
Classification of Common Errors in OpenMP
Applications

Jan Felix Münchhalfen1,3,4, Tobias Hilbrich2, Joachim Protze1,3,4,
Christian Terboven1,3,4, and Matthias S. Müller1,3,4

1 IT Center, RWTH Aachen University, D - 52074 Aachen
2 ZIH, Technische Universität Dresden, D - 01062 Dresden

3 Chair for High Performance Computing, RWTH Aachen University, D - 52074 Aachen
4 JARA – High-Performance Computing, Schinkelstraße 2, D – 52062 Aachen

{muenchhalfen,protze,terboven,mueller}@itc.rwth-aachen.de,
tobias.hilbrich@tu-dresden.de

Abstract. With the increased core count in current HPC systems, node level
parallelization has become more important even on distributed memory systems.
The evolution of HPC therefore requires programming models to be capable of
not only reacting to errors, but also resolving them. We derive a classification of
common OpenMP usage errors and evaluate them in terms of automatic detection
by correctness-checking tools, the OpenMP runtime and debuggers. After a short
overview of the new features that were introduced in the OpenMP 4.0 standard,
we discuss in more detail individual error cases that emerged due to the task
construct of OpenMP 3.0 and the target construct of OpenMP 4.0. We further
propose a default behavior to resolve the situation if the runtime is capable of
handling the usage error. Besides the specific cases of error we discuss in this
work, others can be distinctly integrated into our classification.

1 Introduction

With the advent of multi- and manycore architectures, node-level parallelization has be-
come increasingly important in the field of high performance computing (HPC). In fact,
OpenMP has emerged as the most widely used standard for shared memory parallel pro-
gramming in HPC. Although the nature of OpenMP programming greatly enhances the
development of parallel applications, parallel programming with OpenMP is still error
prone to generic mistakes in parallel programming and those specific to OpenMP. In
addition, resilience capabilities will become of greater importance with the availability
of exascale supercomputers. Parallel programs must be able to detect and respond to
certain events that may lead to program termination or incorrect results, e.g., runtime
failures. In this context, the development of an error model is a high priority in the
OpenMP language committee.

In this work, we propose a classification for OpenMP usage errors (defects) to
summarize known types of syntactic and semantic mistakes. We further distinguish
these from performance issues. Particularly, this includes defect classes that involve the
OpenMP 3.0 task and OpenMP 4.0 target constructs. This classification may serve tool
developers and the OpenMP community as a framework and overview of the common
defects introduced when parallelizing with OpenMP.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 58–72, 2014.
c© Springer International Publishing Switzerland 2014

Classification of Common Errors in OpenMP Applications 59

Additionally, our examples provide input for test suites that evaluate the correct op-
eration of OpenMP compilers and runtimes. We also investigate the failures that these
defects may induce on an application, the possibilities towards automatic detection,
and the correctness-checking tools that are capable of detecting them. This classifica-
tion extends and incorporates existing studies [8,10] and our long term experience in
application developer support.

Our investigation first discusses related work (Section 2) and an overview of the latest
standard specification released by the OpenMP language committee — OpenMP 4.0 [4]
(Section 3).

In Section 4 we discuss our classification of defects, with respect to syntax, semantics
and performance. Sections 4.1, 4.2 and 4.3 discuss the individual defect classes in detail
and the possibilities for tool developers to detect them automatically. Finally we draw
our conclusions in sec. 6.

2 Related Work

Suess et al. discussed common mistakes in OpenMP [10]. They conducted a study over
two years and observed which mistakes their students made when parallelizing with
OpenMP. A classification and coarse relationship between correctness and performance
achievement is made in the paper, and best practices into avoiding common mistakes
are presented. Additionally, different compilers and tools are evaluated for their ability
to detect certain defects. At the time of this study, OpenMP 2.5 was the most recent
standard specification. Thus, it does not include the defect classes that we introduce for
the task and target constructs of later OpenMP versions.

Our classification subsumes the defect classes of this study and extends them by
syntactic as well as semantic defects the students did not encounter, besides covering
newer OpenMP constructs.

P. Petersen and S. Shah also published a classification of threading errors [8] (Sec-
tion 4, Figure 1). In contrast to our classification, they further distinguish the class of
semantic defects, especially the logical defects, into stalls and live-locks. As we do not
see an increased potential of detection out of this differentiation, we summarize these
defects in a class of Conceptual defects. Apart from that, we subsumed this classifica-
tion and extend it by classes for syntactic defects and performance issues.

