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Preface

Although the last decade has witnessed a significant increase in the volume and
complexity of geospatial data for exploring urban environments, the analysis of
cities is becoming more challenging than ever. In this context, rapid developments
in the fields of spatial statistics, spatial data mining, and geosimulation, among
others, provide highly valuable and promising tools that enhance our understanding
of how cities function and evolve in space-time. In light of these recent trends,
the editors of this excellent volume bring a body of knowledge together into a
volume that is an important resource for those who are interested in exploring cities
through interdisciplinary perspectives. The editors have put together an outstanding
collection of cutting-edge methods for urban modeling.

This book covers a wide range of topics, including methodological advances as
well as specific urban-related themes including housing and real estate markets,
urbanization, and transportation systems, among others. To deal with these topics
properly, extensive expertise is required. The editors have commissioned leading
authors from a wide variety of institutions for each particular topic across different
geographical regions. The volume represents an excellent collection of the state-of-
the-art research methods and knowledge, and it offers the readers a comprehensive
overview on how contemporary cities can be investigated. Besides, the book
shows a variety of complementing aspects about how we can utilize and integrate
novel datasets, advanced geospatial information technologies, and computational
methods to analyze essential aspects of urban environments. This volume strives to
address challenging methodological and dataset issues in order to identify promising
future research directions and challenges for more effective city planning and
management.

The volume is no doubt an impressive collection of chapters and a significant
contribution to an emerging and dynamic interdisciplinary field that lies at the
intersection of urban research, geographic information science, and computational
science. It is not only a well-balanced interdisciplinary collection of current
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vi Preface

research, it also introduces visionary concepts and outlines promising avenues for
future research. It will be an inspiring and highly useful volume for both researchers
and students in the field.

Champaign, IL, USA Mei-Po Kwan
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Chapter 1
Computational Approaches for Urban
Environments: An Editorial

Marco Helbich, Jamal Jokar Arsanjani, and Michael Leitner

Abstract Cities are under continuous pressure due to an increasing urbanization
which will have far-reaching consequences for housing, transportation, retail, etc. To
cope with these challenges, methodological advances in quantitative modeling cou-
pled with growing amounts of spatial and spatiotemporal data can add significantly
to our understanding of how cities function. Because the added value of data-driven
approaches to analyze urban environments is promising but still in its infancy,
the present volume aims to promote the application of advanced computational
methodologies to achieve a better understanding of our cities and the underlying
mechanisms.

Keywords Urban environments • Geographic information science • Spatial
statistics • New science of cities

1.1 Prologue

Today’s cities are highly complex, dynamic, and vibrant environments subject to
frequent changes. The impacts of globalization, information economies, as well
as social and demographic changes, among others, have given cities a distinct
appearance (e.g., Hall 1993; Batty and Longley 1994; Anas et al. 1998; Batty
2013; Fujita and Thisse 2013). Urban environments are places where most of the
people in our contemporary society live. In addition, the United Nations (2014)
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predict that the worldwide proportion of people living in urban environments will
double by 2030 compared to the 1950s. According to this trend, in Europe, for
instance, the percentage of the population living in urban areas increased from
1950 to 2007 from 42 to 72 %. More important is that this trend of urban growth
will continue within the next one or two decades. The United Nations forecast
that the European urban population will increase to more than 78 % until 2030.
Without doubt, these urbanization processes, due to their far-reaching impacts on
the economy, climate change, and health, among others, will intensify the pressure
on cities and urban societies even more. In order to be prepared for and to manage
these future challenges, well-thought-out planning and policy strategies are required
(Shafizadeh-Moghadam and Helbich 2015; Clarke 2014). In this regard, quantitative
modeling can add significantly to our understanding of how cities function. Equally
important is to undertake research linking cities with computational approaches and
put such research on policy agendas throughout the world.

As discussed by Pacione (2009), urban environments are highly multifaceted
areas consisting of several subcomponents, including housing markets (e.g., Helbich
et al. 2013a, c), transportation systems (e.g., De Vos and Witlox 2013) etc., shaping
our cities across different scales. Each of these components comprises of its own
spatial and spatiotemporal patterns and processes. As indicated in Fig. 1.1, the
complexity is further amplified through interrelationships between these individual
components. For illustration purposes, let us examine the following example: We
assume that the accessibility of an urban fringe is improved by means of a highway
construction. Due to this new transportation infrastructure provision, the improved
linkage between the suburbs and the core city reduces commuting time and thus
makes these metropolitan outskirts more attractive for new residents to move in.
This accompanied increase in the demand for new residential areas results in
raising suburban land and housing prices, which makes residential land affordable
for higher-income classes, only. This rather simple example illustrates that the
components of urban environments are highly connected to each other and comprise
of interrelated feedback loops.

Although cities have been widely studied during the last decades and meticulous
research dealing with economical, infrastructural, environmental, political, social,

Fig. 1.1 Components of
urban environments
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and demographical aspects has been piled up promoting and supporting our
understanding of the operation of cities (e.g., Batty 2008, 2013; Bettencourt 2013;
Glaeser 2011; Clarke 2014), the underlying processes and the interactions between
components are only partly understood thus far. Several academic disciplines are
dedicated to urban research. Each of them has their own unique perspective on
cities and utilizes their unique set of methods and tools. This results in fragmented
knowledge and a lack of coherent insights (Solecki et al. 2013). While qualitative
urban research has added significantly to the understanding of cities, past empirical
quantitative research has benefited from advances in the field of geographic
information systems (GIS; Goodchild 2010) technologies. At present, GIS-based
analyses (e.g., Jokar Arsanjani et al. 2014) have reached some level of maturity and
are an integral part of spatial sciences as well as of urban policy- and decision-
making. Although the quantitative analysis of urban areas is not new and goes back
to the quantitative revolution in geography (see Kwan and Schwanen 2009), the
rapid methodological progress – including spatial statistics, remote sensing, data
mining, and simulation-based modeling, among others – coupled with the recent
accumulation of readily available spatial and spatiotemporal data on a detailed
scale, i.e., volunteered geographic information (e.g., Jokar Arsanjani et al. 2013a),
airborne laser scanning data (e.g., Xu et al. 2014), and cell phone data (e.g.,
Calabresea et al. 2013), among others, has stimulated and shifted the emphasis to a
computationally oriented urban science (Batty 2013).

In the literature, this linkage between geography and computational science
(Lazer et al. 2009) is referred to as geocomputation, coined by Openshaw and
Abrahart (2000). While the prefix “geo” emphasizes that geocomputation deals
with spatial theories, georeferenced data, and spatially explicit research problems,
the latter term “computation” highlights how geographical science is conducted,
namely, through a broad spectrum of computer-intensive methods, mathematical
and spatial statistical models, simulations, etc. Thus, geocomputation aims to
explore, extract, and generalize inherent urban patterns and processes, in data-driven
fashion from spatial and spatiotemporal data to not only solve complex geographical
urban problems but also to transform the implicit and hidden information in
spatial databases into urban knowledge. As such, geocomputation is an umbrella
term that includes, but is not at all limited to, agent-based modeling (e.g., Jokar
Arsanjani et al. 2013b; Torrens 2012; Malleson et al. 2013), cellular automata
(e.g., Vaz et al. 2012; Pijanowski et al. 2014), spatial (e.g., Helbich and Leitner
2012) and spatiotemporal cluster detection (e.g., Nakaya and Yano 2010; Hagenauer
and Helbich 2013a, b), Bayesian models (e.g., Brunauer et al. 2013; Law and
Quick 2013), fuzzy logic (e.g., Grekousis et al. 2013), local regression modelling
(e.g., Leitner and Helbich 2011; Helbich et al. 2014), regionalization (e.g., Wang
et al. 2012; Helbich et al. 2013c), and neurocomputing coupled with or without
evolutionary algorithms (e.g., Arribas-Bel et al. 2011; Gu et al. 2011; Hagenauer
et al. 2011; Helbich et al 2013b; Mimis et al. 2013). For a more detailed and thought-
provoking theoretical discussion, the reader is referred to Couclelis (1998), Fischer
(2006), as well as Birkin (2009).
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However, nowadays the added value of the applications of cutting-edge computa-
tional approaches to analyze urban environments is promising but still in its infancy
and far from being mainstream. Therefore, the editors of this volume believe that this
book adds to the contemporary research agenda on cities from an interdisciplinary
point of view and highlights the large potential of data-driven techniques to better
understand how the individual urban subcomponents function and how cities as
a whole operate. As such, it seems that the full potential of geocomputational
approaches is still not entirely explored and more research is necessary. In this
regard, the chapters in this volume make use of the ever-increasing and more precise
geospatial urban data and linking them to up-to-date computational techniques
(Miller and Goodchild 2014). This is consistent with the urgent call by Solecki
et al. (2013) for a computationally integrated “urban science.” As a consequence,
this allows to formulate new and/or alternative hypotheses as well as to establish
novel and universal “urban laws and theories.” The authors hope that this edited
volume can add to this recent trend that has been observed in the literature.

1.2 Objectives

The present volume entitled Computational Approaches for Urban Environments
deals with the synergic usage of advanced computational methodologies in close
relationship to geospatial information across cities of different scales. The main
objective is to promote recent advances in the application of computational methods,
beyond traditional urban analysis, to achieve a (hopefully) more appropriate under-
standing of the inherent complexity of our cities and underlying mechanisms. In
doing so, the book seeks to offer a complementary perspective to the large body
of literature dealing with the analysis of urban environments. To achieve more
holistic insights into cities, their dynamics, shapes, morphologies, and residents,
this collection of chapters subsumes research originating from disciplines such as
geography, economics, computer science, statistics, geographic information science,
remote sensing, and urban planning. It is anticipated that this book shades light on
and contributes to contemporary problems cities are faced with and how it would
be possible to tackle them to offer urban decision- and policy-making a sound
and solid basis of understanding. The collection of chapters provides a selection
of actual computational approaches useful for, but not limited to, audiences that
include researchers, postgraduates, and professionals.

As indicated by the high response for the call for chapters, it appears that the
intention of this book received wide approval. By the end of June 2013, a total of
32 chapter proposals were submitted. After an internal review by the editors, 30
authors of those originally 32 submitted proposals were invited to submit a chapter
manuscript. After the final chapter submission deadline on November 1 2013, a total
of 26 manuscripts were submitted. Subsequently, each of the 26 chapter manuscripts
was evaluated through a double-blind review process by at least two international
experts. For the review process, the standard Springer review guidelines were used.
Besides the innovative aspect of the research, the scientific quality of the research
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weighted heavily on the decision whether or not a manuscript was accepted or
rejected. In cases where major revisions were requested by the reviewers and to
guarantee high scientific quality, a second round of review of the revised manuscript
by one of the original reviewers or an alternative reviewer was conducted. If the
reviews called for minor revisions, then a second round of reviews was not done.
Instead, the editors made the decision whether or not the revised manuscript was fit
for publication. In April 2014, 14 chapters were accepted and are now included in
the present book.

1.3 Structure of the Book

The book integrates several areas of urban environments, each associated with
a main theme of the book. The present volume has the following five sections:
(1) spatial planning and decision-making, (2) housing and real estate, (3) urban
transportation and mobility, (4) remote sensing, and (5) urban sensing, social
networks, and social media. However, this structure should not be understood as
fixed and definitive. Quite the contrary, the boundaries between these sections are
partly fuzzy and overlap each other to some extent.

Part I on Spatial Planning and Decision-Making includes three chapters. Chapter
2 by Pierre Frankhauser reviews fractal geometry to explore the spatial organization
of urban fabrics. He demonstrates how existing planning concepts can be enriched
through fractal analysis. In Chap. 3, Martin Behnisch and Alfred Ultsch present
an approach coupling machine learning and data mining techniques for discov-
ering patterns in multidimensional building and land use data for urban districts
in Germany. It is demonstrated how these techniques may serve as hypothesis
generators for planning purposes. Closely related to this chapter is Chap. 4 by
Julian Hagenauer. He proposes a method for clustering spatial data by integrating
contextual neural gas and graph clustering. The efficiency of the method to derive
meaningful and theoretically sound regions is demonstrated on synthetic data and
a real-world case study dealing with demographic and socioeconomic data for
Philadelphia (USA).

Part II deals with Housing and Real Estate and comprises of three chapters. In
Chap. 5, Alexander Razen et al. review recent developments in structured additive
regression models. Besides a multilevel structured additive regression for location
scale and shape, a Bayesian version of the quantile regression is proposed. Investi-
gating owner-occupied single family homes in Austrian urban areas, nonlinearities
in the hedonic price function and spatial heterogeneity, among others, are observed.
Next, in Chap. 6, Shipeng Sun and Steven Manson highlight the importance of the
housing search in the context of intra-urban migration of domestic residents. In
order to simulate the complex location decision-making, an agent-based model is
formulated and validated against real-world housing vacancies for the Twin Cities of
Minnesota (USA). The case study demonstrates how realistic intra-urban migration
patterns emerge from rather simple behavioral rules of home searchers. Chapter 7
in Part II is written by Timothy Rosner and Kevin Curtin. The authors examine Jane

http://dx.doi.org/10.1007/978-3-319-11469-9_2
http://dx.doi.org/10.1007/978-3-319-11469-9_3
http://dx.doi.org/10.1007/978-3-319-11469-9_4
http://dx.doi.org/10.1007/978-3-319-11469-9_5
http://dx.doi.org/10.1007/978-3-319-11469-9_6
http://dx.doi.org/10.1007/978-3-319-11469-9_7
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Jacobs’ four generators of urban diversity – dwelling density, block length, mix
of building age, and mix of uses – and develop a new composite urban livability
index to measure social and economic characteristics of the built environment. The
capability of the index is tested for the District of Columbia (USA).

Part III deals with another component of urban environments, namely, Urban
Transportation and Mobility, and includes two chapters. In Chap. 8, Godwin
Yeboah et al. propose a space-time analytical approach based on analyzing global
positioning system data for cyclists. In addition, they advance policy strategies in
Newcastle (UK) to improve cycling uptake as well as data processing methodologies
through gaining a profound gender-based understanding of cycling behaviors. In
contrast, Rashid Waraich et al. identify in Chap. 9 the challenges of utilizing
agent-based traffic simulation frameworks. Focusing on the MATSim software
environment, several methods to improve the simulation performance through a
combination of reducing disk access, decoupling computational tasks, and making
use of parallel computing are proposed. Additionally, an event-based model instead
of a fixed time increment approach for the traffic simulation is propagated.

Remote Sensing advances and applications are the focus of Part IV, comprising
of four chapters. In Chap. 10, Konstantinos Karantzalos gives a comprehensive
review of the state of the art in the field of change detection to monitor the growth
trajectories of urban areas. Essential change detection components, unsupervised
and supervised classification methodologies, and object extraction, among others,
are discussed in this chapter. On the contrary, Chap. 11 by Christian Berger et al.
presents a data fusion technique in which airborne hyperspectral and light detection
and ranging (LiDAR) data are combined in order to derive an urban surface
material map required for a microclimate model. Two case studies underpin the
potential of data fusion to derive key input parameters in this research domain. In
Chap. 12, Junmei Tang monitors the spatiotemporal urban expansion of Houston’s
metropolitan area applying cellular automata models. It is concluded that the
incorporation of socioeconomic data improves the predictive accuracy to simulate
the growth of human-intervened landscapes.

Part V on Urban Sensing, Social Network, and Social Media contains three
chapters. To begin with, in Chap. 13, Yaoli Wang et al. utilize mobile cell phone
data from a Chinese city to investigate how social networks are embedded in the
urban physical space. For instance, the authors find that higher degree users in the
telephone contact network tend to congregate in the central business district and
that the downtown area hosts many heterogeneous communities of social groups.
In Chap. 14, Emily Schnebele et al. propose to integrate volunteered geographic
information and social media data with authoritative sources to fill data gaps
during environmental emergencies. Two applications are presented. While the first
study applies an artificial neural network to transportation infrastructure flooding,
the second study deals with the usage of mobile phone data during emergency
evacuations. In Chap. 15, Sebastian Grauwin et al. look at the possibility of mapping
space-time human activities in urban environments in the metropolises of New York,
London, and Hong Kong based on the detection of mobile phone usage (i.e., number
of calls, SMSs, and data transfers). The authors provide insights into both the

http://dx.doi.org/10.1007/978-3-319-11469-9_8
http://dx.doi.org/10.1007/978-3-319-11469-9_9
http://dx.doi.org/10.1007/978-3-319-11469-9_10
http://dx.doi.org/10.1007/978-3-319-11469-9_11
http://dx.doi.org/10.1007/978-3-319-11469-9_12
http://dx.doi.org/10.1007/978-3-319-11469-9_13
http://dx.doi.org/10.1007/978-3-319-11469-9_14
http://dx.doi.org/10.1007/978-3-319-11469-9_15
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universal structure of cities and the cultural, technological, and economical factors
shaping human dynamics. Clustering identifies locations with similar patterns. Their
findings confirm that while the economy becomes more global, common patterns
emerge in business areas of different cities across the globe.

The final chapter by Paul Longley reflects about the potential of computational
approaches discussed in this book, observes current development trends, and frames
future research challenges. To sum up, the chapters introduced above tackle a variety
of aspects of cities by means of innovative computational approaches. The collection
of chapters indicates that cities are far too complex to deal with them from only one
point of view and one set of argumentations. In addition, it is important to learn that
different methodological and theoretical approaches enrich and complement each
other. In this regard, it is desirable that the scientific outcome of this book will stim-
ulate urban-related international and interdisciplinary research networks, paving the
way to bring us closer to Michael Batty’s (2013) vision of a “new science of cities.”

Last but not least, the editors must express their gratefulness and gratitude to all
reviewers for their support and their critical and constructive comments for each
chapter. This has added significantly to the quality of the entire volume. We deeply
appreciate the efforts of all authors, who submitted a full chapter manuscript and
selected our book as a potential publication outlet for their research. Furthermore,
we thank Mei-Po Kwan and Paul Longley for their comments. Marco Helbich
and Jamal Jokar Arsanjani thank the Alexander von Humboldt foundation and
Heidelberg University, Germany, for laying the foundation for this book. Finally,
we acknowledge the Springer team as well as the series editors Jay D. Gatrell and
Ryan R. Jensen for their great assistance throughout the whole publication process.
Without all these helping hands, this volume would have never been published.
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Part I
Spatial Planning and Decision-Making



Chapter 2
From Fractal Urban Pattern Analysis to Fractal
Urban Planning Concepts

Pierre Frankhauser

Abstract Fractal geometry can be used to develop a multiscale approach to
investigate the spatial organization of urban fabrics. First, the concepts behind
fractal reference models are introduced so as to provide a better understanding
of the results obtained from empirical analyses of urban patterns. Then, different
methods for conducting fractal analyses are presented and the results obtained for
urban patterns are discussed. It turns out that, despite their irregular appearance,
urban patterns are often organized by an inherent fractal order principle, at least
across a certain range of scales. More detailed analysis of the findings reveals links
between these fractal properties and the historical contexts in which cities or urban
districts developed. The influence of specific urban planning concepts on fractal
behavior may also be identified, whereas the national context has less of a hold.

Urban fabrics emerge from complex interactions among various types of decision
makers and are, in most cases, the outcome of a self-organizing process. However,
by considering particular features of such urban fabrics and by comparing them with
social demand and against certain planning concepts, a new planning concept can
be proposed based on fractal logic, but intended for the sustainable development of
metropolitan areas without excluding periurbanization. Software tools are presented
for developing and evaluating scenarios for further urbanization of metropolitan
areas.

Keywords Fractal analysis of urban patterns • Fractal planning • Sustainable
development • Urban modeling

2.1 Introduction

Since the industrial revolution in the nineteenth century, urban growth has never
slowed what was made possible by improvements in transportation technologies.
Indeed, before efficient transport systems were developed, the size of towns

P. Frankhauser (�)
ThéMA Laboratory, Université de Franche-Comté/CNRS, 32, rue Mégevand,
F-25030 Besançon Cedex, France
e-mail: pierre.frankhauser@univ-fcomte.fr

© Springer International Publishing Switzerland 2015
M. Helbich et al. (eds.), Computational Approaches for Urban Environments,
Geotechnologies and the Environment 13, DOI 10.1007/978-3-319-11469-9_2

13

mailto:pierre.frankhauser@univ-fcomte.fr


14 P. Frankhauser

remained constrained (Bairoch 1985). It was the introduction of railways and later
of tramways and suburban railway systems that made it possible to live in one
place and work in another (Rodrigue 2013). The outcome was tentacular growth
along public transportation network routes. Motorization changed accessibility
dramatically. Road networks are being improved continuously covering space
ever more uniformly. Increasing areas have come to be affected by that what
is currently called “urban sprawl.” So, if we speak here of “urban sprawl,” we
refer to the phenomenon of more or less uncontrolled urban growth in Western
countries generating mainly low density zones consisting of individual housing,
often localized in former rural areas which have developed since the use of private
cars predominates. Town planners often deplore that growth like this cannot readily
be controlled and that the patterns generated look rather “chaotic,” more like ink
splashes than compact shapes such as circles or squares, which are often thought of
as the geometric paradigms of ancient cities.

Compact forms like circular or square-like patterns minimize boundary lengths
and so are optimal for protecting cities against attack. Yet, even in the Middle Ages,
poorer households often settled outside the city walls along the highways. Within the
walls, land was often reserved with the result that the actual urban fabric looked less
regular than might be claimed. But, of course, this remained a local phenomenon
whereas nowadays urban fabrics form a patchwork of complex clusters connecting
several ancient nuclei.

This contribution focuses first on the spatial distribution of built-up space in
contemporary settlement patterns in Western Europe. We look how built-up space
fills up surface across scales. Only in the last part we consider, in the context of
planning strategies, the intensity of soil occupation, i.e., the degree of concentration
of population in buildings. Hence, except in the last part, we restrict discussion to a
two-dimensional approach.

In particular, we are interested in the extent to which these patterns are organized
around a certain ordering principle. Indeed, despite their irregular shapes, some
research since the late 1980s has shown that, at the macroscale, urban patterns
obey rather precise distribution laws corresponding closely to fractal geometry.
Much basic work on fractal investigations of urban patterns has been done since
the 1980s, in particular by Batty and Longley (1986, 1994), by Goodchild and
Mark (1987), Lam and de Cola (2002), as well as by White and Engelen (1994)
and the present author Frankhauser (1994). Subsequent publications have deepened
the methodological aspects and confirmed the value of this approach (e.g., Batty
and Kim 1992; Batty and Xie 1996; Frankhauser 1998; Benguigui et al. 2000;
Shen 2002; De Keersmaecker et al. 2003; Frankhauser 2004, 2008; Thomas et al.
2008a, b, 2010, 2012; Chen 2009, Chen and Feng 2010).

Thereafter, the focus shifts to particular features of fractal geometry liable to
provide a better understanding of the spatial properties of such urban fabrics. This
leads us to ask to what extent the emerging fractal shape of urban patterns cannot
inspire planning concepts designed to manage peripheral urbanization intelligently
without dismissing it a priori (Frankhauser 2008; Frankhauser et al. 2011). This will
be done by introducing a planning concept inspired by fractal geometry.
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The goal is to satisfy social demand for living in quiet surroundings, near open
landscapes where natural resources can be safeguarded, while reducing car use at
the same time. Beyond the theoretical aspect which makes use of the hierarchical
principles peculiar to fractals, it is shown how the concept can be used practically
for developing planning scenarios.

2.2 The Morphology of Sprawling Patterns:
Some Preliminary Remarks

One of the most striking reasons why sprawling urban patterns look “amorphous” is
that they are made up of elements belonging to a great variety of scales ranging
from buildings to entire metropolitan areas. The metropolitan area of Stuttgart
illustrates this. Even the rather coarse-grained map of the built-up area in Fig. 2.1a
reveals details of very different sizes: along the boundary of any arbitrarily chosen
settlement cluster, small bays alternate irregularly with larger ones. Moreover,
metropolitan areas are made up of many clusters of very different sizes that are
nonuniformly distributed across space. Ribbon-like built-up areas run along valleys
or transportation network routes, but sparsely urbanized areas also occur. This shows
the interaction between urbanization and natural conditions (Mohajeri et al. 2013).
Similar characteristics appear at the microscale of towns as can be seen from the
close-up of the northern urban fringe of the agglomeration of Stuttgart (Fig. 2.1b).
Here buildings form clusters of different sizes and densities since industrial zones,
historical town centers, and recent detached housing areas are mixed. But the size
of the vacant areas between clusters also varies greatly.

Traditional density-based measures currently used in geography and planning are
unsuitable for describing such features. Indeed, density measures mean occupation

Fig. 2.1 (a) A simplified map of the metropolitan area of Stuttgart. (b) A detailed GIS-data base
for one outskirt (Frankhauser 2005)
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Fig. 2.2 64 blocks distributed in two different ways: the pattern on (a) obeys fractal logic and the
pattern (b) is uniform (Thomas et al. 2008a)

of space. Accordingly, density is constant when the constituent parts of a structure,
in our case buildings, are distributed uniformly across space, which does not seem
to hold for urban patterns. Moreover, density does not really yield information about
spatial distribution. Figure 2.2 shows two patterns in which 64 blocks of the same
size are distributed in different ways within the same square: while the densities are
the same, the first pattern is a fractal-like structure, unlike the second one.

Obviously, the nonuniform distribution of buildings makes it difficult to grasp the
spatial organization of urban patterns. This is plain when looking for reliable criteria
on which to define urban boundaries. Looking at the simplified map in Fig. 2.1a, it
might be thought that the urban boundary can be identified easily, but not so in the
real-world situation (Fig. 2.1b). As pointed out, the distances between buildings
vary over a large range, particularly so for the fringes of sprawling urbanized
areas where recent detached housing estates and traditional rural settlement patterns
interdigitate. The criteria suggested by various administrative departments turn out
to be questionable.

However, despite the complexity of these patterns, regularities can be detected in
them, which seems paradoxical. For instance, if we measure the boundary lengths
and surface areas of urban clusters on a coarse-grained map like that in Fig. 2.1a, the
two tend to be proportional (Frankhauser and Sadler 1991). This clearly contradicts
the usual geometric assumption that the surface area should be proportional to the
square of the perimeter length, but it is consistent with fractal geometry, as will be
seen next.
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2.3 Fractal Models for Urban Patterns

We now illustrate by means of examples that fractals exhibit properties reminiscent
of those discussed for urban patterns. As pointed out, urban patterns consist
of elements, i.e., buildings forming what are often irregular clusters where the
distances between the buildings vary over a large range. But even when boundaries
are defined (e.g., by defining criteria for simplified maps), these boundaries are not
smooth but display outgrowths and indents of various sizes.

Unlike Euclidian geometrical objects such as circles or squares, fractal geom-
etry allows us to construct geometrical reference models consisting of elements
distributed in a completely nonuniform way, forming clusters at different scales.
It is then possible to illustrate several types of spatial pattern, which resemble
specific aspects of urban patterns like fragmentation or the complex morphology of
boundaries. These structures may look irregular; even so, the spatial distribution of
the constituent parts obeys a powerful distribution law, which may be characterized
by a single value. Thus, if urban patterns really do exhibit the particular features
of fractal objects, it may be concluded that, despite their highly irregular aspect,
they comply with a well-defined principle of spatial organization, which can be
characterized quantitatively. The usual notion of “regularity” or “irregularity” then
becomes meaningless.

Since we focus here on the question of how buildings are distributed within areas
of settlement, we make use of particular types of fractals consisting of “black”
elements distributed in space. We associate these elements with zones containing
buildings, whereas empty, i.e., “white,” zones are essentially unbuilt. Two kinds of
fractal objects prove of interest, Sierpinski carpets and Fournier dust. These two
approaches can be combined. In Fig. 2.3a–c, we show how a Sierpinski carpet is
generated by iteration. Starting from the square-like initiator, a mapping procedure
known as the generator is applied. Here the procedure reduces the initial figure by
the factor r D 1/3, and N D 5 of these “elements” are assembled to form a cross.
The same operation is repeated for each of the smaller squares. Hence, as this
iteration procedure is repeated, an ever more filigree object appears consisting of

Fig. 2.3 (a–c) Generating a Sierpinski carpet and (d) the emerging hierarchy of lacunae
(Frankhauser 2005)
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an increasing number of smaller and smaller square-like elements. Indeed at each
step, the number of elements is multiplied by N and their size is reduced by r so
that at the nth step, we have Nn elements of length rnL, where L is the length of
the initial square. So, both the number of elements and their size follow geometric
series. Moreover, at each step, an increasing number of smaller and smaller lacunae
are generated, and hence, a hierarchical system of lacunae appears (Fig. 2.1d).
This is one of the most striking features of these fractals. At the same time, the
boundary line of the Sierpinski carpet is lengthened, since a growing number of
smaller indents are generated. Hence, the boundary length tends to infinity, whereas
the surface area tends to zero, and the limit geometrical object is neither two
dimensional like a surface nor one-dimensional like a line. This is one of the
most striking features of such fractals. Euclidian objects like squares or circles are
compact and their border is smooth—except at some singular points, the corners—
what never can be for fractals.

This led mathematicians to introduce the notion of fractal dimension in order
to characterize these objects which are made up of elements that are distributed
highly nonuniformly in space. The basic requirement is that there exists a measure M
which remains constant throughout the iteration and is characteristic of the fractal.
This measure is defined by computing the total “mass” of the fractal at each step,
which is the product of the number of elements and their size weighted by the free
parameter D, the fractal dimension

N n � .rnL/
D D M � LD (2.1)

This relation yields

N n D .rn/�D ) D D � log N

log r
(2.2)

so that D is indeed a constant over all iterations and, in the case of constructed
fractals, is related to the two parameters N and r. Hence, for the Sierpinski carpet
of Fig. 2.3, we obtain D D 1.47 (Mandelbrot 1982; Frankhauser 1994). Obviously,
the dimension does not depend on the position of the elements within the square
within which they were generated. Hence, we may randomly change their position
without affecting fractal properties, and accordingly, irregular empirical structures
may display fractal properties. However, fractality would be disturbed by putting
squares in lacunae generated in previous iterations since this would affect the lacunal
hierarchy. For the same reason, squares are not allowed to intersect.

It is also possible to calculate the fractal dimension of the edge of the fractals.
For Sierpinski carpets, the dimension of boundaries is equal to that of the surface
area. This may come as a surprise, but it reflects the fact that the boundary, like the
surface area, converges to the same limit set. This fits in with the observation that,
for metropolitan areas, the length of the outline of the clusters is proportional to the
built-up area. In fractal terms, this would mean that both the edge and the surface
have the same fractal dimension, like a Sierpinski carpet.
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Fig. 2.4 Three different types of fractals. (a) A Sierpinski carpet where the outer border is a
fractal, but the dimension of which differs from that of the carpet. (b) A fractal, the features of
which remind urban patterns. Iteration has been developed up to the third step only in the upper
square of the cross and up to the second step in the square below. (c) A fractal consisting of a
hierarchical system of clusters reminding the logic of a central place system (Source: (b) Tannier
et al. 2006)

Figure 2.4 shows other examples of similar fractals. For the Sierpinski carpet of
Fig. 2.4a, the outer boundary is connected, and its complex shape is reminiscent
of that of the urban pattern on coarse-grained maps as in Fig. 2.1a. In Sierpinski
carpets, all the elements are connected and so the structure consists of a single
cluster. Fournier dusts follow the same iterative logic, but the elements are
disconnected. By combining both these logics, fractals like those shown in Fig. 2.4b,
c can be connected. In Fig. 2.4b, the positions of the elements in the generator
are less regular. In two squares, the second and third iterations are illustrated by
changing the position of the elements each time respecting the hierarchy of lacunae.
Hence, a more city-like shape is obtained at the microscale, with blocks of houses
along the streets and inner courtyards. Finally, in Fig. 2.4c, two reduction factors,
r D 1/3 and r D 1/6, are combined and thus a hierarchy of clusters occurs. Hence,
a generalized version of Eq. (2.1) allows the dimension to be computed. This
multifractal structure could be an illustration of the distribution of central places in
an urban system like that of Fig. 2.1a.

Let us emphasize that the definition of fractal dimensions is entirely consistent
with standard Euclidean geometry; for uniform distributions like that of Fig. 2.2b,
the dimension is D D 2 and for lines D D 1. But furthermore the fractal dimension
has a clear meaning. It measures the degree of concentration of the occupied sites
across scales or, more specifically, the relative decrease in mass with increasing
distance from any site where mass is concentrated. Accordingly, the more uniformly
mass is distributed within a fractal structure, the closer the dimension will be to
D D 2, and vice versa, if the mass is concentrated in one point, D is zero. Indeed,
since mass is more uniformly distributed in Fig. 2.4a, the dimension value is higher
for pattern 2.4a than for patterns 2.4b and 2.4c which are more contrasted. As
pointed out, boundary and surface area have the same dimensions in Sierpinski
carpets. However, in Fig. 2.4a, the outer boundary is itself a fractal consisting of
N D 7 elements, and thus, the dimension of this fractal subset is Db

(bord) D 1.2.



20 P. Frankhauser

Fig. 2.5 The first three steps for generating a teragon. Each side of the initially given square
(a) is replaced by the polygon (d) what generates figure (b). By reiterating this mapping, figure
(c) is obtained (Mandelbrot 1982)

There are also fractals with compact surface areas of D D 2 but which have just
a fractal boundary, like the teragon of Fig. 2.5. Here, in the course of iteration, the
surface area remains the same but is distributed differently at each step so that the
border becomes increasingly filigree, its length tending to infinity, and its fractal
dimension amounts to D D 1.5.

We remind that fractal dimension should not be confused with density (Fig. 2.2).
A suburban area consisting of big lots where individual houses are uniformly
distributed in space has globally a fractal dimension of D D 2, but low density.
However, a neighborhood made of uniformly distributed row houses along the
streets is certainly denser, but, since build-up area is uniformly distributed, too, the
fractal dimension would also be D D 2.

When referring to real-world situation, we usually stop the iteration at a certain
step n. Mandelbrot called such objects prefractals. For instance, if the size of the
initial figure corresponds to the area occupied by an agglomeration of a metropolitan
area, we stop the iteration as soon as the size of the elements is comparable to the
size of a building. Hence, we have a certain range for which we observe the scaling
properties of fractals for which the distribution of the elements can be described by
the fractal dimension. We now focus on the question of how to explore the fractal
properties of empirical structures.

2.4 Measuring Fractality

2.4.1 General Methodology

Obviously, urban patterns are not generated by an iterative mapping procedure but
result from complex interactions between different types of decision makers, such
as politicians, planners, landowners, land developers, and so on. Hence, measuring
methods must be used by which to verify to what extent the spatial organization
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of urban patterns exhibits scaling properties, as they are characteristic for fractals.
To this end, several methods have been developed. We focus here on four methods
referring to different types of information about the fractal behavior of empirical
structures and to different properties of empirical textures like urban patterns.

It is clear in real-world textures such as urban patterns that the spatial organiza-
tion, even if it can well be described by fractal measures, does not obey a fractal
law exactly. This prompts us to speak often of “scaling behavior” which can change
at certain scales, vary from one urban district to another, or be disturbed at certain
scales. Mixing different scaling behaviors is reminiscent of multifractal geometry,
where the fractal behavior varies from one site to another.

There are a number of methods used to estimate the fractal dimension of
empirical structures. Not all of these methods obey the same logic, and if the
empirical structures exhibit multifractal properties, the results obtained will not be
the same. In this case, the methods provide complementary information.

The basic idea is to explore the texture under consideration at different scales. For
this purpose, a distance " is introduced and the number of elements N(") lying within
this range is determined. Then, the value " is changed and the procedure repeated.
For fractals, the following power-law relation between the number of elements N(")
and distance (") holds

N ."/ D a � "�D (2.3)

which is used to estimate the dimension D and the prefactor a. Hence, we assume
that the analysis provides a sequence N(obs)("i) of empirical data, the empirical curve,
for a discrete series of "-values called "i serving to estimate the parameters a and
D by which the “theoretical curve” (2.3) is obtained. Theoretically, this prefactor
corresponds to the measure M introduced previously. For empirical structures,
however, we should expect deviations at different scales from a pure fractal law.
Thus, for each "i value, we should introduce a local version of the fractal law which
reads

N .obs/ ."i / D ai "
�Da
i (2.4)

In Thomas et al. (2012), it was shown that the global prefractor a is just the
geometrical mean value of these scale-specific prefactor values and so a mean
measure for the object across scales:

a D
 

nY
iD1

ai

! 1
n

(2.5)

Up to now, it has proved difficult to interpret the observed values directly.
Recent tests have shown that the a-values are neither associated with the correlation
between the empirical curve and theoretical curve, i.e., the quality of adjustment,
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nor with the confidence interval. Hence they provide, in principle, supplementary
information about the object. Previous investigations (Thomas et al. 2012) showed
that the more homogeneous the built-up area of a city, the lower the a and the
higher the D.

2.4.2 Covering Methods

The most commonly used methods are based on the idea of covering the elements
of the object analyzed by a minimum of elements like squares or circles of size
". Hence, information is obtained about the number of elements lying within a
distance less than or equal to ". The most widely used method is “box counting,”
although we prefer to speak of it as “grid analysis.” It consists of covering a chosen
zone with a grid of a given mesh (grid square) size ". The number of grid squares
containing buildings is counted. At the next step, the mesh size is reduced and the
procedure repeated. By repeating the procedure, we obtain an empirical relation
between the number of grid squares containing buildings and the grid square size.
Figure 2.6 illustrates the method for a Sierpinski carpet by choosing grid square
sizes in accordance with the iteration procedure. The number N(") as well as size "

of the grid squares corresponds here to the construction rule of the Sierpinski carpet,
i.e., both follow the series of the mapping procedure and so the fractal law holds. For
empirical structures, it is hence possible to verify whether the empirical data obey
the fractal law. Deviations from this law, e.g., occurring for certain scales ", can
hence be identified. However, it is difficult to find a position of the grid which fulfills
the requirement of minimal covering. Even for the constructed Sierpinski carpet, an
inadequate position of the grid would falsify the results since we would obtain more
grid squares containing elements of the fractal. In order to reduce this artifact, the

Fig. 2.6 Grid analysis applied to a Sierpinski carpet (a and b). In (c), poor grid positioning leads
to an overestimate of the number of grid squares occupied
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grid position is often subsequently moved and the minimal number of occupied grid
squares is retained (see, e.g., Jiang and Liu 2012). We are currently testing a method
allowing free positioning of the boxes for which the number necessary to cover the
texture is optimized by means of a genetic algorithm.

A similar method is dilation analysis, based on the algorithm introduced by
Minkowski and Bouligand. In dilation analysis, each occupied point is surrounded
by a square of size ", the surface area of which is considered to be completely
occupied. The size of these squares is then gradually enlarged, and we measure the
total surface area covered A(") at each stage. As the squares are enlarged, any details
smaller than " are overlooked and we gradually obtain an approximation of the
original shape. This is reminiscent of a gradual change in the degree of cartographic
detail in drawing. Because more and more squares overlap, the total area occupied
A(dil)(") for a particular value e is less than what it would be if the same number
of occupied points that make up the original shape were surrounded individually.
By dividing this total area by the area A(dil)(") D "2 of a test square, we get the
number of elements N(") necessary to cover the whole and we obtain a relation
corresponding to relation (2.3). The corresponding fractal dimension D(dil) is known
as the Minkowski dimension or dilation dimension.

2.4.3 Mass-Distance Relations

A rather different method is radial analysis. It provides information about the spatial
organization around a chosen counting point. A circle is drawn around this point,
and the radius " is gradually increased. At each step, the total number of occupied
points N(") inside the circle is counted. Here, the fractal law takes the form

N ."/ D a � "D (2.6)

As pointed out for more complex structures, different fractal behaviors may be
mixed, the radial analysis provides specific information about local fractal behavior,
and so the scaling exponent is known as the local fractal dimension.

It is possible to realize such analysis for each occupied, i.e., built-up, site within
a given zone and to compute the mean number of occupied points observed for each
distance value " (Vicsek 1989). An equivalent fractal law is associated with the
method. This method first proposed by Grassberger and Procaccia (1983) is known
as correlation analysis. The information obtained provides mean information about
the zone analyzed, as in grid analysis. However, the information is more detailed
than for grid analysis, since the exact position of occupied sites is explored and not
just the fact of lying within a box of a given size. Hence, other dimension values
can be expected for more complex patterns. In fractal terms, this is referred to as a
second-order dimension and refers thus to multifractal logic.
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2.4.4 The Curve of Scaling Behavior

In previous work, it turned out that a particular way of representing the empirical
results helps to provide more detailed information about the spatial organization of
urban patterns (Frankhauser 1998; Thomas et al. 2010). This type of representation
is known as the “curve of scaling behavior” (Frankhauser 1998; Thomas et al. 2010).
Palmer (1988) called this a “fractogram,” but that terminology is confined to ecology
(Leduc et al. 1994). We start by taking the logarithm of relation Eq. (2.6):

log N ."/ D log a C D log " (2.7)

which is a linear relation between log N(") and log " where the dimension is simply
the slope value of the straight line.

We assume now that the prefactor a and the fractal dimension D may both depend
on the distance parameter " in accordance with the idea that real-world textures do
not necessarily obey a strictly fractal law:

log N ."/ D log.a/" C D ."/ log " (2.8)

and thus the variation of log N(") with respect to log " becomes (Frankhauser 1998):

d log N ."/

d log "
� ˛ ."/ D d log a ."/

d log "
C dD ."/

d log "
C D ."/ (2.9)

This shows that if the dimension and the prefactor both depend on the scale
parameter ", the ˛-values are no longer constant and may even exceed the upper
limit value of D D 2. Hence, representing the ˛-value as a function of distance "

informs us about deviations from fractal laws due to a variation in D or a. It turns
out that the shape of these curves provides insight into the spatial organization of
urban patterns and can distinguish different types of urban district (for details, see
Thomas et al. 2010).

2.5 The Fractality of Urban Patterns

2.5.1 Toward a Typology of Urban Patterns

As pointed out above, a number of papers have been published about fractal analysis
of urban patterns. We focus here on some striking results obtained at the Thema
institute of Besançon (France) in cooperation with the CORE institute at Louvain-la-
Neuve (Belgium). In order to realize fractal analyses of urban patterns, a computer
program was developed which estimates the fractal dimension and the prefactor
from the observed data and makes it possible to verify to what extent the empirical
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data N(") obey a fractal law.1 In general, the fractal approach is well suited for
characterizing the spatial organization of urban fabrics. The quality of adjustment
between empirical and theoretical curves is usually rather high.

Different authors emphasized that urban fabrics are generally a mixture of dif-
ferent scaling behavior, and hence, multifractal approach suits better for measuring
their morphology than unifractal ones (e.g., Chen and Wang 2013). We agree to this
point of view in that sense that considering an agglomeration as a whole, different
town sections may have different scaling properties. Hence, considering large urban
areas, multifractal behavior occurs since at this scale different types of patterns are
mixed. We focus here essentially on the intraurban scale of wards for which we
observed, e.g., by a recently developed special method we call multiradial analysis,
a rather stable scaling behavior reminding that of unifractals. Ariza-Villaverde et al.
(2013) used multifractal analysis on an intraurban scale for street networks, but the
differences between the values of the different dimensions observed for two areas
are very small, what confirms rather unifractal behavior on this scale.

However, since the town sections we analyzed are chosen within a square-like
window and not according to local morphological properties, we do not exclude the
potential presence of a certain mix of scaling behavior.

This incited us comparing different measuring methods. It turned out that
correlation analysis provides the most robust results on a rather large range of
scales. However, the dimension values differ for this method from results obtained
with covering methods, which can be explained, as pointed out, by the fact that the
method takes into account the position of built-up sites across scales in a precise
way and follows a multifractal analysis logic.

All analyses presented were carried out with the open access software tool
Fractalyse, developed at Thema institute by Gilles Vuidel under the supervision of
Pierre Frankhauser and Cécile Tannier.

We first discuss some results obtained on the basis of rather coarse-grained data
for metropolitan areas as a whole (Frankhauser 2004). For the agglomerations of
Berlin and Stuttgart, surface dimensions are rather low, which expresses rather
contrasted patterns. Indeed, in both cases, the urban fabric is dominated by axial
growth along valleys for Stuttgart and alongside the suburban railway lines for
Berlin. We also determined the fractal dimension of the boundaries of the central
clusters of these agglomerations. The obtained value of Stuttgart is rather high,
reflecting its rather sinuous appearance (Fig. 2.1). The most compact situation is
observed for London, which can be explained by the green belt policy that attempted
to contain urban growth. We shall return to this aspect later (Table 2.1).

We now come to the results obtained by using GIS-data which take into account
the microstructure of the urban fabric, i.e., resolutions of 4 m minimum.

Several series of investigations have been realized for various European cities
in Italy, Finland, France, Germany, and Switzerland, but essentially Belgium and

1The free software “fractalyse” was developed at the THEMA institute (Besançon) by Gilles
Vuidel. A version allowing GIS-data to be used directly is currently under development.
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Table 2.1 Some fractal
dimensions of metropolitan
areas Metropolitan area Surface dimension

Dimension of the
central cluster
boundary

Berlin 1.75 1.58
Stuttgart 1.75 1.88
London 1.86 1.41

Table 2.2 Fractal surface
dimensions of some
agglomerations

Agglomeration D

Bayonne-Anglet-Biarritz 1.483
Bergamo 1.752
Besançon 1.638
Basel 1.723
Brussels 1.883
Cergy-Pontoise 1.695
Charleroi 1.857
Helsinki 1.708
Liège 1.914
Lille 1.683
Lyon 1.786
Montbéliard 1.558
Namur 1.526
Sarrebrücken 1.659
Strasbourg 1.785

France. We present here results obtained exclusively by correlation analysis. First,
we refer to Thomas et al. (2012) which analyzed 18 cities. When considering
the agglomerations as a whole, we may distinguish different ranges of dimension
values. As Table 2.2 shows, Besançon, Strasbourg, Sarrebrücken, Basel, and
Bergamo have dimensions of about 1.6–1.8. This holds even for Helsinki, which
is influenced by its coastline, but also by a ribbon-like development on its periphery.
These are cities of different sizes, in different countries and geographical situations,
but they are dominated by a historical center and a gradual decline in density
toward the periphery. A second group consisting of Bayonne-Anglet-Biaritz, Cergy-
Pontoise, Lille, and Montbéliard has lower dimensions, lying between 1.5 and 1.7.
All these towns are conurbations consisting of a rather disparate patchwork of
zones with different morphologies where transient areas fill spaces between denser
zones. Brussels and Lyon have high-dimension values; they are dominated by rather
homogenous town sections dating from the nineteenth century. The highest values
are observed for Charleroi and Liège, which were greatly affected by heavy industry
constructions in the nineteenth century such as ribbons of working-class housing
and an intricate urban structure (see, e.g., Vanneste et al. 2008 or Thomas et al.
2008a).

These examples, which are fully consistent with those obtained on the basis
of more coarse-grained data, show that the historical context which contributed to
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urban development influences fractal dimension values. At the scale of agglomera-
tions, axial development along valleys or transportation routes leads to more highly
contrasted patterns.

This also means that some fractal values refer rather to physical factors (coast)
or local historical contexts than to national planning rules, confirming Frankhauser
(2003, 2008). More generally, this also confirms that nineteenth-century cities have
higher fractal values than twentieth-century cities, and more generally, “historical
cities are fractal, whereas the twentieth-century city is not” (Salingaros 2003) or
they are multifractal (see, e.g., Batty 2005).

On the scale of urban districts, different investigations have shown that it is
possible to identify different types of spatial organization which can be linked
to peculiar historical or geographical contexts. In Thomas et al. (2012), a ward
classification was applied to minimize intragroup variance. Four classes were
identified. The first one with very high D values close to D D 1.9 corresponds to
city centers with a high concentration of buildings, constructed in a continuous
way along the streets where blocks are always very clearly recognizable. A second
class comprises built-up neighborhoods composed of detached housing typical of
pericentral areas. These districts have a low or middling density of urbanization,
with quite a regular morphology, where houses are located alongside streets.
Fractal dimensions are lower here since the patterns are less compact and hence
more contrasted. Whereas in the previous patterns buildings follow the streets,
in the third class dwellings and nonresidential, buildings are mixed and do not
necessarily follow the street pattern. Such districts were often built during the
period 1950–1980. Since buildings are located rather arbitrarily, dimensions are
rather low (about D D 1.67). The most contrasted patterns are observed in French
new towns like Cergy-Pontoise and districts constructed on the Charte d’Athènes
(Le Corbusier 1971) principles. Here the spatial arrangement of buildings as well
as their forms is varied, and green areas of various sizes separate the large isolated
buildings.

2.5.2 Information Provided by the Curves of Scaling Behavior

Similar results were obtained in another way. In Thomas et al. (2010), we not only
used the values of fractal dimensions to distinguish different types of urban patterns,
but we looked at the shape of the curves of scaling behavior in order to distinguish
different types of urban patterns. Indeed, for correlation analysis, it turns out that
these curves often display a substantial fall before rising again for small distances
corresponding to the size of buildings, courtyards, etc. Here, fractality does not
come into play yet.

Figure 2.7 shows an example in which the lowest point corresponds to 28 m;
the stable situation is reached for 68 m. But for other districts, the shape of
the curves is quite different, e.g., smoother from the very beginning. Hence, we
used the k-medoid algorithm (Bishop 2006) for classifying curves by their shape.
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Fig. 2.7 (a) A town section of Basel and (b) the curve of scaling behavior of the correlation
analysis (Source: digitized topographic maps)

This algorithm avoids the artifact of the k-means algorithm, which is based on
the centroid of experimental data, which is often not one of the experimental data,
whereas in the algorithm used, the representative of each cluster is necessarily one
of the initial data forming the cluster. In this project, we analyzed a set of 49 town
sections from the data set for nine European cities: Besançon, Cergy, Lille, Lyon,
and Montbéliard in France, Brussels and Charleroi in Belgium, and Stuttgart and
the Ruhr area in Germany.

Finally, five different morphological classes were distinguished. The first class
may be associated with districts with ribbon-like semidetached housing typical of
not too densely urbanized centers or pericentral zones as in, say, cities belonging
to the Flemish part of Belgium. Whereas for these curves the “root-like” shape
(Fig. 2.7b) of the curve is very significant, it is less pronounced for a second group
of patterns which are typical for dense historical city centers. The town sections
with the big “Corbusier” buildings again form their own morphological class, and
the new towns also exhibit peculiar shapes of their curves of scaling behavior.
This is due to a very typical mix of individual detached housing and apartment
blocks, within large green areas and public places. Finally, very particular shapes are
observed for commercial and industrial zones dominated by huge buildings, where
intra-building distances are considerable, erasing the usually observed deviations
for small distances.

While we find globally similar information to that given by fractal dimension
ranges, closer analysis of the curves gives details about distance ranges for which
substantial changes in spatial organization occur, or alternatively, for which the
parameters are stable or not. Hence, the information contained in these curves turns
out to be complementary to that of the fractal dimension D which remains a useful,
albeit rather synthetic indicator.
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The results show that the spatial organization of neighborhoods is influenced
rather by the historical context or underlying urban planning concepts which
contributed to its emergence. These conditions may be comparable for neighbor-
hoods belonging to different cities or countries. Hence, the resemblances between
neighborhoods of different cities may be greater than those observed within a city.

2.5.3 The Multiradial Approach

Very recently, we have tested a specific method in order to segment town sections on
the basis of their spatial organization. For this purpose, we realized radial analyses
for each built-up site and estimated the fractal dimension within a fixed distance
range, e.g., 400 m around the counting point. We then introduced classes of fractal
dimensions. Figure 2.8 shows an example for a city near Lyon. It clearly turns out
that the entire core of the old center has the same high-dimension values, in keeping
with their rather homogenous shape. Around this, the more recent town sections are
more contrasted and have lower dimensions. The fringes where non-built areas come
into play have lower dimensions still. The quality of adjustment is here checked by
means of the confidence interval. This indicator is rather sensitive to local changes in
spatial organization. The range becomes larger, e.g., in the vicinity of a big building

Fig. 2.8 Multiradial analysis (French topographic map)
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which is surrounded by smaller ones. In general, the interval becomes larger for
sites lying close to sites where spatial organization changes. This type of analysis
seems rather promising for exploring the spatial organization of urban patterns.

2.5.4 Including Boundary Analysis

We now discuss results where urban borders have been extracted and where their
morphology has been compared to that of built-up areas. As pointed out, in
Sierpinski carpets, the built-up space and the entire boundary should have the same
dimension. However, there may be subsets, e.g., outer boundaries (Fig. 2.4a) or
subclusters, with different fractal dimensions.

Moreover, we recall the peculiar feature of teragons with compact areas but
fractal boundaries. Hence, we may seek out the kind of fractal that urban patterns
resemble most. To this end, we dilated stepwise urban patterns. Buildings were
seen to merge increasingly and form clusters. Investigations show that large clusters
emerge after just a few dilation steps, when courtyards and small streets are filled
in, which usually occurs at distances of about 8–16 m (De Keersmaecker et al.
2003; Thomas et al. 2008a). Here again, we find the distance range for which we
often observed non-fractal behavior when looking at the curves of scaling behavior
(Fig. 2.7b). Hence, we could say that, beyond this threshold, urban fabrics may be
considered to be prefractal structures.

We show here how boundaries can be extracted. In Tannier et al. (2011), a
systematic method is discussed based on dilation. Here, the number of clusters
remaining after stepwise dilation is counted. For fractals, the number of clusters
remaining after stepwise dilation again obeys a power-law distribution. When the
number of clusters no longer changes, it can be expected that the morphologic
envelope of the settlement has been identified, since neighboring clusters are far
enough away. This is the case, for example, of the neighboring settlements in
Fig. 2.9.

Let us now look at the dimension values of this example. The surface dimension
estimated for the zone corresponding to the extracted main cluster corresponds to
that of a rather contrasted pattern. However, we see that the difference between the
entire boundary dimension and that of the main cluster is not very great. This shows
that no significant hierarchy of inner lacunae remains after the smoothing proce-
dure. But the boundary dimensions are rather high. Obviously, no strict planning
constraints were applied for rounding up the urban border. Hence, comparing the
surface area and boundary dimension turns out to provide rather interesting results.

In Thomas et al. (2008a, b), 262 communes of the Walloon region of Belgium
were analyzed. For each commune, the surface dimension was determined. Then,
each pattern was dilated up to three steps, what corresponds to 12 m. Then, the
dimensions were estimated for the surface and the corresponding outer boundaries
of the extracted clusters. The goal was to find a reliable classification based on the
set of dimensions available for each commune. To this end, a method was used based
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Fig. 2.9 A periurban village of Besançon, the original pattern (a), seven-step dilation isolates the
settlement from neighboring ones (c), corresponding to a distance of 28 m (French topographic
map), (b) and (d) show the extracted corresponding borders

on a statistical analysis of the cloud of points combining the different dimension
values for each commune. The method is based on bivariate Gaussian distributions;
such a model provides a powerful and nowadays standard tool for clustering (see
references in McLachlan and Peel 2000). Details are given in Thomas et al. (2008a).
Finally, six morphological classes were retained. On average, it turned out that the
morphology of the built-up surfaces in Wallonia is strongly influenced by the history
of urbanization and the underlying processes: the history of the urban network, the
nineteenth-century urbanization leading to the Sambre-Meuse industrial corridor,
and the twentieth-century suburbanization spreading from Brussels and other cities
(including Luxembourg). Hence, surface area dimensions of old industrial areas
lie within the range of 1.58–1.84, whereas the boundary dimensions of the dilated
patterns lie between 1.68 and 1.75. Recent periurbanization has generated patterns
with low surface area dimensions of 1.39–1.57 and high boundary dimensions lying
between 1.76 and 1.87. These patterns are rather fragmented with respect to old
industrial cities and confirm the increasing preference of households for living in
semirural areas offering peace and quiet with pleasant landscapes, while still within
reach of urban amenities. In some sense, the morphological properties of periurban



32 P. Frankhauser

patterns may be seen as resulting from such demand. In the more rural Ardennes
region, the surface area dimensions vary between 0.54 and 1.00 and are rather low,
but the range of the boundary dimension is very large extending from 1.33 to 1.75.
Hence, some of them are rather compact, whereas others look rather tattered. Near
Luxembourg, the surface area dimensions are higher (1.00–1.23) as are the boundary
dimensions (1.68 and 1.75), and so they are reminiscent of the periurban periphery
of Brussels.

2.6 Fractals for Sustainable Planning

2.6.1 The General Concept

The previously presented results make it obvious that the spatial organization of
urban patterns is rather consistent with fractal order principles. This type of spatial
organization is in part linked to planning concepts as shown, say, for New Towns.
But usually urban fabrics arise from highly complex interactions among various
types of agents such as politicians and planners but also developers and landowners,
who react to social demand. Hence, urbanization is at least in part a self-organizing
process.

Without going into details, this leads us to consider briefly the socioeconomic
processes contributing to what is usually called urban sprawl. We should be aware
that this phenomenon is not just due to lower lot prices in the periphery than in
city centers. As already pointed out, households choose these areas since they
want to flee urban density and prefer to live in individual houses surrounded by
a garden and to enjoy a green and quiet environment. In France, for example, a
survey conducted in 2007 by the Département Stratégies d’Opinion de l’institut
d’études marketing et d’opinion TNS Sofres (Gault and Bedeau 2007) revealed that
56 % of French households want to live in detached individual houses surrounded
by a large garden. Individual houses belonging to housing estates are preferred by
20 % and semidetached housing in an urban environment by 11 %. It is obvious
that this residential choice behavior tends to generate diffused settlement patterns
where residential areas are localized far away from jobs as well as from retail
centers and services. This increases the number and the length of commuting trips
and hence energy consumption and pollution. The negative impact of this evolution
has essentially been made evident by Newman and Kenworthy (1989). Moreover,
natural areas risk becoming ever more fragmented, so lowering biodiversity.

This prompted numerous authors to recommend a return to compact cities in
order to limit urban sprawl. However, even if this lifestyle contributes to urban
sprawl (Von Hoffman and Felkner 2002) such households will reject densifying
(Breheny 1997; Gordon and Richardson 1997; Fouchier 1995).

Investigations showed that households integrate a couple of criteria concerning
accessibility to different types of sites frequented when choosing their residence.
Brun and Fagnani (1994) and McDowell (1997) showed that they try to minimize
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the distance or the travel time for acceding to their jobs, but also to retail centers
(Lerman 1976) and, too, to leisure areas (Guo and Bhat 2002). Hence, densifying
residential zones may prompt households to move to lower density areas (Schwanen
et al. 2004). Moreover, policies favoring the compact city have turned out to be
less efficient than expected. They induce an increase in housing costs and traffic
congestion and reduce the accessibility of leisure areas (Breheny 1997). As observed
by Levinson and Kumar (1994), trip time does decrease with population density but
increases again when a certain threshold is exceeded.

Investigations for Walloon communes have shown that, where substantial pro-
portions of households are dissatisfied with their immediate environment, D values
are commonly close to 2 (Thomas et al. 2008b), whereas communes with large
percentages of very satisfied households have a high variety of D values (from 0.5
to 1.8). Of course, there is no simple relation between the fractal shape of the urban
fabric and household satisfaction since a large number of criteria come into play
and there is considerable diversity in housing environments and tastes. However,
in two papers on economic residential choice modeling, we explored the impact
of Sierpinski carpet-like urban patterns on household satisfaction. It turned out
that, for households which have preferences for both “urban amenities” and “green
amenities,” such a model provides advantages that can be measured by market-
induced lot prices (Cavailhès et al. 2004).

We showed, too, for a teragon, that the mean minimal distance from all sites
for acceding to the boundary falls to 56 % when passing from a square to the first
iteration step and is reduced to 91.5 % for the transition from the first to the second
step. The mean distance to the center increases, of course, but for the first step, we
obtain 112.5 % with respect to the initial square and 104 % for second step with
respect to the first one (Frankhauser 2000). Hence, the “loss of centrality” is less
important than the gain in acceding to the urban boundary.

These reflections prompted us to ask whether the emerging fractal order principle
cannot be made operational for managing urban sprawl, which means that instead
of rejecting the non-compact shape of urban patterns, we may use this approach
to structure urban fabrics. The goal is to develop a planning concept that takes
account of household preferences but that reduces energy consumption and prevents
fragmentation of both built-up and open landscape. Hence, one of the most crucial
objectives is to improve accessibility to the different kinds of sites residents frequent
more or less regularly. On a local scale, we saw that a fractal shape of an urbanized
area can provide leisure areas in the neighborhood of residential zones thereby
satisfying residents’ desired quality of life. But one of the most criticized impacts of
urban sprawl is that urbanization increasingly affects rural areas far from jobs and
shopping facilities and so generates large traffic flows.

Returning to urban history, we must be aware that, after the industrial revolution,
market-determined growth generated irregular urban patterns. However, during
the “trolley period,” i.e., before motorization, urban growth remained restricted
to ribbon-like development beside public transportation routes. Particularly in
Northern metropolitan areas, planning strategies deliberately oriented urbanization
in this direction on the scale of metropolitan areas. Let us cite as examples the
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Fig. 2.10 (a) The Copenhagen finger plan (Source: Städtbauliches Institut Universität Stuttgart).
(b) Schumacher’s palm plan for Hamburg (Source: Güldner 1968). (c) A proposal by the architect
Schöfl for a “fractal” town outline (Schöfl 1986)

Table 2.3 Change in the
fractal surface area dimension
of Basel

Basel Central city cluster Agglomeration

1880 1.42 –
1950 1.68 1.64
1990 1.7 1.74

famous Copenhagen finger plan (Fig. 2.10a) or the Schumacher plan for Hamburg
(Fig. 2.10b). The same logic inspired already Eberstadt et al. (1910) for developing
the Berlin metropolitan area.

But in many cases, we observe that in the course of urbanization, the fractal
dimension increases on the scale of metropolitan areas (see the example of Basel,
Table 2.3). This means that interstitial space between the main transportation routes
is increasingly filled since motorization provides good accessibility even to more
isolated villages.

This contributes not only to lengthening the daily commuting trips but is one of
the reasons for the deterioration of natural resources. Moreover, improving the street
network contributes largely to land consumption. For example, on the outskirts of
the urbanized area of the Paris metropolitan area, within the period of 1987–1997,
only 1.4 % of space was consumed by new residential and mixed use constructions,
whereas 50 % of space was used for improving the road network (Tourneux 2006).

Let us remind that dimensions close to D D 2 refer to a uniform distribution of
build-up space whatever the density, whereas lower fractal dimensions correspond
to higher local concentrations of build-up space across scales like in the example of
Figs. 2.2 and 2.4. Hence, we may summarize that on the scale of agglomerations,
lower fractal dimensions of build-up space correspond to a lower degree of sprawl
since buildings are locally more concentrated and do not fill up space in a diffuse
more or less uniform way.

Chen and Feng (2010) showed that in Chinese agglomerations, fractal dimen-
sions increases sometimes rather dramatically since the 1980th, and they link this
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phenomenon to the rather top-down planning strategy in China in opposition to
urban dynamics in Western countries more seen as resulting from self-organization
processes. The discussed empirical results show that weaker planning strategies
tend, too, to generate more uniform patterns, but in Western countries, this
homogeneity is linked to low density, contrarily to Chinese cities. This shows again
that fractal dimension provides different and indeed complementary information
about spatial organization to density.

Indeed, the hierarchy of lacunae, typical of fractals, at the metropolitan scale
saves large zones from urbanization by concentrating urbanization along develop-
ment routes, thus recalling the Northern countries’ planning concept. However, the
fractal planning concept goes beyond this, as shown in Fig. 2.11, where we illustrate
the concept by comparing the Sierpinski carpet already introduced to a scheme
resembling the finger plan. We assume that in both systems the axes correspond
to a transportation network and that urbanization follows these routes.

In both the patterns b and c, the total network lengths are the same. Even if both
the networks follow a radial-concentric logic, the density of network (Fig. 2.11b)
decreases continuously when moving away from the center. Network (Fig. 2.11c) is
a Sierpinski gasket which follows the same fractal logic as that of the Sierpinski
carpet of Fig. 2.3c. It fills space in a diversified and more contrasted way than
network (Fig. 2.11b). Zones around nodes, even in periphery, are densely covered
by network branches, whereas other zones, of different size, are not served. This
corresponds to the underlying hierarchical organization. Hence, the large square-
like zones on the edges of the figure can be thought of as large natural reserves or
rural areas. As illustrated for the upper left part of scheme (Fig. 2.11c), these large
zones are connected to smaller squares, so forming a connected spatial system of
green areas penetrating into urbanized zones. These green corridors have the double
function of providing leisure areas close to residential areas and of guaranteeing
good “ventilation” of the city center. But the concept avoids the damaging effects of
landscape fragmentation for biodiversity. It should be emphasized that the scaling
principle of fractals extends the idea of articulating green space and urbanized areas
to a local scale. Indeed, the observed lengthening of urban boundary, one of the

Fig. 2.11 (a) The Eberstadt-Möhring-Petersen plan for Berlin (Source: Eberstadt et al. 1910) and
(b) a non-fractal axial plan, compared to a fractal one (c), both having the same total axis length
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fractal features of the “sprawling” urban patterns, makes for easy access to open
landscape, since green pockets enter into urbanized areas and may be a useful goal
for planning (Fig. 2.10c), unlike the usual tendency to round off urban borders as
was made evident for the teragon!

Looking at the dimension values for agglomerations (Tables 2.1 and 2.2), we see
that fractal dimension of about 1.5–1.7 corresponds to urban fabrics with rather
contrasted patterns resembling the constructed fractal of Fig. 2.4b. In Walloon
examples, dimensions were even lower.

Comparing schema, Fig. 2.1b–c shows not only that fractal patterns save
larger patches from urbanization but illustrates another important feature about
accessibility. We may imagine that the nodes of the fractal networks correspond to
service centers of various ranks. Hence, all nodes can be considered as providing
facilities for daily needs; the four larger peripheral nodes can be interpreted as
centers also offering shopping and services amenities for weekly frequency of
recourse. Finally, the main center concentrates all types of amenities, also those
called on more rarely. Indeed, the less often amenities are frequented; the better
users accept long trips. This type of reasoning is reminiscent, of course, of central
place theory. Different authors emphasize the importance of developing secondary
centers or polycentric urban networks (Fouchier 1995). This is, e.g., discussed in
the frame of Calthorpes’ concept of “New Urbanism” (Calthorpe 1993) in order to
minimize trip lengths. Of course, investigations have shown that consumers choose
not always closest shopping facilities (Clark 1968) but this is also due to the fact that
car accessibility has been improved over a long time and fuel costs were low. This
is why we introduce in the following a poorly linked public transportation network
avoiding direct concurrence between shopping areas providing the same type of
offer. Of course, street network should be conceived in the same sense avoiding
high-quality links between subcenters of same level.

Central place theory has also been criticized for other reasons often referring
to real-world situation which seems in many cases not in coherence with this
model (Berry and Pred 1961). But this does not exclude that for planning, the
basic principle of a planning model based on a hierarchical principle taking into
account the frequency of recourse can be useful and remains a reference in planning
essentially in German speaking countries. Weichhart et al. (2005) underline the
“naturalness” of this approach.

However, unlike in Christallers’ central place theory, in the proposed spatial
system, the cities here are not distributed uniformly in space but concentrated near
transportation routes, meaning green areas can be saved from urbanization. Hence,
this type of spatial arrangement turns out to be even more efficient than the purely
axial development models.

Interpreting the nodes of the transportation network as sites concentrating
shopping and service amenities, the concept is similar to that of the “transit-oriented
development” suggested by Calthorpe (1993), but the mix of open landscape and
urbanized zones is reminiscent also of the debate about the Zwischenstadt of
Sieverts (1997) or the reflections of Dubois-Taine and Chalas (1997) about the ville
émergente.
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2.6.2 Applying the Concept

Of course, the Sierpinski carpets presented are not directly suitable for concrete
applications. We have explored different approaches which all take advantage of the
possibility of changing the position of elements in a fractal without modifying its
fractal properties. Let us emphasize that the objective is not to radically change the
urban fabric but to provide support for further development in a given situation. For
this aim, planning rules are introduced on various topics:

• Fractal standards and supplementary morphological standards like the articula-
tion of built-up space and open landscape across scales

• The evaluation of accessibility of urban amenities (retail centers, services) and
green amenities (leisure areas)

• The potential of city size development (rank-size distribution of cities)
• Natural and environmental constraints or recommendations

Two main approaches have been developed and are currently being tested.
We present first the approach implemented in the MUP-city simulation tool for
developing scenarios for further urbanization but which is more suitable for the more
local scale of periurban communes. Then, we discuss the Fractalopolis approach
which is better adapted when considering the scale of metropolitan areas.

2.6.2.1 MUP-city

This concept has been developed in cooperation with Cécile Tannier and Hélène
Houot (both members of the Théma research institute) as part of a research project
of the PREDIT 3 program financed by the French Ministry of the Environment and
Sustainable Development and the Environment and Energy Management Agency
(ADEME) (Tannier et al. 2010; Frankhauser et al. 2011; Frankhauser 2013).
A software tool has been developed by Gilles Vuidel for developing scenarios for
further urbanization.

It has been applied to several periurban zones of Besançon, a medium-sized
city in the east of France, and modified versions are currently being tested for
the Luxembourg area. Moreover, it is used for simulating local scenarios in the
framework developed with the enlarged model, Fractalopolis, presented below.

The approach is also inspired both by the grid analysis mentioned in Sect. 2.4.1
and by the iterative mapping procedure used for generating the Sierpinski carpet in
Fig. 2.3. We assume that a square-like zone is selected for exploring possible future
urbanization. We apply a procedure we call “fractal decomposition.” The zone is
covered by nine grid squares of equal sizes. The user now sets, as with a generator,
how many grid squares in which building is authorized. Let us assume he chooses
as fractal standard Nnorm D 6. Now, the grid squares already containing buildings are
identified. Let us assume Nemp grid squares contain buildings. If Nemp � Nnorm, then
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no additional cells can be opened to urbanization. We may now either exclude Nemp –
Nnorm grid squares from further urbanization or accept urbanization, but, in that case,
applying the defined standard again for the following steps. It is obvious that for
shrinking cities, we can define which and how many grid squares can be reconverted
into green areas. However, if Nemp < Nnorm an amount of Nnorm – Nemp, grid squares
can be chosen for urbanization. In the next step, each of these grid squares is divided
into nine smaller squares, with sides one-third of the length of the size of the initial
ones (Fig. 2.12). In each of the grid squares retained for urbanization in the first step,
we look again among the nine smaller grid squares to see which of them contain
buildings. Of course, since our grid squares are smaller, we will again find empty
ones within the larger grid squares occupied at the previous step.

The grid squares excluded from urbanization at a certain step are never again
considered in further steps, so stringently respecting the lacunal hierarchy of
fractals. By choosing a standard Nnorm, we define, of course, a fractal dimension
since the reduction factor is set at r D 1/3. Hence, the fractal dimension Dnorm

becomes a multiscale land occupation index and hence a planning standard. It
describes how the built-up area is concentrated in space across scales: if D tends
to two, the built-up mass is uniformly distributed, but the lower the value of D, the
more the built-up area is locally concentrated (Table 2.4).

Fig. 2.12 Two successive steps of decomposition used for developing planning scenarios with
MUP-city (Source: Frankhauser et al. 2008)

Table 2.4 The relation
between occupied grid
squares and fractal dimension
in MUP-city

Number N of occupied grid squares
at each scale Fractal dimension D

4 1.26
5 1.46
6 1.63
7 1.77
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The fractal dimension is not the only criterion used for designing development
scenarios. We check also that

• Green corridors remain connected up at the microscale.
• Urbanized grid squares remain connected in order to avoid fragmentation.
• Each urbanized grid square has adjacent non-urbanized grid squares.

In the MUP-city development tool, these rules are strict and the software does
not allow them to be broken.

2.6.2.2 Fractalopolis

We now come to the second approach used for planning purposes named Fractalopo-
lis. The geometric concept, the underlying central place system with its assigned
coding system, as well as the population model were developed as part of the
“Vilmodes” project of the PREDIT 4 program financed by the French Ministry of
the Environment and Sustainable Development and by the Environment and Energy
Management Agency (ADEME) (Frankhauser 2012). The model was tested for the
first time for the Vienna-Bratislava metropolitan region in the frame of the PhD
thesis written as part of a collaboration project with the Technische Universität
Wien (Czerkauer-Yamu 2012). For this aim, a computer application was developed
by Gilles Vuidel (Thema) which can be used to design scenarios for real-world
applications. Based on previous work (Tannier et al. 2012), the rules for acceding
to facilities have been enlarged and adapted to the Vienna case, and specific
morphological rules have been introduced. The Fractalopolis approach is currently
being adapted to the Besançon agglomeration and the Lyon metropolitan area.

The spatial modeling approach is based on a multifractal model, and it too refers
to an iterative mapping procedure, but combines different reduction factors, e.g., r0

and r1 in Fig. 2.13. This allows the creation of urban zones of different sizes which

Fig. 2.13 (a) Generating a multifractal Sierpinski carpet representing a central place system
starting from a square, (b) introducing the generator, and (c) iterating the procedure (Source:
Frankhauser 2012)
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can be used to generate a hierarchical city system in accordance with the central
places approach (Frankhauser 2012).

