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Abstract  Stroke is a major cause of death globally, which induces irreversible 
neuronal and endothelial cell death. Endothelial progenitor cell (EPC) based ther-
apeutics result in neovascularization and the improvement of vascular perfusion, 
which benefits clinical stroke patients. Although EPC transplantation in experimen-
tal stroke models shows functional improvement, EPC therapy in clinical stroke 
patients continues to face an arduous task. In this chapter, we give a brief introduc-
tion of EPCs including the source of EPCs, methods of isolation and identification 
of EPCs, the therapeutic potential for stroke, and signaling in modulating EPC func-
tion. Furthermore, we summarize the molecular mechanisms of EPC action after 
transplantation either through differentiating into mature endothelial cells to replace 
damaged cells or by enhancing trophic/regenerative support for endogenous repair 
processes. We discuss the routes of transplantation and the modifying methods for 
EPC safety and efficacy in vivo. Finally, we discuss the pros and cons for the appli-
cation of EPCs for transplantation in clinical patients. Though EPC-based therapy 
is a potential treatment for stroke and holds promise for vascular regeneration, this 
field needs more study to uncover and resolve unsolved problems.

Abbreviations

acLDL	 Acetylated low density lipoprotein
ACE2	 Angiotensin-converting enzyme 2
BBB	 Blood-brain barrier
BDNF	 Brain-derived neurotrophic factor
bFGF	 Basic fibroblast growth factor
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CACs	 Circulating angiogenic cells
CFU-Hil	 Colony forming unit-Hill
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EGF	 Epidermal growth factor
eNOS	 Endothelial NO synthase
EPCs	 Endothelial progenitor cells
EPO	 Erythropoietin
FACS	 Fluorescence activated cell
G-CSF	 Granulocyte colony-stimulating factor
GDNF	 Glial cell line-derived neurotrophic factor
GM-CSF	 Granulocyte-macrophage colony-stimulating factor
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HMGB−1	 High-mobility group box 1
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ICAM−1	 Intercellular adhesion molecule 1
IGF−1	 Insulin-like growth factor−1
IL−8	 Interleukin−8
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MMP−9	 Matrix metalloproteinase 9
MNCs	 Mononuclear cells
MRI	 Magnetic resonance imaging
NPCs	 Neural progenitor cells
PB	 Periblood blood
PDGF	 Platelet-derived growth factor
PlGF	 Placental growth factor
SDF−1α	 Stromal derived factor−1α
TGF-b2	 Transforming growth factor b2
tPA	 Recombinant tissue plasminogen activator
UCB	 Umbilical cord blood
UEA−E	 Ulex europaeus agglutinin 1
VEGF	 Vascular endothelial growth factor

7.1 � Stroke

Stroke is a multifactorial disease, and ischemic and hemorrhagic stroke are the lead-
ing causes of death globally (Hassan and Markus 2000; Rubattu et  al. 2000). A 
variety of risk factors have been illustrated to relate with stroke incidence including 
cerebrovascular diseases, aging, smoking, hypertension, diabetes, hypercholesterol-
emia, and lack of exercise. (Hankey 2006; Allen and Bayraktutan 2008; Flynn et al. 
2008; Karam et al. 2008). The brain is very vulnerable to ischemic insult because 
it is sensitive to a lack of oxygen and glucose. Neurological dysfunction usually 
occurs within minutes after stroke onset. However, the deterioration of the brain 
may continue in the following minutes, hours or even days.

Ischemic stroke (> 70 % of strokes) is the most common type of stroke in clinical 
stroke patients. After ischemic stroke onset, a process of pathophysiological events 
are triggered, including energy failure, loss of cell ion homeostasis, the release of 
excitatory amino acid and reactive oxygen species, increase of intracellular calcium, 
disruption of the blood-brain barrier (BBB), activation of glial cells, and the infiltra-
tion of leukocytes (Bliss et al. 2007; Moskowitz et al. 2010). These interrelated and 
coordinated events result in ischemic cell necrosis, which exhibits non-selective 
damage of all cells including neurons, astrocytes, oliogdendrocytes, microglia and 
endothelial cells (Broughton et al. 2009). The size and location of these infarcts are 
determinants of the long-term functional deficits (Sims and Muyderman 2010). The 
ischemic penumbra area represents the region in which there is a chance for recov-
ery via post-stroke therapy (Ginsberg 1997).

The only effective treatment for ischemic stroke patients is to administer re-
combinant tissue plasminogen activator (tPA). However, very few patients are 
lucky enough to receive tPA treatment because tPA has a very narrow time window 
(< 4.5 h). Stem cell therapy has been proposed as a potential treatment for ischemic 
stroke in recent years, especially after putative progenitor endothelial cells have 
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been isolated from bone marrow (BM) and identified as CD34 positive (Asahara 
et al. 1997). This kind of cells is named endothelial progenitor cells (EPCs) and is 
capable of contributing to the formation of new vessels by differentiating into ma-
ture endothelial cells (ECs) or supporting/promoting the endogenous repair process. 
EPCs can also serve as a marker during stroke occurrence and prognosis (Chu et al. 
2008), and preclinical studies have shown EPC transplantation improves functional 
recovery by promoting neurogenesis and angiogenesis or provide trophic/protective 
factors through paracrine effects. Several clinical studies are currently investigating 
the safety and efficacy of EPC transplantation. EPC transplantation in stroke repre-
sents a promising therapeutic approach, although it is still in its infancy.

