
Luiz DeRose Bronis R. de Supinski
Stephen L. Olivier Barbara M. Chapman
Matthias S. Müller (Eds.)

 123

LN
CS

 8
76

6

10th International Workshop on OpenMP, IWOMP 2014
Salvador, Brazil, September 28–30, 2014
Proceedings

Using and Improving
OpenMP for Devices,
Tasks, and More

Lecture Notes in Computer Science 8766
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Luiz DeRose Bronis R. de Supinski
Stephen L. Olivier Barbara M. Chapman
Matthias S. Müller (Eds.)

Using and Improving
OpenMP for Devices,
Tasks, and More
10th International Workshop on OpenMP, IWOMP 2014
Salvador, Brazil, September 28-30, 2014
Proceedings

13

Volume Editors

Luiz DeRose
Cray Inc., St. Paul, MN, USA
E-mail: ldr@cray.com

Bronis R. de Supinski
Lawrence Livermore National Laboratory, Livermore, CA, USA
E-mail: bronis@llnl.gov

Stephen L. Olivier
Sandia National Laboratories, Albuquerque, NM, USA
E-mail: slolivi@sandia.gov

Barbara M. Chapman
University of Houston, Houston, TX, USA
E-mail: chapman@cs.uh.edu

Matthias S. Müller
RWTH Aachen, Aachen, Germany
E-mail: mueller@itc.rwth-aachen.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11453-8 e-ISBN 978-3-319-11454-5
DOI 10.1007/978-3-319-11454-5
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948474

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

OpenMP is a widely accepted, standard application programming interface (API)
for high-level shared-memory parallel programming in Fortran, C, and C++.
Since its introduction in 1997, OpenMP has gained support from most high-
performance compiler and hardware vendors. Under the direction of the OpenMP
Architecture Review Board (ARB), the OpenMP specification has evolved up
to the recent release of version 4.0. This version includes several new features
like accelerator support for heterogeneous hardware environments, an enhanced
tasking model, user defined reductions, and thread affinity to support binding
for performance improvements on non-uniform memory architectures.

The evolution of the standard would be impossible without active research
in OpenMP compilers, runtime systems, tools, and environments. OpenMP is
both an important programming model for single multicore processors and as
part of a hybrid programming model for massively parallel, distributed memory
systems built from multicore or manycore processors. In fact, most of the growth
in parallelism of the upcoming Exascale systems is expected to be coming from
an increased parallelism within a node. OpenMP offers important features that
can improve the scalability of applications on such systems.

The community of OpenMP researchers and developers in academia and
industry is united under cOMPunity (www.compunity.org). This organization
has held workshops on OpenMP around the world since 1999: the European
Workshop on OpenMP (EWOMP), the North American Workshop on OpenMP
Applications and Tools (WOMPAT), and the Asian Workshop on OpenMP
Experiences and Implementation (WOMPEI) attracted annual audiences from
academia and industry. The International Workshop on OpenMP (IWOMP)
consolidated these three workshop series into a single annual international event
that rotates across Asia, Europe, and the Americas. The first IWOMP work-
shop was organized under the auspices of cOMPunity. Since that workshop, the
IWOMP Steering Committee has organized these events and guided development
of the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon,
USA. Since then, meetings have been held each year, in Reims, France, Bei-
jing, China, West Lafayette, USA, Dresden, Germany, Tsukuba, Japan, Chicago,
USA, Rome, Italy, and Canberra, Australia. Each workshop has drawn partici-
pants from research and industry throughout the world. IWOMP 2014 contin-
ues the series with technical papers, tutorials, and OpenMP status reports. The
IWOMP meetings have been successful in large part due to the generous support
from numerous sponsors.

The cOMPunity website (www.compunity.org) provides access to the talks
given at the meetings and to photos of the activities. The IWOMP website
(www.iwomp.org) provides information on the latest event. This book contains
proceedings of IWOMP 2014. The workshop program included 16 technical

VI Preface

papers, two keynote talks, a tutorial on OpenMP, an invited talk, and a sponsor
talk. The paper by Artur Podobas, Mats Brorsson and Vladimir Vlassov was
selected for the Best Paper Award. All technical papers were peer reviewed by
at least three different members of the Program Committee.

In a special way, the OpenMP community remembers Ricky Kendall, former
member of the IWOMP Steering Committee. He passed away March 18, 2014
and is greatly missed.

September 2014 Luiz DeRose
Bronis R. de Supinski

Stephen L. Olivier

Organization

Organizing Co-chairs

Luiz DeRose Cray Inc., USA
Adhvan Novais Furtado SENAI Unidade CIMATEC, Brazil

Program Co-chairs

Luiz DeRose Cray Inc., USA
Bronis R. de Supinski LLNL, USA

Sponsors Chair

Barbara Chapman University of Houston, USA

Tutorials Chair

Christian Terboven RWTH Aachen University, Germany

Publication Chair

Stephen L. Olivier Sandia National Laboratories, USA

Local Coordination Chair

Adhvan Novais Furtado SENAI Unidade CIMATEC, Brazil

Program Committee

Eduard Ayguadé BSC and Universitat Politecnica de Catalunya,
Spain

Mark Bull EPCC, University of Edinburgh, UK
Jacqueline Chame ISI, USC, USA
Barbara Chapman University of Houston, USA
Nawal Copty Oracle Corporation, USA
Alejandro Duran Intel, Spain
Nasser Giacaman University of Auckland, New Zealand
Chunhua Liao LLNL, USA

VIII Organization

Sally A. McKee Chalmers University of Technology, Sweden
Kent Milfeld TACC, USA
Bernd Mohr Juelich Supercomputing Center, Germany
Philippe Navaux UFRGS, Brazil
Stephen L. Olivier Sandia National Laboratories, USA
Jairo Panetta ITA, Brazil
Vinod Rebello UFF, Brazil
Alistair Rendell Australian National University, Australia
Mitsuhisa Sato University of Tsukuba, Japan
Seetharami Seelam IBM Research, USA
Eric Stotzer Texas Instruments, USA
Christian Terboven RWTH Aachen University, Germany
Priya Unnikrishnan IBM Toronto Laboratory, Canada

IWOMP Steering Committee

Steering Committee Chair

Matthias S. Müller RWTH Aachen University, Germany

Steering Committee

Dieter an Mey RWTH Aachen University, Germany
Eduard Ayguadé BSC and Universitat Politecnica de Catalunya,

Spain
Mark Bull EPCC, University of Edinburgh, UK
Barbara Chapman University of Houston, USA
Bronis R. de Supinski LLNL, USA
Rudolf Eigenmann Purdue University, USA
Guang R. Gao University of Delaware, USA
William Gropp University of Illinois, USA
Kalyan Kumaran Argonne National Laboratory, USA
Federico Massaioli CASPUR, Italy
Larry Meadows Intel, USA
Arnaud Renard University of Reims, France
Mitsuhisa Sato University of Tsukuba, Japan
Sanjiv Shah Intel, USA
Ruud van der Pas Oracle, USA
Matthijs van Waveren CompilaFlows, France
Michael Wong OpenMP CEO, IBM, Canada
Weimin Zheng Tsinghua University, China

Table of Contents

Tasking Models and Their Optimization

Task-Parallel Reductions in OpenMP and OmpSs . 1
Jan Ciesko, Sergi Mateo, Xavier Teruel, Vicenç Beltran,
Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, and
Jesús Labarta

Evaluation of OpenMP Dependent Tasks with the KASTORS
Benchmark Suite . 16

Philippe Virouleau, Pierrick Brunet, François Broquedis,
Nathalie Furmento, Samuel Thibault, Olivier Aumage, and
Thierry Gautier

MetaFork: A Framework for Concurrency Platforms Targeting
Multicores . 30

Xiaohui Chen, Marc Moreno Maza, Sushek Shekar, and
Priya Unnikrishnan

TurboB�LYSK: Scheduling for Improved Data-Driven Task Performance
with Fast Dependency Resolution . 45

Artur Podobas, Mats Brorsson, and Vladimir Vlassov

Understanding and Verifying Correctness of
OpenMP Programs

Classification of Common Errors in OpenMP Applications 58
Jan Felix Münchhalfen, Tobias Hilbrich,
Joachim Protze, Christian Terboven, and
Matthias S. Müller

Static Validation of Barriers and Worksharing Constructs in OpenMP
Applications . 73

Emmanuelle Saillard, Patrick Carribault, and Denis Barthou

Loop-Carried Dependence Verification in OpenMP 87
Juan Salamanca, Luis Mattos, and Guido Araujo

OpenMP Memory Extensions

An OpenMP Extension Library for Memory Affinity 103
Dirk Schmidl, Tim Cramer, Christian Terboven,
Dieter an Mey, and Matthias S. Müller

X Table of Contents

On the Algorithmic Aspects of Using OpenMP Synchronization
Mechanisms: The Effects of Transactional Memory 115

Barna L. Bihari, Michael Wong, Bronis R. de Supinski, and
Lori Diachin

Towards Transactional Memory for OpenMP . 130
Michael Wong, Eduard Ayguadé, Justin Gottschlich,
Victor Luchangco, BronisR. deSupinski, andBarnaL.Bihari

Extensions for Tools and Locks

Integrated Measurement for Cross-Platform OpenMP Performance
Analysis . 146

Kevin A. Huck, Allen D. Malony, Sameer Shende, and
Doug W. Jacobsen

A Comparison between OPARI2 and the OpenMP Tools Interface in
the Context of Score-P . 161

Daniel Lorenz, Robert Dietrich, Ronny Tschüter, and Felix Wolf

A User-Guided Locking API for the OpenMP* Application Program
Interface . 173

Hansang Bae, James Cownie, Michael Klemm, and
Christian Terboven

Experiences with OpenMP Device Constructs

Library Support for Resource Constrained Accelerators 187
Laust Brock-Nannestad and Sven Karlsson

Implementation and Optimization of the OpenMP Accelerator Model
for the TI Keystone II Architecture . 202

Gaurav Mitra, Eric Stotzer, Ajay Jayaraj, and Alistair P. Rendell

On the Roles of the Programmer, the Compiler and the Runtime
System When Programming Accelerators in OpenMP 215

Guray Ozen, Eduard Ayguadé, and Jesús Labarta

Author Index . 231

Task-Parallel Reductions in OpenMP and OmpSs

Jan Ciesko1, Sergi Mateo1, Xavier Teruel1, Vicenç Beltran1,
Xavier Martorell1,2, Rosa M. Badia1,3,

Eduard Ayguadé1,2, and Jesús Labarta1,2

1 Barcelona Supercomputing Center
2 Universitat Politècnica de Catalunya

3 Artificial Intelligence Research Institute (IIIA)
- Spanish National Research Council (CSIC)

{jan.ciesko,sergi.mateo,xavier.teruel,vicenc.beltran,
xavier.martorell,rosa.m.badia,eduard.ayguade,

jesus.labarta}@bsc.es

Abstract. The wide adoption of parallel processing hardware in main-
stream computing as well as the raising interest for efficient parallel pro-
gramming in the developer community increase the demand for parallel
programming model support for common algorithmic patterns. In this
work we present an extension to the OpenMP task construct to add
support for reductions in while-loops and general-recursive algorithms.
Further we discuss implications on the OpenMP standard and present a
prototype implementation in OmpSs. Benchmark results confirm appli-
cability of this approach and scalability on current SMP systems.

Keywords: OpenMP, Task, Reduction, Recursion, OmpSs.

1 Introduction

Reductions are a reoccurring algorithmic pattern in many scientific, technical
and mainstream applications. Their characteristic non-atomic update operation
over arbitrary data types makes their execution computationally expensive and
parallelization challenging.

In programming, a reduction occurs when a variable, var, is updated itera-
tively as

iter : var = op(var, expression),

where op is a commutative and associative operator performing an update on
var and where var does not occur in expression. In case of parallel execution,
mutual exclusive access is required to ensure data consistency.

Taking a broader look at usage patterns across applications reveals three com-
mon types of reductions: for-loop (bounded loop), while-loop (unbounded loop)
and recursive. For-loop reductions enclose a reduction in a for-loop body. They
are often used in scientific applications to update large arrays of simulation data
in each simulation step (such as updating particle positions by a displacement

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 1–15, 2014.
c© Springer International Publishing Switzerland 2014

2 J. Ciesko et al.

corresponding to a time slice) or in numerical solvers where values are accumu-
lated over a scalar to indicate convergence behavior and break conditions [7].
They are often referred to as array or scalar reductions.

For-loops represent the class of primitive-recursive algorithms where the itera-
tion space is computable and where control structures of no greater generality are
allowed. The iterative formulation of primitive-recursive functions is currently
supported in OpenMP [9].

While-loop reductions represent another usage pattern and define the class of
general-recursive functions. They appear in algorithms where the iteration space
is unknown such as in graph search algorithms.

The last occurrence represents recursions. Recursive reductions can be found
in backtracking algorithms used in combinatorial optimization. Even though
one could argue that for each recursion an iterative formulation exists (either
as a for-loop or a while-loop), recursions often allow very compact and readable
formulations. Examples of a recursive and while-loop reduction are shown in
Figure 1.

1 int nqueens (. . .) {
2 i f (cond1 (. . .)) return 1 ;
3 int count = 0 ;
4 for (int row = 0 ; row < n ; row++){
5 i f (cond2 (. . .)))
6 count += nqueens (. . .) ;
7 }
8 return count ;
9 }

(a)

1 . . .
2 int red = 0 ;
3 int f oo (node_t node , . . .) {
4 while (node−>next) {
5 red+=bar (node−>value) ;
6 node=node−>next ;
7 }
8 }
9 . . .

(b)

Fig. 1. The recursive, schematic implementation of n-Queens (a) and a graph algorithm
(b) show the different occurrences of reductions in applications

In this work we propose an extension to the OpenMP standard by adding
support for while-loop and recursive reductions through the task reduction di-
rective. Formally, this extends the existing support for primitive-recursive, iter-
ative algorithms by the class of general-recursive algorithms for both, iterative
and recursive formulations. In terms of parallel programming, the proposed task
reduction allows the expression of so called task-parallel reductions. Further we
propose a compliant integration into OpenMP and present a prototype imple-
mentation based on OmpSs [1].

The rest of the paper is structured as follows. Chapter 2 introduces the lan-
guage construct. In Chapter 3 we introduce OmpSs, discuss compiler transforma-
tions and runtime implementation. Benchmark results are shown in Chapter 4.
Finally we discuss related work in Chapter 5 and conclude this work in Chapter 6
with a summary and outlook on future work.

Task-Parallel Reductions in OpenMP and OmpSs 3

2 Task-Parallel Reductions with OpenMP

The idea to support task-parallel reductions builds on top of the conceptual
framework introduced with explicit tasking in OpenMP. Since tasking allows to
express concurrent while-loops and recursions, it represents a convenient mech-
anism to support task-parallel reductions as well. For its definition we use the
current standard specification [9] as a baseline and add a set of rules describing
data consistency and nesting. While this work is written with a certain formalism
in mind, it does not represent a language specification.

2.1 Definition

The task reduction directive1 is defined as:

1#pragma omp task [c l a u s e s] reduction (i d e n t i f i e r : l i s t)
2 st ructured−block

The reduction clause in the task construct declares an asynchronous reduction
task over a list of items. Each item is considered as if declared shared and for
each item a private copy is assigned for each implicit task participating in the
reduction. At implicit or explicit barriers or task synchronization, the original list
item is updated with the values of the private copies by applying the combiner
associated with the reduction-identifier. Consequently, the scope of a reduction
over a list item begins at the first encounter of a reduction task and ends at an
implicit or explicit barrier or task synchronization point. We call this region a
reduction domain. Implications on synchronization in case of domain nesting is
conforming to the OpenMP specification.

We would like to point out that the provided definition is generic and does
not restrict the usage of task-parallel reductions to any particular enclosing con-
struct. However, as in this case the scope of a task-parallel reduction is defined
by both task synchronization as well as by barriers, its support would require to
modify their current implementations. In particular they would need to check
for outstanding private copies and reduce them. A solution to minimize the im-
pact on unrelated programming constructs is to restrict the use of task-parallel
reductions to the context of a taskgroup.

In the rest of this Chapter we discuss implications of this proposal on taskwait
and taskgroup directives, reductions on data dependencies and nesting.

2.2 Reductions on Taskwait

The taskwait construct specifies a wait on the completion of child tasks in the
context of the current task and combines all privately allocated list items of all
child tasks associated with the current reduction domain. A taskwait therefore
represents the end of a domain scope. The previous example shown in Figure 1b
can be easily parallelized as shown in Figure 2.
1 Shown in C and C++ syntax.

4 J. Ciesko et al.

1 . . .
2 int red=0;
3 while (node−>next) {
4 #pragma omp task reduction (+: red)
5 {
6 red+=bar (node−>value) ;
7 }
8 node=node−>next ;
9 }

10#pragma omp taskwait
11 return red ;

Fig. 2. A concurrent reduction using a taskwait to ensure data consistency so a function
would return a correct value of red

2.3 Support in Taskgroups

The taskgroup construct specifies a deep wait on all child tasks and their de-
scendent tasks. After the end of the taskgroup construct, all enclosed reduction
domains are ended and original list items are updated with the values of the pri-
vate copies. Similarly to a taskwait construct, task-parallel reductions require to
extend their role of task synchronization to actively perform a memory operation
to restore consistency. Figure 3 shows an example where a reduction domain is
ended implicitly at the end of a taskgroup construct.

1 . . .
2 int red=0;
3#pragma omp taskgroup
4 {
5 while (c ond i t i on () {
6 #pragma omp task reduction (+: red)
7 red += foo () ;
8 }
9 }

10 return red ;

Fig. 3. A concurrent reduction within the taskgroup performs a wait on all children
and their descendant tasks (this is often referred to as deep wait)

2.4 Reductions on Data Dependencies

Data-flow based task execution allows a streamline work scheduling that in cer-
tain cases results in higher hardware utilization with relatively small develop-
ment effort. Task-parallel reductions can be easily integrated into this execution
model but require the following assumption. A list item declared in the task re-
duction directive is considered as if declared inout by the depend clause. As this
would effectively serialize the execution of reduction tasks due to the "inout"
operation over the same variable, dependencies between reduction tasks of the
same domain need to be overridden.

Task-Parallel Reductions in OpenMP and OmpSs 5

An example, where a reduction domain begins with the first occurrence of
a participating task and is ended implicitly by a dependency introduced by a
successor task, is shown is Figure 4. In this example the actual reduction of
private copies can by overlapped by the asynchronous execution of bar which
again might improve hardware utilization.

1 . . .
2 int red=0;
3 for (int i =0; i<SIZE ; i+=BLOCK){
4 #pragma omp task shared (array) reduction (+: red)
5 for (int j=i ; j< i+BLOCK; ++j){
6 red += array [j] ;
7 }
8 }
9#pragma omp task

10 bar () ;
11#pragma omp task shared (red) depend(in : red)
12 p r i n t f ("%i\n" , red) ;
13 . . .

Fig. 4. The reduction domain over the variable red is ended by a task dependency

2.5 Nesting Support

Nested task constructs typically occur in two cases. In the first, each task at each
nesting level declares a reduction over the same variable. This is called multi-
level reduction. In this case, a taskwait at each nesting level is not mandatory as
long as a deep wait ensures proper synchronization later on. It is important to
point out that only task synchronization that occurs at the same nesting level at
which a reduction scope was created (that is the nesting level that first encounter
a reduction task for a list item), ends the scope and reduces private copies.
Within the reduction domain, the value of the reduction variable is unspecified.
An example for a multi-level domain reduction is shown in Figure 5.

1 . . .
2 int red = 0 ;
3 for (int i =0; i<SIZE ; i+=BLOCK){
4 #pragma omp task shared (array) reduction (+: red)
5 for (int j=i ; j< i+BLOCK; ++j){
6 #pragma omp task shared (array) reduction (+: red)
7 red += array [j] + bar (/∗ l ong_computa t ion ∗/) ;
8 }
9 #pragma omp taskwait

10 p r i n t f (" Unspecified value of red :% i\n" , red) ;
11 }
12#pragma omp taskwait
13 . . .

Fig. 5. A multi-level domain reduction is computed over the same variable by tasks
participating at different nesting levels

6 J. Ciesko et al.

In the second occurrence each nesting level reduces over a different reduction
variable. This happens for example if a nested task performs a reduction on task-
local data. In this case a taskwait at the end of each nesting level is required.
We call this occurrence a nested-domain reduction. Figure 6 shows an example
of an element-wise matrix summation, where inner tasks iterate over rows and
compute partial results that are then reduced by outer tasks to compute the final
value. Since in this example the nested domain is ended by the inner taskwait,
accessing red_local returns a correct value.

1 . . .
2 int red = 0 ;
3 for (int i = 0 ; i < SIZE_Y; i++){
4 #pragma omp task shared (array) reduction (+: red)
5 {
6 int red_loca l = 0 ;
7 for (int j = 0 ; j < SIZE_X; j+=BLOCK_X) {
8 #pragma omp task reduction (+: red_loca l)
9 for (int k = j ; k < j + BLOCK_X; ++k){

10 red_loca l += array [i] [k] ;
11 }
12 }
13 #pragma omp taskwait
14 p r i n t f (" Correct value of red_local :% i\n" , r ed_loca l) ;
15 red += red_loca l ;
16 }
17 }
18#pragma omp taskwait
19 . . .

Fig. 6. Element-wise matrix sum implemented as a nested-domain reduction, where
each dimension is processed in a different nesting level over a different variable

General Nesting Support. The general support for nesting requires to in-
spect scenarios where a task-parallel reduction is nested within the parallel and
worksharing constructs.

An example for such a scenario where a reduction is computed over a shared
variable in a parallel for construct on one level and reduction tasks on the second
level is shown in Figure 7. This example represents a multi-domain reduction
because even though both directives declare a reduction over the same variable
(similarly to Figure 5), the inner reduction is performed on private copies that
were created for each implicit task of the parallel region. In this case the outer
reduction domain starts at the encounter of the first reduction task (implicit
in this case) and ends at the implicit barrier at the end of the parallel region.
The inner reduction domain starts on each thread with the encounter of the first
explicit task and ends at the taskwait.

In case the reduction variable in the work-sharing construct would be declared
shared instead, each implicit task would perform a reduction on the shared vari-
able by its nested reduction tasks. Here the scopes of the inner reductions would
end at implicit synchronization points within the implicit tasks and the runtime
would need to make sure to update the shared variable atomically.

Task-Parallel Reductions in OpenMP and OmpSs 7

1 . . .
2 int red = 0 ;
3#pragma omp parallel for shared (array) reduction (+: red)
4 for (int i =0; i<SIZE ; i+=BLOCK){
5 for (int j=i ; j< i+BLOCK; ++j){
6 #pragma omp task shared (array) reduction (+: red)
7 red += array [j] + bar (/∗ l ong_computa t ion ∗/) ;
8 }
9 #pragma omp taskwait

10 }
11 . . .

Fig. 7. Nested task-parallel reduction in a worksharing construct performs a reduction
over the shared variable red

Currently OpenMP does not support nesting data-parallel and task-parallel
reductions because of the following restriction.

– A list item that appears in a reduction clause of the innermost enclosing
worksharing or parallel construct may not be accessed in an explicit task.

Adjusting this restriction as shown below, would add support for the gen-
eral nesting support while maintaining the afford of discouraging programming
errors.

– A list item that appears in a reduction clause of the innermost enclosing
worksharing or parallel construct may not be accessed in an explicit task
unless it appears in its reduction clause.

– Nested reductions over the same list item must perform the same reduction
operation.

If a general support of task-parallel reductions as discussed in this sections
is desirable depends on its necessity. Currently task-parallel reductions enclosed
in the taskgroup construct represent a satisfactory approach that reduces the
impact of tasking on barriers.

Figure 8 shows two implementations of the n-Queens application from Chapter
1, that compute a reduction over a global (a) and local (b) variable.

3 Implementation in OmpSs

To evaluate requirements for compilers as well as for runtime support we imple-
mented the presented proposal in the OmpSs programming model. OmpSs is a
high-level, task-based, parallel programming model supporting SMPs, heteroge-
neous systems (like GPGPU systems) and clusters.

OmpSs consists of a language specification, a source-to-source compiler for C,
C++ and Fortran [2] and a runtime [3]. The language defines a set of directives
that allow a descriptive expression of tasks. With this information the runtime is
capable of dependency-aware task scheduling. While this is similar to OpenMP,

8 J. Ciesko et al.

1 int count = 0 ;
2 int nqueens (. . .) {
3 i f (cond1 (. . .))
4 return 1 ;
5 for (int row=0;row<n ; row++){
6 i f (cond2 (. . .)))
7 #pragma omp task \
8 reduction (+: count)
9 count += nqueens (. . .) ;

10 }
11 #pragma omp taskwait
12 return 0 ; // n e u t r a l e l emen t
13 }

(a)

1 int nqueens (. . .) {
2 i f (cond1 (. . .))
3 return 1 ;
4 int count = 0 ;
5 for (int row=0;row<n ; row++){
6 i f (cond2 (. . .)))
7 #pragma omp task \
8 reduction (+: count)
9 count += nqueens (. . .) ;

10 }
11 #pragma omp taskwait
12 return count ;
13 }

(b)

Fig. 8. A concurrent implementation of N-Queens as a multi-level (a) and nested-level
domain (b) reduction over the variable count

the OmpSs runtime implements a different execution model. In OmpSs, an ap-
plication is launched as a single implicit task in an implicit parallel region over
all available threads. Therefore nor the parallel construct nor barriers are needed
and memory consistency is ensured through data dependencies and task synchro-
nization directives. Even though these differences exist, OmpSs is suited to serve
as a reference implementation for the specific use-cases presented in Chapter 2.

3.1 Runtime Support

The runtime implementation is based on the idea of privatization. In order to
avoid the need for mutual exclusive access to the reduction variable, a thread-
private copy (TPRS) is created and used as a temporal reduction target. Since
its creation, initialization and processing later on are expensive operations, it is
important to maximize the life span and reuse of a TPRS.

Therefore we introduce a thread-team private reduction manager object that
tracks privatized memories and assigns them to requesting tasks. Consequently
all tasks that are executed on the same thread and belong to the same reduc-
tion domain always receive the same allocated thread-private memory. Once the
domain ends, one of the participating threads reduces all corresponding TPRSs
serially.

Allocation Strategies and Storage Handling. To evaluate memory alloca-
tion we implemented two strategies called static and dynamic allocation.

Static allocation preallocates and initializes an array of thread-private reduc-
tion storages for all threads of a team (as defined by omp_get_num_threads())
at the moment when the first reduction task is created. This marks the beginning
of a reduction domain. During execution, the runtime provides previously allo-
cated TPRS objects according to a domain and thread identifier to requesting
child tasks.

Task-Parallel Reductions in OpenMP and OmpSs 9

TID 1

TID 2

P R1

R2 R4

pre-alloc req

req req

req red

R3 T

(a)

TID 1

TID 2

P R1

R2 R4

R3

req

req

req alloc

req alloc red

T

(b)

Fig. 9. Static (a) and dynamic (b) allocation differs in when and where thread-private
memory is requested (req), allocated (alloc) and reduced (red)

With dynamic allocation, memory is allocated and initialized on demand at
task execution. Once a task requests a thread-private storage, the runtime per-
forms an allocation, registers the storage in the reduction manager and returns
a TPRS. An allocation is performed for each first execution of a reduction task
of a domain on a participating thread. In this case a reduction domain begins at
the execution of the first reduction task. This allocation strategy does not create
any work for the encountering thread as the allocation is called at execution
time of child tasks in parallel.

An execution diagram of an application where a parent task P creates four
reduction tasks R1-4 running on two threads (TID 1, 2) is shown in Figure 11.
In this scenario a following task T has an input dependency on the reduction
variable and expects a correct value in memory at the moment of its execution.
In OmpSs, finding the right point in time to reduce TPRSs is implemented via
data dependencies. TPRSs are reduced in the moment when data dependencies
are satisfied, or in other words, when the last task of a dependency domain has
finished execution. In this example, reduction task R3 is the task that satisfies
the dependency requirements for task T and once completed it instructs the
current thread TID 1 to reduce all private storages of the reduction domain.

The advantage of static allocation is that it allows to allocate memory in a
single call (to malloc for example) and its implementation is lock free once all
TPRSs have been allocated. On the other hand, allocation is in the critical path
and potentially can result in allocating unused storage in case not all threads
participate in the computation. Further this approach does not adapt to changing
numbers of participating threads.

Dynamic allocation allocates and initializes memory in parallel and avoids
unnecessary allocation for busy threads that will not participate in the reduction
computation. Since the number of registered TPRS storages changes over time,
this implementation requires a lock in the global manager which can potentially
introduce lock contention for fine grained tasks. This approach corresponds to
the idea of dynamic parallelism where problem size nor thread counts are known.

10 J. Ciesko et al.

Nesting Support. In case of nesting, synchronization constructs might occur
at any nesting level. In this case the runtime must be able identify storage
locations that correspond to an ending domain.

For this purpose the reduction manager object implements a list of TPRSs
and two maps that point to individual items in that list. One map uses task
identifiers while the other one uses target addresses (pointers to the original
reduction variable) as primary keys.

At the first execution of a task of new reduction domain, a new TPRS is
allocated and initialized for the current thread and the parent work descriptor
identifier as well as the address of the reduction variable are stored in the corre-
sponding maps. Each successive task running on that thread and reducing over
same variable will receive the same TPRS because of matching addresses. Once
tasks finish, and the recursion starts to collapse, only those tasks that have a
matching task identifier stored in the map are allowed to reduce TPRS storages.
This corresponds exactly to those tasks that created a new reduction domain.

3.2 Compiler Support

The goal of the Mercurium compiler is to generate code transformations accord-
ing to OmpSs annotations provided by the programmer. In case of encountering
a task reduction, the compiler replaces all occurrences of the original reduction
variable within the task by a reference to a previously requested thread-private
reduction store, called TPRS. This transformation includes the following steps.

– Generate call to the runtime to obtain a TPRS. The runtime serves a TPRS
corresponding to the current thread that is executing the task

– Replace all references to the original reduction variable within the task by a
reference to the TPRS

– Apply the above transformation on the final task code block (code that is
executed in the final task region).

The final task code block represents the original user written code without
runtime calls and is invoked when the task’s final clause evaluates to true. The
final clause in the task construct is typically used to set a cut-off value for task
generation in order to control task granularity. In this way recursive functions
can be stopped from task generation in order to avoid large runtime overheads.

In case of task reductions, multiple tasks can invoke the final code block that is
performing a reduction over a global reduction variable in parallel. Consequently
in order to avoid race conditions, accesses to the reduction variable within the
final code block need to be redirected to the thread-private storage as well.
Since requesting a TPRS is typically implemented as a runtime call, careful
implementation is needed to minimize its impact on performance. Alternatively
an additional final code block can be generated and invoked that accepts a TPRS
pointer as an additional parameter. This would make the runtime call to request
a TPRS obsolete.

Compiler transformations applied to Figure 5 are shown in Figure 10.

Task-Parallel Reductions in OpenMP and OmpSs 11

1 void out l ine_task1 (struct ArgsTask1 args) ;
2 void out l ine_task2 (struct ArgsTask2 args) ;
3 int f oo () {
4 . . .
5 for (int i =0; i<SIZE ; i+=BLOCK)
6 rt_create_task ({ array , i , &red } , &out l ine_task1) ;
7 rt_taskwait () ;
8 return red ;
9 }

10 void out l ine_task1 (struct ArgsTask1 args) {
11 int ∗ tp_red = rt_get_thread_storage(args . red) ;
12 for (int j=i ; j< args . i + BLOCK; ++j)
13 rt_create_task ({ array , j , tp_red} , &out l ine_task2) ;
14 rt_taskwait () ;
15 }
16 void out l ine_task2 (struct ArgsTask2 args) {
17 int ∗tp_tp_red = rt_get_thread_storage(args . tp_red) ;
18 (∗ tp_tp_red) += args . array [args . j] + bar (/∗ l ong_computa t ion ∗/) ;
19 }

Fig. 10. Transformations applied by the compiler redirecting accesses to a thread-
private reduction store

4 Evaluation

The evaluation of the presented runtime support is based on four application ker-
nels that include while-loop and recursive reductions. The first two applications,
n-Queens and Knight’s tour, represents the satisfiability problem in numerical
combinatorics. They compute in one case the maximum number of different con-
figurations of n queens, in the other, the number of knight’s paths covering all
fields on a chess board of size n. These applications are implemented as recur-
sive backtracking algorithms in two versions. In one version the reduction is
performed over a task-local variable (nested-domain reduction) and in the other
over a global variable (multi-level domain reduction). The schematic concurrent
code for n-Queens is shown in Figure 8. Execution traces obtained from the n-
Queens application running on 16 threads are shown in Figure 11 and illustrate
task execution and lifetimes of TPRSs for both implementations. In these exe-
cutions, task granularity was set to an optimum by using the final clause in the
task construct. As visible in the execution trace, a multi-level domain reduction
allows high reuse rates of thread-private memory across nesting levels.

Max-height, another application, computes the longest path over a directed,
unbalanced and acyclic graph. This application represent a while-loop reduction.
Due to its frequent, irregular memory accesses, its scalability is limited by mem-
ory bandwidth when running on 16 processor cores. The Powerset benchmark
computes the number of all possible sets over a given number of elements. This
application is implemented recursively where unlike the n-Queens application,
each recursive branch is of the same length.

Figure 12 shows application scalability for the aforementioned applications
implemented as nested-domain (a) and multi-level domain (b) reduction as well
as their implementations with tasking and atomic updates (using built-in atomics

12 J. Ciesko et al.

(a) (b) (c)

Fig. 11. An execution trace for the n-Queens application (n=15 and creating tasks in
two nesting levels) shows tasks (a) and allocation (1), reuse (2) and reduction (3) of
thread-private reduction storages over a task-local(b) and global variable(c) as shown
in Figure 8

where possible). For each benchmark we have selected the best task granular-
ity and the following problem sizes: n-Queens with n=15, Knight’s tour with
board size 5x5; Max-height with a graph height 15, 7 edges per node and Pow-
erset over 32 items. Results show that all benchmarks benefit from reduction
support, especially in cases where lock contention and atomic updates degrade
performance.

While all applications were executed with both allocation strategies, they
did not exhibit significant performance differences. Allocation and initialization
strategies are relevant especially in case of user-defined reductions over larger
data types and array reductions where the cost of memory allocation and ini-
tialization becomes expensive. As a more detailed analysis exceeds the scope of
this paper, we defer it to future work.

Inspecting overheads of the current implementation for both allocation strate-
gies revealed that the additional time introduced by runtime calls specific to
reduction support did not exceed 1% of total time spent in the runtime irregard-
less of granularity or problem size. We expect that this behavior will change in
case of user-defined and array-type reductions.

4.1 Environment

All benchmark results presented in this work were obtained from the MareNos-
trum 3 supercomputer located at the Barcelona Supercomputing Center. Each
system node contains two 8-core Intel Xeon E5-2670 CPUs running at 2.6 GHz
with 20MB L3 cache and 32GB of main memory. Applications were compiled

Task-Parallel Reductions in OpenMP and OmpSs 13

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
pe

ed
-u

p

threads

n-queens
n-queens atomic
knights-tour
knights-tour atomic
max-height
max-height critical
powerset
powerset atomic

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
pe

ed
-u

p

threads

n-queens
n-queens atomic
knights-tour
knights-tour atomic
powerset
powerset atomic

(b)

Fig. 12. Application speed-up over serial execution implemented with nested (a) and
multi-level domain (b) reductions as well as with regular tasking using atomics

using Mercurium compiler v1.99.1 and GCC v4.8.2 back-end/native compiler
with -O3. The runtime is based on the Nanos++ RTL v0.7a.

5 Related Work

OpenMP has allowed concurrent reductions in work-sharing constructs since its
first specification (OpenMP 1.0) in 1997. The supported clauses allow the use
of a reduction operator and a list of scalar, shared locations. During parallel
execution, the runtime creates private copies for each list item and thread in the
team. The result variable is initialized with the identity value according to the
operator that is declared in the clause. In successive versions of the OpenMP
specification, additional features have been added to the standard. These include

14 J. Ciesko et al.

min- and max-operators for C/C++ in version OpenMP 3.1, extended reduc-
tion support to Fortran Allocatable Arrays (OpenMP 3.0) and User Defined
Reduction (OpenMP 4.0). Aside from small incremental updates, the OpenMP
specification has never allowed OpenMP tasking in reductions. In fact it explic-
itly forbids the use of reduction symbols in combination with tasks: "A list item
that appears in a reduction clause of the innermost enclosing work-sharing or
parallel construct may not be accessed in an explicit task." [9] This restriction
reduces flexibilities achieved by dynamic parallelism in many algorithms.

Other programming models, such as the Cilk++ [8], introduce different types
of linguistic mechanisms, so called hyperobjects [6], that are coordinating local
views of the same variable. Based on a cilk_spawn mechanism that starts par-
allel execution, the parent creates a private copy of the original view initialized
with the identity value, while the child receives the original view of the symbol.
These two views join just before synchronization occurs (cilk_sync). In the
first step, the child view is updated with the value of the parent view accord-
ing to a reducer function. Then the parent view is discarded, and replaced by
the view of the child. Unlike lazy-reduction implemented in OmpSs that is able
to reuse storage across nesting levels, in this case an allocation, reduction and
deallocation always occur.

X10 [4], another popular programming model, introduces a phaser-accumulator
[10,11] construct for dynamic parallelism. A X10-phaser is a coordination con-
struct allowing to unify point-to-point synchronization among different X10-tasks
(activities). The phaser-accumulators support two logical operations. It sends a
value for accumulation that has been produced in the current phase or it receives
the accumulated value from the previous phase. This implementation entirely
eliminates race conditions through the accumulator object that handles read and
write accesses.This encapsulation of functionality allows to define implementation
strategies that differ as to when the reduction itself is performed. That is either
when data is supplied or when a synchronization point is reached. In this respect
this implementation is comparable to OmpSs.

6 Conclusions and Future Work

In this paper we presented an extension to OpenMP tasking to support re-
ductions in while-loops and general-recursive functions. In turned out that the
OpenMP taskgroup is suited to support task-parallel reductions as it minimizes
implications on unrelated constructs. A general support in OpenMP is possible
but requires further analysis of deep task synchronization and of implementa-
tion and performance implications on barriers. This effort should be made in
the future if applications exist that render the taskgroup construct insufficient.
The presented runtime implementation offers two different allocation strategies
and maximizes storage reuse. Dynamic allocation follows the idea of dynamic
parallelism where neither the amount of work nor the number of participating
threads are known beforehand. Results show that task granularity is important
and in case of recursive algorithms can be efficiently controlled by the final

Task-Parallel Reductions in OpenMP and OmpSs 15

clause. In the case of while-loops, task granularity needs to be taken into ac-
count by the programmer through appropriate application design. Performance
results obtained on a MareNostrum 3 system node show a near-linear speed-up
for test cases with optimal granularity. Future work includes runtime support for
efficient array reductions through software caching [5], user-defined reductions
and execution on accelerators.

Acknowledgments. This work has been developed with the support of the
grant SEV-2011-00067 of Severo Ochoa Program, awarded by the Spanish Gov-
ernment and by the Spanish Ministry of Science and Innovation (contracts
TIN2012-34557, and CAC2007-00052) by the Generalitat de Catalunya (con-
tract 2009-SGR-980) and the Intel-BSC Exascale Lab collaboration project.

Also the authors would like to thank the OpenMP community for their sub-
stantial contribution to this work.

References

1. Barcelona Supercomputing Center: OmpSs Specification (April 25, 2014),
http://pm.bsc.es/ompss-docs/specs

2. BSC - Parallel Programming Models group: Mercurium C/C++ source-to-source
compiler (May 2014), http://pm.bsc.es/projects/mcxx

3. BSC - Parallel Programming Models group: Nanos++ runtime library (May 2014),
http://pm.bsc.es/projects/nanox

4. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: An Object-oriented Approach to Non-uniform Cluster
Computing. SIGPLAN Not. 40(10), 519–538 (2005)

5. Ciesko, J., Bueno-Hedo, J., Puzovic, N., Ramirez, A., Badia, R.M., Labarta, J.:
Programmable and scalable reductions on clusters, pp. 560–568. IEEE, Boston
(2013)

6. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and Other
Cilk++ Hyperobjects. In: Proceedings of the Twenty-first Annual Symposium on
Parallelism in Algorithms and Architectures, SPAA 2009, pp. 79–90. ACM, New
York (2009)

7. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D
seismic wave propagation 139(3), 806–822 (1999)

8. Leiserson, C.E.: The Cilk++ Concurrency Platform. In: Proceedings of the 46th
Annual Design Automation Conference, DAC 2009, pp. 522–527. ACM, New York
(2009)

9. OpenMP Architecture Review Board: OpenMP application program interface ver-
sion 4.0 (July 2013)

10. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phasers: A Unified
Deadlock-Free Construct for Collective and Point-to-point Synchronization. In:
ICS 2008: Proceedings of the 22nd Annual International Conference on Supercom-
puting, pp. 277–288. ACM, New York (2008)

11. Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phaser accumulators: A new
reduction construct for dynamic parallelism. In: IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2009, pp. 1–12. IEEE, Rome (2009)

http://pm.bsc.es/ompss-docs/specs
http://pm.bsc.es/projects/mcxx
http://pm.bsc.es/projects/nanox

Evaluation of OpenMP Dependent Tasks with the
KASTORS Benchmark Suite

Philippe Virouleau1, Pierrick Brunet1, François Broquedis4, Nathalie Furmento2,
Samuel Thibault 3, Olivier Aumage1, and Thierry Gautier1

1 INRIA,
2 CNRS,

3 University of Bordeaux,
4 Grenoble Institute of Technology

MOAIS and RUNTIME Teams, Computer Science Laboratories of Grenoble and Bordeaux,
France

firstname.lastname@inria.fr,
thierry.gautier@inrialpes.fr

Abstract. The recent introduction of task dependencies in the OpenMP specifi-
cation provides new ways of synchronizing tasks. Application programmers can
now describe the data a task will read as input and write as output, letting the
runtime system resolve fine-grain dependencies between tasks to decide which
task should execute next. Such an approach should scale better than the excessive
global synchronization found in most OpenMP 3.0 applications. As promising as
it looks however, any new feature needs proper evaluation to encourage applica-
tion programmers to embrace it. This paper introduces the KASTORS benchmark
suite designed to evaluate OpenMP tasks dependencies. We modified state-of-the-
art OpenMP 3.0 benchmarks and data-flow parallel linear algebra kernels to make
use of tasks dependencies. Learning from this experience, we propose extensions
to the current OpenMP specification to improve the expressiveness of dependen-
cies. We eventually evaluate both the GCC/libGOMP and the CLANG/libIOMP
implementations of OpenMP 4.0 on our KASTORS suite, demonstrating the in-
terest of task dependencies compared to taskwait-based approaches.

Keywords: OpenMP, task dependencies, benchmarks, runtime systems,
KASTORS.

1 Introduction

HPC architectures evolved so rapidly that it is now common to build shared-memory
configurations with several dozens of cores. The recent appearance of technologies such
as the Intel Xeon Phi co-processor makes affordable configurations with thousands of
cores a not-so-far reality. Efficiently programming such large-scale platforms requires
to express more and more fine-grain parallelism.

Standard parallel programming environments such as OpenMP have evolved to ad-
dress this requirement, introducing new ways of designing highly parallel programs.
Extending OpenMP to support task parallelism stands as a first step to improve the
scalability of OpenMP applications on large-scale platforms. Indeed, task parallelism

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 16–29, 2014.
c© Springer International Publishing Switzerland 2014

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 17

usually comes with lower runtime-related overhead than thread-based approaches, al-
lowing OpenMP programmers to create a large amount of tasks at low cost. Task paral-
lelism also promotes the runtime system to a central role, as having more units of work
to execute requires smarter scheduling decisions and load balancing capabilities.

OpenMP was recently extended to support task dependencies. Instead of explicitly
synchronizing all the tasks of a parallel region at once, the application programmer
can now specify a list of variables a task will read as input or write as output instead.
This information is transmitted to the task scheduling runtime system. The runtime then
marks a task as ready for execution only once all its dependencies have been resolved.
Dependencies therefore provide a way to define finer synchronizations between tasks,
able to scale better than global synchronizations on large-scale platforms. Dependencies
also give the runtime system more options to efficiently schedule tasks, as these become
ready for execution as soon as the data they access has been updated.

As promising as it looks however, any new feature needs proper evaluation to en-
courage application programmers to embrace it. While several compilers and runtime
systems are now beginning to support OpenMP 4.0 task dependencies, no benchmark
suite currently exists to evaluate their respective benefits and compare them to tradi-
tional task parallelism.

This paper highlights two major contributions. We first introduce a new bench-
mark suite to experiment with OpenMP 4.0 task dependencies. We present performance
results for both the GCC/libGOMP and the CLANG1/libIOMP compilers and their run-
time systems, comparing kernels involving either dependent or independent tasks. Sec-
ondly, we comment on the issues we met while implementing these benchmarks along
the lines of current 4.0 revision of the OpenMP specification. Building on this experi-
ence, we contribute some extension proposals to the existing OpenMP specification, to
improve the expressiveness of the task dependency support.

The remainder of this paper is organized as follows. Section 2 describes the task de-
pendency programming model in OpenMP 4.0. It then analyzes the strategies adopted
by GCC/libGOMP and CLANG/libIOMP to implement this model. Section 3 intro-
duces the KASTORS benchmark suite we have designed to evaluate OpenMP 4.0’s task
model implementations. Section 4 presents the performance results of KASTORS using
two different hardware configurations. We identify and discuss practical issues with the
current OpenMP specification, and we propose extensions in section 5 to address these
issues. We finally present some related works in section 6 before concluding.

2 The Way OpenMP Specifies Dependencies between Tasks

The OpenMP Architecture Review Board recently introduced a new way of expressing
task parallelism using OpenMP, through the task dependencies extension that comes
with revision 4.0 of the specification. This section gives some insight into how program-
mers can use task dependencies to advantageously replace the often excessive global
task synchronizations found in many OpenMP 3.0 applications. We also study the way
the development teams of GCC/libGOMP and CLANG/libIOMP choose to implement
this new OpenMP task model within their compilers and associated runtime systems.

1 Intel branch with support for OpenMP: http://clang-omp.github.io/

http://clang-omp.github.io/

18 P. Virouleau et al.

2.1 Task Dependencies by the Example

OpenMP 4.0 introduces the depend keyword to specify the access mode of each
shared variable a task will access during its execution. Access modes can be set to
either in, out or inout whether the corresponding variable is respectively read as in-
put, written as output or both read and written by the considered task. This information
is then processed by the underlying runtime system to decide whether a task is ready
for execution or should first wait for the completion of other ones.

Listing 1.1 shows the implementation of a LU factorization. It is inspired by the
SparseLU kernel from the BOTS [5] benchmark suite, which generates OpenMP inde-
pendent tasks. The matrix being factorized is divided into a set of smaller sub-matrices
on which are applied three computation kernels, called fwd, bdiv and bmod. At it-
eration k, the update of sub-matrix (i,j) by the bmod function requires an update of
both sub-matrices (k,j) and (i,k) from the fwd and bdiv functions respectively. For
each iteration, we make sure no bmod task starts executing before tasks fwd and bdiv
have completed using the broad range, explicit taskwait synchronization keyword
on line 11. This keyword indiscriminately waits for the completion of every task created
by the parallel section so far.

While respecting the algorithm semantics, this solution limits the potential paral-
lelism that can be generated out of such an application. Listing 1.2 shows the same
algorithm implemented with OpenMP task dependencies. Instead of waiting for the ter-
mination of all previous tasks before executing bmod tasks, we specify dependencies
to make sure bmod tasks can execute as soon as the data they access has been updated
by the corresponding fwd and bdiv tasks. Running this depend version of the pro-
gram leads to the creation of a dependency graph. When an OpenMP thread turns idle,

Listing 1.1. LU with independent tasks

1 for (k=0; k<NB; k++) {
2 lu0(M[k*NB+k]);
3 for (j=k+1; j<NB; j++)
4 #pragma omp task untied shared(M)
5 fwd(M[k*NB+k], M[k*NB+j]);
6

7 for (i=k+1; i<NB; i++)
8 #pragma omp task untied shared(M)
9 bdiv(M[k*NB+k], M[i*NB+k]);

10

11 #pragma omp taskwait
12

13 for (i=k+1; i<NB; i++)
14 for (j=k+1; j<NB; j++)
15 #pragma omp task untied shared(M)
16 bmod(M[i*NB+k],
17 M[k*NB+j],
18 M[i*NB+j]);
19 #pragma omp taskwait
20 }

Listing 1.2. LU with task dependencies

1 for (k=0; k<NB; k++) {
2 #pragma omp task untied shared(M)\
3 depend(inout: M[k*NB+k:BS*BS])
4 lu0(M[k*NB+k]);
5 for (j=k+1; j<NB; j++)
6 #pragma omp task untied shared(M)\
7 depend(in: M[k*NB+k:BS*BS])\
8 depend(inout: M[k*NB+j:BS*BS])
9 fwd(M[k*NB+k], M[k*NB+j]);

10

11 for (i=k+1; i<NB; i++)
12 #pragma omp task untied shared(M)\
13 depend(in: M[k*NB+k:BS*BS])\
14 depend(inout: M[i*NB+k:BS*BS])
15 bdiv(M[k*NB+k], M[i*NB+k]);
16

17 for (i=k+1; i<NB; i++)
18 for (j=k+1; j<NB; j++)
19 #pragma omp task untied shared(M)\
20 depend(in: M[i*NB+k:BS*BS])\
21 depend(in: M[k*NB+j:BS*BS])\
22 depend(inout: M[i*NB+j:BS*BS])
23 bmod(M[i*NB+k],M[k*NB+j],M[i*NB+j

]);
24 }

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 19

the runtime system browses this graph to decide which task should be executed next,
according to tasks’ current state and resolved dependencies.

Task dependency support comes with several benefits. First, task dependencies in-
volve decentralized, selective synchronization operations that should scale better than
the broad-range taskwait-based approaches. In some situations, this way of program-
ming unlocks more valid execution scenarios than explicitly synchronized tasks, which
provides the runtime system with many more valid task schedules to choose from. For
example, many instances of the fwd, bdiv and bmod computations can legally run
concurrently with the version of the LU factorization expressing task dependencies.
On the contrary, this level of concurrence is not possible with the taskwait version
because the lack of accurate dependency information leads to an over-conservative syn-
chronization scheme. As an added benefit, information about task dependencies also
enables the runtime system to optimize further, such as improving task and data place-
ment on NUMA systems.

In expressing dependencies, the programmer needs to strike the right balance how-
ever. Indeed, dependencies expressed too coarsely might limit the amount of available
parallelism. On the other hand, defining fine-grain dependencies may increase runtime-
related overheads, depending on the way the underlying runtime system keeps track of
the variables set inside a depend clause and the method it uses to enforce dependen-
cies.

2.2 Maturity of Compiler Support

Both the GCC (4.9) and CLANG2 compilers now support most of the functionalities of
OpenMP 4.0. The GNU libGOMP runtime system is responsible for executing OpenMP
applications compiled with GCC, while the CLANG compiler generates calls to the In-
tel libIOMP library. Please note that support for OpenMP 4.0 dependent tasks is still
very recent in these compilers at the time of this writing. GCC 4.9 was released on
April 22, 2014. The CLANG branch with Intel OpenMP support is under active de-
velopment. However, even though both compilers are still maturing their support for
OpenMP dependent tasks, the tests that we conducted and that we present in Section 4
show that the OpenMP dependent task support in these compilers already favorably
compares to the legacy independent task support.

Compiler Support for the “depend” Clause. The GCC 4.9 compiler stores the en-
tire list of dependencies into a void** array. This array is passed as argument to the
GOMP_task function call generated out of a #pragma omp task directive. It con-
tains the addresses of all the variables referenced in the depend clause.

The Clang 3.4 compiler also generates a list out of the depend clause, and passes it
to the __kmpc_omp_task_with_deps runtime function. This structure stores the
addresses of all the variables described inside the depend clause, as well the length
and flags of associated dependencies.

2 In this article, we designate as "CLANG" the branch developed and maintained by Intel to
integrate OpenMP support into the CLANG compiler. This branch is available there:
http://clang-omp.github.io/

http://clang-omp.github.io/

20 P. Virouleau et al.

Runtime Support for Task Dependencies. The libGOMP library that comes with
GCC 4.9 uses two data structures to manage task dependencies. The first data structure
is the depend variable list generated by the compiler for the newly created task, as
mentioned above. The second data structure is a hashtable located in the parent of the
created task, which keeps track of all the pending dependencies between all the already
created child tasks of the parent task. Upon creating the new child task, the runtime
walks the list of depend variables and looks every variable up in the pending depen-
dency table. If any unresolved dependency is found, the task creation enter the deferred
path. Otherwise, the task is fully instantiated immediately.

The libIOMP used with Clang 3.4 has a very similar approach. Each par-
ent task maintains a hashtable containing the pending dependencies for its chil-
dren tasks. If a newly created task is found clear of any pending dependency,
the __kmpc_omp_task_with_deps runtime function immediately instantiates
it by calling the __kmpc_omp_task function. Otherwise, the new task is
added as a successor to all tasks from which it expects some data, and the
__kmpc_omp_task_with_deps function returns a code indicating that the new
task has not yet been queued. The waiting new task will subsequently be woken up
upon completion of its last predecessor.

3 The KASTORS Suite Overview

We designed the KASTORS benchmark suite to evaluate implementations of the
OpenMP dependent task paradigm, introduced as part of the OpenMP 4.0 specifica-
tion [11]. This section introduces the different benchmarks and describes how we ex-
tended them to express task dependencies.

Cholesky and QR Decompositions from PLASMA. The PLASMA [9] library devel-
oped at ICL/UTK provides a large number of key linear algebra algorithms optimized
for multi-core architectures. Several implementations of each algorithm are available,
using either static or dynamic scheduling. Dynamic scheduled algorithms are built on
top of the QUARK [12] runtime system, which uses a data-flow dependency model to

Listing 1.3. Dynamic algorithm pattern

1 wrapper_algorithm_dynamic_call(...)
{

2 // sequential work
3 for (...)
4 QUARK_Insert_Task(

wrapper_blas_function,
packed_parameters);

5 // sequential work
6 for (...)
7 QUARK_Insert_Task(
8 wrapper_another_blas_function

,
9 packed_parameters);

10 // sequential work
11 }

Listing 1.4. OpenMP algorithm pattern

1 algorithm_call(...) {
2 // sequential work
3 for (...)
4 #pragma omp task depend(inout:

array[...])
5 blas_function(...);
6 // sequential work
7 for (...)
8 #pragma omp task depend(inout:

array[...])
9 another_blas_function(...)

;
10 // sequential work
11 }

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 21

schedule tasks. The two algorithms we selected are a Cholesky decomposition and a QR
decomposition, respectively known as DPOTRF and DGEQRF in PLASMA, which all
operate on double precision floating point matrices (double type).

The initial implementation uses multiple levels of wrappers, packing and unpack-
ing parameters at each level, which affects the readability of algorithms and can be
error prone. Listings 1.3 and 1.4 show the initial dynamic version and the transfor-
mations we made for the OpenMP 4.0 port respectively. On the original version the
wrapper_blas_function performs parameters unpacking before calling the ac-
tual BLAS/LAPACK routines it is built on. The OpenMP 4.0 modification led to the
removal of multiple wrapper levels, thus improving code readability and maintainabil-
ity, and removing the need for such parameter management.

Poisson2D. This algorithm solves the Poisson equation on the unit square [0,1]x[0,1],
which is divided into a grid of NxN evenly-spaced points. This benchmark relies on
a 5-point 2D stencil computational kernel that is repeatedly applied until convergence
is detected. We implemented two main blocked versions of this kernel, using either
independent tasks and tasks with dependencies.

SparseLU. This benchmark computes the LU decomposition of a sparse matrix. We
modified the original BOTS implementation to express task dependencies like described
on listings 1.1 and 1.2, except only non-NULL blocks are updated to adapt the tradi-
tional LU decomposition to sparse matrices.

Strassen. The Strassen algorithm uses matrix decompositions to compute the multi-
plication of large dense matrices. Similarly to SparseLU, we modified the BOTS im-
plementation to add parallelism to the addition part of the algorithm and express task
dependencies instead of using taskwait-based synchronizations.

4 Performance Evaluation

All experiments were performed with the libGOMP library distributed with GCC 4.9
(git-mirror commit 6ed3847ffd0), and the libIOMP library distributed with clang-omp
3.4 (llvm commit 233b1e3f034, clang-omp commit 7580e521e51f).We conducted our
experiments on two different NUMA configurations.

The first one holds 8 AMD Magny Cours processors for a total of 48 cores. Each
core has access to 64 KB of L1 cache, 512 KB of L2 cache. Both L1 and L2 caches are
private, while L3 cache is shared between the 6 cores of a processor. This configuration
provides a total of 256 GB (32 GB per NUMA node) of main memory. We will refer to
this configuration as AMD48.

The second one holds 4 Intel Xeon E5-4620 processors for a total of 32 cores. Each
core has access to 64 KB of L1 cache, 256 KB of L2 cache. Both L1 and L2 caches are
private, while L3 cache is shared between the 8 cores of a processor. This configuration
provides a total of 380 GB (95 GB per NUMA node) of main memory. We will refer to
this configuration as INTEL32.

22 P. Virouleau et al.

 0

 50

 100

 150

 200

DGEQRF DPOTRF DGEQRF DPOTRF DGEQRF DPOTRF

Gi
ga

Fl
op

s

Plasma
Plasma-Quark

GCC-OMP
Clang-OMP

M,B : 8192,224M,B : 4096,128M,B : 2048,128

Fig. 1. Plasma on AMD48

Plasma. The DPOTRF and DGEQRF algorithms from Plasma rely on the BLAS
library. We used different versions of optimized BLAS depending on the machine:
ATLAS 3.10.1 was used on INTEL32, and ATLAS 3.8.4 was used on AMD48. Mea-
surements were conducted using the maximum number of CPUs for each machine. The
performance results are expressed in gigaflops (the higher the better), from an average
of 10 runs, with an average standard deviation of 2 Gflops.

We compared four versions of these algorithms: The original PLASMA implementa-
tion with static scheduling (Plasma), the dynamic scheduling implementation on top of
Quark runtime (Plasma-Quark) and two KASTORS OpenMP versions compiled with
GCC/libGOMP (GCC-OMP) and CLANG/libIOMP (Clang-OMP), respectively. Each
version was run on the following matrix size (M) / block size (B) couples: (2048 / 128),
(4096 / 128), (8192 / 224).

For both algorithms the results are positive: On both machines the OpenMP versions
compete with the original versions. In several cases, the Clang-OMP version even leads
by a slight margin. The overall good results of the original static version can be ex-
plained by the fact that it does not have to pay the overhead of task creation. One can
also notice that QUARK-based versions always are slightly slower than both CLANG
and GCC implementations for small matrix sizes, which leads to the conclusion that the
libGOMP and libIOMP runtimes induce less overhead and provide a better handling of
fine-grain tasks than QUARK. The conclusion is encouraging, as we were able to get
similar or better performance results using a portable OpenMP-based approach than
with a specifically designed runtime.