A. Duran et al. proposed an error handling clause [7]. Their proposal draws a callback
based mechanism that defines a set of different failure severities and predefines actions
to handle specific failures. In case of a failure, the predefined action, or a specified
callback is executed and may decide how to handle the failure. This callback can re-
ceive additional information about the region- or source code location where the failure
occurred. The proposal was evaluated using a modified NANOS [2] OpenMP runtime
library. Two benchmark suites, the EPCC micro-benchmarks [6] and the NAS paral-
lel benchmarks [3] (v3.0) are further evaluated to determine which overhead the error
handling functionality adds to the OpenMP runtime.

Another work from Wong et al. [11] evaluates three different possibilities to make
the OpenMP standard capable of handling erroneous situations. The proposal moti-
vates extended error handling capabilities by demonstrating how C++ exception based

60 J.F. Münchhalfen et al.

error handling can be used to catch unexpected failures within the OpenMP runtime.
Wong et al. then discuss requirements that proposed error handling addition to the
standard should conform to. They introduce three different approaches for error han-
dling in OpenMP: a done construct, which was included (see cancellation points) in
the latest OpenMP standard: an error-code dependent approach that would be com-
patible with languages that are exception unaware; and a callback based approach
which slightly extends the one proposed by Duran et al. [7]. For the failure class
”SIMD aligned with unaligned data” we present in the following, the error handling
approaches with error-codes and the done construct would be insufficient, the latter at
least in exception unaware languages.

Motivated by these works [7][11] there are efforts in the OpenMP language com-
mittee to establish error handling capabilities in the OpenMP standard. To support the
work of the OpenMP language committee we provide a classification of defects and
evaluate possibilities for their automatic detection as shown in several examples. When
appropriate, we also include a recommendation on how the failure should be handled
by the OpenMP runtime.

3 Overview of OpenMP 4.0

The OpenMP standard is a directive based approach to express parallelism. It uses a
strict fork-join model in which multiple threads process tasks, which can be either im-
plicit or explicit. The terms implicit and explicit are used to distinguish between a task
originating from programmer effort by using the task directive, and a task created
implicitly when a parallel region is encountered.

Every OpenMP program can be compiled either as a parallel program by interpreting
the OpenMP directives and clauses, or as purely sequential by ignoring all OpenMP
directives.

The standard does not impose requirements on the behavior of an OpenMP applica-
tion if it is compiled as a sequential program. The execution results of such a binary
can deviate from the parallel results. In other respects there are several requirements to
applications that are parallelized with OpenMP, e.g., OpenMP strictly holds on to the
Single Entry, Single Exit principle, which means no branch or jump statements from the
base language may be used to enter or leave OpenMP regions. Programs which do not
adhere to the OpenMP standard’s requirements are called nonconforming. An OpenMP
program starts with one thread that executes the main program on the host and sub-
sequently is able to spawn other threads using the corresponding OpenMP directives.
Several worksharing constructs then distribute workload among multiple threads, e.g.,
the do, and for-loop, and sections constructs assign workloads. Whenever a thread
is not idle, it can process a task.

In version 4.0, the OpenMP standard distinguishes between host and target devices.
The two terms correspond to host computer and accelerators respectively. Code that
is enclosed in a target region, is compiled to be executed on accelerators. This ex-
tension enables OpenMP to reach out to heterogeneous architectures that previously
required different programming models like CUDA, OpenCL, or OpenACC. The new
simd construct controls execution in the vector units. Other additions to the standard
include user defined reductions, task dependency and thread affinity control.

Classification of Common Errors in OpenMP Applications 61

Currently the Intel compiler, the Cray compiler, and the GNU Compiler Collection
(GCC) support OpenMP 4.0, although GCC has no functionality implemented yet for
the target directive and always executes this code on the host.

4 Error Classification

We collected common defects in OpenMP applications from our own experiences, long
lasting support activities from various HPC users and our projects, and summarized
them in a classification. Figure 1 presents this classification in which we distinguish be-
tween syntactic and semantic defects, as well as performance issues. The latter covers
performance flaws that do not actually lead to wrong results or nonconforming applica-
tions, but affect the efficiency of the application. We will discuss the defects and failure
handling, as well as tools that are able to detect them below.

We carefully assembled this classification based on our experiences and available
studies [8,10], in order to incorporate all types of defects that we are aware of, as well
as novel defects that extensions of OpenMP 3.0 and OpenMP 4.0 introduced. This clas-
sification provides a framework for common OpenMP programming defects and forms
a basis for future extension.

