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Abstract In times where urbanization becomes more important every day, epi-
demic outbreaks may be devastating. Powerful forecasting and analysis tools are of
high importance for both, small and large scale examinations. Such tools provide
valuable insight on different levels and help to establish and improve embankment
mechanisms. Here, we present an agent-based algorithmic framework to simulate
the spread of epidemic diseases on a national scope. Based on the population
structure of Germany, we investigate parameters such as the impact of the number
of agents, representing the population, on the quality of the simulation and evaluate
them using real world data provided by the Robert Koch Institute [4, 22]. Fur-
thermore, we empirically analyze the effects of certain non-pharmaceutical coun-
termeasures as applied in the USA against the Influenza Pandemic in 1918–1919
[18]. Our simulation and evaluation tool partially relies on the probabilistic
movement model presented in [8]. Our empirical tests show that the amount of
agents in use may be crucial. Depending on the existing knowledge about the
considered epidemic, this parameter alone may have a huge impact on the accuracy
of the achieved simulation results. However, with the right choice of parameters—
some of them being obtained from real world observations [10]—one can efficiently
approximate the course of a disease in real world.
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1 Introduction

In order to improve our chances to control an epidemic outbreak, we need proper
models which describe the spread of a disease. Institutes, governments, and sci-
entists all over the world work intensively on forecasting systems in order to be well
prepared if an unknown disease appears.

In recent years a huge amount of theoretical and experimental study has been
conducted on this topic. While theoretical analysis provides important and some-
times even counter intuitive insights into the behavior of an epidemic (e.g. [6, 8]), in
an experimental study one can take many different settings and parameters [16, 17]
into account. These usually cannot be considered simultaneously in a mathematical
framework. A specific topology, for example, may have its own attributes that are
completely different in other topological settings.

The goal of this paper is to present and empirically analyze a dynamic model for
the spread of epidemics in an extended manner. One of our objectives is to find the
right parameters, which lead to realistic settings. Therefore, we investigate a general
simulation environment, in which the different parameters can easily be adjusted to
real world observations. A second objective is to evaluate similarities between
countermeasure approaches in our model and the real world. We use empirical data
for the comparison. Our tool is agent-based, i.e., the individuals (or groups of such)
are modeled by agents interacting with each other. The environment approximates
the geography of Germany, in which agents may travel between cities. Within a city
the agents interact according to the probabilistic model presented in [8] in a dis-
tributed manner. For a detailed description of the algorithmic framework see
Sect. 2. In order to describe the problems and the related work, we often utilize the
style and wording of [8].

1.1 Related Work

There is plenty of work considering epidemiological processes in different scenarios
and on various networks. The simplest model of mathematical disease spreading is
the so called SIR model (see e.g. [14, 20]). The population is divided into three
categories: susceptible (S), i.e., all individuals which do not have the disease yet but
can become infected, infective (I), i.e., the individuals which have the disease and
can infect others, and recovered (R), i.e., all individuals that recovered and have
permanent immunity (or have been removed from the system). Most papers model
the spread of epidemics using a differential equation based on the assumption that
any susceptible individual has uniform probability b to become infected from any
infective individual. Furthermore, any infected player recovers at some stochasti-
cally constant rate c.

This traditional (fully mixed) model can easily be generalized to a network. It
has been observed that the corresponding process can be modeled by bond per-
colation on the underlying graph [13, 19]. Interestingly, for certain graphs with a
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power law degree distribution, there is no constant threshold for the epidemic
outbreak as long as the power law exponent is less than 3 [20] (which is the case in
most real world networks, e.g. [1, 3, 11, 21]). If the network is embedded into a low
dimensional space or has high transitivity, then there might exist a non-zero
threshold for certain types of correlations between vertices [19]. However, none of
the papers above considered the dynamic movement of individuals, which seems to
be the main source of the spread of diseases in urban areas [10].

In [10] the physical contact patterns are modeled by a dynamic bipartite graph,
which results from movement of individuals between specific locations. The graph is
partitioned into two parts. The first part contains the people who carry out their daily
activities moving between different locations. The other part represents the various
locations in a certain city. There is an edge between two nodes, if the corresponding
individual visits a certain location at a given time. Obviously, the graph changes
dynamically at every time step.