Starting from a square-like area, we introduce a generator as illustrated in
Fig. 2.13. Of course, the reduction factors can be chosen arbitrarily allowing the
biggest square to be adjusted to the size of the largest center offering the whole
range of facilities. The smaller squares correspond to second-order cities which
we assume do not provide the highest level of facilities. Depending on the real-
world situation, more or fewer than four centers may be introduced. Moreover, the
position of all the squares can be chosen freely, the only restriction is that the squares
are not allowed to intersect and they must lie within the initially given square.
Hence, the squares tend to be centered on already existing cities. Moreover, natural
and environmental constraints can be respected which generally condition urban
development (Mohajeri et al. 2013).

We see that, in this concept, the logic is not to cover zones containing built-up
space but to define from the outset the areas we wish to develop. By this logic, we
accept that settlements lie in the residual zones, i.e., the “lacunae.” These zones
are interpreted as rural zones. The iteration proceeds by replacing each square by a
smaller replication of the generator.

Hence, areas for urbanization are even more concentrated in zones which we
assume are served by public transportation networks. This prompts us to admit
that, in the zones cut off at this step, a low level of development is possible, thus
weakening the strong fractal model.

We see that by iteration, the reduction factors r1 and r0 are now combined
according to all possible permutations, which yields, for example, for the second
step:

r1 � r1; r1 � r0; r1 � r0; r0 � r0 (2.10)

Since permutations are allowed, we have a degree of “degeneration,” since

r0 � r1 D r1 � r0 (2.11)

This is why the areas assigned to the second-order centers are the same as those
of the third-order centers belonging to the highest-ranked center (Fig. 2.14). This
corresponds to a particularity of multifractal structures. For the same reason, the
areas belonging to the third-order centers are no longer of the same size. We have
small squares of base length r0 � r0 and larger ones with base length r0 � r1. In our
approach, this is the expression that third-order centers in the direct vicinity of
important centers are usually larger than those belonging to the hinterland. This
assumption differs from Christallers’ model where all centers belonging to a certain
level are the same size.

In order to identify the hierarchical level and thus the facilities which are assigned
to the cities, we have introduced a specific coding system. Hence, for the first
iteration, we distinguish the large central square which we denote by the digit 1
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Fig. 2.14 The coding system of the central place system. (a) Shows the system at first iteration
(gray squares) and the second one (white squares) (b) corresponds to the third step and illustrates
the underlying hierarchy of service levels (for details, cf. text) (Source: Frankhauser 2012)

and the four smaller peripheral squares denoted by 0. In each following step, we
add another digit to the right of each digit, by the same logic. Hence, the hierarchy
is created just by combining two factors. In the next step, the highest-order central
square is now called 11 and the four smaller adjacent ones 10. The four peripheral
squares generated in the previous step are replaced, too, by the generator. The central
place is called 01 and the four peripheral ones 00 (Fig. 2.14a). This procedure is
reiterated at the third step (Fig. 2.14b). We then obtain a set of eight different codes,
each consisting of three digits. The first level center with the highest facility level
m D 1 has the code 111. The four directly adjacent squares of level m D 2 have the
codes 110. They correspond to suburban areas of the main center. The four centers
011 correspond to the four centers of level m D 2 generated at the second iteration
step and correspond to centers of the facility level m D 3. According to the logic
of iteration, we assume that higher level facilities are provided by the center 111
for the 101 centers, whereas the second level centers 011 provide the same type of
facilities for the centers 001. The small elements 100 and 000, adjacent to these
third level centers, are all low level centers m D 4 (Fig. 2.14b). By introducing
these codes, we have given up the previously discussed commutativity. Indeed,
in the system introduced, the codes 101 and 110 or 011 are not equivalent, even
if the areas are of the same size. Hence, the code introduces a noncommutative
operation. Consequently, the system displays certain properties corresponding rather
to properties of unifractals than to multifractals, which corresponds rather to the
hierarchical city system assumed.

Hence, making abstraction of their size, we confirm that the total number of
centers belonging to the different levels obeys a geometrical series, except for the
transition from the highest to the next level (Table 2.5).
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Table 2.5 Number of central
places by their facility level

Level Number

1 1
2 4
3 20
4 100

This type of hierarchy is consistent with the logic of fractal structures. Here, too,
additional morphological rules are introduced which avoid green corridors being cut
up or isolated green islands being generated.

We introduced, too, a population model. It affects to each of the square-like
zones a population which takes into account its size as well as its hierarchical
level. This model can also attribute a certain population to the various rural areas
cut off in the course of iteration. Starting from real population data, the simulation
tool identifies the population in the various zones defined by the simulation and
computes the mean population for each hierarchal level. The simulator shows for
each city the surplus or deficit with respect to this mean number. Moreover, the
model can define distribution laws according to the underlying hierarchical logic
and hence propose population development scenarios. Details are presented in a
working paper (Frankhauser 2012).

Figure 2.15 shows the different steps for a simulation of the metropolitan area of
Lyon. Here, the colors refer to the population surplus or the deficit with respect to
the mean values for the different hierarchical levels.

2.6.3 The Accessibility Rules

For both planning concepts presented here, the accessibility to different types of
amenities frequented by residents is one of the fundamental aspects. Indeed, as
pointed out, the accessibility to different types of amenities offered to the inhabitants
is fundamental in order to propose planning scenarios that can reduce the total length
of trips. Moreover, it is possible to clearly identify accessible sites which could be
developed in the future. Both “urban” (goods and services) and “rural” amenities
(green leisure areas) are considered. By the underlying central place logic, which
appears explicitly in the Fractalopolis coding system, different levels of amenities
are distinguished depending on how often residents use them. We present here the
methodology developed for measuring accessibility to retail and service centers
(Frankhauser et al. 2011). For a medium-sized agglomeration, we distinguish three
service levels:

• Level 1 (monthly use of less occasionally attended places such as medium
and large specialized stores, town halls, banks/insurance companies, restaurants,
cinemas, theaters, etc.). Since it is unlikely that new centers of this level will be
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Fig. 2.15 A Fractalopolis simulation for the Lyon metropolitan area. (a) Shows the chosen
development area and (b–d) the following iteration steps, where the squares are placed by
respecting already existing urban centers but also the fractal restrictive rules (cf. text). The colors
indicate if the population contained in the square shows a deficit or a surplus of population with
respect to the underlying model

created, the distance to these centers is crucial and limits sprawl; however, until
now no precise limiting distance has been introduced. For metropolitan areas,
level 3 will be split into two subclasses.

• Level 2 (weekly use of places such as markets, automobile repair shops, gas
stations, cafés, hypermarkets, family doctors, etc.). Since the literature provides
sparse information about distances to these services, the maximum distance
within the given area is identified for each type of service which is used to define
the range of distances accepted for that type of amenity.
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• Level 3 (places with daily demand or used several times a week such as bakeries,
cigarette/newspaper outlets, schools, butcher’s/delicatessens, grocery stores). It
is assumed here that it is the distances within walking distance from home. The
maximum range considered is set to 400 m (Wiel et al. 1997).

Since shops and services are not localized in the same place, retail clusters
are introduced including all shops or services lying within 200 m of one another.
Distances less than 200 m improve accessibility, whereas greater distances reduce it.
Accessibility from a given site to a cluster is evaluated by combining the frequency
of use of the different services/shops and the distance on the network. Accessibility
evaluation, based on fuzzy logic, takes into account all existing clusters and for
each one the number of services/shops and the diversity of the offer. By the
underlying logic, two clusters lying at the same distance are better than one; one
big, readily accessible cluster is better than two less accessible ones; if a cluster
is very easily accessible, the existence of another one with low accessibility is not
really important. For higher level facilities, access by public transportation network
is included in the evaluation. It takes into account the timetables of the public
transportation networks such as buses or suburban trains as well as access to stations.
The details of the evaluation model are presented in Tannier et al. (2010, 2012).

The distances accepted for acceding to the clusters of different hierarchical levels
may depend on the local context, in particular for higher level facilities, since the
distances to cities offering these types of amenities are not the same for densely
populated metropolitan areas as for low density areas. For evaluating accessibility to
the facilities for daily needs (level 3), walking or cycling distances are used (Tannier
et al. 2006).

For green leisure areas, similar categories are introduced. However, two types of
accessibility are considered, the visual access to open landscape for the buildings
and accessibility by the road network. Visual access is evaluated by considering the
number of buildings lying on the boundary of the urbanized areas. To identify urban
borders, consistent morphological envelopes are extracted by a multiscale approach
(Tannier et al. 2011). Accessibility to green and natural areas via the transportation
network is measured by defining the specific criteria of accessibility to each type of
space (Tannier et al. 2006; Czerkauer-Yamu and Frankhauser 2013).

The evaluations are realized for MUP-city for each of the grid squares at each
iteration, usually by using the network distances. For Fractalopolis, the evaluations
are recalculated when changing the position of a square. The evaluation result is
coded by a color which is assigned to the square.

2.7 Conclusion and Outlook

We presented a couple of results about how fractal geometry allows better under-
standing spatial organization of urban fabrics. We saw that fractal approach suits
indeed rather well for describing spatial organization of urban fabrics even if their
shapes seem to be irregular. That such patterns are perceived as irregular is rather
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due to the fact that they follow another type of spatial organization principles as
the usual Euclidean references like smoothness of borders, uniform distribution of
constitutive elements like buildings, etc. Urban fabrics seem in many cases made
up of rather clearly organized town sections which form a complex patchwork.
Historical contexts and particular planning concepts may highly contribute to the
type of fractal behavior observed. Hence, planning strategies as well as self-
organization processes issued from social interactions or trends in society contribute
to an emerging spatial order principle.

This led us to reflect about the interest of using fractal approach for developing
planning strategies useful in the context of Western countries in order to manage
urban sprawl by respecting nevertheless social demand often favoring living in the
countryside. Simulation tools have been developing allowing to apply the concept
to real-world cities.

Further research will focus on deepening the comparison between various
methods of measuring fractal properties of urban patterns including 3D data about
buildings in the analyses. Different types of visualization of the results will also be
tested with a view to making the results accessible to a wider audience.

For the planning concept, the question of the catchment areas of different types
of services necessary to survive will be considered in more detail and included in
the evaluation as well as the localization of jobs.
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Chapter 3
Knowledge Discovery in Spatial Planning
Data: A Concept for Cluster Understanding

Martin Behnisch and Alfred Ultsch

Abstract The objective of this paper is to present a methodology for discovering
comprehensible, valid, potentially innovative, and useful patterns, i.e., new knowl-
edge, in multidimensional spatial data. Techniques from statistics, machine learning,
and data mining are applied in consecutive logical steps to allow the visualization
of results and the application of validation procedures at each stage. However,
the approach does not end with a data cluster; rather, if such a valid cluster
has been achieved, then the question is posed: “What do the clusters mean?”.
Symbolic machine learning methods are employed to produce an explanation of
the clusters in terms of rules employing an understandable subset of the high-
dimensional data variables. This combined with canonical representatives of a
cluster and consideration of the spatial distribution of the clusters lead to hypothesis
on emergent data structures, that is, potential new knowledge. The approach is
demonstrated on an exemplary data set of German urban districts featuring seven
dimensions of land use.

Keywords Knowledge discovery • Data mining • Cluster • Spatial planning

3.1 Introduction

The rapid growth of freely available spatial data and advances in information
technology have made an application of the techniques of data mining and knowl-
edge discovery in databases (KDD) (Ultsch 2013; Laube 2011; Guo 2009; Fayyad
et al. 1996) both possible and necessary. The goal of this chapter is to present a
methodology for applying knowledge discovery to spatial planning data. Here our
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initial assumption is that data is available without any concrete notion of inherent
structure (cf. process of KDD Miller and Han 2009, p. 4).

In many instances when knowledge discovery is applied to spatial planning data,
a clustering is more or less the final result of analysis, intended to answer a specific
research question (European Spatial Planning Observation Network 2011; Aumayr
2007; Blume and Sack 2010; Demsar 2009; Kronthaler 2005; Hietel et al. 2004;
Rasul et al. 2004; Thompson et al. 2002; Qu 2000). The objects of interest can be
regions, municipalities, settlement blocks, or raster cells, described by a number
of attributes and gathered into uniform clusters. A small number of clusters are
extracted from data sets that may contain thousands of individual data objects. The
aim is to identify important shared features of the target objects from such huge
pools of data in order to provide concrete findings to assist in planning decisions. In
the most recent approaches, clusters are described by measures of central tendency,
variability, or discriminant analysis (Geyler et al. 2008; Frenkel 2004; Bätzing and
Dickhörner 2001; Siedentop et al. 2003).

Here we propose to go a step further. In the presented approach, clustering is
merely the starting point for the actual generation of knowledge. Useful clusters
are ones that help spatial planners, politicians, and decision-makers in their actions.
Therefore, the question “What do the clusters mean?” is addressed using several
different approaches involving interaction with a human expert. A special class
of classifier generation algorithm from machine learning is applied, with the aim
of producing human-understandable characterizations of the classes in the form of
decision rules (Alpaydin 2008; Hastie et al. 2009; Izenman 2008; Kuncheva 2004).
It should be emphasized that this technique can generate knowledge by investigating
the variables previously used for the clustering partitions (intrinsic explanation) or
by exploring other variables (extrinsic explanation).

This chapter is structured as follows: Section 3.2 introduces the sample spatial
planning data set to provide the basic framework. In Sect. 3.3, the individual steps of
the knowledge discovery approach are explained. Finally, section “Conclusions and
Future Challenges” concludes with some remarks and addresses future challenges.

3.2 Sample Spatial Data Set

Our approach to knowledge discovery for spatial planning data is demonstrated
on a data set describing land use in 111 urban districts (UDs) as a subset of
all German districts (Kreise) (n D 412). The land use in each UD is specified
by seven variables, measured in the year 2010. The data is compiled from the
Monitor of Settlement and Open Space Development (Krüger et al. 2013). This
is a scientific service operated by the Leibniz Institute of Ecological Urban and
Regional Development to provide information on land use trends in Germany (IOER
Monitor, http://www.ioer-monitor.de). The advantage of data supplied by the IOER
Monitor is the provided classification featuring a wide range of variables (see Land
Use Classification) and the explicit spatial reference of the land use categories.

http://www.ioer-monitor.de
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Table 3.1 Variables used to describe the UD data

Label Measurement Description Literature

OpenSpaceMeshSize Effective mesh
size (modified) of
open space areas
(%)

The larger the effective mesh size
in a reference area, the lower the
degree of fragmentation of the
landscape

European
Environment
Agency (2011),
Moser et al. (2007),
and Jaeger (2000)

BuildingArea Area per resident
(m2/resident)

High indicator values indicate
high land consumption for build-
ings per resident (low efficiency
of land use)

Behnisch et al.
(2013) and Zentrale
Stelle Hausumringe
und
Hauskoordinaten
(2013)

SettlementDensity No. of residents
per settlement
area
(residents/km2)

The indicator describes the urban
density, based on the settlement
area and transport area of a refer-
ence area

Siedentop and Fina
(2010) and
Siedentop et al.
(2007)

SealedSurface Ratio of sealed
surface to total
area (%)

This is a general ecological in-
dicator to describe various forms
of environmental loads associated
with settlements, available for the
first time in Germany in this form.
The base data is a European data
set that has only been available for
a short period of time and which
makes use of ortho-rectified satel-
lite images, analyzed into classes

European
Environment
Agency (2013) and
Siedentop et al.
(2007)

LandConsumption Ratio of
settlement and
transport area to
total reference
area (%)

Land consumption encompasses
both the loss of agricultural land
and natural habitats as well as
the expansion of settlement and
transport areas

Krüger et al.
(2013), Siedentop
and Fina (2010),
Storch and Schmidt
(2008), Siedentop
et al. (2007), and
Dosch (2001)

ProtectedAreas Ratio of protected
areas to total
reference area
(%)

This indicator describes the pro-
portion of land in an urban district
(excluding municipal coastal wa-
ters) designated as protected

Krüger et al. (2013)

HemerobyIndex Spatially
weighted mean of
the hemeroby
steps of all forms
of land use in a
reference area
[nondimensional]

The index provides a measure
of the cultural influence of hu-
mans on the natural environment,
or an inverse measure of natu-
ralness (1 = no cultural influence,
. . . , 6 = strong cultural influence)

Walz and Stein
(2014) and
Steinhardt et al.
(1999)

In Table 3.1, you can find a brief label of the variables, the form of measurement,
units used, and a short description. For further information on the variables, see
also the literature references on the right. The indicators of the IOER Monitor,
derived from standard geo-topographic data sets, are more often reliable than official
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land use statistics. The latter are currently derived from property registries and
are frequently out-of-date, and updated data is only available upon payment of a
fee (Meinel 2013).

3.3 Systematic Approach to Knowledge Discovery in Spatial
Planning Data

As already mentioned, exploratory techniques such as clustering are often employed
in the analysis of spatial planning data. Here we propose to follow a systematic
step-by-step approach, starting from the raw data and ending hopefully with the
discovery of some new data structures, which can then be subjected to rigorous
statistical testing. It should be noted that although the steps are presented here in
succession, in practice it is often the case that insights gained at some step of the
knowledge discovery process will be used to revise the procedures of previous steps.
Therefore, in practice, the process is generally circular or spiral in form, as shown
in Fig. 3.1 (Ultsch 2013; Behnisch 2009).

The various steps of the current approach to knowledge discovery for spatial
planning data are as follows:

1. Descriptions: Modeling the distribution of each variable separately

– Initial data inspection
– Exploring the distributions of the individual variables

2. Structures: Finding structures in high-dimensional space

– Looking for correlations of variables

Knowledge
valid,

comprehensible,
non-trivial,
potentially 

innovative and
useful in
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Fig. 3.1 A systematic approach to knowledge discovery
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– Definition of a distance measure for the high-dimensional data
– Projection of the data from the high-dimensional data space onto a

visualizable space

3. Classes: Finding intrinsic groups, called clusters, in a data set

– Data clustering/unsupervised classification

4. Classifier: Symbolic classifiers to assist human skills of comprehension

– Machine-generated explanations in form of rules or decision trees

5. Interpretations: Human understanding of clusters

– Analysis of the spatial distribution of clusters
– Mindful translation of machine-generated explanations
– Cluster labeling/finding spatial abstractions
– Knowledge generation/domain experts gain new insights

6. Testing new insights

We will demonstrate this approach on the UD data set described above. Although
this is intended simply as an illustrative example, nevertheless, some results have
been obtained. For example, potential subclasses of the variable SealedSurface have
been identified. Another piece of knowledge discovered by the presented approach is
the identification of two types of German coastal urban districts. Furthermore, it was
possible to rediscover a predicted cluster of urban districts characterized by a dense
building structure, fragmented open space, and a high degree of sealed surface. Most
urban districts of this cluster belong to the official type highly central of the spatial
monitoring system of the Federal Institute for Research on Building, Urban Affairs
and Spatial Development (2013). The following semantic is suggested for urban
districts in this cluster: urban districts, regarding density, ecological impacts of soil
sealing, and fragmentation of the urban area.

3.3.1 Initial Data Inspection

The first and most important step in a knowledge discovery process is to gain an
initial overview by inspecting the data set as a whole and closely reviewing each
variable individually. To gain an overview of the data, a heat map of the entire data
set can be made (Wilkinson and Friendly 2009). A heat map displays each data point
as an area of colored pixels in a matrix. The presented colors reflect data values. In
particular, missing values can be identified by a unique color (white) so that the
number and distribution of data gaps can be clearly seen. Figure 3.2 gives such an
overview of the UD data scaled to percent and ordered by the official district key
(01001 : : : 16056). In this data set, there are no missing values, normally coded as
“NaN” (IEEE 754-1985). No obvious structures can be identified in this heat map,
for example, in the ordering of data.
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Fig. 3.2 Heat map of the scaled UD data

3.3.2 Exploring the Distributions of the Individual Variables

The next step of data inspection is to determine the distribution of the individual
variables. Important tools for this inspection are the quantile-quantile plot (QQ-plot)
and kernel estimators for the probability density function (pdf). Here we use the
PDE method for pdf estimation (Ultsch 2003) as it is specially designed to uncover
subsets in the variables. Consider, for example, the variable SealedSurface. The
graph on the left of Fig. 3.3 presents the empirically measured pdf as a blue curve.
One can see that the degree of sealed surface in UD data appears to have several
subsets: a small proportion of sealed surface vs. medium and higher percentages of
sealed surfaces. The black lines show a mixture of Gaussians to model these subset
distributions (Bilmes 1998; Dempster et al. 1977). In this way, a close inspection of
each variable separately offers some initial insights into the data set. The right panel
of Fig. 3.3 gives an indication of the quality of the GMM model. Here the straight
line confirms a good data fit to the model.

The main goal of the inspection of the individual variables is to find out how
they are distributed in comparison to standard distributions. A QQ-plot of the
variable HemerobyIndex versus a Gaussian (N(0,1)) shows that this variable has
an approximately normal (i.e., Gaussian) distribution (cf. Fig. 3.4).

The QQ-plots of other variables reveal different types of distribution. While the
variable OpenSpaceMeshSize is clearly non-normally distributed, the logarithm
of OpenSpaceMeshSize shows nearly a normal distribution (cf. Fig. 3.5).
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Fig. 3.5 Inspection of the variable OpenSpaceMeshSize using QQ-plot and PDE

OpenSpaceMeshSize is assumed to be lognormally distributed. Nonlinear trans-
formations of the variables, such as the logarithm for OpenSpaceMeshSize, are
used to determine the specific type of distribution. No complex transformations are
applied in order to understand the type of distributions.

The transformations used are from the so-called ladder of powers (Tukey 1977),
which uses “understandable” transformations such as “log” and “sqrt”. These allow
for hypotheses on why the distribution is shaped in a particular way. As shown
above, OpenSpaceMeshSize can be assumed to be lognormally distributed. Such
distributions result from a product of many independent random variables; further-
more, exponential growth can be modeled using lognormal distributions (Limpert
et al. 2001). Squared normal distributions, that is, when the square root of the
variable is normally distributed, indicate that the variable grows with a quadratic
area-related function.

In the UD data, for example, the variable ProtectedAreas seems to have this type
of distribution (cf. Fig. 3.6).

In summary, the initial inspection of the individual variables aims to discover
the type and details of each variable distribution. If a variable is assumed to
follow a particular type of distribution (lognormal, mixture of Gaussians, etc.), a
first validation should be attempted by applying statistical tests for distributions
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Fig. 3.6 Inspection of the variable ProtectedAreas using QQ-plot and PDE

(Kolmogorov-Smirnov, Chi2, Jarque-Bera, etc.) and/or visual checks such as the
QQ-plots (cf. Fig. 3.1, where the validation step is highlighted in red).

Sometimes initial classifications may be discovered by this description step (cf.
Fig. 3.1). One example is the detection of possible subclasses of SealedSurface as
described above. Another important aim is to identify useful nonlinear transfor-
mations, such as log or sqrt in order to enable the comparison of distributions of
variables (cf. Fig. 3.9 below). The nonlinear transformations applied to the UD data
are given in Appendix 1.

3.3.3 Looking for Correlation Structures

After selecting a normalizing nonlinear transformation, it is useful to identify
correlations among the variables. Two typical methods for this are scatterplots and
the calculation of correlation measures.

If nonlinear transformations are first applied to the data, then linear correlation
measures such as the Pearson correlation coefficient can be used. Otherwise rank-
based correlation measures such as the Spearman correlation coefficient or Kendall’s
Tau must be used. Figure 3.7 shows a matrix of all pairwise scatterplots. It can
be seen that some variables are highly correlated. For example, SealedSurface
and LandConsumption are strongly positively correlated, while BuildingArea and
SettlementDensity show strong negative correlation. Figure 3.8 visualizes the
Pearson correlation coefficient of the transformed data.
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3.3.4 Definition of a Distance Measure for
the High-Dimensional Data

In order to project the high-dimensional data onto a space which can be visualized or
to identify clusters in the data, a meaningful (dis-) similarity measure (data distance)
must be defined. The distance measure must be such that similar data are close and
differing data distant. Each variable should be well captured by this measure. Two
variables with a high correlation represent basically the same information. Thus, if
both variables are included in a data distance, the same information is weighted by a
factor of 2. One simple approach to address this effect is to remove highly correlated
data from the definition of a meaningful data distance.

For the UD data, it makes sense to include only the four variables
OpenSpaceMeshSize, BuildingArea, SealedSurface, and ProtectedAreas as the
other variables are highly correlated to this subset, so that their information is
already contained in the selected variables. Comparison is of the transformed
variables. Otherwise, the differences between two data points within a variable
would not be comparable (cf. Fig. 3.9). In order to adjust the scaling for the data, all
data was rescaled to percent.
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Fig. 3.9 Comparison of the distributions of original (left) and transformed variables (right).
Blue = OpenSpaceMeshSize, red = BuildingArea, green = SealedSurfaces, black = ProtectedAreas



60 M. Behnisch and A. Ultsch

3.3.5 Projection of Data from the High-Dimensional
Data Space to a Visualizable Space

In order to detect structures in data, in particular clusters, it is helpful to project
structures in the high-dimensional data space (Rn) onto a visualizable space of only
two or three dimensions (Rviz). Any projection of a high-dimensional data space
onto a lower dimensional space cannot preserve all the spatial relationships of the
original space. Nonetheless, the projection onto Rviz should reflect as closely as
possible the distances and clustering of data points in Rn. The visual projection
must certainly enable an estimation of relative distances between data points. An
overview of projection methods can be found in Hand et al. (2001). The so-
called nonlinear projection methods do not strive to preserve linear relationships
between projected data and the original data space. Instead, a projection is sought
that provides the optimal visualization of the structural characteristics of data.
Such structural characteristics can be spatial relationships, as, for example, the
occurrence of dense clusters of data. A further important consideration is that
nonlinear projection methods should enable a precise illustration of neighborhood
relationships existing in the high-dimensional space in the form of similar or
identical neighborhood relationships in the projection space.

In principle it is impossible to preserve all neighborhood relationships between
data points when projecting high-dimensional data to a lower-dimensional space.
Yet there are visualization processes that attempt to preserve such structuring
as precisely as possible by employing various scaling levels. Such methods are
described as topology preserving.

Suitable visualizations include the self-organizing feature maps (SOMs) pro-
posed in 1992 by the Finnish physicist Teovo Kohonen (1982, 2001). These can be
seen as a mathematical model of the formation of sensomotoric regions in biological
neural networks, such as the human brain. SOMs are used in two different forms:
as the so-called k-means-SOM (KMSOM) and as emergent self-organizing feature
maps (ESOM) (Ultsch 1999). In k-means-SOM, each neuron stands for a cluster.
Emergent SOMs (ESOMs) create a map of Rn on a two-dimensional grid structure
formed by neurons (units). For the constructed visualization, it can be determined
that no energy function can be employed to measure the quality of the visualization.
Nonetheless, this form of visualization has the advantage that the topology of
the original data space is uniquely preserved. An important example of this
characteristic is the U-Matrix, which can be used to reveal nonlinear entanglements
within Kohonen maps. A typical example is the case of two intertwined toroidal data
sets (cf. Figs. 3.10 and 3.11). The Emergent Self-Organizing Map also enhances the
investigation of multidimensional spatial objects. An ESOM with 50 � 82 neurons
is trained with the inspected and preprocessed data.

The corresponding U*-Map (Ultsch 2003) (island view, cf. Fig. 3.12) delivers
a geographical landscape of the UD data on a projected map (imaginary axis). A
clear structure can be easily recognized. The structures are expressed by mountains
(displayed on the z-axis), the height of which define the distance between different
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Fig. 3.10 Chain-link dataset

objects. A valley describes similar objects, characterized by small U-heights on the
U*-Map. Data points found in coherent regions are assigned to one structure. All
local regions lying in the same structure have nearly the same properties. Outlier
groups can also be clearly discerned, characterized by small valleys and very
prominent boundaries (large U-heights). Close inspection of the U-matrix reveals
that two “structures” can in fact be regarded as outlier, having only two members
each. The first group of outlier consists of the major cities Munich and Berlin, both
of which display a large value for sealed surfaces, a small value for building area per
inhabitant, and low value for protected areas. The second group of outlier consists
of Suhl and Baden-Baden, two cities which are remarkable for their extraordinarily
large proportion of protected areas and low value for sealed surfaces.

3.3.6 Data Clustering

After an initial inspection of the multidimensional data space, the next important
step is to undertake a partitioning into coherent data structures. Groups must be
formed of similar data objects which can be easily distinguished from the remaining
data. This task is termed clustering. Depending on the type of resulting groups,
cluster processes can be subdivided into hierarchical, partitional, or overlapping
clustering (Hand et al. 2001).



62 M. Behnisch and A. Ultsch

Fig. 3.11 Emergent SOM of the chain-link dataset

Fig. 3.12 U*-Map (island view) of the UD data
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Frequently the number of partitions must be defined beforehand. Here we adopt
the approach of partitional clustering, building on the emergent self-organizing
feature map. The structures of the U-matrix are used to define the clusters, that is,
when the projections of data points (bestmatches) are found in a common valley.
The neurons of an ESOM can also be clustered using the clustering algorithm
U*C, which is based on grid projections and makes use of distance and density
information (Ultsch and Herrmann 2006). In our case, this approach leads to nine
U-matrix cluster (UC).

Clustering methods partition the data into clusters. The cluster structures criti-
cally depend, first, on the definition of a meaningful measure of distance (see above)
and, second, on the details of the clustering algorithm. If a known pre-classification
is at hand, then this may be used to evaluate the clustering. However, in most
real knowledge discovery cases, no such pre-classification is given. The question
arises as to which form of clustering is optimal. For the purposes of knowledge
discovery, the quality of any data clustering is determined by whether the resulting
classes offer some useful interpretation; in particular, whether these data classes
reveal unsuspected structures and correlations in the original data space. Hand et al.
(2001) emphasize that the numerical size of clusters should not be accorded too
great importance, as it is precisely the unexpected something that goes against the
rules which is being sought.

Generally speaking, however, the validity of a clustering is often in the eye of the beholder;
for example, if a cluster produces an interesting scientific insight, we can judge it to be
useful. (Hand et al. 2001, p. 292)

In such cases where new structures are detected, other non-supervised ap-
proaches should be adopted to validate the clustering results. One such approach
is to cluster the data using a different cluster algorithm. Another is to calculate
some cluster immanent measure. Finally, the approach which best meets the aims
of knowledge discovery is to seek a semantic interpretation of the detected clusters.
This means determining whether a cluster makes sense through the application of
knowledge generation methods (see next section).

Figure 3.13 shows a hierarchical clustering of the data using Ward clustering
(Ward 1963) to produce a dendrogram (Carlsson and Mémoli 2010). The user has
to define either a threshold distance or the number of clusters in order to define the
clustering in a hierarchical algorithm. In our case, a threshold distance of 100 was
used, giving 8 Ward Clusters.

The results of different clustering algorithms can be compared using contingency
tables (Fienberg 2007). In our case, the two methods have produced rather similar
clustering partitions (cf. Table 3.2). One of the outlier clusters, that is, number UC9
in the U-matrix clustering, has been subsumed to Ward Cluster WC6. In this case,
the Ward clustering basically confirms the U-matrix clustering and vice versa.

The silhouettes proposed by Rousseeuw (1987) are a useful graphical display
for the interpretation and validation of data partitioning. The values in a silhouette
range from �1 to C1 for each data point. Large positive values indicate that a data
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Fig. 3.13 Ward clustering of the UD data

Table 3.2 Comparison of two different cluster partitions (own source)

U-matrix cluster

Ward cluster UC1 UC2 UC3 UC4 UC5 UC6 UC7 UC8 UC9

WC1 15 0 0 1 0 0 0 1 0

WC2 10 15 0 0 0 1 0 0 0

WC3 0 7 15 0 0 1 0 0 0

WC4 0 0 0 6 0 0 0 0 0

WC5 1 0 0 2 7 0 0 0 0

WC6 0 4 0 0 0 5 3 0 2

WC7 4 3 0 0 1 0 0 0 0

WC8 5 1 0 0 0 0 0 1 0

point is at the center of a cluster. Zero or negative values indicate that this data point
is on the periphery of the cluster or may even belong to a different cluster. However,
it is very important to bear in mind that the classical silhouette values assume a
hypersphere as the shape of the cluster.

The silhouette plot of Fig. 3.14 shows that all clusters, apart from numbers
UC2 and UC6, can be well modeled as hyperspheres. Some points in cluster UC1
may be outliers. The data points with the largest silhouette values can be used as
good representatives for each cluster. The table in Appendix 2 contains a list of
cluster representatives determined in this way. The process of knowledge generation
produces a clear semantic for each cluster.
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Fig. 3.14 Silhouette plot of the clustering partition

3.3.7 Explaining the Clusters/Knowledge Generation

Having obtained a clustering of the data as described above, the next important
step in the process of knowledge discovery is to ask “What do the clusters mean?”.
This is the layer termed “knowledge generation” in Fig. 3.1. In order to answer
this question, we use algorithms from machine learning to produce “symbolic
classifiers”. These algorithms take a given classification of the data, such as the
clustering calculated above (cf. Fig. 3.15: Spatial distribution of the U-matrix
clustering), and construct from this decision trees (CART Breiman et al. 1984;
C4.5 Quinlan 1993; C5.0 Quinlan 2013; Random Forest Breiman 2001 etc.) or
decision rules (such as sig* Ultsch 1991 or Ripper Cohen 1995 etc.).

In the case at hand, we applied rule extraction from a CART decision tree on
the UD data. The generated rules are listed in Appendix 3. The rule generation is
steered so that a spatial planning expert could easily understand the rules (e.g., low,
medium, high values). The application of these rules to the unclassified data assigns
a data point to a cluster. The quality of the rules can be reviewed by drawing up a
contingency table of the clustering vs. the assignment of cluster labels by the rules
(cf. Table 3.3). The two outlier cluster UC8 and UC9 are not taken into account for
a rule-based explanation.

As the rules assign almost all data to the correct clusters, it can be assumed
that they are sufficiently precise. The rules can be read and understood by a spatial
planning expert in order to assign meaning to a particular cluster.
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Fig. 3.15 Spatial distribution of the U-matrix clustering: “What do the clusters mean?”
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Table 3.3 Performance of
the generated rules (own
source)

U-matrix cluster

Rules UC1 UC2 UC3 UC4 UC5 UC6 UC7

R1 35 4 0 0 1 0 0

R2 0 23 2 1 0 0 0

R3 0 0 12 0 0 0 0

R4 0 1 0 8 0 2 0

R5 0 0 0 0 7 0 0

R6 0 0 1 0 0 3 0

R7 0 2 0 0 0 2 3

3.3.7.1 Rediscovering Known Structures

If the procedures above are applied correctly to a data set, it should be possible to
rediscover structures which are already known. For example, the spatial monitoring
system of the Federal Institute for Research on Building, Urban Affairs and
Spatial Development (Federal Institute for Research on Building, Urban Affairs and
Spatial Development 2013) captures the attribute geographical position (German:
räumliche Lage), of which there are four types: highly peripheral, peripheral,
central, and highly central. The BBSR spatial typology classifies 51 % of the UD
data as highly central. The U-matrix cluster UC1 contains 35 data points, of which
18 (51 %) should, statistically speaking, belong to the class highly central. In fact 31
of the 35 urban districts in Cluster UC1 are labeled highly central (i.e., 89 %). An
urn model can be used to calculate the probability of Cluster UC1 containing at least
31 highly central districts by pure chance (p-value). Applying the hypergeometric
distribution (Rice 2007,p. 42ff.), we calculate a p-value of 2.8441*10-9. Thus, it
can be safely assumed that Cluster UC1 largely consists of highly central districts.
The city of Leverkusen was found to be the most representative urban district for
this cluster. The generated rule for Cluster UC1 is as follows:

UD data belongs to Cluster UC1, if
log.SealedSurfaces/ � 48:3179 and
log.OpenSpaceMeshSize/ � 72:6255 and
log.BuildingArea/ < 65:4549

This enables a possible characterization of Cluster UC1: “highly central districts
with a large proportion of sealed surfaces, substantial fragmentation, and dense
building areas”. In summary, Cluster UC1 basically coincides with the known type
of the prior classification (Federal Institute for Research on Building, Urban Affairs
and Spatial Development 2013) highly central district. The proposed clustering has
defined a particular subset of this type of urban district. This can eventually indicate
paths for further research into these urban districts, for example, regarding effective
land usage, ecological impacts of soil sealing, and fragmentation of the urban
area.
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3.3.7.2 Generation of New Knowledge

As elaborated in the previous section, one initial expected result of clustering is
to rediscover previously known structures in the data. The experience from many
knowledge discovery tasks (Loetsch and Ultsch 2013; Behnisch and Ultsch 2009;
Moerchen et al. 2006; Kupas et al. 2004) is that about 80 % of clusters coincide with
known processes. Typically about 10 % may be attributed to erroneous data, while
the remaining 10 % may generate entirely new knowledge.

This latter situation can be sketched out in the case of Cluster UC5 in the U-
matrix clustering. The members of this cluster are Flensburg, Hamburg, Bremen,
Bremerhaven, Greifswald, Rostock, Stralsund, and Wismar. Bremen was found to be
the most representative object of this cluster (maximum value in the silhouettes). In
Fig. 3.14, the members of Cluster UC5 are highlighted in yellow. It can be seen that
these cluster objects are all coastal urban districts. So a first observation in regard to
Cluster UC5 is that it represents a subset of Germany’s coastal urban districts. Other
coastal urban districts are shown in different color.

Note that information on whether an urban district is located on the coast or is
a harbor city is not included in the variables. Some coastal urban districts are not
grouped in Cluster UC5, implying that this is more than just a collection of seaports.
The rules for the cluster can be examined in order to gain greater insight into the
particular meaning of the cluster. The rule describing Cluster UC5 is:

UD data belongs to Cluster UC5, if
OpenSpaceMeshSize � 72:6255 and
SealedSurface � 48:3179

This means that Cluster UC5 is the subset of the UD data with large values in
OpenSpaceMeshSize and large values in SealedSurface. This rule assigns all seven
districts correctly to the cluster. Other coastal urban districts are not included in
Cluster UC5. In the case of Kiel, for example, although the city possesses a fairly
high degree of sealed surface, the fragmentation of open space is substantially
higher than in the coastal urban districts of Cluster UC5. The larger the effective
mesh size in an urban district, the lower the landscape fragmentation. In our
case, the regional transport network of roads and railway lines was adopted as
a measure of landscape fragmentation. The procedure developed by Moser et al.
(2007) was applied in order take account of target areas truncated by the borders
of administrative units (cf. Table 3.1). The interpretation of the cluster properties
leads to a hypothesis regarding UDs: there are two types of coastal urban districts
in Germany, those with high and those with low fragmentation of open space.
Thus, a potential meaning of Cluster UC5 is “coastal urban districts with less
landscape fragmentation due to linear transport infrastructure”. A statistically
testable hypothesis could be formulated as follows: the coastal urban districts in
Cluster UC5 are substantially different from all other such districts in Germany.
If this hypothesis cannot be refuted, then it may be worthwhile examining the
reasons behind these differences in landscape fragmentation. For example, one
can assume that several other properties will influence the characteristics of a
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coastal urban district, for example, the historical settlement development, the
shape of the coastline, shape of the bay, size of the harbor area, development of
traffic infrastructure, municipal environmental protection, proximity effects of the
surrounding area, natural and administrative boundaries, as well as the location of
settlement functions. In some cases, coastal waters can affect the development of
built-up areas and traffic infrastructure in coastal urban districts, which in turn will
have an impact on open space fragmentation. Such information could be used for
further spatial investigations of coastal urban district types.

Another interesting thing was, for example, the identification of a cluster that was
characterized by many protected areas and a compact building utilization (e.g., small
value of building area per inhabitant). The cluster objects also belong to the first
discovered group of urban districts with lower values of sealed surfaces (see Fig. 3.3:
Exploring the distributions of the individual variables). The rule describing Cluster
UC4 is:

UD data belongs to Cluster UC4, if
sqrt.ProtectedAreas/ � 60:8555 and
log.BuildingArea/ < 75:0076 and
log.SealedSurfaces/ < 48:3179

Freiburg im Breisgau was found to be representative for this cluster. This may
lead to another hypothesis: There is a type of urban districts in Germany the ones
with an assumed efficient and compact building structure and a prominent influence
of natural protection laws on the settlement development. The following label is
suggested: “Urban Protected Areas”. The details and in particular the causes of
the observed land use properties (e.g., lower values of sealed surfaces, small value
of building area per inhabitant) can presumably not be exhaustively ascertained
on the basis of the presented approach. In addition to the quantitative approach,
a qualitative examination of selected results might be necessary (e.g., integration
of case studies, interviews, local inspections). One should ask to what degree the
settlement structure or the type of buildings can be traced back to conscious planning
decisions of local decision-makers. Moreover, the question as to the extent to which
local construction activity is regulated by regional spatial planning is of interest.
However, this is not an issue of the presented quantitative investigation.

In summary, an investigation of clusters in the ways sketched above may lead
to a fresh interpretation of what features of the data are of interest. In this way,
the application of exploratory techniques can eventually produce knowledge that is
entirely new.

3.4 Conclusions and Future Challenges

In view of the continual growth in geodata and the heterogeneity of datasets,
there is an urgent need for alternatives to traditional spatial analysis within
geographic information systems (GIS) (Miller and Han 2009, p. 13). Techniques
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of (spatial-temporal) data mining, in particular knowledge discovery in databases
(KDD), provide one such approach to automated knowledge extraction (Streich
2009, p. 252). This chapter has shown how methods of data mining and knowledge
discovery can be applied to a spatial data set, in this particular case, 111 urban
districts in Germany classified by seven dimensions of land use.

Any evaluation on this basis can best be realized through an interdisciplinary
collaboration of computer science (data mining) and the spatial sciences. In the
example given here, the raw data was comprehensively reviewed and pre-processed
to allow the application of methods of data mining and knowledge discovery. A
quantifiable measure was determined to enable the multidimensional comparison of
urban districts. The data was structured using projection, clustering, and machine
learning algorithms. By visualizing results, it was possible to discern prominent
structures and characteristics of the data set, such as correlations, spatial outliers,
and potential clusters (groups). The automated clustering led to the discovery of
clusters of urban districts sharing common features. Representative districts were
selected from each cluster. Any classification of data should, ideally, also support
spatial planning decisions. We can speak of knowledge discovery if the extracted
knowledge is entirely new and is nonobvious and also if this knowledge can be
of use at the practical level (e.g., by spatial planners, politicians, decision-makers).
The authors believe that methods are required to explicitly elucidate the relevance
of classes produced by such automated data processing. In some instances, the
wide range of possible interpretations has been explored in rather unsystematic
fashion by simple inspection of the characteristics of variables (e.g., measures of
central tendency, variability). Approaches which use machine learning can provide
a more systematic review of the complete range of hypotheses. This can produce
decision rules or trees that can then be applied to discover useful and previously
unknown correlations in the data set. Such methods have been presented in this
chapter using the example of a small data set (111 urban districts in Germany)
with only seven dimensions (variables). Presentation of this exploratory approach
should show how the applied processes can help generate hypotheses as well as
extract important correlations from the data set. Methods of KDD can be used to
produce a much larger number of hypotheses than would be possible manually. Yet
this powerful approach has at the same time a particular drawback, which should
also be emphasized in regard to the results of this chapter: the hypotheses derived
from many data mining procedures must not be interpreted as statistically validated
truths. Rather they should be understood as suggestions for discussion, which should
be assessed by suitable methods in follow-up spatial investigations.

For example, it is possible to find data subsets that are perhaps irrelevant, which
have already been discovered (rediscovered, not new for the target/application
domain) or are highly uncertain. Some subsets require a more detailed investigation
(e.g., “coastal urban districts with a large mesh size due to linear transport in-
frastructure”, “Urban Protected Areas”, subclasses of the variable SealedSurface).
It should be emphasized that the extraction of knowledge for spatial planning
generally requires further investigations, validations, and tests. In particular, it can
be helpful to apply other methods to confirm specific hypothesis extracted by the
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knowledge discovery approach. Furthermore, it is necessary to review the results at
different spatial scales (i.e., nationally, regionally, and locally). However, the step
of hypothesis testing was not part of this chapter. Relevant methods will already be
known to readers.

The data on settlement and open space development employed here was bor-
rowed from the publicly available data sets of the IOER Monitor (http://www.ioer-
monitor.de/). In future, depending on the research question and the availability
of additional variables, the presented illustrative data set on land use (static
perspective) can be expanded, while changes in land use can be characterized in
a multidimensional approach (dynamic perspective). According to the explanatory
power of the parameter land as a barometer for sustainability (Siedentop et al.
2007), the static perspective can generate knowledge for the high-level political
evaluation of land use, whereas the dynamic perspective primarily produces prac-
tical information for operative political action at the level of concrete, individual
cases of planning and project-based decisions. In the years to come, the methods
outlined here will find a wide range of application in diverse fields. For example,
they are suited to the machine-based analysis and evaluation of the impact of
spatial programs and measures for urban development imposed at the political level.
Automated spatial survey systems (automated monitoring, classifiers) could assist
in the periodic automatic or semiautomatic estimation and comparison of spatial
objects (reference areas).
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Appendix 1

Nonlinear Transformations of the Variables in the UD Data

OpenSpaceMeshSize W log
BuildingArea W log
SettlementDensity W log
SealedSurface W sqrt
LandConsumption W sqrt
ProtectedAreas W sqrt
HemerobyIndex W identity.notransformation/

http://www.ioer-monitor.de/
http://www.ioer-monitor.de/
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Appendix 2

Cluster Representatives

U-matrix cluster Urban district

UC1 Leverkusen

UC2 Heilbronn

UC3 Zweibrücken

UC4 Freiburg im Breisgau

UC5 Bremen

UC6 Aschaffenburg

UC7 Landau in der Pfalz

UC8 Berlin

UC9 Suhl

Appendix 3

Rules Explaining the U-Matrix Clustering

UD data belongs to Cluster UC1, if
log.SealedSurfaces/ � 48:3179 and
log.OpenSpaceMeshSize/ � 72:6255 and
log.BuildingArea/ < 65:4549

UD data belongs to Cluster UC2, if
log.SealedSurfaces/ < 48:3179 and
log.BuildingArea/ < 75:0076 and
sqrt.ProtectedAreas/ < 60:8555 or
log.SealedSurfaces/ � 48:3179 and
log.BuildingArea/ � 65:4549 and
log.OpenSpaceMeshSize/ < 72:6255

UD data belongs to Cluster UC3, if
log.BuildingArea/ � 75:0076 and
log.SealedSurfaces/ < 48:3179

UD data belongs to Cluster UC4, if
sqrt.ProtectedAreas/ � 60:8555 and
log.BuildingArea/ < 75:0076 and
log.SealedSurfaces/ < 48:3179
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UD data belongs to Cluster UC5, if
log.OpenSpaceMeshSize/ � 72:6255 and
log.SealedSurfaces/ � 48:3179
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Chapter 4
Clustering Contextual Neural Gas: A New
Approach for Spatial Planning and Analysis
Tasks

Julian Hagenauer

Abstract Spatial clustering is a method that can reveal structures and identify
groupings in large spatial data sets, which is in particular useful for spatial planning
and analysis tasks. A recent and powerful clustering algorithm for spatial data is
contextual neural gas (CNG). The CNG algorithm is closely related to the basic self-
organizing map algorithm but additionally takes spatial dependence into account.
However, like most clustering algorithms, CNG requires the analyst to specify
the number of clusters beforehand. Even though the chosen number of clusters
critically affects the results of the clustering, it is unclear how to determine it. This
study introduces a new method which combines CNG, the learning of the CNG’s
topology, and graph clustering. It can be used to cluster spatial data without any
prior knowledge of present clusters in the data. The proposed method is in particular
useful for spatial planning and analysis tasks, because it provides means to find
groupings in the data and identify homogeneous regions. To evaluate the method,
this study draws from two experiments which are based on a synthetic and a real-
world data set. The results of the synthetic data set show that it can correctly identify
clusters in a predefined setting. The results of the real-world data set demonstrate
that the proposed method outlines meaningful and theoretically sound regions.

Keywords Artificial neural networks • Cluster analysis • Spatial planning

4.1 Introduction

Clustering is the task of organizing observations into clusters such that the similarity
of observations within a cluster is maximized and the dissimilarity between the
clusters is maximized. It is particularly useful if no categorization or labeling of
the observations is available, but some structural organization is needed. Many
different clustering algorithms have been developed in the past, mainly in the fields
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of statistics and machine learning. These clustering algorithms can be broadly
classified by the paradigm they use. One of the most prominent and widely used
clustering paradigms is partitioning clustering. Partitioning clustering algorithms,
such as k-Means or neural gas (NG; Martinetz and Schulten 1991), divide a set
of observations into a nonoverlapping set of clusters. Each observation is assigned
to the cluster which it is closest to. For large data sets, partitioning clustering
algorithms are typically more computationally effective than, e.g., hierarchical
clustering algorithms (Jain et al. 1999). However, a severe disadvantage of them
is that they require the analyst to choose the number of desired clusters beforehand.

There are several important special cases of clustering. One such case is spatial
clustering, which deals with the clustering of spatially located observations. A basic
property of such observations is that they are likely to be spatially dependent. Spatial
dependence states that observations that are spatially located close to each other
tend to have similar characteristics. This property is essential to spatial sciences
because without it variation of phenomena would be independent of location and
thus the notion of region would be totally meaningless (Goodchild 1986). The
presence of spatial dependence has been traditionally regarded as problematic
for statistical analysis, which typically requires sample independence (Bailey and
Gatrell 1995). However, it can also serve as a valuable source of information about
spatial processes, because it provides evidence of causality (Miller 2004). Therefore,
it is generally useful for spatial clustering algorithms to take spatial dependence into
account in order to utilize the full range of available information for discovering
spatial patterns.

Spatial clustering is of special importance for spatial planning tasks: Adminis-
trative areas typically have their roots in historic administrative divisions of space,
which disregard the nonspatial characteristics of place. As a consequence, admin-
istrative divisions often intersect contiguous regions and are often inhomogeneous.
Decisions made concerning the planning, distribution, and allocation of resources
among such administrative areas are likely to be ineffective and meaningless
(Amedeo 1969). In fact, it has been shown by Van Der Laan and Schalke (2001)
that local policies are more effective for homogeneous regions. These concerns
are very closely related to the modifiable areal unit problem (MAUP; Openshaw
1984). Spatial analysis typically requires manageable discrete descriptions of spatial
processes, which are continuous. For this purpose, it is necessary to aggregate
observations over areal units. The MAUP states that the outline of these units and the
scale of aggregation critically affect the results of any spatial analysis. In general, it
is useful if the observations that are aggregated over the same areal unit are similar
to each other. Consequently, since spatial clustering outlines mostly coherent and
homogeneous areas, it has potential to serve as a valuable tool for spatial planning
and analysis tasks (e.g., Helbich et al. 2013).

Various spatial clustering algorithms have been developed in the past (see,
e.g., Han et al. 2001). Most of these methods are based on general-purpose
clustering algorithms that have limited capabilities in recognizing spatial patterns
that involve neighbors or cannot deal with high-dimensional data sets (Guo et al.
2003). Contextual neural gas (CNG; Hagenauer and Helbich 2013) is a recently
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developed algorithm for clustering spatial data that is specially designed for spatial
data mining. The CNG algorithm combines the concepts of the NG algorithm with
the GeoSOM (Bação et al. 2005), a variant of the famous self-organizing map
algorithm (SOM; Kohonen 1982, 2001), in order to take spatial dependence into
account. A particular advantage of the CNG is that it quantizes the data space better
than the GeoSOM, because the adaptation of the CNG’s neurons, in contrast to
the SOM, does not depend on some predefined and fixed topology (Hagenauer
and Helbich 2013). However, the topology of the SOM facilitates the analysis of
the SOM and hence supports the understanding of the properties of the data (e.g.,
Hagenauer et al. 2011; Skupin and Esperbé 2011; Arribas-Bel and Schmidt 2013).
In particular, it is useful for determining the actual number of clusters in the data,
either computationally (e.g., Murtagh 1995; Costa and De Andrade Netto 1999) or
by visualizing it (see Flexer 2001).

Another important special case of clustering is graph clustering. A graph is a
set of vertices and edges that are connections between pairs of vertices. The edges
can have a weight assigned which indicates the strength of the connection and can
be directed or undirected. The task of spatial clustering is organizing the vertices
of a graph into clusters such that the vertices within a cluster are better connected
than the vertices within different clusters. The ability to find and analyze clusters
is useful for understanding and visualizing the structure of networks, which is of
great importance in many research areas that deal with social, technological, or
information systems. Many different algorithms have been developed in the past for
this purpose (see Schaeffer 2007). From the large set of available graph clustering
algorithms, the heuristic multilevel modularity optimization algorithm (MLMO;
Blondel et al. 2008) is particularly promising, because it is exceptionally fast even
for very large graphs and automatically determines the number of clusters in the
graph by optimizing its quality score.

This study introduces a new method that combines CNG, topology learning, and
graph clustering algorithms to outline clusters in CNG. The method consists of the
following steps: First, a CNG consisting of a sufficient number of neurons is trained.
Second, a topology of the neurons is learned and the resulting topology is considered
a weighted graph. Finally, this graph is clustered using advanced graph clustering
algorithms, which do not require to specify the desired number of clusters. The
resulting clusters represent homogeneous regions in the input data. Since the number
of clusters is automatically determined depending on the topological patterns of the
graph, the method is especially useful for outlining spatial clusters when no prior
knowledge about the actual number of clusters is available.

This workflow is closely related to the clustering approach using the GeoSOM
algorithm. In this approach, a GeoSOM consisting of a sufficiently large number
of neurons is trained to project the input data onto a two-dimensional map.
Subsequently, the map is visualized, usually by means of a U-matrix (Ultsch and
Siemon 1990). Clusters appear on the U-matrix as valleys, cluster boundaries as
ridges. However, for complex and high-dimensional data sets, U-matrices often
show no clear patterns so that it is difficult or even impossible to determine clusters,
in particular when using computational methods.
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The proposed method is also closely related to the approach by Costa and
Oliveira (2007). In their approach, they train a growing neural gas (GNG; Fritzke
1995) to obtain a topology. The main differences between the basic NG and the
GNG algorithm are that the GNG does not require to specify the number of neurons
beforehand and that it forms a topology in the process of training the network.
However, the GNG also introduces numerous additional parameters, which must
be set appropriately to obtain reasonable results. Then, in a post-processing step,
the authors modify the topology of the GNG by heuristically removing connections
between neurons; disjunctive sections of the topology are considered clusters.
However, which connections are removed depends on arbitrary chosen threshold
levels and critically affects the results. Additionally, complex structural properties
of the topology are totally disregarded. Moreover, their approach is not appropriate
for clustering spatial data, because it merely uses a basic NG algorithm, which does
not take spatial dependency into account.

This study is structured as follows: Sect. 4.2 introduces the algorithms that this
study utilizes, while Sect. 4.3 briefly explains the consecutive steps of which the
proposed method consists of. The usefulness of the method is demonstrated with
two different experiments (Sect. 4.4). Finally, the last section concludes with some
remarks and identifies future work.

4.2 Methodical Background

4.2.1 Contextual Neural Gas

Contextual Neural Gas (CNG; Hagenauer and Helbich 2013) is a spatial clustering
algorithm that combines the concepts of the GeoSOM with the NG algorithm. Like
basic NG, CNG consists of an arbitrary number of neurons, which are not subject to
any topological restrictions and provides a nonlinear mapping in high-dimensional
data space. In each step of the training process, an input vector is selected from the
input data and each neuron is moved into its direction. The strength of the movement
depends on the neurons’ ranking order with respect to the distance to the input
vector, the adaptation rate, and the neighborhood range. Both the neighborhood
range and the adaptation rate are typically chosen to decrease with time.

CNG differs from basic NG in the determination of the neurons’ ranking
order, which CNG accomplishes in a two-phase procedure to incorporate spatial
dependence. In the first step, neurons are ordered by spatial closeness. In the second
step, the first l neurons of the resulting spatial ordering are reordered within their
ranks with respect to the similarity of attributes.

The parameter l determines the strength of spatial dependence which is incorpo-
rated into the mapping. If l D 1, the ordering in the second step has no effect on the
final ordering at all. As a consequence, the adaption of the neurons depends solely
on spatial closeness. The attributes of the input data are ignored. If l is increased,
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the ordering of the l spatially closest neurons depends on attribute similarity. Hence,
spatial closeness is less important for the final ordering and less spatial dependence
is being incorporated. If l equals the total number of neurons, the spatial ordering
does not matter for the final ordering, because all neurons are totally reordered in
the second step by similarity of attributes. Consequently, no spatial dependence is
incorporated at all.

CNG has several advantages over other spatial clustering algorithms: Like the
GeoSOM, CNG enforces spatial proximity between observations and neurons by
means of neural distance, defined by either the map’s topology or the rank ordering
or neurons. Consequently, it is not necessary to weigh or scale spatial proximity and
attribute similarity in the data space. Furthermore, the neurons are basically local
averages. Thus, the process of incorporating spatial dependence is less sensitive to
random variations in the input data. Finally, the parameter l restricts the mapping
of observations; all observations are always mapped to one of its l spatially closest
neurons. Hence, the mapping maintains a certain degree of spatial closeness, even
for observations whose attributes are very different from those of their spatial
neighbors (spatial outliers).

4.2.2 Competitive Hebbian Learning

Competitive Hebbian Learning (CHL; Martinetz and Schulten 1991; Martinetz
1993) forms a topology on a set of neurons by creating a number of connections
between neighboring neurons. More specifically, the algorithm can be described
as follows: For each input vector, the two closest neurons are determined and
a connection between these is added to the total set of connections. Thereby,
closeness is typically measured by Euclidean distance. After all input vectors have
been presented, the set of connections represents the topology of the underlying
data.

The resulting graph optimally preserves the topology in a very general sense
(Martinetz 1993). In particular, each connection between two neurons belongs to the
Delaunay triangulation corresponding to the neurons in data space. The theoretical
foundations of CHL in terms of topology preservation have been provided by
Edelsbrunner and Shah (1997).

CHL is especially useful for NG and other vector quantization algorithms which
do not define a topological structure. It can be applied concurrently to the training
of NG or as a post-processing step. However, in the first case, the movement
of neurons during the training may make previously learned connections invalid.
Therefore, it is necessary to constantly adapt the topology to these movements, e.g.,
by removing outdated connections (Martinetz and Schulten 1991). In the latter case,
NG is trained before CHL is applied, and hence, the topology is not affected by
the movement of the neurons. For simplicity, this study applies CHL as a post-
processing step.
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Since its introduction, numerous extensions and variants of the CHL algorithm
have been proposed. For example, De Silva and Carlsson (2004) presented a
generalization of CHL which produces a simplicial complex instead of a graph.
An alternative to CHL was presented by Aupetit (2005). In this approach, each edge
and vertex of the Delaunay triangulation is the basis of a generative model so that
the triangulation generates a mixture of Gaussian density functions; the likelihood
of the set of model parameters is maximized using the expectation-maximization
algorithm.

4.2.3 Multilevel Modularity Optimization

The multilevel modularity optimization algorithm (MLMO; Blondel et al. 2008)
is a heuristic method which seeks to find a clustering of a graph with maximum
modularity. Modularity is a quality measure that evaluates the density of connec-
tions inside a cluster as compared with the connection between different clusters
(Newman and Girvan 2004). Because optimizing modularity is a problem that is
computationally hard (Brandes et al. 2008), heuristic algorithms are inevitable for
practical applications.

The MLMO algorithm consists of two phases: Initially, each vertex of a graph is
assigned to a single cluster. Then, in the first phase, each vertex is assigned to the
cluster of the neighboring vertex which yields the largest increase of modularity, as
long as it is positive. In the second phase, the original graph is replaced by a newly
built graph whose vertices are the clusters found during the first phase. Connections
between the new graphs’ vertices exist if there is at least one connection between
vertices of the corresponding clusters in the original graph. The two phases are
iteratively repeated until there are no more changes to the graph and a maximum of
modularity is reached.

The MLMO algorithm is computationally efficient and scales very well, because
the number of clusters dramatically reduces with each pass. In particular, computer
simulations on large graphs indicated that its complexity is linear on typical and
sparse data (Blondel et al. 2008). A limitation of most modularity optimizing
clustering algorithms is that they fail to detect small clusters in very large graphs
(Fortunato and Barthelemy 2006). However, the MLMO algorithm seems to be
unaffected by this limitation because of its multilevel nature (Blondel et al. 2008).
In fact, it has been shown by Fortunato (2010) and Lancichinetti and Fortunato
(2009) that the quality of the MLMO’s results is superior to that of many other
graph clustering algorithms.

4.3 Workflow

The proposed method consists of three major steps that are typically executed in
sequential order:
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1. Contextual neural gas: The CNG algorithm clusters the data set into n spatial
clusters, where n is the number of neurons. The actual number of clusters in the
data is typically unknown; n must be chosen large enough so that a reasonable
cluster structure can be detected in the subsequent steps. However, if n is too
large, some of the CNG’s neurons may not map any data at all. These neurons
must not be removed, because the rank ordering of CNG depends on the number
of neurons (Hagenauer and Helbich 2013).

2. Topology learning: A topology of the CNG’s neurons is learned with a modi-
fication of the CHL algorithm. The algorithm can be described as follows: For
each input vector, the ranking order of neurons is determined according to the
two-phase procedure of the CNG, and a connection between the two highest
ranked neurons is added to the connection set. Additionally, the number of times
a connection has been added to the set is stored for each connection. This number
finally indicates the strength of a connection and is of use in the next step.

3. Graph clustering: Before clustering the resulting graph, single vertices that
are not connected to any other vertex are removed because the neurons that
these vertices represent do not map any data and bear no valuable topological
information. Then the graph is clustered based on its structural properties using
the MLMO algorithm.

4.4 Experiments

To evaluate the proposed method, two experiments on different data sets are
conducted. In both experiments, a CNG with 25 neurons is applied. The neurons
are randomly initialized and the training time is set to 100;000 iterations. The
neighborhood range and the adaptation rate are chosen as proposed by Martinetz
et al. (1993).

4.4.1 Synthetic Data

In this experiment, a synthetic data set is constructed whose properties are clearly
determined. Consequently, the results of the proposed method can be easily
evaluated. The data set consists of five clusters: one large cluster in the middle with
low point density and four smaller clusters in the corners with higher point density
(see Fig. 4.1). Each cluster contains 200 random data points and each point has three
attributes: the x and y coordinates and a synthetic attribute, whose value is zero for
the middle cluster and otherwise one.

The main challenge when clustering this data set is to differentiate between the
spatial clusters in the corners of the data set, because their borders are defined by
spatial point density. Spatial clustering algorithms which solely consider the spatial
distances between points and/or the similarity of the points’ attribute value are likely
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Fig. 4.1 Synthetic data set. The attribute values of the data points of cluster 1 are 0, the attribute
values of the other clusters 1

to fail to correctly identify the spatial clusters. Additionally, the clustering of the
data set becomes much more difficult, if the actual number of clusters is not known
beforehand.

The results for the synthetic data set depend on parameter l . If l is set too low,
differences in the observations’ attribute values are neglected and the resulting graph
therefore exhibits no distinct clusters. Otherwise, if l is set too high, the clustering
does not consider the spatial configuration of the data set, resulting in a graph with
only two clusters that represent the data points with the values 0 and 1. However,
because of the clearly defined cluster structure of the data set, it can be assumed that
l is chosen correctly, when the modularity of the resulting graph is maximal.

Figure 4.2 plots the mean modularity scores of 100 runs for different settings of
l . For l > 16, the mean modularity score is basically constant and at its minimum.
Hence, for large l values, the spatial configuration of the data set has no significant
effect on the clustering of the resulting graph. Furthermore, the plot shows multiple
local maxima; the highest mean modularity score (0:724) is achieved with l D 7.

Figure 4.3 exemplarily shows the graph resulting from a CNG that has been
trained with l D 7 and its clustering, indicated by the colored vertices. At first, it is
notable that the depicted graph consists of only 17 vertices, although CNG consists
of 25 neurons. Generally, the number of neurons which map no data at all increases
rapidly if l is increased, because of the simple clustering structure of the data set.
The large number of vertices present indicates that the incorporated degree of spatial
dependence is significant. Moreover, the figure reveals that the MLMO algorithm
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Fig. 4.2 Mean modularity score of 100 runs for different settings of l for the synthetic data set
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Fig. 4.3 Clustering results for l D 7. The data points (right) are colored according to the colors
of the detected clusters of the graph (left). The thickness of the graph’s edges corresponds to the
weights of the connections
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identified the five clusters of the synthetic data set. It is notable that the middle
cluster consists of more vertices than the other clusters, even though the middle
cluster consists of the same number of data points as the clusters in the corner. The
reason for this is that, because of the low value of the l-parameter, the distribution
of the CNG’s neurons depends heavily on the spatial distribution of observations.
Hence, since the spatial extent of the middle cluster is four times that of the clusters
in the corners, it is mapped by more neurons.

Finally, it can be seen that three of the graph’s clusters in the corners are
connected, which is likely due to the small distance between them. Because the
MLMO algorithm has taken the weighting of the connections into account, the
corner clusters are correctly distinguished.

4.4.2 Practical Application

To evaluate the practical applicability of the proposed method, it is used for
delineating homogeneous regions in the city of Philadelphia, Pennsylvania. The city
is situated in the northeastern United States along the Delaware and Schuylkill rivers
and consists of an area of approximately 369 km2. Philadelphia is currently the fifth
largest city in the United States with an estimated population in 2012 of 1.5 million
people. Philadelphia is the economic and cultural center of the Delaware Valley,
the sixth largest metropolitan area of the United States. The city is of particular
interest because it has experienced dramatic changes in its ethnic and racial makeup
in the last two decades (The Philadelphia Research Initiative 2011). Hence, dynamic
approaches to outline homogeneous regions are essential in this context. However,
the validation of the results is difficult because there is no correct solution to the
problem in a formal sense. The results of the proposed method are evaluated in
this experiment by comparing them with the planning analysis sections (PAS) of
the Philadelphia City Planning Commission (PCPC; Philadelphia City Planning
Commission 2004) and linking them to existing demographic knowledge. Each
section of the PAS contains a number of census tracts that roughly correspond to
general socioeconomic divisions existing within the city (Wolfgang et al. 1987).
Even though the PAS were designed for administrative purposes decades ago, they
are still currently used for planning and analysis tasks (e.g., Pearsall and Christman
2012). Figure 4.4 shows the 12 regions of the PAS.

The experiment uses tract-level data about ethnicity, race, age, housing, and
households in Philadelphia from the 2010 US Census (see Fig. 4.5). Tracts without
a significant population are removed from the data set and all attributes are
standardized to zero mean and unit variance to make them comparable. Overall,
the study site consists of 380 census tracts.

Similar to the previous experiment, it is unclear how much spatial dependence
should be incorporated into the CNG’s learning process to obtain reasonable results.
Figure 4.6 shows the mean modularity scores of 100 runs for different settings of l .
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Fig. 4.4 Philadelphia
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The highest mean modularity score .0:646/ is achieved with l D 2 and l D 3.
Notable local maxima can be observed for l D 10 (0:598) and l D 13 (0:600). For
l > 19, the modularity score is basically at its minimum value.

In contrast to the previous experiment, no prior knowledge about clusters in the
data set is available; any parameter l might be as reasonable as any other one.
However, based on the objective of this experiment, three demands on l should be
met: First, parameter l should be chosen so that the modularity score is high, because
a high modularity score is a strong indicator of a clear-cut clustering structure.
Second, parameter l should be high enough so that a fair portion of the tracts’ social
and demographic characteristics is taken into account in the process of clustering.
Third, parameter l should be low enough so that the resulting clusters tend to be
spatially contiguous. Spatial contiguity is in particular a useful property for spatial
planning and policy making, because spatially contiguous clusters can typically be
described by a single spatial outline, which eases perception and understanding of
the clusters.

Figure 4.3 exemplarily shows the graph resulting from a CNG that has been
trained with l D 2, l D 10, and l D 13 alongside the regions that result from
clusters of the graphs. While the clusters for l D 2 are the most spatially contiguous,
there is little difference between l D 10 and l D 13 observable. Additionally, the
graph for l D 2 seems much more clearly structured than the graphs for l D 10 and
l D 13.

Furthermore, comparing Fig. 4.7 with Fig. 4.4, it can be seen that the PAS,
which were designed for planning purposes, do not correspond well to the obtained
clusters. The PAS consist of 12 different regions, whereas the proposed method
determined only 5–6 clusters.
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white
0.00 - 0.14
0.14 - 0.35
0.35 - 0.56
0.56 - 0.76
0.76 - 1.00

renterOccup
0.00 - 0.24
0.24 - 0.38
0.38 - 0.52
0.52 - 0.71
0.71 - 1.00

pop
2 - 1889
1889 - 3332
3332 - 4566
4566 - 5948
5948 - 8322

occup
0.00 - 0.15
0.15 - 0.82
0.82 - 0.88
0.88 - 0.93
0.93 - 1.00

hispanic
0.00 - 0.09
0.09 - 0.22
0.22 - 0.37
0.37 - 0.67
0.67 - 0.91

black
0.00 - 0.13
0.13 - 0.32
0.32 - 0.55
0.55 - 0.81
0.81  -  0.96

avgHHSize
0.00 - 1.72
1.72 - 2.20
2.20 - 2.52
2.52 - 2.90
2.90 - 4.09

asian
0.00 - 0.03
0.03 - 0.09
0.09 - 0.18
0.18 - 0.33
0.33 - 0.63

65older
0.00 - 0.09
0.09 - 0.15
0.15 - 0.25
0.25 - 0.42
0.42 - 0.70

25to64
0.13 - 0.30
0.30 - 0.51
0.51 - 0.60
0.60 - 0.80
0.80 - 1.00

0to24
0.00 - 0.16
0.16 - 0.29
0.29 - 0.38
0.38 - 0.54
0.54 - 0.85

Fig. 4.5 Variables used for the experiment: Rate of Whites (white), Blacks (black), Asians (asian),
Hispanics (hispanics), renter-occupied houses (renterOccup), occupied houses (occup), population
younger than 25 years (0to24), population between 25 and 64 years (25to64), population older than
64 years (65older), average size of households (avgHHSize), total population (pop)
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Fig. 4.6 Mean modularity scores of 100 runs for different settings of l for the real-world data set

In order to compare the nonspatial characteristics of the clustering results and
of the PAS, their mean homogeneity with respect to the different attributes is
compared. The homogeneity of a cluster is calculated as the sample standard
deviation of the differences between the cluster’s center and the data that is assigned
to it. Table 4.1 shows the mean homogeneity values of the attributes for the different
clusterings. Notably, the homogeneity for all attributes decreases with increasing
l . Furthermore, even though the PAS consists of double as much clusters as the
clustering for l D 13, its mean homogeneity is mostly equal or worse. However,
in contrast to the other clusterings, the PAS is perfectly spatially contiguous. The
clustering for l D 2 is nearly as spatially contiguous as the PAS, but it is less
homogeneous than the PAS with respect to the attributes 65older, black, hispanic,
and occup. However, for the majority of the attributes, the clustering for l D 2 is
still more homogeneous than the PAS.

Philadelphia is one of the most segregated cities in the United States; even
the most affluent Blacks live in neighborhoods that are close to majority black
(Logan 2011). Hence, it can be expected that these neighborhoods emerge as distinct
clusters in the clustering results. Comparing Fig. 4.4 with Fig. 4.5 reveals that the
predominantly Black neighborhoods, especially in North Philadelphia, are mixed
with non-black neighborhoods or are separated by the outlines of the PAS (e.g.,
Sects. 7, 9, and 11 in Fig. 4.4). Also the clustering for l D 2 (compare Fig. 4.7
with Fig. 4.5) does not clearly identify the predominantly Black neighborhoods.
However, these neighborhoods are clearly outlined by cluster 3 of the clustering
for l D 10 and cluster 5 of the clustering for l D 13.
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Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

Fig. 4.7 Clustering results for l D 2 (top), l D 10 (middle), and l D 13 (bottom). The census
tracts (right) are colored according to the colors of the detected clusters of the graph (left). The
thickness of the graph’s edges corresponds to the weights of the connections
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Table 4.1 Mean homogeneity of the attributes for different clusterings

l D 2 l D 10 l D 13 PAS

pop 1,157.834 1,044.499 1,006.730 1,257.946

0–24 0.055 0.037 0.035 0.071

25–64 0.046 0.033 0.027 0.058

65older 0.041 0.032 0.026 0.026

white 0.122 0.103 0.092 0.184

black 0.119 0.101 0.090 0.090

asian 0.039 0.038 0.038 0.043

hispanic 0.040 0.037 0.033 0.033

avgHHSize 0.241 0.242 0.228 0.295

occup 0.043 0.043 0.040 0.400

renterOccup 0.112 0.113 0.106 0.106

4.5 Conclusion and Further Work

This study presented a new method which combines CNG, topology learning,
and graph clustering to outline homogeneous regions, taking into account spatial
dependence. The proposed method does not require prior knowledge about the
actual number of clusters in the data, because it utilizes the modularity score when
clustering the learned topology. Two experiments, one using a synthetic data set
and another one using a demographic data set of Philadelphia, PA confirmed the
usefulness of the method for delineating homogeneous clusters. Because of this
property, the proposed method is in particular well suited for spatial analysis and
planning tasks.

There are some considerations that must be taken into account when applying
the proposed method. The CNG algorithm uses a nonlocal update scheme, which
prevents it from being easily stuck in local optima. However, repeated runs of the
experiments have shown that the final positions of the neurons and consequently
the learned topology can differ slightly with each run. This difference can possibly
affect the clustering of the topology.