7.2 � Endothelial Progenitor Cells (EPCs)

7.2.1 � Discovery of EPCs

EPCs are BM mononuclear cells (MNCs), which were first isolated from peripheral 
blood (PB) by Asahara in 1997 (Asahara et al. 1997). This novel technique opened 
a new field for the treatment of vascular disease. Increasing evidence showed that 
EPCs could be mobilized to the PB after ischemic stroke and restore the damaged 
vessels via vasculogenesis (Asahara et al. 1999; Takahashi et al. 1999; Kalka et al. 
2000a; Shintani et al. 2001; Murayama et al. 2002; Asahara and Kawamoto 2004; 
Zhan et al. 2013). Considering these cells’ lack of unique markers, and that they 
share similar surface antigens with some hematopoietic lineages and mature ECs, 
such as CD31/KDR (VEGFR-2)/CD34/VE-cadherin/E-selectin (Rafii 2000; Kha-
koo and Finkel 2005), it is difficult to precisely define EPCs. However, it has been 
generally accepted that EPCs exist in circulating blood and possess angiogenic ca-
pability and the potential to differentiate into ECs, which contribute to the process 
of vasculogenesis and the maintenance of homeostasis in vascular ECs (Asahara 
et al. 1997; Shi et al. 1998; Asahara et al. 1999; Lin et al. 2000; Rafii 2000; Cesari 
et al. 2012). EPCs may be mixed with the circulating ECs in peripheral circulation, 
which may partially differentiate into mature ECs. EPCs play a more important role 
in promoting postnatal vasculogenesis compared with circulating ECs (Kalka et al. 
2000a). Therefore, EPCs and circulating ECs are two different cells.

7.2.2 � Source of EPCs

EPCs can be divided into two types based on their origin: hematopoietic and non-
hematopoietic EPCs. Hematopoietic EPCs originating from BM are considered 
a subtype of hematopoietic stem cells (HSCs). Non-hematopoietic cells could be 
isolated from PB, umbilical cord blood (UCB), and tissue samples (Asahara et al. 
2011). Although the origin of non-hematopoietic cells is unclear, this type of cell 
is likely derived from organ blood vessels and tissue stem cells (Alev et al. 2011). 

Y. Li et al.
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In addition, increased studies have reported additional sources of non-hematopoi-
etic cells. For example, the myogenic-EPCs in the interstitial spaces of skeletal 
muscle contribute to skeletal muscle growth (Tamaki et al. 2002); EPCs could also 
exist in the boundary between smooth muscle and the adventitial layer of human 
vascular walls (Zengin et al. 2006). Other sources of EPCs include the liver and in-
testine (Aicher et al. 2007), dental pulp-derived iPS cells (Yoo et al. 2013), the kid-
ney (Sirker et al. 2009) and adipose tissue (Planat-Benard et al. 2004). Therefore, 
it is plausible that EPCs could be found in other sources, further study is needed to 
investigate the mysterious origin of EPCs.

7.2.3 � Methods for the Isolation and Culturing of EPCs

Actually, it is a challenge, and controversial work, to isolate and identify EPCs 
from the PB, because of these cells’ lack of unique and specific surface markers. 
Currently three methods are mainly used to isolate EPCs from the PB. The first 
and perhaps simplest method is to collect low density MNCs via density barrier 
centrifugation, and then plate these cells on fibronectin coated dishes with culture 
medium containing a variety of growth factors and fetal serum. After 4–5 days, re-
move non-adherent cells (Asahara et al. 2000; Vasa et al. 2001; Tepper et al. 2002). 
The remaining adherent cells present the early EPCs with spindle shape (Fig. 7.1). 
The second method is based on cell surface antigens, using a technology known as 
fluorescence activated cell (FACS) analysis to distinguish EPCs from other cells 
in PB (Yoder 2009; Kirton and Xu 2010; Basile and Yoder 2014). Although there 
are no specific antigens to isolate and identify EPCs, some have been accepted as 
fundamental elements representing the EPC phenotype, which are CD34, CD133 
(AC133), and KDR (VEGFR−2) (Peichev et  al. 2000). Subsequently, different 
combinations of these antigens have been used to isolate EPCs from PB, UCB and 
fetal liver (Timmermans et  al. 2009). However, recent studies provide opposing 
evidence that cells expressing that the three antigens mentioned above should not 
represent EPCs, but stand for hematopoietic progenitors, because no observed ves-
sel structure formed in vivo (Timmermans et al. 2007). Other surface antigens have 
also been used to identify EPCs, such as CXCR4, CD31, CD144, CD105, CD106, 
CD117, and CD45 (Basile and Yoder 2014). However, all of these surface antigens, 
including CD34, CD133 and KDR, do not only emerge on EPCs, but are also ex-
pressed on other cells, for example HSCs (Hirschi et al. 2008; Alaiti et al. 2010; 
Fadini et al. 2012; Yoder 2012), leading to unpersuasive results when isolating and 
identifying EPCs. Therefore, novel specific markers need to be found to identify 
true EPCs. The last method includes two colony-forming assays in vitro, which are 
based on cluster formation. One is called colony forming unit-Hill (CFU-Hil) assay. 
Briefly, the MNCs isolated from the PB are plated on the fibronectin coated dishes 
for 48 h, and the non-adherent cells are collected to culture again, clusters occur 
ring after 4–9 days, which are named CFU-Hil EPCs (Hill et al. 2003). These cells 
have similar characteristics to early EPCs (Fadini et al. 2012), express endothelial 
and hematopoietic cell markers, and fail to form vessels in vivo. The other method 
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is endothelial colony forming cells (ECFCs) assay. Plate the isolated MNCs on col-
lagen I coated dishes, and adherent cells form colonies 2–3 weeks later. These cells 
are named ECFCs, which are known as late EPCs (Ingram et al. 2004; Kirton and 
Xu 2010). ECFCs express antigens like primary ECs, have a huge potential to form 
colonies, and are able to form vessels in vivo and in vitro (Yoder 2009) (Fig. 7.1).

7.2.4 � Classification of EPCs

According to their culture characteristics and functions, circulation EPCs can be 
classified into two different populations: early EPCs, which are also called circulat-
ing angiogenic cells (CACs), and late EPCs, which are also known as ECFCs (Hur 
et al. 2004) (Table 7.1). The early EPCs emerge 5–7 days after isolation of MNCs 
from the PB and disappear at 4 weeks. They have spindle shape, can be stained with 
Ulex europaeus agglutinin 1 (UEA−1) and take up acetylated low-density lipopro-
tein (acLDL) (Hur et al. 2004; Hirschi et al. 2008). They express EC markers and 
keep hematopoietic antigen expression (Kirton and Xu 2010). Early EPCs cannot 

Table 7.1   Characteristics of early and late EPCs
Early EPCs Late EPCs Ref

Source PB BM, PB/CB, vessel 
well

(Ingram et al. 2004; 
Kirton and Xu 2010)