In [7, 10] the authors analyzed the corresponding network for Portland, Oregon.
According to their study, the degrees of the nodes describing different locations
follow a power law distribution with exponent around 2:8.1 For many epidemics,
transmission occurs between individuals being simultaneously at the same place,
and then people’s movement is mainly responsible for the spread of the disease.

The authors of [8] considered a dynamic epidemic process in a certain (ideal-
istic) urban environment incorporating the idea of attractiveness based distributed
locations. The epidemic is spread among n agents, which move from one location to
another. In each step, an agent is assigned to a location with probability propor-
tional to its attractiveness. The attractiveness’ of the locations follow a power law
distribution [10]. If two agents meet at some location, then a possible infection may
be transmitted from an infected agent to an uninfected one. The authors obtained
two results. First, if the exponent of the power law distribution is between 2 and 3,
then at least a small (but still polynomial) number of agents remains uninfected and
the epidemic is stopped after a logarithmic number of rounds. Secondly, if the
power law exponent is increased to some large constant, then the epidemic will only
affect a polylogarithmic number of agents and the disease is stopped after

ðlog log nÞOð1Þ steps. In this case each agent is allowed to spread the disease for a
number of time steps, which is bounded by some large constant.

In addition to the theoretical papers described above, plenty of simulation work
exists. Two of the most popular directions are the so called agent-based and struc-
tured meta-population-based approach, respectively (cf. [2, 15]). Both models have
their advantages and weaknesses. The main idea of the meta-population approach is
to model whole regions, e.g. georeferenced census areas around airport hubs [5], and
connect them by a mobility network. Then, within these regions the spread of
epidemics is analyzed by using the well known mean field theory. The agent-based
approach models individuals with agents in order to simulate their behavior. In this

1 In [10] the degree represents the number of individuals visiting these places over a time period
of 24 h.
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context, the agents may be defined very precisely, including e.g. race, gender, edu-
cational level, etc. [16, 17], and thus provide a huge amount of detailed data condi-
tioned on the agents setting. Furthermore, these kinds of models are also able to
integrate different locations like schools, theaters, and so on. Thus, an agent may or
may not be infected depending on his own choices and the ones made by agents in his
vicinity. The main issue of the agent-based approach is the huge amount of compu-
tational capacity needed to simulate huge cities, continents or even theworld itself [2].
This limitation can be attenuated by reducing the number of agents, which then entails
a decreasing accuracy of the simulation. In the meta-population approach the simu-
lation costs are lower, sacrificing accuracy and some kind of noncollectable data.

A specific field of application of such simulations is the investigation of the
impact of (non-)pharmaceutical countermeasures on the behavior of epidemics.
Germann et al. [12] investigated the spread of a pandemic strain of the influenza
virus through the U.S. population. They used publicly available 2000 U.S. Census
data to identify seven so-called mixing groups, in which each individual may
interact with any other member. Each class of mixing group is characterized by its
own set of age-dependent probabilities for person-to-person transmission of the
disease. They considered different combinations of socially targeted antiviral pro-
phylaxis, dynamic mass vaccination, closure of schools and social distancing as
countermeasures in use, and simulated them with different basic reproductive
numbers R0. It turned out that specific combinations of the countermeasures have a
different influence on the spreading process. For example, with R0 ¼ 1:6 social
distancing and travel restrictions did not really seem to help, while vaccination
limited the number of new symptomatic cases per 10,000 persons from *100 to
*1. With R0 ¼ 2:1, such a significant impact could only be achieved with the
combination of vaccination, school closure, social distancing and travel restrictions.

1.2 Our Results

The results of this paper are two-fold. First, we show that by increasing the number
of agents we are able to significantly improve the accuracy of our results in the
scenarios we have tested. This is due to different phenomena which are only visible
if the amount of agents in use is large enough. For example, if the number of agents
exceeds a certain value, then the epidemic manages to keep a specific (low) amount
of infected individuals over a long time period. Furthermore, the number of agents
has to be above some threshold to allow the epidemic to enter some specific areas/
cities in the environment we used. Obviously, a certain amount of agents is also
needed to avoid significant fluctuations in our results.

