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Abstract Axial flow pumps are one type of blade pump with great flux, lower
head, highly fluids flow. This type of pump can be used in agriculture, irrigation
and massive water project widely. Impellers are the main and highly sensitive part
of the pumps which performs the function by transferring energy to the fluid there
by increasing pressure and velocity. In axial flow pump design process, in order to
get high performance pump, designers usually try to increase the efficiency (1) and
decrease the required net positive suction head (NPSHr) simultaneously. In this
paper, multi-objective optimization of axial flow pump based on modified Particle
Swarm Optimization (MPSO) is performed. At first, the NPSHr and ) in a set of
axial flow pump are numerically investigated using commercial software ANSYS
with the design variables concerning hub angle f;, chord angle ., cascade solidity
of chord o, maximum thickness of blade H. And then, using the Group Method of
Data Handling (GMDH) type neural networks in commercial software DTREG, the
corresponding polynomial representation for NPSHr and n with respect to design
variables are obtained. Finally, multi objective optimization based on modified
Particle Swarm Optimization (MPSO) approach is used for Pareto based optimi-
zation. The result shows that an optimal solution of the axial flow pump impeller
was obtained: NPSHr was decreased by 11.68 % and efficiency was increased by
4.24 % simultaneously. It means by using this method, better performance pump
with higher efficiency and lower NPSHr can be got and this optimization is feasible.
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1 Introduction

Axial flow pumps are huge consumers of energy in various industries. This kind of
blade pumps has characters of great flux, lower head, and high fluids flow. Because
of its broad use in agriculture, irrigation and massive water project, so many
researchers pay attention to the area of axial flow pump design [1]. So it is essential
to improve the efficiency of such equipment through the design optimization.
Optimization of axial flow pump is a multi-objective optimization problem rather
than a single objective optimization problem that has been considered so far in the
literature. Luo et al. [14] investigated an multi-object optimum design for hydraulic
turbine guide vane based on NSGA-II algorithm. They tried to minimize the loss of
total pressure and maximize the minimal pressure in guide vane. Finally, for the
optimized guide vanes, the loss was reduced, and the cavitations performance was
improved. Zhang et al. [20] presented a multi-objective shape optimization of
helico-axial multiphase pump impeller based on NSGA-II and ANN. They tried to
maximum the pressure rise and pump efficiency. After the optimization using
NSGA-II multi-objective genetic algorithm, the five stages of optimized compres-
sion cells were manufactured and applied in experiment test. The result shows that
the pump pressure rise and the pump efficiency have increased which indicated that
the method is feasible.

NPSHr and efficiency in axial flow pumps are important objective functions to
be optimized simultaneously in a real world complex multi-objective optimization
problem. These objective functions are either obtained from experiments or com-
puted using very timely and high cost CFD approaches, which cannot be used in an
iterative optimization task unless a simple but effective meta-model is constructed
over the response surface from numerical or experimental data [18]. Therefore,
modelling and optimization of the parameters is applied in this paper by using
GMDH-type neural networks and modified multi-objective Particle Swarm Opti-
mization in order to minimize the NPSHr and maximize the efficiency of the pumps
simultaneously.

In this paper, pump NPSHr and efficiency are numerically investigated using
commercial software ANSYS. Then based on the numerical results of geometrical
parameters and pump two objective functions, GMDH neural networks are applied
in commercial software DTREG in order to obtain polynomial models of NPSHr
and efficiency. The obtained simple polynomial models are then used in a Pareto
based modified multi-objective PSO optimization approach to find the best possible
combinations of NPSHr and efficiency, known as Pareto front.
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2 Definition of Variables and CFD Simulation of Axial
Flow Pump

2.1 Definition of Objective Functions

As present in Sect. 1, both the NPSHr and efficiency in axial flow pump are
important objective functions to be optimized simultaneously. The efficiency of a
axial flow pump is defined by

ﬂ:F (1)

where P, is the useful power transferred from pump to the liquid. P, can be given by
P. = ngH (2)

where P is shaft power.

