
Chapter 6
Simple Agents, Complex Emergent City:
Agent-Based Modeling of Intraurban Migration

Shipeng Sun and Steven M. Manson

Abstract Intraurban migration—residential movement within a metropolitan
area—defines the nature of urbanization. Housing location decision making is
a complex process driven by the interactions between the housing market and
home searchers. Researchers have paid much attention to the environmental,
socioeconomic, cultural, and policy features of housing markets. In contrast,
housing search has been relatively neglected due to challenges of theory,
methodology, and data. This article addresses these challenges by presenting
an agent-based model of intraurban migration featuring straightforward and
empirically specified rules for housing search. This model is calibrated and
validated against real-world housing vacancies and relocation origin–destination
pairs extracted from parcel records for the Twin Cities of Minnesota, USA, for
2005–2007. Drawing on these unique data sidesteps a long-standing issue, the
prohibitive costs of identifying, recording, and quantifying housing search activities
for an entire metropolitan region. Conceptually, this model updates geographic
theories of intraurban migration that focus on intervening opportunities and spatial
bias. It also methodologically advances the agent-based modeling of urbanization
with a high-resolution, empirically specified model that demonstrates how urban
pattern emerges from simple rules and interactions. Overall, the model demonstrates
that relatively straightforward housing search rules can simulate realistic patterns of
intraurban migration.

Keywords Intraurban migration • Agent-based modeling • Housing search •
Housing locational decisions

S. Sun (�)
Department of Environmental Studies, University of Illinois Springfield, One University Plaza,
Springfield, IL 62703, USA
e-mail: sunsp.gis@gmail.com; ssun32@uis.edu

S.M. Manson
Department of Geography, Environment and Society, University of Minnesota, 267 19th Avenue
South, Minneapolis, MN 55455, USA
e-mail: manson@umn.edu

© Springer International Publishing Switzerland 2015
M. Helbich et al. (eds.), Computational Approaches for Urban Environments,
Geotechnologies and the Environment 13, DOI 10.1007/978-3-319-11469-9_6

123

mailto:sunsp.gis@gmail.com
mailto:ssun32@uis.edu
mailto:manson@umn.edu


124 S. Sun and S.M. Manson

6.1 Introduction

Intraurban migration, or residential moves within a metropolitan area, is a com-
plex process involving the interaction of housing market characteristics with the
perceptions of home searchers. Intraurban migration research has a long and rich
history in geography and other social sciences, engineering fields, and policy
disciplines (Dorigo and Tobler 1983; Clark 1986; Brown and Moore 1970; Roseman
1971; Simmons 1968; Simpson et al. 2008; Clark 2008). There remain significant
challenges in terms of data, method, and theory in understanding this form of
migration. Data on specific individuals who drive intraurban migration is difficult to
obtain and use. Methodologically, there is a need to combine the most common
approach, statistical methods, with fast-emerging simulation modeling methods.
In terms of theory, the large number of competing explanations for intraurban
migration points to the need for continuing work on foundational research on
individual behavior. When these challenges of data, method, and theory are taken
together, they indicate the need for empirically based approaches that combine
statistical and simulation models to develop and test straightforward frameworks
for understanding how individual behavior gives rise to aggregate patterns and
processes of intraurban migration.

We developed an agent-based model that draws on novel data derived from land
parcels to develop and test an updated form of the intervening opportunity theory of
intraurban migration. This work is significant in several respects. This conceptual
model brings together underexamined geographical and sociological findings to
develop and test straightforward spatial behavioral rules that capture key features
of intraurban migration. To specify and test this model we developed a new data
source, individual migration chains extracted from tax parcel data that allowed us
to track the movements of actual households in space and over time. We bring these
data and the conceptual model together in an agent-based model that is calibrated
and validated with mathematical and statistical approaches, leveraging the relative
strengths of these different methods. More broadly, this work addresses the need for
simple and generalizable to complement the large and growing body of work that
focuses on representing complicated dynamics with extensive and detailed datasets
(Brown et al. 2008; Torrens 2012). It also contributes to the fast expanding body
of work seeking to simplify complex urban dynamics by using new data sources to
develop relatively straightforward and generalized models that capture significant
features of urban form and processes (Batty 2008, 2012).