The second main result of this paper is that by setting the parameters properly,
one can approximate the effect of some non-pharmaceutical countermeasures, that
are usually adopted if an epidemic outbreak occurs. This observation is supported
by the empirical study of [18]. Interestingly, the right choices of parameters in our
experiments seem to be in line with previous observations in the real world (e.g. the
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right power law exponent seems to be in the range of 2:6–2:9, cf. [10]). To analyze
the effect of the countermeasures mentioned above, we integrate the corresponding
mechanisms on a smaller scale, and then verify their impact on a larger scale too.

2 Theoretical Models and Algorithmic Framework

In the following we provide an empirical analysis on a small as well as on a large
scale. Hereby, the cities are chosen from a list in descending order of their popu-
lation size. It is intuitively clear that large (and thus attractive) cities play a major
role for the epidemic pace since a higher population density entails a potentially
higher infection probability. Excluding such hotspots would of course slow down
the infection spread. The problem is, this could only be achieved by putting the
whole city into quarantine. However, isolating an entire city is not a trivial task. For
example, people living in the suburbs but working in the city might not be willing
to risk their job by obeying the quarantine. Therefore, we consider such strategies
only on a smaller scale.

In our model the agents may not only move between locations within a city but
between cities as well. Furthermore, due to simplicity, the agents are not catego-
rized (i.e., they do not provide further properties like gender etc.). Since we are not
interested in the evaluation of such details. In the following, we briefly introduce
the model. Due to readability we present our model with respect to the following
four categories: (1) The environment on a large scale (inter-city movement), (2) The
environment on a small scale (intra-city movement), (3) The epidemic model, and
(4) The countermeasure model.

2.1 The Environment on a Large Scale

Let GðdÞ ¼ ðV ;EÞ be a complete graph with m nodes V :¼ fc1; . . .; cmg and
parameter d :¼ fdc1 ; . . .; dcmg, whereas ci ¼ Gci (see below) represents the corre-
sponding city ci. Let further pci be the population size of ci and p :¼ fpci ; . . .; pcmg.
Then the attractiveness of ci is given by dci ¼ pciP

1� i�m
pci
. Consequently, G represents

the topology, which contains all cities, on a large scale. In other words, we model the
inter-city movement using the complete graph GðdÞ. In this graph, each ci 2 V
corresponds to a city of Germany. However, depending on the size, not every city
of Germany is represented by a node in V .2 The population is represented by

2 The amount of overall agents in use (n) determines how many cities are represented by
V . Therefore we sort the list of all cities of Germany in descending order of their population size.
Then, starting from the top, we include the currently considered city ci to V if and only if the
assigned amount of agents to said city is at least 1. The latter amount is given by n � dci .
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n ¼ P
1� i�m ndci agents, with ndci being the number of agents assigned to ci. Note

that said number is proportional to the cities real world population. Furthermore,
each city ci 2 V is assigned an attractiveness dci proportional to its population size
(w.r.t. the whole population). Let Ai;s;t be the event that agent i travels from city s to t.
Let further p0 be the probability that an agent decides to travel at all, and let distðs; tÞ
be the Euclidean distance between cities s and t. Then the probability that event Ai;s;t

occurs is given by

PrðAi;s;tÞ ¼ p0 � dt � dist�1ðs; tÞ
P

ðs;jÞ2E
dj � dist�1ðs; jÞ :

Thus, the probability for an agent entering a specific city depends on the distance
to said city, its population size as well as the current position of the considered
agent.

2.2 The Environment on a Small Scale

Let GciðdðvÞÞ ¼ fVci ;Ecig be a complete graph with mci ¼ jndcid e nodes (also
called cells), with dðciÞ :¼ fdv1 ; . . .; dvmc g. Here, j[ 0 is a constant, which will be
specified in the upcoming experiments. Further, note that j does not affect the
amount of agents but the amount of cells only. Then the attractiveness of cell
vi 2 Vci within a city ci is given by dvi . Said attractiveness is chosen randomly with
probability proportional to 1=ba for a value b[ 1, where a[ 2 is a constant
depending on the simulation run. In other words, each ci 2 V , representing city ci,
is a clique of cells on its own, thus incorporating intra-city movement into our
model. The cells represent locations within a city an agent can visit. Each cell may
contain agents (individuals), depending on the cells so-called attractiveness. If an
agent decides to stay within its current city, said agent moves to a randomly chosen
cell according to the distribution of the attractiveness’ among the cells. This also
holds for the first cell an agent is accommodated in after entering a city.

