
Chapter 12
Modeling Urban Land Use Change: Integrating
Remote Sensing with Socioeconomic Data

Junmei Tang

Abstract Rapid urban development has stimulated the progress in predicting and
evaluating urban landscape evolution. As a result of rapid socioeconomic devel-
opment, the land use pattern of Houston, TX, has undergone significant changes
over the past 30 years. It is essential to simulate urbanization processes in Houston
to examine where and to what extent landscape change has occurred and further
to understand how and why the change can occur. This research developed two
cellular automata (CA) models based on the same remote sensing data source: one
was based on the classification from Landsat images and another one incorporated
the socioeconomic data with the same classification results. The predicted results
from these two models suggested that the incorporation of socioeconomic data
improved the accuracy in human-intervened landscapes, such as residential and
industrial/commercial area. More socioeconomic data and finer data sources were
needed to improve the CA model to predict the heterogeneous pattern within urban
areas.

Keywords Urban land use change • CA model • Socioeconomic data • Remote
sensing

12.1 Introduction

Rapid urbanization in the past 50 years, triggered by the population growth and
migration from rural to urban and suburban areas, presents one of the greatest
challenges in environmental, economic, social, political, and cultural research
(Antrop 2004; Tang et al. 2012; Tayyebi et al. 2012). The total urban population is
82 % with an estimated 1.2 % annual increasing rate from 2010 to 2015 in the United
States (US Census 2011). The motivation to model urban landscape dynamics arises
from the process of examining where and to what extent landscape change has
occurred, and furthermore, the need to understand how and why the changes can
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occur (Weng 2002; Yang and Lo 2002). One of the greatest challenges in designing
effective urban models is that their performances are often limited by the inadequate
digital data source over time as well as the consideration of external driver such as
socioeconomic development and human disturbance (Pickett et al. 1997; Mcintyre
et al. 2000).

Remote sensing data, with the ability to provide large-scale data sources such
as historical maps or urban land use maps, has been used as an effective tool in
quantitatively measuring urban landscape and modeling urbanization at a relatively
large spatial scale (Herold et al. 2003; Tang 2011). Images from satellite sensors
provide a large amount of cost-effective multispectral and multi-temporal data to
monitor landscape changes and estimate biophysical characteristics of land surfaces
(Weng 2002). Many researchers have proposed the routine to combine remote
sensing with GIS in urban growth models (Tang 2011; Tayyebi et al. 2013).
Significant progress in acquiring remotely sensed data in a higher spatial resolution
and developing the spatial geographic process model has widened our research on
the process, driving forces, and impacts of the urbanization.

The cellular automata (CA) model, introduced by Tobler in 1979, is one of the
most powerful spatial dynamics techniques used to simulate complex urban systems
(Batty and Xie 1994). The CA model allows researchers to view the city as a self-
organizing system in which the basic land parcels are developed into various land
use types. Cecchini and Viola (1990) applied simple decision rules in the CA model
to predict the complex, large-scale structure in the urban growth process. Wu (1998)
combined the multicriteria evaluation (MCE) and GIS into the CA model to define
the transition rules in a visualized environment. Shafizadeh-Moghadam and Helbich
(2013) used AHP (analytical hierarchy process) to determine the weight in a Markov
chains-cellular automata urban growth model.

The advantages of the CA model in simulating urban spatial process and
dynamics (Hillier and Hanson 1984; White and Engelen 1993) have been widely
documented because the theoretical abstraction of the CA model and the practical
constraints in the real world can be easily related (Batty and Xie 1994; Clarke
and Hoppen 1997; Wu and Martin 2002). The model begins from a homogeneous
cell-based grid and adjusts itself through the transition rule derived from its local
spatiotemporal neighborhood. This makes the CA model suitable to simulate com-
plex and hierarchical structures since more unknown, immeasurable spatiotemporal
variables can be incorporated and manipulated in this model. Another advantage
in CA simulation is the ability of the model to incorporate proper parameters or
weights to model the alternative socioeconomic states in the model development
(Clarke and Gaydos 1998; Li and Yeh 2000). With better computer techniques, the
CA model is also able to explore more complex human behavior through defining
different transition rules (Li and Yeh 2000; Wu and Martin 2002). However, the
tension between the simple local transition rule in CA models and the complex,
unpredicted social changes in urban landscapes still remains.

