to compute unique models.
We refer the reader to [8].

Note that when the set of preferences at hand is inconsistent, the algorithms return
a preorder in which not all alternatives are rank-ordered. More specifically, alterna-
tives which are involved in cycles are not rank-ordered (i.e., they are excluded). In
this case we speak about a preference relation (and not a model) of the preference
set following the principle used. For example the set P�st = {t1 : W 	st S, t2 :
B ∧ S 	st B ∧ W, t3 : W ∧ A 	st W ∧ H} is inconsistent w.r.t. both specificity
principles. The preference relation associated with P�st following the minimal speci-
ficity principle is -= ({AMW}). We say that the alternatives in Ω\{AMW} are not
ranked w.r.t. strong semantics and also w.r.t. the corresponding algorithm. It is worth
noticing that alternatives which are not excluded in case of inconsistent preferences
are rank-ordered following the underlying principle (minimal or maximal). In the next
part of the paper, we will need to deal with both consistent and inconsistent preference
sets. In order to encompass both cases, we will speak about the preference relation as-
sociated with the set of preferences given a semantics. The preference relation is the
model of the preference set if the latter is consistent given the semantics at hand. It is
a preorder in which some alternatives are excluded if the preference set is inconsistent
given the semantics at hand. In both cases, the preference relation is computed using
the corresponding algorithm.

One may observe that, besides the technical machinery of the semantics, we have no
indication how they are close to human behavior. In the next part of this paper we aim
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at providing experimental data to compare the various semantics on the basis of their
psychological plausibility.

4 Experimental Study

4.1 Rationale

Recall that strong and ceteris paribus semantics obey both minimal and maximal speci-
ficity principles. Therefore we empirically evaluate six semantics:

– optimistic (O),
– pessimistic (P),
– strong-optimistic (SO) when the minimal specificity principle is applied,
– ceteris paribus-optimistic (CPO) when the minimal specificity principle is applied,
– strong-pessimistic (SP) when the maximal specificity principle is applied,
– ceteris paribus-pessimistic (CPP) when the maximal specificity principle is applied.

The main idea is to assess the fit between each semantics and human behavior so as
to compare the semantics based on their psychological plausibility. Let us consider
three variables X1, X2 and X3 with Dom(X1) = {A1, A2}, Dom(X2) = {B1, B2}
and Dom(X3) = {C1, C2}. Therefore we have eight possible alternatives, called “3-
variable alternatives”. We construct a set of comparative preference statements involv-
ing 1- or 2-variable alternatives, e.g. {A1 	A2, A1 ∧C1 	A1 ∧C2, C2 	C1}. Given
a semantics this set induces a preference relation (hence a ranking) over the eight alter-
natives. The experimental study comprised four steps.

– The first three steps are separately considered for each participant:
1. The participant produces a ranking over the eight 3-variable alternatives;
2. The participant produces a subset of pairwise comparisons between 1- or 2-

variable alternatives. This set is called “a set of comparative preference state-
ments”.

3. For each semantics, the preference relation associated with the set of the par-
ticipant’s comparative statements obtained in Step (2) is computed.

– The fourth step aggregates data obtained from all participants:
4. The various semantics are compared based on the fit between their predictions

computed in Step (3) and actual participants’ rankings collected in Step (1).

4.2 Methods

Materials and Design. It has long been known in psychology that humans usually
do not process positive valence (agreeable things) and negative valence (things that
tend to be avoided) in the same way. Moreover preference reversals sometimes oc-
cur between high vs. low intensity of stakes. Intensity refers to how much the prob-
lem upon which preferences are expressed is important. In order to control such ma-
terial effects, participants had to express their preferences about 4 types of scenar-
ios covering a 2 × 2 between-design: Valence ({+,−}) × Intensity ({High,Low})
(see Table 1). Each scenario was based on three binary variables X1, X2 and X3
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Table 1. The four experimental conditions

Scenario Studies Restaurant Work costs Diet
Valence Positive Positive Negative Negative
Intensity High Low High Low
A1 long fish Moving press ups
A2 short meat commuting time jogging
B1 Bordeaux white wine Low salary sugar-free
B2 Marseilles red wine no bonus no fat
C1 short controls pastry heavy schedule intense
C2 single control ice cream Sunday work long

with Dom(X1) = {A1, A2}, Dom(X2) = {B1, B2} and Dom(X3) = {C1, C2}.
For example the restaurant scenario corresponds to a positive valence and a low in-
tensity. The three variables X1, X2 and X3 respectively correspond to “main dish”,
“wine” and “dessert” with Dom(X1) = {fish,meat}, Dom(X2) = {white, red}
and Dom(X3) = {pastry, ice−cream}. Each participant has been asked to express
her/his preferences over only one scenario among the four.

Experimental Tasks. The experimental program was run on personal computers.

– In the first part of the experiment, each participant has been asked to rank-order a
set of eight alternatives by graphically placing the alternatives in a decreasing order
of preference. The preferred alternative had to be placed on the top of the screen,
then the next preferred just below, and so on. The least preferred being placed in
the lowest part of the list. Between each two subsequent alternatives, a ranking op-
erator, initially set to ”?” had to be changed into ”=” or ”>”. Participants could
exclude some alternatives of the ranking2–but not all. This part of the experiment
could only be terminated when all non-excluded alternatives were linked by ”=” or
”>” operators. Answers from this first step were encoded as follows. With i encod-
ing the downward vertical position of an alternative, the preferred alternative was
associated with the rank rank1 = 1. Then ranki+1 = ranki if the ranking opera-
tor was ”=”, and ranki+1 = ranki + 1 when the ranking operator was ”>”. Once
this ranking fixed, every alternative received a value representing its rank. The pre-
ferred alternatives received the rank 1, next preferred ones received the rank 2, and
so on. All excluded alternatives received the value 9.

– In the second part of the experiment, a set of comparative preference statements
was constructed. It was composed of pairwise comparisons over 1- or 2- variable
alternatives. Let L (for left) and R (for right) be two 1- or 2- variable alternatives to
be compared. Participants were asked to choose one of the following four possibil-
ities: (1) I would prefer L over R, (2) I am indifferent to both L and R, (3) I would
prefer R over L, and (4) neither of the previous choices is acceptable to me.
Answers (1) to (3) added the corresponding preferences, namely L 	 R, L = R,

2 e.g., if they judge the alternatives to be totally unacceptable.
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and R 	 L respectively, to the set of preferences under construction. The fourth
choice made the pairwise comparison simply ignored.

We distinguish between 81 possible pairwise comparisons. Fortunately not all of
them are relevant. We constructed the set of comparisons in the following way. First
the participant was presented with the three 1-variable homogeneous comparisons (i.e.,
A1�A2, B1�B2, C1�C2, in random order). These comparisons are called homoge-
neous since they compare the values of a same variable. Depending on the outcome of
these comparisons, 12 to 21 additional comparisons were proposed.

A first set of additional comparisons concerned 2-variable alternatives. More pre-
cisely, we added context to 1-variable homogeneous comparisons. For example regard-
ing A1�A2, we added the following comparisons: (A1 ∧ B1)�(A2 ∧ B1),
(A1∧B2)�(A2∧B2), (A1∧C1)�(A2∧C1) and (A1∧C2)�(A2∧C2). These are con-
ditional (called also contextual) preferences. For example (A1∧B1)�(A2∧B1) means
that the participant is asked to compareA1 and A2 with the hypothesis thatB takes the
value B1. In a similar way, we constructed 2-variable comparisons from B1�B2 and
C1�C2. This resulted in 12 additional pairwise comparisons.

Next, depending on the outcome of the first three comparisons (i.e.,A1�A2,B1�B2,
C1�C2) we added importance statements. These statements occur when, for two dif-
ferent variables, a strict preference is expressed over the values of each variable. For
example if a participant returned A1 	 A2 and B1 	 B2 then we added the following
comparison A1�B1 which expresses the relative importance of A and B. Such infor-
mation is important in case we have to make an exclusive choice between A1 and B1.
Therefore the participant was asked to express whether (i) she/he preferredA getting its
preferred value, i.e. A is more important than B (in which case the participant choses
A1 	 B1 interpreted as A1 ∧ B2 	 A2 ∧ B1) or (ii) she/he preferred B getting its
preferred value, i.e. B is more important than A (in which case the participant returns
B1 	A1 interpreted as A2 ∧B1 	A1 ∧B2). The participant may express indifference
between the two alternatives, i.e. A1 = B1 interpreted as A1 ∧ B2 = A2 ∧ B1 which
means that A and B have equal importance. Lastly, the participant may also refuse to
make a choice in which case the comparison between the two alternatives is no longer
considered. It is worth noticing that importance statements are meaningful only when a
strict comparison is expressed over the values of two variables at least. Indeed we added
at most 3 importance statements. Lastly we added contexts to importance statements.
This set is composed of 6 comparisons at most.

To summarize, for each participant we have a fixed set composed of 15 comparisons
and a variable set composed of at most 9 2-variable comparisons. In the remainder
of this paper, the constructed set of pairwise comparisons is referred to as the set of
comparative preference statements.

Participants. N = 60 persons (45 women, 15 men) participated in the experiment, all
with college education, 15 in each of the four conditions.

Analyses. To compare the semantics and human data, we used the following proce-
dures.
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1. Number of dissonant alternatives: Clustering and comparison. Each human par-
ticipant provides a ranking of a given number of alternatives. Similarly, and for a
given set of preference statements provided by a participant, each algorithm can
rank a number of alternatives. For each semantics and participant, the total number
of alternatives ranked by the participant or by the algorithm –but not by both– was
used for the first analysis of human-semantics compatibility.

2. Comparisons based on a distance measure computed between the ranking over the
eight alternatives provided by a participant (produced in Step (1), subsection 4.1)
and the ranking (or preference relation) associated with a set of comparative pref-
erence statements (produced in Step (2), Subsection 4.1) given a semantics. A se-
mantics is considered plausible insofar as the distance is low.

3. Finally, we compared Covariations between semantics and data: for a good seman-
tics as humans’ measures become high (resp. low), predicted measures must also
become high (resp. low), that is, there should be a positive covariation between
human and semantics. A semantics is poorly plausible when predicted measures
decrease as humans’ measures become higher (null or negative covariation).

Let us now give the technical details of the analyses conducted at each of the three
levels above-cited.

Number of Dissonant Alternatives. For a given participant and a given semantics ap-
plied to her/his set of comparative preference statements, an alternative could either be
ranked or not by the participant or the semantics. We computed the number of dissonant
alternatives, that is, the total number of alternatives that were ranked by the participant
but not by the semantics, or ranked by the semantics but not by the participant. As 8
alternatives were proposed, this number could range from 0 (i.e., no dissonance or per-
fect consistency) to 8 (i.e, maximal dissonance).
We sorted participants into two clusters based on their minimum number of dissonant
alternatives computed over the six semantics : Participants of Cluster #1 (N1 = 29) had
their minimum number of dissonant alternatives > 0 (over the 6 semantics) whereas
participants of Cluster #2 (N2 = 31) had their minimum number of dissonant alter-
natives = 0. The potential bias of gender on the clustering process was checked us-
ing a χ2 test on the contingency table formed by crossing clusters and gender. After
clusters were constructed, mean absolute deviations were statistically compared using a
repeated-measures ANOVA, with the cluster as fixed factor. Post-hoc comparisons were
done using Student-Newman-Keuls (S-N-K) procedure.

Computing and Comparing a Distance Measure. For each participant we computed
the preference relation returned by each semantics given the set of compact preference
statements she/he provided. Recall that a ranking can be associated with a preference
relation. Therefore, for each participant we got six rankings (O,P,SO,SP,CPO,CPP). Let
us denote by j = 0 to 7 the eight alternatives, from ω0 = A1B1C1 to ω7 = A2B2C2.
For each alternative, we denote by rp(j) its rank according to participant p, and rs(j) its
rank according to the semantics s under consideration. Thus, for each alternative six dis-
tances could be computed between a participant’s ranking and the semantics’s ranking.
In our analysis, we used Spearman’s footrule distance, which we denote dfr. This dis-
tance is the sum of absolute differences between the two rankings, dfr =

∑
j |rp(j)−
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rs(j)|. For example, the footrule distance between “32114599” and “32145999” is
|3− 3|+ |2− 2|+ |1− 1|+ |1− 4|+ |4− 5|+ |5− 9|+ |9− 9|+ |9− 9| = 8.

Given the results of the previous step, indicating that Cluster #1 participants could
not be accounted for by any of the semantics at hand, the distance were statistically
analyzed only for Cluster #2 participants.

Covariations. Several indexes can be used to estimate covariation among nonparamet-
ric measures. We used the most classical one, Spearman’s Rho. Given two vectors of
ranks, Spearman’s Rho first consists in recoding each vector so that each component of
the vector is replaced with the average of the ranks having the value of this component.
For example (1; 1; 2; 5; 5; 3; 2; 3) is replaced with (1.5; 1.5; 5; 4.5; 4.5; 7; 5; 7). Once the
data is recoded, ρ is simply the Pearson correlation over the recoded data. Here the two
vectors were (rp(0), · · · , rp(7)) for ranks derived from the pth participant’s alternative
ranking, and (rps(0), · · · , rps(7)) for ranks that were derived from the pth participant’s
compact preferences using the algorithm of the semantics s. In our case, ρ must be
positive and statistically significant. Negative or non significant values reflect a bad fit.

4.3 Results

Number of Dissonant Alternatives. The two clusters were clearly differentiated with
all the semantics having over 7.33 dissonant alternatives in Cluster #1 vs. 0.92 to 6.75
dissonant alternatives in Cluster #2 (see descriptive statistics in Table 2). Given the dis-
parity in the sample–15 men for 45 women–gender might have affected the clustering.
In fact, it was not the case and the male to female ratio was similar in both clusters
(7/22 in Cluster #1 vs. 8/23 in Cluster #2, χ2(1, N = 60) = 0.022, p > .88).

Table 2. Descriptive statistics (numerical variables)

SO SP O P CPO CPP
Cluster #1 (N = 29)

Number of dissonant alternatives 7.71 (0.16) 7.63 (0.13) 7.75 (0.55) 7.33 (0.49) 7.54 (0.48) 7.71 (0.29)
Cluster #2 (N = 31)

Number of dissonant alternatives 6.67 (0.13) 6.75 (0.10) 3.19 (0.45) 1.61 (0.40) 1.47 (0.39) 0.92 (0.24)
Footrule distance 38.67 (1.23) 45.89 (0.68) 21.79 (3.23) 15.66 (2.05) 15.61 (2.81) 14.01 (2.18)

Analysis of Cluster #1 Results. Not surprisingly, Cluster #1 participants did not behave
as predicted by any of the semantics (upper curve in Figure 1). Furthermore, with these
participants, the six semantics could not be statistically distinguished, F (5, 140) =
1.605, p > .16.

Analysis of Cluster #2 Results. The results suggest that some semantics capture (at least
partially) Cluster #2 participants’ behaviors (lower curve in Figure 1). With these partic-
ipants, the various semantics were significantly different, F (5, 135) = 67.5, p < .001.
More precisely, post-hoc tests distinguished between three groups of homogeneous se-
mantics. As one can easily figure out from Figure 1, the most plausible group included
CPO, CPP and P. Within this group, the three semantics were not significantly differ-
ent from each other. The second group contained O only, which generated significantly
more dissonant alternatives than CPO, CPP, and P (All ps < .001), and significantly
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Fig. 1. Number of dissonant alternatives as a function of semantics and Cluster. Vertical bars
reflect 95% confidence intervals.

less dissonant alternatives than SO and SP (All ps < .001). The latter two could not be
significantly distinguished (p > .89).

Interestingly, in Cluster #2, even though there was no primary effect of the experi-
mental conditions (p > .15 for valence, p > .72 for intensity) there was a significant
three-way interaction between the type of semantics and the four experimental condi-
tions (F (5, 135) = 4.32, p = .001). Although we had no a priori hypothesis about
such effect, it corroborates our expectation that the plausibility of the various semantics
might vary as a function of the scenario framing. This fact should deserve attention in
subsequent investigations of the semantics psychological plausibility.

Let us now conclude about the number of ranked alternatives:

– The first clear result is the fact that 29 participants out of 60 (i.e., 48%) ranked
the alternatives in a way that was completely inconsistent with every single se-
mantics. Of course, further investigations will be needed to understand specifically
why those subjects behave in such incompatible way with rational standards (see
Conclusion).

– The second clear result is the fact that the other half of participants (31 out of 60,
i.e., 52%) behaved in a completely different way, much more in accordance with
standards promoted in Artificial Intelligence.

– With regard to the purpose of this article, which is to evaluate the psychological
plausibility of the various semantics, there is no hope to learn more from partici-
pants in Cluster #1 at this point. Consequently, in the next section we will focus on
participants from Cluster #2 only.

– From the number of dissonant alternatives observed in by Cluster #2 participants,
the six semantics can be ranked according to their psychological plausibility in
the following way: 1. CPO  CPP  P, 2. O, 3. SO  SP, where  stands for
current impossibility to statistically distinguish between the semantics given our
experimental data.
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Distance Measure: Spearman Footrule Distance. See the main descriptive statistics
in Table 2. The various semantics were clearly different in terms of footrule distance,
F (5, 135) = 52.6, p < .001. Post-hoc tests distinguished between four homogeneous
groups. The most plausible semantics were CPP, P, CPO, with mean distances in the
range [14.01; 15.66] but no significant differences between them. Then, significantly
more distant, came O (m = 21.79; ps < .05 for all comparisons with CPP, P and
CPO), SO (m = 38.7; p < .001 for the comparison O - SO), and finally SP (m = 45.9;
p < .01 for the comparison SP - SP).

In summary, from footrule distances in Cluster #2 participants, the six semantics can
be ranked according to their psychological plausibility in the following way: 1. CPO  
CPP  P, 2. O, 3. SO, 4. SP.

One may also be doubtful as whether standard repeated measures ANOVA can be
applied to footrule distances, because such distances come from rankings not real num-
bers. Thus, assuming that some readers would prefer using more conservative nonpara-
metric tests, we computed Friedman’s ANOVA and appropriate post-hoc tests –at the
cost of statistical power and the possibility to test interactions. Overall, the difference
between semantics was still significant (p < .001). However, the loss of statistical
power gave a less sharp picture. The distinctions between SP and SO on one hand, ver-
sus all other semantics on the other hand were all significant at p < .001, except for
the comparison between O and SO which was significant at p = .017). Within each of
these two groups, post-hoc tests for Friedman’s ANOVA were not significant. Thus, if
we adopt a conservative standpoint, psychological plausibility of the six semantics can
be ranked as follows: 1. CPO  CPP  P  O, 2. SO  SP.

Table 3. Descriptive statistics for covariation between participants rankings and semantics’
rankings. Means and standard errors were computed from Fisher transformed correlations, then
transformed back into the ]− 1; 1[ interval.

N Mean ρ Standard error
SO 28 .51 .05
SP 30 -.49 .05
O 25 .77 .13
P 30 .69 .17

CPO 25 .86 .08
CPP 29 .78 .14

Covariations. Covariations display a complementary picture (descriptive statistics in
Table 3). As one can see in Figure 2, SO outperformed SP, O outperformed P, and CPO
outperformed CPP. The top graph indicates that 28 out of 30 SP rankings were nega-
tively correlated with participants rankings! The middle and bottom graphs indicate that
O and CPO produced fewer negative correlations than P and CPP respectively. Finally,
ceteris paribus semantics appeared promising. Particularly CPO with all correlations
being above .40 and even 17 being above .80.

One sample t-tests showed that correlations with participants’ rankings were signif-
icantly above 0 (all ts > 5.04, all ps < .001) for all semantics except for SP where ρ
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Fig. 2. Distributions of Spearman’s rho. Clear bars exhibit optimistic variants of the semantics
(SO,O, CPO), dark bars exhibit pessimistic variants of semantics (SP,P, CPP). Values are com-
patible with human data insofar as they tend to be close to +1. Negative values, on the left parts
of the graphs represent particularly incompatible data.
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values were significantly below 0 (t(30) = −10.32; ps < .001), which clearly discards
SP as a candidate for claiming psychological plausibility!

Then we performed a repeated-measure ANOVA on Fisher transformed values of the
six ρs. As it is usual in ANOVA analysis, missing values were replaced with the grand
mean of the variable. Intensity and Gender appeared to have no effect of any sort, so we
kept Valence as the only between-factor.

As one would expect from the distributions of Spearman’s Rho, there was a signif-
icant effect of the semantics (F (5, 145) = 49.58, p < .001). S-N-K post-hoc tests
showed that CPO, CPP, P, and O could hardly be distinguished. CPO could outperform
P (p = .006). SO and SP were outperformed by all other semantics (all ps < .001) but
SO outperformed SP (p < .001). Thus, from Spearman’s correlations in Cluster #2 par-
ticipants, the six semantics can be ranked according to their psychological plausibility
in the following way: 1. CPO  CPP  O  P, 2. SO, 3. SP.

Aggregating the Different Plausibility Orders of the Semantics. We have used sev-
eral statistical tests to compare the semantics. Despite some minor differences in the
ordering of psychological plausibility of the semantics, our various criteria let emerge
a global view that is relatively clear in the sense that CPO, CPP and P hold the best.
The remaining semantics are rank-ordered differently by the semantics. We distinguish
between two extreme strategies to conclude from these results:

– We avoid differentiating wrongly between two semantics: this means that if at least
one of our measures cannot distinguish between two semantics then they are con-
sidered as not distinguishable. Accordingly the ordering of the semantics would be
as follows: 1. CPO  CPP  P  O, 2. SO  SP.

– We avoid failing to differentiate between two semantics: this means that if two se-
mantics are distinguishable by at least one of our measures then they are considered
as distinguishable. Accordingly the ordering of the semantics would be as follows:
1. CPO  CPP  P, 2. O, 3. SO, 4. SP.

Interestingly both interpretations corroborate AI researchers claims. In fact the first
interpretation tells us that ceteris paribus, pessimistic and optimistic semantics are more
plausible than strong semantics. The latter has been widely criticized by AI researchers
as it is too “strong” [4]. On the other hand the former have been promoted as they
weaken strong semantics. This interpretation also tells us that humans are likely not
to distinguish between minimal and maximal specificity principles, respectively corre-
sponding to negative and positive reading of preferences when handling comparative
statements [2], a claim recently given in [7]. The second interpretation tells us that hu-
mans do not distinguish between the two readings with ceteris paribus semantics. How-
ever it seems that humans are likely to have a positive reading of preferences (P) when
the latter are interpreted as defeasible preferences. In fact P and O have been originally
proposed in order to cope with defeasible preferences. They respectively correspond to
a positive and negative reading of preferences. Regarding strong semantics the second
interpretation completely corroborates AI view of this semantics. In fact strong seman-
tics represents constraints whose interpretation is “what doesn’t violate constraints is
accepted”. This is minimal specificity principle which corresponds to SO.
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5 Conclusion

We reported first promising results which allow comparing preference semantics on the
basis of their closeness to human behavior. We analyzed six semantics given 60 par-
ticipants (among which 31 participants have been considered more in details) and four
scenarios based on three variables. Our results suggest that ceteris paribus (optimistic
and pessimistic) and pessimistic semantics hold the best. They however provide var-
ious plausibility ordering of the remaining semantics. An experimental analysis, not
presented in this paper due to space limitation, showed that the remaining participants
(those of Cluster #1) didn’t comply with any semantics because they referred to differ-
ent semantics simultaneously. This result corroborates AI claims that individuals may
refer to different semantics at the same time [12,8].

Readers may wonder whether the use of three variables is sufficient to validate our
results. In fact the existence of a phenomenon can empirically be asserted as soon as it
is observed, which was clearly the case with three variables in our analyses.

Finally, it is worth noticing that cognitive psychology provides descriptive but not
normative hints. Our results should not be understood as suggesting that the ordering
we observed over the semantics is always followed by humans. They rather tell us which
semantics are likely to be used more than others.
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Abstract. The use of preferences in query answering, both in traditional data-
bases and in ontology-based data access, has recently received much attention,
due to its many real-world applications. In this paper, we tackle the problem of
query answering in Datalog+/– ontologies subject to the querying user’s prefer-
ences and a collection of subjective reports (i.e., scores for a list of features) of
other users, who have their own preferences as well. All these pieces of infor-
mation are combined to rank the query results. We first focus on the problem of
ranking atoms in a database by leveraging reports and customizing their content
according to the user’s preferences. Then, we extend this approach to deal with
ontological query answering using provenance information. Though the general
problem is shown to have an exponential-time data complexity upper bound, we
propose a special case that has polynomial time data complexity.

1 Introduction

The use of preferences in query answering, both in traditional databases and in ontology-
based data access, has recently received much attention due to its many real-world ap-
plications. In particular, in recent times, there has been a huge change in the way data
is created and consumed, and users have largely moved to the Social Web, a system of
platforms used to socially interact by sharing data and collaborating on tasks.

In this paper, we tackle the problem of preference-based query answering in Data-
log+/– ontologies assuming that the user must rely on subjective reports to get a com-
plete picture and make a decision. This kind of situation arises all the time on the Web;
for instance, when searching for a hotel, users provide some basic information and re-
ceive a list of answers to choose from, each associated with a set of subjective reports
(often called reviews) written by other users to tell everyone about their experience. The
main problem with this setup, however, is that users are often overwhelmed and frus-
trated, because they cannot decide which reviews to focus on and which ones to ignore,
since it is likely that, for instance, a very negative (or positive) review may have been
produced on the basis of a feature that is completely irrelevant to the querying user.

We study a formalization of this process and its incorporation into preference-based
query answering in Datalog+/– ontologies, proposing a framework for user-tailored
query answers on the basis of the ontology reports and users’ preferences.
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The following are the main contributions of this paper:

– We present an approach to preference-based query answering in Datalog+/– on-
tologies, given a collection of subjective reports. Here, each report contains scores
for a list of features.

– We first propose a basic approach to rank atoms in the ontology’s database, which
combines reports, their authors’ preferences among the features, and the querying
user’s preferences among the features.

– We then extend our framework to ontologies with dependencies and propose a
method for dealing with query answering by leveraging provenance information
for propagating reports from the database atoms to newly inferred ones.

– As we are using a kind of “how”-provenance modeled using semirings, we can
map the general semiring to more specific ones that capture different ways in which
the information contained in reports can be leveraged. Though the general case is
exponential, we explore one such mapping for which ranking query answers can be
done in polynomial time data complexity.

The rest of this paper is organized as follows. In Section 2, we provide some prelim-
inaries on Datalog+/– and the used preference models. Section 3 then defines subjective
reports and proposes a basic framework to deal with simple (no dependencies)
Datalog+/– ontologies. Section 4 considers ontologies with dependencies and addresses
query answering. Section 5 discusses related work, and Section 6 concludes.

2 Preliminaries

We first briefly recall some basics on Datalog+/– [8], namely, on relational databases
and (Boolean) conjunctive queries, along with tuple- and equality-generating dependen-
cies and negative constraints, the chase, and ontologies in Datalog+/–. We also define
the used preference models.

Databases and Queries. We assume (i) an infinite universe of (data) constants Δ
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls ΔN (used as “fresh” Skolem terms, which are placeholders for unknown val-
ues, and can thus be seen as variables), and (iii) an infinite set of variables V (used
in queries, dependencies, and constraints). Different constants represent different val-
ues (unique name assumption), while different nulls may represent the same value. We
denote by X sequences of variables X1, . . . , Xk with k� 0. We assume a relational
schemaR, which is a finite set of predicate symbols (or simply predicates). A term t is
a constant, null, or variable. An atomic formula (or atom) A has the form p(t1, ..., tn),
where p is an n-ary predicate, and t1, ..., tn are terms. It is ground (resp., existentially
closed) iff every ti belongs to Δ (resp., Δ∪ΔN ). Every ground atom A is uniquely
identified with an id, denoted id(A); when it is clear from the context, an atom and
its id are used interchangeably. We use H to denote the set of all possible ground and
existentially closed atoms.

A database (instance) D for a relational schema R is a set of ground atoms with
predicates from R. A conjunctive query (CQ) Q over R has the form q(X)= ∃YΦ
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(X,Y), where q is a predicate, and Φ(X,Y) is a nonempty conjunction of atoms (possi-
bly equalities, but not inequalities) with the variables X and Y, and possibly constants,
but no nulls. With a slight abuse of notation, we will sometimes treat Φ(X,Y) as a set
of atoms. A Boolean CQ (BCQ) over R is a CQ where all variables are existentially
quantified.

Answers to CQs and BCQs are defined via homomorphisms, which are mappings
μ : Δ∪ΔN ∪V → Δ ∪ΔN ∪ V such that (i) c∈Δ implies μ(c)= c, and (ii) c∈ΔN

implies μ(c)∈Δ∪ΔN . Moreover, μ is naturally extended to atoms, sets of atoms,
and conjunctions of atoms. The set of all answers to a CQ Q of the form q(X) =
∃YΦ(X,Y) over a database D, denoted Q(D), is the set of all ground atoms q(t)
with tuples t over Δ for which a homomorphism μ : X∪Y→Δ ∪ ΔN exists such
that μ(Φ(X,Y))⊆D and μ(X)= t. The answer to a BCQ Q over a databaseD is Yes,
denotedD |=Q, iff Q(D) �= ∅.

Given a relational schemaR, a tuple-generating dependency (TGD) σ is a first-order
formula ∀X∀Y Φ(X,Y) → ∃ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z) are conjunc-
tions of atoms over R (without nulls), called the body and the head of σ, denoted
body(σ) and head(σ), respectively. Such σ is satisfied in a databaseD forR iff, when-
ever there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms of D,
there exists an extension h′ of h that maps the atoms of Ψ(X,Z) to atoms ofD. All sets
of TGDs are finite here. Since TGDs can be reduced to TGDs with only single atoms
in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its head. A TGD
σ is guarded iff it contains an atom in its body that contains all universally quantified
variables of σ. The leftmost such atom is the guard atom (or guard) of σ. A set of TGDs
is guarded iff all its TGDs are guarded.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs is defined as follows. For a database D for R, and a set of TGDs
Σ onR, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The
set of answers for a CQ Q of the form q(X)= ∃YΦ(X,Y) to D and Σ, denoted
ans(Q,D,Σ) (or, for KB =(D,Σ), ans(Q,KB)), is the set of all ground atoms q(t)
such that q(t)∈Q(B) for allB ∈mods(D,Σ). The answer for a BCQQ toD andΣ is
Yes, denotedD ∪Σ |=Q, iff ans(Q,D,Σ) �= ∅. Query answering under general TGDs
is undecidable [2], even when R and Σ are fixed [7]. Decidability and tractability in
the data complexity of query answering for the guarded case follows from a bounded
tree-width property.

A negative constraint (or simply constraint) γ is a first-order formula of the form
∀XΦ(X)→⊥, where Φ(X) (called the body of γ) is a conjunction of atoms over R
(without nulls). Under the standard semantics of query answering of BCQs in Data-
log+/– with TGDs, adding negative constraints is computationally easy, as for each
constraint ∀XΦ(X)→⊥, we only have to check that the BCQ ∃XΦ(X) evaluates to
false in D under Σ; if one of these checks fails, then the answer to the original BCQ Q
is true, otherwise the constraints can simply be ignored when answering the BCQ Q.