2.3 Epidemic Model

We use three different states to model the distributed spreading process. These
states partition the set of agents into three groups; IðjÞ contains the infected agents
in step j, UðjÞ contains the uninfected (susceptible) agents in step j, and RðjÞ
contains the resistant agents in step j. Whenever it is clear from the context, we
simply write I , U, and R, respectively. If an uninfected agent i visits a cell (within
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a city) which also contains agents of IðjÞ, then i becomes infected with probability

1� ð1� cÞjI 0ðjÞj, where I0ðjÞ represents the set of infected agents accommodated in
the same cell as i. We refer to the concrete value of c in the upcoming simulations.

2.4 Countermeasure Models

Our countermeasure models mainly take advantage of the parameters a and j. That
is, high values of these two parameters imply a high level of countermeasures and
vice versa. With countermeasures applied, individuals avoid places with a large
number of persons more often, waive needless tours, and are more careful when
meeting other people. While a is mostly responsible for a decreasing number of
visitors within a cell, and thus for the avoidance of crowded areas for example,
j determines the total space available for all individuals. As pointed out in [18],
a single countermeasure alone is most likely not sufficient to stop an epidemic.
Therefore, we assume a combination of them to be in place, which then would be
able to sufficiently influence the parameters a and j. Note, our countermeasure
models apply to each city ci 2 V individually.

We use two different types of countermeasure-models: a (multi-tier) level based
approach considering the amount of infected agents in the current step, and a ratio
based approach considering the amount of newly infected agents in the current step
compared to the one in the step before. In the following we use a0 and j0 as initial
values for a and j, respectively.

In the level based model we have one or more levels in which a certain pair of
parameters a and j is used. Let LMm stand for the level based model with m levels
L ¼ fl1; . . .; lmg [ l0. Further, let T ¼ fld0 ; lu0; ld1 ; lu1; . . .; ldm; lumg be the set of transi-
tion points for all levels, i.e., ldi defines the transition point from level i to i� 1
whereas lui defines the transition point from level i to iþ 1. Note that, lui ¼ ldiþ1 does
not necessarily hold. Additionally, a0; a1; . . .; am and j0; j1; . . .; jm define
the parameters a and j, which are applied in the corresponding levels l0; . . .; lm.
Figure 1a depicts an example situation.

In contrast, the ratio based model RM uses a non static approach. Let the set of
newly infected nodes of a city ci in step j be denoted by I�

ciðjÞ. Furthermore, let aj

and jj denote the corresponding parameters used in step j. If
jI�

ci
ðjÞj

jI�
ci
ðj�1Þj � a, for some

constant a, then we set ajþ1 ¼ aj þ z1 and jjþ1 ¼ jj þ z2, where z1; z2 are some
small constants which will be specified later. Consequently, we set ajþ1 ¼
maxfa0; aj � z1g and jjþ1 ¼ maxfj0; jj � z2g whenever

jI�
ci
ðjÞj

jI�
ci
ðj�1Þj � 1=a. The val-

ues applied in the various models are specified in Sect. 3.3. Figure 1b depicts an
example situation.
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3 Experimental Analysis

The environment in our simulations approximates the geography of Germany uti-
lizing 10 million agents and more. Note that, the obtained results remain similar
utilizing up to 100 million agents. Depending on the number of agents, our sim-
ulations incorporate several hundred cities as visitable areas spread all over the
country. Only cities with an initial agent amount of at least one are included in the
simulation. Each city is assumed to be reachable from any other city. However, an
agent may travel at most 1,000 km within a single round. Each round represents a
whole day in the real world. Consequently, an agent moving from one city to
another has to wait until its destination is reached before it can interact with other
agents at said destination.

3.1 Simulations

In the upcoming sections we present and evaluate our results with the focus on: (1)
the impact of the number of agents on the characteristics of the simulated epidemic
compared to real world data, and (2) the impact of non-pharmaceutical counter-
measures on the behavior of the epidemic (e.g. social distancing, school closures,
and isolation [18]).

Furthermore, we also analyze our parameter settings. Although this is only a
short part, our settings seem to coincide with the real world observations of [10],
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Fig. 1 Basic examples for the two countermeasure models. a An example demonstrating a
possible configuration of LM2. The broken line depicts the amount of total infections in the city
while the scope of activity of the countermeasure levels is represented by the rectangles. b An
example demonstrating a possible configuration of RM. The broken line depicts the amount of total
infections in the city (on a logarithmic scale) while the scope of activity of the countermeasure
levels is represented by the rectangles
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and thus provide an additional valuable insight. Note that the figures presented in
this section show values based on the real world population size and not on the
number of agents.