In this context, this chapter attempted to develop a spatial-explicitly CA model to
simulate urban growth patterns using the classification result from Landsat images
and another one incorporated the socioeconomic data with the same classification
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results. Two CA models were compared to test how the socioeconomic data could
improve the urban model simulation in Houston during the last 30 years. Specially,
the following research questions were addressed: How the socioeconomic data
could be incorporated with remote sensing in the urban growth model? Does the
socioeconomic data improve the model? In which classes does this model improve?

12.2 Urban Model Review and Socioeconomic Data
in the Model

With the availability of spatial data on a large scale, various sophisticated models,
especially after the late 1990s, were developed such as UrbanSim model (Waddell
2002), Markov chain model (Stewart 1994), LUCAS model (Berry et al. 1996),
CLUE model (De Kong et al. 1999), area-based model (Lichtenberg 1985; Tayyebi
et al. 2011, 2013); CA model (Batty and Xie 1994), Land Transformation Model
(Pijanowski et al. 1997, 2014), and agent-based model (Liebrand et al. 1998). The
detailed review of these spatial explicit models is listed in Table 12.1.

In terms of the methods to represent the model object, there are vector-based
models and grid-based models (Herold 2004), and both of them have been used to
incorporate socioeconomic data. Vector-based models use the thematic map as the
input data for the model, and the spatial objects are usually defined as homoge-
nous land units. UrbanSim is one of land use simulation models for the growth
government, regional land use, and transportation planning in the states of Hawaii,
Oregon, and Utah (Waddell 2002). Within the context of urban infrastructure and
governmental policy, UrbanSim represents zonal structure in the urban area to
monitor the socioeconomic-related behaviors of households, business, and land
developers. Theoretically, UrbanSim is an object-oriented model. What if model
(Klosterman 1999) begins with uniform analysis zones or homogeneous land units
generated from the GIS software. Through applying the governmental policies and
land use demands, this model derives the aggregating value of the regional condition
on the land units. What if model projects future land use patterns by balancing the
supply, demand, and land sustainable at different locations. Area-based model is a
vector-based model used in resource assessments to predict the availability of farm
and forest land. Transformed from the regional model (Palmquist 1989), area-based
model allocates the proportions of a given land use to predefine land use categories
using Lichtenberg’s (1985) acreage allocation method (Tayyebi et al. 2011, 2013).

Another vector-based model is Markov model which predicts future landscape
patterns based on the spatial transition probability. Although Markov model is a
typical spatial transition model, early Markovian analysis is a descriptive tool to
predict land use change on a local or regional scale (Bell 1974; Bourne 1976;
Arsanjani et al. 2013). Actually, the Markov model is not a strict vector-based
model; it is based on the statistical results from the thematic map. Lopez et al.
(2001) used Markov chain to simulate the relationships among a set of urban and
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social variables in predicting land use/cover change in the urban fringe of Morelia
city, Mexico. Weng (2002) demonstrated that the integration of satellite remote
sensing and GIS techniques into the stochastic urban modeling was an effective
approach for analyzing the direction, rate, and spatial pattern of landscape change in
Zhujiang Delta of China. Tang et al. (2007) improved the Markov chain model by
incorporating a modified genetic algorithm in the urban boundary expansion for
urban simulation. Mathematically, most vector-based models rely on some static
equations, and this characteristic provides the potential in integrating the statistical
information into the model entities. The major drawbacks of such models are the
poor handling in dynamic entities and poor representation of external variables, e.g.,
the spatial information and socioeconomic factors.

