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Abstract This paper aims at detecting route information of GPS traces to represent
spatial and temporal information of trips. A Bayesian belief network model is used
to calculate the probability of a road matching a GPS log point. The algorithm
incorporates road network topology, distance from trace nodes to road segments,
the angle between two lines, direction difference, accuracy of measured GPS log
point, and position of roads. GPS data collected in the Eindhoven region, The
Netherlands, is used to examine the performance of this algorithm. Results based on
a small sample show that the algorithm has a good performance in both processing
efficiency and prediction accuracy of correctly identified instances. Prediction
accuracy using a small sample is 87.02 %.
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1 Introduction

Detecting route information of GPS traces has been an important research topic in
recent years in transportation. Various map matching algorithms have been pro-
posed with the aim to match some geographical locations or points with the existing
network data. For vehicle-based traffic research, it can provide microscopic spatial-
temporal information for a specific vehicle. This would be beneficial to the
requirements of many research topics such as route choice simulation, emission and
energy consumption analysis, travel demand forecasting, travel behaviour analysis,
etc. Especially, with the increasing applications of new technologies such as GPS,
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WIFI, Bluetooth as well as applications of smart phones in data collection, the
requirement of an efficient and valid map matching algorithm to identify the exact
locations of the trace points on network data becomes extremely important.

Basically, to identify whether a node belongs to a specific road segment (link) is
not straightforward because of the difference between the spatial locations of the
node and the link, road network topology and the accuracy of geographical mea-
surement. This can be more complicated if a node is located in an area surrounded
by high density buildings where the strength of the satellite signals heavily influ-
ences the accuracy of the location measurement. In addition, the variety in some
special cases, like U-turn, passing through a round-about, lane changing, also
increases the complexity to design map matching algorithms. A well-performed
model should not only handle these main research issues, but provide sufficient
robustness and uncertainty measurement in the model to be applicable in different
contexts.

Due to the fact that GPS data fluctuate according to the contextual information,
like the weather, urban density, sensitivity of the GPS sensor, etc., the traces
measured on a temporal scale using the same device can have different accuracy.
Therefore, the algorithm is necessary to be flexible enough to capture such
uncertainty. From a long-term view of perspective, it seems to be important that the
designed algorithm incorporates a learning function into the model in the sense that
the estimated parameters could be adjusted through an intelligent learning proce-
dure, which will then increase the overall accuracy of the map matching results with
more data coming in.

A common approach for map matching, which has been adopted empirically, is
by means of spatial analysis functions provided by geographical information sys-
tems (GIS) tools. The buffering area along with the geographical objects, i.e. lines
or nodes, are created first, and used to match other geographical data where various
criteria of overlapping filters are set in advance. Such a method is popularly applied
because it is convenient to implement, but it needs to set the threshold of the
searching radius which can be different according to different accuracy of the
measurement. For example, Du and Aultmann-Hall [1] have empirically used a
10 m threshold to create the buffer and match the road network with GPS points.
Although this threshold value has been shown to have acceptable accuracy, the
method cannot meet the requirement when matching personal traces. In particular,
the variation of the coordinates leads to the dilemma that some nodes either cannot
be recognized as belonging to any roads in case of a small search threshold or are
overly matched in case of a big radius.

A prototype map matching algorithm was developed by using the distance from
node to node, the distance from nodes to lines and/or lines to lines [2]. These
algorithms are consistent in the sense the distance was considered as the only
decision variable. This can be problematic in real applications because of the
ignorance of other important variables, like the connectivity of road segments.
Although such algorithms have shown a good performance regarding the pro-
cessing speed, the matching accuracy is difficult to ensure.
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Recently, research appeared to incorporate more influential variables into the
map matching process, like the angle between the directions of two lines, the
connectivity of network topology and accuracy of the GPS measurements [3–5].
From a methodological point of view, existing map matching algorithms vary from
ad hoc rules to advanced learning-based algorithms, i.e. fuzzy set, Hidden-Markov
algorithm, probability hypothesis, etc. For instance, Pyo et al. [6] proposed the
multiple hypothesis probability (MHP) algorithms for map matching. The method
was further adopted and extended to the application of matching with GPS data [7].
Quddus et al. [8] introduced fuzzy logic theory to map matching with road net-
works. Some of the important variables, like the search space based on the error
ellipse derived from the error variances, the perpendicular distance from a position
fix to the link, the bearing of the link, and the direction of the vehicle, are incor-
porated. Six rules were created for fuzzy inference. The model was shown to be
more accurate than previous models. However, it needs some expert knowledge to
determine the fuzzy set.