Culture time 5–7 days > 14 days (Ahrens et al. 2011; 
Zhao et al. 2013)

Morphology Spindle Cobblestone (Hur et al. 2004)
Survival fate Peak growth 2–3 

weeks, disappear 4 
weeks

Peak growth 2–3 
weeks, up to 12 weeks

(Zhao et al. 2013)

In vitro Low proliferative 
ability, no tube-like 
structure formation

High proliferative 
ability, capillary-like 
formation

(Hur et al. 2004)

In vivo No vessel formation Vessel formation (Hur et al. 2004)
Function Cannot regenerate a 

damaged endothelium
Physically con-
tribute to vascular 
regeneration

(Hur et al. 2004; 
Yoder et al. 2007; 
Kirton and Xu 2010)

Neuro-vasculogenesis Release angiogenic 
cytokines

Differentiate into 
endothelial cells

(Rehman et al. 2003; 
Hur et al. 2004)

Same surface antigens CD34/KDR 
(VEGFR−2)/CD31/
CD114/vWF

CD34/KDR 
(VEGFR−2)/CD31/
CD114/vWF

(Kirton and Xu 2010)

Different surface 
antigens

CD45/CD14/CD11b/
CD115

CD105/CD146, 
higher VE-cadherin/
KDR

(Hur et al. 2004; 
Ingram et al. 2004; 
Kirton and Xu 2010; 
Fadini et al. 2012)

BM  bone marrow, PB peripheral blood, CB cord blood
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form vessels in vivo, but contribute to angiogenesis by secreting angiogenic cyto-
kines (Gehling et al. 2000; Lin et al. 2000; Vaughan and O’Brien 2012). Late EPCs 
form a monolayer of cobblestone shaped cells 2–4 weeks after plating, have huge 
potential to proliferate, and can be maintained for up to 12 weeks. Similarly, these 
cells can also be stained with UEA−1, take up acLDL and express the same markers 
as early EPCs, such as CD34/KDR (VEGFR−2)/CD31, but they lack the expression 
of antigens like CD14, CD133, CD45 and CD115 (Hur et al. 2004; Ingram et al. 
2004; Kirton and Xu 2010). More importantly, late EPCs are able to form vessels 
in vitro and in vivo (Lin et al. 2000; Grant et al. 2002). Late EPCs are thought to 
be the true EPCs and show greater sensitivity to vascular endothelial growth factor 
(VEGF), basic fibroblast growth factor (bFGF), and placental growth factor (PlGF) 
(Bompais et  al. 2004; Pasquier 2010). Therefore, these two types of EPCs have 
different morphologies, proliferative abilities and survival rates but both of them 
display vasculogenic capacity in vivo (Hur et al. 2004) (Fig. 7.1).

7.3 � Therapeutic Potential of EPCs for Stroke

7.3.1 � A Biomarker of Diseases

There is no doubt that EPCs exist in adult PB (Asahara et al. 1997), promote vascu-
lar repair after ischemia, and attenuate the progression of arteriosclerosis (Medina 
et al. 2012). In the past years, a lot of studies have demonstrated that the number 
and functional stage of circulation EPCs are associated with arteriosclerosis, hy-
pertension, diabetes, and metabolic syndrome (Vasa et al. 2001; Hill et al. 2003; 
Werner et al. 2005; Liao et al. 2010; Mandraffino et al. 2011; Devaraj and Jialal 
2012; Flammer et  al. 2012). Based on this evidence, levels of circulation EPCs 
can be used as novel biomarkers. More importantly, the levels of EPCs also have 
a close relationship with ischemic stroke, studies have shown that lower levels of 
circulation EPCs indicate poor outcomes among ischemic stroke patients (Ghani 
et al. 2005; Sobrino et al. 2007; Chu et al. 2008; Yip et al. 2008; Tsai et al. 2014) 
(Table 7.2).

7.3.2 � Protection of Blood Brain Barrier (BBB)

As we all know, the BBB is comprised of brain microvascular ECs, basement mem-
brane, astrocytes and pericytes, all of these parts are now called the neurovascular 
unit (Wong et al. 2013). The integrity of the BBB plays an important role in main-
taining the homeostasis of the brain. Once destroyed, the balance of the brain’s mi-
croenvironment is disrupted, leading to a series of pathological processes, including 
the swelling of endothelial cells, an increase in vascular permeability, inflammatory 
cell infiltration and tissue edema. As mentioned above, EPCs have the potential 
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to differentiate into ECs and promote vascular repair (Ponio et  al. 2014), and to 
support the integrity and function of the BBB (Kaneko et al. 2012). However, how 
EPCs beneficially influence the BBB is still a mystery. Therefore, more work is 
needed to elucidate the protective mechanism of EPCs on the BBB after stroke.

7.3.3 � Promotion of Neovascularization After Stroke

It has been widely accepted that neovascularization after stroke is essential and crit-
ical for tissue repair and neurological function recovery. Animal and human studies 
have proved that EPCs participate in neovascularization (Zhang et al. 2002; Fan 
et al. 2010; Paczkowska et al. 2013), mainly via two approaches: by directly differ-
entiating into ECs and incorporating into the damaged vessels, which is called vas-
culogenesis; and by indirectly promoting migration and proliferation of pre-existing 
ECs, which is called angiogenesis, through releasing a variety of angiogenic cy-
tokines (Masuda and Asahara 2003; Tepper et al. 2005; Urbich et al. 2005; Chen 
et al. 2013b). In addition, these cytokines also enhance EC and neuron survival, 
and recruit endogenous progenitor cells (Chen et al. 2013b). Because of the unique 
characteristic and advantage of angiogenic ability, EPCs may be an important agent 
for the treatment of stroke.