NPSHr means the required net positive suction head which defines the cavitation
characteristic of axial flow pump. It is the energy in the liquid required to overcome
the friction losses the suction nozzle to the eye of the impeller without causing
vaporization [15]. NPSHr varies with design, size, and the operating conditions [2].
It will lead to reduction or stop of the fluid flow and damage the pump with the
increasing of the NPSHr. In the handbook of pump design, the NPSHr can be
calculated with the following formula:

Pin - Pmin 2
NPSHr — —n —Zmin | Yo

pPg 2g )

where Pj, is the pressure at inlet, P,,;, is the minimum pressure at the whole blade
surface which can be obtained from the post processing of ANSYS Fluent software
simulation [6]. p is the density of fluid and vy is the inlet velocity.

2.2 Definition of Design Variables

The design variables in this paper are hub angle B}, chord angle B, cascade solidity
of chord o, (6. = 1/t), maximum thickness of blade H. There are two sections are
defined in the blades, one on hub and another on shroud as shown in Fig. 1.

So there are four design variables namely: By, B¢, 6. and H. The various designs
can be generated and evaluated in ANSYS Fluent by changing the geometrical
independent parameters as shown in Table 1. Consequently, some meta-models can
be optimally constructed using the GMDH type neural networks in commercial
software DTREG, which will be further used in multi-objective Pareto based design
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Fig. 1 Design variables of
impeller blades

i

t Ge=Il/t

Shroud Hub

Table 1 Design variables and their range

Design variables Range from Range to Selected values

B 36° 54° 36°, 45°, 54°

Be 21° 25° 21°, 23°, 25°

o, 0.75 0.85 0.75, 0.80, 0.85

H 7 mm 11 mm 7 mm,9 mm,11 mm

of axial flow pump using modified PSO method. In this way, 81 various CFD
analyses have been performed.

2.3 Flow Analysis

Because of the incompressible fluid flow, the equations of continuity and balance of
momentum are given as

av;
6xi o

0 4)

DV, 1 dp vV, 2

Dt —Ba—Xi—FV—anaxj —a—xjuillj (5)
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Table 2 Operating Parameter Value
conditions in simulation
Number of blades 4
Fluid temperature 20°C
Liquid density 998 kg/m®
Rotation speed 530 rmp
Mass flow rate 2 m’/s
Pump head 23 m

The physical model that used in the solver is the Reynlds-Averaged Navier-
Stokes equations and the k-¢ turbulence models is used [17]. The k-¢ equations are
given as

Dk 9 K2 okl oV,

B (5 )] )
De 0 c K2 iy ¢ - ov; c &2 )
Dt o an k € an el k ™ an &2 k

For the grid generation, tetragonal, hexagonal mesh type was used in software
ANSYS Gambit 2.4.6. Pump and around of impeller areas used tetragonal mesh,
the other areas were filled with hexagonal mesh [9].

Boundary conditions are as follows: non-slip conditions was applied all around
the walls, mass flow rate at the pumps inlet, static boundary condition is used at the
outlet. The simulation is continued until the solution converged with a total residual
of less than 0.0001 [8].

Operating conditions are shown in the Table 2.

The results of numerical simulation using ANSYS Fluent are shown in Table 3,
moreover a path line and total pressure contour of the simulation are shown in
Figs. 2 and 3. Total 81 CFD simulation results can be used to build the response
surface of both the efficiency and the NPSHr using GMDH type neural networks.
Such meta models can be used for the Pareto based multi-objective optimization of
the axial flow pump using modified PSO method.

3 Meta-models Building Using GMDH-Type Neural
Network

Group Method of Data Handling (GMDH) polynomial neural network are self-
organizing approach by which gradually complicated models are generated based
on the evaluation of their performances on a set of multi input-single output data
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Table 3 Numerical results of CFD simulation

No. Design Variables Objective
Bn () Be () oc (°) H (mm) NPSHr (m) n (%)
1 36 21 0.75 7 6.5 61.2
2 54 23 0.75 9 7 80.6
3 45 25 0.85 11 7.2 79.4
4 54 21 0.8 11 8.2 78.1
5 36 23 0.75 9 6.2 83.4
6 36 25 0.85 7 7.1 86.4
7 45 21 0.8 9 6.7 80.6
8 45 23 0.85 11 8.4 79.1
9 54 25 0.75 7 8.5 83.4
80 54 25 0.85 11 6.5 64.3
81 45 23 0.75 9 7.7 74.1
Fig. 2 Path line of CFD 1.23¢+04
simulation 1.17e+04
1.11e+04
1.05e+04
9.87e+03
9.25¢+03
8.63e+03
8.02e+03
7.40e+03
6.780+03
6.17e+03
5.55¢+03
4.93e+03
4.32e+03
3.70e+03
. 3.08¢+03
2.47e+03 f
1.85¢+03 I/
1.23¢+03