As another component, the Datalog+/– language allows for special types of equality-
generating dependencies (EGDs). Since they can also be modeled via negative con-
straints, we refer to [8] for their details. We usually omit the universal quantifiers in
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TGDs, negative constraints, and EGDs, and we implicitly assume that all sets of depen-
dencies and/or constraints are finite.

The Chase. The chase was first introduced to enable checking implication of depen-
dencies, and later also for checking query containment. By “chase”, we refer both to
the chase procedure and to its output. The TGD chase works on a database via so-
called TGD chase rules (see [8] for further details and for an extended chase with
also EGD chase rules). The (possibly infinite) chase of a database D relative to a
set of TGDs Σ, denoted chase(D,Σ), is a universal model, i.e., there is a homo-
morphism from chase(D,Σ) onto every B ∈mods(D,Σ) [8]. Thus, BCQs Q over
D and Σ can be evaluated on the chase for D and Σ, i.e., D∪Σ |= Q is equivalent to
chase(D,Σ) |= Q. For guarded TGDs Σ, such BCQs Q can be evaluated on an initial
fragment of chase(D,Σ) of constant depth k · |Q|, which is possible in polynomial
time in the data complexity.

Datalog+/– Ontologies. A Datalog+/– ontology KB =(D,Σ), whereΣ=ΣT ∪ΣE∪
ΣNC, consists of a database D, a set of TGDs ΣT , a set of EGDs ΣE , and a set of
negative constraints ΣNC. In order to ensure decidability and tractability of query an-
swering, we assume that EGDs are separable, which means that the interaction between
TGDs and EGDs is controlled—this condition can be ensured by the syntactic criterion
of non-conflicting keys; for details on these conditions, we refer the reader to [8]. Fi-
nally, we say that KB is guarded iff ΣT is guarded. The following example illustrates
a simple Datalog+/– ontology, used in the sequel as a running example.

Example 1. Consider the following ontology KB = (D,Σ):

D = {id1 : apthotel(h1), id2 : hotel(h2),
id3 : bb(bb1), id4 : hostel(hs1)},

Σ = {σ1 : hotel(H)→ accom(H),
σ2 : apartment(A)→ accom(A),
σ3 : bb(B)→ accom(B),
σ4 : apthotel(A)→ hotel(A),
σ5 : apthotel(A)→ apartment(A),
σ6 : hostel(H)→ accom(H)}.

This ontology models a very simple accommodation booking domain, which can be
used as the underlying model in an online system. Accommodations can be either ho-
tels, apartments, bed and breakfasts, hostels, or aparthotel. Moreover, an aparthotel is
both a hotel and an apartment. The databaseD provides some instances for some kinds
of accommodation. �

Preference Models. A preference relation� over a set S is a strict partial order (SPO)
over S, i.e., an irreflexive and transitive binary relation over S—we consider these to
be the minimal requirements for a useful preference relation. If a � b, we say that a is
preferred to b. The indifference relation ∼ induced by � is defined as follows: for any
a, b ∈ S, a ∼ b iff a �� b and b �� a.

A stratification of S relative to � is an ordered sequence 〈S1, . . . , Sk〉, where each
Si is a maximal subset of S such that for every a ∈ Si there is no b ∈

⋃k
j=i Sj with
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b � a. Intuitively, S1 contains the most preferred elements in S relative to �, i.e., those
elements a ∈ S for which there is no b ∈ S such that b � a. Then, S2 contains the
most preferred elements of S−S1, and so on so forth. Notice that a stratification always
exists and is unique—moreover, it is a partition of S. Each Si is called a stratum.

3 A Framework for Ranking Atoms Based on Subjective Reports

In this section, we propose a framework that allows us to produce a ranking of atoms
in a knowledge base by leveraging subjective reports. For now, we restrict our attention
to the case where the set of dependenciesΣ is empty—we generalize our framework to
deal with dependencies and ontological query answering in the next section.

More specifically, we consider the following setting. We are given a Datalog+/– on-
tology KB = (D,Σ), with Σ = ∅, where ground atoms in D are associated with
reports provided by observers. A report is an evaluation for an entity of interest that
specifies a score for different features, which are the dimensions along which entities
can be evaluated. Also, each observer expresses a preference relation over the features.
Finally, a user looking at the ontology also has her own preference relation over the
features and wishes to rank the atoms in the ontology on the basis of the reports, her
preferences, as well as the observers’ preferences.

Example 2. Consider KB = (D, ∅) where D is the database from Example 1—recall
that predicate symbols refer to different types of accommodations. Accommodations
might be rated relative to location, cleanliness, price, breakfast, and internet; in this
case, these would be the features of interest. Observers can leave reports for the accom-
modations in the knowledge base, with each report specifying one score per feature.
Each observer has also a preference relation over the features specifying their impor-
tance from the observer’s point of view. A user, who also has her own preference rela-
tion over the features, wishes to rank the atoms in the knowledge base (that is, all the
atoms in D), taking into account all the elements discussed above. �

Features and Reports. We assume the existence of an ordered sequence of features
〈f1, . . . , fm〉, each of which has a domain dom(fi) = [0, 1]∪{−}. We use F to denote
the set of features {f1, . . . , fm}.1 The values in a feature domain are possible scores
that can be given for the feature, with “−” meaning that no score is given. The binary
relation> over dom(fi) is defined in the standard way with the additional requirement
that v > − for every v ∈ [0, 1].

A report is an element of dom(f1)× · · · × dom(fm). We use Reports to denote the
set of all possible reports, i.e., Reports = dom(f1)×· · ·×dom(fm). A report given by
a certain observer for a ground atom A specifies m “scores” representing an evaluation
of A for each feature.

Multiple reports, coming from different observers, can be associated with the same
ground atom—each report expresses the rating given to the ground atom by a specific
observer. Thus, we assume we have N observers and N partial functions Γi : D →

1 Throughout this section, we consider a single set of features shared by all predicate symbols;
this limitation is removed in the following section.
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Reports, called report functions, for 1 � i � N . Given an observer 1 � i � N and a
ground atom A ∈ D, if Γi(A) is defined, it denotes the report given by observer i to A;
if undefined, this means that observer i has no report forA (note that we assume that an
observer can have at most one report for a given ground atom).

Example 3. Consider the accommodation booking domain of Example 2. Suppose the
features with respect to which accommodations are rated are 〈location, cleanliness,
price, breakfast, internet〉; in the following, we abbreviate these features as loc, cl, pri,
br, net, respectively. Suppose we have 3 observers and that the Γi’s are as follows:

loc cl pri br net

Γ1(id1) 0.8 0 0.4 – 0.6
Γ1(id2) 0.6 0.7 0.4 – 0.2
Γ1(id3) 0.9 1 0.6 0.5 0.1
Γ1(id4) 1 0.1 0.2 0.3 0.4

loc cl pri br net

Γ2(id1) 0.7 0.5 0.3 0.1 0.5
Γ2(id2) 0.5 0.2 0.2 0.3 0.3
Γ2(id3) 0.4 0.1 0.9 0.5 0.7
Γ2(id4) 0.3 0.7 – 0.4 0.6

loc cl pri br net

Γ3(id1) 0.5 0 0.4 – 0.1
Γ3(id2) 0.7 – 0.6 0.9 0.4
Γ3(id3) 0.9 0.3 0.3 0.1 0
Γ3(id4) 0.8 0.5 0.6 – 0.2

For instance, Γ1 says that the first observer assigned the report 〈0.8, 0, 0.4,−, 0.6〉 to
atom id1, which means that the score given to id1 relative to location (resp., cleanliness,
price, internet) is 0.8 (resp., 0, 0.4, 0.6), while no score is given for breakfast.

Comparing Reports. Given a report r = 〈s1, . . . , sm〉, we use r[i] to refer to si. Given
two reports r1, r2 and a set of features F ′ ⊆ F , we write

1. r1[F ′] = r2[F ′] iff r1[i] = r2[i] for every fi ∈ F ′;
2. r1[F ′] � r2[F ′] iff r1[i] � r2[i] for every fi ∈ F ′;
3. r1[F ′] > r2[F ′] iff r1[F ′] � r2[F ′] and r1[j] > r2[j] for some fj ∈ F ′.

Now, a user inspecting the ontology might have preferences among features—for in-
stance, location and price might be the most preferred. We thus allow a user to specify
a preference relation over the features in order to influence the comparison of reports
and eventual ranking of atoms. The following definition formalizes the comparison be-
tween two reports r1 and r2 relative to a preference relation � over F . Intuitively, if
F1 is the first stratum of the stratification of F with respect to �, and r1[F1] > r2[F1],
then r1 > r2. If r1[F1] = r2[F1], we compare r1 and r2 relative to the second stratum
F2 and if r1[F2] > r2[F2], then r1 > r2. If r1[F2] = r2[F2], then we compare r1 and
r2 over the third stratum, and so on.

Definition 1. Consider two reports r1, r2 and a preference relation � over F . Let
F1, . . . , Fk be the stratification of F . We say r1 > r2 relative to � iff there exists
1 � i � k such that: (i) r1[Fi] > r2[Fi], and (ii) r1[Fj ] = r2[Fj ] for 1 � j < i.

Example 4. Consider the reports of Example 3 and let F be the set of features therein.
Suppose a user has the preference relation �u over F of Figure 1, where an edge from
a to b means that a�u b. The stratification of F relative to �u consists of three strata:
F1 = {loc, net},F2= {cl}, andF3= {pri, br}. Consider now two reports: r1 =Γ1(id1)
and r2 =Γ1(id2). Then, we have r1>r2, since r1[F1]>r2[F1]. �

Each observer can have a preference relation over the set of features in much the
same way as the user looking at the ontology. Thus, we assume the existence ofN such
preference relations, denoted with �1, . . . ,�N (one for each observer).
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Ranking Atoms. Our goal is to obtain a ranking of the ground atoms in the knowledge
base on the basis of: (i) N report functions Γ1, . . . , ΓN (one for each observer), (ii) N
preference relations �1, . . . ,�N over F (one for each observer), and (iii) a preference
relation �u over F (the user’s preferences). For this, we adopt a two-phase approach:

1. Generate a preference relation overD for each observer i on the basis of Γi and�u,
thereby obtaining a preference relation over ground atoms that takes into account
the i-th observer’s scores and is “customized” according to the user’s preferences.

2. Then, the N preference relations obtained in the previous step are combined into
one by taking into account how “relevant” the observers’ feature preferences are
relative to the user’s preferences.

Definition 2. Let Γi be a report function and�u the user’s preference relation over F .
For all A1, A2 ∈ D, A1 >i A2 iff

– Γi(A1) is defined and Γi(A2) is undefined; or
– both r1 = Γi(A1) and r2 = Γi(A2) are defined and r1 > r2 relative to �u.

The following example shows how atoms in the database can be ranked in our run-
ning scenario by each observer when the user’s preferences are also incorporated.

Example 5. Consider the reports of Example 3 and the user’s preference relation �u

over the features of Figure 1. Then, for each observer, we can determine an order among
ground atoms based on the observer’s reports, customizing it relative to the user’s fea-
ture preferences. Specifically, we get

Observer 1: id1 >1 id2; id4 >1 id2; id4 >1 id3;
Observer 2: id1 >2 id2; id3 >2 id4;
Observer 3: id2 >3 id1; id4 >3 id1. �

After obtaining a preference relation >i over D for each observer i, we need to
combine them into a single one. In this second step, we want to take into account how
“relevant” the observers’ feature preferences are given the user’s feature preferences.
Thus, we assume the existence of a relevance function ρ which takes as input two pref-
erence relations over F (the user preference relation and the preference relation of an
observer) and gives as output a value in [0, 1], measuring how similar the two pref-
erence relations are (e.g., various distance measures over fully and partially specified
preference structures have been proposed in [13]).

Below, we provide a general definition of an operator that combines a set of
preference relations where each is associated with a relevance value.

loc 

pri 

net 

cl 

br 

Fig. 1. A user preference relation over features
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Definition 3. A preference aggregation operator is a function that takes as input a set
P of pairs 〈>i, ρi〉 where >i is a preference relation and ρi ∈ [0, 1], and returns a
preference relation > such that if a >i b for every >i appearing in P then a > b.

For instance, when combining the >i’s we may want to give more importance to the
more relevant ones, i.e., those with higher ρi value, and give the same importance to
>i’s with the same ρi value.

Example 6. Consider again the setting from Example 5, and suppose the observers’
preference relations over the features are such that the relevance function yields 0.8
for observers 1 and 2, and 0.3 for observer 3. An example of preference aggregation
operator can be the one that first combines >1 and >2 using, e.g., pareto composition,
thereby obtaining id1 >1⊗2 id2 and id4 >1⊗2 id2. Then, it combines >1⊗2 with >3

with prioritized composition giving more importance to >1⊗2 (because of the higher
relevance of the first two observers) thereby obtaining a final order among atoms > as
follows: id1 > id2, id4 > id2, and id4 > id1. �

Definition 4. Given a Datalog+/– ontology KB = (D,Σ), N report functions Γ1, . . . ,
ΓN , N preference relations �1, . . . ,�N over F , a preference relation �u over F , a
relevance function ρ, and a preference aggregation operator agg, we define a ranking
for KB as agg({〈>1, ρ(�1,�u)〉, . . . , 〈>N , ρ(�N ,�u)〉}).

Notice that in the previous definition each >i is obtained as per Definition 2. Once a
partial order over the ground atoms is obtained, a total order over this set can easily be
derived by computing one of its topological sortings.

Proposition 1. The worst-case time complexity of computing a ranking for a
Datalog+/– ontology (D,Σ) is km2 + N(mn2 + fρ + logN) + fNagg , where m is
the number of features, n = |D|, N is the number of observers, k = |�u|, fρ is the
worst-case time complexity of the relevance function, and fNagg is the worst-case time
complexity of the adopted preference aggregation operator overN preference relations.

4 Ontological Query Answering Based on Subjective Reports

Up to now, we have considered simple knowledge bases (D, ∅), without directly ad-
dressing ontological query answering. We now generalize our framework to deal with
conjunctive query answering over ontologies containing tuple-generating dependencies.

The application of such dependencies in Σ can generate new atoms, to which we
need to “propagate” reports associated with the ground atoms in D that participated
in the creation. Therefore, besides being able to compute answers to queries in the
classical manner, we must also provide a way of relating query answers to the infor-
mation contained in the reports associated with atoms that “contributed” to them—this
suggests the need to use an adequate data provenance representation. There is a va-
riety of approaches that have been proposed in the formalization of provenance and
lineage [12,6]. In this work, we adopt a special case of the framework from [12], where
“how”-provenance is formalized through semirings of polynomials; this is a very gen-
eral and flexible formalism that we adapt to our needs, as discussed next.
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A Data Provenance Model. Consider an ontology KB =(D,Σ). Recall that every
ground atom A∈D has an id, denoted id(A); let X = {id(A) |A ∈ D} and S =
{0, 1}, we define a semiring of polynomials (S[X ],+,×, 0, 1), with variables from X
and coefficients from S, with operations + and × being idempotent, associative, and
commutative, and × distributing over +. Note that 1 (resp. 0) is the identity element
of × (resp. +). The provenance information is modeled as annotations to atoms in H,
defined by a function Ann : H �→ S[X ], i.e., Ann maps ground atoms to polynomials in
the semiring. This approach allows us to record the provenance information by means
of symbolic expressions over the ids of atoms using the semiring operations, which
in turn allows us to model not only information about which atoms contributed to the
answer’s computation but also how they contributed.

The Guarded Chase Forest. Note that, as shown in [12], commutative semirings are not
enough to correctly model the propagation of provenance annotations that arise from
derivations in Datalog; this is the case because derivations in Datalog (and therefore in
Datalog+/– ontologies) can be infinite, which requires semirings with infinite sums. For
this reason, we focus on guarded Datalog+/– ontologies, and instead of computing the
provenance annotations over the chase itself, we compute them over the necessary finite
part of the guarded chase forest (introduced in [8]). It is sufficient to consider only the
finite part of the chase, as for every derivation outside, there is an isomorphic one inside
the finite part (which follows from the results in [8]). In the following, we show how
the guarded chase forest can be extended to consider provenance annotations.

The guarded chase forest for D and Σ contains (i) a node nA for each atom A∈D,
having label(nA)=A, and (ii) for any two atoms A,B ∈ chase(D,Σ) there are two
nodes nA and nB with label(nA)=A and label(nB)=B along with an arrow from
nA to nB iff B is obtained from A and possibly other atoms by a one-step application
of a TGD σ ∈Σ withA as guard. In [8], it has been shown that whenever homomorphic
images of a CQ Q(X) are contained in chase(D,Σ), then they are also contained in
a finite, initial portion of the guarded chase forest, whose size is determined only by
the query and the schema. Furthermore, for guarded Datalog+/– ontologies, the whole
derivation of the query atoms is also contained in such a portion of the forest. This
means that we can construct the provenance annotations based on this finite portion
of the chase forest. For this, we associate with each node n a provenance annotation
ann ch(n); the forest is computed in the following way: first, for all nodes n labeled
with atoms A∈D, we have ann ch(n)= id(A). Then, each time the chase rule is ap-
plied via a TGD σ : Υ (X,Y) → ∃ZΨ(X, Z) to atoms labeling the nodes of the
guarded chase forest constructed thus far (let these nodes be n1, . . . , nk), the annota-
tion of the new node n′ labeled with the atom to which Ψ(X, Z) is mapped is defined
as ann ch(n′) =

∏
1�i�k ann ch(ni).

The guarded depth of an atom A in the guarded chase forest for D and Σ, denoted
depth(A), is the minimum length of a path fromD to a node labeled withA in the forest.
Then, the guarded chase of level up to k > 0 for D and Σ, denoted g chasek(KB),
is the set of all atoms in the guarded chase forest of depth at most k. Given a CQ
Q, we denote with g chaseγ(KB , Q) the part of the chase forest needed to answer
Q; as pointed out above, it has been shown that for guarded Datalog+/– ontologies
g chaseγ(KB , Q) is finite and its size (i.e., γ) depends only on Q and KB .



232 T. Lukasiewicz et al.

Definition 5. Let KB =(D,Σ) be a Datalog+/– ontology and (S[X ],+,×, 0, 1) a
commutative doubly idempotent semiring of polynomials. We define annotation func-
tion Ann : H → S[X ] as follows: for each atom A∈H, if KB |=A then Ann(A) =∑

n∈g chaseγ(KB,A)s.t. label(n)=A ann ch(n), otherwise Ann(A)= 0.

Note thatH can be infinite as can the guarded chase forest; however, the support for
function Ann is defined as supp(Ann) = {A |Ann(A) �= 0}, which is clearly finite in
g chaseγ(KB , Q). Note that the annotations depend on the query and the schema.

A Note about Idempotent Operators. Though in general the assumption of idempotent
+ and × operators is not made in the context of lineage expressions, for our purposes
it makes sense to adopt it since: (i) The + operator is used to express the fact that
an answer can be derived in more than one way—if two terms in the polynomial are
identical, we only need to keep track of one of them since they both represent the
same information regarding which reports should be considered (cf. the derivation of
atom accom(h1) in Example 7). (ii) The × operator is used to keep track of which
atoms participated in a single derivation of an answer—if identical atoms appear in
an expression, we only need to keep track of the atom’s presence since, as before, we
only need to know which reports are associated with the atom and not how many times
the atom participated in the derivation; thus, we have that a ∗ a = a. Therefore, all
exponents and coefficients in our lineage expressions will be equal to 1.

Example 7. Consider the ontology KB = (D,Σ) obtained from the one of Example 1
by adding the following atoms to the database:

id5 : pub(p1), id8 : locIn(h1, oxford, st giles), id11 : locIn(p2, oxford, st giles),
id6 : pub(p2), id9 : locIn(p1, oxford, st giles), id12 : locIn(p3, oxford, queen st).
id7 : pub(p3), id10 : locIn(bb1, oxford, queen st),

Then, each ground atom in D is annotated with its id, i.e. Ann(apthotel(h1)) = id1,
Ann(hotel(h2)) = id2, etc. The following atoms, along with their annotations, are de-
rived from D and Σ:

Ann(accom(h1)) = id1 + id1 = id1 Ann(accom(h2)) = id2
Ann(accom(bb1)) = id3 Ann(accom(hs1)) = id4
Ann(hotel(h1)) = id1 Ann(apartment(h1)) = id1 �

Query Answers with Lineage. Given the formalism described above, we can now
associate useful information about how query answers are computed.

Definition 6. Let KB =(D,Σ) be a Datalog+/– ontology and Q be a CQ of the form
q(X)= ∃Y

∧k
i=1 pi(Xi,Yi). The annotation of a query answer A ∈ ans(Q,KB) is

defined as follows:

Ann(A) =
∑

θ∈subs(Q,KB)∧A=θq(X)

k∏
i=1

Ann(θpi(Xi,Yi)),

where subs(Q,KB) denotes the set of all substitutions θ such that KB |= θpi(Xi,Yi)
for all i∈{1, . . . , k}.
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Example 8. Consider the ontology from Example 7 and the query myaccom(X) =
∃S, Y accom(X) ∧ locIn(X, oxford, S) ∧ pub(Y ) ∧ locIn(Y, oxford, S), asking for
accommodations in Oxford such that there is a pub on the same street. There are two
query answers, namely myaccom(h1) with annotation (id1× id8× id5× id9)+ (id1×
id8 × id6 × id11) and myaccom(bb1) with annotation (id3 × id10 × id7 × id12). �

Thus, each query answer A is associated with an annotation computed as follows:
Ann =

∑n
i=1

∏k
j=1 Annij . Each expression

∏k
j=1 Annij (1 � i � n) keeps track

of one way of deriving A; then, all possible ways are combined with a summation.
We define S-Ann(Ann) =

{∏k
j=1 Annij | 1 � i � n

}
. We also define the set of

annotated answers as ans(Q,KB) = {〈A1,Ann(A1)〉, . . . , 〈An,Ann(An)〉}, where
ans(Q,KB) = {A1, . . . , An}. The set of possible set of answers is defined as:{

{〈A1,Ann′1〉, . . . , 〈An,Ann′n〉} | Ann′i ∈ S-Ann(Ann(Ai)) for 1 � i � n
}

Example 9. Returning to Example 8, There are two possible sets of answers, namely:{〈myaccom(h1), (id1×id8×id5×id9)〉, 〈myaccom(bb1), (id3×id10×id7×id12)〉
}

{〈myaccom(h1), (id1×id8×id6×id11)〉, 〈myaccom(bb1), (id3×id10×id7×id12)〉
}
. �

We can now apply the framework proposed in the previous section to each possible
set of answers, and then combine the results obtained for all of them. But before that, we
need a way of determining the features of the query answers and the reports associated
with them. Of course, these should be obtained on the basis of the query structure and
the available provenance information.

Each predicate symbol can be associated with a sequence of features. In the follow-
ing, given a conjunctive query Q, we assume there is an arbitrary but fixed criterion to
determine a sequence of features FQ for the query answers and assume a way of gener-
ating a report for each query answerA on the basis ofAnn(A) (in Propositions 2 and 3,
we assume that both can be accomplished in polynomial time). A concrete approach is
illustrated in the following example.

Example 10. Consider the set of possible answers of Example 9:{〈myaccom(h1), (id1 × id8 × id5 × id9)〉, 〈myaccom(bb1), (id3 × id10 × id7 × id12)〉
}

Suppose the features of accom are loc, cl, pri, br, net, while those of pub are food,
drink. The features of the query answers might be defined as the union of the afore-
mentioned ones, i.e., loc, cl, pri, br, net, food, drink—in general, there can be different
reasonable ways of combining the features of the predicate symbols in the query (in
our case, we considered only predicates accom and pub and took the union of their fea-
tures). The reports for the query answers may be derived by merging the reports of the
accom- and pub-atoms that contributed to each query answer. For instance, suppose we
have two observers and their reports are as follows:

Γ1(id1) = 〈1, 0.7, 0.5, 1,−〉
Γ1(id5) = 〈0.5, 1〉
Γ1(id3) = 〈0.8, 0.3, 0.2, 0.5, 0.7〉
Γ1(id7) not defined
. . .

Γ2(id1) = 〈0.3, 0.4, 1,−,−〉
Γ2(id5) = 〈0.7, 0.2〉
Γ2(id3) = 〈0.4, 0.5, 0.5, 0.6, 0.1〉
Γ2(id7) = 〈0.1, 0.8〉
. . .
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Thus, the reports of the first and second observers for the query answers are:

Γ1(myaccom(h1)) = 〈1, 0.7, 0.5, 1,−, 0.5, 1〉
Γ1(myaccom(bb1)) = 〈0.8, 0.3, 0.2, 0.5, 0.7,−,−〉
Γ2(myaccom(h1)) = 〈0.3, 0.4, 1,−,−, 0.7, 0.2〉
Γ2(myaccom(bb1)) = 〈0.4, 0.5, 0.5, 0.6, 0.1, 0.1, 0.8〉

At this point, we can apply the framework of the previous section. �

Once we get a preference relation for each possible set of answers, they can be com-
bined using a preference aggregation operator, and a total order over this set can easily
be derived (e.g., as before, via topological sorting). Thus, eventually, we obtain a rank-
ing over the query answers.

The following proposition provides an upper bound on the (data) complexity of com-
puting query answer rankings. The exponential time upper bound is due to the fact that
the number of possible sets of answers can be exponential in the worst case.

Proposition 2. Computing a query answer ranking can be done in exponential time in
the data complexity.

Alternatively, we can use the annotations in a different way. For instance, we can
use a function that maps the id of an atom to a value in the [0, 1] interval such that it
compiles all reports (from different observers) associated with the atom into a single
score (in Proposition 3 below, we assume that such a function can be computed in
polynomial time); this score may represent, for instance, the overall relevance of the
atom for the user based on the reports and the relative importance of each dimension.
The scores can be combined through the min (resp., max) operator when × (resp., +)
is encountered in the annotation. This yields the application of a commutative semiring
(R+

�1, min, max, 1, 0). This evaluation of reports is called extensional.
The following proposition provides an upper bound on the (data) complexity of com-

puting query answer rankings under the extensional evaluation of reports.

Proposition 3. Computing a query answer ranking under the extensional evaluation of
reports can be done in polynomial time in the data complexity.

The polynomial time complexity of the extensional approach follows from the fact
that each of the following tasks can be accomplished in polynomial time: computing
the provenance information, mapping atoms’ ids to scores, and combining the scores.

5 Related Work

The study of preferences has been carried out in many disciplines; in computer science,
the developments that are most relevant to our work is in the incorporation of prefer-
ences into query answering mechanisms. To date (and to our knowledge), the state of
the art in this respect is centered around relational databases and, recently, in ontological
languages for the Semantic Web [15]. The seminal work in preference-based query an-
swering was that of [14], in which SQL is extended to incorporate user preferences. The
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preference formula formalism was introduced in [9] as a way to embed a user’s prefer-
ences into SQL. An important development in this line of research is the well-known
skyline operator, which was introduced in [4]. A recent survey of preference-based
query answering formalisms is provided in [17]. The problem of evaluating ranked
top-k queries in the context of ontology-based access over relational databases was
considered in [18]. Studies of preferences related to our approach have also been done
in classical logic programming [11] as well as answer set programming frameworks [5].

The present work can be considered as a further development of the PrefDatalog+/–
framework presented in [15], where we develop algorithms to answer skyline queries,
and their generalization to k-rank queries, over classical Datalog+/– ontologies. The
main difference between PrefDatalog+/– and the work presented here is that PrefData-
log+/– assumes that a model of the user’s preferences is given at the time the query
is issued. On the other hand, we make no such assumption here; instead, we assume
that the user only provides some very basic information regarding her preferences over
certain features, and has access to a set of reports provided by other users in the past. In
a sense, this approach is akin to building an ad hoc model on the fly at query time and
using it to provide a ranked list of results.

Related to our approach is the work in [10], where preferences are created from
provenance annotations of RDF data. There, different provenance annotation dimen-
sions are considered, each yielding a total preference order represented by a semir-
ing. These preferences are then aggregated according to common social choice theory
preference aggregation methods. Another line of related research are constraint-based
formalisms for modeling preferences based on semirings, like the one presented in [3].

This work is also related to the study and use of provenance in information systems
and, in particular, the Semantic Web and social media [16,10,1]. Here, we use a kind
of “how”-provenance [12] to study how to propagate report annotations of atoms in an
ontology to create preference-based ranked results of ontological queries. Representing
the “how”-provenance in this manner allows us to map the semiring into others depend-
ing on the manipulations that we wish to perform during the propagation of reports. To
our knowledge, this is the first study of a direct application of provenance of reports of
this kind found in online reviews to query answering.

6 Summary and Outlook

In this paper, we have studied the problem of preference-based query answering in
Datalog+/– ontologies under the assumption that the user’s preferences are informed by
a set of subjective reports representing opinions of others—such reports model the kind
of information found, for instance, in online reviews of products, places, and services.

We first introduced a basic approach to rank atoms in an ontology by combining
reports, report authors’ preferences, and the user’s preferences. Then, we extended our
framework to deal with dependencies and query answering using provenance informa-
tion to keep track of which reports should be considered to evaluate query answers,
as well as new information derived from dependencies. Representing the provenance
by means of a semiring enabled us to adapt our framework depending on the kind of
report propagation that we wish to carry out. One direction for future work involves
investigating further semirings for manipulating reports during their propagation.
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Much work remains to be done in this line of research, such as expressing general
reports that apply to sets of tuples, and exploring the application of existing techniques
to gather reports from actual information available in Web reviews. We also plan to
experimentally evaluate our framework over synthetic and real-world data.
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Abstract. Petri nets are a mathematical modelling tool suitable for describing
dynamic computational systems. In this work we present a formalization of ab-
stract argumentation frameworks using Petri nets, where arguments and attacks
are represented as places and transitions. This provides a formalism to study the
semantic consequences of a procedural evaluation of argument attacks. The rela-
tion between markings of the net and argument extensions is analysed.

1 Introduction

Roughly speaking, argumentation is the study of arguments and their relationships. It
is a form of reasoning suitable to deal with incomplete and contradictory information in
dynamic domains. Although several proposals of argumentation systems are available,
it is possible to study pure semantic notions in a general framework with a high level
of abstraction. In abstract argumentation formalisms some components remain unspec-
ified, being the structure of an argument the main abstraction. In this kind of systems,
the emphasis is put on the semantic notion of finding the set of accepted arguments.
Most of these abstract argumentation frameworks are based on the single concept of
information conflict called attack, represented as an abstract relation, and extensions are
defined as sets of possibly accepted arguments. The study of dynamics of argumentation
has been an important topic in this area. An initial proposal of dynamic argumentation
is presented in [3] using situation calculus. In recent formalisms [5,4,2,11] the seman-
tic study of arguments and attacks is addressed under a temporal perspective, where
arguments and attacks are progressively considered as the framework evolves through
time. This is important since argumentation is intrinsically tied to dialectic activities,
like dialogues, debates and even introspection.