Poisson2D. The results are shown in figure 3 and the corresponding sequential times are
reported in table 1. The speedup of both independent tasks and dependent tasks versions
are low: Less than 14 on AMD48 and 6 on INTEL32. The application is memory bound
with about the same number of arithmetic operations per load and store. The Poisson2D
code is an iterative computation in which tasks are created at each time-step to update

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 23

 0

 50

 100

 150

 200

DGEQRF DPOTRF DGEQRF DPOTRF DGEQRF DPOTRF

Gi
ga

Fl
op

s

Plasma
Plasma-Quark

GCC-OMP
Clang-OMP

M,B : 8192,224M,B : 4096,128M,B : 2048,128

Fig. 2. Plasma on INTEL32

Table 1. Sequential Poisson2D, Strassen and SparseLU execution time (s)

Platform Compiler Poisson2D SparseLU Strassen
8192 16384 128x64 64x128 4096 8192

AMD48 GCC 5.28 21.34 97.74 94.36 38.35 269.93
AMD48 CLANG 5.42 21.66 99.34 95.08 32.92 234.16

INTEL32 GCC 1.64 6.53 77.88 71.97 25.32 180.11
INTEL32 CLANG 1.77 6.79 76.74 71.58 20.12 142.54

the sub domain of the initial grid. One of the important problem is that tasks are not
bound to resources in order to take data locality into account. Typical scenario is that
tasks between successive iterations may be performed by different threads of the same
parallel region. Neither the CLANG or the GCC runtime tries to schedule tasks in order
to maximize data reuse. Moreover, tasks that access to same data (due to sharing of
frontiers between two sub-domains) may be better scheduled if they are mapped to
cores on the same NUMA node. It is challenging for OpenMP runtime developers to
take data dependencies into account in order to better schedule tasks to improve data
locality.

SparseLU. For this benchmark we used two matrices and sub-matrices sizes : 128x64
and 64x128. Speed up were measured from an average of 10 runs, with an average
standard deviation of 0.5. Results are shown on Figure 4 and reference sequential times
are listed in Table 1.

For every tested configuration, the dependent task version outperforms the indepen-
dent task version for both compilers. The best speed up is achieved using the 64x128
configuration. The OpenMP 4.0 version using dependencies performs slightly better in
most cases because it is able to exploit inter-iteration parallelism. The version using
independent tasks cannot exploit it, because of the global synchronization steps (see

24 P. Virouleau et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8192 16384 8192 16384

S
p
ee

d
 u

p

Poisson2D

GCC task
GCC task-dep

Clang task
Clang task-dep

INTEL32AMD48

Fig. 3. Poisson 2D

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

128x64 64x128 128x64 64x128

S
p
ee

d
 u

p

SparseLU

GCC task
GCC task-dep

Clang task
Clang task-dep

INTEL32AMD48

Fig. 4. SparseLU

listings 1.1 and 1.2). It is therefore unable to provide enough parallelism to fully benefit
from the available number of cores. This confirms that using data-flow dependencies
can lead to a better use of CPUs.

Strassen. The Strassen matrix multiplication is typically performed in 3 steps: a matrix
add, a matrix multiply and a matrix add again. The most expensive part is the multiply,
but the first adds are not negligible. Thus we define dependences between these two
parts. We apply a recurse cutoff of 5, and for matrix smaller than 128x128, multiplies are
computed with the usual algorithm instead of Strassen. Experiments were made using
two matrix/blocksize combinations: 8192/128, 16384/128. Speed up were measured

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4096 8192 4096 8192

S
p
ee

d
 u

p

Strassen

GCC task
GCC task-dep

Clang task
Clang task-dep

INTEL32AMD48

Fig. 5. Strassen

from an average of 10 runs. Results are shown on Figure 5 and reference sequential
times are listed on Table 1. The dependent task version very slightly outperforms the
independent task version for both compilers on most test cases. We can also notice
that these fine-grain dependency expressions are at the bleeding-edge of the OpenMP
4.0 implementation for both GCC and Clang, as some finer dependencies are not yet
supported by these compilers.

The general conclusion of these experiments with early implementations of the new
OpenMP 4.0’s data-flow paradigm is that there is little reason not to make use of it for
the benchmarked codes. Under the large majority of the cases tested, the new paradigm
incurs no performance regression. Moreover, the finer-grain synchronization scheme
it provides is able to deliver more parallelism to feed large multicore configurations,
usually leading to better performance results.

5 Extending OpenMP Dependency Expressiveness

5.1 Enabling Reductions for OpenMP Tasking: The Cumulative-Write Mode

OpenMP supports reduction for several directives such as section, parallel and
for. Since the introduction of task-based programming within OpenMP 3.0, programs
increasingly use loops to generate tasks, instead of performing computations directly
within an omp for loop. OpenMP 4.0’s task dependencies should strengthen this
tendency even further, to enable more load-balancing flexibility. Unfortunately, the
reduction clause is not available for the omp task directive, nor any alternative
mechanism, leaving programmers to build it by themselves.

The approach we propose is to extend the set of in,out and inout data access
modes with a new cumulative-write mode cw. This new mode indicates that several
tasks may contribute to a piece of data in any order (but not simultaneously). It is in-
spired by the reduction support implemented in runtime system Kaapi [7]. One might

26 P. Virouleau et al.

suggest to use the existing inout mode instead. However, the inout mode imposes
a strong ordering between tasks, that proves to be unnecessary in that case. The follow-
ing example illustrates this idea with a modified version of the LU decomposition code
from Fig. 1.2. Using a cumulative write mode cw for the bmod computation (line 23)
breaks the strong inter-iteration dependency that was caused by the inout mode, thus
enabling more parallelism.

1 #pragma omp task untied shared(M) \
2 depend(in: M[i*NB+k:BS*BS]) \
3 depend(in: M[k*MSIZE+j:BS*BS]) \
4 depend(cw: M[i*NB+j:BS*BS])
5 bmod(M[i*NB+k], M[k*NB+j], M[i*NB+j]);

On the next input or inout dependency, or at the next synchronization point (taskwait,
explicit or implicit barrier), the runtime ensures that variables previously accessed using
the cw mode may then be read. The reduction operator can be a pre-defined operators
or a user defined reduction operator such as introduced with OpenMP-4.0. We plan
to extend reduction operators to enable non-commutative operators as well (such as
appends on a string or matrix multiplication) such as in [7] or [1].

5.2 Expressing Dependencies on Non-contiguous Memory Areas

OpenMP 4.0 makes it possible to express task dependencies on the slice of an array, by
specifying the offset and the length of the dependent slice. These slices specifications
can be chained to express dependencies on 2D-subarrays.

1 #pragma omp task depend(inout:array[offset1:length1][offset2:length2])
2 blas_function(...);

Chained array slices are available only for constant arrays and variable length arrays,
however. The lack of leading dimension information makes them impractical for point-
ers, which strongly limits their interest. Temporarily copying data to constant arrays is
tedious and time consuming. Variable length arrays on the other hand, are passed by
value (copy) from a function to another, and only integrated the C language standard
since C99. However, VLA is an optional feature in C11. A possible workaround could
be to cast the pointer to a variable length array or constant array, such as this:

1 double *f_ = malloc(NX * NY * sizeof(double));
2 double (*f)[NX][NY] = (double (*)[NX][NY])f_;
3 #pragma omp task depend(inout:f[offset1:length1][offset2:length2])
4 blas_function(...);
5 free(f_);

This solution is not very much elegant, however. Our proposal is thus to extend the
slice syntax to enable the specification of the missing leading dimension information.
Following this extension, 2D sub-arrays may be specified such as this:

1 double *f = malloc(NX * NY * sizeof(double));
2 #pragma omp task depend(inout:f[offset1:length1:NX][offset2:length2])
3 blas_function(...);
4 free(f);

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 27

6 Related Work

OpenMP Benchmarks. To the best of our knowledge, KASTORS is the only bench-
mark suite focusing on OpenMP task dependencies. This section describes existing
benchmarks evaluating other aspects of the OpenMP specification.

The Barcelona OpenMP Tasks Suite [5] evaluates the addition of tasking to the
OpenMP 3.0 specification, comparing several ways of generating tasks out of small
computing kernels. We adapted two of these kernels, SparseLU and Strassen, to ex-
press task dependencies, and we added the modified versions to our KASTORS suite.

Older OpenMP benchmark suites such as PARSEC [3], SPECOMP [10] and Ro-
dinia [4] could be extended to benefit from task parallelism, as well as the NAS Parallel
Benchmark suite [2] (NPB). NPB was originally introduced to evaluate the performance
of parallel supercomputers. It was later extended to provide OpenMP 2.5 compatible
versions of most kernels. We consider modifying some of them to exploit task paral-
lelism, especially the “multi-zone” ones [8] involving nested parallelism.

Compilers and Runtime Systems Supporting Task Dependencies. KAAPI [7]3,
StarPU [1]4, Quark [12] and OMPSs [6] are libraries that support task dependencies
in a different context than OpenMP. We present them here focusing on the different
access modes they propose, and the way application programmers can provide task de-
pendencies using these libraries.

The KAAPI and StarPU runtime systems were designed to improve the performance
of task-based parallel applications on large-scale heterogeneous platforms. Unlike the
current OpenMP specification, KAAPI and StarPU support the expression of depen-
dencies on multi-dimensional arrays. StarPU provides ways of splitting a data with
user-defined filters that can help to express dependencies on sub-matrices, for example.

The Quark runtime system that comes with the PLASMA library is responsible
for executing tasks created out of BLAS operators in a dynamic way. Unlike KAAPI

and StarPU, Quark only considers unidimensional arrays, but comes with an original
scratch access mode to reuse thread-specific temporary data.

OMPSs [6] is a programming model inspired by OpenMP with specific directives
to support task dependencies and heterogeneity. The OMPSs programming model in-
cludes the concurrent clause to express that tasks will perform reductions on the
listed variables. Similar access-modes also exist in KAAPI and StarPU.

7 Conclusion

The introduction of task dependencies in the revision 4.0 of the OpenMP specification
provides application programmers with a new, powerful way of describing synchro-
nizations in task-based parallel applications. OpenMP compilers and runtime systems
will play a key role in the adoption of such a new feature by the community, as they
are responsible for tracking and resolving variable dependencies before executing tasks.

3 http://kaapi.gforge.inria.fr
4 http://starpu.gforge.inria.fr

http://kaapi.gforge.inria.fr
http://starpu.gforge.inria.fr

28 P. Virouleau et al.

The performance of OpenMP applications expressing task dependencies will be closely
related to how efficiently compilers and runtime systems implement this new feature.

We introduced a new benchmark suite, called KASTORS, composed with small ker-
nels ported on the OpenMP dependent task model. We then compared their performance
with taskwait-based versions of the same kernels for both the GCC/libGOMP and the
CLANG/libIOMP compilers and runtime systems. While the support for task dependen-
cies in these compilers is still very recent, experiments run on two different hardware
configurations show that the versions with task dependencies offer performances com-
parable and sometimes better to taskwait-based versions on most kernels. The results
obtained by rewriting some PLASMA kernels to use OpenMP task dependencies also
demonstrated that this model even outperforms dedicated data-flow solutions in some
situations, while improving portability.

In the near future, we plan to extend the KASTORS suite with new benchmarks com-
ing from either modified versions of existing benchmarks or small kernels inspired from
real-life scientific applications. Based on CLANG, we are also developing a source-to-
source compiler that generates direct calls to the KAAPI or StarPU runtime systems out
of C/C++ OpenMP programs. We are currently working on releasing this compiler with
a full support of the extensions proposed in section 5.

Acknowledgments. This work has been partially supported by the INRIA ADT
K’STAR Project, the ANR-11-BS02-013 HPAC Project and the IRSES2011-295217
HPC-GA Project.

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. In: Sips, H., Epema, D., Lin,
H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009)

2. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi, R.,
Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrishnan, V.,
Weeratunga, S.: The NAS Parallel Benchmarks. Report RNR-94-007, Department of Math-
ematics and Computer Science, Emory University (March 1994)

3. Bienia, C.: Benchmarking Modern Multiprocessors. PhD thesis, Princeton University (Jan-
uary 2011)

4. Che, S., Sheaffer, J., Boyer, M., Szafaryn, L., Wang, L., Skadron, K.: A characterization
of the rodinia benchmark suite with comparison to contemporary cmp workloads. In: 2010
IEEE International Symposium on Workload Characterization (IISWC), pp. 1–11 (December
2010)

5. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp tasks suite: A
set of benchmarks targeting the exploitation of task parallelism in openmp. In: International
Conference on Parallel Processing, ICPP 2009, pp. 124–131. IEEE (2009)

6. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.:
Ompss: a proposal for programming heterogeneous multi-core architectures. Parallel Pro-
cessing Letters 21(02), 173–193 (2011)

7. Gautier, T., Besseron, X., Pigeon, L.: Kaapi: A thread scheduling runtime system for data
flow computations on cluster of multi-processors. In: PASCO 2007 (2007)

Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite 29

8. Jin, H., der Wijngaart, R.F.V.: Performance characteristics of the multi-zone nas parallel
benchmarks. In: IPDPS. IEEE Computer Society (2004)

9. Kurzak, J., Luszczek, P., YarKhan, A., Faverge, M., Langou, J., Bouwmeester, H., Dongarra,
J.: Multithreading in the PLASMA Library, pp. 119–141. Chapman and Hall/CRC (2013)

10. Müller, M.S., et al.: Spec omp2012 – an application benchmark suite for parallel systems
using openmp. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 223–236. Springer, Heidelberg (2012)

11. OpenMP Architecture Review Board. OpenMP application program interface version 4.0
(July 2013)

12. YarKhan, A., Kurzak, J., Dongarra, J.: Quark users’ guide: Queueing and runtime for kernels.
Technical report, Innovative Computing Laboratory, University of Tennessee (2011)

MetaFork: A Framework for Concurrency

Platforms Targeting Multicores

Xiaohui Chen1, Marc Moreno Maza1, Sushek Shekar1, and Priya Unnikrishnan2

1 Department of Computer Science, University of Western Ontario
2 Compiler Development Team, IBM Toronto Lab

Abstract. We present MetaFork, a metalanguage for multithreaded
algorithms based on the fork-join concurrency model and targeting mul-
ticore architectures. MetaFork is implemented as a source-to-source
compilation framework allowing automatic translation of programs from
one concurrency platform to another. The current version of this frame-
work supports CilkPlus and OpenMP. We evaluate the benefits of
the MetaFork framework through a series of experiments, such as nar-
rowing performance bottlenecks in multithreaded programs. Our experi-
ments show also that, if a native program, written either in CilkPlus or
OpenMP, has little parallelism overhead, then the same property holds
for its OpenMP or CilkPlus counterpart translated by MetaFork.

1 Introduction

In the past decade the pervasive ubiquity of multicore processors has stimulated
a constantly increasing effort in the development of concurrency platforms, such
as CilkPlus, OpenMP and TBB. While those programming languages are all
based on the fork-join concurrency model, they largely differ in their way of
expressing parallel algorithms and scheduling the corresponding tasks. There-
fore, developing software code combining libraries written with several of those
languages is a challenge.

Nevertheless there is a real need for facilitating interoperability between con-
currency platforms. Consider for instance the field of symbolic computation. The
DMPMC library1 provides sparse polynomial arithmetic and is entirely written
in OpenMP, meanwhile the BPAS library2 provides dense polynomial arith-
metic and is entirely written in CilkPlus. Polynomial system solvers require
both sparse and dense polynomial arithmetic and thus could take advantage of
a combination of the DMPMC and BPAS libraries. However, CilkPlus and
OpenMP have different run-time systems. In order to achieve interoperability
between them, we propose an automatic source-to-source translation mechanism.

Another motivation for such a software tool is comparative implementation
with the objective of narrowing performance bottlenecks. The underlying ob-
servation is that the same multithreaded algorithm, based on the fork-join

1 From the TRIP project www.imcce.fr/trip developed at the Observatoire de Paris.
2 From the Basic Polynomial Algebra Subprograms www.bpaslib.org developed at the
University of Western Ontario.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 30–44, 2014.
c© Springer International Publishing Switzerland 2014

www.imcce.fr/trip
www.bpaslib.org

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 31

parallelism model, implemented with two different concurrency platforms, say
CilkPlus and OpenMP, could result in very different performance, often very
hard to analyze and compare. If one code scales well while the other does not,
one may suspect an inefficient implementation of the latter as well as other
possible causes such as higher parallelism overheads. Translating the inefficient
code to the other language can help narrowing the problem. Indeed, if the trans-
lated code still does not scale, one can suspect an implementation issue (say the
programmer missed to parallelize one portion of the algorithm) whereas if the
translated code does scale, then one can suspect a parallelism overhead issue in
the original code (say the grain-size of a parallel for-loop is too small).

In this paper, we propose MetaFork, a metalanguage for multithreaded
algorithms based on the fork-join parallelism model [5] and targeting multi-
core architectures. By its parallel programming constructs, the MetaFork
language is currently a super-set of CilkPlus [4, 13, 11] and offers coun-
terparts for the following widely used parallel constructs of OpenMP [16,
1]: #pragma omp parallel, #pragma omp task, #pragma omp sections,
#pragma omp section, #pragma omp for, #pragma omp taskwait, #pragma

omp barrier, #pragma omp single and #pragma omp master. However,
MetaFork does not make any assumptions about the run-time system, in par-
ticular about scheduling strategies (work sharing, work stealing [6]). In fact,
MetaFork is not designed to be a target language, but rather as the internal
intermediate representation (IR) of a source-to-source compiler framework for
multithreaded languages.

The syntax and the semantics ofMetaFork’s parallel constructs are specified
in Sections 2, 3 and 4. Since MetaFork is a faithful extension of the C/C++
language, this is actually sufficient to completely define MetaFork.

Recall that a driving motivation of the MetaFork project is to facilitate au-
tomatic translation of programs between concurrency platforms. To date, our ex-
perimental framework includes translators between CilkPlus and MetaFork
(both ways) and, between OpenMP and MetaFork (both ways). Hence,
through MetaFork, we perform program translations between CilkPlus and
OpenMP (both ways). Integrating TBB in this framework is work in progress.

Despite of the fact that it does not support all features of OpenMP, the
MetaFork language is rich enough to capture the semantics of large bodies
of OpenMP code, such as the Barcelona OpenMP Tasks Suite (BOTS) [10]
and translate faithfully to CilkPlus each of the BOTS test cases. In the other
direction, we could translate the BPAS library to OpenMP.

In Section 5, we briefly explain how the translators of the MetaFork com-
pilation framework are implemented. In particular, we specify which OpenMP
data-sharing clauses are captured by the MetaFork translators. Simple exam-
ples of code translation are provided.

In Section 6, we evaluate the benefits of the MetaFork framework through a
series of experiments. First, we show thatMetaFork can help narrow down per-
formance bottlenecks in multithreaded programs by means of comparative imple-
mentation, as discussed above. Secondly, we observe that, if a native CilkPlus

32 X. Chen et al.

(resp. OpenMP) program has little parallelism overhead, then the same holds
for its OpenMP (resp. CilkPlus) counterpart translated by MetaFork. We
tested more than 20 examples in total for which experimental results can be
found in the technical report [8] and for which code can be found on the web site
of the MetaFork project. Moreover, the source code of the MetaFork trans-
lators can be downloaded from the same web site at http://www.metafork.org.

Related work. While the well-developed source-to-source compiler framework
ROSE3 has been used to support many programming languages, including
OpenMP and UPC, we are not aware of a ROSE-based platform similar
to MetaFork, that is, providing source-to-source translation between multi-
threaded languages. On the other hand, several projects offer automatic one-way
translation from a concurrency platform running on one hardware architecture
to another concurrency platform running on another hardware architecture, e.g.
OpenMP shared-memory code to MPI distributed-memory code as in the pa-
pers [2] [9] (HOMPI Project) or [15] (OpenMP Accelerator Model). Other
projects offer extension of a concurrency platform from one hardware architec-
ture to another hardware architecture, like HOMP [15] or OpenMPC [12] which
allow extended OpenMP code to run on NVIDIA GPUs. In contrast to these
two types of projects,MetaFork is currently dedicated to a single type of hard-
ware architecture, namely multicore processors. However, MetaFork offers au-
tomatic two-way translations. Moreover, the generated code is human-readable,
as illustrated by the examples available on the MetaFork web site.

2 Parallel Constructs and Execution Model of MetaFork

MetaFork extends both the C and C++ languages into a multithreaded lan-
guage based on the fork-join concurrency model. Thus, concurrent execution is
obtained by a parent thread creating and launching one or more child threads so
that the parent and its children execute a so-called parallel region. An important
example of parallel regions are for-loop bodies. MetaFork has the following
natural requirement regarding parallel regions: control flow cannot branch into
or out of a parallel region.

MetaFork has four parallel constructs: function call spawn, block spawn,
parallel for-loop and synchronization barrier. The first two use the keyword
meta fork while the other two use respectively the keywords meta for and
meta join. The parallel constructs of MetaFork grant permission for con-
current execution but do not command it. Hence, a MetaFork program can
execute on a single core machine. We emphasize the fact that meta fork al-
lows the programmer to spawn a function call (like in CilkPlus) as well as a
block (like in OpenMP). Examples of MetaFork code with CilkPlus and
OpenMP can be found through Figures 5, 6, 7, 8, 9, 10, 11, 12 and 13.

As mentioned, the keyword meta fork is used to express the fact that a func-
tion call or a block is executed by a child thread, concurrently to the execution

3 http://en.wikibooks.org/wiki/ROSE_Compiler_Framework

http://www.metafork.org
http://en.wikibooks.org/wiki/ROSE_Compiler_Framework

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 33

of the parent thread. If the program is run by a single processor, the parent
thread is suspended during the execution of the child thread; when this latter
terminates, the parent thread resumes its execution after the function call (or
block) spawn.

If the program is run by multiple processors, the parent thread may continue
its execution4 after the function call (or block) spawn, without being suspended,
meanwhile the child thread executes the function call (or block) spawn. In this
latter scenario, the parent thread waits for the completion of the execution of
the child thread, as soon as the parent thread reaches a synchronization point.

Spawning a function call with meta fork. Spawning a call to the function f, with
the argument sequence args, is done by meta fork f(args). The semantics is
similar to that of the CilkPlus counterpart cilk spawn f(args). In particu-
lar, all the arguments in the sequence args are evaluated before spawning the
function call f(args). However, the execution of meta fork f(args) differs
from that of cilk spawn f(args) on one feature. While there is an implicit
cilk sync at the end of the Cilk block [11] surrounding this latter cilk spawn,
no such implicit barriers are assumed with meta fork. This feature is motivated
by the fact that, in addition to the fork-join parallelism, we plan to extend the
MetaFork language to other forms of parallelism such as parallel futures [17, 3].

Spawning a block with meta fork. The other usage of the meta fork construct is
for spawning a basic block B, which is done as follows: meta fork { B }. If B
consists of a single instruction, then the surrounding curly braces can be omitted.
We also refer to this construction as a parallel region. There is no equivalent in
CilkPluswhile it is offered byOpenMP. Similarly to a function call spawn, this
parallel region is executed by a child thread (once the parent thread reaches the
meta fork construct) meanwhile the parent thread continues its execution after
the parallel region. Similarly also to a function call spawn, no implicit barrier
is assumed at the end of the surrounding region. Hence synchronization points
have to be added explicitly, using meta join. A variable v which is not local to
B may be shared by both the parent and child threads; alternatively, the child
thread may be granted a private copy of v. Precise rules about data attributes,
for both parallel regions and parallel for-loops, are stated in Section 3.

Parallel for-loops with meta for. Parallel for-loops in MetaFork have the fol-
lowing format meta for (I, C, S) { B } where I is the initialization expres-
sion of the loop, C is the condition expression of the loop, S is the stride of the
loop and B is the loop body. The specifications of C, S, B are standard and similar
to the initialization expression, condition expression and stride of a CilkPlus
for-loop. We refer to the MetaFork specifications document [7] for details. The
parent thread will share the work of executing the iterations of the loop with

4 In fact, the parent thread does not participate to the execution of a function call
(or block) spawn, but will participate to the execution of the iterations of a parallel
for-loop.

34 X. Chen et al.

the child threads. An implicit synchronization point is assumed after the loop
body. That is, the execution of the parent thread is suspended when it reaches
meta for and resumes when all children threads (executing the loop body it-
erations) have completed their execution. As one can expect, the iterations of
the parallel loop meta for (I, C, S) { B } must execute independently of
each other in order to guarantee that this parallel loop is semantically equivalent
to its serial version for (I, C, S) { B }.
Synchronization point with meta join. The construct meta join indicates a
synchronization point (or barrier) for a parent thread and its children tasks.
More precisely, a parent thread reaching this point must wait for the completion
of its children tasks but not for those of the subsequent descendant tasks.

3 Variable Attribute Rules

Variables that are non-local to the block of a parallel region may be either shared
by or private to the threads executing the code paths where those variables are
defined. After a terminology review, we specify the rules that MetaFork uses
in order to decide whether such a non-local variable is shared or private.

Shared and private variables. Consider a parallel region with block Y (or a
parallel for-loop with loop body Y). X denotes the immediate outer scope of Y .
We say that X is the parent region of Y and that Y is a child region of X . A
variable v which is defined in Y is said to be local to Y ; otherwise we call v a non-
local variable for Y . Let v be a non-local variable for Y . Assume v gives access
to a block of storage before reaching Y . (Thus, v cannot be a non-initialized
pointer.) We say that v is shared by X and Y if its name gives access to the
same block of storage in both X and Y ; otherwise we say that v is private to Y .
In particular, if Y is a parallel for-loop we say that a local variable w is shared
by Y whenever the name of w gives access to the same block of storage in any
loop iteration of Y , which means that all the threads that execute this parallel
for-loop share the same variable w; otherwise we say that w is private to Y .

Value-type and reference-type variables. In the C programming language, a
value-type variable contains its data directly as opposed to a reference-type vari-
able, which contains a reference to its data. Value-type variables are either of
primitive types (char, float, int, double, void) or user-defined types (enum,
struct, union). Reference-type variables are pointers, arrays and functions.

static and const type variables. In the C programming language, a static vari-
able is a variable that has been allocated statically and whose lifetime extends
across the entire run of the program. This is in contrast to automatic variables
(local variables are generally automatic) whose storage is allocated and deallo-
cated on the call stack and, other variables (such as objects) whose storage is
dynamically allocated in heap memory. When a variable is declared with the
qualifier const, the value of that variable cannot typically be altered by the
program during its execution.

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 35

/* This file starts here ... */
#include<stdio.h>
#include<time.h>
#include<stdlib.h>
int a;
long par_region(long n){

int b;
int *c = (int *)malloc(sizeof(int)*10);
int d[10];
const int f=0;
static int g=0;
meta_fork{

int e = b;
subcall(c,d);

}
}

/* ... and continues here ... */
void subcall(int *a,int *b){

for(int i=0;i<10;i++)
printf("%d %d\n",a[i],b[i]);

}
int main(int argc,char **argv){

long n=10;
par_region(n);
return 0;

}
/* ... and finishes here. */

Fig. 1. Various variable attributes in a parallel region

Variable attribute rules of meta fork. A non-local variable v which gives access
to a block of storage before reaching Y is shared between the parent X and
the child Y whenever v is: (1) a global variable, (2) a file scope variable, (3) a
reference-type variable, (4) declared static or const, or (5) qualified shared.
In all other cases, the variable v is private to the child. In particular, value-type
variables (that are not declared static or const, or qualified shared ,and that
are not global or file scope variables) are private to the child. In Figure 1, the
variables a, c, d, f and g are shared, meanwhile the b and e are private.

/* To illustrate variable attributes, three
files (a headerfile "a.h" and two source

files "a.cpp" and "b.cpp") are used.
This file is a.cpp */
#include<stdio.h>
extern int var;
void test(int *array)
{

int basecase = 100;
meta_for(int j = 0; j < 10; j++)
{

static int var1=0;
int i = array[j];
if(i < basecase)

array[j]+=var;
}

}

/* This file is b.cpp*/
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include"a.h"
int var = 100;
int main(int argc,char **argv)
{

int *a=(int*)malloc(sizeof(int)*10);
srand((unsigned)time(NULL));
for(int i=0;i<10;i++)

a[i]=rand();
test(a);
return 0;

}
/* This file is a.h*/
void test(int *a);

Fig. 2. Example of shared and private variables with meta for

Variable attribute rules of meta for. A non-local variable which gives access to a
block of storage before reaching Y is shared between parent and child. A variable
local to Y is shared by Y whenever it is declared static, otherwise it is private
to Y . In particular, loop control variables are private to Y . In the example of
Figure 2, the variables array, basecase, var and var1, are shared by all threads
while the variables i and j are private. In the example of Figure 9, the variable

36 X. Chen et al.

long fib_parallel(long n)
{

long x, y;
if (n < 2)

return n;
else{

x = meta_fork fib_parallel(n-1);
y = fib_parallel(n-2);
meta_join;
return (x+y);}

}

Fig. 3. Parallel fib code using a function
spawn

long fib_parallel(long n)
{

long x, y;
if (n < 2)

return n;
else{

meta_fork shared(x)
{

x = fib_parallel(n-1);
}
y = fib_parallel(n-2);
meta_join;
return (x+y);}

}

Fig. 4. Parallel fib code using a block
spawn

b is private, thus the OpenMP, MetaFork, CilkPlus codes of Figures 8, 9
and 10 are semantically equivalent.

The shared keyword. Programmers can explicitly qualify a given variable as
shared by using the shared keyword. In the example of Figure 3, the variable n
is private to fib parallel(n-1). In Figure 4, we specify the variable x as shared
and the variable n is still private. Notice that the programs in Figures 3 and 4 are
semantically equivalent. In the parallel regions of the example of Figure 12, the
variables sum a and sum b are qualified shared. Hence theOpenMP,MetaFork
and CilkPlus programs of Figure 11, 12 and 13 are semantically equivalent.

4 Semantics of the Parallel Constructs in MetaFork

In order to formally define the semantics of each of the parallel constructs in
MetaFork, we introduce the serial C-elision of a MetaFork program M:
this is a program C expressed in the C-language and with the same semantics
as M. In [7], we obtain such a serial C-elision C from the program M by means
of a series of rewriting rules. Due to space consideration, we cannot include this
algorithmic definition here. However, we believe that sketching its principle is
sufficient for understanding the rest of this paper.

As mentioned before, spawning a function call in MetaFork has the same
semantics as spawning a function call in CilkPlus. More precisely: meta fork

f(args) and cilk spawn f(args) are semantically equivalent.
A meta for loop allows iterations of the loop body to be executed in par-

allel. By default, each iteration of the loop body is executed by a separate
thread. However, using the grainsize compilation directive, one can specify
the number of loop iterations executed per thread5: #pragma meta grainsize

= expression. Nevertheless, in order to obtain the serial C-elision of a
MetaFork for-loop, we require that the meta for construct could be replaced

5 The loop iterations of a thread are then executed one after another by that thread.

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 37

by the C-language for - whatever is the grainsize of this MetaFork for loop -
without changing the initialization expression, condition expression and stride.
(Of course, the loop-body must be replaced with its serial C-elision.)

Specifying the semantics of the spawning of a block in MetaFork is the
difficult part. We do it in [7] in an algorithmic fashion, using rewriting rules,
that are similar to a LEX-YACC program. The main idea is to use outlining, a
widely used technique in the OpenMP community, see [14]. To have a taste of
that transformation, one should observe how the MetaFork code of Figure 12
is transformed into the CilkPlus code of Figure 13. Obtaining the serial elision
of that latter code is easy and one can finally derive a serial C-elision for our
input MetaFork code.

5 Translation

In this section, we briefly explain how the translators of the MetaFork compila-
tion framework are implemented. Obviously, for each translator, the semantics of
each input program are preserved into the output program. However, scheduling
strategies (like an OpenMP clause schedule(static, chuksize)) are ignored
by our translators. Retaining them (at least as structured comments) will be
explored in a future release of MetaFork.

From CilkPlus code to MetaFork code. Translating code from CilkPlus
to MetaFork is easy in principle since, up to the vectorization constructs of
CilkPlus, the MetaFork language is a superset of CilkPlus. However, im-
plicit CilkPlus barriers need to be explicitly inserted in the target MetaFork
code. This implies that, during translation, it is necessary to trace the instruc-
tion stream DAG of the CilkPlus program in order to properly insert barriers
in the generated MetaFork code.

From MetaFork code to CilkPlus code. Since CilkPlus has no constructs
for spawning a block of code, we naturally use the outlining technique to: (1) wrap
the parallel region as a function, and then (2) call that function concurrently. In
fact, the problem of translating code fromMetaFork toCilkPlus is equivalent
to that of defining the serial elision of a MetaFork program.

From OpenMP code to MetaFork code. We first consider the translation of
an OpenMP task directive: if it is a function call spawn, as in Figure 7, we
use the MetaFork construct for spawning a function call. Otherwise, we use
the MetaFork construct for spawning a block. Currently, we translate faith-
fully the following OpenMP optional clause directives: shared, private and
firstprivate. For the translation of OpenMP sections to the MetaFork
parallel regions we only support the default variable attribute and note that
this case leads us to insert extra synchronization points. Finally, for the trans-
lation of an OpenMP parallel for-loop to MetaFork, we note that: (1) the
private and firstprivate optional clause directives are faithfully translated,

38 X. Chen et al.

(2) every variable specified private is re-declared in the parallel for-loop of the
MetaFork translation, (3) the loop control variables are initialized inside the
loop, and (4) scheduling strategies of OpenMP parallel for loops are ignored,

From MetaFork code to OpenMP code. This is easy in principle, since the
MetaFork language can be regarded as a subset of the OpenMP language. We
note that function calls spawned with the meta fork construct are translated
using the task constructs of OpenMP.

long fib(long n)
{

long x, y;
if (n<2) return n;
else if (n<BASE)

return fib_serial(n);
else
{

x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Fig. 5. CilkPlus code

long fib(long n)
{

long x, y;
if (n<2) return n;
else if (n<BASE)

return fib_serial(n);
else
{

x = meta_fork fib(n-1);
y = fib(n-2);
meta_join;
return (x+y);

}
}

Fig. 6. MetaFork code

long fib(long n)
{

long x, y;
if (n<2) return n;
else if (n<BASE)

return fib_serial(n);
else
{

#pragma omp task shared(x)
x = fib(n-1);
y = fib(n-2);
#pragma omp taskwait
return (x+y);

}
}

Fig. 7. OpenMP code

int main()
{

int a[N];
int b = 0;
#pragma omp parallel
#pragma omp for private(b)
for(int i=0; i<N; i++)
{

b = i ;
a[i] = b;

}
}

Fig. 8. OpenMP code

int main()
{

int a[N];
int b = 0;

meta_for(int i=0; i<N; i++)
{

int b;
b = i ;
a[i] = b;

}
}

Fig. 9. MetaFork code

int main()
{

int a[N];
int b = 0;

cilk_for(int i=0; i<N; i++)
{

int b;
b = i ;
a[i] = b;

}
}

Fig. 10. CilkPlus code

6 Experimentation

In this section, we evaluate the performance and the usefulness of the four
MetaFork translators (MetaFork to CilkPlus, CilkPlus to MetaFork,
MetaFork to OpenMP, OpenMP to MetaFork). To this end, we run these
translators on various input programs written either in CilkPlus or OpenMP,
or both.

We emphasize the fact that our purpose is not to compare the performance of
the CilkPlus or OpenMP run-time systems. The reader should notice that the
codes used in this study were written by different persons with different levels

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 39

int main(){
int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};
#pragma omp parallel
{

#pragma omp sections
{

#pragma omp section
{

for(int i=0; i<5; i++)
sum_a += a[i];

}
#pragma omp section
{

for(int i=0; i<5; i++)
sum_b += b[i];

} } }
}

Fig. 11. OpenMP
code

int main()
{

int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};

meta_fork shared(sum_a){
for(int i=0; i<5; i++)

sum_a += a[i];
}

meta_fork shared(sum_b){
for(int i=0; i<5; i++)

sum_b += b[i];
}

meta_join;
}

Fig. 12. MetaFork
code

void fork_func0(int* sum_a,int* a)
{

for(int i=0; i<5; i++)
(*sum_a) += a[i];

}
void fork_func1(int* sum_b,int* b)
{

for(int i=0; i<5; i++)
(*sum_b) += b[i];

}
int main()
{

int sum_a=0, sum_b=0;
int a[5] = {0,1,2,3,4};
int b[5] = {0,1,2,3,4};
cilk_spawn fork_func0(&sum_a,a);
cilk_spawn fork_func1(&sum_b,b);
cilk_sync;

}

Fig. 13. CilkPlus code

of expertise. In addition, the reported experimentation is essentially limited to
one architecture (AMD Opteron) and one compiler (GCC). Therefore, it would
be delicate to draw any clear conclusions comparing CilkPlus and OpenMP.
We conducted three sets of experiments:
– In the first one, we compared the performance of hand-written codes. The

motivation, specified in the introduction, is comparative implementation.
– In the second one, we translated large portions of the BPAS library from

CilkPlus to OpenMP, motivated by the interoperability question raised in
the introduction.

– In the last experiment, we compared the parallelism overheads measured the
original codes (either CilkPlus or OpenMP) and their translated counter-
parts.

Before reporting on these three sets of experiments:
– we describe the setup (hardware, software) in which they were conducted

and,
– we explain how we verified the correctness of the multithreaded code gener-

ated by our translators.

Experimentation setup. For all experiments, apart from student’s code, we use
codes from the following sources:
– The BPAS library http://www.bpaslib.org,
– John Burkardt’s Home Page

http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html,
– the BOTS [10] and
– theCilk distribution examples http://sourceforge.net/projects/cilk/.

The source code of those test cases was compiled as follows:
- CilkPlus code with GCC 4.8 using -O2 -g -lcilkrts -fcilkplus

- OpenMP code with GCC 4.8 using -O2 -g -fopenmp

http://www.bpaslib.org
http://people.sc.fsu.edu/~%20jburkardt/c_src/openmp/openmp.html
http://sourceforge.net/projects/cilk/

40 X. Chen et al.

Fig. 14. Parallel mergesort in size
5× 108

Fig. 15. Matrix inversion of order
4096

We run all our programs on AMD Opteron 6168 48-core nodes (with 256GB
RAM and 12MB L3) and Intel Xeon 2.66GHz/6.4GT with 12-cores nodes.

Correctness. Validating the correctness of our translators was a major require-
ment of our work. Depending on the test-case, we could use one of the following
strategies.
- Assume that the original program, say P , contains both a parallel code and
its serial elision (manually written). When programP is executed, both codes
run and compare their results. Let us callQ the translated version of P . Since
serial elisions are unchanged by our translation procedures, then Q can be
verified by the same process used for program P . This first strategy applies
to the Cilk++ distribution examples and the BOTS (Barcelona OpenMP
Tasks Suite) examples.

- If the original program P does not include a serial elision of the parallel
code, then the translated program Q is verified by comparing the output of
P and Q. This second strategy had to be applied to the FSU (Florida State
University) examples.

Comparative implementation. For this first purpose, we use a series of test-
cases, each of them consisting of a pair of hand-written programs: one written
in OpenMP and the other in CilkPlus. Within each pair, a program S, writ-
ten by a student, has a performance bottleneck; meanwhile its counterpart E,
written by an expert does not. For each pair, we translate one program (ei-
ther S or E) to the other language. For these two programs (expressed in the
same concurrency platform) we measure the running time on p processors, for
1 ≤ p ≤ 48, and compare the resulting data so as to narrow down the per-
formance bottleneck in the inefficient program. Figures 14 and 15 illustrate two
test-cases: Parallel mergesort, Matrix inversion. More test-cases can be found in
this technical report [8].

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 41

Table 1. BPAS timings with 1 and 16 workers: original CilkPlus code and translated
OpenMP code

Test Input size CilkPlus OpenMP

T1 T16 T1 T16

8-way 2048 0.423 0.231 0.421 0.213
Toom-Cook 4096 1.849 0.76 1.831 0.644

8192 9.646 2.742 9.241 2.774
16384 39.597 9.477 39.051 8.805
32768 174.365 34.863 172.562 33.032

DnC 2048 0.874 0.259 0.867 0.299
Plain 4096 3.95 1.264 3.925 1.123
Polynomial 8192 18.196 3.335 18.154 4.428
Multiplication 16384 77.867 12.778 75.885 12.674

32768 331.351 55.841 332.126 55.925

Table 2. Timings on AMD 48-core: underlined timings refer to original code and
non-underlined timings to translated code

Test Input size CilkPlus OpenMP

Serial T1 Serial T1

Protein alignment (for) 100 568.07 566.10 568.79 568.16
quicksort 5 · 108 94.42 96.23 94.15 97.20
prefixsum 1 · 109 27.06 28.48 27.14 28.42
Fibonacci 1 · 109 96.24 96.26 97.56 97.69
DnC MM 1 · 109 752.04 752.74 751.79 750.34
Mandelbrot 500 × 500 0.64 0.64 0.64 0.65

– For Parallel mergesort, the original OpenMP code (written by a student)
misses to parallelize the merge phase (and simply spawns the two recursive
calls using OpenMP sections) while the original CilkPlus code (written by
an expert) does parallelize the merge phase. On Figure 14, the running time
curve of the translated OpenMP code is as theoretically expected while
the curve of the original OpenMP code shows a limited scalability. This
suggests that the original hand-written OpenMP code should expose more
parallelism.

– For Matrix inversion, the two original parallel programs are based on dif-
ferent serial algorithms for inverting a dense matrix. The original OpenMP
code uses Gauss-Jordan elimination while the original CilkPlus code uses a
divide-and-conquer approach based on Schur’s complement. Figure 15 shows
that the code translated from CilkPlus to OpenMP is more appropriate

42 X. Chen et al.

for fork-join multithreaded languages targeting multicores. In other words
the Schur’s complement approach should be prefered in this context.

Interoperability. Our second experiment is dedicated to automatic translation of
highly optimized libraries. The motivation, presented in the introduction, is to
facilitate interoperability between libraries developed for different concurrency
platforms, namely CilkPlus and OpenMP. For this question, we want to de-
termine whether or not the translated programs have similar serial and parallel
running times as their hand-written-and-optimized counterparts. For this exper-
iment, we have used the BPAS library which counts more than 150,000 lines of
CilkPlus code. Half of those lines are dedicated to polynomial multiplication
and we translated those to OpenMP. In Table 1, we report on timings of two
of the main algorithms for polynomial multiplication, namely 8-way Toom-Cook
and divide-and-conquer plain multiplication. One can see that the original and
translated codes have similar running times on 1 and 16 cores, for all input data
sizes that we tested. Therefore, the OpenMP version of the BPAS library retains
the good performance of the original version written in CilkPlus.

Parallelism overheads. Our third experiment is devoted to the following ques-
tion: do the MetaFork translators add extra parallelism overheads to the gen-
erated code w.r.t. the original code? We focus here on work overhead. By work
overhead, we mean the time ratio between a multithreaded program run on
one core and its serial elision. For this experiment, we have considered original
programs using different parallelism patterns (divide-and-conquer, parallel for-
loops) and written in both OpenMP and CilkPlus. Our results are collected
in Table 2. For all the examples that we tested, we could observe that, if the
original program has little work overhead, then the same holds for the translated
program.

7 Concluding Remarks

MetaFork allows for rapidly mapping algorithms written for one concurrency
platform to another. As we have seen in Section 6, MetaFork can be applied for
(1) comparing algorithms written with different concurrency platforms and (2)
porting more programs to systems that may have a highly optimized run-time
for one paradigm (say divide-and-conquer algorithms, or producer-consumer).

The MetaFork translation framework may also avoid the negative inter-
ferences of having multiple interfaces between the different components of a
large solver written with various concurrency platforms. Along the same idea,
the MetaFork translators can be used to transform legacy code into a more
adequate concurrency platform.

Last but not least, we think that a great benefit of MetaFork is the abstrac-
tion that it provides. It can be useful for parallel language design (for example in
designing parallel extensions to C/C++) as well as a good tool to teach parallel
programming.

MetaFork: A Framework for Concurrency Platforms Targeting Multicores 43

In the future work, as discussed in theMetaFork specifications document [7],
we will consider parallel reduction as an important extension and include other
parallel computing models like pipelining.

Acknowledgments. This work was supported in part by NSERC of Canada and
in part by an IBM CAS Fellowship in 2013 and 2014. We are also grateful to
Abdoul-Kader Keita (IBM Toronto Lab) for his advice and technical support.

www.metafork.org

References

[1] Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel,
X., Unnikrishnan, P., Zhang, G.: The design of OpenMP Tasks. IEEE Trans.
Parallel Distrib. Syst. 20(3), 404–418 (2009)

[2] Basumallik, A., Eigenmann, R.: Towards automatic translation of OpenMP to
MPI. In: Proceedings of the 19th Annual International Conference on Supercom-
puting, ICS 2005, pp. 189–198. ACM, New York (2005)

[3] Blelloch, G.E., Reid-Miller, M.: Pipelining with futures. Theory Comput.
Syst. 32(3), 213–239 (1999)

[4] Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. In: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 1995, pp. 207–216. ACM, New York (1995)

[5] Blumofe, R.D., Leiserson, C.E.: Space-efficient scheduling of multithreaded com-
putations. SIAM J. Comput. 27(1), 202–229 (1998)

[6] Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

[7] Chen, X., Moreno Maza, M.: MetaFork: A metalanguage for concurrency plat-
forms targeting multicores. Technical report, U. of Western Ontario (2013)

[8] Chen, X., Moreno Maza, M., Shekar, S.: Experimenting with the MetaFork frame-
work targeting multicores. Technical report, U. of Western Ontario (2013)

[9] Dimakopoulos, V.V., Hadjidoukas, P.E.: HOMPI: A hybrid programming frame-
work for expressing and deploying task-based parallelism. In: Jeannot, E., Namyst,
R., Roman, J. (eds.) Euro-Par 2011, Part II. LNCS, vol. 6853, pp. 14–26. Springer,
Heidelberg (2011)

[10] Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: Proc. of the 2009 International Conference on Parallel Processing,
ICPP 2009, pp. 124–131. IEEE Computer Society, Washington, DC (2009)

[11] Intel Corporation. Intel CilkPlus language specification, version 0.9 (2013)

www.metafork.org

44 X. Chen et al.

[12] Lee, S., Eigenmann, R.: OpenMPC: Extended OpenMP programming and tuning
for GPUs. In: Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2010, pp.
1–11. IEEE Computer Society (2010)

[13] Leiserson, C.E.: The Cilk++ concurrency platform. The Journal of Supercomput-
ing 51(3), 244–257 (2010)

[14] Liao, C., Hernandez, O., Chapman, B., Chen, W., Zheng, W.: OpenUH: An opti-
mizing, portable OpenMP compiler: Research articles. Concurr. Comput.: Pract.
Exper. 19(18), 2317–2332 (2007)

[15] Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early expe-
riences with the OpenMP accelerator model. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidel-
berg (2013)

[16] OpenMP Architecture Review Board. OpenMP application program interface,
version 4.0 (2013)

[17] Spoonhower, D., Blelloch, G.E., Gibbons, P.B., Harper, R.: Beyond nested par-
allelism: Tight bounds on work-stealing overheads for parallel futures. In: Meyer
auf der Heide, F., Bender, M.A., (ed.) SPAA, pp. 91–100. ACM (2009)

TurboB�LYSK: Scheduling for Improved

Data-Driven Task Performance with Fast
Dependency Resolution

Artur Podobas, Mats Brorsson, and Vladimir Vlassov

KTH, Royal Institute of Technology
Stockholm, Sweden

{podobas,matsbror,vladv}@kth.se

Abstract. Data-driven task-parallelism is attracting growing interest
and has now been added to OpenMP (4.0). This paradigm simplifies the
writing of parallel applications, extracting parallelism, and facilitates the
use of distributed memory architectures. While the programming model
itself is becoming mature, a problem with current run-time scheduler im-
plementations is that they require a very large task granularity in order
to scale. This limitation goes at odds with the idea of task-parallel pro-
graming where programmers should be able to concentrate on exposing
parallelism with little regard to the task granularity. To mitigate this
limitation, we have designed and implemented TurboB�LYSK, a highly
efficient run-time scheduler of tasks with explicit data-dependence an-
notations. We propose a novel mechanism based on pattern-saving that
allows the scheduler to re-use previously resolved dependency patterns,
based on programmer annotations, enabling programs to use even the
smallest of tasks and scale well. We experimentally show that our tech-
niques in TurboB�LYSK enable achieving nearly twice the peak perfor-
mance compared with other run-time schedulers. Our techniques are not
OpenMP specific and can be implemented in other task-parallel frame-
works.

1 Introduction

The idea behind data-driven task-parallelism is to automatically derive inter-
task dependencies based on the use of data-regions by tasks. Data-driven
task-parallelism extends the fork-join model (for example Cilk [7]) by allowing
out-of-order execution of tasks, conceptually similar to instruction-level paral-
lelism in out-of-order processors. There is, however, one significant problem with
current state-of-the-art data-driven solutions: the granularity of tasks must be
large in order to amortize the cost of automatically solving inter-task dependen-
cies. Workloads where parallelism is composed of fine-grained tasks thus becomes
harder to manage, and can sometimes lead to sub-serial performance. Some run-
time systems reduce the overhead cost by forcing the programmer to specify
dependencies manually (see for instance OpenSTREAM [14] and OpenUH [9])
but at the same time reducing user-friendliness.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 45–57, 2014.
c© Springer International Publishing Switzerland 2014

46 A. Podobas, M. Brorsson, and V. Vlassov

Some major benefits of task-based parallel programming is the promise of com-
posability, i.e. a task-parallel program component can be arbitrarily composed
with other task-parallel program components, and decoupling the expression of
concurrency from the mapping onto available cores (threads). The latter is im-
portant as it enables the possibility to write programs that automatically can
benefit from new hardware generations with more cores. Both of these encour-
age programmers to create tasks without considering the available resources or
scheduling overhead, something current task schedulers cannot handle well.

We present novel techniques that improve the possibility to use fine-grained
tasks. While we show results from an OpenMP run-time system, the tech-
niques are general and can be used in any task-based framework supporting
data-dependences among tasks. We had a hypothesis that many task-parallel
programs exhibit static data dependency patterns that reoccur frequently and
which could be exploited in the task scheduler. Our novel techniques allow the
programmer to specify which tasks are known to have static iterative dependen-
cies. The tasks still undergo the automatic dynamic dependency resolver for the
first invocation and maintain all benefits of dynamic data-driven parallelism,
but when the dependencies have been resolved once, they are optimized and
re-applied at a smaller cost for subsequent invocations.

Our contributions are as follows.

– TurboB�LYSK: a compiler and highly efficient run-time task scheduler capa-
ble of handling OpenMP 4.0 tasks;

– an evaluation of TurboB�LYSK against state-of-the-art frameworks support-
ing data-driven task parallelism;

– a proposed extension of OpenMP 4.0 tasks to support dep patterns that
enable the run-time system to conserve task dependencies between iterations;

– a detailed overview of the design decisions in TurboB�LYSK that explains why
TurboB�LYSK performs better than similar state-of-the-art implementations
for fine-grained parallelism.

On the same hardware platform we nearly double the performance for fine-
grained task-parallel programs compared to current state-of-the-art alternative
implementations. We will now further motivate the need for this work before
describing the implementation in more detail.

2 Motivation

It is computationally expensive to resolve data dependencies dynamically at
run-time. In order to quantify this overhead we modified gcc’s OpenMP 4.0
run-time system (libgomp in gcc 4.9 snapshot 20131103) to measure the time
spent handling dependencies and compared it with the time consumed in other
parts of the execution. We have created a benchmark that performs Gauss-Seidel
computations over a 2048x2048 matrix and executed it with two block-sizes:
128x128 block size for coarse-grained tasks with 6k dependencies to solve, and
24x24 for fine-grained task execution with 180k dependencies to solve.

TurboB�LYSK 47

The performance results were striking; the time consumed managing depen-
dencies in the coarse-grained case was only 1.2% of the total execution time while
the time consumed for dependency resolution in the fine-grained case exceeded
40%. The execution time of the fine-grained execution was even slower than the
serial version.

Practically this means that there is no benefit of using multiple cores for ex-
ecuting a Gauss-Seidel on a 256x256 matrix. Other applications behaved in a
similar fashion. Our opinion is that programmers should not need to concern
themselves with decomposition granularities of tasks. The task scheduler should
work with as fine granularities as possible. Some applications really require tasks
to be fine-grained in order to exploit parallelism. While we realize that it is un-
realistic to completely ignore task granularity, we strive to do as best as possible
to relieve the programmers from task granularities constraints.

In the next section we explain what we do to significantly improve on current
state-of-the-art.

3 TurboB�LYSK: A Framework for Fast-Dependency
Resolution

This section describes the TurboB�LYSK framework which implements
OpenMP 4.0 and consists of a transcompiler (B�lyskCC) and a run-time system
(TurboB�LYSK). Our framework includes support for the depend-clause that al-
lows for data-driven task execution of disjoint data-regions. B�lyskCC is a source-
to-source compiler which transforms the OpenMP code to run-time system API
calls; a hand-written recursive-descend parser converts the source code into an
Abstract-Syntax-Tree (AST) where the OpenMP pragmas are transformed and
tasks outlined (similar to Mercurium [2]).

3.1 Automatic Dependency Resolution

Task dependencies are extracted by keeping track of each task that will work on
a specific data-region(s). A data-region is defined by its virtual address coming
from the application such as an address of a variable or parts of an array, and
the size of that region. Each known data-region is inserted into a dependency-
structure that keeps track of all tasks that use this particular data-region. There
are private dependency-structures for each parent task, allowing hierarchical de-
composition of dependent tasks. When a new task is submitted from the appli-
cation to the run-time system, each data-region to be used is looked up given its
virtual address, obtaining the dependency-structure for that data-region. If the
obtained dependency-structure is empty, then the task claims that data-region.

If the new task and existing tasks using that data-region only read from
it, then the dependency is marked as resolved (Read-After-Read). Only Flow-
(Read-After-Write), Anti- (Write-After-Read) and Output- (Write-After-Write)
dependencies are considered. Note that even if a Read-after-Read dependency is

48 A. Podobas, M. Brorsson, and V. Vlassov

Analyze dependency
• What existing tasks are

waiting for this address?
• How are existing task using

this address?

int *A;
...
#pragma omp task depend(in:A)

work(A);

Task created and
sent to run-time system

Dependency manager
• Analyze the dependencies
• Acquire lock to dependency structure

Internal search
Locate internal data structure for
the dependency's virtual address

Insertion
• Insert task into dependency

data structure
• If no dependency was found,

mark this dependency as ready

Re
pe

at
ed

 fo
r a

ll
 ta

sk
 d

ep
en

de
nc

ie
s

Task Execution

Scheduler
• Schedule the task onto one of the

allocated processors using the
scheduling algorithm (work-stealer)

Dependency manager
• Acquire lock

Internal search
• Locate internal data structure

for the dependency's virtual
address

Clear dependency
• Release subsequent tasks

waiting on the finished tasks

All dependencies
are ready?

No

Yes

Return control to application

Repeated for all
task dependencies

All dependencies
are ready for cleared

Subsequent task?

No

Yes

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)
(l)

Fig. 1. Flow-chart representing the steps required to solve a task’s dependencies in-
cluding the steps performed when a task finishes executing

encountered, the task will still need to be entered into the dependency-structure
for subsequent tasks.

Fig. 1 shows actions performed by our run-time system when a task is created
and we will refer to this figure in the following text.

Task Creation. When the application creates a task (Fig. 1:a) a run-time sys-
tem call is performed to submit the task. At this point, if the run-time system
finds that the task does not use the depend clause it will immediately sched-
ule the task for execution (Fig. 1:g); otherwise, it will proceed to analyze the
dependencies (Fig. 1:b).

The run-time system needs to locate the dependency-structure that is associ-
ated with the task’s data-regions. This search (Fig. 1:c) is the most computa-
tionally intensive part in resolving dependencies. Multiple threads can be using
the dependency-structures, hence they need to be protected by a lock. In many
run-time systems (for example GCC’s libgomp) this lock is global, preventing
concurrent access to the dependency-structure. In TurboB�LYSK, we allow par-
tial concurrent access. We keep each dependency-structure sorted in a bitwise trie
– a binary tree where searching for a dependency-structure is done by travers-
ing all bits in the data-region’s virtual address. To allow concurrent access, the
root-node for our trie contains 64 independent entries; each of the 64 entries is
protected by a lock. The lock is internally represented as a 64-bit variable where
each bit represents a lock for one of the 64 entries. Mapping from a data-region

TurboB�LYSK 49

to the required lock is done by examining the six least-significant bits of the
data-region’s word address ; we found that when task-granularities are fine, tasks
tend to work on data-regions whose virtual addresses are close to each other and
will therefore use different locks (different value in the least-significant six bits).
When a lock has been calculated for each data-region a task will use, the locks are
acquired and the search in the trie begins. The search is an O(log(n)) operation
that results in either a found data-region’s dependency-structure or the creation
of a new dependency-structure. The lock and the found dependency-structure
are saved in the task-structure for later use.

Inside the Dependency-Structure. When the dependency structure
(Fig. 1:d,e) has been found for a particular data-region, the run-time system will
insert the task into the end of a list. The list contains all previous tasks wait-
ing for/or currently using the data-region. The dependency structure contains
a variable we call the dependency q position(queuing position). The q position
is increased when we detect a Flow-, Anti- or Output- dependence. The type
of dependency is determined by comparing the current task with the previ-
ously inserted tasks (for that data-region). We also maintain a state variable
called a position (active position) which corresponds to the position that is cur-
rently executing. When all tasks for a given a position finish executing, the
run-time system releases subsequently dependent tasks. If a new task enters
a dependency region, and the a position is the same as the q position (ac-
tive position==queue position) and both the tail-task and the new task will
Read from the data region, then there are no dependencies on other previous
tasks using the data-region.

When the Dependencies-Analysis Is Complete. When a task’s data-
regions have had their dependencies detected, the run-time system checks if any
dependencies were found (Fig. 1:f). If none were found then the task is sched-
uled for execution (Fig. 1:g), otherwise the run-time system returns control to
the application.

When Task Finishes Executing. When a processor finishes executing a task
(Fig. 1:h), the previously saved lock will be re-acquired in order to lock-on to the
dependency-structures associated with the finished task (Fig. 1:i,j). The run-time
system goes through each of the recently completed task’s dependency structures
and reduce the number of tasks in the a position (Fig. 1:k). If the tasks in the
a position reaches zero, the processor increments the a position and remove the
dependency of subsequent tasks in the list until it detects anything other than a
Read-After-Read dependency. If, when clearing dependencies of tasks, a task has
no other dependencies in other data-regions then it is scheduled for execution
(Fig. 1:l).

3.2 Dependency Pattern

Data-driven parallelism allows the programmer to be oblivious towards depen-
dencies between tasks as they are transparently derived by the run-time system.

50 A. Podobas, M. Brorsson, and V. Vlassov

We can relax this model by allowing the programmer to specify whether a task’s
sub-graph is static or not. Should a task’s sub-graph be static, the run-time
system can dynamically extract task dependencies from the first run of the task
and re-use them in later invocations. Note that the programmer still does not
need to know the dependencies between tasks – she only specifies whether the
tasks will have static dependencies.

We propose a new OpenMP keyword called dep pattern, which together with
a unique tag enables the run-time system to extract task-graph dependencies for
that tag and re-apply them on the next invocation of the tagged task. Consider
the following code:

void matmul(float ∗A,float ∗B, float ∗C,int DIM) {
for (int i=0;i<DIM;i+=4)

for (int j=0;j<DIM;j+=4)
for (int k=0;k<DIM;k+=4)

#pragma omp task depend(in:A[k+(j∗DIM)],B[k+(j∗DIM)]) \
depend(inout: C[i+(j∗DIM)]

matmul block(&A[k+(j∗DIM],...);
}

...

#pragma omp task dep pattern(”matmul 16x16”) depend(in:A,B) depend
(inout:C)
matmul(A,B,C,16);

The above example code is a standard blocked matrix multiplication. We create
a top-level task to perform the matrix multiplication and specify the data-regions
that will be used; in addition, we tell the compiler that this task will contain
tasks whose dependencies are static regardless of which virtual addresses they
use. When the run-time system encounters a dep pattern clause it will first try
to determine if the dependencies are known for the tag from previous invocations.
If the run-time system fails to locate the tag (”matmul 16x16” in the example
above), it will use the automatic dependency manager to derive the (static)
dependencies and sample them. It is up to the programmer to chose the tag’s
name and use it consistently with the dep pattern-clause – a tag for a wavefront
pattern will not work on a e.g. matrix-multiplication and will yield data-races.