The results of the proposed method depend also on its parametrization. The
method combines multiple algorithms, and each one’s parameter setting can crit-
ically affect the final results. It is unclear how to choose the parameters so that
the final results meet the analyst’s requirements. In particular, the choice of the
parameter l , which controls the degree of spatial dependence incorporated into the
clustering, has a significant impact on the homogeneity and spatial contiguity of the
clustering. However, although the chance that the resulting clusters are contiguous
increases with high values of l , there is no guarantee that the clusters will ever be
spatially contiguous.

In this study, the proposed method utilizes a modified version of the CHL
algorithm to learn a topology from CNG, but other approaches might also be
reasonable. For example, instead of connecting the first and second neuron of the
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rank ordering to form a topology, it is also possible to remove the first neuron
temporarily from the set of neurons, determine a new rank order using the CNG’s
ordering scheme, and then connect the first neuron of the resulting rank order with
the previously found first neuron. How this strategy performs in comparison to the
one used in this study is unclear and deserves further research. Additionally, CHL is
sensitive to noisy data and outliers (Aupetit 2005). Using alternative algorithms for
topology learning bears potential to improve the results.

This study uses the MLMO algorithm to cluster the CNG’s topology. The MLMO
algorithm uses a greedy heuristic to optimize the modularity score of the graph.
Although the algorithm has been shown to generally perform very well, it lacks
accuracy, like any greedy clustering method (Fortunato 2010). In principle, any
other graph clustering algorithm can be applied within the graph clustering step
of the method.

The proposed method combines different methods from different but related
disciplines for clustering spatial data. As scientific research for each of these
disciplines is going to continue, it can be expected that more powerful methods will
be developed. Utilizing these methods has the potential to further increase the value
of the proposed method. In particular, improving the CNG algorithm with regard to
convergence and parametrization seems worth pursuing.

Finally, the presented method is rather technical and difficult to understand and
apply by nonexperts. In order to be of real practical value for spatial planners and
policy makers, it is necessary to integrate the method into a combined software
toolkit which provides powerful analytical and visual means in order to validate the
results and which is also easy to use.
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Part II
Housing and Real Estate



Chapter 5
Hedonic House Price Modeling
Based on Multilevel Structured Additive
Regression

Alexander Razen, Wolfgang Brunauer, Nadja Klein, Stefan Lang, and
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Abstract This chapter reviews recent developments in hedonic modeling of house
prices based on structured additive regression (STAR) models. In STAR models,
continuous covariates are modeled as P(enalized)-splines. Furthermore, random
effects for spatial indexes, smooth functions of two-dimensional surfaces, and
(spatially) varying coefficient terms may also be estimated using this methodology.
Based on hierarchical STAR models, we discuss a number of useful extensions.
With respect to value-at-risk concepts, financial institutions are often not only
interested in the expected value but also in different quantiles of the distribution
of real estate prices. To meet these requirements, we apply multilevel STAR models
for location scale and shape (GAMLSS type regression) and a Bayesian version of
quantile regression. As another extension, we sketch multiplicative region-specific
scaling factors for nonlinear covariates in order to permit spatial variation in the
nonlinear price gradients.

Keywords Bayesian hierarchical models • Hedonic pricing models • GAMLSS •
Bayesian quantile regression • MCMC

Opinions expressed by the authors do not necessarily reflect the official viewpoint
of UniCredit Bank Austria AG.

A. Razen (�) • S. Lang • N. Umlauf
University of Innsbruck, Universitätsstraße 15, A-6020 Innsbruck, Austria
e-mail: alexander.razen@uibk.ac.at; nikolaus.umlauf@uibk.ac.at; stefan.lang@uibk.ac.at

W. Brunauer
UniCredit Bank Austria AG, Julius Tandler-Platz 3, A-1090 Wien, Austria
e-mail: wolfgang.brunauer@realevalue.at

N. Klein
University of Göttingen, Platz der Göttinger Sieben 5, D-37073 Göttingen, Germany
e-mail: nklein@gwdg.de

© Springer International Publishing Switzerland 2015
M. Helbich et al. (eds.), Computational Approaches for Urban Environments,
Geotechnologies and the Environment 13, DOI 10.1007/978-3-319-11469-9_5

97

mailto:alexander.razen@uibk.ac.at
mailto:nikolaus.umlauf@uibk.ac.at
mailto:stefan.lang@uibk.ac.at
mailto:wolfgang.brunauer@realevalue.at
mailto:nklein@gwdg.de


98 A. Razen et al.

5.1 Introduction

The Basel II and III frameworks strictly define the conditions under which financial
institutions are authorized to accept real estate as collateral in order to decrease
their credit risk, including the evaluation of the properties on a regular basis by
means of statistical methods. A widely used concept here is the hedonic pricing
model (Rosen 1974). It assumes that the price of a property can be decomposed into
implicit prices of its attributes, which are estimated in a regression analysis of price
against attributes. Reviews of hedonic price theory in a real estate context can be
found, for example, in Follain and Jimenez (1985), Sheppard (1999) or Malpezzi
(2003).

The bundle of attributes characterizing a property involves not only individual
attributes of the building itself but also locational attributes of the region where the
building is located in. Thus, the real estate market intrinsically is spatial; why there
is a vast literature on spatial house price modeling, see, for example, Banerjee et al.
(2004), Cohen and Coughlin (2008) or Helbich et al. (2014). Typically, residential
properties belong to several levels of spatial (administrative) units, which turns the
hedonic model into a multilevel or hierarchical regression problem (Gelman and
Hill 2006). For instance, in our case study, house selling prices with associated
individual attributes (the elementary level-1) are grouped in municipalities (level-2),
which form districts (level-3), which are themselves nested in counties (level-
4). Available neighborhood covariates on either of these spatial resolutions that
might be important for predicting house prices should be accounted for, and it is
furthermore reasonable to assume that unmeasured neighborhood characteristics
such as local policy and infrastructure affect individual house prices. Another major
problem in hedonic price modeling is that economic theory does not provide clear
guidance concerning the functional form of the dependence of price on character-
istics, which suggests that hedonic pricing models should allow for nonlinearity in
the price functions.

A particularly broad and rich framework for nonlinear and spatial modeling is
provided by generalized structured additive regression (STAR) models, described,
for example, in Fahrmeir et al. (2013). In STAR models, continuous covariates are
modeled as P(enalized)-splines. Furthermore, random effects for spatial indexes,
smooth functions of two-dimensional surfaces, and (spatially) varying coefficient
terms may also be estimated using this methodology.

The purpose of this chapter is to review recent developments in hedonic modeling
of house prices based on STAR models. More specifically, we describe multilevel
versions of STAR models (Lang et al. 2014; Brunauer et al. 2013) as our basic
modeling framework and develop a number of extensions. With respect to value-
at-risk concepts, financial institutions are often not only interested in the expected
value but also in different quantiles of the distribution of real estate prices. To meet
these requirements, we apply multilevel STAR models for location scale and shape
(GAMLSS type regression, Klein et al. 2013; Rigby and Stasinopoulos 2005) and a
Bayesian version of quantile regression (Waldmann et al. 2013) and compare the
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results (Razen et al. 2014). As a second extension, we introduce multiplicative
region-specific scaling factors for nonlinear covariates in order to permit spatial
variation in the nonlinear price gradients. This allows highly nonlinear implicit
price functions to vary within a regularized framework, accounting for district-
specific spatial heterogeneity, which can lead to a considerable improvement of
model quality and predictive power (Brunauer et al. 2010). We finally describe
publicly available software to estimate the described complex modeling framework
(Umlauf et al. 2012).

5.2 Data Description and Model Specification

We have a dataset of owner-occupied single-family homes in Austria at our disposal
which exhibits a quite typical structure for real estate data:

• The set of explanatory variables consists of covariates characterizing the house,
namely, the size, age, year of sale, quality, and equipment of the building, which
we call structural attributes/covariates.

• Individual observations are linked to municipality codes, which allows as-
sociation with covariates accounting for sociodemographic, economic, and
neighborhood attributes. Following, for example, Can (1998), we will call these
neighborhood attributes/covariates.

5.2.1 Structural Attributes

The dataset containing dated house prices together with the housing attributes has
been collected in order to estimate the value of the collateral for mortgages by the
UniCredit Bank Austria AG from October 1997 to September 2009. Two slightly
different instructions for data collection have been employed, which is why the
structural covariates affected thereof are encoded accordingly (see Brunauer et al.
(2013) for a detailed description). We use continuous variables measuring the size
and the age as well as the time of sale and categorical variables that describe the
quality of the house. Guided by economic theory on hedonic house prices, we expect
the following directions of the effects:

• Continuous covariates/attributes: As we regress the structural covariates on
logged prices per square meter (sq. m.), a decreasing effect of the floor area of the
building due to decreasing marginal returns of additional floor area (area) and an
increasing effect of the size of the plot it is built on (area_plot) can be assumed.
The age of the building (age), which is calculated as the difference between the
year of valuation and the year of construction (i.e., the age at the time of sale),
reflects depreciation over time and should therefore have a decreasing effect.
The time index (time_index, the year of purchase of the house) can be considered
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as the remaining unexplained temporal heterogeneity and is a measure for the
quality adjusted development of house prices over time.

• Categorical covariates/attributes: A high quality of the heating system (heat)
as well as of the bathroom and toilets (bath) should have an increasing effect
on house prices. Furthermore, the existence of an attic (attic_dum), a terrace
(terr_dum), and a garage (garage, further separated into good and bad quality)
should raise house prices.

5.2.2 Spatial Resolutions and Neighborhood Attributes

House prices with structural attributes are nested within three spatial resolutions
and hence associated with the respective neighborhood attributes, which we use on
the most detailed level available. We use various socioeconomic and demographic
attributes as well as measures of proximity to work and metropolitan areas, obtained
from the sources described in Brunauer et al. (2013), to explain spatial variation in
house prices per sq. m.

Level-1 is the individual level, on which house prices and housing attributes
are measured (see Sect. 5.2.1). In total, 3,231 observations are available on the
individual level after validation.

Level-2 is the municipal level. Observations are available in 946 of the 2,379
Austrian municipalities. On level-2, we employ the following covariates:

• Socioeconomic/demographic characteristics of the neighborhood: On the one
hand, we use the purchase power index (pp_ind), the average level of education,
indicated by the share of academics (educ), which both reflect disposable income
and should therefore affect prices positively. On the other hand, we use an age
index (age_ind), constructed as a population-weighted mean of 20 age cohorts,
which measures the average age of inhabitants. A high population age index,
reflecting excess of age, serves as a proxy for structural weakness and should
have a negative effect on house prices.

• Measures of proximity to work and metropolitan areas: Urban economic theory
states that commuting to centers of economic activity gives rise to a location
rent, which is why a high commuter index (comm), that is, many employees
commuting from the municipality, should tend to affect prices negatively.
However, close proximity to these centers also provides certain disamenities,
as the local infrastructure tends to match the needs of residential use worse.
Therefore, the effect of a low commuter index is unclear. Furthermore, as a
measure of centrality, we employ population density (dens). In densely populated
areas, land becomes more valuable, which is why we expect a positive effect of
this covariate.

Level-3 is the district level. Individual observations are available on 109 of 121
districts, only the inner districts of Vienna are missing. As each of these districts
has neighboring units, spatial effects can be regularized using the neighborhood
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structure. On this level, an externally provided home price index indicating the
neighboring house price level, wko_ind, is available.

Level-4 is the county level (9 counties); we do not employ any further explana-
tory covariates on this level.

5.3 Structured Additive Distributional Regression

5.3.1 Hierarchical STAR Models

Suppose that observations .yi ; zi ; xi /, i D 1; : : : ; n, are given, where yi is a
continuous response variable, and zi D .zi1; : : : ; ziq/0, and xi D .xi1; : : : ; xip/0 are
vectors of covariates. For the variables in z, possibly nonlinear effects are assumed,
whereas the variables in x are modeled in the usual linear way. The components of
z are not necessarily continuous covariates. A component may also indicate a time
scale, a cluster, or a spatial index (e.g., municipality, district, or county) a certain
observation pertains to. We assume an additive decomposition of the effects of zij

(and xij ) and obtain the model

yi D f1.zi1/ C : : : C fq.ziq/ C x0
i � C "i : (5.1)

Here, f1; : : : ; fq are nonlinear functions of the covariates zi and x0
i� is the usual

linear part of the model. The errors "i are assumed to be mutually independent
Gaussian with mean 0 and variance �2, that is, "i � N.0; �2/.

The nonlinear effects in (5.1) are modeled by a basis functions approach, that
is, a particular function f of covariate z is approximated by a linear combination of
basis or indicator functions

f .z/ D
KX

kD1

ˇkBk.z/: (5.2)

The Bk’s are known basis functions and ˇ D .ˇ1; : : : ; ˇK/0 is a vector of unknown
regression coefficients to be estimated. Defining the n � K design matrix Z
with elements ZŒi; k� D Bk.zi /, the vector f D .f .z1/; : : : ; f .zn//0 of function
evaluations can be written in matrix notation as f D Zˇ. Accordingly, we obtain

y D � C " D Z1ˇ1 C : : : C Zqˇq C X� C "; (5.3)

where y D .y1; : : : ; yn/0, � D .�1; : : : ; �n/0 and " � N.0; �2I/.
Recently Lang et al. (2014) have proposed a multilevel version of STAR models

to cope with the hierarchical nature of the data on house prices. Suppose that
covariate zj 2 f1; : : : ; Kg is a unit or cluster index and zij indicates the cluster
observation i pertains to. In our case, zij denotes the municipality where the i th
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house is located. Then the design matrix Zj is a n � K incidence matrix with
Zj Œi; k� D 1 if the i -th observation belongs to cluster k and zero else. The K � 1

parameter vector ˇj is the vector of regression parameters, that is, the k-th element
in ˇ corresponds to the regression coefficient of the k-th cluster. We now define the
second-level equation

ˇj D �j C "j D Zj1ˇj1 C : : : C Zjqj ˇjqj
C Xj �j C "j ; (5.4)

where the terms Zj1ˇj1; : : : ; Zjqj ˇjqj
correspond to additional nonlinear functions

fj1; : : : ; fjqj and Xj �j comprises additional linear effects of cluster level covari-
ates. For the house price data, these are the covariates on municipality level, that
is, the purchase power index, share of academics, etc. The “errors” "j � N.0; �2

j I/
comprise a vector of i.i.d. Gaussian random effects. Using the compound prior (5.4),
we obtain an additive decomposition of the cluster-specific effect. By allowing a
full STAR predictor (as in the level-1 equation), a rather complex decomposition
of the cluster effect ˇj including interactions is possible. A special case arises
if cluster-specific covariates are not available. Then the prior for ˇj collapses to
ˇj D "j � N.0; �2

j I/, and we obtain a simple i.i.d. Gaussian cluster-specific
random effect with variance parameter �2

j .
A third or fourth level in the hierarchy is possible by assuming that the

second or third level regressions contain additional cluster-specific random effects
whose parameters are again modeled through STAR predictors of cluster-level
covariates.

In our model, we distinguish four levels: Single-family homes (level-1) belong to
municipalities (level-2), which are nested in districts (level-3), which are themselves
nested in counties (level-4). Then our model can be written as the following four-
level hierarchical STAR model:

level-1: lnpqm D f1.area/ C f2.areaplot/ C f3.age/ C f4.timeindex/C
f5.muni/ C X� C "

D Z1ˇ1 C Z2ˇ2 C Z3ˇ3 C Z4ˇ4 C Z5ˇ5 C X� C "

level-2: ˇ5 D f5;1.ppind/ C f5;2.lneduc/ C f5;3.ageind/ C f5;4.comm/C
f5;5.lnden/ C f5;6.dist/ C "5

D Z5;1ˇ5;1 C Z5;2ˇ5;2 C Z5;3ˇ5;3 C Z5;4ˇ5;4C
Z5;5ˇ5;5 C Z5;6ˇ5;6 C "5

level-3: ˇ5;6 D f5;6;1.wkoind/ C fmrf
5;6;2.dist/ C f5;6;3.county/ C "5;6

D Z5;6;1ˇ5;6;1 C Z5;6;2ˇ5;6;2 C Z5;6;3ˇ5;6;3 C "5;6;

level-4: ˇ5;6;3 D 1�0 C "5;6;3: (5.5)

The level-1 equation contains the main predictor. Apart from usual linear effects,
the predictor is composed of possibly nonlinear effects of the continuous covari-
ates area, areaplot, age, and time_index as well as an uncorrelated municipality
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effect controlling for spatial heterogeneity. The municipality effect is a rather
complex spatial effect and is further decomposed through the remaining levels
in the hierarchy of the model. The level-2 equation contains nonlinear effects
of continuous municipality-specific covariates and a spatial district effect, which
is decomposed in the level-3 equation. Two of the covariates on level-2 enter
the equation logarithmically (denoted by the prefix “ln_”), namely, the share of
academics and the population density. The reason for this is that the distributions of
these covariates are strongly positively skewed, which results in volatile estimation
results on the natural scale. District-specific spatial heterogeneity is modeled
through the correlated spatial effect dist in the level-3 equation by Markov random
fields (see Sect. 5.4.3). We denote this by the superscript “mrf ”. The level-3 equation
is additionally composed of a nonlinear effect of the district-specific covariate
wko_ind and a spatial county effect. The level-4 equation constitutes a usual
county specific i.i.d. random effect and for technical reasons (improved mixing)
the intercept of the model.

On all levels, for continuous covariates, possibly nonlinear functions f1; f2; : : :

modeled by P-splines (see Sect. 5.4.2) are assumed. The categorical covariates on
level-1, describing the quality and condition of the house, are encoded as dummy
variables and subsumed in the design matrix X with estimated parameters � .

5.3.2 Beyond Mean Modeling: Distributional Regression

The model implied by Eq. (5.3) can equivalently be written as

y � N.�; �2I/ D N.Z1ˇ1 C : : : C Zqˇq C X� ; �2I/; (5.6)

that is, given the covariates the response vector is multivariate normal with mean
� and homoscedastic covariance matrix �2I. Hence, so far only the mean of the
response distribution is modeled in dependence of covariates. As already pointed out
in Fahrmeir et al. (2004), not only the mean but also the variances of the response
may depend on covariates when modeling real estate data. For instance, the analysis
of data on the monthly rent of apartments in Munich in Fahrmeir et al. (2004)
revealed that apartments built in the 1950s–1970s generally exhibit lower variability
than modern apartments that have been built recently. The reason is that the postwar
period in Germany is characterized by a quite homogeneous construction style based
on low-quality construction material.

To model the variance of the responses, we may assume

�2 D exp. Q�/ D exp. QZ1
Q̌

1 C : : : C QZq
Q̌

q C QX�/;

where the QZj and QX are design matrices of further covariates Qz1; : : : ; Qzq and
Qx1; : : : ; Qxp modeling the variance. Of course, some (or all) of these covariates may
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be identical to the covariates that enter the mean equation. In general, Q� may be
another STAR predictor including further hierarchical levels.

The heteroscedastic multilevel STAR model is a special case of the much more
general class of multilevel STAR models for location scale and shape (GAMLSS
type regression, recently introduced in Klein et al. (2013) as structured additive
distributional regression). Here, we assume that observations on a scalar response
variable y1; : : : ; yn as well as covariate information �i , i D 1; : : : ; n, have been
collected. The conditional distribution of observation yi given the covariate infor-
mation �i is assumed to be from a pre-specified class of K-parametric distributions
fi .yi j#i1; : : : ; #iK/ indexed by the (in general covariate-dependent) parameters
#i1; : : : ; #iK . Each parameter #ik is linked to a semiparametric regression predictor
�ik formed of the covariates via a suitable (one-to-one) response function such
that #ik D hk.�ik/ and �ik D h�1

k .#ik/. The response function is usually chosen
to ensure appropriate restrictions on the parameter space such as the exponential
function #ik D exp.�ik/, to ensure positivity.

As an example, we consider the two-parametric gamma distribution with mean
parameter #1 D � > 0, shape parameter #2 D � > 0, and probability density
function

f .yi j�i ; �i / D
�

�i

�i

��i

� y
�i �1
i

� .�i /
� exp

�
� �i

�i

� yi

�
;

where � .x/ D R1
0

ux�1 exp.�u/du for x > 0 is the gamma function. Due to the
positivity constraints, both parameters are linked to a semiparametric regression
predictor via the exponential function:

�i D exp.�
�
i / > 0;

�i D exp.��
i / > 0:

For each predictor, we set up a four level hierarchical STAR model similar to model
(5.5).

5.3.3 Bayesian Quantile Regression

The GAMLSS framework allows to model the most important characteristics of
the response distribution as a function of covariates. However, we still rely on a
specific parametric probability distribution like the normal or gamma distribution.
In contrast, quantile regression aims at directly modeling the quantiles of the
response distribution in dependence of covariates without resorting to a specific
parametric distribution family. For 0 < � < 1, let q� be the �-quantile of the
response distribution, for example, q0:75 is the 75 % quantile. Then in linear quantile
regression, we assume
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q�;i D ˇ�;0 C ˇ�;1xi1 C : : : C ˇ�;pxip;

that is, the quantile q� of the response distribution is a linear combination of the
covariates as in the multiple linear regression model. Generalizations to structured
additive predictors are conceptually straightforward (although estimation is truly
a challenge). The response distribution is implicitly determined by the estimated
quantiles q� provided that quantiles for a reasonable dense grid of �-values are esti-
mated. In contrast to the GAMLSS framework, a specific parametric distribution is
not specified a priori which makes quantile regression a distribution-free approach.

Estimation of the quantile-specific regression coefficients ˇ� is achieved by
minimizing the asymmetrically weighted absolute error criterion

Ǒ
� D argminˇ

nX
iD1

w� .yi ; �i� /jyi � �i� j (5.7)

where �i� D x0
i ˇ� and

w� .yi ; �i� / D

8̂̂<
ˆ̂:

1 � � yi < �i�

0 yi D �i�

� yi > �i� :

Frequentist quantile regression as outlined above is extensively treated in
Koenker (2005), see also Fahrmeir et al. (2013).

Bayesian quantile regression has been developed utilizing the equivalence
between posterior mode and maximum likelihood estimation under noninformative
priors ˇ� / const; see Yu and Moyeed (2001) and Yue and Rue (2011). Therefore,
we have to define a specific distributional assumption for the error terms (or
equivalently the responses) to make the Bayesian standard machinery work. If we
start with the model,

yi D x0
i ˇ� C "i� ; i D 1; : : : ; n;

we will assume independent and identically distributed errors following an asym-
metric Laplace distribution, that is, "i� j �2 i.i.d. ALD.0; �2; �/ with density

p."i� j �2/ D �.1 � �/

�2
exp

�
�w� ."i� ; 0/

j"i� j
�2

�
:

For the responses, the error distribution induces yi j ˇ� ; �2 � ALD.x0
i ˇ� ; �2; �/,

such that the density of the responses is given by

p.yi j ˇ� ; �2/ D �.1 � �/

�2
exp

�
�w� .yi ; x0

i ˇ� /
jyi � x0

i ˇ� j
�2

�
:
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It then turns out that maximizing the corresponding posterior (for fixed �2)

p.ˇ� j y; �2/ /
nY

iD1

p.yi j ˇ� ; �2/

/ exp

 
�

nX
iD1

w� .yi ; x0
i ˇ� /

jyi � x0
i ˇ� j

�2

!
;

with respect to ˇ� , is equivalent to minimizing the optimization criterion (5.7).
While the asymmetric Laplace distribution allows to conveniently express quan-

tile regression in a Bayesian framework, it complicates inference based on Markov
chain Monte Carlo (MCMC) simulations due to the absolute value contained in
its definition. It is therefore advantageous to represent the asymmetric Laplace
distribution as a scale mixture of normal distributions as suggested in Yue and Rue
(2011): Let ui j �2 � Expo.1=�2/, i D 1; : : : ; n, be i.i.d. exponentially distributed
with rate parameter �2 and

yi j ui ; ˇ� ; �2 � N.x0
iˇ� C 	ui ; �2=wi /

with

	 D 1 � 2�

�.1 � �/
; wi D 1

ı2ui

; ı2 D 2

�.1 � �/
:

Then the marginal distribution yi j ˇ� ; �2 is obtained by integrating out ui and is
indeed an asymmetric Laplace distribution, that is,

yi j ˇ� ; �2 � ALD.x0
i ˇ� ; �2; �/:

Bayesian inference can now efficiently be implemented after imputing the scale
variables ui as additional unknowns. Basically, the resulting model is a conditionally
Gaussian regression model with offsets 	ui and weights wi ; see Waldmann et al.
(2013) and Fahrmeir et al. (2013) for details.

Finally note that the linear predictor �� D x0
i ˇ� in Bayesian quantile regression

can be replaced by a (hierarchical) structured additive predictor as in (5.1) without
any further difficulties. This is in contrast to frequentist quantile regression as, for
example, in Koenker and Mizera (2004). Here, statistical inference is considerably
complicated by replacing linear by additive predictors.

5.4 Effect Modeling and Priors

Effect modeling and priors depend on the covariate or term type. We first describe
the general form of priors. Sections 5.4.2 and 5.4.3 give specific examples for effect
modeling using specific design matrices and forms of the basic prior.
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5.4.1 General Form of Basic Priors

In a frequentist setting, overfitting of a particular function f D Zˇ is avoided
by defining a roughness penalty on the regression coefficients; see, for instance,
Fahrmeir et al. (2013) in the context of structured additive regression. In a Bayesian
framework, a standard smoothness prior is a (possibly improper) Gaussian prior of
the form

p.ˇj�2/ /
�

1

�2

�rk.K/=2

exp

�
� 1

2�2
ˇ0Kˇ

�
� I.Aˇ D 0/; (5.8)

where I.�/ is the indicator function. The key components of the prior are the penalty
matrix K, the variance parameter �2

j , and the constraint Aˇ D 0. Usually the
penalty matrix is rank deficient, that is, rk.K/ < K , resulting in a partially improper
prior.

The amount of smoothness is governed by the variance parameter �2. A conjugate
inverse Gamma prior is employed for �2 (as well as for the error variance parameter
�2 in models with Gaussian responses), that is, �2 � IG.a; b/ with small values
such as a D b D 0:001 for the hyperparameters a and b resulting in an
uninformative prior on the log scale.

The term I.Aˇ D 0/ imposes required identifiability constraints on the
parameter vector. A straightforward choice is A D .1; : : : ; 1/, that is, the regression
coefficients are centered around zero.

5.4.2 Continuous Covariate Effects

For a continuous covariate z, our basic approach for modeling, a smooth function
f is using P-splines introduced in a frequentist setting by Eilers and Marx (1996)
and in a Bayesian version by Lang and Brezger (2004). P-splines assume that the
unknown functions can be approximated by a polynomial spline which can be
written in terms of a linear combination of B-spline basis functions. Hence, the
columns of the design matrix Z are given by the B-spline basis functions evaluated
at the observations zi . Lang and Brezger (2004) propose to use first- or second-order
random walks as smoothness priors for the regression coefficients, that is,

ˇk D ˇk�1 C uk; or ˇk D 2ˇk�1 � ˇk�2 C uk; (5.9)

with Gaussian errors uk � N.0; �2/ and diffuse priors p.ˇ1/ / const, or p.ˇ1/ and
p.ˇ2/ / const, for initial values. This prior is of the form (5.8) with penalty matrix
given by K D D0D, where D is a first- or second-order difference matrix.
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5.4.3 Spatial Effects

Assume now that z represents the location a particular observation pertains to.
If exact locations are available, z D �

z.1/; z.2/
�0

is two-dimensional, and the
components z.1/ and z.2/ correspond to the coordinates of the location. In this case,
the spatial effect f

�
z.1/; z.2/

�
could be modeled by two-dimensional extensions

of P-splines as described in Lang and Brezger (2004). An alternative approach
widely used in the geostatistics literature is to model the spatial effect by stationary
Gaussian random fields; see Kamman and Wand (2003).

If exact locations are not available as in our application, the correlated district-
specific heterogeneity effect f

mrf
5;6;2 .d ist/ in Eq. (5.5) can be modeled by Markov

random fields (MRF). Suppose that z 2 f1; : : : ; Kg is the indicator for the
district in which a house is located. MRFs define one parameter for every discrete
geographical unit (districts in our case), that is, f .z/ D ˇz, and are defined via
the conditional distributions of ˇz given the parameters ˇs of neighboring sites s.
We denote the set of neighbors of site z by N.z/. Typically sites are assumed to
be neighbors if they share a common boundary. MRFs assume that the conditional
distribution of ˇz given neighboring sites s 2 N.z/ is Gaussian with

ˇz j ˇs; s ¤ z � N

0
@ 1

jN.z/j
X

s2N.z/

ˇs;
�2

jN.z/j

1
A ;

where jN.z/j denotes the number of neighbors of site z.
The joint (prior) distribution of ˇ is of the form (5.8) with penalty matrix K given

by

KŒz; s� D
8<
:

�1 z ¤ s; s 2 N.z/;
0 z ¤ s; s 62 N.z/
jN.z/j z D s:

(5.10)

If a Markov random field is used in the level-1 equation, the design matrix Z is
a 0/1 incidence matrix whose entry in the i -th row, and k-th column is 1 if the i -th
observed house is located in district k and 0 else. In our application, the MRF is
specified in the level-3 equation to model smooth district-specific heterogeneity. In
this case, the design matrix is the identity matrix, that is, Z5;6;2 D I.

5.4.4 Bayesian Inference Based on Markov Chain Monte
Carlo Simulations

It is beyond the scope of this chapter to present detailed algorithms for Bayesian
inference. Instead, we refer to the recent literature. An overview about Bayesian
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inference in additive models based on MCMC simulations is given in Fahrmeir et al.
(2013). Algorithms for hierarchical structured additive regression are given in Lang
et al. (2014). Bayesian distributional regression in the spirit of GAMLSS is treated in
Klein et al. (2013). Bayesian quantile regression is discussed in detail in Waldmann
et al. (2013) and Fahrmeir et al. (2013).

5.5 Generalized Random Slope Modeling

A common phenomenon observed for real estate data is spatial heterogeneity in the
sense that (possibly nonlinear) effects of covariates vary in size (and possibly also
shape) from one spatial unit to another. This is primarily the case if the spatial units,
for example, districts, can be regarded as submarkets of one larger market.

In order to model spatially heterogeneous effects, we discuss in this section
nonlinear generalizations of random slopes. Suppose that for a continuous covariate
z a nonlinear effect f .z/ is assumed. Moreover, suppose that there might be
heterogeneity with respect to a cluster variable c 2 f1; : : : ; C g in the sense
that the nonlinear function is not homogeneous from cluster to cluster. However,
completely different functional forms in each cluster are not likely a priori. Instead,
one might think that only a particular feature of the function is subject to cluster-
specific heterogeneity. Here, we assume homogeneity for the functional form but
heterogeneity for the scaling of the function. This leads to a term of the form

.1 C ˛ci /f .zi / D f .zi / C ˛ci f .zi /;

where the possibly nonlinear function f of z is scaled by the factor .1 C ˛c/. In
matrix notation, we obtain

diag.1 C ˛c1 ; : : : ; 1 C ˛cn / � Zˇ; (5.11)

where Z is the design matrix corresponding to the nonlinear function f . An
equivalent formulation in terms of the cluster-specific scaling parameter vector
˛ D .˛1; : : : ; ˛C /0 and a 0/1 incidence (design) matrix C for the cluster-specific
scaling effect is given by

f C diag.f .z1/; : : : ; f .zn// � C˛: (5.12)

Similar to pure additive models, the prior for the scaling parameter vector
˛ D .˛1; : : : ; ˛C /0 may obey another structured additive model, that is,

˛ D Z˛;1ˇ˛;1 C : : : C Z˛;q˛ ˇ˛;q˛
C X˛�˛ C "˛:

Some care has to be taken regarding identifiability of the parameters. In
particular, there is an arbitrary multiplicative constant for the nonlinear function f .
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A possible way to assure identifiability is to assume monotonicity for f (either
monotonically increasing or decreasing) and to restrict the spread of f , for
example, by assuming

KX
kD1

ˇ2
k D c:

The constant c can, for example, be chosen such that the squared sum of the
coefficients is identical to that of the model without scaling factors. Imposing
monotonicity constraints is easily done using the methodology of Brezger and
Steiner (2008).

An application of generalized random slope modeling in the context of real
estate data is given in Brunauer et al. (2010) when modeling rents of apartments in
dependence of covariates. The nonlinear price gradients are assumed to be district
specific and modeled in the form of generalized random slopes as proposed above.

5.6 Software

The multilevel STAR models described above can be estimated with the open
source software package BayesX (Brezger et al. 2005). To facilitate exploration and
visualization of fitted models, the R (R Development Core Team 2013) package
R2BayesX (Umlauf et al. 2012) has been developed, which provides a fully
interactive R interface to BayesX with the usual R modeling “look & feel”. In
the following, we exemplify the usage of the software estimating the four-level
hierarchical STAR model (5.5).

We first load the required packages and data sets.

R> library("R2BayesX")
R> library("spdep")
R> load("AustriaHouse.rda")
R> load("DistrictsBnd.rda")

The file AustriaHouse.rda contains four data sets, one for each spatial resolu-
tion as described in Sect. 5.2. The data set with the highest resolution including the
house prices and housing attributes is called HousePrice, data on the municipal
level is provided in the data frame Municipal, on the district and county level
in objects District and County, respectively. The file DistrictsBnd.rda
contains a boundary map object DistrictsBnd that is used to compute the
necessary neighborhood structure for estimating the level-3 correlated spatial effect
of the districts in Austria. After transforming the class “bnd” object to an object of
class “SpatialPolygons” with

R> DistrictsSp <- bnd2sp(DistrictsBnd)

the final neighborhood object DistrictsNb, which is used for fitting the model,
can be generated by

R> DistrictsNb <- poly2nb(DistrictsSp)
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Here, districts are identified as neighbors if they share a common border, but
different neighborhood structures can be employed; see, for example, function
dnearneigh() or tri2nb() in package spdep (Bivand 2014). The four-level
hierarchical STAR model is then estimated with

R> b <- bayesx(lnp_qm ~ -1 + heat_o2 + heat_o3 + heat_neu1 +
+ heat_neu2 + bath_o1 + bath_o3 + bath_neu1 + bath_neu2 +
+ garage_1 + garage_2 + marker + attic_dum + cellar_dum +
+ terr_dum + sx(c_area) + sx(c_area_plot) + sx(c_age) +
+ sx(c_time_ind) +

+ ## Level-2
+ sx(municipal ~ -1 + sx(c_pp_ind) + sx(c_ln_educ) +
+ sx(c_age_ind) + sx(c_comm) + sx(c_ln_dens) +

+ ## Level-3
+ sx(district ~ -1 + sx(c_wko_ind) +
+ sx(district, bs="mrf", map=DistrictsNb) +

+ ## Level-4
+ sx(county ~ 1, bs="re", data=County),

+ bs="re", data=District),

+ bs="re", data=Municipal),

+ data=HousePrice, method="HMCMC", iterations=120000,
+ step=100, burnin=20000)

where the (possibly) nonlinear smooth terms are per default set up using P-splines
within the smooth term constructor function sx(). The spatially correlated effect
is specified by changing the basis-type argument of sx() to bs = "mrf" and
providing the neighborhood object to argument map. The random effects of the
municipals, districts, and counties are specified with bs = "re". Here, the first
argument of sx() is a formula that specifies the terms of the random effect
equation. This means that higher-level formulas can be defined within the formula
of the previous levels, representing the multilevel structure of the data. In addition,
the corresponding level-specific data set needs to be supplied to argument data
within sx().

By setting the number of iterations of the MCMC sampler to 120,000, estimation
takes approximately 2 1/2 min on a Windows system with an Intel i7-3740QM
2.70 GHz processor. A model summary can then be printed by typing

R> summary(b)

which returns the estimation results for all levels. The estimated smooth and random
effects, for example, level 1, can be plotted with

R> plot(b, model=1, term="sx")

For spatial and random effects, the plotting method per default shows the kernel
densities of the mean posterior coefficients. In addition, to further analyze the
correlated or uncorrelated spatial effects, map effect plots can be drawn by supplying
the corresponding boundary map object, for example, for the level-3 correlated
district effect, this is done by
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R> plot(b, model=3, term="sx(district)", map=DistrictsBnd)

One way to inspect convergence of the MCMC chains is to look at the resulting sam-
pling paths, for example, for term c_area, the sampling paths of the coefficients
are plotted with

R> plot(b, model=1, term="sx(c_area)", which="coef-samples")

The estimated effects can also be extracted, for example, the effect of c_age_ind
of level-2, using function fitted()

R> fit <- fitted(b, model=2, term="sx(c_age_ind)")

where the object fit is a data frame containing the estimated mean as well as the
2.5, 50, and 97.5 % quantiles of the effect, among others.

For a detailed description of the package R2BayesX, including a number of
examples, see also Umlauf et al. (2012).

5.7 Results

We now present the estimation results for the mean regression, the GAMLSS regres-
sion based on the gamma distribution, and the quantile regression. The results are
based on a final MCMC run with 120,000 iterations and a burn in period of 20,000
iterations. We stored every 100th iteration resulting in a sample of 1,000 practically
independent draws from the posterior. Computing times for the MCMC sampler
were approximately 2 1/2 min (mean regression), 55 min (GAMLSS regression),
and 4 min (quantile regression) on a modern desktop computer (Intel quad-core
processor 2.7 GHz). Note that no more than 32,000 iterations are typically enough
in preliminary MCMC runs to obtain sufficiently exact estimation results. However,
we used the comparably large number of iterations in the final run to be absolutely
sure about the precision of estimates.

We first show in Sect. 5.7.1 the effects of the continuous covariates on the
expected house price per sq. m. received from the mean regression and the GAMLSS
regression based on the gamma distribution. Next, we will focus on different
quantiles of the house price per sq. m. and compare the results of these two models
with those of the quantile regression (5.7.2). The last Sect. 5.7.3 is devoted to the
spatial effects.

5.7.1 Continuous Covariate Effects

5.7.1.1 Structural Covariates

Figure 5.1 shows the effects of the structural continuous covariates. In order to
get an impression of the magnitude of effects and make the results comparable,
we hold the other structural covariates constant at mean level of attributes and the
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Fig. 5.1 Effects of the continuous structural covariates of level-1. (a) Effect of the floor area
(variable area); (b) effect of the plot area (area_plot). (c) Effect of the age of the building (age);
(d) effect of the time index (time_index). Shown are the posterior mean estimates of the mean
regression and the GAMLSS regression based on the gamma distribution

categorical variables at their mode level and evaluate all neighborhood covariates
and spatial effects at the mode of the municipals (which we call the average effect)
and transform the functions from the mean regression to natural units (prices in Euro
per sq. m.). Since the effects are quite different in magnitude, we do not show them
on the same scale.

In panel (a), the effect of the floor area (variable area) is shown. We find a
monotonically decreasing and very pronounced effect of additional floor area on
prices per sq. m., accounting for a variation of more than 1,650 Euro. However, the
decreasing effect weakens as the floor area becomes larger. The results of the mean
regression and the GAMLSS regression are virtually the same.

Additional plot area (area_plot, panel (b)) yields higher prices per sq. m. of floor
area, although this effect becomes weaker as plot area increases and levels off at
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around 1,200 m2. It is noticeable that the increasing effect of the plot area for small
properties is more pronounced in the results of the GAMLSS regression. In total,
house prices per sq. m. change by about 480 Euro (mean regression) to 690 Euro
(GAMLSS regression) over the domain of the plot area.

The effect of the age of the building, shown in panel (c), can be considered as
the rate of depreciation of single-family homes. Thus, the initial increase up to an
age of 7 years in the results of the mean regression seems quite unlikely, whereas
the more or less linear depreciation (until an age of about 55 years) in the GAMLSS
regression is in line with our expectations. In both models, the effect stays constant
or even reverses for old buildings. The age of the house covers a range of 560 Euro
(mean regression) to 690 Euro (GAMLSS regression).

The effect of the time index (panel (d)) shows the quality-controlled development
of house prices over time. After a moderate increase from 1997 to 2000, prices
almost stay constant until 2003 and rise afterwards until 2008. In the last year of the
observation period, prices obviously decrease, indicating the effect of the economic
crisis of 2008/2009. In total, the time index accounts for variation in a range of
around 350 Euro.

5.7.1.2 Neighborhood Covariates

In Fig. 5.2, a selection of the neighborhood effects are displayed, again on the natural
scale of prices per sq. m. In the upper row, the effect of the share of academics
(ln_educ) is shown in panel (a). Although it enters the equation logarithmically
(see Sect. 5.3.1), it is displayed in natural values. The effect is clearly positive, with
a pronounced increase starting at a share of approximately 25 %. The difference
between the mean regression and the GAMLSS regression is negligible. In total, the
share of academics accounts for a variation of up to 1,000 Euro.

The effect of the age index (age_ind, displayed in panel (b)) is more or less linear
for both the mean regression and the GAMLSS regression. The negative direction
of this effect could be interpreted as a decreasing attractiveness of municipalities
that exhibit an excess of age, which could be expected from our considerations in
Sect. 5.2.2. The effect of the age index has a bandwidth of up to 535 Euro.

The effect of the population density ln_dens, displayed in natural values in panel
(c), shows a tendency toward higher house prices in more densely populated areas.
Here, we can find a considerable difference of up to 260 Euro between the results
of the mean regression and those of the GAMLSS regression for highly densely
populated areas. In all, this effect accounts for a variation between 630 Euro (mean
regression) and 930 (GAMLSS regression) per sq. m.

Finally, the effect of the house price index wko_ind (the only covariate on the
district level) is shown in panel (d). As expected, this effect is increasing, although
for index values of more than 140, it becomes lightly weaker in the GAMLSS
regression and clearly weaker in the mean regression. Prices per sq. m. increase
by 470 Euro (mean regression) to 560 Euro (GAMLSS regression) from the lowest
to the highest house price index.
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Fig. 5.2 Effects of the neighborhood covariates. First row: effect of the share of academics (educ)
(a) and the age index (age_ind) (b). Second row: effect of the log of population density (ln_dens)
(c) and the house price index (wko_ind) (d). Shown are the posterior mean estimates of the mean
regression and the GAMLSS regression based on the gamma distribution

5.7.2 Quantiles

Figure 5.3 shows the effects for the structural covariates for the 20-, 50-, and 80 %-
quantiles. Beside the results of the mean regression and the GAMLSS regression,
we now also compare the effects of the quantile regression. Again, we hold all other
covariates constant at mean level of attributes and – if necessary – transform the
functions to natural units.

In general, the effects for the different quantiles are similar to those for the
expected house prices per sq. m., displayed in Fig. 5.1. However, we can find some
interesting differences between the three models: Quantile regression estimates



116 A. Razen et al.

50 100 150 200 250 300

800

1000

1200

1400

1600

1800

2000

floor area

E
U

R
 p

er
 s

q.
 m

.

Effect of the floor area, 20%−quantile

Mean regression
GAMLSS
Quantile regression

50 100 150 200 250 300

1000

1500

2000

2500

floor area
E

U
R

 p
er

 s
q.

 m
.

Effect of the floor area, 50%−quantile

Mean regression
GAMLSS
Quantile regression

50 100 150 200 250 300

1500

2000

2500

3000

floor area

E
U

R
 p

er
 s

q.
 m

.

Effect of the floor area, 80%−quantile

Mean regression
GAMLSS
Quantile regression

200 600 1000 1400

1000

1100

1200

1300

1400

plot area

E
U

R
 p

er
 s

q.
 m

.

Effect of the plot area, 20%−quantile

Mean regression
GAMLSS
Quantile regression

200 600 1000 1400

1200

1300

1400

1500

1600

1700

1800

1900

plot area

E
U

R
 p

er
 s

q.
 m

.

Effect of the plot area, 50%−quantile

Mean regression
GAMLSS
Quantile regression

200 600 1000 1400

1600

1800

2000

2200

2400

plot area
E

U
R

 p
er

 s
q.

 m
.

Effect of the plot area, 80%−quantile

Mean regression
GAMLSS
Quantile regression

0 20 40 60 80

1100

1200

1300

1400

1500

age

E
U

R
 p

er
 s

q.
 m

.

Effect of the age, 20%−quantile

Mean regression
GAMLSS
Quantile regression

0 20 40 60 80

1400

1500

1600

1700

1800

1900

2000

age

E
U

R
 p

er
 s

q.
 m

.

Effect of the age, 50%−quantile

Mean regression
GAMLSS
Quantile regression

0 20 40 60 80

1800

2000

2200

2400

2600

2800

age

E
U

R
 p

er
 s

q.
 m

.

Effect of the age, 80%−quantile

Mean regression
GAMLSS
Quantile regression

1150

1200

1250

1300

1350

1400

1450

time index

E
U

R
 p

er
 s

q.
 m

.

Effect of the time index, 20%−quantile

1997 2000 2003 2006 2009

Mean regression
GAMLSS
Quantile regression 1500

1600

1700

1800

time index

E
U

R
 p

er
 s

q.
 m

.

Effect of the time index, 50%−quantile

1997 2000 2003 2006 2009

Mean regression
GAMLSS
Quantile regression

1900

2000

2100

2200

2300

time index

E
U

R
 p

er
 s

q.
 m

.

Effect of the time index, 80%−quantile

1997 2000 2003 2006 2009

Mean regression
GAMLSS
Quantile regression

a b c

d e f

g h i

j k l

Fig. 5.3 Effects of the continuous structural covariates of level-1. (a), (d), (g), (j) effects of the
20 %-quantile; (b), (e), (h), (k) effects of the 50 %-quantile; (c), (f), (i), (l) effects of the 80 %-
quantile



5 Hedonic House Price Modeling Based on Multilevel Structured Additive Regression 117

individual effects for each and every quantile. GAMLSS regression also allows
for different marginal effects due to the two estimated parameters of the gamma
distribution. Mean regression, in contrast, only reveals one marginal effect for each
covariate, shifts it according to the estimated variance and converts it to natural units
using the transformation property of the lognormal distribution.

While the differences in the estimated effects between the mean regression and
the GAMLSS regression were rather small for the expected house price per sq. m.,
there are now substantial differences for the quantiles. Compared to the results of
the quantile regression and the GAMLSS regression, the mean regression seems to
slightly underestimate the prices for the 20- and 50 %-quantile, while the results
for the 80 %-quantile are more similar. This indicates a more skewed distribution of
house prices than can be captured by the mean regression.

Figure 5.4 illustrates this distribution by showing the posterior 10-, 20-, 50-, 80-,
90 %-quantile estimates of the three different methods for each structural covariate.
Additionally, the posterior mean estimates are displayed for the mean regression
and the GAMLSS regression. Particularly the effects of the age of the building
considerably differ between the individual quantiles both in the GAMLSS and the
quantile regression, revealing the limits of the mean regression where the marginal
effects are almost the same for all quantiles.

5.7.3 Spatial Effects

The total amount of spatial heterogeneity is composed of spatial effects on munici-
pal (level-2), district (level-3), and county level (level-4). Continuous neighborhood
effects (see Sect. 5.7.1) explain spatial heterogeneity explicitly to a certain extent
on two of these levels (municipal and district). We call this the explained spatial
heterogeneity. The remaining i.i.d. spatial random effects "5, "5;6 and "5;6;3 as well
as the correlated district-specific effect f5;6;2.d ist/ in (5.5) account for unexplained
spatial heterogeneity. In the following, we analyze the distribution of spatial
heterogeneity over Austria. For the sake of clarity, we only show the estimation
results for the 50 %-quantiles.

5.7.3.1 Total Spatial Heterogeneity

Figure 5.5 visualizes the posterior 50 %-quantile estimates of the total spatial effects
(explained plus unexplained heterogeneity) for the mean regression, the GAMLSS
regression and the quantile regression evaluated at the average effect. We can
see a very pronounced spatial heterogeneity showing single-family homes in the
western counties to be considerably more expensive than in the eastern and southern
counties. Furthermore, we find a clearly positive effect in urban areas with a strong
peak in Vienna.
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Fig. 5.4 Effects of the continuous structural covariates of level-1. (a), (d), (g), (j) effects of the
mean regression; (b), (e), (h), (k) effects of the GAMLSS regression; (c), (f), (i), (l) effects of
the quantile regression. Shown are the posterior 10-, 20-, 50-, 80-, 90 %-quantile estimates (solid
lines) as well as the posterior mean estimates of the mean regression and the GAMLSS regression
(dashed lines)
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Fig. 5.5 Distribution of the total spatial heterogeneity (evaluated at the average effect). Shown are
the posterior 50 %-quantile estimates for the mean regression, the GAMLSS regression, and the
quantile regression

Comparing the total spatial effects according to the different estimation methods,
we only can find minor differences. In total, the spatial heterogeneity has a
bandwidth of 1,950 Euro (mean regression) or 2,175 Euro (GAMLSS and quantile
regression).
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5.7.3.2 Unexplained Spatial Heterogeneity

Figure 5.6 displays the unexplained spatial effects, showing that the neighborhood
attributes capture a large part of the total spatial heterogeneity, since the remaining
unexplained spatial heterogeneity only accounts for a variation of about 520 Euro

< 1015  1276 > 1538

Price per square meter

Mean regression

GAMLSS

Quantile regression

Fig. 5.6 Distribution of the unexplained spatial heterogeneity (evaluated at the average effect).
Shown are the posterior 50 %-quantile estimates for the mean regression, the GAMLSS regression
and the quantile regression



5 Hedonic House Price Modeling Based on Multilevel Structured Additive Regression 121

(mean regression) to 640 Euro (quantile regression). Again, the highest values of
the estimated effects can be found in the western counties and in Vienna.
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Chapter 6
Simple Agents, Complex Emergent City:
Agent-Based Modeling of Intraurban Migration

Shipeng Sun and Steven M. Manson

Abstract Intraurban migration—residential movement within a metropolitan
area—defines the nature of urbanization. Housing location decision making is
a complex process driven by the interactions between the housing market and
home searchers. Researchers have paid much attention to the environmental,
socioeconomic, cultural, and policy features of housing markets. In contrast,
housing search has been relatively neglected due to challenges of theory,
methodology, and data. This article addresses these challenges by presenting
an agent-based model of intraurban migration featuring straightforward and
empirically specified rules for housing search. This model is calibrated and
validated against real-world housing vacancies and relocation origin–destination
pairs extracted from parcel records for the Twin Cities of Minnesota, USA, for
2005–2007. Drawing on these unique data sidesteps a long-standing issue, the
prohibitive costs of identifying, recording, and quantifying housing search activities
for an entire metropolitan region. Conceptually, this model updates geographic
theories of intraurban migration that focus on intervening opportunities and spatial
bias. It also methodologically advances the agent-based modeling of urbanization
with a high-resolution, empirically specified model that demonstrates how urban
pattern emerges from simple rules and interactions. Overall, the model demonstrates
that relatively straightforward housing search rules can simulate realistic patterns of
intraurban migration.
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6.1 Introduction

Intraurban migration, or residential moves within a metropolitan area, is a com-
plex process involving the interaction of housing market characteristics with the
perceptions of home searchers. Intraurban migration research has a long and rich
history in geography and other social sciences, engineering fields, and policy
disciplines (Dorigo and Tobler 1983; Clark 1986; Brown and Moore 1970; Roseman
1971; Simmons 1968; Simpson et al. 2008; Clark 2008). There remain significant
challenges in terms of data, method, and theory in understanding this form of
migration. Data on specific individuals who drive intraurban migration is difficult to
obtain and use. Methodologically, there is a need to combine the most common
approach, statistical methods, with fast-emerging simulation modeling methods.
In terms of theory, the large number of competing explanations for intraurban
migration points to the need for continuing work on foundational research on
individual behavior. When these challenges of data, method, and theory are taken
together, they indicate the need for empirically based approaches that combine
statistical and simulation models to develop and test straightforward frameworks
for understanding how individual behavior gives rise to aggregate patterns and
processes of intraurban migration.

We developed an agent-based model that draws on novel data derived from land
parcels to develop and test an updated form of the intervening opportunity theory of
intraurban migration. This work is significant in several respects. This conceptual
model brings together underexamined geographical and sociological findings to
develop and test straightforward spatial behavioral rules that capture key features
of intraurban migration. To specify and test this model we developed a new data
source, individual migration chains extracted from tax parcel data that allowed us
to track the movements of actual households in space and over time. We bring these
data and the conceptual model together in an agent-based model that is calibrated
and validated with mathematical and statistical approaches, leveraging the relative
strengths of these different methods. More broadly, this work addresses the need for
simple and generalizable to complement the large and growing body of work that
focuses on representing complicated dynamics with extensive and detailed datasets
(Brown et al. 2008; Torrens 2012). It also contributes to the fast expanding body
of work seeking to simplify complex urban dynamics by using new data sources to
develop relatively straightforward and generalized models that capture significant
features of urban form and processes (Batty 2008, 2012).

The rest of this paper examines this confluence of data, method, and theory. The
next section reviews locational decision-making theories of intraurban migration
and proposes a model for housing location decisions with two different strategies.
Section 6.3 applies this model to intraurban migration of homeowners in the Twin
Cities Metropolitan Area of the USA (TCMA), along the way introducing the use
of land parcel data to calibrate and validate an agent-based model of individual
migration. Section 6.4 presents the model results, including model validation. The
paper concludes with discussion of our findings and their implications for urban
agent-based modeling and our understanding of intraurban migration generally.
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6.2 Conceptual Model of Intraurban Migration

A core conceptual challenge in understanding intraurban migration is developing
theories of how individual behavior leads to complex urban patterns and processes.
Intraurban migration has three interrelated components, as introduced by Wolpert
(1965) and expanded over the years: (1) housing conditions, or the broad social,
demographic, economic, and environmental conditions that trigger household mi-
gration; (2) housing utilities, expressed as the balance between utilities of the current
housing and expected utilities of other housing opportunities; and (3) housing
search, or the search process and perceptions of housing by potential buyers.
Intraurban migration research focuses primarily on the first and second components,
while a smaller body of work centers on the third component of housing search as a
sociospatial process that guides the first and second.

We advance this third component by testing a modified intervening opportunity
theory, drawing on sociospatial conceptions of housing perception to examine
simple decision-making rules that lead to realistic complex migration patterns in
aggregate. This third component helps guide the first two and can be examined
separately, which does not minimize the fact that the residential choices of house-
holds are driven in part by a host of demographic and socioeconomic characteristics
of migrants combined with housing utilities, including housing structure, the
biophysical environment, neighborhood quality, as well as accessibility to services
(Adams 1984; Quigley and Weinberg 1977; Clark 2008). Additional considera-
tions include household factors ranging from income and race to environmental
preferences (Choldin 1973; Pellegrini and Fotheringham 2002; Jones et al. 2004).
These factors in turn modify the effect of housing conditions and their attendant
perceived difference in utilities (De Jong and Roempke Graefe 2008; Geist and
McManus 2008; Mulder 2007; Cooke 2008), interactions with commuting and
transportation infrastructure (Clark, Huang, and Withers 2003; Rouwendal and
Rietveld 1994), government policies and developer decisions (Brown and Chung
2008), and the lending practices of financial institutions (Brown and Longbrake
1970; Brown and Moore 1970; Clark 1982). In sum, a wide variety of factors
influence housing conditions and housing utilities and, by extension, intraurban
migration and urbanization more generally.

Despite the importance of housing conditions and housing utilities, the third
component of housing search and perception has much to do with the nature of
intraurban migration because it guides the effects of the first two components. This
component has a distinguished research history, but overall it has received far less
attention than the first two components. Theories of housing search complement
our understanding of these other components because they posit that there are
fundamental regularities in how households perceive housing opportunities. Much
of this research emphasizes the distinct spatial and temporal limits of homebuyers’
search strategies in local and regional housing markets (Clark 1982; Clark and
Flowerdew 1982; Smith et al. 1979). Related work examines how home search and
job search interact, particularly in how people think about where they want to live
as a function of where they want to work (Waddell 1993; van Ommeren et al. 1997;
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cf. Clark and Withers 1999). This research points to the importance of incomplete
information and bounded rationality of decision making in intraurban migration,
as much of the work on the first two components of housing condition and
utility assumes that households have complete information during the housing
search and will go to any lengths to find the optimal home. Instead, research on
search and perception highlights how housing search is often bounded in space
and time, whether by homebuyers’ greater knowledge of and comfort with local
neighborhoods, bounds on how much time households (or their real estate agents)
can devote to the housing search, or a willingness to settle for a new house that is
good enough instead of being perfect.

The importance of spatial distance between current and potential housing is a
unifying theme in much work on housing search, along with direction to a lesser
extent. Most of this research relies on the theoretical antecedent of intervening
opportunity theory, developed by Stouffer (1940) to describe the relationship
between housing opportunities and moving distances within a metropolitan area.
Assuming the quantity of vacant housing units is proportional to the distance from
a household’s current dwelling, Stouffer posited that the number of households that
move a given distance has a logarithmic relationship with the housing opportunities
located within that distance because people are likely to choose a vacancy near their
current dwelling. The related exponential distribution of moving distances has been
validated by empirical research on various metropolitan areas (Clark and Burt 1980;
Clark et al. 2003; Quigley and Weinberg 1977). The basic form of this negative
exponential distribution of move distances is

f .d/ D 
e�
d ; 
 > 0 and d > 0 (6.1)

where f (d) is the probability of a household relocating by distance of d and 
 is
a shape parameter. Mathematically, 
 is the reciprocal of average d, or in other
words 1/
 is the average move distance. The intervening opportunities model was
extended to the case of interurban migration and evolved into the influential gravity
model and related family of spatial interaction models (Guldmann 1999; Jayet 1990;
Fotheringham 1983; Cochrane 1975; Ruiter 1967; Erlander 2010). Regardless of
variant or degree of sophistication, these models retain at their heart a focus on
logarithmic or exponential distance decay in space.

The direction people move is an important consideration alongside distance.
Adams (1969) argued that spatial search and residential locational behavior are
based on a limited mental map or image of the city. Importantly, this image is
sectoral in that it comprises a wedge-shaped region centered on the work-home
axis. While Adams took the central city is a proxy for work location, the theory
was validated using specific workplace data as well (Clark and Burt 1980; Clark
et al. 2003). Move directions can be modeled as a von Mises distribution (Gaile and
Burt 1980), which is the counterpart of the normal distribution for directional data
spanning 0–360ı, with a density function of

f
�
x
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Fig. 6.1 Modeled intraurban migration process

where � is the mean direction, � is a measure of variance of directions around
�, and I0(�) is a modified Bessel function with order zero. When � is zero, the
distribution is uniformly circular (i.e., with equal probability in any direction); when
it is larger, the distribution will concentrate around � in a similar fashion to the
normal distribution.

We bring together these sociospatial findings on housing perception via a
conceptual agent-based model of the distance and directional relationships among
housing vacancies and current dwellings of potential migrants (Fig. 6.1). This model
adopts two housing search and relocation strategies—distance-only and distance-
plus-direction—that condition intervening opportunity theory with the statistical
distribution of moving distances and directions as specified by the negative expo-
nential and von Mises distributions (after Clark et al. 2003). The model is based on
two lists for the regional housing market: one of potential homebuyers and another
of vacant houses. Each model year, the model iterates over homebuyers randomly.
Each homebuyer generates a random number and the vacant house with the closest
greater probability is chosen as the destination. When a homebuyer moves, he or
she is removed from the buyer list and the vacated house is added into the vacant
house list.
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The difference between the two homebuyer strategies—distance-only and
distance-plus-direction—lies in the probability assigned to vacant houses, Pij, or
the possibility of Bi buying vacant house Hj (Fig. 6.1). With the distance-only
strategy, each actor agent calculates Pij based on the distance between her current
dwelling and a vacant house, where the probability follows a negative exponential
distribution. Assuming homebuyer Bi currently lives in Hi, the probability that she
chooses house Hj would be

Pij D 
e�
d.H i ; Hj / (6.3)

where 
 is a parameter estimated empirically from move distance distribution
(more on this below) and d(Hi, Hj) is the distance between Hi and Hj. With the
distance-plus-direction strategy, directional bias is also included in the calculation
of probability Pij. When relocation is constrained by real housing opportunities, it
can be assumed that move direction is independent from move distance (Adams
1969; Clark and Burt 1980; Clark et al. 2003). The von Mises distribution
is modeled as two normal distributions with zero and 180ı as mean values,
respectively:

Pij D 
e�
d.H i ; Hj / � P
 (6.4)

where P
 is the probability that a homebuyer moves in the direction of 
 . If we

define Sign .
/ D
�

1; if j
 j � 90

0; if j
 j > 90
, then P
 D Sign(
) � N(0, �2

1) C [1 � Sign(
)] �
N(180, �2

2), in which N(�, �2) is normal distribution. When Sign(
) is one, home-
buyers move toward the suburbs; when it is zero, they move toward downtown.
The standard deviation �1 and �2 control the extent to which migrant household
moves concentrate along the home–downtown corridor. When these deviations are
small, houses near the corridor are more likely to be chosen, but when they are
large, more houses have greater odds of being chosen. When �1 is greater than �2,
households are more likely to move to suburbs; when smaller, households move
toward downtown.

6.3 Methods

A key methodological challenge in understanding intraurban migration is devel-
oping straightforward, empirically specified approaches to model how the choices
of individuals generate aggregate migration patterns and processes. The primary
form of intraurban migration modeling is mathematical and statistical, ranging from
gravity modeling to hedonic specifications to various flavors of (new) economic
geography of urban areas. Less common but long-standing is simulation modeling,
which has enjoyed renewed interest in the form of agent-based modeling (ABM).
We develop an ABM of urban intramigration and use a new form of data to calibrate
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this model, namely, empirically specified migration chains from land parcel data.
While they have some drawbacks, these data offer several advantages over many
other forms of data used to understand the migration choices of individuals.

6.3.1 Data

The paucity of data on the migration choices of individuals remains a critical
challenge in understanding intraurban migration. While migration evinces clear
patterns such as suburbanization, gentrification, or decline when examined at
gross temporal and spatial scales, our understanding of migration at the scales
of individuals is limited by the dearth of public data available on movements of
individual households in space at the scale of specific housing units and in time
at the scale of a year (Adams 1969; Clark 1976, 1986). There are several different
ways to garner these data, although we focus on the advantages of parcel data below.

A common approach to measuring intraurban migration is surveying individuals
and then reporting on them over large enumeration units. These surveys ask
questions about recent moves, such as time since last move or change in commuting
time, and range from travel surveys to general instruments such as the American
Community Survey (ACS), the American Housing Survey (AHS), the Current
Population Survey (CPS), and the Public Use Microdata Samples (PUMS). These
surveys are taken of individuals but when reported are aggregated to regions such
as census tracts or traffic analysis zones. As a result, these sources offer good
information about intraurban migration in general but lack the spatial resolution
necessary to analyze individual moves at subregional scales. These data may
be downscaled to create statistically plausible individuals (e.g., giving agents an
income from a statistical distribution and giving them a random location within a
census tract), but this does not link to actual individuals and places (Berger and
Schreinemachers 2006). In sum, census-like surveys offer good attribute detail over
broad extents at the cost of spatial specificity.

Another common approach to measuring intraurban migration is to gather data
on specific households or houses in an area. Directly surveying migrants is a good
way to understand their home-seeking behavior, but this approach is expensive and
typically reaches only a small subset of migrants. Other sources include city or
telephone directories and utility records that can be used to track the moves of
individuals from one address to another, although these data are often incomplete
and, in cases such as utility records, subject to confidentiality provisions. A related
approach is using home sales data to capture attributes of specific houses, but
these data usually say little about the search and migration behavior of specific
individuals. Overall, data on specific households and houses offer spatial specificity
not found in aggregate data noted above, but their use is not without challenges.

We developed a novel form of information on household intraurban migration
to address key data challenges, namely, migration chains from land parcel data
for an entire region. A migration chain establishes linked pairs of moves, each
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defined by a household that leaves a property and one that moves into the just-
vacated property. Parcel data are suited to this task when they encompass all home
ownership for a specific area; in the Twin Cities, for example, these data describe
over one million lots. This research utilizes the annual regional parcel dataset in
the TCMA compiled and managed by the regional government, the Metropolitan
Council, spanning the seven counties of Anoka, Carver, Dakota, Hennepin, Ramsey,
Scott, and Washington. Relevant information includes owner’s name and date last
sold; other data vary by jurisdiction, such as square footage of houses and their
lots or dwelling type (for a review of these data and those from other locations, see
Manson et al. 2009). We identified about 4,800 origin–destination pairs for the years
2005 through 2007, which contain the most complete information for the region and
pertain to the period before the US housing market collapsed in 2008.

While developing migration chains from land parcel data is laborious, it can be
semiautomated. We developed migration chains for the Twin Cities by comparing
the owners of a parcel across years, detecting valid owner changes and matching
owners across years. We weeded out transactions, such as speculation and bank
sales, that represent ownership change without a household move. We also left out
condominiums and apartments given that many are not owner occupied (so renters
are not included). We developed software that embodied a multipart strategy to deal
with variations and errors in names. All names were uniformly formatted into the or-
der of first name, middle name, and last name. Then an intelligent name comparison
routine determined if two different names actually refer to the same person, family,
or organization. It employed a dictionary of abbreviations, which records various
forms of names for a single institution such as the city of Minneapolis and MPLS
and the Minnesota Department of Transportation and MNDOT. It also scanned all
parts and letters in two names, and if the percentage of matched parts or letters is
beyond a predefined criterion, the two names are defined as the same. For instance,
George Washington and G. Washington would be judged as the same person, and
George Washington and George and Martha Washington are the same household.
We then reviewed all matches manually to minimize dataset errors.

Semiautomated extraction of migration chains from parcel data is not a panacea
for migration research, but it offers significant advantages over other approaches.
While it can identify housing attributes, such as square feet of number of rooms,
it does not provide characteristic of movers, such as age or size of household. It is
far more extensive in coverage than most sales databases, much less expensive than
surveys of individuals, and provides a level of specificity not found in higher-level
data such as the census. As a result, this novel approach to migration data provides
critical spatial and temporal information at resolutions sufficient to test theories of
individual migration.

6.3.2 Agent-Based Modeling of Migration

We develop an agent-based model of the modified intervening opportunity theory
presented above that is calibrated and validated against migration chains derived
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from parcel data. The ABM treats residential choice as primarily influenced
by distance and direction between movers and vacancies, updating the classic
intervening opportunity model with individual agents acting on real-world evidence.
Agent-based modeling has garnered a lot of attention for spatially explicit modeling
of urbanization and land use more broadly (Gimblett 2002; Parker et al. 2003a;
Irwin et al. 2009; see Batty 2008; O’Sullivan 2008). An agent-based model is a
computational system composed of semiautonomous software programs (termed
agents) that can represent entities ranging from atoms through households to cities.
Each agent in the system has its own resources, local context, knowledge, behavioral
rules, and goals. Importantly, agents interact with each other and their larger envi-
ronment. ABMs are increasingly used to understand urban issues such as growth and
sprawl, land use and transportation, and racial segregation and residential structure
because they explain how simple microbehavior leads to complex macro patterns
and processes (Torrens 2006; Fossett 2006; Salvini and Miller 2005; Miller et al.
2004). Using an ABM is important given the intractability of deriving analytical
solutions to a system of equations defined by real-world spatial data on thousands
of individuals outside of a simplifying mathematical approach or use of a statistical
model (Krzanowski and Raper 2001; Kwasnicki 1999). These approaches are
commonly used in part because they are powerful, but an ABM, by instantiating in
agents the underlying mathematical formulation of intervening opportunity theory,
allows exploration of the theory in a real-world context. Marrying mathematical
and statistical formalism with agent-based modeling is increasingly seen as a way
forward for theoretically derived and empirically tested models of human behavior
(Irwin et al. 2009).

The model developed here joins other related efforts that use ABM to understand
urban processes. There is a fast-growing body of research that applies this approach
to construct models centered on representing the decision-making processes of
individuals and their resultant mobility (Haase and Schwarz 2009; Torrens 2012;
Kennedy 2012; Parker et al. 2003b; Macy and Willer 2002; An 2012; Matthews
et al. 2007; O’Sullivan et al. 2012). These models vary broadly in their degree
of specificity and extent to which they are conceptually stylized models. Some
attempt to simulate classical urban residential processes and patterns, such as
monocentric cities and residential segregation (Benenson and Torrens 2004; Crooks
et al. 2008), with highly generalized and stylized models. Others build on these
simpler models via greater empirical specification, seeking to simulate urban
residential processes including gentrification (Jackson et al. 2008; Diappi and
Bolchi 2008; O’Sullivan 2002; Torrens and Nara 2007) and urban sprawl (Brown
et al. 2008; Fernandez et al. 2005; Loibl and Toetzer 2003). Other models go even
further by offering intricately detailed and data-rich explorations of urban processes
underlying complex residential choices within the urban sphere (Birkin and Wu
2012; Zaidi and Rake 2001).

This model is implemented in a spatially explicit agent-based model of land
change (Manson and Evans 2007). Agents are software objects, or semiautonomous
programs that have their own properties and routines, that exist in an environment
composed of raster and vector format layers. Importantly, agents update the
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environment by virtue of changing spatial layers after taking actions such as building
new houses or moving between houses. The process of modeling TCMA intraurban
migration in the model has four steps: (1) establishing the spatiotemporal context,
(2) populating agents and environment, (3) running the model to create vacancies
and simulate migration, and (4) validating model output (Fig. 6.2).

6.3.2.1 Step 1: Spatiotemporal Context

We model intraurban migration in the seven-county TCMA from 2005 to 2007.
As an organizing framework, we adopt standard housing submarkets that map onto
well-established neighborhoods as defined by the regional real estate board (see
Fig. 6.3). We interpolate the population of each submarket as given by regional
government surveys and land-use zoning to fit in these submarkets as a series of
raster data layers with a resolution of 100 m.

6.3.2.2 Step 2: Agent Specification

The chief actors are households in the owner-occupied housing sector, housing de-
velopers, and governmental institutions. Populating actor agents involves significant
simplification, because the core strength of agent-based modeling is illustrating how
complex results can arise from simple actions. We focus on three types of agent.

Institutional Agents They shape housing development and migration destination
options. The model incorporates the policy effects of the regional planning agency,
the Metropolitan Council, and local governments through a set of areas that are
off limits to new housing (land reserved for agricultural use or wetland offsets)
and areas that are designated for new development (defined by growth zones and
sewerage availability). These effects are coded as rules that denote locations where
development can and cannot occur.

Developers They expand the housing stock and add new vacancies into the housing
market to join the existing vacancies given by the parcel dataset. Developers build
new houses that are added to the vacancy lists. Their key characteristic is the rate at
which they build houses, which is given empirically by the parcel dataset as 5,392
per year. They build houses at random locations in areas designated by institutional
agents. Using developers is a straightforward way of ensuring the growth in housing
mirrors that in reality while maintaining an analog to the real world, but their
decision making is far simpler than that of real developers.

Households These are the primary agent of interest. Agents are placed in the study
area via a polygon file where the number of households within each spatial unit is
determined by the actual household population in a given neighborhood, listed in the
population data noted above. The migration rate is around 7 % per year for owner-
occupied housing and this number of households is placed. Households are assigned
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1.1 Specify a Spatiotemporal Framework

Vector: Scale and spatial unit

Raster: Extent and resolution
The seven county TCMA, 100 meter
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Temporal: Duration and resolution

2005-2007, one year
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Fig. 6.2 Main modeling steps
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Fig. 6.3 The spatial context of the model (a) modeled area, (b) land-use pattern, (c) spatial
configure based on housing submarkets used by realtors, and (d) detailed parcel map in the city of
Victoria
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Fig. 6.3 (continued)
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a random parcel within their neighborhood, but only one household can occupy a
parcel. Agent decision making is defined by the conceptual model developed above,
where households assess the probability of choosing a given vacancy (Pij) via either
distance-only or distance-plus-direction strategies. Households assess vacancies
comprised of existing vacancies and recently developed houses, choosing vacancies
per their move distance (given as a negative exponential distribution) and directional
bias (per a von Mises distribution) as specified by the migration chain data.

6.3.2.3 Step 3: Simulate Migration

A key advantage of ABM is that they can be straightforward to run; for once agents
are specified, and they are simply set in motion and dynamically interact with each
other and the environment. Each model year, three processes occur. First, institutions
apply policy rules on which areas can and cannot be developed. Second, developers
build houses in developable locations that are added to the vacancy list. Third,
households migrate, per direction and distance-and-direction rules, to new parcels
and place their old houses on the vacancy list. Based on actual moves given by
the parcel data, the estimated 
 in Eq. 6.1 for distance in the TCMA is 0.160 for
2005–2007 and the estimated � is 0.085 for Eq. 6.2 for direction (Fig. 6.4).
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6.3.2.4 Step 4: Model Validation

Model validation involves measuring how well the model duplicates real-world
phenomena. Model validation in the absolute or predictive sense is theoretically
infeasible as no single model can reproduce every aspect of a complex open system
(Oreskes 1998). That said, statistical measures can provide a useful benchmark for
assessing how well different complex model configurations perform (Windrum et al.
2007; Manson 2007). Validation requires comparing model results to empirical
data, to which end we used three different metrics: inner-migration rates, Syrjala
tests, and minimum spanning trees. As model migration rates are calculated from
actual relocation data, the number of modeled movers equals the actual number
of migrations and values of 
 in Eq. 6.1 and � for Eq. 6.2 for direction. The main
difference is therefore the spatial distribution of these migrant households. The three
approaches employed to assess spatial fit are well suited to the problem at hand given
that point pattern methods vary in their sensitivity and accuracy, as determined by
their capacity to discriminate between point patterns, remain stable over different
samples, and deal a range of underlying distributions (Wallet and Dussert 1998).