Then it is possible to study how the process of argumentation advances while argu-
ments and attacks are selected or provided in a sequential manner, which is relevant in
systems with a large amounts of arguments. For instance, a DeLP program [7] of few
defasible rules may produce hundreds of defeasible arguments. Even more, in some
contexts it is not necessary to consider all of these arguments as a whole while rea-
soning. Gradual consideration of arguments and attacks is interesting. However, the
fact that some controversies between arguments may be addressed in a sequential, dis-
tributed and concurrent operation with different semantic consequences was not previ-
ously studied under a suitable mathematical model in the argumentation community.
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Argumentation processes can be naturally complex. For instance, when a set of topics
is discussed by several participants, some of the debates may occur at the same time.
This is how many legislative corps works, such as in the United Nations or several state
Congresses around the world. A formal model for the study of a procedural, timed in-
terpretation of the act of attacking an argument is novel and interesting in the context
of timed argumentation, where it is uncertain what arguments are going to be addressed
next. In this work we are not interested in the logical aspects of argumentation as in
[3], but in the abstract characterization of potentially distributed, asynchronous
argumentation.

Petri nets are a mathematical modelling tool suitable for describing concurrent, asyn-
chronous, non-deterministic computational systems [1,10,8]. The basic formalism is
simple and it provides a sound framework for the study of properties of discrete events
systems, yet in the last years several extensions were proposed in order to provide mod-
els for different characterizations of dynamic systems. Petri nets provide a description
of independence and causal relations between system actions, which allows to reason
about partially ordered sets of actions without having to consider their interleavings [8].
Properties of Petri nets were studied for half a century around the globe and it is widely
considered a mature discipline.

In this work we propose a Petri net representation of an abstract argumentation
framework. This provides a formalism to study the semantic consequences of a pro-
cedural evaluation of individual argument attacks. Being a classic engineering-oriented
formalism, Petri nets are appropriate for argumentation process analysis which is an
important direction of this line of research. In this paper we introduce the formalism
and we show there is a correspondence between the evolution of the net and the under-
lying argumentation semantics.

This paper is organized as follows. In Section 2 we recall the basic notions of classi-
cal abstract argumentation frameworks. In Section 3 a brief, general description of Petri
nets is included. In Section 4 we present a Petri net model for abstract argumentation
and related semantic notions are introduced in Section 5. In Section 6 the dialectical in-
terpretation of the argumentation net is discussed. Finally, conclusions and future work
is discussed.

2 Classic Abstract Argumentation

Dung defines several argument extensions that are used as a reference for many authors.
The formal definition of the classic argumentation framework follows.

Definition 1 [6] An argumentation framework is a pair AF = 〈AR, attacks〉 where
AR is a set of arguments, and attacks is a binary relation on AR, i.e. attacks ⊆
AR×AR.

Arguments are denoted by labels starting with an upper-case letter, leaving the un-
derlying logic unspecified. A set of accepted arguments is characterized in [6] using
the concept of acceptability, which is a central notion in argumentation, formalized by
Dung in the following definition.



A Petri Net Model of Argumentation Dynamics 239

Definition 2 [6] An argumentA ∈ AR is acceptable with respect to a set of arguments
S if and only if every argument B attackingA is attacked by an argument in S.

If an argument A is acceptable with respect to a set of arguments S then it is also
said that S defends A. Also, the attackers of the attackers of A are called defenders of
A. We will use these terms throughout this paper.

Acceptability is the main property of Dung’s semantic notions, some of them sum-
marized in the following definition.

Definition 3 A set of arguments S is said to be
– conflict-free if there are no argumentsA,B in S such that A attacks B.
– admissible if it is conflict-free and defends all its elements.
– a preferred extension if S is a maximal (for set inclusion) admissible set.

In [6], theorems stating conditions of existence and equivalence between these and
other extensions are also introduced.

Example 1 Consider the argumentation framework AF1 = 〈AR, attacks〉, where
AR = {A,B, C,D, E ,F ,G,H} and attacks = {(B,A), (C,B), (D,A), (E ,D),
(G,H), (H,G)}. Then
– {A, C, E} is an admissible set of arguments.
– {A, C, E ,F ,G} is a preferred extension.

In the following section we recall the basic definitions of Petri nets, as needed later.
For a more detailed introduction to Petri nets, the reader may refer to [10].

3 Petri Nets

A Petri net is a directed, weighted, bipartite graph consisting of two kind of nodes
called places and transitions. Usually places are represented as circles and transitions
are represented as boxes or bars. Arcs connect transitions and places and have a weight
(positive integers). A marking M of the net assigns a nonnegative integer to each place
in the net. If a marking M assigns to place p an integer k, it is said that p has (or is
marked with) k tokens. This tokens are graphically represented as dots inside a place,
or just simply a number.

Definition 4 A Petri net is a 5-tuple PN = (P, T, F,W,M0) where

– P = {p1, p2, . . . , pn} is a finite set of places and T = {t1, t2, . . . , tn} is a finite
set of transitions, with P ∩ T = ∅ and P ∪ T = ∅,

– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs,
– W : F → {1, 2, 3, . . .} is a weight function,
– M0 : P → {1, 2, 3, . . .} is the initial marking.
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A transition t is said to be enabled at markingM if each input place p of t is such that
M(p) ≥ W (p, t). Enabled transitions may be fired. A firing of a transition t removes
W (p, T ) tokens from each input place p and adds W (t, p) tokens to each output place.
A sequence of firings leads to a sequence of markings. A marking Mi is said to be
reachable from marking Mj if there exists a sequence of firings that transforms Mj

to Mi. The set of all reachable markings of a net P is called the reachability space of
P . A vanishing state of the net is a marking that can be changed since it enable some
transitions. A tangible state is a marking in which no transition is enabled. The number
of tokens in a place p at marking Mk is denoted as Mk(p). A Petri net is said to be
k-bounded if the number of tokens in each place does not exceed a finite number k for
any marking reachable from M0. A Petri net is said to be safe if it is 1-bounded. A self
loop is a transition with an output and an input from the same place. Two transitions
that output to the same place are said to be in backward conflict. Two transitions are in
forward conflict if, being both of them enabled by a common place, only one can be
fired.

Fig. 1. A simple Petri net

In Figure 1 a simple Petri net is depicted, where places are circles and transitions are
black bars. The marking is represented by black dots inside places, showingM(P0) =
1,M(P1) = 0 andM(P2) = 1. Transitions T 0 and T 2 are enabled and can be fired. If
transition T 0 is fired, it consumes the only token of place P0 and produces two tokens
in place P1. After that, transition T 1 is enabled and can be fired twice, each one con-
suming one token of P1. Some firing sequences on this net are {T 0, T 1, T 1, T 2, T1}
and {T 2, T 1, T 0, T 1, T1}. Both of them lead to the only tangible state of the net, with
all the places free of tokens. Between the initial state and this tangible state, it is possible
to generate eight vanishing states. This is because the firing order of some transitions
is interchangeable, as T 0 and T 2. Transition T 1 consumes all the tokens produced by
these two transitions and can only be fired after them.

An extension of Petri nets distinguishes a special kind of arcs called inhibitor arcs.
This set of arcs appears as a new component in the formal definition of the Petri net,
being then a 6-tuple. An inhibitor arc connects a place to a transition and it is graphically
represented as a line with a white circle in its end. This kind of arc disables the transition
when the input place has a token, and enables the transition when the input place has
no token and any other normal input has the required tokens. This extension allows the
test for absence of tokens and this simple fact makes Petri nets as expressive as Turing
Machines.
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In Petri nets there are several definitions of fairness. Two transitions t1 and t2 are said
to be in a bounded-fair relation if the maximum number of times that either
one can fire while the other is not firing is bounded. Hence, one transition cannot block
the other by firing infinitely. A Petri net is said to be a bounded-fair net if every pair of
transitions in the net are in a bounded-fair relation. A firing sequence T is said to be
unconditionally fair if it is finite or every transition in the net appears infinitely often in
T . A Petri net is said to be an unconditionally fair net if every firing sequence from the
initial state is unconditionally fair.

In the following section we present a formalization of argumentation frameworks us-
ing Petri nets with inhibitor arcs. Semantic notions are discussed in subsequent sections.

4 Argumentation Nets

An abstract argumentation framework as in Definition 1 induces a Petri net where places
are arguments and transitions represent the conflict between arguments. This is formal-
ized in the following definition.

Definition 5 Let Φ = 〈AR, attacks〉 be an argumentation framework. The argumen-
tation net of Φ, or simply argnet, is a Petri net VΦ = (AR, T, F,H,W,M) where

– AR is the set of places
– T = {t1, t2, . . . , tn} is a finite set of transitions.
– F ⊆ (AR× T ) ∪ (T ×AR) is a set of arcs.
– H ⊆ (AR × T ) ∪ (T ×AR) is a set of inhibitors arcs.
– W : F → {1, 2, 3 . . .} is the weight function.
– M : AR→ {0, 1, 2, 3 . . .} is the initial marking.

such that

– for any attack (A,B) ∈ attacks, there exist a transition tAB and the arcs
(A, tAB),(tAB,A),(B, tAB) ⊆ F . This transition is called an attack transition.

– for any argument A with attackers X1,X2, . . . ,Xn there exists the transition tA
with the inhibitor arcs (A, tA) and (Xi, tA) for 1 ≤ i ≤ n, and the arc (tA,A).
This transition is called a restoring transition.

– M(X ) = 1 for any argument X ∈ AR.

Tokens represent potential strength of arguments for attacking each other. There is
an attack transition whenever an argument A attacks another argument B. Sometimes
in this text arguments and places are treated as equivalents. In this paper the weight of
every transition is 1, and then transitions remove or add only one token at a time. When
referring to attack transitions, the corresponding place forA will be called the attacking
or input place and the corresponding place for B will be called the attacked or output
place. Such a transition can be fired when a token is available in both the attacking and
attacked place. The attack transition consumes the tokens of both places, and restores
the consumed token in the attacking place. Restoring transitions links attacked argu-
ments with all of its attackers. Such a transition places a token in an empty attacked
place X whenever all the attacker places are empty. This models the fact that, since
every attacker of X has no strength, then the strength of X can be reinstated.



242 D.C. Martinez, M.L. Cobo, and G.R. Simari

Fig. 2. Arguments B and C attack argument A

Example 2 Let Φ = ({A,B, C}, {(B,A), (C,A)}) be an argumentation framework.
The corresponding argnet VΦ is depicted in Figure 2. Arguments are represented as
places and the attacks are represented by transitions tBA and tCA. The restoring tran-
sition tA adds a token to the place A only when A and its attackers have no tokens.

Petri nets are mainly a model of computation. In this argumentation net our units
of computation are the transitions, either attacking or restoring ones. Therefore, we are
interested in the evolution of the strength of arguments as transitions are fired, i.e.when
tokens are consumed and restored in argument places. In the initial marking M0 every
place has a token, since no attack is considered yet and then every argument has the
potential strength of affecting other arguments. Note that transitions can put tokens in
a place whenever (a) a token is removed from the same place as in attacking transitions
or (b) when there is no token in the place as in restoring transitions. Hence no place can
hold more than one token, as stated in the following Proposition.

Proposition 1 For any argumentation framework Φ, the argnet VΦ is safe (1-bounded).

If the Petri net is k-bounded, then the reachability space is finite. In this work we are
interested in the connection between the firing of transitions, the evolution of markings
and the underlying argumentation semantics. Consider the net of Figure 2. The enabled
transitions are tBA and tCA. Restoring transition tA is not enabled since places A,
B and C are not free of tokens. There are two possible firing sequences in this net:
{tBA} and {tCA}. Since the firing of an attacking transition removes the token in the
attacker argument, then the firing of tCA inhibits the firing of tBA and viceversa. This
happens with attacking transitions for the same arguments, as stated in the following
Proposition.

Proposition 2 Let A be an argument attacked by arguments D1,D2 . . .Dn,. The tran-
sitions tD1A, tD2A . . . tDnA are all in forward conflict.
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However, whether tBA or tCA are fired in the net of Figure 2 the final marking M
of VΦ is the same: M(A) = 0, M(B) = 1 and M(C) = 1. In other words, any of
these attacks can be applied and the final outcome is the same, but only one of them is
firable since these transitions are not independent of each other. Note that the maximal
admissible set of Φ is {B, C}, the only places with a token in the tangible state.

Fig. 3. Argument A attacks B. Argument B attacks C.

Consider the net of Figure 3 where a situation of argument defense is presented. The
initial enabled transitions are tAB and tBC. This means that both attacks are fireable at
the beginning. If transition tAB is fired first, then no transition is later enabled, leading
to a tangible state. If transition tBC is fired first, transition tAB is still enabled. After
firing transition tAB, the restoring transition tC becomes enabled, since neither B nor
C have tokens. After firing transition tC, place (argument)C gains a token and then no
transition is enabled after that. Thus, a tangible state can be reached by firing tAB or
by firing the sequence {tBC, tAB, tC}. Moreover, there is only one tangible state with
markingM(A) = 1, M(B) = 0 and M(C) = 1. Note that the maximal admissible set
of the corresponding abstract framework is {A, C}.

In the following section we present semantic notions for argumentation Petri nets,
based on markings and sequence of transitions.

5 Argumentation Semantics

As stated before, Petri nets are a model of computation for concurrent and distributed
systems, where the emphasis is put in the firing of transitions and how the marking of
the net evolves as a consequence. Argnets provide an interesting model for procedural
argumentation semantics. In this section we consider nets without isolated parts. As
shown in the example of Figure 3 a sequence of firing of transitions leads to a sequence
of markings, which can be interpreted as an evolution of the strength of arguments as
attacks take place. As long as there are enabled transitions, an attack or a restoration
can occur and then there are still arguments able to loose or gain strength. There is,
however, a set of arguments that never loose its tokens. A trap of a Petri net is a set of
places S such that any transition with an input in S has also an output in S and if S is
marked under some markingM , it is still marked under any succesor marking of M .
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Proposition 3 Let Φ = 〈AR, attacks〉 be an argumentation framework with corre-
sponding argnet VΦ and let Df ⊆ AR be the set of all defeater-free arguments in AF .
Then Df is a trap of VΦ.

Proof: Defeater-free arguments can only attack other arguments and then every outgo-
ing transition of the corresponding place is an attack transition, conforming a self-loop.
These are the only transitions that will be enabled and then the token is never lost. In
some formalisms, this kind of loop if represented as a single transition called read-
transition. �

Hence, defeater-free arguments always have a token in the corresponding place. Be-
cause of this, any attack transition from a defeater-free argument is enabled at M0 and
it will be enabled as long as the attacked argument still possesses its token. That means
that the attack is enabled while it has an actual impact on the attacked argument (other-
wise the attack is not necessary). In the net of Figure 2, places B and C never loose their
tokens, yet only one attack is enough to suppress argumentA. Under the interpretation
of attacks as actions, in this example only one attack is sufficient to reach a tangible
state.

An admissible extension is basically a set of arguments defending each other. In the
Petri net this is interpreted as a distribution of tokens over the net, with a particular con-
dition. This marking can be reached by firing transitions until no transition is enabled,
as stated in the following proposition.

Proposition 4 Let Φ = 〈AR, attacks〉 be an argumentation framework with argnet
VΦ = (P, T, F,H,W,M). Let T be a sequence of firing transitions {t1, t2, . . . , tn}
that transforms M to Mn such that every transition in VΦ after Mn is not enabled.
Then the set of arguments S = {A ∈ AR|Mn(A) = 1} is an admissible set of Φ.

Proof: Suppose no transitions are enabled and S is not admissible. Then either (a) it is
not free of conflict or (b) at least one argument A ∈ S is not defended by S. If (a) is
the case, then at least two arguments X and Y are such that M(X ) = M(Y) = 1 are
in conflict. But then the attack transition between them is enabled, which is a contra-
diction. If (b) is the case, then at least an argument X ∈ S is attacked by an argument
Y , but not defended by an argument in S. But Y must be free of tokens, otherwise (a) is
the case. Since M(Y) = 0, then Y is not free of attackers and then there is at least one
argument attacking Y . But, since Y has no token and no transitions are enabled, then it
is not possible for all the attackers of Y to have no tokens. Then at least one argument
Z attacks Y such that M(Z) = 1. But then X is actually defended by S, which is a
contradiction. Since (a) and (b) cannot be the case, then S is admissible whenever the
transitions are not enabled. �

Hence, a tangible state in the net corresponds to a distribution of tokens signalling
arguments in an admissible extension. If no tangible state can be reached through a
sequence of firings of transitions, then there is always an enabled attack or restoring
transition, i.e. a token can be placed or removed somewhere in the net.
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Proposition 5 If at least one transition in VΦ is potentially fireable in any markingMk

then AF is not well-formed.

Proof: If at least one transition is potentially fireable, then every state of the net is a
vanishing state. Since there is a finite set of possible states and the net is safe, then at
least one argument is gaining and loosing a token repeatedly (although not necessarily
in consecutive markings). �

Consider the net of Figure 4 where an odd cycle of attacks is present. Starting from
the initial marking, no tangible state can be produced. In fact, there is an infinite se-
quence of attacking and restoration transitions. Whenever a token is restored in a place
X , it enables an attack transition tXY from that place. There are six vanishing states
in this net and the only admissible set in the corresponding argumentation framework
is the empty set.

Fig. 4. Argument cycle between A, B and C

The converse of Proposition 5 is not true, as shown in the net of Figure 5, corre-
sponding to the argumentation frameworkΦ = 〈{A, B, C,D}, {(A,B), (B, C), (C,D),
(D,A)}〉 with a cycle of attacks between the four arguments. Starting from the initial
marking, it is possible to reach thirteen different states, with only two of them being
tangible. As stated in Proposition 4 these tangible states correspond to the admissible
sets S1 = {A, C} and S2 = {B,D}. The set S1 can be reached, for instance, by the se-
quence of firings T1 = {tAB, tCD} but also by T ′

1 = {tCD, tBC, tAB, tC}. The set
S2 can be reached, for instance, by T2 = {tBC, tDA} or T ′

2 = {tBC, tAB, tDA, tB}.
Note that in T ′

1 and T ′
2 a restoration transition is needed.

Consider the following sequences of transitions in the net of Figure 5:
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Fig. 5. Four arguments A, B, C and D in a cycle

– T = {tDA, tCD, tA, tBC, tD, tDA}
– T ′ = {tDA, tCD, tBC, tA, tAB, tC}

Although both sequences start firing transitions {tDA, tCD}, they lead to different
tangible states. Sequence T leaves tokens in D and B while the sequence T ′ leaves
tokens in A and C. The former decides to reinstate A (by firing tA) before triggering
an attack to C from B (by firing tBC). The sequence T ′, however, decides to attack
C before reinstate A. This shows, of course, that the choice of transitions to fire may
completely change the outcome of the process. But the most interesting aspect is that
the reinstatement of tA and the attack tBC are interchangeable, since both T and T ′

lead to a state of the net in which only tAB and tD are the enabled transitions after the
fourth transition. In other words, {tDA, tCD, tA, tBC} and {tDA, tCD, tBC, tA}
lead to the same vanishing state. After that, both sequences take different paths: T
reinstantes D to attack A later, while T ′ attacks B to later reinstate C. As expected in
argumentation, a restoring transition can be fired only after other transitions are fired.
For a given sequence of transitions, we will denote t1 . t2 if transition t1 occurs before
transition t2. In order to reinstate an argument X , all of its attackers must loose their
tokens. This is formalized in the following proposition.

Proposition 6 Let Φ be an argumentation framework with argnet VΦ. For any sequence
of firings of transitions T , then

1. tXY . tY in T and
2. for every argumentWi attacking Y , tZiWi . tY in T .

Proof: Trivial. Place Y must loose its token in order to fire its reinstate transition. This
can only be achieved by an attack transition with input Y . The same is true for all of its
attackers. �



A Petri Net Model of Argumentation Dynamics 247

Moreover, if tZiWi . tY in a sequence T then there is a sub-sequence T ′ =
[tZiWi . . . tY ] such that there are no extra occurrences of tZiWi in T ′ and tWi �.
tY . In other words, although Wi loose its token after the attacking transition, it is not
reinstated before Y is. Note that in Proposition 6 there is no specific restriction about
the order of tXY and every tZiWi. This is consistent with the notion of attack and
defense in argumentation frameworks.

Another important aspect of Petri nets is the reachability problem. This is a decision
problem about deciding, for a given marking M , whether it is reachable in a particular
net. In our formalism, the reachability graph is finite since the net is safe. What is in-
teresting is to prove that certain relevant markings are in the reachability graph induced
by a net.

Proposition 7 Let Φ = 〈AR, attacks〉 be an argumentation framework with argnet
VΦ = (P, T, F,H,W,M). If S ⊆ AR is a preferred extension of Φ, S �= ∅, then
there exists a sequence of firings {t1, t2, . . . , tn} that transforms M to Mn such that
Mn(A) = 1 if A ∈ S and Mn(A) = 0 if A �∈ S.

Proof: Let MS be the marking such that only arguments in the preferred extension S
have tokens. Suppose MS is not in the reachability space of the net VΦ. This means
that there exists at least one argument A, such that A cannot (a) acquire a token if
MS(A) = 1 or (b) loose a token if MS(A) = 0 in any sequence of firing transitions.
Suppose (a) is the case. Since the initial marking assigns tokens for every place, then
A looses its token and it is not able to recover it in any sequence of transitions. How-
ever, since A is in the preferred extension, then it is defended by arguments in S. But if
every defender Di is such that M(Di) = 1, then after firing the outgoing attack tran-
sitions, every attacker of A looses its token, which after the restoring transition makes
M(A) = 1. Then clearly at least one defender Dk of A has no token, otherwise A
could recover its token. Now Dk and A are two arguments that MS assigns tokens to,
but they cannot acquire them. The same analysis can be made for Dk. �

It could be the case that some controversies are present in the framework, as shown
in Example 4, where an infinite sequence of transitions can be fired. In this particular
case of a three-argument cycle, every transition leads to a vanishing state. The same
is true for longer odd cycles, when an argument attacks its own (indirect) defender.
This is sometimes called a contradictory argumentation line, since every argument in-
directly attacks itself. An argumentA is said to be controversial with respect to another
argument B if B indirectly attacks and indirectly defendesA [6].

Proposition 8 Let Φ be an argumentation framework with argnet VΦ. If there exists an
infinite sequence of firings of transitions in VΦ, then Φ is controversial.

Proof: If there exists an infinite sequence of transitions, then some arguments are repeat-
edly loosing and gaining their tokens. Thus, there is a cycle of attacking and restoring
transitions. It means that at least two transitions tXY and tY are involved a bounded-
fair relation. Hence the attack ofX onY indirectly causes the restoration of Y . It means
that X attacks and indirectly defends Y , and then Φ is controversial. �
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A Petri net may have an isolated sub-graph with a cycle causing an infinite sequences
of firings of transitions. Since there is always a transition that is potentially fireable,
then the net cannot reach a tangible state. There may be, however, a subnet such that
no transition is enabled and there are no other, external transitions that can change
that fact. A subnet generated by a set of transitions T is another net formed by T and
all of its input and output places with its corresponding arcs. In argumentation nets,
every transition of a net VΦ that is not potentially fireable at a given markingM , forms
a subnet V ′

Φ such that the restriction of M to V ′
Φ is a potential admissible subset of

arguments. Although there are no tangible states in the whole net, some transitions will
be never fired and thus some places are not receiving or loosing tokens any more.

In the following section we discuss a dialectical interpretation of sequences of firings
of transitions in an argumentation net.

6 Transitions as Dialogue Acts

An argumentation system may produce thousands of arguments from a knowledge base.
In Defeasible Logic Programming [7], the addition of a simple defeasible rule may
cause new derivation trees, thus incrementing the set of arguments. The size and com-
plexity of argumentation makes procedural evaluation of arguments and its relationship
an important topic. It is interesting to evaluate the role of transitions under procedural
models of argumentation. A sequence of firings can be considered as a sequence of
moves in an argumentation game, where two participants (agents) decide what attack is
considered next. This is basically a dialogue that last until some particular condition is
reached. Several forms of dialogue games may be defined, for instance:

– Single-topic: an agent P proposes an argument A to agent O. The goal of P is
to defend A, i.e. to keep the corresponding place tokenized. The goal of O is to
de-tokenizeA.

– Set-of-beliefs: both agents propose a set of arguments S as a set of beliefs in con-
tention. The goal of the dialogue is to collaboratively analyse the acceptance of
arguments in S by highlighting attacks and restorations until some condition is
reached.

The first dialogue is competitive, while the other is collaborative. Both dialogues
may run until no transitions are enabled, or for a finite period of time, or until a max-
imal number of transitions were fired. In any case, a restriction of valid sequences of
firings can be considered. For instance, an agent that proposes tXY cannot propose tY
later. This means that an agent that causes the disqualification of an argument in the
dialogue (by deleting its token) cannot provoke the restoration of the same argument.
This restriction is probably more reasonable in single-topic dialogues. Also some tran-
sitions may be completely forbidden. This may be the case when some arguments and
some relations are previously agreed to be off-topic.

It is also possible to consider restoration transitions as an automatic consequence
of the last transition that enables such a restoration, an then restoring transitions are
not a move by itself in the dialogue. Thus, a restoration transition is not a legal single
move. It must be always preceded by an attack transition. According to this form of
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dialogue, there are only two possible moves for an agent: (tXY ) and (tXY ; tZ) for
any arguments X , Y and Z such that Y is an attacker of Z

Another interpretation may be to provide restoring transitions with special, addi-
tional conditions for firing. Here restoration is not automatic, but reserved for particular
moments in the dialogue. Then there is a priority between transitions, being attack ones
preferred over restoring ones. When no attack is possible, a restoration of a place may
be considered by any agent, even when that agent previously removed the token of the
same place. This is a sort of belief revision made by the agent, by consenting the validity
of a previously challenged argument.

In the Petri nets model of argumentation this restrictions to the dialogue can be
achieved by the notion of supervisors [9], as shown in the following Definition.

Definition 6 [9] Let VΦ = (AR, T, F,W ) be a Petri net,M the set of all markings of
VΦ and U ⊆M. A supervisor Ξ is a functionΞ : U → 2T that maps to every marking
a set of transitions that the Petri net is allowed to fire.

The notion of supervisor is usually associated with the task of preventing deadlock in
Petri nets. However, the same formalism may be used to direct the dialogue to specific
purposes.

Consider the net of Figure 4, where there is no tangible state. A dialogue of tran-
sitions engaged in this net requires additional controls to avoid circular argumenta-
tion. A possible supervisor for this situation may be Ξ(M) = ∅ for any marking
M ⊆ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} i.e. markings with only one token. This means that
no transition is enabled after removing two tokens. In other words, the last argument to
survive leads to a special kind of tangible state since no transition is legally fireable. The
notion of tangible state is now contextual to the overall state of enabled transitions and
the supervisor restrictions. Even more, it is possible to use more than one supervisor,
with priorities. One supervisor define legal attack transitions and the other define legal
restorations. The change of supervisor takes place when the net reaches a tangible state
under supervisors restriction.

7 Conclusions and Future Work

Petri nets are a model of computation for concurrent and distributed systems, where the
emphasis is put in the firing of transitions and how the marking of the net evolves as a
consequence. In this work we proposed a Petri net representation of abstract argumenta-
tion frameworks as an approach to the study of procedural interpretation of attacks, i.e.
the consideration of argument attacks as actions in an argumentation system. Given this
new Petri net model, we have proved that there is a relation between tangible states of
the net and admissible sets of the corresponding framework. We also discussed that the
procedural profile of Petri nets makes this formalism suitable to provide a framework
for the study of argumentation dialogues, under the formal regulation of a supervisor.

Future work has several directions, as intended in this seminal proposal. A Petri net
model of argumentation frameworks that allow places to have more than one token
is being studied. Tokens here are intended to represent the strength of an argument,
and a single attack weakens such an argument by removing one token. An argument
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is considered rejected if it has no tokens. In other direction, it is important to study
the relation between partial repetitive nets and the existence of admissible extensions
in the corresponding argumentation framework. Dialectical strategies to avoid cyclic
transitions in an argumentation dialogue are interesting. Finally, the addition of timed
transitions is important to model the dynamics of timed argumentation formalisms [5].
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Abstract. We formally introduce integrity constraints for probabilistic spatio-
temporal knowledgebases. We start by defining the syntax and semantics of PST
knowledgebases. This definition generalizes the SPOT framework which is a
declarative framework for the representation and processing of probabilistic
spatio-temporal data where probability is represented as an interval because of
uncertainty. We augment the previous definition by adding a type of non-atomic
formula that expresses integrity constraints. The result is a highly expressive for-
malism for knowledge representation dealing with probabilistic spatio-temporal
data. Our main results concern the complexity of checking the consistency of
PST knowledgebases.

1 Introduction

Recent years have seen a great deal of interest in tracking moving objects. For this rea-
son, researchers have investigated in detail the representation and processing of spatio-
temporal data, both in AI [3,8,32,33,13] and databases [1,27]. However, in many cases
the location of objects is uncertain: such cases can be handled by using probabili-
ties [26,29]. Sometimes the probabilities themselves are uncertain. The SPOT (Spa-
tial PrObabilistic Temporal) framework was introduced in [23] to provide a declarative
framework for the representation and processing of probabilistic spatio-temporal data
with uncertain probabilities.

The SPOT framework is able to represent atomic statements of the form “object id
is/was/will be inside region r at time t with probability in the interval [", u]”. This al-
lows the representation of information concerning moving objects in several application
domains. For instance, a military agency is interested in modelling enemy vehicles that
may be in a region at a given time point and with a given probability (in order to ade-
quately arrange its defense line) [16,12]. A cell phone provider is interested in knowing
which cell phones will be in the range of some towers at a given time and with what
probability. A transportation company is interested in predicting the vehicles that will
be on a given road at a given time (and with what probability) in order avoid congestion.

The framework introduced in [23] was then extended in [25,10] to include the spe-
cific integrity constraint that, for a given moving object, only some points are reachable
from a given starting point in one time unit. This captures the scenario where objects
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have speed limits and only some points are reachable by objects depending on the dis-
tance between the points. However, even such an extended SPOT framework is not yet
general enough to represent additional knowledge concerning the movements of ob-
jects. Examples of facts we may be aware of but cannot represent in the SPOT frame-
work are, for instance, the fact that (i) there cannot be two distinct objects in a given
region in a given time interval; (ii) some object cannot reach a given region starting
from a given location in less than a given time (not necessarily one time unit); (iii) an
object can go away from a given region only if it stayed there for at least a given time.
To overcome such limitation and allow this kind of knowledge to be represented, we de-
fine probabilistic spatio-temporal (PST ) knowledgebases (KBs) consisting of atomic
statements, such as those representable in the SPOT framework and spatio-temporal
denial formulas, a general class of formulas that account for all the three cases above,
and many more (including the reachability constraint of [25,10]).