The rest of this paper examines this confluence of data, method, and theory. The
next section reviews locational decision-making theories of intraurban migration
and proposes a model for housing location decisions with two different strategies.
Section 6.3 applies this model to intraurban migration of homeowners in the Twin
Cities Metropolitan Area of the USA (TCMA), along the way introducing the use
of land parcel data to calibrate and validate an agent-based model of individual
migration. Section 6.4 presents the model results, including model validation. The
paper concludes with discussion of our findings and their implications for urban
agent-based modeling and our understanding of intraurban migration generally.
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6.2 Conceptual Model of Intraurban Migration

A core conceptual challenge in understanding intraurban migration is developing
theories of how individual behavior leads to complex urban patterns and processes.
Intraurban migration has three interrelated components, as introduced by Wolpert
(1965) and expanded over the years: (1) housing conditions, or the broad social,
demographic, economic, and environmental conditions that trigger household mi-
gration; (2) housing utilities, expressed as the balance between utilities of the current
housing and expected utilities of other housing opportunities; and (3) housing
search, or the search process and perceptions of housing by potential buyers.
Intraurban migration research focuses primarily on the first and second components,
while a smaller body of work centers on the third component of housing search as a
sociospatial process that guides the first and second.

We advance this third component by testing a modified intervening opportunity
theory, drawing on sociospatial conceptions of housing perception to examine
simple decision-making rules that lead to realistic complex migration patterns in
aggregate. This third component helps guide the first two and can be examined
separately, which does not minimize the fact that the residential choices of house-
holds are driven in part by a host of demographic and socioeconomic characteristics
of migrants combined with housing utilities, including housing structure, the
biophysical environment, neighborhood quality, as well as accessibility to services
(Adams 1984; Quigley and Weinberg 1977; Clark 2008). Additional considera-
tions include household factors ranging from income and race to environmental
preferences (Choldin 1973; Pellegrini and Fotheringham 2002; Jones et al. 2004).
These factors in turn modify the effect of housing conditions and their attendant
perceived difference in utilities (De Jong and Roempke Graefe 2008; Geist and
McManus 2008; Mulder 2007; Cooke 2008), interactions with commuting and
transportation infrastructure (Clark, Huang, and Withers 2003; Rouwendal and
Rietveld 1994), government policies and developer decisions (Brown and Chung
2008), and the lending practices of financial institutions (Brown and Longbrake
1970; Brown and Moore 1970; Clark 1982). In sum, a wide variety of factors
influence housing conditions and housing utilities and, by extension, intraurban
migration and urbanization more generally.

Despite the importance of housing conditions and housing utilities, the third
component of housing search and perception has much to do with the nature of
intraurban migration because it guides the effects of the first two components. This
component has a distinguished research history, but overall it has received far less
attention than the first two components. Theories of housing search complement
our understanding of these other components because they posit that there are
fundamental regularities in how households perceive housing opportunities. Much
of this research emphasizes the distinct spatial and temporal limits of homebuyers’
search strategies in local and regional housing markets (Clark 1982; Clark and
Flowerdew 1982; Smith et al. 1979). Related work examines how home search and
job search interact, particularly in how people think about where they want to live
as a function of where they want to work (Waddell 1993; van Ommeren et al. 1997;
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cf. Clark and Withers 1999). This research points to the importance of incomplete
information and bounded rationality of decision making in intraurban migration,
as much of the work on the first two components of housing condition and
utility assumes that households have complete information during the housing
search and will go to any lengths to find the optimal home. Instead, research on
search and perception highlights how housing search is often bounded in space
and time, whether by homebuyers’ greater knowledge of and comfort with local
neighborhoods, bounds on how much time households (or their real estate agents)
can devote to the housing search, or a willingness to settle for a new house that is
good enough instead of being perfect.

The importance of spatial distance between current and potential housing is a
unifying theme in much work on housing search, along with direction to a lesser
extent. Most of this research relies on the theoretical antecedent of intervening
opportunity theory, developed by Stouffer (1940) to describe the relationship
between housing opportunities and moving distances within a metropolitan area.
Assuming the quantity of vacant housing units is proportional to the distance from
a household’s current dwelling, Stouffer posited that the number of households that
move a given distance has a logarithmic relationship with the housing opportunities
located within that distance because people are likely to choose a vacancy near their
current dwelling. The related exponential distribution of moving distances has been
validated by empirical research on various metropolitan areas (Clark and Burt 1980;
Clark et al. 2003; Quigley and Weinberg 1977). The basic form of this negative
exponential distribution of move distances is

f .d/ D �e��d ; � > 0 and d > 0 (6.1)

where f (d) is the probability of a household relocating by distance of d and � is
a shape parameter. Mathematically, � is the reciprocal of average d, or in other
words 1/� is the average move distance. The intervening opportunities model was
extended to the case of interurban migration and evolved into the influential gravity
model and related family of spatial interaction models (Guldmann 1999; Jayet 1990;
Fotheringham 1983; Cochrane 1975; Ruiter 1967; Erlander 2010). Regardless of
variant or degree of sophistication, these models retain at their heart a focus on
logarithmic or exponential distance decay in space.