Ren [4] proposed advanced algorithms for pedestrian and/or wheelchair navi-
gation services. A Hidden-Markov model and a so-called multi-sensor approach,
which incorporates the accelerometer into map matching, were used. Bierlaire et al.
[5] proposed a probabilistic algorithm, which can be very useful for smart phone
data. The model showed good efficiency and provided an opportunity to measure the
uncertainty of the candidate road sets. However, the model needs some simplified
assumptions in real applications. White et al. [9] and Quddus et al. [10] provide more
detailed literature reviews on the main existing map matching algorithms.

Unlike the empirical methods, these advanced algorithms can potentially better
handle the complexity in map matching procedures. Nevertheless, a well-performed
algorithm should be flexible enough to measure the uncertainty of matched roads,
and be capable to incorporate the major influential factors to ensure prediction
accuracy. Therefore, it is still needs to further improve the performance of map
matching algorithms. Considering the increasing number of applications of Bayesian
Belief Networks (BBN) in different fields of research and their superiority relative to
other algorithms [11, 12], it seems adequate to examine the feasibility of this
algorithm in map matching. Therefore, in this paper, we will develop a map
matching algorithm which incorporates the BBN model. The model incorporates
some major influential factors, including distance to road, connectivity between two
road segments, direction difference of two line objects, the accuracy of GPS mea-
surement and the direction difference between two adjacent links. The method is
evaluated using the GPS data collected in the Eindhoven region, The Netherlands.

2 Algorithm

To identifywhether a road segmentmatched aGPSpoint, it is necessary to incorporate
the influential factors. In the following discussion, we will first illustrate the main
influential factors we adopted, followed by a presentation of the proposed algorithm.
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2.1 Control Variables

2.1.1 Distance to Road

The distance between two geographical objects represents the correlation between
spatial locations. The road segment, which is mostly closed to the referenced node,
has a high probability to be the correct road. However, the distances from a GPS
point to a specific road segment vary in terms of the spatial correlation between the
two geographical objects. As shown in Fig. 1, there could be three types of dis-
tances between a node to a line, which are the perpendicular distance (d0) and the
distances from the node to the end nodes (d1 and d2) of the link.

In most of cases, the perpendicular distance was considered as an efficient
measurement. Other distances might be used to calculate angle information of the
virtual triangular to provide further location information. In our case, we take the
closest distance between the node and the road. In another words, it is the per-
pendicular distance (d0) as in the case of Fig. 1a and d1 as in the case of Fig. 1b. In
this way, every road segment in the candidate set can be differentiated through the
shortest distance from a node to a road.

2.1.2 Direction Difference

Despite that the distance measures the reference information for a single node it
does not say anything about the sequence information. The integral consideration of
two or more adjacent nodes can provide information in both time and direction
dimensions. Basically, the direction between the line connecting two adjacent nodes
should be consistent in some extent with the direction of the matched link.
Moreover, it can also benefit to the identification of whether there happens a turning
action which mostly indicates a cross section closed to the node (Fig. 2a).

To further identify the correlation between the line of two nodes and the road
segment, we use the angle information by incorporating the direction of the lines, as
shown in Fig. 2b. In order to determine the degree of the angle consistently between
a location and multiple road candidates, the direction of the road and two nodes are
pre-set in advance. As shown in Fig. 2b, to ensure that Road 1 and the link
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Fig. 1 Distance between the a node to a road segment. a Direct perpendicular distance. b Indirect
perpendicular distance
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connecting the two nodes has to be in the same direction to confirm the angle of α
rather than 180 − α. For the sake of simplicity, in practice, we restrict the angle as to
be less than 90°.

2.1.3 Connectivity

Apart from the distance and direction information, one of the most important factors
is the connectivity, which means the topology information of the road and cross
sections in the geographical representation. This variable is quite important to filter
out the un-reasonable roads and increase search efficiency. In practice, only these
roads, which are connected at least at one node with the previously confirmed road
segment, are treated as connected.