The focus of this paper is the systematic study of knowledge representation in proba-
bilistic spatio-temporal data. We start by defining the concept of a PST KB and provide
its formal semantics, which is given in terms of worlds and interpretations. We define
the concept of a consistent PST KB, and characterize the complexity of checking con-
sistency, showing that it is NP-complete in general. Then we present a mixed-binary
linear programming algorithm for dealing with the consistency checking problem, and
identify tractable cases. Finally, we discuss how checking consistency can be exploited
to answer queries in PST KBs.

2 The PST Framework

This section introduces the syntax and semantics of PST KBs generalizing the SPOT
framework introduced in [23] and further extended in [25,10]. Basically, we define a
PST KB by augmenting the previous framework with non-atomic formulas (i.e., spatio-
temporal denial formulas) that represent integrity constraints. This way we can make
statements whose meaning is that certain object trajectories cannot occur.

2.1 Syntax

We assume the existence of a finite set ID of object ids, a finite set T = [0, 1, . . . , tmax]
of time points (where tmax in an integer), and a finite set Space of points.

A spatio-temporal atom (st-atom) is an expression of the form loc(X,Y, Z), where:

(i) X is a variable ranging over ID, or a constant id ∈ ID;
(ii) Y is a variable ranging over the power set P(Space), or a constant r ⊆ Space

(iii) Z is a variable ranging over T , or a constant t ∈ T .

We say that st-atom loc(X,Y, Z) is ground if all of its argumentsX,Y, Z are constants.
For instance, loc(id, r, t) is a ground st-atom. The intuitive meaning of loc(id, r, t) is
that object id is/was/will be inside region r at time t.

Definition 1 (PST atom). A PST atom is a ground st-atom loc(id, r, t) annotated with
a probability interval [", u] ⊆ [0, 1] (with both " and u rational numbers), and denoted
as loc(id, r, t)[", u].
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loc(id1, c, 9)[.9, 1]
loc(id1, a, 1)[.4, .7]
loc(id1, b, 1)[.4, .9]
loc(id1, d, 15)[.6, 1]
loc(id1, e, 18)[.7, 1]
loc(id2, b, 2)[.5, .9]
loc(id2, c, 12)[.9, 1]
loc(id2, d, 18)[.6, .9]
loc(id2, d, 20)[.2, .9]

(a) (b)

Fig. 1. (a) A map of an airport area (names of regions are on their bottom-right corner)
(b) PST atoms

Intuitively, the PST atom loc(id, r, t)[", u] says that object id is/was/will be inside
region r at time t with probability in the interval [", u]. Hence, PST atoms can represent
information about the past and the present (such as from techniques for interpreting
RFID readings [5,6]), but also information about the future, such as from methods for
predicting the destination of moving objects [16,12,28], or from querying predictive
databases [2,21,22].

In the original SPOT definition, for ease of implementation,Spacewas a grid within
which only rectangular regions were considered; however, in our general framework,
Space is arbitrary and a region is any nonempty subset of Space. Still, for convenience
we use such rectangular regions in our running example.

Example 1. Consider an airport security system which collects data from biometric
sensors as well as from Bluetooth or WiFi enabled devices. Biometric data such as
faces recognized by sensors [14] are matched against given profiles (such as those of
checked-in passports, or of wanted criminals). Similarly, device identifiers (e.g., MAC
addresses) recognized in the areas covered by network antennas are matched against
profiles collected by the airport hotspots (such as logins, possibly associated with pass-
port numbers). A simplified plan of an airport area is reported in Fig. 1(a), where re-
gions a, b, c, d, e covered by sensors and/or antennas are highlighted. Once entered in
this area, passengers typically move through the path delimited by queue dividers (rep-
resented by dotted lines in the figure, and overlapping with regions a and b), and reach
the room on the upper-half right side where security checks are performed (region c is
included in this room). Next, passengers can spend some time in the hall room (over-
lapping with region d), and finally go towards the exit (near region e).

Suppose that the security system uses a PST KB to represent the information where
every PST atom consists of the profile id resulting from the matching phase, the region
where the sensor/antenna recognizing the profile is operating, the time point at which
the profile is recognized, and the lower and upper probability bounds of the recognizing
process. For instance, PST atom loc(id1, c, 9)[.9, 1] says that a profile having id id1 was
in region c at time 9 with probability in the interval [.9, 1] (the high-accuracy sensors
used at security check points located in region c entail a narrow probability interval
with upper bound equal to 1). Atom loc(id1, a, 1)[.4, .7] says that id1 was recognized
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in region a at the earlier time 1 with probability in [.4, .7]. Assume the PST KB consists
of the atoms in Fig. 1(b), which includes the two atoms above. �

In order to form PST KBs we add integrity constraints in the form of spatio-temporal
denial formulas (std formulas for short). We will soon see that such formulas are expres-
sive enough to capture a large set of conditions. Basically, an std formula is the negation
of the conjunctions of st-atoms and built-in predicates. We note that std formulas are
closely related to the first-order formulas of [4].

Definition 2 (Std- formula). An std-formula is an expression of the form

∀ X,Y,Z ¬
[( k∧

i=1

loc(Xi, Yi, Zi)
)
∧ α(X) ∧ β(Y) ∧ γ(Z)

]
where:

– X, Y, and Z are sets whose variables range over ID, P(Space), and T , respec-
tively;

– loc(Xi, Yi, Zi), with i ∈ [1..k], are st-atoms, where theXi, Yi, Zi may be variables
or constants of the appropriate type, such that, if Xi (resp., Yi, Zi) is a variable,
then it occurs in X (resp, Y, Z). Moreover, each variable in X, Y, and Z occurs in at
least one st-atom loc(Xi, Yi, Zi), with i ∈ [1..k];

– α(X) is a conjunction of built-in predicates of the form Xi /Xj , where Xi and Xj

are either variables occurring in X or ids in ID, and / is an operator in {=, �=};
– β(Y) is a conjunction of built-in predicates of the form Yi /Yj , where Yi and Yj are

either variables occurring in Y or regions (i.e., non-empty subsets of Space), and /
is a comparison operator in {=, �=,⊆,⊃, ov, nov} (where ov stands for ”overlaps”
and nov stands for ”does not overlap”);

– γ(Z) is a conjunction of built-in predicates of the form Zi /Zj , where each Zi and
Zj is either a time point in T or a variable in Z that may be followed by +n where
n is a positive integer, and / is an operator in {=, �=, <,≥}.

Example 2. In our running example, in region c security checks on one individual at a
time are performed. The constraint “there cannot be two distinct objects in region c at
any time point between 1 and 20” can be expressed by the following std-formula:
f1 = ∀X1, X2, Z1 ¬[loc(X1, c, Z1)∧ loc(X2, c, Z1)∧X1 �= X2∧Z1 ≥ 1∧20 ≥ Z1].

Due to the distance and the several obstacles between the entrance and the exit, we
also have the constraint “no object can reach region e starting from region a in less than
10 time points”, that can be expressed as:
f2 = ∀X1, Z1, Z2 ¬[loc(X1, a, Z1) ∧ loc(X1, e, Z2) ∧ Z1 < Z2 ∧ Z2 < Z1 + 10].

Moreover, as the security check on each individual takes at least 2 time units, we
know that “object id can go away from region c only if it stayed there for at least 2 time
points”, that can be expressed as:
f3 = ∀Y1, Y2, Z1, Z2, Z3 ¬[loc(id, Y1, Z1)∧loc(id, c, Z2)∧loc(id, Y2, Z3)∧Y1nov c∧
Y2nov c ∧ Z2 = Z1 + 1 ∧ Z2 < Z3 ∧ Z2 + 2 ≥ Z3]. �

In the initial SPOT framework [23] only PST atoms were considered. Moreover, it
was assumed that all points in Space are reachable from all other points by all objects.
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To overcome this limitation, in [10] the SPOT framework was extended by introducing
reachability definitions. A reachability atom is written as reachableid(p, q) where id ∈
ID is an object id, and p, q ∈ Space. Intuitively, the reachability atom says that it
is possible for the object id to reach location q from location p in one unit of time.
Hence, what is reachable in one time point depends not only on the locations p and q,
but also the object id. As we now show, reachability can be expressed in our formalism
as an integrity constraint. However, in order to formulate reachability in our framework
of denial formulas, we need to deal with what is not reachable, rather than what is
reachable.

Example 3. Let r be the region consisting of all points q that are not reachable from p
in one time unit. The corresponding std-formula is:
∀X1, Z1, Z2¬[loc(X1, p, Z1) ∧ loc(X1, r, Z2) ∧ Z2=Z1 + 1]. �

Note how using std-formulas we can also express which points can not be reached
from p in any number of time units, not just 1.

Example 4. In our running example, the following std-formula states that the points in
region r = {(x, y)|0 ≤ x ≤ 5 ∧ y = 3} (i.e., those close to the upper-side of the wall
dividing the hall room and the one where there are queue dividers) are not reachable in
less than 3 time units from any point in r′ = {(x, y)|0 ≤ x ≤ 5 ∧ y = 2} (i.e., the
points close to the other side of that wall):
f4 = ∀X1, Z1, Z2¬[loc(X1, r

′, Z1) ∧ loc(X1, r, Z2) ∧ Z1 < Z2 ∧ Z2 < Z1 + 3]. �

Definition 3 (PST KB). A PST KB K is pair 〈A,F〉, where A is a finite set of PST
atoms and F is finite set of std-formulas.

Example 5. In our running example, PST KB Kex is the pair 〈Aex,Fex〉, where Aex

is the set consisting of the PST atoms in Fig. 1(b), and Fex is the set {f1, f2, f3, f4} of
std-formulas defined in Examples 2 and 4. �

2.2 Semantics

The semantics of a PST KB is defined through the concept of worlds. Before introduc-
ing this concept, we define ground std-formulas.

Given an std-formula f having the form in Definition 2, we denote byΘf the set of all
substitutions of variables in X, Y, and Z with constants in ID, S, and T , respectively,
where S is the set of all sets of Space that contain a single point1. Moreover, given
substitution θ ∈ Θf , we denote as θ(f) the ground std-formula resulting from applying
θ to f : θ(f) = ¬

[(∧k
i=1 loc(θ(Xi), θ(Yi), θ(Zi))

)
∧ α(θ(X)) ∧ β(θ(Y)) ∧ γ(θ(Z))

]
.

As the ground conjunction of built-in predicatesα(θ(X))∧β(θ(Y))∧γ(θ(Z)) evaluates
to either true or false, θ(f) is either the negation of a conjunction of ground st-atoms or
the truth value true (when the conjunction of built-in predicates evaluates to false).

1 We use only such singleton subsets of Space in order to reduce the number of possible instan-
tiations of variables Y from exponential to linear in the size of Space, without serious effect
on the meanings of the std-formulas.
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Example 6. Consider the formula f1 = ∀X1, X2, Z1 ¬[loc(X1, c, Z1)∧loc(X2, c, Z1)∧
X1 �= X2 ∧ Z1 ≥ 1 ∧ 20 ≥ Z1] introduced in Example 2, and the substitution
θ = {X1/id1, X2/id2, Z1/6}, where id1, id2 ∈ ID and time point 6 is in T . Thus,
θ(f1) = ¬[loc(id1, c, 6)∧loc(id2, c, 6)], where the conjunction of ground built-in pred-
icates id1 �= id2 ∧ 6 ≥ 1 ∧ 6 ≤ 20, evaluating to true, is not reported in θ(f1). �

Definition 4 (World). A world w is a function, w : ID × T → Space.

Basically, a world w specifies a trajectory for each id ∈ ID. That is, for each id ∈
ID, w says where in Space object id was/is/will be at each time t ∈ T . In particular,
this means that an object can be in only one location at a time. However, a location may
contain multiple objects. It is easy to see that world w can be represented by the set
{loc(id, {p}, t)| w(id, t) = p} of ground st-atoms.

Example 7. Worldw1 describing the trajectories of id1 and id2 for time points in [0, 20]
is w1(id1, t) = (4, 1) for t ∈ [0, 5], w1(id1, t) = (7, 2) for t ∈ [6, 7], w1(id1, t) =
(7, 4) for t ∈ [8, 10], w1(id1, t) = (4, 4) for t ∈ [11, 16], w1(id1, t) = (1, 6) for
t ∈ [17, 20], w1(id2, t) = (4, 1) for t ∈ [0, 11], w1(id2, t) = (7, 5) for t ∈ [12, 15],
w1(id2, t) = (7, 7) for t ∈ [16, 16], w1(id2, t) = (4, 5) for t ∈ [17, 20].

Given a world w and a ground st-atom a = loc(id, r, t), we say that w satisfies a
(denoted as w |= a) iff w(id, t) ∈ r. Moreover, we say that w satisfies a conjunction
of ground st-atoms

∧k
i=1 ai (denoted as w |=

∧k
i=1 ai) iff w |= ai ∀i ∈ [1..k]. Finally,

world w satisfies std-formula f (denoted as w |= f ) iff for each substitution θ ∈ Θf ,
w |= θ(f). Note that, as there is a negation in front of f , w |= θ(f) iff w does not
satisfy a ground st-atom in θ(f) or the conjunction of ground built-in predicates in θ(f)
evaluates to false.

Example 8. World w1 of Example 7 satisfies the st-atom loc(id1, b, 0), as w1(id1, 0)
= (4, 1) belongs to region b (see Fig. 1(a)). Moreover, w1 |= ¬[loc(id1, b, 0) ∧ loc
(id1, e, 15)] as w1 �|= loc(id1, e, 15), since w1(id1, 15) = (4, 4) �∈ e. �

In the following, we will denote as W(K) the set of all worlds of the PST KB K.
Moreover, in order to simplify formulas, we will assume that w ranges overW(K).

An interpretation I for a PST KB K is a probability distribution function (PDF)
over W(K), that is, a function assigning a probability value to each world in W(K).
I(w) is the probability that w describes the actual trajectories of all the objects. Some
interpretations are models of K in which case we write M instead of I .

Definition 5 (Model). A model M for a PST KB K = 〈A,F〉 is an interpretation for
K such that:

– ∀ loc(id, r, t)[", u] ∈ A,
∑

w |w|=loc(id,r,t)

M(w) ∈ [", u];

– ∀ f ∈ F ,
∑

w |w �|=f

M(w) = 0.

The first condition in the definition above means that, for each a = loc(id, r, t)[", u]
∈ A, the sum of the probabilities assigned by M to the worlds satisfying the st-atom
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loc(id, r, t) have to belong to the probability interval [", u] specified by a. The second
condition means that every world not satisfying a formula f ∈ F must be assigned by
M probability equal to 0.

Example 9. Let w1 be the world introduced in Example 7. Let w2 be as w1 except that
w2(id1, 1) = (3, 2), and let w3 be as w2 except that w3(id2, 2) = (2, 2), w3(id2, t) =
(0, 3) for t ∈ [18..20]. Let M be such that M(w1) = .7 M(w2) = .2 M(w3) = .1,
and M(w) = 0 for all the other worlds in W(Kex). It can be checked that M satisfies
both the conditions of Definition 5 for the PST KB Kex of our running example. For
instance, for atom loc(id1, a, 1)[.4, .7] ∈ Aex,

∑
w|w|=loc(id1,a,1)

M(w) =M(w1) =

.7 ∈ [.4, .7] (note that, at time 1, w2(id1, 1) = w3(id1, 1) = (3, 2) that is not in region
a). Moreover, it is easy to check that w1, w2, w3 satisfy every sdt-formula in Fex. Thus,
M is a model for Kex. �

We say that PST KB K is consistent iff if there is a model for it. The set of models
for K will be denoted as M(K).

Definition 6 (Consistency). PST KB K is consistent iff M(K) �=∅.

Example 10. PST KB Kex of our running example is consistent, as there exists the
modelM of Example 9 for it. �

3 Checking the Consistency of PST KBs

We now address the fundamental problem of checking the consistency of PST KBs.
Given a PST KB K = 〈A,F〉, the consistency checking problem is deciding whether
M(K) �= ∅, that is, whether there is a model for K.

Theorem 1. Given a PST KB K = 〈A,F〉, deciding whether M(K) �= ∅ is NP-
complete.

Proof. (Membership). For any world wi ∈ W(K), let vi be a variable ranging over the
domain of rational numbers. The variable vi will be used to represent the probability
M(wi) assigned to wi by a model M ∈M(K). Deciding whether K is consistent, that
is M(K) �= ∅, can be done by checking the feasibility of the following system LP (K)
of linear (in)equalities:

(1) ∀ loc(id, r, t)[", u] ∈ A, (2) ∀f ∈ F ,
∑

wi |wi �|=f

vi=0;

(a) " ≤
∑

wi|wi|=loc(id,r,t)

vi; (3)
∑

wi |wi∈W(K)

vi = 1;

(b)
∑

wi|wi|=loc(id,r,t)

vi ≤ u; (4) ∀wi ∈ W(K), vi ≥ 0.

It is easy to see that every solution s of LP (K) corresponds one-to-one to a model
M ∈ M(K) such that M(wi) is equal to the value of vi in s. Therefore, decid-
ing whether K is consistent is equivalent to deciding the feasibility of LP (K). How-
ever, it turns out that representing LP (K) whose number of variables is |W(K)| =
|Space||ID|·|T | is not necessary, since we can exploit a guess-and-check strategy based
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on the following result: “if a system of m linear (in)equalities2 is feasible, then it ad-
mits at least one solution with at most m non-zero variables” [18]. In our setting, this
means that LP (K) is feasible iff there is a solution for LP (K) consisting of at most
2 · |A| + |F| + 1 non-zero variables. Hence, a guess-and-check strategy for deciding
the feasibility of LP (K) is the following. First, guess an assignment s′ consisting of
2 · |A| + |F| + 1 pairs 〈vi, vi〉, where vi is a variable in LP (K), and vi a value to be
assigned to vi. Then, check whether s′ is a solution of the system LP ∗(K), which is
the system of linear inequalities obtained from LP (K) by keeping in it only the oc-
currences of the variables in the guessed assignment s′. Thus, the size of LP ∗(K) is
polynomial w.r.t. the size ofK, and checking whether s′ is a solution of LP ∗(K) can be
accomplished in polynomial time. This guess-and-check strategy is correct since if s′

turns out to be a solution of LP ∗(K), then LP (K) is feasible. Its completeness derives
from a result in [18].

(Hardness). We show a reduction to our problem from the NP-hard Hamiltonian path
problem,that is, the problem of checking whether there is a path π in a directed graph
G such that π visits each vertex of G exactly once.

Given a directed graph G = 〈V,E〉, where V = {v0, . . . , vk} is the set of its ver-
texes, and E is a set of pairs (vi, vj) with vi, vj ∈ V , we construct an instance of our
problem as follows. Let ID = {id}, Space = V , and T = [0, . . . , k]. K is the pair
〈A,F〉 such that A consists of the PST atom loc(id, v0, 0)[1, 1], and F consists of
std-formulas f i1 (with i ∈ [0..k]) and f2 such that:

– f i1 = ∀Z1, Z2 ¬[loc(id, {vi}, Z1) ∧ loc(id, Space\V ′, Z2) ∧ Z2 = Z1 + 1] where
V ′ is the set of vertexes vj s.t. (vi, vj) ∈ E. This formula says that the only points
id can reach starting from vi in one time step are those in V ′.

– f2 = ∀Y1, Z1, Z2 ¬[loc(id, Y1, Z1) ∧ loc(id, Y1, Z2) ∧ Z1 �= Z2], saying that id
can not be on the same location at distinct time points.

We show that M(K)�=∅ iff there is a Hamiltonian path in G.
(⇒) As there is only one id in A, every world w ∈ W(K) is such that w places
id on a vertex in V at each time point t ∈ T . As M(K) �= ∅, there is a model
M ∈ M(K) such that M assigns probability greater than zero only to worlds w such
that ∀f ∈ F , w |= f . In particular, let w be one such world. The fact that w |= f i1
entails that ∀t ∈ [0, k − 1], w(id, t) = vi and w(id, t + 1) = vj iff (vi, vj) ∈ E.
Moreover, the fact that w |= f2 entails that ∀t, t′ ∈ [0, k], t �= t′, w(id, t) �= w(id, t′),
meaning that id is never placed by w on the same vertex at different time points. Since
loc(id, v0, 0)[1, 1] ∈ A, every world which is assigned probability greater than zero
by M is such that w(id, 0) = v0. It follows that every world w ∈ W(K) which is
assigned by M ∈ M(K) a probability greater than zero encodes a Hamiltonian path
of G whose first vertex is v0. In fact, ∀w ∈ W(K) such that M(w) > 0 the following
properties hold: (i) w(id, 0) = v0, (ii) ∀t ∈ [0, k − 1], w(id, t) = vi, w(id, t+ 1) = vj
iff (vi, vj) ∈ E. (iii) ∀t, t′ ∈ [0, k], t �= t′, w(id, t) �= w(id, t′). Conditions (i) and (ii)
entail that π = w(id, 0), w(id, 1), . . . , w(id, k) is a path on G starting from vertex v0,
while condition (iii) entails that each vertex v ∈ V occurs exactly once in π.

(⇐) Let π be a Hamiltonian path of G. We denote by π[i] (with i ∈ [0..k]) the i-th

2 Inequalities imposing that variables are non-negative must not be considered.



Integrity Constraints for Probabilistic Spatio-Temporal Knowledgebases 259

vertex of π. W.l.o.g. we assume that the first vertex of π is v0, that is, π[0] = v0. We
now show that M(K) is not empty. LetM be a function overW such that for all worlds
w ∈ W ,M(w) = 0, except for the worldw∗ which is such that:w∗(id, 0) = π[0] = v0,
∀t ∈ [1, k], w∗(id, t) = π[t]. It is easy to see that w∗ |= F . In fact, for each i ∈ [0..k],
f i1 is satisfied by w∗, since the fact that π a path on G entails that ∀t ∈ [0, k − 1],
w∗(id, t) = vi and w∗(id, t+ 1) = vj only if edge (vi, vj) is an edge of G. Moreover,
f2 is satisfied by w∗, since the fact that π is a Hamiltonian path entails that w∗ places
id on different locations (i.e., vertexes of G) at different time points. Since w∗ |= F ,
it can be assigned by M a probability different from 0. Let M(w∗) = 1. Therefore, as∑

w|w|=loc(id,v0,0)
M(w) = M(w∗)+

∑
w|w �=w∗∧w|=loc(id,v0,0)

M(w) = 1, the condi-
tion required by atom loc(id, v0, 0)[1, 1] ∈ A holds too. Thus, M is a model for K. �

3.1 Sufficient Condition for Checking Consistency

We present a mixed-binary linear programming problem whose feasibility entails the
consistency of PST KB K = 〈A,F〉. As shown in [23], the consistency of a PST KB
K = 〈A, ∅〉 can be checked in polynomial time w.r.t. the size of K by solving a linear
programming problem whose variables vid,t,p represent the probability that object id is
at point p at time t. Here, we start from this linear programming problem and augment
the set of its (in)equalities with some inequalities ensuring that if the so-obtained set of
linear inequalities is feasible then every ground std-formula derived fromF is satisfied.
To achieve this, we need to introduce the binary variables δ, thus obtaining a mixed-
binary linear programming problem.

Definition 7 (MBLP(K)). Let K = 〈A,F〉. The linear program MBLP(K) consists of
the following (in)equalities:

(1) ∀loc(id, r, t)[", u] ∈ A: " ≤
∑

p∈r vid,t,p ≤ u;
(2) ∀id ∈ ID, t ∈ T :

∑
p∈Space vid,t,p = 1;

(3) ∀p ∈ Space, id ∈ ID, t ∈ T : vid,t,p ≥ 0;
(4) for each f ∈ F and θ ∈ Θf such that θ(f) is logically equivalent to the negation

of the conjunction of st-atoms
∧k

i=1 loc(θ(Xi), θ(Yi), θ(Zi)), the inequalities:
(a) ∀i ∈ [1..k] :

∑
p∈θ(Yi)

vθ(Xi),θ(Zi),p ≤ δi;

(b)
∑k

i=1 δi = k − 1;
(c) ∀i ∈ [1..k] : δi ∈ {0, 1}.

Basically, inequalities (1) ensure that a solution of MBLP(K) places the object in r with
a probability between " and u, as required by the atom (id, r, t, [", u]). Inequalities (2)
and (3) ensure that for each id and t, the vid,t,p variables jointly represent a probability
distribution. Moreover, for each ground st-atom loc(θ(Xi), θ(Yi), θ(Zi)) of the ground
std-formula θ(f), inequalities (4)(a) and (4)(c) entail that the probability vθ(Xi),θ(Zi),p

that object θ(Xi) is in any point p in region θ(Yi) at time θ(Zi) is either constrained
to be 0 or free to take any value not greater than 1. Intuitively enough, if vθ(Xi),θ(Zi),p

is enforced to be zero (i.e., δi = 0), then object θ(Xi) can not be in region θ(Yi) at
time θ(Zi). On the other hand, if vθ(Xi),θ(Zi),p is left free to take any value less than
or equal to one (i.e., δi = 1), then θ(Xi) may or may not be in region θ(Yi) at time
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θ(Zi). Finally, equality (4)(b) entails that there is at least one of the k ground st-atoms
loc(θ(Xi), θ(Yi), θ(Zi)) of θ(f) such that θ(Xi) is not placed in a point in θ(Yi) at
time θ(Zi).

Example 11. Consider the ground std-formula θ(f1) = ¬[loc(id1, c, 6)∧ loc(id2, c, 6)]
of Example 6. Then, the inequalities in MBLP(K) corresponding to θ(f1) are:

(4a)
∑

p∈c vid1,6,p ≤ δ1;
∑

p∈c vid2,6,p ≤ δ2; (4b) δ1+δ2 = 1; (4c) δ1, δ2 ∈ {0, 1}. �

The following theorem states that MBLP(K) can be used to check if K is consistent.

Theorem 2. If MBLP(K) is feasible then M(K) �= ∅.

Proof. Let σ be a solution of MBLP(K), and σ(vid,t,p) be the value assigned to variable
vid,t,p by σ. We define the functionM overW(K) such that, for each worldw ∈ W(K),
M(w) =

∏
id∈ID,t∈T,w(id,t)=p σ(vid,t,p), that is M(w) is the product of the values as-

signed by solution σ to variables vid,t,p such that w(id, t) = p. It can be shown that,
(in)equalities (2) and (3) of the definition of MBLP(K) entail that M is a PDF over
W(K). Moreover, since σ(vid,t,p) is equal to

∑
w|w|=loc(id,t,p)M(w), for each atom

loc(id, r, t)[", u] ∈ A,
∑

w|w|=loc(id,r,t)M(w) =
∑

p∈r

∑
w|w|=loc(id,t,p)M(w) =∑

p∈r σ(vid,t,p) ∈ [", u]. Given f ∈ F and θ ∈ Θf such that θ(f) is logically equiv-

alent to the negation of the conjunction of the st-atoms
∧k

i=1 loc(θ(Xi), θ(Yi), θ(Zi)),
the inequalities (4)(a-c) entail that there is i ∈ [1..k] s.t.

∑
p∈θ(Yi)

σ(vθ(Xi),θ(Zi),p) = 0.
Thus ∀p ∈ θ(Yi), σ(vθ(Xi),θ(Zi),p) = 0. Hence, for each world w ∈ W(K) such that
w(θ(Xi), θ(Zi)) = p, M(w) = 0 due to the presence of the factor σ(vθ(Xi),θ(Zi),p) =
0 in the product defining M(w). Therefore, for each std-formula f ∈ F , it holds that∑

w |w �|=f M(w) = 0; hence M is a model for K. �

A consequence of Theorem 2 is that well-known techniques for solving linear opti-
mization problems can be adopted to address the consistency checking problem.

The following example shows that the converse of Theorem 2 does not hold (K may
be consistent even if MBLP(K) is not feasible).

Example 12. Let ID = {id}, T = [0, 1], Space = {p0, p1}, K = 〈A,F〉 where
A = {loc(id, p0, 0)[0.5, 0.5], loc(id, p1, 1)[0.5, 0.5], } and F = {¬[loc(id, {p0}, 0) ∧
loc(id, {p1}, 1)}. Thus,W = {w1, w2, w3, w4} where:
w1(id, 0) = p0, w1(id, 1) = p0, w2(id, 0) = p0, w2(id, 1) = p1, w3(id, 0) = p1,
w3(id, 1) = p0, w4(id, 0) = p1, w4(id, 1) = p1.
It is easy to check that M is such that M(w1) = 0.5, M(w2) = 0, M(w3) = 0,
M(w4) = 0.5 is a model for K. However, MBLP(K) is not feasible as it includes the
following inequalities: 0.5≤ vid,0,p0≤ 0.5; 0.5≤ vid,1,p1≤ 0.5; vid,0,p0+vid,0,p1 =1;
vid,1,p0 + vid,1,p1 = 1; vid,0,p0 ≤ δ1; vid,1,p1 ≤ δ2; δ1 + δ2 = 1; δ1, δ2 ∈ {0, 1};
vid,0,p0 ≥ 0, vid,0,p1 ≥ 0, vid,1,p0 ≥ 0, vid,1,p1 ≥ 0. �

3.2 A Tractable Case

We now identify a tractable case of the consistency checking problem, one that holds
when all std-formulas are unary, that is, each formula in F consists of only one st-atom
and possibly a conjunction of built-in predicates (i.e., in Definition 2, k = 1).
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Example 13. The constraint “there is no object in region r at any time between 5 and
10” can be expressed by the following unary std-formula:
∀X1, Z1 ¬[loc(X1, r, Z1) ∧ Z1 ≥ 5 ∧ 10 ≥ Z1].
The constraint “object id is always in region r” can be expressed as:

∀Y1, Z1 ¬[loc(id, Y1, Z1) ∧ Y1nov r]. �

Checking consistency is tractable if only unary std-formulas are considered.

Theorem 3. Let K = 〈A,F〉 be a PST KB such that F consists of unary std-formulas
only. Then, deciding whether K is consistent is in PTIME.

Proof. We reduce this case to a result from [23]. The statement follows from the fact
that if F consists of unary std-formulas only, K = 〈A,F〉 is equivalent to (i.e., it
has exactly the same set of models as) K′ = 〈A′, ∅〉, where A′ consists of the atoms
in A plus atom loc(θ(Xi), θ(Yi), θ(Zi))[0, 0] for each ground std-formula θ(f) =
¬[loc(θ(Xi), θ(Yi), θ(Zi))], where f ∈ F and θ ∈ Θf . Since,

⋃
f∈F Θf is polyno-

mial w.r.t. the size of K, the size of A′ (and thus of K′) increases by a polynomial
number of atoms. Hence, we can apply the result of [23], entailing that the consistency
of PST KBs with F = ∅ can be decided in PTIME. �

Additional tractable cases involving reachability definitions were identified in [10].

4 Using Consistency Checking to Answer Queries

In this section, we consider the problem of answering selection queries in PST KBs,
and show that consistency checking can be used to address this problem.

A selection query is an expression of the form (?id, q, ?t, [", u]), where q is a region
and [", u] is a probability interval. Intuitively, a selection query says: “Given a region q
and a probability interval [", u], find all objects id and times t such that id is inside q at
time t with a probability in the interval [", u].” There are two semantics for interpreting
this statement, leading to two types of answers to selection queries. Optimistic answers
are objects and time points that may be in the query region with probability in the
specified interval, whereas cautious answers consist only of those objects and time
points that are guaranteed to be in that region with probability in the given interval.
Thus, the cautious answers are a subset of the optimistic ones.