The direction people move is an important consideration alongside distance.
Adams (1969) argued that spatial search and residential locational behavior are
based on a limited mental map or image of the city. Importantly, this image is
sectoral in that it comprises a wedge-shaped region centered on the work-home
axis. While Adams took the central city is a proxy for work location, the theory
was validated using specific workplace data as well (Clark and Burt 1980; Clark
et al. 2003). Move directions can be modeled as a von Mises distribution (Gaile and
Burt 1980), which is the counterpart of the normal distribution for directional data
spanning 0–360ı, with a density function of
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Fig. 6.1 Modeled intraurban migration process

where � is the mean direction, � is a measure of variance of directions around
�, and I0(�) is a modified Bessel function with order zero. When � is zero, the
distribution is uniformly circular (i.e., with equal probability in any direction); when
it is larger, the distribution will concentrate around � in a similar fashion to the
normal distribution.

We bring together these sociospatial findings on housing perception via a
conceptual agent-based model of the distance and directional relationships among
housing vacancies and current dwellings of potential migrants (Fig. 6.1). This model
adopts two housing search and relocation strategies—distance-only and distance-
plus-direction—that condition intervening opportunity theory with the statistical
distribution of moving distances and directions as specified by the negative expo-
nential and von Mises distributions (after Clark et al. 2003). The model is based on
two lists for the regional housing market: one of potential homebuyers and another
of vacant houses. Each model year, the model iterates over homebuyers randomly.
Each homebuyer generates a random number and the vacant house with the closest
greater probability is chosen as the destination. When a homebuyer moves, he or
she is removed from the buyer list and the vacated house is added into the vacant
house list.
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The difference between the two homebuyer strategies—distance-only and
distance-plus-direction—lies in the probability assigned to vacant houses, Pij, or
the possibility of Bi buying vacant house Hj (Fig. 6.1). With the distance-only
strategy, each actor agent calculates Pij based on the distance between her current
dwelling and a vacant house, where the probability follows a negative exponential
distribution. Assuming homebuyer Bi currently lives in Hi, the probability that she
chooses house Hj would be

Pij D �e��d.H i ; Hj / (6.3)

where � is a parameter estimated empirically from move distance distribution
(more on this below) and d(Hi, Hj) is the distance between Hi and Hj. With the
distance-plus-direction strategy, directional bias is also included in the calculation
of probability Pij. When relocation is constrained by real housing opportunities, it
can be assumed that move direction is independent from move distance (Adams
1969; Clark and Burt 1980; Clark et al. 2003). The von Mises distribution
is modeled as two normal distributions with zero and 180ı as mean values,
respectively:

Pij D �e��d.H i ; Hj / � P� (6.4)

where P� is the probability that a homebuyer moves in the direction of � . If we

define Sign .�/ D
�

1; if j� j � 90

0; if j� j > 90
, then P� D Sign(� ) � N(0, �2

1) C [1 � Sign(� )] �
N(180, �2

2), in which N(�, �2) is normal distribution. When Sign(� ) is one, home-
buyers move toward the suburbs; when it is zero, they move toward downtown.
The standard deviation �1 and �2 control the extent to which migrant household
moves concentrate along the home–downtown corridor. When these deviations are
small, houses near the corridor are more likely to be chosen, but when they are
large, more houses have greater odds of being chosen. When �1 is greater than �2,
households are more likely to move to suburbs; when smaller, households move
toward downtown.

6.3 Methods

A key methodological challenge in understanding intraurban migration is devel-
oping straightforward, empirically specified approaches to model how the choices
of individuals generate aggregate migration patterns and processes. The primary
form of intraurban migration modeling is mathematical and statistical, ranging from
gravity modeling to hedonic specifications to various flavors of (new) economic
geography of urban areas. Less common but long-standing is simulation modeling,
which has enjoyed renewed interest in the form of agent-based modeling (ABM).
We develop an ABM of urban intramigration and use a new form of data to calibrate
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this model, namely, empirically specified migration chains from land parcel data.
While they have some drawbacks, these data offer several advantages over many
other forms of data used to understand the migration choices of individuals.

6.3.1 Data

The paucity of data on the migration choices of individuals remains a critical
challenge in understanding intraurban migration. While migration evinces clear
patterns such as suburbanization, gentrification, or decline when examined at
gross temporal and spatial scales, our understanding of migration at the scales
of individuals is limited by the dearth of public data available on movements of
individual households in space at the scale of specific housing units and in time
at the scale of a year (Adams 1969; Clark 1976, 1986). There are several different
ways to garner these data, although we focus on the advantages of parcel data below.