The naming error is ambiguous; therefore we use the notion from [12]:

– defect to address programming errors, i.e., incorrect source code, and
– failure to address error manifestation, e.g., execution abortion or deadlocks.

To remove a failure from a program a trace-back is needed to the defect in the source
code. But there is no distinct correlation between classes of failures and defects, and
an error could be assigned to both a failure and a defect class. Compilers and static
analysis tools typically detect defects. Runtime analysis tools typically spot failures,
but may also spot defects. The same holds for debuggers. When we expect an error to
be spotted as a defect we assign it to a defect class. We assign an error to a failure class
if we think that this error is only detectable as a failure.

4.1 Syntactic Defects

A syntactic defect in general is code that is not compliant by the grammar of a pro-
gramming language. With respect to OpenMP parallelization we limit syntactic de-
fects to OpenMP compiler directives. We distinguish between mistyped and correct
OpenMP prefixes (e.g. #pragma omp in C++); mistyped prefixes are not recognized
as OpenMP compiler directives, the compiler will ignore them by default. We do not
classify syntactic errors caught by compilers, and refrain from examining them fur-
ther here. For misspellings, the compiler could recommend similar keywords from the
OpenMP grammar.

4.2 Semantic Defects

We recognize programming mistakes that are semantic defects. These are compiled into
executable code, but otherwise cause failures within the OpenMP runtime, which may

62 J.F. Münchhalfen et al.

Issue

Syntactic defect

Wrong com-
piler directive

Wrong clause to
compiler directive

Semantic defect

Defect

Violation of the
standard/Non-

conforming program

– Uninitialized lock
– Barrier w.o. all

threads
– Violation of SESE
– Worksharing con-

struct w.o. all threads
– Invalid nesting of

regions
– Thread unlocks lock

w.o. ownership
– SIMD aligned w.

unaligned data

Conceptual defect

– Parallel instead of
parallel for

– Single producer w.o.
worksharing

– Incorrect assump-
tion about number of
threads

– Unallocated memory
– Missing data map-

ping

Failure

Race condition

– On the host side
– On the accelerator

side
– btw. host/accelerator

Deadlock

– Deadlock with multi-
ple locks

– Deadlock with a
single lock

Performance
issue

Outside the scope
of this work

Fig. 1. Classification of Common Issues in OpenMP Applications

manifest themselves as execution aborts, deadlocks, or incorrect results. Most impor-
tantly, the exact behavior of a semantic defect depends on the runtime at hand. Thus
these defects may introduce portability problems that only become visible with spe-
cific runtimes. Semantic defects form the biggest class of possible mistakes — not only
when parallelizing with OpenMP — but with programming in general. In the follow-
ing, we will discuss the four sub-classes of semantic defects in Figure 1. Some of these
sub-classes involve additional child classes.

Violations of the Standard/Nonconforming Program: In this class we integrate de-
fects that are a clear violation to one or more of the definitions of the OpenMP standard.
The standard strictly prohibits developers from using certain combinations of OpenMP
compiler directives or the usage of runtime functions in specific contexts. We do not
claim completeness at this point. The amount of possible standard violations simply
exceeds the scope of this work, thus we focus on a smaller, respresentative portion of
defects.

Uninitialized locks: OpenMP offers different mechanisms to synchronize threads. The
most commonly used are barriers and critical sections. It is more difficult to induce
a defect using the latter two high level approaches than doing so with locks. Locks
are a low level mechanism for synchronization and enable the programmer to coordi-
nate threads with finer and increased control, but also with increased potential to create

Classification of Common Errors in OpenMP Applications 63

defects. OpenMP features two types of locks: regular and nested locks. The difference
between the two types is that nested locks may be locked repeatedly by the same thread
without blocking, while regular locks would block if the thread that currently owns
them tries to acquire the lock again. In both cases a lock needs to be released the same
number of times it was locked. Additionally, locks, need to be initialized before they are
used. The standard does not specify how programs will behave if programmers make
use of an uninitialized lock. Detection of this is either possible in the OpenMP runtime,
or by keeping track of initialized locks, e.g., in a correctness tool. The OpenMP runtime
could issue a mild severity level, i.e., a warning and handle the failure appropriately by
e.g. just initializing the lock to resolve the situation without terminating the application.
We do not propose to terminate the application in this case, despite this being a viola-
tion to the standard, because the defect is a minor violation and can be resolved quite
easily. In our experiments the defect could be found by using Valgrind (memcheck), the
Intel Inspector XE or a debugger.