The three model validation approaches offer specific advantages while com-
plementing one another. First, inner-migration rates compare the percentage of
households that move within housing submarkets (i.e., those that stay within a given
area or neighborhood). We use a multiscalar model specification across several
submarket specifications to develop a strong measure of comparison between
modeled and actual migration. Second, Syrjala tests compare the spatial distribution
patterns of simulated and actual destinations of migrant households, offering the
advantage over many standard point pattern analyses in assessing not just locations
but also quantities across several scales of aggregation via a modified procedure
that apportions simulated and actual destination points. Third, use of minimum
spanning trees (MST) offers an optimized nearest-neighbor distance analysis that,
instead focusing on local nearest neighbors, describes the shortest, noncircular path
connecting all points. Each of these three approaches offers distinct advantages as
well as overlaps in validating how well simulated and actual migration match.

6.4 Results

In order to compare the simulated results with the actual distribution of migration
destinations, we employ inner-migration rate comparison alongside Syrjala tests
and MST to compare the similarity between the spatial distributions of actual and
simulated migration destinations. Both distance and distance-and-direction yield
realistic moves across scales of aggregation. Inner-migration rates at various scales
indicate that the model recreates realistic aggregate spatial patterns of intraurban
migration. Inner-migration rates measure the percentage of migrants who remain in
the originating spatial unit and indicate the extent to which simulated moves match
real relationships among vacant housing supply, move distance distribution, and



138 S. Sun and S.M. Manson

residential locations. In calculating inner-migration rates, it is necessary to correct
for the fact that inner-migration rates are defined by arbitrary spatial units (Turner
et al. 1989), in that small-area data can be combined at different resolutions. We
measured the inner-migration rates across a series of 29 regular grids ranging from
a coarse one 2 � 2 of grid cells to a fine-scaled 3 � 3grid for the entire TCMA. At
finer scales, up to a third of the grid cells fall outside of the seven-county region
given its irregular boundary and are not included in the count because they would
inflate the number of seemingly correct moves.

The simulated inner-migration rates mirror actual rates given by the parcel data,
which indicates that the model captures key relationships between vacant housing
opportunities, move distance distribution, and land-use patterns (Fig. 6.5a). Both
decision-making strategies—distance-only and distance-plus-direction—produce
inner-migration rates that are close to the actual values. Distance-and-direction
outperforms just distance, as illustrated by the total root mean squared errors, which
compares how well the simulation does against actual moves measured by inner-
migration rates (Fig. 6.5b).

Syrjala tests offer an advantage over inner-migration rates in that they demon-
strate how well a simulated distribution resembles an actual one (Syrjala 1996).
The Syrjala test compares the values of two sets of samples or, in the case of
intraurban migration, destinations tessellated onto a regular grid. The test produces
two measures, a Syrjala statistic and a p value. The Syrjala statistic measures the
differences between the cumulative distribution functions of the two samples. The
smaller the statistic, the closer the two sample distributions, while the p value
indicates the probability that the two samples are from the same population and
spatial distribution. There is no simple analytical solution for p; instead, it is
calculated through sample permutation and denotes the percentage of randomized
permutations that have bigger Syrjala statistic than the sample. If p is 0.03, for
example, only 3 % of these random distributions are more similar to the distribution
of one sample A than the other sample B, implying the spatial distribution of A is
statistically different from that of B.
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The Syrjala test of intraurban migration in the Twin Cities sheds light on complex
patterns. Key measures are the percentage of subdivisions (not the number of
households) that are not statistically different from the actual distribution (H1), the
mean Syrjala statistic S , and the mean p value p.S/. First, both decision-making
models score well on H1, where 71 % of subdivisions for the distance-only strategy
and 69 % for the distance-plus-direction strategy match reality. Second, the distance-
only strategy fares slightly better than distance-plus-direction strategy in recreating
real migration patterns given lower average Syrjala statistics (0.696 vs. 0.771) and
higher average p value (0.212 vs. 0.182). Overall, these two strategies are similarly
successful in how they replicate real-world migration destinations.

The minimum spanning tree (MST) method focuses more on the relative position
among intraurban migration destinations than the other two methods. Besides
providing trees for visual inspection, the approach generates simple mean path
length d and variance �(d), where a short path length indicates that points are
close to each other and a small variance means the points are evenly distributed.
An MST is network structure that connects all nodes with a minimum total distance
(Zahn 1971; West 2001). MSTs treat individual locations as nodes of a network
in which each is connected to neighboring locations, which preserves information
about the adjacency of nodes (Fig. 6.6). Importantly, an MST minimizes the length
of the path connecting location while guaranteeing that every location linked to
another one (Guo 2008). This approach preserves both absolute and topological
spatial characteristics in a way that heightens sensitivity and accuracy (Wallet and
Dussert 1998), as well as offering the benefit of identifying spatial hierarchies of
migration.

Two specific examples illustrate how MST analysis compares the spatial distribu-
tion of simulated and actual migration destinations. In the exurban city of Norwood,
migration extends toward the Minneapolis downtown (Fig. 6.7), which mirrors the
simulated results. However, both decision-making models also produce two extra
spurs on the MST that trend south and north, which is not consistent with the true
situation.

For the inner-ring suburban city of Robbinsdale, simulated results have a more
concentrated pattern than the real situation, implying that the average path length of
simulated move destinations is shorter than the reality (Fig. 6.8).

A comprehensive comparison using MST features provides insights into the
predictive powers of the two different decision-making strategies (Table 6.1). In
terms of the mean shortest path length d , the distance-only strategy produces
the smallest minimum root of mean squared errors (RMSE) compared to actual
migration. Both methods generate a smaller average path length than the real
migration data, which means more compact patterning of moves. The lower value
of the direction-plus-direction method compared with the distance-only method is
expected because the directional bias compresses the migration destinations into a
smaller region. The significantly shorter average path length of the distance-only
method, together with the lower variance, implies that the distance-based methods
tend to generate a more compact pattern than found in reality. In other words, they
will underestimate urban growth and sprawl.
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Fig. 6.6 Minimum spanning tree connecting intraurban migration destinations. Note: MST is
scale independent. School districts serve as background

6.5 Discussion

Agent-based modeling of intraurban migration illustrates the importance of interac-
tion between vacancy distribution and housing search, particularly in how complex
intraurban migration patterns exhibited in the aggregate can arise from simple
behavioral rules. The key finding of this work is that while it is a safe assumption that
people take into account a range of personal, social, and environmental factors when
making momentous housing decisions, distance-and-direction handily captures key
facets of intraurban migration.

The prime import of this work is that it demonstrates a straightforward means
for modeling the housing search process. The pure distance-based decision-making
strategy, when applied to appropriately specified housing vacancies, can generate
spatially realistic aggregate migration patterns. The addition of migration direction
improves the fit somewhat at the cost of introducing greater complexity, given that
it appears to capture the small but significant effect of directional bias even when
using just a single downtown center instead of actual working places as the source
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Fig. 6.7 Intraurban migration from Norwood

of this bias. Even then, underestimation of sprawl in suburban and exurban locales
points to a prolonged housing search, which implies that people who live in areas
with low population density tend to move less frequently and longer distances (see
also Van der Vlist et al. 2002).

This work provides a basis for more complicated, utility-comparison-based
migration models of housing search strategies. The modified intervening oppor-
tunity theory as instantiated in an agent-based model and empirically calibrated
with migration chains captures fundamental features of the migration process
and can complement deeper investigation of specific factors and locales. Alone,
they can help capture key migration dynamics in the absence of many kinds of
information usually needed to understand migration, creating a simple and powerful
perspective on migration and urbanization. When combined with other data, they
provide part of the foundation of a broader and deeper examination of intraurban
migration. Directions for future research include more complicated spatial and
social landscapes, such as a multi-nodal preference landscape or myriad public and
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Fig. 6.8 Intraurban migration from Robbinsdale

Table 6.1 Comparison of migration strategy using MST path length distribution

Decision-making strategy RMSE (m) d � (d)

Actual 4,962.08 4,626.66
Distance-only 3,908.477 3,655.031 3,042.45
Distance-plus-direction 5,051.047 3,042.447 2,713.88

private incentives related to housing, and consideration of how these landscapes
interact with personal and household attributes.

More broadly, this work addresses a key methodological challenge for many
urban modeling approaches, and especially for ABM, resisting the temptation to
make models complicated. With data becoming more plentiful and methods growing
increasingly sophisticated, models run the risk of committing what Lee (1973)
termed the key “sins” of urban models, namely, being hyper-comprehensive and
complicated at the cost of parsimony and generalizability (Lee 1973; Klosterman
1994). ABMs are at particular risk because their core strength is demonstrating
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how complexity arises from actions and interactions of simple agents. There is a
fundamental tension between the desire to create realistic models by incorporating
many urban processes and the desire to explain how features of a city emerge from
the simple interactions among entities such as households and properties (Clarke
2004; Brown et al. 2008). This tension gives rise to the need for simple, empirically
based agent-based models of migration that can complement the host of more
complicated models. Overall, this approach is deliberately straightforward in that
it does not examine the characteristics of movers or the broader organization of
housing—the primary foci of migration research—but instead centers on combining
long-standing geographical findings to provide a straightforward sociospatial con-
ceptualization of the intraurban migration process. Overall, this work complements
existing approaches while breaking new ground in understanding how individual
behavior scales up to the urban region.

This model also gives insight into how complexity emerges from simplicity
by examining how specific housing opportunities and individual housing search
behavior influence the aggregate pattern of intraurban migration. By combining
intervening opportunities theory with behavioral evidence on the spatial character-
istics of intraurban migration in an agent-based model, we can explore the extent
to which real-world migration patterns can result from simple behavioral rules of
household search in the context of housing opportunities. When households live
in an area with fewer housing opportunities, for example, they are less likely to
find a vacant house that meets their needs and thus require more iterations (i.e.,
more time) to accomplish their housing search. Importantly, while there are many
different conceptual frameworks seek to explain migration, and while this diversity
signifies healthy inquiry, it highlights the need for simple models of individual
actions coupled to broader, generalizable (and admittedly simple) models of urban
processes (Batty 2008, 2012). Methodological challenges abound, as evidenced
by both the large array of statistical and simulation approaches used in migration
analysis and the extent to which they are increasingly combined in hybrid models.
Many of these theoretical and methodological issues have at their heart the need
for better data, particularly on specific individuals and households who collectively
drive intraurban migration. Taken together, these challenges indicate a pressing need
for hybrid statistical and simulation models based on data on specific individuals to
develop stronger conceptual frameworks of how individual actions give rise to the
aggregate patterns and processes of intraurban migration.

Overall, while agent-based modeling can help explain complex systems by
integrating many possible interacting components, it is also a valuable way to
explore how straightforward behavioral rules of individuals can lead to processes
and patterns of complexity. By examining, incorporating, and validating spatial
behavioral theories, the modified intervening opportunities model offered here can
serve as a sociospatial foundation for more comprehensive urban models as well
as contribute to ongoing research on developing and validating theories of human
behavior in urbanization.
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Chapter 7
Quantifying Urban Diversity: Multiple Spatial
Measures of Physical, Social, and Economic
Characteristics

Timothy Rosner and Kevin M. Curtin

Abstract With long-standing trends of rural-to-urban migration, and resultant
increasing urban growth, the role the built environment plays in creating a livable
urban space will only increase in importance. This research examines Jane Jacobs’
four generators of urban diversity, as presented in The Death and Life of Great
American Cities, and attempts to quantify those concepts in a meaningful way.
This chapter presents a methodology for assessing each of the four generators –
dwelling density, block length, mix of building age, and mix of uses – as well as
a new composite Urban Livability Index that combines all four generators. The
resultant values are examined with measures of spatial autocorrelation to determine
areas within a city that could benefit from investment in one or more parameters of
livability. The methods presented here are intended to create a framework that may
be applied to any city in order to assess the built environment and provide useful
information to city planners and policy-makers. The District of Columbia is used as
a case study for the application and testing of this methodology.

Keywords Urban geography • Diversity • Livability • Jane Jacobs • Geographic
information analysis

7.1 Introduction

Urban structure is complex and multifaceted. With increasing urban populations,
the effect that the built environment has on the “livability” of urban spaces deserves
an increasing amount of consideration. Among some city planners, the concept of
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“New Urbanism” has been a motivating force. New Urbanism can trace some of its
concepts to the work of Jane Jacobs. In perhaps her most influential work The Death
and Life of Great American Cities, Jacobs focuses on what she describes as the four
generators of urban diversity. These are a fine-grained mix of primary uses; short
block lengths; a fine-grained mixing of building age; and sufficient dwelling density
to support urban vibrancy (Jacobs 1992, pp. 150–151). Many of these elements have
been incorporated into the design principles of New Urbanism, leading to a push for
the design of “livable” urban spaces.

In the Charter of the New Urbanism, the Congress for the New Urbanism states,
“we stand for the restoration of existing urban centers and towns within coherent
metropolitan regions, the reconfiguration of sprawling suburbs into communities of
real neighborhoods and diverse districts, the conservation of natural environments,
and the preservation of our built legacy” (Talen 1999). The Charter goes on to
embrace each of Jacobs’ four generators, stating that “neighborhoods should be
compact, pedestrian-friendly, and mixed-use”; “interconnected networks of streets
should be designed to encourage walking, reduce the number and length of
automobile trips, and conserve energy”; “appropriate building densities and land
uses should be within walking distance of transit stops, permitting public transit to
become a viable alternative to the automobile”; and “preservation and renewal of
historic buildings, districts, and landscapes affirm the continuity and evolution of
urban society” (Talen 1999). With such clear adoption of Jacobs’ ideas, it is easy to
see why Jacobs’ body of work remains a relevant topic of research.

Increasingly there is a movement among federal, state (provincial), and local gov-
ernments to invest resources in the interest of creating more “livable” environments.
While there is latitude as to what precisely constitutes a livable urban space, most
definitions include at least three of Jacobs’ generators of urban diversity, namely,
dwelling density, short (or frequent) blocks, and mixed primary uses. Often, it is
clear to those that are familiar with the many communities within a city which
locations need the greatest investment in one or all of these generators. Policy-
makers must be able to present these decisions in a defensible manner to the
public at large. The justification for these decisions is often presented though a
qualitative analysis. While the qualitative approach to such work holds great value,
and Jacobs’ work was almost exclusively qualitative in nature, the key elements that
she describes are quantifiable. This chapter seeks to quantify the four generators
that Jacobs describes in the form of a single index and four sub-indices in order to
permit a quantitative analysis of the livability of different communities within an
urban environment; here, Washington D.C. has been chosen as a case study.

While there has been considerable research into one or more of Jacobs’ four
generators of diversity, as shown in the following section, there does not appear to
be research that has considered all four dimensions in combination. Furthermore,
nearly all research have been conducted using boundaries that do not necessarily
reflect areas that constitute a neighborhood or have been conducted at too coarse
a level of detail (such as an entire Metropolitan area). In addition, the existing
research has largely been conducted in suburban locations, rather than true urban
environments. In her introduction, Jacobs clearly states that “I hope no reader will
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try to transfer my observations into guides as to what goes on in towns, or little
cities, or in suburbs which still are suburban. Towns, suburbs, and even little cities
are totally different organisms from great cities : : : to try to understand towns in
terms of big cities will only compound confusion” (Jacobs 1992, p. 16). This chapter
seeks to apply Jacobs’ four generators of diversity to a truly urban environment at a
fine-grained level.

This research does not seek to prove or disprove Jacobs’ four generators, but
rather to create a methodology that allows for their examination. More importantly,
it allows for the investigation and targeted investment by policy-makers toward the
success of city neighborhoods. Whether Jacobs’ ideas are ultimately validated or
not is not the issue here; they have, in fact, been incorporated into the tenets of
New Urbanism, Smart Growth, and Transit-Oriented Design. Given the popularity
of these ideas among modern planners, it is important to create useful methods for
their examination.

The following section presents a review of previous research in the area of
livability, followed by a description of the data used to conduct this case study.
Next, a detailed description of the methodology is presented, followed by the results
of the case study, the conclusions that can be drawn from this case study, as well as
possible future research. Please note that the quotations from The Death and Life of
Great American Cities presented in this paper are from the 1992 edition of the book,
although the original was published in 1961.

7.2 Background and Literature Review

When The Death and Life of Great American Cities was first published, it was
rightfully seen as an unfavorable critique of modern city planning. In the first
sentence of the book, Jacobs states explicitly, “This book is an attack on current
city planning and rebuilding” (1992, p. 3). Throughout the book, Jacobs names
not only the planning concepts to which she objects but also those that she sees
as their proponents. Among the parties she identifies on numerous occasions as
having had a detrimental effect on the city is Lewis Mumford, a contemporary
of hers and a respected planner to this day. Perhaps due in part to inflammatory
statements by Jacobs, the level of discord between Jacobs and Mumford has been
somewhat exaggerated. In reviewing the relationship between Jacobs and Mumford,
Mellon (2009) found that while Jacobs’ and Mumford’s ideas for what constituted
a healthy, diverse, livable urban environment differed, they both strove for the same
goal; Mumford is even noted as having encouraged Jacobs to write Death and Life.

While the friction between Mumford and Jacobs may have been embellished by
history, there is no doubt that she saw futility in the city planning efforts of the time.
However, the critique that she presented in Death and Life was not considered by
many to be objective (Laurence 2006), especially when compared to the physical
sciences being studied at the time. However, in the final chapter of Death and Life,
Jacobs discusses the scientific theories of Warren Waver and notes that cities are
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“problems of organized complexity, like the life sciences” (1992, p. 433). This
suggests that if we change the way that cities have been studied in the past, it is
possible to arrive at methods that produce master plans dramatically different than
those that Jacobs railed against. This is the void which the research presented in this
chapter attempts to begin filling.

The research presented here is related to other research in the fields of livability
and quality of life. Other authors have reviewed the literature relating to these
subjects from a broad perspective. These reviews find that the definitions of livability
are wide-ranging and note that “concepts such as livability, living quality, living
environment, quality of place, residential-perception and satisfaction, the evaluation
of residential and living environment, quality of life and sustainability do overlap,
and are often used as synonyms – but every so often are contrasted” (van Kamp
et al. 2003). It can be noted that some of these concepts, such as quality of life,
are usually studied by examining the perceptions of groups of people rather than
examining quantitative data that represents the built environment, as is being done
in the research presented here. Pacione (2003) also examines a large volume of
literature in the field and comes to many of the same conclusions as van Kamp et al.
(2003), viewing quality of life and livability studies as having many sub-domains
reflecting the researcher’s approach to the problem (objective vs. subjective, scale
of the study, etc.).

Two examples of the broad ranging nature of quality-of-life and livability studies
include the work of Doi et al. (2008) and the work of Wood et al. (2010). The
research of Doi et al. (2008) examines quality of life indicators in Takamatsu, Japan,
and includes the sweeping statement that “if individuals are enabled to make rational
choices about their location over the long term, they can ensure the highest [quality
of life] performance all the time.” This statement highlights the perceptive nature
of this particular study, which does not embrace the notion that individuals are
capable of making (and frequently do make) decisions that are irrational. While
these types of studies are important (what use is a safe neighborhood if everyone
in the community perceives it to be crime-ridden?), it is necessary to include non-
perceptive qualitative studies in the literature as well. Wood et al. (2010) attempts
to address this by examining the effects of the built environment on the sense
of community. However, this particular study used a study area that was largely
homogenous in nature, something acknowledged by the authors (Wood et al. 2010).
More robust studies are needed to bolster the understanding of the built environment
and its role in livability.

As noted earlier, many of the concepts that Jacobs introduced in Death and
Life have been incorporated into the New Urbanism movement. As such, much
of the modern criticism of these ideas comes under the umbrella of critiquing the
New Urbanism and Smart Growth planning ideals. Kristen Day (2003) argues that
in New Urbanism design, “diversity is not regarded as an existing characteristic
of communities : : : the assumption breaks down, however, when New Urbanism
is applied to urban neighborhoods in which diversity already exists.” This is an
important statement, in that it reflects how the ideas of Jacobs differ from how they
have been incorporated into New Urbanism. Jacobs actually sees the situation as the
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reverse of the New Urbanists, stating that, “to be sure, a good city neighborhood can
absorb newcomers into itself, both newcomers by choice and immigrants settling
by expediency, and it can protect a reasonable amount of transient population
too” (1992, pp. 137–138). Here, Jacobs sees the diversity as inherent in the good
neighborhood, with the ability to adapt and absorb, as opposed to a diversity that
needs to be created. To be fair, she also indicates that diversity is not inherent and
thus proposes the four characteristics that she sees as necessary for the creation and
sustainability of diversity. In the chapter entitled “Gradual money and cataclysmic
money,” she warns against sudden infusions of money that “[pour] into an area in
concentrated form, producing drastic changes” (Jacobs 1992, p. 293) which may
produce challenges because, according to Jacobs, “All city building that retains
staying power after its novelty has gone and that preserves the freedom of the
streets and upholds citizens’ self-management, requires that its locality be able to
adapt, keep up to date, keep interesting, keep convenient, and this in turn requires a
myriad of gradual, constant, close-grained changes” (1992, p. 294). The distinctions
between Jacobs’ original work and its incorporation into the New Urbanism
movement are important, since much existing research and critique has focused on
the principles of the New Urbanists, rather than the original ideas of Jacobs.

Many of the critics of Jacobs and the New Urbanist ideals focus on evaluating
them from a single perspective, such as traffic reduction. The research of Filion
and Hammond (2003) is an excellent example. The authors question the wisdom
of neo-traditional (i.e., New Urbanism) design, noting that they do not “necessarily
enhance pedestrian accessibility rates” and “are not as effective at diverting through
traffic away from residential streets as those of newer neighborhoods” (Filion and
Hammond 2003). Jacobs would likely take this statement as an example of a focus
on segregating uses (residential streets versus commercial corridors) and travel
modes. Jacobs herself did not see automobiles as an enemy; “we blame automobiles
for too much” (1992, p. 338). Instead, she views automobile use as a necessary,
though over-used, means of transport – and as especially critical for conducting
commerce. “To concentrate on riddance as the primary purpose, negatively to put
taboos and penalties on automobiles as children might say, ‘Cars, cars go away,’
would be a policy not only doomed to defeat but rightly doomed to defeat” (Jacobs
1992, p. 360). The conclusions of Filion and Hammond are likely due to their
decision to approach the research from a perspective that differs from Jacobs’ with
regard to the separation of travel modes and uses.

Similarly, much of the research into Jacobs’ four generators of diversity has
focused on only one or two of the generators in isolation. A number of studies
have been conducted into the effects of mixed-use development. Grant (2002) found
that “mixed use districts are becoming more segregated by class, and affordability
has not improved. Efforts to mix uses have not stanched the loss of economic
vitality for most Canadian cities.” However, this research focused on mixed use in
the suburban context, a location where Jacobs (as noted earlier) had no intention
of her ideas being utilized. Some research has focused on the level of physical
deterioration of structures (as a proxy for the success or failure of the community)
within a mixed-use context, finding that there are increased levels of deterioration
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in mixed-use neighborhoods (Taylor et al. 1995). The research of Wansborough and
Mageean (2000) examines mixed use in slightly broader terms, focusing on its role
in cultural regeneration. Their conclusion differs from Taylor et al. (1995), finding
that “the encouragement of ground-floor uses in mixed-use schemes has helped to
improve surveillance and soften the boundary between public and private space”
(Wansborough and Mageean 2000). Hirt (2007) explores the differences in zoning
between the US and German systems finding that, “under the German approach
each city block may end up in a different land use category, and this is conducive
to a much more fine-grained diversity of uses.” The research goes on to note that
US zoning techniques “reduce the idea of the mixed-use city, which Jane Jacobs
so eloquently advocated, to a small mixed-use part of the city” and “assume that
single-family residential areas are inevitable, quite unlike what we find in Germany.
This is precisely one of the reasons why Jane Jacobs criticized new urbanism” (Hirt
2007). This is further evidence that while some New Urbanists find inspiration in
Jacobs’ work, they have not strictly adhered to her philosophy.

There have also been studies that have focused on the density aspect of the
four generators of diversity in isolation from the others. Bramley and Power
(2009) explored the connection between density and social sustainability within
communities and note the trade-offs that occur with increased density. “ : : : Compact
forms worsen neighborhood problems and dissatisfaction, while improving access
to services” and “policy must therefore think in terms of trade-offs between social
objectives” (Bramley and Power 2009). Similarly, Nasar (2003) found that, “the
more condensed pattern of development and reduced use of auto did not yield
a higher sense of community: residents in [neo-traditional developments] and
[standard suburban developments] showed no difference in sense of community.”
With these two studies, it is not clear just how large of a role self-selection
has played in the results. How many of the residents have chosen to live in a
particular neighborhood for specific reasons, as opposed to those that live there as
a compromise, or through lack of alternative options? A resident that is present in a
neighborhood as part of a deliberate locational choice is likely to respond differently
than a resident that is there due to a lack of alternatives. This uncertainty strengthens
the argument that, as noted earlier, perception is only one aspect that should be
evaluated when considering the four generators of diversity.

In contrast to density and mixed use, there has been significantly less research
conducted regarding street length and mix of building age in the context of livability.
Cozens and Hillier (2008) conducted a review of literature regarding cul-de-sacs
and grid street networks (which can be considered a useful proxy for short street
segments) and concluded that “the evidence to support New Urbanism’s advocacy
for permeable street networks is unfounded or largely inconclusive at best.” The
authors suggest that cul-de-sacs have fallen out of favor due to their association
with the Garden City movement; the planning idea against which New Urbanism
is sometimes considered a reaction. However, as noted later in this paper, it is not
strictly the connectedness of a street layout that is in question with Jacob’s work; it
is actually the physical length of the network segments. For this reason, Cozen and
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Hillier’s conclusions must be taken in context and cannot be seen as a refutation
of Jacobs’ ideas about block length. Along with the limited research into the street
length – livability dynamic – there is essentially no current research available that
examines the role of building age mixes with regard to livability and diversity.

In addition to the research that has been conducted focusing on a single one of the
four generators of diversity, there have been a limited number of studies that have
attempted to include elements of at least three of the generators (again, building
age mix is absent in these studies). Miles and Song (2009) examined Portland,
Oregon, which has utilized many of Jacobs’ ideas in its planning and found that
the city “has been successful in creating neighborhoods at several economic scales
that feature not only the connectivity, accessibly, mixed land use and access to public
transit that characterize ‘good’ neighborhoods from a physical perspective, but also
‘good’ social environment indicative of strong ties and collective efficacy.” This
finding echoes the earlier research of Song (2005) who examined three different
communities that have utilized “smart growth” policies and found that “only when
all these dimensions – connectivity, density, mixed land uses, accessibility, and
pedestrian walkability – are combined can they create synergy by having amenities
that complement one another.” Regarding the four generators of diversity, Jacobs
herself writes, “all four in combination are necessary to generate city diversity;
the absence of any one of the four frustrates a district’s potential” (1992, p. 151).
Cervero (2002) also examines multiple parameters, this time strictly from the
perspective of travel mode choice. Utilizing Traffic Analysis Zones, he found that
“drive-alone and group-ride automobile travel fell relative to transit riding as gross
densities increased at both the trip origin and destination. And land-use mixture at
both trip ends lowered the probability of driving alone or ride-sharing versus taking
a bus or train, ceteris paribus” (Cervero 2002). These papers all underscore the wide-
ranging impact that Jacobs’ ideas about density, land use, and street networks can
have on the livability of the urban environment.

A number of researchers have emphasized the importance of scale when studying
the built environment. Tesfazghi et al. (2010) illustrated how having areas of
aggregation that are too large can mask the variability that exists at a lower level.
This reinforces the work of Openshaw and what he termed the “modifiable areal
unit problem,” noting that “the definition of these geographical objects is arbitrary
and (in theory) modifiable at choice; indeed, different researchers may well use
different sets of units” (1983). This highlights the importance of utilizing small,
yet standardized units of aggregation. Martinez (2009) chose to study quality of
life indicators at a disaggregated level stating that, “when indicators are generated
at high levels of aggregation they can give a misleading idea of the problem they
address and quantify.” Apparicio et al. (2008) who examined a mix of subjective
and objective quality of life parameters at an intra-urban level note that, “since
individuals’ daily lived environment is not on a metropolitan scale, it is important to
find the appropriate scale so that the indicators can express the heterogeneity of the
conditions faced by urban residents.” The research presents a convincing argument
to carefully account for the level of detail at which a study is undertaken.
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In light of the previous research conducted in the area of livability and the
built environment, the research presented here hopes to fill a gap by creating a
methodology that effectively quantifies each of Jacobs’ four generators of diversity
in a manner that may be applied to any large city, as well as creating a single
Urban Livability Index which combines all four parameters into a single ranking.
By creating a single index as well as four supporting indices, the methodology
presented may assist city officials in decision-making during the urban planning
process as well as provide a repeatable framework for other researchers in the area
of livability.

7.3 Case Study Data

For this study, the data is from two sources. The first source is the U.S. Census
Bureau, from which the block group geography is obtained. These serve as the
primary units of aggregation and examination for the study. The second source
is the Washington, D.C., city government that provided data for street centerlines
as well as land ownership data that includes a number of important attributes. All
data were projected in the Maryland State Plane Coordinate System (the official
coordinate system for the Washington, D.C., city government), which utilizes a
specific implementation of the Lambert Conformal Conic projection to minimize
the distortion of all measurements within the study area.

The block group file contains 433 block groups and covers the entire city,
including areas owned and operated by the federal government, such as the National
Mall. The street centerline file includes 34,138 street segments (including freeways,
alleyways, driveways, and access ramps) across the entire city, again, including
areas under federal jurisdiction, such as Rock Creek Parkway. The ownership file is
a point file that contains a single point for each ownership record within Washington,
D.C. This file contains a detailed land-use code for each point that corresponds to
a list of 109 possible land-use types designated by the city government. This file
was appended with data for building construction, renovation, and addition dates
for commercial and residential properties, also obtained from the city government.
This information was not available for some buildings, such as educational and
health-care facilities. The greatest challenge with the ownership data is the different
treatment that condominiums and rental units receive. While condominiums in the
same building are each represented as a unique point, an apartment building for
which a single owner rents all the units only contains one point in this file. This
represented a potential difficulty for calculating dwelling densities. However, the
same file that contained information on building date also contained information on
the number of units in each structure. Thus, apartments units that are represented
by a single point for multiple dwellings had the information on the number of units
appended to them.
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The datasets employed here are largely (and increasingly) available for major
cities worldwide. Street centerlines, cadastral data, and population aggregation data
are among the most common data layers maintained by city governments that are
employing Geographic Information Systems in their planning analyses. This bodes
well for the replication of this work, using the proposed methodology in cities across
continents.

7.4 Methodology

The method of research for this study consists of the creation of four individual
indices for each of Jacobs’ four generators of diversity, as well as a single composite
index combining all of the four individual indices. The individual indices utilize
data that is rescaled to range from 0 to 1. This facilitates the computation of the
final index by giving all four parameters equal weights. Other methods, such as the
utilization of a z-score, were considered, but this tends to force the parameter values
into artificial distributions which may or may not hold true between different cities
and require differing transformations, limiting the portability of the methodology.
By utilizing rescaled values, this methodology may then be applied to different cities
across global regions.

For the first parameter, dwelling density, each of the ownership points is assigned
to a block group, and the area for each block group is calculated. Next, all points
defined by their use code as residential (see Table 7.1) are selected. For properties
where a single dwelling is represented by a single point (single-family homes,
condominiums, etc.), a value of “1” is assigned to that point. For properties where
multiple dwellings are represented by a single point (such as rental apartments),
a value corresponding to the total number of dwellings is assigned. These values

Table 7.1 Truncated list of
residential uses for dwelling
density

Use Code Description

003 Residential-transient
011 Residential-row-single family
012 Residential-detached-single family
: : : : : :

022 Residential-apartment-elevator
023 Residential flats-less than 5
024 Residential-conversions-less than 5
025 Residential-conversion-5 units
: : : : : :

127 Coop-vertical-mixed use
216 Condo-investment-horizontal
217 Condo-investment-vertical
316 Condo-duplex
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Fig. 7.1 Street segment assigned to multiple block groups

are then totaled for each block group and a density is calculated from these totaled
values. Finally, these values are then rescaled from 0 to 1 utilizing the equation:

Vr D .Vi � Vmin/

.Vmax � Vmin/
(7.1)

where Vi equals the value to be rescaled, Vmin equals the lowest density calculated,
and the Vmax equals the highest density calculated. This results in all values being
scaled from 0 to 1, with values closer to 0 having a lower density than values closer
to 1. This maintains the natural distribution of the dataset.

For the second parameter, block length, each street segment (excluding alley-
ways, driveways, and ramps) is assigned to a block group or number of block groups.
In some cases, segments are assigned to as many as three different block groups. In
Fig. 7.1 a street segment is shown that is assigned to three separate block groups,
due to a number of “intersections” actually being over-/underpasses, meaning that
this segment runs uninterrupted through multiple block groups. Street segments
are assigned to block groups that they are either fully contained by or intersect
(including boundary intersection). However, segments that only share one vertex
with the block group are not included.

The total number of street segments and their total lengths for each block group
are then calculated and a mean street segment length for each block group is
determined. Finally, the mean street segment length for each block group is rescaled
from 0 to 1 utilizing the same format as Eq. 7.1, where Vi equals the value to be
rescaled, Vmin equals the lowest mean street segment length, and the Vmax equals
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the highest mean street segment length. In this case, values closer to 0 have a lower
mean street segment length than values closer to 1. For this parameter, the lower
values are preferred to the higher values.

While there are a number of methods that measure street connectivity, such as
the alpha and beta indices (Rodrigue et al. 2009, pp. 29–31), the connectedness
of the streets within a block group is not Jacobs’ primary concern. A large block
group with six long street segments and six intersections would have the same
level of connectedness as a small block group with six short street segments and
six intersections. However, Jacobs would find the small block group with shorter
street segments to be a better generator of diversity than the larger block group with
longer street segments. For this reason, the block length parameter examines the
mean street segment length, rather than the connectivity within a block group.

For the third parameter – mix of building age – each ownership point and
its associated dates are examined. Of the three available dates (construction,
renovation, and addition), the newest date is extracted and used for the following
calculations. This is based on Jacobs’ statement that “a successful city district
becomes a kind of ever-normal granary so far as construction is concerned. Some
of the old buildings, year by year, are replaced by new ones – or rehabilitated to
a degree equivalent to replacement. Over the years there is, therefore, constantly a
mixture of building ages and types” (1992, p. 189). First the standard deviation of
the dates of the points within a block group is calculated. Then once these standard
deviations have been calculated for each block group, they are rescaled from 0 to 1
utilizing the same format from Eq. 7.1, where Vi equals the value to be rescaled, Vmin

equals the lowest standard deviation, and Vmax equals the highest standard deviation.
In this case, values closer to 0 are assigned to block groups having a lower building
age difference than those with values closer to 1. For this calculation, a higher value
is preferred, since by Jacobs’ estimation, areas with the greatest variance are better
generators of diversity.

For the fourth parameter – mixed uses – two variant methods are used and
evaluated. While there are existing methods, such as binary assignments, where
geographic units are determined to be mixed use or non-mixed use, based on
different criteria (Krizek 2003), the methods employed here seek to create a scale
of “mixed-ness” within a block group. The first method consists of calculating the
distance between each residential point and the nearest commercial point within
the same block group. The mean of these distances is then calculated and rescaled
from 0 to 1 utilizing the same format from Eq. 7.1, where Vi equals the value to be
rescaled, Vmin equals the shortest mean distance, and Vmax equals the highest mean
distance. The result is values closer to 0 having a shorter mean distance between
residential and commercial locations than values closer to 1. Block groups that either
do not contain commercial points or do not contain residential points are assigned a
value of 1, indicating that they are the least mixed use.

The second method consists of calculating the mean center of all the residential
points within a block group and the mean center of all the commercial points within
a block group. The distance between the two mean centers is then calculated. This
distance is then rescaled from 0 to 1 utilizing the same format from Eq. 7.1, where
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Table 7.2 Truncated list of
commercial uses for
mixed-use calculation

Use Code Description

001 Residential-single family (commercial use)
031 Hotel-small
032 Hotel-large
: : : : : :

043 Store-department
044 Store-shopping center/mall
045 Store-restaurant
046 Store-barber/beauty shop
: : : : : :

048 Commercial-retail-condo
049 Commercial-retail-misc
051 Commercial-office-small
: : : : : :

067 Commercial-restaurant
068 Commercial-restaurant-fast Food
: : : : : :

465 Vehicle service station-market

values closer to 0 have a shorter distance between residential and commercial mean
centers than values closer to 1. As with the first method, block groups that either
do not contain commercial points or do not contain residential points are assigned a
value of 1, indicating that they are the least mixed use. For both of these methods,
“commercial” includes uses described as “retail.” See Table 7.2 for a truncated list
of the uses included as “commercial” in these calculations.

The idea behind both of these methods is that the calculations reflect the level
of intermixing of residential and commercial uses. The closer the shortest distance
between a residential location and a commercial location within the same block
group, the more intermixed these uses are; the closer the mean centers of these two
use types, the more mixed these uses are. For both methods, the Euclidean distance
is used for the calculations, as opposed to the Manhattan or network distance. This
is done purposefully to separate the measure of mixed-use as much as possible from
the actual structure of the street network, which has its own measure in the form
of street lengths. This will help to identify areas that may have an adequate street
network, but a poor mix of uses, or vice versa. Both methods are evaluated since they
may provide slightly different results, though one, the mean center calculation, is far
less computationally intensive than the other, making it more repeatable for other
cities. As with the block length parameter, lower values (closer to 0) are preferred to
higher values (closer to 1), since lower values are indicative of a more fine-grained
mix of uses.

It should be noted that in the interest of easing the computational complexity of
these calculations, they have both been limited to commercial and residential points
within the same block group. This creates the possibility, particularly for the mean
shortest distance method, that some residential points may be assigned a distance
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that is higher than if all commercial points (including those outside of the block
group) were used. While a more inclusive computation would be more robust, it has
been sacrificed with the intention of reducing the computational burden and with
the understanding that the final calculation is derived from the mean which aids in
mitigating the impact of these types of occurrences.

The final part of the methodology consists of a composite index, the Urban
Livability (UL) Index, which combines all four parameters into a single number. For
this composite index, the final score for each of the four parameters is combined.
In the case of the block length and mixed-use parameters, the negative of the values
is taken, since for these particular indices, lower scores are considered better than
higher scores. The final index is as follows:

ULi D di C .�ai / C bi C .�mi / (7.2)

where ULi equals the final composite index for the selected block group, di equals
the rescaled value of the selected block group for the density parameter, bi equals
the rescaled value for the selected block group for the block length parameter, ai

equals the rescaled value of the selected block group for the building age difference
parameter, and mi equals the rescaled value for the selected block group of the
mixed-use parameter. While this unweighted additive approach to the composite
index may appear simplistic, it corresponds most closely to the work of Jacobs, who
did not view one of the parameters to be any more important than the other three. For
the final calculation, these composite scores are again rescaled from 0 to 1 utilizing
the same format from Eq. 7.1, resulting values closer to 0 having a less “livable”
environment across the four parameters than values closer to 1.

For this research, all of the parameters have been examined at the census block
group level of aggregation. Jacobs carefully notes that her four generators of
diversity operate on a fine-grained level (Jacobs 1992, pp. 150–151). While it would
be ideal to examine each of these parameters on a block-by-block basis, there is
difficulty in doing so. The most challenging of the parameters to examine at such a
small geographic level is that of mixed use. Simple observation in most cities will
show us that having a wide variety of uses on a single block is highly uncommon.
Figure 7.2 shows an example from Northwest D.C. where uses are clearly delineated
by street block. Commercial uses are clearly aligned along U Street, while T Street
along with 15th and 16th Streets are all residential in nature.

It is far more common for uses to be mixed by adjacent blocks, such as a
residential block adjacent to an office block and a retail block. Thus, it becomes
necessary to have a level of aggregation that captures this mixture of uses. Census
block groups provide a convenient, yet sufficiently fine-grained level of aggregation
for this study, as shown by the number, 433, needed to cover the entire city.

The most apparent downside to utilizing block groups is their irregular size.
This creates a challenging situation for comparing certain parameters across block
groups – again, mixed uses present a challenge. For areas with particularly high
population counts, block groups are smaller. For especially dense populations, the
block group may only contain a single residential complex. This creates problems
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Fig. 7.2 Mix of uses by
street block

when calculating the percentage units within a block group that are residential as
opposed to commercial. Block groups that are geographically larger inherently have
the potential to capture more nonresidential uses. Some authors have addressed this
by utilizing a regularly spaced grid overlaid on the study area and aggregating by
each of the grid squares (Krizek 2003). However, by utilizing a grid that is unique
to that particular study, it becomes very difficult, if not impossible, to verify the
study using additional data. Here, by using block groups, there is the possibility
of examining the results of the research against certain types of census data (such
as poverty rates), used as proxies for livability. The utilization of readily available
block groups also facilitates the reproduction of this research within other cities and
by other authors. Other researchers have utilized larger areas of aggregation, such
as Traffic Analysis Zones (TAZs) or census tracts. By way of comparison, there
are 320 TAZs within Washington, D.C. (which are not necessarily contiguous, thus
leaving some areas of the city unstudied), and there are 188 census tracts – far fewer
than the 433 contiguous block groups used in this study.

7.5 Results

After processing the data according to the methodology outlined above, a number of
interesting patterns emerged. Beginning with the first parameter, dwelling density,
the number of dwellings per acre ranged from 0 to 65.97, with a mean of 11.22
and a standard deviation of 10.02. Figure 7.3 shows the distribution of the densities,
as a histogram, and illustrates the rescaled values as an unclassed choropleth map.
Although we do not perform a formal test of similarity to the Poisson distribution
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Fig. 7.3 Histogram and map of dwelling density rescaled values

here, this empirical distribution and the descriptive statistics suggest that the Poisson
distribution may be useful for future research where a reference distribution is
of value. The spatial distribution is as expected, with high densities especially
evident in the Foggy Bottom, DuPont Circle, and Columbia Heights/Mount Pleasant
neighborhoods, and a wide mix of densities in the Southeast quadrant of the city, east
of the Anacostia River. Low densities are clearly present in upper Northwest as well
as the Northeast quadrant and along parts of Rock Creek Park and the National Mall.
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For the second parameter, block length, the mean block length for each block
group ranges from 154 to 737 ft, with a mean of 276 and a standard deviation of
93. Figure 7.4 shows the distribution of rescaled values of the mean block lengths
as both a histogram and an unclassed choropleth map.

For the third parameter, building age, the results reflect the standard deviation
within each block group. Of the 180,836 ownership points, 14,339 (7.9 % of the
dataset) did not have any valid year information available. These were excluded
from the analysis, resulting in the use of 166,497 points. The invalid points were

Fig. 7.4 Histogram and map of mean street segment length reclassed values
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evenly distributed throughout the city. This was verified by calculating the mean
distance to the nearest neighbor for the points with, and the points without, valid
year information.

Points with valid year information had a mean nearest neighbor ratio (observed
over expected) of 0.48, while points without valid year information had a ratio of
0.46. Using the valid points, the standard deviation for each block group ranged
from 0 to 53. These standard deviations had a mean of 21.78 and a standard
deviation of 5.67. Figure 7.5 shows the distribution of the standard deviations

Fig. 7.5 Histogram and map of reclassed values for building year difference
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as a histogram and shows the rescaled values as an unclassed choropleth map.
Some of the greatest variability is located in the areas around Shaw/Mt. Vernon
Square as well as Historic Anacostia and Columbia Heights. These are all areas
where are currently undergoing significant new development and seeing noteworthy
demographic changes.

The area of the National Mall again stands out as something of an anomaly. This
is largely explained by the small number of address points within this block group,
thus having even one very new structure can easily alter the standard deviation for
this area.

For the fourth parameter, mixed primary uses, the results have been calculated for
the two methodologies: mean shortest distance between residential and commercial
locations and the distance between the mean center for residential locations and the
mean center for commercial locations. For the mean shortest distance, the values
calculated range between 18.1 and 3,047 ft with a mean of 499.2 ft and a standard
deviation of 482.1 ft.

A total of 94 block groups contained either no residential locations or no
commercial locations and thus were automatically assigned the highest rescaled
value of 1. Figure 7.6 shows the rescaled values as a histogram and the spatial
distribution of the rescaled values as an unclassed choropleth map.

For the second method, distance between residential mean center and commercial
mean center within a block group, the values ranged from 14.37 to 3,397.49 ft with
a mean of 555.51 and a standard deviation of 506.44. The same 94 block groups
with no mixed use were automatically assigned a value of 1. Figure 7.7 shows
the rescaled values as a histogram and the distribution of the rescaled values as
an unclassed choropleth map.

While both methods produce similarly shaped distributions, it is clear that the
results are spatially dispersed differently. The nature of the mean center method
means that it is less sensitive to localized conditions, making it a less suitable
method for measuring uses at a fine-grained level. Suppose, for example, that a block
group contained a cluster of residential units in the center and contained commercial
uses along its boundary; the mean center method would place mean centers for
both residential and commercial very close to one another, even though they are
not highly interspersed. The same method would produce similar results for a
block group that contained evenly distributed commercial and residential locations,
even though, by Jacobs’ estimation, this second example contains a preferential
configuration. For this reason, the first method, the mean shortest distance between
residential and commercial locations is preferred. This first method is more sensitive
to clustering and dispersion within the block group.

As noted in the methodology section, it was thought that both of these measures
might be sensitive to the size of the block group for which they are calculated;
however, this proves not to be the case. Figure 7.8 is a scatterplot of the size of each
block group against its rescaled value for the mean shortest distance calculation.
Figure 7.9 is a scatterplot of the size of each block group against its rescaled value
for the mean center difference calculation. In both instances, there is only a very
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Fig. 7.6 Histogram and map for mixed-use using the mean shortest distance rescaled values

weak correlation between the two parameters, primarily that extremely large block
groups have a higher likelihood of not having a sufficient mix of uses – the opposite
of what was expected.

In order to examine possible spatial relationships between the two methods for
calculating mixed use, a map was created that depicts the difference between the
two calculations for each block group. Figure 7.10 shows the difference when the
rescaled values for the mean center method are subtracted from the rescaled values
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Fig. 7.7 Histogram and map of mixed-use using the mean center difference rescaled values

for the mean shortest distance calculation. Higher numbers indicate that the mean
shortest distance method provided a higher value than the mean center method. A
visual inspection of this map does not reveal any clear correlations relating to the
location of block groups and under which method they perform better. A detailed
examination of possible correlations may be warranted as an area of future research,
as the possibilities are too numerous to explore within the context of this particular
study.
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Fig. 7.8 Mixed-use mean shortest distance vs. block group size

Fig. 7.9 Mixed-use mean center difference vs. block group size
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Fig. 7.10 Difference map for mixed-use methods

Created using the preferred method, Fig. 7.6 is as expected. Many of the areas
containing the highest-quality use-mixes are contained in the central city along with
the area just north of the central business district (especially the Columbia Heights
area) as well as parts of Georgetown and Capitol Hill, including the H Street NE
Corridor. There are other high-quality pockets, such as the area of Historic Anacos-
tia and the northern section of Connecticut Ave., NW, near Tenleytown/American
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University. The poorest performing areas include the National Mall as well as Upper
Northwest, which consist primarily of single-family homes.

For the final, composite (UL) index, the more sensitive mean shortest distance
mixed-use parameter was used. The composite scores range from �1.75 to 1.16,
with a mean of �0.005 and a standard deviation of 0.51. Figure 7.11 shows the
distribution of the rescaled composite scores as a histogram and as an unclassed
choropleth map.

Fig. 7.11 Composite index frequency distribution and map
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An examination of Fig. 7.11 shows that there are some well-defined areas of
maximum livability within Washington, D.C. The area between Dupont Circle and
Shaw/Mt. Vernon, extending north to Columbia Heights, as well as the general area
of Capitol Hill clearly appear to be the most livable areas within the city across all
four parameters. The UL index indicates where all four parameters are performing
well. The two high-performing areas in the composite index consistently perform
well across parameters. In other areas of the city, such as Georgetown and Historic
Anacostia, the UL index shows them performing at a mixed level.

In order to better understand the locational relationships of each of the parameters
and the UL index, an analysis of spatial autocorrelation was performed. First,
in order to confirm the presence of spatial autocorrelation (clustering), a general
Moran’s I statistic was calculated for each of the parameters and the UL index, using
a distance threshold of just over one mile. While subjective, this distance can be
considered a reasonable distance to approximate the area that might be considered a
neighborhood for a resident of the subject block group, whether walking, bicycling,
driving, or taking transit for the mode of travel. Table 7.3 presents the Moran’s I
statistic and associated z-score from each of the parameters and the UL index.

From the Moran’s I statistic, it is confirmed that each of the parameters and the
UL index exhibit significant spatial clustering, as Table 7.3 shows both I and the
associated z-score for all parameters are greater than 0. However, this fails to inform
as to whether high or low values are clustering together.

For this final step in the cluster analysis, the Getis-Ord Gi* statistic was examined
for each parameter and the UL index, again, using a threshold of just over a mile.
Figure 7.12a presents an unclassed choropleth map of the results of the Getis-Ord
Gi* calculation for the dwelling density parameter. From this map, it becomes clear
that dwelling density exhibits strong clustering of both high and low values, with
high values indicating higher densities, and low values indicating lower densities.
Figure 7.12b is an unclassed choropleth map of the Getis-Ord Gi* calculations for
the mean street segment length parameter. This map depicts a strong clustering of
low values and a slightly weaker clustering of high values. Here, low values indicate
shorter mean street segment length, while higher values indicate longer mean street
segment lengths. Figure 7.12c is an unclassed choropleth map of the Getis-Ord
Gi* calculation for the building year difference parameter. This map, again, shows
clear clustering of high and low values. Here, high values indicate a greater range
of building ages while lower values indicate a narrower range of building ages.
Figure 7.12d is an unclassed choropleth map of the Getis-Ord Gi* calculations for
the mixed-use parameter (again, using the preferred mean shortest distance method).

Table 7.3 Moran’s I and z-scores for all parameters and the UL index

Dwelling density
Mean street
segment length

Building year
difference Mixed use UL index

Moran’s I 0.44 0.25 0.18 0.28 0.4
Z-score 36.55 20.45 15.38 23.2 33.18
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Fig. 7.12 Results of Getis-Ord Gi* statistic for local clustering of each livability measure.
(a) Getis-Ord Gi* results for dwelling density. (b) Getis-Ord Gi* results for mean street segment
length. (c) Getis-Ord Gi* results for building year difference. (d) Getis-Ord Gi* results for
mixed-use, mean shortest distance

This map shows a very strong clustering of low values and a weak clustering of high
values. Here, low values indicate a more mixed-use environment, while high values
indicate a less mixed-use environment.

Finally, Fig. 7.13 shows an unclassed choropleth map of the Getis-Ord Gi*
calculation for the UL index. This map shows a very strong clustering of high values
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Fig. 7.13 Map of the Getis-Ord Gi* statistic for the composite UL index

as well as a strong clustering of low values. Here, high values indicate a higher
composite “livability,” while low values indicate a lower “livability” index.

Each of the maps presented in Figs. 7.12 and 7.13 confirm the analysis of high
and low-value areas noted earlier in the results, but they also serve to highlight the
degree to which the parameters do tend to cluster both at the high and low ends of
the spectrum.
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Table 7.4 Correlation coefficients between individual measures and the composite UL index

Dwelling density
Mean street segment
length

Building year
difference Mixed use

Correlation coefficient 0.568 �0.627 0.223 �0.863

To further examine the relationships between the UL index and the component
parameters, correlation coefficients were calculated between the rescaled values for
each of the parameters and the UL index, as presented in Table 7.4.

Clearly the mixed-use parameter shows the strongest correlation, followed by
the mean street segment length parameter and the dwelling density parameter.
The building year difference parameter shows the weakest correlation of the four.
For both the mean street segment length parameter and the mixed-use parameter,
lower values are preferable, so a negative correlation coefficient is to be expected.
Based on these coefficients, it is expected that the mixed-use parameter, mean
street segment length parameter, and the dwelling density parameter have the
greatest influence over the final outcome of the UL index. While the building year
difference parameter does display a correlation, it is weak in comparison to the other
parameters. This is a parameter that has generally been overlooked in the much
of the previous research, but is also a parameter that may be important from the
perspective of preserving affordable housing and creating a wider socioeconomic
demographic within a neighborhood, so this may warrant more detailed analysis in
the future.

7.6 Conclusions, Discussion, and Future Research

The research presented here set out to place Jane Jacobs’ four generators of diversity
into a quantitative and repeatable methodology for use in public discourse of
city planning. The methodology employed provides a fine-grained look at each
of Jacobs’ generators as well as constructing a new Urban Livability (UL) Index
comprised of all four parameters in concert. Overall, the UL index provides a
snapshot view of high and low performing areas within the city, while each of the
individual parameters can be used to further investigate the level of performance for
the four component metrics. These five indices, when taken together, can provide
useful information to public agencies and policy-makers as they make planning
decisions both at the citywide and neighborhood levels.

Looking first at the results of the dwelling density parameter, the methodology
presented here does an acceptable job of presenting the current status in D.C. While
there are some shortcomings, such as the possibility that a portion of a block group
contains land area that cannot reasonably be expected to contain dwellings (e.g.,
parkland or large water features), this is more a limitation of the data than the
methodology. This type of over-calculation of area can be adjusted for by an astute
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investigator, provided the appropriate data is available. Additionally, the dwelling
location data used here may be among the most difficult to obtain for a researcher
in another city. Although such cadastral data are becoming more widely available,
that availability is not universal to be sure. In that case, the number of households
per census block could be used as a substitute. It is clear that Jacobs was concerned
with dwellings themselves, rather than households, and we know that the census
can – and not infrequently does – associate more than one household with a single
dwelling. The measures are therefore not identical; however, the difference this
substitution would create in the results is unknown, it may be small, and it may
be place dependent. A test of the effect of this substitution is an area for future
research.

The next parameter, block length, is also well represented using the method
applied here. It is noteworthy that this method is sensitive to the inclusion of limited-
access roadways, such as interstates. This is, from Jacobs’ perspective, a benefit of
the methodology, as expressways and the like are viewed by Jacobs as detrimental to
the city, particularly when they form a barrier that negatively influences neighboring
communities (Jacobs 1992, pp. 258–259). Thus, having a methodology that is
sensitive to these types of intrusions can be powerful. This is illustrated in the case
study presented here, by the lower ranking that is given to the Georgetown area, due
to the presence of the Whitehurst Freeway. The presence of the Southeast-Southwest
Freeway in the Southern quadrants of the city also plays a significant role in the
outcomes in those locations with regard to the block length parameter. It is noted
that the block length processing was quite computationally intensive. In the future it
may be appropriate to investigate other surrogates for block length, such as number
of intersections per unit area.

The third parameter, mix of building age, is also well quantified using the
methodology presented here. Perhaps the most challenging aspect of this parameter
is that, given few enough structures, it can become excessively sensitive to the range
of building ages. Thus, in the case study, the area of the National Mall performed
very well, due to the low number of structures within this area. However, the casual
observer may disagree with this assessment, particularly given the large geographic
area that this particular block group includes. Thus, in terms of the spatial mixing of
building ages, the National Mall performs poorly, since buildings of differing ages
are not necessarily in close proximity to one another. This is perhaps the parameter
of Jacobs that is most open to interpretation, since Jacobs provides little guidance
for what range of ages (20 years? 50? 100?) is most beneficial to the district in
question. In the future, the exploration of an entropy or diversity index to measure
lack of diversity among the building ages may prove fruitful, particularly if a spatial
parameter can be included.

The fourth parameter, mixed-primary uses, is the most complex of the four
parameters to calculate. However, the method presented here may represent an
improvement over other methods that have been utilized in the past. This method
provides the level of “mixedness,” rather than simply presenting a binary variable, or
counting the number of different uses within an area, ignoring their actual proximity
to one another within that area. The results of the calculation appear to provide
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Table 7.5 Correlation coefficients between all measures

Dwelling
density

Mean street
seg length

Building year
difference Mixed use UL index

Dwelling density – �0.320 �0.114 �0.388 0.568
Mean street seg
length

�0.320 – �0.139 0.285 �0.627

Building year diff �0.114 �0.139 – �0.009 0.223
Mixed use �0.388 0.285 �0.009 – �0.863
UL index 0.568 �0.627 0.223 �0.863 –

a result that is close to what the casual observer who is familiar with the city
might expect. Future research should explore ways to build on this methodology
by effectively incorporating a richer mix of uses.

In addition to the correlations presented in Table 7.4, it is important to examine
the correlations between each of individual parameters. Table 7.5 shows the
correlation coefficients between each of the individual parameters, as well as the
UL index.

Looking at each of the coefficients, it is clear that some parameters exhibit
stronger correlations than others. The mixed-use parameter and dwelling density
parameters appear to exhibit the strongest correlations between each of the other
parameters, while the building year difference parameter displays the weakest
correlations. Although this analysis is not sufficient to draw strong conclusions,
when paired with the strong correlations to the UL index for these two parameters,
it suggests that mixed-use and dwelling density are perhaps the most important of
the four individual parameters in terms of their contribution to the overall livability
of the built environment. Jacobs, as noted earlier, would likely dispute the finding
that any of the four parameters is more influential than the others.

In order to explore this further, some initial within-city scenario testing was
conducted. From the perspective of a city official, it is important to know that
if a targeted investment can be made in only one parameter, which parameter
would provide the greatest improvement for that investment. The scenario tested
is one where the 43 (10 % of the total) bottom performing block groups in a
particular parameter are targeted such that their raw parameter input is increased
(or decreased) to match the raw value of the best performing block group for that
parameter. The subindex is then scaled with these new values and the change in
the raw UL is observed. This was repeated independently for each parameter. For
all block groups outside of the bottom 43 in each parameter, a reduction in the
UL value is observed. This is due to the fact that this test is in effect shifting the
distribution such that the bottom 10 % becomes top performers, making all other
values (aside from the one previous top performing block group) lower, because the
values are scaled relative to one another. Thus, only the effect of this change on the
43 block groups tested is noted below. This testing does provide some challenges
for the mixed-use parameter. This is due to the 94 block groups that contained either
no residential or no commercial. Originally, these block groups were automatically
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Table 7.6 Results of scenario test for bottom 10 % of block groups

Dwelling
density Street length Building year

Mixed use
(exclusive)

Mean change in raw UL C0.983 C0.580 C0.795 C0.507
Median change in raw UL C0.980 C0.539 C0.777 C0.447
Minimum change in raw UL C0.969 C0.408 C0.714 C0.382

given the worst value; thus, the bottom 10 % fall into this category. When these
block groups are given the best value, they all show a change of plus 1 in the UL
index. Given the uniform nature of this response for the mixed-use parameter, these
94 block groups were not examined, and the bottom 10 % was chosen selected
from the block groups for which a valid distance had been calculated (i.e., they
contained both residential and commercial points). Table 7.6 presents the results of
this scenario testing.

For all parameters, when the bottom 10 % of block groups are targeted in such a
manner that they become equal to the highest performing block group, an investment
in dwelling density produces the greatest effect on the UL index. This is followed by
the building year parameter, the street length parameter, and, finally, the mixed-use
parameter. However, as noted earlier, given the high number of block groups that
contained no mix of uses, this parameter would hold the greatest influence if those
block groups were targeted. This suggests that while adding a mix of uses to areas
that currently have none can have a dramatic effect (an increase of 1 in the UL
index), adding a greater mix to areas that already contain some mixing does not
result in a similar improvement. Given the results of this testing, it suggests that
while all of the parameters have a significant influence on the UL, it may make
sense for city planners to target density and (only for areas where no mixing is
present) the mixed-use parameters. To a lesser extent, a focus on maintaining a
diverse mix of building ages may also be beneficial. This parameter can be difficult
to influence since buildings cannot be artificially aged, leaving the options of new
construction and preservation of older structures. It is important to note that these
conclusions may only be applied to the case study city, Washington, D.C., and
not necessarily to other cities. A wider study that includes the same methodology
applied to other cities would be needed to draw wider conclusions. This testing
highlights the importance of utilizing the UL index in conjunction with the four
subindex calculations. A skilled planner may locate areas in need of improvement
using the UL index and then consult the sub-indices to evaluate which parameter
will have the greatest impact on that location.

Ideally, city planners (perhaps to Jacobs’ chagrin) and policy-makers can utilize
the individual parameters, along with the UL index to focus revitalization efforts
on specific locations within a city. For example, if a particular section of a city
is expected to undergo massive redevelopment, and it has also been identified as
having excessively long street lengths, the city may choose to make the inclusion
of shorter street lengths a prerequisite for any redevelopment or rezoning efforts.
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An effort along these exact lines is currently being undertaken in the Crystal City
section of Arlington County, just outside of Washington, D.C. This area consists of
numerous superblocks and the county has included the addition of new cross-streets
to break up these blocks as a part of its transportation plans for this highly urbanized
area as it undergoes redevelopment. In a similar vein, using a combination of the
mixed-use parameter and UL index, city planners may identify large areas with a
poor mix of uses. This may lead to a reevaluation of zoning policies within the
city, in order to encourage a healthier mix of uses at a fine-grained level. However,
as noted by Hirt (2007), even the current efforts to modify US zoning laws fall
short of what European communities have achieved with their zoning laws. The use
of the methods presented here may open up new ideas regarding zoning laws that
encourage a more effective mix of uses under all conditions.

Based on the cluster analysis presented in the results section, it is clear that
all of the parameters as well as the UL index exhibit clustering at both ends
of the spectrum. While cause and effect is difficult to determine, it is possible
that this clustering is an effect of spillover from successful neighborhoods. As a
particular location becomes more desirable, those individuals and families who
wish to live there, but may not have the resources, may be attracted to the edges
of that neighborhood and over time begin to emulate the successes of the desired
neighborhood within their own. If this is true, it may be possible for city planners
to “seed” a neighborhood by focusing on creating a highly livable location that may
then influence the surrounding areas over time. Obviously, this is a process that can
take decades, so it is difficult to gage the effectiveness of this strategy in the short
term. It is also important to note, however, that Jacobs’ ideas about livability do
not necessarily mirror that of the entire population. Thus, it becomes important to
retain areas that are well suited to all segments of a city’s population. There are
some individuals that are willing to sacrifice the convenience of nearby commerce
and entertainment for the urban retreat offered by a single-family home.

While the methods presented here are structured in a manner that allows them to
be applied across a number of cities, it is important to remember the unique nature
of individual cities. As these methods are applied to other cities, researchers may
choose to strengthen the methodology by taking into consideration the unique nature
of the subject city and the data that may be available. For example, the Washington,
D.C., case study could be strengthened by dealing more effectively with the unique
presence of the Federal government within the city. The city contains an inordinately
high percentage of federally owned land that is not subject to the ordinances of
the local government; indeed Congress may overrule decisions made by the city
council. In order to account for this, it may be more useful to exclude all federal
properties and land area from the analysis or place a negative value on these
particular locations. Similarly, in a city with a significant number of waterways or
parkland, these areas may be excluded or treated in a different manner in order
to strengthen the results of the analysis. However, it was not the purpose of this
research to provide a study strictly of one city, but to provide a framework that can
be extended to other cities.
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Ideally, this research also lays the groundwork for future research into livability
at a detailed intracity level. This includes the examination of possible correlation
between the indices presented in this research and the outcomes that Jacobs’ sought,
such as low crime rates, socioeconomic diversity, and “24-hour” neighborhoods. It
may be of particular interest to examine the correlation between these instantiations
of Jacob’s urban diversity and diversity along racial or ethnic lines. Also, there
is more research to be conducted regarding the precise locational nature of the
parameters; do some parameters, such as dwelling density and street segment
length have a tendency to co-locate (as the correlation coefficients presented here
suggest)? Furthermore, it would be useful to have this methodology applied to
other major world cities and have corresponding subjective methods (such as
collecting resident’s perceptions of their neighborhoods) applied to these cities in
order to begin building a broad-based assessment of Jacobs’ theories. We encourage
researchers to incorporate the characteristics of their own city – where the city lies
in the urban life cycle, what are its economic advantages or physical characteristics,
what are its citizens’ beliefs regarding livability – in order to more holistically
determine how these measures could contribute to policy and practice.
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Urban Transportation and Mobility



Chapter 8
Everyday Cycling in Urban Environments:
Understanding Behaviors and Constraints
in Space-Time

Godwin Yeboah, Seraphim Alvanides, and Emine Mine Thompson

Abstract Cycling in British cities is increasing but at a slow rate nationally. The
ultimate realizations of cycling benefits in urban areas, such as cities in North East
England, are hampered by lack of appropriate data to aid in our understanding
of cycling behaviors to inform policy strategies and improve cycling uptake as
well as data processing methodologies. Several efforts are being made to enhance
data availability to understand cycling behaviors to inform policy strategies for
which this research aims to contribute by providing evidence on the use of the
area’s cycling infrastructure by utility cyclists. A proposed corridor space analytical
approach was used to analyze the newly collected 7-day GPS data from 79
utility cyclists to estimate the extent to which respondents used the area’s cycling
infrastructure. The data was used together with the area cycling infrastructure data
from Newcastle City Council. Findings from the corridor space analysis suggest
that 57.4 % of cyclists from sample prefer cycling on the cycle network, while
33.8 % cycle outside the cycle network with 8.8 % near the cycle network. Also,
for all cycle trips, men tend to dominate in cycling on and near the cycle network.
Both the males and females tend to use the cycle network more than off the network
for utility trips. With 42.6 % of cyclists still cycling outside the designated cycle
network, it is imperative that policy initiatives are aimed towards investing in cycling
research and infrastructure to further deepen our understanding to encourage cycling
around the study area. It was also suggested that the captured detailed actual route
choice preferences could serve as input to the development of agent-based models
towards understanding cycling behaviors around the study area.
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8.1 Introduction

There is demand for sustainable ways of living due to problems such as traffic
congestion, population growth, climate change, low physical activity, sedentary
lifestyles, and health-related issues (e.g., obesity & noncommunicable diseases) to
name a few (GAPA 2010a, b). Motorized transport contributes to greenhouse gas
emissions which also impacts on climate change. Cycling as a means of transport
has the potential to contribute to sustainable way of living, thereby ameliorating
these problems; hence, understanding cycling as means of transport is paramount.
This research is partly a response to calls from UK National Institute for Health and
Clinical Excellence 2012 recommendations as well as urban transport literature for
further research to incorporate the investigation and discovery of cyclists’ perception
and experiences (Forsyth and Krizek 2011; Skinner and Rose 2007; NICE 2012), to
support urban designers as well as cycling policy interventions and transportation
engineers, and thereby to increase cycling uptake to ensure sustainable means of
transport with low impact on environment. The ultimate realizations of cycling
benefits by cities – such as cities in North East England – are hampered by lack of
appropriate data to inform policy strategies to improve cycling uptake as well as data
processing methodologies. Moreover, several efforts are being made to enhance data
availability to understand cycling behaviors to inform policy strategies for which
this research aims to contribute by providing evidence on the use of the area’s
cycling infrastructure by utility cyclists. Utility cycling is defined as any cycling
not done primarily for fitness, recreation (such as cycle touring), or sport (such as
cycle racing) but as a means of transport and covers activities such as traveling to
work and to shops, running errands, seeing friends and family, and going to locations
of other social activities. This definition extends Skinner and Rose’s (2007, p. 84)
definition which suggests that utility cycling can be defined as “day-to-day cycling
for mundane trips to local shops, to work or to school.” In this chapter, the term
utility is viewed as “practical, day to day” purposeful trips (LTSA 2004, p. 10) and
encompasses cycling for commuting purposes.

The purpose of this research is to provide evidence on the use of the area’s
cycling infrastructure by experienced utility cyclists. This research has for the
first time facilitated the collection and analysis of detailed adult utility bicyclists’
route choice preferences in the UK, bringing substantive empirical evidence for
understanding daily cycling behaviors. Sener et al. (2009, p. 513) argue that
bicyclists’ demographics such as gender, among other bicyclist characteristics,
influence bicyclists’ route choice. Dill and Voros (2007) in their literature review
also point out gender as one of the main demographic factors to consider in un-
derstanding cycling behavior. Since the main intent is to demonstrate how corridor
space analytical approach could be used to understand such variables, gender is
conveniently selected as an explanatory variable for the practical demonstration of
implementing the proposed technique.

The chapter is divided into six parts including this introductory part. The next
two parts give contextualized background to the research and brief description of
the study area. The third part discusses the approaches used in data collection and
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processing and presents descriptive statistics about the primary sample. The concept
of corridor space analysis is introduced in the fourth part followed by application of
the concept using real data in Part V. The last part discusses the results and concludes
the chapter.

8.2 Contextual Background

Cycling in British cities is on the increase but at a slow rate (CTC 2014), partly
due to the increased costs of private and public transport as a result of the recession
(Allen 2012; Brignall and King 2012) and partly due to the 2012 London Olympics
as the UK government – taking advantage of the success stories in the 2012
Olympics such as the Paralympics and the Tour de France – has unveiled the
largest investment of about £77 million to make cycling more visible and useful
to encourage everyday cycling (DfT 2013b) and political backing (Briggs 2012;
Charlesworth 2012; Shankleman 2012; Hill 2012) and to a lesser extent as a result
of active transport interventions (Cope et al. 2011). The vast majority of these
initiatives and interventions tend to be less top-down with an urgent call for those
at the top to take bold initiatives as pointed out in the recent Get Britain Cycling
report (APPCG 2013; Goodwin 2013), driven by environmental issues (DfT 2007;
UNECE 2009, 2011), health (NIHR 2012), and political agendas, usually followed
by improvements in the current national cycling facilities for recreation (Sustrans
2012) and commuting, for example, the London Barclays Cycle Superhighways
(TfL 2012), but hardly ever matched by significant investments in the infrastructure
which will go a long way to densify existing cycle networks to enable “everyday
practical journeys” (Jones 2012, p. 148).

The lack of significant investments in cycling infrastructure and limited con-
sultation with commuter cyclists, employers, and bicycle user groups (BUGs) are
evidenced by the mushrooming of cycling campaigners and activist groups in
many British cities. Examples of these groups are Newcastle Cycling Campaign,
Gateshead Cycling Forum, and London Cycling Campaign, to name a few (NCC
2012; GCF 2013; LCC 2013). These groups question whether this wave of perceived
cycling uptake presents a genuine mode shift in British commuting patterns or
whether it is a temporary phenomenon hyped by the media and politicians with
vested interests. There remains the danger that cycling will fail to reach critical
mass, as a result of societal attitudes towards cyclists, coupled with lack of real
investment in cycling infrastructure and gaps in the current cycling facilities. This
means that following the Olympic summer and current recession, cycling uptake
is likely to implode once the Olympic hype is over and we see past recession
returning to the old habits and reliance of private and public transport even for
the most cycleable of short trips (i.e., less than 5 miles). As cycling in British
cities increases, so do conflicts between cyclists and other road users, as well as
debates with city planners who are trying to balance cities’ transport infrastructures
in the face of public spending cuts and limited investment. In Tyne and Wear
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(North East England), incremental steps are taken by the local authorities to provide
cycling infrastructure, albeit at a slow rate compared to the uptake of cycling in the
commuting area. As a result, there appears to be increasing dissatisfaction from local
campaign groups about the lack of a coherent cycling strategy, negative attitudes
towards cyclists, and even the refusal of the local public transport providers to allow
bicycles on the metro system (MacMichael 2012).

Although cycling is increasing in Britain, it still remains relatively low, about
2 % of trips shorter than 2.5 km, compared to other European countries like 37 %
for the Netherlands and 27 % for Denmark (Pucher and Buehler 2008, p. 498).
Even in cities like Copenhagen with high cycling uptake, further research is being
undertaken to deepen understanding of what constrains or enables cycling (Meyer
2011; Snizek et al. 2013). The last decade has seen annual increase of pedal
cycle traffic in Britain from 4.4 billion kilometers in 2002 to 5 billion kilometers
in 2012 with some fluctuations in between (DfT 2013a). The consensus on the
benefits of cycling is growing among researchers, and the means – the how – by
which cycling uptake could be realized is the confronting issue (Pucher et al. 2010,
p. S107). Given an emphasis on how, the importance of infrastructure (i.e., the built
environment) and planning for cycling together with cyclists’ movement behavior
is inescapable. Docherty and Shaw (2008, p. 125) argue that the major factors
constraining everyday cycling have a primary relationship with the environment
in which it takes place. Cycling is a safe, convenient, practical, and healthy means
of transport (Pucher and Buehler 2008) and relatively cheaper than other modes.
British cities such as Newcastle upon Tyne lack appropriate spatial data along with
associated processing methods to support local transport planning. An example is
the decision by UK Department for Transport (DfT) not to use GPS to collect travel
data in the national travel survey 2013 onwards partly as a result of lack of GPS
data processing methodologies (Guell et al. 2012, p. 4). This work is, in part, a
response to existing calls, for further research to incorporate the investigation and
discovery of cyclists’ perceptions and actual experiences (NICE 2012; Forsyth and
Krizek 2011; Skinner and Rose 2007), to support urban designers and transportation
engineers, and for cycling policy interventions.