A common approach to measuring intraurban migration is surveying individuals
and then reporting on them over large enumeration units. These surveys ask
questions about recent moves, such as time since last move or change in commuting
time, and range from travel surveys to general instruments such as the American
Community Survey (ACS), the American Housing Survey (AHS), the Current
Population Survey (CPS), and the Public Use Microdata Samples (PUMS). These
surveys are taken of individuals but when reported are aggregated to regions such
as census tracts or traffic analysis zones. As a result, these sources offer good
information about intraurban migration in general but lack the spatial resolution
necessary to analyze individual moves at subregional scales. These data may
be downscaled to create statistically plausible individuals (e.g., giving agents an
income from a statistical distribution and giving them a random location within a
census tract), but this does not link to actual individuals and places (Berger and
Schreinemachers 2006). In sum, census-like surveys offer good attribute detail over
broad extents at the cost of spatial specificity.

Another common approach to measuring intraurban migration is to gather data
on specific households or houses in an area. Directly surveying migrants is a good
way to understand their home-seeking behavior, but this approach is expensive and
typically reaches only a small subset of migrants. Other sources include city or
telephone directories and utility records that can be used to track the moves of
individuals from one address to another, although these data are often incomplete
and, in cases such as utility records, subject to confidentiality provisions. A related
approach is using home sales data to capture attributes of specific houses, but
these data usually say little about the search and migration behavior of specific
individuals. Overall, data on specific households and houses offer spatial specificity
not found in aggregate data noted above, but their use is not without challenges.

We developed a novel form of information on household intraurban migration
to address key data challenges, namely, migration chains from land parcel data
for an entire region. A migration chain establishes linked pairs of moves, each
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defined by a household that leaves a property and one that moves into the just-
vacated property. Parcel data are suited to this task when they encompass all home
ownership for a specific area; in the Twin Cities, for example, these data describe
over one million lots. This research utilizes the annual regional parcel dataset in
the TCMA compiled and managed by the regional government, the Metropolitan
Council, spanning the seven counties of Anoka, Carver, Dakota, Hennepin, Ramsey,
Scott, and Washington. Relevant information includes owner’s name and date last
sold; other data vary by jurisdiction, such as square footage of houses and their
lots or dwelling type (for a review of these data and those from other locations, see
Manson et al. 2009). We identified about 4,800 origin–destination pairs for the years
2005 through 2007, which contain the most complete information for the region and
pertain to the period before the US housing market collapsed in 2008.

While developing migration chains from land parcel data is laborious, it can be
semiautomated. We developed migration chains for the Twin Cities by comparing
the owners of a parcel across years, detecting valid owner changes and matching
owners across years. We weeded out transactions, such as speculation and bank
sales, that represent ownership change without a household move. We also left out
condominiums and apartments given that many are not owner occupied (so renters
are not included). We developed software that embodied a multipart strategy to deal
with variations and errors in names. All names were uniformly formatted into the or-
der of first name, middle name, and last name. Then an intelligent name comparison
routine determined if two different names actually refer to the same person, family,
or organization. It employed a dictionary of abbreviations, which records various
forms of names for a single institution such as the city of Minneapolis and MPLS
and the Minnesota Department of Transportation and MNDOT. It also scanned all
parts and letters in two names, and if the percentage of matched parts or letters is
beyond a predefined criterion, the two names are defined as the same. For instance,
George Washington and G. Washington would be judged as the same person, and
George Washington and George and Martha Washington are the same household.
We then reviewed all matches manually to minimize dataset errors.

Semiautomated extraction of migration chains from parcel data is not a panacea
for migration research, but it offers significant advantages over other approaches.
While it can identify housing attributes, such as square feet of number of rooms,
it does not provide characteristic of movers, such as age or size of household. It is
far more extensive in coverage than most sales databases, much less expensive than
surveys of individuals, and provides a level of specificity not found in higher-level
data such as the census. As a result, this novel approach to migration data provides
critical spatial and temporal information at resolutions sufficient to test theories of
individual migration.

6.3.2 Agent-Based Modeling of Migration

We develop an agent-based model of the modified intervening opportunity theory
presented above that is calibrated and validated against migration chains derived
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from parcel data. The ABM treats residential choice as primarily influenced
by distance and direction between movers and vacancies, updating the classic
intervening opportunity model with individual agents acting on real-world evidence.
Agent-based modeling has garnered a lot of attention for spatially explicit modeling
of urbanization and land use more broadly (Gimblett 2002; Parker et al. 2003a;
Irwin et al. 2009; see Batty 2008; O’Sullivan 2008). An agent-based model is a
computational system composed of semiautonomous software programs (termed
agents) that can represent entities ranging from atoms through households to cities.
Each agent in the system has its own resources, local context, knowledge, behavioral
rules, and goals. Importantly, agents interact with each other and their larger envi-
ronment. ABMs are increasingly used to understand urban issues such as growth and
sprawl, land use and transportation, and racial segregation and residential structure
because they explain how simple microbehavior leads to complex macro patterns
and processes (Torrens 2006; Fossett 2006; Salvini and Miller 2005; Miller et al.
2004). Using an ABM is important given the intractability of deriving analytical
solutions to a system of equations defined by real-world spatial data on thousands
of individuals outside of a simplifying mathematical approach or use of a statistical
model (Krzanowski and Raper 2001; Kwasnicki 1999). These approaches are
commonly used in part because they are powerful, but an ABM, by instantiating in
agents the underlying mathematical formulation of intervening opportunity theory,
allows exploration of the theory in a real-world context. Marrying mathematical
and statistical formalism with agent-based modeling is increasingly seen as a way
forward for theoretically derived and empirically tested models of human behavior
(Irwin et al. 2009).