7.3.4 � Factors Influence EPCs In Vivo

In the past decade, it had been demonstrated that tissue ischemia and exogenous 
cytokines could mobilize endogenous circulating EPCs and thereby contribute to 
neovascularization (Asahara et al. 1999; Takahashi et al. 1999). Subsequently, more 
and more studies have proven that the levels and functional stages of EPCs are 
correlated with many diseases and are considered as a biomarker (Table 7.2). More-
over, transplantation of EPCs as a therapeutic strategy is beneficial to the hindlimb 
and cerebral ischemia (Kalka et al. 2000a; Fan et al. 2010; Moubarik et al. 2011). 
Recently, several studies showed that a variety of factors could influence the num-
ber and function of circulating EPCs in vivo. For example, statin treatment for 4 
days may increase circulating EPCs levels in acute ischemic stroke patients, prob-
ably by nitric oxide (NO)-related mechanisms (Sobrino et al. 2012a). VEGF and 
stromal derived factor−1α (SDF−1α) are independent factors for the increment of 
circulating EPCs (Sobrino et  al. 2012b). In addition, factors like homocysteine, 
haptoglobin 1–1, citicoline, cilostazol, systolic blood pressure, total cholesterol, 
erythropoietin (EPO), high-mobility group box 1 (HMGB−1), and matrix metallo-
proteinase (MMP−9) are also proven to influence the number of circulating EPCs in 
humans and animals (Table 7.3). The therapeutic effects of transplantation of EPCs 
for stroke can be improved by modulating these factors (Morancho et al. 2013).
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7.4 � Signaling in Regulating EPC Functions

Studies are investigating a variety of factors that influence EPC proliferation, mi-
gration and maturation (Table 7.3). Additional researchers are trying to discover 
the signaling pathways activated by these factors to influence EPCs. Early EPCs 
secrete a large number of factors, including VEGF, brain-derived neurotrophic 
factor (BDNF), bFGF, insulin-like growth factor 1 (IGF−1), and interleukin−8 
(IL−8). (He et al. 2005; Moubarik et al. 2011; Rosell et al. 2013), which are pro-
angiogenic factors that increase endothelial proliferation, tube formation, migra-
tion and MMP secretion in ECs to enhance the invasiveness of EPCs (Carmeliet 
2003; Li et al. 2003). MMP−9 is essential for ischemia-induced neovasculariza-
tion, which modulates the neovascularization of EPCs by increasing the release 
of cytokines (Huang et al. 2009; Morancho et al. 2013). Integrin-linked kinase is 
upregulated in ECs and associated with increased intercellular adhesion molecule 
1 (ICAM−1) and SDF−1 under hypoxic stress, which recruits EPCs to ischemic 
tissue (Lee et al. 2006). CD18 and its ligand ICAM−1 also play an essential role 
in mediating EPC recruitment in infracted hearts (Wu et al. 2006). Activated AKT 
signals promoted the expression of ICAM−1 on ECs and closely associated with 
EPC entrapment, which might be important in regulating the process of neovas-
cularization through enhancing EPC migration and trans-endothelial migration 
(Yoon et al. 2006; Hur et al. 2007).

IL−10 increases EPC survival and mobilization through the activation of STAT3/
VEGF signaling cascades (Krishnamurthy et al. 2011). SDF−1 released from the 
ischemic tissue form a concentration gradient to promote EPC homing through in-
teraction with its receptor CXCR4 (Fan et  al. 2010). Deltalike−4 gene modified 
EPCs show enhanced functional neovascularization in ischemic tissue due to the 
activation of Notch/Hey1/mTOR/p70S6K signaling pathways (Huang et al. 2013a). 
Wnt1 is a pro-angiogenic molecule and enhances EPC function in a hepatocyte 
growth factor (HGF)-dependent manner (Gherghe et al. 2011). HMGB1 secreted by 
astrocytes after ischemic stroke increases EPC homing involved in neurovascular 
remodeling and functional recovery (Hayakawa et  al. 2012). Other factors have 
also been reported to influence EPC functions, such as E-selectin, estrogen and β2-
adrenergic receptor (Oh et al. 2007; Tan et al. 2012; Galasso et al. 2013). Fully un-
derstanding the mechanisms underlying EPC function will help improve the safety 
and efficiency of EPC transplantation.

7.5 � Action Mechanism of EPCs

7.5.1 � Cell Replacement

EPCs derived from BM or other tissues have an intrinsic capacity for differen-
tiating into ECs (Asahara et  al. 1997; Beltrami et  al. 2003; Planat-Benard et  al. 
2004; Chen et  al. 2008; Chen et  al. 2012; Nih et  al. 2012; Iskander et  al. 2013; 
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Pellegrini et al. 2013). The injured ECs in the brain can be replaced by transplanted 
EPCs. Granulocyte colony-stimulating factor (G-CSF) mobilizes circulating EPCs 
to engage 39 % of the total luminal length of the neoendothelium (Takamiya et al. 
2006). LacZ-transduced CD34+EPC transplantation leads to about 60 % reendothe-
lialization of balloon-injured rabbit carotid arteries costained with CD31 as early 
as 4 days after transplantation and this increases to about 70 % at 30 days after 
transplantation (Griese et al. 2003b). Fluorescence-labeled EPCs are found in the 
neointima and costaining with vWF is found after 4 weeks in the injured carotid 
artery of balloon injured New Zealand white rabbits (Hu et al. 2013). Hence, cell 
replacement is one of the mechanisms of vascular repair by progenitor cells. BM 
derived EPCs contribute to the microvascular structure of the choroid plexus by 
differentiating into ECs during cerebral ischemia in adult mice (Zhang et al. 2002). 
14 days after the transplantation of EPCs in the cerebral ischemia rabbit model, a 
decrease in the number of apoptotic cells and an increase in the microvessel density 
in the ischemic boundary area has been witnessed, and most of EPCs capable of 
binding to UEA−1 lectin are incorporated into capillaries (Chen et al. 2008).

However, the extent of incorporation of BM derived cells in cerebral vessels 
after stroke has varied in previous studies (Hess et  al. 2002; Zhang et  al. 2002; 
Machein et al. 2003; Chen et al. 2008; Moubarik et al. 2011). Whereas positive ves-
sels had an average of 34 % endothelial marker expressing BM derived cells (Hess 
et al. 2002; Zhang et al. 2002), others could not detect endothelial marker express-
ing cells (Machein et al. 2003; Moubarik et al. 2011).