Sampling is performed by renaming dependency structures which we refer
to as reservation stations to further the analogy with out-of-order execution
of instructions. Recall that TurboB�LYSK uses a bitwise trie to keep track of
all dependency structures. The difference when sampling is that each of the
dependency structures is given a unique integer ID and that the run-time system
saves what dependency IDs each data-region in each sequentially spawned task
used. This information is saved in a stream where each task is represented as:
[int]#ID [int]#deps [int]dep1 [int]modifier1. The modifier specifies how the task
will access the reservation station (Read,Write or both). When the task has
finished, the raw stream will be processed (optimized). Information in the stream
will be losslessly encoded and each integer can potentially be reduced to a nibble

TurboB�LYSK 51

in size. Similarly, the modifiers for the reservation stations are encoded in the
least significant bits of the static reservation station used with the dependency.
To further increase the compression and improve performance, the run-time
system will perform the following when compressing the stream.

– It will simulate all tasks’ dependencies. If a reservation station (data-region)
will only be read from, it will be completely removed. As an example, a
matrix multiplication will always read from two matrices and produce results
into a third. The dependencies on the two first matrices will thus be removed
when analyzing the stream which results in a 66% reduction in amount
of dependencies and reservation stations. It can be argued that those two
dependencies can be removed from the source code; doing so would however
remove information required to use distributed memory architectures or to
improve scheduling [11].

– For each task, and its reservation station usage, a lock will be mapped. We
look at the histogram of reservation stations that are used the most, and con-
struct the locks such that the most intensively used reservation stations can
be worked on concurrently. This results in a better lock mapping compared
with the heuristic used in the automatic dependency phase.

Fig. 2. Example showing a task, its dependencies and the modifiers encoded in the bit
stream

An example encoding can be seen in Fig. 2. Here, since the reservation sta-
tions used by each dependency fits into a nibble (4-bit), the stream will start
with b1100 indicating three dependencies to follow (b11=3) and that the depen-
dencies will be represented in a nibble form specified by the b00 prefix- other
prefixes indicate other compressions schemes. What follows are 12 bits (3 x 4-bit)
that represent each dependency of the task; the least-significant two bits express
the type of dependency (read/write/read-write) and the two most-significant
bits represents the reservation station to be used.

52 A. Podobas, M. Brorsson, and V. Vlassov

Using the Stream. The stream is now encoded and ready to be used. On the
next invocation of a task with a ”matmul 16x16” tag, the encoded stream will
be used to apply the dependencies. The run-time system, knowing that a tag-
stream pair exists, will proceed to create a set of reservation stations rather than
a trie. When tasks start spawning, the stream is parsed and the dependency-
structure is quickly (O(1) instead O(logN)) found in a reservation station –
unlike the automatic dependency resolver, the locks and addresses need not be
analyzed and the cost of searching for a dependency structure in the bitwise trie
is completely removed.

Note that using the dep pattern keyword does not remove the ability to know
the different data-regions (address ranges) a task uses, nor does it remove the
ability to offload tasks onto distributed devices (such as GPUs). It only indi-
cates that the dependencies are static. Our approach also allows for other static
analyzing techniques to be used on task-graphs, helping the scheduler’s deci-
sion making. We allow mixing tasks marked with dep pattern (i.e., tasks with
static dependencies) with tasks whose dependencies are dynamic in a hierarchi-
cal manner. Finally, the streams could also be saved to persistent storage for use
in future executions.

4 Evaluation Methodology

System Architecture. We used a shared memory NUMA multiprocessor with
four AMD Opteron 6172 processors totalling 48 cores and 64 GB DRAM. All
48 cores were used in our evaluations. The Operating System used is Red Hat
version 6.5 (kernel version 2.6.32).

Comparison. We compared our implementation against OmpSs [6] using Mer-
curium 1.3.5.8 (OmpSs’s compiler) and Nanos++ (OmpSs’s run-time system)
version 0.7a. We also compared against gcc’s OpenMP implementation libgomp,
taken from the gcc 4.9 snapshot archive version 3.455. OmpSs is a well-known
task-library that, arguably, is one of the pioneers of data-driven computing in
the task-based paradigm, which is why we chose to compare against it.

Benchmarks. We used five different benchmarks in our performance evalua-
tion. We executed each benchmark/input pair ten times, using the median to
eliminate extreme corner cases. Resilience to fine-grained parallelism was eval-
uated by varying the amount of concurrency exposed, typically by altering the
block-size each task works on. The benchmarks are:

– Matrix Multiplication Parallel blocked Matrix Multiplication where each
task handles a blocked region. We used the ATLAS BLAS [4] library for the
multiplication.

– SparseLU Parallel LU matrix factorization. Original code from BOTS [5]
which we converted to OpenMP v4 and OmpSs.

TurboB�LYSK 53

– Gauss-Seidel Parallel, blocked and iterative Gauss-Seidel calculation de-
rived from previous studies [14,13].

– Cholesky factorization based on the ATLAS BLAS library [4].
– N-Body a parallel version of this classical problem.

Schedulers. To ensure fairness, both TurboB�LYSK and OmpSs used the same
work-stealing baseline scheduler. Each processor has its own queue into which
tasks are spawned. Processors unable to find work in their own queue will at-
tempt to steal work from other processors. Victim selection is pseudo-random.
The libgomp scheduler uses a global task queue.

Speedup Calculations. We calculated the speedup when running our eval-
uated run-time systems by normalizing it against the fastest serial version we
found: Speedup =tser /tpar where tser is the time taken for the serial version,
and tpar is the parallel makespan (time taken for the parallel region). Initializa-
tion phases (e.g. memory allocation or dep pattern1 stream encoding) were not
included in the evaluation.

5 Results

5.1 Resilience to Fine-Grained Parallelism

We constructed a micro-benchmark where we simulate a wave-front pattern of
dependencies. Each task has a read dependency on the north and west elements
in a matrix. The benchmark iterates five times over the matrix. We first evaluated
the task-overheads (Fig. 3:a). This was done by creating empty tasks and thus
isolating the run-time system’s management of the tasks and their dependen-
dencies. As we gradually increased the wave-front matrix (increasing the number
of dependencies), we found that TurboB�LYSK has a 1.88μs task-overhead com-
pared to gcc’s 7.38μs and OmpSs’s 19.26μs. The dep pattern clause had an even
smaller average overhead of 1.21μs, where 0.42μs task-overheads could also be
observed. Also note that the overhead in TurboB�LYSK remains fairly constant
independent (1.88±0.21μs) of how many dependencies the application has.

We also simulated an artificial work-load in each task to make it possible
to vary task granularity while keeping the same number of tasks. The pur-
pose is to see at what granularity each framework starts to scale efficiently.
We fixed the micro-benchmark to have 245,760 dependencies to solve. We found
(Fig. 3:b) that TurboB�LYSK started to scale already with 6μ long tasks. Both
the automatic-dependency solver and the dep pattern-clause outperformed all
other implementations, reaching peak-performance much earlier than the other
implementations. Gnu C’s libgomp starts scaling when the task granularities
reach 35μs, but the performance is not very stable until granularities of 42μs or
longer. OmpSs requires granularities that are larger than 300μs to scale well.

1 Which is fair, since the stream is encoded once and can be used forever.

54 A. Podobas, M. Brorsson, and V. Vlassov

(a) (b)

Fig. 3. (a): Average task-overhead with different implementations. Lower is better.
(b): Speedup with different controlled granularities on tasks. Higher is better.

5.2 Experimental Results

Fig. 4 shows speedup profiles for all the evaluated benchmarks. Overall, our run-
time system performs consistently better than both OmpSs and gcc’s libgomp.
TurboB�LYSK starts to scale at much lower granularities and to a higher number
of cores in most cases; the reason for this increase in scalability is that there
simply is not enough parallelism exposed at the granularities required by the
other run-time systems.

For example, SparseLU (Fig. 4:c) using the dep pattern clause allows scaling
already with a block-size of 18x18 while gcc’s libgomp and OmpSs require a
block-size of 30x30 and 25x25 respectively – a similar behaviour is seen for all the
benchmarks. The results for Cholesky (Fig. 4:d) show that the peak-performance
of our run-time system is nearly twice as high as for the other run-time systems,
and four times as high using the dep pattern-clause.

Many of the evaluations showed a trend where the automatic dependency-
manager (TurboB�LYSK) and the dep pattern-clause (TurboB�LYSK
(Dep Pattern)) had equal performance, diverging only when the granular-
ity of tasks was so small that even our fast automatic dependency-manager
failed to handle them. Using the dep pattern clause, performance could be
maintained or even increased at these fine granularities (Fig. 4:a,b,c,e).

6 Related Work

Vandierendonck et. al [16] compared different methods of dependency-analysis.
Our implementation of the dependency-management is very similar to their Hy-
pergraph scheme, with minor implementation differences. The evaluation took
place in SWAN and their prototype run-time system based on data-driven par-
allelism but which does not focus on automatic dependency management on
virtual addresses (which we do). Our dep pattern clause receive the same level
of algorithm complexity as their algorithm, while still conveying information to
the run-time system regarding virtual addresses.

TurboB�LYSK 55

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Experimental evaluation of TurboB�LYSK, gcc’s OpenMP 4.0 implementation
and OmpSs. We increase the task granularity (reducing parallelism) moving from left
to right on the x-axis. Speedup–how much faster parallel execution is over the serial–
is seen on the y-axis.

The OSCAR compiler [12] supports a similar concept to our, but in the
fork-join paradigm. During compilation, static tasks are identified and statically
scheduled to optimize cache behavior. However, our work has two differences:
we use dynamic dependencies to figure out static properties of a Direct-Acyclic-
Graph and our method uses a different paradigm (data-driven) where compiler
detected strategies are significantly harder (if possible).

OmpSs [6] is an OpenMP based run-time system and compiler framework
targeting data-driven parallelism. OmpSs is a merge between a data-driven

56 A. Podobas, M. Brorsson, and V. Vlassov

model, StarSs [10], and OpenMP. OmpSs supports both region based [13] and
address-based (as in the present study) data-driven parallelism, and also has
GPU-support.

OpenUH [9] supports task dependencies using IDs/TAGs [9] that are used to
specify dependencies between tasks and removes the overhead of dynamically
finding the dependencies, but expects more from the programmer. Conceptually
our dep pattern clause converts a dynamic data-driven task graph to a graph
such as OpenUHs.

X-Kaapi [8] is a OpenMP-like parallel model supporting multiple paradigms,
amongst others data driven parallelism. Similar to OmpSs and the OpenMPv4
specification, the user conveys information regarding the use of memory regions
to the run-time system, which inserts dependencies between different tasks. X-
Kaapi also supports the removal of WAR-dependencies by renaming regions.
X-Kaapi is used in the libKOMP [3] run-time system, featuring OpenMP like
execution.

OpenSTREAM [14] is a run-time system featuring streams in which data
flows between different tasks. It uses the streams to detect producer-consumer
patterns between tasks (dependencies). OpenSTREAM was evaluated against
StarSs, showing what a large impact the dependency management had on the
execution time of fine-grained parallel application.

StarPU [1] is a framework for both accelerators and homogeneous general-
purpose systems. It supports the notion of data-regions which the run-time sys-
tem exploits to provide efficient multi-GPU performance. It uses a variant of the
HEFT [15] to schedule workloads on resources using a model based on the size
of the input regions.

7 Conclusions

We presented TurboB�LYSK: an OpenMP4.0 tasking framework for data-driven
parallelism, which we used to show that even the finest of granularities can
scale well. We experimentally showed that our techniques in TurboB�LYSK en-
able achieving nearly twice the peak performance compared with other run-time
schedulers. The techniques are not OpenMP specific and can be implemented in
other task-parallel frameworks. We also introduced the dep pattern-clause; a
novel and intuitive method of re-using dependency patterns commonly found in
task-based application. Using the dep pattern-clause programmers can further
leverage the performance. Our experimental evaluation verified all our methods,
which we compared to existing state-of-the-art models.

Acknowledgements. This work was funded by the Artemis PaPP Project nr.
295440, and SRA Serc OpCoReS project. The authors are members of Scalable
Computing Systems, SCALE. We thank the researchers Alejandro Rico and Alex
Ramirez from Barcelona Supercomputer Center for sample OmpSs applications
used in this study. Further thanks goes to Xavier Teruel for answering questions
related to Nanos++/OmpSs regarding dependencies. Thank you!

TurboB�LYSK 57

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: A unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience 23(2), 187–198 (2011)

2. Balart, J., Duran, A., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
Mercurium: A research compiler for OpenMP. In: Proceedings of the European
Workshop on OpenMP, vol. 8 (2004)

3. Broquedis, F., Gautier, T., Danjean, V.: LIBKOMP, an efficient openMP runtime
system for both fork-join and data flow paradigms. In: Chapman, B.M., Massaioli,
F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 102–115.
Springer, Heidelberg (2012)

4. Clint Whaley, R., Petitet, A., Dongarra, J.J.: Automated empirical optimizations
of software and the ATLAS project. Parallel Computing 27(1), 3–35 (2001)

5. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona openmp
tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in openmp. In: International Conference on Parallel Processing, ICPP 2009, pp.
124–131. IEEE (2009)

6. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: OmpSs: A proposal for programming heterogeneous multi-core archi-
tectures. Parallel Processing Letters 21(02), 173–193 (2011)

7. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. ACM Sigplan Notices 33(5), 212–223 (1998)

8. Gautier, T., Lementec, F., Faucher, V., Raffin, B.: X-Kaapi: A Multi Paradigm
Runtime for Multicore Architectures. Rapport de recherche RR-8058, INRIA
(February 2012)

9. Ghosh, P., Yan, Y., Chapman, B.: Support for dependency driven executions among
OpenMP tasks. In: Data-Flow Execution Models for Extreme Scale Computing,
DFM 2012, pp. 48–54 (2012)

10. Labarta, J.: StarSS: A programming model for the multicore era. In: PRACE
Workshop New Languages & Future Technology Prototypes at the Leibniz Super-
computing Centre in Garching, Germany (2010)

11. Muddukrishna, A., Jonsson, P.A., Vlassov, V., Brorsson, M.: Locality-Aware Task
Scheduling and Data Distribution on NUMA Systems. In: Rendell, A.P., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 156–170. Springer,
Heidelberg (2013)

12. Nakano, H., Ishizaka, K., Obata, M., Kimura, K., Kasahara, H.: Static coarse grain
task scheduling with cache optimization using OpenMP. In: Zima, H.P., Joe, K.,
Sato, M., Seo, Y., Shimasaki, M. (eds.) ISHPC 2002. LNCS, vol. 2327, pp. 479–489.
Springer, Heidelberg (2002)

13. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-
gramming with StarSs. International Journal of High Performance Computing Ap-
plications 23(3), 284–299 (2009)

14. Pop, A., Cohen, A.: OpenStream: Expressiveness and data-flow compilation of
OpenMP streaming programs. ACM Transactions on Architecture and Code Op-
timization (TACO) 9(4), 53 (2013)

15. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Transactions on Parallel and
Distributed Systems 13(3), 260–274 (2002)

16. Vandierendonck, H., Tzenakis, G., Nikolopoulos, D.S.: Analysis of dependence
tracking algorithms for task dataflow execution. ACM Transactions on Architec-
ture and Code Optimization (TACO) 10(4), 61 (2013)

Classification of Common Errors in OpenMP
Applications

Jan Felix Münchhalfen1,3,4, Tobias Hilbrich2, Joachim Protze1,3,4,
Christian Terboven1,3,4, and Matthias S. Müller1,3,4

1 IT Center, RWTH Aachen University, D - 52074 Aachen
2 ZIH, Technische Universität Dresden, D - 01062 Dresden

3 Chair for High Performance Computing, RWTH Aachen University, D - 52074 Aachen
4 JARA – High-Performance Computing, Schinkelstraße 2, D – 52062 Aachen

{muenchhalfen,protze,terboven,mueller}@itc.rwth-aachen.de,
tobias.hilbrich@tu-dresden.de

Abstract. With the increased core count in current HPC systems, node level
parallelization has become more important even on distributed memory systems.
The evolution of HPC therefore requires programming models to be capable of
not only reacting to errors, but also resolving them. We derive a classification of
common OpenMP usage errors and evaluate them in terms of automatic detection
by correctness-checking tools, the OpenMP runtime and debuggers. After a short
overview of the new features that were introduced in the OpenMP 4.0 standard,
we discuss in more detail individual error cases that emerged due to the task
construct of OpenMP 3.0 and the target construct of OpenMP 4.0. We further
propose a default behavior to resolve the situation if the runtime is capable of
handling the usage error. Besides the specific cases of error we discuss in this
work, others can be distinctly integrated into our classification.

1 Introduction

With the advent of multi- and manycore architectures, node-level parallelization has be-
come increasingly important in the field of high performance computing (HPC). In fact,
OpenMP has emerged as the most widely used standard for shared memory parallel pro-
gramming in HPC. Although the nature of OpenMP programming greatly enhances the
development of parallel applications, parallel programming with OpenMP is still error
prone to generic mistakes in parallel programming and those specific to OpenMP. In
addition, resilience capabilities will become of greater importance with the availability
of exascale supercomputers. Parallel programs must be able to detect and respond to
certain events that may lead to program termination or incorrect results, e.g., runtime
failures. In this context, the development of an error model is a high priority in the
OpenMP language committee.

In this work, we propose a classification for OpenMP usage errors (defects) to
summarize known types of syntactic and semantic mistakes. We further distinguish
these from performance issues. Particularly, this includes defect classes that involve the
OpenMP 3.0 task and OpenMP 4.0 target constructs. This classification may serve tool
developers and the OpenMP community as a framework and overview of the common
defects introduced when parallelizing with OpenMP.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 58–72, 2014.
c© Springer International Publishing Switzerland 2014

Classification of Common Errors in OpenMP Applications 59

Additionally, our examples provide input for test suites that evaluate the correct op-
eration of OpenMP compilers and runtimes. We also investigate the failures that these
defects may induce on an application, the possibilities towards automatic detection,
and the correctness-checking tools that are capable of detecting them. This classifica-
tion extends and incorporates existing studies [8,10] and our long term experience in
application developer support.

Our investigation first discusses related work (Section 2) and an overview of the latest
standard specification released by the OpenMP language committee — OpenMP 4.0 [4]
(Section 3).

In Section 4 we discuss our classification of defects, with respect to syntax, semantics
and performance. Sections 4.1, 4.2 and 4.3 discuss the individual defect classes in detail
and the possibilities for tool developers to detect them automatically. Finally we draw
our conclusions in sec. 6.

2 Related Work

Suess et al. discussed common mistakes in OpenMP [10]. They conducted a study over
two years and observed which mistakes their students made when parallelizing with
OpenMP. A classification and coarse relationship between correctness and performance
achievement is made in the paper, and best practices into avoiding common mistakes
are presented. Additionally, different compilers and tools are evaluated for their ability
to detect certain defects. At the time of this study, OpenMP 2.5 was the most recent
standard specification. Thus, it does not include the defect classes that we introduce for
the task and target constructs of later OpenMP versions.

Our classification subsumes the defect classes of this study and extends them by
syntactic as well as semantic defects the students did not encounter, besides covering
newer OpenMP constructs.

P. Petersen and S. Shah also published a classification of threading errors [8] (Sec-
tion 4, Figure 1). In contrast to our classification, they further distinguish the class of
semantic defects, especially the logical defects, into stalls and live-locks. As we do not
see an increased potential of detection out of this differentiation, we summarize these
defects in a class of Conceptual defects. Apart from that, we subsumed this classifica-
tion and extend it by classes for syntactic defects and performance issues.

A. Duran et al. proposed an error handling clause [7]. Their proposal draws a callback
based mechanism that defines a set of different failure severities and predefines actions
to handle specific failures. In case of a failure, the predefined action, or a specified
callback is executed and may decide how to handle the failure. This callback can re-
ceive additional information about the region- or source code location where the failure
occurred. The proposal was evaluated using a modified NANOS [2] OpenMP runtime
library. Two benchmark suites, the EPCC micro-benchmarks [6] and the NAS paral-
lel benchmarks [3] (v3.0) are further evaluated to determine which overhead the error
handling functionality adds to the OpenMP runtime.

Another work from Wong et al. [11] evaluates three different possibilities to make
the OpenMP standard capable of handling erroneous situations. The proposal moti-
vates extended error handling capabilities by demonstrating how C++ exception based

60 J.F. Münchhalfen et al.

error handling can be used to catch unexpected failures within the OpenMP runtime.
Wong et al. then discuss requirements that proposed error handling addition to the
standard should conform to. They introduce three different approaches for error han-
dling in OpenMP: a done construct, which was included (see cancellation points) in
the latest OpenMP standard: an error-code dependent approach that would be com-
patible with languages that are exception unaware; and a callback based approach
which slightly extends the one proposed by Duran et al. [7]. For the failure class
”SIMD aligned with unaligned data” we present in the following, the error handling
approaches with error-codes and the done construct would be insufficient, the latter at
least in exception unaware languages.

Motivated by these works [7][11] there are efforts in the OpenMP language com-
mittee to establish error handling capabilities in the OpenMP standard. To support the
work of the OpenMP language committee we provide a classification of defects and
evaluate possibilities for their automatic detection as shown in several examples. When
appropriate, we also include a recommendation on how the failure should be handled
by the OpenMP runtime.

3 Overview of OpenMP 4.0

The OpenMP standard is a directive based approach to express parallelism. It uses a
strict fork-join model in which multiple threads process tasks, which can be either im-
plicit or explicit. The terms implicit and explicit are used to distinguish between a task
originating from programmer effort by using the task directive, and a task created
implicitly when a parallel region is encountered.

Every OpenMP program can be compiled either as a parallel program by interpreting
the OpenMP directives and clauses, or as purely sequential by ignoring all OpenMP
directives.

The standard does not impose requirements on the behavior of an OpenMP applica-
tion if it is compiled as a sequential program. The execution results of such a binary
can deviate from the parallel results. In other respects there are several requirements to
applications that are parallelized with OpenMP, e.g., OpenMP strictly holds on to the
Single Entry, Single Exit principle, which means no branch or jump statements from the
base language may be used to enter or leave OpenMP regions. Programs which do not
adhere to the OpenMP standard’s requirements are called nonconforming. An OpenMP
program starts with one thread that executes the main program on the host and sub-
sequently is able to spawn other threads using the corresponding OpenMP directives.
Several worksharing constructs then distribute workload among multiple threads, e.g.,
the do, and for-loop, and sections constructs assign workloads. Whenever a thread
is not idle, it can process a task.

In version 4.0, the OpenMP standard distinguishes between host and target devices.
The two terms correspond to host computer and accelerators respectively. Code that
is enclosed in a target region, is compiled to be executed on accelerators. This ex-
tension enables OpenMP to reach out to heterogeneous architectures that previously
required different programming models like CUDA, OpenCL, or OpenACC. The new
simd construct controls execution in the vector units. Other additions to the standard
include user defined reductions, task dependency and thread affinity control.

Classification of Common Errors in OpenMP Applications 61

Currently the Intel compiler, the Cray compiler, and the GNU Compiler Collection
(GCC) support OpenMP 4.0, although GCC has no functionality implemented yet for
the target directive and always executes this code on the host.

4 Error Classification

We collected common defects in OpenMP applications from our own experiences, long
lasting support activities from various HPC users and our projects, and summarized
them in a classification. Figure 1 presents this classification in which we distinguish be-
tween syntactic and semantic defects, as well as performance issues. The latter covers
performance flaws that do not actually lead to wrong results or nonconforming applica-
tions, but affect the efficiency of the application. We will discuss the defects and failure
handling, as well as tools that are able to detect them below.

We carefully assembled this classification based on our experiences and available
studies [8,10], in order to incorporate all types of defects that we are aware of, as well
as novel defects that extensions of OpenMP 3.0 and OpenMP 4.0 introduced. This clas-
sification provides a framework for common OpenMP programming defects and forms
a basis for future extension.

The naming error is ambiguous; therefore we use the notion from [12]:

– defect to address programming errors, i.e., incorrect source code, and
– failure to address error manifestation, e.g., execution abortion or deadlocks.

To remove a failure from a program a trace-back is needed to the defect in the source
code. But there is no distinct correlation between classes of failures and defects, and
an error could be assigned to both a failure and a defect class. Compilers and static
analysis tools typically detect defects. Runtime analysis tools typically spot failures,
but may also spot defects. The same holds for debuggers. When we expect an error to
be spotted as a defect we assign it to a defect class. We assign an error to a failure class
if we think that this error is only detectable as a failure.

4.1 Syntactic Defects

A syntactic defect in general is code that is not compliant by the grammar of a pro-
gramming language. With respect to OpenMP parallelization we limit syntactic de-
fects to OpenMP compiler directives. We distinguish between mistyped and correct
OpenMP prefixes (e.g. #pragma omp in C++); mistyped prefixes are not recognized
as OpenMP compiler directives, the compiler will ignore them by default. We do not
classify syntactic errors caught by compilers, and refrain from examining them fur-
ther here. For misspellings, the compiler could recommend similar keywords from the
OpenMP grammar.

4.2 Semantic Defects

We recognize programming mistakes that are semantic defects. These are compiled into
executable code, but otherwise cause failures within the OpenMP runtime, which may

62 J.F. Münchhalfen et al.

Issue

Syntactic defect

Wrong com-
piler directive

Wrong clause to
compiler directive

Semantic defect

Defect

Violation of the
standard/Non-

conforming program

– Uninitialized lock
– Barrier w.o. all

threads
– Violation of SESE
– Worksharing con-

struct w.o. all threads
– Invalid nesting of

regions
– Thread unlocks lock

w.o. ownership
– SIMD aligned w.

unaligned data

Conceptual defect

– Parallel instead of
parallel for

– Single producer w.o.
worksharing

– Incorrect assump-
tion about number of
threads

– Unallocated memory
– Missing data map-

ping

Failure

Race condition

– On the host side
– On the accelerator

side
– btw. host/accelerator

Deadlock

– Deadlock with multi-
ple locks

– Deadlock with a
single lock

Performance
issue

Outside the scope
of this work

Fig. 1. Classification of Common Issues in OpenMP Applications

manifest themselves as execution aborts, deadlocks, or incorrect results. Most impor-
tantly, the exact behavior of a semantic defect depends on the runtime at hand. Thus
these defects may introduce portability problems that only become visible with spe-
cific runtimes. Semantic defects form the biggest class of possible mistakes — not only
when parallelizing with OpenMP — but with programming in general. In the follow-
ing, we will discuss the four sub-classes of semantic defects in Figure 1. Some of these
sub-classes involve additional child classes.

Violations of the Standard/Nonconforming Program: In this class we integrate de-
fects that are a clear violation to one or more of the definitions of the OpenMP standard.
The standard strictly prohibits developers from using certain combinations of OpenMP
compiler directives or the usage of runtime functions in specific contexts. We do not
claim completeness at this point. The amount of possible standard violations simply
exceeds the scope of this work, thus we focus on a smaller, respresentative portion of
defects.

Uninitialized locks: OpenMP offers different mechanisms to synchronize threads. The
most commonly used are barriers and critical sections. It is more difficult to induce
a defect using the latter two high level approaches than doing so with locks. Locks
are a low level mechanism for synchronization and enable the programmer to coordi-
nate threads with finer and increased control, but also with increased potential to create

Classification of Common Errors in OpenMP Applications 63

defects. OpenMP features two types of locks: regular and nested locks. The difference
between the two types is that nested locks may be locked repeatedly by the same thread
without blocking, while regular locks would block if the thread that currently owns
them tries to acquire the lock again. In both cases a lock needs to be released the same
number of times it was locked. Additionally, locks, need to be initialized before they are
used. The standard does not specify how programs will behave if programmers make
use of an uninitialized lock. Detection of this is either possible in the OpenMP runtime,
or by keeping track of initialized locks, e.g., in a correctness tool. The OpenMP runtime
could issue a mild severity level, i.e., a warning and handle the failure appropriately by
e.g. just initializing the lock to resolve the situation without terminating the application.
We do not propose to terminate the application in this case, despite this being a viola-
tion to the standard, because the defect is a minor violation and can be resolved quite
easily. In our experiments the defect could be found by using Valgrind (memcheck), the
Intel Inspector XE or a debugger.

Barriers not reached by all threads of a team: As mentioned previously, barriers are less
error prone than locks. Nevertheless they still offer potential for defects as barriers must
always be encountered by all threads of a team. Some OpenMP regions have implicit
barriers at their end unless a nowait clause is present. Thus, this defect may or may
not be a special case of Violation of the Single Entry, Single Exit principle (SESE). It is
possible to induce this situation by using barriers inside conditional statements which
depend on a condition that is special to a thread, or by implementing irregular execution
patterns using statements such as goto. An example of this situation for a barrier inside
a conditional statement, is given in code Example 1.

If the code is of low complexity and only includes a few conditional statements
that determine if a thread reaches a barrier or not, the defects of this class may be
detectable by static code analysis. In more complex codes, e.g., where the barrier is
hidden in a third party library, the detection proves far more difficult. A runtime analyzer
may identify this situation if the waiting states of all threads are clearly known, e.g. if
all threads wait at different barriers. More exhaustive approaches could utilize model
checking techniques to detect defects of this class. If this situation can be detected, a
runtime may decide to terminate the application, since the program exhibits a serious
nonconformance to the standard.

Violation of the Single Entry, Single Exit principle (SESE): The OpenMP execution
model requires each thread encountering an OpenMP region to also exit the region in
a regular fashion (without skipping the end of the region). A team of threads that is
spawned at the start of a parallel region must correctly exit the parallel region.
Parallel execution in OpenMP strictly follows a fork-join-model and consequently the
generated team threads must join at the end of a parallel region. Any deviation from this
principle violates the OpenMP standard and will cause undefined behavior ranging from
program termination to deadlock, as well as partially executed worksharing directives.
Detection is possible through static code analysis or by keeping track of individual
threads and their paths of execution during runtime. The default behavior of the runtime
should be immediate termination of the application or cancellation of all parallel
regions because the program behavior is undefined from this point on.

64 J.F. Münchhalfen et al.

Worksharing constructs not reached by all threads of a team: Special constructs like
worksharing constructs must be encountered by all threads of a team or none at all. As
described in Violation of the Single Entry, Single Exit principle (SESE), these situations
are created by using the goto keyword or by placing worksharing constructs inside
conditional code paths. An example is given in code Example 1. The most promising
approach to detect this kind of defect is static code analysis. If the runtime is able to
detect this automatically, it should terminate the innermost parallel region with an
appropriate error level because the successful parallel execution of this region is then
rendered impossible. This would enable developers to implement different strategies
and, if necessary, rely on (possibly serial) fallback algorithms to deliver correct results.

1 #pragma omp parallel
2 if(omp_get_thread_num() % 2){
3 #pragma omp for
4 for(int i=0; i < N; ++i)
5 ...
6 #pragma omp barrier
7 }else{
8 #pragma omp barrier
9 }

Example 1. Worksharing construct/barrier is not reached by all threads of a team

1 double a[N], b[N], c[N];
2 ...
3 #pragma omp parallel
4 for(int i=0; i < N; i++)
5 a[i] = b[i] * c[i];

Example 2. Parallel for should be used

Invalid nesting of regions: The current OpenMP standard [4] covers the nesting of re-
gions and places a set of restrictions on which regions may not be directly nested. For
example it is strictly forbidden to directly nest worksharing constructs, because each
worksharing construct requires the context of a single parallel region. Any viola-
tion to this restriction fits into this defect class. The compiler is in many cases able to
identify this kind of defect. An exception to this is when OpenMP regions are orphaned
and hidden inside third-party libraries or subroutines in other source files. This effec-
tively prevents some compilers from identifying a relationship between the OpenMP
region and its parent region. In this case, identifying the violation to the standard is
far more difficult and requires more sophisticated approaches such as modifications to
the OpenMP runtime to keep track of which regions are reached by individual threads.
Termination of the innermost parallel region may in some cases suffice to handle the
failure, but that depends on the combination of regions which violate the standard and
it may as well be required to terminate the application if e.g. critical regions of
the same name are nested (see Deadlocks). While this would render further execution
impossible, termination of the innermost parallel region on the other hand may enable
developers to implement recovery mechanisms, e.g., a fallback approach. Compilers
with interprocedural analysis capabilities will most probably be able to even detect in-
valid nesting of orphaned constructs properly.

Classification of Common Errors in OpenMP Applications 65

Unlocking locks that are not owned by the current task: The OpenMP standard states
that calls to omp unset lock and omp unset nest lockwith a lock as argument
that is neither locked nor owned by the current task is nonconforming. It is easy to
avoid this kind of situation when using OpenMP locks: Using higher level approaches,
e.g., C++ classes that lock in the constructor and unlock in the destructor, or always
placing the lock and unlock in pairs, and near to each other in the source code. When
tasks are tied to threads in OpenMP (default behaviour), the constraint that the lock
needs to be owned by the current task is equivalent to the constraint of lower-level
mechanisms like pthreads, that the current threads need to own the lock. So far, none
of the major compilers mentioned in Section. 3 have implemented this clause, but this
possibly might create problems when locks are used inside untied tasks. Unlocking
attempts by threads/tasks which don’t own the lock can easily be detected by keeping
track of the locking and unlocking operations in the runtime. As the program state is
undefined after this operation, the runtime should either terminate the program if this
failure occurs or exit all parallel regions with a descriptive error code.

SIMD aligned with unaligned data: OpenMP 4.0 includes a SIMD directive that enables
programmers to manually instruct the compiler to translate a loop into vectorized code.
An aligned clause can be used to specify the alignment of loop data in bytes. This
may be beneficial because some instruction sets, e.g., the x64 instruction set, include
SIMD instructions for aligned and unaligned data, of which the former generally needs
less loads to complete. The developer can align data either by using special malloc-
variants like posix memalign or by manually allocating (N + alignment) bytes and
then adjusting the pointer appropriately.

The task of detecting the incorrect use of the aligned clause can be very difficult
at compile time as it is not known then how the data will be aligned when the program
is run. A debugger will certainly detect this (after execution) as the CPU will raise an
interrupt when this defect occurs. Because the runtime will most probably not be able
to detect this kind of defect before an interrupt occurs, we do not propose a default
behavior here.

Conceptual Defect: A conceptual defect occurs when code does not explicitly violate
the OpenMP standard and may as such be called a conforming OpenMP program, but
nevertheless results in unwanted or unintended program behavior. Cases of this class
represent correct applications in terms of the restrictions of the OpenMP standard, but
fail to meet intended specifications, due to another software defect or due to an incor-
rect specification. As an example, an application meant to calculate π could be correctly
parallelized, but simply have a defect in its formulas or logic. It may be either caused by
a program condition that only occurs under specific circumstances that were not consid-
ered by the developer or simply by lack of knowledge on the developer. We explicitly
exclude race conditions (see Race Conditions) and deadlocks (see Deadlocks) from this
class.

Parallel instead of parallel for: The mistake of using a parallel directive when
a parallel for directive was intended is quite common and can lead to different

66 J.F. Münchhalfen et al.

failures, depending on the pre-parallized code. This defect may not have any impact on
compilation at all and thus go unnoticed. This is the case, e.g., when all threads execute
the same code in parallel, without any worksharing or data races. The result will be
correct, but there will be no benefit in runtime because each thread does the same work
as the serial program. See Example 2 for this case. Because there are situations where it
actually may make sense to use parallel over parallel for, this defect is hard
to detect. If data races occur during execution of this defect, the defect is detectable
by applying detection methods for race conditions (see Race Conditions). If no race
conditions occur during execution of this defect we do not think a tool would be able to
detect it.

Single producer without worksharing: An often used concept in parallel programming
is the single producer. In the single producer pattern one thread creates one or multiple
tasks inside a single construct. Subsequently those tasks are processed by the threads
of the underlying parallel region. Because the absence of the single construct does not
violate the standard or renders the code syntactically incorrect, it is easily overlooked.
Another well known design pattern is the parallel producer. As the name suggest, here
tasks are created in parallel and possibly without a single construct. Hence it is not
easy to determine the correctness of applications which utilize these parallel program-
ming patterns. They might however trigger other defects which are covered in this work,
e.g. Race Conditions. We do not consider this sort of mistake to be detectable by cor-
rectness checking tools because the intention of the application remains ambiguous
without deeper insight.

Locks as barriers: An OpenMP lock that was locked by one thread will block all other
threads that call omp set lock until the thread which owns the lock executes a call to
omp unset lock. Therefore, a programmer with a lack of understanding of OpenMP
constructs might try to use locks as a concept for barriers, unaware of the barrier
directive and assuming that a single call to omp unset lock enables the continuation
of all threads. We do not expect that the intention to create a barrier is detectable by a
tool when this situation is encountered. Potentially, a deadlock or a possible deadlock
can be detected and does not differ from the situation in the subsequent deadlock defect
class.

Incorrect assumptions about the number of threads: The OMP DYNAMIC environment
variable may raise unexpected situations in OpenMP programs if set to true and the
developer relies on the number of threads being set by other methods, such as a pre-
vious argument to omp set num threads or the value of the environment vari-
able OMP NUM THREADS. While this situation does not interfere with dynamic loop
scheduling, it is probably best to allow the runtime to choose the number of threads
arbitrarily to optimize the utilization of system resources. Therefore the programmer
may not rely on the number of threads being equal to what was requested. Even if a cer-
tain number of threads was requested and the value of OMP DYNAMIC equals to false,
a different number of threads may be provided by the runtime, e.g., if less threads are
available than what was requested. This kind of defect is logical nature and thus very

Classification of Common Errors in OpenMP Applications 67

difficult to spot automatically because an analyzing application needs to know what is
to be accomplished in the first place. The runtime therefore cannot detect it.

Unallocated memory (host/accelerator): If an OpenMP application fails to allocate
memory and thus uses a NULL-pointer in a subsequent OpenMP clause, the behavior of
the runtime library is undefined. This sort of defect could be handled by a mechanism
like the one proposed in [7,11]. The runtime should take care of the error handling in
this case. To resolve the failure, the region should either be completely skipped with
an adequate error code given back to the application developer — or transfer execution
to a callback function that could be specified by the developer. While NULL-pointers
are quite easy to detect, a pointer to a memory region that is not allocated or only
partially allocated may prove more difficult to spot. To achieve this, the runtime would
need to track the application heap, or all calls to malloc. This erroneous situation is
also detectable using a debugger: An application raises a SEGFAULT-interrupt when
it accesses unallocated memory in any way. The proposed way to handle this failure
is either program termination or termination of the innermost parallel region with a
suitable error code.

Missing data mapping to accelerator: In OpenMP 4.0 the target and target
data directives were introduced to that enable the programmer to offload computa-
tions to accelerator devices. The directives support a map clause that is responsible for
the mapping (or migration) of data from the host to the accelerator and vice versa. The
developer has to name each variable that was declared outside the scope of the target
region in a corresponding map clause. Depending on the type of accelerator, host and
device may either share their memory, portions of their memory or have separate mem-
ories. Therefore it is important to specify the type of mapping in the map clause which
may either be alloc, to, from or tofrom. Global variables inside a target region
must be declared with the declare target directive. If the accelerator and host do
not share a common memory, on the device side the data will be allocated, received
from the host and copied back, corresponding to their mapping. If a data mapping for
the target region is missing, the compiler will raise an error and most likely interrupt
the compilation process.

Race Conditions: A race condition is defined as a situation during program runtime in
which two or more executing units, usually threads, access a shared resource simulta-
neously in such a way that at least one unit is modifying the resource. This may lead to
failures, if the resource does not provide sufficient internal synchronization to allow for
multiple executing units/threads accessing it at the same time, e.g. a memory location.
This usually requires the programmer to employ suitable synchronization. To this class
we assign all defects which can lead to race conditions. Detecting this class of defects
usually induces a significant overhead on application runs. We therefore do not consider
this class recommendable to be handled by the OpenMP runtime automatically.

68 J.F. Münchhalfen et al.

Race conditions on the host side: Race conditions are a problem not only specific to
OpenMP but to parallel programming in general. OpenMP parallelized applications
which do not make use of the target directive to offload data for computation to an
accelerator, may execute with false assumptions about the default data sharing behavior
of OpenMP or forgotten data sharing clauses when entering a parallel region. There are
several works in progress on the detection of data races on the host side, e.g. the thread
sanitizer that is part of the latest version of GCC [9] and commercial tools like the Intel
Inspector XE [1] and Oracle Solaris Studio Thread Analyzer [5]. Most of them are able
to properly detect those types of data races.

Race conditions on the accelerator side: If an application with target directives is com-
piled to offload code to an accelerator, OpenMP directives and runtime functions may
be utilized on the device as well as on the host with few limitations [4]. The developer
may spawn a team of threads on the accelerator using the parallel directive — same
as on the host side — and forget to specify adequate data sharing clauses for the vari-
ables used inside the parallel region. In principal the problem is very similar to the one
described in Race conditions on the host side, but its detection can be much more com-
plicated because not all accelerator systems offer the same repertoire of debugging/trac-
ing capabilities as most host processors. Additionally, detecting race conditions usually
requires a lot of device memory because each memory access needs to be traced for
later analysis. On accelerator devices this may prove challenging, as memory is gener-
ally very limited. An approach for GPGPU accelerators [13] provides insight into such
data race detection capabilities, but has not yet been applied to OpenMP applications.

Race conditions between host/accelerator: With the introduction of the target di-
rective it is possible to offload computations to an accelerator device. As explained in
Missing data mapping to accelerator it is further possible that the host and the accel-
erator truly share memory. In this case, race conditions will occur if both the host and
the accelerator device operate on the same data without synchronization. As a con-
sequence, data is copied from and to the accelerator as target or target data
regions are encountered. While the OpenMP runtime should take care that no data is
overwritten when data is copied to the accelerator, it is very well possible that the host
changed the data that was transferred to the accelerator in the meantime. A copy-back
operation from the accelerator may overwrite this data and lead to a data race if the
user has not synchronized the access. If host and accelerator share a common memory,
the detection of this requires tracing both host and device memory accesses because
both can modify the same memory transparently. If host and accelerator have seperate
memories, it is sufficient to trace only host memory accesses because one thread will
always block until the target region is completed and only then, copy back data (see
Race conditions on the host side).

Deadlocks: A deadlock is a situation in which a program is in a waiting state for an
indefinite amount of time. In this class we categorize defects which can lead to dead-
locks. If the OpenMP runtime is able to identify a deadlock situation, it should handle
the failure by either terminating the application or, more preferably, by terminating all

Classification of Common Errors in OpenMP Applications 69

parallel regions with an error code. Unfortunately, not all deadlock situations will
be detectable by the runtime. OpenMP 4.0 introduced the feature of task dependen-
cies which we evaluated with regard to their potential of introducing deadlocks. Task
dependencies by design prevent programmers from creating circular dependencies and
therefore it is effectively impossible to run into a deadlock by only using task depen-
dencies.

Deadlock with multiple locks: The explicit use of the locking API is in general error-
prone and susceptible to deadlocks. Especially when more than one lock is involved,
deadlocks can occur if locking operations overlap. In a real world application this may
be difficult to detect at compile time if calls to omp set lock and omp unset lock
are concealed in subroutines (orphaned). If all threads are blocked due to a call to
omp set lock, the deadlock situation is clear and can be identified by the OpenMP
runtime or correctness-checking tools.

Deadlock with a single lock: This type of defect describes a situation where a dead-
lock occurs due to the order in which locks are accessed. The deadlock situation might
not always occur but only under specific circumstances, e.g., specific scheduling of
threads/tasks. In Example 3 it very much depends on the scheduling of tasks if the
application will deadlock or not. If two or more tasks operate on locks concurrently
and there is a task scheduling point after a call to omp set lock without a preceding
omp unset lock, a deadlock might occur. This situation is also called a potential
deadlock. A tool could spot this situation via a model checking approach or at run-
time by keeping track of locks and their owners and taskwait constructs. We are not
aware of any tools which are currently able to spot such failures.

1 omp_lock_t lock; omp_init_lock(&lock);
2 #pragma omp parallel
3 #pragma omp master
4 #pragma omp task
5 {
6 #pragma omp task
7 {
8 omp_set_lock(&lock);
9 omp_unset_lock(&lock);

10 }
11 omp_set_lock(&lock);
12 #pragma omp taskwait
13 omp_unset_lock(&lock);
14 }
15 omp_destroy_lock(&lock);

Example 3. Possible deadlock due to a race on a lock.

4.3 Performance Issues

Because the performance issues named in Figure 1 are not specific to OpenMP pro-
gramming, we will not include a more detailed specification of them in this work. We

70 J.F. Münchhalfen et al.

do not discourage the usage of critical sections and locks, but recommend that devel-
opers consider the amount of work that is done inside synchronization constructs. De-
pending on this, the other threads will be blocked during that time, or the overhead of
synchronization might have a significant impact on the overall runtime. Furthermore,
pointless flushing, as well as memory access patterns which will lead to cache trashing
or false sharing, will probably lead to bad application performance and are thus best to
avoid.

5 Summary

We evaluated each error class in terms of detectability in the above table (2). In this
evaluation we distinguished between different methods to detect defects, such as com-
pilers, compiler based static analysis (involving interprocedural analysis), the OpenMP
runtime, debuggers and tools which conduct correctness checks at runtime. A cross (•)

marks that the tool class is able to detect the defect, a cross in round brackets ((•))
means that the tool class is able to detect the error under special circumstances.

Mistake Compiler Static Analysis Runtime Debuggers Tools
Syntactic mistakes

1. wrong directive •
2. wrong clause • •

Semantic mistakes
Violation of the standard

3. uninitialized locks • • •
4. barrier wo all threads • • •
5. violation sese (•) •
6. worksharing wo all threads
7. invalid nesting (•) • • (•)
8. lock unlock nonowner • • •
9. simd aligned (•) •

Conceptual defect
10. parallel inst parallel for
11. single prod wo worksharing
12. number of threads
13. unallocated memory (•) • • • •
14. missing data mapping (•) • (•)

Race condition
15. host (•) •
16. accelerator (•) •
17. host accelerator (•)

Deadlock
18. multiple locks (•) •
19. single lock (•) •

Fig. 2. Defects and their detectability

Classification of Common Errors in OpenMP Applications 71

6 Conclusion

We developed a classification of OpenMP defects for the OpenMP 4.0 standard. In this
classification we distinguished errors by both the defect and the failure. We further
summarized many defects we consider common to OpenMP programming and evalu-
ated them in terms of their potential for automatic detection by analysis tools. If we
considered the runtime able of handling a failure, we propose a default error handling
mechanism that is to be executed when application developers do not specify error han-
dlers of their own. We found that the number of common defects in OpenMP did not
decrease with newer versions of the standard, but slowly increased due to new features
that were added to the standard. An example of this is the target construct which was
introduced with OpenMP 4.0.

Future work will explore possible collaborations with developers of specific scien-
tific domains to collect their mistakes and to quantify the frequency of the error classes
we listed in this work.

Acknowledgement. Parts of this work were funded by the German Federal Ministry
of Research and Education (BMBF) under Grant Number 01IH13008A (ELP).

References

1. Intel Inspector XE (2013),
https://software.intel.com/en-us/intel-inspector-xe

2. NANOS Project,
http://www.cepba.upc.edu/nanos/

3. NAS Parallel Benchmarks,
https://www.nas.nasa.gov/publications/npb.html

4. OpenMP 4.0 specification (July 2013),
http://openmp.org/wp/openmp-specifications/

5. Oracle Solaris Studio,
http://www.oracle.com/technetwork/server-storage/
solarisstudio/documentation/index.html

6. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In: Proceed-
ings of First European Workshop on OpenMP, pp. 99–105 (1999)

7. Duran, A., Ferrer, R., Costa, J.J., Gonzàlez, M., Martorell, X., Ayguadé, E., Labarta, J.: A
Proposal for Error Handling in OpenMP. In: Mueller, M.S., Chapman, B.M., de Supinski,
B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 422–434.
Springer, Heidelberg (2008)

8. Petersen, P., Shah, S.: OpenMP Support in the Intel R© Thread Checker. In: Voss, M.J. (ed.)
WOMPAT 2003. LNCS, vol. 2716, pp. 1–12. Springer, Heidelberg (2003)

9. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: Data Race Detection in Practice. In: Pro-
ceedings of the Workshop on Binary Instrumentation and Applications, WBIA 2009, pp.
62–71. ACM, New York (2009)

10. Süß, M., Leopold, C.: Common Mistakes in OpenMP and How to Avoid Them: A Collection
of Best Practices. In: Mueller, M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss,
M. (eds.) IWOMP 2005/2006. LNCS, vol. 4315, pp. 312–323. Springer, Heidelberg (2008)

https://software.intel.com/en-us/intel-inspector-xe
http://www.cepba.upc.edu/nanos/
https://www.nas.nasa.gov/publications/npb.html
http://openmp.org/wp/openmp-specifications/
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html
http://www.oracle.com/technetwork/server-storage/solarisstudio/documentation/index.html

72 J.F. Münchhalfen et al.

11. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., de Supinski, B.R., Churbanov,
A.: Towards an Error Model for OpenMP. In: Sato, M., Hanawa, T., Müller, M.S., Chap-
man, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 70–82. Springer,
Heidelberg (2010)

12. Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann Pub-
lishers Inc., San Francisco (2005)

13. Zheng, M., Ravi, V.T., Qin, F., Agrawal, G.: GMRace: Detecting Data Races in GPU Pro-
grams via a Low-Overhead Scheme. IEEE Trans. Parallel Distrib. Syst. 25(1), 104–115
(2014)

Static Validation of Barriers and Worksharing

Constructs in OpenMP Applications

Emmanuelle Saillard1, Patrick Carribault1, and Denis Barthou2

1 CEA, DAM, DIF
F-91297 Arpajon, France

2 Bordeaux Institute of Technology, LaBRI / INRIA
Bordeaux, France

Abstract. The OpenMP specification requires that all threads in a team
execute the same sequence of worksharing and barrier regions. An im-
proper use of such directive may lead to deadlocks. In this paper we pro-
pose a static analysis to ensure this property is verified. The well-defined
semantic of OpenMP programs makes compiler analysis more effective.
We propose a new compile-time method to identify in OpenMP codes the
potential improper uses of barriers and worksharing constructs, and the
execution paths that are responsible for these issues. We implemented
our method in a GCC compiler plugin and show the small impact of our
analysis on performance for NAS-OMP benchmarks and a test case for
a production industrial code.

1 Introduction

OpenMP is a popular parallel programming model for shared memory machines.
While OpenMP aims at making parallel programming easier, there are a number
of improper uses of worksharing constructs and barriers that are not statically
detected by compilers and may lead to deadlock or unspecified behavior. Indeed,
the OpenMP specification requires that all threads of a team must execute the
same sequence of worksharing constructs and barriers [16]. However in practice
no error occurs when all threads of a team do not execute exactly the same bar-
rier. That is why we authorize threads synchronizations with different barriers
and defined two verbosity levels (0 and 1) defining soft and hard barriers verifi-
cations. Throughout the rest of the paper, examples are presented with verbosity
level 0.

To show the difficulty to enforce this constraint in OpenMP codes, consider
the motivating examples in Figure 1. In function f of Listing 1.1, each thread may
or may not encounter the single construct line 9, depending on the control flow
(line 6). According to the OpenMP specification, all threads in a team should
encounter the same single, or none of them. However, compiling this code and
executing it does not lead to a syntactic error but to a deadlock. Indeed, if the
result of the conditional is not the same among all threads, the first barrier
executed will be for some threads the implicit barrier line 12 (end of single)
while for others, it will be the explicit barrier line 14. Then the first group of

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 73–86, 2014.
c© Springer International Publishing Switzerland 2014

74 E. Saillard, P. Carribault, and D. Barthou

Listing 1.1.
1 void f (){
2 i f (. . .)
3 {
4 #pragma omp parallel
5 {
6 i f (. . .)
7 {
8 /∗ . . . ∗/
9 #pragma omp single

10 {
11 /∗ . . . ∗/
12 }
13 }
14 #pragma omp barrier
15 /∗ . . . ∗/
16 }
17 }
18 }

Listing 1.2.
1 void f () {
2 /∗ . . . ∗/
3 #pragma omp barrier
4 re turn ;
5 }
6
7 in t main () {
8 in t r ;
9 #pragma omp parallel private (r)

10 {
11 r = . . . ;
12 i f (r == 0)
13 f () ;
14 }
15 exit (0) ;
16 }

Fig. 1. Examples with Deadlock Situations

threads will stop at the explicit barrier line 14 while the second group will stop
at the barrier related to the end of the parallel region. Finally, the first set of
threads will be released and eventually deadlock at this last barrier. Note that if
we modify this example by adding an else statement with another single, the
code is still potentially erroneous since all threads should encounter the same
single. A more complex case appears Listing 1.2. A deadlock can occur at the
end of the parallel region of function main because of the conditional line 12.
Depending on the control flow the barrier in f may be not encountered by all
threads. The error is more difficult to detect and an interprocedural analysis is
required. This illustrates the fact that the machine state does not help to identify
the cause of deadlocks (in these two examples, conditionals).

This paper proposes a new compile-time technique to detect potential im-
proper uses of worksharing constructs and barriers in applications parallelized
with OpenMP. The main advantage of our method is to highlight the state-
ments responsible for the execution path potentially leading to future deadlocks
or unspecified behaviors. This contribution is an adaptation and transposition
of the work presented in [12] for checking MPI applications with respect to
barriers. The OpenMP application is checked function per function, using intra-
procedural analysis. Each function of a program is said to be correct if all threads
of the same team (entering the function or created in the function) have the same
sequence of worksharing regions and depending of the verbosity level, the same
sequence of barriers (verbosity 1) or the same number of barriers (verbosity 0).
An inter-procedural analysis complements the analysis for checking the whole
application. This paper makes the following contributions:

– Analysis of barriers and worksharing constructs that may lead to deadlocks,
identification of the control-flow that may be responsible for these situations;

– Consideration of the OpenMP specification and the practice through two
verbosity levels;

Static Validation of Barriers and Worksharing Constructs 75

– Full implementation inside a production compiler; experimental results on
different benchmarks and applications.

The outline of the paper is the following. Section 2 provides a summary of
existing debugging tools for OpenMP programs. Section 3 defines the prob-
lem statement, describes the program representation we use and presents our
compile-time analysis. Section 4 details experimental results before concluding
in Section 5.

2 Related Work

OpenMP applications are prone to concurrency errors such as data races and
deadlocks. Debugging tools generally check the correctness of OpenMP programs
either at compile-time or during execution of a program, both methods having
advantages and inconveniences. This section summarizes some existing tools to
detect data races and deadlocks in OpenMP applications.

The well-defined semantics of OpenMP makes static analyses common to
check the correctness of OpenMP applications. Several static approaches exist:
First we can mention the OpenMP Analysis Toolkit [9] (OAT) that uses symbolic
analysis to detect concurrency errors. It relies on the ROSE compiler infrastruc-
ture to encode every parallel region into Satisfiability Modulo Theories (SMT)
formulae. Those formulae are then solved with a SMT-solver like Yices [17]. OAT
terminates its analysis by instrumenting the source code with fault injection tech-
nique to confirm the reported errors. OmpVerify [1] is a static tool integrated in
Eclipse IDE using the polyhedral model to detect data races in OpenMP parallel
loops. This tool is restricted to program fragments called Affine Control Loops
but it has the advantage of reporting accurate errors to the user. Lin [8] de-
scribes a concurrency analysis technique to detect whether two statements will
not be executed concurrently by different threads in a team. The method is an
intra-procedural analysis based on phase partioning using an OpenMP Control
Flow Graph (OMPCFG) that models the transfer of control flow in an OpenMP
program. Similarly, Zhang et al. [18] use a concurrency analysis to detect un-
aligned barriers in OpenMP C programs. This inter-procedural method consists
in four phases: A CFG construction to model the various OpenMP constructs,
a barrier matching to find threads barriers that synchronize together, a pro-
gram division into phases (sequence of basic blocks separated by barriers) and
an aggregation of phases with matching barriers. Any two basic blocks from the
same aggregated phase are said to be concurrent. Although quite close to our
analysis this work differs from us in several points. Unlike Zhang et al., our anal-
ysis is language independent and verifies woksharing-construct placements in a
program. To detect possible deadlocks we use the graph representation defined
in [8]. Potential errors are automatically returned to the user with the line of
the erroneous conditionals by a simple analysis of the OMPCFG. Thus the user
knows exactly what can cause a deadlock and correct it. For the verification of
the whole program Zhang et al. export a barrier tree when we only need an inte-
ger defining the minimal number of possible barriers encountered in a function.

76 E. Saillard, P. Carribault, and D. Barthou

Then a simple callgraph traversal points out the possible sources of deadlocks
in the whole program. However both methods could complement each other.
Detection can also be done by compilers like GCC when lowering the OpenMP
constructs to GOMP function calls [14]. Indeed, GCC issues a warning for wrong
nested parallelism, typically a barrier in a single region. Like all static tools, our
method has the advantage of not requiring execution of the program but can
produce false positives.

Among dynamic tools we can mention the Adaptative Dynamic Analysis
Tool [6] (ADAT) and RaceStand [5,10] for focused data races detection and
Intel Thread Checker [11,4] and Sun Thread Analyzer [13] for both data races
and deadlocks detection. ADAT is a data races detection tool using classification
and adaptation mechanisms. The tool creates a pseudo-instrumented source code
and an Engine Code Property Selector (ECPS) table and then transforms the
pseudo-instrumented source code into an executable by using the ECPS table
information. With a C compiler supporting OpenMP, the instrumented source
code is compiled and executed to detect data races. RaceStand by GNU utilizes
an on-the-fly dynamic monitoring approach to detect data races and has recently
improved its check with a dynamic binary instrumentation technique based on
Pin software framework. This tool detects the existence of races and locates races
between two accesses not causally preceded by other accesses also involved in
races (first races) for each shared variable in a program. Intel Thread Checker
and Sun Thread Analyzer both require an application instrumentation and trace
references to memory and synchronization operations during the application ex-
ecution. Sun Thread Analyzer necessicates program recompilation with the Sun
compilers. To find data races the program must be executed with two or more
threads. Unlike Sun Thread Analyzer, Intel Thread Checker does not depend on
the number of threads used. It dynamically detects data races using a projection
technology which exploits relaxed OpenMP programs. More precisely, the pro-
jection technology checks the data dependency of accesses to shared variables
using sequentially traced information. But Intel Thread Checker does not con-
sider OpenMP programs specifications and can therefore report false positives.
Li et al. present in [7] an online-offline model to test the correctness of every
OpenMP parallel region. The online correctness testing model is used to find
parallel regions with incorrect execution results (not corresponding to serial exe-
cution results), identify all places that caused errors (directives used improperly
or located wrongly) and correct them. Then the offline correctness testing model
tests the correctness of regions with corrected directives. Compared to dynamic
tools that detect a deadlock when it occurs, our static analysis prevents pro-
grams from deadlocking (the program is stopped whenever a deadlock situation
is detected). Moreover our method is not limited to the input dataset of a run.
Indeed, even if dynamic tools return no false positive, they can miss errors as
they are correlated to one execution of a program.

We proposed in [12] a combining method to detect misuse of MPI collec-
tive operations in MPI programs. MPI processes must have the same sequence
of collective operations otherwise a deadlock may occur. Restriction on MPI

Static Validation of Barriers and Worksharing Constructs 77

collective operations is the same as restrictions on barriers and worksharing
regions in OpenMP programs. Thus we adapted this work to detect potential
deadlocks in OpenMP programs. Potential deadlocks due to wrong synchroniza-
tions as well as worksharing regions are automatically detected in each function
of a program and then errors considering the whole program are reported by
an inter-procedural analysis. To our knowledge our analysis is the first intra-
and inter-procedural analysis that verifies that all OpenMP tasks encounter the
same worksharing regions.