3.2 Relevance of the Chosen Parameters

Based on real world observations (e.g. [10]), we chose a ¼ 2:8 and j ¼ 1 as a
starting point for a series of simulations concerning a and j, respectively. Each plot
represents the average value of 50 different simulation runs for each parameter
constellation utilizing 10 million agents. The parameter notation is as follows: c is
the probability for an agent v 2 U to become infected independently by each w 2 I
occupying the same cell at the same time, n is the amount of rounds an agent v 2 I
is infectious, thus being able to infect others, Cityinit is the initial amount of cities
the infection is being placed in, Agentinit is the amount of initially infected agents
which are placed in Cityinit different cities, a is the power law exponent used to
individually compute the attractiveness of the cells within each city, and j is a
multiplicative factor to increase/decrease the amount of cells proportional to the
initially assigned amount of agents.

Figure 2a and b show the impact of a and j on the behavior of the epidemic, and
compare the results to the characteristics of a typical Influenza case reported by the
RKI.3 To increase the readability, we omit to add the RKI-plot as the 6th one.
Instead we refer the reader to Fig. 3. Among all five a-values a ¼ 2:8, which has
also been obtained in [10] in a different context, represents the best tradeoff between
curve similarity and amount of infections. All remaining parameters were set to
identical values as in Case 1 (cf. Sect. 3.3). For j a similar phenomenon can be
observed. With increasing j (including fractional values), the characteristics of the
curve (i.e., the amount of infected individuals at the peak vs. total number of
infections and total duration of the outbreak) become less and less accurate. Even if
we increase the value to 2, the obtained curve does not follow the characteristics of
the real world observations reported by the RKI [see footnote 3] anymore.

In terms of the probability of infection c we simply chose a reasonable value low
enough to model an Influenza epidemic, but high enough to provoke an outbreak.
This seemed reasonable due to the (at least to our knowledge) lack of concrete
values deduced from real world observations.

3 The Robert Koch Institute (RKI) is the central federal institution in Germany responsible for
disease control and prevention and is therefore the central federal reference institution for both,
applied and response-orientated research. (Source http://www.rki.de/EN/Home/homepage_node.
html).
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Fig. 2 A composition of multiple simulation runs concerning varying a (a) and j (b) only. All
other parameters are identical to Case 1 (cf. Sect. 3.3). Each result represents the average of
50 different simulation runs with 10 million agents for the topology of Germany. a 2.4 ≤ α ≤ 3.2.
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Fig. 3 Simulation results for Case 1a) (green) in comparison to real world data (red) provided by
the RKI for a varying amount of agents. The abbreviation NII stands for Newly Infected
Inhabitants. All results up to and including 10 million agents represent the average values of
50 different simulation runs, whereas the result for 100 million agents averages over 20 different
simulation runs. The reliability of the averaged value is indicated by the corresponding confidence
interval. a 10.000 agents. b 500.000 agents. c 10.000.000 agents. d 100.000.000 agents
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3.3 Case 1—Number of Agents

Before we present the results for this case, we first introduce the relevant sources for
comparison. Here we compare our results to real world data provided by the RKI
[22] SurvStat system for the year 2007. The parameter values were taken from
reference data provided by the RKI [4] where possible, or set to reasonable ones
otherwise (cf. Sect. 3.2 for more details).

3.3.1 RKI: Basis of Comparison

In the following we compare our results to the real world data provided by the RKI
[see footnote 3]. For this purpose we use two different data sources: the official
report of the Influenza epidemiology of Germany for 2010/2011 [4] and an online
database containing obligatory reports called SurvStat [22].