Definition 8 (Optimistic/Cautious Query Answers). Let K be a consistent PST KB,
and Q = (?id, q, ?t, [", u]) a selection query. Then, 〈id, t〉 is

- an optimistic answer toQw.r.t.K iff ∃M ∈M(K) s.t.
∑

w|w|=loc(id,q,t)

M(w) ∈ [", u].

- a cautious answer to Q w.r.t. K iff ∀M ∈M(K),
∑

w|w|=loc(id,q,t)

M(w) ∈ [", u].

Example 14. Let q1 = {(7, 3), (7, 4)} (q1 overlaps with region c, see Fig. 1(a)). Model
M of Example 9 entails that 〈id1, 9〉 is an optimistic answer toQ = (?id, q1, ?t, [.7, 1]),
as w1(id1, 9) = w2(id1, 9) = w3(id1, 9) = (7, 4) ∈ q1 and M(w1) + M(w2)
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+ M(w3) = 1 ∈ [.7, 1]. Now, let q2 be any region including region c. 〈id1, 9〉 is
a cautious answer to Q′ = (?id, q2, ?t, [.7, 1]), as according to any model for Kex,
id1 must be in region c (and thus in q2) at time 9 with probability in [.9, 1] (due to
loc(id1, c, 9)[.9, 1] ∈ Aex). Clearly, 〈id1, 9〉 is also an optimistic answer to Q′. �

The following proposition says how consistency checking can be used to answer
selection queries under both optimistic and cautious semantics.

Proposition 1. Let K be a consistent PST KB, and Q = (?id, q, ?t, [", u]). Then,

– 〈id, t〉 is an optimistic answer to Q w.r.t. K iff 〈A ∪ {loc(id, q, t)[", u]},F〉 is con-
sistent.

– 〈id, t〉 is a cautious answer to Q w.r.t. K iff 〈A ∪ {loc(id, q, t)[0, "− ε]},F〉 and
〈A ∪ {loc(id, q, t)[u + ε, 1]},F〉 are not consistent, where ε = 1/(ma)m where
m = 2·|A|+|F |+1 and a is the maximum among the numerators and denominators
of the probabilities in K3.

5 Related Work

A comprehensive survey on the SPOT framework can be found in [11], where related
research is also reviewed. Here we mention just a few papers.

[15] proposes an important probabilistic logic programming approach where condi-
tional rules that can express denial formulas are studied. The problem of checking the
consistency of (relational) probabilistic databases in the presence of denial constraints is
addressed in [7]. However, these frameworks do not explicitly deal with space and time.
Substantial work has been done on spatio-temporal logics [8,13] which combine spatial
and temporal formalisms. This includes important contributions on qualitative spatio-
temporal representation and reasoning [17,30,3], which focus on describing entities and
qualitative relationships between them while dealing with discrete time. However, these
works are not intended for reasoning about moving objects whose location at a given
time is uncertain (they do not put probabilities into the mix).

[32,31,33] focus on spatio-temporal logical theories that describe known plans of
moving objects by sets of go atoms, each of them stating that an object go from lo-
cation L1 to L2, leaving L1 and reaching L2 at some time points in some intervals,
and travelling with a speed in a given interval. Later, [26] extends this logic to include
some probabilistic information about such plans. The SPOT framework in [23] fur-
ther extends this work to uncertainty about where objects might be at a given time. As
SPOT data provide information on moving objects, one issue addressed in [25] and
then further investigated in [10] is that of revising SPOT data so that information on
these objects may be changed as objects move. Other efforts focused on the processing
of selection [24,20] and aggregate queries [9].

While there is much work on spatio-temporal databases [1,27] and probabilistic
spatio-temporal databases [29,34,35], these works mainly focus on devising indexing
mechanisms and scaling query computation, instead of representing knowledge in a
declarative fashion. None of these works systematically addresses the issue of consid-
ering integrity constraints over probabilistic spatio-temporal data.

3 The size of ε is polynomial w.r.t. the size of K. Its value can be determined by applying a
well-known result [18] on boundedness of solutions of linear programming problems.
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6 Conclusion and Future Work

We believe that this is the first work that focuses systematically on knowledge repre-
sentation in the form of integrity constraints for probabilistic spatio-temporal data. The
knowledge is represented both in the form of spatio-temporal atoms describing the lo-
cation of objects in time with a probability interval as well as spatio-temporal denial
formulas describing the integrity constraints the system must satisfy. Within this frame-
work we showed that consistency checking is NP-complete. However, we also identified
a class of formulas for which consistency checking is feasible.

There are further issues that we plan to investigate. We will show how to use the
results of this paper to study the complexity of query answering in probabilistic spatio-
temporal knowledgebases. Using [19], we will further consider the problem of repair-
ing an inconsistent probabilistic spatio-temporal knowledgebase. We will look into the
possibility of semantic query optimization for probabilistic spatio-temporal knowledge-
bases. We will investigate probabilistic std-formulas for expressing constraints that hold
with a probability in a given interval. Finally, we also plan to study the use of previous
knowledge to efficiently check for consistency and process queries after updates.

References

1. Agarwal, P.K., Arge, L., Erickson, J.: Indexing moving points. J. Comput. Syst. Sci. 66(1),
207–243 (2003)
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Abstract. We formally introduce the concept of repair and consistent answer
for inconsistent probabilistic spatio-temporal databases. We start by defining the
syntax and semantics of SPOT databases, a declarative framework that has been
explored in recent years for the representation of spatio-temporal data with uncer-
tainty expressed as probability intervals. In this framework we study two types of
repairs, that is, minimal modifications that lead to consistent databases: maximal
consistent subsets and probability interval expansion. We also extend the concept
of consistent answer to this framework and find that this can be done in several
different ways. In emphasizing tractable cases we propose polynomial-time algo-
rithms for computing consistent answers and repairs based on probability interval
expansion, and experimentally validate our approach.

1 Introduction

Recent years have seen a great deal of interest in tracking moving objects. For this rea-
son, researchers have investigated in detail the representation and processing of spatio-
temporal databases [32,36,22,2,33,20]. However, in many cases the location of objects
is uncertain: such cases can be handled by using probabilities [35,10,8,5]. Sometimes
the probabilities themselves are uncertain. The SPOT (Spatial PrObabilistic Tempo-
ral) database concept was introduced in [30] to provide a declarative framework for the
representation and processing of probabilistic spatio-temporal databases with uncertain
probabilities.

A SPOT database represents atomic statements of the form “object id is/was/will
be inside region r at time t with probability in the interval [",u]”. This allows the rep-
resentation of information concerning moving objects in several application domains.
For instance, a military agency is interested in modelling enemy vehicles that may be
in a region at a given time point and with a given probability (in order to adequately
arrange its defense line) [25,21]. A cell phone provider is interested in knowing which
cell phones will be in the range of some towers at a given time and with what probabil-
ity. A transportation company is interested in predicting the vehicles that will be on a
given road at a given time (and with what probability) in order avoid congestion.
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Previous work on SPOT databases included a formal syntax and semantics as well
as checking for consistency: an object can not be in two places at the same time. Addi-
tional research focused on the efficient processing of selection queries [31,27], aggre-
gate queries [17], and database updates [18]. However, all of these works assume that
a consistent version of the database is somehow available before processing queries or
performing updates. This is often not the case.

To overcome such limitation and allow the user to profitably use inconsistent proba-
bilistic spatio-temporal data, in this paper, we investigate a principled method for query-
ing inconsistent SPOT database. Our approach relies on the well-known consistent
query answering (CQA) approach [4], which has been deeply investigated in the con-
text of relational databases in the last fifteen years.

Starting from the seminal paper [4], substantial work has been developed on repair-
ing and consistently answering queries in inconsistent relational databases (see [6] for a
comprehensive survey). While repairing aims at restoring consistency by “minimally”
changing the inconsistent database instance, CQA characterizes meaningful answers
from possibly inconsistent databases: a consistent answer to a query is an answer that
is invariant regarding the way the database is repaired.

In this paper, we present a consistent query answering approach to manage incon-
sistency in probabilistic spatio-temporal databases. In particular, we first introduce two
natural strategies for restoring consistency in SPOT databases. The first strategy is
based on “minimally” removing a subset of atomic statements from the original SPOT
database, leading to repairs consisting of maximal consistent subsets that we call S-
repairs. Basically, this repairing strategy corresponds to the idea of repairing a rela-
tional database by minimally removing tuples, such as done in [9]. The other strategy
is based on “minimally” updating the probability bounds of the atomic statements of
the SPOT database that we call PU-repairs. Analogue repairing strategies in the con-
text of relational databases are those based on numerical values updates, such as those
proposed in [7,15,13,16,14]. Both value-updates and tuple-eliminations are suggested
as basic primitives for managing inconsistent relational databases in [23,24]. However,
here we focus on probability interval updates and on spatio-temporal atom eliminations
for dealing with inconsistent SPOT databases.

After presenting S- and PU-repairs, we define the corresponding semantics for an-
swering selection queries in possibly inconsistent SPOT databases, that is, S-consistent
and PU-consistent answers. We show that computing repairs is tractable for both kinds
of repairing strategies we propose. In contrast, checking PU-consistent answers can
be done in PTIME, but checking S-consistent answers is coNP-complete. In empha-
sizing tractable cases, we implemented a prototype for computing PU-repairs and PU-
consistent answers, and experimentally validated our technique.

2 SPOT Databases

This section reviews the syntax and semantics of SPOT databases given in [30].
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2.1 Syntax

We assume the existence of a set ID of objects ids, a set T of time points ranging over
the integers, and a finite set Space of points. We assume that Space is a grid of size
N×N where we only consider integer coordinates (the framework is easily extensible
to higher dimensions). We assume that an object can be in only one location at a time,
but that a single location may contain more than one object.

Definition 1 (SPOT atom/database). A SPOT atom is a tuple (id,r, t, [",u]), where
id ∈ ID is an object id, r ⊆ Space is a region in the space, t ∈ T is a time point, and
[",u]⊆ [0,1] is a probability interval (both " and u are rational numbers).
A SPOT database is a finite set of SPOT atoms.

Intuitively, the SPOT atom (id,r, t, [",u]) says that object id is/was/will be
inside region r at time t with probability in the interval [",u]. Hence, SPOT atoms
can represent information about the past and the present (such as from techniques for
interpreting RFID readings [11,12]), but also information about the future, such as that
deriving from methods for predicting the destination of moving objects [25,21,34], or
from querying predictive databases [3,1,28,29].

The initial SPOT definition used only rectangular regions; however, we allow a re-
gion to be any non-empty set of points. Still, for convenience we use such rectangular
regions in our running example and in the implementation of our prototype.

Example 1. Consider a lab where data coming from biometric sensors are collected and
analyzed. Biometric data such as faces, voices, and fingerprints recognized by sensors
are matched against given profiles (such as those of people having access to the lab)
and tuples like those in Fig. 1(a) are obtained. Every tuple consists of the profile id
resulting from the matching phase, the area of the lab where the sensor recognizing
the profile is operating, the time point at which the profile has been recognized, and
the lower and upper probability bounds of the recognizing process getting the tuple.
For instance, the tuple in the first row of the table in Fig. 1(a), representing the SPOT
atom (id1,d,1, [0.9,1]), says that the profile having id id1 was in region d at time 1 with
probability in the interval [0.9,1]. In Fig. 1(b), the plan of the lab and the areas covered
by sensors are shown. In area d a fingerprint sensor is located, whose high accuracy

Id Area Time Lower Probability Upper Probability
id1 d 1 0.9 1
id1 b 3 0.6 1
id1 c 3 0.7 0.8
id2 b 1 0.5 0.9
id2 e 2 0.2 0.5
id3 e 1 0.6 0.9

(a) (b)

Fig. 1. (a) SPOT database Slab (b) Areas of the lab
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entails a narrow probability interval with upper bound equal to 1. After fingerprint au-
thentication, id1 was recognized at time 3 in areas b and c with probability in [0.6,1]
and [0.7,0.8], respectively. �

Given a SPOT database S , an object id, and a time t, we use the notation Sid,t to
refer to the set Sid,t = {(id′,r′, t ′, ["′,u′]) ∈S | id′ = id ∧ t ′ = t}.

2.2 Semantics

The meaning of a SPOT database is given by the set of interpretations that satisfy it.

Definition 2 (SPOT interpretation). A SPOT interpretation is a function I : ID×
Space×T → [0,1] such that for each id ∈ ID and t ∈ T, ∑p∈Space I(id, p, t) = 1.

Observe that Iid,t(p) = I(id, p, t) is a probability distribution function (PDF). The set
of all interpretations for database S will be denoted as I(S ).

Example 2. Interpretation M for the SPOT database Slab of Example 1 is as follows.

M(id1,(3,6),1) = 0.4
M(id1,(3,5),1) = 0.3
M(id1,(2,5),1) = 0.2
M(id1,(7,7),1) = 0.1
M(id2,(5,7),1) = 0.7
M(id2,(12,12),1) = 0.3

M(id3,(10,5),1) = 0.8
M(id3,(5,6),1) = 0.2
M(id1,(7,5),2) = 0.5
M(id1,(4,2),2) = 0.5
M(id2,(9,7),2) = 0.3
M(id2,(12,13),2) = 0.7
M(id3,(5,5),2) = 0.5

M(id3,(6,5),2) = 0.5
M(id1,(10,10),3) = 0.7
M(id1,(7,5),3) = 0.3
M(id2,(8,7),3) = 0.9
M(id2,(11,15),3) = 0.1
M(id3,(5,3),3) = 0.6
M(id3,(5,6),3) = 0.4

Moreover, M(id, p, t) = 0 for all triplets (id, p, t) not mentioned above. �
Given an interpretation I and region r, the probability that object id is in r at time t

according to I is Σp∈rI(id, p, t). We now define satisfaction and SPOT models.

Definition 3 (Satisfaction and SPOT model). Let A= (id,r, t, [",u]) be a SPOT atom
and let I be a SPOT interpretation. We say that I satisfies A (denoted I |= A) iff
∑p∈r I(id, p, t) ∈ [",u]. I satisfies a SPOT database S (denoted I |= S ) iff ∀A ∈S ,
I |= A. If I satisfies a SPOT atom A (resp. SPOT database S ), we say that I is a model
for A (resp. S ).

Example 3. In our running example, interpretation M is a model for the SPOT atom
(id1,d,1, [0.9,1]) as, for id id1 and time point 1, M assigns probability 0.4 to point (3,6),
0.2 to point (2,5), and 0.3 to point (3,5) (which are points in area d), and probability
0.1 to (7,7) which is a point outside area d. Hence, the probability that id1 is in area d
at time point 1 is 0.9, which belongs to the interval [0.9,1] specified by the considered
SPOT atom. Reasoning analogously, it is easy to see that M is a model for all of the
atoms in Fig. 1(a). Hence, M is a model for Slab. �
Example 4. Let I1 be the interpretation which is equal to M except that I1(id2,(5,7),1)
= 0.1 and I1(id2,(12,12),1) = 0.9. It is easy to check that I1 is not a model for the
SPOT atom (id2,b,1, [0.5,0.9]), as the probability to be in area b at time 1 for id id2

is set to 0.1 by I1, instead of a value in [0.5,0.9]. Hence, since (id2,b,1, [0.5,0.9]) is in
Slab (see the fourth row of the table in Fig. 1(a)), it follows that I1 is a not model for
Slab. �
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We use M(S ) to denote the set of models for a SPOT database S , that is, M(S ) =
{I | I ∈ I(S )∧ I |= S }. In the following we will use the symbol M to refer to interpre-
tations that are models, that is, elements in M(S ).

Definition 4 (Consistency). A SPOT database S is consistent iff M(S ) �= /0.

Example 5. Model M of Example 3 proves that the database Slab is consistent. �

As shown in [30], the consistency of a SPOT database can be checked by means of a
linear programming algorithm whose complexity is O(|ID(S )| · |T | · (|Space| · |S |)3).

Next we give an example of an inconsistent SPOT database that we will also use
later to illustrate database repair and consistent answers.

Example 6. Consider the SPOT database shown below, which is just a slight modifi-
cation of database Slab of our original example (we number the atoms so we can refer
back to them later as needed). It’s easy to see that there is an inconsistency for object
id3 at time 1, object id2 at time 2, and object id1 at time 3.

Atom Id Area Time Lower Pr. Upper Pr.
at1 id1 d 1 0.9 1
at2 id1 a 3 0.5 0.9
at3 id1 b 3 0.6 1
at4 id1 c 3 0.7 0.8
... ... ... ... ... ...

... ... ... ... ... ...
at5 id2 b 1 0.5 0.9
at6 id2 e 2 0.3 0.5
at7 id2 f 2 0.5 0.7
at8 id2 g 2 0.9 1.0
at9 id3 c 1 0.5 0.8
at10 id3 e 1 0.6 0.9

3 Repairs

We now introduce two strategies for repairing SPOT databases, each of them aiming
at minimally modifying the original database in order to restore consistency. Although
the repair concept is really useful only for inconsistent databases, we define repairs for
all databases. Hence a consistent database is its own repair. The criterion for the first
strategy is to mimimally modify the original database by finding maximal consistent
subsets.

Definition 5 (S-repairs). Given a SPOT database S , an S-repair for S is a maximal
(under⊆) consistent subset of S .

Thus, according to this repairing strategy, an atom belonging to the inconsistent
SPOT database either is deleted from the database or kept in the repair.

Example 7. Continuing with Example 6 we note that there are three problems, one per
time period. At time 1 the inconsistency is due to atoms at9 and at10. At time 2 the
inconsistency is due to three atoms at6, at7, and at8. Finally, at time 3 the problem is
due to atoms at2, at3, and at4.

The possible S-repairs are as follows. For time 1 we must choose either at9 or at10.
For time 2 we must pick either at6 and at7 or just at8. Then, for time 3 the two choices
are at2 and at3 or at3 and at4. As there are 2 possible choices for each time period, the
total number of maximal consistent subsets is 8. Hence there are 8 S-repairs. �
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The second repairing strategy we propose is instead based on minimally updating
the extreme values of the probability interval of each of the SPOT atom in the database
in order to achieve consistency.

Given a SPOT atom a = (id,r, t, [",u]), a probability-interval updated atom for
a is a SPOT atom a′ obtained from a by enlarging its probability interval, that is,
a′ = (id,r, t, ["′,u′]) where ["′,u′] ⊇ [",u]. Given a = (id,r, t, [",u]) and a probability-
interval updated atom a′ = (id,r, t, ["′,u′]) for a, we denote as low(a,a′) and up(a,a′)
the absolute values of the differences between the lower and upper probability bounds
of a and a′, respectively, that is, low(a,a′) = "− "′ and up(a,a′) = u′ − u. Basically,
low(a,a′) and up(a,a′) are a measure of the distance between the original atom a and
its probability update a′. A PU-repair aims at minimizing this distance for each atom in
the SPOT database.

Definition 6 (PU-repairs). A PU-repair for a SPOT database S is a consistent SPOT
database S ′ consisting of a probability-interval update atom a′ for each a ∈ S and
such that ∑a∈S low(a,a′)+ up(a,a′) is minimum.

Example 8. Continuing with Example 6, PU-repairs are as follows. For time 1 the prob-
lem is that the lower bounds 0.6 and 0.5 add to 1.1. A PU-repair must lower that number
to 1. This can be accomplished in infinitely many ways; for example by lowering the
lower bound of at9 to 0.4, or lowering the lower bounds to 0.45 and 0.55 respectively. In
any case, the minimal probability change must be 0.1. Next, for time 2 the lower bounds
add to 1.7, so similarly as for time 1 the sum of the lower bounds must be lowered to 1
by a minimal probability change of 0.7 that can be distributed among at6, at7, and at8
in any manner. Finally, for time 3 the sum of the lower bounds of at2 and at4 must be
lowered to 1 by a minimal probability change of 0.2. �

Note that in this example for all PU-repairs we needed to work only with the lower
probability bounds. This will be the case in general when the regions do not cover all
of Space. But consider a simple case where 2 regions cover all of Space. If the sum of
the upper bounds is less than 1, for a PU-repair we must work with the upper bounds.

The following proposition states an important property that holds for both kinds of
repairs we have introduced above: a repair for a SPOT database S can be obtained by
combining the repairs for the single-id, single-time-point SPOT databases Sid,t with
id ∈ ID and t ∈ T . We already exploited this result in our example.

Proposition 1. Given a SPOT database S , a SPOT database S ′ is an S-repair (resp.
PU-repair) for S , iff S ′ =

⋃
id∈ID,t∈T S ′

id,t , where S ′
id,t is an S-repair (resp. PU-

repair) for Sid,t .

It is easy to see that, for a SPOT database S , both S-repairs and PU-repairs always
exist. In fact, in the worst case, an S-repair for S can be obtained by keeping in it only
one atom for each id, t pair. As regards PU-repairs, it is easy to see that relaxing the
probability intervals of all the SPOT atoms to the interval [0,1] results in a consistent
database, which makes the problem of deciding whether a PU-repair exist trivial.

In the following, we will denote as RepS(S ) (resp. RepPU(S )) the set of S-repairs
(resp. RepPU -repairs) for S .
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3.1 Checking Repairs

We characterize the complexity of the problem of checking whether a given SPOT
database S ′ is a repair for a SPOT database S . We consider the two kinds of repairs
introduced above, and show that this problem is tractable for both S- and PU-repairs.
For both repairing strategy, the problem of computing a repair turns out to be in PTIME.

Theorem 1. Let S ,S ′ be two SPOT databases. Deciding whether S ′ is an S-repair
for S is in PTIME.

Proof. If S is consistent, then S ′ is an S-repair for S iff S ′ coincides with S . Recall
that checking whether S is not consistent can be accomplished in polynomial time [30].
Now assume that S is not consistent. If S ′ �⊂S or S ′ is not consistent, then S ′ is
not an S-repair for S . Otherwise, for each a ∈S \S ′ check whether S ′ ∪ {a} is not
consistent. If so, then S ′ is an S-repair for S , as it is a maximal consistent subset of
S — in fact, no strict superset of S ′ is consistent if ∀a ∈ S \S ′, S ′ ∪ {a} is not
consistent. If there is a ∈S \S ′ such that S ′ ∪{a} is consistent, it follows that S ′ is
not an S-repair for S , as it is not a maximal consistent subset of S . �

The proof of Theorem 1, along with the result of Proposition 1, suggests that an S-
repair for SPOT database S can be computed as the union of S-repairs for Sid,t (with
id ∈ ID and t ∈ T ), each of them incrementally computed by scanning the atoms in Sid,t

according to any total ordering, and then adding atom a ∈ Sid,t to S ′
id,t iff S ′

id,t ∪{a} is
consistent. It is easy to see that the so obtained database S ′

id,t is an S-repair for Sid,t .

Corollary 1. An S-repair for SPOT database S can be computed in PTIME.

We now consider PU-repairs. Given a SPOT database S , an object id ∈ ID, and
a time point t ∈ T , we define a linear programming problem, called PULP(S , id, t),
such that each of its optimal solutions one-to-one corresponds to a PU-repair for Sid,t .
PULP(S , id, t) uses variables vp to denote the probability that object id will be at point
p ∈ Space at time t. Moreover , PULP(S , id, t) uses variables lowi and upi, for each
atom ai ∈Sid,t , to denote the absolute values of the differences between the lower and
upper probability bounds of atom ai and its probability-interval updated atom a′i.

Definition 7 (PULP(·)). For SPOT database S , id ∈ ID, and t ∈ T , PULP(S , id, t)
is defined as the following linear programming problem:
minimize ∑ai∈Sid,t

lowi + upi subject to:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1) ∀ai = (id,ri, t, ["i,ui]) ∈Sid,t

"i− lowi ≤ ∑p∈ri
vp ≤ ui + upi

0≤ lowi ≤ "i

0≤ upi ≤ 1− ui

2) ∑p∈Space vp = 1
3) ∀p ∈ Space vp ≥ 0

Given a solution σ of PULP(S , id, t), we define Sid,t(σ) as the SPOT database
obtained from Sid,t by replacing each atom ai = (id,ri, t, ["i,ui]) ∈ Sid,t with the
probability-interval updated atom a′i = (id,ri, t, ["i − σ [lowi], ui + σ [upi]]), where
σ [lowi] and σ [upi] denote the values assigned to variables lowi and upi by solution
σ .
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Theorem 2. For each optimal solution σ of PULP(S , id, t), Sid,t(σ) is a PU-repair
for Sid,t . Moreover, every optimal solution σ for PULP(S , id, t) one-to-one corre-
sponds to a model for PU-repair Sid,t(σ) for Sid,t , and vice versa.

A consequence of the above theorem is that deciding whether S ′
id,t is a PU-repair

for Sid,t can be accomplished in polynomial time. In fact, S ′
id,t is a PU-repair for Sid,t

iff by replacing each occurrence of variables lowi and upi in PULP(S , id, t) with the
values of the corresponding probability updates described by S ′

id,t results in a solution
of PULP(S , id, t) whose objective value is the optimal one. This result along with
Proposition 1 entail that checking whether a SPOT database S ′ is a PU-repair for
SPOT database S can be accomplished in polynomial time.

Corollary 2. Deciding whether S ′ is a PU-repair for SPOT database S is in PTIME.

Theorem 2 and Proposition 1 also entail that PU-repairs can be computed in PTIME,
by finding optimal solutions of PULP(S , id, t), for each 〈id, t〉 pair occurring in S .

Corollary 3. A PU-repair for SPOT database S can be computed in PTIME.

4 Consistent Query Answers

Selection queries are the most investigated kind of query in the SPOT framework
[30,31,27]. A selection query is an expression of the form (?id,r,?t, [",u]), where r
is a region and [",u] is a probability interval. Intuitively, a selection query says: “Given
a region r and a probability interval [",u], find all objects id and times t such that id is
inside r at time t with a probability in the interval [",u].”

Definition 8 (Selection Query Answers). Given a selection query Q=(?id,r,?t, [",u])
and a consistent SPOT database S , 〈id, t〉 is an answer to Q w.r.t. S , iff for every
model M ∈M(S ), M |= (id,r, t, [",u]).

Example 9. Consider the consistent SPOT database of Fig. 1. One may be interested in
knowing the ids and time points of profiles that were in the room where the fingerprint
sensor is located, with probability greater than .75. This can be expressed by the selec-
tion query (?id,r,?t, [.75,1]), where r is the rectangle defined by constraints 0 ≤ x≤ 6
and 4 ≤ y ≤ 8 (this query region includes the whole area d, a portion of area b, and
some other points). The answer of this query is the set consisting of the pair 〈id1,1〉.

Selection query answers are defined for consistent SPOT databases only. So, in order
to query inconsistent SPOT databases, now we adapt the well-known consistent query
answering (CQA) approach originally proposed for relational databases [4]. To make
the following simpler we use the terminology X-CQA, where X is either S or PU .

Definition 9 (X-Consistent Selection Query Answers). Given a SPOT database S
and a selection query Q = (?id,r,?t, [",u]), 〈id, t〉 is an X-consistent answer to Q w.r.t.
S iff for each S ′ ∈ RepX(S ), 〈id, t〉 is an answer to Q w.r.t. S ′.
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Example 10. Continuing with our example of inconsistent SPOT database, previously
in examples 7 and 8 we described all the S-repairs and PU-repairs, respectively. Con-
sider now the large region R that contains the right-half of Space so that it extends hori-
zontally from 8 to 16 and vertically from 0 to 16. In particular, R contains the regions c,
e, g, and a portion of b. Our sample query asks for all objects and times such that the ob-
ject at that time was in the region R with probability at least 0.6: Q=(?id,R,?t, [0.6,1]).
Then, the S-consistent answer is /0, while the PU-consistent answer is {(id3,1)}.

4.1 Complexity

We characterize the complexity of the problem of deciding whether a given 〈id, t〉 pair
is a consistent answer. It turns out that checking if a pair 〈id, t〉 is an S-consistent answer
is coNP-complete. However, checking if a pair is a PU-consistent answer is in PTIME.

Theorem 3. Given a SPOT database S , a query Q = (?id,r,?t, [",u]), and a pair
〈id, t〉. Deciding whether 〈id, t〉 is an S-consistent answer to Q w.r.t. S is coNP-complete.

Proof. (Membership). A guess-and-check strategy for deciding the complement of our
problem is as follows. First, guess a subset S ′ of S . Then, check whether (i) S ′ is an
S-repair for S and (ii) 〈id, t〉 is not an answer to Q. The fact that both (i) and (ii) can
be checked in polynomial time follows from Theorem 1 and a result of [30], where it is
shown that deciding whether 〈id, t〉 is an answer to Q is polynomial time.
(Hardness). [Sketch]. We can show a LOGSPACE reduction to the complement of our
problem from the NP-hard SUBSET SUM problem,which is defined as follows: given a
set of positive integers S = {s1, . . . ,sn} and a positive integer constant C, decide whether
there is a subset S′ ⊆ S such that ∑si∈S′ si =C. W.l.o.g. we assume that ∀i∈ [1..n], si ≤C.

Given S and C, we construct an instance of our problem as follows. Let Space =
{p1, · · · , pn, pn+1}, where n is the cardinality of S. Let T consist of the single time point
0. We define the SPOT database S as follows. S consists of two SPOT atoms a0

i =
(id,{pi},0, [0,0]) and a1

i = (id,{pi},0, [si/C,si/C]), for each si ∈ S. Finally, let Q =
(?id,{pn+1},?t, [1/C,1]), and 〈id,0〉 be the pair to be checked being an S-consistent
answer to Q w.r.t. S .

Observe that every repair S ′ ∈ RepS(S ) is such that, for each i ∈ [1..n], either a0
i

or a1
i is in S ′. This entails that S ′ has exactly one model. Then, it can be shown that

〈id,0〉 is not an S-consistent answer to Q w.r.t. S iff there is S′ ⊆ S s.t. ∑si∈S′ si =C �
We now address the problem of consistently answering selection queries in inconsis-

tent SPOT databases under the PU-repair semantics. We introduce a polynomial time
method based on first solving an instance of PULP(S , id, t) to obtain the minimum
cost o∗ of PU-repairs for Sid,t , and then using this value to construct and solving the
two additional instances of the linear programming problems defined below (basically,
these problems are obtained by adding equality (4) and objective function to PULP).

Definition 10 (PU-CQA"(·) and PU-CQAu(·)). Let o∗ be the optimal value returned
by PULP(S , id, t). For SPOT database S , query Q = (?id,r,?t, [",u]), id ∈ ID, and
t ∈ T , we define PU-CQA"(S ,Q, id, t) (resp. PU-CQAu(S ,Q, id, t)) as the following
linear programming problem:
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minimize (resp., maximize) ∑p∈r vp subject to:{
1) 2) and 3) of Definition 7, and
4) ∑ai∈Sid,t

lowi + upi = o∗

The relationship between solutions of PU-CQA" (resp., PU-CQAu)) and the PU-
repairs for S is as follows.