3 Checking OpenMP Directives and Control Flow

In OpenMP programs, the threads of a team can synchronize through the
#pragma omp barrier directive or at an implicit barrier at the end of work-
sharing regions (unless a nowait clause is specified). Worksharing constructs dis-
tribute the execution of the associated region among the threads of a team [16].
Worksharing constructs are loop, sections, single and workshare constructs. The
OpenMP specification gives some restrictions to barriers and worksharing con-
structs. Indeed, each barrier/worksharing region must be encountered by all
threads in a team or by none at all, unless cancellation has been requested for
the innermost enclosing parallel region ([16] Sections 2.7, p.53 and 2.12.3, p.124).
However, due to the control flow inside an OpenMP program, the threads may
execute different execution paths with different numbers of barriers and work-
sharing regions. Such behavior can lead to a deadlock or unspecified behaviors.

The principle of the static analysis we propose is the following. For each func-
tion of the code, we check that for all threads entering the function and for
all teams created within it, the same number of barriers are executed, what-
ever the execution path taken by the threads. If the number of barriers may
depend on the control flow, the control structures responsible for this are shown
with a warning. This is a conservative approach, since we do not check that
the conditional of an if statement for instance is dependent on the ID of the
threads. Moreover, we check that worksharing constructs may not be condition-
ally executed, potentially leading to unspecified behaviors. This intra-procedural
analysis on barriers and worksharing constructs is complemented by a simple
inter-procedural analysis: User-defined functions are subsumed by the number
of worksharing constructs and barriers executed by the entering threads. This
captures all potential improper uses of barriers and worksharing constructs.

The program to analyze is represented using the OMPCFG intermediate rep-
resentation, briefly described in the following section. Then the intra- and inter-
analyses are presented.

3.1 Intermediate Representation: OMPCFG

The control-flow graph (CFG) is an intermediate representation of code, used by
almost all compilers. The CFG is a directed graph where nodes are basic blocks
(straight sequence of code) and edges are potential flow of control between nodes.

78 E. Saillard, P. Carribault, and D. Barthou

Lin [8] extended the notion of CFG to a representation for parallel OpenMP
programs, called OMPCFG. Each node of the OMPCFG represents a basic block
(basic nodes) or an individual block containing an OpenMP directive (directive
nodes). In the OMPCFG, implicit barriers are made explicit and each combined
parallel worksharing construct is separated into a nowait worksharing construct
nested in a parallel region. Moreover the OMPCFG has a single Entry and single
Exit nodes. New edges are inserted between basic nodes and directive nodes
according to OpenMP semantics. As a result, the master directive is represented
as a conditional. Table 1 lists the OpenMP directives and their corresponding
directive node in the OMPCFG. Note that Lin also adds edges from the end
construct directive to the begin construct directive nodes denoted as construct
edges. These edges are not considered here as they do not reflect any control
flow.

Table 1. Directive nodes in the OMPCFG

Directive name Control flow
Worksharing
construct

parallel, critical, atomic, section, barrier, ordered,
linear

task, taskwait, taskyield

master if/else

for, single if/else ∗
sections, workshare switch/case ∗

Figure 2 shows examples of OMPCFG. All directive nodes containing a
barrier are represented as thick nodes and all directive nodes containing a
worksharing construct are colored in gray. Directive nodes containing a parallel
construct are considered as barriers but are not considered in our Algorithms.
Out of clarity, implicit barriers at the end of worksharing and parallel regions
are not designated by barriers but by region-name end.

This representation is the base of our compiler analysis. GCC uses a graph
representation similar to the OMPCFG from version 4.2.

3.2 Intra-procedural Analysis

This section details the static verification of barriers and worksharing constructs
for each function of a program. We define two levels of verbosity for barriers ver-
ification: level 0 that returns warnings only if there may be an execution error
and level 1 that returns warnings in strict accordance with the specification.

For the verbosity level 0, we identify barrier statements that synchronize to-
gether. To that purpose, we introduce a number, the sequential order, counting
the number of barriers traversed before reaching a barrier. This number is as-
signed to each node in the OMPCFG. Two nodes with different sequential order
are sequentially ordered thanks to barriers. This number is 0 for nodes before
the first barrier (including the node with the first barrier), 1 for nodes reached

Static Validation of Barriers and Worksharing Constructs 79

void f()

{

#pragma omp parallel

{

#pragma omp single

{

/*...*/

}

/*...*/

}

}

(a) Source code

Entry

2 - parallel begin

3 - single begin

4

6 - single end

7

8 - parallel end

Exit

(b) OMPCFG

Entry

2 - parallel begin

2

3 - barrier 4 - barrier

5

6 - barrier

7

8 - parallel end

Exit

(c) OMPCFG with
barriers

Fig. 2. Example of a simple code (a) with its corresponding OMPCFG (b) and an
OMPCFG containing barriers (c)

after one barrier and so on. When multiple paths exist, nodes can have multiple
numbers, at most the number of barriers in the function. Loop backedges are
removed to have a finite numbering. A function is not correct if there are nodes
with multiple orders. These nodes correspond to possible control-flow divergence
leading to deadlocks. In Zhang et al. [18], this notion of sequential order corre-
sponds to phases, computed through an inter-procedural liveness analysis and
a barrier aggregation step. While both methods can be used for our goal, our
approach is simpler, more adapted to the verification of barriers. The compu-
tation of the execution order uses an algorithm adapted from the algorithm 1
in our previous work [12] on MPI verification. This algorithm detects possible
control-flow divergence leading to a deadlock in a MPI barrier. MPI barriers
are numbered by so-called execution ranks (similar to sequential order here).
MPI barriers of same execution rank r are put into a set Cr,c as matching MPI
barriers. c is used to differenciate MPI collective operations names. In our case,
only barriers are considered so the c is useless and only Cr sets are created.
Algorithm 1 is an adaptation of this method for OpenMP barriers, from line 6
to line 12. Barriers with multiple sequential orders are put in the set Cr with
r corresponding to their maximal sequential order. For example the OMPCFG
Figure 2(c) contains three explicit barriers nodes 3, 4 and 6 and one implicit
barrier node 8. The sequential order for nodes 3 and 4 is 0, for node 6 , 1 and
for node 8, 2. The algorithm computes C0 = {3, 4}, C1 = {6} and C2 = {8}.

For the verbosity level 1, we verify each barrier is encountered by all threads
of a team. This is described from line 14 to line 16 in Algorithm 1.

80 E. Saillard, P. Carribault, and D. Barthou

Algorithm 1. OpenMP Intra-procedural Control-flow Analysis

1: function Function verification(f, υ) � f : a function of the application
2: � υ: level of verbosity
3: Compute G = (V,E) the OMPCFG of f
4: S ← ∅, S′ ← ∅ � Output sets: Conditional nodes
5: if υ = 0 then � level 0 of verbosity
6: Remove loop backedges in G and Compute sequential order of all nodes
7: for n = 0..max(sequential order (G)) do
8: for barriers of sequential order n do
9: Cn ← {u ∈ V |u of order n}
10: S ← S ∪ PDF+(Cn)
11: end for
12: end for
13: else � level 1 of verbosity
14: for u ∈ V s.t. u contains an explicit barrier do
15: S ← S ∪ PDF+(u)
16: end for
17: end if
18:
19: for u ∈ V s.t. u contains a worksharing construct do
20: S′ ← S′ ∪ PDF+(u)
21: end for
22: Output nodes in S′ and S as warnings
23: end function

The algorithm takes the OMPCFG of the current function and the verbosity
level as input parameters and outputs a message error for conditional nodes
that may lead to a deadlock in a barrier (set S). The core of the algorithm is
based on the postdominance frontier [2], used in a previous paper in the context
of MPI collectives verification [12]: The postdominance frontier of a node u
of the OMPCFG (denoted as PDF (u)) is the set of all nodes v such that u
postdominates a successor of v but does not strictly postdominate v. If� denotes
the postdominance relation, PDF (u) = {v | ∃ w ∈ SUCC(v), u�w and u ��
v}. In other words all paths from w to the exit node go through u. On the
contrary v is not postdominated by u so there exists a path from v to the exit
node that does not go through u. This concept is extended to a set of nodes
N : PDF (N) =

⋃
u∈N PDF (u) and to the notion of iterated postdominance

frontier PDF+ defined as the transitive closure of PDF , when considered as
a relation [2]. If barriers with the same sequential order n have a non-empty
PDF+ set, then some threads may not perform the nth synchronization. Due to
the representation of all worksharing constructs (as if/else or switch), barriers
inside these worksharing constructs are detected as incorrect.

The lines 19 to 21 of the algorithm detect if worksharing constructs may not
be executed by all threads of a team. For each node u containing a worksharing
construct, we compute the iterated postdominance frontier of u. If the PDF+(u)

Static Validation of Barriers and Worksharing Constructs 81

is not empty then some threads may execute the construct while others may
avoid it. The set of nodes detected are put in the set S′ for warnings.

Lemma 1. Algorithm 1 is correct if it detects all deadlock situations due to
barrier and worksharing regions.

Proof. The levels of verbosity enable a strict verification of barriers in compliance
with the specification. In that purpose Algorithm 1 detects if all threads of a team
have strictly the same sequence of barriers. A soft verification is also possible.
The algorithm then verifies all threads of a team encounter the same number of
barriers. The proof has been done in [12]. Then Algorithm 1 computes the set
S′ of control-flow nodes that have execution paths with different number or type
of worksharing constructs from the node to the Exit node. We prove that nodes
in S′ correspond exactly to the nodes that lead to a deadlock.

As an example, the first OMPCFG Figure 3 contains one explicit barrier (node
8), two implicit barriers (nodes 7 and 10) and one worksharing construct: single
(node 5). Algorithm 1 computes sequential orders. Node 7 is of sequential order
0, node 8 is of sequential orders 0 and 1 and finally node 10 is of sequential orders

Entry

2

3 - parallel begin

4

5 - single begin

6

7 - single end

8 - barrier

9

10 - parallel end

11

Exit

(a)

Entry

2

3 - barrier

4

Exit

(b)

Entry

2 - parallel begin

3

4 - do begin

5 - barrier

6

7 - do end

8

9 - parallel end

Exit

(c)

Fig. 3. Function f OMPCFG of the motivating examples ((a) and (b)) and an example
of an OMPCFG with a loop ((c))

82 E. Saillard, P. Carribault, and D. Barthou

1 and 2. Thus we have C0 = {7}, C1 = {8} (node 8 is in C1 as it has multiple
sequential orders) and C2 = {10}. PDF+(C1) = ∅ and PDF+(C2) = ∅ but
PDF+(C0) = {4}. Node 4 is the only node in the iterated postdominance fron-
tier of node 7 as the conditional node 2 is outside the parallel region. Then the
conditional node 4 is returned as the possible cause of a deadlock in a barrier.
For node 5, PDF+(5) = 4. To sum up for Listing 1.1, a warning is issued for
the conditional located in node 4 as potentially leading to different barriers and
worksharing constructs sequence among threads. The OMPCFG Figure3(b) con-
tains one explicit barrier node 5 and one implicit barrier node 7. The algorithm
computes C0 = {5}, C1 = {7} and PDF+(C0) = {4}. Last, the OMPCFG Fig-
ure 3(c) contains one worksharing construct node 4, one explicit barrier node
5, two implicit barriers nodes 7 and 9 and a loop (composed of nodes 4, 5, 6,
7). First Algorithm 1 removes the loop backedge from node 7 to node 4. Then
sequential orders are computed: C0 = {5}, C1 = {7} and C2 = {9}. A warning
is issued for the conditional node 4 as PDF+(C0) = {4}. For the loop construct
node 4, the iterated postdominance frontier is empty.

3.3 Inter-procedural Analysis

This section describes the analysis for the whole application code. We assume
the application is not using recursion, meaning the callgraph of the application
has no cycle.

The method iterates through the callgraph, in reverse topological order. It
starts with functions that do not call other functions in the code, then callers
of these functions, and so forth. After the previous analysis of Algorithm 1,
each function retains the minimal number of barriers executed by the team of
threads entering the function (excluding the barriers executed by teams created
inside the function), as well as the number of worksharing constructs executed by
this same team. These numbers are denoted nbarrier for the number of barriers,
nd for worksharing constructs (among for, worksharing, sections, single).
They are obtained through a simple traversal of the OMPCFG of the function.
When a function g is called from a function f , g is replaced by as many barriers
and worksharing constructs as these values. For worksharing constructs, only
the number of constructs matters for the analysis. Indeed, we verify each callee
function with worksharing constructs are not depending on the control flow in
caller functions. Then the analysis Function verification is called on f . These
steps are described in Algorithm 2.

Figure 4 shows callgraphs of Listing 1.2 and BT from the NAS parallel
benchmarks OpenMP. Nodes colored in gray are first nodes considered by Al-
gorithm 2. In the example of the Listing 1.2 callgraph, Algorithm 2 computes
nworksharing(f) = 0 and nbarrier(f) = 0 which are the minimal numbers of bar-
riers and worksharing constructs in function f. Function f is then replaced by
these numbers in main.

Static Validation of Barriers and Worksharing Constructs 83

Algorithm 2. OpenMP Inter-Procedural Analysis

1: function Code verification(CG,υ) � CG: call graph � υ: level of verbosity
2: Sort CG in reverse topological order
3: for f ∈ CG do
4: for g a callee in f do
5: Compute nd(g) for d =barrier and worksharing constructs � nd:

minimal number of directives d executed by entering threads
6: Replace g in f by nd(g) empty worksharing constructs and nbarrier(g)

barriers.
7: end for
8: Compute Function verification(f, υ)
9: end for
10: end function

(a) (b)

Fig. 4. Callgraph of Listing 1.2 (a) and BT from NASPB-OMP (b)

4 Experimental Results

Our analysis is implemented in a GCC 4.7.0 plugin, avoiding the whole com-
piler recompilation. An adaptation of the plugin is required to work with newer
version of GCC. The plugin is located in the middle of the compilation chain as
a new pass inserted inside the compiler pass manager after generating CFG in-
formations and before OpenMP directives transformation. The location has the
advantage of being language independent allowing a verification of applications
written in C, C++ and Fortran. The pass applies Algorithm 1. The implementa-
tion of Algorithm 2 is currently under development. This section presents exper-
imental results on the NAS parallel Benchmarks OpenMP (NASPB-OMP) [15]
v3.2 using class B and HERA [3], a large multi-physics 2D/3D AMR hydrocode
platform. Even if the test case used by HERA is parallelized with MPI+OpenMP,
only the correctness of OpenMP barriers and worksharing constructs have been
checked. The number of lines and the language of each benchmark is presented
Table 2. All experiments were conducted on Tera 100, a supercomputer with
a peak performance of 1.2 PetaFlops. Tera 100 hosts 4,370 compute nodes for
a total of 140,000 cores. Each compute node gathers four eight-core Nehalem
EX processors at 2.27 GHz and 64 GB of RAM. All performance results were
computed and averaged with BullxMPI 1.1.16.5.

84 E. Saillard, P. Carribault, and D. Barthou

Our analysis issues warnings for barriers and worksharing constructs poten-
tially not encountered by all threads of a team. The name of the OpenMP direc-
tive with potential improper use and the line of the conditional leading to this
situation are returned to the programmer. The following example shows what a
user can read on stderr when compiling Listing 1.1 with our plugin.

in function ’f’:

example.c: warning: STATIC-CHECK: #pragma omp single line 9 is

possibly not called by all threads because of the condition line 6

Table 2 shows the number of barriers and worksharing constructs found in
each benchmark and the number of nodes in the sets S and S′ generated by
Algorithm 1 with the two verbosity levels. For all these nodes, the control flow
does not depend on thread ID and therefore functions are correct. A data-flow
analysis could be done to complement our analysis to reduce the number of false
positives. Indeed, a check on the conditionals in S ∪ S′ could help the plugin to
detect control flow not depending on threads ID and avoid false positives. This is
left for future work. The table also presents first results for the inter-procedural
analysis by giving the number of functions executed in parallel with a non null

Table 2. Static Results for each benchmark (F=FORTRAN)

Benchmark
NASPB-OMP

HERA
BT CG DC EP FT IS LU LU-HP MG SP UA

Language F F C F F C F F F F F C++

lines 3,835 1,204 3,295 294 1,336 940 3,921 3,875 1,497 3,309 8,375 827,739

explicit barriers 0 0 0 0 0 2 3 0 0 0 0 92

worksharing 31 18 0 1 8 5 37 37 15 35 77 1,622

Verbosity 0
nodes in 0 0 0 0 0 0 0 0 0 0 0 564

S ∪ S′ Verbosity 1
0 0 0 0 0 0 0 0 0 0 0 587

functions with
3 3 0 0 0 0 8 4 2 3 15 398

(nbarrier + nd) �= 0

0.01

0.1

1

10

BT CG DC EP FT IS LU LU−HP MG SP UA HERA

O
v
e

rh
e

a
d

 i
n

 %

Fig. 5. Overhead of average compilation time for NASPB-OMP and HERA

Static Validation of Barriers and Worksharing Constructs 85

minimal number of barriers or worksharing constructs. These functions may be
replaced by their callee functions in the source code to report errors considering
the entire program.

The compile-time overhead obtained when compiling the applications and
activating our plugin is shown Figure 5. The overhead remains acceptable as it
does not exceed 0.25% for NASPB-OMP and 10% for HERA (caused by the size
of the code, it takes 52,3 minutes to compile HERA with the plugin).

5 Conclusion and Future Work

In this paper we propose an adaptation of our previous work on MPI to detect
improper uses of barriers and worksharing constructs in OpenMP applications.
The method we propose statically detects if all threads entering a function and
created in it have the same sequence of barriers (or the same number of barriers)
and worksharing constructs. It issues warnings for the statements responsible
for the execution path leading to possible deadlocks or unspecified behaviors.
Compared to existing work, in particular the method of Zhang et al. [18], our
technique is fast (introducing little overhead) and able to scale to large appli-
cations. For future work, we plan to complement our method by a data-flow
analysis, reducing the number of false positives detected by our approach.

Acknowledgments. This work is (integrated and) supported by the PERF-
CLOUD project. A French FSN (Fond pour la Société Numérique) cooperative
project that associates academics and industrials partners in order to design
then provide building blocks for a new generation of HPC datacenters.

References

1. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P.,
Wonnacott, D.: OmpVerify: Polyhedral Analysis for the OpenMP Programmer.
In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP
2011. LNCS, vol. 6665, pp. 37–53. Springer, Heidelberg (2011)

2. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently com-
puting static single assignment form and the control dependence graph. In: ACM
TOPLAS, vol. 13(4), pp. 451–490 (1991)

3. Jourdren, H.: HERA: A hydrodynamic AMR Platform for Multi-Physics Simula-
tions. In: Plewa, T., Linde, T., Weirs, V.G. (eds.) Adaptive Mesh Refinement -
Theory and Applications, pp. 283–294. Springer (2003)

4. Kim, Y.J., Daeyoung, K., Jun, Y.K.: An Empirical Analysis of Intel Thread
Checker for Detecting Races in OpenMP Programs. In: Lee, R.Y. (ed.) ACIS-ICIS,
pp. 409–414. IEEE Computer Societ (2008)

5. Kim, Y.-J., Park, M.-Y., Park, S.-H., Jun, Y.-K.: A Practical Tool for Detect-
ing Races in OpenMP Programs. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS,
vol. 3606, pp. 321–330. Springer, Heidelberg (2005)

6. Kim, Y.J., Song, S., Jun, Y.K.: ADAT: An Adaptable Dynamic Analysis Tool for
Race Detection in OpenMP Programs. In: ISPA, pp. 304–310. IEEE (2011)

86 E. Saillard, P. Carribault, and D. Barthou

7. Li, J., Hei, D., Yan, L.: Correctness Analysis based on Testing and Checking for
OpenMP Programs. In: Fourth ChinaGrid Annual Conference. IEEE (2009)

8. Lin, Y.: Static Nonconcurrency Analysis of OpenMP Programs. In: Mueller,
M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008)

9. Ma, H., Diersen, S., Wang, L., Liao, C., Quinlan, D.J., Yang, Z.: Symbolic Analysis
of Concurrency Errors in OpenMP Programs. In: ICPP, pp. 510–516. IEEE (2013)

10. Meng, Y., Ha, O.-K., Jun, Y.-K.: Dynamic Instrumentation for Nested Fork-join
Parallelism in OpenMP Programs. In: Kim, T.-h., Lee, Y.-h., Fang, W.-c. (eds.)
FGIT 2012. LNCS, vol. 7709, pp. 154–158. Springer, Heidelberg (2012)

11. Petersen, P., Shah, S.: OpenMP Support in the Intel Thread Checker. In: Voss,
M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 1–12. Springer, Heidelberg (2003)

12. Saillard, E., Carribault, P., Barthou, D.: Combining Static and Dynamic Validation
of MPI Collective Communications. In: EuroMPI 2013, pp. 117–122 (2013)

13. Terboven, C.: Comparing Intel Thread Checker and Sun Thread Analyzer. In:
Bischof, C.H., Bcker, H.M., Gibbon, P., Joubert, G.R., Lippert, T., Mohr, B.,
Peters, F.J. (eds.) PARCO. Advances in Parallel Computing, vol. 15, pp. 669–676.
IOS Press (2007)

14. GOMP site, http://gcc.gnu.org/projects/gomp
15. NASPB site, http://www.nas.nasa.gov/software/NPB
16. OpenMP API v4.0, http://www.openmp.org/
17. Yices: An SMT solver, http://yices.csl.sri.com
18. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory

programs with textually unaligned barriers. In: Adve, V., Garzarán, M.J., Petersen,
P. (eds.) LCPC 2007. LNCS, vol. 5234, pp. 95–109. Springer, Heidelberg (2008)

http://gcc.gnu.org/projects/gomp
http://www.nas.nasa.gov/software/NPB
http://www.openmp.org/
http://yices.csl.sri.com

Loop-Carried Dependence Verification

in OpenMP

Juan Salamanca, Luis Mattos, and Guido Araujo

Institute of Computing, University of Campinas
Campinas, São Paulo - Brazil

juan@ic.unicamp.br, ra107822@students.ic.unicamp.br, guido@ic.unicamp.br

Abstract. Data dependence analysis is a very difficult task, mainly due
to the limitations imposed by pointer aliasing, and by the overhead of
dynamic data dependence analysis. Despite the huge effort to devise im-
proved data dependence analysis techniques, the problem is still far from
solved. Efficient methods to reduce memory and time overhead imposed
by dynamic instrumentation are thus required to enable fast and cor-
rect program parallelization. This paper presents a novel dynamic loop-
carried dependence checker integrated as a new extension to OpenMP,
the parallel for check construct, which can be used to help program-
mers identify the existence of loop-carried dependences in parallel for
constructs.

Keywords: Parallel programming, checking, OpenMP, loop-carried de-
pendences, dynamic data dependence analysis, parallelization.

1 Introduction

Tools to support programming correctness are central in any programmingmodel,
particularly in parallel programming, in which bugs are typically very hard to
detect and reproduce [1].

A fairly common source of bugs in OpenMP and many other parallel program-
ming models shows up when programmers need to evaluate if loops can have their
iterations parallelized. In order to do so, programmers have to perform a careful
and complex evaluation of the dependence of the loop-body variables across iter-
ations. If such dependences are not present, loops are called DOALL [1], and its
iterations can be easily parallelized. Otherwise, they are called DOACROSS [1]
loops, which are harder to parallelize and to extract good speedups.

Given that loop-bodies can have complex nested function calls, and pointer
aliasing, dynamic cross-iteration dependences can occur at runtime, making the
work of the programmer much harder and error prone. Complex loop-bodies can
easily produce intricate runtime dependences which cannot be easily detected
by the typical programmer at compile time. For this reason, effectively detecting
dynamic loop cross-iteration violations is a relevant tool to support parallel
programming. In this section we detail the problem of detecting loop cross-
iteration violations, and motivate the need to come up with a solution this
problem.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 87–102, 2014.
c© Springer International Publishing Switzerland 2014

88 J. Salamanca, L. Mattos, and G. Araujo

A loop (as shown in Fig. 1) has a loop-carried dependence if there is a state-
ment A dependent on B and both statements are executed in different iterations.
As mentioned before, loop-carried dependences limit loop iteration paralleliza-
tion.

Fig. 1. Loop-carried dependence example

Data-dependence analysis is an important technique to detect loop-carried
dependences and to exploit parallelism in programs. It works by detecting if
two instructions access the same memory location, and at least one of them
is a write operation. A loop-carried dependence occurs when these instructions
execute in different iterations; otherwise they are called loop-independent [1]. As
discussed previously, if two instructions are loop-independent, the iterations can
be safely executed in parallel without the need of synchronization. Otherwise, if
they define a loop-carried dependence, this can not be achieved.

For example, Fig. 2 shows an incorrect execution of the previous loop (Fig. 1),
as iteration 2 is executed before iteration 1, so it does not respect the loop-carried
dependence between instruction A and B. Specifically, the read of variable b
in iteration 2 is incorrect as variable b has a loop-carried dependence to the
execution of statement B in the previous iteration.

One potential source of bugs, while programming in OpenMP, shows up if a
programmer incorrectly evaluates this as a DOALL loop, and thus parallelizes it
using a parallel for construct. By using the parallel for check construct, proposed
herein, this error could be detected at runtime.

In this paper, we present parallel for check (check), a new construct to
OpenMP, which enables the seamless integration of loop dynamic data
dependence verification in OpenMP. This construct makes possible the detec-
tion of loop-carried dependences at runtime in OpenMP programs, thus help-
ing programmers to identify potential violations resulting from hard to detect
loop-carried dependences. Checker was implemented in Pin/GCC-OpenMP and
LLVM/Clang-OpenMP. This paper offers the following contributions:

• It presents a novel OpenMP parallel for check construct, also named check or
checker, which enables the dynamic detection of loop-carried dependences.

• It does on-the-fly dynamic loop-carried dependence analysis of multithreaded
applications, making it possible to detect loop-carried dependences which can
not be detected by means of serial or per-thread analysis, as in [3, 4, 6, 7, 9].

Loop-Carried Dependence Verification in OpenMP 89

Fig. 2. Possible execution flow of the loop of Fig. 1

This paper is organized as follows. Section 2 analyzes well-known loop-carried
dependence checkers and evaluates their disadvantages when compared to our
work. Section 3 motivates and describes our check construct. Section 4 describes
the implementation of checker in GCC/Pin and Clang/LLVM. Section 5 shows
experimental results, and finally Section 6 concludes the work.

2 Related Work

This section analyzes two techniques used to detect loop-carried dependences.
The first one is the Pairwise method, which was used in [5]; the second technique
is the Stride-based method, which was implemented in the SD3 profiler [4, 6, 7].

Static dependence analysis techniques have been extensively studied in the
literature. Approaches like the GCD Test [2] and Banerjee’s equality test [17]
have been used, for a long time, in the design of parallelizing compiler. These
techniques analyze data dependences in array-based memory accesses, and thus
are not effective when used in languages which allow pointers and dynamic allo-
cation. Besides, static analysis can become complex in situations when: (a) the
bounds of the loop are not known, (b) dynamically created arrays are passed
through deep procedure call chains, or (c) the loop-body has a complicated
control-flow. In such cases, dynamic loop dependence analysis is an alternative
as all memory addresses are resolved at runtime.

90 J. Salamanca, L. Mattos, and G. Araujo

2.1 Pairwise Method

The Pairwise Method is still considered the state-of-the-art for loop-carried de-
pendence testing. The basic idea of this method is to store, into a hash table
(pending table), all memory references (pending references) occurring during the
current iteration of a loop. When an iteration finishes, the pending table is
compared against the history table, which stores all memory references (history
references) of all previous iterations. This method solves nested loops depen-
dences, by having a pending and a history table for each loop. It is important
to highlight that our OpenMP checker does not target nested loops (yet).

The Pairwise algorithm works as follows. First, memory references are stored
into the pending table during an iteration. After of finishing the iteration, the
pending table is checked against the history table to discover loop-carried de-
pendences. Before of continuing with the next iteration, the pending references
are copied to the history. This process is repeated until the end of all iterations
for this loop. If this loop is nested within another loop, the history table of the
inner loop is propagated to the pending table of the outer loop. Afterwards,
this pending table is checked against the history table of the outer loop (that
is initialized empty) to discover loop-carried dependences. This process for the
outer loop continues until the end of all its iterations.

Loop-independent dependence does not prevent parallelization; thus, any
dependence analyzer must distinguish if a dependence is loop-carried or loop-
independent. The Pairwise algorithm, as described in [3, 6, 7], detects loop-
independent dependence by implementing kill addresses (a technique similar
to the notion of kill sets in data-flow analysis), which marks a memory address
as killed once it is written in an iteration. Then all memory references within the
same iteration to the killed address are ignored. However, this technique could
lead to incorrect results in multithreaded program executions not reporting ex-
isting violations of loop-carried dependences between threads as it only works
in serial executions or per-thread analysis.

To demonstrate kill addresses effectiveness, SD3 authors analyze the following
code from SPEC 179.art [6].

Listing 1. Dependence in pass flag in 179.art

1 void match() {
2 if (condition)
3 pass_flag=1;
4 }
5 void scan_recognize(...) {
6 for (j = starty; j < endy; j += stride)
7 for (i = startx; i < endx; i += stride){
8 ...
9 pass_flag = 0;

10 match();
11 if (pass_flag == 1)
12 do_something();
13 ...
14 }
15

16 }

Loop-Carried Dependence Verification in OpenMP 91

Assuming that pass flag is a global variable, they argue that a loop-
independent flow dependence exists on pass flag as this variable is always ini-
tialized at line 9 before any use on every iteration, which should not prevent
parallelization, and it is true in a serial execution context. However, in a mul-
tithreaded execution this code could have the following problem. Thread X
executes line 9 after the same thread executes line 3. Before this thread executes
line 11, another thread Y executes line 9. Thus, when thread X reads variable
pass flag at line 11, it will be incorrect as the execution does not respect the
loop-carried WAR dependence between the write reference at line 9 (executed
by thread Y) and the read reference at line 11 (executed by thread X). Thread
X will not execute do something when it had to do so.

This problem can be solved with privatization as SD3 authors argue in [4,6,7].
On the other hand, according to our approach, all violations of loop-carried
dependences must be informed to force not omitting corrections of renaming of
variables that avoid WAR and WAW loop-carried dependences.

Killed addresses technique is also used by SD3 [4,6,7] so it could lead to inac-
curate results due to multithreaded program executions. Our OpenMP checker
deals with this problem by storing the thread identifier (thread ID) for each
memory event within the loop body.

Other problems of Pairwise Method are the time and memory overhead it re-
quires to store all memory references within a loop. These problems can be more
complicated when considering nested loops, as the Pairwise Method propagates
history references of inner loops to pending tables of outer loops. As explained
earlier, nested loops have not been considered in this first implementation of
checker as we focused on the functionality of the new check construct and the
integration with GCC and LLVM. On the other hand, we partially addressed the
time overhead using pipeline-parallelization of the stages of our implementation.

2.2 Stride-Based Method

This method was proposed in [4, 6, 7] and has the Pairwise Method as a base-
line algorithm. It tries to solve the problem of memory overhead by means of
compression, and to solve the time overhead by using data-level parallelism.

The compression is achieved by using stride formats. For example, array ref-
erence A[d ∗ i + b] generates an address stream that has a stride composed by
a base (b), a distance (d), and an induction variable (i). SD3 [4, 6, 7] discovers
strides dynamically and uses them directly to check loop-carried dependences.
Strides are detected by a detector assigned to each PC. If a memory reference is
not part of a stride, it is called a point.

Stride-based method is implemented using an extension of the Pairwise al-
gorithm defining pending and history stride tables. To detect dependences in
strides they first do an interval test employing interval trees based on red-black
trees [11]. They then perform Dynamic-GCD test, as described in [4]. Notice
that SD3 focuses on reducing the memory overhead due to deep nested loops,
contrary to this work, which does not consider nested loops as it is more focused

92 J. Salamanca, L. Mattos, and G. Araujo

on the integration with OpenMP, and to solve the problems with multithreaded
executions.

SD3 solves the problem of time overhead by exploiting data-level parallelism
contrary to the task-level parallelism approaches adopted in previous works [12].
It distributes memory references into tasks that perform data-dependence check-
ing with a subset of the entire input. The address space is divided at every 2k

bytes and the subsets are mapped to M tasks on N cores.
As in the previous Pairwise algorithm, this method maintains killed addresses

to distinguish between loop-carried and independent dependences. However, as
discussed in the previous Section 2.1, this technique could lead to incorrect
results for multithreaded application executions. Therefore, SD3 method can
ignore some violations of loop-carried dependences for multithreaded executions
as SD3 analysis is performed sequentially or on a per-thread basis. As explained
before, checker deals with this problem.

Another problem with SD3 is that it is more effective for profiling inner loops
than outer loops. As data-dependence analysis proceeds to outer loops, irregular
strides are more frequent (the compression method will not work), making the
cost of detecting dependences extremely expensive. Also, this method requires
additional static analysis to recover control flows and loop structures from a
binary executable, which is complicated to implement [6]; thus, the selection of
loops to analyze is also complicated.

Our solution to these problems is to limit the analyzed loops according to the
programmer instructions, while storing memory references in a memory/time
efficient data structure as Multilevel Hash Table [11].

3 Check Construct in OpenMP

This section presents the new check construct, a novel OpenMP construct which
can detect loop-carried dependences in OpenMP. It capitalizes on some advan-
tages of both, Pairwise and Stride-based methods; while it tries to minimize their
deficiencies.

3.1 Overview of the Algorithm

Pairwise and Stride methods use, for each instrumented loop of the program, one
pending table that is flushed at each new iteration of the loop, and one big history
table to store all dynamic memory references seen so far along the loop execution.
In the case of Stride method, it duplicates the number of tables for managing
strides and points. By contrast, our approach uses a single memory efficient data
structure per-loop. This implementation feature of check considerably reduces
the time and memory overhead caused by instrumentation.

To store memory references in check, we use a Multilevel Hash Table (MHT)
[11] which maps references to one bit (Indicator Function Hash Table, as shown in
Fig. 4). By doing so, the size of the memory footprint required to store iteration
addresses is considerably reduced. MHT has a three-level key composed by the

Loop-Carried Dependence Verification in OpenMP 93

Fig. 3. Usage of check construct in the program of Fig. 1

memory address, the thread ID, and the number of iteration, mapping one bit
that indicates if this address was written or read in that iteration by that thread.
On the average case, search time in this kind of structure is O(k) where k is the
number of levels. In our case, k = 3 and thus search time is O(1) on average [11].

The detailed algorithm is described in Listing 2 as follows.

Listing 2. OpenMP checker Algorithm

1. When a loop with check directive, L, starts, the checker is

activated.

2. On a memory address, R, of L’s i-th iteration done by thread X,

store 0 (read) or 1 (write) into the bit of the key composed by R,

X and i on the Multilevel Hash Table.

3. If the memory reference in R is a read instruction, the checker

looks for if there is a memory write on this address R, in another

thread different from X, from current max iteration (the maximum

number of iteration stored due to a memory reference by any thread

at this moment) down to iteration i+ 1. If this memory write exists,

the checker reports a violation of WAR loop-carried dependence. If

warning option is activated, the checker also looks for if there is

a memory write on this address R, in any thread from

current min iteration (the minimum number of iteration stored due to

a memory reference by any thread at this moment) to iteration i− 1.
If this memory write exists, the checker reports a warning of WAR

loop-carried dependence.

4. If the memory reference in R is a write instruction, the checker

looks for if there is a memory write or read on this address R, in

another thread different from X, from current max iteration down to

iteration i+ 1. If a memory write exists, the checker reports a

violation of WAW loop-carried dependence. If a memory read exists,

it reports a violation of RAW loop-carried dependence. If

warning option is activated, the checker also looks for if there is

a memory write or read on this address R, in any thread from

current min iteration to iteration i− 1. If a memory write exists, the

checker reports a warning of WAW loop-carried dependence. If a

memory read exists, it reports a warning of RAW loop-carried

dependence.

5. When L finishes, we flush the Multilevel Hash Table.

94 J. Salamanca, L. Mattos, and G. Araujo

The algorithm focuses on detecting violations of loop-carried dependences.
Some loop-carried dependences do not cause violations, as the order of execution
is respected, and thus checker does not report such errors. Nevertheless, in some
specific cases the programmer might want to be informed of all existing loop-
carried dependences as this information could be useful to understand the causes
of violations in future program runs. In order to enable the detection of all loop-
carried dependences in checker, the programmer should activate an optional
parameter called warning option.

Our approach does not need a sophisticated compression algorithm as de-
scribed in [4,6,7], given that we perform dependence verification for single loops.
By combining this with the possibility of selecting the specific loop to analyze
and the MHT data structure, we managed to reduce the memory and time over-
heads of the methods described in Section 2.

As explained in Sections 2.1 and 2.2, previous solutions could have problems
with multithreaded executions as they mark an address as killed once the mem-
ory address is written in an iteration; besides, they only report dependences
per-thread. Thus, they can omit possible violations of loop-carried dependences.
Our approach identifies these ignored violations given the analysis is not done
on a thread basis but for the whole program. As explained before, we do not
use the killed addresses method, as in our approach all violations of loop-carried
dependences must be informed to force not omitting corrections of renaming of
variables (that avoids WAR and WAW loop-carried dependences). These cor-
rections can generate privatized variables. We solve the multithreaded execution
problem by using the thread ID to do the verification of dependences.

3.2 Parallelization of the Algorithm

Instrumentation is a very time-consuming task because all memory writes and
reads are instrumented for each loop as proposed by the Pairwise and Stride

Fig. 4. Multilevel Hash Table mapping to a read in memory address a, iteration 3 by
thread Y

Loop-Carried Dependence Verification in OpenMP 95

Fig. 5. OpenMP checker exploits pipeline level parallelism (3 stages)

methods. SD3 [4, 6, 7] uses data-level parallelism and pipelining to reduce the
time overhead. In contrast, our approach uses only pipeline-level parallelism.
Check is composed by the following stages as shown in the Fig. 5:

• Fetching loop events. This stage provides information about the beginning
and termination of a loop and corresponds to the Pass 1 of the algorithm
shown in Listing 2.

• Fetching memory events and storing memory references. At this stage infor-
mation about memory addresses, thread ID, number of iteration, and pro-
gram counter is collected and stored into the MHT. This stage corresponds
to the Pass 2 of the Listing 2.

• Checking loop-carried dependences. Here dependence violations are verified
as described in Passes 3, 4 and 5 of the Listing 2.

With pipeline parallelism [13] we parallelize a single task by dividing it into a
series of sequential stages as shown in Fig. 5. Parallelism is achieved by pushing
succeeding data elements through a consumer-producer pipeline, where stages
run simultaneously on different cores [13]. This approach has considerably re-
duced latency compared to data-level parallelism. However, it introduces extra
synchronization, because producers and consumers must be tightly coupled; also,
it is limited by inter-stage dependences and the duration of the longest stage.
In our case, the third stage is the most time consuming stage, and thus it will
determine the overall speedup of the pipeline; however, we can still hide the
latencies of stages 1 and 2 from pipelining.

4 Implementation

In this section we describe both implementations of checker using GCC/Pin and
LLVM. First, we present the basic structure of our checker and then we detail
each implementation.

4.1 Basic Structure

The basic structure of checker consists of two modules, a tracer (stages 1 and 2 of
the pipeline shown in Fig. 5) and an analyzer (stage 3 of the pipeline). The first
stage instruments the program, fetches loop and memory events at runtime, and
stores memory references in a shared memory MHT. The second verifies, on-the-
fly, the existence of loop-carried dependences. As checker is an online construct,

96 J. Salamanca, L. Mattos, and G. Araujo

it cannot afford to have large costs of instrumenting all loads and stores of
program thus it is very useful an implementation where the programmer chooses
which loop wants to verify.

4.2 GCC/Pin

This section describes how the check construct was integrated into the GCC
compiler. First, we adapted the GCC source code to recognize the parallel for
check directive into the #pragma annotation. This implementation was very
challenging as we had to adjust some very critical source files of GCC compiler
(e.g. c-parser.c) to allow it to accept the new directive and also to delimit which
loop will be analyzed.

Basically, when the check directive is inserted, the compiler recognizes it as
a token and as part of a correct grammar expression, then inserts two function
calls into the IR code: (a) iterCount, at the beginning of the chosen loop, which
receives the number of the current iteration as parameter and is responsible for
marking the beginning of an iteration annotation; and (b) iterFinish, at the end
of the loop body, which marks the end of the instrumentation region. Finally,
the compiler produces an executable file with the identified loops to be analyzed.

The Fig. 6 shows the modifications inserted by the compiler when reflected
into the source code.

Fig. 6. Imaginary source file with the check construct

Tracer module was implemented on top of Pin [14], which is a dynamic in-
strumentation framework that enables the creation of dynamic program analysis
tools. The advantage of using Pin to implement our tracer is that it does not re-
quire recompilation for doing the verification, and could be applied to executable
files from different compilers. The disadvantages of the Pin tracer, as explained
in [7], are: (a) the need of the static analysis to recover control flow graphs and
loop structures, and (b) the difficulty of filtering useless loads and stores. In our
case, we discriminate loads and stores within a loop by inserting function calls
(iterCount and iterFinish).

The instrumentation is performed at runtime on the compiled binary files.
Pin allows a tool to insert code in arbitrary places of the executable, the code
is added dynamically while the executable is running. Thus, our tracer walks

Loop-Carried Dependence Verification in OpenMP 97

through the executable files, when it finds an iterCount function call, it inserts
instrumentation code to store the current iteration. Also, it inserts instrumen-
tation code after every memory reference, be it a read or write, until finding an
iterFinish function call, after which the instrumentation finishes. At runtime,
for every memory reference, the tracer fetches the memory address, the number
of the current iteration, and the ID of the thread making the memory refer-
ence. Finally, it stores the memory reference into the MHT indexed by memory
address, thread ID, and the number of the iteration.

Analyzer module implements the passes 3, 4, and 5 of Listing 2 and could
be used by different tracers (e.g. Pin and LLVM). During its implementation,
it was necessary to use many efficient programming techniques and customized
data structures to improve the efficiency of the analysis of checker. Fig. 7 shows
the execution flow of checker when implemented using Pin and GCC.

Fig. 7. Flow overview of the OpenMP checker with GCC/Pin

4.3 LLVM

As in the previous implementation of checker using GCC, we had to adapt the
Clang front-end to accept the new check directive. The main ideas involved in
this implementation are analogous to those used in GCC. We modify the Lexer
and Parser files to insert function calls iterCount and iterFinish. Afterwards,
the main issues involved in the LLVM tracer implementation are similar to those
used in the Pin Tracer. The GCC/Pin analyzer can be used in LLVM as well.

We implemented the tracer in LLVM by creating an LLVM pass, which pro-
vides a very good static-analysis infrastructure. In contrast to Pin, LLVM pro-
vided an infrastructure which simplified the task of building control flow and
loop structures. Besides, previous LLVM static-analysis passes can considerably
decrease instrumentation and analysis overhead by identifying loop-carried de-
pendences, at compile-time, and then ignoring them in the dynamic loop-carried
verification, as is described in [10]. On the other hand, the main disadvantage
of using an LLVM tracer is the recompilation for each analysis.

98 J. Salamanca, L. Mattos, and G. Araujo

5 Experimental Results

This section evaluates the performance of checker, when compared to serial and
OpenMP executions, using groups of experiments. Our experimental results were
obtained on machines with Ubuntu 13.10 (64-bit), Intel i7 4-core with hyper-
threading technology, and 8 GB main memory. We use 8 Parboil benchmarks
[16] to report time and memory overheads by running the most executed loops
(hottest loops) one at a time with check.1 2 3

Fig. 8 and Fig. 9 show the memory footprint for serial, OpenMP, and checker
executions of the hottest loops of 8 Parboil benchmarks using the Parboil
Datasets. As shown in Fig. 8 and Fig. 9, the memory overhead of checker is
considerably smaller for most selected programs. The OpenMP checker verified
all the benchmarks successfully as shown in Fig. 10, requiring not more than 400
MB of memory. Thus, selection of loops by the programmer and the data struc-
ture used in checker are effective techniques to avoid large memory overheads.

Fig. 10 shows the verification results of executing 8 Parboil benchmarks with
checker. The checker reports 4 loops with violations of loop-carried dependences,
and the column Verified explains the reasons. Notice that, if the operation in-
volves updating a shared variable by means of a commutative operation the
violation does not correspond to an error.

The time overhead results are presented in the Fig. 11 and Fig. 12. As shown,
some executions with check are still faster than serial, with speedups of about
1.6x. This indicates that, although check adds instrumentation overhead it can,
for some cases, still keep part of the performance resulting to the parallel for
parallelization.

The largest slowdowns against OpenMP execution are about 20x and 8x as
shown in Fig. 13, corresponding respectively to the cutcp1 loop of Cutcp bench-
mark and the kernels1 loop of Stencil benchmark. The largest slowdowns against
serial execution are about 56x and 36x, corresponding to the main1 loop of the
Histo benchmark and the model1 loop of the Tpacf benchmark respectively.
However, the OpenMP time executions are larger than the serial executions, as
this two benchmarks have been poorly parallelized in the original distribution.
Thus, only the slowdowns against OpenMP are valid (OpenMP execution times
would be smaller than serial using methods as privatization). We can conclude
that check offers a reasonably smaller overhead when compared to the serial and
OpenMP executions. This has been achieved due to the pipeline parallelization
and the OpenMP checker algorithm described in Section 3.

1 Our results are from GCC/Pin, but LLVM shows a similar performance.
2 The remaining three benchmarks of Parboil were ignored as they do not have
OpenMP parallel for constructs, or they were not programmed in C.

3 The charts shown below are for different loops for each benchmark. For example,
lbm1 is the lbm parboil benchmark but with its loop1 modified to use the checker.
Thus, all variants of lbm have the same serial and OpenMP time/memory overhead.

Loop-Carried Dependence Verification in OpenMP 99

Fig. 8. Memory footprint of 3 Parboil Benchmarks (Cutcp, Histo and Lbm) executed
serially, with OpenMP, and with check modifying different hottest loops

Fig. 9. Memory footprint of 5 Parboil Benchmarks (Mri-gridding, Mri-q, Spmv, Stencil
and Tpacf) executed serially, with OpenMP, and with check modifying different hottest
loops

Fig. 10. Verification of 8 Parboil executed with check modifying different hottest loops

100 J. Salamanca, L. Mattos, and G. Araujo

Fig. 11. Execution time of loops of Parboil benchmarks

Fig. 12. Execution time of loops of Parboil benchmarks

Fig. 13. Execution time of loops of Parboil benchmarks

Loop-Carried Dependence Verification in OpenMP 101

6 Conclusions and Future Work

This paper proposes the check OpenMP extension (i.e. parallel for check con-
struct), a novel implementation of a dynamic loop-carried dependence checker
in OpenMP. It enables on-the-fly dynamic loop-carried dependence analysis of
multithreaded applications, making it possible to detect hidden loop-carried de-
pendences which can result in hard to detect parallel execution bugs. Some of
these bugs can not be detected even by means of serial analysis or per-thread
analysis as in previous works [4, 6, 7] described in Section 2. In order to reduce
memory overhead, OpenMP checker analyzes only the loops that the program-
mer wants and uses a memory/time efficient data structure (Multilevel Hash
Table) to store 1 bit per memory address. To reduce the time overhead, we
used a three-stage Pipeline: (1) fetching loop events; (2) fetching memory events
and storing memory references; and (3) checking loop-carried dependences. Fur-
thermore, we showed how to integrate the check construct into GCC/Pin and
LLVM.

As next steps in our work, we are going to research novel efficient techniques to
deal with the overhead problem in nested loops. Also, we are going to consider
static analysis to decrease the number of memory address candidates which
require verification. Finally, we are going to use other benchmark suites such as
SPEC OMP2001 or SPEC OMP2012.

Acknowledgments. We thank the IWOMP 2014 referees for their very con-
structive comments. We also would like to thank Samsung and CNPq for their
support to this work.

References

1. Wolfe, M.J.: High Performance Compilers for Parallel Computing. Shanklin, C.,
Ortega, L. (eds.). Addison-Wesley Longman Publishing Co., Inc., Boston (1995)

2. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann (1997) ISBN 1-55860-320-4

3. Yu, H., Li, Z.: Fast loop-level data dependence profiling. In: Proceedings of the
26th ACM International Conference on Supercomputing (ICS 2012), pp. 37–46.
ACM, New York (2012), http://doi.acm.org/10.1145/2304576.2304584,
doi:10.1145/2304576.2304584

4. Kim, M., Kim, H., Luk, C.-K.: SD3: A scalable approach to dynamic data- depen-
dence profiling. Technical Report TR-2010-001, Atlanta, GA, USA (2010)

5. Larus, J.R.: Loop-level parallelism in numeric and symbolic programs. IEEE Trans-
actions on Parallel and Distributed Systems 4(7), 812 (1993),
doi:10.1109/71.238302.

6. Kim, M., Kim, H., Luk, C.-K.: SD3: A Scalable Approach to Dynamic Data-
Dependence Profiling. In: 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), December 4-8, pp. 535–546 (2010),
doi:10.1109/MICRO.2010.49.

http://doi.acm.org/10.1145/2304576.2304584

102 J. Salamanca, L. Mattos, and G. Araujo

7. Kim, M., Lakshminarayana, N.B., Kim, H., Luk, C.-K.: SD3: An Efficient Dynamic
Data-Dependence Profiling Mechanism. IEEE Transactions on Computers 62(12),
2516–2530 (2013), doi:10.1109/TC.2012.182

8. Kim, M., Kim, H., Luk, C.-K.: Prospector: A dynamic data-dependence profiler
to help parallel programming. In: 2nd USENIX Workshop on Hot Topics in Paral-
lelism, HotPar 2010 (2010)

9. Ketterlin, A., Clauss, P.: Profiling Data-Dependence to Assist Parallelization:
Framework, Scope, and Optimization. In: 2012 45th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), December 1-5, pp. 437–448
(2012), doi:10.1109/MICRO.2012.47

10. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using soft-
ware signatures. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization (CGO 2012), pp. 186–195. ACM, New York (2012),
http://doi.acm.org/10.1145/2259016.2259041, doi:10.1145/2259016.2259041

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (September 2001)

12. Moseley, T., Shye, A., Reddi, V.J., Grunwald, D., Peri, R.: Shadow Profiling: Hid-
ing Instrumentation Costs with Parallelism. In: International Symposium on Code
Generation and Optimization, CGO 2007, March 11-14, pp. 198–208 (2007),
doi:10.1109/CGO.2007.35

13. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. SIGOPS Oper. Syst. Rev. 40(5), 151–
162 (2006), http://doi.acm.org/10.1145/1168917.1168877,
doi:10.1145/1168917.1168877

14. Bach, M.M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K.,
Jaleel, A., Luk, C.-K., Lyons, G., Patil, H., Tal, A.: Analyzing parallel programs
with pin. Computer 43(3), 34–41 (2010)

15. Pacheco, P.: An Introduction to Parallel Programming, 1st edn. Morgan Kaufmann
Publishers Inc., San Francisco (2011)

16. Stratton, J.A., et al.: Parboil: A Revised Benchmark Suite for Scientific and Com-
mercial Throughput Computing (2012)

17. Kong, X., Klappholz, D., Psarris, K.: The I test: An improved dependence test
for automatic parallelization and vectorization. IEEE Transactions on Parallel and
Distributed Systems 2(3), 342–349 (1991), doi:10.1109/71.86109.

18. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: A Transparent Dependence
Distance Profiling Infrastructure. In: International Symposium on Code Generation
and Optimization, CGO 2009, March 22-25, pp. 47–58 (2009),
doi:10.1109/CGO.2009.15

http://doi.acm.org/10.1145/2259016.2259041
http://doi.acm.org/10.1145/1168917.1168877

An OpenMP Extension Library for Memory Affinity

Dirk Schmidl, Tim Cramer, Christian Terboven, Dieter an Mey, and Matthias S. Müller

IT Center, RWTH Aachen University, D - 52074 Aachen
Chair for High Performance Computing, RWTH Aachen University, D - 52074 Aachen

JARA - High-Performance Computing, Schinkelstraße 2, D - 52062 Aachen
{schmidl,cramer,terboven,anmey,mueller}@itc.rwth-aachen.de

Abstract. OpenMP 4.0 extended affinity support to allow pinning of threads to
places. Places are an abstraction of machine locations which in many cases do
not require extensive hardware knowledge by the user. For memory affinity, i.e.
data initialization and migration on NUMA systems, support is still missing in
OpenMP. In this work we present an extension library for OpenMP which imple-
ments round-robin memory initialization over places and memory migration, ei-
ther explicitly or implicitly. The latter is presented with an implementation based
on a next-touch algorithm for Linux. We study the overhead of our methods with
a simple model that allows to predict if migration is beneficial or not for a certain
use case and we demonstrate the correctness of the migration methods and the
correctness of our model prediction with the STREAM benchmark and an im-
plementation of a CG method. Finally, we discuss how memory affinity could be
integrated in future OpenMP versions.

1 Introduction

Non uniform memory access (NUMA) architectures are the standard system architec-
ture even for commodity servers, nowadays. In shared memory programming for High
Performance Computing (HPC) this needs to be taken into account in order to reach
good scalability on such a system. OpenMP, the most widely used standard for shared
memory parallel programming in HPC, recently improved the affinity support by adding
easy-to-use thread placement mechanisms. These facilities provide an abstraction layer,
called place list, as a model of the system topology, and strategies to pin threads to
the places, where a place is a set of execution units, see [12]. This basic support can
help to write efficient programs for NUMA architectures if the data placement can be
performed in an optimal manner at the time when the data is initialized, by using the
first-touch data placement policy of the operating system. If the data is badly placed
at the beginning or if the data access pattern changes over runtime, data migration is
needed to adjust the data placement with the intent to maximize local memory accesses
over all threads. Data migration mechanisms exist for many operating systems, includ-
ing Linux, but they are complex to use and require detailed knowledge of the hardware
and the thread placement, which contradicts the idea of OpenMP to have an abstract
hardware description with the place list.

In this work we will investigate the usefulness and overhead of standard mechanism
for explicit memory migration under the Linux operating system, as well as self de-
veloped semi-automatic memory migration, where data is migrated to the thread that

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 103–114, 2014.
c© Springer International Publishing Switzerland 2014

104 D. Schmidl et al.

touches the data next. Furthermore we provide an easy mechanism for round robin
memory allocation based on OpenMP places. Round robin memory allocation can be
a good compromise for memory allocation, if the data access pattern is random which
prevents local memory placement in advance. We implement these functionality in the
RWTH OpenMP extension library libr ompx.

We compare the performance of these mechanisms to each other and to serial and
parallel memory allocation on a standard 2- and 4-socket server equipped with Intel
processors. Through measurements of the overhead and access time we will predict
break-even points indicating for how many memory accesses migration is beneficial in
advance and when accepting the remote accesses results in better performance.

The rest of this work is structured as follows: After we discuss related work and the
current status of affinity support in OpenMP in sec. 2, we introduce the functionality of
our RWTH OpenMP extension library in sec. 3. In sec. 4 we analyze the overhead of
these mechanisms and introduce a simple model to understand when the migration is
useful and when not, before we show examples in which these optimizations have been
applied in sec. 5. Afterwards we discuss how memory affinity could be integrated in
future OpenMP versions in sec. 6 and finally draw our conclusion in sec. 7.

2 Related Work

OpenMP 4.0 [12] introduced the concept of places and thread binding strategies. A
place is defined as a set of hardware execution units that is targeted by OpenMP as
one unit of location when dealing with thread binding. The place list is defined as an
ordered list of places, specified by the user of an OpenMP program either as an abstract
name (i.e. cores: each place corresponds to a single core) or as an explicit list of places
described by logical processor IDs as they are used in the operating system. The thread
affinity policies (i.e. close and spread) are used to control the binding of threads over
the places in the place list. With spread, the user requests to spread the threads evenly
within the places of the system, while with close, the runtime should pack the threads
close together.

Beside the placement of threads the placement of data is as well important for op-
timal performance on NUMA systems. Therefore, memory affinity and migration for
shared memory programming has been investigated in several studies before. Already
in early NUMA machines, hardware and operating system support for automatic page
migration was provided [7,11]. Here the operating system of the SGI Origin uses TLB
miss statistics and remote memory reference counters to identify pages for an automatic
migration [7], while the Sun WildFire tracks the number of times that cache lines from a
given page are retrieved in the same sharing state [11]. For the Linux operating system
kernel patches for automatic page migration mechanisms exist, like AutoNUMA [4],
where statistics on remote accesses are collected and threads, processes or data is mi-
grated to establish a good thread to data locality. Nikolopoulos et al. [10] presented
an integrated compiler / runtime / OS migration framework for user-level dynamic page
migration. They use compiler instrumentation and a sampling approach which improves
the locality of the memory pages.

None of these mechanisms works well for all sorts of applications and that is why
other approaches try to allow users to initiate data migration. The advantage is that

An OpenMP Extension Library for Memory Affinity 105

a user can have more insight knowledge of the application which can help to make
better migration decisions. An extension of OpenMP for memory migration on NUMA
machines was implemented in Compaq’s OpenMP compiler in [1]. With the help of a set
of additional OpenMP Fortran directives the programmer had the possibility to specify
user-directed page migration and user-directed data layout. In our library we provide
a similar compiler independent functionality for today’s standard Linux distributions.
Another study about future OpenMP runtime perspectives was made in [2]. Their results
suggest that there is a need to extend OpenMP for mixed solutions (thread and data
migration) to transmit affinity relations to the underlying runtime. An application-driven
study for the benefit of affinity-on-next-touch mechanisms in user space was done by
Löfer et al. [8].

While the idea to migrate data in this way has already been implemented under the
Solaris operating system before, no operating system support for migration on next
touch exists for Linux. In our previous work [13] we already sketched a mechanism
for affinity-on-next-touch for the Linux operating system. A kernel-level implementa-
tion for the same purpose with a higher bandwidth is presented by Lankes et. al. [6],
the downside is that a kernel patch is required, so this approach cannot be used on
arbitrary HPC production systems. In addition, Goglin and Furmento [3] compared a
similar memory migration mechanism in user space with an approach in kernel space.
Furthermore, they improved the move pages call for big memory chunks. We benefit
from this improvement as well since it is included in the kernel we used for our tests.
Although the kernel-based implementation is 30 % faster than the user-space model
we think our extended OpenMP library is an adequate tool to evaluate affinity-on-next-
touch support for future OpenMP runtime implementations.

3 The RWTH OpenMP Extension Library

In this section we describe the functionality of our OpenMP extension library named
libr ompx. The purpose of this library is to provide easy-to-use functionality to im-
prove the memory affinity of programs. The implementation is based on libnuma [5]
which provides NUMA support for the Linux operating system, therefore at the time of
this writing our library is limited to Linux as well.

The most-common way to handle NUMA machines in OpenMP programs is to use
the first-touch memory initialization strategy provided by all operating systems to the
extent of our knowledge, to place memory pages at the NUMA node where the page
is first used. During computation the data then should be used in the same way as
the initialization was done, otherwise local memory access is not guaranteed. If this
approach is applicable because the data access pattern is known a priori, does not change
over time and initialization is done in the user code and not in any non NUMA-aware
library, OpenMP programs can reach good performance on NUMA machines with this
simple strategy.

Our library aims to improve cases, in which these preconditions are not fulfilled,
meaning the data access pattern is unknown or unpredictable, changes over time or
the memory initialization is not in the hand of the user. We therefore implemented the
following four functions with the interface shown in listing 1.