Relevance. The data for the SurvStat database and the report of 2010/2011 itself
were obtained from more than 1 % of all primary care doctors spread all over
Germany. This indicates the significance according to international standards.
Unfortunately, there are some drawbacks resulting from the type of data ascer-
tainment itself. Note that not every infected person consults a doctor, which implies
that the data of the SurvStat system contains only the serious courses of the disease.
Nonetheless, these sources provide a valuable tool to obtain insight into the spread
and persistence of the Influenza virus in Germany. Further, due to the data’s sig-
nificance, it is possible to estimate the number of infections within certain areas as
well. Since the spread of infections in the real world is influenced by factors like
seasonal fluctuations or the virus’ aggressiveness, the number of total infections
may significantly differ from year to year, cf. [22] for different years. However, the
course of the curve usually does not change. Consequently, we do not focus on
absolute values in our simulations, but on the characteristics of our results. These
characteristics remain, up to some scaling factor, identical over the whole data set
provided by the RKI.

3.3.2 Case 1

The parameters for this subcase are as follows. We set c ¼ 7%, n to 5 days, the
amount of initially infected cities Cityinit to 1 (namely Berlin), and the amount of
initially infected agents Agentinit to 0.0015 % of the overall agents used for these
simulations. Furthermore, a ¼ 2:8 and j ¼ 1.

Figure 3 shows the results for this case. Here the green curve represents the real-
world data provided by the RKI for the year 2007 while the red curve represents our
simulation results. Note that both curves vary significantly in terms of absolute
numbers. However, this is not our focus here. Due to the level of abstraction in our
model and since the RKI data only contains reported cases (see above), the absolute
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numbers do not coincide. Additionally, as stated above, the data provided by the
RKI also differs significantly (in terms of absolute numbers but not the disease
characteristics) from year to year (cf. [22]). Therefore, we focus on the course of the
disease and the resulting characteristics of the plotted curves.

It is easy to see that the more agents are used, beginning from Fig. 3a up to 3d,
the more the curve characteristics converge. Moreover, the accuracy of each sim-
ulation run increases as well (cf. the confidence intervals in Fig. 3). With at least
500; 000 agents in use, both curves become similar.

To obtain a more formal evaluation, we define three measures, which are used to
compare our results to the data provided by the RKI. These are: the time to peak
(TTP), the epidemic duration (ED), and the area of the curve (AC). The time to
peak describes the week with the maximum amount of newly infected agents of the
corresponding curve. The area of the curve is simply the summation of the area
between the origin and the endpoint EP (defined by the epidemic duration). Finally,
the endpoint of the epidemic duration is the week in which only a minor amount of
new infections occur, and no significant new infections are observed anymore.
Minor infections are defined to start in a round i and last till the last round j of the
simulation while for all rounds i� i0 � j it holds that the amount of newly infected
agents does not exceed 9 % of the maximum value.

In the following we consider the relative values of these measurements compared
to the RKI data. That is, the numbers represent the ratio between the value obtained in
our simulations and the value provided by the RKI. For example, a value of 4:00 for
TTP in the case of 10; 000 agents implies that the time to peak in our case divided by
the time to peak in the real world data is 4. Using the individual deviation measure-
ments, we define a global deviation value by the formula 1

3 � TTPþ 1
3 � ACþ 1

3 � ED.
For simplicity we consider each individual measurement uniformly weighted. The
results, which confirm our previous observations, are shown in Fig. 4. All obtained
results and previous statements imply a fragile balance between the accuracy, the
parameter setting, and the amount of agents in use.
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Fig. 4 A visual representation of the data computed using the deviation measurements for the
experiments conducted in Case 1
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3.3.3 Case 2—Non-pharmaceutical Countermeasures

Nowwe extend our analysis to incorporate non-pharmaceutical countermeasures such
as school closures and social distancing. Here we stick to a fictional epidemic simply
because it simplifies the presentation, i.e., due to the increase of c to 12%, a faster
spread is achieved and the impact of the used countermeasures is amplified. Similar to
Case 1, we set n to 5 days, the amount of initially infected cities Cityinit to 1 (namely
Berlin), and the amount of initially infected agentsAgentinit to 0:00075% of the overall
agents (to compensate the higher c in the beginning). All relevant parameters
regarding the countermeasure models can be found in the original paper [9].

We assume that non-pharmaceutical countermeasures basically affect the
parameters a and j, since the individuals will most likely avoid places with a large
number of persons, waive needless tours, and be more careful when meeting other
people. For obvious reasons, we cannot compare our simulation results to current
real-world data containing results for different epidemics with varying (or no)
countermeasures in use. Therefore, we use the work of Markel et al. [18] for this
purpose. Especially Fig. 5 is of particular interest. There, the direct correlation
between establishing countermeasures and a decreasing amount of new infections
(and vice versa) is well highlighted. We observed an identical effect in our simu-
lations (cf. Fig. 6). Note that different combinations of countermeasures used in [18]
entail different kinds of impacts on the death rates. In contrast, we do not focus on
specific combinations but on sufficient ones to actually achieve an immediate
impact on the epidemic.