Barriers not reached by all threads of a team: As mentioned previously, barriers are less
error prone than locks. Nevertheless they still offer potential for defects as barriers must
always be encountered by all threads of a team. Some OpenMP regions have implicit
barriers at their end unless a nowait clause is present. Thus, this defect may or may
not be a special case of Violation of the Single Entry, Single Exit principle (SESE). It is
possible to induce this situation by using barriers inside conditional statements which
depend on a condition that is special to a thread, or by implementing irregular execution
patterns using statements such as goto. An example of this situation for a barrier inside
a conditional statement, is given in code Example 1.

If the code is of low complexity and only includes a few conditional statements
that determine if a thread reaches a barrier or not, the defects of this class may be
detectable by static code analysis. In more complex codes, e.g., where the barrier is
hidden in a third party library, the detection proves far more difficult. A runtime analyzer
may identify this situation if the waiting states of all threads are clearly known, e.g. if
all threads wait at different barriers. More exhaustive approaches could utilize model
checking techniques to detect defects of this class. If this situation can be detected, a
runtime may decide to terminate the application, since the program exhibits a serious
nonconformance to the standard.

Violation of the Single Entry, Single Exit principle (SESE): The OpenMP execution
model requires each thread encountering an OpenMP region to also exit the region in
a regular fashion (without skipping the end of the region). A team of threads that is
spawned at the start of a parallel region must correctly exit the parallel region.
Parallel execution in OpenMP strictly follows a fork-join-model and consequently the
generated team threads must join at the end of a parallel region. Any deviation from this
principle violates the OpenMP standard and will cause undefined behavior ranging from
program termination to deadlock, as well as partially executed worksharing directives.
Detection is possible through static code analysis or by keeping track of individual
threads and their paths of execution during runtime. The default behavior of the runtime
should be immediate termination of the application or cancellation of all parallel
regions because the program behavior is undefined from this point on.

64 J.F. Münchhalfen et al.

Worksharing constructs not reached by all threads of a team: Special constructs like
worksharing constructs must be encountered by all threads of a team or none at all. As
described in Violation of the Single Entry, Single Exit principle (SESE), these situations
are created by using the goto keyword or by placing worksharing constructs inside
conditional code paths. An example is given in code Example 1. The most promising
approach to detect this kind of defect is static code analysis. If the runtime is able to
detect this automatically, it should terminate the innermost parallel region with an
appropriate error level because the successful parallel execution of this region is then
rendered impossible. This would enable developers to implement different strategies
and, if necessary, rely on (possibly serial) fallback algorithms to deliver correct results.

1 #pragma omp parallel
2 if(omp_get_thread_num() % 2){
3 #pragma omp for
4 for(int i=0; i < N; ++i)
5 ...
6 #pragma omp barrier
7 }else{
8 #pragma omp barrier
9 }

Example 1. Worksharing construct/barrier is not reached by all threads of a team

1 double a[N], b[N], c[N];
2 ...
3 #pragma omp parallel
4 for(int i=0; i < N; i++)
5 a[i] = b[i] * c[i];

Example 2. Parallel for should be used

Invalid nesting of regions: The current OpenMP standard [4] covers the nesting of re-
gions and places a set of restrictions on which regions may not be directly nested. For
example it is strictly forbidden to directly nest worksharing constructs, because each
worksharing construct requires the context of a single parallel region. Any viola-
tion to this restriction fits into this defect class. The compiler is in many cases able to
identify this kind of defect. An exception to this is when OpenMP regions are orphaned
and hidden inside third-party libraries or subroutines in other source files. This effec-
tively prevents some compilers from identifying a relationship between the OpenMP
region and its parent region. In this case, identifying the violation to the standard is
far more difficult and requires more sophisticated approaches such as modifications to
the OpenMP runtime to keep track of which regions are reached by individual threads.
Termination of the innermost parallel region may in some cases suffice to handle the
failure, but that depends on the combination of regions which violate the standard and
it may as well be required to terminate the application if e.g. critical regions of
the same name are nested (see Deadlocks). While this would render further execution
impossible, termination of the innermost parallel region on the other hand may enable
developers to implement recovery mechanisms, e.g., a fallback approach. Compilers
with interprocedural analysis capabilities will most probably be able to even detect in-
valid nesting of orphaned constructs properly.