106 D. Schmidl et al.

void ∗ r o m p x i n t e r l e a v e a l l o c (s i z e t s i z e) ;
i n t r o m p x m i g r a t e (void ∗ addr , s i z e t s i z e , i n t node) ;
i n t r o m p x f e t c h (void ∗ addr , s i z e t s i z e) ;
i n t r o m p x n e x t t o u c h (void ∗ addr , s i z e t s i z e) ;

Listing 1. Interface of all functions of the r ompx library

r ompx interleave alloc. If the memory access pattern of an application is unpre-
dictable, it is impossible to place the data in advance on the NUMA-node where it is
used later on. In such cases distributing the data evenly across the NUMA-nodes of
the system in a round-robin fashion does not reduce the average number of remote ac-
cesses. However, it distributes these accesses evenly over all NUMA-nodes, which is
still better than when all remote accesses occur on a single NUMA-node. The func-
tions numa alloc interleave and numa alloc interleave subset pro-
vided by libnuma allow to allocate data in a round-robin fashion already. In contrast to
those functions r ompx interleave alloc distributes the data round robin across
all places specified in the OpenMP place list. In this way the user only uses the memory
attached to the NUMA-nodes used by the program without the need to manually figure
out which nodes actually were chosen by the OpenMP runtime system for execution.

r ompx migrate and r ompx fetch. If the memory is badly placed because of dy-
namically changing access patterns or because the allocation was done by a library not
respecting the NUMA architecture, memory migration is a way to re-establish good
thread to memory affinity. The function r ompx migrate provides functionality to
migrate a chunk of memory to a specified node and the function r ompx fetch mi-
grates data to the node where the calling thread is currently running. The first function
allows a master thread to distribute data for a team of threads in advance, whereas the
latter function allows all threads to fetch data to the local NUMA-node. This can be
done without the need to find out which cores and NUMA-nodes have been chosen
by the OpenMP runtime for which thread. A migration mechanism to OpenMP places
would be desirable as well but since OpenMP does not provide an API function to
identify the currently used places from within a program, this is not possible.

r ompx next touch. This function is useful when the data access pattern is repetitive
but not known exactly in advance or when it is hard to divide the data into consecutive
chunks, e.g. when the data is accessed indirectly through pointers. One thread can flag
a chunk of memory to be moved when it is accessed the next time. The page is then
moved to the thread which tried to access the page. This allows to distribute pages
during computation without the need to explicitly specify the distribution pattern.

We already provided a sketch of an algorithm for next touch migration working
in user space under Linux in [13]. Although implementations in kernel space exist
with lower overhead, as discussed in sec. 2, we used the user level approach in or-
der to run on standard HPC installations without kernel patches. Our algorithm is fully

An OpenMP Extension Library for Memory Affinity 107

1 f u n c t i o n r o m p x n e x t t o u c h (addr , s i z e)
2 foreach page p from ad d r t o (ad d r + s i z e)
3 l o c k p f o r r e a d and w r i t e a c c e s s ;
4 end foreach
5 i n s t a l l s i g h () a s s i g n a l h a n d l e r f o r SIGSEGV ;
6 end f u n c t i o n
7
8 f u n c t i o n s i g h ()
9 p = page c a u s i n g t h e SIGSEGV ;

10 n = NUMA−node o f t h e c u r r e n t t h r e a d ;
11 m i g r a t e p t o n ;
12 r e l e a s e t h e r e a d / w r i t e l o c k on p ;
13 end f u n c t i o n

Listing 1.2. Pseudo-Code illustrating the next touch algorithm

implemented in the RWTH OpenMP Extension Library and can be used on any Linux
kernel supporting libnuma.

The algorithm, outlined in code 1.2, works in two phases. First, all pages of the user
specified memory chunk are protected for read/write access and a signal handler for
the signal SIGSEGV is installed. Second, when a SIGSEGV signal occurs this means
a thread has tried to access the page. The installed signal handler then migrates the
page to the NUMA-node of this particular thread and releases the read/write lock on
the page. Then the library returns to the user program where the page is now accessible
and located on the local NUMA-node.

4 Overhead Analysis

After the migration methods have been presented, we will analyze the overhead of these
methods and compare it to the benefit of the improved memory access pattern. For our
tests we used a 2-socket system equipped with 3.07 GHz Intel Westmere processors
and a 4-socket system with 2.20 GHz Intel SandyBridge processors. Both machines
run Linux kernel 2.6.32 and we used 4k pages for all test. The tests perform a daxpy
operation on three vectors and measure the access time of all threads and then compute
a per page average access time for all threads. The tests use one thread per core on both
systems. We further investigate the following cases:

– serial init: The data is initialized by a single thread (in serial) and thus all data is
placed on only one of the NUMA-nodes.

– parallel init: The data is initialized in parallel so that the data is distributed across
all NUMA-nodes and the daxpy operation works on local data.

– interleaved init: The data is distributed round robin across the NUMA-nodes using
r ompx interleave alloc. During the daxpy operation the data is still used
with a static schedule, so the number of remote accesses is not reduced compared

108 D. Schmidl et al.

to serial init. However, the advantage is that the remote accesses are now evenly
distributed across the nodes.

– migrate: Here the data is initialized serially and then the data is migrated to the
thread that will use it later on. We use the function r ompx fetch for this pur-
pose, but r ompx migrate has similar overhead, since it uses the same mecha-
nism internally.

– next touch: The data is also initialized serially and then migrated, but in contrast
to the former case, the function r ompx next touch is used to flag the data for
migration and to move it in the first iteration of the daxpy kernel.

Table 1. Average page access time and overhead to migrate a page in μs on the 2-socket Westmere
and 4-socket SandyBridge system

Strategy serial init parallel init interleaved init migrate next touch
2-socket Westmere

Access time 0.204 0.102 0.141 - -
Migration Overhead - - - 1.295 15.593
Access time after migration - - - 0.102 0.102

4-socket SandyBridge
Access time 0.334 0.048 0.095 - -
Migration Overhead - - - 14.458 73.939
Access time after migration - - - 0.047 0.047

Table 1 shows the average time to access all variables of a complete page as well
as the overhead for the migration of a page. In the serial init case all pages lay on one
NUMA-node whereas they lay perfectly distributed across both NUMA-nodes in the
parallel init case. In the latter case on the Westmere system this leads to an average
access time of about 0.1 μs which is 2x faster than the 0.2 μs when the data is serially
initialized. Since two memory controllers are used instead of one this is as expected.
When the pages are initialized interleaved, the access time is 0.141 μs. Both migration
strategies deliver the same good access time as the parallel init strategy after migration,
but they introduce overhead of 1.3 μs for explicit migration and 15.6 μs for next touch.

Since the overhead is much higher than a single remote access of the data, it is
only useful if the data is needed multiple times. Given the overhead (O) and access
time (A) of table 1 the total access time for x memory accesses (T) can be calculated
as T = O + x × A. Figure 1 shows the access time for the investigated memory
initialization and migration mechanisms. The intersection points of the straight lines
indicate the break-even point where the migration starts to be beneficial. For example
on the Westmere system the lines of serial init and migrate intersect at 12.7
(50 on SandyBridge). This means if the data is initialized serially it is beneficial to
migrate it in advance if all the data of the complete page is used 13 (50) or more times.
Migration with the next touch mechanism is beneficial for 154+ or 258+ accesses
on the Westmere system or SandyBridge system, respectively. If only a fraction of the
data on a page is used, e.g. only one variable, migration will of course pay off only for
a higher number of accesses.

An OpenMP Extension Library for Memory Affinity 109

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

To
ta

l A
cc

es
s T

im
e

in
 u

s

Number of Memory Accesses for a Page

12.7 33.5
154

404

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

To
ta

l A
cc

es
s T

im
e

in
 u

s

Number of Memory Accesses for a Page

serial_init parallel_init interleaved_init migrate next_touch

50

258

304

a)

b)

Fig. 1. Access time for different numbers of accesses of a complete page for different initial-
ization and migration strategies on the 2-socket Westmere a) and 4-socket SandyBridge b) sys-
tem. The points of intersection indicate when migration is beneficial over serial init or
interleaved init.

5 Evaluation

In this section we will show that the presented mechanisms deliver the expected behav-
ior in practice. First, we look at the STREAM benchmark to investigate the achievable
memory bandwidth for all mechanism. Second, we take an implementation of an itera-
tive conjugate gradient method to verify our predictions when migration is useful.

5.1 STREAM

The STREAM benchmark [9] is a standard benchmark to investigate the memory band-
width of a system. It runs several vector-vector operations, measures the time and cal-
culates the achieved bandwidth. We modified the data allocation and initialization and
added our migration mechanisms to the code in different versions in order to prove that
the presented data migration strategies lead to a good data distribution. Table 2 shows
the achieved bandwidth for all investigated methods. As for the tests in section 4 we
initialized the data serially before the migration strategies were applied in the cases
migration and next touch. The benchmark ignores the first iteration to avoid

110 D. Schmidl et al.

Table 2. Bandwidth in GB/s measured with the stream benchmark after different memory alloca-
tion or migration strategies on the 2-socket Westmere and 4-socket SandyBridge system

serial init parallel init interleaved init migration next touch
2-socket Westmere

Copy 18 40 27 40 40
Scale 19 40 25 40 40
Add 18 40 29 40 40
Triad 18 40 29 40 40

4-socket SandyBridge
Copy 11 83 41 83 83
Scale 11 80 41 80 80
Add 12 86 43 87 86
Triad 12 86 43 87 85

measuring warm-up phases for caches. Since our next touch mechanism happens in the
very first iteration it is ignored as well.

On the 2-socket (4-socket) system we reach 18 to 19 GB/s (11 to 12 GB/s) bandwidth
if one local memory is used by serial initialization and about 40 GB/s (80 GB/s) in
the parallel initialization case. On both systems the interleaved initialization delivers
performance roughly in the middle between these two mechanisms with 25 - 29 GB/s
and 41 - 43 GB/s respectively. Both migration strategies deliver basically the same good
performance as the parallel initialization strategy on both systems. This shows that the
memory distribution after migration is as good as with optimal manual initialization.

5.2 Conjugate Gradient Method

We did further tests with an implementation of a conjugate gradient method (CG) for
sparse linear equation systems. The CG algorithm is an iterative method which allows
us to stop after a certain number of iterations for our performance measurements. The
algorithm is dominated by exactly one sparse matrix vector multiplication per iteration.
The matrix used is about 3.2 GB in size (in memory) and is stored in compressed row
storage (CRS) format. A matrix in CRS format is stored in three vectors, the first vec-
tor containing all values, the second one containing all column indices and the third
one with the start index of every row of the matrix. It follows from this storage format,
that the memory access pattern is consecutive for the matrix vector product since all of
these vectors are accessed consecutively. We again implemented several versions with
serial, parallel and interleaved allocation as well as with serial initialization followed
by explicit migration and next touch migration. At the boundary between two thread a
page might contain data for more than one thread. In this case the page is migrated to
the lower numbered thread in the case of explicit migration. In the next touch case the
page is migrated to the thread accessing the page first. Most probably this is the thread
with the higher number, because it is the first page for this thread whereas it is the
last page for the thread with the lower thread number. Figure 2 shows the average run-
time of an iteration for different numbers of total iterations. The different initialization

An OpenMP Extension Library for Memory Affinity 111

strategies have some warm-up effects, so a very small number of iterations is slightly
slower but after 5-10 iterations they reach a constant time per iteration. The parallel ini-
tialization is the fastest, followed by interleaved allocation with the serial initialization
being the slowest version as expected, since the kernel is known to be memory bound.
The migrate and next touch version have a much higher runtime for one itera-
tion, since the migration overhead is completely mapped to this iteration if only one
iteration is done. For more iterations the overhead is still the same, but the algorithm
profits from the higher bandwidth after migration for all following iterations. On the
Westmere system the serial init curve intersects the migrate curve between 10
and 20 and the next touch curve at about 160. We predicted the migration strategies
to be beneficial for 12.7 and 154 memory accesses, so the CG fits well into these pre-
dictions. The interleaved init curve is intersected at about 40 and 400 iterations,
where 33.5 and 404 were predicted, so the model also works fine for this case.

a)

b)

0.03125
0.0625

0.125
0.25

0.5
1
2
4
8

16
32
64

1 2 4 7 10 20 30 40 50 60 70 80 90 10
0

12
0

14
0

16
0

18
0

20
0

25
0

30
0

35
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

number of iterations
serial_init parallel_init interleaved_init migrate next_touch

0.0625
0.125

0.25
0.5

1
2
4
8

16

1 2 4 7 10 20 30 40 50 60 70 80 90 10
0

12
0

14
0

16
0

18
0

20
0

25
0

30
0

35
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

number of iterations

Fig. 2. Average runtime of an iteration of a conjugate gradient method with increasing numbers
of iterations on a) the 2-socket Westmere and b) the 4-socket SandyBridge system

We conclude that memory migration with r ompx is beneficial if enough accesses
occur after the migration. On the investigated systems these were about 10 - 30 accesses
for explicit migration whereas the overhead was larger for next touch where 150 -
260 accesses were necessary to reach the break-even point.

112 D. Schmidl et al.

6 Possible Integration into OpenMP

The previous sections presented the necessary concepts to support memory affinity in
OpenMP as well as our library-based implementation for Linux. Our library and the
corresponding source code will soon be made publically available1 under FreeBSD li-
cense. The intent of this release is to make the functionality available to an interested
audience of HPC developers and to gather usage experiences with a broader application
range, and hopefully to demonstrate the general suitability of our proposed concepts.
If sufficient interest is shown, there are various options of integrating this functional-
ity into OpenMP, ranging from memory access advice constructs to extensions to the
(target) data construct, which would then be discussed within the OpenMP Language
Committee.

6.1 Consideration of OpenMP Tasks

As already discussed in Section 3 the first touch mechanism can be used in OpenMP
worksharing constructs if the data access pattern is known, predictable or does not
change over time. For the OpenMP tasking model additional aspects have to be consid-
ered. When the data is allocated inside the task during its execution, locality is achieved
automatically due to the first-touch strategy of the operating system, because the data
is allocated by the thread executing the task. Only untied tasks can be migrated be-
tween different threads during execution, which might lead to remote data accesses. To
the best of our knowledge no production runtime implements migration of untied tasks
during execution, which makes this issue negligible in practice. However, if the data is
allocated outside the task region locality behavior is undefined, because the OpenMP
runtime selects a thread for executing of the particular tasks without considering data
affinity. Hence, tasks might be scheduled to threads far away from where the data has
been allocated.

In [14,15] we showed that for some implementations it is beneficial to use a parallel-
producer pattern. This means that the loop worksharing construct is used to generate the
tasks in parallel. The Intel OpenMP runtime, which is available as open source, allows
to examine the implementation details. Tasks are managed in per-thread task queues,
newly created tasks are enqueued at the tail of these queues while task processing and
task stealing is performed from the head. Task stealing is only performed, if the thread
local task queue is empty. Consequently, generating tasks with the parallel-producer
pattern reduces overhead incurred by per-thread locks and also allows to achieve data
locality, if the same thread allocated the data and then generates and executes the cor-
responding tasks.

However, if tasks are employed to avoid load imbalances at some point in time
threads have to steal tasks from a remote thread’s task queue, remote data accesses
might be unavoidable. Then, data locality and load balancing are conflicting optimiza-
tion goals. In this case it would be an opportunity for an OpenMP runtime to not only
steal tasks, but also to migrate the corresponding data. As seen in Section 4 migrating
data is only beneficial if the data is accessed often enough. Since neither the compiler

1 https://bitbucket.org/rwth-itc-hpc/ompx

https://bitbucket.org/rwth-itc-hpc/ompx

An OpenMP Extension Library for Memory Affinity 113

nor an OpenMP runtime can reliably analyze and predict the data access within a task,
a specification of the data access by the programmer is necessary.

7 Conclusion

We have shown different methods for memory allocation and memory migration which
work well together with the current OpenMP support for affinity. All methods were
implemented in r ompx, an extension library for memory affinity support in OpenMP.
Our implemented initialization or migration strategies provide easy-to-use support for
cases where data locality cannot easily be established at initialization time, e.g. because
the memory access changes over runtime or is unpredictable. We measured basic per-
formance results for good and bad memory accesses and overhead for migration and
formed a simple model to calculate break-even points which indicate when memory al-
location is beneficial on modern HPC systems. If the data is local on one socket explicit
migration is useful if the data is used 13 or more times on the 2-socket Intel Westmere
system. Our presented algorithm for migration on next touch is more expensive
(154+ accesses needed) but it is very user friendly because it can be applied without
any explicit description of how to distribute the memory which is hard to figure out and
specify for some algorithms.

We have proven with the STREAM benchmark, that the distribution of memory
after our migration strategies is as good as the standard parallel initialization within
STREAM. This means that we can achieve good memory locality even in cases were
parallel initialization is not possible or where the data access pattern changes over run-
time, e.g. in adaptive algorithms. For the iterative CG algorithm we have proven, that
our model predictions hold in real applications, since the migration strategies were ben-
eficial nearly after the predicted number of memory accesses. Finally we discussed
ideas and challenges about how to integrate memory affinity support in OpenMP.

Acknowledgement. Some of the tests were performed with computing resources
granted by JARA-HPC from RWTH Aachen University under project jara0001. Parts
of this work were funded by the German Federal Ministry of Research and Educa-
tion (BMBF) under Grant Numbers 01IH11006D(LMAC), 01IH13001D(Score-E) and
01IH13008A(ELP).

References

1. Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nelson, C.A., Offner, C.D.: Ex-
tending OpenMP for NUMA Machines. In: Proceedings of the 2000 ACM/IEEE Conference
on Supercomputing, SC 2000. IEEE Computer Society, Washington, DC (2000)

2. Broquedis, F., Furmento, N., Goglin, B., Namyst, R., Wacrenier, P.-A.: Dynamic Task and
Data Placement over NUMA Architectures: An OpenMP Runtime Perspective. In: Müller,
M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS, vol. 5568, pp. 79–92.
Springer, Heidelberg (2009)

3. Goglin, B., Furmento, N.: Enabling high-performance memory migration for multithreaded
applications on LINUX. In: IEEE International Symposium on Parallel Distributed Process-
ing, IPDPS 2009, pp. 1–9 (May 2009)

114 D. Schmidl et al.

4. Corbet, J.: AutoNUMA: The other approach to NUMA scheduling,
http://lwn.net/Articles/488709/ (last visited on Sepetmber 05, 2014)

5. Kleen, A.: A NUMA API for LINUX. Technical linux whitepaper, Novell (April 2005)
6. Lankes, S., Bierbaum, B., Bemmerl, T.: Affinity-on-next-touch: An Extension to the Linux

Kernel for NUMA Architectures. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Was-
niewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp. 576–585. Springer, Heidelberg
(2010)

7. Laudon, J., Lenoski, D.: The SGI Origin: A ccNUMA Highly Scalable Server. In: Proceed-
ings of the 24th Annual International Symposium on Computer Architecture, ISCA 1997,
pp. 241–251. ACM, New York (1997)

8. Löf, H., Holmgren, S.: Affinity-on-next-touch: Increasing the Performance of an Industrial
PDE Solver on a cc-NUMA System. In: Proceedings of the 19th Annual International Con-
ference on Supercomputing, ICS 2005, pp. 387–392. ACM, New York (2005)

9. McCalpin, J.D.: STREAM: Sustainable Memory Bandwidth in High Performance Comput-
ers (1995)

10. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos, C.D., Labarta, J., Ayguadé, E.:
Leveraging Transparent Data Distribution in OpenMP via User-Level Dynamic Page Mi-
gration. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.) ISHPC 2000. LNCS,
vol. 1940, pp. 415–427. Springer, Heidelberg (2000)

11. Noordergraaf, L., van der Pas, R.: Performance experiences on sun’s wildfire prototype. In:
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, SC 1999. ACM, New
York (1999)

12. OpenMP ARB, OpenMP Application Program Interface, v. 4.0,
http://www.openmp.org (last visited on September 05, 2014)

13. Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and Thread Affinity in
OpenMP Programs. In: Proceedings of the 2008 Workshop on Memory Access on Future
Processors: A solved Problem? MAW 2008, pp. 377–384. ACM, New York (2008)

14. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Assessing OpenMP Tasking Implemen-
tations on NUMA Architectures. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M.
(eds.) IWOMP 2012. LNCS, vol. 7312, pp. 182–195. Springer, Heidelberg (2012)

15. Terboven, C., Schmidl, D., Cramer, T., an Mey, D.: Task-Parallel Programming on NUMA
Architectures. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012.
LNCS, vol. 7484, pp. 638–649. Springer, Heidelberg (2012)

http://lwn.net/Articles/488709/
http://www.openmp.org

On the Algorithmic Aspects of Using OpenMP
Synchronization Mechanisms: The Effects of

Transactional Memory

Barna L. Bihari1, Michael Wong2, Bronis R. de Supinski1, and Lori Diachin1

1 Lawrence Livermore National Laboratory
2 IBM Corporation

{bihari1,bronis,diachin2}@llnl.gov,
{michaelw}@ca.ibm.com

Abstract. In this paper we analyze the effects of using different OpenMP syn-
chronization mechanisms in iterative mesh optimization algorithms run on the
IBM Blue Gene/Q system. We perform a systematic study of a threaded Lapla-
cian mesh smoothing method on Cartesian meshes of different sizes that have
been initially perturbed by a factor that is random, but within a controlled range.
We consider three different run modes, two of which are OpenMP synchroniza-
tion mechanisms: (hardware) transactional memory (TM), OpenMP critical, and
“none”. We find that TM typically outperforms the other two modes in terms of
its convergence characteristics. Because of the algorithmic simplicity and light
operation count, the raw runtime performance was not our focus in this work;
however, we present some results on TM scaling. We also show the TM rollback
and conflict probabilities, and conclude that mesh optimization codes are good
candidates for using TM when the more general “time-to-convergence” criterion
is considered.

1 Introduction

Transactional memory (TM) [9] has long promised ease of use similar to coarse-grained
locks, complemented by scaling comparable to fine-grained locks. TM also provides
composability, leading to safe and scalable composition of software modules that can
overcome the potential incomposability of locks. However, TM has suffered from being
viewed as a panacea that can reduce the complexity in programming multicore systems
and even to reduce energy consumption, especially for embedded devices.

TM has passed through the typical Gartner hype cycle for emerging technology [1].
Previously, TM reached a peak of inflated expectations that it would solve all diffi-
culties of locked-based programming because of its usability promise. Subsequently, it
descended into a trough of disillusionment as many realized that it cannot be used in all
cases; like any promising technology, it has its inappropriate use cases. Recently, TM
has risen through a slope of enlightenment with realization that it provides benefits for
some use cases. Soon, it should approach a plateau of productivity, with hardware im-
plementations on IBM’s BG/Q, Power 8 and Intel’s Haswell. Over the past two decades,
TM has become progressively more efficient under the primary metric of runtime per-
formance compared to serial code as well as other synchronization mechanisms such as
OpenMP atomic and critical.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 115–129, 2014.
c© Springer International Publishing Switzerland 2014

116 B.L. Bihari et al.

The first available hardware transactional memory (HTM), in IBM R©’s Blue Gene/Q
(BG/Q) [8,4], provided real evidence of significant gains in performance over software
transactional memory (STM). For the first time, elegance, scalability and speed ap-
peared to be within reach for OpenMP threaded code [15,16,4,20]. However, TM con-
tinues to be a non-standard OpenMP extension on the IBM Blue Gene/Q system. Other
software language implementations exist for Intel’s STM compiler [10], as well as an
older IBM’s Alphaworks STM compiler [17] . More recently, GNU 4.7 [5] included
STM support based on the Draft C++ Software Transactional Memory Specification [7].
While C++ is likely to adopt TM as a non-normative specification [18], TM is unlikely
to be part of C++ officially for at least another five years. Even then, it would not be
available for Fortran or C.

While experimentation continues, to our knowledge no major scientific code has
adopted TM, partly because it is still considered a new and exotic feature of many-core
systems that takes time to take hold in industrial grade codes which are unlikely to adopt
techniques that are not widely supported. However, commercially TM’s use has taken
off especially, in the Haskell community [14]. We expect TM usage to become much
more common with the commercial availability of Intel’s Haswell and IBM’s Power8
support of HTM.

This paper explores a different aspect of synchronization or data sharing at thread
boundaries. In our prior work [20,2,4,3], we used well-defined and exact measures of
what happens when synchronization is absent and what the “right” answer should be. In
the current work, however, we have an iterative scheme that will most likely converge
to the correct answer even with no synchronization. Thus, we explore three synchro-
nization choices in order to achieve the fastest overall solution of a simple Laplacian
mesh smoothing algorithm. We use different mesh sizes and two different synchroniza-
tion methods (TM and OpenMP critical) as well as not using any synchronization
at all. We also vary the number of threads between 1 and 64. While the current pro-
totype code does not have sufficient operation count to allow for a fair evaluation of
raw performance, our preliminary studies are quite encouraging for TM when success
is measured in terms of “time-to-quality” or “time-to-convergence.”

The rest of this paper is organized as follows. Section 2 provides a status update on
and general motivation for TM, while Section 3 gives a brief overview of the relatively
unchartered territory of TM for scientific computing. Section 4 presents the algorithm
that we use in this study, and Section 5 details our experimental results, including sev-
eral runs that contrast existing OpenMP constructs with our proposed solution, with
emphasis on our new performance measurement. Finally, Section 6 reviews our results
and points to future possibilities for applying the ideas described in this work.

2 Why High-Level TM Support Is Needed

A transaction is an atomic sequence of steps that is intended to replace locks and
condition variables. In contrast with compare-and-swap (CAS) and load-linked
store-conditional (LL/SC), which at best can access contiguous memory atomically,
transactions can operate on non-contiguous memory and, thus, better suit lock-free data
structures and algorithms. Transactions also offer the promise of software composabil-
ity to parallel programming, which is functionality that libraries require. TM will clearly

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 117

be supported in some form by most of the major systems manufacturers in the near
future.

TM has recently become more than research. Significant development has occurred
in commercial HTM, from IBM’s BG/Q (2011), to Intel’s TSX code named Haswell
(2012) and IBM’s Power8 (2013). Production compilers that support this hardware
include:

– IBM Alphaworks STM for BG
– IBM xlC z/OS V1R13 compiler,

while others provide a pure software implementation:

– Intel STM C/C++ compiler V12.2
– GNU 4.7 .

Most of these compilers use their own high-level language to create TM regions, or
supply low-level built-in functions to access TM directly.

Similar to the birth of OpenMP, unified high-level language support for TM is clearly
needed, given the many incompatible attempts by multiple vendors to supply it. In 2008,
IBM, Intel, and Sun started joint teleconference discussions every other week to design
this common support. This group has since been joined by HP, RedHat and academia.
In 2009, a Version 1.0 of this support was released and was followed by version 1.1
in 2011, which added support for exceptions for C++. C++ was chosen as the base
language because it has the most complex language features, in terms of polymorphism,
exceptions, and memory model.

In 2012, this proposal was brought to the C++ Standard, which agreed to prepare for
its adoption after examining many of the use cases, usability and performance claims.
Thus, the C++ Standard formed Study Group 5 (SG5), led by one of our co-authors, to
develop a complete proposal. In 2014, after two more years of collaboration to improve
TM’s fit into the C++ language, an official New Proposal (NP) has started and official
Standard wording will soon follow. However, even with this progress, official TM lan-
guage support in C++ will likely arrive at least five years from now. Support in C or
Fortran is even further off. In fact, the ISO process still requires two years for an NP
to become a Technical Specification then another 2-5 years for it to become a Standard.
OpenMP could provide TM support much sooner because it can move much faster and
get implementation status even earlier as it is moving toward a two-year ratification
cycle with technical reports issued during the interim years.

OpenMP currently includes four synchronization mechanisms that serve as TM al-
ternatives: locks, barriers, atomics and critical sections. However, they are limited in
their performance and applicability or are difficult to use correctly in large and realistic
programs such as a Quake server or a multi-physics simulation.. TM provides greater
flexibility and ease of use. Our results show it can also provide performance advantages.

Using locks for synchronization on a per construct basis leads to fine-grained locking
that can produce complex associations between data and synchronization as multiple
locks are held and released through intersecting lifetimes. A failure to acquire and re-
lease these locks in the correct order can lead to deadlocks and data races. They are not
composable and, thus, break modular programming. Alternatively, developers can use

118 B.L. Bihari et al.

coarse-grained locking strategies. However, using few locks can lead to unnecessary
convoying of execution and loss of performance. Developers can synthesize more di-
rected synchronization mechanisms from OpenMP atomics. However, these techniques
usually remain low level and suffer from problems similar to locks. Thus, we must use
more advanced abstractions as OpenMP programs increase in size and complexity.

OpenMP barriers and critical sections provide higher level abstractions. However,
barriers enforce synchronization across all threads in a team, which is frequently a much
larger scope than the programmer requires. OpenMP critical sections provide a directed,
high-level synchronization mechanism. However, the OpenMP specification precludes
nesting of critical sections. Further, named critical sections allow additional complexity
that is often unnecessary and undesirable. Overall, a shortcoming of the OpenMP spec-
ification is that it lacks a composable concurrency mechanism. None of the existing TM
alternatives, or even lock elision, can offer composability without potential deadlocks.

Parallel programming is complex, whether it is developing the program, reason-
ing about the program or looking for bugs. TM provides a higher level of abstraction
than existing OpenMP synchronization mechanisms without unnecessary restrictions or
complexities. TM results in simpler design, simpler reasoning, and maintenance, while
allowing specialized synchronization support for different platforms. Above all, it en-
ables simple lexical or dynamic nesting and is composable across library interfaces.

This paper uses the IBM XL TM compiler for BG/Q, which is described extensively
in various manuals such as [6] as well as studied in papers (see e.g. [4], [15], [16],
among others). Since in our current work we are using the BG/Q hardware exclusively,
we provide a brief summary here of its salient features. Each BG/Q compute node (A2
chip) has 16 cores, each of which can execute up to four hardware threads. The trans-
actional memory conflict detection itself is implemented in hardware through the L2
cache which consists of 16 banks of 2MB each across a full crossbar from all the cores.
Final synchronization is therefore achieved in the L2 cache. Conflict resolution, on the
other hand, is achieved through the TM software stack which has several tuning param-
eters all described in [6]. This is a sophisticated piece of code that handles numerous
fall-back scenarios with heuristics that aim to guarantee progress among all threads –
if necessary, by serialization – while optimizing performance subject to user inputs via
environmental variables. This is a unique strategy which is different from, for exam-
ple, that of Intel’s Haswell processor (see e.g. [21]). While the latter also uses a form
of cache coherence protocol to detect conflicts, there is no inherent guarantee that the
transaction will ever commit successfully. In fact, applications must actually provide
a non-transactional fall-back mechanism which usually reverts to locks. It would cer-
tainly be a worthwhile exercise to compare IBM’s and Intel’s approaches in terms of
convergence, scaling, as well as performance and user effort, but it is, at least for now,
beyond the scope of the current work which focuses largely on a new proposed way to
rethink performance itself for a class of numerical algorithms.

3 Transactional Memory for Scientific Computing

The arrival of multi- and many-core computer architectures brought about a renewed
interest in TM as a possible avenue for threading new, and retrofitting legacy codes in

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 119

the scientific computing arena. Indeed, the promise of simplicity, efficiency and guar-
antee of correctness was quite appealing. Our prior work in this area [2,15,4,3] as well
as most of [16,21] emphasized a rigorous measure of correctness. In fact, we are not
aware of any published bodies of work that even studied the applicability of TM to large
scale high-performance numerical simulations; therefore existing definitions of correct-
ness, beyond the obvious, are difficult to find. As a consequence, one typically reverts
to the classic rigor of the “ACID” test as described by [13] and others. Of course, even
this well-defined test is not always satisfied by most TM implementations, but at least
it provides a baseline against which one may compare and contrast.

For BUSTM [2,4,3], for example, we clearly defined what “correct” meant, to which
we could compare the results in both the deterministic and probabilistic running modes.
We could precisely measure the difference between “correct” and “incorrect” either by
a mathematical norm or by counting the wrong number of updates. Such comparisons
turned out to be useful when we analyzed the TM statistics and the performance in
both the TM and unsynchronized modes, as well as when using the OMP atomic and
critical constructs.

However, several large classes of scientific computing problems have a steady-state
to which the goal is to converge rather than to compute a one-step final answer or a
multi-step time-accurate solution. These iterative schemes typically work on a compu-
tational domain discretized by a mesh, or a matrix, or some other finite list of computa-
tional elements that are ordered in some way. Threading iterative schemes is known to
be non-trivial because of possible data dependencies as well as order-dependence. One
of the greatest challenges is the non-reproducibility or non-serializability of the results
in the exact sense. However, most of these schemes still converge, albeit at possibly very
different rates. On the other hand, depending on the method, the “correctness” problem
may still be present: sometimes in insidious ways and possibly leading to convergence
to the wrong answer or even divergence. In any case, correctness now becomes a more
difficult concept to quantify.

In the current work we consider a relatively large class of iterative problems: mesh
optimization (e.g. [11,12]). Within this realm, much work has been done over the past
couple of decades, but almost all codes step through some type of an iterative process,
even if for only a few steps. Many codes exist for both structured and unstructured
meshes and many different strategies are used for meshes of all types. These methods
almost always try to use the “latest” information in a Gauss-Seidel fashion, versus “old”
data that would correspond to a Jacobi iteration (analogies and terminology borrowed
from iterative matrix methods). Therefore, the ordering of the mesh points or elements
can make a huge difference, since that will also dictate the direction in which the infor-
mation propagates. Reverting to a Jacobi iteration would remove this dependence, but
would also double the memory requirements and greatly slow convergence due to stale
neighbor information.

One can now quickly see the challenge of parallelizing such a highly order-dependent
algorithm. First, the effect (positive or negative) of the parallelization on the ordering
itself is unclear. Also, if threading is used either by itself or in addition to domain
decomposition, the effect of how and when the mesh point updates are done is unclear
and can be highly unpredictable. To our knowledge, TM has never been used in this

120 B.L. Bihari et al.

1

2 #pragma omp parallel f o r
3 f o r (i n t i =0 ; i < numFreeVer t s ; i ++) {
4 i n t v e r t e x I D = f r e e V e r t e x I D s [i] ;
5

6 / / get at tached ver tex i ds :
7 s t d : : v e c t o r<Point2D∗> &m y A t t a c h e d V e r t i c e s = a t t a c h e d V e r t i c e s [v e r t e x I D] ;
8

9 Point2D newX ={0 . 0 , 0 . 0} ;
10 s i z e t n u m A t t a c h e d V e r t i c e s = m y A t t a c h e d V e r t i c e s . s i z e () ;
11

12 #pragma tm a tomic
13 {
14

15 / / Step 1: take average of neighbors
16 f o r (i n t j =0 ; j<n u m A t t a c h e d V e r t i c e s ; j ++){
17 newX . x += m y A t t a c h e d V e r t i c e s [j]−>x ;
18 newX . y += m y A t t a c h e d V e r t i c e s [j]−>y ;
19 } / / end f o r (over neighbor v e r t i c e s)
20 newX . x = newX . x / n u m A t t a c h e d V e r t i c e s ;
21 newX . y = newX . y / n u m A t t a c h e d V e r t i c e s ;
22

23 / / Step 2: update cu r ren t coord inates :
24 x [v e r t e x I D] . x = newX . x / n u m A t t a c h e d V e r t i c e s ;
25 x [v e r t e x I D] . y = newX . y / n u m A t t a c h e d V e r t i c e s ;
26 } / / end tm atomic
27 } / / end f o r (over a l l v e r t i c e s)

Fig. 1. Simple Laplacian mesh smoothing algorithm

context. In order to determine its effects, we use a relatively simple mesh smoothing
code that currently works on 2-D unstructured meshes that have been converted from
their corresponding structured Cartesian counterparts, as explained in the next section.

4 The Laplacian Mesh Smoother

4.1 The Algorithm

The code that we use in our experiments is a relatively simple C++ mesh smoothing
algorithm that takes an initial (input) mesh and produces a final mesh as its output.
The main for-loop visits each of the non-boundary interior mesh points and replaces its
coordinates with the average of the coordinates of its neighbors:

x
(n+1)
i =

1

Ni

Ni∑

j=1

x
(m)
j (1)

where x is a 2- or 3-D vector, n is the current (old) iterate, n + 1 is the latest (new)
iterate, Ni is the number of connected vertices for grid point i, and m can refer to either
n or n + 1 depending on whether or not that point has already been updated or not.
Figure 1 shows the relevant code section.

The #pragma tm atomic directive is a non-standard OpenMP extension that is
specific to the compiler used in our experiments. The associated brackets delimit a

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 121

transaction. In our comparative experiments, we comment out this directive (the unsync
mode) or replace it with an OpenMP critical construct (the critical mode).

If we restrict the “transaction” in Figure 1 to the coordinate update in “Step 2”,
no conflicts exist since each thread only updates the points that it owns. However, the
neighboring coordinates might change during “Step 1” so the result could depend sig-
nificantly on whether old or new data is used. In other words, we have a write-after-read
(WAR) transaction for which we cannot use #pragma omp atomic. Thus, we will
not compare TM to atomic as we did in our prior experiments of [4]. As alluded to in
Section 2, atomics may be faster, but are not as versatile and composable as TM is.

4.2 The Role of Transactional Memory

While the algorithm of the previous section appears to be quite simple, the WAR-type
update makes it unique in the way transactions are typically used. Often times the same
variable is read from and written to within the same transaction, which is a simpler
model than WAR, and which, at least for a single variable, is equivalent to the already
existing #pragma omp atomicOpenMP standard and against which we compared,
for example, in [4] where this was possible. In this code section, however, this is not
possible. On the other hand, in theory it should be possible to use an array of locks,
atomic reads and writes, domain decomposition for threads, various coloring schemes
or cell-renumbering to achieve the same effect as TM offers. However, each of these
alternatives would require a substantial amount of coding or even research to accom-
plish. When it comes to a comparable“human effort,” #pragma omp critical is
the only real alternative in this case.

Indeed, the way the TM hardware detects memory access conflicts has a profound
influence on its overall behavior; the hardware is briefly reviewed in Section 4. For-
tunately, the BG/Q implementation of TM offers two detection schemes: “eager” and
“lazy.” Among the many tuning parameters offered by the system in the form of envi-
ronmental variables, the runtime variable TM ENABLE INTERRUPT ON CONFLICT
informs the system whether or not threads receive interrupts immediately upon WAW,
WAR, and RAW conflicts. Conflict arbitration is then based upon the age of the trans-
actions and favors the survival of the older one. The default mode is lazy, which can be
overwritten by setting this environmental variable rendering it an eager-type detection,
which is precisely what we had to do in all subsequent numerical experiments to get the
desired results. With this configuration, transactional memory will play a key role in al-
tering the convergence characteristics of the mesh smoothing scheme itself and adding
algorithmic aspects of its own to the overall performance of the method.

4.3 The Test Mesh

We keep the test mesh for our experiments simple as well. We start with an equal spaced,
2-D Cartesian-like mesh which is then distorted by a random, but bounded factor at each
mesh point. Figure 2 shows an example where the original, randomized, and smoothed
(converged) meshes are put in sequence. Relatively large disturbances are allowed as
long as the mesh remains untangled (all elements have positive volume/areas). We then

122 B.L. Bihari et al.

(a) (b) (c)

Fig. 2. (a) Original, (b) randomly distorted (input), and (c) converged (output) 10× 10 mesh

apply the smoothing algorithm to this synthetically randomized mesh with the expec-
tation that after a sufficient number of cycles the smoothed mesh will converge to the
undistorted regular Cartesian grid, which is, in essence the same as the “original” mesh
in Figure 2. That is, we know the “exact” solution precisely, so we can measure con-
vergence. For convergent methods (and infinite series in a mathematical context) the
residual and error, defined as “distance-to-exact”, are equivalent measures in the sense
that both either converge or diverge. However, the actual numerical values of these error
functions will not necessarily decrease at the same rate. When the solution is known, as
in the present case, the actual errors are more accurate and are therefore what we use in
all subsequent figures.

5 Experimental Results

We now present several sets of computational experiments for our algorithm and test
mesh. In each case, the original Cartesian mesh cells were 1× 1 non-dimensional units
in size, which are then disturbed by a random factor in the range of (−0.5, 0.5) which
is the largest distortion that still guarantees positive cell-areas as an initial condition.
During the runs we vary the number of threads (1, 2, 4, 8, 16, 32, and 64) and use the
two coarse-grain synchronization modes TM and critical, as well as unsync. Strictly
speaking, the latter is not a valid OpenMP synchronization protocol, but nevertheless is
very useful for comparison purposes. All run-modes start from the same initial condi-
tions (i.e. same random seed); therefore, the sensitivity of convergence to this random
parameter does not have to be taken into account.

We now analyze the convergence, the scaling, as well as the TM-specific character-
istics of the results.

5.1 Convergence

We compute the l1 norm of the distance between the current mesh point iterate and the
ideal (exact) solution via:

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 123

0 10 20 30 40
10

−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
) Errors, 2 threads, 200 X 200 mesh

TM
Critical
Unsync
Serial

Fig. 3. Convergence on 2 threads

0 10 20 30 40
10

−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
) Errors, 4 threads, 200 X 200 mesh

TM
Critical
Unsync
Serial

Fig. 4. Convergence on 4 threads

0 10 20 30 40
10

−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
) Errors, 8 threads, 200 X 200 mesh

TM
Critical
Unsync
Serial

Fig. 5. Convergence on 8 threads

0 10 20 30 40
10

−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
) Errors, 16 threads, 200 X 200 mesh

TM
Critical
Unsync
Serial

Fig. 6. Convergence on 16 threads

e(n) =
1

M

M∑

i=1

|x(exact)
i − x

(n)
i | (2)

where (n) denotes the current iterate, M is the number of interior (non-boundary) ver-
tices, and xi is the coordinate vector of point i. The (exact) supersript denotes the
solution of the mesh optimization problem, which is known for our simple problem and
which is the leftmost mesh on Figure 2. In all cases and run-modes we show next the
mesh converged to the exact solution (to machine zero.)

As expected, on one thread all three modes yield identical answers to that of the serial
version. We use that result as our reference solution in all plots. Figure 3 shows that
convergence rates with 2 threads exhibit little difference, an expected result. However,
Figures 4, 5 and 6 reveal that while with 4, 8 and 16 threads TM and unsync are still
very close to each other, we can already see some differences showing between them
and the critical versions. It may not be obvious at first, but the serial version should have
the least error since each grid point has the most recent information from its neighbor.
With more than one thread, the smoothing process starts from more than one grid point,
each of which will have older information, on the average. In the limiting case with as

124 B.L. Bihari et al.

0 10 20 30 40
10

−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
) Errors, 32 threads, 200 X 200 mesh

TM
Critical
Unsync
Serial

Fig. 7. Convergence on 32 threads

0 10 20 30 40

10
−19

10
−16

10
−13

10
−10

10
−7

10
−4

10
−1

Iteration number

E
rr

or
 (

co
m

pa
re

d
to

 e
xa

ct
) Errors, 64 threads, 200 X 200 mesh

TM
Critical
Unsync
Serial

Fig. 8. Convergence on 64 threads

many threads as interior mesh points (say a 10× 10 mesh with 64 interior points run on
64 threads), the mesh smoother would be identical to a Jacobi iteration assuming that
they would all be synchronized at the beginning of the outer for-loop of Figure 1 so
they would all proceed in lock-step.

As we increase the thread count to 32 (Figure 7) and 64 (Figure 8), we find an inter-
esting trend: TM has much lower error than critical, which, in turn, has lower error than
unsync. This difference arises from how TM and OpenMP critical synchronize
threads: TM uses WAR type conflict resolution (as explained briefly in Section 4.2),
and thereby has “fresher” information than critical, which, on a large number of threads,
makes a significant difference.

5.2 Transactional Memory Statistics

We now present results obtained from the tm print stats() utility provided by the
TM runtime on the BG/Q. At each iteration we observe the number of rollbacks that
have occurred, as well as the total at the end of the run, including on a per-thread basis.
In Figure 9, we see a relatively large (one order of magnitude) spread in the number of
conflicts from iteration to iteration on low to moderate thread counts (2 to 8 threads).
This range gradually decreases as we increase the thread count to 64 threads, which
shows a high volatility (non-reproducability) in terms of TM rollbacks with low thread
count. The volatility probably arises because the subdomain (loop index set) “owned”
by each thread becomes smaller as we increase the number of threads. Thus, the chance
of new collisions occuring at the iterate that did not occur at the previous one is reduced.
We also find that on larger meshes the convergence trends are very similar, thus the
results are not shown separately.

The results for conflict-prone threaded code in general, and with TM in particular,
are always timing-sensitive. The number of rollbacks depends on the iteration or time
step. Therefore, as in all of our previous work where we analyzed the behavior of TM
for different representative workloads (e.g. [2,4,3], we typically repeat the same outer
loop hundred(s) of times, both to get some statistical average, as well as to get an idea
of the variation from iteration to iteration, as in Figure 9.

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 125

0 20 40 60 80 100
10

1

10
2

10
3

10
4

Iteration number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts vs. iteration number

2 th
4 th
8 th
16 th
32 th
64 th

Fig. 9. Rollbacks per iteration on a 200× 200 mesh on 2 through 64 threads

As we break down the total number of rollbacks for each thread (reported when
the run ends) in Figure 11, the number of conflicts per specific threads is within the
same order of magnitude when we run on a different number of threads, except for 64
threads, for which it is much lower. The cause of this exception may have to do with the
unique, and quite regular mesh topology since the mesh was converted to unstructured
bookkeeping from its structured counterpart. At 64 threads we may have also fallen
below a threshold of “false conflicts” which may have been triggered with lower thread
counts. False conflicts can occassionally be caused by many of the memory reads/writes
falling on the same L2 cache line of 128 Bytes. The lower conflict volatility at 64 threads
mentioned earlier may also play a role in the overall lower number of conflicts at the
highest thread count.

Figure 10 shows the total number of conflicts for all thread counts. We observe a
monotonic increase in the number of total conflicts (over all iterations) as the number
of threads increases to 32, with a significant drop at 64 threads. The overall number
of conflicts per transactions was between 0.27% − 4.1%, attaining its maximum at
32 threads (see Figure 10); this satisfies the requirement of non-zero but low conflict
probabilities that we typically pose for algorithms that are good use cases for TM.

5.3 A New Measure of Performance

As a recurring theme throughout this paper, performance of transactional memory has
had varying levels of success. While our small test code and mesh are not intended to
measure raw timings, they do provide an efficient tool to perform a systematic study
for scaling, and, more importantly, to introduce another concept of performance: that

126 B.L. Bihari et al.

1 16 32 48 64
10

2

10
3

10
4

Thread number

N
um

be
r

of
 c

on
fli

ct
s

Conflicts vs. thread number

2 th
4 th
8 th
16 th
32 th
64 th

Fig. 10. Rollbacks per thread number on a
200× 200 mesh on 2 through 64 threads

1 2 4 8 16 32 64
10

4

10
5

10
6

Total conflicts vs. number of threads

Number of threads

N
um

be
r

of
 c

on
fli

ct
s

Fig. 11. Total number of rollbacks on a 200 ×
200 mesh on 2 through 64 threads

1 2 4 8 16 32 64
10

−3

10
−2

10
−1

10
0

Timings vs. number of threads

Number of threads

R
un

 T
im

e
(s

)

TM
Critical
Unsync

Fig. 12. Timings on a 200× 200 mesh

1 2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

Timings vs. number of threads

Number of threads

R
un

 T
im

e
(s

)

TM
Critical
Unsync

Fig. 13. Timings on a 3200 × 3200 mesh

defined by the (run) time it takes to get an answer of a certain quality. Since iterative
schemes are expected to yield successively “better” solutions at each iterate, we should
not only measure the runtime to get to a certain iterate, but also the “quality” obtained
by iterating a given number of steps. If we define quality q(n) at iterate n as the inverse
of the error e(n) defined in equation (2), then the “run time per quality” t(n)q becomes:

t(n)q =
t(n)

q(n)
= t(n)e(n). (3)

For purposes of comparison with this new measure, we first show (Figure 12) the
traditional timing performance on a seconds vs. number of threads log-log plot for 1
through 64 threads for all modes: TM, critical and unsync. We stopped and timed the
entire calculation at iteration 20; as shown on all of Figures 4 - 8 the salient iteration
number appeared to be 20 where most calculations were about to converge, but the
errors where still non-zero.

The message of Figure 12 is simple and expected. Not being burdened by any over-
head or locking bottlenecks, unsync outperforms the other two in terms of runtime,
as well as scaling. TM stops improving past 4 threads, and on fewer than 4 threads it

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 127

1 2 4 8 16 32 64

10
−17

10
−16

10
−15

10
−14

10
−13

10
−12

Time per (to) quality vs. number of threads

Number of threads

T
im

e
pe

r
qu

al
ity

: t
q

TM
Critical
Unsync

Fig. 14. Time per quality on a 200 × 200 mesh on up to 64 threads

is slower than even critical. Given the small mesh and a code with few floating point
operations, this result is expected.

We demonstrate that the TM version can scale well by using a mesh that was two
orders of magnitude larger: 3200×3200. Figure 13 shows the results. The plots confirm
good scaling for both TM and unsync, with the latter being consistently faster by about
an order of magnitude. On the other hand, critical does not scale and it does not exhibit
any qualitative change from Figure 12. As before, critical becomes slightly worse as
the thread count increases, but it is, in absolute terms, faster than TM on up to 4 threads.

However, when we actually weigh the total runtime spent by how much we gain in
terms of reducing the error and plot tq as defined in equation (3) instead of t, we find
that TM outperforms critical by several orders of magnitude on all except 2 threads, and
scales well all the way up to 64 threads (Figure 14). Moreover, TM yields significantly
better time-per-quality at 32 and 64 threads than even unsync. At the highest thread
count, TM is superior to even unsync at any thread count, probably because of its unique
synchronization method, which is typically more accurate than critical at all thread
counts and usually also faster at the higher thread counts. Note that the data in Figure 14
is, in some sense, a compilation of snapshots of Figures 4 - 8 convolved with those of
Figure 12.

It must also be re-emphasized that, while in this simple case all three modes of
running eventually converge to the right answer, the unsync version is, strictly speak-
ing, non-conforming OpenMP code since it completely ignores memory conflicts and
has data races. We include the unsynchronized results in this paper for the mere pur-
pose of a baseline performance comparison to the other two “correct” synchronization
mechanisms.

128 B.L. Bihari et al.

6 Conclusions and Future Work

We studied different OpenMP synchronization mechanisms using an iterative Lapla-
cian mesh-smoothing algorithm on Cartesian-like meshes, but connected via unstruc-
tured bookkeeping. Since the exact solution was known, we could make quantitative
measurements of the error, or “distance to exact” and, in turn, use it to define a new
measure of performance, which takes into account not just the elapsed cpu-time but the
quality that is obtained by iterating during that time. By comparing TM to OpenMP
critical and a completely unsynchronized version of the code, we find that TM
always outperforms critical, and in some cases even the unsynchronized version.

While more studies are needed, this iterative mesh smoothing scenario appears to
be a good use case for TM, and along with [2,4,19] can be considered another small
step towards adoption of TM into the OpenMP standard. To this end, we plan to exper-
iment with more complicated unstructured mesh types as well as extend this work to
production quality mesh optimizers such as that of [12]. As different hardware imple-
mentations of TM become available from more commercial vendors, we also hope to
test our codes on the new and emerging TM platforms as well.

Acknowledgments. The authors wish to thank Pat Knupp of Dihedral LLC for many
fruitful discussions.

This article (LLNL-CONF-654956) has been authored in part by Lawrence Liver-
more National Security, LLC under Contract DE-AC52-07NA27344 with the U.S. De-
partment of Energy. In addition, this material is also based upon work supported by
the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research (ASCR). Accordingly, the United States Government retains and the
publisher, by accepting the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this article or allow others to do so, for United
States Government purposes.

IBM Specific Trademarks
IBM, the IBM logo, ibm.com, and Blue Gene/Q are trademarks or registered trademarks
of International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first occurrence
in this information with a trademark symbol, these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time this information was published.
Such trademarks may also be registered or common law trademarks in other countries.
A current list of IBM trademarks is available on the web at ”Copyright and trademark
information” at http://www.ibm.com/legal/copytrade.shtml.

References
1. Gartner Hype Cycle (May 2014), http://www.gartner.com/technology/

research/methodologies/hype-cycle.jsp
2. Bihari, B.L.: Applicability of transactional memory to modern codes. In: Conference Pro-

ceedings of International Conference on Numerical Analysis and Applied Mathematics
(ICNAAM 2010), Rodos, Greece, pp. 1764–1767. APS (2010)

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms 129

3. Bihari, B.L.: Transactional Memory for Unstructured Mesh Simulations. J. Sci. Comput. 54,
311–332 (2012)

4. Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A Case for Including Trans-
actions in OpenMP II: Hardware Transactional Memory. In: Chapman, B.M., Massaioli, F.,
Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 44–58. Springer, Hei-
delberg (2012)

5. GNU. TM in GCC (May 2014),
https://gcc.gnu.org/wiki/TransactionalMemory

6. IBM Compiler Group. IBM XL C/C++ for Blue Gene/Q, V12.1 Compiler Reference (2012)
7. TM Specification Drafting Group (May 2014),

https://sites.google.com/site/tmforcplusplus/,
https://sites.google.com/site/tmforcplusplus/

8. Ruud Haring and the IBM BlueGene Team. The IBM Blue Gene/Q Compute Chip. In: Hot
Chips 24: A Symposium on High Performance Chips, Palo Alto, CA (2011)

9. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data
structures. SIGARCH Comput. Archit. News 51(2), 289–300 (1993)

10. Intel. Intel C++ STM Compiler, Prototype Edition (May 2014),
https://software.intel.com/en-us/articles/
intel-c-stm-compiler-prototype-edition

11. Knupp, P.: Hexahedral and Tetrahedral Mesh Shape Optimization. Intl. J. Numer. Meth.
Engr. 58, 319–332 (2003)

12. Knupp, P.: Introducing the Target-matrix Paradigm for Mesh Optimization via Node-
Movement. In: Proceedings of the 19th International Meshing Roundtable, pp. 67–83.
Springer (2010)

13. Larus, J.R., Kozyrakis, C.: Transactional memory: Is TM the answer for improving parallel
programming? Communications of the ACM 51(7), 80–88 (2008)

14. Haskell Community Page. Software Transactional Memory (May 2014),
http://www.haskell.org/haskellwiki/
Software transactional memory

15. Schindewolf, M., Gyllenhaal, J., Bihari, B.L., Wang, A., Schulz, M., Karl, W.: What Scien-
tific Applications Can Benefit from Hardware Transacional Memory? In: Int. Conf. for High
Perf. Computing, Networking, Storage and Analysis, SC 2012 (2012)

16. Wang, A., Gaudet, M., Wu, P., Ohmacht, M., Amaral, J.N., Barton, C., Silvera, R., MIchael,
M.: Evaluation of Blue Gene/Q Hardware Support for Transactional Memories. In: PACT
(2012)

17. Wong, M.: IBM XL C/C++ for Transactional Memory for AIX. 2008 (August 2009),
http://www-949.ibm.com/software/rational/cafe/blogs/
ccpp-parallel-multicore/2009/08/11/
ibms-alphaworks-software-transactional-memory-compiler

18. Wong, M.: C++14: The New Standard, Through the Looking Glass: The View from the Feb
2014 C++ Standard meeting (May 2014), http://tinyurl.com/mzs22qw

19. Wong, M., Ayguade, E., Gottschlich, J., Luchangco, V., de Supinski, B.R., Bihari, B.L.: To-
wards Transactional Memory for OpenMP. In: IWOMP 2014 Conference Proceedings, Sal-
vador, Brazil (to appear June 2014)

20. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.: A case for
including transactions in OpenMP. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M.,
de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 149–160. Springer, Heidelberg
(2010)

21. Yoo, R., Hughes, C., Lai, K., Rajwar, R.: Performance Evaluation of Intel Transactional
Synhcornization Extensions for High-Performance Computing. In: Int. Conf. for High Perf.
Computing, Networking, Storage and Analysis, SC 2013 (2013)

https://gcc.gnu.org/wiki/TransactionalMemory
https://sites.google.com/site/tmforcplusplus/
https://sites.google.com/site/tmforcplusplus/
https://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition
https://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition
http://www.haskell.org/haskellwiki/Software_transactional_memory
http://www.haskell.org/haskellwiki/Software_transactional_memory
http://www-949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-alphaworks-software-transactional-memory-compiler
http://www-949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-alphaworks-software-transactional-memory-compiler
http://www-949.ibm.com/software/rational/cafe/blogs/ccpp-parallel-multicore/2009/08/11/ibms-alphaworks-software-transactional-memory-compiler
http://tinyurl.com/mzs22qw

Towards Transactional Memory for OpenMP

Michael Wong1, Eduard Ayguadé2,
Justin Gottschlich3, Victor Luchangco4, Bronis R. de Supinski5, Barna Bihari5,

and other members of the WG21 SG5 Transactional Memory Sub-Group

1 IBM
2 BSC
3 Intel

4 Oracle
5 LLNL

Abstract. The OpenMP specification lacks a composable shared memory con-
currency mechanism: the current OpenMP concurrency mechanisms, such as
OMP critical, locks, or atomics, do not support composition. In this paper, we
motivate the need for transactional memory (TM) in OpenMP. The chief reason
is to support composition of realistic programs, but we also consider whether TM
is easier to program than locks, the use case for TM, and whether a software-only
TM can outperform traditional locking through a survey of recent publications.
This paper advances upon previous proposals of OpenMP TM by introducing a
new construct specifically to handle irrevocable actions, which is also compos-
able. It also proposes a pure atomic transaction construct as well as the concept
of transaction safety. Further, we examine how our proposed construct integrates
with current OpenMP constructs.

1 Introduction

Locks and atomics are often described as not being composable: using locks or atom-
ics to synchronize access to shared data makes it difficult to construct large programs
out of smaller pieces. Thus, these synchronization mechanisms do not support modu-
lar programming [1]. As multithreaded programs increase in size and complexity, more
advanced abstractions are needed to mitigate the programming complexity that arises
from frequent use of synchronization in large-scale software systems. We propose trans-
actional memory (TM) for OpenMP and show that TM provides stricter correctness
guarantees than other OpenMP concurrency techniques and may be easier to use.

2 Limitations of OpenMP Concurrency Techniques

OpenMP V4.0 [2] (the latest release) includes four synchronization mechanisms: locks,
barriers, atomics and critical sections [3]. These mechanisms synchronize objects in
shared memory but unnecessarily limit performance or can be challenging to use prop-
erly. TM provides greater flexibility and ease of use and in the case of template pro-
gramming, or callback-style programming, TM offers correctness, which none of the
other constructs offer.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 130–145, 2014.
c© Springer International Publishing Switzerland 2014

Towards Transactional Memory for OpenMP 131

Mutual exclusion, implemented as critical sections, is perhaps the most common
form of concurrency control for shared memory parallel programming. In general, mu-
tual exclusion ensures program correctness by limiting access to shared memory vari-
ables to one thread at a time. This restriction is achieved in OpenMP using mutually
exclusive locks, also known as OpenMP locks or critical sections. To access a shared
memory variable, a thread must first acquire the lock that protects the shared mem-
ory variable. When the thread has completed its access to the shared memory variable,
it releases the lock. Although mutual exclusion may seem to be straightforward and
easy to apply, it is notoriously challenging to write both correct and efficient large-scale
multithreaded software using mutual exclusion [4].

A less common way to synchronize access to shared data is to write nonblocking
algorithms using nonblocking atomic primitives, such as compare-and-swap (CAS), or
load-linked and store-conditional (LL/SC), or more recently, C++ and OpenMP atomic
types. This is how most OpenMP barriers or atomics are implemented. Although it
can often yield substantial concurrency, using these kinds of synchronization primitives
to correctly build even simple data structures, such as queues, can be challenging [4].
Thus, their nontrivial use is typically limited to expert parallel programmers.