The models developed on grid have more advantage in solving these problems
than the vector ones. Land-Use Change Analysis System (LUCAS) is a grid-based
model which integrates socioeconomic and ecological variables in the multilayered,
gridded maps (Berry et al. 1996). This model consists of three subject modules:
socioeconomics, which derives the transition probability from the function of
socioeconomic driving variables; landscape change, which predicts the landscape
maps from the socioeconomic module; and environmental impacts, which estimates
the impacts of selected environmental variables from the landscape maps from
second modules. Land Transformation Model (LTM) (Pijanowski et al. 1997, 2014)
applied the spatial rules to land use transitions for each location in the processed
spatial layer or grid. It is easy to quantify the contribution of different spatial
variables because of its grid format. In order to aggregate the land use change and
change drivers, this model adopted the similar method with the Conversion of Land
Use and its Effects (CLUE) model (De Kong et al. 1999). Both of them apply the
variable values in grid format to create a series of future land use patterns over
the time. Cellular automata model has been proposed and developed to simulate
the urban land use model by incorporating various socioeconomic variables, such as
dynamic transportation model (Aljoufie et al. 2013) and dynamic population density
(Van Vliet et al. 2012).

Agent-based model (Liebrand et al. 1998) is a complex behavior model which
used both vector data and raster data. Usually, the raster data is the agents’
environment, and the agents, in turn, act on the simulated environment. This model
can be applied to a wide variety of simulations, including moving cars, animals,
people, or even organizations. The socioeconomic variable, as both agents’ status
and driving forces, was incorporated into the model to simulate individual activities
(An et al. 2005). This model is difficult to develop and control since we need to
incorporate the “individual agent” information and predict its potential behaviors.

Generally, a reliable urban growth model should have the following capabilities:
(1) providing an appropriate theoretical and technical framework for urban growth;
(2) understanding and describing the historical dynamics of urban structures; and (3)
exploring and incorporating different economic and social parameters to monitor the
urban growth.
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12.3 Study Area and Data Preparation

The eastern metropolitan area of Houston, Texas, covering an area of 1,200 km2,
was chosen as the study site (Fig. 12.1). Houston is situated in the northern portion
of the Gulf coastal plain, a 60 by 80 km-wide swath along the Texas Gulf Coast,
80 km from the Gulf of Mexico (Moser 1998). This area has experienced rapid urban
development since the 1930s after the discovery of oil (Tang et al. 2008) in nearby
oil fields. These discoveries made it the largest city in Texas as of 1930 and the
fourth largest city in United States since 1990 (Texas State Historical Association
2002). Although the government tried to diversify its economy (Key to the city
2001), the city’s unchallenged role as an international center of oil technology,
headquarters for a number of the world’s largest energy companies, and a strong
refining and petrochemical manufacturing base should shore up the local economy

Fig. 12.1 Study site, Houston, Texas, in the United States
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of Houston in the near future. The representative land use/land cover classes in this
selected region include residential area, commercial/industrial area, transportation,
woodland, grassland, and barren/soil.

The satellite Landsat MSS/TM images were collected from 1970s to 2010 in this
study. All these images were georeferenced to the Universal Transverse Mercator
projection using ENVI. The convention Maximum Likelihood Classification was
adopted to obtain four classified landscape maps with six landscape classes for each
map. We chose two set of samples around 600 pixels for training samples and test
samples, respectively. The selection of separate of training and test samples was
guided by the characteristic of each class at different years. The overall accuracy
assessment of classified maps was 92 % (1979), 94 % (1990), 96 % (2000), and
95 % (2010). Figure 12.2 shows the detailed proportion of each land use type as
shown in Table 12.2.

In order to represent the rapid socioeconomic development in the Houston
area, four major socioeconomic variables were collected: population density, house
density, road density, and distance to highways (Van Vliet et al. 2012; Aljoufie et al.
2013). These four variables were collected at census block level from the official
website of the U.S. Census Bureau (US Census Bureau 2010).