Classification of Common Errors in OpenMP Applications 65

Unlocking locks that are not owned by the current task: The OpenMP standard states
that calls to omp unset lock and omp unset nest lockwith a lock as argument
that is neither locked nor owned by the current task is nonconforming. It is easy to
avoid this kind of situation when using OpenMP locks: Using higher level approaches,
e.g., C++ classes that lock in the constructor and unlock in the destructor, or always
placing the lock and unlock in pairs, and near to each other in the source code. When
tasks are tied to threads in OpenMP (default behaviour), the constraint that the lock
needs to be owned by the current task is equivalent to the constraint of lower-level
mechanisms like pthreads, that the current threads need to own the lock. So far, none
of the major compilers mentioned in Section. 3 have implemented this clause, but this
possibly might create problems when locks are used inside untied tasks. Unlocking
attempts by threads/tasks which don’t own the lock can easily be detected by keeping
track of the locking and unlocking operations in the runtime. As the program state is
undefined after this operation, the runtime should either terminate the program if this
failure occurs or exit all parallel regions with a descriptive error code.

SIMD aligned with unaligned data: OpenMP 4.0 includes a SIMD directive that enables
programmers to manually instruct the compiler to translate a loop into vectorized code.
An aligned clause can be used to specify the alignment of loop data in bytes. This
may be beneficial because some instruction sets, e.g., the x64 instruction set, include
SIMD instructions for aligned and unaligned data, of which the former generally needs
less loads to complete. The developer can align data either by using special malloc-
variants like posix memalign or by manually allocating (N + alignment) bytes and
then adjusting the pointer appropriately.

The task of detecting the incorrect use of the aligned clause can be very difficult
at compile time as it is not known then how the data will be aligned when the program
is run. A debugger will certainly detect this (after execution) as the CPU will raise an
interrupt when this defect occurs. Because the runtime will most probably not be able
to detect this kind of defect before an interrupt occurs, we do not propose a default
behavior here.

Conceptual Defect: A conceptual defect occurs when code does not explicitly violate
the OpenMP standard and may as such be called a conforming OpenMP program, but
nevertheless results in unwanted or unintended program behavior. Cases of this class
represent correct applications in terms of the restrictions of the OpenMP standard, but
fail to meet intended specifications, due to another software defect or due to an incor-
rect specification. As an example, an application meant to calculate π could be correctly
parallelized, but simply have a defect in its formulas or logic. It may be either caused by
a program condition that only occurs under specific circumstances that were not consid-
ered by the developer or simply by lack of knowledge on the developer. We explicitly
exclude race conditions (see Race Conditions) and deadlocks (see Deadlocks) from this
class.

Parallel instead of parallel for: The mistake of using a parallel directive when
a parallel for directive was intended is quite common and can lead to different

66 J.F. Münchhalfen et al.

failures, depending on the pre-parallized code. This defect may not have any impact on
compilation at all and thus go unnoticed. This is the case, e.g., when all threads execute
the same code in parallel, without any worksharing or data races. The result will be
correct, but there will be no benefit in runtime because each thread does the same work
as the serial program. See Example 2 for this case. Because there are situations where it
actually may make sense to use parallel over parallel for, this defect is hard
to detect. If data races occur during execution of this defect, the defect is detectable
by applying detection methods for race conditions (see Race Conditions). If no race
conditions occur during execution of this defect we do not think a tool would be able to
detect it.

Single producer without worksharing: An often used concept in parallel programming
is the single producer. In the single producer pattern one thread creates one or multiple
tasks inside a single construct. Subsequently those tasks are processed by the threads
of the underlying parallel region. Because the absence of the single construct does not
violate the standard or renders the code syntactically incorrect, it is easily overlooked.
Another well known design pattern is the parallel producer. As the name suggest, here
tasks are created in parallel and possibly without a single construct. Hence it is not
easy to determine the correctness of applications which utilize these parallel program-
ming patterns. They might however trigger other defects which are covered in this work,
e.g. Race Conditions. We do not consider this sort of mistake to be detectable by cor-
rectness checking tools because the intention of the application remains ambiguous
without deeper insight.

Locks as barriers: An OpenMP lock that was locked by one thread will block all other
threads that call omp set lock until the thread which owns the lock executes a call to
omp unset lock. Therefore, a programmer with a lack of understanding of OpenMP
constructs might try to use locks as a concept for barriers, unaware of the barrier
directive and assuming that a single call to omp unset lock enables the continuation
of all threads. We do not expect that the intention to create a barrier is detectable by a
tool when this situation is encountered. Potentially, a deadlock or a possible deadlock
can be detected and does not differ from the situation in the subsequent deadlock defect
class.