Lock elision is another possible speculative technique that has been proposed [5], in
which locks are not acquired (i.e., they are elided) when there are no conflicts on the
data they protect. By reducing unnecessary synchronization, lock elision may increase
throughput without changing the programming interface. Although this is an advantage
for backward compatibility, it means that lock elision does not reduce the challenge of
writing multithreaded software: programmers must still write correct locking schemes
for their multithreaded software.

3 Motivation for Transactional Memory in OpenMP

The synchronization types available in OpenMP are OpenMP critical section, barrier,
mutex (or lock), and atomic, as discussed in prior work [6,7]. Locks and atomics are ba-
sic abstractions used to control the reading and writing of shared memory [4]. Threads
communicate using shared memory, which is synchronized using locks or atomics to
ensure the threads see a consistent view of such shared memory. However, locks and
atomics are notoriously difficult to use [8]. Simple coarse-grained locking strategies,
which protect all program data using one or few locks, lead to unnecessary serialization
of program execution and generally degrade performance. Sophisticated fine-grained
locking or the use of atomics usually results in a complex (and unenforced) association
between data and the synchronization constructs (e.g., locks) used to protect access to
that data. Because these associations are typically complex and unchecked, a program-
mer can easily use them incorrectly, leading to concurrency errors such as data races
and deadlocks. Moreover, synchronization strategies designed to work well on one plat-
form often perform poorly on a platform with a different number of hardware threads
or a different cost for synchronization primitives.

Another serious deficiency with current synchronization mechanisms is that they do
not support composition, that is, combining multiple operations into a single compound
operation. For example, in a system that uses locks to synchronize data access, when

132 M. Wong et al.

two functions, A() and B(), that acquire and release the appropriate locks internally
are called in sequence by one thread, other threads can generally observe A() and B()
as individual operations. To ensure that other threads observe A() and B() as a single
atomic operation, that is, to compose A() and B(), a programmer must use some kind
of external synchronization. Typically, the program acquires the locks of both A() and
B() before either is called, and holds these locks until both A() and B() complete.
This exposes the internals of these functions, violating modularity. Furthermore, this
approach may lead to deadlock. For example, one thread may acquire the locks for
A() and then attempt to acquire those for B(), while another thread acquires the locks
for B() and then attempts to acquire those for A(), resulting in deadlock. The usual
way to prevent deadlock is for all threads to agree on an order in which locks must be
acquired (i.e., a lock does not be acquired while a “later” lock is held). But enforcing
this order is difficult, if not impossible, in large software systems. In The Problem with
Threads [9], Edward Lee illustrates this problem with a simple practical example (the
observer pattern) in the context of Java; similar examples can be constructed in C++.
Implementing this pattern with locks turns out to be nearly impossible. The article’s title
notwithstanding, the problem lies not with threads, but with locks: With transactions,
this pattern can be written almost as easily for a multithreaded program as for a single-
threaded one.

When atomics are used to synchronize access to shared memory, the situation is no
better. Indeed, it is arguably worse: there is no simple generic technique (i.e., analo-
gous to two-phase locking) for composing functions that use atomics to perform shared
memory operations into a single large atomic operation.

In general, the use of fine-grain mechanisms makes concurrent programs more dif-
ficult to write, debug and reason about, and this increases exponentially with the com-
plexity of the program. On the other hand, traditional coarse-grain mutual exclusion
inhibits parallel execution, which is necessary to achieve good performance on modern
multiprocessors. Using transactions rather than locks avoids the need to associate shared
data with their metadata (e.g., the lock that protects each piece of data), remember this
association, and use it appropriately when accessing the data. By leaving these tasks to
the system, a programmer can write relatively simple code (akin to using coarse-grain
locks) while the system may use fine-grain mechanisms to achieve high performance.
The resulting programs are likely to be simpler, and thus easier to write, debug, maintain
and reason about, and the underlying systems can be specialized for different platforms,
and can be improved without requiring changes to application code.

For these reasons, we propose that OpenMP be extended to include transactional
language constructs, or for short, transactional memory (TM). Our proposal and its
integration into OpenMP are described in detail in Section 4. Some key benefits of TM
compared to locks are discussed in our paper [10] that motivated the C++ Standards
Committee to start a new Work Item and form Study Group 5 (i.e., SG5: Transactional
Memory). Extending OpenMP to include TM will improve the modularity of concurrent
libraries, make OpenMP easier to teach and learn, and supply a programming model for
architectures based on IBM’s Blue Gene/Q and Power8, and Intel’s Haswell RTM. This
is especially important as OpenMP moves further into the commercial development
space as well as remaining relevant for scientific workloads.

Towards Transactional Memory for OpenMP 133

3.1 Background

Several studies have investigated the trade-off between programmability and perfor-
mance with TM compared to locks, looking at programs for Delaunay triangulation [11],
minimum spanning forest of sparse graphs [12], Lee’s routing algorithm [13], and the
Quake game server, such as QuakeTM [14], Atomic Quake [15] (based on a lock-based
version of Quake [16]), and SynQuake [17], among others. Many of these works use
software implementations of transactional memory (STM), where TM is implemented
entirely in software, which tend to execute transactions more slowly than systems that
execute transactions in hardware (HTM) or that use hardware and software jointly (Hy-
brid TM, or HyTM for short). There has also been an effort to create benchmark suites
for STM, including STMBench7 [18], STAMP [19] and RMS-TM [20], all of which
include several applications that represent a variety of domains.

As several of these studies demonstrate, STM can be faster than locks in real world
applications, not just toy laboratory benchmarks. For example, SynQuake [17] reim-
plements a lock-based Quake game server using STM, to examine the performance
and scalability of TM without hardware support. Scaling a game server by parallelizing
multi-player game code is difficult because game code is typically complex and includes
the use of spatial data structures for collision detection, as well as other dynamic arti-
facts that require conservative synchronization. Player actions usually include dynami-
cally evolving sub-actions: a person may move while shifting items in their backpack,
throwing an object at a distance, grabbing a nearby object, and/or shooting, which to-
gether constitute a single player action. Since the terrain within the potentially affected
area may contain mutable objects, all sub-actions must be processed as an atomic, con-
sistent unit when detecting collision with other player actions. This code may induce
substantial contention due to both false and true sharing between threads, in a paral-
lel lock-based game implementation [16]. Thus, conservatively acquiring locks at the
beginning of the action and holding these locks until the end of the action induces un-
necessary conflicts by locking more objects, and holding these locks for longer, than
necessary. Fine-grain locking of the action sequence led to problems with deadlocks
and inconsistent views. In contrast, by implementing player actions with transactions,
the atomicity and consistency of the player action is provided by the underlying TM,
which tracks accesses to shared and private data and detects and resolves conflicts auto-
matically: the transaction simply commits if there is no conflict with another player, or
rolls back if conflict occurs. In this work, STM support reduced the number and duration
of conflicts due to false sharing. The result was that the STM-based implementation was
about 33% faster than the lock-based one with 4–8 threads under medium contention,
and it scales better in all cases of low, medium and high contention.

Other studies have investigated the usability of TM, trying to assess the claim that
concurrent programming with transactional memory is easier than using other alterna-
tives such as locks. For example, Rossbach et al. [21] asked students to program in three
different ways: with coarse-grain locks, fine-grain locks or TM. In this study, programs
using fine-grain locking were more likely to contain errors than those using coarse-
grain locks or TM. The most common error was acquiring a lock and never releasing
it. Students reported that TM was harder to program (in part because of the lack of
TM documentation) than coarse-grain locks but easier than fine-grain locks. Another

134 M. Wong et al.

study [22] created separate teams working on locks and on TM to implement a search
application. Although the average lines of code (LOC) for the whole program was not
strongly correlated with the use of locks or TM, the TM teams had fewer LOC with
parallel constructs. The TM teams spent more time thinking sequentially about their
code, and less time on parallelizing their code before moving on to performance test-
ing. Nonetheless, a TM team had the first working parallel version, even though they
subjectively believed they advanced slowly. By the project deadline, all of the teams
except for one TM team (the team with the least experience) had executable parallel
search engines, though only one (a lock team) was able to handle all the test queries,
and one of the TM teams was deemed to have the best overall performance. This mixed
result suggests that TM still is not a panacea for parallel programming: it still requires
good programmers. But it does suggest that TM has promise compared to fine-grain
locking for large and complex parallel programming tasks.

Two proposals for adding transactional memory support within the OpenMP pro-
gramming interface were presented around the same time in 2007 [23,7]. The topic
has reborn with a more recent proposal [3], presenting results using hardware trans-
actional memory, which can significantly reduce the complexity of shared memory
programming while retaining efficiency. This work extended a previous work [6] that
demonstrated that even with the relatively high overheads of software implementations,
transactions could outperform OpenMP critical sections.

Gottschlich and Boehm [24] demonstrate that locks are an insufficient synchro-
nization mechanism for generic (i.e., template) programming in C++. They argue that
because the locking order required by a client program cannot be known when a pro-
grammer is creating his or her template library, which may eventually call-back into
client code that uses locks, it is not possible to guarantee that any such program will not
deadlock. They then show that TM naturally solves this problem because transactions
do not impose ordering constraints and because they are composable.

In conclusion, they debunk the popular notion that an enforced lock ordering is guar-
anteed to avoid deadlock, showing that such an approach is essentially impossible in
C++ template programming. This is a form of callback-style programming that exists
in C and Fortran and ignores the question of whether TM is useful for performance
and programmability, and instead demonstrates that TM may actually be necessary for
correctness for multithreaded programs that use shared memory.

Gottschlich and Boehm further argue that what makes generic programming differ-
ent from prior examples is that many of the function and operator calls used within
C++ templates are type-dependent, and are likely to be user-defined, meaning, in many
cases, such calls are essentially callback functions. These callbacks may include oper-
ations like C++ assignment operators, constructors, and syntactically invisible destruc-
tors, and possibly even syntactically invisible constructors and destructors of expression
temporaries. In all cases, such operations are likely to acquire locks if, for example, an
object requires access to a shared resource, which is usually needed at least at construc-
tion, assignment, and destruction time. In order to enforce a lock ordering, the author
of any generic function acquiring locks (or that could possibly be called while holding
a lock) would have to reason about the locks that could potentially be acquired by any
of these operators, in any order, which appears thoroughly intractable as these types do

Towards Transactional Memory for OpenMP 135

not even exist when the generic programmer is writing his or her template code. With
all of this in mind, Gottschlich and Boehm conclude that locks should be forbidden in
templates and callbacks, and that transactions should be used instead.

3.2 Transactional Language Constructs and C++

In 2008, IBM, Intel, and Sun Microsystems (later acquired by Oracle) began work on
“The Draft Specification of Transactional Language Constructs for C++” which aimed
to design a set of language interfaces for TM in C++ [25]. In August 2009, version 1.0
of their specification was released to the public. The group subsequently expanded its
membership to include representatives from HP and Red Hat and, in February 2012,
released version 1.1 of their specification, which included support for exceptions. In
February of 2012, they presented their specification to the Standard C++ Committee.
In July of 2012, after several months of examining use cases, usability, and perfor-
mance claims of TM, the Standard C++ Committee requested that the TM group form
a Standard C++ Study Group, called Study Group 5: Transactional Memory (SG5, for
short) [26], which is now working with the C++ Standards Committee with the goal of
creating an acceptable set of transactional language constructs for Standard C++.

SG5 chose the C++ Programming Language for a variety of reasons. Firstly, In-
tel and Sun Microsystems were, at the time, working on adding TM support to their
respective C++ compilers and wanted to enable cross-compiler support for TM. Sec-
ondly, the group wanted to add TM support to a language that was used by a large,
active community where its integration into the language would naturally align with
the language’s future direction. C++11 was on the horizon when the C++ TM group
formed in 2008, and it was well known that multithreaded support for C++ was being
seriously considered; in this sense, C++ was nearly an ideal fit for TM. Moreover, C++
was a language where the majority of members of the TM group were comfortable, if
not extremely well versed.

The proposal we present in this paper lifts certain aspects from the C++ SG5 pro-
posal [27], merges with the BSC OpenMP proposal [7], while using the experience
from IBM’s BG/Q HTM design [28] and adapts it to the existing OpenMP Language to
offer an initial design for TM in OpenMP for the future integration with C, C++, and
Fortran.

4 A Proposal for an OpenMP Transactional Memory Technical
Report

We introduce two kinds of blocks to exploit transactional memory: synchronized blocks
in Section 4.2 and atomic blocks called OMP transaction (as a keyword placeholder) in
Section 4.1. Synchronized blocks behave as if all synchronized blocks were protected
by a single global recursive mutex. Atomic blocks (also called atomic transactions, or
just transactions) appear to execute atomically and not concurrently with any synchro-
nized block (unless the atomic block is executed within the synchronized block).

Some operations are prohibited within atomic blocks because it may be impossible,
difficult, or expensive to support executing them in atomic blocks; such operations are

136 M. Wong et al.

called transaction-unsafe. An atomic block also specifies how to handle an exception
thrown but not caught within the atomic block. User cancellation can be supported
through the OpenMP cancellation feature.

Some noteworthy points about synchronized and atomic blocks:

Data races. Operations executed within synchronized or atomic blocks do not form
data races with each other. However, they may form data races with operations not
executed within any synchronized or atomic block. As usual, programs with data
races have undefined semantics.

Exceptions. When an exception is thrown but not caught within an atomic block, the
effects of operations executed within the block may take effect or be discarded, or
terminate may be called. This behavior is specified by an additional keyword in the
atomic block statement, as described in Section 4.1. An atomic block whose effects
are discarded is said to be canceled. An atomic block that completes without its
effects being discarded, and without calling terminate, is said to be committed.

Transaction-safety. As mentioned above, transaction-unsafe operations are prohibited
within an atomic block. As a practical matter, some code is considered transaction-
unsafe because we do not know effective ways to execute it atomically without
special hardware support. This restriction applies not only to code in the body of
an atomic block, but also to code in the body of functions called (directly or indi-
rectly) within the atomic block. To support static checking of this restriction, we
introduce pragmas to declare that a function or function pointer is transaction-safe,
and augment the type of a function or function pointer to specify whether it is
transaction-safe. We also introduce a pragma to explicitly declare that a function is
not transaction-safe.

To reduce the burden of declaring functions transaction-safe, a function is as-
sumed to be transaction-safe if its definition does not contain any transaction-unsafe
code and it is not explicitly declared transaction-unsafe. Furthermore, unless de-
clared otherwise, a non-virtual function whose definition is unavailable is assumed
to be transaction-safe. (This assumption does not apply to virtual functions be-
cause the callee is not generally known statically to the caller.) These assumptions
are checked at link time.

4.1 Atomic Blocks

This is a pure form of a transaction and is based on combining the C++ SG5 [29]
proposal and BSC’s OpenMP TM extension proposal [7].

An atomic block can be written in one of the following forms:

#pragma omp transaction [clause[[,] clause]...] { body }

The clause following transaction can specify the atomic block’s exception specifier. It
specifies the behavior when an exception escapes the transaction or an OpenMP cancel
occurs within the TM region:

– noexcept: This is undefined behavior and is not allowed; no side effects of the
transaction can be observed.

Towards Transactional Memory for OpenMP 137

– commitonesc: The transaction is committed and the exception is thrown.
– cancelonesc: If the exception is transaction-safe (defined below), the transaction

is canceled and the exception is thrown. Otherwise, it is undefined behavior. In
either case, no side effects of the transaction can be observed.

Code within the body of a transaction must be transaction-safe (i.e. it must not be
transaction-unsafe). Code is transaction-unsafe if:

– it contains an initialization of, assignment to, or a read from a volatile object;
– it is a transaction-unsafe asm declaration (the definition of a transaction-unsafe asm

declaration is implementation-defined); or
– it contains a call to a transaction-unsafe function, or through a function pointer that

is not transaction-safe

While we have pragma syntax to allow declaring and defining functions for transaction
safety, we do not show it here due to space constraints.

Synchronization via locks and atomic objects is not allowed within atomic blocks
(operations on these objects are calls to transaction-unsafe functions in the current pro-
posal).

Jumping into the body of an atomic block using goto or switch is prohibited.
The body of an atomic block appears to take effect atomically: no other thread sees

any intermediate state of an atomic block, nor does the thread executing an atomic block
see the effects of any operation of other threads interleaved between the steps within the
atomic block.

The evaluation of any atomic block synchronizes with every evaluation of any atomic
or synchronized block by another thread, so that the evaluations of non-nested atomic
and synchronized blocks across all threads are totally ordered by the synchronizes-with
relation. Thus, a memory access within an atomic block does not race with any other
memory access in an atomic or synchronized block. However, a memory access within
an atomic block may race with conflicting memory accesses not within any atomic or
synchronized block. The exact rules for defining data races are defined by the memory
model Section 4.5.

As usual, programs with data races have undefined semantics.
Although it has no observable effects, a canceled atomic block may still participate

in data races.
This proposal provides “closed nesting” semantics for nested atomic blocks.

Use of atomic blocks. Atomic blocks are intended in part to replace many uses of
mutexes for synchronizing memory access, simplifying the code and avoiding many
problems introduced by mutexes (e.g., deadlock). We expect that some implementa-
tions of atomic blocks will exploit hardware and software transactional memory mech-
anisms to improve performance relative to mutex-based synchronization. Nonetheless,
programmers should still endeavor to reduce the size of atomic blocks and the con-
flicts among atomic blocks and with synchronized blocks: poor performance is likely if
atomic blocks are too large or concurrent conflicting executions of atomic and synchro-
nized blocks are common.

The following code illustrates with a bank account example the atomicity of atomic
blocks.

138 M. Wong et al.

1 c l a s s Account {
2 i n t b a l ;
3 p u b l i c :
4 Account (i n t i n i t b a l) { b a l = i n i t b a l ; } ;
5

6 vo id d e p o s i t (i n t x) {
7 #pragma omp t r a n s a c t i o n n o e x c e p t {
8 t h i s . b a l += x ;
9 }

10 } ;
11

12 vo id wi thdraw (i n t x) {
13 d e p o s i t (−x) ;
14 } ;
15

16 i n t b a l a n c e () { re turn b a l ; }
17 }
18

19 vo id t r a n s f e r (Account a1 , a2 ; i n t x ;) {
20 #pragma omp t r a n s a c t i o n n o e x c e p t {
21 a1 . wi thd raw (x) ;
22 a2 . d e p o s i t (x) ;
23 }
24 } ;
25

26 Account a1 (0) , a2 (1 0 0) ;
27

28 Thread 1 Thread 2
29−−−−−−−− −−−−−−−−
30

31 t r a n s f e r (a1 , a2 , 5 0) ; #pragma omp t r a n s a c t i o n n o e x c e p t {
32 r1 = a1 . b a l a n c e () + a2 . b a l a n c e () ;
33 }
34 a s s e r t (r1 == 1 0 0) ;

The assert cannot fire, because the transfer happens atomically and the two calls to
balance happen atomically.

Example demonstrating need for transaction cancelonesc. Here, we extend the above
example slightly so that transactions are logged by a function that may throw an excep-
tion, for example due to allocation failure.

1 vo id d e p o s i t (i n t x) {
2 #pragma omp t r a n s a c t i o n c a n c e l o n e s c {
3 l o g d e p o s i t (x) ; / / might throw
4 t h i s . b a l += x ;
5 }
6 }
7

8 vo id wi thdraw (i n t x) {
9 d e p o s i t (−x) ;

10 }
11

12 vo id t r a n s f e r (a c c o u n t a1 , a2 ; i n t x ;) {
13 t r y {
14 #pragma omp t r a n s a c t i o n c a n c e l o n e s c {
15 a1 . wi thd raw (x) ;
16 a2 . d e p o s i t (x) ;
17 } c a t c h (. . .) {
18 p r i n t f ("Transfer failed") ;
19 }
20 }
21 }

Towards Transactional Memory for OpenMP 139

If the call from transfer() to a2.deposit() throws an exception, we should not
simply commit the transaction, because the withdrawal has happened but the deposit
has not. Canceling the transaction provides an easy way to recover to a good state,
without violating the invariant the transaction in transfer() is intended to preserve.
In this simple example, an error message is printed indicating that the transfer did not
happen.

Default behavior. The default for atomic transactions without any of the three clauses
(noexcept, commitonesc, cancelonesc) is as if the user wrote cancelonesc. This
offers a pure transaction that rolls back. The other two optional clauses (noexcept and
commitonesc) do not rollback and therefore offer no invariance protection. But they
do still offer advanced synchronization ability. However, they are still limited in that
they cannot have any transaction unsafe actions. We show in the next section how to
handle transactions with transaction unsafe actions.

4.2 Synchronized Blocks

The synchronized blocks variant is a simple replacement for locks that is composable
and offers only a synchronization ability with no invariance protection. Furthermore,
synchronized blocks can become irrevocable in the presence of unsafe actions and that
distinguishes it from an atomic transaction.

A synchronized block has the following form:

#pragma omp synchronized { body }
The evaluation of any synchronized block synchronizes with every evaluation of any
synchronized block (whether it is an evaluation of the same block or a different one)
by another thread, so that the evaluations of non-nested synchronized blocks across all
threads are totally ordered by the synchronizes-with relation as defined by C++ and
Java memory model. That is, the semantics of a synchronized block is equivalent to
having a single global recursive mutex that is acquired before executing the body and
released after the body is executed (unless the synchronized block is nested within
another synchronized block). Thus, an operation within a synchronized block never
forms a data race with any other operation within a synchronized block (the same block
or a different one).

Entering and exiting a nested synchronized block (i.e., a synchronized block within
another synchronized block) has no effect.

Jumping into the body of a synchronized block using goto or switch is prohibited.

Use of synchronized blocks. Synchronized blocks are intended in part to address some
of the difficulties with using mutexes for synchronizing memory access by raising the
level of abstraction and providing greater implementation flexibility [24] With synchro-
nized blocks, a programmer need not associate locks with memory locations, nor obey
a locking discipline to avoid deadlock: Deadlock cannot occur if synchronized blocks
are the only synchronization mechanism used in a program.

Although synchronized blocks can be implemented using a single global mutex, we
expect that some implementations of synchronized blocks will exploit recent hardware

140 M. Wong et al.

and software mechanisms for transactional memory to improve performance relative
to mutex-based synchronization. For example, threads may use speculation and con-
flict detection to evaluate synchronized blocks concurrently, discarding speculative out-
comes if conflict is detected. Programmers should still endeavor to reduce the size of
synchronized blocks and the conflicts between synchronized blocks: poor performance
is likely if synchronized blocks are too large or concurrent conflicting evaluations of
synchronized blocks are common. In addition, certain operations, such as I/O, cannot be
executed speculatively, so their use within synchronized blocks may hurt performance.

Example
The following example illustrates synchronized blocks and non-races between accesses
within transactions (including synchronized blocks). Suppose we add the following
method to the Account class shown in Section 4.1.

1 vo id p r i n t b a l a n c e s a n d t o t a l (a c c o u n t a1 , a2) {
2 #pragma omp s y n c h r o n i z e d {
3 p r i n t f ("First account balance: %ld" , a1 . b a l a n c e ()) ;
4 p r i n t f ("Second account balance: %ld" , a2 . b a l a n c e ()) ;
5 p r i n t f ("Total: %ld" , a1 . b a l a n c e () + a2 . b a l a n c e ()) ;
6 }
7 }

Observations:

– This program is data-race-free: all concurrent accesses are within transactions.
– The synchronized block cannot be replaced with an atomic block, as I/O is not

transaction-safe (due to calls to printf, which is a transaction-unsafe function).
– Balances will be consistent and total will equal sum of balances displayed.
– If we eliminate the synchronized block from this example (so the calls to balance()

in print balances and total() are not in transactions), then this program is
racy.

4.3 Nesting of OpenMP Parallel Regions and Transaction Blocks

In the common case of a TM region nested inside an OpenMP parallel region, the outer
OpenMP region is run in parallel and the TM region is run speculatively. In the opposite
case where an OpenMP parallel region is nested inside a TM region, there are several
choices which needs to be debated within the community.

Currently on IBM’s Blue Gene/Q system [28], an OpenMP region running in parallel
inside the speculative TM region causes the TM region to be stopped. The stopped
transaction is then rolled back and run nonspeculatively. The inner OpenMP region
is run nonspeculatively by multiple threads. This is considered to be quite restrictive
and heavy weight. An alternative is where the transaction could be executed as if the
OpenMP portion was serialized. This could have complication with hardware and if the
user create a race condition inside the transaction, it would be caveat emptor.

Another choice is that the parallel region inside the TM region can be executed with
one thread. This solution will often be better than restarting the transaction and running
it non-speculatively. There will be complication if the OpenMP region do some undesir-
able action such as checking for the number of threads being more than one. But these
are details that can be worked out in committee.

Towards Transactional Memory for OpenMP 141

4.4 Interaction between OpenMP Worksharing/Tasking Constructs and
Transaction Blocks

We also intend to introduce interaction of TM with existing OpenMP constructs. These
are now called composite constructs as they enable additional semantics. Starting with
the workshare constructs, we propose the following where each iteration of the loop
constitutes an atomic transaction with the usual clauses available.

1 #pragma omp f o r t r a n s a c t i o n
2 f o r (; ;)
3 { . . . }

Similar for an OpenMP section construct where each section is an atomic transaction.

1 #pragma omp sections t r a n s a c t i o n
2 #pragma omp section
3 { . . . }
4 #pragma omp section
5 { . . . }

We also plan to support TM with OpenMP tasks. Tasks are defined as deferrable
units of work that can be executed by any thread in the thread team associated to the
active parallel region. Task can create new tasks and can also be nested inside work-
sharing constructs. In this scenario, data access ordering and synchronization based on
locks will be even more difficult to express, so transactions appear as an easy way to ex-
press intent and leave the mechanisms to the TM implementation. For tasks we propose
tagging a task as a transaction, using the same clause specified above.

1 #pragma omp task t r a n s a c t i o n
2 { . . . }

We will also need consideration of the interaction with cancellation constructs. These
are details to be explored in future proposals and in committee.

4.5 Memory Model and Race Free Semantics

Transactions impose ordering constraints on the execution of the program. In this re-
gard, they act as synchronization operations similar to the synchronization mechanisms
defined in the C++11 standard [30] (i.e., locks and C++11 atomic variables). The C++11
standard defines the rules that determine what values can be seen by the reads in a multi-
threaded program. Transactions affect these rules by introducing additional ordering
constraints between operations of different threads.

In C++11, an execution of a program consists of the execution of all of its threads.
The operations of each thread are ordered by the sequenced before relationship that is
consistent with each thread’s single threaded semantics. The C++11 library defines a
number of operations that are specifically identified as synchronization operations. Syn-
chronization operations include operations on locks and certain atomic operations (that
is, operations on C++11 atomic variables). In addition, there are memory order relaxed
atomic operations that are not synchronization operations. Certain synchronization oper-
ations synchronize with other synchronization operations performed by another thread.
(For example, a lock release synchronizes with the next lock acquire on the same lock.)

142 M. Wong et al.

The sequenced before and synchronizes with relationships contribute to the happens
before relationship. The happens before relationship is defined by the following rules:

1. If an operation A is sequenced before an operation B then A happens before B.
2. If an operation A synchronizes with an operation B then A happens before B.
3. If there exists an operation B such that an operation A happens before B and B

happens before an operation C then A happens before C.

Two operations conflict if one of them modifies a memory location and the other one
accesses or modifies the same memory location. The execution of a program contains
a data race if it contains two conflicting operations in different threads, at least one of
which is not an atomic operation, and neither happens before the other. Any such data
race results in undefined behavior. A program is race-free if none of its executions con-
tain a data race. In a race-free program each read from a non-atomic memory location
sees the value written by the last write ordered before it by the happens before relation-
ship. It follows that a race-free program that uses no atomic operations with memory
ordering other than the default memory order seq cst behaves according to one of its
sequentially consistent executions.

Outermost transactions (that is, transactions that are not dynamically nested within
other transactions) appear to execute sequentially in some total global order that con-
tributes to the synchronizes with relationship. Conceptually, every outermost transaction
is associated with StartTransaction and EndTransaction operations, which mark the be-
ginning and end of the transaction. A StartTransaction operation is sequenced before
all other operations of its transaction. All operations of a transaction are sequenced be-
fore its EndTransaction operation. Given a transaction T , any operation that is not part
of T and is sequenced before some operation of T is sequenced before T ’s StartTrans-
action operation. Given a transaction T , T ’s EndTransaction operation is sequenced
before any operation A that is not part of T and has an operation in T that is sequenced
before A.

There exists a total order over all StartTransaction and EndTransaction operations
called the transactional synchronizaton order, which is consistent with the sequenced
before relationship. In this order, transactions executed by different threads do not in-
terleave. In other words, transactional synchronization order is such that a StartTrans-
action operation executed by one thread does not occur in between a matching pair of
StartTransaction and EndTransaction operations executed by another thread.

The transactional synchronization order contributes to the synchronizes with rela-
tionship defined in the C++11 standard. In particular, each EndTransaction operation
synchronizes with the next StartTransaction operation in the transactional synchroniza-
tion order executed by a different thread.

The definition of the synchronizes with relation affects all other parts of the mem-
ory model, including the definition of the happens before relationship, visibility rules
that specify what values can be seen by the reads, and the definition of data race free-
dom. Consequently, including transactions in the synchronizes with relation is the only
change to the memory model that is necessary to account for transaction statements.
With this extension, the C++11 memory model fully describes the behavior of programs
with transaction statements.

Towards Transactional Memory for OpenMP 143

The C++11 memory model has consequences for compiler optimizations. Sequen-
tially valid source-to-source compiler transformations that transform only code between
synchronization operations (which include StartTransaction and EndTransaction oper-
ations), and which do not introduce data races, remain valid. Source-to-source compiler
transformations that introduce data races (e.g., hoisting load operations outside of a
transaction) may be invalid depending on a particular implementation.

5 Future OpenMP Recommendation

We propose an OpenMP Transactional Memory Technical Report (TR), to enable early
implementation experience and obtain feedbacks from the community. Transactional
Memory forms a key cornerstone of tools for synchronization that enables compos-
ability whereas critical sections, mutexes, locks, atomics, even lock elision cannot. It
enables functional correctness in C and Fortran call back programming style and C++
generic programming. Recent surveys have some data point showing it is easier to use
than fine-grained locks, and some real-world tests have shown even an STM imple-
mentation can scale and perform better than fine-grained locks. As such, it enables and
simplifies support for large scale programs that contain complex locking semantics.

This proposal is agnostic to hardware and can be entirely implemented in software,
hardware, some hybrid or adaptive form of TM.

Our next goal is to provide an implementation using BSC’s Mercurium OpenMP
compiler [7] or GNU compiler (which already has a reduced form of this proposal in
4.7) to demonstrate the concept and confirm the performance capability.

References

1. Sutter, H.: The pillars of concurrency. Dr. Dobbs (July 2007)
2. OpenMP ARB.: OpenMP Application Program Interface, v. 4.0 (June 2013)
3. Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A case for including trans-

actions in OpenMP II: Hardware transactional memory. In: Chapman, B.M., Massaioli, F.,
Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312, pp. 44–58. Springer, Hei-
delberg (2012)

4. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Elsevier, Inc. (2008)
5. Rajwar, R., Goodman, J.R.: Speculative lock elision: Enabling highly concurrent multi-

threaded execution. In: 34th International Symposium on Microarchitecture, MICRO (2001)
6. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.: A case for

including transactions in OpenMP. In: Sato, M., Hanawa, T., Müller, M.S., Chapman, B.M.,
de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 149–160. Springer, Heidelberg
(2010)

7. Milovanović, M., Ferrer, R., Unsal, O.S., Cristal, A., Martorell, X., Ayguadé, E., Labarta,
J., Valero, M.: Transactional memory and OpenMP. In: Chapman, B., Zheng, W., Gao, G.R.,
Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 37–53. Springer,
Heidelberg (2008)

8. Sutter, H.: The trouble with locks. Dr. Dobbs (March 2005)
9. Lee, E.A.: The problem with threads. Technical report, Electrical Engineering and Computer

Sciences University of California at Berkeley (January 2006)

144 M. Wong et al.

10. Wong, M., Boehm, H., Gottschlich, J., Shpeisman, T.: Transactional Language Constructs
for C++ (January 2012),
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2012/n3341.pdf

11. Scott, M.L., Spear, M.F., Dalessandro, L., Marathe, V.J.: Delaunay triangulation with trans-
actions and barriers. In: Proceedings IEEE International Symposium on Workload Charac-
terization (2007)

12. Kang, S., Bader, D.A.: An efficient transactional memory algorithm for computing minimum
spanning forest of sparse graphs. In: Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2009, pp. 15–24 (2009)

13. Ansari, M., Kotselidis, C., Watson, I., Kirkham, C., Luján, M., Jarvis, K.: Lee-TM: A non-
trivial benchmark for transactional memory. In: Bourgeois, A.G., Zheng, S.Q. (eds.) ICA3PP
2008. LNCS, vol. 5022, pp. 196–207. Springer, Heidelberg (2008)

14. Gajinov, V., Zyulkyarov, F., Unsal, O.S., Cristal, A., Ayguade, E., Harris, T., Valero, M.:
QuakeTM: Parallelizing a complex sequential application using transactional memory. In:
Proceedings of the 23rd International Conference on Supercomputing, ICS 2009, pp. 126–
135 (2009)

15. Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguade, E., Harris, T., Valero, M.:
Atomic Quake: Using transactional memory in an interactive multiplayer game server. In:
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 25–34 (2009)

16. Abdelkhalek, A., Bilas, A.: Parallelization and performance of interactive multiplayer game
servers. In: Proceedings of the 18th International Parallel and Distributed Processing Sym-
posium, IPDPS (2004)

17. Lupei, D., Simion, B., Bogdan, P.D., Misler, M., Burcea, M., Krick, W., Amza, C.: Trans-
actional memory support for scalable and transparent parallelization of multiplayer games.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys 2010, pp.
41–54 (2010)

18. Guerraoui, R., Kapalka, M., Vitek, J.: STMBench7: A benchmark for software transactional
memory. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Com-
puter Systems, EuroSys 2007, pp. 315–324 (2007)

19. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional applica-
tions for multi-processing. In: Proceedings of The IEEE International Symposium on Work-
load Characterization, IISWC 2008, pp. 315–324 (2008)

20. Kestor, G., Stipic, S., Unsal, O., Cristal, A., Valero, M.: RMS-TM: A transactional memory
benchmark for recognition, mining and synthesis applications. In: Proceedings 4th ACM
SIGPLAN Workshop on Transactional Computing TRANSACT (2009)

21. Rossbach, C.J., Hofmann, O.S., Witchel, W.: Is transactional programming actually easier?
In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, PPoPP 2010, pp. 47–56 (2010)

22. Pankratius, V., Adl-Tabatabai, A.: A study of transactional memory vs. locks in practice. In:
Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2011, pp. 43–52 (2011)

23. Baek, W., Minh, C.C., Trautmann, M., Kozyrakis, C., Olukotun, K.: The opentm transac-
tional application programming interface. In: Proceedings International Conference on Par-
allel Architectures and Compilation Techniques, PaCT 2007, pp. 376–387 (2007)

24. Gottschlich, J.E., Boehm, H.J.: Generic programming needs transactional memory. In: The
8th ACM SIGPLAN Workshop on Transactional Computing, TRANSACT (2013)

25. Transactional Memory Specification Drafting Group: Transactional language constructs for
C++ (May 2014), https://sites.google.com/site/tmforcplusplus/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3341.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3341.pdf
https://sites.google.com/site/tmforcplusplus/

Towards Transactional Memory for OpenMP 145

26. Wong, M., Gottschlich, J.: SG5: Software Transactional Memory (TM) Status Report
(September 2012),
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2012/n3422.pdf

27. Luchangco, V., Wong, M.: Transactional Memory Support for C++ (February 2014),
http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n3919.pdf

28. IBM: IBM XL C/C++ for Transactional Memory for AIX, V0.9 Language Extensions and
Users Guide (May 2008),
http://dl.alphaworks.ibm.com/technologies/
xlcstm/xlcstm-whitepaper.pdf

29. Sutter, H.: (May 2014), https://isocpp.org/std/status
30. ISO C++ Standard: C++ Standard, aka C++11 (November 2011)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3422.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3422.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3919.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3919.pdf
http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf
http://dl.alphaworks.ibm.com/technologies/xlcstm/xlcstm-whitepaper.pdf
https://isocpp.org/std/status

Integrated Measurement for Cross-Platform

OpenMP Performance Analysis

Kevin A. Huck1, Allen D. Malony1, Sameer Shende1, and Doug W. Jacobsen2

1 University of Oregon, Eugene, OR 97403, USA
2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract. The ability to measure the performance of OpenMP pro-
grams portably across shared memory platforms and across OpenMP
compilers is a challenge due to the lack of a widely-implemented perfor-
mance interface standard. While the OpenMP community is currently
evaluating a tools interface specification called OMPT, at present there
are different instrumentation methods possible at different levels of obser-
vation and with different system and compiler dependencies. This paper
describes how support for four mechanisms for OpenMP measurement
has been integrated into the TAU performance system. These include
source-level instrumentation (Opari), a runtime “collector” API (called
ORA) built into an OpenMP compiler (OpenUH), a wrapped OpenMP
runtime library (GOMP using ORA), and an OpenMP runtime library
supporting an OMPT prototype (Intel). The capabilities of these ap-
proaches are evaluated with respect to observation visibility, portability,
and measurement overhead for OpenMP benchmarks from the NAS par-
allel benchmarks, Barcelona OpenMP Task Suite, and SPEC 2012. The
integrated OpenMP measurement support is also demonstrated on a sci-
entific application, MPAS-Ocean.

1 Introduction

Any parallel language system based on compiler interpretation of parallel syn-
tax, code transformation, and runtime systems support introduces the question
of how external tools can observe the execution-time performance of the gener-
ated program code. In general, the parallel language observability problem is one
of performance visibility coupled with semantic context. Performance visibility
is the means by which a tool can gain access to and can acquire information
about the parallel execution performance. Because the parallel program is be-
ing transformed during compilation and is utilizing a runtime environment for
execution, there are different levels where visibility can be made operative. How-
ever, it is precisely for this reason that performance data must be augmented
with semantic information about the context in which the data was acquired,
in order to understand its relevance and be able to link performance behavior
across levels. The coupling between visibility and context can be implicit (e.g.,
an instrumented event could carry semantics) or explicit (e.g., the compiler or
runtime allows certain state to be queried). The key point is that observing par-
allel language performance requires both types of capabilities and with support
across different levels of program generation and execution.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 146–160, 2014.
c© Springer International Publishing Switzerland 2014

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 147

OpenMP [2] is a widely supported and commonly used programming spec-
ification for multi-threaded parallelism in which performance observability has
been an important consideration as well as a challenge to provide in a portable
manner. It is a pragma-based language extension for C/C++ and Fortran plus
a user-level library that relieves the programmer from the burden of creating,
scheduling, managing, and destroying threads explicitly. Compilers supporting
OpenMP hide this complexity by generating code that supports the (user facing)
concurrency semantics in the OpenMP language, but interfaces with a runtime
environment that is free to build (system facing) thread-level operation in what-
ever way is desired. Thus, available OpenMP compilers, both open source (e.g.,
GNU, OpenUH/Open64) and vendor supplied (e.g., IBM, Microsoft, Intel, PGI,
Cray), offer alternative implementations on different platforms.

How can portable OpenMP performance measurement and analysis be pro-
vided across compilers and platforms given this situation? The OpenMP commu-
nity discussed performance observability requirements early on in its history and
there has been a strong interest in defining a tools API as part of the OpenMP
standard. Efforts are underway by the OpenMP Tools Working Group in this
regard. In the meantime, various techniques have been created to enable Open-
MP performance analysis. This paper presents the present landscape and looks
at the integration of different OpenMP observation techniques with a common
measurement infrastructure, the TAU Performance SystemR© [31].

The main contribution of this work is the creation of a robust, cross-platform
OpenMP performance measurement system that utilizes the available support
for observing OpenMP runtime system behavior. Four different approaches were
integrated with TAU serving as the core measurement framework, including a
portable tool for GCC OpenMP performance analysis. The overall goal is to
provide significant coverage across OpenMP environments and parallel systems
to allow portable performance evaluation of OpenMP applications.

2 Background

As described by Mohsen et al. [24], several performance tools can perform thread-
specific measurement of an OpenMP application. In some cases, vendor-supplied
tools such as the Intel Thread Profiler [12] provide specific details about one par-
ticular OpenMP compiler by utilizing proprietary instrumentation in the Open-
MP runtime. On the other hand, portable performance tools such as TAU [31],
ompP [5], Kojak [23], Scalasca [6] and Vampir [14] provide thread-specific mea-
surements that can include the OpenMP static and runtime context, such as the
parallel region location or synchronization operation (barrier, lock, atomic, crit-
ical), but only if that information is available. Typically, to access the OpenMP
context these performance tools rely on either instrumentation of the application
code or the OpenMP runtime itself, if it is available.

Two early efforts to define a tools interface for OpenMP performance observa-
tion were POMP [22] and the Sun/Oracle OpenMP Runtime API (ORA), better
known as the Collector API [13]. The POMP interface was intended to be used

148 K.A. Huck et al.

by a source code instrumentation system which would insert POMP calls with-
in an application that was rewritten to expose OpenMP execution events. The
Opari [22] OpenMP rewriting tool supported the POMP interface. In contrast,
the Collector API was intended to be implemented by an OpenMP runtime. It
exposed certain runtime events and information about OpenMP state to mea-
surement tools.

Neither of these two approaches gained enough traction to be widely adopted,
resulting in various approaches being used in both portable and proprietary
compilers. Recently, there has been a resurgence of effort by the OpenMP Tools
Working Group towards an OpenMP API standard for tools, called OMPT [3].
This work shows strong signs of a broader commitment from multiple compiler
vendors and has a good chance of being included in the OpenMP standard.
The availability of the GCC OpenMP runtime library (GOMP) [9] and the
recent open-sourcing of the Intel OpenMP runtime system [11] makes other
performance observability support possible.

The integration of all of these methods can significantly extend the coverage
and cross-platform portability of an OpenMP measurement and analysis tool.
What is necessary is a parallel performance system robust enough to imple-
ment the different techniques being used and already portable across parallel
programming environments and platforms. TAU is an example of a portable
profiling and tracing toolkit for performance analysis of parallel programs writ-
ten in languages supporting OpenMP and running on a variety of shared and
distributed memory parallel architectures. TAU provides different means for in-
strumentation (source, library, binary) and is capable of gathering performance
information (time, hardware counters) about functions, methods, basic blocks
and statements as well as periodic sampling. TAU is distributed with profile and
trace analysis tools, a performance database, and a data mining package.

Given a performance system like TAU, the opportunity is there to integrate
multiple OpenMP observation techniques with a common measurement and
analysis infrastructure. Doing so will enable both cross-platform performance
analysis coverage and means to evaluate OpenMP performance for different com-
piler and system environments.

3 Approach

Fig. 1. Instrumentation flow for OpenMP
programs with different measurement ap-
proaches

Our strategy to integrate different
approaches for performance observa-
tion of OpenMP runtime behavior has
the goal of cross-compiler / cross-
platform performance analysis and
evaluation. Figure 1 shows how each
approach is integrated with the TAU
system. First, source code instru-
mentation uses the POMP interface
and the Opari [22] tool. Second, the

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 149

OpenMP Collector API [13], as implemented in the OpenUH [17] compiler and
associated runtime, is interfaced with TAU. The third approach wraps the GNU
OpenMP runtime library, GOMP [9], with a measurement interface that imple-
ments the Collector API. Finally, the proposed OpenMP Tools API (OMPT) [3]
is supported in TAU and we tested it with a modified version of the recently
open-sourced Intel OpenMP runtime combined with the Intel compiler suite.

3.1 POMP and Opari

The OpenMP Pragma And Region Instrumentor (Opari) [22] is a source-to-source
code transformationutility to parseC/C++ and Fortran source code, locateOpen-
MP pragmas, insert instrumentation via the POMP [21] interface, and write out
instrumented application code. Opari has been the OpenMP instrumentation tool
for TAU [31], Kojak [23], and Scalasca [6] for several years. However, because
Opari relies entirely on source transformation and instrumentation, by choice it
constrains what can be observed of runtime operations. Instead, it attempts to
provide a performance view with respect to program semantics only, including
raising the awareness of certain runtime behavior (e.g., synchronization) to a high-
er level for observation. Interestingly, in doing so, Opari is able to potentially pro-
vide more context for performance events, but with no insight into the OpenMP
runtime implementation or uninstrumented OpenMP libraries.

Opari is highly portable and compatible with all OpenMP compilers and run-
times. Unfortunately, there are some drawbacks. First, the user application must
be passed through the Opari instrumentor, which modifies the original source
code. Automated source instrumentation can be problematic if the source code
includes complex preprocessor macros or language features that are not well
supported by the parser in the instrumentation framework. In addition, the in-
strumentation of lightweight work sharing and tasking regions at the source
level can introduce significant overhead in performance measurements. Source
instrumentation can also prevent compiler and/or runtime optimizations. Sec-
ondly, applications typically rely on uninstrumented libraries that cannot be
re-compiled. These libraries may have OpenMP parallel regions in them, but are
a blind spot to any performance measurement. In fact, the OpenMP runtime
itself is also a blind spot. Lastly, there are some OpenMP features that are hard
to support with a purely source rewriting approach, such as untied tasks.

3.2 OpenMP Runtime API (Collector API)

In an attempt to encourage OpenMP compiler developers to integrate a perfor-
mance tool interface into their runtime systems, Itzkowitz et al. [13] proposed
an OpenMP Runtime API (ORA) for profiling, commonly known as the Col-
lector API. The external API consists of a single function call to interact with
the runtime system, whose purpose is to manage the collector (initialize, pause,
resume, terminate), register a callback function for a predefined set of significant
event transitions in the runtime, or query an executing thread’s state through a
signal safe request. The callback function is particularly useful for profiling and
tracing tools that use timer probes for measurement. The state query feature

150 K.A. Huck et al.

provides support for sampling-based performance tools. Altogether, the API
provides relatively good coverage of the internal performance of an OpenMP
runtime implementation. In the original specification, there are 11 mutually ex-
clusive states (for sampling support) and 22 defined callback events, representing
the entry and exit for OpenMP 2.0 pragmas. additional events and states have
been proposed [27] to include task support in OpenMP 3.0. For a performance
measurement library to take advantage of ORA, only a few features need to be
implemented. The measurement library needs to implement and register one or
more event handlers to process the events as they are encountered. Alternative-
ly, a sampling measurement library can request the state of a thread when the
execution is interrupted and sampled by the measurement library. The TAU im-
plementation provides full support for ORA, including both events and states.
For sampling, when an application thread is interrupted, the OpenMP runtime
is queried using the API to get the state of the thread after the thread source
code location is determined using libbfd [8] and optionally, libunwind [33].

However, encouragement of a performance tool API and actual adoption are
two different things. Even though the OpenMP ARB sanctioned the Collector
API interface specification, it has only been implemented in the the OpenUH
compiler [18] and the Oracle Solaris Studio compiler [26]. While there have been
several evaluations of the Collector API as implemented in the OpenMP runtimes
of OpenUH [10,1] and Solaris Studio [19], previously only Oracle’s Solaris Studio
Performance Tool and OpenUH’s profiling tool use ORA.

3.3 GOMP Wrapper

The GNU Compiler Collection (GCC) [7] is a widely used open-source compiler
suite for C/C++ and Fortran that has provided support for OpenMP since
version 4.2. The runtime library for GCC is called libgomp, or more commonly,
GOMP. GOMP consists of approximately 60 API calls which GCC compilers,
other compilers, or source transformation tools can use to implement an OpenMP
runtime. For instance, the Rose transformation tool [28,29] uses GOMP as one of
its OpenMP runtime targets. The open source availability of GOMP provides us
with a means to interpose performance instrumentation at the library interface.
TAU includes a utility for generating a measurement wrapper around external
libraries that cannot be or simply are not instrumented [32]. Using the function
declarations for the library (in the form of one or more header files), TAU will
generate a new shared object library which replaces the wrapped symbols with
proxy functions that provide ORA support and call the real library functions
during execution. The wrapper interposition library can be preloaded before
application execution. For statically linked executables (which do not support
dynamic symbol loading), a similar functionality is also available at link time.

The result of our work is that TAU now has Collector API runtime support for
all GCC compilers and the GOMP runtime. Our wrapper library will work with
any GCC compiled OpenMP application on any platform where it is supported.
However, a library wrapping approach comes with certain limitations, namely
none of the GOMP internals are visible for performance measurement. As we

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 151

shall see in the next section, though, visibility within the runtime is key to
understanding cause-and-effect relationships within threading synchronization.

3.4 OpenMP Tools API

Based on experiences with Opari and ORA, a broader group of interested parties
has been working on extending the OpenMP specification to include a formal
performance and debugging tool interface. The proposed specification is called
OMPT: OpenMP Tools Application Programming Interfaces for Performance
Analysis [4]. Like ORA, OMPT includes support for events and states. Un-
like ORA, OMPT has broad support from several compiler vendors as well as
tool developers. The OMPT draft specification is complete and is available as
a Proposed Draft Technical Report at the OpenMP Forum website [25]. The
key OMPT design objectives are to provide low overhead observation of Open-
MP applications and the runtime in order to collect performance measurements,
provide stack frame support for sampling tools and incur minimal (near zero)
overhead when not in use. OMPT specifies support for a larger set of events
and states, and can therefore be considered a superset of ORA. In addition,
OMPT specifies additional insight into the OpenMP runtime in the form of da-
ta structures populated by the runtime itself. These data structures include the
parallel region and task identifiers, wait identifiers and stack frame data. Finally,
OMPT specifies interfaces for applying blame shifting logic to resource synchro-
nization [20]. From a tool developer perspective, the broad support and large set
of events and states makes OMPT the most attractive approach of those tested.

There are two known OMPT runtime implementations. In April 2013, In-
tel open-sourced their OpenMP runtime[11] and members of the OMPT draft
committee implemented a first version of support for Intel compilers. We have
contributed to this effort, adding the event callbacks to key locations in the Intel
runtime. In addition, IBM has prototyped support in an experimental limited re-
lease version of the XL compilers. There are plans to implement OMPT support
within the GOMP library for the GNU compiler runtime as well.

Support for OMPT in TAU is similar to that for ORA, with some key differ-
ences. First, each event in OMPT is registered to different handlers, and not all
events are fully supported yet. All OMPT states are supported, but TAU does
not yet take advantage of the blame shifting support. However, because ORA
and OMPT are conceptually very similar, the integration of OMPT support in
TAU reuses much of the ORA infrastructure, including the use of libbfd.

3.5 Comparison of Measurement Support

Table 1 shows the coverage for the different OpenMP measurement approaches.
We have separated ORA into three columns: the specified support, the extended
task support in the OpenUH compiler, and the support provided by our GOMP
wrapper. Note that because the GOMP wrapper and Opari have no access to the
runtime internals, they cannot report on all implicit barriers or task preemption.
Task preemption is somewhat of a moot point for the GOMP runtime – as of
v4.8.2 it does not perform any preemption or migration of tasks.

152 K.A. Huck et al.

Table 1. OpenMP pragma / event coverage using different measurement techniques

OpenMP Feature Opari ORA OpenUH ORA GOMP ORA OMPT

Parallel Region enter/exit, begin/end Yes Yes Yes Yes

Thread create/exit pthread create/exit No No No Yes

Work Sharing enter/exit, begin/end Yes Yes Yes Yes

Atomics enter/exit waiting state waiting state waiting state Yes

Barriers explicit only Yes Yes explicit, some implicit Yes

Critical enter/exit, begin/end waiting state waiting state waiting state Yes

Master begin/end Yes Yes Yes Yes

Ordered enter/exit, begin/end Yes, wait state wait state wait state Yes

Sections enter/exit, begin/end No No No Yes

Single begin/end Yes Yes Yes Yes

Locks lock wrappers waiting state waiting state waiting state Yes

Task Creation begin/end Yes Yes Yes Yes

Task Schedule No No Yes No Yes

Task Wait begin/end Yes Yes Yes Yes

Task Execution begin/end Yes Yes Yes Yes

Task Completion No No Yes No Yes

Task Yield No No Yes No Yes

Table 2. OpenMP profile timer events captured by each method for the cfft1 function
in the NPB 3.2.1 FT.B benchmark. GOMP ORA and OpenUH ORA are similar.

Opari

ORA

OMPT

Table 2 shows a selection of profile timers from each of the event-based mea-
surement methods for benchmark code. The profile views are from ParaProf,
the interactive TAU profile visualization and analysis tool. All methods show
the parallel region and barrier timers in the cffts1 function. The Opari mea-
surements refer to code locations only by source code line numbers rather than by
function name. The Opari measurement adds more timers to the profile, which
can potentially increase measurement overhead, as we shall see in Section 4. The
GOMP and OpenUH measurements are very similar, as they both use the same
ORA support in TAU. It should be noted that like Opari, OMPT provides sep-
arate events for work sharing loops, whereas ORA attributes productive time in
those loops to the enclosing parallel region.

4 Experiments

4.1 Benchmark Measurements

In order to evaluate the OpenMP measurement methods and the TAU inte-
gration, we first compared the measurement capability and overhead added to

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 153

applications under different scenarios. We used three compilers in our study,
GNU GCC versions 4.4.7 and 4.8.0, OpenUH 3.0.26 with prototype extensions
to the Collector API for task events, and Intel 13.1.2. As described in Section 3,
OpenUH includes Collector API support built-in. Collector API support for
libGOMP is provided by our wrapper library. The Intel-compiled experiments
replaced the standard OpenMP runtime library with the modified open-source
version with OMPT support. It should be strongly noted that our experiments
are not intended to demonstrate the comparative performance differences be-
tween compilers and runtimes with benchmark applications. Rather, our experi-
ments are intended to show broad measurement coverage with various compilers
under various scenarios, and measure the overhead of performance measurement
with TAU linked in. The main purpose of the experiments is to demonstrate that
using various OpenMP performance measurement techniques is possible with a
single measurement system.

For each compiler, we generated baseline executables of the applications and
compared the execution time to each of two different types of OpenMP perfor-
mance measurement. The baseline compilation used the highest available (and
stable) optimization (-O3 for most cases, -Ofast for OpenUH in the BOTS bench-
marks). The baseline executables were executed and the runtimes collected. The
applications were then instrumented with Opari and recompiled using each of
the compilers with the same optimization settings. In these experiments, the ap-
plications were built with TAU compiler wrappers that manage the instrumen-
tation and compilation process. Because Opari does not support untied tasks,
the BOTS benchmarks were executed as tied tasks. For two sets of benchmarks
(NPB, BOTS), each of the baseline executables were then also executed using
tau exec, a utility that preloads TAU measurement libraries and enables the
Collector API tool support. The GOMP library wrapper was also preloaded for
GCC executables. Similarly, the modified Intel OpenMP runtime library was al-
so preloaded for Intel executables. Because the SPEC 2012 build framework was
not amenable to using tau exec to execute the SPEC benchmarks, those appli-
cations were minimally instrumented (main only) with TAU prior to compilation
and the required TAU and OpenMP measurement libraries were used.

In all, three variants for each compiler were tested with 31 benchmark ap-
plications. The applications tested include well known OpenMP benchmarks
from three different OpenMP benchmark suites - the NAS Parallel Benchmarks
v3.2.1, SPEC 2012 OpenMP Benchmarks, and The Barcelona OpenMP Task
Suite (BOTS) version 1.1.2. Three pairs of benchmarks (BT and 357.bt331, LU
and 371.applu331, MG and 370.mgrid331) are in both NPB and SPEC, although
they do represent different versions of the codes. The applications were compiled
and executed on a single “fatnode” node of the ACISS cluster at the University of
Oregon [34] with four Intel X7560 2.27GHz 8-core CPUs and 384GB of memory.
For all experiments, OMP NUM THREADS was set to 32 prior to execution. All other
OpenMP runtime parameters used the runtime default settings. Each experiment
variant was executed 10 times, and the fastest execution of the 10 is reported
in the results. Over 2790 executions were generated. The self-reported execution

154 K.A. Huck et al.

Table 3. Overhead measurements for 32 threads on ACISS

GNU INTEL OPENUH

NPB 3.2.1 Benchmark Baseline Opari ORA Baseline Opari OMPT Baseline Opari ORA

BT.B 17.92 19.96 22.42 16.18 16.56 16.80 18.58 18.85 19.37
CG.B 7.49 7.68 7.51 7.31 7.96 7.63 8.02 8.93 9.39
EP.B 2.92 2.99 2.96 1.40 1.42 1.40 1.47 1.51 1.51
FT.B 3.17 3.13 3.13 3.21 3.27 3.29 3.60 3.57 3.65
IS.B 0.75 0.74 0.74 0.75 0.75 0.75 0.81 0.83 0.82
LU.B 12.37 17.43 12.38 12.25 26.71 13.22 13.31 26.37 14.32
LU-HP.B 22.00 42.86 31.26 19.24 51.74 30.93 23.13 86.17 39.04
MG.B 1.21 1.61 1.30 1.08 1.27 1.13 1.16 1.51 1.31
SP.B 16.02 16.10 16.53 14.55 15.53 15.59 16.61 18.07 19.62

BOTS 1.1.2 Benchmark Baseline Opari ORA Baseline Opari OMPT Baseline Opari ORA

alignment.single 1000 70.59 73.99 70.77 48.85 48.90 48.86 56.19 56.44 56.20
fft 134217728 132.55 124.93 127.94 3.57 5.52 4.61 11.69 13.05 13.78
fib 30 23.91 27.11 28.89 0.10 1.71 1.33 0.97 4.16 3.18
floorplan 15 226.58 225.71 234.35 0.70 11.44 6.06 18.95 24.09 21.38
health small 38.78 37.04 29.47 0.46 1.78 0.98 2.41 2.70 2.72
nqueens 12 120.18 134.28 156.44 0.13 5.14 3.87 10.17 11.92 11.18
sort 134217728 20.76 26.83 22.73 2.44 2.49 2.55 2.90 3.15 3.17
sparselu.single 100x100 4.11 4.19 4.10 11.49 11.52 11.60 3.82 3.85 3.83
strassen 8192 0.02 0.02 0.03 0.03 0.03 0.04 0.01 0.04 0.03
uts small 53.54 212.57 218.78 11.00 64.84 34.26 segv n/a n/a

SPEC 2012 Benchmark Baseline Opari ORA Baseline Opari OMPT Baseline Opari ORA

351.bwaves 23.99 24.38 24.18 segv n/a n/a segv n/a n/a
352.nab 24.00 25.85 29.41 20.40 22.96 21.40 35.13 35.80 35.68
357.bt331 20.69 n/a 21.44 18.27 22.49 18.75 21.41 n/a n/a
358.botsalgn 1.07 1.21 3.65 1.07 1.25 1.07 1.05 1.08 1.15
359.botsspar 2.67 2.97 2.87 2.78 2.31 1.88 2.87 1.12 2.89
360.ilbdc (test) 502.76 282.18 313.58 13.33 13.47 13.48 14.16 14.36 15.65
362.fma3d 14.31 15.05 47.73 13.15 13.58 13.16 19.88 24.74 24.57
363.swim 10.18 11.13 10.21 10.26 10.97 10.29 22.36 n/a 23.00
367.imagick 19.40 19.44 19.52 5.84 5.86 6.04 145.97 145.85 146.06
370.mgrid331 0.72 1.37 0.86 0.65 1.85 1.10 0.75 2.71 2.57
371.applu331 3.82 12.26 6.16 3.45 13.07 4.29 segv n/a n/a
372.smithwa 1.89 2.19 2.18 1.45 1.45 1.50 2.58 2.62 2.61

times for the different benchmarks, compilers and measurement approaches are
displayed in Table 3. There are several interesting differences between compilers
and measurement methods which we discuss below.