2.1.4 Other Factors

The accuracy of GPS data depends on signal strength, sensitivity of the sensor and
the spatial context of the travel environment. In principle, the more satellites, the
less noise in the measurements. In addition, the difference in complexity of trav-
eling environment results into different travel patterns in the sense that travel speed
in the high density city centres and suburban areas differ significantly. Therefore, it
is also necessary to incorporate velocity information and accuracy of the GPS
measurements.

2.2 The BBN Model

The method we adopted here is the Bayesian Belief Network (BBN), which
replaces ad hoc rules with a dynamic structure, leading to improved classification if
consistent evidence is obtained over time from more samples (more traces).
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Fig. 2 Spatial pattern of log points in cross-sections. a Changing direction. b No turns
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A Bayesian belief network (also called Bayes net) is a graphical representation of
the conditional probability and causality relationships between variables. The
model is described qualitatively by directed acyclic graphs where nodes and edges
represent variables and the dependencies between variables. The nodes where the
edge originates and ends are called the parent and the child, respectively. Bayesian
belief networks allow for probabilistic inference to be performed, indicating that the
probability of each value of a node can be computed when the values of the other
variables are known.

The nodes that can be reached from other nodes are called descendent. In
Bayesian network, each variable is independent of its non-descendent given the state
of its parents. Since the independence among the variables are clearly defined, not all
joint probabilities in the Bayesian system need to be calculated, which provides an
efficient way to compute the posterior probabilities. Suppose the set of variables in a
BBN is {A1, A2,…, An} and that parents (Ai) denotes the set of parents of the node
Ai in the BBN. Then the joint probability distribution for {A1, A2, …, An} can be
calculated from the product of individual probabilities of the nodes:

PðAi; . . .;AnÞ ¼
Yn
i¼1

P Ai parentsðAiÞjð Þ ð1Þ

In our case, the Bayesian belief network represents the multiple relationships
between different spatial, temporal and other factors, including errors in the tech-
nology itself (input), and the facet of the candidate road segment that we wish to
identify (output). We use a Bayesian belief network to impute automatically the
probability for each road segment in a filtered road set.

Figure 3 shows the network structure that we use to infer the matched road
segment with respect to GPS traces. A candidate road segment is treated as a
function of the states of the variables included in the BBN.

To what extent a road segment is matched with a location may be partly
determined by the information of the previously matched data. For example,

Road Matched
(Yes, No)

ConnectivityAngleDiff

DirectionDiff

DistToRoadRoadAzimuth

PDOP

Fig. 3 Model structure for the inference of map matching
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traveling along a straight route will in general have a pattern that the directions of
the adjacent links connecting two GPS log points are similar. While turning across a
road section may result into significant difference between the directions. Therefore,
we consider three variables as the sequence information, the connectivity
(Connectivity), the angle difference between the directions of two adjacent links
(AngleDiff), and the direction difference between the link connecting two nodes and
the matched road segment (DirectionDiff).

Here, the connectivity indicates whether two adjacent road segments are con-
nected each other. For example, to impute the probability of road segment i, we take
the previously matched road segment i − 1 as a reference, and check whether the
current road i connects with the road i − 1. This means we keep the information of
the previous matched road segment temporally to identify the potential road seg-
ment for the current location. In case that two adjacent locations identified a same
road segment i, the connectivity is set as true.

The DirectionDiff can be calculated as mentioned previously. The angle dif-
ference (AngleDiff) is the absolute value of the difference between two adjacent
directions of the virtual links, as mentioned above. In case of the starting node, the
direction is set to 0. Therefore, the angle difference between the second link and the
previous link equals to the value of the direction with respect to the second GPS log
point.

In the model, we include two variables for the accuracy of the measurements, the
Position Dilution of Precision (PDOP) and the number of satellites (NSATS). The
variable PDOP is a measure of overall uncertainty of a GPS position, represents
the quality of GPS signals. A PDOP value of 1 indicates a good satellite config-
uration and high-quality data; conversely, PDOP values above 8 are considered
poor. The quality of the data decreases as the PDOP value increases.

The variable (DistToRoad) is the perpendicular distance from a node to a road
segment as presented above (Fig. 1). The variable of RoadAzimuth measures the
angle of the matched line object in a spherical coordinate system. Assume that a
vector from an origin to a point of interest is projected perpendicularly onto a
reference plane. Then the angle between the projected vector and a reference vector
on the reference plane is called the azimuth. Therefore, the azimuth information
indicates position of a road, which may provide useful input in combination with
other location variables.