Incorrect assumptions about the number of threads: The OMP DYNAMIC environment
variable may raise unexpected situations in OpenMP programs if set to true and the
developer relies on the number of threads being set by other methods, such as a pre-
vious argument to omp set num threads or the value of the environment vari-
able OMP NUM THREADS. While this situation does not interfere with dynamic loop
scheduling, it is probably best to allow the runtime to choose the number of threads
arbitrarily to optimize the utilization of system resources. Therefore the programmer
may not rely on the number of threads being equal to what was requested. Even if a cer-
tain number of threads was requested and the value of OMP DYNAMIC equals to false,
a different number of threads may be provided by the runtime, e.g., if less threads are
available than what was requested. This kind of defect is logical nature and thus very

Classification of Common Errors in OpenMP Applications 67

difficult to spot automatically because an analyzing application needs to know what is
to be accomplished in the first place. The runtime therefore cannot detect it.

Unallocated memory (host/accelerator): If an OpenMP application fails to allocate
memory and thus uses a NULL-pointer in a subsequent OpenMP clause, the behavior of
the runtime library is undefined. This sort of defect could be handled by a mechanism
like the one proposed in [7,11]. The runtime should take care of the error handling in
this case. To resolve the failure, the region should either be completely skipped with
an adequate error code given back to the application developer — or transfer execution
to a callback function that could be specified by the developer. While NULL-pointers
are quite easy to detect, a pointer to a memory region that is not allocated or only
partially allocated may prove more difficult to spot. To achieve this, the runtime would
need to track the application heap, or all calls to malloc. This erroneous situation is
also detectable using a debugger: An application raises a SEGFAULT-interrupt when
it accesses unallocated memory in any way. The proposed way to handle this failure
is either program termination or termination of the innermost parallel region with a
suitable error code.

Missing data mapping to accelerator: In OpenMP 4.0 the target and target
data directives were introduced to that enable the programmer to offload computa-
tions to accelerator devices. The directives support a map clause that is responsible for
the mapping (or migration) of data from the host to the accelerator and vice versa. The
developer has to name each variable that was declared outside the scope of the target
region in a corresponding map clause. Depending on the type of accelerator, host and
device may either share their memory, portions of their memory or have separate mem-
ories. Therefore it is important to specify the type of mapping in the map clause which
may either be alloc, to, from or tofrom. Global variables inside a target region
must be declared with the declare target directive. If the accelerator and host do
not share a common memory, on the device side the data will be allocated, received
from the host and copied back, corresponding to their mapping. If a data mapping for
the target region is missing, the compiler will raise an error and most likely interrupt
the compilation process.

Race Conditions: A race condition is defined as a situation during program runtime in
which two or more executing units, usually threads, access a shared resource simulta-
neously in such a way that at least one unit is modifying the resource. This may lead to
failures, if the resource does not provide sufficient internal synchronization to allow for
multiple executing units/threads accessing it at the same time, e.g. a memory location.
This usually requires the programmer to employ suitable synchronization. To this class
we assign all defects which can lead to race conditions. Detecting this class of defects
usually induces a significant overhead on application runs. We therefore do not consider
this class recommendable to be handled by the OpenMP runtime automatically.

68 J.F. Münchhalfen et al.

Race conditions on the host side: Race conditions are a problem not only specific to
OpenMP but to parallel programming in general. OpenMP parallelized applications
which do not make use of the target directive to offload data for computation to an
accelerator, may execute with false assumptions about the default data sharing behavior
of OpenMP or forgotten data sharing clauses when entering a parallel region. There are
several works in progress on the detection of data races on the host side, e.g. the thread
sanitizer that is part of the latest version of GCC [9] and commercial tools like the Intel
Inspector XE [1] and Oracle Solaris Studio Thread Analyzer [5]. Most of them are able
to properly detect those types of data races.