The model developed here joins other related efforts that use ABM to understand
urban processes. There is a fast-growing body of research that applies this approach
to construct models centered on representing the decision-making processes of
individuals and their resultant mobility (Haase and Schwarz 2009; Torrens 2012;
Kennedy 2012; Parker et al. 2003b; Macy and Willer 2002; An 2012; Matthews
et al. 2007; O’Sullivan et al. 2012). These models vary broadly in their degree
of specificity and extent to which they are conceptually stylized models. Some
attempt to simulate classical urban residential processes and patterns, such as
monocentric cities and residential segregation (Benenson and Torrens 2004; Crooks
et al. 2008), with highly generalized and stylized models. Others build on these
simpler models via greater empirical specification, seeking to simulate urban
residential processes including gentrification (Jackson et al. 2008; Diappi and
Bolchi 2008; O’Sullivan 2002; Torrens and Nara 2007) and urban sprawl (Brown
et al. 2008; Fernandez et al. 2005; Loibl and Toetzer 2003). Other models go even
further by offering intricately detailed and data-rich explorations of urban processes
underlying complex residential choices within the urban sphere (Birkin and Wu
2012; Zaidi and Rake 2001).

This model is implemented in a spatially explicit agent-based model of land
change (Manson and Evans 2007). Agents are software objects, or semiautonomous
programs that have their own properties and routines, that exist in an environment
composed of raster and vector format layers. Importantly, agents update the
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environment by virtue of changing spatial layers after taking actions such as building
new houses or moving between houses. The process of modeling TCMA intraurban
migration in the model has four steps: (1) establishing the spatiotemporal context,
(2) populating agents and environment, (3) running the model to create vacancies
and simulate migration, and (4) validating model output (Fig. 6.2).

6.3.2.1 Step 1: Spatiotemporal Context

We model intraurban migration in the seven-county TCMA from 2005 to 2007.
As an organizing framework, we adopt standard housing submarkets that map onto
well-established neighborhoods as defined by the regional real estate board (see
Fig. 6.3). We interpolate the population of each submarket as given by regional
government surveys and land-use zoning to fit in these submarkets as a series of
raster data layers with a resolution of 100 m.

6.3.2.2 Step 2: Agent Specification

The chief actors are households in the owner-occupied housing sector, housing de-
velopers, and governmental institutions. Populating actor agents involves significant
simplification, because the core strength of agent-based modeling is illustrating how
complex results can arise from simple actions. We focus on three types of agent.

Institutional Agents They shape housing development and migration destination
options. The model incorporates the policy effects of the regional planning agency,
the Metropolitan Council, and local governments through a set of areas that are
off limits to new housing (land reserved for agricultural use or wetland offsets)
and areas that are designated for new development (defined by growth zones and
sewerage availability). These effects are coded as rules that denote locations where
development can and cannot occur.

Developers They expand the housing stock and add new vacancies into the housing
market to join the existing vacancies given by the parcel dataset. Developers build
new houses that are added to the vacancy lists. Their key characteristic is the rate at
which they build houses, which is given empirically by the parcel dataset as 5,392
per year. They build houses at random locations in areas designated by institutional
agents. Using developers is a straightforward way of ensuring the growth in housing
mirrors that in reality while maintaining an analog to the real world, but their
decision making is far simpler than that of real developers.

Households These are the primary agent of interest. Agents are placed in the study
area via a polygon file where the number of households within each spatial unit is
determined by the actual household population in a given neighborhood, listed in the
population data noted above. The migration rate is around 7 % per year for owner-
occupied housing and this number of households is placed. Households are assigned
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1.1 Specify a Spatiotemporal Framework