7.5.2 � Enhanced Trophic/Regenerative Support for Endogenous 
Repair Processes

Neovascularization is not solely the result of the incorporation of EPCs in new-
ly formed vessels; the release of trophic factors in a paracrine manner may also 
influence neovascularization. Cultured PB MNCs secrete high levels of VEGF, 
HGF, G-CSF and granulocyte-macrophage colony-stimulating factor (GM-CSF) 
(Rehman et al. 2003). More and more researchers are paying close attention to the 
trophic effects of EPCs. In vitro, early EPCs cultivated from different sources have 
shown marked expression and the release of angiogenic cytokines including G-CSF, 
GM-CSF, VEGF, platelet-derived growth factor (PDGF), epidermal growth factor 
(EGF), FGF, HGF, IL−8, transforming growth factor β2 (TGF-β2), IGF−1 and etc 
(He et  al. 2004; Hur et al. 2004; Yoon et al. 2005). The release of these growth 
factors in turn may influence the classical process of angiogenesis, particularly the 
proliferation and migration as well as the survival of mature ECs (Folkman 1995; 
Urbich and Dimmeler 2004). EPCs can also exert a strong mitogenic effect on ma-
ture ECs and enhance the angiogenic capacity of outgrowth of ECs via secretion of 
IL−8 with/without VEGF (He et al. 2005; Yoon et al. 2005).

In cerebral arteries, the paracrine effect of EPCs promotes vasoprotection by 
increasing prostacyclin production and the intracellular concentration of cAMP 

Y. Li et al.



1397  Endothelial Progenitor Cell Therapy in Stroke

(Santhanam et al. 2007). EPCs from stroke patients present higher levels of pro-
angiogenic factors at early stages, which decrease in mature ECs when they become 
more similar to mature microvascular ECs (Navarro-Sobrino et al. 2013). 24 h after 
the administration of EPCs expressing GFP, they are found to express endothe-
lial NO-synthase (eNOS) and distribute in the brain parenchyma and around the 
endothelial layer of pial arteries in the ischemic lesions (Ohta et  al. 2006). EPC 
transplantation can also induce humoral effects, which are sustained by host tissues, 
decrease apoptosis and augment proliferation of cells. Transplantation of EPCs en-
hances the mobilization of endogenous EPCs and HSCs mainly by upregulation of 
humoral VEGF, FGF−2, IGF, HGF, angiopoietin−1 and SDF−1 (Cho et al. 2007).

Studies have shown that vascular niche can support neurogenesis in the subven-
tricular zone and the dentate gyrus by secreting growth factors associated with neu-
rogenesis, such as VEGF or BDNF (Leventhal et al. 1999; Palmer et al. 2000). In 
an experimental stroke study, neovascularization related to neurogenesis, and also 
to the migration of neural progenitor cells (NPCs), along the newly formed vessels 
(Thored et  al. 2007). Thus, administered EPCs may enhance the proliferation of 
endogenous NPCs in the brain (Rouhl et al. 2008). EPCs injected 24 h after MCAO 
were found in the injured area and improved functional recovery, which was linked 
to a reduction in ischemia-induced apoptosis and a stimulation of ischemia-induced 
angiogenesis and neurogenesis (Moubarik et  al. 2011). Transplantation of BM-
derived EPCs exerts potent neuroprotective functions against cerebral ischemia/re-
perfusion injury in rats, and the protective effects may be associated with decreased 
expression of Bax, caspase−3 and p67phox and the increasing expression of Bcl−2 
and manganese superoxide dismutase (MnSOD), which promotes anti-oxidative 
and anti-apoptotic properties (Qiu et al. 2013).

7.6 � Transplantation of EPCs in Ischemic Stroke Animals

7.6.1 � Transplantation Routes for EPCs

The optimal transplantation route for EPCs following ischemic stroke may be im-
portant for the therapeutic efficacy. The two routes mostly used for the transplanta-
tion of EPCs in stroke are intracerebral and intravascular injections. They each have 
their own advantages and disadvantages. EPCs intracerebrally injected into the 
peri-infarct area may be immediately involved in incorporating newly formed ves-
sels or secreting trophic factors to support endogenous repair processes, especially 
in permanent ischemic stroke to bypass the occlusion of blood vessels. However, 
invasive injury to the brain raises safety issues.

Intravascular injection either through veins or arteries has minimal invasive 
injury potential for systematical cell distribution, as well as the far-flung secre-
tion of neuroprotective, pro-angiogenic and immunomodulatory factors (Misra 
et al. 2012). Intravenously grafted cells can follow a chemokine generated gradient 
formed by the injured brain and penetrate through the BBB (Guzman et al. 2008), 
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and grafted cells do not have to be near the lesion to be effective (Borlongan et al. 
2004). However, very few cells have been found to integrate into the infarct area. 
The majority of cells became stuck in the lung, liver, and spleen after intravenous 
administration. Intra-arterial delivery, in contrast, overpasses the peripheral filtering 
organs, leading to higher cell engraftment to the brain (Li et al. 2010; Zhang et al. 
2012), and greater efficacy (Kamiya et al. 2008; Pendharkar et al. 2010). There is 
a concern that intra-artery transplanted cells can stick together and cause microem-
boli, including lethal pulmonary emboli or a reduction in cerebral blood flow, which 
is associated with microstrokes (Walczak et al. 2008).

In preclinical experimental stroke, intravascular injections are usually used, and 
they are applied through the tail vein (Zhang et  al. 2002; Chen et  al. 2012; Nih 
et al. 2012; Chen et al. 2013d; Decano et al. 2013; Qiu et al. 2013), femoral vein 
(Moubarik et  al. 2011; Pellegrini et  al. 2013), jugular vein (Fan et  al. 2010; Li 
et al. 2013), and internal carotid artery (Ohta et al. 2006) (Table 7.4). Despite the 
different routes used for EPC transplantation, decreased infarct volume, improved 
neurobehavioral outcomes, increased angiogenesis and neurogenesis, attenuation 
of endothelial dysfunction, even anti-apoptosis effects have been observed during 
study. These studies may benefit from both functions of EPCs during cell replace-
ment and enhanced trophic/regenerative support for endogenous repair processes.

However, when considering application in clinical trials, the routes of trans-
plantation of EPCs should be standardized to ease administration. Several clinical 
studies have been carried out as illustrated in Table 7.5. These studies look into the 
safety and efficiency of routes for EPC transplantation in human patients, and there 
is still a lot of work to do in this field.