Race conditions on the accelerator side: If an application with target directives is com-
piled to offload code to an accelerator, OpenMP directives and runtime functions may
be utilized on the device as well as on the host with few limitations [4]. The developer
may spawn a team of threads on the accelerator using the parallel directive — same
as on the host side — and forget to specify adequate data sharing clauses for the vari-
ables used inside the parallel region. In principal the problem is very similar to the one
described in Race conditions on the host side, but its detection can be much more com-
plicated because not all accelerator systems offer the same repertoire of debugging/trac-
ing capabilities as most host processors. Additionally, detecting race conditions usually
requires a lot of device memory because each memory access needs to be traced for
later analysis. On accelerator devices this may prove challenging, as memory is gener-
ally very limited. An approach for GPGPU accelerators [13] provides insight into such
data race detection capabilities, but has not yet been applied to OpenMP applications.

Race conditions between host/accelerator: With the introduction of the target di-
rective it is possible to offload computations to an accelerator device. As explained in
Missing data mapping to accelerator it is further possible that the host and the accel-
erator truly share memory. In this case, race conditions will occur if both the host and
the accelerator device operate on the same data without synchronization. As a con-
sequence, data is copied from and to the accelerator as target or target data
regions are encountered. While the OpenMP runtime should take care that no data is
overwritten when data is copied to the accelerator, it is very well possible that the host
changed the data that was transferred to the accelerator in the meantime. A copy-back
operation from the accelerator may overwrite this data and lead to a data race if the
user has not synchronized the access. If host and accelerator share a common memory,
the detection of this requires tracing both host and device memory accesses because
both can modify the same memory transparently. If host and accelerator have seperate
memories, it is sufficient to trace only host memory accesses because one thread will
always block until the target region is completed and only then, copy back data (see
Race conditions on the host side).

Deadlocks: A deadlock is a situation in which a program is in a waiting state for an
indefinite amount of time. In this class we categorize defects which can lead to dead-
locks. If the OpenMP runtime is able to identify a deadlock situation, it should handle
the failure by either terminating the application or, more preferably, by terminating all

Classification of Common Errors in OpenMP Applications 69

parallel regions with an error code. Unfortunately, not all deadlock situations will
be detectable by the runtime. OpenMP 4.0 introduced the feature of task dependen-
cies which we evaluated with regard to their potential of introducing deadlocks. Task
dependencies by design prevent programmers from creating circular dependencies and
therefore it is effectively impossible to run into a deadlock by only using task depen-
dencies.

Deadlock with multiple locks: The explicit use of the locking API is in general error-
prone and susceptible to deadlocks. Especially when more than one lock is involved,
deadlocks can occur if locking operations overlap. In a real world application this may
be difficult to detect at compile time if calls to omp set lock and omp unset lock
are concealed in subroutines (orphaned). If all threads are blocked due to a call to
omp set lock, the deadlock situation is clear and can be identified by the OpenMP
runtime or correctness-checking tools.

Deadlock with a single lock: This type of defect describes a situation where a dead-
lock occurs due to the order in which locks are accessed. The deadlock situation might
not always occur but only under specific circumstances, e.g., specific scheduling of
threads/tasks. In Example 3 it very much depends on the scheduling of tasks if the
application will deadlock or not. If two or more tasks operate on locks concurrently
and there is a task scheduling point after a call to omp set lock without a preceding
omp unset lock, a deadlock might occur. This situation is also called a potential
deadlock. A tool could spot this situation via a model checking approach or at run-
time by keeping track of locks and their owners and taskwait constructs. We are not
aware of any tools which are currently able to spot such failures.

1 omp_lock_t lock; omp_init_lock(&lock);
2 #pragma omp parallel
3 #pragma omp master
4 #pragma omp task
5 {
6 #pragma omp task
7 {
8 omp_set_lock(&lock);
9 omp_unset_lock(&lock);

10 }
11 omp_set_lock(&lock);
12 #pragma omp taskwait
13 omp_unset_lock(&lock);
14 }
15 omp_destroy_lock(&lock);

Example 3. Possible deadlock due to a race on a lock.

4.3 Performance Issues

Because the performance issues named in Figure 1 are not specific to OpenMP pro-
gramming, we will not include a more detailed specification of them in this work. We

70 J.F. Münchhalfen et al.

do not discourage the usage of critical sections and locks, but recommend that devel-
opers consider the amount of work that is done inside synchronization constructs. De-
pending on this, the other threads will be blocked during that time, or the overhead of
synchronization might have a significant impact on the overall runtime. Furthermore,
pointless flushing, as well as memory access patterns which will lead to cache trashing
or false sharing, will probably lead to bad application performance and are thus best to
avoid.