Vector: Scale and spatial unit

Raster: Extent and resolution
The seven county TCMA, 100 meter

Cities and townships, housing submarkets
Temporal: Duration and resolution

2005-2007, one year

1.2 Generate the Geographic Context

Land Use Regulations

Regional Housing Market

Existing vacant houses, new houses, and their 
main characteristics

Current and planned land use

2. Populate Actor Agents

Locations of Actor Agents

Number of Actor Agents
A certain percentage of households

Random, but constrained by land use and 
population distribution

Attributes of Actor Agents
Initial pressure for migration

3. Run the Model 

Agent-Context Actions

Inter-Agent Actions
None

Migrate, generate/fill vacancies, change 
pressure for relocation 

Context Dynamics
Add new houses, update vacancy list

4. Analyze the Model Output

Verification

Results
Migration data with origin / destination

Inner-migration rates comparison
Validation

Syrjala test, minimum spanning tree techniques

Model
Calibration

Preparation

Fig. 6.2 Main modeling steps
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Fig. 6.3 The spatial context of the model (a) modeled area, (b) land-use pattern, (c) spatial
configure based on housing submarkets used by realtors, and (d) detailed parcel map in the city of
Victoria



6 Simple Agents, Complex Emergent City: Agent-Based Modeling. . . 135

Fig. 6.3 (continued)
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a random parcel within their neighborhood, but only one household can occupy a
parcel. Agent decision making is defined by the conceptual model developed above,
where households assess the probability of choosing a given vacancy (Pij) via either
distance-only or distance-plus-direction strategies. Households assess vacancies
comprised of existing vacancies and recently developed houses, choosing vacancies
per their move distance (given as a negative exponential distribution) and directional
bias (per a von Mises distribution) as specified by the migration chain data.

6.3.2.3 Step 3: Simulate Migration

A key advantage of ABM is that they can be straightforward to run; for once agents
are specified, and they are simply set in motion and dynamically interact with each
other and the environment. Each model year, three processes occur. First, institutions
apply policy rules on which areas can and cannot be developed. Second, developers
build houses in developable locations that are added to the vacancy list. Third,
households migrate, per direction and distance-and-direction rules, to new parcels
and place their old houses on the vacancy list. Based on actual moves given by
the parcel data, the estimated � in Eq. 6.1 for distance in the TCMA is 0.160 for
2005–2007 and the estimated � is 0.085 for Eq. 6.2 for direction (Fig. 6.4).

Move Distance (mile)
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Fig. 6.4 Empirical distribution of move distance-and-direction
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6.3.2.4 Step 4: Model Validation

Model validation involves measuring how well the model duplicates real-world
phenomena. Model validation in the absolute or predictive sense is theoretically
infeasible as no single model can reproduce every aspect of a complex open system
(Oreskes 1998). That said, statistical measures can provide a useful benchmark for
assessing how well different complex model configurations perform (Windrum et al.
2007; Manson 2007). Validation requires comparing model results to empirical
data, to which end we used three different metrics: inner-migration rates, Syrjala
tests, and minimum spanning trees. As model migration rates are calculated from
actual relocation data, the number of modeled movers equals the actual number
of migrations and values of � in Eq. 6.1 and � for Eq. 6.2 for direction. The main
difference is therefore the spatial distribution of these migrant households. The three
approaches employed to assess spatial fit are well suited to the problem at hand given
that point pattern methods vary in their sensitivity and accuracy, as determined by
their capacity to discriminate between point patterns, remain stable over different
samples, and deal a range of underlying distributions (Wallet and Dussert 1998).

The three model validation approaches offer specific advantages while com-
plementing one another. First, inner-migration rates compare the percentage of
households that move within housing submarkets (i.e., those that stay within a given
area or neighborhood). We use a multiscalar model specification across several
submarket specifications to develop a strong measure of comparison between
modeled and actual migration. Second, Syrjala tests compare the spatial distribution
patterns of simulated and actual destinations of migrant households, offering the
advantage over many standard point pattern analyses in assessing not just locations
but also quantities across several scales of aggregation via a modified procedure
that apportions simulated and actual destination points. Third, use of minimum
spanning trees (MST) offers an optimized nearest-neighbor distance analysis that,
instead focusing on local nearest neighbors, describes the shortest, noncircular path
connecting all points. Each of these three approaches offers distinct advantages as
well as overlaps in validating how well simulated and actual migration match.

6.4 Results

In order to compare the simulated results with the actual distribution of migration
destinations, we employ inner-migration rate comparison alongside Syrjala tests
and MST to compare the similarity between the spatial distributions of actual and
simulated migration destinations. Both distance and distance-and-direction yield
realistic moves across scales of aggregation. Inner-migration rates at various scales
indicate that the model recreates realistic aggregate spatial patterns of intraurban
migration. Inner-migration rates measure the percentage of migrants who remain in
the originating spatial unit and indicate the extent to which simulated moves match
real relationships among vacant housing supply, move distance distribution, and
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residential locations. In calculating inner-migration rates, it is necessary to correct
for the fact that inner-migration rates are defined by arbitrary spatial units (Turner
et al. 1989), in that small-area data can be combined at different resolutions. We
measured the inner-migration rates across a series of 29 regular grids ranging from
a coarse one 2 � 2 of grid cells to a fine-scaled 3 � 3grid for the entire TCMA. At
finer scales, up to a third of the grid cells fall outside of the seven-county region
given its irregular boundary and are not included in the count because they would
inflate the number of seemingly correct moves.