Fig. 12.2 Satellite images and classification results from MLC method on October 1979, Decem-
ber 1990, November 2000, and October 2010

Table 12.2 The proportion
of each land use type from
1979 to 2010 in Houston

Area (km2)
Houston 1979 1990 2000 2010

Residential 312.47 479.78 564.43 572.43
Industrial/commercial 93.50 228.58 198.21 197.07
Grassland 511.34 287.53 235.89 178.63
Woodland 209.68 140.32 184.70 179.43
Barren/soil 70.13 81.98 32.72 87.13
Water 31.73 9.67 11.85 13.11
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12.4 Methodology

A cellular automata model was developed to investigate the scenarios of future
urban land transformations in Houston. This model started on a 30-m grid and the
transition rules were applied to all cells at the same time, and the entire grid was
updated at the annual iteration. The transition rules were defined as the difference
between the center cell and eight neighbors within 3 � 3 Moore’s neighborhood. To
determine the state of a cell in a certain time period, the simulation function was
written as:

StC1
i;j D aN � Nt

i;j C aM � Mi;j C aSE � SEi;j (12.1)

where Nt
i,j denotes the diffusion factor regarding its neighborhoods, Mi,j denotes

the Markov transition probabilities, SEi,j denotes the socioeconomic status of each
single cell and its neighborhoods; a represents the coefficients for these variables.

For a self-organizing CA model, the diffusion factor, Markov transition rules,
and socioeconomic status were defined as:

Ni;j D ni;jX
ni;j

(12.2)

Mi;j D
kX

kD1

N .i; j /

,
mX

iD1

m

k � mk

(12.3)

SEi;j D

nX

nD1

0

@
dn
i;j � min

�
dn
i;j

�

max
�
dn
i;j

�
� min

�
dn
i;j

�

1

A

n
(12.4)

where ni,j is the total number of class i surrounding the observed class j, N(i, j) is
the observed landscape amount changing from class i to class j during total m years
at k internal steps, and dn

i,j is the different value in the selected four socioeconomic
variables between the observed center cell and its n neighbors (Fig. 12.3).

Although the socioeconomic data were collected at the last year of simulation, the
difference of socioeconomic values between the observed cell and the neighbors was
used to determine the socioeconomic factors. Obviously, different socioeconomic
variables have different impact weights to the urban land use/land cover change.
In order to find the weightiness of each socioeconomic variable, 20 experts in the
field of socioeconomic and land use change were invited to assign weights to each
variable using the index ranging from 0 to 10 to represent the weight from the
highest impact to the lowest impact. The average value of these ratings was shown
in Table 12.3.
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d

Fig. 12.3 The visualization of the socioeconomic value in Houston (a) Population density; (b)
House density; (c) Road density; and (d) Distance to highway

Table 12.3 The weight of socioeconomic indices

Houston
Population
density

Road
density

Distance
to highway

House
density

Barren/soil 3.67 3.50 3.40 4.00
Industrial/commercial 8.80 8.17 8.42 7.33
Grassland 3.18 2.75 3.36 4.90
Residential 9.46 8.08 6.25 8.92
Transportation 7.66 9.00 8.95 6.82
Woodland 2.82 2.58 3.18 4.70

A critical issue in the CA model is the provision of proper methods to calibrate
the CA model to find appropriate coefficients for the diffusion factor, Markov
transition rules, and socioeconomic status (Hagen-Zanker and Lajoie 2008; Van
Vliet et al. 2011). To calibrate the model, we used the classified Landsat TM image
as empirical maps on the following dates: November 5, 1984; July 20, 1990; October
6, 1999; and November 9, 2000. We randomly selected an encoded weight number
(ranging from 1 to 10) for each factors, run the CA model using these weight
number, and compared the cells simulated in the CA model with the cells located
in the empirical maps to choose the weight number with the highest fitness. The
CA model was run at yearly intervals to represent one combination until the next
calibration year. These steps were repeated until the year of the last calibration map.

For the validation, the model’s simulation output was compared to the empirical
map, occurring in the same simulated year (Pontius et al. 2004; Pontius and Cheuk
2006) through visual inspection and quantitative evaluation. In this research, we
adopted the classified map in October 31, 2011, as an empirical map and overlaid
it with the predicted map to generate a black-and-white error image. Meanwhile, an
error matrix was built up with the user’s and producer’s accuracy for each class as
well as the overall accuracy and Kappa for the entire landscape.
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12.5 Results and Discussion

Since our model was based on actual observation from the last 30 years in Houston,
the temporal transition probability matrix is calculated by accumulating the periods
from 1979 to 2010. We first calculated the yearly transition matrix between each
two subsequent maps between 1979–1990, 1990–2000, and 2000–2010 and then
calculated the yearly transition matrix between 1979 and 2010 using Eq. 12.3. The
yearly transition probability matrix from 1979 to 2010 is shown in Table 12.4.