The output variable is whether a road segment is the matched road. In this case,
it has two levels, yes or no. For each candidate road segment, we infer the prob-
ability through the conditional probabilities among input variables and the output
variable. For a set of found options, the road segment, which has the highest
probability, is taken as the rightly matched road.
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3 GPS Data and Implementations

The GPS data used in this paper were collected in the urban area of Eindhoven, The
Netherlands. One of the main purposes of this GPS data collection is to find
valuable merits of peoples activity-travel trajectories in a long term. Every partic-
ipant was required to join the survey for a period of three months. People carried the
GPS logger, downloaded and uploaded their GPS data to the website. The data was
then processed using the program of TraceAnnotator to generate the possible
activity and travel data. Details about the TraceAnnotator can refer to the paper by
Moiseeva et al. [13]. A web-based prompted recall procedure, which allows people
to validate their historical data by modification, filling, removing or inserting in
case of missing or incorrect data, was adopted. Additionally, respondents were also
asked to provide some demography information and the locations where they visit
frequently.

Individuals carried the GPS logger, named Bluetooth A++ Pro. The device has a
good sensor embedded, which can receive well signals within trains. This capability
decreases in some extent the noise induced by signals in urban area, however, the
overall accuracy of the GPS data is in general rather acceptable especially for
traveling data, like car for example. The GPS devices were configured to record
data in every 3 s. The recorded information includes: date, time, longitude, latitude,
speed, distance, accuracy of the measurement (like PDOP, HDOP, VDOP etc.), and
number of satellites.

Although the data collected in the Eindhoven region was targeted as a large scale
of research projects where all available transportation modes and various activity
types were included, in this paper, we are especially interested in the trips by car to
test the efficiency of the proposed map matching algorithm. In addition, since the
training of the BBN model needs some facts that can determine the conditional
probabilities among the input variables and the road segment, we extract the trips
by car, which have detailed recorded diary.

The road network data includes all the road segments of the whole Netherlands.
There are three categories of roads: the national road, the provincial road and the
local road. Figure 4 shows the distribution of the GPS log points and road cate-
gories. As a consequence, a total of 10 trips, including 1,227 GPS points are
selected as a test sample.

In order to evaluate the efficiency of the proposed method, we labelled in the
dataset the true road segments for every GPS log point using GIS. A filter was
designed specifically to search the set of candidate road segments for a GPS
coordinates. More specifically, a buffer with the given radius (di) for a GPS point i
was created based on the coordinates, and the road segments which touch with the
buffer were taken into the choice set.

To determine a feasible value of search radius will help improving the searching
efficiency of the whole algorithms. Since the GPS traces are influenced by various
indicators like number of satellites, weather, etc., the spatial pattern of the log points
vary even for a same road segments. The empirical values of 2.5 and 11.4 (unit: meter)
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have been used to classify the data quality of good and poor [4]. As shown in Fig. 5, the
distances to the same road fromGPS log points of the same individual among different
days are different.

Because the search process is memory intensive in that the searching time
increases with the increase of the search radius. Here, in order to increase the
efficiency of the searching procedure, the search radius was set dynamically
according to the value of PDOP. We use 20 m as the searching radius if the PDOP
has a value less than 3 and 50 m otherwise (Eq. 2).

di ¼ 20; if PDOP� 3
50; if PDOP[ 3

�
ð2Þ

In the process of BBN training, the filter was first implemented for every log
point in the sample to generate a set of candidate road segments. Then the input
variables in the BBN model were calculated for each road segment and the GPS
coordinates. A new dataset where each row represents the pattern of matched or un-
matched road segment and their relevant attribute variables was created. As pre-
sented above, we incorporated variables relevant to speed, connectivity, spatial
distance to the specified road segment, direction and the accuracy of GPS log
measurements.

Fig. 4 Distribution of the GPS log points on the road network of The Netherlands
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The true sample data was prepared using the carefully recorded diary and the
road network data within GIS. The locations, which cannot match with any road
segments, were excluded. We divided the sample data into two datasets, one is for
training purpose and the other is for test purpose. The datasets were selected ran-
domly in terms of trips and road categories, by setting 75 and 25 % as the training
and test dataset, respectively.