The simulated inner-migration rates mirror actual rates given by the parcel data,
which indicates that the model captures key relationships between vacant housing
opportunities, move distance distribution, and land-use patterns (Fig. 6.5a). Both
decision-making strategies—distance-only and distance-plus-direction—produce
inner-migration rates that are close to the actual values. Distance-and-direction
outperforms just distance, as illustrated by the total root mean squared errors, which
compares how well the simulation does against actual moves measured by inner-
migration rates (Fig. 6.5b).

Syrjala tests offer an advantage over inner-migration rates in that they demon-
strate how well a simulated distribution resembles an actual one (Syrjala 1996).
The Syrjala test compares the values of two sets of samples or, in the case of
intraurban migration, destinations tessellated onto a regular grid. The test produces
two measures, a Syrjala statistic and a p value. The Syrjala statistic measures the
differences between the cumulative distribution functions of the two samples. The
smaller the statistic, the closer the two sample distributions, while the p value
indicates the probability that the two samples are from the same population and
spatial distribution. There is no simple analytical solution for p; instead, it is
calculated through sample permutation and denotes the percentage of randomized
permutations that have bigger Syrjala statistic than the sample. If p is 0.03, for
example, only 3 % of these random distributions are more similar to the distribution
of one sample A than the other sample B, implying the spatial distribution of A is
statistically different from that of B.
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Fig. 6.5 Actual and simulated inner-migration rates (a) and total RMSE of simulated inner-
migration rates against actual rates (b)
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The Syrjala test of intraurban migration in the Twin Cities sheds light on complex
patterns. Key measures are the percentage of subdivisions (not the number of
households) that are not statistically different from the actual distribution (H1), the
mean Syrjala statistic S , and the mean p value p.S/. First, both decision-making
models score well on H1, where 71 % of subdivisions for the distance-only strategy
and 69 % for the distance-plus-direction strategy match reality. Second, the distance-
only strategy fares slightly better than distance-plus-direction strategy in recreating
real migration patterns given lower average Syrjala statistics (0.696 vs. 0.771) and
higher average p value (0.212 vs. 0.182). Overall, these two strategies are similarly
successful in how they replicate real-world migration destinations.

The minimum spanning tree (MST) method focuses more on the relative position
among intraurban migration destinations than the other two methods. Besides
providing trees for visual inspection, the approach generates simple mean path
length d and variance � (d), where a short path length indicates that points are
close to each other and a small variance means the points are evenly distributed.
An MST is network structure that connects all nodes with a minimum total distance
(Zahn 1971; West 2001). MSTs treat individual locations as nodes of a network
in which each is connected to neighboring locations, which preserves information
about the adjacency of nodes (Fig. 6.6). Importantly, an MST minimizes the length
of the path connecting location while guaranteeing that every location linked to
another one (Guo 2008). This approach preserves both absolute and topological
spatial characteristics in a way that heightens sensitivity and accuracy (Wallet and
Dussert 1998), as well as offering the benefit of identifying spatial hierarchies of
migration.

Two specific examples illustrate how MST analysis compares the spatial distribu-
tion of simulated and actual migration destinations. In the exurban city of Norwood,
migration extends toward the Minneapolis downtown (Fig. 6.7), which mirrors the
simulated results. However, both decision-making models also produce two extra
spurs on the MST that trend south and north, which is not consistent with the true
situation.

For the inner-ring suburban city of Robbinsdale, simulated results have a more
concentrated pattern than the real situation, implying that the average path length of
simulated move destinations is shorter than the reality (Fig. 6.8).

A comprehensive comparison using MST features provides insights into the
predictive powers of the two different decision-making strategies (Table 6.1). In
terms of the mean shortest path length d , the distance-only strategy produces
the smallest minimum root of mean squared errors (RMSE) compared to actual
migration. Both methods generate a smaller average path length than the real
migration data, which means more compact patterning of moves. The lower value
of the direction-plus-direction method compared with the distance-only method is
expected because the directional bias compresses the migration destinations into a
smaller region. The significantly shorter average path length of the distance-only
method, together with the lower variance, implies that the distance-based methods
tend to generate a more compact pattern than found in reality. In other words, they
will underestimate urban growth and sprawl.
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Fig. 6.6 Minimum spanning tree connecting intraurban migration destinations. Note: MST is
scale independent. School districts serve as background

6.5 Discussion

Agent-based modeling of intraurban migration illustrates the importance of interac-
tion between vacancy distribution and housing search, particularly in how complex
intraurban migration patterns exhibited in the aggregate can arise from simple
behavioral rules. The key finding of this work is that while it is a safe assumption that
people take into account a range of personal, social, and environmental factors when
making momentous housing decisions, distance-and-direction handily captures key
facets of intraurban migration.