One of the major goals for transportation and spatial planning is the provision
of accessibility (Dijst and Vidakovic 2000). The freedom of accessibility is rooted
in the nature and architecture of the built environment. This freedom, one way
or the other, has been compromised and historically been offered to motorized
road transportation. The dominance of motorized road transportation policies has
rendered and given little or no room for cycling transportation policies in the UK. As
Pucher and Buehler (2008) note, “ : : : Government policies are at least as important:
transport policies, land-use policies, urban development policies, housing policies,
environmental policies, taxation policies and parking policies. In many respects, the
UK and the USA have given the green light to the private car, almost regardless of its
economic, social and environmental costs. In sharp contrast, cycling has prospered
in the Netherlands, Germany and Denmark over the past three decades precisely
because these countries have given the red light, or at least the yellow warning light,
to private cars.”
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Fig. 8.1 Share of investment in cycle transport infrastructure upgrade for 8 cities in England
(Original data source: Press release – Government shifts cycling up a gear (DfT 2013b))

It is only recently that major investment in cycling infrastructure is supported
by politicians through an investment of about £94 million of public money into
cycling in England with the aim of undertaken transport network upgrades to
help cyclists at 14 locations on trunk road networks along with identified national
parks (Walker 2013a; Siddique 2013). Although the funds have been announced,
knowing where to invest in a practical sense is key to getting better value for the
money. This became necessary because it was found out that major roads pose as
obstacles to journeys by bike (Siddique 2013). The eight cities mentioned to benefit
from the huge investment were Newcastle, Leeds, Manchester, Oxford, Norwich,
Birmingham, Bristol, and Cambridge. The shares of investment of the public funds
for the cities are shown in Fig. 8.1. Additionally, £17 million investment funds are
to cover national parks: South Downs (£3.8), New Forest (£3.6 m), Peak District
(£5 m), and Dartmoor (£4.4) (Westcott 2013). Although policy shift to investment
is positive, more is needed as the declared investment still does not match other
EU countries such as the Netherlands where they fund about £24 per person per
year (Peck 2013). With the entire funding for investment in cycling combined in
the UK, the budget per person per year is estimated to be about £18 (DfT 2013c),
a shortfall of £6 compared to Netherlands. Despite the effort and commitment by
the UK government in improving cycling, not everyone agrees that the government
is doing enough. Walker (2013b) argues that the government is not doing enough
for the realization of UK becoming one of the cycling nations in Europe. The
basis of argument is that the long awaited DfT response to the Get Britain Cycling
inquiry recommendations was far below expectation and seems not to offer any hope
by linking responses to already existing nationwide projects (Walker 2013b; DfT
2013c; Goodwin 2013). Moreover, the MP for Newcastle Central, Chi Onwurah, has
also argued for better national leadership and backing for cyclists around Newcastle
upon Tyne (the study area) during a recently held (Get Britain Cycling) debate in
parliament (Pearson 2013). This political campaign suggests that there is more to be
done than just a well-formulated local plan as in the Tyne and Wear region, where
strategic policies are in place to address the improvement of on- and off-road cycle
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lanes by improving the completeness of cycle network while connecting key hubs
and trip generators with the aim of improving everyday cycling (LTP3 2011, p. 160).

The last but one part of this background section examines earlier research on
understanding cycling behaviors within the context of route choosing and trip shares
using street network. Very few published cycling studies in Britain implement
the revealed preference (RP) approach for understanding cyclists’ route choice
preferences. This research contributes to fill this emerging gap in the UK while
acknowledging and identifying few published cyclists’ route choice studies from
Ottawa, Guelph, and Toronto (Aultman-Hall 1996); Minneapolis (Harvey et al.
2008); Zurich (Menghini et al. 2009); Texas (Sener et al. 2009); San Francisco
(Hood et al. 2011); Montreal, Quebec (Larsen et al. 2011); Portland (Broach et al.
2012); Auckland (Ehrgott et al. 2012); and ongoing work in Denmark (www.
bikeability.dk). Almost all of these studies have some form of stated preference
(SP) component as part of the research design, with the exception of Zurich where
only GPS secondary data without additional stated preferences of the sample was
used for the research. Moreover, Duncan and Mummery (2007) in comparing GIS
measures with data from GPS conclude that the use of GPS in active transport
research is encouraged, enabling further work to be undertaken especially in cycling.
These aforementioned studies have used a variety of techniques in the quest of
understanding cycling behaviors which some are not suitable for analyzing detailed
quantitative cycling data. For example, Larsen et al. (2011) study concludes that
the grid-cell method is not appropriate for detailed analysis of cyclists’ actual
route choice preferences. Additionally, they emphasized the importance of cycling
infrastructure and the fact that methods assisting objective revelation of priority
areas are essential to provide the evidence needed as input to effective use of finite
resources allocated to the building and improvement of cycling infrastructure. The
proposed technique in this study is therefore to be considered as an addition to
existing basket of techniques for understanding route choice in cycling research.
The reader may refer to study by Prato (2009) reviewing alternative solutions
in determining preferences of various travelers with the aim of increasing route
heterogeneity but in the context of general route choice modeling.

This study also has potential to provide some empirical bases for modelers in
cycling research to reasonably validate models based on understanding cycling
behaviors. The ability of ABM to capture emergent phenomena providing a natural
description of a system and its flexibility are some of its strengths (Bonabeau 2002),
which could be of benefit in using it to understand cycling behavior either at the
city or route levels. The uses of such simulations are numerous: (1) to inquire
better understanding of some aspect of the real social world (Axelrod 1997a, b),
(2) to enable prediction or forecasting (Gilbert and Troitzsch 1999, p. 4–5), (3)
to fabricate new tools that substitute weakness in human capabilities (Gilbert and
Troitzsch 1999, p. 5), (4) for training, (5) for entertainment, and (6) for potential
in facilitating discovery and formalization. Due to some of its numerous uses,
suggestive call has been placed for building of community of social scientists who
promote simulation as a field (Axelrod 2003). Examples of ABM applicable areas
have been categorized but in a business context, namely, (1) flows which comprise

www.bikeability.dk
www.bikeability.dk
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crowd evacuation, traffic flow management; (2) markets; (3) organization; and (4)
diffusion (Bonabeau 2002, p. 7281). Despite the great potential for the use of
ABM in understanding various societal problems, very little is known about how
ABM can be used for understanding cycling behavior. The only unpublished or
ongoing works identified which include the use of ABM in cycling-related research
are the Danish Bikeability project (Bikeability.dk); a personal short-term scientific
mission to explore how an ABM toolkit called NetLogo can be used to model
cycle tracks (Yeboah 2012); and, to some extent, the recent ESRC seminar series
Modelling on the Move (modellingonthemove.org) focusing on transport modeling.
Although this is the case, more empirical evidence on cyclists’ route choice behavior
as well as step-by-step approach together with concepts is needed to enable full
implementation of agent-based models, especially in relation to using actual route
choice parameters and cycle networks and facilities as inputs. The output of this
study will provide some gender-based evidence on cyclists’ route choosing around
the study area for further analysis in subsequent studies.

8.3 Study Area

The selection of the study area was based on assumptions focusing on practicality,
convenience, and the fact that the central part of Tyneside conurbation had the
potential of registering traces of cyclists for the study. The latter will be shown in
the next section. The Tyneside conurbation comprises the four main local authorities
that make up the conurbation: Newcastle upon Tyne, Gateshead, North Tyneside,
and North Tyneside. This central part of Tyneside conurbation which is around
the southeastern path of Newcastle upon Tyne also has a high potential of traffic
congestion (LTP3 2011). Traffic congestion tends to increase the operation costs
of employers in situations where travel demand increases (Aditjandra et al. 2013,
p. 55). According to the next decade and third strategy for the local transport plan
(LTP3) for the area, the promotion of sustainable and safe communities has been
considered as one of the challenges to address. Given that the area is reported to be
the most deprived in England, there are motivations to improve active travel modes
such as cycling while promoting healthy living lifestyles (LTP3 2011, p. ii; Rogers
2011). The deprivation ranking is based on the 2010 Index of Multiple Deprivation
(IMD) data and summary measures constructed by Social Disadvantage Research
Centre at Oxford University, which ranks districts in Tyne and Wear as Newcastle
upon Tyne (40), Gateshead (43), Sunderland (44), South Tyneside (52), and North
Tyneside (113) in increasing order, respectively. The IMD consists of indicators
such as income, employment, health deprivation and disability, education skills and
training, barriers to housing and services, crime, and living environment.

Moreover, understanding cycling behaviors can help transportation engineers to
devise strategies to control traffic flow in and around the area. Given the design of
the research, the criteria for the sample for data collection were around the central
part of the Tyneside conurbation, whereas the observed route choices of cyclists
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Fig. 8.2 Map of study area with cyclists’ route choices and cycle infrastructure data

were more flexible but constrained to the northeast region of England. Taking this
approach allowed the spatial characteristics of the primary sample to reflect the
spatial dynamics identified prior to the primary data collection. Figure 8.2 shows
the study area with cyclists’ route choices and cycle infrastructure data. The left
side shows the major transport networks which appear to have its major hub around
Newcastle Central Rail Station.

8.4 Methods Used in This Study

8.4.1 Data Collection, Processing, and Sample Characteristics

8.4.1.1 Survey Instruments

Three survey instruments were developed, in addition to the use of GPS devices
and materials for the field campaign. Four GPS devices were evaluated and QStarz
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BT-Q1000XT selected for the data collection (Yeboah et al. 2012). First, a self-
reported travel diary was designed which is adopted from questionnaire forms from
UK Department for Transport (DfT 2011) and used to collect detailed information
on the mode and duration of each daily trip by participants. Second is a self-reported
form, named Form A, for the collection of further information of participants such as
demographic and socioeconomic characteristics, experience with use of GPS device
for the data collection, and confirmation of collected data. Third is a self-reported
travel behavior form, named Form B, for the collection of cognitive and attitudinal
data on participants’ travel environment, attitude, behavior, norm, intention, and
habit. Form B is adopted from Lemieux and Godin’s (2009) work, but results are
not presented here. The detailed information from travel diaries was used in order
to clean up the collected GPS tracks and identify the cycling tracks for further
analysis using GIS methods. Additional materials, mainly for the field campaign,
were prepared: flyers, brochures, and posters; web pages using SurveyMonkey
(http://en.wikipedia.org/wiki/Survey_monkey); and a leaflet containing frequently
asked questions as well as important issues on the use of the GPS device. The
leaflet was added to the travel diaries and given to participants during the data
collection phase. A consent form and research statement were also prepared and
added to the instruments in accordance with Northumbria University policy on
ethics (Northumbria 2010).

8.4.1.2 GPS Tracking

An online and offline campaign strategy was used to approach potential participants.
The campaign period for the field data collection was in September 2011. For
the one online, an email was sent to 350 email contacts among which included
email lists of bicycle user groups of both Northumbria and Newcastle Universities
after securing approval from the moderators. An email address was created and
introduced to the potential participants in the first call message and used thereafter.
The idea of using a separate email address was to allow ease of management of
email responses from participants. Another innovation introduced in the campaign
is the use of twitter service to solicit for participation. Other campaign techniques
were the use of flyers, brochures, and A4 size posters on notice boards.

Participants carried the GPS device for 7 days while filling the forms described
earlier. The data collection wave is from October to November 2011. Literature
suggests some variation of duration for GPS-based data collection, but most of the
studies are about 1 week (Anderson et al. 2009; Van der Spek et al. 2009). Reasons
for the choice of duration as well as time or distance logging interval depend on
several things, for example, memory capacity, battery life, as well as the research
design and scope. The log interval used in the design of this research is 5 s.

A total of 118 responses were received from the field campaign with 111 screened
as utility cyclists making the response rate about 34 %. The idea behind the
screening and sample size is also to ensure that the expected wide range of activity
and movement patterns (Van der Spek et al. 2009, p. 3052) are captured that will

http://en.wikipedia.org/wiki/Survey_monkey
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be relevant to the investigation. Sampling cyclists for a particular cycling research
project is a challenging task for researchers (Krizek et al. 2009). The sampling
criteria for the study are articulated as follows: any adult utility cyclist who is more
than 19 years and willing to freely volunteer as a participant; should be a utility
cyclist and commute by bicycle at least once a day in a week; must have home,
work, or school location within Newcastle upon Tyne geographic area; and must be
willing to carry a personal GPS device continuously for 1 week. A week is defined
as 7 days of the week which is from Monday to Sunday.

8.4.1.3 Space-Time Cube-Based Data Processing

Space-time cube (STC)-based processing is the idea of exploiting and using the
STC space construct, as originally proposed by Hägerstrand (1970) and adopted by
Kapler and Wright (2004), to edit raw GPS data by mainly visual inspection with
additional data (Yeboah 2014; Yeboah and Alvanides 2013; Yeboah et al. 2012). By
using the STC in this way, the applicability and usability of the cube achieve a com-
plete cycling of data cleaning, analysis, and visualization (Fig. 8.3). The raw GPS
data – after some basic checks on time zone, column headers, and coordinate system
using the QTravel Software which comes with the GPS device – is imported into an
STC using GeoTime software (www.geotime.com) and its link into the ArcMap
environment. The basic check is also to ensure that the raw GPS data is properly
downloaded with correct time zone settings. In the process of export/transfer, the
attributes of the data are mapped to enable GeoTime to load all attributes of
the raw data to enable further selection and visual inspection in STC space in
GeoTime. Additional secondary information, such as OpenStreetMap (http://wiki.
openstreetmap.org) basemap, is loaded in ArcMap, and this reflects automatically in
the GeoTime STC space. It is at this point that travel diaries are consulted to identify
cycle trips in a particular date and time. The identified information is visually

Fig. 8.3 Space-time cube
usability cycle (Source:
adapted from Yeboah (2014))

www.geotime.com
http://wiki.openstreetmap.org
http://wiki.openstreetmap.org
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inspected in the STC by categorizing the loaded week data by date and selecting that
date and subsequently navigating to find particular journey in that day as recorded
in the diary. Once particular journey is identified, visual inspection continues using
the loaded secondary data vis-à-vis the diary information such as start/stop location
name to support decision making in visually detecting outliers and redundant points.
The outcome is a refined point set (i.e., processed data) describing a particular trip.
The average STC-based manual processing time recorded per cycle trip only was
about 7 min. This duration is expected to vary based on experience of the analyst as
well as the file size (e.g., week-/month-long data) per participant.

8.4.1.4 Sample Characteristics

There were a total of 941 cycle trips by the sample of 79 adult cyclists, 319 trips
of these made by females and 622 made by males. Weighted average distances per
trip for both female and male were 3.5 km and 5.4 km, respectively (Table 8.1). The
average body mass index (BMI) for all the 79 cyclists was 23.3 kg/m2 with a stan-
dard deviation of 3.4 kg/m2. Table 8.1 shows average BMI for only female cyclists
as 23.1 kg/m2 and that of males as 23.5 kg/m2. The BMI average of 23.3 kg/m2

with standard deviation (SD) of 3.4 kg/m2 for the sample (age range: 23–67) in
this study is 1.3 points higher than Lemieux and Godin (2009) who reported BMI
average of 22.0 kg/m2 (SD D 3.4 kg/m2) for age range from 19 to 48 years and mean
age of 24.0 ˙ 4.9 years. The mean ages for the two samples were however different.
This study had mean age of 38 years (SD D 10.3) with a minimum of 23 years
and a maximum of 67. The older sample of our study explains the overall higher
BMI; nevertheless, these findings suggest that cyclists tend to have an ideal weight
according to the World Health Organization (WHO) weight groupings according to
BMI. According to Yang and French (2013), the WHO weight groupings according
to BMI values could be defined as follows: BMI < 18.5 kg/m2 for underweight,
18.5 kg/m2 � BMI < 25.0 kg/m2 for ideal weight, 25 kg/m2 � BMI < 30 kg/m2 for
overweight, and BMI � 30 kg/m2 for obese. These values along with the findings
clearly position cycling as a very attractive way of tackling obesity and promoting
healthy lifestyles.

Table 8.1 Gender versus number of cycle trips and distance traveled

Over 1-week period per person

Gender
(number)

Number
of trips

Totala

distance
(km)

Averagea

distance
(km/trip)

Averagea

distance
(km/person)

Min/max trip
distance (km)

Average
BMI (kg/m2)

Female (27) 319 2,137.4 3.5 41.1 0.25/13 23.1
Male (52) 622 3,373 5.4 64.9 0.12/36 23.5
79 941 5,510.4 4.5 53

aWeighted by gender. Female distance value is weighted to control for gender imbalance using a
factor of 52/27
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Fig. 8.4 Reported travel mode by participants from travel diary

Table 8.2 Summary of reported trips and logged GPS points

Item Participants All diary trips
All GPS points
(Raw)

Only cycle trips
(OCT) OCT GPS points

Total 79 2,432 2,415,666 941 205,987

Out of the 2,432 reported trips, 43 % of participants’ trips were actually reported
to be cycle trips which are slightly less than combined trips for walking and car
use (Fig. 8.4). The other trips’ mode comprised mainly motor bike, scooter, and
running/jogging.

The total GPS logged points for the sample for the 7-day period were almost
two and half million points using a log interval of 5 s. Thus, the smaller the
logging interval, the higher the likelihood of more point data which, if no careful
consideration is given to data handling, can prove difficult in when it comes to data
management and editing. For example, given a total 2,415,666 points in the case of
this research, all merged data was impossible to be stored in MS Excel workbook
given its limitation of 1,048,576 rows suggesting that without awareness, almost
half of the point data will be lost in the course of editing or storage (Table 8.2).

Given the fact that 941 trips were identified from the revealed route choice
preferences (i.e., the GPS-measured trips), 9.6 % of the cycle trips reported in the
travel diary were not recorded by the GPS device. The trend for reasons in data
loss for cycle trips follows similar observations made by Dill (2009), suggesting
that there are still challenges in the use of GPS technologies in capturing movement
behaviors.
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8.4.2 The Concept of Corridor Space Analysis

Corridor-based analysis has been used in several transport-related studies: the
location of high crash concentrations within the context of bridging the gap in
highway safety analyses (Smith et al. 2001), prehistoric cultural activity (Hazell and
Brodie 2012), as well as modeling and identification of species migration corridors
(Hargrove and Westervelt 2012). This section discusses the concept of corridor
space analysis (CSA) for exploring movement patterns as well as some merits and
potential drawbacks of such an approach for data analysis.

8.4.2.1 Corridor Space Analysis for Exploring Movement Patterns

Data collection, alone, is not enough for analysis; matching GPS-tracked data to
other spatial datasets is also necessary albeit a difficult task. It is in this difficulty
that the concept of corridor space is introduced to address how spatial analysis
could be done when collected data and available datasets do not fit properly due to
data inaccuracy issues. The corridor space is defined as a buffer zone around cycle
lanes/paths used for detecting cycle trips/cycle trip sections/other available cycle
infrastructure. The analysis associated with the use of corridor space in determining
an area of interest and further inquiry therein is what is termed the corridor space
analysis here. A cycle trip is defined here as any journey by an adult cyclist bounded
by origin and destination and identifiable in both a travel diary by purpose(s) and
GPS data by geometry. The concept is used to distinguish cycle trips off, on, or near
the official cycle network in the study area.

For a given buffer distance a, half of that would equal b as shown in Fig. 8.5.
Mathematically, let us assume B D (B1, B2, : : : , Bn) where B1 is a trip or trip
segment within the blue region (i.e., the on region) as shown in Fig. 8.5. Similarly,
G D (G1, G2, : : : , Gn) where G1 is a trip or trip segment within the green region (i.e.,
the near region), whereas R D (R1, R2, : : : , Rn) where R1 is a trip or trip segment
within the off region. The total distances for each region (i.e., BT, RT, and GT) could
be represented in Eqs. (8.1), (8.2), and (8.3), such that the total distance for all cycle
trips should approximate BT C RT C GT and that BT ¤ GT.

BT D
nX

kD0

Bk (8.1)

RT D
nX

kD0

Rk (8.2)

GT D
nX

kD0

Gk (8.3)
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Fig. 8.5 Conceptual mapping of corridor space analytical frame

The near fuzzy region, the green region in Fig. 8.5, and its estimate serve as a trade-
off and a measure of whether the on as well as the off estimates make comparative
sense. Thus, a near estimate equal to or close to the on estimate may give clues to
the reliability of the latter. The decision on best estimates with associated multiple
buffers is left to the analyst but with some reasonable justification. The assumption
here is that a near estimate equaling or less than one third of an on estimate
is a meaningful trade-off. The notion of trade-off here is similar, for example,
to argued case for using a calibration process as a trade-off between bias and
standard error in the mechanics of geographically weighted regression (GWR)
method (Fotheringham et al. 2002, p. 52). In other words, the trade-off serves as
a tolerable measure for the acceptance of on and off estimates in our case.

8.4.2.2 Corridor Space Analysis: Advantages and Disadvantages

Understanding route choice preferences for people’s travel behavior is important
in the context of transportation research. Both the built environment in which the
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travel behavior occurs and the behavior itself need to be measured to allow for
comparisons and further analysis. In doing so, the measured data for both realms
will need to match; otherwise, comparative analysis becomes difficult. Where
captured data for both realms are matched, the difficulty in analysis is reduced. On
the contrary, if captured travel data does not match the available transport network
data, then the introduction of new analytical approaches becomes imperative and
is more useful in applications where uncertainties are difficult to eliminate, for
example, estimating travel behavior in terms of trips on, near, and off a given
transport network.

A limitation of corridor space analysis is associated with the needed accuracy of
outcome and more importantly the context of usage. For example, in highly precise
applications where millimeter to centimeter levels of output are needed, the need
for such approaches to data analysis may not be as demanding as tolerable meter
lever estimates will not be acceptable. Corridor analysis, however, is very useful in
furthering understanding in data analysis and exploration.

The next best approach to route choice-related data analysis demands prior
alignment (i.e., map matching) to the road network. Such an approach, however,
comes with further demands: a high (topologically correct) resolution right-of-
way network which has a high probability of containing most, if not all, of the
potential route choices. Given the time-consuming nature of data integration, in a
case where such a high-resolution network is not available or disparate or somewhat
questionable in terms of well-connected end-to-end points in the network, careful
consideration of the research scope and feasibility is necessary to avoid excessive
delay of progress. This depends largely on time constraints and data availability; the
decision is in the hands of the researcher to decide. It is in this spirit that the concept
of corridor space was developed and the method used in this research.

8.5 Analysis and Results

The aim of this section is to present a comparative geographical analysis of primary
tracks on everyday utility cycling, in comparison to official cycling network data
of the study area. Rather than using 300 m grid-like corridors for analysis, as was
in the case of Larsen et al. (2011) study, corridor space analysis already explained
is used here. The analysis was intended to provide substantive empirical evidence
on the use of the area’s cycling infrastructure by utility cyclists, by estimating the
cycle kilometers on the cycling network as a percentage of the total, for a given
sample.

In adopting the concept of corridor space to compare route choice preferences of
participants, two spatial analytical functions were used: buffer and overlay (identity)
analyses. The following steps were taken for the analysis in ArcGIS. First, two sets
of buffers were created around the area’s cycle network, at multiples of 10 m on
each side of the network, as shown in Fig. 8.5 as widths a and b. These values were
used based on the outcome of the on/near/off estimates with the near value estimate
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used as a trade-off measure in the settlement of both on and off estimates. Second,
the ArcGIS identity function was applied to overlay the buffers with the primary
GPS data. Both the selected point sets forming cycle tips and the subsequently
generated cycle trips in the form of polylines were used. The identity function
computes the spatial intersection of features (points, lines, buffers) and merges their
respective attributes. Finally, the ArcGIS spatial statistic functions were used to
compute various distances, and database queries were used to extract trips of interest
for further space-time cube categorization and visualization. What follows are the
actual results from the corridor space analysis covering only home-to-work cycle
trips, all cycle trips except home-to-work trips, and all cycle trips. All percentages
were derived from weighted distances.

Figure 8.7 shows trip shares for the off/on/near regions for all cycle trips.
It also shows the temporal dimension of all the cycle trips per the on/off/near
regions. Figure 8.7 further suggests that longer trips occurred in November than
in October. Despite the possibility to infer some meanings from such a static 3D
visualization, practical experience with Kapler and Wright’s (2004) implementation
of STC visualization suggests that an interactive form of visualization is more
useful. Although such an implementation of STC can be argued to partly satisfy
questions raised by Kraak (2003), there is the possibility, like in our case, that such
3D visualization for cycling data can only show a brief overview of activities but
may still be possible to sparkle the mind with ideas as suggested by Kraak (2003).

Findings from the corridor space analysis suggest that 57.4 % of cyclists’ bike
trips were found on the cycle network, while 33.8 % cycles were found outside the
cycle network with 8.8 % near the cycle network (Fig. 8.6). Also, for all cycle trips,
men tend to dominate in cycling on and near the cycle network. Both male and
female tend to use the cycle network more than off the network for utility trips.

Figure 8.6 shows a more summarized form of Table 8.3 using a histogram.
Table 8.3 shows the details of the weighted distances for each of corridor regions

Fig. 8.6 All trips – gender and cycling with off/on/near network – corridor space characteristics
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Table 8.3 All trips: gender and cycling with off/on/near network – corridor space characteristics

Off/on/near network – corridor space characteristics (weighted
distance traveled in km/%)

All trips
Outside buffers
(off network) km 10 m buffer (on network) km

10–20 m buffer
(near network) km Total (km)

Female 695 (32.5 %) 1,262 (59.1 %) 179 (3.3 %) 2,136
Male 1,167 (34.6 %) 1,900 (56.3 %) 305 (5.5 %) 3,372
Total 1,862 (33.8 %) 3,162 (57.4 %) 484 (8.8 %) 5,508

Fig. 8.7 All trips in space and time: cycling with off/on/near network – corridor space character-
istics

(i.e., on/off/near regions). The percentage differences between male and female
bike trips falling within the on regions (34.5�22.9 D 8.6%) are almost the same
as the percentage of bike trips falling within the off region (21.2�12.6D 11.6%)
suggesting some similarities in cycling behaviors based on gender. The addition of
the trade-off region, the near region (5.5�3.3 D 2.2)%, estimates to the on estimates,
making it about 10.8 %, even increases the degree of similarities between on and off
intra-differences. Figure 8.7 shows the temporal dimension of all the cycle trips per
the on/off/near regions and suggests that longer trips occurred in November. It also
shows the frequency of GPS logged points per day pointing out low cycling uptake
on Sundays (i.e., dates shown on scale like October 16, 23, etc.). Depending on how
the STC 3D environment is oriented, different conclusions could be drawn making



202 G. Yeboah et al.

Fig. 8.8 Only home-to-work trips: gender and cycling with off/on/near network – corridor space
characteristics

the interpretation of static views in STC 3D environment challenging. For example,
on/off categories overlap almost near category points. Another perspective of STC
2D calendar view will be shown later to show another alternative to use the STC to
visualize spatiotemporal data.

One-way commute or only home-to-work trips have received attention since the
1980s (Hamilton and Röell 1982; Boussauw et al. 2011; Buehler and Pucher 2012;
Dill and Carr 2003; O’Kelly et al. 2012; Shephard 2008; Yang and French 2013).
In our case, only home-to-work trips (i.e., commuting trips) trend follows similar
characteristics for all trips shares and all other trips shares. For only home-to-work
cycle trips, 56 % is found on the network (Figs. 8.8, 8.9 and Table 8.4). The peak
hour was found to be within the ante meridian and is around 9 am. Figure 8.9
provides another way of visualizing the spatiotemporal dimension of the dataset
referred to as calendar view in GeoTime. For clarity for the reader, the off/on/near
results were splitted into three and shown in each calendar view. By comparing the
presentation in Figs. 8.9 and 8.7, it seems clearer using 2D calendar view than the
3D view in GeoTime. The 3D view appears to be more useful when visualizing one
category, for example, if all trips are considered by imagining that all the colors are
one and therefore just represent all trips without any categories.

Figures 8.10 and 8.11 show the corridor space characteristics for all other trips
except only home-to-work cycle trips in the form of histogram and space-time
representation, respectively. Figure 8.11 shows the rush-hour time being moved to
the post meridiem where peak is around 5.30 pm. The present of all three categories
(i.e., off/on/near) exists, but only very general inferences can be made. Figure 8.11
shows that the 3D view can also be oriented in a way that if static view could
resemble the calendar view, this will help the interpreter to examine the timings
in detail. But still, visualizing more than one category may be difficult to present.
Table 8.5 shows the actual computed but weighted distance values for all other trips.
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Fig. 8.9 Only home-to-work trips in space and time: cycling with off (top panel), on (middle
panel), near network (bottom panel) – corridor space characteristics
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Table 8.4 Only home-to-work trips table: gender and cycling with off/on/near network – corridor
space characteristics

Off/on/near network – corridor space characteristics
(weighted distance traveled in km/%)
Outside buffers
(off network) km

10 m buffer (on
network) km

10–20 m buffer
(near network) km

Only home-to-work trips f: 20, m: 49 f: 20, m: 50 f: 20, m: 50 Total (km)

Female (f) 260 (32.8 %) 470 (59.3 %) 63 (7.9 %) 793
Male (m) 493 (36.3 %) 741 (54.6 %) 123 (9.1 %) 1,357
Total 753 (35 %) 1,211 (56.3 %) 186 (8.7 %) 2,150

Fig. 8.10 All other trips: gender and cycling with off/on/near network – corridor space character-
istics

Table 8.5 All other trips: gender and cycling with off/on/near network – corridor space character-
istics

Off/on/near network – corridor space characteristics (weighted
distance traveled in km/%)

All other trips
Outside buffers
(off network) 10 m buffer (on network) km

10–20 m buffer
(near network) km Total km

Female 433 (29.6 %) 901 (61.5 %) 131 (8.9 %) 1,465
Male 674 (34.4 %) 1,159 (57.5 %) 182 (9.0 %) 2,015
Total 1,107 (33.1 %) 2,060 (58.0 %) 313 (8.9 %) 3,480

8.6 Discussion and Conclusion

This research has for the first time facilitated the collection and analysis of detailed
bicyclists’ route choices in the UK, bringing substantive empirical evidence for
understanding daily cycling behaviors. Few published studies related to cycling
have the uniqueness of the research design developed for this research study about
utility cyclists which show actual route choice preferences within the study area
(Menghini et al. 2010; Broach et al. 2012), but not in the UK. The triangulation of
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Fig. 8.11 All other trips in space and time: gender and cycling with off (red), on (blue), near
network (green) – corridor space characteristics

evidence using available secondary data further deepens the existing understanding
of cycling patterns and infrastructure within the study area. Additionally, the STC-
based data processing visual technique has the potential of allowing anyone who
is familiar with the neighborhood to easily clean a messy GPS dataset without any
algorithmic knowledge of complex toolkits. Another novel concept introduced is
the corridor space spatial analysis approach which offers unique ways and means
for understanding cyclists’ interactions with the built environment, which partly
constitutes the cycling infrastructure.

Findings from the corridor space analysis suggest that 57 % of cyclists from sam-
ple prefer cycling on the cycle network, while 34.1 % cycles prefer outside the cycle
network with 8.9 % near the cycle network. Also, for all cycle trips, it was found
out that males cycle more on and off the network than females with the gender dif-
ference in off network trips 3 % lower than the gender difference in on network trips
(11.6 %). For only home-to-work cycle trips, gender difference in on network 12 %
and that of off network is 11 %. With 43 % of cyclists still cycling outside the desig-
nated cycle network, it is imperative that policy initiatives are aimed towards invest-
ing in cycling research and infrastructure (i.e., lanes, parking, crossings, etc.). Visu-
alization experience using the STC suggests that for 3D STC visualization, it is more
appropriate to present the result in an interactive manner in GeoTime. A general
overview of the spatiotemporal dimension of cycling data can be presented using
3D STC View, but even better symbolization for better presentation is still needed.
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However, this web-enabled feature is not possible in GeoTime as a means of a
kind of publication supplement. Therefore, a visualization portal for publications
showing results online in GeoTime 3D View would be helpful. Perhaps journals
could collaborate with GeoTime or any other available STC implementations.

With increasing availability of micro data on active transport, the need to
integrate active transport modes (such as cycling) in transport demand models is
paramount. The descriptive statistics of reported trips suggest that other modes
taken by cyclists, in the area, are still prevalent, and therefore policies towards
improvement of everyday cycling should be narrowed to only cycle infrastructure
alone as utility cyclists also prefer to patronize other modes of transport. However,
with almost 34 % of the cyclists cycling off the cycle network, such patronization
of other modes of transport might be due to nonnegotiable mode choice as a result
of lack of adequate means to get to destination by cycling.

Another important future research prospect in transportation research is to be able
to reconstruct cyclists’ travel behavior, for example, using an agent-based modeling
and simulation (ABMS) approach. Some level of consensus on the usefulness of
agent-based modeling and simulation in cycling research is gradually emerging
among cycling researchers. Although this is the case, the step-by-step approach
together with concepts is needed to enable full implementation of agent-based
models, especially in relation to using actual route choice parameters and cycle
networks and facilities as inputs. The emerging importance of bicycling and its
associated nonlinear travel behavior has now prompted researchers to turn to the
application of agent-based modeling and simulation techniques to create platforms
to further understand behavior of cyclists. The ongoing development of Copenhagen
agent-based model of bicyclists’ experiences (in short CopenhagenABM) as part
of the Bikeability.dk project in Denmark, at the time of writing, is a typical
example. Future research should use datasets in different geographical contexts and
adopt some or all of the methodological approaches used in the CopenhagenABM
to enable easy comparison of models, thereby allowing testing of variants of
hypotheses and existing theories. It is planned that the detailed dataset collected
in this research will be used as input to the development of NewcastleABM together
with comparative analysis of common variables alongside the CopenhagenABM.
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Chapter 9
Performance Improvements for Large-Scale
Traffic Simulation in MATSim

Rashid A. Waraich, David Charypar, Michael Balmer, and Kay W. Axhausen

Abstract In contrast to aggregated macroscopic models of traffic simulation,
multi-agent microscopic models, such as MATSim, enable modeling of individual
behavior and facilitate more detailed traffic analysis. However, such detailed
modeling also leads to an increased computational burden, such that simulation
performance becomes critical.

This paper looks specifically at the MATSim simulation framework and proposes
several ways to improve its performance. This is achieved through a combination of
several approaches, including reducing disk access, decoupling computational tasks,
and making use of parallel computing. Additionally, for the traffic simulation, an
event-based model is adopted instead of a fixed-increment time advance approach.

Experiments show that by applying these methods, a simulation speedup of four
times and more is achieved (depending on the scenario) when compared to the
current Java micro-simulation in MATSim.

Initial simulation experiments on a high-resolution navigation network of
Switzerland – containing around one million roads and 7.3 million agents –
demonstrate that real-world scenarios can now be executed in around one-and-
a-half weeks using the improved model. Ways to further shorten the computational
time of MATSim are also described.
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9.1 Introduction

Traffic simulations can be performed at different levels of detail. One common
technique is to model traffic as flows consisting of aggregated number of cars
between different areas (de Dios Ortúzar and Willumsen 2011). While this technique
is quite fast, it does not allow modeling of individual preferences or temporally and
spatially detailed analysis.

In contrast, agent-based travel demand models like MATSim represent each
person in the simulation as an individual agent (MATSim 2009). The travel demand
by each agent in this case is based on an activity-based model, where activity
times and durations are time dependent (Axhausen and Gärling 1992). Furthermore,
a dynamic micro-simulation model is used to model detailed traffic interactions,
which are again time dependent.

This enables various kinds of new applications, which are not possible with the
first approach – e.g., detailed modeling of car sharing (Ciari et al. 2008) or modeling
the charging behavior of electric vehicles (Waraich et al. 2009). Also, commercial
applications of such detailed micro-simulations can be envisioned. For example,
companies owning advertising space could offer a more sophisticated service to
customers, where not only the traffic volume along a road determines the price but
also the target audience of an advertisement is considered.

While more powerful, such detailed micro-simulation models are more expen-
sive, in terms of computation time, than aggregated models. This chapter describes
efforts to improve the performance of an agent-based micro-simulation model called
Multi-Agent Transport Simulation Toolkit (MATSim 2009). This model is aimed at
the simulation of large travel demand scenarios. But in order to perform a simulation
of a full population run of Switzerland, with 7.3 million agents on a high-resolution
navigation network, it is estimated that the existing Java-based micro-simulation
in MATSim would require around 3–4 weeks. In the direction of reducing the
computational time of MATSim, two of its central components are redesigned.
The first component is the mobility simulation where the traffic dynamics are
modeled. In order to make the mobility simulation faster, a new micro-simulation
is implemented based on the ideas of an existing event-based micro-simulation
(Charypar et al. 2007a). While multiple distributed and parallel traffic simulations in
the CCC programming language have been implemented in the past (Barceló et al.
1998; Nökel and Schmidt 2002; Nagel and Rickert 2001), to the best of the authors’
knowledge, this chapter presents the first large-scale implementation of such a
simulation in the Java programming language (implemented mid-2009). Therefore,
this chapter also discusses specific challenges for large-scale traffic simulation in
Java, which has not been discussed in the related CCC literature.

A second major performance improvement achieved in this work is related to an-
other core component of the MATSim framework called event handling. This com-
ponent is needed to process the results of the mobility system and is therefore essen-
tial for integration with other MATSim internal components and also for extension
of the MATSim model. Parallel computing is used to make event handling faster.
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This chapter is structured as follows: in the next section, MATSim is described
together with several mobility simulation implementations available for MATSim
and open issues in this regard. Thereafter, the implementation of the various
performance improvements with regards to the micro-simulation and the event-
handling model are described. This is followed by experiments which assess the
performance gains due to the newly implemented models. Before concluding, open
issues are discussed together with possible future work.

9.2 Related Work

In the following section, a description of MATSim is given followed by a presen-
tation of the different micro-simulation models and the event-handling module in
MATSim.

9.2.1 MATSim

In MATSim, individuals are modeled as agents who want to perform activities
throughout the day, such as being at home or work and going shopping. But due to
the spatial separation of the corresponding activity locations, agents need to travel.
This leads to many additional choices for the agent, such as the mode of travel,
the activity duration, the location, and the route choice. The goal of MATSim is
to find a plan for each agent, which maximizes the overall utility of the agent,
including items as travel time, ticket fares, or street toll prices. This optimization
needs to be performed while keeping constraints of the agent’s environment in mind,
such as street network capacities or opening times at shops and working hours.
This optimization of agents’ plans in MATSim is achieved by applying an iterative
process, which is depicted in Fig. 9.1.

In the beginning, the simulation starts with an initial plan for each agent depicted
as initial demand. A simple plan for an agent, who wants to leave home at 7:25 a.m.
in the morning, work for 8 h and 20 min, and then drive back home, might look as
follows:

initial demand simulation
(execution)

scoring

replanning

analysis

Fig. 9.1 Coevolutionary simulation process of MATSim
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The plan also contains information about the road (link), where the home and
work activities are located, and the route (link ids) the agent wants to drive. The
micro-simulation in MATSim follows the instructions in the plan and executes it
step by step. This means that the agent leaves home at the time specified in the plan
and, thereafter, is routed through a virtual road network throughout the day. As an
agent’s vehicle is typically not traveling alone on the road network, interactions with
other vehicles and road capacity constraints come into play. While the simulation
is running, information about the performance of the plan is also collected. For
example, did the agent need to pay a toll, how long was the travel time, and how
long did the agent work? This information is used to calculate different utility
components for the various aspects of the plan. These are added up during the
scoring step, such that each executed plan has a score assigned to it. The next
step in the iteration is called replanning. In this step, either an old plan, which was
generated in a previous iteration, is reselected for execution in the next iteration or a
new plan is generated, possibly by adapting a previous plan. This allows alternative
choices for the agent such as the mode of travel or the travel route. Often, the
probability of reselecting a plan for execution in the next iteration is based on its
score, meaning that a plan with a higher score has a higher chance of reselection.
Due to memory limitations, only a small number of plans are kept, and the plan with
the lowest score is deleted whenever a new plan is generated. This corresponds to
mutation, selection, and survival of the fittest within the context of evolutionary
algorithms (Holland 1992). As this iterative process continues, the plans of the
agents become more and more optimized, which is reflected by the improvement
of the utility score of the agents over time. This score improvement flattens out after
a certain number of iterations, depending on the choice dimensions available to the
agents. This is interpreted as a situation, which is close to user equilibrium, and is
called optimized/relaxed demand.
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After this brief description of the MATSim model, in the following section the
different traffic micro-simulation models available for MATSim are presented in
more detail.

9.2.2 Traffic Simulation Model

Traffic flow simulations range from detailed physical simulations to macroscopic
models. Detailed physical simulation attempt to capture as many traffic flow
phenomena as possible, e.g., car following and lane changing, by representing space
continuously and simulating very small time steps, e.g., Fellendorf and Vortisch
(2010). A second less detailed approach is represented by cellular automata, where
cars move between fixed-sized cells, e.g., Nagel and Rickert (2001). Interactions
between cars in neighboring cells are present, such that travel speeds and densities
can be modeled as disaggregated. Less details are present in mesoscopic models,
where detailed traffic demand is present however only aggregated supply, e.g., Ben-
Akiva et al. (1998). Macroscopic models represent the highest abstraction level,
where supply and demand is modeled on an aggregated level, e.g., Cayford et al.
(1997). For a more detailed literature review related to traffic simulations, see
Charypar et al. (2007a).

There is a trade-off between computation time and model detail. As MATSim
aims for large-scale simulation, it uses a queue-based approach, which in terms
of detail is located somewhere between the cellular automata and mesoscopic
approach. While the details in terms of implementation differ slightly, in general
all of MATSim’s traffic simulators consider roads as active elements, which move
around cars. Each road link contains a queue which stores the entry time of each car.
Adjacent links collaborate with each other to assure that link capacity, free speed
travel time, intersection precedence, and space availability are taken into account
during the simulation. There are several implementations of the traffic simulation
available, which are presented in the following section.

9.2.3 QueueSim and JQueueSim

The first micro-simulation developed for MATSim is called QueueSim and is based
on a fixed-increment time advance model (Raney et al. 2003). In this model, vehicles
are moved along links in fixed time steps of 1 s. Although the model is quite flexible,
for larger simulations it is too slow because of the fixed simulation time step. A
parallel version of QueueSim was implemented leading to a significant speedup
(Cetin 2005). Both of these simulations are implemented in the CCC programming
language. In order to improve the maintainability of the code, MATSim was later
re-implemented in Java, including the nonparallel version of QueueSim, which
is called JQueueSim here. In recent years, the performance of JQueueSim has
improved, but the underlying simulation method remains the same.
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9.2.4 DEQSim

A major performance breakthrough, within the MATSim context, is achieved
with a more recent micro-simulation called Deterministic Event-Driven Queue-
Based Traffic Flow Micro-Simulation (DEQSim, Charypar et al. 2007a), which
is implemented in CCC. Instead of performing the simulation along fixed time
steps, an event-based model is used performing only discrete actions which are
relevant to the model, i.e., entering and leaving roads. Furthermore, DEQSim has
been parallelized making it one of the fastest large-scale transport micro-simulations
currently available (Charypar et al. 2007b).

A major drawback of DEQSim within the MATSim context is that it is imple-
mented in CCC, while the other modules of MATSim are implemented in Java.
This means that the communication of DEQSim with the other MATSim modules
is bridged by a slow file input/output (I/O) interface.

9.2.5 Graphical Processing Units

Yet a different approach to accelerate the micro-simulation was tried using graphical
processing units (GPUs) on computer graphic cards. These GPUs perform many
more operations in the same amount of time than central processing units (CPUs) on
computer boards. A first successful implementation of QueueSim on GPUs rendered
a speedup of 67 times (Strippgen and Nagel 2009) compared to JQueueSim. The
main drawback of GPUs is similar to that of DEQSim, as the interface between
the graphic card and the rest of MATSim modules poses a bottleneck. Furthermore,
current GPUs have a limited amount of memory. For example, the traffic simulation
of Switzerland, with 7.3 million agents, requires around 60 GB of memory. Graphic
cards today have often less than 4 GB of memory. Also, maintainability of the
implementation is an issue, as the program code is not written in Java.

In order to provide a faster micro-simulation in Java than QueueSim, here a
redesign and re-implementation of DEQSim in Java is proposed, called JDEQSim.
A second feature, for which an improvement is also proposed, is the event-handling
module in MATSim, which is described in the next section.

9.2.6 Event Handling

The output of the traffic simulation contains detailed information about the course
of the simulation. It describes, e.g., when an agent’s vehicle enters a road or arrives
at an activity location. This information is embedded within a data structure called
“events,” which contains information such as the identification of the agent and the
link where the event occurred and its time. These events are used to communicate
the output of the micro-simulation to other modules in MATSim, such as scoring
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which can use it to calculate the performance score of an agent’s plan. These events
can also be utilized to extend the simulation, e.g., modeling the state of charge of
the battery in an electric car or updating the capacity of a parking lot.

After their creation by the micro-simulation, events are handed over to the event-
handler module. Modules interested in certain types of events can register with
the event handler. The event handler then processes each event according to the
instructions of the registered modules.

It is clear that the performance of event handling is critical to the performance
of MATSim and its extensions. In the next section, the implementation of the
JDEQSim and the performance improvements for the event handler are described.

9.3 Implementation

9.3.1 JDEQSim

The re-implementation of DEQSim in Java provided the opportunity to rethink and
redesign its code structure. The CCC DEQSim code is used to understand the
internal structure of the DEQSim traffic model but is not used for the implemen-
tation of JDEQSim itself. The design of JDEQSim is influenced by OMNeTCC
(OMNeTCC 2009), which is a modular and open-architecture discrete-event
communication network simulator. To a certain extent, many elements used in
JDEQSim are similar to concepts presented by Axhausen (1988).

The JDEQSim implementation consists of three parts: simulation units, mes-
sages, and a scheduler. Vehicles and links are the basic building blocks of the traffic
simulation and are called simulation units. These simulation units communicate
with each other by exchanging different kinds of messages, which can be thought
of as internal events, which stay inside the traffic simulation. These are different
from the external events, which are forwarded to the event handler by the micro-
simulation. Each message contains a time stamp, e.g., when a vehicle is allowed to
enter the next link or when a car should start a trip. Each newly created message
is sent to the scheduler. The scheduler contains a message priority queue, which
is ordered by message time and message type. At the beginning of the simulation,
the end time of the first activity of each agent is scheduled in the queue. When
the micro-simulation is started, the scheduler fetches the first message and delivers
each message to its intended target simulation unit, where it gets executed, e.g., a car
leaves one road and enters a new one. Often, execution of the instructions written
in a message leads to the creation of new messages, which are then added to the
queue of the scheduler. The processing of the messages also leads to the generation
of external events, which includes the passing of these events to the event handler,
where they are processed further. The scheduler will always only process the first
message in the queue until all of the messages have been processed and the micro-
simulation ends.
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As mentioned above, the messages are not only ordered according to time but
also according to the message type, which is not the case in most event-based
simulations. This is required to solve the situation, in which two events happen
at the same time and a deterministic order needs to be maintained. For example, it
is logical that an agent first has to arrive home before any activity can be performed
there. Therefore, if the arrival at home and the start of an activity there happen at
the same time due to a missing delay in-between, priority needs to be given to the
arrival event for it to be processed first. This is important both for the internal and
external consistency of the traffic simulation, including event handling.

9.3.1.1 Simulation of Transportation Modes Besides Cars

While DEQSim only supports the simulation of cars, a simple and general model
for other transport modes is present in JQueueSim. The model allows to define
a constant travel speed for a new transportation mode. This model has also been
implemented in JDEQSim.

Two other features, which distinguish the DEQSim and QueueSim model, are
described in the following section, as they have been implemented in JDEQSim.

9.3.1.2 Traveling Gaps in a Queue

When the front car in a traffic queue moves, it leaves behind a gap which travels
backwards. Cars behind in the queue have to wait until such a gap reaches them
before they can start driving. Such gaps, traveling backwards as a traffic queue is
dissolving, are implemented in DEQSim (Charypar et al. 2007b). They have also
been implemented in JDEQSim as this makes the model more realistic.

9.3.1.3 Prevention of Gridlock

Gridlock, which can occur in all of the micro-simulation models, is a problem. For
example, if links are full and there is a circular flow relationship between vehicle
movements on two or more links, it can lead to vehicles waiting for each other
forever. In order to address this issue in DEQSim, if a vehicle waits for a long
time at the front of a link, it is moved to the next link. This introduces a minimum
flow at network links. Furthermore, the space available on a link is also temporarily
modified.

An alternative to this mechanism could be to remove the agent and its vehicles
from the simulation if it does not move after a certain maximum duration at the front
of a road. This mechanism is implemented in JQueueSim but has the disadvantage
that, as the agent is suddenly removed during the simulation, the scoring of the
agent and further processing is stopped. This measure is rather abrupt and can lead
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to temporary wrong results at modules processing events, e.g., wrong traffic counts.
For this reason, the JDEQSim approach to avoid gridlock is implemented.

Besides the re-implementation and extension of DEQSim in Java, an attempt is
also made to parallelize JDEQSim, which is described in the next section.

9.3.2 Parallelization of JDEQSim

In Charypar et al. (2007b), the parallelization of DEQSim is described. This is
achieved by partitioning the traffic network into several pieces, which are assigned
to separate CPUs of a shared memory machine. The message passing interface
(MPI, Snir et al. 1995) is used for communication between CPUs. When an agent
travels from the network area assigned to one CPU to a different one, MPI is used
for passing the agent’s data between CPUs. This operation includes periodically
synchronizing the state of links at the border of each network partition.

In Java, threads are used as a basis for parallel programming (Lea 1999), where
such instructions which need to be executed in parallel are distributed to different
threads. In order to pass data between two threads, the synchronized keyword is
used. The advantage of the Java synchronized keyword compared to MPI in CCC is
that no explicit data structures have to be built for transferring data between threads.
This means that all data within the Java virtual machine (JVM, Lindholm and Yellin
1999) are accessible to all threads. But in the context of parallelizing JDEQSim,
this turns out to be a major disadvantage; whereas MPI allows to explicitly specify
which data to transfer between CPUs, it is not always obvious what data will be
exchanged due to a synchronized statement in Java. While many elements of data
transfer between threads are hidden and handled by the JVM, which simplifies
programming, this also means that the programmer has little control over them for
performance optimization.

Before describing a successful implementation of the parallelization of JDE-
QSim, two straightforward, but failed, attempts in this regard are described. This
helps to better understand the path taken and the various issues involved.

9.3.2.1 Failed Attempt 1: Single Scheduler Queue

As mentioned earlier, in Java each thread can access all data within the JVM. A
simple parallelization solution is therefore to maintain a single scheduler queue
within the JVM. The network links are assigned to different threads, e.g., using a
network partitioning algorithm as used in DEQSim, such that most collocated links
are assigned to the same thread.

In order to keep the state of the scheduler queue synchronized between threads,
each access of the queue needs to be synchronized. Unfortunately, this leads to
too many synchronizations between the threads, thus deteriorating performance. An
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attempt was also made to improve the performance by introducing message buffers,
which are attached to the scheduler, but this did not help to resolve the problem.

9.3.2.2 Failed Attempt 2: Multiple Scheduler Queues

In order to try to solve the problem with the single scheduler queue, separate
scheduler queues per thread are defined. Different threads still need to synchronize
to ensure data consistency, e.g., when vehicles move between network partitions.
Furthermore, periodical synchronization between border links at predefined inter-
vals is needed to ensure that one thread does not advance the simulation too much.
This synchronization interval is determined by the travel time needed to travel
between two partitions. This method is almost identical to how the parallelization
of DEQSim is performed.

Unfortunately, this approach does not perform well because of the periodical
synchronization between threads and the waiting time involved; whenever one
thread is too far ahead, it has to wait on the other thread. This issue could be
improved by applying a different method, which is described in the next section.

9.3.2.3 Successful Parallelization: Decoupling of Executor Threads

The main problem detected with the multiple scheduler queues approach is that the
synchronization between threads happens too often, thus hindering parallelization.
A new approach in this regard is implemented which successfully decouples the
threads, as shown in Fig. 9.2. Instead of periodically synchronizing between network

Thread A Thread B

Scheduler Queue Scheduler Queue

most
messages
scheduled

inside same
partition

Network Partition A Network Partition B

Outgoing Message Buffer
(for Thread B)

messages for links in
neighboring partition are

buffered locally

buffered messages transferred
periodically (with synchronized

access)

Fig. 9.2 Parallelization of JDEQSim
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partitions on a link level, as in DEQSim, a periodic synchronization for the whole
partition is performed periodically after a fixed interval ı. This means that all
messages generated during this interval, which need to be added to the scheduler
queue of an adjacent network partition, are buffered and then added at once using
synchronized access. The maximum allowed ı between two threads is determined
by the link with the shortest travel time, which resides at the border of the two
network partitions. As a larger ı is better for simulation performance, possible
adaptations to the network portioning algorithm are discussed further in the future
work section.

9.3.3 Parallel Event Handling

During the development of JDEQSim and its parallelization, it was observed that
event handling is executed on the same thread as the micro-simulation itself. But
as the event-handling process is independent of the micro-simulation and can be
further split into multiple event-handling tasks, it is ideal for parallelization. Such
a parallelization allows us not only to run the micro-simulation faster but it also
improves the performance of extensions of MATSim, which use the event-handling
interface.

Currently, five default event handlers are present in MATSim. Figure 9.3 shows
the relative time proportions of these five handlers to each other. Two of these
event handlers are needed for gathering and communicating information between
the micro-simulation and other MATSim modules: EventsToScore for accumulation
of the utility score components and TravelTimeCalculator for estimating the travel
time. Two additional event handlers generate statistics and graphs of the simulation
(LegHistogram and CalcLegTimes). The most time-consuming event handler is
EventWriterTXT which writes all events produced by the micro-simulation to a file,
allowing later post processing and analysis of simulation results.

Fig. 9.3 The execution time
of default event handlers
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9.3.3.1 Implementation

The parallelized version of event handling is called parallel event handling and
allows the user to specify how many threads should be dedicated to this module
during the simulation. The current implementation applies a round-robin approach
(Hahne 1991) to assign event handlers to threads. This means it tries to assign the
same number of event handlers to each thread. It is obvious from Fig. 9.3 that this
approach is suboptimal because it would be best to put the event handler writing out
events to a separate thread and the other handlers on a second one.

Fortunately, writing out events to a file is not part of the communication interface
between JDEQSim and MATSim, which is different in DEQSim. This means the
event file is needed only in the last iteration as a backup for further analysis.
Additionally, events can be written out at predefined intervals, e.g., each 10th
iteration, in order to analyze intermediate results of a bigger simulation while it is
still running. This means that during most iterations, a quite balanced parallelization
of event handling is possible using up to four cores if considering the default
simulation without any other scenario-specific event handlers.

While the implementation of parallel event handling could be improved in several
ways, as discussed in the future work section, the reason to start with a simple
implementation is that the existing interfaces did not need to be changed.

9.4 Experiments and Results

9.4.1 Single Thread JDEQSim with Parallel Event Handling

While the parallel version of JDEQSim is still experimental work, the nonparallel
version of JDEQSim is planned to be run with parallel event handling in the near fu-
ture for large-scale scenarios.1 Therefore, experiments presented here are conducted
in the latter configuration to demonstrate the performance gains when comparing it
to the current state-of-the-art micro-simulation in Java (JQueueSim). Furthermore,
the performance gains due to parallel event handling are also demonstrated. While
the focus is on the comparison of JDEQSim with JQueueSim, runs with DEQSim
are also conducted for reference.

9.4.1.1 Scenario Setup and Hardware

The simulations are conducted on a NAVTEQ road network (NAVTEQ 2009)
for Switzerland, with around 882 K links. A population sample of the people
surrounding the city of Zurich who drive cars is used, containing around 614 K

1Have been conducted in 2010 (see, Meister et al. 2010)
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agents. The hardware used for this experiment is a Sun Fire X4600 M2, with 16
cores (8 dual core CPUs) and 128 GB of memory. Due to the large number of
simulations, not all runs could be repeated multiple times. To give a sense of the
variability of the JDEQSim results for a similar JDEQSim run over 50 iterations,
the standard deviation for the computation time amounted to 13 % of its mean value
(for micro-simulation and event handling).

9.4.1.2 Runtime: Micro-simulation and Event Handling

In the first experiment, the runtime of the three micro-simulations is compared using
nine configurations, where also the number of threads used is varied (see Fig. 9.4).
Configurations include runs with and without parallel event handling (abbreviated
as PEH in Fig. 9.4). Furthermore, runs with and without the EventWriterTXT event
handler are conducted (abbreviated as EWT in Fig. 9.4).

Both JDEQSim and JQueueSim runs with a single thread use the default event
handling, while runs with more than one thread use parallel event handling. For
example, the JDEQSim run with two threads uses one thread for the micro-
simulation and one for parallel event handling. In the DEQSim runs, first the
micro-simulation is run using the indicated number of threads, thereafter the events
are written to a file and read in by the nonparallel version of the event handler for
further processing.

The number of threads usable in the different configurations cannot be chosen
arbitrarily: The number of threads “n” which can be used by DEQSim is constrained
to n D 2i, where i � 0. This is due to the network partitioning algorithm used. For
JDEQSim, the maximum number of usable threads in the presented scenario is
five without EWT and six with EWT. In these cases one thread is used for the
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micro-simulation and one thread for each of the default event handlers. However,
only a selected number of configurations and thread combinations are simulated
and discussed here.

The first two configurations look at JQueueSim without PEH and with and
without EWT. The comparison of these two configurations highlights the overhead
due EWT (43 %). Configuration three and four look at JQueueSim for the case
where PEH is turned on, again with and without EWT. The experiments show that
the newly implemented parallel event handling reduces the time of an iteration by
around 26 % for the case where writing out events is turned on (configuration one
vs. three) and by around 13 % for the case where writing out events is turned off
(configuration two vs. four). The higher gain for the case where events are written
out to the hard drive is expected; as in this case parallel event handling successfully
decouples the micro-simulation from I/O operations.

Configurations one to four and five to eight correspond to each other, and
only the latter uses JDEQSim instead of JQueueSim. In order to measure possible
performance gains due to the implementations made in this chapter, JQueueSim and
JDEQSim need to be compared to the case where writing out events is turned off
and the latter uses PEH (configuration four vs. eight). The reason for comparing the
case where event writing is turned off is important because in most iterations, this
configuration is run. In this case, the runtime is reduced by around four times for the
given scenario. The major part of this speedup (ca. 76 %) is due to the differences in
models of JDEQSim and JQueueSim (event-based vs. fixed time steps). This can be
seen when comparing configuration two and six where only a single thread is used
both for JDEQSim and JQueueSim. The remaining performance gain is due to the
parallelization of event handling (configuration six vs. eight).

Configuration nine shows DEQSim runs for various numbers of CPUs used.
While the runtimes of JDEQSim and DEQSim are similar, when PEH is not used
and EWT is turned on (configuration five vs. nine), already turning off EWT leads
to a major performance gain for JDEQSim compared to DEQSim (50 %, compare
configuration five vs. six). This gap between DEQSim and JDEQSim even builds
up further, when turning on PEH, such that JDEQSim always performs better than
DEQSim up to eight CPUs (configuration seven/eight vs. nine). Furthermore, as the
flattening of the runtime curves suggests, it might be quite difficult for DEQSim to
reach a runtime lower than that of JDEQSim, even if using a higher number of CPUs
as is explained using Amdahl’s law in the next section (Amdahl 1967).

9.4.1.3 Amdahl’s Law and Its Implications

Amdahl’s law describes the maximum achievable speedup of a parallel program. It
says that if a certain portion of a program cannot be parallelized, then the maximum
achievable speedup is limited – even with unbounded computation power. The
maximum achievable speedup with n threads for a program where fraction b of
the program cannot be parallelized can be calculated using Eq. (9.1).
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S.n/ D 1

b C 1�b
n

(9.1)

To give an example of Amdahl’s law, if 5 % of a program cannot be parallelized,
then it is not possible to achieve a speedup of more than 20. The implication of
Amdahl’s law is present both for DEQSim and JDEQSim runs but at different
points. For DEQSim, the interface between the micro-simulation and MATSim is the
bottleneck. Because of the I/O overhead of the communication between the micro-
simulation and MATSim, a speedup of even two seems impossible. This means that
more than 50 % of the micro-simulation consists of parts which have to be executed
sequentially. A second and smaller part of nonparallelizable code present in the
DEQSim runs is the event handling, which cannot run in parallel mode for DEQSim
at the moment. In case of parallel event handling, the maximum achievable speedup
is limited by the slowest event handler.

This first experiment suggests that to make most efficient use of CPUs, JDEQSim
should be run with one parallel event-handling thread. As the machine used in
this experiment has around 128 GB RAM and 16 cores and the scenario uses less
than 15 GB of RAM, several JDEQSim runs could run in parallel, which is useful
especially during the calibration phase.

9.4.2 Influence of Network Size

In the previous experiment, JDEQSim performed around four times faster than
JQueueSim. But this cannot be generalized, because if the network is congested,
then JDEQSim can be much faster than JQueueSim. Such congestion can happen
especially during the initial iterations, in which the routes are far from optimal and
can lead to a simulation period stretching far beyond 24 h. This can lead to long run
times for JQueueSim as its runtime is directly correlated to the simulation period.

Furthermore, different ratios of network size and population can widen the gap
between the speedup of JQueueSim and JDEQSim, which is highlighted here. In this
experiment, all micro-simulations are run using two threads. Both JDEQSim and
JQueueSim runs are performed with parallel event handling, using a single thread
and no events are written to the hard drive. The network capacity is chosen in such a
way that no congestion should happen in order to remove possible adverse influence
of this on JQueueSim. The three scenarios which are considered are:

• Scenario A: Network with 882 K links and 61 K agents (36 M events)
• Scenario B: Network with 61 K links and 616 K agents (58 M events)
• Scenario C: Network with 882 K links and 614 K agents (363 M events)

The results of the experiments in Fig. 9.5 show that DEQSim and JDEQSim scale
linearly with the number of events. Only in Scenario A, in the case of DEQSim, the
I/O overhead of loading the network is immense compared to the actual simulation
time.
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Fig. 9.5 The influence of network size on the three micro-simulations

For JQueueSim the situation is different. While Scenarios A and B generate the
same magnitude of events, the run times are substantially different. This has to do
with the substantially different ratio of network-to-population size. Therefore, in
Scenario A, JQueueSim performs extremely badly compared to JDEQSim. In fact,
JDEQSim is more than 17 times faster than JQueueSim in Scenario A, while for
Scenarios B and C, it is around four times faster.

9.4.3 Scalability of Event Handlers

While the first two experiments look at the overall performance increase, due to both
the micro-simulation and parallel event handling, in this section we only look at the
latter. As mentioned earlier, the event handler with the longest computation time
defines the runtime of parallel event handling. Therefore, in order to test how parallel
event handling would scale with multiple event handlers and threads, identical test
handlers are added to the simulation. The test handler performs computationally
intensive tasks and does not involve any disk I/O. This is important because event
handlers requiring I/O are inherently difficult to parallelize due to the speed limit of
the hard drive and are therefore not suitable for this experiment.

Figure 9.6 shows the speedup for the different runs, where different numbers
of handlers are involved. This experiment shows that parallel event-handling scales
linearly up to 4 threads, but the speedup with 8 threads already drops to around 6.
This drop is severe if we consider that only little use of Java’s synchronized keyword
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is made. Even more complex parallel programs written in CCC with MPI achieve
speedups of around 8 in this case (Charypar et al. 2007a).

While only a small number of event handlers are present by default in MATSim,
many applications are under development and planned in the MATSim community
(MATSim 2009) which require additional event handlers. The good news is that if
more handlers are added to parallel event handling, the speedup gets slightly better,
as can be seen in the 8-thread scenario. This is expected because adding more work
to the handler reduces the relative penalty of synchronization between threads.

9.4.4 Speedup for Parallel JDEQSim

As described earlier, a first prototype of the parallelization of JDEQSim for
two threads has been implemented. As event handling has not been adapted yet
to properly function with parallel JDEQSim, only measurements of the micro-
simulation are reported here where event handling is turned off. The experiment
consists of 1.62 million agents residing in the surroundings of Zurich city. The
network contains 163 K links. This experiment required 29 min and 40 s when
running with JDEQSim, while on the parallel JDEQSim (2 threads), the experiment
only took 18 min and 37 s. This is a speedup of 1.6, which is encouraging, but many
problems remain unresolved, as is discussed in the future work section.
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9.4.5 Simulation of Switzerland

One of the near-future goals of the performance improvements presented in this
chapter is to perform simulation runs for the whole of Switzerland; therefore,
a first experiment in this direction is conducted. This experiment simulates the
whole population of Switzerland (7.3 million agents) on a network with around
one million links. The agents traveled using different transportation modes, such as
car, bus, bike, and on foot. The experiment is run with the single-threaded version
of JDEQSim and parallel event handling with a single thread. It took around 3 h
and 16 min for a single iteration of micro-simulation and event handling, while
for replanning and the rest, an additional 70–80 min are needed. As MATSim is
an iterative process, depending on the search space, many iterations are needed to
reach a relaxed state (Balmer et al. 2009). When only route choice, mode choice,
and departure time/duration adaption are enabled, around 60 iterations are required
(based on experience). It is estimated that it may take around 11 days for these
60 iterations to complete, considering that the overhead of writing out events to
the hard drive is only conducted each 10th iteration. If we assume a speedup of
four for JDEQSim compared to JQueueSim and also take the computational time of
the other modules into account, it is estimated that with JQueueSim it would take
around 36 days to calculate such a scenario. This is a speedup of around 3.2 for the
overall simulation. While the performance gains achieved by the work presented in
this chapter are important, this means that more progress related to performance is
still needed, which is discussed in the next section.

9.5 Discussion and Future Work

While two ways to significantly shorten the runtime of the MATSim simulation are
presented in this chapter, it seems like the “low-hanging fruits have been picked”
and additional improvements will not be as straightforward and may possibly lead
to not as much performance improvement, as well as requiring major changes, to
the existing models and interfaces. In the following section, issues involved are
discussed together with possible solutions.

9.5.1 Parallel Micro-simulation

In order to achieve a major breakthrough with regards to the micro-simulation
performance, making use of multiple threads seems to be crucial. Although a
first success in the direction of a parallelization of DEQSim has been made, a
successful integration of this into MATSim needs more work and would also require
fundamental changes to the existing models.

Two points seem central to a successful integration of parallel JDEQSim in
MATSim: decoupling of threads and integration of parallel JDEQSim with parallel
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event handling. In both cases also synchronization overheads between threads in
Java contribute to the increased computation time which is further discussed in the
following sections.

9.5.1.1 Load Balancing

For decoupling of different micro-simulation threads, the workload needs to be
distributed evenly among them, and the time period ı for two periodical synchro-
nizations between threads should be as long as possible.

For assigning the same amount of work to all threads, currently the network is
partitioned at the beginning of the iteration. However, as traffic load changes over
the day, this may lead to a major imbalance of workload among threads during the
course of the iteration. This causes faster threads to wait for slower ones due to the
periodic synchronization. This situation could be improved by changing the network
partition assignment to threads during the iteration to correct for the imbalance. This
operation could be performed at the time when synchronization between threads
happens.

Besides the workload, the coupling of two threads is affected by the time period
ı after which two threads need to synchronize. This time is determined by the link
with the shortest travel time at the border of two network partitions. Therefore,
a way forward might be to partition the network in a way which maximizes the
duration between two consecutive thread synchronizations. But it is unclear how
much coupling between threads is caused due to an imbalance of workload between
threads and how much improvement could be achieved by partitioning the network
in a way that ı is maximized. Therefore, extensive experiments would be required in
this regard to be able to make recommendations on how to proceed in this regards.

9.5.1.2 Trade-Off: Preciseness Versus Performance

If the synchronization time period between two threads is above its maximum
value (defined by the link with the shortest travel time at the partition border),
race conditions will occur, meaning that cars at the border links could enter the
neighboring partition too early or too late, leading to a distortion of traffic patterns.
It would be interesting to investigate up to what value of ı a significant performance
increase can be achieved and how much the traffic patterns are affected due to
this. According to initial experiments in this regard, a possible trade-off between
preciseness and performance could be a viable way to increase performance.

9.5.1.3 Adaptation of Event Handling

The events processed by event handling must have an ascending time stamp.
However, this is not naturally the case when events are generated by different threads
of the parallel micro-simulation. Therefore, neither the current single-threaded event
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handler nor the new parallel event handler is suitable for use with the parallel version
of JDEQSim. Buffering and sorting of events need to be implemented between the
micro-simulation and the event handler in order to make this possible.

In the following section, additional issues and possible improvements related to
event handling are discussed.

9.5.2 Event Handling

9.5.2.1 Performance

According to the experiments conducted, parallel event-handing scales well if the
load is well balanced. But this is often not the case when one or several event
handlers involved contain many disk I/O operations. In this case, these event
handlers pose a bottleneck to the current parallelization approach in several ways:
firstly, as I/O operations are slow, event handlers involving many I/O operations are
the slowest event handlers; secondly, as writing to a hard disk is limited by the speed
of the hard disk, this becomes even more of an issue because such handlers slow
each other down even further or might even be influenced by other I/O operations
on the same computer.

In order to solve this problem, one might distinguish event handlers based
on the criterion if other modules in the simulation depend on their output. Only
such modules which fulfill this criterion require that event handling is completed
before the next step in the MATSim loop is executed. Of the five default event
handlers, this is only the case for two of the event handlers (EventsToScore and
TravelTimeCalculator). The other three event handlers only produce output for later
analysis. This means that these three event handlers could continue their processing
while the rest of the MATSim iterations continue. This approach could certainly be
used to reduce the overall computational time of MATSim.

A second performance improvement could be achieved by replacing the current
round-robin algorithm, which assigns an even number of event handlers to all
threads with one which performs better load balancing. This could be achieved in the
following way: the average runtime of the different event handlers could be tracked
and a load balancing could be performed, every couple of iterations, while taking
this information into account.

9.5.2.2 Usability

While event handling is a simple way for users to access the output of the MATSim
simulation and also to extend the simulation itself, with parallel event handling and
other performance improvements, the possibility of making errors especially for
novice users of MATSim increases.
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A possible pitfall of using parallel event handling could arise in the following
way: while with nonparallel event handling it is not a problem if different event
handlers access each other’s data, this could cause race conditions in the case
of parallel event handling. This means that if no synchronization is used, data
written by one thread could not be visible to another thread and, as such, data
inconsistencies could occur. While the default event handlers are all implemented in
a way that this problem cannot occur, users not familiar with the intricacies involved
could make such a mistake.

Also, the proposed performance improvement – where a distinction between
event handlers is made, whether they produce output for other MATSim modules
or not – adds to the complexity of how event handling is used till now. This means
that there is a trade-off between usability and performance with regards to parallel
event handling which users need to be informed of.

9.5.3 Replanning Modules

Besides the micro-simulation and event handling, replanning is the third module
in MATSim which requires major computational time. Apart from reducing the
computational time of the various modules involved, work that helps to reduce the
number of iterations required to reach a relaxed state is also important. Ongoing
work related to Meister et al. (2006) where new optimization methods and heuristics
are applied in order to reduce the number of iterations is interesting in this regard.

Another research strand to investigate is by how much the runtime can be
reduced by making more dynamic use of the replanning module than at the moment.
Currently, the probability for applying a replanning strategy in MATSim is fixed at
the beginning of the simulation. For example, in each iteration 10 % of the agents try
to reroute. While systematic research in this regard is limited, experience suggests
that some search dimensions do not need a constant replanning share throughout
the simulation. For example, the share of rerouting could be reduced over time, as
optimal routes are often found within the first 10–20 iterations with a 10 % reroute
share. This could accelerate the overall simulation as the freed up processing power
could be used by other replanning modules.

9.6 Conclusions

This chapter presents to the best of the authors’ knowledge the first implementation
of a large-scale traffic simulation in Java while making use of parallel computing.
Several issues discussed in this chapter have been raised for the first time in traffic
simulation literature and might be useful for the implementation of other traffic
simulation models in Java as well.
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The main contribution of this chapter is that two methods are proposed and im-
plemented to enhance the performance of the agent-based travel demand simulation
MATSim. This is achieved by refining the micro-simulation and by parallelizing the
processing of its output. As a result of these performance improvements, larger runs
can be simulated in less time and using fewer CPUs/cores than possible before.

Experiments show that, through the proposed changes, the runtime of the current
Java-based micro-simulation is improved by a factor of four and more, depending
on the scenario. As MATSim is aimed at the simulation of large-scale scenarios and
simulation runs of the whole of Switzerland are planned in the near future on high-
resolution networks, it is shown that the computational time for the whole MATSim
run is reduced by a factor of around 3 to about 4.5 h per iteration.

While this is a significant performance enhancement, further improvements of
various modules of the MATSim simulation are also proposed, especially with
regards to the parallelization of the micro-simulation.
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Chapter 10
Recent Advances on 2D and 3D Change
Detection in Urban Environments
from Remote Sensing Data

Konstantinos Karantzalos

Abstract Urban environments are dynamic and complex by nature, evolve over
time, and constitute the key elements for currently emerging environmental and
engineering applications in global, regional, and local spatial scales. Their modeling
and monitoring is a mature research field that has been extensively studied from
the remote sensing, computer vision, and geography scientific communities. In
this chapter, a comprehensive survey of the recent advances in 2D and 3D change
detection and modeling is presented. The analysis is structured around the main
change detection components including the properties of the change detection
targets and end products; the characteristics of the remote sensing data; the initial
radiometric, atmospheric, and geometric corrections; the core unsupervised and
supervised methodologies and the urban object extraction and reconstruction algo-
rithms. Experimental results from the application of unsupervised and supervised
methods for change detection and building detection are given along with their
qualitative and quantitative evaluation. Based on the current status and state of
the art, the validation reports of relevant studies, and the special challenges of
each detection component separately, the present study highlights certain issues
and insights that may be applicable for future research and development, including
(i) the need for novel multimodal computational frameworks and (ii) for efficient
unsupervised techniques able to identify “from-to” change trajectories, along with
the importance (iii) of automation, (iv) of open data policies, and (v) of innovative
basic research in the core of the change detection mechanisms.
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10.1 Introduction

Understanding and modeling in detail the dynamic 3D urban scenes can enable
effectively urban environment sustainability. In particular, the efficient spatiotem-
poral urban monitoring in large scale is critical in various engineering, civilian,
and military applications such as urban and rural planning, mapping, and updating
geographic information systems, housing value, population estimation, surveillance,
transportation, archeology, architecture, augmented reality, 3D visualization, virtual
tourism, location-based services, navigation, wireless telecommunications, disaster
management, and noise, heat, and exhaust spreading simulations. All these subjects
are actively discussed in the geography, geoscience, and computer vision scien-
tific communities both in academia and industry. Organizations like Google and
Microsoft are trying and seeking to include extensively up-to-date 2D and 3D urban
models in their products (Microsoft Virtual Earth and Google Earth).