Lemma 1. Let Sid,t be a SPOT database, and Q = (?id,r,?t, [",u]). Every optimal
solution σ for PU-CQA"(S ,Q, id, t) (resp., PU-CQAu(S ,Q, id, t)) one-to-one corre-
sponds to a model M for PU-repair Sid,t(σ) such that ∑p∈r M(id, p, t) is minimum
(resp., maximum), and vice versa.

The following theorem provides a method for checking whether an 〈id, t〉 pair is a
PU-consistent answer to query Q w.r.t Sid,t by comparing the optimal values returned
by PU-CQA"(S ,Q, id, t) and PU-CQAu(S ,Q, id, t) with the probability bounds of Q.

Theorem 4. Let Sid,t be a SPOT database, and Q = (?id,r,?t, [",u]). Let "∗ and u∗

be the optimal values returned by PU-CQA"(S ,Q, id, t) and PU-CQAu(S ,Q, id, t),
respectively. A pair 〈id, t〉 is a PU-consistent answer to Q w.r.t. S iff "≤ "∗ and u∗ ≤ u.

Hence, computing the optimal values of PU-CQA"(S ,Q, id, t) and PU-CQAu(S ,Q,
id, t) suffices to decide if 〈id, t〉 is a PU-consistent answer to Q w.r.t. Sid,t . As this can
be done in polynomial time, and since 〈id, t〉 is a PU-consistent answer to Q w.r.t. S
iff 〈id, t〉 is a PU-consistent answer to Q w.r.t. Sid,t , we obtain the following result.

Theorem 5. Given a SPOT database S , a query Q = (?id,r,?t, [",u]), and a pair
〈id, t〉. Deciding whether 〈id, t〉 is a PU-consistent answer to Q w.r.t. S is in PTIME.

4.2 Other Semantics

We note that in Definition 8 selection queries are interpreted under a cautious seman-
tics. However, selection queries can be also interpreted under optimistic semantics: a
pair 〈id, t〉 is an optimistic answer to query Q = (?id,r,?t, [",u]) w.r.t. S iff there ex-
ists a model M ∈M(S ) s.t. M |= (id,r, t, [",u]). Thus, cautious answers (Definition 8)
are a subset of the optimistic ones. For instance, the cautious answer to the query of
Example 9 is contained in the optimistic one, that is {〈id1,1〉,〈id1,2〉,〈id2,1〉,〈id2,2〉}.

Basically, under the optimistic semantics the query applies to at least one model,
while under the cautious one the query applies to all models. Now, as there are usually
multiple repairs for a SPOT database, we can choose to consider whether the query
applies to all repairs or at least one repair. Based on this, it is natural to consider also
other semantics for X-consistent query answers. Let us denote the type of consistent
answers introduced in Section 4 as X-consistent universal cautious answers. Given a
SPOT database S and a selection query Q, we say that 〈id, t〉 is an X-consistent

- existential cautious answer to Q w.r.t. S iff there exists S ′ ∈ RepX(S ), such that
〈id, t〉 is a cautious answer to Q w.r.t. S ′.

- universal optimistic answer to Q w.r.t. S iff for each S ′ ∈ RepX(S ), 〈id, t〉 is an
optimistic answer to Q w.r.t. S ′.
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- existential optimistic answer to Q w.r.t. S iff there exists S ′ ∈ RepX(S ), such
that 〈id, t〉 is an optimistic answer to Q w.r.t. S ′.

For a consistent database there is no difference between the universal and existential
versions. Moreover, every X-consistent universal cautious (resp. optimistic) answer is
an X-consistent existential cautious (resp. optimistic) answer. Also, every X-consistent
universal (resp. existential) cautious answer is an X-consistent universal (resp. existen-
tial) optimistic answer. Next we give an example to illustrate these concepts.

Example 11. Continuing Example 10, the answers for the above-defined types of con-
sistent query answers are:
S-consistent existential cautious: {(id3,1),(id2,2),(id1,3)}
S-consistent universal optimistic: {(id3,1),(id2,1)}
S-consistent existential optimistic: {(id3,1),(id2,1),(id2,2),(id1,3)}
PU-consistent existential cautious: {(id3,1)}
PU-consistent universal optimistic: {(id3,1),(id2,2),(id1,3),(id2,1)}
PU-consistent existential optimistic: {(id3,1),(id2,1),(id2,2),(id1,3)} �

5 Experiments

We experimentally validated our approach for computing PU-repairs and PU-consistent
(universal cautious) answers on randomly generated SPOT databases, each of them
characterized by the following parameters: the sizes |ID|, |T |, and |Space| of ID, T ,
and Space, respectively; the average size ω of one side of the atom’s rectangles; and
the average cardinality of Sid,t for id ∈ ID and t ∈ T , which we call the density of the
database. Basically, the density of the database represents the average number of times
that an object was detected at a time point, while ω2 is the average number of points in
the detection’s regions.

Each SPOT database in the dataset was generated as follows. ID and T was set to
{0, .., |ID|− 1} and {0, .., |T |− 1}. Next, for each 〈id, t〉 pair, with id ∈ ID and t ∈ T , a
random number of atoms were generated in the interval of integers between 1 and 2d,
where d is the density of the database (thus on average d atoms were generated for each
〈id, t〉 pair). Each of these atoms was generated by randomly choosing the width and
the height of the atom’s rectangle, as well as the lower and upper bound probabilities.
Specifically, the rectangle’s width and height of the region of each atom were randomly
chosen in the interval of integers between 1 and 2ω . For the first generated atom in
Sid,0, the rectangle’s upper left corner was chosen uniformly in the set of points in
Space. For the subsequent generated atoms, the x- and y- coordinates of the rectangle’s
upper left corners were chosen by perturbing that of the previously generated atom
by adding/subtracting an integer randomly chosen in the interval [0,2ω ], according to
randomly choosing a direction of travel (that is compatible with the x- and y- bounds
of the grid representing Space). Moreover, the rectangle’s upper left corner of the first
generated atom in Sid,t , was obtained by perturbing the rectangle’s upper left corner
of the last atom generated in Sid,t−1. This way, adjacent, possibly intersecting, regions
were iteratively generated. For each generated atom, the probability interval was set by
choosing a random number in [0,1] for ", and then a random number in [",1] for u.
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Fig. 2. Repair and CQA time vs. the density
(ω = 75, |Space|= 1000×1000)
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Fig. 3. Repair and CQA time vs. ω (d = 16,
|Space|= 1000×1000)

If, for an 〈id, t〉 pair, the database Sid,t generated using the above-described pro-
cedure was consistent, we iteratively generated a new instance until an inconsistent
database was generated (this was typically achieved in less than 2 steps).

The procedure used for generating the region as well as the lower and upper bounds
of queries was the same as that used to generate the region and the lower and upper
bounds of the first atom in the database. In the experiments, when considering a query
issued on a database having average size of the width and height of the atom’s rectangles
equal to ω , the width and height of the query region were randomly chosen in [0,2ω ].

All experiments have been carried out on an Intel Core Duo CPU 2.10GHz with
4GB RAM running Ubuntu 12.04 64bit. Our prototype calls the linear programming
solver CPLEX for finding solutions of PULP(·), PU-CQA"(·) and PU-CQAu(·). All
data points reported on the figures are averages over 50 trials.

Fig. 2 reports the running time needed to decide if a randomly generated 〈id, t〉 pair
(with id ∈ ID and t ∈ T ) is a PU-consistent (universal cautious) answer to a randomly
generated query versus the density of the database, where ω = 75 and Space consists
of one million points. Fig. 2 also reports the running time needed to compute a PU-
repair for Sid,t (a repair for S can be obtained by assembling repairs for Sid,t , see
Proposition 1). For the same size of Space, and density equal to 16, Fig. 3 reports the
running time needed to decide if a randomly generated 〈id, t〉 pair is a PU-consistent
(universal cautious) answer to a randomly generated query versus the size of the side of
atom’s regions. The running time needed to compute a PU-repair for Sid,t is reported
as well. These experiments show that

(i) the running time for deciding whether an 〈id, t〉 pair is a PU-consistent answer is
about three times that needed for computing a repair for database Sid,t ;

(ii) the running time for deciding if a given 〈id, t〉 pair is a PU-consistent answer (as
well as that for computing repairs for Sid,t ) increases linearly with the density;

(iii) the running time for deciding if a given 〈id, t〉 pair is a PU-consistent answer (as
well as that for computing repairs for Sid,t ) increases quadratically with the size
of one side of the atoms’ regions. That is, the running time increases linearly with
the number of points in the atoms’ regions, which quadratically depends on ω .
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We expected (i), as to decide if 〈id, t〉 pair is a PU-consistent answer using Theo-
rem 4, the linear programming problems PU-CQA"(S ,Q, id, t) and PU-CQA
u(S ,Q, id, t) are solved after solving PULP(S , id, t) to obtain o∗ used in the defi-
nitions of PU-CQA, and these problems are of comparable sizes. Items (ii) and (iii)
show that the running times linearly increase with the number of atoms in Sid,t , as well
as with the number of points in the atoms’ regions. However, checking if an 〈id, t〉 pair
is a PU-consistent answer takes less than 1 second for databases whose density is 16
and atom’s regions consist of 75× 75 points on average.

We also performed the kinds of experiments reported above for |Space|= 10000×
10000. However, the results we obtained are substantially the same as those shown in
figures 2 and 3. Basically, this is due to the fact that in our implementation, variable vp

corresponding to point p ∈ Space is actually added to the instances of PULP(S , id, t),
PU-CQA"(S ,Q, id, t) and PU-CQAu(S ,Q, id, t) only if there is some atom in Sid,t

whose region includes p. Thus, |Space| does not affect the running times by itself.

6 Conclusion and Topics for Further Research

A comprehensive survey of the results on the SPOT framework can be found in [19],
where several research problems awaiting further investigation were identified. How-
ever, all the previous works on SPOT assume that the database is consistent. In fact, we
are not aware of any work involving inconsistent probabilistic spatio-temporal databases
in any framework. In this paper we use the SPOT framework to define both the concept
of database repair and consistent selection query answers. We show that some cases can
be solved in PTIME. We also experimentally show the feasibility of our approach.

Future work will involve a detailed investigation of the complexity of different types
of repairs as well as the complexity of checking different types of query answers. We
also plan to investigate repairs and consistent answers in the presence of the spatio-
temporal integrity constraints proposed in [26].
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K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 251–268. Springer, Heidelberg (2002)

21. Hammel, T., Rogers, T.J., Yetso, B.: Fusing live sensor data into situational multimedia
views. In: Multimedia Information Systems, pp. 145–156 (2003)

22. Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Int. Symposium
on Principles of Database Systems (PODS), pp. 261–272 (1999)

23. Martinez, M.V., Parisi, F., Pugliese, A., Simari, G.I., Subrahmanian, V.S.: Inconsistency man-
agement policies. In: KR, pp. 367–377 (2008)

24. Martinez, M.V., Parisi, F., Pugliese, A., Simari, G.I., Subrahmanian, V.S.: Policy-based in-
consistency management in relational databases. Int. J. Approx. Reas. 55(2), 501–526 (2014)

25. Mittu, R., Ross, R.: Building upon the coalitions agent experiment (CoAx) - integration of
multimedia information in gccs-m using impact. In: Multimedia Inf. Syst., pp. 35–44 (2003)

26. Parisi, F., Grant, J.: Integrity constraints for probabilistic spatio-temporal knowledgebases.
In: Straccia, U., Cali, A. (eds.) SUM 2014. LNCS, vol. 8720, pp. 251–264. Springer,
Heidelberg (2014)

27. Parisi, F., Parker, A., Grant, J., Subrahmanian, V.S.: Scaling cautious selection in spatial prob-
abilistic temporal databases. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.)
Methods for Handling Imperfect Spatial Information. STUDFUZZ, vol. 256, pp. 307–340.
Springer, Heidelberg (2010)



Repairs and Consistent Answers for Inconsistent SPOT Databases 279

28. Parisi, F., Sliva, A., Subrahmanian, V.S.: Embedding forecast operators in databases. In: Ben-
ferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 373–386. Springer, Heidelberg
(2011)

29. Parisi, F., Sliva, A., Subrahmanian, V.S.: A temporal database forecasting algebra. Int. J. of
Approximate Reasoning 54(7), 827–860 (2013)

30. Parker, A., Subrahmanian, V.S., Grant, J.: A logical formulation of probabilistic spatial
databases. IEEE TKDE, 1541–1556 (2007)

31. Parker, A., Infantes, G., Grant, J., Subrahmanian, V.S.: Spot databases: Efficient consis-
tency checking and optimistic selection in probabilistic spatial databases. IEEE TKDE 21(1),
92–107 (2009)

32. Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the past, present, and anticipated future po-
sitions of moving objects. ACM Trans. Database Syst. 31(1), 255–298 (2006)

33. Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving
object trajectories. In: VLDB, pp. 395–406 (2000)

34. Southey, F., Loh, W., Wilkinson, D.F.: Inferring complex agent motions from partial trajec-
tory observations. In: IJCAI, pp. 2631–2637 (2007)

35. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional
uncertain data with arbitrary probability density functions. In: VLDB, pp. 922–933 (2005)

36. Tao, Y., Papadias, D., Sun, J.: The TPR*-tree: an optimized spatio-temporal access method
for predictive queries. In: VLDB, pp. 790–801 (2003)



Skyline Queries in an Uncertain Database Model

Based on Possibilistic Certainty

Olivier Pivert1 and Henri Prade2

1 University of Rennes 1 – Irisa, Lannion, France
2 CNRS/IRIT – University of Toulouse, Toulouse, France

pivert@enssat.fr, prade@irit.fr

Abstract. This paper deals with skyline queries in the context of an
uncertain database model where the notion of necessity is used to qualify
the certainty that an ill-known piece of data takes a given value or belongs
to a given subset. In this framework, skyline queries aim at computing
the extent to which any tuple from a given relation is certainly not
dominated by any other tuple from that relation.

1 Introduction

The last two decades have witnessed a profusion of research works on uncertain
databases. Even though most authors consider probability theory as the un-
derlying uncertainty model, some approaches rather rely on possibility theory
[11], see e.g. [3]. In contrast with probability theory, one expects the following
advantages when using possibility theory: i) the qualitative nature of the model
makes easier the elicitation of the degrees; ii) in probability theory, the fact that
the sum of the degrees from a distribution must equal 1 makes it difficult to deal
with incompletely known distributions.

Recently, Bosc et al. [5] introduced a new model based on possibilistic cer-
tainty. The idea is to use the notion of necessity to qualify the certainty that an
ill-known piece of data takes a given value or is in a given subset. In contrast
with both probabilistic databases and possibilistic ones in the sense of [3], the
main advantage of the certainty-based model lies in the fact that operations from
relational algebra can be extended in a simple way and with a data complexity
that is the same as in a classical database context.

In this paper, we move beyond relational agebra and consider a popular ap-
proach to preference queries, namely the skyline model [2] that aims to retrieve
the items that are not Pareto-dominated by any other. Skyline queries have
already been extended to the frameworks of databases with missing values [7],
probabilistic databases [9,10], and possibilistic ones [4]. Here, we consider sky-
line queries in the context of the certainty-based model introduced in [5] and
the objective is to assess the extent to which any tuple from a given relation is
certainly not dominated by any other.

The remainder of this paper is structured as follows. Section 2 gives a brief
overview of the certainty-based model. A refresher on skyline queries is provided
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in Section 3. Section 4 defines the form that a skyline takes in the certainty-
based model and the way it can be computed. Finally, Section 5 concludes the
paper and outlines perspectives for future research.

2 A Short Overview of the Certainty-Based Model

As the possibilistic model described in [3], the certainty-based model [5] relies on
possibility theory [11]. However, it only keeps pieces of information that are more
or less certain and leaves aside what is just possible. This corresponds to the most
important part of information (a possibility distribution is “summarized” by
keeping its most plausible elements, associated with a certainty level). Certainty
is modeled as a lower bound of a necessity measure. For instance, 〈037, John,
(40, α)〉 denotes the existence of a person named John, whose age is 40 with
certainty α. Then the possibility that his age differs from 40 is upper bounded
by 1− α without further information.

The underlying possibility distribution associated with an uncertain attribute
value (a, α) is {1/a, (1 − α)/ω} where ω denotes domain(A) − {a}, A being
the attribute considered (due to the duality necessity (certainty) / possibility:
N(a) ≥ α ⇔ Π(a) ≤ 1 − α). For instance, let us assume that the domain
of attribute City is {Boston, Newton, Quincy}. The uncertain attribute value
(Boston, α) is assumed to correspond to the possibility distribution {1/Boston,
(1 − α)/Newton, (1 − α)/Quincy}. The model can also deal with disjunctive
uncertain values. For instance, 〈3, Peter, (Newton ∨ Quincy, 0.8)〉 represents
the fact that it is 0.8-certain that the person number 3 named Peter lives in
Newton or in Quincy. Then, the underlying possibility distributions π are of the
form π(u) = max(A(u), 1 − α) where A is an α-certain subset of the attribute
domain and A(u) equals 1 if u ∈ A, 0 otherwise.

Moreover, since some operations (e.g., the selection) may create “maybe tu-
ples”, each tuple t from an uncertain relation r has to be associated with a degree
N expressing the certainty that t exists in r. It will be denoted by N/t.

Example 1. Let us consider a relation r of schema (#id, Name, City) containing
tuple t1 = 〈1, John, (Quincy, 0.8)〉, and the query “find the people who live in
Quincy”. Let the domain of attribute City be {Boston, Newton, Quincy}. The
answer contains 0.8/t1 since it is 0.8 certain that t1 satisfies the requirement,
while the result of the query “find the people who live in Boston, Newton or
Quincy” contains 1/t1 since it is totally certain that t1 satisfies the condition. /

To sum up, a tuple α/〈037, John, (Quincy, β)〉 from relation r means that it
is α certain that person 037 exists in the relation, and that it is β certain that
037 lives in Quincy (independently from the fact that it is or not in relation r).

3 Refresher About Skyline Queries

The notion of a skyline in a set of tuples is easy to state (since it amounts to
exhibit non dominated points in the sense of Pareto ordering). Assume we have:
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– a given set of criteria C = {c1, . . . , cn}(n ≥ 2) associated respectively with
a set of attributes Ai, i = 1, . . . , n;

– a complete ordering 
i given for each criterion i expressing preference be-
tween attribute values1 (the case of non comparable values is left aside).

A tuple u = (u1, · · · , un) in a relation r dominates (in the sense of Pareto)
another tuple u′ = (u′1, · · · , u′n) in r, denoted by u �C u′, iff u is at least as
good as u′ in all dimensions and strictly better than u′ in at least one dimension:

u �C u′ ⇔ ∀i ∈ {1, . . . , n}, ui 
i u
′
i and ∃i ∈ {1, . . . , n} s.t. ui �i u

′
i. (1)

A tuple u = (u1, · · · , un) in a relation r belongs to the skyline S, denoted by
u ∈ S, if there is no other tuple u′ = (u′1, · · · , u′n) in r which dominates it (the
skyline query returns the Pareto frontier):

u ∈ S ⇔ ∀u′, ¬(u′ �C u). (2)

Then any tuple u′ is either dominated by u, or is non comparable with u. The
following example uses the syntax of the language Preference SQL [8], which is
a typical representative of a Pareto-order-based approach.

Table 1. An extension of relation car

make category price color mileage

t1 Opel roadster 4500 blue 20,000
t2 Ford SUV 4000 red 20,000
t3 VW roadster 5000 red 10,000
t4 Opel roadster 5000 red 8000
t5 Fiat roadster 4500 red 16,000
t6 Kia coupe 5500 blue 24,000
t7 Seat sedan 4000 green 12,000
t8 VW sedan 3500 black 7500

Example 2. Let us consider a relation car of schema (make, category, price, color,
mileage) whose extension is given in Table 1, and the query:

select * from car where color �= ‘black’
preferring
(make = ‘VW’ else make = ‘Seat’ else make = ‘Opel’ else make = ‘Ford’) and
(category = ‘sedan’ else category = ‘roadster’ else category = ‘coupe’) and
(least price) and (least mileage);

In this query, “Ai = v1,1 else Ai = v1,2” means that value v1,1 is strictly preferred
to value v1,2 for attribute Ai. It is assumed that any domain value which is absent
from a preference clause is less preferred than any value explicitly specified in the
clause (but it is not absolutely rejected). Here, the tuples that are not dominated
in the sense of the preferring clause are {t3, t4, t7}. Indeed, t7 dominates t1, t2,
and t5, whereas every tuple dominates t6 except t2. Notice that t8 is discarded
from the start as it does not satisfy the condition from the where clause. /
1 u � v means u is preferred to v. u 
 v means u is at least as good as v, i.e.,
u 
 v ⇔ u � v ∨ u ≈ v, where ≈ denotes indifference.
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4 Certainty-Based Skyline

4.1 Case of an Initial Relation

Let us first assume that the relation concerned, denoted by r, is an initial one,
which implies that ∀t ∈ r, N(t) = 1. Let us consider two tuples u and u′ of r. We
denote: u.Ai = (ui, ρi) and u

′.Ai = (u′i, ρ
′
i) where ui (resp. u

′
i) is a candidate

value (or a subset of values) and ρi (resp. ρ
′
i) is the associated certainty degree.

For instance, if u.Ai = (Newton ∨ Quincy, 0.8), then ui = {Newton, Quincy}
and ρi = 0.8. Let us consider the event (u.Ai θi u

′.Ai) where θi is �i, 
i or ≈i.
We denote by c(E) the certainty degree associated with event E. According to
the min-decomposability of necessity in possibility theory, we have:

c (u.Ai θi u
′.Ai) = min(ρi, ρ

′
i, min

(x,y)∈ui×u′
i

μθi(x, y)) (3)

where μθi(x, y) = 1 if x θi y, 0 otherwise.

Example 3. With the query of Example 2, we have: c ((VW ∨ Opel, 0.7) �make

(Ford, 0.4)) = min(0.7, 0.4) = 0.4 as both VW and Opel are preferred to Ford.
On the other hand, c ((VW ∨ Opel, 0.7) �make (Seat, 0.4)) = 0 as (Opel �make

Seat) is false. /

The expression of c (u �C u′) stems straightforwardly from Formula (1):

c (u �C u′) = min(min
i

c (u.Ai 
i u
′.Ai), max

i
c (u.Ai �i u

′.Ai)) (4)

Example 4. Let us consider the preferences from Example 2 and the tuples t3 and
t4 from Table 2. We have: mini c (t3.Ai 
i t4.Ai) = c ((10,000, 0.8) �mileage

(8000, 1)) = 0, and maxi c (t3.Ai �i t4.Ai) = c ((VW, 1) �make (Opel, 0.7)) =
0.7. Thus, c (t3 �C t4) = min(0, 0.7) = 0. /

As for c (u ≈C u′), which corresponds to the certainty that u is either incom-
parable or equally preferred to u′, it stems from:

u ≈C u′ ⇔ ((∃i such that u.Ai �i u
′.Ai) ∧ (∃i such that u′.Ai �i u.Ai))

∨ (∀i, u.Ai ≈i u
′.Ai)

(5)

and we get:

c (u ≈C u′) = max(min(max
i

c (u.Ai �i u
′.Ai), max

i
c (u′.Ai �i u.Ai)),

min
i

c (u.Ai ≈i u
′.Ai)).

(6)

Example 5. Consider again t3 and t4 from Table 2. We have: maxi c (t3.Ai

�i t4.Ai) = c ((VW, 1) �make (Opel, 0.7)) = 0.7, maxi c (t4.Ai �i t3.Ai) =
c ((8000, 1) �mileage (10,000, 0.8)) = 0.8, and mini c (t3.Ai ≈i t4.Ai) =
c ((VW, 1) ≈make (Opel, 0.7)) = 0. Thus, c (u ≈C u′) = max(0.7, 0) = 0.7. /
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The skyline obtained is represented as a fuzzy set of points, let us denote it by
S′. The degree of certainty of the event “u belongs to S′” is defined as:

μS′(r)(u) = min
u′∈r, u′ �=u

max(c (u �C u′), c (u ≈C u′)). (7)

Formula (7) implies that data complexity is in θ(n2) — the tuples of r have to
be compared pairwise — as in a classical database context.

Remark 1. We have: support (S′(r)) = S(r0+) (where S(r0+) denotes the regular
skyline computed on r where all the certainty degrees have been replaced by 1).
Indeed, due to (3), (∃u′ | c (u �C u′) = 0 ∨ (c (u ≈C u′) = 0) is equivalent to
(∃u′ | u′ �C u), i.e., u /∈ S.

Table 2. Relation car with uncertain attribute values

make category price mileage

t1 (Opel, 1) (roadster, 0.8) (4500, 1) (20,000, 0.8)
t2 (Ford, 0.9) (SUV, 1) (4000, 0.7) (20,000, 0.6)
t3 (VW, 1) (roadster, 0.4) (5000, 0.9) (10,000, 0.8)
t4 (Opel, 0.7) (roadster, 1) (5000, 0.3) (8000, 1)
t5 (Fiat, 0.6) (roadster, 1) (4500, 0.8) (16,000, 0.9)
t6 (Kia ∨ Ford, 1) (coupe, 1) (5500, 1) (24,000, 1)
t7 (Seat, 1) (sedan, 1) (4000 ∨ 3800, 0.8) (12,000, 0.7)

Example 6. Let us consider the query from Example 2 (minus the where clause)
along with the data from Table 2 (where the values in brackets correspond to
certainty degrees). The skyline obtained is: {0.4/t3, 0.3/t4, 0.6/t7}. /
Remark 2. Let us denote by rα the α-cut of relation r. For instance, considering
relation car depicted in Table 2, car 0.7 contains the tuples 〈Opel, roadster,
4500, 20,000〉, 〈Kia ∨ Ford, coupe, 5500, 24,000〉, and 〈Seat, sedan, 4000 ∨
3800, 12,000〉 stemming from t1, t6 and t7 respectively. Notice that a user may
be interested in computing S(rα) if s/he cares only about the nondominated
tuples among those whose values are at least α certain. Here, for instance, we
have S(car 0.7) = {t7}. An interesting issue would be to compare the approach
presented above (certainty-based skyline) with the computation of the classical
skyline on different certainty level cuts of the database.

4.2 Case of a Relation Resulting from a Selection

In Preference SQL [8], queries may involve a where clause (cf. Example 1), which
is used to filter out some tuples before computing the skyline. In the context
considered here, this may produce maybe tuples (cf. the degree N introduced
in Section 2). In this case, the certainty degrees attached to the tuples must be
taken into account in the computation of the skyline. We have:

c (α/u �C β/u′) = c (u exists and v exists and u dominates u′)

which leads to c (α/u �C β/u′) = min(α, β, μ) where μ is computed by means
of Equation (4). Similarly, we have:
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c (α/u ≈C β/u′) = c (u exists and v exists and
u is incomparable or equally preferred to u′)

which leads to c (α/u ≈C β/u′) = min(α, β, μ′) where μ′ is computed using
Equation (6). As for the computation of the skyline, it is based on the following
expression that extends Formula (7):

μS′(r)(u) = min
u′∈r, u′ �=u

max(c (α/u �C β/u′), c (α/u ≈C β/u′)) (8)

where α (resp. β) denotes the certainty degree attached to tuple u (resp. u′) in
relation r before computing the skyline.

5 Conclusion

In this paper, we have investigated skyline queries in the framework of an uncer-
tain database model where the notion of necessity is used to qualify the certainty
that an ill-known piece of data takes a given value or belongs to a given subset.
In this framework, skyline queries aim at computing the extent to which any
tuple from a given relation is certainly not dominated by any other tuple.

Among the perspectives opened by this work, let us mention: i) the study of
a possible adaptation of classical optimization techniques (see e.g. [1]) to the
processing of skyline queries in the certainty-based model; ii) the extension of
the approach to a graded dominance relation, see e.g. [6].
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Abstract. Information often comes from multiple sources that may be
conflicting. This makes uncertain the answers of a query to a set of
sources. Possibility theory-based approaches to the handling of uncer-
tainty in databases have been proposed and developed for a long time,
in the case of a unique source of information. A multiple source coun-
terpart of possibility theory has been recently proposed. Possibility and
necessity set functions are then valued in terms of (possibly fuzzy) sub-
sets of sources. Uncertainty may be assessed here either in terms of global
reliability levels of sources or of tuples inside a source. When each source
contains precise attribute values, each tuple is associated with the subset
of sources that supports it as being an answer to a considered query, and
with the subset of sources according to which the tuple is not an answer.
In fact, these subsets of sources are fuzzy as they reflect the reliability
levels. The benefit of the approach is to rank-order the answers to a
query on a qualitative basis, in terms of subsets of sources and reliability
levels.

Keywords: Distributed data sources, uncertainty, database querying.

1 Introduction

Managing inconsistent information has become a very important issue at a time
where the amount and the variety of pieces of information to be handled consid-
erably increase the possibilities of inconsistency. For this reason, inconsistency,
after uncertainty, has appeared on the agenda of both artificial intelligence and
database research for more than a decade now. Still, this issue is addressed in
a different perspective by the two research fields, even if in both cases, the pro-
posed approaches can be roughly divided between those which try to restore or
maintain consistency and those which accept inconsistent information trying to
“draw the best” from it.

In this paper, we take a database point of view and investigate the issue of
querying distributed sources that may be mutually inconsistent. Indeed, it is
well-known that when a database results from the integration of multiple data
sources, or (case considered here) when the data comes from unverified sources
or is uncertain, the resulting database generally contains inconsistencies [10].

U. Straccia and A. Cal̀ı (Eds.): SUM 2014, LNAI 8720, pp. 286–291, 2014.
c© Springer International Publishing Switzerland 2014



Querying Uncertain Multiple Sources 287

Extracting consistent and useful pieces of information from various sources
is the major task of information fusion [6]. Moreover, information delivered by
sources may be uncertain or imprecise, and then these aspects have to be taken
into account in information fusion. Several information fusion operators have
been proposed in the literature for combining potentially conflicting pieces of
information [12]. However, in [2], the authors use formal concept analysis and
pattern structures to associate subsets of sources to combination results obtain-
able from consistent subsets of pieces of information. This may be better than
computing a unique answer as the union of these combination results (which is
what fusion operators would do).

In the present work, we keep the idea of associating possibly conflicting an-
swers with subsets of sources. We choose to keep the data as they are (no fusion
of any kind is performed) and we aim to inform the user about inconsistencies
when answering a query (according to a philosophy somewhat similar to Con-
sistent Query Answering [4] in the sense that one accepts to “live with dirty
data” and try to draw the best from them). The presence of inconsistent data
may of course lead to “suspect answers” when querying such distributed data
sources. Let us assume for instance that we have available two sources S1 and
S2 that contain a relation Emp of schema (ss number, name, age, city, job) de-
scribing employees of given company. If Emp in S1 contains the tuple 〈17, John,
35, Boston, clerk〉 and Emp in S2 contains 〈17, John, 37, Quincy, clerk〉, then
17 is a suspect answer to the query “find the people who live in Boston” since
S2 believes that this employee rather lives in Quincy. Notice that, on the other
hand, 17 would not be considered a suspect answer to the query “find the em-
ployees whose age is greater than 30”, even though the sources do not agree on
John’s age since in both sources employee 17 is described as being older than 30.
In the following, we assume that in each source, each tuple is associated with
a reliability level (either directly attached to it or inherited from the source),
corresponding to a certainty degree assessed on a qualitative scale.