As already described in Sect. 2, we use two different countermeasure approa-
ches: the level based (LM1; LM2 and LM3), and the ratio based (RM), respectively.
Both use different mechanisms and parameters to achieve the embankment of the
epidemic. Recall that all transition points in the level based model are chosen w.r.t.

Fig. 5 Weekly excess death rates from September 8, 1918, through February 22, 1919 [18, Fig. 3]
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the ratio between the amount of currently infected individuals and the population
size of the city. Figure 7 compares all models to each other on the national level.

Although the level based approach is completely different compared to the ratio
based approach, the achieved results are similar. However, the overall increase of a
and j by the ratio based approach may be noticeably higher, especially if a large
number of agents is used. That is, while all LM-models use a� 3:3, the RM-model
goes above 4. This implies that the LM-models are more cost efficient, since both a
and j are kept lower and therefore less effort is needed to achieve and maintain said
values.

Additionally, to be able to compare our results to the findings in [18], we
examine the following city in more detail: Berlin (BER) with a population size of
� 3:5 million. Figure 6 represents a composition of some interesting results. Note
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Fig. 6 Example results for BER for Case 2. The green curve represents the amount of infected
inhabitants in the corresponding city while the red curve indicates the activated countermeasure level
with respect to the countermeasure model in use. The number of agents refers to the total amount of
agents used for the simulation. a Model LM3, 100 million agents. b Model RM, 10 million agent
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Fig. 7 Comparison of different countermeasure models on a large scale, i.e., each value represents
the situation for the corresponding countermeasure model in all cities combined. a 10.000 agents.
b 100.000.000 agents
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that the green curve in these figures represents the countermeasure level for the LM
models at the corresponding time, and indicates the number of times z1; z2 have
increased a; j in the RM model. Recall that, in the RM-model level j implies
ai ¼ a0 þ

P j
k¼1 z1 and ji ¼ j0 þ

P j
k¼1 z2 for a step i.

Our results confirm the impact of different countermeasures observed in the real
world [18]. Compared to Fig. 5, our simulations show a similar behavior (i.e., more
than one peak during the epidemic). It is easy to see that the countermeasures
presented in [18] directly influence the course of the epidemic. The same property
can be observed in our results (cf. Fig. 5). One can see that depending on the
countermeasure level (indicated by the activated/used level), the number of infec-
tions increases or decreases. Note that although our figures show the number of
infected individuals and not the death rate as shown in Fig. 5, a comparison is still
possible, since this deviation can be normalized using a scaling factor.

Furthermore, we observe that small adjustments of the two parameters a and j
entail a significant impact on the number of overall infections. Among others we
already proved that if the power law exponent (and j as well) is assumed to be
some large constant, then even a very aggressive epidemic with c ¼ 100% will
affect no more than a polylogarithmic number of the population. Our findings now
back up these observations.

In conclusion, we showed the impact of different countermeasures on the
behavior of a population w.r.t. our model. Although some complexity of the real
world is lacking, the similarities to real-world observations are still present. Starting
with settings for the environment, and therefore implicitly the individuals’ behavior,
based on real-world observations, relatively low level countermeasures were suf-
ficient to embank or at least significantly suppress an outbreak. Essentially the same
properties were already observed in reality (cf. [18]). This underlines the impor-
tance of behavioral and environmental models based on power law distributions.

4 Conclusions

Agent based simulators offer various possibilities to perform very detailed exper-
iments. However, the parameters used in these experiments highly influence the
results one might obtain. As we have seen, even the number of agents has a
significant impact on the quality of the results. This includes the reliability of
different simulation runs with an identical parameter setting. By using the right
parameter settings and a proper number of agents, it is possible to approximate the
course of a disease as observed in the real world. Furthermore, our experiments
indicate that the algorithmic framework presented in this paper is able to describe,
to some extent, the impact of certain non-pharmaceutical countermeasures on the
behavior of an epidemic.
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