Using the yearly transition probability matrices in Table 12.4, we parameterized
the Markov transition probability and socioeconomic variable on the census block
level into the CA model. Two CA models were built up, one with the socioeconomic
variables and another one without. Figures 12.4 and 12.5 show the initial state and
simulated pattern of Houston with the socioeconomic variables and without the
socioeconomic variables, respectively.

The simulated results from two models have similar pattern in general urban
sprawl pattern: fast shrinkage in grassland and woodland and clear outward
expansion in residential or industrial/commercial area. This growth pattern could

Table 12.4 Yearly transition probability (%) matrix from 1979 to 2010

Houston (1979–2010) Residential
Industrial/
commercial Grassland Woodland Barren/soil

Residential 98.07 0.82 0.56 0.42 0.12
Industrial/commercial 1.24 98.01 0.23 0.03 0.4
Grassland 1.85 0.35 97.13 0.53 0.12
Woodland 0.09 0.18 1.19 98.25 0.26
Barren/soil 2.26 2.27 1.26 0.19 94.02

Fig. 12.4 The simulated landscape pattern of Houston with the socioeconomic factors
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Fig. 12.5 The simulated landscape pattern of Houston without the socioeconomic factors

be observed in the southeastern and northeastern city with a large amount of new
residential and industrial/commercial area being built in the last 30 years. Different
from other large cities in the United States, Houston did not adopt city zoning laws
in its urban planning. Lacking city zoning has led to an abundance of urban sprawl in
Houston, resulting in a relatively large metropolitan area and low population density.
Land developers inspired the spread of Houston when they built suburbs such as
Pasadena (1892), Houston Heights (1892), Deer Park (1892), Bellaire (1911), West
University Place (1919), and River Oaks (1922–24).

Although the simulated results from two models have the similar sprawl pattern,
the model with the parameterized socioeconomic variables had a better correspon-
dence with the “abrupt” expansion in residential and industrial/commercial area.
From Fig. 12.6, we could find that the “abrupt” expansion were simulated well in
the model with the socioeconomic data as the larger predicted area in these human-
related landscapes in the year 2010. This “abrupt” expansion was caused by the
rapid economic development, population growth, and road construction in Houston.
The simulated pattern by the model without socioeconomic factors was much
tardier, especially in simulating the rapid growth in suburban area. The differences
between these two models indicate that the CA spatial model could simulate the
urban evolution behaviors with incorporating enough driving factors.

In order to display the error in the predicted map, we compared our predicted
results with the empirical maps. The differential map was shown in Fig. 12.7.
White pixels in the figure represented the area predicted correctly, while dark
pixels represented the incorrect prediction. Generally, the residential areas were best
predicted and most of the errors were found in the suburban area, which were mostly
grassland and barren/soil landscapes. The woodland was predicted better than other
natural landscapes, which might be caused by the large forest reserved area in
northeastern Houston in the Sheldon Lake State Park and Dwight D. Eisenhower
Park.
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Fig. 12.6 The estimated results from two models in 2010

Different with the
empirical map
Same with the
empirical map

a b

Water

Fig. 12.7 The differential map between the predicted map and empirical map (a) with socioeco-
nomic factors and (b) without socioeconomic factors

In Fig. 12.7, the predicted result with the socioeconomic data (Fig. 12.7a)
was better than the one without the socioeconomic data (Fig. 12.7b) with more
white pixels. This could be confirmed in the southwestern Houston, such as
Gulfton, Sharpstown, and Bellaire, and southeastern Houston between Deer Park
and Pasadena. The incorrect predictions were always also found in the indus-
trial/commercial area in the Southern and Northeastern Houston, such as Missouri
City and Jersey village. It was easy to understand since the chosen socioeconomic
data, especially the population density and house density, were better to represent
the residential area instead of industrial/commercial area.