The prohibitively high cost of generating manually such 2D and 3D dynamic
models/maps explains the urgent need towards automatic approaches, especially
when one considers modeling and monitoring time-varying events within the
complex urban areas. In addition, there is an emergence for algorithms that provide
generic solutions through the automated and concurrent processing of all available
data like panchromatic, multispectral, hyperspectral, radar, and digital elevation
data. However, processing multimodal data is not straightforward (He et al. 2011b;
Longbotham et al. 2012; Berger et al. 2013) and requires novel, sophisticated
algorithms that on the one hand can accept as an input multiple data from different
sensors, data with different dimensions, and data with different geometric, spatial,
and spectral properties and on the other hand can automatically register and process
them.

Furthermore, despite the important research activity during the last decades,
there are, still, important challenges towards the development of automated and
accurate change detection algorithms (Lu et al. 2011c; Longbotham et al. 2012;
Hussain et al. 2013). It has been generally agreed and is verified by the quantitative
evaluation of recent research efforts that there isn’t, still, any specific single, generic,
automated methodology that is appropriate for all applications and/or all the case
studies. The maximum accuracy of the 2010 multimodal change detection contest
was just over 70 % (Longbotham et al. 2012). This is in accordance and closely
related with Wilkinson’s earlier report on the minor improvement during the last
decade on the performance of classification algorithms (Wilkinson 2005). Even the
latest machine learning techniques haven’t contributed much on the remote sensing
data classification problem. Standard approaches usually result in similar levels of
accuracy with the newer more advanced ones. Therefore, several aspects of the
change detection process, towards the efficient 2D and 3D updating of geospatial
databases, possess emerging challenges.

The aforementioned need for more intensive research and development is,
furthermore, boosted by the available and increasing petabyte archives of geospatial
(big) data. Along with the increasing volume and reliability of real-time sensor
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observations, the need for high performance, big geospatial data processing, and
analysis systems, which are able to model and simulate a geospatially enabled
content, is greater than ever. Both in global and local scales, the vision towards
a global human settlement layer (Craglia et al. 2012) with multiscale volumetric
information describing in detail our planet in 4D (spatial dimensions plus time)
requires generic, automated, efficient, and accurate new technologies.

Towards this end, a significant amount of research is still, nowadays, focusing on
the design, development, and validation of novel computational change detection
procedures. Among them, those concentrating on forest change detection are
holding the biggest share (Hansen and Loveland 2012) due to the importance on
climate change, biodiversity and the suitability of past and current satellite remote
sensing sensors, their spatial and spectral properties, and operational monitoring
algorithms (Phelps et al. 2013). Cropland, vegetation, and urban environments are
the other change detection and monitoring targets that benefit more from the current
and upcoming very high-spatial-resolution, very high-spectral-resolution, and very
high-temporal-resolution remote sensing data.

This chapter is focusing on the recent advances on change detection computa-
tional methods for monitoring urban environments from satellite remote sensing
data, with emphasis on the most recent advances in the domain. In order to study
change detection methodologies, their main key components are identified and
studied independently. The most recent techniques are presented in a systematic
fashion. In particular, publications during the last 6 years are reviewed and recent re-
search efforts are classified in certain categories regarding the type of the algorithm
employed, the type of geospatial data used, and the type of the detection target.
Earlier reviews (Lu et al. 2004, 2011c; Radke et al. 2005) give a detailed summary
of the efforts during the last decades (Singh 1989). Moreover, the focus here is on
change detection methods applied to medium-, high-, and very high-resolution data,
since for urban environments smaller scales do not provide spatial products with
suitable accuracies for local geospatial database update. In the following sections
several aspects of the change detection targets, end products, the relevant remote
sensing data, preprocessing, and core change detection algorithms are detailed and
discussed.

10.2 Change Detection Targets and End Products

The main detection targets in urban environments are land cover, land use, urban
growth, impervious surfaces, man-made objects, buildings, and roads. With the
same order one can indicate a suitable spatial accuracy from regional to more
local scales. Therefore, each query for monitoring specific phenomenon, terrain
classes, or terrain object poses specific constrains that describe the end product of
the procedure. Which is the detection target and the desired location and size, which
is the desired time period, and which is the required spatial accuracy?
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Table 10.1 Change detection and monitoring targets

Land cover/
land use Urban growth

Impervious
surfaces and
man-made objects Buildings

Slum/
damaged
buildings

Boulila
et al. (2011)

Bagan and
Yamagata (2012)

Chini et al. (2008) Benedek
et al. (2012)

Brunner
et al. (2010)

Chen et al. (2012) Michishita
et al. (2012)

Leinenkugel
et al. (2011)

Bouziani
et al. (2010)

Dong and
Shan (2013)

Chen et al. (2013) Shafizadeh-
Moghadam and
Helbich (2013)

Lu et al. (2011a) Champion
et al. (2010)

Kit and
Lüdeke (2013)

Del Frate
et al. (2008)

Taubenböck
et al. (2012)

Weng (2012) Crispell
et al. (2012)

Klonus
et al. (2012)

Deng
et al. (2009a)

Villa (2012) Xian and
Homer (2010)

Doxani
et al. (2012)

Wang and
Jin (2012)

Dos Santos Silva
et al. (2008)

Zhang and
Seto (2011)

Hebel
et al. (2013)

Hansen
et al. (2014)

Du et al.
(2012)

He et al. (2011a) Poulain
et al. (2011)

Hu and
Zhang (2013)

Taneja
et al. (2013)

Lu et al. (2011c) Tang
et al. (2013)

Schneider (2012) Tian
et al. (2013)

Sexton
et al. (2013)

Sjahputera
et al. (2011)

Xian et al. (2009)

Zanotta and
Haertel (2012)

Zhang
et al. (2013)

The answer to the aforementioned questions indicates various parameters and
sorts significantly the required approaches and algorithms that should be employed.
Table 10.1 summarizes the recent research activity on change detection and
monitoring of urban environments according to the desired product and target that
each recent study has been focusing on. Land cover/land use, urbanization, imper-
vious surfaces and man-made objects, building, and slum or damaged buildings
compromise the five dominant categories.

These categories are not referring to different terrain objects but rather on a
hierarchical terrain object relation like in most model-based descriptions (ontolo-
gies, grammars, etc.). This categorization depicts both the different end-product
requirements like their spatial scale and the type of urban objects/terrain classes are
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required for detection and monitoring. Along with the different specifications of the
currently available remote sensing data, this is, actually, the main reason why these
categories seem to form different groups in the literature including data, methods,
and validation practices. In particular, the biggest share are holding the efforts which
focus either on land cover/land use or either on building change detection.

On the one hand, the opening of the United States Geological Survey’s Landsat
data archive (Woodcock et al. 2008; Wulder et al. 2012) and the newly launched
Landsat Data Continuity Mission (LDCM) enabled the easy access to a record
of historical data and related studies on monitoring mainly land-cover/land-use
changes, updating land national cover maps, and detecting the spatiotemporal
dynamics, the evolution of land-use change, and landscape patterns. With this
increased data availability and the increasing open data policies both in the USA
and EU, similar studies can correspond to the current demand for improving the
capacity to mass process big data and enable the efficient spatiotemporal modeling
and monitoring.

On the other hand, a significant amount of research was focused on local
scales and building change detection. Novel promising automated algorithms were
developed which allow one to automatically detect, capture, analyze, and model effi-
ciently single buildings in dynamic urban scenes. Mainly model-based approaches,
like parametric, structural, statistical, procedural, and grammar-based ones, have
been design to detect, both in 2D and in 3D, buildings and spatiotemporal changes.
Google Earth, Virtual Earth, and other government applications and databases must
be/remain updated, and therefore, the motivation on automated algorithms instead
of costly manual digitization procedures is, still, high.

Apart from the requirements regarding the multiple properties of the desired
product and detection target, the change detection procedure is affected by a
number of parameters including spatial, spectral, thematic, and temporal constraints;
radiometric, atmospheric, and geometric properties; and soil moisture conditions.
Therefore, a sophisticated methodology should be able to address in a preprocessing
step all the various constrains and conditions that will enable an effective and
accurate core spatiotemporal analysis. In the following two subsections, certain
important aspects regarding the multiple properties of the remote sensing data are
detailed along with a brief description on the required preprocessing steps.

10.3 Remote Sensing Data

During the last decades important technological advances in optics, photonics,
electronics, and nanotechnology allowed the development of frame and push-
broom sensor with high spatial and spectral resolution. New satellite mission
have been scheduled continuously and gradually remote sensing data of higher
quality from either passive or active sensors will be available. However, today data
with high spatial and spectral resolution is either for military or commercial use.
In Table 10.2, a summary of the currently available satellite remote sensing sensors,
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which were employed in recent change detection studies, is reported along with the
major data specifications and cost. Apart from their spatial, spectral, and temporal
resolution, their cost is referring to archive data (apart from the Cartosat-1 case)
and is associated with the specific product/mode which offers the highest spatial
resolution. The cost refers to list prices (e-geos 2013; GeoStore 2013) and has been
estimated for the minimum (“per scene”) order and per square kilometer (km2) in
order to ease the comparison. It is obvious that when moving from the medium-
and high-spatial-resolution products to the very high-resolution ones, the cost per
square kilometer increases significantly i.e., from about 1AC per km2 to about 20AC.
The high-spatial-resolution SAR satellite sensors are, also, offering costly products,
similar with or higher than the optical ones. In addition, it should be noted that as
we are moving from smaller to larger spatial scales, the number of images required
to cover the same area increases significantly. Therefore, the cost for delivering
change detection geospatial products increases exponentially as we are moving from
regional land cover/use or urban growth studies to local building change detection
and cadastral map updating.

In Table 10.3, recent change detection approaches are classified according to
the type of the remote sensing data used in each recent study. Medium- to high-
resolution optical data, radar data, and multimodal data (Fig. 10.1) are holding
the biggest share among the recent change detection research activity. However,
3D data (satellite or airborne) and vector data from existing geodatabases are
gaining increasing attention for spatiotemporal monitoring in local scales. In region
scales, the research activity, as has been already mentioned, has been empowered
from the increasing US and EU open data policies. Moreover, new open products
which include basic but necessary preprocessing procedures will boost more
research and development for quantifying global and regional transitions given
the changing state of global/regional climate, biodiversity, food, and other critical
environmental/ecosystem issues. Web-enabled Landsat data is an example, where
large volumes of preprocessed Landsat 7 Enhanced Thematic Mapper Plus data are
operationally offered for easing the mapping procedure of land-cover extent and
change (Hansen et al. 2014).

10.4 Data Preprocessing

Certain factors, such as the radiometric calibration and normalization between
multitemporal datasets, the quality of atmospheric corrections, the quality of data
registration, the complexity of the landscape and topography under investigation, the
analyst’s skill and experience, and last but not least, the selected change detection
algorithm, are directly associated with quality of the change detection product. The
initial preprocessing stage, which current efforts try to standardize (Yang and Lo
2000; Chander et al. 2009; Hansen et al. 2014), addresses important issues regarding
the radiometric, atmospheric, and geometric corrections in the available datasets
transforming them from raw to geospatial ready-for-analysis data. However, there
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Table 10.3 Remote sensing data and recent change detection and monitoring research studies

Optical satellite data 3D data Vector data Radar data
Multimodal
data

Medium to
high resolution
(LANDSAT,
etc.)

Very high
resolution
(IKONOS,
etc.)

ALS,
LiDAR,
DEM, DSM,

Geodatabase,
Cadastral, etc.

Satellite,
airborne

Optical,
radar,
DSM, etc.

Bagan and
Yamagata
(2012)

Bouziani
et al. (2010)

Boehm
et al. (2013)

Poulain
et al. (2011)

Ahmad and
Amin (2013)

Berger
et al. (2013)

Deng et al.
(2009a)

Doxani
et al. (2012)

Champion
et al. (2010)

Gonzalez-
Aguilera
et al. (2013)

Aiazzi
et al. (2013)

Bouziani
et al. (2010)

Du et al.
(2012)

Du et al.
(2013)

Hebel
et al. (2013)

Bouziani
et al. (2010)

Bovolo
et al. (2013)

Deng et al.
(2009b)

Hansen
et al. (2014)

Falco et al.
(2013)

James
et al. (2012)

Taneja
et al. (2013)

Celik and Ma
(2011)

Desclee
et al. (2013)

He et al.
(2011a)

Hao et al.
(2014)

Sesnie
et al. (2008)

Chatelain
et al. (2008)

Leinenkugel
et al. (2011)

Irons and
Loveland
(2013)

Im et al.
(2007)

Tian et al.
(2013)

Del Frate
et al. (2008)

Longbotham
et al. (2012)

Michishita
et al. (2012)

Im et al.
(2008)

Giustarini
et al. (2013)

Lu et al.
(2011a)

Shafizadeh-
Moghadam
and Helbich
(2013)

Kit and
Lüdeke
(2013)

Gong
et al. (2012)

Lu et al.
(2008)

Schneider
(2012)

Ma et al.
(2012)

Poulain
et al. (2011)

Sexton
et al. (2013)

Volpi
et al. (2013)

Marino
et al. (2013)

Taubenböck
et al. (2012)

Taubenböck
et al. (2012)
and Tian
et al. (2013)

Liu et al.
(2012)

Moser and
Serpico
(2009)

Wulder
et al. (2008)

Villa et al.
(2012)

Pratola
et al. (2013)

Xian and
Homer (2010)

Wang
et al. (2013)

Zhang et al.
(2013)

Yousif and
Ban (2013)

are still a number of challenges that should be addressed (Villa et al. 2012) in
order to exploit raw big remote sensing data and transform them to big geospatial
reflectance surfaces. The most important is automation. In the following two
subsections, the main preprocessing procedures are briefly described and discussed.
It should be noted that for Landsat datasets, certain protocols have been proposed
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Fig. 10.1 A multimodal, multitemporal remote sensing dataset covering a 25 km2 region in the
East Prefecture of Attica, Greece. The corresponding DEM is shown in the upper right image.
Middle row: An aerial orthomosaic acquired in 2010 (left), a WorldView-2 image acquired in 2011
(middle) and a WorldView-2 image acquired in 2010 (right). Bottom row: A QuickBird image
acquired in 2009 (left), a QuickBird image acquired in 2007 (middle) and a TerraSAR-X image
acquired in 2013 (right)

and widely adopted (Han et al. 2007; Vicente-Serrano et al. 2008) including
(i) geometric correction, (ii) calibration of the satellite signal to obtain “top of
atmosphere” radiance, (iii) atmospheric correction to estimate surface reflectance,
(iv) topographic correction, and (v) relative radiometric normalization between
images obtained at different dates. The latter is not required in cases where, e.g., an
absolute physical correction model has been employed. The radiometric processing
should be the initial one; however, this is not always the case, since, for example,
the former Landsat datasets in Europe were available already and geometrically
corrected (e.g., level 1 system corrected from the European Space Agency).

10.4.1 Radiometric and Atmospheric Correction
and Calibration

The main goal of radiometric and atmospheric corrections is to model the various
sources of noise which affect the information captured by the sensor, making it
difficult to differentiate the surface signal from any type of noise. Despite the
efforts that are persistently made to calibrate satellite sensors towards correcting
lifetime radiometric trends and minimize the effect from atmospheric noise, certain
studies have shown that the application of accurate sensor calibrations and complex
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atmospheric corrections does not guarantee the multitemporal homogeneity of
(e.g., Landsat) datasets since complete atmospheric properties are difficult to
quantify and simplifications are commonly assumed (Han et al. 2007). There-
fore, a cross-calibration between the data stack and time series can address the
problem.

Given a remote sensing optical dataset, the first step is to convert the capture
radiance, the raw digital numbers to the “top of atmosphere” values (Chander et
al. 2009; Villa et al. 2012, and the references therein). Then the second step is
to model the upward and downward irradiance which is constrained by the gases
absorption and the water molecules and aerosols scattering. Complex radiative
transference models simulate the atmosphere and light interactions between the
sun-to-terrain and terrain-to-sensor trajectories. Although, such an atmospheric
correction can account for signal attenuation and restore in some extent the
intercomparability of satellite images taken on different dates, “top of atmosphere”
values are widely used directly for inventory and ecosystem studies or in procedures
that are based on post-classification change detection approaches. However, recent
studies indicate that cross-calibration and atmospheric corrections are required
prior to relative normalization since certain remote sensing products and accurate
biophysical parameters like vegetation indices cannot be calculated (Vicente-
Serrano et al. 2008).

The third step is to model the modified illumination conditions due to the scene
topography. In order to simplify this extremely complex setting, in practice one
concentrates on the shaded areas which deliver less than expected reflectance and
on the sunny areas which deliver more than expected. Then, usually, we assume a
Lambertian terrain behavior or model non-Lambertian effects. Last but not least, a
relative radiometric normalization should be performed between the images of the
time series/dataset, in case where an absolute physical correction model was not
employed. The normalization process is based on a linear comparison between the
images which have been acquired on different dates. To this end, linear regression
or other automated techniques like the pseudo-invariant feature regression has given
promising results (Vicente-Serrano et al. 2008) while indicating that the relative
radiometric normalization is an absolutely essential step to ensure high levels of
homogeneity between the images of the dataset.

10.4.2 Geometric Corrections and Data Registration

Once the radiometric and atmospheric calibration has been performed, the next
step is to register, co-register, and geo-reference the available data. Early studies
(Dai and Khorram 1998; Roy 2000; Bovolo et al. 2009) have underlined the
important problems which occurred from data misregistration and how significantly
the change detection product is affected. Therefore, in order to develop operational
detection systems, the registration problem must be addressed with an optimal way
(Klaric et al. 2013). In particular, this is a common challenge in most computer
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vision, medical imaging, remote sensing, and robotics applications, and this is the
reason why image registration, segmentation, and object detection hold the biggest
share in modern image analysis and computer vision research and development
(Sotiras et al. 2013).

Speaking briefly, the image registration task involves three main components:
a transformation model, an objective function, and an optimization method.
The success of the procedure depends naturally on the transformation model and the
objective function. The dependency on the optimization process follows from the
fact that image registration is inherently an ill-posed problem. Actually, in almost
all realistic scenarios and computer vision applications, the registration is ill-posed
according to Hadamard’s definition of well-posed problems. Therefore, devising
each component of the registration algorithm in such way that the requirements
(regarding accuracy, automation, speed, etc.) are met is a demanding and
challenging process (Eastman et al. 2007; Le Moigne et al. 2011; Sotiras et al. 2013).

The intensive research on invariant feature descriptors (Lowe 2004) empowered
the automation in the feature detection (points, lines, regions, templates, etc.)
procedure. Along with the model fitting approaches, through iterative non-
deterministic algorithms, an optimal set of the selected mathematical model
parameters (i.e., transformation, deformation, etc.) is detected excluding outliers.
Area-based methods, mutual information methods, and descriptor-based algorithms
restore data deformations and through a resampling data are warped to the reference.
Furthermore, since the effective modeling requires rich spatial, spectral, and
temporal observations over the structured environment recent approaches fuse data
from various sensors, i.e., multimodal data (Fig. 10.1). The various sensors include
frame and push-broom cameras and multispectral, hyperspectral, and thermal
cameras, while the various platforms include satellite, airborne, UAV, and ground
systems.

In multimodal data registration (De Nigris et al. 2012; He et al. 2011b), mutual
information techniques have become a standard reference, mainly in medical imag-
ing (Legg et al. 2013; Wachinger and Navab 2012; Sotiras et al. 2013). However,
being an area-based technique, the mutual information process possesses natural
limitations. To address them, a combination with other, preferably feature-based,
methods have gain high robustness and reliability. To speed up the computation,
scale space representations (Tzotsos et al. 2014) are employed along with fast op-
timization algorithms. However, when data have significant rotation and/or scaling
differences, these methods either fail or become extremely time expensive. Future
development on addressing the multimodal data challenges may concentrate more
on feature-based methods, where appropriate invariant and modality-insensitive
features (Heinrich et al. 2012) can provide the reliable and adequate volume of
features for a generic and automated multimodal data registration.

To sum up, the described radiometric and geometric corrections between all the
available data of a given time series transform raw data to valuable “ready-for-
analysis” geospatial datasets and ensure an optimal exploitation from the following,
in the processing chain, core change detection algorithms.
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10.5 Unsupervised Change Detection Methods

Unsupervised approaches are based on automated computational frameworks that
usually produce binary maps indicating whether a change has occurred or not.
Therefore, standard unsupervised change detection techniques are not usually based
on a detailed analysis of the concept of change but rather compare two or more im-
ages by assuming that their radiometric properties are similar, excluding real change
detection phenomenon (Bruzzone and Bovolo 2013). However, this assumption in
realist scenarios is not satisfied, especially, in local scales. In particular, the captured
complexity of terrain objects, with different spectral behaviors at different dates
and environmental conditions, is significant especially in very high-resolution data.
That is the main reason why although unsupervised change detection methods have
validated so far, their effectiveness on medium- to high-resolution data and usually
under pixel-based image analysis, when the spatial resolution reaches submeter
accuracies, they become less accurate (Hussain et al. 2013).

Unsupervised approaches have accumulated a significant amount of research
efforts since i) on the one hand, they are more attractive from an operational point
of view, allowing automation without the need for manual collection of reference
data/samples and ii) on the other hand, they can possible address the aforementioned
challenges and move towards a semantic change labeling by identifying the exact
land-cover transition.

In Table 10.4, a summary of the recent unsupervised change detection studies is
presented. Recent methods are classified according to the core technique on which

Table 10.4 Summary of recent change detection studies classified according to their unsupervised
or supervised nature and the main technique that they were based on

Methods
Employed techniques Unsupervised Supervised

Direct comparison,
transformations, similarity
(ratios, kernels, change
vector analysis, etc.)

Bovolo et al. (2012), Canty
and Nielsen (2008), Celik
(2009), Chen et al. (2011),
Dalla Mura et al. (2008),
Renza et al. (2013), Demir
et al. (2013), Gueguen et al.
(2011), Marchesi and
Bruzzone (2009), Marpu et al.
(2011), and Volpi et al. (2012)

Brunner et al. (2010), Deng
et al. (2008), and Falco et al.
(2013)

Multiscale analysis
(wavelets, etc.)

Bovolo et al. (2013), Celik
and Ma (2010), Celik and Ma
(2011), Dalla Mura et al.
(2008), and Moser et al.
(2011)

Bovolo et al. (2009)

Fuzzy theory Ling et al. (2011), Luo and Li
(2011), and Robin et al.
(2010)

(continued)



10 Recent Advances on 2D and 3D Change Detection in Urban Environments. . . 249

Table 10.4 (continued)

Clustering, Bayesian
classifier

Aiazzi et al. (2013), Celik
(2010), Ghosh et al. (2011),
and Salmon et al. (2011)

Spectral mixture analysis
(Gaussian, etc.),
unmixing

Yetgin (2012) Michishita et al. (2012)

Active contours, level sets Bazi et al. (2010) and Hao
et al. (2014)

Celik and Ma (2011)

Support vector machines,
neural networks, learning

Bovolo et al. (2008) Bovolo et al. (2010), Chini et al.
(2008), Camps-Valls et al.
(2008), Habib et al. (2009),
Pacifici and Del Frate (2010),
Demir et al. (2012), Pagot and
Pesaresi (2008), Taneja et al.
(2013), and Volpi et al. (2013)

MRFs Ghosh et al. (2013), Moser
and Serpico (2009), Moser
et al. (2011), and Wang et al.
(2013)

Fernandez-Prieto and Marconcini
(2011)

Data fusion Du et al. (2012), Moser and
Serpico (2009), Ma et al.
(2012), Gong et al. (2012),
and Du et al. (2013)

Post-classification
comparison

Del Frate et al. (2008), Dewan
and Yamaguchi (2009), Abd
El-Kawy et al. (2011), Knudby
et al. (2010), Sexton et al. (2013)

Methods
Employed techniques Unsupervised Supervised

Object-based Bouziani et al. (2010) Berberoglu and Akin (2009),
Brunner et al. (2010), Doxani
et al. (2012), Gamanya et al.
(2009), Hebel et al. (2013), Huo
et al. (2010), Lu et al. (2011b),
Xian and Homer (2010), and
Zhou et al. (2009)

Data mining Boulila et al. (2011), Dos Santos
Silva et al. (2008), Schneider
(2012), and Vieira et al. (2012)

they were mainly based on. The majority of recent studies is based on standard direct
comparisons, data transformations, data fusion, multiscale analysis, and clustering.
Most of the recent unsupervised methods are, also, pixel-based approaches and
focus on the pixel-by-pixel analysis of the multispectral multitemporal data.

More specifically, they calculate after a certain computation (like a transfor-
mation, a spectral analysis, etc.) the magnitude of change vectors and apply a
thresholding technique in order to detect possible changes.
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An important number of approaches are based on ratios, kernels, change vector
analysis, and indices (Bovolo et al. 2012; Canty and Nielsen 2008; Celik 2009; Chen
et al. 2011; Dalla Mura et al. 2008; Renza et al. 2013; Demir et al. 2013; Gueguen
et al. 2011; Marchesi and Bruzzone 2009; Marpu et al. 2011; Volpi et al. 2012).
Other efforts are based on multiscale analysis like wavelets (Bovolo et al. 2013;
Celik and Ma 2010, 2011; Dalla Mura et al. 2008; Moser et al. 2011), fuzzy theory
(Ling et al. 2011; Luo and Li 2011; Robin et al. 2010), clustering and MRFs (Aiazzi
et al. 2013; Celik 2010; Ghosh et al. 2011, 2013; Salmon et al. 2011; Moser and
Serpico 2009; Moser et al. 2011; Wang et al. 2013).

Spectral mixture analysis (Yetgin 2012), level sets (Bazi et al. 2010; Hao et al.
2014), and data fusion approaches (Du et al. 2012, 2013; Moser and Serpico 2009;
Ma et al. 2012; Gong et al. 2012) are holding an important share also. Moreover, and
despite the fact that their core employed algorithms are supervised, recent proposed
automated studies are based on object-based techniques (Bouziani et al. 2010),
semi-supervised support vectors (Bovolo et al. 2008), and neural networks (Pacifici
and Del Frate 2010).

In addition, among the recent unsupervised techniques, a clear computational
advantage possess the ones who can address the dependence between spatially adja-
cent image neighbors either by standard texture or morphological measures or either
by clustering, Markov random fields, Bayesian networks, and context-sensitive
analysis. Such frameworks (Celik 2009, 2010; Ghosh et al. 2013; Volpi et al. 2012;
Bruzzone and Bovolo 2013) can cope more efficiently with the complexity pictured
in very high-resolution data.

Promising experimentalresults after the application of an unsupervised change
detection procedure, which is based on the iterative reweighting multivariate
alteration detection (IR-MAD) algorithm (Nielsen 2007; Canty and Nielsen 2008),
are presented in Figs. 10.2, 10.3, and 10.4. Based on the invariant properties of
the standard MAD transform where we assume that the orthogonal differences
contain the maximum information in all spectral bands, an iterative reweighting
procedure involving no-change probabilities can account for the efficient detection
of changes. In the upper row of Fig. 10.2, the QuickBird image acquired in
2007 is shown, while the corresponding QuickBird image acquired in 2009 is
presented in the middle row. The detected changes after the application of the
IR-MAD and post-processing morphological algorithms are shown in the bottom.
All changes represent the new buildings that were constructed in the region after
2007. The detected changes/buildings are overlaid in the 2009 image and shown
with a red color. The ground truth data are shown with the same manner in
green.

In Fig. 10.3, the IR-MAD output and the corresponding binary image after a
thresholding are shown in the upper row. The detected changes (new buildings) after
the application of a morphological post-processing procedure and the corresponding
ground truth data are shown in the bottom. All the changes (all new buildings)
have been successfully detected by the unsupervised procedure. The quantitative
evaluation reported a low detection completeness of around 60 % and a high
detection correctness of 95 %. This can be, also, observed in Fig. 10.4 where the
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Fig. 10.2 Unsupervised change detection in multitemporal high resolution data. Upper row: The
raw QuickBird image, acquired in 2007, in RGB321 (left) and R432 (right). Middle row: The raw
QuickBird image, acquired in 2009, in RGB321 (left) and R432 (right). Bottom row: The detected
changes (they are all new buildings), overlaid in the 2009 image, are shown with a red color.
Ground truth data are shown in green
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Fig. 10.3 The detected under an unsupervised manner changes (buildings) and the corresponding
ground truth data. Upper row: A map with the possible changes after the application of the
regularized iteratively reweighted MAD algorithm (left) and after thresholding (right). Bottom row:
The detected changes (buildings) after the application of morphological post-processing (left) and
the ground truth (right). All the changes (new buildings) have been successfully detected. The
quantitative evaluation reported a low detection completeness of around 60 % and a much higher
detection correctness of 95 %

detected changes have been associated with the corresponding DEM. The detected
new buildings in 3D are shown in the upper part of Fig. 10.4, while the 3D buildings
from the ground truth data are shown in the bottom.

10.6 Supervised Change Detection Methods

The supervised classification approaches traditionally are based on the detection of
changes from a post-classification process (which is usually another classification).
This process enables, also, the detection of actual class transitions instead of a binary
“change or not change” product. However, errors from each step and each individual
classification are propagating and are summed up at the end product. Moreover,
collecting reliable, dense training sample sets can be difficult and time-consuming
for certain cases (e.g., historical data) or even unrealistic if one has to deal with
extensive dense time series and multimodal data. In practice, however, the post-
classification approach is, nowadays, the most standard one especially for global
and regional scales, for land-cover, land-use, and urbanization monitoring.

In more local scales and for very high-resolution data, the standard supervised
approach is an object-oriented one under an object-based image analysis framework
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Fig. 10.4 The detected changes (new buildings) in 3D after the application of the unsupervised
change detection procedure on QuickBird 2007 and 2009 satellite data. The detected new building
in 3D are shown in the upper part, while the 3D buildings from the ground truth data are shown
in the bottom. After a close inspection one can observe the low completeness and high correctness
detection rates of the unsupervised change detection algorithm

(Blaschke 2010). Multilevel segmentation and supervised classification are the
main key process there (Tzotsos et al. 2011, 2014). Recent object-based change
detection approaches (Table 10.4) include scale space filtering and multivariate
alteration detection (Doxani et al. 2012), the combination with multi-view airborne
laser scanning data (Hebel et al. 2013), the detection of impervious surfaces (Xian
and Homer 2010), shaded areas (Zhou et al. 2009), landslides (Lu et al. 2011b),
and building damage assessment after earthquakes (Brunner et al. 2010). Another
promising combination is to employ data mining techniques under an object-
based framework in order to address big datasets and dense, long-term time series
(Schneider 2012).

To this end, algorithms focusing on knowledge discovery in databases aim
at extracting/mining nontrivial, implicit information from unstructured datasets.
In particular, for geospatial datasets, data mining techniques are exploiting spatial
and nonspatial properties in order to discover the desired knowledge/data. Dos
Santos Silva et al. (2008) proposed a data mining framework which associates
each change pattern to one predefined type of change by employing a decision-
tree classifier to describe shapes found in land-use maps. Boulila et al. (2011)
employed fuzzy sets and a data mining procedure to build predictions and decisions.
Based on the imperfections related to the spatiotemporal mining process, they
proposed an approach towards a more accurate and reliable information extrac-
tion of the spatiotemporal land-cover changes. Vieira et al. (2012) introduced a
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joint object-based data mining framework during which instead of the standard
supervised classification step, a data mining algorithm was employed to generate
decision trees from certain training sets. Schneider (2012) proposed an approach
that exploits multi-seasonal information in dense time stacks of Landsat imagery
comparing the performance of maximum likelihood, boosted decision trees, and
support vector machines. Experimental results indicated only minor differences in
the overall detection accuracy between boosted decision trees and support vector
machines, while for band combinations across the entire dataset, both classifiers
achieved similar accuracy and success rates.

This observation is in accordance with similar recent studies (Table 10.4) which
employ powerful machine learning classifiers (Bovolo et al. 2010; Chini et al.
2008; Camps-Valls et al. 2008; Habib et al. 2009; Pacifici and Del Frate 2010;
Demir et al. 2012; Pagot and Pesaresi 2008; Taneja et al. 2013; Volpi et al. 2013)
for supervised change detection and indicate why they are so popular for remote
sensing classification and change detection problems. However, machine learning
algorithms are, usually, time-consuming and efforts towards a more computational
efficient design and algorithmic optimization are required (Habib et al. 2009).
Moreover, in local scales and very high-resolution data, including 3D or vector
data, there is a lot of room for research and development in order to exploit the
entire multimodal datasets. In particular, an important outcome from the recent 2012
multimodal remote sensing data contest (Berger et al. 2013) indicates that none
of the submitted algorithms actually exploited in full synergy the entire available
dataset, which included very high-resolution multispectral images (with a 50 cm
spatial resolution for the panchromatic channel), very high-resolution radar data
(TerraSAR-X), and LiDAR 3D data from the city of San Francisco, USA.

Therefore, in local scales, but not only, novel sophisticated, generic solutions
should exploit the recent advances in 2D and 3D building extraction, reconstruction,
and 3D city modeling which have gain a lot of attention during the last decade
due to emerging new engineering applications including augmented reality, virtual
tourism, location-based services, navigation, wireless telecommunications, disaster
management, etc. In a similar manner like the post-classification change detection,
monitoring the structured environment, both in 2D and 3D, can be based on the
recent advancements on building extraction and reconstruction by, for instance, a
similar direct comparison between two different dates. In the following subsection,
recent building detection and modeling methods are briefly reviewed.

10.7 Computational Methods for 2D and 3D Building
Extraction and Modeling

The accurate extraction and recognition of man-made objects from remote sensing
data has been an important topic in remote sensing, photogrammetry, and computer
vision for more than two decades. Urban object extraction is, still, an active research
field, with the focus shifting to object detailed representation, the use of data from
multiple sensors, and the design of novel generic algorithms.
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Recent quantitative results from the ISPRS (WGIII/4) benchmark on urban object
detection and 3D building reconstruction (Rottensteiner et al. 2013) indicated that,
in 2D, buildings can be recognized and separated from the other terrain objects;
however, there is room for improvement towards the detection of small building
structures and the precise delineation of building boundaries.

In 3D, none of the methods was able to fully exploit the spatial accuracy of
the available datasets. Therefore, although for visualization purposes 3D building
reconstruction may be considered as a solved problem, for geospatial applications,
and when geometrically and topologically accurate building models are required,
novel efficient algorithms are, also, required. Moreover, regarding other urban object
like trees, there is a lot of room, also, for research and development towards their
efficient extraction and discrimination in complex urban regions.

In Table 10.5, a summary of recent building and road network extraction and
reconstruction approaches are presented. They are classified in three categories,

Table 10.5 Summary of recent building and road network extraction and reconstruction ap-
proaches

2D building
detection/extraction Road network detection

3D building/city extraction
and reconstruction

dos Santos Galvanin and
Porfírio Dal Poz (2012)

Chaudhuri et al. (2012) Crispell et al. (2012)

Benedek et al. (2010) Das et al. (2011)
Yang et al. (2013) Gilles and Meyer (2010) Garcia-Dorado et al. (2013)
Champion et al. (2010) Poullis and You (2010) Haala and Kada (2010)

Unsalan and Sirmacek (2012) Hane et al. (2013)
Katartzis and Sahli (2008) Heo Joon et al. (2013)
Rutzinger et al. (2009)

Izadi and Saeedi (2012)
Karantzalos and Paragios (2010)

Senaras et al. (2013) Lafarge et al. (2010)
Karantzalos and
Argialas (2009)

Loch-Dehbi and Plümer (2011)

Karantzalos and
Paragios (2009)

Matei et al. (2008)

Senaras et al. (2013) Rottensteiner et al. (2013)
Sirmacek and
Unsalan (2011)

Rutzinger et al. (2009)

Stankov and He (2013) Sampath and Jie Shan (2010)
Wegner et al. (2011) Shaohui Sun and

Salvaggio (2013)
Huang and Zhang (2012) Sirmacek et al. (2012)
Zhou et al. (2009) Sportouche et al. (2011)

Tack et al. (2012)
Taneja et al. (2013)
Turlapaty et al. (2012)
Zebedin et al. (2008)
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i.e., 2D building detection/extraction, 3D building extraction/reconstruction, and
road network detection. Buildings among the other man-made object dominate the
research interest due to the aforementioned emerging applications that their efficient
modeling can guarantee. In general, advanced methods are much likely to have a
model-based structure and take into consideration the available intrinsic information
such as color, texture, shape, and size and topological information as location
and neighborhood. Novel expressive ways for the efficient modeling of urban
terrain objects both in 2D and 3D have, already, received significant attention from
the research community. From the standard generic, parametric, polyhedral, and
structural models, novel ones have been, recently, proposed like the statistical ones,
the geometric shape priors, and the procedural modeling with L-system grammar or
other shape grammars (Rousson and Paragios 2008; Matei et al. 2008; Zebedin et al.
2008; Poullis and You 2010; Karantzalos and Paragios 2010; Simon et al. 2010).
Furthermore, focusing on automation and efficiency, certain optimization algorithm
have been developed for the model-based object extraction and reconstruction like
discrete optimization algorithms, random Markov fields, and Markov chain Monte
Carlo (Szeliski et al. 2008).

Focusing on 2D building boundaries detection, various techniques have been
proposed (Champion et al. 2010; Katartzis and Sahli 2008; Senaras et al. 2013;
Karantzalos and Argialas 2009; Stankov and He 2013; Wegner et al. 2011; Huang
and Zhang 2012; Zhou et al. 2009), including unsupervised, semi-supervised, and
supervised ones.

Even if the end product is in 2D, certain studies are based on 3D data (e.g.,
DSM, LiDAR) (dos Santos Galvanin and Porfírio Dal Poz 2012; Yang et al. 2013;
Rutzinger et al. 2009; Sampath and Shah 2010). In particular, buildings can be de-
tected by calculating the difference between objects and terrain height. In case other
data are, also, available, data fusion and classification approaches are employed.
Other approaches are focusing on processing very high-resolution satellite data and
certain of those have proposed algorithms for building detection from just a single
aerial or satellite panchromatic image (Benedek et al. 2010; Karantzalos and Para-
gios 2009; Katartzis and Sahli 2008; Wegner et al. 2011; Huang and Zhang 2012).

The reported qualitative and quantitative validation indicates that the automated
detection is hindered by certain factors. The major difficulty is to address scene
complexity, as most urban scenes contain, usually, very rich information and various
cues. These cues, which are mainly other artificial surfaces and man-made objects,
possess important geometric and radiometric similarities with buildings. In addition,
addressing occlusions, shadows, different perspectives and data quality issues
constrain significantly the operational performance of the developed automated
algorithms.

In 3D, a number of methods are based only on a digital surface model or a set
of point clouds (Lafarge et al. 2010; Rutzinger et al. 2009; Sampath and Jie Shan
2010; Shaohui Sun and Salvaggio 2013; Sirmacek et al. 2012; Heo Joon et al. 2013).
Other ones are exploiting multimodal data like optical and 3D data (Karantzalos
and Paragios 2010) or optical and SAR data (Sportouche et al. 2011). Even in 3D
there are efforts that are based on a single optical satellite image (Izadi and Saeedi
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2012) or a single SAR one (Ferro et al. 2013). Image-based 3D reconstruction has
been, also, demonstrated from user-contributed photos (Irschara et al. 2012) and
multiangular optical images (Turlapaty et al. 2012).

Experimental results demonstrating the performance of supervised classification
algorithms combined with post-classification procedures for building extraction
from high-resolution satellite data are shown in Figs. 10.5 and 10.6.

Standard pixel-based classification algorithms like the minimum distance, maxi-
mum likelihood, and SVMs deliver detection outcomes with a low correctness rate.
In particular, in the upper left part of Fig. 10.5, the raw Pleiades image acquired
in 2013 is shown. The result from the minimum distance algorithm, showing
only classes related to buildings, is shown in the upper right part of the figure.
The quantitative evaluation reported a low detection overall quality of 62 % for
the minimum distance algorithm. With the same ground samples, the maximum
likelihood algorithm reported an overall detection rate of 67 % and the result is
shown in the middle row (left). The SVM classifier scores higher with an overall
detection quality of 74 % (middle right).

After post-classification procedures, including mathematical morphology, object
radiometric and geometric properties calculation, and spatial relation analysis, the
result from the supervised classification has been refined and its correctness rate is
significantly improved. The detected buildings, based on the SVM output, which
have been recognized and labeled by the algorithm, are shown in 2D with different
colors in the bottom row of Fig. 10.5 (left). The detected buildings overlaid on the
raw Pleiades image are, also, presented in the bottom right of Fig. 10.5. Moreover,
the low detection rate can be observed in Fig. 10.6 where the detected buildings
are presented. In particular, the detected buildings are shown in 3D, in the top of
Fig. 10.6, while all scene buildings are shown in the bottom as they have been
extracted from the ground truth data.

10.8 Conclusion and Future Directions

Computational change detection is a mature field that has been extensively studied
from the geography, geoscience, and computer vision scientific communities during
the past decades. An important amount of research and development has been
devoted to comprehensive problem formulation, generic and standardize proce-
dures, various applications, and validation for real and critical earth observation
challenges.

In this review, we have made an effort to provide a comprehensive survey of the
recent developments in the field of 2D and 3D change detection approaches in urban
environments. Our approach was structured around the key change detection compo-
nents, i.e., (i) the properties of the change detection targets and end products; (ii) the
characteristics of the remote sensing data; (iii) the initial radiometric, atmospheric,
and geometric corrections; (iv) the unsupervised methodologies; (v) the supervised
methodologies; and (vi) the building extraction and reconstruction algorithms.
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Fig. 10.5 Supervised 2D building detection based on data classification algorithms. Upper row:
A Pleiades image acquired in 2013 (left) and the result from a standard minimum distance
classification algorithm (showing only classes related to buildings). The quantitative evaluation
reported a low detection overall quality of 62 %. Middle row: The result from a standard maximum
likelihood classification algorithm with an overall detection rate of 67 % (left). A SVM classifier
scores higher with an overall detection quality of 74 % (right). Bottom row: The detected buildings,
after post-classification processing in the SVM output, are labeled and shown with different colors
(left). The detected buildings overlaid on the raw Pleiades image (right)
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Fig. 10.6 The detected building in 3D after the application of a supervised SVM classifier and
post-processing procedures on the high spatial resolution Pleiades data (top). Scene buildings in
3D as extracted from the ground truth data (bottom)

The aim was to focus our presentation on giving an account of recent approaches
that have not been covered in previous surveys, and therefore, recent advances
during the last 6 years have been reviewed. In addition, the change detection
approaches were classified according to the monitoring targets (Table 10.1) and
according to the remote sensing data that were design to process (Table 10.3).
The unsupervised and supervised methods were classified according to their core
algorithm that they were, mainly, based on (Table 10.4). Moreover, a summary
of the currently available satellite remote sensing sensors, which were employed
in recent studies, and their major specifications and cost are given in Table 10.2.
Recent approaches focusing on 2D and 3D building extraction and modeling are
given in Table 10.5, providing important computational frameworks which can be
directly or partially adopted for addressing more efficiently the change detection
problem. In particular, in a similar way with the change detection approaches that
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are based on post-classification comparison procedures, building changes can be
extracted by comparing multitemporal building detection maps and reconstructed
urban/city models.

Based on the current status and state of the art, the validation outcomes of
relevant studies, and the special challenges of each detection component separately,
the present study highlights certain issues and insights that may be applicable for
future research and development.

10.8.1 Need to Design Novel Multimodal
Computational Frameworks

In accordance with recent reports (Longbotham et al. 2012; Zhang 2012; Berger
et al. 2013), this survey highlights that the fusion of multimodal, multitemporal
data is considered to be the ultimate solution for optimized information extraction.
Currently, there is a lack in single, generic frameworks that can in full synergy
process and exploit all available geospatial data. This is a rather crucial issue since
the effective and accurate detection and modeling requires rich spatial, spectral, and
temporal (remote or not) observations over the structured environment acquired (i)
from various sensors, including frame and push-broom cameras and multispectral,
hyperspectral, thermal, and radar sensors, and (ii) from various platforms, including
satellite, airborne, UAV, and ground systems. This is not a trivial task and a lot of
research and development is, thus, required.

10.8.2 Need for Efficient Unsupervised Techniques Able
to Identify “From-To” Change Trajectories

Unsupervised and supervised approaches are holding the same share of research
interest. In particular, the unsupervised ones in many cases achieve the same
overall detection accuracy levels as the supervised ones do (e.g., Longbotham
et al. 2012). This is a really promising fact given the possible capability of (near)
real-time response to urgent and timely crucial change detection tasks, without
training samples available. In dense time series and big geospatial data analysis,
this seems, also, the only possible direction. However, most applications require
end products which report on the detailed land-cover/land-use “from-to” change
trajectories instead of a binary “change or not” map (Lu et al. 2011c; Bruzzone and
Bovolo 2013). The need for incorporating spatial context and relationships into the
detection procedure and introduce automated algorithms able to detect changes with
a semantic meaning is underlined from the present study.
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10.8.3 The Importance of Open Data Policies

Furthermore, this survey exhibits the importance of open data policies. This is,
mainly, due to the fact that the extensive recent research activity in regional scales
has been boosted by the currently increasing US and EU open data policies and
mostly by the opening of the United States Geological Survey’s Landsat data
archive (Woodcock et al. 2008; Wulder et al. 2012) including current and future
missions. Even not in a raw or quality-controlled format and not in a formal
open data framework, there is an increasing availability of Google Earth/Street
View, Microsoft Bing Maps/Streetside data which can also ease certain applications
and studies. All these open data and open source (regarding software) initiatives
and polices ensure the availability of big geospatial data and the availability of
remote sensing datasets spanning densely over longer periods which, moreover, can
enable further research towards quantifying global and regional transitions given the
changing state of the urban environment, global and regional climate, biodiversity,
food, and other critical environmental/ecosystem issues.

10.8.4 The Importance of Automation

The aforementioned availability of open big geospatial data impose as never before
the need for automation. Despite the important advances and the available image
processing technologies, powered mainly from the computer vision community,
still, the skills and experience of an analyst are very important for the success
of a classification/post-classification procedure (Weng 2011; Lu et al. 2011c),
requiring human intervention which is labor consuming and subjective. Therefore,
introducing generic, automated computational methods in every change detection
component is of fundamental importance.

10.8.5 The Importance of Innovative Basic Research in the
Core of the Change Detection Mechanism

Recent state-of-the-art change detection, classification, and modeling methodolo-
gies are not reaching high (>80 %) levels of accuracy and success rates when
complex and/or extensive regions and/or local scales and/or relative small urban
objects and/or dense time series have been explored in the urban environment
(Wilkinson 2005; Longbotham et al. 2012; Berger et al. 2013; Rottensteiner et al.
2013). Thus, there is a strong need for designing new core classification, change
detection, and modeling approaches being able to properly handle the high amount
of spatial, spectral, and temporal information from the new generation sensors,
being able to search effectively through huge archives of remote sensing datasets.
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10.8.6 The Importance of Operational Data Preprocessing

Most standard remote sensing algorithms and techniques (classifications, indices,
biophysical parameters, model inversions, object detection, etc.) assume cloud-free
data, already radiometric, atmospheric, and geometric corrected. However, this is
not an operationally solved problem yet. The production of a European cloud-free
mosaic, two times per year, was not 100 % feasible despite the availability of
three different satellite sensors and a considerable flexibility in the date windows
around every region (Hoersch and Amans 2012). Moreover, in accordance with
recent relevant studies (Vicente-Serrano et al. 2008), this survey underlines the fact
that it is essential to accurately ensure the homogeneity of multitemporal datasets
through operational radiometric and geometric data corrections including sensor
calibration, cross-calibration, atmospheric, geometric, and topographic corrections
and relative radiometric normalization using objective statistical techniques. Be-
ing able to address for the same invariant terrain object, the pictured different
spectral signatures in time series data, being able to construct operationally cloud-
free reflectance surfaces (Villa et al. 2012), will further boost the effectiveness
and applicability of remote sensing methods in emerging urban environmental
applications.

To sum up, the significant research interest on urban change detection and
modeling is driven from real, critical, and current environmental and engineering
problems, which pose emerging technological questions and challenges. Recent
advances on the domain indicate that remote sensing and computer vision state-
of-the-art approaches can be fused and further expanded towards the fruitful and
comprehensive exploitation of open, big geospatial data.
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Chapter 11
Fusion of Airborne Hyperspectral and LiDAR
Remote Sensing Data to Study the Thermal
Characteristics of Urban Environments

Christian Berger, Frank Riedel, Johannes Rosentreter, Enrico Stein,
Sören Hese, and Christiane Schmullius

Abstract This study focuses on the derivation of an urban surface material map
to parameterize a 3D numerical microclimate model. For this purpose, fusion of
airborne hyperspectral and light detection and ranging (LiDAR) remote sensing data
is performed. In a first step, surface materials are extracted from the preprocessed
input datasets using a hybrid, three-stage classification approach. The resulting map
is then utilized in combination with the LiDAR object height information data to
parameterize the microclimate model. To demonstrate the potential of data-driven
microclimate modeling, two case studies are presented for selected test sites in
the City of Houston, Texas. The results of this study highlight that the synergistic
combination of hyperspectral and LiDAR data enables reliable mapping of some
of the key input parameters required for urban microclimate modeling. Moreover,
classification-based microclimate simulations can reveal the thermal properties of
urban neighborhoods under varying conditions and, thus, facilitate the identification
of hot spot areas and critical land cover configurations.

Keywords Data fusion • Hyperspectral • LiDAR • Surface material • Mapping •
Urban microclimate • Modeling

11.1 Introduction

Over the past decades, the world has faced a continuous and increasingly dynamic
urbanization. While city dwellers make up one-half of the world’s population today,
this share is predicted to add up to 70 % by 2050 (United Nations 2008). The
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ever-growing percentage of global urban population comes at a high price. Many
cities all over the world are sprawling rapidly, and their spread is associated with
alarming rates of land consumption (Scalenghe and Marsan 2009; Angel et al.
2011; Taubenböck et al. 2012). As a result of this process, the natural “skin” of our
planet is being successively replaced by man-made surfaces with distinct thermal
properties (Sobrino et al. 2012).

It is generally agreed that urban areas and urban expansion affect the climate at
the local scale (Oke 1973; Landsberg 1981; Oke 1982; Arnfield 2003; Kalnay and
Cai 2003). A very prominent example of this local climate change is a phenomenon
called the urban heat island (UHI). It refers to the observation that cities often feature
higher air and surface temperatures than their surroundings, especially at night
(Howard 1833; Oke 1973, 1982; Voogt 2002). The implications of the UHI effect are
diverse and range from changes in precipitation patterns (Changnon 1992; Lowry
1998; Yuan and Bauer 2007) to raises in air pollution (Voogt 2002; Yuan and Bauer
2007), water use (Guhathakurta and Gober 2007), energy consumption (Voogt 2002;
Yuan and Bauer 2007; Ewing and Rong 2008), and mortality rates (Curriero et al.
2002; Johnson and Wilson 2009). Considering that the UHI intensity is expected to
increase in the future (McCarthy et al. 2010) while, at the same time, more and
more people will be exposed to the living conditions in the cities of tomorrow
(United Nations 2008), there is an urgent need for up-to-date, spatially explicit
urban climatological information which city planners can incorporate into decision-
making processes to foster effective management and to safeguard sustainable urban
development.

Microclimate modeling is a powerful tool to analyze the thermal characteristics
of urban environments at the local scale. However, it requires high spatial resolution,
area-wide information on urban surface materials, and object heights. Since these
information are still lacking in many urban areas, hypothetical scenarios often
represent the only way to parameterize microclimate models unless extensive field
surveys are up for debate. As an alternative way of data collection, hyperspectral
and light detection and ranging (LiDAR) remote sensing technologies are becoming
increasingly available (e.g., NASA Jet Propulsion Laboratory 2014; Cook et al.
2013; LiDAR Online 2014; OpenTopography 2014) and offer unique capabilities for
urban surface material and object height mapping. Thus, they hold a great potential
for microclimate modeling applications. This study aims at the derivation of an
urban surface material map to parameterize a 3D numerical microclimate model by
fusion of airborne hyperspectral and LiDAR remote sensing data. To demonstrate
the potential of classification-based microclimate modeling, two case studies are
presented for selected test sites in the City of Houston, Texas. This chapter is
structured as follows. Section 11.2 provides a brief review of the scientific literature
related to this study. In Sects. 11.3 and 11.4, the data and methods used to achieve the
above goal are presented. Section 11.5 is dedicated to the description and discussion
of the study results, and the section “Conclusions” summarizes the findings of this
investigation.
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11.2 Related Work

Remote sensing has become an increasingly important technology to gain a better
understanding of the urban climate (Arnfield 2003; Voogt and Oke 2003; Heldens
et al. 2011). However, while a lot of studies have considered the urban climate at the
macro- or mesoscale, only little research has been directed toward the use of Earth
observation data for urban microclimate analyses. This is partly because these kind
of analyses usually focus on spatial scales smaller than 2 km (Helbig et al. 1999)
and, thus, require high spatial resolution input data to properly resolve all relevant
urban land cover elements (Welch 1982; Woodcock and Strahler 1987; Jensen and
Cowen 1999). Thanks to recent technological advancements, this requirement is
fulfilled by a growing number of airborne and satellite-based sensors (Ehlers 2009).

Quattrochi and Ridd (1994) were among the first to employ remote sensing
imagery for the study of urban microclimates. They investigated the thermal day and
night responses of 25 urban surface materials in Salt Lake City, Utah, using airborne
Thermal Infrared Multispectral Scanner (TIMS) data. Ben-Dor and Saaroni (1997)
examined the microscale structures of the UHI in Tel-Aviv, Israel, based on data
provided by a thermal video radiometer mounted on a helicopter. Stone and Norman
(2006) combined Advanced Thermal and Land Applications Sensor (ATLAS) data
with property tax records of Atlanta, Georgia, to assess the influence of the size
and material composition of single-family residential land use parcels on surface
UHI formation. Jung et al. (2007) performed a joint analysis of Digital Airborne
Imaging Spectrometer (DAIS) and additional thermal data acquired over Gyöngyös,
Hungary, to define the relationship between the abundance of urban vegetation and
land surface temperature (LST). Rigo and Parlow (2007) utilized satellite images
from different platforms, a digital elevation model (DEM), a digital surface model
(DSM), and in situ measurements to calculate and model the ground (or storage)
heat flux density in Basel, Germany, with three different approaches. Xu et al.
(2008) exploited hyperspectral imagery collected by the Operative Modular Imaging
Spectrometer (OMIS) as well as topographic and meteorological information to map
the spatial variations of turbulent sensible heat flux in Shanghai, China. Sobrino
et al. (2012) interpreted LST measurements of the Airborne Hyperspectral Scanner
(AHS) along with in situ data of air temperature to define the minimum spatial
resolution required to properly estimate the surface UHI effect at the district level
of Madrid, Spain.

Most relevant to this study is the research conducted by Heldens (2010)
and Heldens et al. (2010, 2012). Their work explored the potential of airborne
hyperspectral data and object height information for urban microclimate modeling
in the City of Munich, Germany. To this end, hyperspectral data collected by
the Hyperspectral Mapper (HyMap) sensor and object heights derived from High
Resolution Stereo Camera (HRSC) imagery were utilized to infer an urban surface
material map. This material map was later employed to drive ENVI-met 4 (beta),
a 3D coupled flow-energy balance model to predict the urban microclimate (Bruse
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and Fleer 1998; Huttner and Bruse 2009). Thanks to its almost contiguous spectral
coverage between 450 and 2,500 nm (Cocks et al. 1998) as well as its high spatial
resolution, HyMap imagery was well suited to discriminate between different urban
surface materials having distinct reflection and absorption features across its entire
spectral range (cf. Heiden et al. 2007; Herold et al. 2007; Franke et al. 2009).
In conjunction with the object heights extracted from HRSC data, hyperspectral
remote sensing and its derivative products enabled providing the spatial information
required for urban microclimate modeling with ENVI-met (Heldens 2010; Heldens
et al. 2010, 2012).

The present work aims at evaluating the potential of airborne hyperspectral
data and LiDAR-derived object heights for urban surface material mapping and
microclimate modeling. In contrast to previous studies, the hyperspectral data cover
a much smaller spectral range (380–1,050nm, Itres Research Ltd. 2013), which
complicates the detection of surface materials having spectral key features occurring
only at longer wavelengths (e.g., in the short-wave infrared domain; Heiden et al.
2007; Herold et al. 2007). A dedicated approach for the fusion of the above datasets
is presented, and the achieved mapping and modeling results are described and
discussed accordingly.

11.3 Materials

11.3.1 Study Area

The methods described in this study are applied to hyperspectral and LiDAR
remote sensing data that have been acquired over the City of Houston, Texas
.29°4301600 N; 95°2102400 W/. Houston is situated in the American South, close
to the Gulf of Mexico, and comprises an area of roughly 1;500 km2 (US Census
Bureau 2013). Due to its location on the Gulf Coastal Plain (Yu et al. 2010), the city
lies about 13 m above sea level (The City of Houston 2013) and does not feature
significant topography (Streutker 2002). With more than two million inhabitants,
Houston constitutes the fourth most populous city in the United States (The City
of Houston 2013). According to the Köppen-Geiger classification system (Köppen
1936; Peel et al. 2007), the city’s climate can be described as humid subtropical
(Cfa). In summer, days with air temperatures above 32 °C and a relative humidity
of more than 60 % are not uncommon (National Climatic Data Center, 2012a,b).
Since, during that season, winds are often light and offer only little relief (University
of Utah 2009), Houstonians are frequently subjected to considerable heat stress.
Therefore, it is not without reason that Houston has become one of the most air-
conditioned places in the world (Wilson 1992). Given its specific demographic and
climatic features, the city represents a suitable area of investigation for the present
study.
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11.3.2 Data Basis

This study makes use of the Compact Airborne Spectrographic Imager (CASI) and
LiDAR data provided within the 2013 IEEE GRSS Data Fusion Contest (Image
Analysis and Data Fusion Technical Committee 2013). Both datasets cover the
campus and the neighboring urban area of the University of Houston and share
a common spatial resolution of 2.5 m. The CASI image was acquired between
12:37:10 and 12:39:40 CDT on June 23, 2012. Captured at an average height of
1,676 m aboveground, it features 144 spectral bands in the 380–1,050nm region
that were calibrated to at-sensor spectral radiance .�W=.cm2 sr nm//. The LiDAR
data were recorded between 09:37:55 and 10:38:10 CDT on June 22, 2012. The
airborne sensor’s average height aboveground was 610 m. A DSM with elevation
in meters above sea level was derived from the point cloud, registered to the CASI
data, and delivered in GeoTIFF format. The nominal vertical accuracy of the DSM
is 10–15 cm; its horizontal accuracy is about 20–30 cm.

11.4 Methods

The overall workflow presented in this study consists of three consecutive steps:
(i) data preparation, (ii) material mapping, and (iii) microclimate modeling.
Figure 11.1 illustrates the role of the datasets being used in the context of each stage
of the data fusion approach. After data preparation, surface materials are extracted
from the preprocessed CASI and LiDAR data by means of feature fusion (Pohl and
van Genderen 1998). The surface material map is then utilized in combination with
the object height information provided by the LiDAR data to parameterize a 3D
microclimate model for simulating the spatial patterns of urban air temperature at
day- and nighttime. In the following sections, the three abovementioned steps are
described in more detail.

Fig. 11.1 The conceptual workflow of this study
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11.4.1 Data Preparation

Preprocessing of the CASI data included the conversion of at-sensor spectral
radiance to surface reflectance values using ATCOR-4 (Richter and Schläpfer
2013), spectral smoothing using a Savitzky-Golay filter (Savitzky and Golay 1964),
and image clipping to exclude areas affected by clouds and cloud shadows from
further analysis. Spectral smoothing is a commonly applied pre-classification step
to reduce the noise contained in spectral signatures collected by hyperspectral
sensors. It enables an improved identification of spectral key characteristics for
urban surface material mapping. In principle, Savitzky-Golay filters approximate the
“true” signature of noise-contaminated image spectra by a higher-order polynomial
operating within a predefined moving window. As opposed to conventional mean
filters, they mostly preserve the position and width of absorption features as well
as their absolute minima and maxima. Ideally, the filtering result should reflect a
compromise between spectral preservation and smoothing. Using a symmetrical
kernel size and a third order polynomial, the selection of filter parameters applied in
this study is based on Vaiphasa (2006).

Preprocessing of the LiDAR data involved two further steps. First, a normalized
digital surface model (nDSM) was calculated from the LiDAR data. Since Houston
is located at the seaside on a flat terrain, a constant elevation value of 13 m was
subtracted from the DSM (The City of Houston 2013). The resulting nDSM contains
the height of urban objects relative to the ground. Second, the nDSM was smoothed
to enable the creation of derivative LiDAR products (e.g., nDSM slope). Even
though the calculation of the nDSM is potentially too simplistic at times, one has to
consider that the LiDAR DSM was made available in GeoTIFF format only (Image
Analysis and Data Fusion Technical Committee 2013). Without having the original
LiDAR point cloud, there is hardly any possibility to apply more sophisticated
processing techniques to the input data. This is particularly true for existing nDSM
generation approaches from the literature since these usually rely on LiDAR raw
data. Moreover, the elevation threshold used to generate the nDSM was not only
taken from official numbers (The City of Houston 2013) but was also compared
against other values and was found to be most suitable to make a discrimination
between urban objects and the ground.

With respect to the subsequent surface material classification, additional features
were derived from the input data. Among those features are the average reflectance
of all CASI bands (i.e., image brightness), the normalized difference vegetation
index (NDVI) (Tucker 1979), and the slope of the nDSM (in percent) (Zevenbergen
and Thorne 1987). The latter is useful for identifying transitions between flat areas
and elevated objects (e.g., trees and buildings Priestnall et al. 2000).

11.4.2 Material Mapping

An overall number of 11 surface material classes were extracted from the data basis.
The surface materials were primarily chosen to meet the requirements for urban
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Fig. 11.2 The three-stage approach for surface material mapping

microclimate modeling. However, some target classes were also included because
the spectral and spatial resolution of the input data allowed for their classification
without introducing too many uncertainties in the final surface material map. For
the purpose of material mapping, a hybrid, three-stage classification approach was
employed (Fig. 11.2).

In the first stage, a series of segmentation algorithms was applied to the input
data (Berger et al. 2013). The goal of the segmentation step was to obtain larger
image objects for homogeneous regions, such as patches of grass or parking lots,
and smaller image objects for heterogeneous regions, such as densely built-up
areas. After the initial segmentation, a rule-based classification of the created image
objects was performed (Benz et al. 2004; Trimble Ltd. 2013) to generate a building
mask. The mask allowed the exclusion of spectrally similar ground classes (e.g.,
asphalt roads) from the later classification of roofing materials (Herold et al. 2004;
Herold and Roberts 2006; Herold 2007). Image segments were first divided into
elevated and non-elevated objects using the LiDAR nDSM. An object height of
2 m served as the separation threshold. The height value was chosen to enable
the differentiation between small but elevated objects such as allotment garden
cottages and pseudo-elevated objects such as vehicles (Ma 2005; Yu et al. 2010).
Subsequently, buildings were separated from all other elevated image objects.
Among the features used to derive the building mask were image brightness, the
NDVI, and the slope of the nDSM (Berger et al. 2013).

In the second stage, 15 samples of each target class were selected for supervised
data classification. The selection was based on spectral profile analyses, literature
comparisons, and visual inspection of the CASI and LiDAR data. In addition, the
training samples provided by the IEEE GRSS (Image Analysis and Data Fusion
Technical Committee 2013) were taken into account. On the basis of these samples,
two object-based support vector machines (SVMs) were established (Trimble Ltd.
2013). While the first SVM was trained to attribute one of four roofing materials
to each object in the building mask, the second SVM was set up to extract
the remaining target classes. Both SVMs were parameterized with a radial basis
function and took full advantage of all available or previously generated features of
the CASI and LiDAR data.
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SVMs refer to a supervised statistical learning and classification technique. They
are nonparametric, meaning that no assumption on the underlying data distribution
is made. During the training stage, the SVM algorithm aims to iteratively define
a so-called hyperplane in feature space. The hyperplane can be considered as
an optimal decision boundary differentiating a set of labeled input data into a
discrete, predefined number of classes that are consistent with the learning examples
(Mountrakis et al. 2011). Once the hyperplane has been established, the SVM
classifier can be applied to the unlabeled data under consideration. Besides many
other advantages, some of the distinct amenities of SVMs in the context of
multidimensional data classification are their ability to incorporate hyperspectral
images without the need of any feature reduction procedure (Melgani and Bruzzone
2004) and their relative insensitivity to training sample size and quality (Mountrakis
et al. 2011). Considering that the areal percentages of some surface types (e.g.,
roofing materials and water bodies) are comparatively low in the study area,
SVM-based classifiers are well suited for the urban surface material mapping task
presented in this work.

In the third stage, the trained SVMs were applied to the input data. To assess
the accuracy of the resulting material map, use was made of several data sources
including 0.5 m spatial resolution aerial imagery provided by the NOAA digital
coast initiative (National Oceanic and Atmospheric Administration 2014), Google
Street View, and Google Earth. A random sampling design was chosen comprising
at least 20 sample points per target class to assess overall accuracy, errors of
commission and omission, as well as the kappa index of agreement (Cohen 1960;
Congalton and Green 2009).

11.4.3 Microclimate Modeling

To simulate the urban microclimate, ENVI-met 4 (beta) was used (Bruse and Fleer
1998; Huttner and Bruse 2009). Based on the fundamental laws of fluid mechanics,
thermodynamics, and atmospheric physics (Bruse 2000), ENVI-met is a 3D coupled
flow-energy balance model to predict the interactions between urban surfaces,
vegetation, and the atmosphere for a given test site and time interval (Bruse 1999).
Version 4 of the model allows, for the first time, a complete 3D representation of all
land cover elements of the urban area considered, including the physical, thermal,
and hydrological properties of every house front and model building block (Huttner
and Bruse 2009). Hence, the information provided by the urban surface material
map and the LiDAR nDSM (i.e., urban object heights) can be fully exploited for
urban microclimate modeling using ENVI-met 4. While the model enables the
calculation of several climatic parameters, the focus of this study was put on the
simulation of urban air temperature to analyze the thermal characteristics of two test
sites in the study area under varying conditions. To this end, a three-stage modeling
approach was employed (Fig. 11.3).
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Fig. 11.3 The three-stage approach for microclimate modeling

Fig. 11.4 Surface material map of the study area in Houston

In the first stage, two modeling test sites were selected (Fig. 11.4). The first test
site is located in the south of the study area .29°4306:8400 N; 95ı21047:5700 W/ and
comprises three blocks of single-family homes, with each block being surrounded
by streets. This test site was used to model the spatial patterns of day- and nighttime
air temperatures. The second test site is situated in the north of the study area
.29°43025:4800 N; 95°21027:6900 W/ and is mainly characterized by residential land
use (row development). However, the western part of the test site also features
a multilevel parking garage and two large parking lots that lie in-between the
residential area and the parking garage. This test site was used to set up a fictional
what-if scenario in which the two parking lots were replaced by multilevel parking
garages to assess the impact of such an urban planning measure on nocturnal air
temperatures in the adjacent residential area.

After their selection, a spatial model of both test sites was created in ENVI-
met. Each model area had a spatial resolution of 2.5 m. While the southern test site
consisted of 130 � 150 � 30 grid cells in x-, y-, and z-dimension, the northern test
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Table 11.1 Overview of the ENVI-met surface types used to represent the classes in the material
map

Roofing materials Ground surfaces Vegetation
Map class Tiles Tar-Bitumen Concrete Metal Asphalt road Bare soil Water Trees Grass

Model ID R1 BIa C2b AL ST SD WW B7/07c FGd

R1 Roofing: Tile, BI Bitumen, C2 Concrete (lightweight), AL Aluminum, ST Asphalt road, SD
Sandy soil, WW Deep water, B7 Silver birch, 07 Norway maple, FG Grass
aClass and its physical properties taken from Heldens (2010)
bUsed to model concrete roofs and walls
cUsed to model small (�6 m) and large trees (>6 m), respectively
dPlant height reduced to 15 cm

site comprised 170�100�30 grid cells. To parameterize the models, information on
the location and height of all land cover elements have to be provided. In addition,
the type of vegetation, wall and roofing materials of buildings, as well as the
surface material and soil type of non-built-up areas needs to be known (Table 11.1).
Except for wall materials and soil types, which were defaulted to thin concrete
walls respectively sandy soil, all necessary information were available through the
material map and the LiDAR nDSM. After transferring these information from the
remote sensing products to ENVI-met, each model area was slightly simplified to
exclude smaller misclassifications in the material map from modeling.

As part of the second stage, some general settings and the meteorological
framework for each model run were specified. With regard to the general settings,
the spatial resolution of the model building blocks (2.5 m) and the geographic
location of the test sites were provided. Furthermore, the dates of the day- (6 am–6
pm) and nighttime (6 pm–6 am) simulations were set to June 22 and 23, 2012 (i.e.,
the acquisition dates of the CASI and LiDAR data), and the number of nesting
grids, which are used to minimize modeling uncertainties at the border of each
test site, was defined as three. Considering the meteorological framework, ENVI-
met requires hourly values of air temperature and humidity as well as the mean
wind direction for each modeling date. These information were taken from data of
a nearby climate station (John Dunn Helistop, Houston, Texas; Lott et al. 2001).
After model preparation, the third and final stage of the approach comprised the
actual simulation task. While day- and nighttime simulations of air temperature
were carried out for the southern test site, two nighttime simulations were run for
the northern test site (what-if scenario).

11.5 Results and Discussion

The results of this study are the urban surface material map and the microclimate
modeling outputs. In the following, both results are described and discussed.
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11.5.1 Surface Material Map

By using the hybrid, three-stage classification approach presented in this study,
hyperspectral and LiDAR remote sensing data of Houston were fused and turned
into area-wide information on urban surface materials (Fig. 11.4). Unless extensive
field surveys are up for debate, the described mapping framework represents
an effective way to properly capture the high degree of spectral and spatial
heterogeneity found in the study area. At the same time, the obtained thematic map
is able to deliver an indirect overview of the land cover and land use elements of the
urban scenery, including industrial areas, single-/double-family homes and other
residential districts, roads, sports stadiums, running tracks, urban green spaces, and
water bodies. The mean user’s and producer’s accuracies of the surface material map
are 79 and 81 %, respectively. While very high accuracies (�90 %) are obtained
for metal roofs, artificial turf, trees, and water bodies, high to medium accuracies
(between 90 and 70 %) are reported for concrete and tile roofs, grass, asphalt roads,
and bare soil. The lowest accuracies (�70 %) are observed only for tar-bitumen
roofs and tartan (Table 11.2).

Misclassifications in the map are due to different reasons. To name a few, errors
in the building mask (partly originating from the simple calculation of the LiDAR
nDSM) compromised the differentiation of roof materials, the spectral similarity
between bare soil areas and sealed surfaces caused confusion (Yang et al. 2003;
Bauer et al. 2008; Weng 2008; Esch et al. 2009; Elmore and Guinn 2010; Luo and
Mountrakis 2010; Leinenkugel et al. 2011), the spatial resolution of the input data
hampered feature extraction due to the presence of different target classes within a
single pixel (mixed pixels) (Welch 1982; Woodcock and Strahler 1987; Jensen and
Cowen 1999; Ben-Dor et al. 2001; Small 2003), and the limited spectral range of the

Table 11.2 Confusion matrix for the surface material map of the study area

Reference

RTi RTa RCo RMe RAs BAR TAR WAT TRE GRA ART Total UA

C
la

ss
ifi

ca
tio

n

Roof (tiles) 16 4 0 0 0 0 0 0 0 0 0 20 0.80

Roof (tar-bitumen) 4 12 0 2 1 0 0 0 0 1 0 20 0.60

Roof (concrete) 0 1 13 0 3 0 0 0 0 3 0 20 0.65

Roof (metal) 0 3 2 30 1 2 0 0 2 0 0 40 0.75

Road (asphalt) 0 1 0 0 18 0 0 0 0 1 0 20 0.90

Bare soil 0 0 0 0 2 13 0 0 0 5 0 20 0.65

Tartan 4 0 0 0 7 1 15 0 2 10 1 40 0.38

Water 0 0 0 0 0 0 0 20 0 0 0 20 1.00

Trees 0 0 0 0 0 0 0 0 40 0 0 40 1.00

Grass 0 0 0 0 0 0 0 0 1 39 0 40 0.98

Artificial turf 0 0 0 0 0 0 0 0 0 1 19 20 0.95

Total 24 21 15 32 32 16 15 20 45 60 20 300 –

Producer’s acc. 0.67 0.57 0.87 0.94 0.56 0.81 1.00 1.00 0.89 0.65 0.95 – –

Overall accuracy D 0.78 Kappa coefficient D 0.76
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CASI data (up to 1,050 nm) impaired the detection of some surface materials with
spectral key features occurring only at longer wavelengths (e.g., in the short-wave
infrared domain; Heiden et al. 2007; Herold et al. 2007). Apart from these errors, the
overall accuracy of the material map is 78.3 %, and the kappa coefficient amounts to
0.76. Therefore, and according to other authors Altman (1991) and Grouven et al.
(2007), the mapping result is considered as suitable for the parameterization of
urban microclimate models like ENVI-met.