In the NAS suite of benchmarks, we observe that the LU-HP benchmark
has very high measurement overhead for all methods due to the fact that it
executes ∼300,000 parallel region iterations of very small granularity. It is al-
so interesting to note that the LU benchmark with Opari instrumentation has
significantly higher overhead, due to the fact that ten times as many timer invo-
cations (34, 239, 023) were added to the application as compared to those added
by the ORA/OMPT methods (< 3, 456, 152).

Because they are task-based, the BOTS benchmarks provide some of the most
striking differences between compiler / runtime execution times. For nearly all
task based benchmarks, the GCC benchmarks lag far behind the other OpenMP
runtimes. The floorplan GCC profile measured that nearly all of the execu-
tion time is spent creating tasks and waiting for their execution (97% of 234s).

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 155

Table 4. Best execution times for
BOTS benchmarks using baseline
and modified GCC 4.8.2 runtime with
lock-free queues

Benchmark Baseline Lock-free
alignment 70.59 0.73
fft 132.55 4.18
fib 23.91 0.80
floorplan 226.58 1.42
health 38.78 5.72
nqueens 120.18 0.73
sort 20.76 2.00
sparselu 4.11 4.05
strassen 0.02 11.85
uts 53.54 45.73

The Intel OMPT profile measured very lit-
tle processing overhead in comparison (<
1% of 7.4s). The OpenUH profile measured
a significant amount of time spent sus-
pending tasks, rather than just executing
them (51% of 21.464s). These profiles re-
flect the behaviors of the different task cre-
ation and scheduling implementations used
in the runtimes. The GCC runtime has a
queueing mechanism for processing tasks,
but the TAU profiles show that there is con-
siderable lock contention in the task cre-
ation and execution steps. Locked access
to the queue perturbs the execution when
thread counts increase, the work per task
is small and the taskwait directive is used.
With the FFT benchmark, we verified that
adding the if(0) clause to the last task directive before all taskwait directives
executes those tasks immediately without queuing, reducing lock contention and
improving performance. These measurements clearly suggest that reducing the
lock contention within the GCC task scheduler would be helpful. To test this the-
ory, we rewrote the GCC 4.8.2 task scheduler using lock-free bounded queues for
both the main queue and the child queues for all parent tasks, along with other
necessary changes. The measured times for our modified scheduler are in Ta-
ble 4. While the execution times for most benchmarks are reduced, the strassen
test performed worse. We will continue to study the runtime in the interest of
contributing a faster task scheduler to the GCC runtime.

The BOTS benchmarks also demonstrate that instrumenting and measuring
lightweight tasks can incur significant overheads. Returning to the floorplan
example, consider the difference between the unperturbed Intel execution and
those which use Opari instrumentation or process OMPT events. The execution
in question generates millions of short-lived, lightweight tasks whose lifetimes
are far shorter than the amount of time required to measure them. The Intel
OMPT profile executes an average of 601, 046 tasks per thread in an execution
that, unperturbed, executes in 0.70 seconds. In the profile observed with OMPT,
the exclusive time per task ranges between 7.1 and 13 μs. Clearly, the work
granularity is too small for instrumentation and is better measured with ORA
or OMPT sampling state support. In a sampled TAU profile of the OpenUH
version, the runtime shows no significant thread scheduling overhead. Comparing
these OpenUH profiles suggests that the main cause of measurement overhead
in this benchmark is in monitoring every CREATE TASK and SUSPEND TASK event.

The SPEC benchmarks had a few problems building and executing with-
out errors. The 351.bwaves benchmark crashed at the first parallel region with
both the Intel and OpenUH compilers when running the baseline build, and the
OpenUH build of 371.applu331 also failed to execute. 357.bt331 and 363.swim

156 K.A. Huck et al.

failed to link with the POMP framework after instrumentation and compilation.
The minimally instrumented 357.bt331 benchmark also failed to link with TAU
and OpenUH. These build issues underscore the reasoning why users sometimes
are reluctant to rely on instrumentation techniques in order to measure the per-
formance of an application. Otherwise, the benchmarks executed as expected.
Like the related NPB LU.B benchmark, the 371.applu331 benchmark showed
significantly higher overhead with Opari.

The most interesting SPEC performance case is the 360.ilbdc benchmark.
The execution times are much higher when compiled with GCC than with Intel
or OpenUH. Using both the event tracking and sampling support in ORA to
collect a TAU profile, we observe that a vast majority of the time is spent in
the GOMP runtime. Examining the benchmark source code revealed that the
parallel regions use the runtime scheduler, which in the case of GCC defaults
to dynamic with a chunk size of 1 (Intel and OpenUH use static scheduling by
default). Changing the scheduler to guided (or static) eliminated the runtime
overhead and reduced the execution times for the baseline, Opari and ORA
measurements to 39.25, 43.08 and 42.25 seconds, respectively. Having a cross-
platform OpenMP measurement system allows performance differences between
compilers to identify possible operational characteristics that might be adjusted,
such as the scheduling option.

4.2 MPAS-Ocean

The Model for Prediction Across Scales (MPAS) [15] is a framework project
jointly developed by the National Center for Atmospheric Research (NCAR)
and Los Alamos National Lab (LANL) in the United States. The framework
is designed to perform rapid prototyping of single-component climate system
models. Several models have been developed using the MPAS framework. MPAS-
Ocean [30] is designed to simulate the ocean system for a wide range of time
scales and spatial scales from less than 1 km to global circulations.

MPAS-Ocean is developed in Fortran using MPI for large scale parallelism.
MPAS-Ocean has been ported to several architectures and compilers, and in
an effort to increase concurrency and efficiency on a wider range of large-scale
distributed systems with multicore nodes OpenMP work-sharing regions have
been introduced.

The MPAS-Ocean application had previously been instrumented with internal
timing functions. TAU was integrated by replacing the timing infrastructure
with TAU timers. The application instrumentation was mostly at a high level,
encapsulating key phases in the simulation model. Linking in the TAU library
also provides measurement of MPI communication through the PMPI interface,
hardware counter data using PAPI, and OpenMP measurement through ORA
(GCC) or OMPT (Intel).

A large scale parameter sweep was performed to examine the scaling behavior
for a number of design decisions, including decomposition methods, solver imple-
mentations and OpenMP runtime scheduler. MPAS-Ocean was compiled with
Intel 13 compilers and executed on Hopper [16], a Cray XE6 system at NERSC

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 157

Fig. 2. Scaling performance of MPAS-ocean using K-way data partitioning, element
decomposition, the RK4 solver and a guided OpenMP schedule. Each series represents
the number of threads per process. Scaling performance tails off for single-threaded
executions with greater than 768 processes.

with 2 twelve-core AMD ‘MagnyCours’ 2.1-GHz processors and 32 GB DDR3
1333-MHz memory per node. Figure 2 shows the scaling for one combination.
The x-axis represents the number of total cores used, and each series represents
the number of threads per process. The tail end of the figure shows that single-
threaded executions using more than 768 processes do not continue to scale, with
diminishing returns at 6144 total cores. The multi-threaded executions do not
show this behavior as severely.

The diminishing scaling results when using just one thread is related to the
domain decomposition. In a common run scenario, the problem domain is de-
composed into N blocks, where N is equal to the number of processes. Because
each process also has to process halo (ghost) cells from neighboring blocks, in-
creasing the number of blocks in the partition has the effect of increasing the
total calculations in the system as a whole. Increasing the thread count per pro-
cess is a more efficient approach than increasing the number of processes when
increasing the core count. However, increasing thread count beyond 2 threads
per process doesn’t appear to improve performance significantly. Figure 3 shows
the reason why - as the thread count per process is increased, the FLOPs per
thread decreases as expected but cache misses increase, effectively wiping out
any potential performance benefit. Figure 4 shows that not all work-sharing re-
gions are affected equally – the high ord hori flux memory behavior appears
unaffected. The conclusion is that false and/or real sharing of data structures

158 K.A. Huck et al.

(a) Inclusive FLOPs. (b) Inclusive L2 cache misses.

Fig. 3. Hardware counters for the OpenMP parallel region in MPAS-Ocean

(a) Inclusive FLOPs. (b) Inclusive L2 cache misses.

Fig. 4. Hardware counters for selected OpenMP work-sharing loops in MPAS-Ocean

in some OpenMP loops are the likely problems, and will be addressed as we
continue to study the performance of this code.

5 Conclusion and Future Work

It is preferable that the portability of OpenMP as a parallel programming model
extends to OpenMP performance measurement and analysis tools. However, until
a tools API is adopted in the OpenMP standard, a commonmeans for performance
observationwill not be available. This has been the case in the OpenMP communi-
ty for several years, leading to the collection of techniques discussed in this paper.
The main contribution of our research is the integration of these methods within
a parallel measurement infrastructure with the objective to enable cross-platform
performance analysis of OpenMP applications. We show that it is possible to re-
late the different approaches with respect to the type of performance insight they

Integrated Measurement for Cross-Platform OpenMP Performance Analysis 159

provide and to compare/contrast performance across different compilers and plat-
forms through a common performance measurement system. The NPB, SPEC,
and BOTS benchmarks allow us to evaluate the versatility of the methods and to
assess the overheads associated with their implementation.

Our involvement with the OpenMP Tools Working group on the OMPT spec-
ification allowed a prototype OMPT implementation to be developed and in-
cluded in our evaluation. Given its lineage from experience with the POMP API
and the Collector API, the proposed OMPT gives a view of what can be ex-
pected in future OpenMP compiler environments. We intend to fully implement
OMPT with TAU as a measurement backend, including blame shifting support.
However, this does not mean that we will abandon the other work reported
here. On the contrary, until OMPT is widely adopted, there will still be cause
to provide support for multiple alternatives. OMPT will be another arrow in
our OpenMP observation quiver, albeit a powerful one, making it possible to do
cross-evaluation studies with systems that still offer only one of the other ap-
proaches. Presently, our integrated OpenMP support in TAU makes it the most
portable and cross-platform of any OpenMP performance analysis tool.

Acknowledgements. This work is supported by NSF SI2-SSI grant 1148346
and DOE SciDAC grant DE-SC0006723. Doug Jacobsen was supported by the
US DOE Office of Science, Biological and Environmental Research program.
ACISS was supported by an NSF OCI Major Research Instrumentation grant
0960354. The authors would like to thank and acknowledge JohnMellor-Crummey
and the rest of the OpenMP Tools Working Group for both their contributions
to the draft OMPT standard and the opportunity to work together on the initial
implementation of OMPT in the Intel runtime.

References

1. Bui, V., et al.: Towards an implementation of the OpenMP collector API. Ur-
bana 51, 61801 (2007)

2. Dagum, L., Menon, R.: OpenMP: An industry standard API for shared-memory
programming. IEEE Computational Science Engineering 5(1), 46–55 (1998)

3. Eichenberger, A., et al.: OMPT and OMPD: OpenMP tools application program-
ming interfaces for performance analysis and debugging (2014), (OpenMP 4.0 draft
proposal)

4. Eichenberger, A.E., et al.: OMPT: An OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013)

5. Fürlinger, K., Gerndt, M.: ompP: A profiling tool for OpenMP. In: Mueller,
M.S., Chapman, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
2005/2006. LNCS, vol. 4315, pp. 15–23. Springer, Heidelberg (2008)

6. Geimer, M., et al.: The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience 22(6), 702–719 (2010)

7. GNU: GCC, the GNU Compiler Collection (2014), http://gcc.gnu.org
8. GNU: GNU Binutils (2014), http://www.gnu.org/software/binutils
9. GNU: GNU libgomp (2014), http://gcc.gnu.org/onlinedocs/libgomp/

http://gcc.gnu.org
http://www.gnu.org/software/binutils
http://gcc.gnu.org/onlinedocs/libgomp/

160 K.A. Huck et al.

10. Hernandez, O., et al.: Open source software support for the OpenMP runtime api
for profiling. In: Proceedings of ICPPW 2009, pp. 130–137. IEEE (2009)

11. Intel: Intel open source OpenMP runtime (2014), http://www.openmprtl.org
12. Intel: Intel R© Thread Profiler - Product Overview (2014),

http://software.intel.com/en-us/articles/

intel-thread-profiler-product-overview/
13. Itzkowitz, M., et al.: An OpenMP Runtime API for Profiling. OpenMP official

ARB White Paper 314, 181–190 (2007)
14. Knüpfer, A., et al.: The Vampir performance analysis tool-set. In: Tools for High

Performance Computing, pp. 139–155. Springer (2008)
15. LANL and NCAR: MPAS (2014), http://mpas-dev.github.io
16. LBL: Hopper, NERSC’s Cray XE6 System (2014), http://www.nersc.gov/
17. Liao, C., et al.: OpenUH: An optimizing, portable OpenMP compiler. Concurrency

and Computation: Practice and Experience 19(18), 2317–2332 (2007)
18. Liao, C., et al.: OpenUH: An optimizing, portable OpenMP compiler. Concurrency

and Computation: Practice and Experience 19(18), 2317–2332 (2007)
19. Lin, Y., Mazurov, O.: Providing observability for OpenMP 3.0 applications. In:

Müller, M.S., de Supinski, B.R., Chapman, B.M. (eds.) IWOMP 2009. LNCS,
vol. 5568, pp. 104–117. Springer, Heidelberg (2009)

20. Liu, X., et al.: A new approach for performance analysis of OpenMP programs. In:
ICS 2014, pp. 69–80. ACM, New York (2013)

21. Mohr, B., et al.: Towards a performance tool interface for OpenMP: An approach
based on directive rewriting. Citeseer (2001)

22. Mohr, B., et al.: Design and Prototype of a Performance Tool Interface for Open-
MP. Journal of Supercomputing 23(1), 105–128 (2002)

23. Mohr, B., Wolf, F.: KOJAK–a tool set for automatic performance analysis of paral-
lel programs. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003.
LNCS, vol. 2790, pp. 1301–1304. Springer, Heidelberg (2003)

24. Mohsen, M.S., et al.: A survey on performance tools for OpenMP. World Academy
of Science, Engineering and Technology 49 (2009)

25. OpenMP Architecture Review Board: The OpenMP R© API specification for par-
allel programming (2014), http://openmp.org/wp/openmp-specifications/

26. Oracle: Oracle Solaris Studio (2014), http://www.oracle.com/technetwork/
server-storage/solarisstudio/overview/

27. Qawasmeh, A., Malik, A., Chapman, B., Huck, K., Malony, A.: Open Source Task
Profiling by Extending the OpenMP Runtime API. In: Rendell, A.P., Chapman,
B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 186–199. Springer,
Heidelberg (2013)

28. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. Parallel
Processing Letters 10(02n03), 215–226 (2000)

29. Quinlan, D.J., et al.: ROSE compiler project (2014),
http://www.rosecompiler.org

30. Ringler, T., et al.: A multi-resolution approach to global ocean modeling. Ocean
Modelling 69(0), 211–232 (2013)

31. Shende, S., Malony, A.D.: The TAU Parallel Performance System. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

32. Shende, S., et al.: Characterizing I/O Performance Using the TAU Performance
System. In: Exascale Mini-symposium, ParCo 2011 (2011)

33. The Libunwind Project: The libunwind project (2014),
http://www.nongnu.org/libunwind/

34. University of Oregon: ACISS (2014), http://aciss.uoregon.edu/

http://www.openmprtl.org
http://software.intel.com/en-us/articles/intel-thread-profiler-product-overview/
http://software.intel.com/en-us/articles/intel-thread-profiler-product-overview/
http://mpas-dev.github.io
http://www.nersc.gov/
http://openmp.org/wp/openmp-specifications/
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/
http://www.oracle.com/technetwork/server-storage/solarisstudio/overview/
http://www.rosecompiler.org
http://www.nongnu.org/libunwind/
http://aciss.uoregon.edu/

A Comparison between OPARI2 and the OpenMP Tools
Interface in the Context of Score-P�

Daniel Lorenz1, Robert Dietrich2, Ronny Tschüter2, and Felix Wolf1,3

1 German Research School for Simulation Sciences, 52062 Aachen, Germany
2 Technische Universität Dresden, Center for Information Services and High Performance

Computing, 01062 Dresden, Germany
3 RWTH Aachen University, Department of Computer Science, 52056 Aachen, Germany

Abstract. The upcoming OpenMP tools interface (OMPT) has been designed
as a portable interface for performance analysis tools. It provides access to
OpenMP-related information at program runtime and can thus extend the anal-
ysis capabilities of current performance tools. This paper compares the func-
tionality and convenience of OMPT with OPARI2 for event-based performance
analysis. For this purpose, we integrated OMPT into the measurement infras-
tructure Score-P, which previously accessed OpenMP-related information using
only source-level instrumentation with OPARI2. For comparison, we performed
Score-P measurements of the NAS Parallel Benchmark suite and the LULESH
code with OPARI2 instrumentation and with OMPT. In each case, we deter-
mined the overhead and evaluated the output. We found that the measurement
overhead is dominated by the measurement system, while the contribution of the
event source remains negligible. Moreover, OMPT and OPARI2 provide com-
plementary views of the performance behavior. Whereas OPARI2 maintains a
strictly source-code-centric perspective that reflects OpenMP standard abstrac-
tions, OMPT mirrors the behavior of the OpenMP runtime and exposes compiler
optimizations.

1 Introduction

OpenMP is a widely used parallel programming specification for shared-memory plat-
forms. Many compilers support it to exploit thread-level parallelism on modern hard-
ware architectures. In the past, several analysis tools [5,6,8,9,11,16] that are capable of
recording and displaying OpenMP related performance data emerged, assisting users in
the optimization of their parallel programs. However, the OpenMP specification does
not define a performance monitoring interface that enables tool developers to write
portable measurement libraries. The emerging OpenMP tools interface (OMPT) [3] is
intended to address this need.

In this work, we discuss OMPT in the context of the performance measurement
infrastructure Score-P [9]. So far, Score-P captures OpenMP-related performance data
using the source-to-source instrumenter OPARI2 [14]. However, since OMPT provides

� This material is based upon work supported by the Department of Energy under Grant No.
DE-FG02-13ER26158 / DE-SC0010668.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 161–172, 2014.
c© Springer International Publishing Switzerland 2014

162 D. Lorenz et al.

callbacks signaling the begin and the end of OpenMP constructs and other important
events, it offers an attractive alternative to the current OPARI2-based instrumentation.

To evaluate the capabilities of OMPT for the event-based acquisition of OpenMP
performance data, we integrated an OMPT adapter into Score-P and compared it in
a set of different profiling and tracing scenarios with the default instrumentation via
OPARI2. Our experiments are based on an OMPT implementation in the open-source
version of the Intel OpenMP runtime [12]. To compare OMPT and OPARI2, we ran the
NAS Parallel Benchmarks and the LULESH code, either with OMPT or with OPARI2
instrumentation. We determined the overhead for both cases, and evaluated the perfor-
mance reports generated by Score-P.

The paper is organized as follows. Section 2 describes related work, in particular,
further approaches to capture OpenMP-related performance data. Afterwards, in Sec-
tion 3, we discuss the differences between the approaches taken by OPARI2 and OMPT
in more detail. Section 4 outlines our prototypical OMPT adapter implementation in
Score-P and the event model it adheres to. An evaluation of the experimental results is
given in Section 5. Finally, in Section 6, we present our conclusions.

2 Related Work

Several tools [5,6,8,9,11,16] have emerged to provide insight into the parallel execution
of OpenMP applications. Because there is no tools interface defined in the OpenMP
specification yet, analysis tools rely on different methods to acquire their data. Per-
formance tools based on sampling do not depend on an instrumenter like OPARI2.
HPCToolkit [11], for example, collects the call path along with performance metrics
at every sampling point. The routines are identified by their name and embedded in a
calling-context. HPCToolkit recently implemented OMPT support to enable advanced
analysis features like blame shifting for OpenMP applications. Another data acquisition
strategy is instrumentation, which inserts hooks into the code to capture relevant events
subject to further analysis. Advantages and drawbacks of the two approaches have been
investigated in [13].

This work focuses on the measurement infrastructure Score-P [9], which uses in-
strumentation for data collection. Score-P is a joint performance measurement infras-
tructure for several analysis tools, including Vampir [8], Scalasca [6], TAU [16], and
Periscope [1]. Currently, the performance-data collection of OpenMP events rests on
the source-code instrumenter OPARI2 [14], which provides a portable way of instru-
menting OpenMP pragmas by inserting calls to measurement functions around those
pragmas into the program code. Score-P can produce both event traces and call-path
profiles.

An alternative to OPARI2 is the ROSE compiler [15], which has been developed at
Lawrence Livermore National Laboratory. It is an open-source compiler infrastructure
to build source-to-source program translation and analysis tools for large-scale C/C++
and Fortran applications. ROSE can be used to identify and instrument all OpenMP
3.0 constructs in the source code [10]. Instead of transforming the source code, Par-
aver with Extrae as trace generator instruments OpenMP runtime routines based on a
preloading mechanism (LD PRELOAD) or DynInst [2]. The major drawback of this

A Comparison between OPARI2 and the OpenMP Tools Interface 163

approach is the limited portability, as currently only Intel, GNU and IBM OpenMP run-
times are supported. Furthermore, only visible OpenMP runtime library routines can be
instrumented, which limits the obtainable information.

3 Instrumentation Approaches

Among event-based performance analysis tools, the instrumenter OPARI2 is widely
used. OMPT also aims to support event-based tools. This section gives an overview of
OPARI2 and OMPT in the context of event-based performance analysis.

3.1 OPARI2

OPARI2 [14] is a source-to-source instrumentation tool for OpenMP applications. It an-
notates OpenMP directives and runtime library calls with calls to the POMP2 measure-
ment interface. A performance measurement infrastructure can implement these calls to
obtain information about the execution of OpenMP parallel applications. OPARI2 is in-
dependent of a specific OpenMP implementation. It parses the source code and modifies
it directly. To instrument a program using OPARI2, the application must be recompiled.
The POMP2 event model provides events marking the begin and the end of an OpenMP
construct. If an OpenMP construct refers to a structured block, OPARI2 inserts extra
enter and exit events around this block—with the exception of loop constructs. If an
OpenMP construct implies an implicit barrier, OPARI2 replaces the implicit barrier
with an explicit barrier and instruments the explicit barrier. As an example, Listing 1.2
shows how OPARI2 instruments the OpenMP construct from Listing 1.1.

3.2 OMPT

OMPT [3] is an extension proposal for the OpenMP specification. It defines a standard-
ized interface to obtain information from the OpenMP runtime system. OMPT pursues
different objectives. First, the OpenMP tools API provides state information on the
OpenMP runtime to be queried by an analysis tool. This feature is mainly intended for
sampling. OMPT distinguishes three classes of states: mandatory, optional, and flexible.
In contrast to optional states, mandatory states have to be maintained by all standard-
compliant OpenMP implementations. Finally, implementations have some freedom if
and when they indicate the transition to a flexible state.

Second, OMPT allows event-based performance tools to register function callbacks
for events of interest. For most constructs, OMPT provides begin and end events that
are triggered when a thread encounters a construct and when it finishes its execution,
respectively. Furthermore, events exist to notify a tool when threads or tasks are cre-
ated, a thread switches between the execution of two tasks, or a thread starts waiting or
ends waiting in synchronization constructs. The event callbacks are classified as manda-
tory and optional. Mandatory events have to be implemented by all standard-compliant
OpenMP implementations. The set of mandatory events is small but sufficient for basic
performance analysis of OpenMP programs. For example, mandatory events include
the start and the end of threads, tasks, and parallel regions. Nevertheless, the majority

164 D. Lorenz et al.

Listing 1.1. Example of a simple OpenMP parallel loop

#pragma omp parallel for
for (i=0; i < 100000; i++)

c[i] = a[i] + b[i];

Listing 1.2. Code generated by OPARI2 for a simple OpenMP parallel loop

POMP2_Parallel_fork(...);
#pragma omp parallel ...
{

POMP2_Parallel_begin(...);
{

POMP2_For_enter(...);
#pragma omp for nowait
for (i=0; i < 100000; i++)

c[i] = a[i] + b[i];
{

POMP2_Implicit_barrier_enter(...);
#pragma omp barrier
POMP2_Implicit_barrier_exit(...);

}
POMP2_For_exit(...);

}
POMP2_Parallel_end(...);

}
POMP2_Parallel_join(...);

of information needed by Score-P is available only as optional events. An OpenMP im-
plementation can support an arbitrary set of optional events and analysis tools can not
rely on the availability of any optional event.

3.3 Comparison

Functionality and portability: OPARI2 accesses only the source code of an applica-
tion. Therefore, OPARI2 is independent of a specific OpenMP runtime. The source
code is parsed and rewritten by OPARI2 before the code is compiled which may alter
code optimization decisions of the compiler. Performance measurement tools that want
to use OMPT need an OpenMP runtime that implements OMPT. Neither error-prone
source code parsing nor recompilation are needed with OMPT, shifting development
and maintenance costs from tool to OpenMP runtime developers. It is only necessary to
implement measurement adapters. However, tools have to live with the possibility that
certain optional events are absent.

Obtainable information: The callbacks provided by OMPT and the instrumentation in-
serted by OPARI2 follow a similar event model. For example, both methods indicate

A Comparison between OPARI2 and the OpenMP Tools Interface 165

start and completion of a construct. On the other hand, the view the two methods provide
of the application behavior is different in many regards. As a source-to-source instru-
menter, OPARI2 has access to source-code information, but not to runtime information.
Thus, it supplies many source-code details like the source-code location of constructs
or additional clauses. Essentially, the instrumentation reflects the source-code struc-
ture and is agnostic of compiler optimizations. In contrast, OMPT is implemented in
the OpenMP runtime library. Hence, it can access runtime information but lacks di-
rect knowledge of the source code. It therefore does not know the original source-code
structure but only the optimized binary code, which is why it can deliver insight into
compiler optimizations. However, this implies that OMPT provides function pointer
addresses for outlined functions of parallel regions and tasks as the only meta informa-
tion on constructs. The function pointers can be used to obtain source code information
if available. In principle, OMPT provides events for all constructs. However, most of
the callbacks are optional in OMPT. Thus, the set of available events depends on the
OpenMP implementation. With OPARI2, all events are always available, but a user can
disable the instrumentation of any set of constructs. Additionally, OMPT allows direct
measurement of waiting time in synchronization constructs. With OPARI2 a user can
only assume waiting time if the execution time of a synchronization construct is large.
Figure 1 shows the respective event trace of the OpenMP parallel loop construct from
Listing 1.1 in the Vampir trace browser. The upper two charts (white background) de-
pict the event trace recorded with OMPT callbacks. A timeline representation of the
parallel loop execution with four threads is illustrated in the first chart and the corre-
sponding call stack of the master thread is shown in the second chart. The lower two
charts (purple background) present the data obtained from the OPARI2 instrumenta-
tion for the execution of the same OpenMP construct. OMPT reflects that the OpenMP
runtime completes the execution of the parallel loop with an implicit barrier (blue re-
gion), whereas the OPARI2 instrumentation inserts an explicit barrier to the parallel
loop construct.

4 Score-P Implementation

For the purpose of this study, we implemented a Score-P prototype supporting the
OMPT interface. It was our goal to measure OpenMP applications even if the OpenMP
runtime implements only mandatory events. If optional events are available, they should
enrich the measurement with additional information. The Score-P architecture [9] con-
sists of an adapter layer which captures events and a measurement layer which passes
the data to the profiling or tracing backend. Event traces are written in the Open Trace
Format 2 (OTF2) [4], which can be analyzed with Vampir or Scalasca. Call-path profiles
are stored in the CUBE4 format.

First, we implemented a new support component for the internal thread management
under OMPT, making no assumption about the availability of optional events. Unfortu-
nately, the callbacks indicating the begin and end of an implicit task are optional events
in OMPT. However, the information when a worker thread starts or ends its execution
is essential in Score-P. Although we can estimate these times from the begin and end
of a parallel region on the master thread, we still need to know which threads belong

166 D. Lorenz et al.

Fig. 1. OMPT (white background) and OPARI2 (purple background) perspective on an OpenMP
parallel for region executed with four threads. The Vampir compare view shows the timeline and
call stack view on the respective event traces.

to the parallel region. However, Score-P only learns that a thread is executing a parallel
region if this thread triggers an event inside the region, which is not guaranteed. Thus,
if no events appear inside a parallel region, Score-P can show that there is a parallel
region but does not know about any worker threads running inside.

Second, we developed a new adapter that implements the OMPT callback functions
and translates the call-backs to Score-P events. The OpenMP runtime version that we
used for our experiments does not implement all optional events. However, for most
OpenMP constructs that occurred in our experiments, OMPT call-backs exist.

5 Evaluation

In this section, we compare OPARI2 and OMPT on the basis of performance experi-
ments with several benchmarks. We ran the NAS Parallel Benchmark (NBP) suite in
profiling mode, while we ran LULESH in tracing mode. For each test case, we chose
the minimum execution time of ten measurements.

5.1 Profiling Overhead

Our test platform was the the Linux cluster JUROPA at Forschungszentrum Jülich. JU-
ROPA has 2208 compute nodes, each equipped with two Intel Xeon X5570 quad-core
processors running with 2.93 GHz We used the Intel compiler version 11.1 to build the
OpenMP runtime, Score-P and the NPB suite. The number of threads was always eight.

A Comparison between OPARI2 and the OpenMP Tools Interface 167

-1

0

1

2

3

4

5

6

bt cg ep ft is lu sp

%
 O

ve
rh

ea
d

NAS Parallel Benchmarks (8 threads)

OPARI2

OMPT

Fig. 2. Overhead of NPB measurements with OPARI2 instrumentation and with OMPT callbacks
on JUROPA

We measured the runtime of (i) the uninstrumented codes, (ii) with OPARI2 instrumen-
tation of OpenMP constructs, and (iii) with OMPT callbacks to record OpenMP related
data. In addition to OPARI2 instrumentation and OMPT callbacks, we instrumented the
main function manually. The measured overheads are shown in Figure 2.

The overhead is low in all cases. Only the OPARI2-instrumented lu benchmark
shows an overhead of 5.4%. In all other cases the overhead is less than 3.4%. For cg,
ep, and ft, the overhead is even less than the standard measurement deviation for
these applications. With the exception of lu, the overheads of the OMPT and OPARI2
instrumentation are very similar. The difference in runtime is less than the standard
deviation. The negative overhead measured for the OMPT instrumented ep is due to
measurement deviation.

Only in the lu benchmark code, we observed a significant difference between the
overheads of OMPT call backs and OPARI2 instrumentation. The reason is due to the
more than 140,000,000 visits to OpenMP flush constructs in lu. They are instru-
mented by OPARI2, where they produce more than 95% of the events, but do not trigger
any call backs in our OMPT implementation. This is because the Intel OpenMP runtime
has no support for flush callbacks yet.

Except for the creation of a new system thread, the Score-P measurement system
performs no communication or synchronization between threads during the measure-
ment. Thus, we expect Score-P to be embarrassingly parallel. Measurements with the
lu benchmark on JUROPA with up to 16 threads show that the speedup of the OPARI2
instrumented code, the OMPT based measurement and the uninstrumented code are
identical.

168 D. Lorenz et al.

0,5

1

1,5

2

2,5

20
(0,79)

30
(1.44)

40
(2.69)

50
(4.83)

60
(8.02)

70
(12.43)

80
(18.94)

90
(30.37)

100
(41.13)

Ru
nt

im
e

(r
el

at
iv

e)

Problem Size
(Base runtime without code changes or instrumentation (in seconds))

Lulesh 2.0 (16 threads)
Empty Callbacks
OMPT Tracing
OPARI Tracing
Lulesh (modified)
OMPT Tracing (modified)

Fig. 3. Runtimes of LULESH with OPARI2 instrumentation and OMPT callbacks. Runtimes are
relative to the runtime of the uninstrumented LULESH code. In the modified (and also uninstru-
mented) version, the implicit barrier was manually exchanged for an explicit barrier, similar to
the transformation performed by OPARI2 (Listings 1.1 and 1.2).

5.2 Tracing Overhead

LULESH [7] is a shock hydrodynamics code developed at Lawrence Livermore Na-
tional Laboratory. It is known to challenge machine performance. Furthermore, it
stresses compiler vectorization, OpenMP overheads, and intra-node parallelism. For
the latter, it employs for loops in simple non-nested parallel regions. We used LULESH
version 2.0 and conducted our experiments on the Sandy Bridge partition of the HPC
cluster Taurus at Technische Universität Dresden. We ran the job with 16 threads on a
single node, which is equipped with two Intel Xeon CPU E5-2690 (8 cores) at 2.90GHz
and hyperthreading disabled. LULESH, the open source version of the Intel OpenMP
runtime, and the measurement system Score-P were compiled with the Intel compiler
version 13.0.1. To record a similar set of events with both instrumentation approaches
and enable the visualization of worker threads, we inserted calls to the implicit task
begin and end callbacks into the the Intel OpenMP runtime.

We ran LULESH with different problem sizes for a fixed number of 200 iterations.
Figure 3 shows the the runtimes relative to the original LULESH code without instru-
mentation. The runtime of the LULESH code without any instrumentation increases
from 0.79sec for a problem size of 20 to 41.13sec for the problem size 100. The prob-
lem size defines the workload and increases the total computation time, whereas the
number of OpenMP events stays constant. As the number of measurement events is
independent of the problem size, large instrumentation overheads can be forced with
small problem sizes and vice versa. For problem sizes smaller than 90, the OPARI2
instrumented version has between 9 and 73 percentage points less overhead than the

A Comparison between OPARI2 and the OpenMP Tools Interface 169

Table 1. Number of constructs distinguished by OPARI2 and OMPT for bt and ft. The OMPT
implementation in our version of the Intel OpenMP runtime does not yet support atomic regions.
For most OpenMP constructs, OMPT-based measurements merge constructs of the same type
and aggregate their data.

bt ft
Construct OPARI2 OMPT OPARI2 OMPT

atomic 2 – 0, –
barrier 19 aggregated 9, aggregated
loop 30 aggregated 8 aggregated
master 5 aggregated 1 aggregated
parallel 10 10 9 10

OMPT version. For problem sizes from 50 to 80, the OPARI2 instrumented code was
even faster than the uninstrumented code. During instrumentation, OPARI2 substitutes
explicit barriers for implicit barriers, as depicted in Section 3.1. If we apply this change
manually to the LULESH source code, the uninstrumented code runs up to 26% faster
than the unmodified version. As a consequence, the measurements with OMPT are
much faster, too. The measurements with the modified code are shown in Figure 3 as
dashed lines. We believe that this change alters the compile-time optimization deci-
sions and constitutes the major reason why the OPARI2-based and the OMPT-based
measurements are different.

5.3 Structural Differences in Performance Content

In the following, we highlight structural differences in the output of the two methods.
As these differences are based on the instrumentation technique, our observations apply
to both profiling and tracing equally.

The first observation is that OPARI2 provides source code information on every
OpenMP construct, which allows the user to distinguish them during analysis. Except
for parallel constructs and tasks, OMPT does not provide any information to distinguish
constructs of the same type. Thus, for all remaining construct types, constructs of the
same type appear merged and their performance data aggregated. This can be illustrated
with profiling data from NPB. Since OPARI2 measurements can distinguish multiple
OpenMP constructs of the same type appearing inside the same call path, the call tree
of the OPARI2-instrumented code might look more differentiated. Table 1 shows the
number of distinguishable constructs OPARI2 and OMPT recognize. To quantify the
additional information the distinction among constructs of the same type provides, we
counted the number of call paths (i.e., nodes) in the call tree (Table 2).

Table 2 shows that in most cases the OPARI2 profiles contain significantly more call
paths than the OMPT profiles. For bt, cg, and lu, the OPARI2 profiles show more than
twice as many call paths as the OMPT profiles. A remarkable exception is ft, where
the OMPT instrumentation leads to more call paths than the OPARI2 instrumentation
because it shows one additional outlined function for a parallel construct. Both profiles

170 D. Lorenz et al.

Table 2. Number of visits and different call paths in the profile of NPB codes, measured with
OPARI2 and OMPT

bt cg ep ft is lu sp

OPARI2 Visits 47,994 147,990 154 2682 810 148,517,435 133,690
Call paths 67 54 12 28 23 95 79

OMPT Visits 34,197 127,571 54 172 626 1,712,033 90,265
Call paths 32 26 11 31 18 34 44

(a) OPARI2 (b) OMPT

Fig. 4. Comparison of the ft call trees generated with OPARI2 and with OMPT

are shown in Figure 4a and Figure 4b. The source code contains nine parallel constructs,
as identified by OPARI2.

A second observation are the different visit counts produced by the two methods.
This has several reasons. First, our OMPT implementation did not yet support all con-
structs that appeared. For example, in lu more than 95% of the visits in the OPARI2
instrumented measurement stem from flush constructs, for which the OMPT imple-
mentation does not produce events yet. Another reason is that the OPARI2 module of
Score-P counts the start and the end of the implicit task inside the parallel region for
every thread. Because the implicit task begin event is optional in OMPT, the OMPT
module in Score-P must rely on the begin of the parallel region itself, which happens
only on the master thread. However, this could be easily changed in a post-processing
step, or by implementing the implicit task-begin event callback in the OpenMP runtime.

In some cases, compiler optimizations affect the visit count, which is the number
of times a call path has been visited. For example, a loop in the main routine of ft
iterates over subroutine calls to evolve, fft, and checksum, which contain paral-
lel constructs. The OPARI2 measurement shows 20 or more visits per thread for these
parallel constructs. However, the OMPT measurement shows only one visit for each of
its 10 parallel constructs. Our explanation is that the compiler applied optimizations,

A Comparison between OPARI2 and the OpenMP Tools Interface 171

e.g., moved the parallel region creation around the loop. Optimizations like unrolling
are also a possible explanation why the number of parallel constructs in the OMPT
result for ft differs from the number of parallel constructs in the source code. Further-
more, optimizations may result in outlined functions which cannot be easily mapped to
the user code. We recompiled ft with optimization level zero to prove this assumption.
The measurement result of the unoptimized ft with OMPT shows 9 outlined functions
for parallel constructs. However, every parallel construct is still visited only once.

Obviously, OMPT measurements may provide insight into compiler optimizations.
However, understanding this information may require knowledge of the compiler and
may even then not be comprehensible at the first glance. In contrast, OPARI2 delivers
information that strictly reflects the source code.

6 Conclusion

We compared OMPT callbacks and OPARI2 instrumentation with respect to their suit-
ability for event-based performance measurements. OPARI2’s source-to-source transla-
tion approach neither has access to object code nor to intermediate representations, but
reflects the structure of the source code very well. An advantage is that a user can eas-
ily map the measurement results onto his mental image of the program. Since OPARI2
passes along all relevant source code information, the results can even be explored in a
source-code browser. On the other hand, the instrumentation may interfere with com-
piler instrumentation and optimization.

For the development of OMPT, one of the initial design guidelines was to create an
interface that can be implemented in the OpenMP runtime without having to change
the compiler. Thus, it provides a view of the OpenMP runtime level, including com-
piler optimization artifacts. This may reflect the execution behavior of the application
more accurately. On the other hand, differences to the source code representation may
obscure measurement results sometimes. Overall, OPARI2 and OMPT provide com-
plementary information, which makes it reasonable to combine both approaches. The
information gathered with OMPT could be extended with source code correlation via
OPARI2, whereas events that are not available with OPARI2 (e.g. thread begin/end,
wait barrier begin/end) could be captured using OMPT. The measurement overhead is
generally low for both, OMPT and OPARI2. In most cases, the measurement system
itself dominates the overhead regardless of the instrumentation method. However, in
cases where the source code instrumentation of OPARI2 interferes with compiler opti-
mization, OPARI2 instrumentation may lead to different execution times.

The mandatory set of callback functions in OMPT allows call-path profiles to be con-
structed from the events produced by our instrumentation—provided that no tasks are
used. However, if a worker thread does not trigger any events inside a parallel region, it
may remain invisible in the measurement. To construct call-path profiles for tasks, the
measurement system must be notified of task switches. Thus, to support event-based
performance tools, we recommend to support at least the optional callbacks for the
events ompt event implicit task begin and ompt event task switch
in OMPT implementations.

172 D. Lorenz et al.

References

1. Benedict, S., Petkov, V., Gerndt, M.: PERISCOPE: An online-based distributed perfor-
mance analysis tool. In: Tools for High Performance Computing 2009, pp. 1–16. Springer,
Heidelberg (2010)

2. Buck, B., Hollingsworth, J.K.: An API for runtime code patching. The International Journal
of High Performance Computing Applications 14(4), 317–329 (2000)

3. Eichenberger, A.E., et al.: OMPT: An OpenMP tools application programming interface for
performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013.
LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013)

4. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open Trace
Format 2 - The next generation of scalable trace formats and support libraries. In: Proc.
of the Intl. Conference on Parallel Computing, ParCo 2011, Ghent, Belgium, August 30 –
September 2. Advances in Parallel Computing, vol. 22, pp. 481–490. IOS Press (2012)

5. Fürlinger, K., Gerndt, M.: ompp: A profiling tool for openmp. In: Mueller, M.S., Chap-
man, B.M., de Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP 2005/2006. LNCS,
vol. 4315, pp. 15–23. Springer, Heidelberg (2008)

6. Geimer, M., Wolf, F., Wylie, B.J.N., Becker, D., Abraham, E., Mohr, B.: The Scalasca perfor-
mance toolset architecture. Concurrency and Computation: Practice and Experience 22(6),
702–719 (2010)

7. Karlin, I., Keasler, J., Neely, R.: LULESH 2.0 updates and changes. Technical Report LLNL-
TR-641973, Lawrence Livermore National Laboratory (August 2013)

8. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller, M.S.,
Nagel, W.E.: The Vampir performance analysis tool-set. In: Tools for High Performance
Computing, Proceedings of the 2nd International Workshop on Parallel Tools for High Per-
formance Computing, Stuttgart, Germany, pp. 139–155. Springer (July 2008)

9. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,
Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y., Philippen, P., Saviankou, P.,
Schmidl, D., Shende, S.S., Tschüter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P – A joint
performance measurement run-time infrastructure for Periscope, Scalasca, TAU, and Vampir.
In: Proc. of 5th Parallel Tools Workshop, 2011, pp. 79–91. Springer, Heidelberg (2012)

10. Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-based OpenMP 3.0 research
compiler supporting multiple runtime libraries. In: Sato, M., Hanawa, T., Müller, M.S., Chap-
man, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp. 15–28. Springer,
Heidelberg (2010)

11. Liu, X., Mellor-Crummey, J., Fagan, M.: A new approach for performance analysis of
OpenMP programs. In: Proceedings of the 27th International ACM Conference on Super-
computing, pp. 69–80. ACM (2013)

12. Mellor-Crummey, J., et al.: OMPT support branch of the open source Intel OpenMP runtime
library (December 2013),
http://intel-openmp-rtl.googlecode.com/svn/
branches/ompt-support

13. Metz, E., Lencevicius, R., Gonzalez, T.F.: Performance data collection using a hybrid ap-
proach. SIGSOFT Software Engineering Notes 30(5), 126–135 (2005)

14. Mohr, B., Malony, A.D., Shende, S.S., Wolf, F.: Design and prototype of a performance tool
interface for OpenMP. The Journal of Supercomputing 23(1), 105–128 (2002)

15. Quinlan, D.J., et al.: ROSE compiler project (April 2014),
http://www.rosecompiler.org

16. Shende, S.S., Malony, A.D.: The TAU parallel performance system. The International Journal
of High Performance Computing Applications 20(2), 287–311 (2006)

http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support
http://intel-openmp-rtl.googlecode.com/svn/branches/ompt-support
http://www.rosecompiler.org

A User-Guided Locking API for the OpenMP*
Application Program Interface

Hansang Bae1, James Cownie2, Michael Klemm3, and Christian Terboven4

1 Software and Services Group, Intel Corporation, Champaign, IL, USA
2 Software and Services Group, Intel Corporation (UK) Ltd., Bristol, UK

3 Software and Services Group, Intel GmbH, Feldkirchen, Germany
{hansang.bae,james.h.cownie,michael.klemm}@intel.com
4 IT Center, RWTH Aachen University, Aachen, Germany

terboven@itc.rwth-aachen.de

Abstract. Although the OpenMP API specification defines a set of run-
time routines for simple and nested locks, there is no standardized way to
select different lock implementations. Programmers have to use vendor
extensions to globally alter the lock implementation for the application;
fine-grained control is not possible. Proper use of hardware-based spec-
ulative locks can achieve significant runtime improvements but, if used
inappropriately, they can lead to severe performance penalties. Thus pro-
grammers need to be able to explicitly choose the right lock implemen-
tation on a per-lock basis. In this paper, we extend the OpenMP API
for locks with functions to provide such hints to the implementation. We
also extend the syntax and semantics of the critical construct with
clauses to contain hints. Our performance results for micro-benchmarks
show that the runtime selection of lock implementations does not add
any noticeable overhead. We also show that using an appropriate runtime
hint can improve application performance.

Keywords: OpenMP, locks, lock elision, speculative locks, Intel TSX.

1 Introduction

The OpenMP* API specification [12] defines lock routines for both simple and
nested locks. However, there is no standard technique to allow programmers to
pass information about the usage of a lock to the runtime. Vendor extensions
such as the KMP_LOCK_KIND environment variable for the Intel OpenMP runtime
change the implementation of all locks; fine-grained control of a lock implemen-
tation is not possible. Hence, it is impossible for programmers to choose a lock
implementation that is optimized for the specific usage of a particular lock in
an application. Even in the absence of hardware to support speculative locks,
spin locks may be optimal for an uncontended lock, whereas more complicated
queuing locks should be used for a heavily contended lock.

With hardware support for speculative lock elision in processors from vendors
such as IBM [6] and Intel [8], this lack of per-lock control has become more im-
portant. Locks using hardware speculation can achieve significant performance

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 173–186, 2014.
c© Springer International Publishing Switzerland 2014

174 H. Bae et al.

improvements, but can also cause tremendous penalties if used inappropriately.
Using environment variables to change the implementation of all locks in a pro-
gram is therefore no longer sensible; instead the programmer needs to select the
best implementation for each significant lock based on the contention for the
lock and the properties of the code inside the guarded critical section.

In this paper we propose to extend the OpenMP API for locks. We define new
functions to pass contention information on a per-lock basis to the OpenMP run-
time. Changes are only necessary where the new functionality is desired and are
kept to a minimum to enable a smooth, incremental, transition. We demonstrate
how the new API can be implemented efficiently while maintaining compatibility
with code that has already been compiled and thus cannot be changed. We also
extend the existing OpenMP critical construct with a clause to pass hints to
the underlying lock. Our benchmarks prove that the performance impact of our
implementation is minimal. Our measurements show that performance can be
improved by using the new interface to exploit the Intel R© Transactional Syn-
chronization Extensions (Intel R© TSX).

The remainder of the paper is organized as follows. Section 2 surveys related
work. Section 3 provides a brief introduction to Intel TSX. In Section 4, we
discuss possible design choices for API extensions to support per-lock hints.
The specification of the extensions for the lock API and critical construct we
propose are shown in detail in Section 5. Section 6 presents our implementation
in the Intel OpenMP runtime and Section 7 evaluates its performance. Finally,
Section 8 concludes the paper.

2 Related Work

Work from the 1990s such as that of Mellor-Crummey and Scott [10] discusses
the differing properties of spin and queuing locks.

The POSIX thread library [4] contains support for different kinds of locks
including speculative locks as part of glibc [9,11]. Although programmers can
select the type of lock to use on a per-lock basis, the POSIX interface is not part
of the OpenMP API definition and thus cannot be used from OpenMP without
writing code that no longer conforms to OpenMP.

There are several papers on how to apply TSX-like technologies in HPC [13,15]
and the performance improvements that can be obtained. Although hardware
lock elision and transactional memory share similarities at the machine level,
the programming models differ greatly. These papers augment the source code
with target-specific constructs, whereas we propose a standard API to avoid the
need for non-portable modifications.

IBM has implemented hardware specific pragmas in their C/C++ compiler for
the Blue Gene/Q machine, such as #pragma tm_atomic [7]. There is a proposal
for OpenMP [1,14], which defines OpenMP constructs to support transactional
memory. However, this is fundamentally different from lock-based programming
and complements our proposal from a different angle.

A User-Guided Locking API for the OpenMP Application 175

3 Intel TSX

Intel Transactional Synchronization Extensions are new capabilities introduced
in the processors formerly known as Haswell which provide support for transac-
tional execution while using cache-coherence protocols to detect memory access
conflicts. On a transactional abort, the architectural state of the processor is re-
stored to that at the start of the transaction (all transactional memory writes are
discarded, and register state is restored). At transaction commit all transactional
writes become atomically visible to other cores.

By using Intel TSX it is possible to execute multiple dynamic instances of a
critical section simultaneously, with the required mutual exclusion enforced by
the hardware when conflicting memory accesses occur. This allows code written
with a single, coarse lock to behave as if it were implemented with fine-grain
reader-writer locks.

Intel TSX provides two different interfaces to speculation: Hardware Lock Eli-
sion (HLE) and Restricted Transactional Memory (RTM). HLE is a backwards
binary compatible interface that can be added to an existing lock. It requests
that the processor speculate the critical section. If the speculation fails the pro-
cessor takes the lock “for real” and executes the critical section non-speculatively.
HLE preserves all of the semantics of the existing lock, so if the lock value is
read inside the critical section it appears to be locked, as it would if there were
no speculation.

Restricted Transactional Memory uses new instructions to place the processor
into a speculative execution state and to commit the speculative state. With
RTM the user has to provide the non-speculative backup path, since no lock is
visible to the hardware.

Since some operations (inter alia any exception that would enter the ker-
nel, or any system call) cannot be executed speculatively and cause an abort
of speculation, converting all critical sections to use speculative locks may be
counter-productive since much speculative work may have been performed be-
fore the abort, which then has to be replicated. Consider a lock used to serialize
output, for instance, effort may be expended formatting data before the write
system call is made. If this is done inside a speculative lock the formatting work
will all be lost and have to be repeated.

We use both HLE and RTM in our speculative lock implementations.

4 Design Choices

The following section presents the design principles and decisions for the new
locking API. We considered a number of ways in which the OpenMP lock inter-
face could be extended.

The fundamental requirement of the new API is not to break any existing
code to maintain a smooth transition from the old API to the new one. We
also strive for an incremental refinement approach, in which a programmer can
easily modify parts of the application code by adding lock hints. This should

176 H. Bae et al.

lead to improvements for the modified parts, while other, untouched, code is not
negatively affected in terms of either correctness or performance.

Since not all OpenMP implementations can support multiple lock types and
not all hardware supports speculative lock elision, we choose to make the new
locking API a hint. If accepted into the OpenMP standard, an OpenMP runtime
will have to support the proposed API, however it would be permitted to map
the new API to the existing locking API and behavior without performance
penalties. The additional information passed to the runtime is merely a hint
that can be ignored.

If we consider the existing OpenMP API, there are only a few options available
that maintain the programming style of current OpenMP and that do not break
base-language compatibility:

– Use pragmas to prefix the existing lock routines with the desired hint.
– Introduce a full set of new locking routines and a new lock type.
– Add new lock initialization routines while keeping the existing lock API.

The pragma-based approach seems viable, but requires changes to both the
compiler and the runtime to support the pragma. Since the OpenMP lock API
is currently solely based on runtime functions, we would like to avoid splitting
it across the compiler and runtime.

Adding a new lock type (e. g., omp_lock_hint_t) would require changes to
every source code location where the given lock was operated upon, making the
changes associated with lock tuning much harder than necessary. Programmers
would need to touch the lock definition, lock initialization, function declarations
(if locks are passed as arguments), and the lock operations themselves. It also
prevents the use of the new lock type where a lock is declared in one part of the
code but used in a separately compiled library for which the source may be not
available or that cannot be changed for other reasons (e. g., compatibility with
other library users).

The option of a new initialization function that leaves the rest of the lock API
unchanged avoids these problems. To add the hint to the lock, a programmer
only has to change the lock initialization routine to pass the desired hint to
the runtime. The formal type of the lock and all lock operations stay the same.
Programmers thus can incrementally alter application code on a per-lock basis
and improve lock performance by modifying individual locks.

To make our approach more generic and to keep it open for additions, we
provide a space for vendor-specific hints. While this may limit portability (e. g.,
missing declarations of additional hints in the omp.h header file), such errors
will be detected at compile time. This allows programming and tuning for spe-
cific machines and OpenMP implementations, which is in the OpenMP spirit of
providing support to enable the highest performance.

5 The API for User-Guided Locks

The guiding design principles of Section 4 lead to a straightforward definition
of an OpenMP API that supports user-guided lock routines. Our proposal is

A User-Guided Locking API for the OpenMP Application 177

based on an extension of the existing lock API (Section 5.1) and new clauses
for the critical construct (Section 5.2). Without loss of generality, the follow-
ing section only shows the proposal for C and C++ as the base languages. A
translation to Fortran is straightforward but omitted for brevity.

5.1 User-Guided Lock Routines

An OpenMP lock is declared as a variable of the formal type omp_lock_t or
omp_nest_lock_t. Before its first use, it must be initialized by calling the lock
initialization functions omp_init_lock or omp_init_nest_lock, respectively.
Once the lock has been initialized it can be set, unset, tested, and destroyed using
the omp_set_lock, omp_unset_lock, omp_test_lock, and omp_destroy_lock
functions (or their counterparts for omp_nest_lock_t). Each of these functions
takes a pointer to the lock variable as an argument.

To provide additional information to the runtime system, we propose to add
two additional lock initialization functions:
void omp_init_lock_hinted(omp_lock_t*, omp_lock_hint_t)
void omp_init_nest_lock_hinted(omp_nest_lock_t*, omp_lock_hint_t)

These functions may be used as a replacement of the existing omp_init_lock and
omp_init_nest_lock functions to initialize a lock before it is used. The addi-
tional argument to omp_init_lock_hinted and omp_init_nest_lock_hinted
is a “lock hint”, which passes extra information about the expected usage of the
lock to the runtime.

We propose a list of mnemonic lock hints through the enumeration type
omp_lock_hint_t (of course, the specific numeric values implied here are not
normative):
typedef enum omp_lock_hint_t {

omp_lock_hint_none,
omp_lock_hint_uncontended, // Optimize for an uncontended lock
omp_lock_hint_contended, // Optimize for a contended lock
omp_lock_hint_nonspeculative, // Do not use hardware speculation
omp_lock_hint_speculative, // Do use hardware speculation
omp_lock_hint_adaptive, // Adaptively use HW speculation
// Additional standard hints as desired

// Vendors can add additional hints after this definition
omp_lock_hint_vendor_first = ...

} omp_lock_hint_t;
To support vendor-specific or platform-dependent hints, vendors can add their
own mnemonics at the end of enumeration with values higher than the pseudo-
mnemonic omp_lock_hint_vendor_first.

5.2 User-Guided critical Sections

Most OpenMP implementations translate a critical section into a matching
pair of omp_set_lock and omp_unset_lock invocations on a global lock. If the

178 H. Bae et al.

section is named, then a global lock with a matching mangled name is created for
the lock routines. With our additions to the OpenMP lock API, it is desirable to
augment the critical section with additional information about the preferred
lock implementation to be used.

To provide the hint to the critical section, we define a new clause:
#pragma omp critical [(name)] [hint(hint-kind)] new-line

structured-block
with hint-kind being one of: none, uncontended, contended, nonspeculative,
speculative, and adaptive. Adding the hint clause to the critical section
requests that the runtime use a suitably hinted lock. Again, the hint-kind is
merely a hint to the runtime and may be ignored if the runtime does not support
different locks or if the hardware does not support speculative locking. If no hint
clause is present, the default hint none is used, which corresponds to the current
semantics of OpenMP.

To ensure proper interaction between the traditional (named) critical and
those with hints added, we require two restrictions. First, if a hint clause is spec-
ified, the critical construct must be a named construct. Second, all critical
constructs with the same name must have the same hint clause. The restric-
tions ensure that all critical constructs with a hint use the same lock imple-
mentation. If two constructs had the same name but different hints, then the
OpenMP runtime could no longer ensure correctness and mutual exclusion for
these critical regions at runtime. The second restriction ensures that the run-
time can choose the same lock implementation for all critical constructs with
the same name.

6 Implementation

To implement user-guided locks with hints the OpenMP runtime needs to decide
which internal lock implementation to use. Often this is achieved by having
several different internal locking functions that can be called from the runtime
functions to implement the lock semantics.

6.1 Implementation Strategies

The Intel OpenMP runtime provides a variety of different lock implementations
(of which we show only an incomplete set here, since the additional ones add no
new challenges). A specific implementation is enabled for all locks by setting the
KMP_LOCK_KIND environment variable.

TAS: a “test and test-and-set” spin-lock that operates directly on the space
allocated by the compiler, i. e., the lock structure itself.

Futex: a lock that uses the Linux futex [3] system call to operate directly on
the space allocated by the compiler, i. e., the lock structure itself.

Queuing: a fair queuing lock that uses the space allocated by the compiler as
a pointer to the actual lock structure if it is large enough, otherwise the lock
stores an index into a table of lock structures.

A User-Guided Locking API for the OpenMP Application 179

Adaptive: a “test and test-and-set” lock that uses Intel TSX technology if spec-
ulation was previously successful. It requires more space than that allocated
by the compiler, since it has to maintain statistics on speculation success.

These lock types are implemented in different internal functions that are (glob-
ally) bound to the OpenMP lock API according to the setting of the environment
variable KMP_LOCK_KIND and thus can only be selected for the whole application.

We refer to lock implementations that maintain all of their state in the space
allocated by the compiler as direct implementations, and those which use the
compiler allocated space to hold a pointer or index as indirect implementations.

In the implementation without omp_init_lock_hinted only a single lock type
can be in use in a given process, and which implementation that is can therefore
be maintained in global state. The lock dispatch code does not need to inspect
the lock itself to determine which type of lock it is. We describe this as static
dispatch. However, once we have hinted locks there can be instances of many
different lock types in the same process, and the runtime has to distinguish them
dynamically, while also handling both direct and indirect locks. We describe the
lock implementation that can handle different lock types for each lock as dynamic
dispatch.

The obvious way to implement dynamic dispatch is to use virtual functions
that are stored along with the lock structure. This is the technique normally
used to implement virtual methods for C++ objects. However, it expands the
lock structure to include a pointer to a virtual function table (commonly known
as a vtable).

Unfortunately, such an implementation is not viable for our proposal. First,
simple locks implemented with atomic operations or Linux futexes are direct
locks, so there is no lock object that can store the vtable pointer. Second, in some
implementations which we wish to support (e. g., OpenMP code compiled by
GCC targeting a 64-bit processor) the lock’s size is less than the size of a pointer,
so the lock cannot contain a pointer to a vtable-like structure. Third, to maintain
compatibility with existing compiled code, we cannot modify omp_lock_t to
change its size. This would result in undefined data accesses and correctness
issues.

6.2 Decoding the Dynamic Lock Type

Our solution deals with the above constraints and is based on the observation
that an indirect lock is a pointer to an internal object that is at least four byte
aligned. Therefore the least significant two bits of the value stored in an indirect
lock will always be zero. Thus, we can distinguish direct locks from indirect
locks if we ensure that at all times the bottom two bits of indirect locks are
not both zero. (We actually rely only on the value of the bottom bit.) Since the
runtime fully controls the lock implementations, it is easy to require that our
implementations respect this constraint. Linux futex locks also allow us to store
any value in the lock word, so they can still be used.