Further validation of models between the simulated one and predicted one
was analyzed through the confusion matrix (Table 12.5). This table showed the
comparison results between the simulated result and empirical maps as the value of
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user’s accuracy and producer’s accuracy represented the accuracy for each class and
the overall accuracy and Kappa represented the accuracy for the entire landscape. In
both models, the best predicted class was the residential area (with 66.97 %/59.03 %
user’s accuracy and 77.32 %/53.91 % producer’s accuracy) and the worst prediction
class was barren/soil (with 40.78 %/20.48 % and 1.43 %/11.74 %). The barren/soil
class, although had the least area in the study area, were easy to be confused with
other classes such as industrial/commercial or residential area. The incorporation
socioeconomic data into the model improved the simulation on the residential or
industrial/commercial classes which made the barren/soil having the least accuracy.

One disadvantage of incorporating socioeconomic data into the model was the
overestimation of residential area in which led to a relative underestimate in the
industrial landscape as well as other natural landscapes such as woodland and grass-
land. This might be improved as more and more socioeconomic data were incorpo-
rated as driving forces in the model. The analysis of the model validation showed
that the appropriate ancillary parameters were necessary for the CA model to derive
a solid result. In fact, the value of the simulation approach lied in its exploratory
nature which enabled the improvement of models with additional variables later.
Meanwhile, the CA model had an “aggregate” function to smooth the heterogeneous
pattern within the urban and suburban area. One solution to solve this problem was
to incorporate better data source into the model, such as higher spatial resolution
images or sub-pixel classifications, to improve the accuracy of CA models.

12.6 Conclusion

The spatiotemporal CA model of urban landscape patterns using multi-temporal TM
and MSS imagery enabled us to characterize the internal structure of landscapes
and monitor the landscape dynamics for Houston. Moreover, we also explored the
potential of socioeconomic variables to detect how human forces affect the urban
spatial pattern.

The CA model, coupled with the Markov transition probability, has indicated
the capability of trend projection for the landscape change. This spatiotemporal
model provided not only the quantitative description of change in the past but
also the direction and magnitude of change in the future. However, based on the
experimental results and exploratory analysis, several limitations still exist within
the current study:

• Since the modeling process involves the usages of data from multiple sources, the
accuracy of prediction result will be closely related to the individual accuracy
with each type of data, especially different remote sensing data sources. The
development of a robust method to incorporate data in different spatial resolution
was still an interesting issue.

• Although the Markov transition probability was calculated on the census block
level, it was stationary and unable to accommodate the unpredictable influence
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variables, such as the climate, policy, and human disturbance. In addition, the
pace of landscape change was usually kept on changing over the entire period.

• In this research, we supposed the relationship between socioeconomic factors,
neighborhood effect, and Markov transition probability was linear and determin-
istic during the calibration. Finding an exact dynamic coefficient between them
was still an intricate study in the urban modeling.

Currently, it was not fully conclusive that the CA model based on socioeconomic
data was inferior to the one without socioeconomic data, especially for the natural
landscapes. It was still necessary to find more sophisticated methods applying to a
series of varied landscape to verify this new model.

Most urban landscapes have been influenced by human disturbance, resulting
in a heterogeneous mosaic of natural and human-managed patches that vary in
size, shape, and arrangements (Turner 1989). The landscape responses to human
disturbances are important, however, difficult to be estimated because the landscape-
level simulation involved numerous challenging experiments and hypotheses in the
development of models (Vaz et al. 2012). These hypotheses are always assumed to
make the process model easier to be manipulated, leading to a more homogenous
pattern in the predicted result. Thus, it is necessary to relate the homogenous
analysis in the model prediction with the heterogeneous analysis in the quantitative
landscape method for a comprehensive understanding of the urbanization process.
In conclusion, this urban studies show that by incorporating more spatial algorithms
into the prediction of landscape change, more accurate long-term landscape changes
can be reproduced in the future.
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