The remainder of the paper is structured as follows. In Section 2, we present
the principle of the approach. Section 3 discusses related work. Section 4 con-
cludes the paper and outlines some perspectives for future work.

2 Principle of the Approach

The principle of the approach is inspired by [15] where suspect answers (i.e.
answers that may be involved in the violation of a functional dependency) to a
query Q adressed to a centralized database are detected by checking if they are
both in the result of Q and in the result of the “opposite query” Q.

Let Q be a query addressed to a set of sources S = {S1, . . . , Sn}. Data
mediation is not the issue here, so we assume that each source includes a relation
r with the same attribute names (but there may exist inconsistencies between
the contents of r in the different sources). Query Q is assumed to be of the form
πX(σϕ(r)) where π denotes the projection operation, σ the selection operation,
ϕ is a condition on Y , and X and Y denote two subsets of attributes of r.
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It is also assumed that the functional dependency X → Y is valid on r. Query
Q aims to retrieve the X-component of the tuples of r that satisfy condition ϕ.
In the following, for the sake of simplicity, we assume that X is a key of r or a
superset of such a key. Let Q = πX(σ¬ϕ(r)) be the opposite query (the selection
condition is negated). In each source Si, every t is assumed to be associated with
a certainty degree ci(t) expressed on a qualitative scale, for instance

L = < τ1 = very uncertain < τ2 = rather uncertain
< τ3 = rather certain < τ4 = very certain < τ5 = totally certain〉.

One gets the sets of answers to Q stemming from each source: A1, . . . , An, and
one does the same thing for the answers to Q : A1, . . . , An:

Ai = {ci(t)/x | t ∈ Si ∧ x = t.X ∧Q(x)}
Ai = {ci(t)/x | t ∈ Si ∧ x = t.X ∧Q(x)}.

In other words, an answer set is a fuzzy set of the form {ci(t)/x} where t is the
tuple from r whose key value is x (t.X = x) and ci(t) ∈ L. In the following, we
use ci(x) in place of ci(t) (let us recall that X is assumed to include a key of r).

For every tuple t of the union of the Ai’s, one determines two fuzzy sets:

V +(x) = {τ1/F+
1 (x), . . . , τm/F

+
m(x)}

V −(x) = {τ1/F−
1 (x), . . . , τm/F

−
m(x)}

where m is the number of levels in L (i.e., τm corresponds to “totally certain”)
and

F+
i = {Sj ∈ S | x ∈ Aj ∧ cj(x) = τi},
F−
i = {Sj ∈ S | x ∈ Aj ∧ cj(x) = τi}.

This can be related to the approach proposed in [3] where the authors outline
a joint extension of a multiple agent logic and possibilistic logic [11]. In this
extended logic, propositions are associated with both sets of agents and certainty
levels. A formula (a, α/A) then expresses that “all agents in set A are certain
at least at level α that a is true”. More generally, the language is then made
of formulas of the form (a, F ) where F is a fuzzy set of agents. The degree
of membership μF (k) is the minimal degree of certainty of a for agent k. The
set of all agents is partitioned by F into subgroups of agents Fi having the
same certainty level αi associated with proposition a; then F can be viewed as
a weighted union

⋃
i αi/Fi, where all the αi’s are distinct and strictly positive,

and the Fi’s are classical, mutually disjoint subsets.
One must then rank-order the answers from the most certain to the least

certain. Let us denote:

– F+(x) = 〈n+m, . . . , n+1 〉, and
– F−(x) = 〈n−m, . . . , n−1 〉,

where n+i = card(F+
i (x)), and n−i = card(F−

i (x)).
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Example 1. Let us consider ten sources S1, . . . , S10. Let us assume that m = 5
and consider a query Q and three answers x1, x2 and x3 such that:

– V +(x1) = {τ5/{S3}, τ3/{S1, S4}, τ2/{S7}},
– V −(x1) = {τ5/{S2, S6, S10}, τ4/{S8}, τ1/{S9}},
– V +(x2) = {τ5/{S1}, τ4/{S8}, τ2/{S7}, τ1/{S3, S6}},
– V −(x2) = {τ3/{S10}, τ2/{S2, S9}},
– V +(x3) = {τ5/{S10, S5}, τ3/{S4}, τ2/{S1}},
– V −(x3) = {τ5/{S2, S3}, τ4/{S6}, τ1/{S7}}.

One has:

– F+(x1) = 〈1, 0, 2, 1, 0〉,
– F−(x1) = 〈3, 1, 0, 0, 1〉,
– F+(x2) = 〈1, 1, 0, 1, 2〉,
– F−(x2) = 〈0, 0, 1, 2, 0〉,
– F+(x3) = 〈2, 0, 1, 1, 0〉,
– F−(x3) = 〈2, 1, 0, 0, 1〉. /

The idea for rank-ordering two items x and x′ is to compare F+(x) with F+(x′)
on the one hand, and F−(x) with F−(x′) on the other hand. Formally, the
statement “x is a better (more reliable) answer than x′” is defined as follows:

x � x′ ⇔ ((F+(x) >lex F+(x′)) ∧ (F−(x) ≤lex F−(x′))) ∨
((F+(x′) ≥lex F+(x)) ∧ (F−(x) <lex F−(x′))).

(1)

where >lex is the lexicographic ordering. Obviously, we only get a partial order
and some answers may be incomparable.

Example 2. Let us consider again the context and data of Example 1. We get
the ordering: {x2, x3} � x1. Tuples x2 and x3 are incomparable since one has
both F+(x3) >

lex F+(x2) and F
−(x3) >lex F−(x2). /

The partial order obtained may always be linearized by, for instance, applying
the maximum specificity principle (i.e. by ranking each item as high as permitted
by the order constraints). This amounts in the above example to putting x1 and
x2 at the same level.

3 Related Work

As mentioned in [14] — which presents a system for integrating multiple het-
erogeneous and autonomous information sources that uses data fusion to resolve
factual inconsistencies among the individual sources —, several approaches have
attempted to resolve extensional conflicts based on the content of the conflicting
data and possibly some probabilistic information that is assumed to be avail-
able. They either detect the existence of data inconsistencies and provide their
users with some additional information on their nature (e.g., [1]), or they try
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to resolve such conflicts by returning a probabilistic value: a set of alternative
values with attached probabilities, see e.g. [16,13,17].

Another family of approaches is based on the concept of consistent query an-
swering (CQA) [4] that aims at retrieving only the certain answers to a given
query, see e.g. [5] for a recent work on the topic that considers ontology-based
data access (OBDA) systems and proposes two families of inconsistency-tolerant
semantics which approximate the CQA semantics. In [9], the authors use defea-
sible logic programming and argumentative reasoning for computing consistent
answers to yes/no questions in the presence of conflicting data sources.

To the best of our knowledge, the approach presented here is the first one that
makes it possible to return all the candidate answers to a query, rank-ordered
according to their level of reliability.

4 Conclusion

In this paper, we have investigated the issue of querying several data sources
that may be conflicting. We have considered the case where a level of reliability
is associated with each source, or with each tuple inside a source. Instead of
performing a fusion of the data sources, the approach described aims to detect
the suspect answers to a selection-projection query and to rank-order the answers
according to i) the tuples from the base relations that support them and ii) the
tuples from the base relations that contradict them. More precisely, each answer
is associated with the (fuzzy) subset of sources that supports it as being an
answer to the considered query, and with the (fuzzy) subset of sources according
to which the tuple is not an answer. A technique based on a double lexicographic
ordering is then used to rank-order the answers.

Among the perspectives for future work, let us mention the two following
ones. First, it would be interesting to extend the approach to the case where
the sources may contain imprecise or missing attribute values. These imprecise
values may also be uncertain, i.e., such an imprecise value is associated with a
subset that is not a singleton, and there is a nonzero possibility that the value
is outside the subset. One could then make use of the possibilistic database
model presented in [7], or alternatively that introduced in [8] where a certainty
level (interpreted as a lower bound of a necessity degree) is associated with
each attribute value. Then, one would have to consider another (fuzzy) subset of
sources that only support that it is possible that a considered tuple is an answer.
A second challenge is to extend the approach in order to deal with a larger range
of queries.
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Abstract. When building probabilistic relational models it is often dif-
ficult to determine what formulae or factors to include in a model. Differ-
ent models make quite different predictions about how probabilities are
affected by population size. We show some general patterns that hold in
some classes of models for all numerical parametrizations. Given a data
set, it is often easy to plot the dependence of probabilities on population
size, which, together with prior knowledge, can be used to rule out classes
of models, where just assessing or fitting numerical parameters will be
misleading. In this paper we analyze the dependence on population for
relational undirected models (in particular Markov logic networks) and
relational directed models (for relational logistic regression). Finally we
show how probabilities for real data sets depend on the population size.

1 Introduction

Relational probabilistic models [4,17] or template-based models [10] represent
the probabilistic dependencies between relations of individuals. In these models,
individuals about which we have the same information are exchangeable (i.e.
the individuals are treated identically when we have no evidence to distinguish
them) and the probabilities are about relations among individuals, which can be
specified independently of actual individuals.

In a relational probabilistic model, the predictions of the model may depend on
the number of individuals (the population size). For instance, whether someone
enjoys a party or not may depend on the number of people they know at that
party, and each person at a party may know a different number of people.

Even simple models make strong predictions about the effect of population
size on probabilities. If we want to extrapolate from data (as opposed to inter-
polating), it is important to know how the models handle changes in population
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size. Extrapolating from small sample sizes to large ones can be very presumptu-
ous, e.g., people act very differently in small groups than in mobs. The structure
of the model reflects implicit prior knowledge and assumptions, which are impor-
tant to understand. We advocate that we should choose from the models where
the extrapolation is reasonable given the data and prior knowledge.

We consider two classes of relational models, undirected models exemplified
by Markov logic networks (MLNs) [18,2], and directed models with aggregators
exemplified by relational logistic regression (RLR) [9], the directed analogue of
MLNs.

This work is complementary to the work of Jain et al. [8,7], who allow weights
to vary with the population. Varying weights may be necessary for a particular
domain, but from a modeling perspective it is first important to understand
what happens when weights are not varied. This paper mainly considers what
happens as the population varies, rather that just the limiting probabilities [6].

In the rest of the paper, we first introduce some basic definitions and describe
MLNs and RLR. Then we consider a simple model and explain how RLR models
and MLNs are influenced by population size and how they behave differently even
for this simple model. We then expand these results to more complicated cases,
and give some general theoretical results, some empirical data and many open
problems.

2 Some Basic Definitions

A population is a set of individuals. A population corresponds to a domain
in logic. The population size is the cardinality of the population which can be
any non-negative integer. For this paper we assume the populations are disjoint;
each individual is only in one population. When there is a single population, we
use n for the population size, and write the population as A1 . . . An.

Each logical variable, written in lower case, is typed with a population.
pop(x) is the population associated with the logical variable x, and |x| = |pop(x)|.
Constants, denoting individuals, start with an upper case letter. We assume there
is a constant for each individual, and there is no uncertainty about the identity
of the individuals.

A parametrized random variable (PRV) is of the form F (t1, . . . , tk)
where F is a k-ary predicate symbol and each ti is a logical variable or a constant.
For example, At(x, y), At(x,Home), At(Sam,Home) are PRVs. The range of
the random variables is {False, T rue}. (It is possible to have PRVs with more
general domains, but the points of the paper can already be made in this simpler
setting.) A ground random variable is a PRV where all ti are constants.

An atom is an assignment of a value to a PRV. For example, At(x,Home) =
True is an atom. We will write assignments in lower case;R(x) = True is written
as r(x), and R(x) = False is written as ¬r(x). A formula is made up of atoms
with logical connectives (we ignore quantification in this paper.) An instance
of a formula is obtained by replacing logical variables with constants.

A world is an assignment of a value to each ground random variable. The
number of worlds is exponential in the number of ground random variables.
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3 Markov Logic Networks and Relational Logistic
Regression

Markov logic networks (MLNs) [18,2] and relational logistic regression (RLR) [9]
are defined in terms of weighted formulae. In MLNs the formulae are used to
define joint probability distributions. In RLR the formulae are used to define
conditional probabilities.

A weighted formula (WF) is a triple 〈L, F,w〉 where L is a set of logical
variables, F is a formula where all of the free logical variables in F are in L, and
w is a real-valued weight.

An MLN is a set of weighted formulae1, where the probability of any world
is proportional to the exponent of the sum of the weights of the instances of the
formulae that are true in the world.

RLR is a form of aggregation, defining conditional probabilities in terms of
weighted formulae. We assume a directed acyclic graph on PRVs (where the
PRVs of different nodes do not unify), which defines a Bayesian network on
the corresponding ground random variables. For each PRV, there are weighted
formulae involving an instance of that PRV and PRVs involving instances of (a
subset of) the parent PRVs. The conditional probability of each ground random
variable given an assignment of values to each of its parent ground random
variables is proportional2 to the exponential of the sum of the weights of the
instances of the formulae that are true for that assignment.

Example 1. Suppose we have the weighted formulae:

〈{}, q, α0〉
〈{x}, q ∧ ¬r(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, r(x), α3〉

Treating this as an MLN, if the truth value for r(x) for every individual x is
observed:

P (q | obs) = sigmoid(α0 + nFα1 + nTα2) (1)

where obs has R(x) true for nT individuals, and false for nF individuals out of
a population of n = nF + nT individuals. sigmoid(x) is 1/(1 + e−x).

Note that, in the MLN, α3 is not required for representing the conditional
probability (because it cancels out), but can be used to affect P (r(Ai)).

1 MLNs typically do not explicitly include the set of logical variables as part of the
weighted formulae, but use the free variables in F . If one wanted to add an extra
logical variable, x, one could conjoin true(x) to F where true is a property that is
true for all individuals.

2 In MLNs there is a single normalizing constant, guaranteeing the probabilities of
the worlds sum to 1. In RLR, normalization is done separately for each possible
assignment to the parents.
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In [9], the sigmoid, as in Equation (1), is used as the definition of RLR.
([9] assumed all formulae were conjoined with q∧, and omitted q∧ from the
formulae.) When not all R(Ai) are observed, RLR uses Equation (1) for the
conditional probability of q given each combination of assignments to the R(x),
and requires a separate model for the probability of the R(x).

In summary: RLR uses the weighted formulae to define the conditional prob-
abilities, and MLNs use them to define the joint probability distribution.

Example 2. Suppose people want to go to a party, and the party is fun for them if
they know at least one social person in the party. In this case, a PRV funFor(x)
is a child of PRVs knows(x, y) and social(y). The following weighted formulae
can be used to model the dependence of funFor(x) on its parents:

〈{x}, funFor(x),−5〉
〈{x, y}, funFor(x) ∧ knows(x, y) ∧ social(y), 10〉

RLR sums over the above weighted formulae and takes the sigmoid, giving:

P (funFor(x) | Π) = sigmoid(sum), where sum = −5 + 10nT

where, for each x, Π is an assignment of values to knows(x, y) and social(y),
and nT represents the number of individuals y for which knows(x, y)∧ social(y)
is True in Π . When nT = 0, sum < 0 and the probability is closer to 0; when
nT > 0, sum > 0 and the probability is closer to 1.

Example 3. This example is similar to Example 1, but uses only positive con-
junctions3, and also involves multiple logical variables of the same population.

〈{}, q, α0〉
〈{x}, q ∧ true(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, true(x), α3〉
〈{x}, r(x), α4〉
〈{x, y}, q ∧ true(x) ∧ true(y), α5〉
〈{x, y}, q ∧ r(x) ∧ true(y), α6〉
〈{x, y}, q ∧ r(x) ∧ r(y), α7〉

In RLR and in MLN, if all R(Ai) are observed:

P (q | obs) = sigmoid(α0 + nα1 + nTα2 + n2α5 + nTnα6 + n2Tα7)

where obs has R(x) true for nT individuals, and false for nF individuals out of
a population of n. The use of two logical variables (x, y) of the same population
gives a squared dependency in the population.

3 Here true(x) is true of every x. This notation is redundant. If you want the tradi-
tional MLN notation, you can remove the explicit set of logical variables and keep the
true(·) relations. If you are happy with the explicit logical variables, you can remove
the true(·) predicates. Removing both is incorrect. Keeping both is harmless. For-
mulae that involve negation are redundant; any set of weighted formulae involving
negation can be replaced by weighted formulae that don’t involve negation [9].
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4 Three Elementary Models

Consider the simplest case of aggregating over populations, with a PRV Q con-
nected to a PRV R(x) containing an extra logical variable, x, as in Figure 1. In
the grounding, Q is connected to n = |pop(x)| instances of R(x). We assume the
model is defined before n is known; it is applicable for all values of n.

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

R(x)

x

Q

R(A2)

Q

R(A1) R(An)...

(b) (c)(a)

Fig. 1. Running example as (a) näıve Bayes (b) logistic regression with independent
priors for each R(x) and (c) Markov network. On the top are the networks using plate
notation, where plates [1], drawn as rectangles, correspond to logical variables. On the
bottom are the groundings for the population {A1, A2, . . . , An}.

For this situation, Fig. 1(c) shows an undirected model with a factor for Q
and a pairwise factor for Q with each individual. Fig. 1(a) shows a directed
model where R(x) is a child of Q. In the grounding it produces a näıve Bayes
model with a factor for P (Q) and a separate factor for P (R(Ai) | Q) for each
individual. In both of these models the joint probability is the product of factors.
In terms of MLNs and RLR, factors corresponds to weighted formulae.

The näıve Bayes model of Figure 1(a) is an instance of the Markov network
of 1(c). Every näıve Bayes model can be represented by a Markov network, but
the converse is not true. In some sense the näıve Bayes model is the Markov
network with the constraint that the factors represent conditional probabilities
(sum to 1, given Q).

For a directed model with R(x) as a parent of Q (Fig. 1(b)), Q has an un-
bounded number of parents in the grounding, so we need some way to aggregate
the parents. Common ways to aggregate in relational domains, e.g. [5,3,12,14,11],
include logical operators such as noisy-or, noisy-and, as well as ways to com-
bine probabilities. This requirement for aggregation occurs in a directed model
whenever a parent contains an extra logical variable.

While it may seem that these models are syntactic variants, the models involve
very different independence assumptions [13]:
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– In the näıve Bayes and the MLN (Figure 1(a) and 1(c)), the variables R(x)
and R(y) (for x �= y) are independent given Q, and dependent not given Q.

– In the directed model with aggregation (Figure 1(b)) the variables R(x) and
R(y) (for x �= y) are dependent given Q, and independent not given Q.

These dependencies do not depend on what aggregation is used for the directed
model. For the rest of this paper we assume that RLR is used as the aggregator.
Note that RLR can use the same formulae as the MLN, in which case, when
all R(Ai) are observed, the posterior probability of Q would be the same in the
MLN and RLR models; however, the posterior probabilities of Q are different
when not all of the R(Ai) are observed.

The difference in the dependency structure means that we cannot represent
a logistic regression model where the R(Ai) are dependent when Q is observed
using an MLN, because in such an MLN the R(Ai) are independent given Q.
It is an open problem whether introducing new formulae that involve multiple
individuals may allow an MLN to represent the regression model. Similarly,
an RLR model cannot represent the MLN where the R(Ai)’s are dependent
not given Q, without introducing other relations or dependencies among the
variables. It is an open question as to whether any finite set of formulae is
adequate to make them able to represent the same distributions.

5 Effects of Population Sizes

In this section we investigate the behaviour of MLNs and RLR as the population
size n varies.

5.1 A Comparison of MLN, RLR and MF for the Simplest Case

We now compare MLN, RLR, and a simple mean-field (MF) approximation
of RLR, for the elementary models in Figure 1. For MLN (Figure 1 (c)), we
use the MLN parametrization of Example 1 as the joint distribution. For RLR
(Figure 1 (b)), we use pr as the i.i.d. prior probability of each r(x), and use
the RLR parametrization of Example 1 for P (q | R(A1), . . . , R(An)). (Note that
P (r(x)) = pr can be represented by RLR model for R(x) using the single formula
〈{x}, r(x), α3〉, where sigmoid(α3) = pr.) We can now sum out the unobserved
variables R(x), and get P (q | n). The dependency of P (q) on n is an effect of
population size.

For the MLN, when Q is conditioned on, the graph is disconnected, with each
component R(x) having the same probability. So to compute PMLN (q | n), we
can compute the probability of one of them and raise it to the power of n [15]:

PMLN (q | n) = sigmoid( α0 + n log(eα2 + eα1−α3) ) (2)

Note this is a logistic function (the sigmoid of a linear function) of n and α0,
but not a logistic function of the other parameters.
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For the RLR model, summing out the unobserved variables R(x) gives:

PRLR(q | n) =
n∑

i=0

(
n
i

)
sigmoid(α0 + iα1 + (n− i)α2)(1− pr)ipn−i

r

where i is the number of individuals for which R(x) is false. This inference is an
instance of first-order variable elimination [19].

Finally, the simple mean-field approximation to the RLR model is:

PMF (q | n) = sigmoid(α0 + nprα1 + n(1− pr)α2)

Note that npr is the expected number of R(x)’s that are true, and n(1 − pr) is
the expected number of R(x)’s that are false.

Example 4. Fig. 2 compares P (q | n) for RLR, MLN and the mean-field ap-
proximation of RLR, using α0 = −4.5, α1 = 1, α2 = −1, and pr = 0.7 (thus
PMF (q | n) = sigmoid(−4.5 + 0.4n)). The MLN uses α3 = 2.82, chosen to give
it the same probability as the RLR for n = 1.

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

P
(q

)

relational logistic

mean field

MLN

Fig. 2. P (q | n) in Example 4

PMLN (q | n) is a logistic function (the sigmoid of a linear function) of n,
and so is monotonic with n. It might be conjectured that the MLN and RLR
models are qualitatively similar. It is therefore intuitive to make the following
conjecture:

Conjecture 1. PRLR(q | n) (in the RLR model for Fig. 1 (b)) is monotonic in n.

It turns out that this conjecture is false.

Example 5. Fig. 3 demonstrates the setting: α0 = −2, α1 = 2, α2 = −1, pr =
0.3. Whereas the mean-field approximation of RLR, PMF (q | n) = sigmoid(−2−
0.1n), is monotonic, PRLR(q | n) is not, having a maximum at n = 18. (Exam-
ple 6 shows PMLN (q | n) for this setting.)
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Fig. 3. P (q | n) in Example 5

5.2 Phase Transitions in MLNs

A phase transition in physics arises when a value flips from one state to another.
In this section we show how a probability can flip from one value to another
(e.g, close to 1 or close to 0) as either a parameter varies or a population varies.
These interact, as rate of change can depend on the population and on parameter
values.

One of the properties of the directed model of Figure 1(b) is that PRLR(R(Ai) |
n) does not depend on n and can be given as input to the model. In MLNs,
however, PMLN (R(Ai) | n) depends on n, except for the special case of a näıve
Bayes model represented using an MLN. We show that for some MLNs, there is
a phase transition where PMLN (R(Ai) | n) cannot be arbitrarily set in the limit
as the population increases.

Example 6. Consider the same parametrization as Example 5, and the mapping
to MLNs given in Example 1. Under this mapping, the MLN and the RLR both
represent the same conditional probability P (q | R(A1), . . . , R(An)). To fully
specify the model, RLR requires pr, representing P (r(x)) for all x. The MLN
requires α3.

Fig. 4 shows PMLN (q | α3) for different population sizes n. All of these slopes
are logistic functions. As n increases the slope becomes steeper.

There is a phase transition at approximately α3 = 0.7. For α3 < 0.7, PMLN (q |
n) decreases with n, and for α3 > 0.7, PMLN (q | n) increases with n. At the
phase transition point, PMLN (q | n) does not depend on n. The phase transition
occurs when the coefficient of n in Equation (2) is 0.

Fig. 5 shows PMLN (r(A1) | α3) for different population sizes n (PMLN (r(Ai))
is identical for all individuals Ai). Similarly to Figure 4, the slope becomes
steeper with increasing n’s.
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Fig. 4. PMLN (q | α3) in an MLN for various population sizes n, for Example 6
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Fig. 5. PMLN (r(A1) | α3) in an MLN for various population sizes n, for Example 6

Notice the way the parameter α3 affects PMLN (q) or PMLN (r(Ai)) depends
on n. We cannot set the parameters so that the MLN represents arbitrary values
for PMLN (r(Ai)) as the population varies, as we show:

At the phase transition, there is an approximately vertical line segment for
large populations. The corresponding probabilities for r(A1) cannot be repre-
sented in the limit n → ∞. In the limit, PMLN (q | n) approaches either 0 or 1
(or is not affected by n). Suppose in the limit PMLN (q | n) → 1 and we tried
to adjust α3 to fit PMLN (r(A1) | n) = 0.3 when PMLN (q | n) = 1. The new
value found for α3 implies that PMLN (q | n)→ 0 in the limit. Similarly, suppose
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Fig. 6. PMLN (q | n) and PMLN (r(A1) | n) for α3 = 0.66 and 0.73, for Example 6

PMLN (q | n)→ 0 and we tried to adjust α3 to fit PMLN (r(A1) | n) = 0.3 when
PMLN (q | n) = 0, the new value found for α3 implies that PMLN (q | n) → 1.
Thus α3 cannot be set to make PMLN (r(A1) | n)→ 0.3 as n→∞.

Fig. 6 shows how P (q) and P (r(A1)) vary with population size for two different
parameterizations, α3 = 0.66 and 0.73. The monotonically increasing lines are
for α3 = 0.73 and the decreasing lines are for α3 = 0.66. As α3 gets closer to the
phase transition, the graphs approach the extremes at a slower rate.

5.3 Behavior of MLNs on More General Cases

In general it is a complex inference problem to determine the probability of a
random variable as a function of n. However, we can characterize some of the
cases where the probability is bounded away from 0 and 1, or approaches 0 or 1
in the limit as a population approaches infinity.

Proposition 1. Consider an MLN with finite weights. Let n be the size of some
population and V be a ground random variable. If the number of formula instan-
tiations that depend on V ’s value is independent of n, then PMLN (V | n) is
bounded away from 0 and 1, i.e., exists c > 0 such that 0 < c ≤ PMLN (V | n) ≤
1− c < 1 for all n’s.

Proof. The number of such formula instantiations was guaranteed to be fixed
(independent of n). The weights are finite, so each such contribution is bounded.
Define the neighbours of V to be the grounding of the other PRVs in the weighted
formulae that V appears in. Let c be the minimum of the conditional probability
of V given its neighbours, and ¬V given its neighbours. This c has the property
specified in the proposition, as P (V | n) is a linear interpolation of the proba-
bilities of V given its neighbours. ��



302 D. Poole et al.

Proposition 2. Consider an MLN with finite weights. Let pop be some popu-
lation, n = |pop|, V be any PRV, and V ′ be any ground instance of V . If V ′

does not unify with a PRV that is in a weighted formula with another PRV that
has an extra logical variable typed with pop, then PMLN (V ′ | n) is bounded away
from 0 and 1.

Proof. In this case V ′ has a fixed number of neighbours in the grounding as
n varies, and there are a fixed number of formula instantiations that depend
on V ′’s value. Therefore, Proposition 1 guarantees PMLN (V ′) is bounded away
from 0 and 1. ��

Proposition 3. Consider an MLN with finite weights. If PRV V is in a formula
with PRV R that includes a logical variable of a population of size n that does
not appear in V , and for any such R, R does not unify with a PRV in other
formulae or with an instance of itself in that formula, then either PMLN (V | n)
is a constant (independent of n), or limn→∞ PMLN (V ) is either 1 or 0.

Proof. Such cases are locally isomorphic to the simple case analyzed earlier. ��

It is an open problem to characterize other cases of what happens in the limit.

5.4 Real Data and Prior Knowledge

Figure 7 show P (25 < Age(p) < 45 | n) for a person p, given the number n
of movies they rated, for the Movielens 1M dataset (http://grouplens.org/
datasets/movielens/), averaged over all people. This is calculated by bucketing
over n, with at least 20 people in each bucket.

When trying to fit models to such data, we first need to choose what model
class to use. We might want to not only fit to the data, but to fit what we expect

Fig. 7. Observed P (25 < Age(p) < 45 | n) from the Movielens dataset

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/


Population Size Extrapolation in Relational Probabilistic Modelling 303

Fig. 8. Sigmoids of polynomials of n. The population size, n, is on the x-axis.

in the limit. We can design the structure of the model to either go to 0 or 1
in the limit or to be bounded away from 0 and 1. In this particular example,
we would not expect the probability to go to 0 or 1, and we would also not
expect the age to be independent of the number of movies a person has rated
(the population size n for each person). So in the model we would not just have
weighted formulae that contain Age(person) and Rated(person,movie), for if we
did, by Proposition 3, either the age does not depend on the number of movies
rated or the Age becomes deterministic (is 1 or 0) in the limit. This does not
preclude more complicated formulae, but a preference for simpler models might.

5.5 Fitting Polynomials

In Example 3, P (q | n) is a (sigmoid of a) degree-2 polynomial of n. One might
innocently write weighted formulae like in Example 3 without realizing the im-
plications of such statements and get very surprising results. In this section we
show by example what can happen unexpectedly.

Consider fitting a degree-2 polynomial to data in which the population size n
is in the range 0 ≤ n ≤ 50. Suppose we find that the closest fit is 0.01n2−n+16.
Suppose in another run, we fit −0.01n2 − 0.2n+ 8. Figure 8 plots these, but in
the range 0 ≤ n ≤ 100. The polynomials are very close in the training range,
but the first polynomial goes up soon after, even though we have no evidence of
this in the data set.

This is not an isolated occurrence. A degree-k polynomial may have up to k−1
points where it changes between increasing and decreasing. If the polynomial we
fit has one or more of these points beyond the region of the training set, we are
likely to get very unintuitive predictions.

The sign of the coefficient of the leading power in the polynomial determines
whether the probability approaches 0 or 1. However, this is often difficult to
determine, particularly if we are close to phase transitions.

6 Conclusion

In this paper we investigated the dependence on population size for relational
models. Even for simple models that are well understood at the non-relational



304 D. Poole et al.

level, there are complex interactions of the parameters with population size. The
results of this paper are important for a number of reasons:

– If we learn a model for some population sizes and apply it to other pop-
ulation sizes, it is important to know what the model implies about such
extrapolation of population sizes. Here we have shown some cases where the
details of the model makes particular predictions about the extrapolation.

– We want to know the effect of choosing particular formulae. What assump-
tions are we making? For example, adding an adding an extra variable to a
formula adds a dependency on population size.

– If one model fits some data better than another, it is important to understand
why. We have investigated the effects of some design decisions for directed
and undirected models.