11.5.2 Air Temperature Maps

The simulation results for the southern test site are compiled in Fig. 11.5. The
displayed day- and nighttime temperatures were calculated at a height of 1.75 m.
The mean wind direction was east-southeast. Both simulations reproduce the typical
thermal behavior of urban environments over the course of a warm summer day
and night. At daytime, streets, driveways, parking lots, and the air layers above
these and similar land use elements are heating up most intensively because they
are almost constantly exposed to direct solar radiation and their physical properties
facilitate the absorption of high amounts of thermal energy. At nighttime, higher air
temperatures prevail in the slipstream of buildings and over broad streets because
construction materials release the energy that has been stored during the day with
less efficiency than natural surfaces. For both simulations, air temperatures around
trees and over larger patches of short vegetation are relatively low due to the cooling
effect of plant transpiration. Besides these observations, it is interesting to see that
temperatures in the northernmost block of the test site are considerably raised at
night. Obviously, the number and density of buildings in this block have exceeded
a critical threshold so that the cooling effect of trees and larger patches of short
vegetation has almost no impact on air temperature. The block’s proximity to the
main street in the north further contributes to the observed thermal pattern.

The simulation results for the northern test site are compiled in Fig. 11.6.
The displayed nighttime temperatures were calculated at a height of 1.75 m
aboveground. In this hypothetical pre-post comparison, two large parking lots are
replaced by multilevel parking garages (see the yellow buildings in Fig. 11.6b) to
study the effect of such a planning measure on nocturnal air temperatures. The
mean wind direction was again east-southeast. The modeling outputs reveal that
the residential area in the slipstream of the original parking lots would heavily
suffer from increased heat stress due to the construction of further parking garages.
According to the simulations, people living in close vicinity to the fictional parking
garages would be exposed to raises in nighttime air temperature of up to 2 °C.
Moreover, additional model runs indicate that this observation is independent of the
height of the new parking garages. This case study highlights that even small-scale
changes or modifications of land cover and land use can have severe effects on the
urban microclimate and, by implication, also on thermal comfort (Toy et al. 2007),



11 Hyperspectral & LiDAR Data to Study the Thermal Characteristics of Urban Areas 285

Fig. 11.5 Modeling results for the southern test site. (a) Original CASI data (color-infrared).
(b) Modeling input (legend: see Fig. 11.4). (c) Daytime simulation (6 am–6 pm). (d) Nighttime
simulation (6 pm–6 am)

water and energy consumption (Voogt 2002; Guhathakurta and Gober 2007; Ewing
and Rong 2008; Yuan and Bauer 2007), and possibly human health (Curriero et al.
2002; Johnson and Wilson 2009). Although the function of the urban land (i.e., the
provision of parking space) was preserved in the above comparison, the difference
prior to and after replacing the parking lots by multilevel garages could not be any
bigger from an urban climatological perspective.

It should be noted that a validation of the presented model simulations was not
carried out in this study. This is mainly because of three reasons. First, the main goal
of this contribution was not to test the well-documented performance of ENVI-met
(Ali-Toudert et al. 2005; Ali-Toudert and Mayer 2006; Samaali et al. 2007; Skelhorn
et al. 2014) but rather to demonstrate that it is technically feasible to parameterize
a widely used 3D urban microclimate model by fusion of hyperspectral CASI and
LiDAR remote sensing data. The two above case studies were provided to highlight
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Fig. 11.6 Modeling results for the southern test site. (a) Original CASI data (color-infrared). (b)
Modeling input (legend: see Fig. 11.4). (c) Nighttime simulation (w/o buildings). (d) Nighttime
simulation (w/buildings)

the potential of the described mapping and modeling workflow for urban planning
applications. Second, ENVI-met was primarily designed and reportedly works well
for making relative, not absolute, comparisons among climate variables and their
spatial patterns (Emmanuel and Fernando 2007; Bruse 2009; Heldens 2010). Since
the two case studies presented do not compare absolute values of modeled air
temperature, the necessity of validating the simulation outputs is debatable. Third, it
was practically impossible to objectively assess model performance due to the lack
of suitable reference data. Of the information needed to quantify simulation quality,
neither multiday air temperature records from a high-density network of climate
stations nor thermal imagery acquired by an airborne remote sensing system (e.g.,
AVIRIS (NASA Jet Propulsion Laboratory 2014) or G-LiHT (Cook et al. 2013))
were available for the modeling test sites.

As an alternative to model validation, one can refer to different aspects of
this work suggesting that the obtained simulation results can be considered as
reliable. One indication is that the surface material map – one of the most
important modeling inputs – has proven to be sufficiently accurate to parameterize
ENVI-met (cf. Sect. 11.5.1). Nevertheless, to exclude smaller misclassifications
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from the simulations, the spatial models of each test site were slightly simplified
(cf. Figs. 11.5b and 11.6b). Another point is that version 4 of ENVI-met does
not only require the input of certain meteorological framework conditions for a
proper model initialization but it also allows for constraining the diurnal profile
of specific climate variables during each simulation. This means that it is possible
to fit the model to known, temporally variable climatic conditions for a given date
and region of modeling. In the case of this study, the absolute values of modeled
parameters like air temperature and relative humidity were forced on the basis of
hourly measurements taken from a nearby climate station (John Dunn Helistop,
Houston, Texas; Lott et al. 2001). Based on these indications, it is reasonable to
assume that the obtained modeling results and the conclusions drawn from the
relative comparisons made are valid.

Despite some remaining uncertainties, the above examples clearly demonstrate
that classification-based modeling holds a large potential to capture, analyze, mon-
itor, and predict the urban microclimate under varying conditions. The simulations
enable the identification of hot spot areas that are exposed to increased heat stress
and decreased thermal comfort at day and night. In addition, dedicated what-
if scenarios facilitate the determination of critical land cover configurations that
should be avoided in urban design. The obtained mapping and modeling products
therefore represent promising sources of information which decision makers can
potentially incorporate into various urban planning activities to foster effective
management and to safeguard sustainable urban development.

11.6 Conclusions

Microclimate modeling is a powerful tool to study the thermal characteristics of
urban environments at the local scale. However, it requires high spatial resolution,
area-wide information on urban surface materials, and object heights that are usually
hard to obtain by traditional field surveys. This work aimed at the derivation of an
urban surface material map to parameterize a 3D numerical microclimate model by
fusion of airborne hyperspectral and LiDAR remote sensing data. To demonstrate
the potential of data-driven microclimate modeling, two case studies were presented
for selected test sites in the City of Houston, Texas. The results of this study
highlight that a synergistic combination of hyperspectral and LiDAR data enables
reliable mapping of some of the key input parameters required for urban microcli-
mate modeling. Moreover, classification-based microclimate simulations can reveal
the thermal properties of urban neighborhoods under varying conditions and, thus,
facilitate the identification of hot spot areas and critical land cover configurations
which should be avoided in urban design. Given the ever-increasing availability
of hyperspectral and LiDAR data (e.g., NASA Jet Propulsion Laboratory 2014;
Cook et al. 2013; LiDAR Online 2014; OpenTopography 2014), it is concluded that
spatially explicit microclimate modeling should be an integral part of urban planning
to enable making more informed decisions about the future of urban environments.
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However, further investigations are still required in order to get a more complete
picture of the data and methods under consideration. Among other issues, future
studies should comprehensively test the generalization capabilities of the developed
mapping procedure (different study areas and/or input data) and rigorously validate
the performance of data-driven microclimate modeling. In the long run, this would
effectively help promoting hyperspectral and LiDAR remote sensing technologies
for urban planning applications.
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Chapter 12
Modeling Urban Land Use Change: Integrating
Remote Sensing with Socioeconomic Data

Junmei Tang

Abstract Rapid urban development has stimulated the progress in predicting and
evaluating urban landscape evolution. As a result of rapid socioeconomic devel-
opment, the land use pattern of Houston, TX, has undergone significant changes
over the past 30 years. It is essential to simulate urbanization processes in Houston
to examine where and to what extent landscape change has occurred and further
to understand how and why the change can occur. This research developed two
cellular automata (CA) models based on the same remote sensing data source: one
was based on the classification from Landsat images and another one incorporated
the socioeconomic data with the same classification results. The predicted results
from these two models suggested that the incorporation of socioeconomic data
improved the accuracy in human-intervened landscapes, such as residential and
industrial/commercial area. More socioeconomic data and finer data sources were
needed to improve the CA model to predict the heterogeneous pattern within urban
areas.

Keywords Urban land use change • CA model • Socioeconomic data • Remote
sensing

12.1 Introduction

Rapid urbanization in the past 50 years, triggered by the population growth and
migration from rural to urban and suburban areas, presents one of the greatest
challenges in environmental, economic, social, political, and cultural research
(Antrop 2004; Tang et al. 2012; Tayyebi et al. 2012). The total urban population is
82 % with an estimated 1.2 % annual increasing rate from 2010 to 2015 in the United
States (US Census 2011). The motivation to model urban landscape dynamics arises
from the process of examining where and to what extent landscape change has
occurred, and furthermore, the need to understand how and why the changes can
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occur (Weng 2002; Yang and Lo 2002). One of the greatest challenges in designing
effective urban models is that their performances are often limited by the inadequate
digital data source over time as well as the consideration of external driver such as
socioeconomic development and human disturbance (Pickett et al. 1997; Mcintyre
et al. 2000).

Remote sensing data, with the ability to provide large-scale data sources such
as historical maps or urban land use maps, has been used as an effective tool in
quantitatively measuring urban landscape and modeling urbanization at a relatively
large spatial scale (Herold et al. 2003; Tang 2011). Images from satellite sensors
provide a large amount of cost-effective multispectral and multi-temporal data to
monitor landscape changes and estimate biophysical characteristics of land surfaces
(Weng 2002). Many researchers have proposed the routine to combine remote
sensing with GIS in urban growth models (Tang 2011; Tayyebi et al. 2013).
Significant progress in acquiring remotely sensed data in a higher spatial resolution
and developing the spatial geographic process model has widened our research on
the process, driving forces, and impacts of the urbanization.

The cellular automata (CA) model, introduced by Tobler in 1979, is one of the
most powerful spatial dynamics techniques used to simulate complex urban systems
(Batty and Xie 1994). The CA model allows researchers to view the city as a self-
organizing system in which the basic land parcels are developed into various land
use types. Cecchini and Viola (1990) applied simple decision rules in the CA model
to predict the complex, large-scale structure in the urban growth process. Wu (1998)
combined the multicriteria evaluation (MCE) and GIS into the CA model to define
the transition rules in a visualized environment. Shafizadeh-Moghadam and Helbich
(2013) used AHP (analytical hierarchy process) to determine the weight in a Markov
chains-cellular automata urban growth model.

The advantages of the CA model in simulating urban spatial process and
dynamics (Hillier and Hanson 1984; White and Engelen 1993) have been widely
documented because the theoretical abstraction of the CA model and the practical
constraints in the real world can be easily related (Batty and Xie 1994; Clarke
and Hoppen 1997; Wu and Martin 2002). The model begins from a homogeneous
cell-based grid and adjusts itself through the transition rule derived from its local
spatiotemporal neighborhood. This makes the CA model suitable to simulate com-
plex and hierarchical structures since more unknown, immeasurable spatiotemporal
variables can be incorporated and manipulated in this model. Another advantage
in CA simulation is the ability of the model to incorporate proper parameters or
weights to model the alternative socioeconomic states in the model development
(Clarke and Gaydos 1998; Li and Yeh 2000). With better computer techniques, the
CA model is also able to explore more complex human behavior through defining
different transition rules (Li and Yeh 2000; Wu and Martin 2002). However, the
tension between the simple local transition rule in CA models and the complex,
unpredicted social changes in urban landscapes still remains.

In this context, this chapter attempted to develop a spatial-explicitly CA model to
simulate urban growth patterns using the classification result from Landsat images
and another one incorporated the socioeconomic data with the same classification
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results. Two CA models were compared to test how the socioeconomic data could
improve the urban model simulation in Houston during the last 30 years. Specially,
the following research questions were addressed: How the socioeconomic data
could be incorporated with remote sensing in the urban growth model? Does the
socioeconomic data improve the model? In which classes does this model improve?

12.2 Urban Model Review and Socioeconomic Data
in the Model

With the availability of spatial data on a large scale, various sophisticated models,
especially after the late 1990s, were developed such as UrbanSim model (Waddell
2002), Markov chain model (Stewart 1994), LUCAS model (Berry et al. 1996),
CLUE model (De Kong et al. 1999), area-based model (Lichtenberg 1985; Tayyebi
et al. 2011, 2013); CA model (Batty and Xie 1994), Land Transformation Model
(Pijanowski et al. 1997, 2014), and agent-based model (Liebrand et al. 1998). The
detailed review of these spatial explicit models is listed in Table 12.1.

In terms of the methods to represent the model object, there are vector-based
models and grid-based models (Herold 2004), and both of them have been used to
incorporate socioeconomic data. Vector-based models use the thematic map as the
input data for the model, and the spatial objects are usually defined as homoge-
nous land units. UrbanSim is one of land use simulation models for the growth
government, regional land use, and transportation planning in the states of Hawaii,
Oregon, and Utah (Waddell 2002). Within the context of urban infrastructure and
governmental policy, UrbanSim represents zonal structure in the urban area to
monitor the socioeconomic-related behaviors of households, business, and land
developers. Theoretically, UrbanSim is an object-oriented model. What if model
(Klosterman 1999) begins with uniform analysis zones or homogeneous land units
generated from the GIS software. Through applying the governmental policies and
land use demands, this model derives the aggregating value of the regional condition
on the land units. What if model projects future land use patterns by balancing the
supply, demand, and land sustainable at different locations. Area-based model is a
vector-based model used in resource assessments to predict the availability of farm
and forest land. Transformed from the regional model (Palmquist 1989), area-based
model allocates the proportions of a given land use to predefine land use categories
using Lichtenberg’s (1985) acreage allocation method (Tayyebi et al. 2011, 2013).

Another vector-based model is Markov model which predicts future landscape
patterns based on the spatial transition probability. Although Markov model is a
typical spatial transition model, early Markovian analysis is a descriptive tool to
predict land use change on a local or regional scale (Bell 1974; Bourne 1976;
Arsanjani et al. 2013). Actually, the Markov model is not a strict vector-based
model; it is based on the statistical results from the thematic map. Lopez et al.
(2001) used Markov chain to simulate the relationships among a set of urban and
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social variables in predicting land use/cover change in the urban fringe of Morelia
city, Mexico. Weng (2002) demonstrated that the integration of satellite remote
sensing and GIS techniques into the stochastic urban modeling was an effective
approach for analyzing the direction, rate, and spatial pattern of landscape change in
Zhujiang Delta of China. Tang et al. (2007) improved the Markov chain model by
incorporating a modified genetic algorithm in the urban boundary expansion for
urban simulation. Mathematically, most vector-based models rely on some static
equations, and this characteristic provides the potential in integrating the statistical
information into the model entities. The major drawbacks of such models are the
poor handling in dynamic entities and poor representation of external variables, e.g.,
the spatial information and socioeconomic factors.

The models developed on grid have more advantage in solving these problems
than the vector ones. Land-Use Change Analysis System (LUCAS) is a grid-based
model which integrates socioeconomic and ecological variables in the multilayered,
gridded maps (Berry et al. 1996). This model consists of three subject modules:
socioeconomics, which derives the transition probability from the function of
socioeconomic driving variables; landscape change, which predicts the landscape
maps from the socioeconomic module; and environmental impacts, which estimates
the impacts of selected environmental variables from the landscape maps from
second modules. Land Transformation Model (LTM) (Pijanowski et al. 1997, 2014)
applied the spatial rules to land use transitions for each location in the processed
spatial layer or grid. It is easy to quantify the contribution of different spatial
variables because of its grid format. In order to aggregate the land use change and
change drivers, this model adopted the similar method with the Conversion of Land
Use and its Effects (CLUE) model (De Kong et al. 1999). Both of them apply the
variable values in grid format to create a series of future land use patterns over
the time. Cellular automata model has been proposed and developed to simulate
the urban land use model by incorporating various socioeconomic variables, such as
dynamic transportation model (Aljoufie et al. 2013) and dynamic population density
(Van Vliet et al. 2012).

Agent-based model (Liebrand et al. 1998) is a complex behavior model which
used both vector data and raster data. Usually, the raster data is the agents’
environment, and the agents, in turn, act on the simulated environment. This model
can be applied to a wide variety of simulations, including moving cars, animals,
people, or even organizations. The socioeconomic variable, as both agents’ status
and driving forces, was incorporated into the model to simulate individual activities
(An et al. 2005). This model is difficult to develop and control since we need to
incorporate the “individual agent” information and predict its potential behaviors.

Generally, a reliable urban growth model should have the following capabilities:
(1) providing an appropriate theoretical and technical framework for urban growth;
(2) understanding and describing the historical dynamics of urban structures; and (3)
exploring and incorporating different economic and social parameters to monitor the
urban growth.
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12.3 Study Area and Data Preparation

The eastern metropolitan area of Houston, Texas, covering an area of 1,200 km2,
was chosen as the study site (Fig. 12.1). Houston is situated in the northern portion
of the Gulf coastal plain, a 60 by 80 km-wide swath along the Texas Gulf Coast,
80 km from the Gulf of Mexico (Moser 1998). This area has experienced rapid urban
development since the 1930s after the discovery of oil (Tang et al. 2008) in nearby
oil fields. These discoveries made it the largest city in Texas as of 1930 and the
fourth largest city in United States since 1990 (Texas State Historical Association
2002). Although the government tried to diversify its economy (Key to the city
2001), the city’s unchallenged role as an international center of oil technology,
headquarters for a number of the world’s largest energy companies, and a strong
refining and petrochemical manufacturing base should shore up the local economy

Fig. 12.1 Study site, Houston, Texas, in the United States
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of Houston in the near future. The representative land use/land cover classes in this
selected region include residential area, commercial/industrial area, transportation,
woodland, grassland, and barren/soil.

The satellite Landsat MSS/TM images were collected from 1970s to 2010 in this
study. All these images were georeferenced to the Universal Transverse Mercator
projection using ENVI. The convention Maximum Likelihood Classification was
adopted to obtain four classified landscape maps with six landscape classes for each
map. We chose two set of samples around 600 pixels for training samples and test
samples, respectively. The selection of separate of training and test samples was
guided by the characteristic of each class at different years. The overall accuracy
assessment of classified maps was 92 % (1979), 94 % (1990), 96 % (2000), and
95 % (2010). Figure 12.2 shows the detailed proportion of each land use type as
shown in Table 12.2.

In order to represent the rapid socioeconomic development in the Houston
area, four major socioeconomic variables were collected: population density, house
density, road density, and distance to highways (Van Vliet et al. 2012; Aljoufie et al.
2013). These four variables were collected at census block level from the official
website of the U.S. Census Bureau (US Census Bureau 2010).

Fig. 12.2 Satellite images and classification results from MLC method on October 1979, Decem-
ber 1990, November 2000, and October 2010

Table 12.2 The proportion
of each land use type from
1979 to 2010 in Houston

Area (km2)
Houston 1979 1990 2000 2010

Residential 312.47 479.78 564.43 572.43
Industrial/commercial 93.50 228.58 198.21 197.07
Grassland 511.34 287.53 235.89 178.63
Woodland 209.68 140.32 184.70 179.43
Barren/soil 70.13 81.98 32.72 87.13
Water 31.73 9.67 11.85 13.11
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12.4 Methodology

A cellular automata model was developed to investigate the scenarios of future
urban land transformations in Houston. This model started on a 30-m grid and the
transition rules were applied to all cells at the same time, and the entire grid was
updated at the annual iteration. The transition rules were defined as the difference
between the center cell and eight neighbors within 3 � 3 Moore’s neighborhood. To
determine the state of a cell in a certain time period, the simulation function was
written as:

StC1
i;j D aN � Nt

i;j C aM � Mi;j C aSE � SEi;j (12.1)

where Nt
i,j denotes the diffusion factor regarding its neighborhoods, Mi,j denotes

the Markov transition probabilities, SEi,j denotes the socioeconomic status of each
single cell and its neighborhoods; a represents the coefficients for these variables.

For a self-organizing CA model, the diffusion factor, Markov transition rules,
and socioeconomic status were defined as:

Ni;j D ni;jX
ni;j

(12.2)
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(12.4)

where ni,j is the total number of class i surrounding the observed class j, N(i, j) is
the observed landscape amount changing from class i to class j during total m years
at k internal steps, and dn

i,j is the different value in the selected four socioeconomic
variables between the observed center cell and its n neighbors (Fig. 12.3).

Although the socioeconomic data were collected at the last year of simulation, the
difference of socioeconomic values between the observed cell and the neighbors was
used to determine the socioeconomic factors. Obviously, different socioeconomic
variables have different impact weights to the urban land use/land cover change.
In order to find the weightiness of each socioeconomic variable, 20 experts in the
field of socioeconomic and land use change were invited to assign weights to each
variable using the index ranging from 0 to 10 to represent the weight from the
highest impact to the lowest impact. The average value of these ratings was shown
in Table 12.3.
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Fig. 12.3 The visualization of the socioeconomic value in Houston (a) Population density; (b)
House density; (c) Road density; and (d) Distance to highway

Table 12.3 The weight of socioeconomic indices

Houston
Population
density

Road
density

Distance
to highway

House
density

Barren/soil 3.67 3.50 3.40 4.00
Industrial/commercial 8.80 8.17 8.42 7.33
Grassland 3.18 2.75 3.36 4.90
Residential 9.46 8.08 6.25 8.92
Transportation 7.66 9.00 8.95 6.82
Woodland 2.82 2.58 3.18 4.70

A critical issue in the CA model is the provision of proper methods to calibrate
the CA model to find appropriate coefficients for the diffusion factor, Markov
transition rules, and socioeconomic status (Hagen-Zanker and Lajoie 2008; Van
Vliet et al. 2011). To calibrate the model, we used the classified Landsat TM image
as empirical maps on the following dates: November 5, 1984; July 20, 1990; October
6, 1999; and November 9, 2000. We randomly selected an encoded weight number
(ranging from 1 to 10) for each factors, run the CA model using these weight
number, and compared the cells simulated in the CA model with the cells located
in the empirical maps to choose the weight number with the highest fitness. The
CA model was run at yearly intervals to represent one combination until the next
calibration year. These steps were repeated until the year of the last calibration map.

For the validation, the model’s simulation output was compared to the empirical
map, occurring in the same simulated year (Pontius et al. 2004; Pontius and Cheuk
2006) through visual inspection and quantitative evaluation. In this research, we
adopted the classified map in October 31, 2011, as an empirical map and overlaid
it with the predicted map to generate a black-and-white error image. Meanwhile, an
error matrix was built up with the user’s and producer’s accuracy for each class as
well as the overall accuracy and Kappa for the entire landscape.
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12.5 Results and Discussion

Since our model was based on actual observation from the last 30 years in Houston,
the temporal transition probability matrix is calculated by accumulating the periods
from 1979 to 2010. We first calculated the yearly transition matrix between each
two subsequent maps between 1979–1990, 1990–2000, and 2000–2010 and then
calculated the yearly transition matrix between 1979 and 2010 using Eq. 12.3. The
yearly transition probability matrix from 1979 to 2010 is shown in Table 12.4.

Using the yearly transition probability matrices in Table 12.4, we parameterized
the Markov transition probability and socioeconomic variable on the census block
level into the CA model. Two CA models were built up, one with the socioeconomic
variables and another one without. Figures 12.4 and 12.5 show the initial state and
simulated pattern of Houston with the socioeconomic variables and without the
socioeconomic variables, respectively.

The simulated results from two models have similar pattern in general urban
sprawl pattern: fast shrinkage in grassland and woodland and clear outward
expansion in residential or industrial/commercial area. This growth pattern could

Table 12.4 Yearly transition probability (%) matrix from 1979 to 2010

Houston (1979–2010) Residential
Industrial/
commercial Grassland Woodland Barren/soil

Residential 98.07 0.82 0.56 0.42 0.12
Industrial/commercial 1.24 98.01 0.23 0.03 0.4
Grassland 1.85 0.35 97.13 0.53 0.12
Woodland 0.09 0.18 1.19 98.25 0.26
Barren/soil 2.26 2.27 1.26 0.19 94.02

Fig. 12.4 The simulated landscape pattern of Houston with the socioeconomic factors
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Fig. 12.5 The simulated landscape pattern of Houston without the socioeconomic factors

be observed in the southeastern and northeastern city with a large amount of new
residential and industrial/commercial area being built in the last 30 years. Different
from other large cities in the United States, Houston did not adopt city zoning laws
in its urban planning. Lacking city zoning has led to an abundance of urban sprawl in
Houston, resulting in a relatively large metropolitan area and low population density.
Land developers inspired the spread of Houston when they built suburbs such as
Pasadena (1892), Houston Heights (1892), Deer Park (1892), Bellaire (1911), West
University Place (1919), and River Oaks (1922–24).

Although the simulated results from two models have the similar sprawl pattern,
the model with the parameterized socioeconomic variables had a better correspon-
dence with the “abrupt” expansion in residential and industrial/commercial area.
From Fig. 12.6, we could find that the “abrupt” expansion were simulated well in
the model with the socioeconomic data as the larger predicted area in these human-
related landscapes in the year 2010. This “abrupt” expansion was caused by the
rapid economic development, population growth, and road construction in Houston.
The simulated pattern by the model without socioeconomic factors was much
tardier, especially in simulating the rapid growth in suburban area. The differences
between these two models indicate that the CA spatial model could simulate the
urban evolution behaviors with incorporating enough driving factors.

In order to display the error in the predicted map, we compared our predicted
results with the empirical maps. The differential map was shown in Fig. 12.7.
White pixels in the figure represented the area predicted correctly, while dark
pixels represented the incorrect prediction. Generally, the residential areas were best
predicted and most of the errors were found in the suburban area, which were mostly
grassland and barren/soil landscapes. The woodland was predicted better than other
natural landscapes, which might be caused by the large forest reserved area in
northeastern Houston in the Sheldon Lake State Park and Dwight D. Eisenhower
Park.
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Fig. 12.6 The estimated results from two models in 2010

Different with the
empirical map
Same with the
empirical map

a b

Water

Fig. 12.7 The differential map between the predicted map and empirical map (a) with socioeco-
nomic factors and (b) without socioeconomic factors

In Fig. 12.7, the predicted result with the socioeconomic data (Fig. 12.7a)
was better than the one without the socioeconomic data (Fig. 12.7b) with more
white pixels. This could be confirmed in the southwestern Houston, such as
Gulfton, Sharpstown, and Bellaire, and southeastern Houston between Deer Park
and Pasadena. The incorrect predictions were always also found in the indus-
trial/commercial area in the Southern and Northeastern Houston, such as Missouri
City and Jersey village. It was easy to understand since the chosen socioeconomic
data, especially the population density and house density, were better to represent
the residential area instead of industrial/commercial area.

Further validation of models between the simulated one and predicted one
was analyzed through the confusion matrix (Table 12.5). This table showed the
comparison results between the simulated result and empirical maps as the value of
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user’s accuracy and producer’s accuracy represented the accuracy for each class and
the overall accuracy and Kappa represented the accuracy for the entire landscape. In
both models, the best predicted class was the residential area (with 66.97 %/59.03 %
user’s accuracy and 77.32 %/53.91 % producer’s accuracy) and the worst prediction
class was barren/soil (with 40.78 %/20.48 % and 1.43 %/11.74 %). The barren/soil
class, although had the least area in the study area, were easy to be confused with
other classes such as industrial/commercial or residential area. The incorporation
socioeconomic data into the model improved the simulation on the residential or
industrial/commercial classes which made the barren/soil having the least accuracy.

One disadvantage of incorporating socioeconomic data into the model was the
overestimation of residential area in which led to a relative underestimate in the
industrial landscape as well as other natural landscapes such as woodland and grass-
land. This might be improved as more and more socioeconomic data were incorpo-
rated as driving forces in the model. The analysis of the model validation showed
that the appropriate ancillary parameters were necessary for the CA model to derive
a solid result. In fact, the value of the simulation approach lied in its exploratory
nature which enabled the improvement of models with additional variables later.
Meanwhile, the CA model had an “aggregate” function to smooth the heterogeneous
pattern within the urban and suburban area. One solution to solve this problem was
to incorporate better data source into the model, such as higher spatial resolution
images or sub-pixel classifications, to improve the accuracy of CA models.

12.6 Conclusion

The spatiotemporal CA model of urban landscape patterns using multi-temporal TM
and MSS imagery enabled us to characterize the internal structure of landscapes
and monitor the landscape dynamics for Houston. Moreover, we also explored the
potential of socioeconomic variables to detect how human forces affect the urban
spatial pattern.

The CA model, coupled with the Markov transition probability, has indicated
the capability of trend projection for the landscape change. This spatiotemporal
model provided not only the quantitative description of change in the past but
also the direction and magnitude of change in the future. However, based on the
experimental results and exploratory analysis, several limitations still exist within
the current study:

• Since the modeling process involves the usages of data from multiple sources, the
accuracy of prediction result will be closely related to the individual accuracy
with each type of data, especially different remote sensing data sources. The
development of a robust method to incorporate data in different spatial resolution
was still an interesting issue.

• Although the Markov transition probability was calculated on the census block
level, it was stationary and unable to accommodate the unpredictable influence
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variables, such as the climate, policy, and human disturbance. In addition, the
pace of landscape change was usually kept on changing over the entire period.

• In this research, we supposed the relationship between socioeconomic factors,
neighborhood effect, and Markov transition probability was linear and determin-
istic during the calibration. Finding an exact dynamic coefficient between them
was still an intricate study in the urban modeling.

Currently, it was not fully conclusive that the CA model based on socioeconomic
data was inferior to the one without socioeconomic data, especially for the natural
landscapes. It was still necessary to find more sophisticated methods applying to a
series of varied landscape to verify this new model.

Most urban landscapes have been influenced by human disturbance, resulting
in a heterogeneous mosaic of natural and human-managed patches that vary in
size, shape, and arrangements (Turner 1989). The landscape responses to human
disturbances are important, however, difficult to be estimated because the landscape-
level simulation involved numerous challenging experiments and hypotheses in the
development of models (Vaz et al. 2012). These hypotheses are always assumed to
make the process model easier to be manipulated, leading to a more homogenous
pattern in the predicted result. Thus, it is necessary to relate the homogenous
analysis in the model prediction with the heterogeneous analysis in the quantitative
landscape method for a comprehensive understanding of the urbanization process.
In conclusion, this urban studies show that by incorporating more spatial algorithms
into the prediction of landscape change, more accurate long-term landscape changes
can be reproduced in the future.
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Chapter 13
Linked Activity Spaces: Embedding Social
Networks in Urban Space

Yaoli Wang, Chaogui Kang, Luís M.A. Bettencourt, Yu Liu, and Clio Andris

Abstract We examine the likelihood that a pair of sustained telephone contacts
(e.g. friends, family, professional contacts, called “friends”) uses the city similarly.
Using call data records from Jiamusi, China, we estimate a proxy for the daily
activity spaces of each individual subscriber by interpolating the points of geo-
located cell towers he or she uses most frequently. We then calculate the overlap
of the polygonal activity spaces of two established telephone contacts, what we call
linked activity spaces.

Our results show that friends and second-degree friends (e.g. friends of friends)
are more likely to geographically overlap than random pairs of users. Additionally,
individuals with more friends and with many network triangles (connected groups
of three friends) tend to congregate in the city’s downtown at a rate that surpasses
randomness. We also find that the downtown is used by many social groups but that
each suburb only hosts one or two groups. We discuss our findings in terms of the
need for a better understanding of spatialised social capital in urban planning.
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13.1 Introduction

In this chapter, we present a methodology that can help elucidate how groups of
friends, family and professional contacts use the city. We know that cities are com-
prised of two interacting components, social networks and physical infrastructure,
and that the social dynamics of encounters in urban space form the backbone of city
life (Bettencourt 2013). Yet our ability to model social networks and social capital
in urban spaces is very limited. This presents a problem because often our behavior
results from the influence of others (Salganik and Watts 2008). The establishment,
discovery and maintenance of our social ties are guided by the city. These ties will
also affect how we use the city: where we choose to meet, live and work.

Within a city, it remains an open question as to whether a citizen benefits
most from having his or her social contacts nearby or dispersed. At one extreme,
dispersed contacts can expose the ego to new neighborhoods and a variety of urban
knowledge (such as finding the quickest post office, the best doctor or an exciting
new restaurant), due to their variety of experiences in diverse parts of a city. Yet,
it may be more difficult and more expensive to meet spatially dispersed contacts.
Having friends in disparate parts of the city is also more likely to lead to a social
network where one has few friends “in common” with other friends, which can be a
key strength of social networks.

At the other extreme, a socially tight neighborhood forms trusted bonds through
multiple channels of social validation (Centola and Macy 2007) and through
increased exposure to one another in the outdoors and through neighborhood
institutions such as local schools. Proximal social contacts can meet conveniently,
benefiting elderly and the mobility challenged and, in some cases, poorer or im-
migrant communities who likely rely on friends and family for help with amenities
such as child care. Yet, in these enclosed neighborhoods, information and social cap-
ital from other parts of the city may be less accessible (Granovetter 1983) resulting
in missing or unsupportive social systems across the city (Granovetter 1973).

How do urbanites organize their lives to balance their need for information and
accessibility with its costs? In order to answer this question, we must measure and
model the social network of egos within the urban built environment.
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13.1.1 The State of Social/Spatial Modeling

Everything happens somewhere: examining social life as extricated from the
influence of the built environment results in an unrealistic view. Yet the methods
available for understanding the clustering and dispersion of a set of individual social
networks in geography are limited, as social network and urban spatial models have
matured in separate domains, and are analyzed in separate spheres, through social
network analysis and geographic information systems (GIS), respectively (Andris
2011). Network methods are also rarely used by those who study city form (Sevtsuk
and Mekonnen 2012). Social networks represent influences and social capital as
graph configurations of nodes (agents) and links (e.g., edges) between nodes where
primary metrics are connectivity and embeddedness; alternatively, spatial (e.g., GIS)
models are represented in a contiguous topological plane, where adjacency and
proximity are primary metrics (Andris 2011).

As a result, social/spatial phenomena are often explained separately by those
inclined toward computational sociology or geography, respectively. One example
is the study of obesity, where social networks (Christakis and Fowler 2007) and city
form (Papas et al. 2007) are examined as causal factors, but not in the same study. To
obtain a clearer picture of the mechanisms surrounding obesity, one should consider
social ties and the built environment as coincidental factors – as these influences
can compound. Similarly, research showing how students use a college campus
in space and time via WiFi usage describes the flexibility of meeting places due
to mobile computing (Sevtsuk et al. 2009), but could be extended to assess social
gatherings in time and place, as do Eagle et al. (2009) on the same college campus,
during a similar time period. Eagle et al. (2009) show the temporal social patterns
of dyadic (pairwise) relationships in terms of calls, SMS messages and colocation,
and alludes to the role of the campus in providing the backdrop for social groups
and pairs. When combined with Sevtsuk et al. (2009), this study could provide the
social ties within a spatial setting to uncover where friends meet, where they travel
on the campus and how these factors can be leveraged to create a better campus
environment.

This is not to say that datasets on interpersonal communication and movement
have not been embedded into geography; analyses of interplace networks of social
flows such as commodities, telecommunications, migration, and commuting are
common in computational urban research (examples abound). Yet, these represent
place-to-place aggregate flows instead of person-to-person flows and thus do not
directly express the decisions of individuals. Small-scale examples of spatially
embedded social networks describe gang membership (Radil et al. 2010; Papachris-
tos et al. 2013), transportation (Frei and Axhausen 2011; Arentze et al. 2012),
and epidemiology (Emch et al. 2012). We take these initiatives a step further by
creating a general method that can respond to patterns of human socialization in a
built environment. These studies can elucidate where and when (different types of)
relationships form and could be used to advise architects, urban, and transportation
planners in creating places that support and create social connectivity.
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In working toward this goal, those looking to examine social/spatial problems are
aided by the recent proliferation of large datasets evidencing human social contact
and movement (such as GPS or cell tower usage records) in the city (Reades et al.
2007). The integration of human movement and activity data, such as information
from GPS traces (Gao et al. 2013), check-in data (Cho et al. 2011), online social
networks (Scellato et al. 2011), and photo-sharing sites (Crandall et al. 2010;
Girardin et al. 2008; Sun et al. 2013), into urban models are providing new windows
on how humans use the built environment. Specifically, the use of mobile telephone
calls to understand city usage patterns are becoming a cornerstone of modern urban
informatics, planning, and transportation (Ratti et al. 2006). We take advantage
of mobile telephone call data to test our research questions about the locality or
dispersion of social ties in the city.

Further, the relative convenience of colocation for friends can be evaluated.
Calabrese et al. (2011) find that in 94 % of telephone calling partners, one partner
constantly travels further to meet. On average, the partner traveling further travels
3 times further to meet. This method uses travel time and distance, which is
important for logistics. However, we extend this concept by incorporating the built
environment into these compromises, to show where in the city friends are likely
to meet. By spatially-linking the respective activity spaces of two friends in the
GIS, we can better understand how the city is able to provide places for friends to
meet, and assess the travel needs to do so—i.e. it is relatively easy for friends with
spatially-overlapping activity spaces to meet face-to-face.

13.1.2 Linked Activity Spaces

We use cell phone call data records (CDRs) to model “friendships” (i.e., interper-
sonal relationships) as a social network, inferred by the frequency calls between
two agents, and the sets of locations visited by each member of the social network
within the city (i.e., activity spaces). A pair of activity spaces of an ego and alter
are called linked activity spaces (LAS) if the ego and alter are friends (i.e., contacts)
in the dataset. The two activity spaces of friends are modeled within the GIS and
spatially analyzed for similarity, via the number of “third places” shared among the
pair (following Rosenbaum 2006). Moreover, we analyze the social network as a
whole to find whether high-degree egos (a.k.a. those with many friends), triangles
(groups of three agents) and communities use the city in significantly similar ways.

We have four main hypotheses for the analysis of LAS. (1) We expect that
friends’ activity spaces will overlap more often than a random pair of activity spaces,
indicating that friends use the city more similarly than a random pair of people.
(2) We also hypothesize that egos with high degrees or high clustering coefficients
(see Jackson 2010) will be more associated with the city center, as this denser
environment tends to have more meeting places, diverse services, commercial areas,
and nightlife. (3) In terms of city form and groups, we believe that central areas will
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play an enhanced role in supporting “clique-like” and modular groups instead of
being a mixing pot for many groups. We expect the downtown area to host tight-
knit social groups who do not venture to the suburbs often. (4) Finally, we expect
that suburban POIs will accommodate individuals from diverse social groups, as
these agents are likely visit different parts of the city using automobiles.

This chapter proceeds as follows. We first describe the study area and the setting
of the CDR dataset. We then describe, in the methods section, how we delineate
each user’s activity spaces. We analyze how linked activity spaces (LAS) are
spatially correlated in an urban environment by shared points of interest (POIs). We
conclude with a discussion of the usefulness of this method, its drawbacks, potential
applications, and future work.

13.2 Study Area and Dataset

Our study area is the city of Jiamusi, located in northeastern China, with a
population 2.5 million (est. 2010). This industrial city serves as a producer of
wood pulp and newsprint and participates in the global economy via a thriving
international trade harbor. The urban core of Jiamusi is nearly 18 by 10 km in spatial
extent, and its residents travel on average 1 km a day (Kang et al. 2012).

13.2.1 Dataset and Sampling

We focus on calls made within the city area and exclude long-distance calls. We
use a CDR (call data record) dataset of mobile cell phone calls from an undisclosed
mobile phone provider in China.

The original CDR dataset contains nearly 424,000 users over 31 days. Users are
anonymized in the dataset. Combined, users make an average of 1,600,000 calls
daily. In the 31-day time span of our dataset, each user participates in an average
of 328 calls for a total duration of 6.15 hours. Each record of a mobile phone call
contains the start time, call duration, and locations of the caller and receiver. The
locations are geo-referenced to one of 96 cell towers closest to the mobile phone’s
location (Table 13.1). The dataset does not include text messages (e.g., SMS).

We process the dataset into two parts: a social network of agents (social network
in Table 13.1) and the activity spaces of each agent (spatial patterns in Table 13.1).
We filter the network by including only those who use at least three cell towers
during the study period in order to eliminate users who may be confined to their
home and thus interact with the city differently than a typical mobile user. Also,
an individual may have multiple mobile phones, and a phone with fewer than
three cell towers used may represent a “secondary” or less frequently used device.
In the social network, the number of calls is determined between a unique pair of
users, and duration is the sum of call time between the two users. The network
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Table 13.1 Call data record (CDR) variables with original data fields (top)

Original
table Caller Receiver

Caller
location (x, y)

Receiver
location (x, y) Start time Duration

Social
network

User 1 User 2 – – Number
of calls

Total duration
between users
1 and 2

Spatial
patterns

User 1 Location (x, y) Location (x, y) Duration

A social network and spatial data summary table are listed in the middle and bottom rows,
respectively

is undirected in order to reflect each member’s inclination to participate in the
conversation regardless of the initiator (Calabrese et al. 2011). In other words,
records showing that A calls B, or B calls A, are summed to represent a connection
between unique, undirected pair A, B. Each pair must have either 10 C mutual
phone calls or 10C min of total call duration in the given month to be considered
friends. This process eliminates non-friend calls such as sales calls, as these do not
represent persistent relationships. Our resultant dataset has an average of 11.55 calls
per friendship connection (with a 95 % confidence interval (c.i.) of [11.35, 11.76])
and an average of 12.52 min for each link (95 % c.i. is [12.22, 12.81]).

The spatial patterns table contains the locations of each user, which are combined
to geo-locate a pair of callers in the social network. The coordinates of the cell phone
tower where a user places or receives a call are summed and weighted by the number
of calls the user places or receives at that cell tower location. We use the resulting
set of weighted locations to represent the user’s geographic activity pattern (such as
Carrasco et al. 2006), which are known to capture “anchor points” (Golledge 1999)
such as home and workplace (or school), as they are the most visited locations for
the average traveler and, thus, frequent calling points (Schönfelder and Axhausen
2003).

13.2.2 Sampling

We sample the large CDR dataset by selecting a random sample of 150 “seed” users
and retrieve their contacts (first-degree ties), second-degree and third-degree ties,
in a method similar to Kurant et al. (2011). The number of seed users is calibrated
based on our ability to visualize and computationally analyze the resultant dataset.
We also choose this method over a random sample of all users (e.g., choosing 20,000
random users and the possible network that might form between them) because the
seed method ensures that retrieved nodes have connections (since we select friends,
then friends of friends). This method also is able to find groups, whereas in a random
sample of the network, nodes may not be connected. This configuration yields a
network that is focused on the social interactions of a small sample of users. As
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a result, this “core” social network does not resemble a complete social network’s
typical degree distribution (such as Albert and Barabási 2002), traversability, or
density (Newman and Park 2003).

13.2.3 Social Network and Geographic Characteristics

The degree values for the core network range from 1 to 344, with a mean degree of
43.8 (Fig. 13.1). The diameter of the network is 12. Clustering coefficient values
range from 0 to 1, with a mean coefficient of 0.11. The network is visualized
in Fig. 13.2. Using Spearman’s correlation statistic, we find that users with more
contacts make shorter calls, while those with fewer friends speak for longer.

Our dataset includes 96 cell phone towers. The caller’ or receiver’s location is
approximated to the site of the cell tower (which is offset slightly by the telephone
provider), although generally the caller or receiver could be found anywhere in the
signal radius around the cell tower. We note that it is also possible that a caller’s
call may be routed to a cell tower that is not the closest to him or her, as the closest
cell tower may be saturated with calls or out of service, though we cannot account
for such situations. Some towers are used by many subscribers, while others are
used by few: the 10 most popular cell phone towers are used by at least 20 % of the
population whereas the 40th–91st most popular towers are each used by less than
10 % of the population.
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Fig. 13.1 The degree distribution of the calling network, comprised of 8,231 sampled users, is
right-skewed with mean 44 and is well described by a log-normal distribution
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Fig. 13.2 The aspatial social network is visualized with a force-directed method that places nodes
in feature space based on their density of linkages in the Gephi computing environment (Bastian
et al. 2009). Larger nodes denote higher degree and smaller nodes indicate smaller degree

13.3 Methods

13.3.1 Creating Activity Spaces

To represent how the user moves in a city such as Jiamusi, we build activity spaces
(e.g. Axhausen et al. 2002; Axhausen 2007) that likely encompass a user’s home,
work, and “third places” (Ahas et al. 2009; Schneider et al. 2013). We choose a
polygon method in order to represent the area surrounding the cell towers where
the user is likely to be found, since he or she uses the nearby towers. This polygon
will also likely encapsulate the areas that are convenient for a user to travel between
work and home.

These activity spaces summarize a user’s set of frequently visited points (e.g.,
cell towers) by an ellipse that encapsulates 68 % (i.e., one standard deviation) of
points visited by capturing points that are concentrated in the center and neglecting
sparse points in the periphery (as in Carrasco et al. 2006). Ellipses are first centered
on the mean geometric center of a user’s tower locations (mean of x coordinates and
y coordinates; repeating values are allowed if a user visits towers more than once).
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Fig. 13.3 An individual activity space is represented as an ellipse (in black). The ellipse captures
a user’s most frequently used towers, shown as red circles, where larger red circles indicate more
frequent visits

The value of the standard deviation is calculated for all x coordinates to obtain an
axis, and y coordinates to obtain a second, perpendicular axis. The ellipse is tilted in
a direction that captures the major axis (long edge) of the distribution (see Mitchell
2005).

As mentioned, the ellipse does not typically encompass all visited towers
and excludes those not frequently visited, to represent daily activity space (see
Fig. 13.3). It captures the essence of the central tendency, dispersion, and direction
of the user’s travel patterns without including infrequent cell tower usage (such as a
traveler’s phone call from the airport).

13.3.2 Assessing Overlap of Activity Spaces

After each individual is assigned an activity space, we quantify the similarity
between an ego’s and an alter’s activity spaces. A method for finding whether two
activity spaces are similar is not straightforward. The percent overlap between two
activity spaces will not account for how much physical area two friends’ spaces
share. Additionally, using the area that two activity spaces share does not tell us
how big their spaces are, i.e., whether this shared area is actually “convenient”
relative to their whole activity spaces. Also, with these two methods, we will not
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Fig. 13.4 Two single activity space ellipses in dashed blue and solid pink intersect underlying
Points of Interest (POIs). The POIs intersected by the dashed ellipse are green circles. Those
intersected by the solid pink ellipse are orange squares. POIs that do not intersect either ellipse
are grey triangles

be able to understand what amenities and places for meeting each individual has
in his or her activity space. We overcome these drawbacks by creating a third
layer of relevant points, as suggested by geometric probability theory (Santaló
2004).

Agents’ activity spaces are qualified by the points of interest (POIs) they spatially
intersect (Fig. 13.4). These POIs are where “optional” activities are likely to occur
(Gehl 1987), including services, transport, and recreational areas as a proxy for how
agents use the city. POIs are landmarks for social interactions, as third places and the
activities performed in third places have been shown to be essential for relationships,
social health, and quality of life (Rosenbaum 2006). Friends may visit POIs to dine
or to do business.

POIs are selected and digitized by the authors from Google Maps (2013) with
data provided by AutoNavi, which operates under an open-use license. Although
it is default to gauge how well this set of geographic information (VGI) reflects
actual POIs in the city, it is used as a proxy for all POIs in the city (Coleman
2010; Neis and Zipf 2012). The digitized set of POIs are retrieved as a keyhole
markup language (KML) file and analyzed in the Esri ArcMap 10.1 environment.
POIs include the city’s recreation spots (including parks, internet cafés, personal
wellness centers), commercial centers (restaurants and bars, stores, markets, and
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shopping centers), public services and institutions (hospitals, post offices, police
stations), transportation centers (airports, train stations), and named villages in the
suburban area. POIs of similar types (e.g., restaurants) in a 50 m radius are grouped
into a single POI to eliminate redundant information.

As mentioned, two activity spaces are considered linked if their corresponding
nodes are connected via the social network. Thus, friendships are embedded in
geographic space through the two activity spaces. Each unique pair of linked
activity spaces (LASs) is compared by the number of common POIs shared by both
(in absolute number and percent of the user’s total POIs). In Fig. 13.5, two pairs
of linked activity space ellipses share POIs, where the pair demarcated with a solid
blue line shares more POIs. In Fig. 13.6, an ego ellipse is in focus (in solid pink)
and shares POIs to various extents with each of his or her alters (in dashed lines).
We use a statistical t-test to compare friends’ typical number of shared POIs versus
that of a random pair of users. Our hypothesis is that friends share more POI points
than random pairs.

Fig. 13.5 This image shows how linked activity spaces overlap and can be quantified using the
number of POIs found in the intersection of activity spaces. These POIs can be a proxy for
convenience of shared meeting points. More specifically, this figure shows two pairs of linked
activity spaces, in solid blue and dashed red lines. The pair of solid blue ellipses intersects more
common POIs than the two dashed red ellipses. However, this set of ellipses has a particular place
of intersection that is west of the most general POI cluster trend
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Fig. 13.6 An ego in focus (solid pink) shares POIs to various extents with each of his or her alters
(dashed lines). The pattern shows that the focal ego and friends use the downtown area. One friend
seems to use the Western area of the city more than the other friends

13.4 Results

13.4.1 Dyadic Relationships

We find that a pair of friends is more likely than a random pair to use the same
places in Jiamusi. 11 % of friends and 50 % of random pairs share no POIs. Of
pairs who share POIs, friend pairs share an average of 55.8 POIs, and a random pair
shares 45.77 out of 212 total possible POIs (Fig. 13.7a). A t-test using the ellipse
activity-space method yields a t-value of 56.03 (degree of freedom (df )) D 44,706,
p-value < 0.001) and allows us to reject the null hypothesis that the mean difference
between these two groups is insignificant, indicating that friends share more POIs
than random pairs.

Second-degree friends also utilize urban infrastructure significantly more simi-
larly, in terms of shared POIs, than random users (Fig. 13.7b). The t-value is 94.82
(df D 152,070, p-value < 0.001). The count of POIs shared by second-degree friends
on average is 55.23 compared to 45.77 for random pairs.



13 Linked Activity Spaces: Embedding Social Networks in Urban Space 325

Fig. 13.7 (a) The probability density distribution of shared POIs of a random pair (in blue) and
a linked pair (i.e. friends) (in red) show that friends have a greater probability of sharing POIs
(as depicted by taller red bars towards the tail). We exclude pairs (random or linked) who share
no common POIs. (b) The distribution of second-degree linked activity spaces shows that second-
degree friends share more POIs on average than random pairs
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Additionally, it is rare that an ego’s alters will visit a POI that the ego does not
visit. The average proportion of total egos who have visited a specific POI (e.g.,
“flower park”) is proportional to the average percentage of their friends who have
also visited the POI. For example, consider a group of 100 egos, each of whom has
unique 50 alters (summing to a total of 5,000 friends). If an average of 50 % of
one ego’s alters (25 alters) have visited a certain POI, then there is a ½ chance the
egos has visited there as well. If the average at another park is 20 % of all alters (10
alters), there is about a 1/5th chance that the egos has visited this park as well. The
chance that an ego has visited a POI is 1.036 times the number of total alters who
have visited the POI, with an r2 correlation of 0.968. This means there are few, if
any, POIs where one frequents and his or her friends do not frequent. Conversely,
there are also few POIs where one does not frequent yet a high percentage of his or
her friends visit often.

13.4.2 Social Personas

In traditional social network analysis, a user’s role in the network can reflect his or
her importance and prominence in various facets of social life, such as providing
information about new job opportunities to ones alters. For instance, a figure with
a special role in a social network (i.e., a figure with many friends, or who is a
“common friend” between poorly connected groups) can be identified through social
network metrics such as betweenness centrality, degree centrality, or brokerage
statistics (Jackson 2010). In one case, it has been shown that those with higher
network centrality live in more central places on the Euclidean grid of longitude
and latitude for the network (Onnela et al. 2011).

Confirming our second hypothesis, we find that high-degree users use the city
center more often than expected, given a random set of users. The top 1 % of high-
degree users (equating to users with 150 or more friends) concentrate at the urban
center. A Fisher-Snedecor test (F-test) of ANOVA yields a p-value of 0.006 (95 %
c.i.) signifying that the spatial variance between the high-degree users’ activity
spaces is significantly lower than the spatial variance between activity spaces of the
universal population. This result illustrates high-degree agents’ proclivity toward
high-density areas that are shown to be more innovative, dynamic, and energetic
environments (Bettencourt 2013).

We do not find significant spatial patterning with ego characteristics such as
clustering coefficient (Jackson 2010), which measures whether one’s friends are
also friends themselves.

Using Spearman’s correlation statistic, we find no significant relationship be-
tween user degree or total talking time (call duration) and the size of the user’s
activity space.
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13.4.3 Community and City Form

We hypothesized that central areas play an enhanced role in supporting social
communities of friends. The results do not confirm this hypothesis in the sense that
the central area of Jiamusi does not favor tight-knit social circles but instead hosts
heterogeneous groups of friends.

We define “groups” of friends (i.e., communities) in the Gephi environment
(Bastian et al. 2009) with Blondel et al.’s (2008) community detection (modularity)
algorithm that assigns each node (friend) to a cluster. This process produces 58
clusters with a modularity value of 0.732. Note that a modularity statistic of 1.0
indicates that communities are partitioned “perfectly,” so that a node i does not
connect with other nodes j, if j are not in i’s modularity group. Smaller modularity
values indicate that connections across groups occur more frequently. Roughly, this
indicates that, on average, those assigned to a cluster call within the same cluster
73.2 % of the time.

Each network agent (node) is assigned one modularity group. These agents are
denoted by their ellipse centroid (geographic centers) in Fig. 13.8. Agents denoted
by yellow squares or teal triangles (Fig. 13.8) are examples from two social network
clusters with significant spatial clusters that differ from the overall distribution,

Fig. 13.8 A modularity algorithm is applied to the “aspatial” social network. Then, members
of two separate modularity clusters are now mapped in yellow squares (denoting one group) or
teal triangles (denoting a separate group) to show how social network groups use the city. In the
downtown core, covered in dark purple, clusters are significantly mixed, meaning that many social
groups use the downtown but are not confined to the region
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deviating westward and north-eastward, respectively. The yellow squares and teal
triangle clusters are examples of spatially embedded social groups that are also
significantly clustered in a way that deviates from the expected spatial distribution
of agents the city.

Including these two examples, the spatial distribution of 58 social clusters, in
total, does form statistically significant “hot spots” (significantly dense clusters)
and “cold spots” (a mixture of modular groups) as shown with the Getis-Ord Gi*
statistic (Getis and Ord 1992). Hot spots (light purple areas in Fig. 13.8) contain
agents of the same modular group in two major regions. Cold spots (dark purple
areas in Fig. 13.8) cover the downtown, signifying that the groups that frequent the
downtown are not clustered in the downtown, but have other group members around
the city.

Another prominent pattern of community configuration, at a more local scale, is
the prevalence of social triangles in the network. A social triangle can be defined as
a group three nodes who connect to one another (Latapy 2008) and, pragmatically,
will have meeting needs that are different and more complex than those of a dyad
but perhaps not as complex as a modular group, which can contain many nodes.
In our dataset, agents with the most social triangles cluster in the downtown area.
However, this may be an artifact of the high-degree users’ downtown, as they are
likely to have more social triangles.

The distribution of high-triangle nodes (denoted in green circles and black stars
in Fig. 13.9) follows a series of parallel roads downtown. Those with the highest

Fig. 13.9 A clustering of agents who are a part of many social triangles (i.e. groups of three
friends) congregate toward the urban core (green circles and black stars). This clustering is
statistically significant in one area east of downtown (denoted by light to dark blue), via statistical
Gi* Z scores
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number of social triangles (green circles as activity space centroids) form a tight
linear cluster in the core area. This pattern is statistically significant, showing
high Getis-Ord GI* Z scores with p-values > .0001 in the area slightly east of the
downtown (in light color, Fig. 13.9). P-values are not significant in other parts
of the city. Interestingly, centroids covering this neighborhood also saw the most
significant modularity clusters (Fig. 13.8).

We also hypothesized that peripheral areas may be more mixed. We reject this
hypothesis as the peripheral areas seem to host more cohesive communities than the
downtown area. The POIs shared by linked activity spaces are more frequently on
the periphery of the city. A POI can have from .01 % to 2.8 % of its pairs shown to be
friends. A POI with a high value indicates that it is located in a convenient area for
linked activity spaces (i.e. friends) to meet, where POIs with a lower value is more
likely to host non-friend individuals. The POI hosting 2.8 % linked activity spaces
is located near many popular hotels and the city’s largest park – a notable tourist
site in the city. This site might be a popular meeting spot for friends, but it may also
be the artifact of many local business calls to one another in nearby buildings.

More generally, this ratio increases further from the city center (Figs. 13.10 and
13.11), so that POIs on the outskirts of the city are more likely to host pairs of
contacts. This may be because many people have activity spaces that stretch into
the downtown for work, but have their social contacts closer to their residences
in another part of the city. Though agents with more contacts tend to frequent the
dense downtown, given a POI with 100 random people, a user is more likely to find
a friend within this 100 people if he or she is at a suburban POI, than an urban
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Fig. 13.10 As the POIs are located farther away from the city center there is a higher ratio of
friend to non-friend pairs using these points
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Fig. 13.11 The ratio of POI usage for friends vs. random pairs shows that friends are more likely
to use the same POIs if they live on the periphery of the city. These POIs are denoted in red, where
up to 2.8 % of their usage is linked with friendship

POI. In other words, although the downtown core attracts more people, the majority
seem to be mutual strangers, while in the suburban area POIs serve as intentional
meeting points. We interpret this finding with care, as there are fewer POI points
on the periphery of the city, thus reducing the granularity and precision to capture
activity spaces found in the city’s outskirts. For instance, an activity space in the
shape of a narrow line can be captured via the dense, granular points in downtown,
but such a detailed structure could not be defined in the periphery, since there are so
few cell towers and POIs to delineate a more precise activity space.

In summary, friends and even second-degree friends tend to use common points
of interest in the city. Additionally, high-degree users (i.e., those with many friends)
tend to be associated with downtown locations (central business district), but those
with many social triangle friendships center in a neighborhood east of the central
business district. The downtown core hosts many heterogeneous social groups
instead of small tightly knit social clusters.

13.5 Discussion

We leveraged social/spatial data from call data records in a new way that emphasizes
social relationships embedded in urban physical space. In this section, we respond to
our initial hypotheses regarding how dyads (pairs), social network personas, triads
(groups of three), and communities use the city.
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First, the LAS method allows us to find the extent to which a pair of friends is
more likely to use the same places in the city more than a random pair, so that a
user i is more likely to have frequented the same POIs as a friend j than a random
user r.

Second, we find that egos with high degrees are inclined toward the city center,
while egos with high clustering coefficients show no significant spatial correlation.
These results are not necessarily intuitive, as community members in suburban areas
might also have high degrees, but do not seem to. Also, users who cling to the
urban core (or tight suburban neighborhoods) might also be expected to be part of
a number of “cliques” or friend groups; however, this also does not seem to be the
case.

Third, we expected that central areas would play an enhanced role in supporting
“clique-like” and modular groups, but we found, counter to our expectation, that
the downtown was indeed a mixing pot for many groups. We do, however, find two
specific neighborhoods that tend to harbor enclosed (“clique-like”) social groups.
Moreover, triads of friends are likely to use the downtown area.

Also, we had expected that peripheral areas were more mixed as suburbanites
often have more access to automobiles and, thus, may not choose to live next to
their contacts if they can drive to other parts of the city to visit. Counter to our
initial hypothesis, peripheral areas show less frequent mixing of social groups and
friends than any other part of the city.

13.5.1 Utility

We find these results useful for theoretical and practical issues in planning. First, in
Jiamusi, we find that the ratio of friends’ shared POIs to random pairs’ shared POIs
is 59:46. This ratio can be considered an indicator of clustered socialization. When
high, this ratio shows that friends tend to group in certain parts of the city, or use the
same amenities in a city. This ratio represents an urban feature that can be compared
across cities, over time, and as it correlates with urban features such as population,
crime rates or traffic.

Next, a planner can use these findings, for example, to discuss the merits
of different models of urbanism. For example, while New Urbanism focuses on
neighborhood design, architectural style, and transit-oriented development for high-
density walkable cities (Al-hindi and Till 2001; Vanderbeek and Irazabal 2007), and
Landscape Urbanism argues that urban design should be flexible and open-ended,
(Waldheim 2002), by leveraging existing resources (Cranz and Boland 2004) and
preserving wilderness (Yu et al. 2011). The LAS method results can be used to
probe the adverse consequences of urban sprawl, such as its challenges for social
life (Gehl 1987).

This analysis can be used to plan the location of third places (Rosenbaum 2006),
such as restaurants, parks, coffee shops, theaters, and other facilities. Locations
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could be found by determining places that are convenient for pairs or groups of
friends to meet, and combining this with other criteria, such as low traffic or areas
known to be safe for pedestrians.

This method can also be used to understand the size, temporal persistence, and
location (thus, level of accessibility to other places, environmental quality of the
land) of certain places, such as ethnic or working neighborhoods (such as homes
near a factory), where members form a dense group of ties – e.g., neighbors are
likely to know and depend on one another. The method can show where these
neighborhoods are and how they expand and contract over time. This can be useful
for investigations of urban social capital (Granovetter 1983), cultural assimilation
(De Blij and Murphy 1986), or models of epidemiology or idea spreading.

It is clear that we are only at the beginning of understanding how interpersonal
relationships manifest themselves in the built environment. Yet it is a phenomenon;
we experience daily as we meet colleagues at work, family at home, and perhaps
friends in third places. The tension between the costs of movement in cities and
the need for access to the possibilities of the city also guide our decisions about
raising families through the choice of neighborhoods and school districts, as well
as migration, through the choice of leaving established social circles for new circles
(or vice versa).

13.6 Conclusion

A healthy city is built on strong social networks (Gilchrist 2009), but we still do
not know what kinds of ties exist in cities and neighborhoods nor the detailed
social dynamics that creates and changes them. Because of these limitations, we
cannot currently use social network structures (clustered, decentralized, hub-spoke,
etc.) as cause or effect variables in assessing planning choices for new or existing
neighborhoods and cities. However, as this type of data becomes richer, such studies
will become increasingly possible,

Our ability to socialize with others is affected by urban planning and government
decisions regarding low-income housing, immigration reform, and health codes,
such as the number of people to an urban residence or the choice of building
subdivisions versus condominiums (Farber and Li 2013) or narrow versus wide
roads (Montgomery 2013). The spatial and social clustering of ties changes with the
creation and dissolution of institutions, such as firms, universities, military bases,
sports franchises, and religious institutions. Less socialization may also lead to
stagnated mobility, not due to a lack of accessibility, but to a reduced need for third
places to socialize (Rosenbaum 2006), and visit others’ homes.

Urban planners, geographers, government officials, civil engineers, and trans-
portation planners that focus on improving social life in their city may be able
to more directly improve residents’ quality of life (Cacioppo and Patrick 2008),
more so than traditional national level economic stimuli (Montgomery 2013).
Instead, planners and geographers have worked toward better urban environments
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investigating residents’ accessibility to amenities (such as hospitals), travel time to
work, and social justice issues such as susceptibility to industrial and environmental
hazards (Cutter et al. 2003). In addition to these variables, we should emphasize the
importance of social capital within the city.

We cannot infer these social patterns from city form, or social networks alone
as the connection between these variables is statistical and likely scale dependent.
Thus, our task with this chapter was to illustrate how the linked activity space
method allows for the integration of information from a social network into
geographic space, a combination that is rarely investigated in detail (Andris 2011).

Although we use a call dataset record (CDR) for our analysis, this method can
be employed to any dataset that has both evidence of social ties between agents and
the geo-location of the agents. Other mechanisms for telecommunications (such as
Skype, Google Video/Chat, Viber, and Whats-App) can be substituted for mobile
phone calls. If these data are available, it may be worth considering the combination
of the CDR dataset for interesting results on which modes of communication are
popular in general, or in certain parts of the city, or during certain time frames.
We may be able to capture the growth of one mode over another, over a longer
time period. One exciting prospect is to see which neighborhoods make more
international calls, or calls to other cities.

We do find a number of methodological and pragmatic challenges to this type of
research. Many of these challenges stem from the nascent state of big data analysis
that will perhaps become more reliable and complete in the future. Nevertheless,
there are issues with these data that can be addressed: CDR datasets do not capture
an ego with alters who do not appear in the social network. Multiple cell phones
per person and multiple people per cell phones do not ensure that the telephone
number is a proxy for an individual’s communication patterns. Without figures on
the provider’s market penetration rate is difficult to understand friendships via calls
to users who use a different provider. We also note a number of subjective decisions
in creating a meaningful sample, such as the minimum number of towers frequented
in order to be included in the dataset, the number of seed users, and number of friend
“levels” to draw from the networks. None of these issues is a fundamental limitation,
so we look forward to future datasets that can overcome some of these difficulties.
We hope to see more research on the integration of social networks and urban spaces
in the future as a unique window into how urban form and social function shape each
other.
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Chapter 14
Using Non-authoritative Sources During
Emergencies in Urban Areas

Emily Schnebele, Christopher Oxendine, Guido Cervone, Celso M. Ferreira,
and Nigel Waters

Abstract During emergencies in urban areas, it is paramount to assess damage
to people, property, and environment in order to coordinate relief operations and
evacuations. Remote sensing has become the de facto standard for observing
the Earth and its environment through the use of air-, space-, and ground-based
sensors. These sensors collect massive amounts of dynamic and geographically
distributed spatiotemporal data daily and are often used for disaster assessment,
relief, and mitigation. However, despite the quantity of big data available, gaps
are often present due to the specific limitations of the instruments or their carrier
platforms. This chapter presents a novel approach to filling these gaps by using
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non-authoritative data including social media, news, tweets, and mobile phone
data. Specifically, two applications are presented for transportation infrastructure
assessment and emergency evacuation.

Keywords Infrastructure assessment • Evacuation • Remote sensing • Inundation
modeling • Social media • Geospatial analysis • Big data

14.1 Introduction

Never in the history of humankind have we known so much about our planet. Never
in the history of humankind have we had such easy access to data. Never in the
history of humankind has our civilization been so much at risk.

Hazards pose a constant threat to the development and sustainment of our infras-
tructure and our society. Hazards can be natural, anthropogenic, or technological.
They are, respectively, events that naturally occur, events resulting from human
activities or accidents, or the catastrophic collapse of infrastructure, such as roads,
communication networks, or power grids, which are needed for our society to
function.

A single catastrophic event can claim thousands of lives; cause billions of dollars
of damage; trigger an economic depression that might directly or indirectly affect
the entire world; destroy natural landmarks; cause tsunamis, floods, and landslides;
render a large territory uninhabitable; and destabilize the military and political
balance in a region (Cutter 1993; Alexander 2002; Wisner et al. 2004). Such
potential catastrophic consequences are due to the emergence of megacities and
the proliferation of nuclear power plants and nuclear waste storage facilities, high
dams, and other facilities whose destruction poses an unacceptable risk of global
reach (Freudenburg et al. 2008; Casti 2012). Thus, the study of natural hazards and
of the processes that govern their occurrence has become a fundamental challenge
for the survival of our civilization.

Advances in our ability to observe the Earth and its environment through the
use of air-, space-, and ground-based sensors has led to the collection of massive
amounts of dynamic and geographically distributed spatiotemporal data. Numerical
models are initialized with these high-resolution observations to forecast the future
or to simulate the past, generating simulations that can be several orders of
magnitude larger than the initial observations. Remote sensing data from air- and
space-borne platforms have also become the de facto standard for providing high-
resolution information for the assessment, relief, and mitigation of damaged areas
during and after emergencies caused by natural, human-made, and technological
disasters (Jensen and Cowen 1999; Voigt et al. 2007). However, due to limitations
in orbital revisit time, sensor characteristics, and the presence of clouds, there may
be gaps in these remote sensing data.

This chapter presents applications for data collected from non-authoritative
sources to fill the gaps in remote sensing data during disasters and emergencies.
Non-authoritative sources include data volunteered by citizens (also known as
volunteered geographic information or VGI (Goodchild 2007; Sui and Goodchild
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2011; Sui et al. 2013)) or collected for purposes other than disaster assessment,
such as traffic cameras or mobile phone locations. This general class of data,
often voluntarily contributed and made available, can consist of pictures, videos,
sounds, text messages, etc. Due to the spread of the Internet to mobile devices, an
unprecedented and massive amount of data have become available, often geolocated
and often in real time. These sources provide a large, rapidly changing, dynamic
dataset that not only complements remote sensing observations but also adds an
additional, subjective view of how people perceive and react to hazards.

Although non-authoritative data are often published without scientific intent,
and usually carry little scientific merit, it is still possible to mine mission critical
information. For example, volunteered photos and videos about natural hazards
have emerged as a data source during crises and hazardous events to derive local
meteorological information, capture and record the physical features of an event,
and identify and document flood height (De Longueville et al. 2009; Hyvärinen
and Saltikoff 2010; Poser and Dransch 2010). During Hurricane Sandy, geolocated
pictures and videos searchable through Google provided early emergency response
with ground view information.

Mining these massive amounts of “big data,” it is possible to reconstruct a
spatiotemporal human terrain that provides knowledge when remote sensing data
are unavailable or incomplete. Additionally, non-authoritative data may provide
unique knowledge that is not possible to acquire solely from remote sensing
instruments.

This chapter discusses the fusion of remote sensing and non-authoritative sources
to assess road infrastructure and plan evacuations in an urban environment during
emergencies. Two specific applications are discussed:

1. An assessment of New York City transportation infrastructure during and
after Hurricane Sandy using crowdsourced remote sensing imagery, numerical
models, social media, and ground observations

2. Identification of evacuation routes during emergencies in New York City using
traffic information and mobile phone data

14.2 Transportation Infrastructure Assessment

The first application presented in this chapter is a damage assessment of roads
during and after Hurricane Sandy in New York City. Multiple sources of data
are combined including aerial images contributed by the Civil Air Patrol (CAP),
numerical inundation models, VGI harvested from social media, and ground
observations.

The utilization of data from multiple sources can help provide a more complete
description of a phenomenon. For example, data fusion is often employed with
remote sensing data to combine information of varying spatial, temporal, and
spectral resolutions as well as to reduce uncertainties associated from using a
single source (Zhang 2010). The fused data then provides new or better information
than would be available from a single source (Pohl and Van Genderen 1998).
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The incorporation of multiple data sources or methods for improved performance
or increased accuracy is not limited to the field of remote sensing. Boosting, a
common machine learning technique, has been shown to be an effective method
for generating accurate prediction rules by combining rough, or less than accurate,
algorithms together (Freund et al. 1999). While the individual algorithms may be
singularly weak, their combination can result in a strong learner. Furthermore,
redundancies in observations provide an increase in the confidence of observations
or estimates, while data from multiple sources can provide information when they
might not do so if used in isolation.

Figure 14.1 shows the stacked layer approach used to fuse heterogeneous data at
different spatial, temporal, and radiometric resolutions. The data are first processed
in a GIS environment by resampling them at the highest resolution available using
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Fig. 14.1 Stacked layer approach used in the methodology. Data comes in different formats and
with different resolutions



14 Using Non-authoritative Sources During Emergencies 341

spatial statistical algorithms (Zhang et al. 2014). For example, points which identify
flooding (e.g., photos) are plotted, georeferenced, and then smoothed using a kernel
interpolation to create a GIS layer of estimated flood extent. This is a task performed
for each data source, resulting in multiple, individual flood extent layers. The
analysis is then performed on the fused layers by applying statistical or machine
learning algorithms to classify the data and identify anomalies.

Fusing data from multiple sources leads to an improved damage estimation and
an increased understanding of the sequence of events that leads to transportation
infrastructure failure. In this example, non-authoritative data are used in two
different scenarios:

1. Damage assessment during an event
2. Damage assessment after the event

It is assumed that ground truth data might not be available. The novelty of
this study is the development of a methodology that takes advantage of “citizens
as sensors” (Goodchild 2007) and of various other data, including remote sensing
and numerical models, not necessarily designed to be used during emergencies to
improve damage assessment. These non-authoritative or nontraditional sources are
used to create additional layers which augment traditional sources when they may
be lacking or incomplete. The result is shown in the bottom layer, where a flood
hazard map is generated. The resulting flood hazard map is then paired with a high-
resolution road network to create a road damage map.

14.2.1 Data Sources

14.2.1.1 Remote Sensing Data

High-resolution remote sensing data are routinely used to assess damage during and
after hazards, in both urban and rural areas. Two or more images are acquired for an
area showing the differences before and after the hazard.