Since the connectivity is considered as one of the determinant variables, it is
important to find the first road segment of the starting log point (origin). Because of
the effect of signal issue in the activity locations, the log points which are closed.to
the true activity location might be fluctuated. Moreover, a prompted recall cannot
ensure the mentioned location as a truth. Therefore, we add some additional filters
in assisting the identification of the origin. More specifically, we include the
information of personal profiles and the validated location names in combination
with the activity type. In concrete, if the personal profile is available in terms of the
activity type, we picked the coordinates of their personal locations directly from the
database of personal locations. Otherwise, the location names will be used for
online geo-coding to find a valid coordinates through Google service. Finally, if
both the personal profiles and location names are missing or incomplete for some
reasons, we fetch the original GPS traces according to the start time and/or end time
of the activity. Finally, the coordinates of the origin are generated as to provide
references of map matching for the consequent GPS log points. A detailed
implementation procedure is depicted in Fig. 6.

Fig. 5 Distances from the GPS log points of different days to road segments
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As shown in the flowchart, the map matching process starts from the origin and
ends at the destination of a trip. The detection of real origin is necessary since the
traces during activity episode fluctuate in general. Taking the first data record as the
starting node can be sometimes problematic because the device needs some time to
configure at the beginning of start. Since the recognition of real activity location is
out of the scope of this research, we simply check on the personal profile data that the
respondents supported. In addition, we also use the prompted recall data to double-
confirm the exact location and obtain the coordinates through a geo-coding process.

After the recognition of the origin point, the candidate road segments are fetched
and relevant input variables are generated. The selection of the road segment fol-
lows the prediction of the BBN model. The selected road will be the one with a

Fig. 6 Flowchart of the implementation steps
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highest probability among all the candidate road segments. In this sense, the un-
selected road segments also have a value of probability, which on the other hand
measures the uncertainty of the map matching algorithm.

In addition, it should be noted that, for each GPS log point, the connectivity is
considered here as one of the input variables to identify the road segment. This is
different from the hard constraint, which only considers connected road segments
and excludes the potential roads which are not connected with the previous road
segment. In some cases, it is possible that a road segment is incorrectly matched or
a road segment is too short to be matched with any locations. Therefore, relaxing
the connectivity as a hard constraint will avoid the possible error propagation in
case that one road segment was recognized incorrectly. In order to ensure that the
matched road segments are sections of a same route, we post process the matched
data by checking from the origin to the destination. For example, if there is one road
segment which does not connect with both the previous and the forward road
segments, the end node of the previous road will be connected with the start node of
the forward road by using the shortest path algorithm.

4 Results

Because for each log point in the training dataset, a set of candidate road segments
were gathered in advance, in which each road segment has a label on whether it is a
matched road (true) or not (false). The inter-dependency correlations among input
and output variables are then set up in terms of the ground truth. Then the data can
be used for training the model to obtain the potential interdependency correlations,
which can be used for prediction.

Table 1 shows an example of the conditional probabilities for the connectivity
variable specifically. The conditional probability here indicates the extent of the
matching dependency on whether two road segments are connected. The percentage
of rightly matched is the relative value by comparing the number of data records,
which are matched correctly divided by the total sample. It represents the relative
accuracy based on the current dataset. As one can see that the probability of rightly
matched road reaches 0.832, if the current road connects with the previous road. For
un-matched roads, the percentage of the non-connected (0.535) is slightly higher
than that of the connected (0.465). This is reasonable in that the probability of

Table 1 Conditional
probability of connectivity The rightly matched road Connect with the

previous road
(connectivity)

Yes No

True 0.832 0.168

False 0.465 0.535
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un-matched roads is dependent on the size of candidate road sets and the cross-
effects of other input variables.

For these roads that are in the candidate road set (here, the label is False) but not
the matched roads, the connectivity results into a percentage of 0.465 and 0.535 for
connected and unconnected road segments, respectively. This means the uncon-
nected roads are more possible (0.535 vs. 0.465) to be un-matched road than
matched roads, indicating the connectivity correlation will benefit to matching the
road correctly.