7.6.2 � Modification of EPCs

7.6.2.1 � Gene Modification

Considering the paracrine-mediated mechanisms of EPCs, the enhancement of their 
secretion of trophic factors capacity by the overexpression of related genes would 
be valuable to magnify the efficacy of EPC therapies in stroke treatment (Chen 
et al. 2013a). EPCs have been modified by a variety of genes before transplantation 
and have been reported to enhance functional recovery, these genes include VEGF 
(Asahara 2007; Gou et al. 2011; Yang et al. 2012), HGF (Song et al. 2009), IGF−1 
(Sen et al. 2010), paraoxonase−1 (Wang et al. 2010), CXCR4 (Chen et al. 2012), 
SDF−1 (Schuh et al. 2012), NO (Chen et al. 2013c), home oxygenase−1 (Long et al. 
2013), hypoxia-inducible factor−1α (HIF−1α) (Jiang et al. 2008) and Deltalike−4 
(Huang et al. 2013a). There are two major methods for gene transfer systems, viral 
and nonviral. The most widely used viral vectors for gene transfer are adenovirus 
and retrovirus. Nonviral methods include the introduction of naked DNA into the 
target cells and the use of liposomes (Vale et al. 2001).
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EPCs modified by VEGF gene show significantly enhanced neovascularization, 
even when ten times fewer cells were infused (Asahara 2007), and promote vascular 
regeneration of ischemic flaps (Yi et al. 2006). In ischemic hindlimb model, trans-
fection of VEGF or heme oxygenase−1genes into EPCs significantly increased the 
number of differentiated ECs, blood perfusion levels and neovascularization com-
pared to the bare EPCs (Yang et al. 2012; Long et al. 2013). Transfection of EPCs 
with other genes, such as IGF−1 (Sen et al. 2010), SDF−1 (Schuh et al. 2012), NO 
(Chen et al. 2013c) and Deltalike−4 (Huang et al. 2013a) genes, to treat ischemic 
myocardial injury show cell protective and myocardial regeneration effects and 
functional neovascularization recovery. EPCs modified by paraoxonase−1 genes 
are potentially valuable in the treatment of atherosclerosis (Wang et  al. 2010). 
Transfection of HGF genes enhances EPC function and improves EPC transplanta-
tion efficiency by decreasing neointima formation and increasing reendothelializa-
tion for balloon-induced arterial injury (Song et al. 2009).

Some investigators tried to transfect multiple genes into EPCs by using retrovi-
ruses to encode both tPA and heparin. Local transplantation of engineered EPCs in a 
balloon-injured carotid artery model attenuates reendothelialization of angioplasty-
injured arteries, but fails to inhibit neointima proliferation (Griese et  al. 2003a). 
In experimental stroke models, only one study found that the transplantation of 
CXCR4 gene-modified EPCs reduces cerebral ischemic damage and promotes re-
pair in diabetic mice, and that modified EPCs show better therapeutic effects for 
ischemic stroke than unmodified EPCs (Chen et al. 2012).

Until now, there have been no clinical trials using gene-modified EPC therapy 
for the treatment of stroke. It is important to confirm the safety and efficacy of 
delivering exogenous genes into patients by modifying EPCs. The main concern 
is the possibility of tumorigenesis after gene delivery. Although exogenous genes 
are transferred into EPCs rather than to host cells, viral vectors may increase the 
risk of genotoxicity by insertional mutagenesis and the activation of adjacent on-
cogenes. To avoid malignant transformation in clinical patients, the vector should 
be designed for self-inactivation and only contain nonviral, physiologic promoter/
enhancer elements (Payen and Leboulch 2012). Second, the therapeutic genes may 
serve different functions during different pathological stages. For example, SDF−1 
plays a key role in promoting angiogenesis and neurogenesis during development 
(Mithal et al. 2012; Virgintino et al. 2013) and can recruit EPCs towards ischemic 
lesions for reendovascularization (Fan et al. 2010). Blocking SDF−1/CXCR4 inter-
action suppresses inflammatory responses and reduces brain infarction in the acute 
phase of ischemic stroke (Huang et al. 2013b; Ruscher et al. 2013), which indicates 
that SDF−1 is an inflammation initiator and exaggerates the BBB leakage and isch-
emic lesions. Whether SDF−1-overexpressing cells could exhibit a similar dete-
rioration effect is unknown, but such studies are fundamental in calling attention 
to the administration paradigm of EPC gene modified therapy. Third, most com-
pleted and ongoing clinical trials employ autologous EPCs for transplantation; the 
exogenous gene expression in EPCs is time consuming and unavoidably delays cell 
transplantation. Further studies should be carried out on the effects of delivering 
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gene-modified EPCs in a later period after stroke or the transplantation ex vivo of 
expanded EPCs from allogenic sources, which allows for transformation and in 
vitro expansion of EPCs before transplantation (Chen et al. 2013a).

7.6.2.2 � Preconditioning EPCs

In addition to the exogenous gene modification of EPCs, investigators have been 
trying to manipulate endogenous mechanisms for optimizing the therapeutic po-
tential of cell-based stroke therapy by pre-treating EPCs before transplantation. 
Various factors seem to influence the number of EPCs and their functions, both 
in experimental stroke models and in clinical patients (Table 7.3). The hypoxia in-
duced by HIF−1α and trophic growth factors such as BDNF, glial cell line-derived 
neurotrophic factor (GDNF), VEGF and its receptor FIK−1, EPO and its recep-
tor EPOR, SDF−1 and its receptor CXCR4, enhance EPC proliferation, mobiliza-
tion and the homing to ischemic lesions involved in the repairing process (Kalka 
et al. 2000b; Vale et al. 2001; Yamaguchi et al. 2003; Bennis et al. 2012). Increased 
HIF−1α and its downstream genes play central roles in hypoxia-induced defense re-
sponses (Ogle et al. 2012). Ischemic preconditioning increases EPC numbers to at-
tenuate partial nephrectomy-induced ischemia/reperfusion injury (Liu et al. 2013a).