The Civil Air Patrol, the civilian branch of the US Air Force, was tasked with
collecting aerial photos of the US East Coast following the impact of Hurricane
Sandy in October 2012. Within days of the storm making landfall, hundreds of
missions were flown by volunteers from Cape Cod, MA, to Cape May, NJ. From
these missions, thousands of aerial photos of the coastline were generated, including
those documenting heavily flooded areas.

14.2.1.2 Numerical Surge Model

Recent improvements in understanding the physics of storm surge combined
with rapid increases in High Performance Computing (HPC) power have led to
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the development of physics-based, high-resolution numerical models capable of
predicting and simulating hurricane storm surge with reasonable accuracy in coastal
areas.

The Sea, Lake, and Overland Surge from Hurricane model (SLOSH) (Jelesni-
anski et al. 1992) developed by the National Weather Service (NWS) has been
extensively used by decision makers to predict storm surge inundation for planning
and emergency management, and it is currently the NWS official operational fore-
cast model for storm surge. Several other numerical models have been developed
over the years to calculate water levels and currents resulting from hurricane storm
surges along the continental shelves and coasts.

Among others are the Advanced Circulation (ADCIRC) model developed by
Luettich and Westerink (2004), the fully nonlinear Finite Volume Coastal Ocean
Model (FVCOM) developed by Chen et al. (2003), and the Semi-implicit Eulerian-
Lagrangian Finite Element (SELFE) model developed by Zhang and Baptista
(2008). Recently, the Coastal and Ocean Modeling Testbed (COMT) compared
the models’ prediction skills (Kerr et al. 2013) and concluded that they all, except
SLOSH, generated similar predictions for Hurricane Ike in 2008 and Hurricane Rita
in 2005, thus demonstrating the maturity level of storm surge model development.

For this study, a lower-resolution/faster computational time numerical mesh was
used to simulate the Hurricane Sandy storm surge in order to maintain similarity
to models used in operational forecasts (e.g., Advanced Flooding Guidance System
[ASGS]) to represent information that would be available to decision makers before
a hurricane landfall. The coupled version of the two-dimensional depth integrated
version of the Advanced Circulation (ADCIRC) model and the SWAN wave model
(Dietrich et al. 2011) was used to simulate hurricane storm surge along the coast.
The ADCIRC model (Luettich and Westerink 2004) is a finite element, shallow
water model that solves for water levels and currents at a range of scales and is
widely used for storm surge modeling (e.g., Ferreira et al. 2014). This version of
the program solves the Generalized Wave Continuity Equation (GWCE) and the
vertically integrated momentum equations. SWAN is a third-generation spectral
wave model that computes random, short crested wind-generated waves and wave
transformation in the near shore and inland waters (Booij et al. 1999). For storm
surge simulation, ADCIRC is forced by the wind and pressure fields and the wave
radiation stress resulting from the wave model. Tides and river inflow can also be
added as a boundary.

The East Coast Mesh (ECM2001) presented by Mukai et al. (2002) was utilized
with approximately 250,000 nodes and a resolution of approximately 1.2 km along
the study area. ADCIRC allows for the use of an unstructured finite element mesh
with variable resolution along the model domain. The hurricane surge model was
forced by wind and pressure fields developed by a parametric asymmetric wind
model (Mattocks and Forbes 2008) that computes wind stress, average wind speed,
and direction inside the Planetary Boundary Layer (PBL) based on the National
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Hurricane Center (NHC) Advisory Archive for Hurricane Sandy (NOAA 2013a)
track data and meteorological conditions (e.g., central pressure, forward speed, and
radius to maximum wind).

To simulate the Hurricane Sandy storm surge, a simulation was run for October
18th until the 28th including tides (tidal potential components M2, S2, N2, K2,
K1, O1, and Q1) but neglecting river inflows. The simulations were performed
under the HPC environment provided by the Extreme Science and Engineering
Discovery Environment (XSEDE) supported by the National Science Foundation
(NSF). Results were recorded every 15 min around the study region at every model
node and at NOAA Tides and Currents stations (NOAA 2013b). The model results
generally overestimate the measured water levels most likely due to the differences
between the hypothetical asymmetrical wind and pressure fields and the actual storm
conditions.

The spatial flood levels were calculated using a Digital Elevation Model (DEM)
with a 1 arc-second resolution from the National Elevation Dataset (NED) for the
study region (USGS 2013). The maximum water levels for each model node were
extracted for the 29th and the 30th of November and converted to the NAVD88
vertical datum. A spline interpolation with tension was applied to create a maximum
water level surface for the study region according to the methodology suggested by
Berenbrok et al. (2009). Finally, the water levels were subtracted from the DEM to
calculate the spatial flooded extent (Fig. 14.2).

Fig. 14.2 Modeled surge extent for October 30 at 1:00pm
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14.2.1.3 Non-authoritative Data

Non-authoritative data are not produced or distributed from necessarily trusted
sources and often lack any assertion of verification or accuracy. However, regard-
less of varying levels of certainty or trustworthiness, non-authoritative sources
can provide valuable, real-time, on-the-ground information during disasters when
traditional sources are unavailable, lacking, or slow to respond. For example,
following the Fukushima nuclear disaster in 2011, the Japanese public supplemented
authoritative government sensors with user-generated content. Individuals through-
out the country bought personal Geiger counters and contributed to a crowdsourced
Geigermap.1

Crowdsourced Damage Assessment

Remote sensing data (photos) acquired by the Civil Air Patrol were assessed for
damage by thousands of people across the world. The photos were placed on a
Hurricane Sandy Google Crisis Map website (Fig. 14.3) for the public to assess
visible damage through a crowdsourcing portal supported by MapMill. This yielded
a large damage assessment dataset generated from crowdsourced, non-authoritative,
nontraditional sources. The photos were also made available online through a
Federal Emergency Management Agency (FEMA) website for residents to search
by street address to see what, if any, damage their homes may have sustained.

The crowdsourced damage assessments of photos captured between October 31
and November 11, 2012 for the area from 33N to 26N latitude and 90W to 84W
longitude were downloaded directly from MapMill. Because of the large volume
of photos and the scale of the domain, the photos were aggregated into a 500 m
grid structure. The value for each grid point is a function of the number of images
present in each grid and their average crowdsourced damage assessment. As a result,
each grid has a value from 1 to 10, with 1 representing no damage and 10 severe
damage/flooding.

Volunteered Geographic Information (VGI)

VGI was ascertained from YouTube videos which documented flooding and damage
in New York City following Hurricane Sandy. The data were collected from a
Hurricane Sandy Google Earth website where YouTube videos were supplied by
Storyful. YouTube, a video-sharing website, is utilized by millions of people for the
sharing of videos covering a wide range of topics and experiences. Through this
site the public voluntarily shares information, often documenting damage resulting
from natural hazards. The videos were provided with geolocated information and
were visually assessed by the authors. The small number of videos (n D 15) did

1http://japan.failedrobot.com/

http://japan.failedrobot.com/
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Fig. 14.3 Crowdsourced assessments for the Civil Air Patrol data. Damage assessment:
red D high, yellow D medium, green D none

not require any crowdsourcing or automated assessment. Furthermore, it is shown
in Schnebele and Cervone (2013) that even a small number of properly located VGI
data can help improve flood assessment. Each location corresponding to a video
point was assigned a value of 10 (severe damage/flooding).

Photos (n D 25) which documented flooding within the study domain were
downloaded using the Google search engine and were also visually assessed by
the authors. The point locations were georeferenced to create a GIS layer of flooded
locations. Each point was assigned a value of 10 (severe damage/flooding).

Twitter, a popular social networking site, is often utilized by the public to
share information about their daily lives through micro-blogging. Arizona State
University’s TweetTracker provided Twitter data for this project (Kumar et al. 2011).
Tweets generated in the New York City area extending from 40.92N to 40.54N
latitude and 73.75W to 74.13W longitude from October 26 to November 3, 2012
containing the word “flood” were used to provide a temporal framework.
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14.2.1.4 Authoritative Data

Authoritative data are collected, produced, and managed by professional cartogra-
phers, geographers, and/or government agencies. Information which comes from
these official, authoritative persons or agencies carries a certain level of trust which
affords them credibility (Flanagin and Metzger 2008; Goodchild and Glennon
2010). Examples of authoritative data may include remote sensing imagery collected
and calibrated by NASA or stream flow information collected from USGS river
gauges. These are our traditional sources of data and information during disasters
and emergencies.

Federal Emergency Management Agency (FEMA)

The FEMA Modeling Task Force (MOTF) consists of experts in hazard assessment
and the modeling of hazard losses. Following Hurricane Sandy, FEMA MOTF used
field-verified high water marks and storm surge sensor data to create storm surge
maps for the US East Coast. For this work, a FEMA MOTF storm surge shapefile for
New York City was downloaded from FEMA’s GeoPlatform website. The surge map
was the finalized version (dated February 14, 2013) with a 1 m horizontal resolution
and a New York State Plane coordinate system (Fig. 14.4 (right)).

Water depth data were also collected at inundated New York City public schools
by FEMA MOTF. The water depth at schools was ascertained from water marks
taken from on-site structures (Fig. 14.4 (left)). A GIS layer was created from
georeferenced point locations of the schools with measured water depths.

United States Geological Survey (USGS)

Water height collected by the USGS storm-tide monitoring provides an additional
source of authoritative ground data. These official measurements were taken at

Fig. 14.4 FEMA water depth measured at public schools (left) and official flood inundation map
(right)
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different locations throughout the domain. Water height modeled for each point is
interpolated using a spline function to create a water height surface. A DEM with
a 1 arc-second resolution from the National Elevation Dataset (NED) is subtracted
from the water height surface to create a water depth layer (USGS 2013).

United States Census Bureau

A 2012 TIGER/line® shapefile of road networks for the New York City area was
downloaded from the US Census Bureau and was georeferenced to New York State
Plane coordinates.

14.2.2 Damage Assessment During Emergencies

After individual data layers are generated from available remote sensing and
authoritative and non-authoritative data, they are integrated together using an
artificial neural network machine learning algorithm. Artificial neural networks are
nonlinear data modeling tools for discovering patterns in data from a series of
inputs (Atkinson and Tatnall 1997). The network consists of interconnected nodes
comprising an input layer, a hidden layer, and an output layer (Fig. 14.5). In this
research, the nodes of the input layer consist of the flood identification layers created
during preprocessing, and the output layer is a flood assessment surface. The hidden
layer nodes, or neurons, are the computational units of the network. The neuron
receives the inputs and produces responses. Benediktsson et al. (1990) defines the
simplest formal model of the neuron, where the output value is approximated by the
function

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Fig. 14.5 Depiction of an artificial neural network
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where K is a constant, � is a nonlinear function, wj are the weights assigned by the
network, and 
 is a threshold. The network takes inputs x and produces a response
oi from the output units i . The outputs are either oi D 1 if the neuron i is active
for the input x or oi D 0 if it is inactive. The network learns the weights through
iterative training and will converge when there is no change from one iteration to
the next.

The trained network can then be used for the classification of a new dataset. A
feedforward artificial neural network was implemented for this work using the R
statistical package (Venables and Ripley 2002).

The goal is to classify each pixel as being flooded or not flooded. The neural
network classifier is trained using the data layers from October 29 and tested on
the October 30 layers. Figure 14.6 illustrates the training of the neural network
classifier (blue lines) using available sources of remote sensing and authoritative
and non-authoritative data from October 29. The data are first preprocessed (e.g.,
georeferenced and interpolated) to create individual flood extent estimations which
are fed into the neural network to create a classifier. The operational step uses this
classifier along with data collected from the subsequent day, October 30. These data
(green lines) are preprocessed and then passed through the trained classifier to create
a flood extent map.

Fig. 14.6 Illustration of the application of a neural network classifier. The classifier is created
from training data (blue lines) and is then used to create a flood extent map by passing data from a
subsequent day (green lines) through the classifier



14 Using Non-authoritative Sources During Emergencies 349

Fig. 14.7 Classification of flooding (high, medium, low flood severity/damage) in New York using
an artificial neural network

Because the inundated schools, USGS, and Civil Air Patrol data represented
maximum flood extent, it was possible to generate only one layer from each dataset;
therefore, these data were used for both days. The initial training and testing datasets
produced results indicating flooding along the coastlines of New York City with the
greatest damage identified in lower Manhattan and southern edges of Brooklyn and
Queens (Fig. 14.7).

14.2.3 Damage Assessment After Emergencies

After an emergency, remote sensing and volunteered data can be employed to
provide a damage assessment. In this particular work, the official FEMA flood
map is color coded to show not only which areas have been flooded but also which
areas have been most affected. In addition, the damage assessment surface is then
used to identify roads which may be compromised or may require site inspections
(Schnebele et al. 2013).

Crowdsourced data (CAP photos) and VGI (YouTube videos), which are il-
lustrated in Fig. 14.8b, are fused together using a kriging interpolation. Kriging
allows for spatial correlation between values (i.e., locations/severity of flooding)
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Fig. 14.8 Storm surge extent generated by FEMA and the locations of Civil Air Patrol photos and
geolocated videos (a and b). Flood damage assessment generated from non-authoritative data and
the subsequent classification of potential road damages (c and d)

to be considered and is often used with Earth science data (Oliver and Webster
1990; Olea and Olea 1999; Waters 2009). Ordinary kriging generated a strong inter-
polation model. Cross-validation statistics yielded a standardized mean prediction
error of 0.0008 and a standardized root-mean-squared prediction error of 0.9967.
Figure 14.8c illustrates the damage assessment, with values ranging from 1 (no
damage) to 10 (severe damage), created from the interpolated surface which is
clipped to the boundaries of the FEMA surge extent (Fig. 14.8a) demonstrating how
non-authoritative sources can be used to add value to the FEMA map.

Ground information in the form of geolocated videos (Fig. 14.9) enhances the
non-authoritative dataset by providing flood information not conveyed in the CAP
photos. As illustrated in Fig. 14.8b, the locations of the videos (green triangles)
did not coincide with the locations of photos rated as medium/severe damage
(larger orange circles, values 7–10). Reasons for this disparity may include flooding
captured on video had receded before the Civil Air Patrol flights or were captured at
night or flooding may have occurred in areas which were not in a flight path or were
unable to be seen from aerial platforms (i.e., flooding in tunnels, under overpasses).
By using multiple data sources, flood or damage details not captured by one source
can be provided by another.
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Fig. 14.9 Example of YouTube video documenting flooding

Overall, there is a very good agreement between the flood extent from FEMA
and the assessment generated with the proposed methodology. Figure 14.10 pro-
vides examples of agreement between photos identifying flooding/damage and
the FEMA-generated flood extent, while Fig. 14.11 includes examples where the
locations of flooding or damage did not agree between the Civil Air Patrol and the
FEMA data. These areas were located along coastal edges, and therefore a lack of
spatial precision in the data is most likely the cause of the discrepancies.

Sources of error in non-authoritative data, such as incorrect information (false
positive/negative) or improper geolocation, needed to be considered. Incorrect
information can be mitigated by including visually verified photos/videos and the
application of multiple sources. Crowdsourcing, in particular, can increase accuracy
and enhance information reliability compared to single-source observations (Giles
2005). Geolocation errors can be reduced with automation.

Sparse data or data skewed in favor of densely populated or landmark areas
makes the use of non-authoritative data sources especially challenging. Increasing
data volume and integrating authoritative data into the methodology can yield
increased confidence and include underrepresented areas. Table 14.1 compares and
summarizes some features of each type of data. Although non-authoritative data
can provide timely, local information often in large volume, they are often viewed
with uncertainty. Conversely, the verification and authentication of authoritative data
yield trusted results at the cost of time.
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Fig. 14.10 Agreement between Civil Air Patrol photos and FEMA evaluation for flooded (a and
b) not flooded (c and d)

14.2.3.1 Road Damage Map

In Fig. 14.8c, the damage assessment is limited to the FEMA-generated surge
extent for the sake of comparison. For the classification of road damage, the non-
authoritative assessment is not limited by the FEMA boundary. The fusion of the
non-authoritative data predicted flooding and damage outside the FEMA surge
boundary, so the full damage assessment was utilized for the road classification.
A road network from the TIGER/line® shapefile was layered over the damage
assessment surface. Road damage was then classified based on the underlying
damage assessment (Fig. 14.8d).

By using the damage assessment surface along with a high-resolution road
network layer, roads which may have severe damage can be identified at the street
level. This allows authorities to prioritize site inspections, task additional aerial
data collection, or identify routes which may be compromised. The identification
of potential damage to transportation infrastructure is also crucial to the planning of
evacuation routes during and after emergencies.
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Fig. 14.11 Disagreement between Civil Air Patrol photos and FEMA evaluation for flooded (a
and b) not flooded (c and d)

Table 14.1 Comparison
between non-authoritative
and authoritative data

Non-authoritative data Authoritative data

Benefits Volume Reliable

Real time Verified

Citizens as sensors Authenticated

Challenges Sampling bias Slow

Unconfirmed Unavailable

14.2.3.2 Temporal Assessment

For this study, Twitter data were used to provide a temporal rather than spatial
assessment. Although tweets were geolocated using TweetTracker, uncertainty in
their location did not allow for a study at a street resolution. However, they provide
precise temporal information that can be used to understand the progression of the
surge extent over time. To understand the temporal progression is crucial during and
after flood events and is very hard to understand using remote sensing instruments,
due to their inherent carrier limitations. Twitter data can effectively be used to
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Fig. 14.12 Progression of tweets mentioning the word “flood” in the New York City area

overcome this limitation because of its high temporal resolution. For example, the
peak in the number of tweets containing the word “flood” occurs on October 29 and
30, 2012 immediately before and during landfall of Hurricane Sandy in New York
City the night of October 29th (Fig. 14.12). Having an indication of event timing
can be a very effective aid for emergency managers and response initiatives.

14.3 Evacuations During Emergencies

Emergency evacuations during natural and anthropogenic disasters are time sen-
sitive and require detailed spatiotemporal information for emergency planners to
mitigate evacuee risk. One of the primary goals of emergency personnel is to
reduce the likelihood of injury and death for citizens within an evacuation zone.
First responders are entrusted with providing accurate evacuation information to the
public, especially to special populations (e.g., children, elderly, and disabled people
are at increased risk during evacuations). Fusing non-authoritative and authoritative
information provides increased situational awareness for crisis response personnel.
This information enables them to better understand where incidents are occurring,
how many people are at risk, and where to allocate resources. The ability to
minimize response time is critical to minimizing loss of life and limb.

This section discusses the importance and challenges of evacuations, mobile
phone data and its collection, issues of privacy with mobile phone data, and how
the use of mobile phone data in evacuations can enhance situational awareness of
emergency response planners.

Emergency response personnel can use non-authoritative data, such as near real-
time mobile location data, to increase their situational awareness and to redirect
resources as needed within their jurisdiction. Figure 14.13 shows a subset of
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Fig. 14.13 Emergency shelters and example of mobile phones geolocated in New York City.
Emergency response personnel can utilize mobile phone data to answer unknown questions. For
example, where are citizens located within the evacuation zone, or are there areas where additional
police forces should be positioned to reduce congestion?

mobile phone data (over 15,000 phones) collected from OpenCellID in 2011 for
NYC as well as the locations of five emergency shelters (OpenCellID 2011). In
this example, mobile phone locations provide enhanced situational awareness of
spatial and temporal population fluctuations, unlike census data which is a static
representation of data collected during the last census. Using mobile phone data, as
shown in Fig. 14.13, emergency response personnel can determine evacuation routes
to the closest shelters, determine where to position police officers to reroute traffic to
reduce congestion, or estimate how many citizens are at risk in an evacuation zone.

14.3.1 Importance of Evacuations

Emergency evacuations often occur with limited or no planning. Notifying the cor-
rect individuals based on their location and the type of risk is key to minimizing loss
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of life and limb. Emergency response personnel manage and execute evacuations.
They collect information from various sources and share this information with first
responders and other emergency response personnel through a common operational
picture.

Much of the information collected and required during a crisis have a spatial
component. Analyzing the area of impact for a crisis event provides emergency
responders with a spatial footprint of the affected area. Further spatial analysis may
provide estimated damage costs and an estimation of the number of people affected
and their location. Emergency planners use such information to evaluate where to
allocate resources in order to minimize further loss of life, limb, or property.

14.3.2 Challenges of Evacuations

At the onset of an evacuation, emergency planners have many questions that are
inherently spatial: How many people were affected by the incident, and where
are they located? Where are the available emergency shelters? What is the status
of the transportation network including public transportation? What is the status
and location of available emergency personnel and equipment? Much of this
information is spatial in nature; however, it may be found in disparate databases or
systems. Quickly finding answers to these questions can save lives; however, limited
knowledge can lead to increased risk to evacuees and response personnel.

One key challenge in evacuations is determining where the people are located.
Determining the location of individuals and the risks they may be exposed to
is of the utmost importance for planning an emergency response. Populations
fluctuate during the day as people travel to work, school, recreational activities,
sporting/cultural events, etc. Their location is constantly changing and not always
predictable. Currently, the allocation of resources is based on the expertise of first
responders, information that has been collected about the situation, and situational
awareness of emergency planners.

14.3.3 Mobile Phone Data

During emergencies, traditional mobile phones provide voice and SMS services;
however, smartphones also provide enhanced services through mobile applications.
Some of these applications include social media networks, notification services,
mapping, navigation, e-mail, Internet access, photo and video capture, and crowd-
sourcing applications. Individuals use these to improve their situational awareness
and share information with others who may be affected by the crisis.

Mobile phone companies collect information from individual mobile phones
in the United States and internationally. Policies for how long the data is stored
vary by mobile provider. Mobile phone data that are collected may include date,
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time, latitude, longitude, identification number of the cell phone, and signal
strength. After these data are collected, they may be aggregated for additional
analysis, cleansed of personally identifiable information, and sold for use in other
applications, such as navigation, traffic services, or business development.

For example, mobile phone data are often used to improve navigation by
monitoring congestion along interstates and highways. The average speed of mobile
phones is compared with the speed limit along a section of highway to determine
which routes are flowing normally and which are congested. Older models of
mobile phones determine their location by triangulating between mobile phone
towers, whereas most modern phones now use GPS to determine their location.
This information provides individuals with the ability to find the shortest or quickest
route to their destination using mobile phone data. Further analysis of mobile phones
that are traveling along highways provides a method to estimate the number of
vehicles traveling along a route at different time periods. This information is useful
for transportation departments for traffic planning, for businesses for determining
locations for new franchises, and for numerous other applications.

14.3.4 Issues of Privacy with Mobile Location Data

Although the collection of near real-time mobile location data to support emergency
response greatly increases situational awareness of response personnel and planners;
citizens are often concerned with the government or individuals using such informa-
tion to invade their privacy, track their movement, or in an investigation following
an attack.

Personally identifiable information (PII) includes information such as name,
social security number, phone number, home address, etc. PII is not needed when
collecting real-time mobile location data to support emergency response. Protective
measures such as stripping PII from data before mobile phone companies share it
with government officials during emergencies provide a measure of privacy. Another
measure for protecting individual privacy is through the aggregation of data. In
metropolitan areas, mobile phone location data could be aggregated to the nearest
road intersections with an estimate of the number of people near that intersection.
These data would reduce privacy concerns while also providing invaluable data to
emergency response personnel. In suburban or rural areas, data could be assigned
by census block or tract, or the spatial and temporal accuracy of the data could
be reduced to reduce privacy concerns while still providing increased awareness to
response personnel.

With the increasing use of mobile phone data in the private sector to support
business development, government policies must be developed to address the
application of mobile phone data in large-scale emergencies. Policies on the
application of mobile phone location data in emergency response are limited to
nonexistent. Although citizens are concerned with privacy, they are also concerned
with an accurate and efficient response by emergency response personnel.
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14.3.5 Application of Mobile Phone Data in Evacuations

Fusing mobile phone data with existing data sources provides increased situational
awareness and fills existing gaps in other data. During large-scale dynamic events,
especially in high population density areas, the common operational picture is
further supplemented with mobile phone data.

One major challenge for emergency response personnel and planners is to
determine where people are located at various times of the day. This challenge
becomes even more complicated with limited communications or a complete loss
of communications. During emergencies with limited to no communications, it is
possible for emergency personnel to use archived data to estimate the density of
populations. Previously collected mobile data that accounts for diurnal population
change and population change during major events, such as sporting events, parades,
festivals, etc., provide response personnel with prediction models to use in their
planning. This information can prove very important in international response to
disasters where population data are often unreliable.

Providing assistance at the right location is often a challenge for emergency
response personnel. Often limited crowdsourced or social media data are available
in developing countries; however, mobile phones are much more prevalent and
provide a source of data on movements of people within the country. Information
on the movement of individuals within a country enables the government and
nongovernment organizations to prioritize their response based on spatial and
temporal data.

As smartphones become more prominent in developing counties, it is necessary
to devote increased efforts to increase awareness of mobile applications and their
contributions to citizens. These tools provide citizens and emergency personnel with
increased information and damage estimates on their response areas.

Finally, mobile phones provide an opportunity for evacuees to provide data
to emergency personnel through text messaging, social media, or phone calls.
Although there may be a loss of power, mobile phones usually work on battery
power for several hours after an incident. This provides an alternate means of
communication and enhances situational awareness when other communication
methods are limited or nonexistent.

Mobile phones provide emergency personnel with enhanced situational aware-
ness; however, new policies for protecting the privacy of individuals with respect to
mobile phone data are necessary to limit concerns for PII. Standards for collection of
data and who can handle data are necessary to protect citizens. Additional research is
needed to evaluate how mobile phone data is represented in Geographic Information
Systems (GIS). This research should address and refine database storage methods
and analysis of mobile phone data.
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14.4 Conclusions

During disasters and emergencies in urban areas, timely and accurate information
of road networks, infrastructure conditions, and locations of citizens is crucial.
But this information can be limited, incomplete, lengthy to acquire, or out of
date. Although not necessarily created or posted with the intent of being used
for scientific research, non-authoritative data can be harvested during disasters
and emergencies to provide timely, on-the-ground information. Although often
viewed with uncertainty because of concerns related to, for example, producer
anonymity and lack of authoritative verification, these data often provide relevant
information that may be difficult for authorities to collect. Non-authoritative sources
also provide an additional layer of subjective information which can indicate the
severity of potentially dangerous events, as well as how citizens are reacting to the
developing danger or coping with damage resulting from a disaster. By presenting
varied applications, such as damage assessments and emergency evacuations, the
practicality of non-authoritative sources and how they can add value to official data
is demonstrated. It is hoped that one day this research will help save lives.
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Abstract This chapter examines the possibility to analyze and compare human
activities in an urban environment based on the detection of mobile phone usage
patterns. Thanks to an unprecedented collection of counter data recording the
number of calls, SMS, and data transfers resolved both in time and space, we
confirm the connection between temporal activity profile and land usage in three
global cities: New York, London, and Hong Kong. By comparing whole cities’
typical patterns, we provide insights on how cultural, technological, and economical
factors shape human dynamics. At a more local scale, we use clustering analysis to
identify locations with similar patterns within a city. Our research reveals a universal
structure of cities, with core financial centers all sharing similar activity patterns and
commercial or residential areas with more city-specific patterns. These findings hint
that as the economy becomes more global, common patterns emerge in business
areas of different cities across the globe, while the impact of local conditions still
remains recognizable on the level of routine people activity.
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15.1 Introduction

As digital technologies are becoming more and more widespread, big data created
by recording the digital traces left behind human activities become a powerful mean
to study various aspects of human behavior. Many of these aspects can be described
with telecommunications data which nowadays become global. The exploration of
these data provides new perspectives, revealing characteristic usages and regular
dynamic patterns at both the individual and collective scale. At the same time,
the increasing urbanization of the world’s population is deeply affecting urban
environments, and it is crucial to develop theoretical frameworks as well as real-time
monitoring systems to understand how the individual dynamics shape the structure
of our cities in order to make better planning decisions.

In the past years, several studies have shown that it was possible to use
telecommunication data to get a fresh view at the spatiotemporal dynamics within
a city. In a now-famous paper, Eagle and Pentland (2006) showed that it was
possible to decompose mobile phone activity patterns of university students into
regular daily routines and that these routines were linked to each student’s major
and also to employment levels. Building upon this work, González et al. (2008)
studied the trajectory of 100,000 anonymized mobile phone users to reveal statistical
regularities in human trajectories. This paper, along with other seminal work
(Candia et al. 2008; Song et al. 2010), has since generated a research field dealing
with human mobility as understood from digital traces (Kang et al. 2013).

In parallel, focusing on records aggregated on spatial locations rather than on in-
dividuals, new approaches have been initiated to describe urban landscape based on
mobile phone usage patterns (Jacobs-Crisioni and Koomen 2012; Loibl and Peters-
Anders 2012; Ratti et al. 2006; Reades et al. 2007, 2009; Calabrese et al. 2011; Sun
et al. 2011), to explore the issue of regional delineation (Amini et al. 2014; Kung
et al. 2013; Ratti et al. 2010; Sobolevsky et al. 2013), to estimate population density
(Girardin et al. 2009; Kang et al. 2012; Rubio et al. 2013; Vieira et al. 2010), or to
identify social group and social events (Traag et al. 2011). In particular, by mea-
suring mobile phone data on a 500m by 500m “pixel” grid in Rome (Italy), Reades
et al. (2009) especially used a variant of principal component analysis to cluster
these pixels into regions with similar patterns of usage and made a qualitative link
between these patterns and the number of businesses on the corresponding areas.

This last paper is an example of a line of research dealing with the identification
of a specific land use type (Caceres et al. 2012; Calabrese et al. 2010). Other papers
have focused on methods to build classification of several land use types based either
on (voice calls or SMS) mobile phone patterns (Andrienko et al. 2013; Becker et al.
2011; Pei et al. 2013; Soto and Frías-Martínez 2011; Toole et al. 2012), taxi trip data
(Liu et al. 2012), or Twitter data (Frias-Martinez et al. 2012). These studies used dif-
ferent types of methods, from simple clustering to advanced neural network models.
A common feature of these papers is that they are limited to the study of a single
spatial entity (in general a city) that they study through one type of digital data.

This statement raises some questions: is the behavior detected on one type of
mobile phone activity independent of the other type, i.e., is it the same to look at
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calls, SMS, or even data transfers? How does the results compare between multiple
cities? What are the signatures of the mobile network usage in major US, European,
or Asian cities, and how do they compare?

This chapter takes advantage of an unprecedented multimodal collection of
counter data recording the number of calls, SMS, request, and data transfer resolved
both in time and space in three cities – New York, London, and Hong Kong – to
investigate such questions. After presenting the data in Sect. 15.2, Sect. 15.3 will
investigate the spatial repartition of activity in these three cities. Then in Sect. 15.4,
we will focus on people’s behavior by investigating the dynamics of the activities on
both a local and city scale. In Sect. 15.5, we will show how we can use a clustering
algorithm to automatically detect and classify such patterns either within one city
or across all of them. Finally, we will discuss in Sect. 15.6 how our work can help
us understand the changing nature of modern cities and especially what common
features can be captured in the patterns of human behavior: in these global cities,
what is the respective influence of city-specific and global factors on human life?

15.2 Materials and Methods

15.2.1 Geographical Background

Figure 15.1 shows a map of the three cities studied in this chapter: New York,
London, and Hong Kong. Greater London is divided into 33 “district boroughs,”
the central ones being referred to as Inner London, while the peripheral ones are
referred to as Outer London. The historic heart of London, the City of London, is a
major business and financial center, where many banking and insurance institution
headquarters are located. While the city has a low resident population (around
7,000), over 300,000 people commute and work there every day, mainly in the
financial service sector. New York is divided in 59 “community districts,” gathered
into five boroughs. The boroughs of Queens, Brooklyn, Staten Island, and Bronx
are mainly residential. Manhattan is a major financial and decision-making center
(the UN headquarters, Times Square, and the Empire State Building are located
there). It has also one of the highest population densities in the world, with around
27,000 residents per square kilometers. Finally, Hong Kong territory consists of 4
regions split into 18 districts. Due to the mountainous nature of its land, less than
25 % of Hong Kong’s territory is urbanized: the urban development concentrates on
Kowloon peninsula, the northern edge of Hong Kong Island, and a few settlements
throughout the New Territories.

Overall, London, New York and Hong Kong are comparable in terms of size and
population density (see Table 15.1). They are also all Alpha cities according to the
GaWC nomenclature of world cities (Beaverstock et al. 1999) which ranks cities
based on their connections with others in domains such as business, finance, law,
media, art, fashion, research, technology, education, tourism, and entertainment. As
Alpha cities, they are more integrated within the global economy than any other city.
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Fig. 15.1 Administrative maps of (a) Greater London, (b) New York, and (c) Hong Kong

Table 15.1 Background information on the scale of the studied cities

City Area (km2) Population Density (pop/km2)

Greater London 1,572 �8,200,000 5,206

New York 1,214 �8,350,000 6,865

Hong Kong 1,104 �7,000,000 6,405

Source: wikipedia, 2013

Despite their apparent differences (in terms of history, culture, or weather conditions
to name only the obvious ones) and geographical distances, one can expect emerging
similarities between these cities due to globalization. They are therefore perfect
candidates for tracking universal communication patterns.

15.2.2 Data Gathering and Preprocessing

Our analysis is based on aggregate 3G mobile traffic data (including all kinds of
devices like phones, tablets, etc.) supplied by several operators, and corresponding
to a statistically significant part of the total 3G mobile traffic of the covered areas,
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corresponding to several million subscribers in all studied cities (precise penetration
rates cannot be given for confidentiality reasons). Data were collected between April
1 and July 7, 2013 at fifteen-minute intervals across the three cities at cell level.
While the whole city of New York is covered, the dataset of Greater London is
mostly concentrated on the Inner London districts. The Hong Kong measurements
cover urban zones, while no data is available for the unpopulated mountainous parts.

The three months of data consist in counter data recording the numbers of calls,
SMS, and requests (for data communication initiated either by the users or some
applications running in the background in their mobile devices) as well as the
amount of data uploaded and downloaded by subscribers (measured in bytes and
thereafter denoted by “UL Data” and “DL Data”). The provided data was aggregated
at the cell level by the data providers and therefore did not reveal any individual user
information. Before receiving the data, the actual numbers were obfuscated by using
a secret scaling factor, such that we have only access to normalized amounts of each
type of counter data.

In addition to mobile phone data, we gathered various shapefiles, census data,
and land use data from open access sources.1 We thus obtained land use data of
different nature and with different number of categories across the different cities
(9 categories for London, 6 for New York, 24 for Hong Kong). To better compare
the results obtained in our three cities, we converted these original categories into
seven land use types that best match them: High-Density Residential, Low-Density
Residential, Business and Commercial, Mixed (Residential and Commercial),
Infrastructures, Parks, and Other. Details of the procedure are available on request.

The location of the cells’ recording mobile phone activity is given as longi-
tude/latitude pairs – the service area of a cell having a typical radius varying from
around 100 m (in dense area) to several kilometers (in rural zones), while the census
and land use data are provided in polygonal zones corresponding to administrative
divisions in the cities. In order to study the mobile phone usage patterns in the
different cities and their relationships to census and land use data, we chose to
transform the spatial representation of the different datasets by projecting them on
uniform lattice grids of 500 m by 500 m “pixels.”

To reduce the bias induced by the attribution of the activity within a cell’s service
area to a single pixel location, we used a smoothing procedure: we defined the
activity on one pixel as the mean of activities of all cells within a 1,500 m by 1,500 m
square centered on the pixel center. Census data were similarly projected on the grid
by interpolating demographic data and most significant land use on each grid cell.
The length of 500 m was chosen after testing different grid sizes. It proved to be
coarse enough to reduce noise level and detailed enough to explore spatial patterns
of activities within the cities. At the end of this procedure, the mobile phone traffic
data was projected on around 2,700 pixels in Greater London and around 3,000
pixels in New York and Hong Kong.

1such as http://data.london.gov.uk/ for London, https://nycopendata.socrata.com/ for New York or
http://www.census2011.gov.hk/ for Hong Kong.

http://data.london.gov.uk/
https://nycopendata.socrata.com/
http://www.census2011.gov.hk/
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15.3 Spatial Repartition of Activity

A simple question that can be addressed with mobile communication data is the
tracking of where people are or where they go.

The first way to investigate this question is displayed on Fig. 15.2a–c, which
shows the spatial repartition of total request activity as recorded in our datasets. We
chose to focus on the request activity since it passively tracks people: even if you
don’t make any call or send any SMS, your mobile device will still produce network
background traffic such as social network synchronization, weather updates, news
feeds, etc.

The colors used on the maps of Fig. 15.2a–c emphasize the inhomogeneities of
activity repartition, by showing the share � of activity on each 500m by 500m pixel
normalized by the total activity recorded. A value of � D 1 hence corresponds to a
pixel with average total activity, � > 1 to a pixel with higher than average activity,
and � < 1 to a pixel with lower than average activity.

The spatial repartition of � in the three cities shows a center/periphery dichotomy.
In Greater London, we observe a concentric organization, with a very strong activity
level in the City of London, and decreasing levels as one moves away from the
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Fig. 15.2 Spatial repartition of activity. (a)–(c) show the values � of normalized total request
activity aggregated over the 3 months of data on the pixel grids of resp. Greater London, New York,
and Hong Kong. (d) Lorentz curves showing the variation of cumulative total request activity with
the cumulative area of coverage, the pixels being ranked by increasing total request activity
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city center. In New York, the organization is polycentric, with one center in the
middle part of Manhattan and another one in Queens. Finally, in Hong Kong we
observe one big center of activity divided up between Kowloon and the northern
part of Hong Kong Island and secondary centers in the newly developed zones of the
New Territories. Low activity zones correspond to the limits with the mountainous
areas.

Lorentz curves depicting the variation of cumulative total request activities with
the cumulative areas of coverage are presented on Fig. 15.2d. These curves, typically
used in economy and ecology to describe inequality in wealth or size Lorenz
(1905), describe here unequal repartition of request activity in space. Hong Kong
is obviously the most inhomogeneous city (with less than 2 % of request activity
in the 50 % less active pixels and 64 % of activity concentrated in the top 10 %
most active pixels), followed by London (around 9 % of activity in the 50 % less
active pixels and 49 % of activity in the top 10 % most active pixels) and New York
(around 9 % of activity in the 50 % less active pixels and 38 % of activity in the top
10 % most active pixels).

A commonly used quantitative measure of inequality, the Gini coefficient, can be
defined from a Lorentz graph as the area between the bisector line (corresponding
to a uniform repartition) and the Lorentz curve, normalized by the area between the
bisector line and the x axis (corresponding to the most inhomogeneous case where
all activity is concentrated on one pixel) (Gini 1912). The Gini coefficients of the
request Lorentz curve of Fig. 15.2d as well as those corresponding to other types
of activity are reported in Table 15.2. Interestingly, the Gini coefficient depends
only slightly on the activity type and strongly on the city. The measure of spatial
inhomogeneity could thus be done on any type of activity. Again, we find here that
the most inhomogeneous city is Hong Kong, followed by London and then New
York.

Although this first analysis suffers from some limitations – such as the mismatch
between the area covered by our dataset in London and the area within the official
boundaries of Greater London – it already provides good insights on the way people
interact with their cities. Maps of mobile phone activities could steadily become a
complementary tool to more classical maps of population or employment densities
obtained through extensive surveys and help urban planners make decisions based
on accurate population repartition.

Table 15.2 Gini coefficients For each activity type 
, the Gini coefficient G
 2 Œ0; 1� measures
the inhomogeneity of the spatial repartition of the three-month aggregated activity. The higher the
coefficient, the more unequal the spatial repartition is

City GDL Data GUL Data GRequest GCalls GSMS

Greater London 0.608 0.640 0.649 0.618 0.606

New York 0.546 0.555 0.576 0.549 0.523

Hong Kong 0.768 0.765 0.784 0.802 0.781



370 S. Grauwin et al.

15.4 Exploring Temporal Patterns

15.4.1 Typical Week Signature

To minimize the impact of special events on the datasets, we followed the procedure
presented in Reades et al. (2007) to extract average “typical week” timelines for each
pixel at each 15-min interval, using the three-month period. The values of the typical
weeks for a given 15-min time interval were calculated as the average of the same
intervals from the whole measurement. For example, the typical number of calls for
12:00 to 12:15 on the typical Monday was taken as the average number of calls from
12:00 to 12:15 on every Mondays available in the dataset. Civic holidays, considered
as special events, were excluded from the computation to avoid the introduction of
unnecessary noise. We use these mathematical notations:

• A

i .t/, to measure activity of type 
 (number of calls, SMS or request, volume

of data upload or download) within a given pixel i at time t 2 Œ1; 672� (since the
measurements are taken every 15-min, one week comprises 7 � 96 D 672 time
intervals)

• A

city.t/, to measure activity of type 
 (number of calls, SMS or request, volume

of Data upload or download) within a given city at time t 2 Œ1; 672�

In order to better compare the relative dynamic patterns across the cities’
locations (e.g., recognizing locations with similar patterns up to multiplicative
constant due to higher active population density), it is useful to normalize these
values by the typical amplitude of activities on each pixel. We thus define the
signature S


i of activity type 
 on location i thanks to a mean normalization:

S

i .t/ D A


i .t/=hA

i it ; (15.1)

where h: : :it denotes an average over the 672 individual 15-min time intervals of a
typical week. Similarly, the signature S


city of activity type 
 at the city scale is given
by

S

city.t/ D A


city.t/=hA

cityit : (15.2)

As an illustration of the computation of signatures, Fig. 15.3a displays the
mean-normalized call timeline in Greater London over the three-month observation
period. This timeline shows daily variations – with peaks of activity during the
days and drops of activity at nights – and weekly variations, with daily peaks
significantly lower during weekends than during workdays. Figure 15.3b then shows
how this timeline can be decomposed into a repeating typical week pattern and a
residual part. The residual part accounts for special events, such as the occurrence
of civic holidays (notice the lower amount of calls on April 1, May 6, and May 27,
respectively, Easter, May Bank, and Spring Bank holidays in London), and general
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Fig. 15.3 Decomposition of Greater London “calls” timeline. (a) The mean normalized
timeline can be decomposed into (b) a repeating weekly pattern (the city calls signature SCalls

London, in
red) and a residual part (in blue)

trends. For example, we observe a slight overall increase in calls in late spring /early
summer which may be due to the arrival of tourists in London at this time of the year.

Overall, the typical week signature captures the main temporal patterns within
the cities, by reducing noise and getting rid of long-term trends. Incidentally, it can
provide a good predictive baseline of expected mobile device usages. In the example
presented in Fig. 15.3, the average absolute ratio between residuals and timelines is
approximatively equal to 8 %, but is typically included between 5 and 10 % for the
different activity type either in whole cities or at each pixel level. Based on this
timeline, an operator could detect irregular operations, as also anticipate upcoming
special events.

15.4.2 Comparing Cities’ Signatures

Let us first explore the temporal patterns at the macro, citywide scale. The
city signatures of the different activity types are displayed on Fig. 15.4 which
emphasizes their similarities and differences.

All three studied cities display a broadly comparable rhythm, common to all
components of activity. Mobile activity rapidly ramps up in the morning between 6
and 10 AM, followed by rather steady activity levels within the day and a slower
decrease of activity at night between 9 PM and 2 AM. The same pattern appears
on workdays and with somewhat slower amplitude on weekends. On workdays, we
can also observe small peaks of activity at commuting hours and at lunch times.
It thus seems reasonable to associate this common rhythm to a simple daily cycle,
corresponding to people waking up, going to work, having lunch, and then heading
back home in the evening.

Let us now turn to the differences appearing on Fig. 15.4 when comparing the
cities.
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Fig. 15.4 Cities’ signatures, showing the normalized typical week patterns for the different
components of activity at the city scale

• The most obvious difference can be seen on the curves displaying the request
signature. The London request signature presents a daily cycle with higher
variations than the New York and Hong Kong ones, and its relative drop of
activity in the weekend compared to workdays is also more important. The cost
of mobile data plans being higher in London than in other parts of the world,
our educated guess is that Londoners use (cheaper) Wi-Fi whenever available to
connect their mobile devices. Since these connections are not recorded in our
dataset, one can expect a specific negative bias in the data when people typically
switch from the operator mobile network to Wi-Fi network: in the evening and
on the weekend, when they are at home.

• The early evening drops of UL and DL data signatures in London can be
explained in the same way. Londoners do not necessarily go to bed or stop to use
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their mobile devices earlier, but more probably use their home Wi-Fi connections
more often.

• In both New York and Honk Kong, the daily shape of all activity types is slightly
asymmetric, the maximum activity being reached in the evenings. Surprisingly,
there is an exception with the SMS activity in Hong Kong that appears to
drop earlier than the other activities in the evenings. Rather than a disinterest
from Hong Kongers towards texting in the evening, our guess is that the Hong
Kong SMS signature reveals a great specific interest towards texting during the
day. Text messaging is indeed known to be particularly popular in Asia, where
companies use text messages to confirm deliveries and provide alerts, updates, or
infotainment.

• We also observe peaks of SMS activity on evenings in New York. These peaks
could be explained by the important use of SMS for media voting (e.g., on TV
show polls) in the USA like America’s Got Talent or X Factor.

At first glance, New York and Hong Kong, while located almost at opposite
places of the globe and having different cultural background, may surprisingly
appear to have more similar signatures than New York and London which share
a common cultural and linguistic background. However we have seen that these
signatures are shaped by many different (technological, economical, or cultural)
factors and that their interpretation must reflect the multiple influences on people’s
behaviors. Space is also an important factor to take into account since people do not
behave in the same way depending of where they are.

15.4.3 Comparing Local Signatures

In this section, we go further in our exploration of what we can learn about
people’s behaviors based on their communication patterns. After comparing cities’
signatures, we will now compare local signatures from different locations within a
same city.

As shown on Fig. 15.5a, we selected five different 500m by 500m pixels corre-
sponding to specific locations in London: one pixel in the City of London (the finan-
cial center of London), one centered on Piccadilly Circus (a public space in West-
minster close to major shopping, entertainment, and touristic area), one on Camden
Market (a popular market place where crafts, clothings, and fast food are sold, espe-
cially on weekends), one on Newham (a residential area), and one on Ealing Broad-
way (a travel hub, part of the National Rail and London Underground networks).

Figure 15.5b shows the signatures of all activity types on each of these five
locations, while Figure 15.5c highlights the specificities of each location’s signature
by displaying their deviation from the whole Greater London’s signature.

Similarly to the city level, these five sample signatures display a comparable
day/night cycle, but also present specific characteristics revealing the nature of the
corresponding locations.
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Fig. 15.5 Local signatures (a) We selected five 500m by 500m grid pixels in specific locations
of Greater London. (b) The first series of plots shows these locations’ signatures in the different
components of activity. (c) The second series of plots shows the differences between local and
whole city signatures. Colors in the plots match those on the map indicating the locations of the
selected pixels

• The signatures of the pixel within the City of London show patterns typical of a
business area: high amount of activity during working hours and very low activity
in the evening from Monday to Friday and huge weekday-to-weekend activity
ratios. These signatures also display sharp transitions from low to high activity
level at the beginning of working hours and from high to low level at the end of
working hours.

• The Piccadilly Circus signatures also show a large amount of activity during
working days, but also show significant activity during the weekend. The
morning transitions from no activity to some activity are rather smooth (notice in
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particular the dips on Fig. 15.5c revealing that this area is less active than other
parts of the city in early morning). All these characteristics go in line with the
commercial and touristic nature of the place.

• The Camden Market signatures have average patterns during working hours
and are typically characterized by a peak of SMS activity during the workday
evenings (consistent with the recreational nature of this location where people
may gather to share a drink) and high level of request activity around lunch time
and in the early afternoon in the weekend (in line with the popularity of the
markets).

• The signatures of the Newham pixel are specifically characterized by low
weekday-to-weekend activity ratios (suggesting a constant population rate over
the week) and specific nonzero request activity at night (the automatic update of
the mobile devices revealing that people are sleeping at those locations). These
characteristics straightforwardly reveal the residential nature of this location.

• Finally, the signatures in Ealing Broadway are rather comparable to Newham’s
one – revealing the residential nature of the area – but also show specific peaks of
request activity during morning and evening commuting hours, in line with the
commuter hub property of the Underground station.

These observations show a correspondence between mobile traffic signatures
and the nature of the places studied, suggesting that we could infer the nature
of each area based on its signatures. As a side perspective, the identification
of the central business district and the residential areas can offer insights on
the nature of commuting flows. Urban planners are already aware of the spatial
relationship between business district and residential areas, but the visualization of
such properties on such a precise spatiotemporal scale has been possible only for a
few years thanks to the advancement of digital data gathering.

15.5 Cluster Analysis

15.5.1 Principles

In the previous section, we focused on single pixels, and we have shown how their
signatures could reveal human dynamics’ features at the local level. In this section,
we investigate the question of whether we can use mobile device traffic data to
detect large areas with homogeneous properties. Our goal is to group local pixels
according to the similarity of their signatures and use these groups to map the urban
spatiotemporal structure of the cities.

Among the many different clustering techniques to extract clusters of pixels with
similar signatures, we chose a K-means approach, used in many previous studies
(Andrienko et al. 2013; Pei et al. 2013; Reades et al. 2007). This approach ensures
that each pixel of a cluster has a signature as much like the one the other members of
the clusters and as different as possible from the signature of the pixels in the other
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Combining all activity types, the K-means algorithm aims at minimizing the
quantity EK measuring the total distance between the locations’ signatures and their
cluster’s signature:
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and K is a pre-imposed number of clusters. This simple quantity does not take
into account the temporal structure of the signatures (the order of the different time
intervals does not matter), but in the following, it will prove to deliver consistent
results. Each pixel is characterized here by a 3,360-dimensional feature vector (5
signatures of different type, each being valued on 672 time intervals).

A notable drawback of the K-means algorithm is the difficulty to determine the
“best” number K of clusters, whose value can depend on the shape and scale of the
distribution of points in a dataset and the desired clustering resolution. Different ad
hoc techniques to make that decision exist, most of them based on finding the value
of K best balancing the search for minimizing the intra-cluster distance EK and
maximizing the intercluster distances. There is however no consensus on the best
method to use, and the correct choice of K may also often rely on the researchers’
expert opinion and search for interpretable results. We guided our choice by looking
at local maxima of the silhouette index (Rousseeuw 1987). All cities presented local
maxima for K D 2 clusters (corresponding roughly to city centers and city suburbs),
K D 6, and larger values of K which vary with the studied city. All results presented
in the following have been obtained for K D 6, which is the most relevant case.
We indeed found that allowing a larger number of clusters mostly added clusters
concentrated of very few pixels in areas with very low mobile phone activity and
without any regular signatures.

15.5.2 Revealing the Spatial Structures of Cities

We conducted an independent K-means clustering analysis for each city. As we
previously stated, the best cluster size distribution and interpretability was achieved
for K D 6 in each case. Figures 15.6a–15.8a show the spatial projections of the
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Fig. 15.6 Greater London clusters. (a) Spatial projection of K D 6 clusters, with their
interpretation in the legend (see details in main text). (b) Actual land use maps as extracted from
census data. (c) Signatures of the clusters in the different components of activity. (d) Deviations of
the signatures compared to the whole city signatures displayed on Fig. 15.4. Colors on the signature
plots match those on the cluster map (a), and gray areas correspond to zones with no recorded data

clusters on a map of the cities. First of all, it is worth noting that the clusters
are made of spatially cohesive groups of pixels shaping a concentric-like structure
within the cities. The signatures of the clusters as well as their deviation from
their city signature are displayed on Figs. 15.6c,d–15.8c,d, and Table 15.3 lists
the share of total activities occurring within the surface covered by the clusters.
To better understand the nature of the clusters and their relation with standard
land use classification, Figs. 15.6b–15.8b display land use maps of the cities built
from extracted census data (see Sect. 15.2.2). Finally, Table 15.4 lists the average
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Fig. 15.7 New York clusters. (a) Spatial projection of K D 6 clusters, with their interpretation
in the legend (see details in main text). (b) Actual land use maps as extracted from census data. (c)
Signatures of the clusters in the different components of activity. (d) Deviations of the signatures
compared to the whole city signatures displayed on Fig. 15.4. Colors on the signature plots match
those on the cluster map (a), and gray areas correspond to zones with no recorded data

population and job densities within the clusters (when available), as well as
confusion matrices highlighting the similarities between our clusters and the land
use classes.

A few patterns are easy to interpret and compare with census data. For exam-
ple:

• Cluster 1 (in red). In all cities, these clusters’ signatures present high levels of
activities during working hours and very low levels of activity in the evening
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Fig. 15.8 Hong Kong clusters. (a) Spatial projection of K D 6 clusters, with their interpretation
in the legend (see details in main text). (b) Actual land use maps as extracted from census data. (c)
Signatures of the clusters in the different components of activity. (d) Deviations of the signatures
compared to the whole city signatures displayed on Fig. 15.4. Colors on the signature plots match
those on the cluster map (a), and gray areas correspond to zones with no recorded data

during the workdays and a huge weekday-to-weekend activity ratios. The
combination of their small area shares (4–6 % of the cities’ area as reported in
Table 15.3) and their large activity share is consistent with a high concentration
of activity and an identification as business cores. This is verified since the red
clusters cover the ‘City of London’ district, the financial and decisional districts
in New York (e.g., south Manhattan where Wall Street is located), and a large
part of the Central district on Hong Kong Island. The confusion matrices of
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Table 15.3 Clusters’ mobile traffic properties. We report the relative areas covered by each
cluster presented in Figs. 15.6a–15.8a, as well as their share of total activities (obtained by
summing the unnormalized signatures A


i of the cluster’s pixels)

Cluster Area (%) DL data (%) UL data (%) Request (%) Calls (%) SMS (%)

Greater London

1 (Red) 6.3 21.2 24.0 30.7 23.4 24.0

2 (Orange) 11.1 17.2 18.5 14.8 17.7 16.6

3 (Blue) 27.3 22.6 22.1 19.5 22.4 21.5

4 (Green) 23.3 15.6 13.6 14.4 15.0 14.7

5 (Pink) 18.8 12.2 11.6 10.3 11.0 11.4

6 (Pastel) 11.5 6.4 5.7 5.4 5.4 5.8

New York

1 (Red) 3.9 8.7 11.0 10.9 8.7 8.1

2 (Orange) 10.4 8.9 10.0 9.7 8.5 8.3

3 (Blue) 32.1 24.7 24.4 24.1 24.3 24.8

4 (Green) 42.9 55.8 52.8 53.5 56.3 56.9

5 (Pastel) 7.6 1.2 1.2 1.2 1.4 1.3

6 (pink) 2.8 0.6 0.6 0.5 0.7 0.6

Hong Kong

1 (Red) 5.4 7.6 7.4 9.3 11.2 10.7

2 (Orange) 15.0 19.4 18.5 20.6 19.6 20.7

3 (Blue) 7.3 23.8 24.7 22.0 27.0 22.8

4 (Green) 25.8 12.5 12.2 12.5 9.8 10.2

5 (Pink) 23.0 25.9 25.4 26.8 24.0 22.4

6 (Pastel) 19.7 8.5 9.3 6.9 6.7 11.0

Table 15.4 confirm that the areas covered by cluster 1 correspond to Business
and Commercial land use.

• Cluster 2 (in orange). Compared to the average cities’ signatures, orange clusters
are characterized by higher levels of activity during weekday working hours and
lower activity level in the weekend, similar (but to a lower extent) than what
happens in cluster 1. On London and New York maps, these clusters mostly
surround the red ones (notice also that in London the orange cluster covers
Heathrow Airport on the western side of Greater London). Based on these
characteristics orange clusters could be identified as commercial areas. This is
confirmed by the confusion matrices, reporting low to average residential land
use and higher than average Business land use in these clusters.

• Cluster 3 (in blue). These clusters have signatures similar to those of residential
cluster 4, but with smaller deviations from the corresponding city signatures.
These features suggest, as baked up by land use data, to interpret these clusters
as a mixed area with strong residential component.

• Cluster 4 (in green). Compared to the average cities’ signatures, these clusters
display higher activity level at night and lower activity level on Monday to Friday
business hours. The curves showing the deviations of their signatures compared
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Table 15.4 Clusters’ census properties. This table shows the average population and job
densities on the area covered by each cluster presented in Figs. 15.6a–15.8a, interpolated from
census values. Land use confusion matrices display, for each cluster, the percentage area that can
be attributed to each of the seven land use classes: High-density Residential (HD Res), Low-
density Residential (LD Res), Business and Commercial (Business), Mixed, Infrastructure and
Government Facilities (Infra), Parks and Green Areas (Parks), and Other

Cluster Pop/km2 Job/km2 HD Res LD Res Business Mixed Infra Parks Other

Greater London

1 (Red) 8,310 48,390 0.00 0.00 73.64 – 1.82 5.45 19.09

2 (Orange) 9,450 9,492 3.59 1.03 37.44 – 18.46 5.64 33.85

3 (Blue) 9,977 4,084 18.66 5.66 14.26 – 14.88 11.53 35.01

4 (Green) 11,341 3,338 35.63 8.60 7.62 – 31.20 2.21 14.74

5 (Pink) 8,512 2,743 23.40 8.51 3.04 – 19.15 16.11 29.79

6 (Pastel) 10,257 2,430 55.94 16.34 1.49 – 17.82 1.98 6.44

New York

1 (Red) 19,669 – 6.84 3.42 64.10 14.53 – 11.11 –

2 (Orange) 20,881 – 16.03 28.21 35.26 10.26 – 10.26 –

3 (Blue) 15,554 – 17.22 51.14 15.56 3.01 – 13.07 –

4 (Green) 17,310 – 26.65 52.21 10.49 2.41 – 8.24 –

5 (Pink) 3,002 – 1.20 24.10 65.06 0.00 – 9.64 –

6 (Pastel) 6,972 – 2.62 43.23 22.27 0.00 – 31.88 –

Hong Kong

1 (Red) 24,722 – 6.74 16.85 32.58 – 22.47 4.49 16.85

2 (Orange) 24,336 – 17.41 8.10 22.67 – 19.03 7.29 25.51

3 (Blue) 27,570 – 14.05 3.31 27.27 – 23.97 13.22 18.18

4 (Green) 12,121 – 29.18 7.53 10.12 – 13.88 7.06 32.24

5 (Pink) 16,713 – 18.68 11.32 16.58 – 17.63 5.00 30.79

6 (Pastel) 10,828 – 26.77 6.15 8.31 – 20.62 4.00 34.15

to the cities’ signatures remarkably mirror those corresponding to cluster 1 core
business areas. These features suggest that these clusters correspond to purely
residential areas, which is confirmed by the confusion matrices reporting high
residential land use.

Other clusters have a more city-specific interpretation:

• Cluster 5 (in pink). These clusters have different interpretations in each city. In
London, the pink cluster signatures are close to the green ones (residential),
but the request and data signatures present specific peaks at commuting hours,
consistent with the commuting hub nature of the area. In New York, the pink
cluster mostly corresponds to the JFK airport, characterized by specific bumps of
activity in the morning. In Hong Kong, these match a mixed area with a strong
residential component.

• Cluster 6 (in pastel). In Greater London, the pastel cluster is another mainly resi-
dential cluster, in the southern part of Inner London. Its signatures’ properties are
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very similar to those of the London green cluster, with the exception of a specific
peak of activity on Saturday just before lunch time. This peak could be explained
by a recurring event (such as a market). In New York, a quick comparison with
detailed maps of the city reveals that the pastel cluster corresponds to parks.
The activity shares of this cluster are very low (in accordance with the fact that
there are no people residing or working full time on the park premises ), and its
signature shows high activity levels during the weekends (when people may go
for a walk within the nearer park). Finally in Hong Kong, the pink cluster appears
to be a second residential one.

To summarize, each city can be characterized by a gradation of clusters. A
feature common to all cities is the existence of core business areas and purely
residential areas, an already known urban fact that we were able to check thanks
to communication traffic data.

Compared to classical time-consuming and expensive field surveys, our approach
makes it possible to build automatic, quick, and relatively cheap way of preparing
land use maps of the cities. The maps we obtained are closely related to classic
land use maps, especially for the distinction between business and residential areas.
When it comes to other land use classes, some difference occurs. Indeed, while the
classical land use classes are related to what the land looks like (is the neighborhood
consisting of a retail store, bank, residential buildings, etc.), the clusters we found
are based on communication data revealing human dynamic behaviors (like working
in an office, shopping, eating, commuting, sleeping, etc.). Rather than emulating
classical land use mapping, our approach thus produces a complementary point of
view that enriches our understanding of the multiple dynamics at stake in the cities.

Although we used every type of activity in our clustering analyses, the simi-
larities between the signatures of different types (calls, SMS, request, UL or DL
data) displayed on Figs. 15.6c–15.8c suggest that our finding would not qualitatively
change if we focused on only one activity type.

15.5.3 Revealing Universal Patterns

The results presented in the previous section suggest that mobile traffic patterns can
reveal a concentric structure of cities into clusters that can be interpreted the same
way. To what extent are these cities similar? In this section, we investigate this issue
by making a transversal analysis of our three studied cities. We performed a K-
means clustering analysis on all cities at once, grouping 500m by 500m grid pixels
with similar signature patterns.

Figure 15.9 displays the results of this transversal clustering analysis. As before,
we chose to display results obtained for K D 6.

• All previously identified core business centers are gathered into a single (here
red) cluster, whose signature can be characterized as before.
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Fig. 15.9 Clustering the three cities at once. (a) Spatial projection of K D 6 clusters of
all cities’ counter data (gray areas correspond to zones with no recorded data). (b) Clusters’
signatures. Colors on the plots match those on the map
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• Similarly, the previously identified “commercial” areas are roughly gathered into
a single cluster – here orange. The correspondence between this orange cluster
and those found in city-independent analyses appears evident for New York, but
less obvious in London and Hong Kong (see Figs. 15.6a–15.8a).

• The other clusters mostly correspond to the previously identified residential
areas. Surprisingly, these clusters are almost completely concentrated in one city:
the blue cluster is specific to London, the green cluster is specific to New York,
and the pink and pastel clusters are specific to Hong Kong.

Concerning the residential area, the transversal clustering analysis emphasizes
the differences due to local cultural, technological, and economical factors identified
in Sect. 15.4.2, e.g., the evening peaks of SMS in New York or the evening peaks of
data transfer in Hong Kong. The very strong and somewhat surprising result here is
the fact that the studied cities have core business centers that share a similar pattern
despite those local factors.

15.6 Discussion

Our research findings demonstrate that a general understanding of the mobile
network signatures can help us to look at cities with a renewed perspective.

We saw in Sect. 15.3 how time-aggregated maps of mobile traffic inhomo-
geneities could capture spatial patterns revealing locations where people are in
general most active. This approach allows to track the location where people spend
most of their time and is complementary to more traditional census data recording
where people live or work. Doing a similar analysis on specific periods of time,
one can expect a rather good correlation between mobile phone activity and job
density, especially during working hours, and a relatively less good correlation
with residential density during working hours that would increase when people
are typically at home (late in the evenings, early in the mornings, or during the
weekends).

In addition, these maps are more up to date than those based on census polling,
relatively cheaper to obtain and dynamic. From a research point of view, one could
also imagine to use insights gained from such representation (like the Gini indices
measuring spatial inhomogeneities) to enrich current taxonomies of cities.

In Sect. 15.4, we defined typical week patterns or signatures to characterize
the activities’ dynamics at a city or local scale. By comparing city signatures, we
highlighted specific influencing factors (mobile traffic plan policy, technological,
economical, and cultural factors) shaping those dynamics in Greater London, New
York, and Hong Kong. Building on the example of a few selected locations within
London, we showed how the signatures could reveal the nature (either financial,
commercial, recreational, residential, or commuting hub) of the concerned areas. In
general, the insights gained from the study of the typical week signatures could be
used to optimize the overall network performance by informing the mobile operators
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of the actual typical usage for them to take proactive decisions upon. Diffusing the
knowledge of the signature patterns could also generate new business ideas in the
cities, by just allowing retailers to optimize scheduling based on the likelihood of
people being in the vicinity of their stores.

We presented in Sect. 15.5 a clustering analysis process allowing automatic
detection of locations with similar signatures within a city. Our findings showed that
we could detect in each city a core business center, at least one pure residential area,
one mixed area with a strong commercial component, and another mixed area with
a strong residential component. In addition, we were able to detect other clusters of
specific nature (commuting hub areas in London or the JFK airport in New York).
The methods used could be easily pushed to generalize these findings. We stressed
that our approach makes it possible to build an automatic, quick, and relatively
cheap way of preparing maps that could complement and enrich classical land use
maps based on surveys. Indeed, communication traffic data tell us about the actual
dynamic behavior of people at each location, while land use maps rather tell us
about the average type of behavior you can expect based on the urbanization levels
and the type of buildings, shops, or infrastructures present at each location.

Our final finding was obtained by applying our clustering the procedure on the
locations of all three cities at once. Quite surprisingly, we found that the core
business centers of London, New York, and Hong Kong were gathered into a single
cluster, which proves their high degree of similitude. On the other hand, the city has
residential locations whose signatures are well distinct. To answer a question raised
at the beginning of this chapter, it seems like globalization shapes the economical
and political activity in the large cities’ financial and decisional core centers, while
individual activity patterns are still defined mostly by local factors.

On a broader note, as the digital databases are growing and our computational
methods are improving, it may be tempting to multiply automatic procedures to
generate lists of insights based on mobile traffic data. However, we argue that
knowledge expertise is more than ever needed to understand, interpret, and critic
these results.

Though this chapter presented new similarity measurements and links between
three major cities, it also opens up the question of the universality of our findings.
Is the common beat detected in the core areas a universal pattern common to
all cities, or is it only peculiar to “occidental” developed cities? Is there any
natural classification of the world’s cities based on a similarity between peripheral
residential signatures? It would be most interesting to study these questions by
enlarging our datasets to include major cities from both developed and developing
countries such as Paris, Mexico City, Shanghai, Rio de Janeiro, Sao Paulo, Lagos,
or Mumbai. The challenge is now to gather a collection of mobile traffic data from
all these cities before starting to build a yet-to-define comparative science of cities
based on them.
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Chapter 16
Epilogue

Paul A. Longley

This is an important book that raises issues that will be of enduring importance in
the coming years. There are three major reasons for this. First, the contributions
provide further impetus to the current renaissance of quantitative computational
modelling as a multidisciplinary research effort in a number of countries worldwide.
This renaissance arises in large part from current preoccupations with Big Data
and the realisation that we are creating data faster than we can realistically hope
to analyse them. The second reason why this book is important is because, as
various contributors make clear, our world is becoming increasingly urban, and
understanding the locus of activities in urban environments is fundamental to
rational organisation and planning if we are to harness the functioning of urban
systems to the common good. The third reason is that the drive to develop successful
computational approaches to urban analysis is inextricably bound up with the quest
to develop and enhance successful urban environments.

Any urban system is of seemingly infinite complexity, and it follows that any rep-
resentation of it is necessarily partial. The ‘exa-flood’ of data might seem to render
such representations less partial, yet many of the contributions to this book suggest
caveats to this, in a number of subtle and distinctive ways. Society’s increasing
dependence upon data is addressed in what is often termed data science. It has been
argued that, in this ‘Fourth Paradigm’ for research, science is increasingly data-
driven and is based on the vast quantities of data that are now becoming available;
many of which are geographically referenced. Many of these Big Data sources
receive attention in this book, including ground-based, airborne and space-based
sensors of various kinds, mobile telephony, and social media data from a range
of different sources. It is abundantly clear that new or improved computational
approaches are required for storing, accessing, processing, and visualising these
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vast quantities of data and to accommodate the enormous data problems that are
generated in data sharing, documentation, management, and archiving.

Nevertheless, understanding urban environments is about more than data reduc-
tion, as Behnisch et al.’s very useful multidimensional data analysis demonstrates
through critical analysis of the role and remit of pattern detection and the identifi-
cation of anomalies. Hagenauer is similarly reflective about the apparent problem
of prespecifying the number of contextual neural gas clusters. In different ways,
whether using real or synthetic data, both of these contributions beg the broader
question, of what are Big data representative? – when data are harvested from
populations that may not be clearly defined, when respondents may be self-selecting
and distinct from nonrespondents, and apparent outliers may in practice be inliers
that are drawing the distribution towards the true (unknown) population mean. Big
Data rarely purport to be representative or inclusive, and an important objective
of Big Data analytics should be to highlight, if not accommodate, the systematic
biases that are present in them. Behnisch et al.’s contribution in particular begs
the important question, how do emergent data structures relate to what we might
understand as a data infrastructure upon which we might represent an urban system?

It is also worth remembering that computational approaches are not restricted
to secondary data and that ‘Big’ Data can be collected as part of a clearly
specified research design. In this context, Yeboah et al.’s analysis of urban cycling
demonstrates that computational research can fall within the prevailing scientific
paradigm of hypothesis formulation, data collection and validation, analysis and
report writing. From a substantive standpoint, it is also worth remembering that
intra-urban travel usually manifests derived demand – and that the activity patterns
of cyclists in relation to the broader morphology of the city presents an enticing
research prospect.

New computational approaches are not, of course, universally synonymous
with the data science paradigm, as contributions to this book make clear with
respect to hedonic house price models (Razen et al.) and agent-based modelling
(Sun and Manson). Razen et al. model housing demand using a sophisticated
multilevel form that raises the issue of model parsimony in the trade-off between
fidelity to the inherent complexity of the real world and the complexity, and hence
intelligibility, of the models that we use to represent it. Sun and Manson’s basic
postulate is that straightforward (and hence parsimonious) search rules drive intra-
urban residential mobility patterns and that modelling these using an agent-based
approach can develop our understanding of city evolution. Rosner and Curtin’s
Urban Livability Index draws on half a century or so of thinking about indicators
and links to Frankhauser’s speculations about the importance of size, shape,
scale, and dimension in thinking about urban forms. Waraich et al. demonstrate
that microsimulation is now an established framework for trip distribution and
travel demand modelling but also that it generates intense computational demands.
All of these papers are convincing within their respective domains, but looking
prospectively it would be interesting to identify whether the broader morphology
of urban land use, and the patterns of human interactions that this generates, might
be incorporated into these different approaches. The juxtapositioning of different
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functions within citywide morphology is an established tenet of many (e.g. cellular
automata) models, and as new data sources become available, it may be interesting
to investigate the relative importance of activities additional to night-time residence
when investigating the dynamics of change in different cities.

In different ways, each of these contributions demonstrates that our represen-
tations of socioeconomic distributions are inevitably piecemeal and partial. By
contrast, our ability to measure and monitor changes in the built forms of cities
is approaching the point at which it can truly be described as comprehensive.
Karantzalos makes clear that remotely sensed urban change detection is now a
refined science. Berger et al. convincingly establish that this science provides the
means by which data from multiple instruments can be integrated with one another.
In both cases, there is a sense that we are creating and maintaining digital framework
data – and that it is possible to build together a representation that is fit for clearly
defined purposes. The ongoing quest remains to link improved two- and three-
dimensional representations of the physical form of cities to their social, economic,
and demographic functioning. Metadata often indicate that we are on much shakier
ground when we seek to build socioeconomic data infrastructures. Tang’s chapter
broaches this issue, by supplementing satellite imagery with socioeconomic data.
This provides an important waymarker, although as with some of the preceding
chapters the representation of socioeconomic function remains limited to night-
time residence or workplace statistics. A challenge for the future is to augment
detailed, frequently updated, integrated morphological models to say more about
urban function, and to reconceptualise cities as the locus of flows of individuals in
order to work, play, and above all be creative.

Wang et al.’s use of telecoms data is an important step in this direction, though
it also exemplifies many of the problems that arise when we seek to develop
generalised time and motion studies of human activity patterns across the city.
Privacy strictures will continue to restrict the remit of such studies until clear and
robust guidelines can be developed concerning analysis and linkage of data sets
through anonymisation – consistent with the imperatives of most data protection
legislation and essential given the impossibility of obtaining universal consent.
There is a Pandora’s box of possible data sources that might further this objective
and Schnebele et al.’s and Grauwin’s contributions open it. Yet, looking to the
future, both also raise issues of validity, reliability, and coverage that need to
be addressed in the general sense.

These are speculations about the future that are stimulated by reading the
individual papers, but in conclusion it is perhaps appropriate to consider the broader
framework that links computational approaches with urban environmental analysis.
It has been argued elsewhere that much recent computational research neither
needs nor produces theory, but instead mines data for patterns that may be useful
in solving humanity’s problems. This data science perspective focuses upon the
principles and techniques involved in managing the vast quantities of new data that
are amenable to computationally intensive analysis. Yet it seems that familiarity
with the generic principles of data science is not necessarily a sufficient qualification
to better understand urban environments. In looking to the future, therefore, it is also
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important to look to the past – and best practices for systematic documentation of
data (metadata), to accredited means of collecting primary data, and to best practices
for archiving and sharing secondary sources.

The best data are a necessary but not sufficient prerequisite for the best decision-
making and the best planning. In this context, Frankhauser and his colleagues
have made a sustained and enduring contribution to our understanding of cities
as organic entities, the morphologies of which grow from the ‘bottom-up’. In this
book, it is enlightening to see his proposals for planning regimes that emulate and
harness this truism at the range of scales that can contribute to the sustainable city.
His contribution demonstrates that our thinking need not be ‘top-down’ but that it
nevertheless needs to be hypothesis driven.

Taken together, the chapters in this book provide an important milestone in our
understanding of the contribution of data analytics to understanding not only the
detailed form but also many of the detailed functions of cities. Why is the world
increasingly urban? – fundamentally because cities are crucibles for innovation and
creativity, in which human talent can flourish. There is no universal composite
indicator for the urban forms and functions that bequeath and nurture human
creativity, but the contributions to this book show how progress is being made on a
number of fronts.
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