5 Summary

We evaluated each error class in terms of detectability in the above table (2). In this
evaluation we distinguished between different methods to detect defects, such as com-
pilers, compiler based static analysis (involving interprocedural analysis), the OpenMP
runtime, debuggers and tools which conduct correctness checks at runtime. A cross (•)

marks that the tool class is able to detect the defect, a cross in round brackets ((•))
means that the tool class is able to detect the error under special circumstances.

Mistake Compiler Static Analysis Runtime Debuggers Tools
Syntactic mistakes

1. wrong directive •
2. wrong clause • •

Semantic mistakes
Violation of the standard

3. uninitialized locks • • •
4. barrier wo all threads • • •
5. violation sese (•) •
6. worksharing wo all threads
7. invalid nesting (•) • • (•)
8. lock unlock nonowner • • •
9. simd aligned (•) •

Conceptual defect
10. parallel inst parallel for
11. single prod wo worksharing
12. number of threads
13. unallocated memory (•) • • • •
14. missing data mapping (•) • (•)

Race condition
15. host (•) •
16. accelerator (•) •
17. host accelerator (•)

Deadlock
18. multiple locks (•) •
19. single lock (•) •

Fig. 2. Defects and their detectability

Classification of Common Errors in OpenMP Applications 71

6 Conclusion

We developed a classification of OpenMP defects for the OpenMP 4.0 standard. In this
classification we distinguished errors by both the defect and the failure. We further
summarized many defects we consider common to OpenMP programming and evalu-
ated them in terms of their potential for automatic detection by analysis tools. If we
considered the runtime able of handling a failure, we propose a default error handling
mechanism that is to be executed when application developers do not specify error han-
dlers of their own. We found that the number of common defects in OpenMP did not
decrease with newer versions of the standard, but slowly increased due to new features
that were added to the standard. An example of this is the target construct which was
introduced with OpenMP 4.0.

Future work will explore possible collaborations with developers of specific scien-
tific domains to collect their mistakes and to quantify the frequency of the error classes
we listed in this work.

Acknowledgement. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under Grant Number 01IH13008A (ELP).

References

1. Intel Inspector XE (2013),
https://software.intel.com/en-us/intel-inspector-xe

2. NANOS Project,
http://www.cepba.upc.edu/nanos/

3. NAS Parallel Benchmarks,
https://www.nas.nasa.gov/publications/npb.html

4. OpenMP 4.0 specification (July 2013),
http://openmp.org/wp/openmp-specifications/

5. Oracle Solaris Studio,
http://www.oracle.com/technetwork/server-storage/
solarisstudio/documentation/index.html

6. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proceed-
ings of First European Workshop on OpenMP, pp. 99–105 (1999)

7. Duran, A., Ferrer, R., Costa, J.J., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: A
Proposal for Error Handling in OpenMP. In: Mueller, M.S., Chapman, B.M., de Supinski,
B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 422–434.
Springer, Heidelberg (2008)

8. Petersen, P., Shah, S.: OpenMP Support in the Intel R© Thread Checker. In: Voss, M.J. (ed.)
WOMPAT 2003. LNCS, vol. 2716, pp. 1–12. Springer, Heidelberg (2003)

9. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: Data Race Detection in Practice. In: Pro-
ceedings of the Workshop on Binary Instrumentation and Applications, WBIA 2009, pp.
62–71. ACM, New York (2009)

10. Süß, M., Leopold, C.: Common Mistakes in OpenMP and How to Avoid Them: A Collection
of Best Practices. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss,
M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 312–323. Springer, Heidelberg (2008)

https://software.intel.com/en-us/intel-inspector-xe
http://www.cepba.upc.edu/nanos/
https://www.nas.nasa.gov/publications/npb.html
http://openmp.org/wp/openmp-specifications/
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html

72 J.F. Münchhalfen et al.

11. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B.R., Churbanov,
A.: Towards an Error Model for OpenMP. In: Sato, M., Hanawa, T., Müller, M.S., Chap-
man, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 70–82. Springer,
Heidelberg (2010)

12. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann Pub-
lishers Inc., San Francisco (2005)

13. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: Detecting Data Races in GPU Pro-
grams via a Low-Overhead Scheme. IEEE Trans. Parallel Distrib. Syst. 25(1), 104–115
(2014)

	Classification of Common Errors in OpenMP Applications
	1 Introduction
	2 Related Work
	3 Overview of OpenMP 4.0
	4 Error Classification
	4.1 Syntactic Defects
	4.2 Semantic Defects
	4.3 Performance Issues

	5 Summary
	6 Conclusion
	References