VEGF is an important humoral factor for EPC mobilization/differentiation, which 
is supported by the correlation between the increase in VEGF serum concentration 
and the increase in circulating EPCs (Sobrino et al. 2012a). EPO stimulates normal 
EPC-mediated endothelial turnover and improves cardiac microvascularization and 
function in the presence of ischemia (Westenbrink et  al. 2008). Pretreatment of 
EPCs with EPO before transplantation enhances their angiogenic potential (Bennis 
et al. 2012). SDF−1 pretreatment during EPC expansion stimulates the adhesion of 
EPCs to ECs and augments the efficiency of EPC-based cell therapy for ischemic 
diseases (Zemani et  al. 2008). The hormone melatonin stimulates the protective 
effect of EPCs in acute ischemic kidney injury (Patschan et al. 2012). Exposure to 
sub-lethal hypoxia can significantly increase the tolerance and regenerative proper-
ties of stem/progenitor cells in vitro and after transplantation for other cell types 
(Francis and Wei 2010; Wei et al. 2013; Yu et al. 2013).

Estradiol preserves the integrity of ischemic tissue by augmenting the mobili-
zation and incorporation of EPCs into sites of neovascularization by the eNOS-
mediated augmentation of MMP−9 expression in the BM (Iwakura et  al. 2006). 
Angiotensin-converting enzyme 2 (ACE2) improves EPC functions, by regulating 
eNOS and Nox pathways, enhancing the efficacy of EPC-based therapy for isch-
emic stroke (Chen et al. 2013b). Other methods, such as the pretreatment of EPCs 
with extracorporeal shock waves (Lee and Kou 2012) or magnetic bionanoparticles 
(Li et al. 2013) to enhance the homing and functions of EPCs may also be promising 
and novel strategies. It is expected that the preconditioning strategy will be further 
explored due to its potential to enhance the benefits of EPC-based transplantation 
therapies in stroke therapy (Liu et al. 2013b).
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7.7 � Pros and Cons in the Application of EPCs  
in Clinical Trials

EPC transplantation in stroke has pros and cons. As mentioned above, EPCs have 
shown much potential for stroke therapy either through directly differentiating into 
mature ECs to replace damaged tissue or by secreting trophic factors to enhance the 
endogenous repairing processes. Additionally, EPCs can be derived from a variety 
of sources including PB (Medina et al. 2010), BM (Kwon et al. 2010), cord blood 
(Li et al. 2013), spleen (Wassmann et al. 2006), adipose tissue (Planat-Benard et al. 
2004), and the liver or intestines (Aicher et al. 2007). Ethical limitations are avoided 
because fetal or embryonic tissues are not necessary sources. A lot of experience in 
administration of HSCs in clinical treatment of patients with leukemia (Rouhl et al. 
2008) shows it is not necessary for autogenous transplanted cells. It allows plenty 
of time for ex vivo expanded EPCs to be cultured, pretreated or even gene modified, 
so as to enhance therapeutic capacity when transplanted in vivo. However, there are 
still difficulties that need to be resolved. As EPCs can be cultured by many methods 
and derived from different sources, and they bear both the characteristic of hema-
topoietic and endothelial cells, there are no specific markers to identify them and 
they may also be contaminated by other cell lines like lymphocytes, macrophages 
or other dendritic cells (Ishikawa and Asahara 2004). Gene expression profiles may 
also change during EPC culturing (Gremmels et al. 2011). Whether the exogenous 
gene modified EPCs increase malignant transformation in clinical patients still 
needs to be further explored.

7.8 � Problems Need to be Clarified for the Treatment  
of Patients

7.8.1 � Evaluation of Clinical Safety

Preclinical studies have shown that EPC transplantation is beneficial for functional 
outcomes without showing side effects, such as enhancing inflammatory responses 
or forming teratoma. However, to fully ensure the safety of transplanting EPCs in 
clinical patients, clinical studies have been carried out. A small pilot study sug-
gested that intravenous infusion of autologous EPCs was safe and improved ex-
ercise capacity in children with idiopathic pulmonary arterial hypertension (Zhu 
et al. 2008). EPC transplantation in 20 patients with acute myocardial infarction 
showed no incensement in the levels of inflammatory markers or troponin T (a 
marker for cardiac ischemia) (Assmus et al. 2002). Thus, in this small number of 
patients, EPCs neither seem to stimulate the inflammatory response nor increase 
ischemia. A variety of clinical studies has also shown that autologous BM stem 
cell and mesenchymal stem cell transplantation in stroke patients showed nothing 
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related to abnormal cell growth or tumorigenesis, deteriorated functional outcomes 
or venous thrombuses (Suarez-Monteagudo et al. 2009; Lee et al. 2010; Honmou 
et al. 2011; Friedrich et al. 2012; Moniche et al. 2012).

EPCs can secret inflammatory factors such as IL−8 and monocyte chemoat-
tractant protein−1 (MCP−1) (Hur et al. 2004; van der Strate et al. 2007), which 
might recruit monocytes and macrophages to aggravate ischemia. Currently, sev-
eral clinical trials (clinicaltrials.gov identifier: NCT00950521; NCT01468064; 
NCT00535197) are trying to evaluate the safety and efficacy of autologous EPC 
transplantation in ischemic stroke. EPC transplantation cannot be routinely per-
formed on patients for the treatment of stroke before larger clinical trials further 
ensure their clinical safety.

7.8.2 � Identifying Acceptable Patients for EPC Transplantation

No treatment is appropriate for all stroke patients therapy. Therefore, establishing 
a criterion for choosing suitable patients for EPC transplantation is vitally impor-
tant. Stroke patients range in age from 30–80 years old; age should be something 
to consider because elder patients tend to be suffering from other diseases such as 
hypertension, diabetes mellitus and dyslipidemic syndromes. Patients with these 
syndromes show endothelial dysfunction and decreased EPC numbers (Rouhl et al. 
2012). It might be difficult for this kind of patient to receive autologous EPCs, 
which may lose their functional therapeutic effects after transplantation. Methods 
of modifying EPCs to increase their vasculogenic potential or allogenic EPCs from 
healthy people may provide options.