6.170+02 )&
0.00e+00 7

pairs [12]. GMDH networks were originated in 1968 by Prof Alexey G. Ivakhnenko
who was working at that time on a better prediction of fish population in rivers at
the Institute of Cybernetics in Kyiv (Ukraine). This algorithm can be used to model
complex system without having specific knowledge of the system. The main idea of
GMDH is to build an analytical function in a feed forward network based on a
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of CFD simulation 1240405
| 1.17e+05
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1.04e+05
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quadratic node transfer function [5] whose coefficients are obtained using regres-
sion technique.

Fig. 3 Total pressure contour l 1.30e+05

3.1 Structure of a GMDH Network

The meaning of self-organizing means the connections between neurons in the
network are not fixed but rather are selected during training to optimize the net-
work. The number of layer in the network also is selected automatically to produce
maximum accuracy without over fitting.

As shown in Fig. 4, the first layer (at the left) presents one input for each
predictor variable. Every neuron in the second layer draws its inputs from two of
the input variables. The neurons in the third layer draw their inputs from two of the
neurons in the previous layer and this progress through each layer. The final layer
(at the right) draws its two inputs from the previous layer and produces a single
value which is the output of the network [16].

The formal definition of identification problem is to find a function f that can be
approximately used instead of the actual one f,. In order to predict output y for a
given input vector X = (Xy, X, X3, ...., X,) as close as possible to its actual output y,.
For the given M observation of multi input-single output data pairs, there have

Yi = fa(XilaxiZ,XB; .. .,Xm) (1 = 1,2, .. .,M) (8)

For any given input vector X = (Xy, X2, X3, ...., X,), there have
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[ not selected neuron

B selected neuron

Fig. 4 The structure of a basic GMDH network

yi:f(Xil,Xiz,Xi3,...,Xin) (1: 1,2,...,M) (9)

In order to determine the GMDH neural network, the square of difference
between the actual output and the predicted one is minimized, there have

M
Z [f(Xi1,Xi2,Xi3, - - -, Xin) — Yai]z — min (10)

i=1

The most popular base function used in GMDH is the Volterra functional series
in the form of

n n n n n n
ya:30+Zaixi+zzaijxixj+ZzzaiijinXk+... (11)
i=1

i=1 j=1 i=1 j=1 k=1

where y, is the Kolmogorov-Gabor polynomial [5]. It is use complete quadratic
polynomials of two variables as transfer functions in the neurons. These polyno-
mials can be represented by the form as show below:

y = ap + arX; + aXj + a3X;X; + asx; + assz (12)

3.2 Meta-models Building in DTREG

The input and output data used in such modelling evolve two different data tables
obtained from CFD simulation. Both of the tables consists four variables as inputs
that is By, e, 0. and H (as shown in Fig. 1) and two outputs that is efficiency n and
NPSHr. There have 81 patterns which can be used to train and test GMDH neural
network. The corresponding polynomial representation for NPSHr is as follows:
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N(3) = —0.6432 — 0.015p, + 0.17B, + 0.0325B2 — 0.0274pB2 + 2.3¢ — 6, B,

N(1) =3.524 — 0.134B,, + 0.02450, + 0.0418p} + 2.056e—
1262 +2.01e — 5B, 0c

N(7) =5.643 — 0.2134H — 0.02192 + 0.0021H? + 0.0004;
+ 2.45¢ — SHB,

N(4) = — 1.89 + 0.213B, + 0.0150, — 0.004B2 + 1.19¢ — 115>
+1.24 — 5B0¢

N(9) =6.941 — 3.7845 N(3) + 0.5418N(1) + 0.4723 N(3)
+0.0245 N(1)* +0.0475 N(3) N(1)

N(6) = 6.147 — 2.1873 N(7) — 0.7122 N(4)
+0.218 N(7)%+0.0947 N(4)*+0.4234 N(7) N(4)