The prime import of this work is that it demonstrates a straightforward means
for modeling the housing search process. The pure distance-based decision-making
strategy, when applied to appropriately specified housing vacancies, can generate
spatially realistic aggregate migration patterns. The addition of migration direction
improves the fit somewhat at the cost of introducing greater complexity, given that
it appears to capture the small but significant effect of directional bias even when
using just a single downtown center instead of actual working places as the source
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Fig. 6.7 Intraurban migration from Norwood

of this bias. Even then, underestimation of sprawl in suburban and exurban locales
points to a prolonged housing search, which implies that people who live in areas
with low population density tend to move less frequently and longer distances (see
also Van der Vlist et al. 2002).

This work provides a basis for more complicated, utility-comparison-based
migration models of housing search strategies. The modified intervening oppor-
tunity theory as instantiated in an agent-based model and empirically calibrated
with migration chains captures fundamental features of the migration process
and can complement deeper investigation of specific factors and locales. Alone,
they can help capture key migration dynamics in the absence of many kinds of
information usually needed to understand migration, creating a simple and powerful
perspective on migration and urbanization. When combined with other data, they
provide part of the foundation of a broader and deeper examination of intraurban
migration. Directions for future research include more complicated spatial and
social landscapes, such as a multi-nodal preference landscape or myriad public and
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Fig. 6.8 Intraurban migration from Robbinsdale

Table 6.1 Comparison of migration strategy using MST path length distribution

Decision-making strategy RMSE (m) d �(d)

Actual 4,962.08 4,626.66
Distance-only 3,908.477 3,655.031 3,042.45
Distance-plus-direction 5,051.047 3,042.447 2,713.88

private incentives related to housing, and consideration of how these landscapes
interact with personal and household attributes.

More broadly, this work addresses a key methodological challenge for many
urban modeling approaches, and especially for ABM, resisting the temptation to
make models complicated. With data becoming more plentiful and methods growing
increasingly sophisticated, models run the risk of committing what Lee (1973)
termed the key “sins” of urban models, namely, being hyper-comprehensive and
complicated at the cost of parsimony and generalizability (Lee 1973; Klosterman
1994). ABMs are at particular risk because their core strength is demonstrating
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how complexity arises from actions and interactions of simple agents. There is a
fundamental tension between the desire to create realistic models by incorporating
many urban processes and the desire to explain how features of a city emerge from
the simple interactions among entities such as households and properties (Clarke
2004; Brown et al. 2008). This tension gives rise to the need for simple, empirically
based agent-based models of migration that can complement the host of more
complicated models. Overall, this approach is deliberately straightforward in that
it does not examine the characteristics of movers or the broader organization of
housing—the primary foci of migration research—but instead centers on combining
long-standing geographical findings to provide a straightforward sociospatial con-
ceptualization of the intraurban migration process. Overall, this work complements
existing approaches while breaking new ground in understanding how individual
behavior scales up to the urban region.

This model also gives insight into how complexity emerges from simplicity
by examining how specific housing opportunities and individual housing search
behavior influence the aggregate pattern of intraurban migration. By combining
intervening opportunities theory with behavioral evidence on the spatial character-
istics of intraurban migration in an agent-based model, we can explore the extent
to which real-world migration patterns can result from simple behavioral rules of
household search in the context of housing opportunities. When households live
in an area with fewer housing opportunities, for example, they are less likely to
find a vacant house that meets their needs and thus require more iterations (i.e.,
more time) to accomplish their housing search. Importantly, while there are many
different conceptual frameworks seek to explain migration, and while this diversity
signifies healthy inquiry, it highlights the need for simple models of individual
actions coupled to broader, generalizable (and admittedly simple) models of urban
processes (Batty 2008, 2012). Methodological challenges abound, as evidenced
by both the large array of statistical and simulation approaches used in migration
analysis and the extent to which they are increasingly combined in hybrid models.
Many of these theoretical and methodological issues have at their heart the need
for better data, particularly on specific individuals and households who collectively
drive intraurban migration. Taken together, these challenges indicate a pressing need
for hybrid statistical and simulation models based on data on specific individuals to
develop stronger conceptual frameworks of how individual actions give rise to the
aggregate patterns and processes of intraurban migration.

Overall, while agent-based modeling can help explain complex systems by
integrating many possible interacting components, it is also a valuable way to
explore how straightforward behavioral rules of individuals can lead to processes
and patterns of complexity. By examining, incorporating, and validating spatial
behavioral theories, the modified intervening opportunities model offered here can
serve as a sociospatial foundation for more comprehensive urban models as well
as contribute to ongoing research on developing and validating theories of human
behavior in urbanization.
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