In order to evaluate the performance of the proposed BBN model, we use the
results according to the indicators of the correctly classified instances (CCI),
incorrectly classified instances (ICI) and Kappa value (Kappa). The ICI, being the
other round of CCI, labels the percentage of incorrectly matched data. The kappa
statistic measures the agreement of prediction with the true class [14]. Here, the
value of 0 and 1 signifies incomplete and complete agreement, respectively.
A higher value of Kappa indicates a better performance of the model.

Table 2 presents the details of the prediction accuracy. It is found that the
accuracy of correctly classified instances 87.02 %. This means the BBN model has
a good performance in matching the GPS data. The level of Kappa for BBN model
is 0.577, which is also satisfied in this context.

Table 3 shows the results of hit ratio for the two classes of the output variable in
the BBN model. Hit ratio is a measure of business performance traditionally
associated with sales. It is normally a matrix which includes all the combinations of
different classes in the prediction result. Here, the hit ratio shows how accurate a
road was matched. The higher is the value, the more accurate are the matched
results. Since we set the variable into 2 levels, one is the right road segment, and the
other is the found road segments but not the right road. We found for both classes,
the accuracy percentages are 56.19 and 95.64 %, respectively. These ratios are
calculated based on the whole candidate road segments, which means that the more
number of candidate road, the lower of the level of confirmed ratio, because only
one road among the candidate roads can be labeled as the right road. This is why the
ratio of confirmed yes is lower than that of the confirmed no, because the number of
unmatched roads in the candidate road set is large.

Table 2 Prediction accuracy
and model performance CCI ICI Kappa

All samples 87.018 % 12.983 % 0.577

Table 3 Results of the hit
ratio Confirmed yes Confirmed no

Hit ratio 56.19 % 95.64 %
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5 Summary, Conclusions and Discussion

Identifying the location of a GPS point on a road segment has been an important
research issue in transportation planning, transport modeling and environmental
analysis. In route choice simulations, the GPS data provides the merit with more
accurate and detailed real-time information, which is impossible to approximate in
traditional stated choice experiments. Moreover, the matched roads in combination
with the time information will also contribute to providing more possibilities in
microscopic simulation of traffic flow and environmental analyses.

Development of an efficient map matching algorithm is of high importance in
different research fields. Due to the fact previous methods are not efficient enough
in the aspect of flexibility and learning capability, in this paper, we proposed an
algorithm using Bayesian belief network model for map matching of GPS data.
Variables employed in the model are distance to road, difference of directions,
difference of angles of two adjacent links, connectivity, number of satellites and
PDOP. The algorithm is investigated by using the data collected in the Eindhoven
region, The Netherlands. Simulation results showed that the BBN model shows a
good performance in recognizing the road segments with an accuracy of 87 %
(correctly classified instances).

As one may argue that the accuracy of GPS data is questionable, which are a
common issue in this study as well as others related to map matching algorithms,
such data should not give main influences on the matching results. Although the
extreme unrealistic data appear not much frequent in our GPS data, it is always true
that the effect of the noise data should be handled well. Therefore, when applying
this algorithm in real applications, a process to filter such data out is necessary.
Moreover, the algorithm needs to be improved by designing it more flexible with
respect to these inaccurate data.

As presented in the paper, the performance of the algorithm was evaluated
through a carefully recorded dataset. This was considered as a feasible way to
confirm the validity of this algorithm, because the validation of an algorithm in the
context of map matching is not much straightforward. There needs additional effort
to provide example data where sufficient ground truth and various special cases
should be included. In spite of the acceptable efficiency of Bayesian network in map
matching (87 %), one cannot say it is a better algorithm than others at this moment
because of the difference in the GPS data used. Future research will go further to
examine some other algorithms by using the same data set to see the possible
superiority of the proposed algorithm.

As to test the efficiency of this algorithm, in this paper, a prototype of an enhanced
map matching algorithm was proposed and examined through a small sample data.
However, it is necessary in future work to include more sample data to further check
the generality in large scale applications. Since the current algorithm spent much
time in referencing the geo-objects in GIS, future research should consider the
processing speed to make it realisable real-time applications. In a more general
context, various special cases, which are common in GPS data, like passing through
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a cross-section, U-turn, driving through round-about and traveling off-roads, are
necessary to take into account. Facts representing the special cases should be
extracted in advance from large GPS samples. To that end a more flexible map
matching algorithm will incorporate the capability to comprehensively deal with
different cases.
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