NPSHr = — 0.412 — 0.062N(9) + 1.148N(6) + 0.0812 N(9)*
+0.0412 N(6)*—0.1271 N(9) N(6)

The corresponding polynomial representation for efficiency is as follows:
N(4) = —0.5412 — 0.411B, + 2.143, 4 0.016f; — 0.0124p> + 0.00012p,, B,
N(6) = 16.895 + 1.2183H + 0.4955, — 0.008H? — 0.004152 + 0.0012Ho,

N(1) = — 15.03 + 1.96B, + 0.6181c — 0.023p2 — 0.0041>
+0.0012PB, G,

N(7) =34.107 + 1.254H — 0.498, — 0.0082H> + 0.0092p;
+ 0.00059H,,

N(9) =54.324 — 0.5912N(4) — 1.0126N(6) + 0.00521N(4)?
+ 0.0063N(6)*+0.0191N(4)N(6)

N(3) =61.801 — 0.5012 N(1) — 1.0125N(7) + 0.0043 N(1)?
+0.00751N(7)*4-0.014N(1)N(7)

1 =0.7241 — 3.0174N(9) + 5.0124N(3) — 2.3104 N(9)*
—2.5983N(3)” + 5.362N(9)N(3)
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4 Apply Multi-objective Optimization by Using
Modified PSO Method

Particle Swarm Optimization (PSO) is a computational method that optimize a
problem by iteratively trying to improve a candidate solution with regard to a given
measure of quality. PSO is a population-based research algorithm. PSO is originally
developed by Kennedy and Eberhart [10]. It was first intended for simulation social
behaviour, as a stylized representation of the social behaviour of bird flock or fish
school. This algorithm originally adopted for balancing weights in neural networks
[4], PSO already became a popular global optimizer. There are one study reported
in literature that extend PSO to multi-objective problem [3]. A dynamic neigh-
bourhood particle swarm optimization (DNPSO) for multi objective problems was
presented [7]. In their study, for each generation, particles of swarm find their new
neighbours. The best local particle in the new neighbourhood is choice as gbest for
each particle. A modified DNPSO is introduced by find the nearest n particles as the
neighbour of the current particle based on the distances between the current particle
from others [19].

PSO algorithm is similar to other algorithms based on the principles are
accomplished according to the following equations:

Vi = wvj; 4 cir (pbesti; — x;) + caora(gbest); — xj)) (13)
t+1 _ ot t

X = Xjj + (14)
i=1,2,..,N
J = 1, 27 * ) n

where x is the particle current position, v is the particle current velocity, t is point of
iterations (generations), w is inertia weight, ¢, and c, is acceleration constants, r;
and r, is random values range [0,1], pbest is the personal best position of a given
particle and gbest is the position of the best particle of the entire swarm.

The algorithm developed by Kennedy and Eberhart inspired by the insect swarm
(or fish benches or bird flocks) and their coordinated movements. This algorithm
pays attention to the information sharing of pbest and gbeast but just considered the
experience of pbest and gbest and ignored the communication of other particles. So
an improved particle swarm optimization method (IPSO) was developed as the
equations shown below:

Vit = wvj 4 ciri (pbest); — xi;) 4 cora(gbest); — xjj) + car3CR (15)

_ [ pbesty; —xi; if ran<cp
CR= { 0 other (16)
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where k means the kth particle and k # i, cp is communication probability, ran is the
random values range [0,1]. The communications between particles were considered
and could supply much information in order to search optimal solutions in IPSO.
Function test indicated that IPSO increase the ability in the search of optimal
solutions [13]. But at the later evolution process, with the disappearance of the
swarm diversity, the optimization is easier to be trapped into local optimum. For the
disadvantages of IPSO, a modified PSO (MPSO) was developed inspired by bac-
terial foraging algorithm.

Passino originally proposed the Bacterial Foraging Algorithm [11] in 2002. It is
inspired by the abstract and simulate of the food engulf of bacterium in human
intestinal canal. There have three steps: chemotactic, reproduce and elimination-
dispersal to guide the bacterium to the nutrient-rich area.

Elimination-dispersal happened when bacterium got stimulate from outside and
then move to the opposite direction. Chemotactic is the action of bacterium gather
to the nutrient-rich area. For example, an E. coli bacterium can move in two
different ways. It can run (swim for a period of time) or it can tumble, and it
alternates between two modes of operation its entire lifetime (i.e., it is rare that the
flagella will stop rotating).