– If we want to extrapolate from data, how can prior information affect the
formulae used. The prior information we have considered is what how should
the probability change as the population grows.

The other message is that undirected models such as MLNs are different to
directed models, such as those that use RLR. It is important to understand these
differences if we are to choose an appropriate model for a domain. In particular,
when fitting a model to data, we should consider both models, and not assume
that one works better than the other independently of the domain.

This paper has exposed more questions than it has answered. Determining de-
pendencies on population sizes for more complicated models is an open question,
which may allow a modeler to rule out some models for their specific application.
Ideally, we would like ways to generate qualitative descriptions about the model
from the model’s formulae.
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Abstract. To characterize a user’s preferences and the social summary of a doc-
ument, the user profile and the general document profile are widely adopted in ex-
isting folksonomy-based personalization solutions. However, in many real-world
situations, using only these two profiles cannot personalize well the search results
on the Social Web, because (i) different people usually have different perceptions
about the same document, and (ii) the information contained in the user profile
is usually not comprehensive enough to characterize a user’s preference. There-
fore, in this work, in order to improve personalized search on the Social Web, we
propose a dual personalized ranking (D-PR) function, which adopts two novel
profiles: an extended user profile and a personalized document profile. For each
document, instead of using a general document profile for all users, our method
computes for each individual user a personalized document profile to better sum-
marize his/her perception about this document. A solution is proposed to estimate
this profile based on the perception similarities between users. Moreover, we de-
fine an extended user profile as the sum of all of the user’s personalized doc-
ument profiles to better characterize a user’s preferences. Experimental results
show that our D-PR ranking function achieves better personalized ranking on the
Social Web than the state-of-the-art baseline method.

1 Introduction

Recently, with the rise of Web 2.0 applications, such as social bookmarking systems,
electronic commerce websites, blogs, and social network sites, the Web has evolved
towards the so-called Social Web, where users can freely provide social annotations
to online documents (i.e., Web pages or resources on the Social Web) via bookmark-
ing, tagging, rating, commenting, and so on. Social annotations are valuable resources
for personalized search on the Social Web. On the one hand, annotations provided by
different Web users from different perspectives are usually good summaries of the cor-
responding documents. On the other hand, social annotations are also ideal data for
privacy-enhanced personalization: first, they are provided by a user directly, so these
annotations can be treated as a user’s individual opinion about a document; these inter-
ests and preferences of the user can be harvested by the aggregation of his/her social
annotations; second, these social annotations are usually publicly available and contain
little sensitive information about users, so they can be safely utilized without violating
user privacy. In this paper, we refer to social annotations as social tags assigned to doc-
uments by users in bookmarking systems, but relevant techniques can be easily adapted
to other social metadata (e.g., comments, blogs, etc.) as well.

U. Straccia and A. Calı̀ (Eds.): SUM 2014, LNAI 8720, pp. 306–319, 2014.
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Consequently, more and more research activities focus on personalizing the search
on the Social Web using social tags [3,4,25,26]. Generally, given a query issued by
a user, the existing methods rank the online documents by the corresponding ranking
scores, which are normally comprised of two parts: a query-related part, measuring the
textual similarity between the given query and each document, and a personalization
part, measuring the similarity between the user’s preferences (in the user profile) and
the social summary of each document (in the general document profile).

A user profile is a weighted vector, whose dimensions are tags and whose values in
each dimensions are the corresponding tag weights. In the user profile, the tag weight is
influenced by the number of times that this user uses the tag for bookmarking. Similarly,
the general document profile is also a weighted vector and its tag weight is influenced
by the number of times that the document is bookmarked with the tag.

However, in many real-world situations, using these two profiles cannot personalize
well the search results on the Social Web. On one hand, users usually have different
perceptions about the same document, so, for a specific user, not all tags assigned by all
the other users are equally helpful to summarize his real perception about the document
(some of them are actually harmful). Therefore, the general document profile, which
treats tags from all users with equal importance, cannot properly summarize a special
user’s personal perception about the document. On the other hand, in practice, there are
tens of billions of documents on the Web and even a long-time Social Web user can only
annotate a very small portion of them. Therefore, the user profile, based on only the tags
assigned by the corresponding user, usually does not contain sufficient information to
comprehensively characterize the user’s preferences.

To solve these problems, we propose a dual personalized ranking (D-PR) function
which utilizes two novel profiles, called personalized document profile and extended
user profile, to better characterize a user’s preferences and better summarize his/her
personal perception about a document, respectively. Instead of using the same general
document profile for all users, for each of the documents, our method computes for
each individual user a personalized document profile to characterize his/her personal
perception about this document. Furthermore, the extended user profile is defined as the
sum of all of the user’s personalized document profiles. As each user has a personalized
document profile for each of the documents, the extended user profile contains more
information to comprehensively characterize a user’s preferences.

However, how to obtain the user’s personalized document profiles for all online doc-
uments is a challenge. The tags assigned by a user to a document may be a good outline
of his personal perception about this document. But, in fact, this is unpractical: on the
one hand, a user normally uses only a few (typically 1 or 2) tags to annotate a doc-
ument, so these tags contain too little information to comprehensively summarize the
document; on the other hand, only a small portion of online documents are annotated
by a user, but we need a personalized document profile for each document.

Therefore, we propose to estimate the personalized document profile of a user u by
using the perception similarity between u and the other users as weights to sum up tags
assigned to the relevant document by the users having high perception similarity with u.
The underlying intuition is that users having similar perceptions about the existing doc-
uments are very likely to also share similar perceptions about future documents; so,
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for a user u, tags assigned by users having high perception similarity with u are more
helpful to characterize u’s personal perception about the document than tags assigned
by users having low perception similarity with u. Intuitively, the higher perception sim-
ilarity between two users, the higher their tags are weighted for each other.

In summary, we make the following contributions in this paper.

– We propose a dual personalized ranking (D-PR) function to improve personalized
search on the Social Web by introducing two novel profiles: the extended user pro-
file and the personalized document profile, to better characterize a user’s prefer-
ences and better summarize his/her personal perception about a document.

– We formally define the extended user profile as the sum of all the user’s person-
alized document profiles; and we further propose to estimate a user’s personalized
document profile using the perception similarity between users. Finally, a method
used to quantify the perception similarity is also presented.

– We conduct extensive experimental studies based on a public real-world large scale
research dataset [15]. The results validate the effectiveness of our D-PR function:
it outperforms the state-of-the-art SoPRa function [3].

The rest of this paper is organized as follows. In Section 2, we present some prelim-
inaries. Section 3 formally defines two state-of-the-art personalized ranking solutions
and illustrates their potential problems. In Section 4, we propose a novel D-PR func-
tion to solve these problems; while the approaches of estimating the user’s personalized
document profile and constructing the extended user profile are also presented in this
section. Experiments are discussed in Section 5. Section 6 reviews some closely related
works. Finally, Section 7 concludes this work and provides some future directions.

2 Preliminaries

Social bookmarking systems are based on the techniques of social tagging. The main
idea behind them is to provide the user with a means to freely annotate resources on the
Web (e.g., URIs in delicious1 or images in Flickr2) with tags. Since the annotations can
be shared with others, this practice of collaboratively creating and translating tags to
annotate and categorize online content is usually called collaborative tagging or social
tagging, and the resulting tag-based classification is called a folksonomy.

Definition 1. Let U , T , and D be the sets of users, tags, and documents. A bookmark
is a triple (u, t, d) ∈ U ×T ×D, which represents the fact that the user u has annotated
the document d with the tag t. A folksonomy F(U, T,D) is a subset of U × T ×D.

The following example illustrates the above concepts, including folksonomies and
bookmarks; it will be used in the sequel as a running example.

Example 1. Consider the set of users U = {Alice, Bob, Carl}, their set of tags T =
{English, Chinese, Comedy, Action, Interesting, Boring}, and a set of docu-
ments D = {d1, d2, d3}. A folksonomy F may then express the following knowledge:

1 https://delicious.com/
2 https://www.flickr.com/

https://delicious.com/
https://www.flickr.com/
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Table 1. Tags used by users to annotate documents

tags in d1 tags in d2 tags in d3

Alice English, Comedy, Interesting Boring Chinese, Comedy, Interesting
Bob Boring Chinese, Action, Interesting Boring
Carl English, Comedy, Interesting Boring (Null)

(i) Alice and Carl are interested in all comedies and dislike action movies, while Bob
has the right opposite preferences; and (ii) d1 is an introduction page of an English
comedy movie, d2 is an introduction page of a Chinese action movie, and d3 is an on-
line video of a Chinese comedy movie. The specific tags used by each of these users to
annotate each of these online documents are shown in Table 1. ��

The personalized ranking problem [3,25] can be fomalized as follows: given a folk-
sonomy F(U, T,D) and a query q submitted by a user u ∈ U to a search engine,
it re-ranks the set of documents dq ∈ D that match q, in such a way that relevant
documents for u are highlighted and pushed to the top for maximizing this user’s sat-
isfaction and personalizing the search results. The ranking follows an ordering τ =
[d1 ≥ d2 ≥ · · · ≥ dk] in which (i) dk ∈ D and (ii) di ≥ dj iff Rank(di, q, u) ≥
Rank(dj , q, u), where Rank(d, q, u) is the result of a ranking function that quantifies
similarity between q and the document d relative to u .

The vector space model (VSM) [19] is a general model used in information retrieval
where the profile of a user (resp., a document) is mapped to a weighted vector in a
universal term space. The terms can be tags or words. We use words when we deal with
the text of the document and of the query, while tags are used when we deal with the
tags of the document and of the query (each query word is considered a tag).

To calculate the similarity between two vectors, we use the well-known cosine sim-
ilarity. Given two vectors A = (A1, . . . , An) and B = (B1, . . . , Bn), its cosine sim-
ilarity Sim(A,B) is formally defined as follows, where Sim(A,B) ranges from 0
(independence) to 1 (identity):

Sim(A,B) =
A ·B
|A||B| =

n∑
i=1

Ai · Bi√
n∑

i=1

A2
i ·

√
n∑

i=1

B2
i

. (1)

We use the textual matching score, Score(q, d), to indicate how similar a query q
is to the textual content of a document d using words as terms. This score is not
folksonomy-based and has been widely adopted in most commercial search engines.
Thus, it can be obtained directly from these search engines, when it is incorporated into
a personalized ranking function.

3 Personalized Ranking Functions

In this section, we recall two state-of-the-art personalized ranking methods and illus-
trate their potential ordering problems in the running example. All ranking functions
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presented in this paper follow the widely used VSM, where the weights of tags are
based on tag frequencies (tf ), and the extension to tf-idf (tag frequency-inverse docu-
ment frequency) [10] is trivial.

3.1 User Profile Personalized Ranking Function

Xu et al. [26] propose a ranking function to compute the ranking score Rank(d, q, u)
of a document d relative to a given query q issued by a user u from two aspects: (i) the
textual matching score Score(q, d), measuring the statistical textual quality of d relative
to q; and (ii) a profile matching score Sim(pu,pd), which estimates the interest of the
user u in the document d, and which is measured by the similarity between the user
profile and the general document profile. As this method uses the user’s preferences
that are implicitly contained in the user profile to personalize the ranking result, we call
it user profile personalized ranking (UP-PR) function, formally defined as follows:

Rank(d, q, u) = α · Sim(pu,pd) + (1− α) · Score(q, d), (2)

where pu is the user profile indicating this user’s personal preferences, and pd is the
general document profile measuring the understandings and perceptions of all users
about this document. Following the VSM, pu (resp., pd) is a weighted vector with
tags as dimensions and tag weights as values, where a tag’s weight is the number of
times that this tag is used by the user (resp., is used to annotate the document) for
bookmarking. The following example illustrates the UP-PR function.

Example 2. Recalling Example 1, Carl would like to find an interesting Chinese com-
edy film, so he issues a query “Interesting Chinese film” to a non-personalized search
engine. Obviously, based on the knowledge in Example 1, Carl would expect the or-
dering of the search result to be τ0 = [d3 ≥ d1 ≥ d2]. However, the search engine
computes Score(q, d1) = 0.6, Score(q, d2) = 0.52, and Score(q, d3) = 0.5, i.e., the
resulting ordering on the search results is τ1 = [d1 ≥ d2 ≥ d3], which is an unexpected
ordering, as the desired document d3 is ranked at the bottom.

On the other hand, if we use UP-PR to personalize the ranking result, then we first
compute the weighted vectors of the query (denoted q), the profile of Carl (denoted
pCarl), and the profiles of the documents (denoted pd1 , pd2 , and pd3 ) as shown in Ta-
ble 2. Then, the personalized UP-PR ranking scores of d1, d2, and d3 for Carl relative
to this query can be computed as shown in Equation 3 with α = 0.5. Therefore, the
personalized ranking of these search results is τ2 = [d1 ≥ d3 ≥ d2].

Rank(d1, q, Carl) =
1

2
(Sim(pCarl,pd1) + Score(q, d1))

=
1

2
(

7√
4 · √13

+ 0.68) =
1

2
(0.97 + 0.6) = 0.79,

Rank(d2, q, Carl) =
1

2
(Sim(pCarl,pd2) + Score(q, d2))

=
1

2
(0.57 + 0.52) = 0.55, (3)

Rank(d3, q, Carl) =
1

2
(Sim(pCarl,pd3) + Score(q, d3))

=
1

2
(0.75 + 0.5) = 0.63.
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However, although τ2 obtained via UP-PR is better than τ1 (promoting d3 from the
bottom to the middle), τ2 is still not the best ordering, as d3 is ranked lower than d1.
Specifically, we note that in Equation 3, d1 has a higher ranking score than d3, which
is intuitively inaccurate, because (based on the knowledge in Example 1) Sim(pCarl,
pd3) should have similar value to Sim(pCarl,pd1) (as Carl prefers all comedies),
and Score(q, d3) should be the highest text matching score (as d3 is a Chinese comedy
film perfectly matching the query). In the following (sub)sections, we will analyze in
detail the reasons for such an inaccurate ordering. ��

3.2 Social Personalized Ranking Function

We obtain a low textual matching score Score(q, d3) in Example 2, because d3 is an
online video that has little textual content to compute a proper textual matching score.
This problem is common on the Social Web, and, to solve it, Bouadjenek et al. [3] pro-
pose a social personalized ranking (SoPRa) function, which extends the UP-PR func-
tion in [26] by considering a new non-personalized matching score: the social matching
score Sim(q,pd) between the given query q and the social summary of document pd.
This score indicates how relevant the social summary of a document d is to q. The
intuition is to use social tags to better summarize the content of a document and add
further information for social resources with very little textual content (e.g., videos and
images). Therefore, we have two query-related scores in SoPRa, which are defined as
follows:

Rank(d, q, u) = α ·Sim(pu,pd)+ (1−α) · [β · Sim(q,pd) + (1− β) · Score(q, d)] . (4)

Example 3. Continuing Example 2, if we personalize the results of the search engine
by SoPRa, the ranking scores of d1, d2, and d3 for Carl are computed as shown in
Equation 5 (with α = 0.5 and β = 0.5).

Rank(d1, q, Carl) =
1

2
(Sim(pCarl,pd1) +

1

2
(Sim(q,pd1 ) + Score(q, d1)))

=
1

2
(0.97 +

1

2
(

4√
3 · √13

+ 0.6)) =
1

2
(0.97 +

1

2
(0.64 + 0.6)) = 0.8,

Rank(d2, q, Carl) =
1

2
(Sim(pCarl,pd2) +

1

2
(Sim(q,pd2 ) + Score(q, d2)))

=
1

2
(0.56 +

1

2
(0.44 + 0.52)) = 0.52, (5)

Rank(d3, q, Carl) =
1

2
(Sim(pCarl,pd3) +

1

2
(Sim(q,pd3 ) + Score(q, d3)))

=
1

2
(0.75 +

1

2
(0.87 + 0.5)) = 0.72.

As we can see, the resulting ordering is the same as the one of UP-PR, which is not
desired. Specifically, by using a social matching score, SoPRa narrows the gap between
the ranking scores of d1 and d3, but the improvement is still not big enough to change
the ordering of three documents. ��
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4 Dual Personalized Ranking Function

The reasons for having a low profile matching score Sim(pCarl,pd3) in the previous
examples are twofold: on the one hand, the general document profile pd3 does not
correctly characterize Carl’s real perception about d3, since tags from all users are
treated equally, and the tag from Bob brings a bias; on the other hand, the user profile
pCarl does not properly model Carl’s preference, because pCarl does not tag d3, so
the information used for preference modeling is not comprehensive.

Generally, the widely used general document profile, which treats tags from all users
with equal importance, may not be able to summarize a special user’s personal percep-
tion about a document. Similarly, the information contained in the user profile (i.e., the
tags assigned by the user) is usually insufficient to comprehensively characterize the
preferences of the user.

Therefore, to solve these problems, we propose a new ranking function, which will be
able to better personalize search results by introducing two novel profiles: the extended
user profile and the personalized document profile, to better characterize a user’s prefer-
ences and better summarize his/her personal perception about a document, respectively.
Specifically, instead of using the same general document profile for all users, for each of
the documents, each individual user has a personalized document profile to characterize
his/her perception about this document. Furthermore, we define an extended profile of
user u as p′

u, which sums up all personalized document profiles of u to more compre-
hensively characterize u’s preference. This ranking function is called dual personalized
ranking (D-PR) function and formally defined as follows:

Rank(d, q, u) = α ·Sim(p′
u,pu,d)+(1−α) · [β · Sim(q,pd) + (1− β) · Score(q, d)] , (6)

where the personalized profile of a document d for a user u, pu,d, is a weighted vector
of tags characterizing u’s perception about d; while p′

u is an extended profile of u,
obtained by summing up all personalized document profiles of u and defined as follows:

p′
u =

|D|∑
i=1

pu,di . (7)

Note that in Equation 6, we still use the general document profile pd to compute the
query-related social matching score Sim(q,pd). As defined in Section 3.2, Sim(q,pd)
is a non-personalized matching score, measuring the textual similarity between q and
the social summary of d, and it aims at using social tags assigned by all users to better
summarize the content of a document, so here it is unreasonable to replace pd by pu,d.

4.1 Personalized Document Profile

It is a challenge how to obtain the personalized document profiles of a user for all online
documents. The tags assigned by a user to a document may be a good outline of this
user’s personal perception about this document. However, it is, in fact, not practical:
on the one hand, a user normally uses only a few (typically, 1 to 3) tags to annotate a
document, so these tags contain too little information to comprehensively summarize
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Table 2. Weighted vectors of query and profiles

English Chinese Comedy Action Interesting Boring

pAlice 1 1 2 0 2 1
pBob 0 1 0 1 1 2
pCarl 1 0 1 0 1 1

pd1 2 0 2 0 2 1
pd2 0 1 0 1 1 2
pd3 0 1 1 0 1 1

q 0 1 1 0 1 0

the document; on the other hand, only a small portion of online documents are annotated
by a user, but we need a personalized document profile for each document.

Therefore, we propose to estimate the personalized document profile of a user u
via using the perception similarities between u and other users as weights to sum up
tags assigned to the relevant document by the users having high perception similarities
with u. The underlying intuition is that users having similar perceptions about existing
documents will very likely also share similar perceptions about future documents, so,
for a user u, tags assigned by users having high perception similarity with u are more
helpful to characterize u’s personal perception about the document than tags assigned
by users having low perception similarity with u. Intuitively, the higher the perception
similarity between two users, the higher their tags are weighted for each other.

In this section, we first propose a method to quantify the perception similarities be-
tween users. Then, we present how to use perception similarities as weights of tags to
estimate the personalized document profile. Finally, Example 4 illustrates how to apply
D-PR in the running example.

Profile-Based Perception Similarity. Since the tags assigned by a user to a document
can be treated as an outline of this user’s perception about this document, it is natural
to measure a user’s overall perception by the weighted vector based on all the tags used
by this user, i.e., his/her user profile. Thus, a perception similarity of two users can be
measured by the similarity of their profiles, called profile-based perception similarity:

PerSim(u′, u) = Sim(pu′ ,pu). (8)

Estimate of Personalized Document Profile. For a given user, after obtaining the
perception similarities between u and all other users, we first select a set of users UT ⊆
U , whose perception similarity with u are higher than a predefined threshold T . Then,
for a given document d, we estimate u’s personalized document profile relative to d
(denoted pu,d) by using perception similarities as weights to sum up the tags assigned
to d by the users belonging to UT . Formally,

pu,d =

|Ud∩UT |∑
i=1

(vui,d · PerSim(ui, u)), (9)
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Table 3. Weighted vectors of personalized document profiles and extended user profile

English Chinese Comedy Action Interesting Boring

pCarl,d1 1.9 0 1.9 0 1.9 0.56
pCarl,d1 0 0.56 0 0.56 0.56 1.9
pCarl,d3 0 0.9 0.9 0 0.9 0.56

p′
Carl 1.9 1.46 2.8 0.56 3.36 2.16

where vui,d is also a weighted vector of tags, whose weight of a tag is the number of
times that the tag is assigned by ui to d; while Ud ⊆ U is the set of users who annotate
document d, and |Ud ∩ UT | is the cardinality of the intersection of Ud and UT .

Example 4. Continuing the running example, based on Equation 8, we first use pAlice,
pBob, and pCarl as shown in Table 2 to compute the perception similarities between
Carl and two other users as follows:

PerSim(Carl,Alice) = Sim(pCarl,pAlice) =
6√

4 · √11
= 0.9,

P erSim(Carl,Bob) = Sim(pCarl,pBob) =
3√

4 · √7
= 0.56, (10)

PerSim(Carl,Carl) = Sim(pCarl,pCarl) = 1.

Then, based on Equation 9, we estimateCarl’s personalized document profile of d1, d2,
and d3 (denoted pCarl,d1 , pCarl,d2 , and pCarl,d3 , respectively) as shown in Table 3,
where the thresholdT is set to 0.5, soUT = U . Consequently, we further use Equation 7
to obtain the extended profile of Carl (denoted p′

Carl) as shown in Table 3. Finally,
the personalized ranking scores of d1, d2, and d3 relative to Carl based on the D-PR
function (Equation 6) can be computed as shown in Equation 11 (with α = 0.5 and
β = 0.5), and the resulted ordering is τ3 = [d3 ≥ d1 ≥ d2].

Rank(d1, q, Carl) =
1

2
(Sim(p′

Carl,pCarl,d1) +
1

2
(Sim(q,pd1 ) + Score(q, d1)))

=
1

2
(

17.0052√
11.1436 · √34.3052

+
1

2
(0.64 + 0.6))

=
1

2
(0.87 +

1

2
(0.64 + 0.6)) = 0.75,

Rank(d2, q, Carl) =
1

2
(Sim(p′

Carl,pCarl,d2) +
1

2
(Sim(q,pd2 ) + Score(q, d2)))

=
1

2
(0.7 +

1

2
(0.44 + 0.52)) = 0.59, (11)
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Rank(d3, q, Carl) =
1

2
(Sim(p′

Carl,pCarl,d3) +
1

2
(Sim(q,pd3 ) + Score(q, d3)))

=
1

2
(0.88 +

1

2
(0.87 + 0.5)) = 0.78.

In summary, τ3 ranked by D-PR is identical to the desired ordering τ0. This is be-
cause D-PR solves profile modeling problems existing in the state-of-the-art approaches
in the following two ways: (i) for a given user (e.g.,Carl), D-PR utilizes the perception
similarities to weaken the influences of tags assigned by users having different percep-
tions with this user (e.g., Bob) such that the resulting personalized document profiles
can better capture this user’s real perception about the documents; (ii) for a user u, D-PR
obtains a personalized document profile for each document, so the extended user profile
of u, computed by summing up all these personalized document profiles, contains more
sufficient information to characterize u’s preferences more comprehensively. ��

5 Experimental Study

In this section, we evaluate the personalization performance of our D-PR function by
comparing it with the SoPRa function, which is the closest work and considered as the
state-of-the-art baseline. As this experiment aims at verifying the personalization effect
of introducing two novel personalized profiles, we set β = 1 to eliminate the influence
of the possible non-personalized textual matching problem in Score(q, d).

We conduct experimental studies based on a public real-world large scale research
dataset, which is described and analyzed in [15]. This dataset gathers more than 100 000
URLs of online documents and retrieves their social annotations from Delicious.com.
After removing the documents without any social annotation, the general information
of the resulting dataset is as shown in Table 4. Statistically, each user assigns an average
of 9.4 tags; only 0.038% of users annotate more than 100 (0.17%) online documents;
and the maximum number of online documents annotated by a single user is only 442
(0.75%). These statistical results show that, for any individual user, only a very small
proportion of online documents are annotated by him/her, so we need to estimate the
user’s personalized document profile with the help of tags assigned by others, using
their perception similarities as weights.

5.1 Evaluation Methodology

Although the relevance judgment of personalized search result subjectively depends on
end users, several researches [1,2,12] have already proved that the tagging behavior of
a user on the Social Web is closely correlated to his/her online search behavior, i.e.,
if a document is annotated by a user with some tags, this document is very likely to

Table 4. Dataset information

Users Tags Documents

388,963 3,647,266 59,126



316 Z. Xu, T. Lukasiewicz, and O. Tifrea-Marciuska

be visited by the same user if it appears as a search result of using the same tags as
the search query. This finding provides the theoretical base of our automatic evaluation
framework: if a query is issued by a user with some terms, the relevant document is the
one annotated by this user using the same terms as tags.

Therefore, to generate a set of synthetic user queries, we randomly select a set of
bookmarks from the dataset. For each bookmark (u, t, d), we create a query q = t,
which is issued by user u and aims at finding document d. In this paper, we limit the
size of each query to be 2 to 4 keywords, which is a typical query size issued for on-
line search as studied in work [8]. Finally, we remove all selected bookmarks to avoid
promoting the annotated document with bias. Furthermore, to reduce the influence of
removing bookmarks, we only randomly create 100 synthetic user queries each time
and conduct 10 times of evaluations independently and then report the average results.

The performance of the D-PR function and the SoPRa function are evaluated based
on a widely adopted metric [3,25], called mean reciprocal rank (MRR). MRR measures
the performance of a personalized function by assigning a value 1/r for each tested
personalized query answering and then computing the mean value. Formally,

MRR =
n∑

i=1

1/(ri · n), (12)

where ri is the ranking position of the ith user query’s relevant document in the person-
alized search result ordering, and n is the total number of tested queries.

5.2 Results

Since both the D-PR function and the SoPRa function use a parameter α to adjust the
proportion of the profile matching score in the ranking score, we vary the value of the
parameter α from 0 to 1.0 and report the result in each case. We set the threshold T of
the perception similarity to 0.5. Recall from above that we set β = 1.

The experimental results of these two personalized functions are shown in Fig. 1.
Generally, Fig. 1 shows that our D-PR function outperforms the SoPRa function in
terms of MRR in almost all α cases, and its best ranking result at α = 0.3 is about 11%
better than the one of the SoPRa function at α = 0. Specifically, we have the following
observations in Fig. 1: (i) A continuous decline of the MRR of SoPRa is witnessed from
α = 0 (non-personalized) to α = 1 (fully personalized); this observation verifies our
argument that using user profiles and general document profiles cannot personalize well
search results on the Social Web (here, they make ranking even worse). (ii) When the
value of α rises from 0 to 0.3, the MRR of D-PR increases from around 0.147 to about
0.163. This indicates that the profile matching score in D-PR can better personalize the
ranking of search results, which proves the effectiveness of the proposed personalized
document profile and extended user profile. (iii) Afterwards, the MRR of D-PR contin-
uously falls down to its bottom at α = 1, which shows that excessive personalization
will produce a bad ordering, because the topic matching between query and document
is also critical for online search. Overall, these experimental results show that our D-PR
function achieves better personalized search than the state-of-the-art SoPRa function.
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Fig. 1. D-PR vs SoPRa

6 Related Work

Personalized Web search by considering the searcher’s personal attributes and prefer-
ences while evaluating a query is of great interest in information retrieval [18], since
user queries are in general very short and provide an incomplete specification of the
individual information need of a user. Some approaches have already been proposed to
mine user preferences from both the user’s explicit and implicit activities on the Web,
such as query history [21], browsing history [22], the user’s current task [13] or intent
[23], and even eye-tracking during the search session [9]. Then, a user profile is built
from the user’s preferences and used for personalization by query expansion [5], i.e., a
user’s query is expanded based on the resulting profile to reflect the particular interest,
or re-ranking [20], i.e., search results are re-ranked according to a user’s profile such
that personally relevant results appear higher in the search result list.

Specifically, the work in [9] shows that user preferences that are derived from click
logs are reasonably reliable; so, in [16], the history of click data is used to estimate the
user’s hidden interests and to compute values of the topic-sensitive PageRank [7] for
personalizing search results. Furthermore, Shen et al. [20] develop a method based on a
decision-theoretic framework to convert user search histories into user profiles that are
used to both expand queries and re-rank search results. As shown in [6], the benefits
that can be achieved through personalization vary across queries; [13] and [23] thus
propose solutions to discover the user’s current tasks or intents by log analysis to help
identify the queries that will benefit most from personalization.

However, mining user preferences by aggregating the user’s online activities in-
evitably encounters a serious problem of privacy compromise [11]: due to the various
online activities, Web logs usually contain some sensitive information of users, such
as home address, medical record, bank account number, social security number, and
so on. Therefore, as a privacy-enhanced personalization technique, folksonomy-based
personalized Web search attracts more and more research efforts [3,14,25,26].

Xu et al. [26] propose to use the similarity of folksonomy-based user and document
profiles to personalize search results. Then, Bouadjenek et al. [3] extend this work by
introducing a social matching score to solve the textual matching problem. Instead of
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using tf-idf, Noll and Meinel [14] only use user tag frequency as the weighting of tag
and normalize all document frequency to 1 to put more importance to the user profile.
Vallet et al. [25] propose to use the probabilistic BM25 ranking model [17] to replace
VSM. As these works weight tags from all users equally when modeling the document
profile, they may encounter some personalization problems as discussed above.

In [24], Teevan et al. investigate how to use groups to improve personalized Web
search and conclude that using group data collected across group members yields a
significant improvement over individual personalization alone. Their work identifies the
groups (or separate users) by either explicit properties (e.g., age, gender, job, location),
interest groups, or desktop content; however, this information may result in privacy
issues. Therefore, in our work, we propose to use the perception similarity computed
from social annotations as groupization criteria to avoid such privacy problems.

7 Summary and Outlook

In this paper, we have proposed a dual personalized ranking (D-PR) function to improve
personalized ranking of search on the Social Web via an extended user profile and
a personalized document profile. We have formally defined the extended user profile
of a user as the sum of all of his/her personalized document profiles; and we have
further proposed to estimate the personalized document profile based on the perception
similarities between users. Finally, a method used to quantify the perception similarity
has also been presented. We have performed evaluations based on a public real-world
large scale research dataset, and the results validate that our D-PR personalized function
outperforms the state-of-the-art SoPRa function.

In future research, we will apply our D-PR ranking function to other Social Web
datasets to evaluate its performance on various kinds of social resources. We will also
investigate how to utilize categorical or ontology information of online documents to
further enhance personalized search on the Social Web.
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