Studies have shown that the pathology of stroke in young and aged rats are not 
identical. For example, after intracerebral hemorrhage, aged rats showed a wider 
spread of activated microglia/macrophages around the parenchyma and higher as-
trocyte activity than young rats (Wasserman et al. 2008). Another study showed that 
aging mice had significantly less edema formation after stoke (Liu et al. 2009). In 
addition, EPCs are critical components of tumor angiogenesis (Nolan et al. 2007); 
therefore, EPC transfusion to patients with tumors should be avoided. Considering 
estrogen has the capacity to promote EPC proliferation (Tan et al. 2012), men and 
women may respond differently to EPC-based treatments. Whether EPC treatment 
would have the same efficacy in males and females needs to be considered further.

Infarct location and volume are other factors for determining a patient’s suit-
ability for cell transfusion. Preclinical studies in EPC transplantation in stroke 
(Table  7.4) and different animal models may result in different infarct location 
and volume in striatum, cortex or both. EPC transplantation shows improvement 
in functional recovery; however, we cannot exclude the possibility that it may not 
be as effective in clinical patients. Scoring patients with different lesions, which 
are usually determined by magnetic resonance imaging (MRI), choosing suitable 
patients and accordingly giving the appropriate EPC treatment is necessary.
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7.8.3 � Time, Dose, Route and Type of EPCs for Transplantation

7.8.3.1 � Time of EPC Transplantation

Preclinical studies provide various time points to deliver EPCs (Table 7.4). How-
ever, the optimal time for transplantation after a stroke is still unclear. After stroke 
onset, the microenvironment in the brain changes dramatically (Moskowitz et al. 
2010). The optimal timing of delivery depends on EPC mechanisms of action, 
which could replace the damaged cells and promote the endogenous repair process 
by paracrine effects. If the treatment strategy focuses on cell survival and later cells 
integrate into the damaged tissue to replace the dead cells, cell survival is extremely 
important and transplanting during the recovery phase of stroke to avoid inflamma-
tion could be beneficial. Otherwise, if the treatment acts to enhance the endogenous 
repair process or protective mechanisms by paracrine effects, acute phase delivery 
is critical (Hayashi et al. 2003; Carmichael 2006). Preclinical studies of the delivery 
of EPCs were done either immediately after stroke or from 1 h to 1 day after stroke, 
which showed functional recovery in animals. However, a systematic analysis of 
transplantation timing and its effect on functional recovery has not been done.

7.8.3.2 � Dose Injection of EPCs

In addition, as we move towards clinical trials, cell dosage becomes an important 
question to consider. Different cell dosages have been applied during preclinical 
trials (Table 7.4). Cell dosages influence cell viability after transplantation; fewer 
cells may not be enough to function as a therapeutic treatment, while an exces-
sive amount of cells may result in side effects such as inflammation, teratoma or 
microembolus. Ongoing clinical studies are designed to use 2–8 × 106 EPCs to 
treat stroke patients (clinical trials.gov identifier: NCT01468064; NCT01438593; 
NCT00950521), and the safety and efficacy of EPC therapies are not yet clear.

7.8.3.3 � Routes of Administration

Studies have reported functional recovery using the intravenous and intracerebral 
delivery of EPCs. All routes resulted in cells targeting the lesion, but more cells 
were found at the lesion with intracerebral delivery than with intravenous delivery 
(Jin et al. 2005). Preclinical studies choosing intravenous or intra-artery delivery of 
EPCs have shown functional recovery. Clinical studies plan to apply either intrave-
nous or intracerebral delivery routes. In regards to EPC transplantation in clinical 
trials, intravenous infusion should be the optimal route because intracerebral injec-
tion is invasive and inconvenient, and intra-artery delivery may cause embolisms 
(Borlongan et al. 2004).
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7.8.3.4 � Types of Used EPCs

Different types of EPCs play specific roles, with early EPCs protecting damaged 
tissue by secreting amounts of pro-angiogenic factors, and late EPCs integrate in to 
host vessels to replace damaged ECs. However, it is still difficult to define EPCs, 
because they have multiple markers. Investigators are trying to identify, isolate and 
expand EPCs using their normal markers, such as CD34, KDR, and CD133, but 
related cell types might bear the same markers. All the ongoing clinical trials use 
CD34 to identify EPCs, which might not be sufficient. Optimizing the isolation and 
identification of EPCs from patients is still a critical problem.

7.8.4 � Bio-Distribution and Persistence of EPCs

When EPCs are transplanted into ischemic animals or patients, it is crucial to moni-
tor where the EPCs travel and into what cell types they differentiate. This helps us 
to understand how these cells mediate functional recovery. Therefore, dynamic non-
invasive tracking of grafted EPCs in vivo is necessary. Optical imaging, MRI and 
nuclear imaging are potential imaging strategies and MRI is most often used for the 
dynamic tracking of grafted EPCs in vivo. For the tracking of exogenous EPCs in 
vivo, the grafted cells must be labeled with contrast agents in vitro before transplan-
tation so that they are distinguishable from the host tissue. Molecular probes such 
as transferrin have successfully been used to tag putative stem cells followed by 
high-resolution MRI to track the homing of cells (Weissleder et al. 2000). Currently, 
gadolinium rhodamine dextran (GRID) and superparamagnetic iron oxide (SPIO) 
are two groups of commonly used contrast agents. Some studies have been suc-
cessful in long-term monitoring EPCs using MRI in a rat hindlimb ischemic model 
(Agudelo et al. 2011; Agudelo et al. 2012). However, little work has been done on 
the dynamic tracking of EPCs in ischemic stroke and it calls for much attention in 
order to provide fundamental data for its application in clinical trials.

Conclusions

Preclinical studies have shown great promise for EPC transplantation as a therapy 
for stroke. Beneficial effects from EPC transplantation have been observed, includ-
ing functional improvement, increased neovascularization and decreased apop-
totic cells. However, there are many fundamental unsolved problems, mentioned 
above, and relevant clinical trials are needed. A guideline called Stem Cell Therapy 
as an Emerging Paradigm for Stroke (STEPS) in 2009 (The STEPS Participants, 
2009) has been drawn up. To some extent, this guideline can help scientists in all 
fields collaborate to accelerate the use of EPC transplantation in clinical patients 
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for those who might benefit from EPC therapy. Currently, EPC transplantation for 
stroke treatment in clinic is only a vision, preclinical studies and clinical research 
are needed to maximize the therapeutic benefit and minimize the risks of EPCs 
transplantation in stroke.
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