As introduced, if the flagella rotate clockwise, each flagellum pulls on the cell,
and then the net effect is that each flagellum operates relatively independently of the
others. Sometimes the bacterium does not have a set direction of movement and
there is little displacement.

The bacterium has behaviour of climbing nutrient gradients. The motion patterns
that the bacterium will generate in the presence of chemical attractants and repel-
lants are called chemotactic. For E. coli, encounters with serine or aspirate result in
attractant responses, whereas repellent responses result from the metal ions Ni and
Co, changes in pH, amino acids like leucine, and organic acids like acetate [11]. So
for the behaviour of draw on advantages and avoid disadvantages, bacterium can
search better food source, increase the chance of surviving and enhance the adaptive
capacity to varies environment. If there have harmful stimulus in the process of
MPSO, it is easy to get rid of local optimal by applying chemotactic operation. The
function as shown below:

vir' = wvj; — ¢yt (pbest; — xj;) — cora(gbest); — xj;) — car3CR (17)

The flow chart of MPSO as shown in Fig. 5:

The polynomial neural network models obtained in Sect. 3 are now employed in
a multi-objective optimization procedure using modified PSO method in order to
investigate the optimal performance of the axial flow pump. Two conflicting
objectives efficiency n and NPSHr that to be simultaneously optimized with the
design variables By, B¢, o. and H.

Design optimization problem of the objective function and constraints as a

function of the following equation:
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Initialization

J

Update the current fitness value of
particles, pbest and gbest

J

Compute communication value of
particles by using equation (16)

.
Nextiteration
No k=k+1

Yes
Chemotactic operation Elimination-dispersal operation
by using equation (14)(15)(16) by using equation(14)(16)(17)

Stopping criteria No

met?

Fig. 5 Flow chart of MPSO

Maximize 1 = (B, ., oc, H)
Minimize NPSHr = f5(By, B, oc, H)
36° < B, <54°

. L 21°< B, <25°
Subject to : 0.75< 6. <0.85
7<H<I11

(18)

The obtained non-dominated optimum solutions based on Pareto front as shown
in Fig. 6. These points demonstrate the trade-offs in objective function NPSHr and
efficiency. We can find that all the optimum design points in the Pareto front are
non-dominated and could be chosen as optimum pump. But choose a better value
for any objective function would cause a worse value for another objective. The
solutions shown in Fig. 6 are the best possible design points. If we chose any other
decision variables, the corresponding values of objectives will be worse.
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Fig. 6 Pareto front of NPSHr 90
and efficiency
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Table 4 Comparison of the results for traditional method and MPSO method

Method Design variables Objectives

Bn () Be () Oc H (mm) NPSHr (m) n (%)
Traditional 48 21 0.75 10.3 8.13 80.2
MPSO 53.7 22.5 0.81 8.2 7.28 83.6

We use the mapping method to find a trade-off optimum design points com-
promising both of the objective functions.

f _fmin

19
fmax _fmin ( )

Mapped value =

In the mapping method, the value of objective functions of all non-dominated
points are mapped into interval O and 1. Using sum of these values for each non
dominated point, the trade-off point simply is the one having the minimum sum of
those values. Consequently, the optimum design point A is the trade-off points
which have been obtained from the mapping method. There have a comparison (as
shown in Table 4) of the results for traditional method and MPSO method.

In Table 4, comparison of the obtained best compromise solution and the tra-
ditional solution as shown. It is clear that in this comparison, NPSHr was decreased
by 11.68 % and efficiency was increased by 4.24 % simultaneously.
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5 Conclusions

In this paper, multi objective optimization of axial flow pump based on modified
Particle Swarm Optimization(PSO) approach are used for Pareto based optimiza-
tion. Two different polynomial relations for NPSHr and efficiency have been found
by GMDH type neural networks using experimentally validated CFD simulations.
The obtained polynomial functions were used in an modified PSO optimization
process and obtained Pareto front of NPSHr and efficiency. After the mapping
method was applied, an optimal solution of the axial flow pump impeller was
obtained: NPSHr was decreased by 11.68 % and efficiency was increased by 4.24 %
simultaneously. It means this method is feasible and can be applied in impeller
design.
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