Fig. 1 shows the code to extract the lock type from the lock structure whatever
the lock type is. The code fragment exploits the properties of two’s complement

180 H. Bae et al.

enum lock_info_e {
lock_value_shift = 8,
lock_type_mask = (1<<lock_value_shift)-1,

};

static uint32_t extract_direct_type(uint32_t *l) {
uint32_t value = *l;
return value & lock_type_mask & -(value & 1);

}

Fig. 1. Code fragment to efficiently decode the lock type from the least significant byte
of the lock word

void omp_set_lock(omp_lock_t *l) {
(set_lock_functions[extractDirectType((uint32_t *)l)](l);

}

omp_set_lock:
parameter 1: %rdi

movb (%rdi), %dl
movb %dl, %al
andb $1, %al
negb %al
andb %al, %dl
movzbl %dl, %ecx
movq direct_setOps(,%rcx,8), %rsi
jmp *%rsi

Fig. 2. Example of omp_set_lock with decoding (top) and the assembly code generated
by the compiler (bottom)

arithmetic. The value of -(value & 1) is -1 (i. e., all bits set to one) if the bot-
tom bit of value is one. Conversely, it is zero if the bottom bit is zero. Therefore
when the bottom bit is zero (as it is when the value is a pointer, i. e., we have
an indirect lock) extract_direct_type will return zero, whereas if the bottom
bit is one it will return the bottom byte of the lock word. Using this sequence
avoids any conditional branches, which could lead to branch mispredictions when
several different lock types are active simultaneously.

Once the lock type has been decoded, we use it as an index into a table
of function pointers. To avoid additional lookups for indirect locks, the table
contains the decoder for indirect locks as the zeroth pointer, while the values
for the various direct locks will be 1, 3, 5, etc., so we have their implementation
functions at those positions in the function table. Although this creates holes
in the function table and wastes a few bytes of memory, it improves function
lookup by avoiding expensive conditional branch instructions. Fig. 2 shows the

A User-Guided Locking API for the OpenMP Application 181

Table 1. Lock overhead of static and dynamic dispatch of the lock implementation.

Lock Type Min time (cycle) Mean time (cycle)
Static Dynamic Static Dynamic

Direct (TAS) 58.53 58.14 62.37 59.88
Indirect (Queuing) 107.54 90.43 109.46 91.34

implementation of the dispatch of omp_set_lock and the generated assembly
code for it. Note that the compiler has avoided building a stack frame and is
using a branch for the tail call to the appropriate lock implementation function.

7 Performance Evaluation

For performance evaluation we compare the performance of the lock API of
the Intel OpenMP runtime that includes dynamic lock dispatch with the re-
leased version which does not. All measurements are made on one socket of a
dual-socket Intel R© Xeon R© E5-2697v3 processor (former code name “Haswell”) at
2.6 GHz (no turbo). The machine runs Red Hat Enterprise Linux Server release
7.0 with kernel version 3.10.0-123.el7.x86_64. We use the Intel R© Composer XE
for C/C++ 2013 SP1 2.144 with -O3 optimization. Because the OpenMP run-
time links dynamically, the same executable is used for all measurements, only
the runtime is changed.

7.1 Microbenchmarks and Lock Overhead Timing

We compare the performance of locks using the EPCC benchmark suite’s [2]
“Lock Overhead” measure. We also use our own microbenchmark for the overhead
measurements which we run with a single OpenMP thread measuring the time
to enter and leave the lock through omp_set_lock and omp_unset_lock. We are
not interested in the contention behavior of the locks, but merely in the latency
of getting into and out of the lock code since that is the changed code path. Note
that the EPCC suite only measures the performance of fully contended locks,
and has no data references inside the critical section, though in real OpenMP
codes locks are frequently uncontended.

The time shown in Table 1 is the difference between the time spent executing
the kernel with a lock and same kernel, but without the lock operations. We
measure a loop repeating these kernels 10,000 times, and divide the resulting time
by 10,000. We also repeat that experiment 1000 times, accumulating statistics
of minimum, mean, maximum, and standard deviation over the runs. We show
both the minimum and mean times.

As discussed in Section 6 we are concerned with two types of locks (direct locks
which store the lock value in the space allocated by the compiler and indirect
locks which store a pointer in that space) and two types of lock dispatch: static,
where all locks are of the same type (as in the existing code) and dynamic, where
each lock may have a different implementation (as is required to implement

182 H. Bae et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4 8 14

M
ic

ro
s
e
c
o
n
d

s

Number of threads

EPCC LOCK/UNLOCK Overhead

Static TAS Static Queuing

Dynamic TAS Dynamic Queuing

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

1 2 4 8 14

M
ic

ro
s
e
c
o
n
d
s

Number of threads

EPCC LOCK/UNLOCK Overhead, TSX

Dynamic HLE Dynamic RTM

Fig. 3. EPCC LOCK/UNLOCK overhead - (a) static dispatch vs. dynamic dispatch,
(b) dynamic TSX locks

our proposal). The interesting comparisons for lock overhead here are therefore
between the static and dynamic dispatch columns.

The results of our microbenchmark (see Table 1) and the EPCC results in
Fig. 3a show that on a modern processor our implementation of dynamic dispatch
does not add any extra latency compared to the existing static lock dispatch
code in the Intel OpenMP runtime. Therefore using dynamic lock dispatch (and
allowing the user to choose lock types) will not slow down existing OpenMP
codes that use locks.

The EPCC results in Fig. 3b demonstrate that the EPCC lock overhead mea-
surement code cannot correctly measure the performance of speculative locks. It
assumes that the locks serialize the code to ensure isolation, whereas speculative
locking correctly enforces isolation without (always) serializing. As a result the
speculative locks appear to have negative overhead.

7.2 Application Performance with User-Guided Locks

To evaluate the performance of lock hints in real code, we use the UA bench-
mark [5] from the NPB 3.3 benchmark suite. The original implementation of UA
uses an array of fine-grain locks to protect the irregular update operation to a
shared array A, as shown in Fig. 4a. The first experiment we conducted is to try
different lock implementations by setting KMP_LOCK_KIND. This shows that using
the TAS lock globally results in best performance; the first bar (“Static TAS”)
in Fig. 5 shows a speedup from 0.5 to 6.6 over the sequential version. Then, we
enabled global use of the HLE lock in place of the TAS lock, but the performance
degraded substantially as shown in the second bar (“Oblivious HLE”) in Fig. 5.
This result indicates that, as expected, just replacing existing fine-grain locks
with TSX locks may not improve performance.

Next, we changed the code slightly to introduce coarser grained locking. We
found that every statement guarded by a lock in the most time-consuming loop
in UA is in the form of Fig. 4a (irregular reduction). An alternative way of
computing this irregular reduction is to postpone the update to the shared data
until each thread finishes computing local sums acopy as in Fig. 4b. Updates to

A User-Guided Locking API for the OpenMP Application 183

c$ omp do
do i = 1, N

...
call omp_set_lock(L(f(i)))
A(f(i)) = A(f(i))+expr
call omp_unset_lock(L(f(i)))
...

enddo
c$ omp enddo

(a)

c$ omp do
do i = 1, N

...
acopy(f(i)) = acopy(f(i))+expr
...

enddo
c$ omp enddo
c$ omp critical

A(1:M) = A(1:M) + acopy(1:M)
c$ omp end critical

(b)
call omp_init_lock_hinted (LCK,hle)
c$ omp do
do i = 1, N

...
acopy(f(i)) = acopy(f(i))+expr
...

enddo
c$ omp enddo
c continue...

k = (M/NUM_THREAD)*thread_num
do j = k+1, k+M

call omp_set_lock(LCK)
if (j .gt. M) then

A(j-M) = A(j-M) + acopy(j-M)
else

A(j) = A(j) + acopy(j)
endif
call omp_unset_lock(LCK)

enddo
(c)

Fig. 4. Code excerpt from UA – (a) original implementation, (b) postponed reduction
optimization, (c) further optimization with hinted TSX locks. Shared variables were
capitalized and the code was simplified for presentation.

the shared data are then executed within the critical section sequentially. This
optimization results in better performance with one to 8 threads as shown in
Fig. 5 (“Static Reduce”).

Notice that in this implementation the update operation to the shared data
is performed in a regular fashion, which means we can control when they are
updated by different threads; i. e., data contention can be easily tuned. The
implementation presented in Fig. 4c avoids data contention by making each
thread update a different portion of the shared array at each iteration of the loop.
This transformation exposes an optimization opportunity when lock speculation
is available because the chance of data contention is much lower. This suggests
that an HLE lock will work well for this version (“Hinted HLE Reduce”). The
results of each of these experiments are shown in Fig. 5 and Fig. 6.

We used TAS locks as the default lock for Static TAS and Static Reduce as
it delivers the best performance for each version; critical sections also use the
TAS lock internally. Oblivious HLE enables HLE locks globally in the code, and
Hinted HLE Reduce uses an HLE lock only for the code presented in Fig. 4c.
In addition to the code in the figure, we also performed loop blocking in Hinted
HLE Reduce to avoid excessive calls to the lock functions, and enabled shared
sum update only when local sum is not zero. With these changes Static Reduce
outperforms Static TAS with one to 8 threads, at the cost of increased memory

184 H. Bae et al.

0

1

2

3

4

5

6

7

8

1 2 4 8 14

S
p

e
e

d
u

p

Number of threads

Speedup of UA over sequential version

Static TAS

Oblivious HLE

Static Reduce

Hinted HLE Reduce

Fig. 5. Speedup UA with different implementation of shared data synchronization.
Static TAS – original implementation with TAS lock, Oblivious HLE – original
implementation with HLE lock, Static Reduce – reduction optimization with critical
section, Hinted HLE Reduce – reduction optimization with coarse-grain HLE lock.
Speedup is based on the runtime of the sequential version of UA without OpenMP.

0

20

40

60

80

100

120

1 2 4 8 14

P
a

ra
lle

l
e

ff
ic

ie
n

c
y
 (

%
)

Number of threads

Parallel efficiency of UA

Static TAS

Oblivious HLE

Static Reduce

Hinted HLE Reduce

Fig. 6. Parallel efficiency of UA (all normalized to the sequential version) with different
implementation of shared data synchronization

usage to hold private copies of the shared array. When the hinted HLE lock is
used, the performance is close to, but not better than that of Static Reduce
with one to two threads. As the thread count increases, Hinted HLE Reduce
starts to outperform synchronization based on a critical section. Again, the
poor performance of Oblivious HLE indicates one cannot simply use TSX locks
everywhere without having information about the application. The optimization
used in Static Reduce may not be a good solution in general, in that its scalability
is limited by the sequentially executed code section, and Fig. 6 indicates this
problem does exist. However, using TSX locks in the right place alleviated the
problem and resulted in best performance in our experiments.

A User-Guided Locking API for the OpenMP Application 185

8 Conclusion

In this paper we have shown how the existing OpenMP API for locks can be
extended with a user-guided locking API. Through the new API, programmers
can provide hints to the OpenMP runtime to select appropriate lock implemen-
tations for each lock at application level. The proposed API extension of adding
a new lock initialization function minimizes code changes and allows for incre-
mental refinement of the application code. We have shown that our efficient
decoder implementation does not add any measurable performance overhead to
the OpenMP lock routines. Our benchmark demonstrates that a proper selection
of lock implementations on a per-lock basis can lead to performance improve-
ments.

Acknowledgments. We thank the anonymous reviewers for their constructive
comments.

Intel and Xeon are trademarks or registered trademarks of Intel Corporation
or its subsidiaries in the United States and other countries.

* Other brands and names are the property of their respective owners.
Software and workloads used in performance tests may have been optimized

for performance only on Intel microprocessors. Performance tests, such as SYS-
mark and MobileMark, are measured using specific computer systems, compo-
nents, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and per-
formance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.
For more information go to http://www.intel.com/performance.

Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effec-
tiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microar-
chitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

References

1. Bihari, B.L., Wong, M., Wang, A., de Supinski, B.R., Chen, W.: A Case for Includ-
ing Transactions in OpenMP II: Hardware Transactional Memory. In: Chapman,
B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP 2012. LNCS, vol. 7312,
pp. 44–58. Springer, Heidelberg (2012)

2. Bull, J.M.: Measuring Synchronisation and Scheduling Overheads in OpenMP. In:
Proc. of the 1st European Workshop on OpenMP, Lund, Sweden, pp. 99–105 (1999)

http://www.intel.com/performance

186 H. Bae et al.

3. Drepper, U.: Futexes are Tricky. Technical report, Redhat, Version 1.6 (2011)
http://www.akkadia.org/drepper/futex.pdf

4. Drepper, U., Molnar, I.: The Native POSIX Thread Library for Linux. Technical
report, Redhat (2003)

5. Feng, H., Van der Wijngaart, R.F., Biswas, R., Mavriplis, C.: Unstructured Adap-
tive (UA) NAS Parallel Benchmark, Version 1.0. Technical Report NAS-04-006,
NASA (2004)

6. Haring, R.A., Ohmacht, M., Fox, T.W., Gschwind, M.K., Satterfield, D.L., Sug-
avanam, K., Coteus, P.W., Heidelberger, P., Blumrich, M.A., Wisniewski, R.W.,
Gara, A., Chiu, G.L.-T., Boyle, P.A., Christ, N.H., Kim, C.: The IBM Blue Gene/Q
Compute Chip. IEEE Micro 32(2), 48–60 (2013)

7. IBM XL C/C++ for Blue Gene/Q, V12.1 (2012),
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=

8. Intel Corporation. Intel R© Architecture Instruction Set Extensions Programming
Reference, Document number 319433-014 (2012)

9. Kleen, A.: Lock Elision in the GNU C Library. LWN.net 12(1) (2013),
http://lwn.net/Articles/534758/

10. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for Scalable Synchronization on
Shared-memory Multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

11. Miller, D.: The GNU C Library version 2.18 is now available, Announcement on
the info-gnu mailing list (2013),
http://lists.gnu.org/archive/html/info-gnu/2013-08/msg00003.html

12. OpenMP Architecture Review Board. OpenMP Application Program Interface,
Version 4.0 (2013), http://www.openmp.org/

13. Schindewolf, M., Bihari, B., Gyllenhaal, J., Schulz, M., Wang, A., Karl, W.: What
Scientific Applications Can Benefit from Hardware Transactional Memory? In:
Proc. of the Intl. Conf. on High Performance Computing, Networking, Storage
and Analysis, SC 2012, Salt Lake City, pp. 90:1–90:11 (2012)

14. Wong, M., Bihari, B.L., de Supinski, B.R., Wu, P., Michael, M., Liu, Y., Chen, W.:
A Case for Including Transactions in OpenMP. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132,
pp. 149–160. Springer, Heidelberg (2010)

15. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance Evaluation of Intel R©
Transactional Synchronization Extensions for High-performance Computing. In:
Proc. of the Intl. Conf. on High Performance Computing, Networking, Storage and
Analysis, Denver, CO, pp. 19:1–19:11 (2013)

http://www.akkadia.org/drepper/futex.pdf
http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp?topic=
http://lwn.net/Articles/534758/
http://lists.gnu.org/archive/html/info-gnu/2013-08/msg00003.html
http://www.openmp.org/

Library Support for Resource Constrained

Accelerators

Laust Brock-Nannestad and Sven Karlsson

Technical University of Denmark, Lyngby, Denmark
{laub,svea}@dtu.dk

Abstract. Accelerators, and other resource constrained systems, are in-
creasingly being used in computer systems. Accelerators provide power
efficient performance and often provide a shared memory model. How-
ever, it is a challenge to map feature rich APIs, such as OpenMP, to
resource constrained systems. In this paper, we present a lightweight
system where an accelerator can remotely execute library functions on a
host processor. The implementation takes up 750 bytes but can replace
arbitrary library calls leading to significant savings in memory foot print.
We evaluate with a set of SPLASH-2 applications and show that the im-
pact on execution time is negligible when compared to GCCs OpenMP
implementation.

1 Introduction

Accelerators, small custom compute units, have recently gained in popularity.
They can be found in a wide range of systems from supercomputing systems
to small embedded systems. Accelerators can be designed for a specific purpose
or application. Alternatively, they can also be programmable. In this paper, we
only consider the latter programmable type. Accelerators are connected to a host
machine and act as co-processors to the host machine.

Programmable accelerators are very power efficient which has made them
popular in embedded systems. However to make accelerators power efficient,
they are very resource constrained. This means for example that the available
amount of efficiently accessed memory is low. More concretely, this means that
caches or scratchpad memories are small. At the same time, many accelerators
embrace a shared memory model, for example the Epiphany accelerators [2].
The current version of the Epiphany core has 32 kilobytes of local memory.
Accesses outside this memory space are permitted but incur a high memory
latency. Hence, efficient software must have a small memory foot print.

The shared memory model employed by Epiphany and other accelerators
makes OpenMP an attractive programming model. However, it is a challenge
to manage the low amount of memory available.

In this paper, we present a lightweight system where an accelerator can re-
motely execute library functions on the host. This is a departure from the tra-
ditional model where accelerators are co-processors to the host. However, it also

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 187–201, 2014.
c© Springer International Publishing Switzerland 2014

188 L. Brock-Nannestad and S. Karlsson

means that the accelerator memory foot print can be reduced as rarely executed
library functions do not take up space in the accelerator’s memory.

We demonstrate our approach by developing a lightweight system for execut-
ing OpenMP applications. The applications can call arbitrary library functions
located on the host. Our approach can be used on any accelerator system which
embraces a shared memory model and so can support the data sharing model of
OpenMP. We use OpenMP versions of SPLASH-2 benchmarks to evaluate our
approach and compare to a homogeneous SMP system.

Our implementation only takes up 750 bytes and the results show that the im-
pact on the execution time, when compared to GCCs OpenMP implementation,
is negligible.

In short, we make the following contributions:

– We describe a lightweight system which allow accelerators to execute arbi-
trary library functions on the host.

– We evaluate the system using SPLASH-2 benchmarks. We measure execution
time and memory foot print and compare to a traditional homogeneous
system.

The rest of this paper is organized as follows: In section 2 we discuss the archi-
tecture of our approach. Section 3 provides some details on our implementation.
Then, in section 4 we evaluate our system with a set of SPLASH-2 benchmarks.
In section 5 we give an overview of related work and finally, in section 6, we
conclude.

2 Architecture

We assume that the system consists of a host processor connected to a multi-core
accelerator. We will refer to the main thread of execution on the accelerator as
the master thread [7]. This thread is responsible for coordinating the execution
and controlling one or more worker threads which participate in the execution
of parallel code. The threads are statically mapped to accelerator cores.

The system may be heterogeneous. We do not propose that the master thread
executes on the host. Instead, execution is driven by the accelerator and the host
assists.

In this paper, we focus on the runtime system. Typically, the compiler uses
techniques such as function outlining of parallel regions, so that they can easily
be executed by threads, and replaces OpenMP pragmas with function calls to
the runtime, e.g. for barriers. We also rely on the compiler performing these
tasks.

An application has any number of C libraries at its disposal and may call
ANSI C library functions. This will typically occur during initialization but is
also possible from within parallel computation regions. These calls include calls
for memory management, string to value conversions, and I/O. These calls are
relatively infrequent and we argue they should be off-loaded to the host, thus
freeing up resources on the accelerator.

Library Support for Resource Constrained Accelerators 189

We assume that a shared memory interface exists between the host and the
accelerator. Each worker uses a mailbox data structure in the shared memory as
the interface to the host. The mailbox is readable and writable from both the
host and the accelerator.

To invoke a call, the mailbox is filled with data corresponding to the func-
tion call: i) a identifier describing the function to call and ii) the function call
arguments required by the call.

The host checks each mailbox. If a mailbox contains a new request, the host
parses it, executes the call, and updates the mailbox with the return value. The
actual interface between the host and the accelerator and the contents of the mail-
box is device specific but can be hidden by the runtime system. On the accelerator
side, a remote function call is nothing more than a function call.

The caller places parameters in registers or on the stack. The caller then calls
a stub. The stub interfaces with the host. Depending on the architecture, this
can either require that the stub sends a notification to the host and that it passes
along the function call arguments. In a shared memory design, where the caller’s
stack is visible to the host, all arguments is passed on the stack allowing the
host to retrieve them directly.

Lets look at a concrete example using malloc. A worker puts a {malloc,size}
message in its mailbox. The host reads the message, performs the allocation,
keeping track of all memory allocations on the accelerator to ensure there are
no conflicts, and returns the pointer to the allocated memory region. While the
host is executing, the worker can poll for the response or use more effective
mechanisms if offered by the hardware.

3 Experimental Setup

We implement our approach as a runtime on a homogeneous multicore platform.
While our approach works on heterogeneous platforms the aim of our implemen-
tation is to validate our design and provide initial results. To simulate the host
and the accelerator on the same system, we use a multi-threaded application.
One thread acts as the host and is executed using the Linux system’s normal C
runtime. Another set of threads acts as the accelerator but do not access to the
C runtime, only the lightweight runtime.

The lightweight runtime contains a small amount of bootstrapping code, the
host interface, as well as threading and synchronization primitives. The accelera-
tor runtime has only one dependency on the underlying Linux operating system,
which is to create worker threads during initialization, performed directly using
the syscall trap instruction. This keeps the design as close as possible to bare
metal.

To simulate the host–accelerator interface we use the memory which is im-
plicitly shared between threads.

190 L. Brock-Nannestad and S. Karlsson

3.1 Accelerator Side

The implementation relies on specific C features to enable remote function calls
without modifications to the application source code. We depend on variadic
functions, preprocessor macros with named arguments, and the union type.

A variadic function is a function that takes a variable number of arguments. It
can be decided at execution time how many arguments each call takes. Declaring
a variadic function causes GCC to pass all arguments on the stack. We utilize
this to let the host to read them directly.

All calls to library functions are redirected to a single local function on the
accelerator. This variadic function takes an identifier followed by a varying num-
ber of arguments. The identifier encodes the identity of the function call. The
other arguments are the same as for the library function.

To transparently add the additional identifier, we define a macro for each
standard library function. The macro takes the same number of arguments.
The macro expands to a call to the stub with the identifier and the original
arguments. The macro is named as the function it replaces. For C functions that
are already variadic, such as printf, we do the same, but use a variadic macro,
as introduced in C99. Examples of macros can be found in figure 1.

#define getopt (a , b , c) a c c s tub (1 , a , b , c) . i
#define a t o i (a) a c c s tub (2 , a) . i
#define p r i n t f (. . .) a c c s tub (5 , VA ARGS) . i

Fig. 1. Macros to redirect library calls to the accelerator stub

We assign one mailbox per thread. We assume each thread has a unique
identifier and there is a one to one mapping from the identifier to a mailbox.
The stub uses this mapping to locate the correct mailbox.

Library functions have different return types. To handle this, we use the union
type, as shown in figure 2. The macro ensures that the correct type is extracted
from the return value.

Synchronization between host and accelerator is highly dependent on the
memory models of the two architectures. The accelerator must ensure that the
call arguments on the stack are readable from the host side before the host is
notified of an incoming call. A memory barrier or fence will ensure this. A se-
quence number is added to each remote call to allow the host to identify when a
new call has been issued. The stub increases the sequence number once the call
is setup. Pseudocode for the stub is presented in figure 3.

3.2 Host Side

The host contains only a small amount of code. It monitors the mailboxes for
activity. The implementation polls them in round robin fashion. Pseudocode for

Library Support for Resource Constrained Accelerators 191

/∗ Number o f threads ∗/
const int num threads = MAXNBR OF THREADS;

/∗ Union l a r g e enough to ho ld argument types ∗/
typedef union {

u i n t p t r t i ;
double d ;
/∗ . . . ∗/

} ARGTYPE;

/∗ Written by acc e l e r a t o r , read by hos t ∗/
volat i l e typedef struct {

int f u n c i d /∗ Def ines the f unc t i on ∗/
int seq ; /∗ Sequence number ∗/
v a l i s t args ; /∗ Def ines c a l l arguments ∗/

} mailbox ;

/∗ One mai lbox per thread ∗/
mailbox mbox [num threads] ;

/∗ Written by host , read by a c c e l e r a t o r ∗/
volat i l e typedef struct {

int seqnr ;
ARGTYPE r e t v a l ;

} rep lybox ;

/∗ One rep l y box per thread ∗/
rep lybox rbox [num threads] ;

Fig. 2. Data types used by the accelerator and host

192 L. Brock-Nannestad and S. Karlsson

/∗ I n t e r a c t s wi th the hos t ∗/
ARGTYPE acc s tub (int func id , . . .) {

/∗ Locate c a l l e r ’ s unique i d ∗/
/∗ Could be encoded as par t o f the f unc i d ∗/
int t i d = l o c a t e t i d () ;
v a l i s t ap ;
v a s t a r t (ap , id) ;

/∗ Prepare the c a l l arguments ∗/
va copy (mbox [t i d] . args , ap) ;
mbox [t i d] . f u n c i d = fun c id ;

/∗ Ensure t ha t arguments are v i s i b l e to hos t ∗/
/∗ This i s a r c h i t e c t u r e s p e c i f i c ∗/
memory fence () ;

/∗ Increase sequence number ∗/
mbox [t i d] . seq++;

memory fence () ;

/∗ Wait f o r hos t to i n d i c a t e complet ion ∗/
while (rbox [t i d] . seq != mbox [t i d] . seq) {
/∗ s l e e p and then memory f ence ∗/
memory fence () ;

}

va end (ap) ;

return rbox [t i d] . r e t v a l ;
}

Fig. 3. Pseudo code for the accelerator stub

Library Support for Resource Constrained Accelerators 193

this is shown in figure 4. If an active mailbox is found, the host performs the
following steps:

1. Determine function call based on func_id.
2. Fetch arguments from shared memory.
3. Call real function with arguments.
4. Place return value in mailbox, using the union type.
5. Set acknowledgment flag in mailbox.

In our current implementation, the host is polling each mailbox. Many accel-
erators allow for efficient event queues or interrupts between the accelerator and
host and such mechanisms should be used to avoid the overhead of busy wait.

Similarly, we use busy wait on the accelerator side. Many architectures support
efficient hardware mechanisms for waking up accelerator cores and these should
be used to avoid the busy wait approach.

4 Evaluation

We use benchmarks from the SPLASH-2 [12] suite to evaluate performance.
We use the Modified SPLASH-2 benchmarks [10]. This is a minor update to
the original benchmarks which improves compatibility on 64 bit platforms. The
parameters we use for SPLASH-2 are shown in table 1. The SPLASH-2 bench-
marks utilize the following C library functions: malloc, printf, getopt, atof,
drand48, as well as several functions from the math library.

Table 1. SPLASH-2 benchmarks used and their parameters

Benchmark Data set size

FFT 226 data points
LU contiguous 8192× 8192 matrix
LU non-contiguous 8192× 8192 matrix

Wemodify the original benchmarks in two ways: First, we construct a baseline.
The baseline uses OpenMP parallel regions, barriers and locks. These OpenMP
directives are compiled by GCC to generate parallel code for the GNU OpenMP
library.

For our lightweight runtime, we replace all C library calls with calls to the stub
and then manually insert parallelization and synchronization calls. We match the
locations where GCC’s inserts calls to the GNU OpenMP runtime library.

We execute the SPLASH-2 benchmarks with the normal libgomp OpenMP
library and use this as a baseline for performance. We then compare it to the
performance of our lightweight runtime.

To measure the size of our runtime we compile each benchmark as a static
freestanding binary without C library dependencies. This also allow us to verify

194 L. Brock-Nannestad and S. Karlsson

/∗ Performs the ac t ua l c a l l on the hos t s i d e ∗/
ARGTYPE per f o rm ca l l (int f unc id , v a l i s t args , . . .) {

ARGTYPE a ; /∗ Used to hold f i r s t argument ∗/
/∗ Return va lue ∗/
ARGTYPE r e t v a l . i = 0 ;

/∗ Determine c a l l ∗/
switch (f unc i d) {

case 1 : /∗ drand48 ∗/
/∗ No arguments ∗/
r e t v a l . d = drand48 () ;
break ;

case 2 : /∗ srand48 ∗/
/∗ Ext rac t argument ∗/
a . i = va arg (args , long) ;
/∗ No return va lue ∗/
srand48 (a . i) ;
break ;

/∗ The r e s t o f t he supported l i b r a r y c a l l s here . ∗/
}
return r e t v a l ;

}

while (1) {
/∗ Ensure t ha t data i s t r an s f e r r ed from the ac c e l e r a t o r ∗/
/∗ This i s a r c h i t e c t u r e s p e c i f i c ∗/
memory fence () ;

for (n=0; n<num threads ; n++) {
/∗ Determine i f t he re i s a c t i v i t y ∗/
i f (mbox [n] . seq == rbox [n] . seq+1) {

/∗ Perform c a l l ∗/
rbox [n] . r e t v a l =

pe r f o rm ca l l (mbox [n] . f unc id , mbox [n] . a rgs) ;

/∗ Ensure t ha t data i s t r an s f e r r ed to the ac c e l e r a t o r ∗/
/∗ This i s a r c h i t e c t u r e s p e c i f i c ∗/
memory fence () ;

/∗ Increase sequence number to i nd i c a t e comple t ion ∗/
rbox [n] . seq = mbox [n] . seq + 1 ;
memory fence () ;

}
}
/∗ Repeat ∗/

}

Fig. 4. Pseudocode for the host side of the interface

Library Support for Resource Constrained Accelerators 195

that no calls to the C library remain as that would cause linking to fail. We then
analyze the size of the object code using the readelf tool.

Experiments were executed on an Intel production server, with the specifica-
tions outlined in table 2. All timing experiments were executed 30 times and we
present the averages with standard deviations shown using error bars. Timing
is carried out using the processor’s time stamp counter and then converted to
seconds. The processor’s time stamp counter always runs at the same rate and
can be used for timing measurements.

Table 2. Experimental machine

Processor Dual socket Intel Xeon X5570

Memory 48 GB

Disk Samsung SSD 840

OS 64 bit Debian GNU/Linux 3.2.57
Compiler GCC 4.8.1.
glibc 2.17

4.1 Execution Time Analysis

We have instrumented the system so that we can split the execution time into
two parts, the initialization time and the computation time. For completeness
we also present the total execution time.

Figure 5 shows the initialization time for each benchmark, for the baseline
and our lightweight runtime and for different number of threads. In SPLASH
benchmarks, initialization is mainly serial code so there is no speed up as the
number of threads increase. Initialization contains the most library calls. FFT’s
initialization phase is noticeably longer than for the OpenMP implementation.
FFT initializes each data point with a random value. This value is obtained by
calling drand48. This results in 226 calls to the host during initialization.

Figure 6 and table 3 shows the parallel computation part of each benchmark
as we vary the number of threads from 1 to 4. We see the expected speed up
when the benchmark is parallelized. The performance when using our runtime
matches the baseline.

For completeness, figure 7 shows the total wall clock time for each benchmark.
When not dominated by initialization time we are competitive when compared
to the baseline.

4.2 Memory Foot Print Analysis

We have also examined the size of object code in the lightweight runtime and the
benchmarks. Based on which C functions are executed remotely, we also estimate
the savings in object code. We assume a shared memory model where shared
variables are shared between host and accelerator. We therefore do not include

196 L. Brock-Nannestad and S. Karlsson

Table 3. Computation time in seconds

Benchmark Threads Lightweight runtime Baseline

FFT 1 11.33 11.18
FFT 2 5.81 6.06
FFT 4 3.29 3.16

LU contiguous 1 18.36 20.10
LU contiguous 2 9.67 10.91
LU contiguous 4 5.39 6.07

LU non-contiguous 1 44.37 45.39
LU non-contiguous 2 26.04 26.59
LU non-contiguous 4 14.67 14.74

Fig. 5. Initialization time for each benchmark. The number of threads is varied from
1 to 4.

shared variables in our discussion. We acknowledge, however, that efficient data
caching mechanisms are needed to support the shared memory model.

Table 4 shows the size of all the functions that comprise the runtime system.
Sizes are in bytes. These functions are available and executed on the accelera-
tor. We place the functions in two categories, those that are only called during
initialization and those that are called during runtime. The runtime functions
handle thread synchronization and host communication.

Table 5 shows the size of the application object code for FFT and LU con-
tiguous. The benchmarks rely on the C library functions shown in table 6. We
examine the size of these functions in the GNU C library. As the C library
has many implementations optimized for different situations, we choose a likely
candidate. The following results are therefore only an estimate.

Library Support for Resource Constrained Accelerators 197

Fig. 6. Computation time for each benchmark. The number of threads is varied from
1 to 4.

Fig. 7. The total execution time for each benchmark. The number of threads is varied
from 1 to 4.

In total, the library functions used by FFT occupy more than 34 kilobytes. For
LU contiguous it is more than 21 kilobytes. Using these values we can estimate
the total object code size for FFT as 45029 bytes with the GNU C library and
10734 bytes with our runtime. This is a saving of at least 75%. For LU contiguous
the GNU C library version is 32121 bytes, but 10755 bytes with our runtime.
Here we see a saving of 66%.

198 L. Brock-Nannestad and S. Karlsson

Table 4. Object code sizes for the lightweight runtime

Group Function name Object code size (bytes)

Runtime __accstub 209
__barrier_wait 87
__strtod_wrapper 51
__barrier_init 46
__memset_wrapper 42
__thread_wrapper 30
__spinlock_lock 18
__cmpxchg 7
__spimlock_init 4
__spinlock_unlock 4
Sub-total 498

Initialization __fakestart 183
__create_thread 49
__sys_clone 11
__real_start 6
__exit 2
Sub-total 251

Total 749

Table 5. Object code sizes for FFT and LU contiguous

FFT LU contiguous

Function name Size (bytes) Function name Size (bytes)

main 4812 main 4779
FFT1D 1165 lu 1649

Transpose 1072 CheckResult 924
SlaveStart 666 InitA 628
PrintArray 354 OneSolve 506
FFT1DOnce 330 PrintA 337

InitU 303 TouchA 319
InitU2 262 bmod 180

TouchArra 219 bmodd 169
InitX 188 bdiv 162

TwiddleOneCol 132 lu0 156
Reverse 126 SlaveStart 111

CheckSum 106 doxpy 46
Scale 63 printerr 46
log_2 50 BlockOwnerRow 41

CopyColumn 49 BlockOwner 17
printerr 46 BlockOwnerColumn 16

BitReverse 42

FFT Total 9985 LU Total 10006

Library Support for Resource Constrained Accelerators 199

Table 6. Object code sizes for GNU C library functions and their use by FFT and LU
contiguous

Function Size (bytes) FFT LU

__printf_fp 9345 X X
__sin_sse2 8569 X
__cos_sse2 5159 X
_getopt_internal_r 4391 X X
_int_malloc 4776 X X
_int_free 2796
____memset_sse2 2705 X
malloc 333 X X
fflush 249 X
free 136 X
__drand_iterate 96 X
_getopt_internal 92 X X
sqrt 38 X
drand48 33 X
getopt 29 X X
atoi 21 X X

Total 35044 22115

5 Related Work

There are many similarities between our remote execution and remote procedure
calls. Unlike an RPC interface, we do not have the uncertainty of invoking a
function across an unreliable network, but can assume that the call does not
fail. In many ways this is more similar to using hardware queues for events.

The OpenMP 4.0 standard [7] already addresses accelerators through the
target directives, but these offload only selected parts of the program to the
accelerator. Our aim is to run OpenMP programs, including the master thread,
directly on the accelerator and let it be assisted by the host.

Prior work on executing OpenMP on bare metal hardware [3,5] solve sim-
ilar issues regarding thread management and synchronization, but implement
OpenMP on stand alone systems and do not consider host and accelerator com-
binations.

There have been many previous efforts to use OpenMP on accelerators. Most
notable is perhaps IBM’s Cell Broadband Engine Architecture, which combined
a general purpose PowerPC Processing Element (PPE) with a set of Synergistic
Processor Elements (SPEs), small accelerator cores optimized for vector opera-
tions. The Cell has been the target of much research. Wei and Yu [11] presented
a source to source compiler which splits an application annotated with OpenMP
directives into two parts. One part would be compiled for and executed on the
PPE and the other for the SPEs. Unlike in our approach, the master thread
executes on the host PPE processor.

200 L. Brock-Nannestad and S. Karlsson

As the Cell processor lacks shared memory and caches, much effort has been
focused on efficiently utilizing its memory hierarchy. O’Brien et al. [6] present
an OpenMP runtime for the Cell processor which in tight coupling with the
PPE can execute threads on the SPEs. They implement the required thread
synchronization and work distribution. Much of their work centers on buffering
and overlapping DMA requests and implementing software caches to improve
performance. As with the work byWei and Yu, the master thread always executes
on the host processor.

Stotzer et al. recently developed an OpenMP runtime for the Texas Instru-
ments C66X series of DSPs [9]. The runtime sits very close to the hardware, but
on top of a small real-time operating system, Open Event Machine, also devel-
oped by TI. The C66X is a powerful processor and not a resource constrained
accelerator.

Pakin et al. [8] implemented a subset of MPI on the Cell processor. This allows
each SPE to be part of the message passing network. They offload arbitrary C
code to the PowerPC host, which is also responsible for communication between
SPEs on different nodes.

Outside the area of OpenMP and especially in the area of high performance
computing, there is a trend towards thin minimal software stacks. This can be
seen in operating systems optimized for HPC systems, such as Sandia Labs’
Kitten [4] and ZeptoOS from Argonne National Lab [1], both of which are min-
imalistic operating system that are optimized for the target hardware. In many
ways, our host and accelerator setup also mirrors the design of modern day HPC
clusters, where machines are divided into computation and I/O nodes, each with
their dedicated tasks. In our mindset this would be the accelerator and the host,
respectively.

6 Conclusion

In this paper, we have described a lightweight system where an accelerator can
remotely execute functions on the host. This allow even resource constrained
accelerators to utilize feature rich libraries. We show that an implementation of
our system can be made as small as 750 bytes allowing for a significant reduction
in object code size. We have evaluated our system with a set of SPLASH-2
applications and show that the impact on execution time is negligible when
compared to GCCs OpenMP implementation.

References

1. The ZeptoOS project, http://www.zeptoos.org, (accessed: July15, 2014)
2. Adapteva: Epiphany architecture reference, revision 14.03.11 (2014)
3. Jeun, W.C., Ha, S.: Effective openmp implementation and translation for multi-

processor system-on-chip without using os. In: Proceedings of the 2007 Asia and
South Pacific Design Automation Conference, pp. 44–49. IEEE Computer Society
(2007)

http://www.zeptoos.org

Library Support for Resource Constrained Accelerators 201

4. Lange, J., Pedretti, K., Hudson, T., Dinda, P., Cui, Z., Xia, L., Bridges, P.,
Gocke, A., Jaconette, S., Levenhagen, M., et al.: Palacios and kitten: New high
performance operating systems for scalable virtualized and native supercomput-
ing. In: 2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), pp. 1–12. IEEE (2010)

5. Liu, F., Chaudhary, V.: A practical openmp compiler for system on chips. In:
Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 54–68. Springer, Heidelberg
(2003)

6. O’Brien, K., O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting openmp on
cell. International Journal of Parallel Programming 36(3), 289–311 (2008)

7. OpenMP Architecture Review Board: Openmp application program interface, ver-
sion 4.0 (2013)

8. Pakin, S., Lang, M., Kerbyson, D.: The reverse-acceleration model for programming
petascale hybrid systems. IBM Journal of Research and Development 53(5), 1–8
(2009)

9. Stotzer, E., Jayaraj, A., Ali, M., Friedmann, A., Mitra, G., Rendell, A.P., Lintault,
I.: Openmp on the low-power ti keystone ii arm/dsp system-on-chip. In: Rendell,
A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp.
114–127. Springer, Heidelberg (2013)

10. University of Delaware, CAPSL: The modified splash-2 home page (2007),
http://www.capsl.udel.edu/splash/, (accessed: July 15, 2014)

11. Wei, H., Yu, J.: Loading openmp to cell: An effective compiler framework for
heterogeneous multi-core chip. In: Chapman, B., Zheng, W., Gao, G.R., Sato,
M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007. LNCS, vol. 4935, pp. 129–133.
Springer, Heidelberg (2008)

12. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs:
Characterization and methodological considerations. In: ACM SIGARCH Com-
puter Architecture News, vol. 23, pp. 24–36. ACM (1995)

http://www.capsl.udel.edu/splash/

Implementation and Optimization

of the OpenMP Accelerator Model
for the TI Keystone II Architecture

Gaurav Mitra1,2, Eric Stotzer1, Ajay Jayaraj1, and Alistair P. Rendell2

1 Texas Instruments, Dallas TX, USA
estotzer@ti.com,ajayj@ti.com

2 Australian National University, Canberra ACT, Australia
{gaurav.mitra,alistair.rendell}@anu.edu.au

Abstract. The TI Keystone II architecture provides a unique combi-
nation of ARM Cortex-A15 processors with high performance TI C66x
floating-point DSPs on a single low-power System-on-chip (SoC). Com-
mercially available systems such as the HP Proliant m800 and nCore
BrownDwarf are based on this ARM-DSP SoC. The Keystone II archi-
tecture promises to deliver high GFLOPS/Watt and is of increasing inter-
est as it provides an alternate building block for future exascale systems.
However, the success of this architecture is intimately related to the ease
of migrating existing HPC applications for maximum performance. Effec-
tive use of all ARM and DSP cores and DMA co-processors is crucial for
maximizing performance/watt. This paper explores issues and challenges
encountered while migrating the matrix multiplication (GEMM) kernel,
originally written only for the C6678 DSP to the ARM-DSP SoC using
an early prototype of the OpenMP 4.0 accelerator model. Single pre-
cision (SGEMM) matrix multiplication performance of 110.11 GFLOPS
and and double precision (DGEMM) performance of 29.15 GFLOPS was
achieved on the TI Keystone II Evaluation Module Revision 3.0 (EVM).
Trade-offs and factors affecting performance are discussed.

1 Introduction

Embedded accelerators such as the TI C6678 DSP have been proven to provide
high GFLOPS/Watt for HPC applications [1,2]. As a result there has been con-
siderable interest in utilizing low-power SoCs containing these accelerators to
build supercomputers capable of higher energy efficiency compared to current
systems. The HP Proliant m800 Server Cartridge, part of HP’s Moonshot [3]
project, and nCore HPC’s BrownDwarf [4] systems both use the TI Keystone
II SoC [5]. In the context of these two systems, it remains to be proven whether
existing HPC applications can use the OpenMP 4.0 accelerator model [6] to
achieve maximum performance. Section 3 discusses the accelerator specific ad-
ditions made to the OpenMP 4.0 specification after providing a brief overview
of the Keystone-II architecture in section 2.

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 202–214, 2014.
c© Springer International Publishing Switzerland 2014

Implementation and Optimization of the OpenMP Accelerator Model 203

In previous work [5] we demonstrated the use of hardware queues to create
a bare metal OpenMP runtime for the TI Keystone-I C6678 DSP. In section 4,
we demonstrate our current implementation of the OpenMP accelerator model
for the Keystone-II 66AK2H ARM-DSP SoC which is used to offload OpenMP
parallel regions from ARM host cores to the target DSP cores. Matrix multipli-
cation written for the C6678 DSP is ported to 66AK2H, and its performance is
reported in section 5. The importance of leveraging performance optimizations
such as using buffers in local SRAM, transferring data using DMA co-processors,
allocating buffers in memory shared between the ARM and DSP cores is also
highlighted in sections 4 and 5. Finally, we list related work in section 6 and
conclude with future directions in section 7.

2 TI Keystone II

The 66AK2H SoC shown in figure 1 is composed of a quad-core ARM Cortex-
A15 (up to 1.4 Ghz) cluster and an octa-core C66x DSP (up to 1.228 Ghz)
cluster [7]. The Cortex-A15 quad cores are fully cache coherent, while the DSP
cores do not maintain cache coherency. The DSP cores do not have any virtual
memory support as they do not have an MMU and do not share the ARM MMU.
The DSP cores have 32KB of L1D and L1P and 1MB L2 cache each. Each of these
caches are configurable and can be partitioned into scratchpad RAM (SRAM)

Fig. 1. 66AK2H SoC

204 G. Mitra et al.

as needed. The ARM cores also have 32 KB of L1D and L1P cache per core,
but share a single 4 MB L2 cache. The Multicore Shared Memory Controller
(MSMC) also provides 6 MB of SRAM which is shared by all ARM and DSP
cores.

The DSP cores are 8-way VLIW with two 64-bit loads/stores and four single-
precision FLOPS per cycle. 66AK2H provides five user-programmable Enhanced
DMA 3 (EDMA3) channel controllers capable of three-dimensional data trans-
fers to and from DDR,MSMC,L2 memory segments. Each EDMA controller has
64 DMA channels which support transfers triggered both by the user and inter-
rupts/events in the case of chained transfers. It also provides a two Tb/s TeraNet
interconnect and two 72-bit DDR3 interfaces (up to 1600 Mhz).

The 66AK2H SoC consumes an average of 9-14 Watts of thermal design power
(TDP) at 55 degrees C case temperature [7]. The DSP cores have a theoretical
peak performance of 19.648 GFLOPS per core and 157.184 GFLOPS aggregate
single-precision GFLOPS (at 1.228 Ghz). The double-precision performance of
the DSP cores is approximately one fourth single-precision, 39.296 GFLOPS. The
ARM cores are capable of one double-precision FLOP per cycle and therefore
have a peak performance of 2.4 GFLOPS per core [8] and 9.6 GFLOPS aggregate
double-precision GFLOPS (at 1.2 Ghz). Using the NEON extensions [9], the
peak single-precision performance would approximately be four times the double-
precision performance, 38.4 GFLOPS. Taking the SoC TDP into consideration,
the maximum energy efficiency achievable for the DSP cores would be between
2.86 to 4.37 double precision GFLOPS/Watt. Counting the ARM cores, we could
expect between 3.49 to 5.43 double precision GFLOPS/Watt.

3 The OpenMP Accelerator Model

The OpenMP 4.0 specification added an accelerator model that enables a pro-
grammer to direct execution to heterogeneous cores. Using this model, program-
mers have the capability to identify the code segments that they want to run
on a compute accelerator. The OpenMP accelerator model is portable across
a variety of different instruction set architectures (ISAs) including GPGPUs,
DSPs and FPGAs. The model is host-centric with a host device and multiple
target devices of the same type. A device is a logical execution engine with some
type of local memory. A device data environment is a collection of variables that
are available to a device. Variables are mapped from a host device data environ-
ment to a target device data environment. The model supports both shared and
distributed memory systems between host and target devices.

Program execution begins on the initial host device. The target construct
indicates that the subsequent structured block is executed by a target device.
Variables appearing in map clauses are mapped to the device data environment.
The map clause has amap-type which may be specified before the list of variables.
The map-type is one of to, from, tofrom and alloc and is used to optimize
the mapping of variables. Array section syntax is supported on pointer and array
variables that appear in map clauses to indicate the size of the storage that is
mapped.

Implementation and Optimization of the OpenMP Accelerator Model 205

In figure 2 the target construct indicates that the subsequent structured
block may execute on a target device. The array sections specified for the vari-
ables A and B and the variablesN and sum are mapped to the target device data
environment. Because of its from map-type the corresponding variable sum on
the target device is not initialized with the value of original variable sum on the
host. Once on the device, the iterations of the loop after the parallel for
construct are executed in parallel by the team of threads executing on the target
device. When the target region is complete the value of the original variable
sum on the host is assigned the value of the corresponding variable sum on the
target device and it and the other variables previously mapped are un-mapped.
The thread on the host device that encountered the target construct then
continues execution after the target region.

1 double f(double * restrict A, double * restrict B, int N)
{

3 double sum;
#pragma omp target map(to: A[0:N], B[0:N], N) map(from:sum)

5 {
sum = 0.0;

7 #pragma omp parallel for reduction(+:sum)
for (int i=0; i<N; i++)

9 sum += A[i] * B[i];
}

11 return sum;
}

Fig. 2. Target construct

Depending on the hardware memory system, a mapped variable might re-
quire copies between host and target device memories, or no copies if the host
and target device share memory. Even if memory is shared, a pointer translation
or memory coherence operation might still be required when mapping a variable.
The OpenMP accelerator model supports all of these hardware configurations.
When an original variable in a host data environment is mapped to a correspond-
ing variable in a device data environment, the model asserts that the original
and corresponding variable may share storage. Writes to the corresponding vari-
able may alter the value of the original variable. Therefore, a program cannot
assume that a mapped variable resulted in a copy of that variable.

Other device constructs include the target data and target update
constructs which are used to manage the placement and consistency of variables
mapped to device data environments. The teams and distribute constructs
were also added to facilitate a new type of work-sharing pattern that exploits ac-
celerator style loop-level parallelism. For the purposes of this paper, the target
construct is sufficient.

4 Accelerator Model Implementation

The implementation is split across a front-end source-to-source lowering tool
(S2S) and a host library (libompaccel). The S2S tool takes as input a source
file with target constructs and: (a) replaces the target region with API calls to
make the data available on the target device, trigger execution on the target and

206 G. Mitra et al.

make any data computed by the target region available to the host device; and
(b) takes the target region and compiles it for the target device

OpenCLTM [10] is an industry standard approach to programming hetero-
geneous SoCs. TI’s OpenCL 1.1 compliant runtime implements an extension
which supports dispatching OpenCL kernels with calls to functions containing
OpenMP parallel regions. This feature enabled us to leverage the OpenCL run-
time to perform the mechanics of making data available on the target device
and triggering execution. Libompaccel is implemented as a thin layer that im-
plements the target API calls and maps them to corresponding OpenCL APIs
and performs book keeping required by the accelerator model. The target region
is dispatched as an OpenCL kernel.

4.1 Optimizing Data Synchronization

Data synchronization between the host and target device can be a significant
source of overhead. This overhead has implications for the amount of computa-
tion that needs to be performed by a target region to outweigh the data syn-
chronization overhead. On the 66AK2H SoC, the host and target device share
internal and external memory. However as noted earlier: (a) the target device
does not have a memory management unit (MMU); and (b) there is no hardware
cache coherency between the target and host device.

As a result, the host accesses shared memory using virtual addresses and
the target accesses the shared memory using physical addresses. Moreover,
host device variables can span multiple non-contiguous pages in Linux virtual
memory whereas the target device operates on contiguous physical memory.
When mapping variables from the Linux process space, the variables must be
copied into contiguous memory for target operation. This copy is inefficient,
especially for large variables. To eliminate this copy, the implementation pro-
vides a special purpose dynamic memory allocation API, malloc ddr() and
malloc msmc() shown in figure 3. The physical memory associated with this

heap is contiguous and is mapped to a contiguous chunk of virtual memory on
the host. If any host variables allocated via this API are mapped into target
regions, the map clauses translate to cache management operations on the host,
significantly reducing the overhead.

float* buf_in_ddr = (float*) __malloc_ddr(size_bytes);
2 float* buf_in_msmc = (float*) __malloc_msmc(size_bytes);

Fig. 3. malloc ddr and malloc msmc API

In figure 4 we report the advantage of mapping buffers allocated using this
API compared to those allocated using standard malloc() on the host. The
overhead times of offloading buffers with sizes varying between 4 KB to 163840
KB (160 MB) created using both the malloc ddr() API and standard malloc()
were measured. The speed-up obtained by using malloc ddr() is shown. A buffer
was first read and written to in order to populate the host caches. Following
this the host timer was started and the buffer was offloaded to a target region
using map(tofrom:buffer[0:size]). Within the target region, all eight

Implementation and Optimization of the OpenMP Accelerator Model 207

DSP cores wrote to the buffer using an OpenMP parallel region. Upon returning
from the target region, timing was stopped and recorded on the host. The elapsed
DSP time measured within the target region was then subtracted from the host
time to obtain the overhead times. All measurements were taken on the TI
66AK2H EVM using compilers and tools listed in section 5. Execution times
were measured in microseconds averaged over 100 iterations with a standard
deviation of 0.5 microseconds.

4

1
6

6
4

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

6
1
4
4

8
1
9
2

1
0
2
4
0

1
2
2
8
8

1
4
3
3
6

1
6
3
8
4

2
0
4
8
0

3
2
7
6
8

4
0
9
6
0

6
5
5
3
6

8
1
9
2
0

9
8
3
0
4

1
3
1
0
7
2

1
4
3
3
6
0

1
6
3
8
4
0

50

100

150

200

1
.1

6

1
.1

7

1
.5

1

2
.5

5

3
.3

1

4
.0

3

5
.4

8

6
.8

7
.0

7

7
.5

5

7
.7

1

8
.0

4

9
.2

7

1
0
.6

6

1
3
.1

8

2
1
.7

9

2
7
.5

2

4
9
.4

9

6
5
.5

2

8
4
.1

6

1
3
5
.0

3

1
5
8
.6

2
1
0
.4

8

Buffer Size (KB)

S
p
ee
d
-u
p

TI 66AK2H EVM Rev 3.0

Fig. 4. malloc ddr() speed-up vs. malloc()

Using our shared memory allocation API results in a maximum overhead of
3.75 ms for a 12288 KB (12 MB) buffer whereas using malloc results in overheads
increasing proportional to buffer size. Speed-up factors shown in figure 4 suggest
that for small buffer sizes up to 64 KB malloc’d buffers have almost equivalent
performance compared to malloc ddr’d ones. However, larger buffers, espe-
cially ones above 1 MB should be allocated using malloc ddr as it results in a
considerable performance advantage.

4.2 Utilizing Target Scratchpad Memory

On the 66AK2H, each DSP core’s 1MB L2 memory can be configured such
that a portion of it is fast scratchpad memory and the rest is L2 cache. The
OpenMP 4.0 map clause specification does not allow taking advantage of the
scratchpad memory. Our implementation added a new local map-type, which
maps a variable to the L2 scratchpad memory. In terms of data synchronization,
such variables are treated as map-type alloc. They have an undefined initial
value on entry to the target region and any updates to the variable in the target
region cannot be reflected back to the host. Mapping host variables to target
scratchpad memory provides significant performance improvements.

208 G. Mitra et al.

5 Porting Matrix Multiplication for Keystone II

Fundamental to a majority of HPC applications are Basic Linear Algebra Sub-
programs (BLAS). For an emerging HPC platform, achieving good scalable per-
formance for fundamental BLAS routines is a key factor. General Matrix multi-
plication (GEMM) is a level 3 BLAS routine that has been used extensively to
benchmark and test the performance of HPC platforms.

double MatmulOptTarget(real* A, real* B, real* C,
2 int m, int k, int n,

real* MSMC_buf, int msmc_size, int num_threads)
4 {

int size_A = m*k; int size_B = k*n; int size_C = m*n;
6 /* Local L2 SRAM scratch total: 768 Kbytes = 786432 bytes */

/* Do not need to allocate here, passing a null pointer as local is adequate */
8 real *pL2 = NULL;

uint64_t elapsed_cycles;
10 #pragma omp target map(to: A[0:size_A], B[0:size_B], m, k, n, num_threads) \

map(alloc: MSMC_buf[0:msmc_size]) \
12 map(local: pL2[0:L2_SRAM_NUM_REALS]) \

map(tofrom: C[0:size_C]) \
14 map(from: elapsed_cycles)

{
16 omp_set_num_threads(num_threads);

/* Set start address of a core’s L1D SRAM that is about to be created */
18 real* pL1 = (real*) L1D_SRAM_START;

int lda = m, ldb = k, ldc = CORE_PROCESS_ROWS*((m+(CORE_PROCESS_ROWS-1))/CORE_PROCESS_ROWS);
20 int tid, mLocal;

uint64_t start = __clock64();
22 #pragma omp parallel default(none) \

private(tid, mLocal) \
24 firstprivate(pL1, pL2, m, n, k, lda, ldb, ldc) \

shared(A, B, C, MSMC_buf)
26 {

/* Configure L1D on each core to have 16KB SRAM and 16 KB Cache */
28 __cache_l1d_16k();

int nthreads = omp_get_num_threads();
30 int mRemaining = 0;

tid = omp_get_thread_num();
32 mLocal = (nthreads > m ? 1 : m/nthreads);

if (tid == nthreads-1)
34 if (m % nthreads != 0) mRemaining = m % mLocal;

gemm(mLocal + mRemaining, n, k, A + mLocal*tid, lda, B, ldb, C + mLocal*tid, ldc,
36 pL1, pL2, MSMC_buf, tid);

/* Restore L1D Cache config on each core to entire 32KB Cache */
38 __cache_l1d_all();

}
40 uint64_t end = __clock64();

elapsed_cycles = end - start;
42 }

/* Assuming the clock speed of the DSP is 1.228Ghz Calculate the elapsed seconds */
44 double elapsed_time_sec = ((double)elapsed_cycles)/1.228e9;

return elapsed_time_sec;
46 }

Fig. 5. Target region for GEMM

It provides a good basis for comparing the cost of data movement vs. raw
FLOPS across different systems. Several approaches have been used to perform
blocking/panelling of matrices to maximize utilization of caches and scratchpad
RAM. In [1,2], GEMM was written for the C6678 DSP and the performance
measured across 8 DSP cores was 79.4 GFLOPS for SGEMM and 21 GFLOPS
for DGEMM with the DSPs running at 1Ghz. To port GEMM for 66AK2H, the
same algorithm, inner kernel and matrix panelling scheme was used. In order to
maximize the use of a larger L2 and MSMC SRAM, the number of inner panels
was increased to use all 768 KB of L2 and 4.5 MB of MSMC SRAM. The runtime
reserves 128 KB of L2 and 1.5 MB MSMC SRAM. The remaining 128 KB of L2
is configured as cache.

Implementation and Optimization of the OpenMP Accelerator Model 209

The GEMM implementation for the C6678 DSP used the EDMA3 co-processor
for data transfer and intrinsics such as cmpysp() to perform four single pre-
cision floating-point multiplies and daddsp() to perform four single precision
additions in one cycle. The accelerator model requires that each function used
within a target region must have an equivalent implementation for the host. The
if() clause specification mandates this. However, it is important to note that
every accelerator specific function or API might not be implementable for the
host side. We accounted for this situation by allowing C66x specific code to be
compiled separately and linked into the final executable. In this case we compiled
the GEMM API function with instrumentation code and the inner kernel using
the DSP compiler cl6x and called the GEMM function from within the target
region as shown in figure 5. Timing within the target region was done using the
built-in clock64() function that provides a cycle count by reading a DSP
performance counter register.

In figure 5 we note several key optimizations to effectively use the Keystone II
memory system. The local map-type is used to allocate a 768 KB buffer on each
DSP core’s L2 SRAM. Upon entering the target region, the L1D cache size is
halved to create 16 KB L1D SRAM and 16 KB L1D Cache per DSP core. This
optimization is critical to the performance of the particular panelling scheme
used. It ensures that a 16KB panel is retained in L1D SRAM as long as possi-
ble while the other 16KB cache usage is maximized using the touch(void*
array, int size) built-in function that allows fast reading of a memory
segment into cache. The arrays A, B and C were allocated in shared memory
using malloc ddr(). The MSMC buf array used 4MB of usable 4.5 MB in
MSMC SRAM and was allocated using malloc msmc(). Within the instrumen-
tation code, the EDMA Manager API was used to start parallel DMA transfers
on separate channels. Figure 6 shows the API function for a 2D block transfer
which allows transferring a number of lines of contiguous chunks of memory with
different source and destination start offsets (pitch).

int32_t EdmaMgr_copy2D2DSep(EdmaMgr_Handle h,void *restrict src, void *restrict dst,
2 int32_t num_bytes, int32_t num_lines,

int32_t src_pitch, int32_t dst_pitch);

Fig. 6. EDMA Manager 2D transfer API

5.1 Performance

The TI 66AK2H EVM (Rev 3.0) was used to measure performance. The ARM
Cortex-A15 cores were clocked at 1.2 Ghz and the C66x DSP cores ran at 1.228
Ghz. In order to assess GEMM performance on the ARM cores, ATLAS CBLAS
(using Pthreads) v3.10.1 library auto-tuned for ARM Cortex-A15 was used. The
auto-tuning was performed on the 66AK2HEVM is using gcc 4.7.2. The following
TI software packages were used: TI MCSDK Linux v3.00.04.18, TI OpenCL
v0.10.0, OpenMP accelerator model v1.0.0 and TI C6000 Code Generation Tools
v8.0.0.

210 G. Mitra et al.

Two sets of times were collected. The first set was measured from within the
target region using clock64() to time the OpenMP parallel region and DSP
execution time. GFLOPS calculated using this time are denoted as SGEMM-
DSP and DGEMM-DSP in figure 7. The second set was measured from the host
using the clock gettime() function call and the CLOCK MONOTONIC RAW
clock with microsecond accuracy. This time measurement included the overhead
of calling the accelerator model runtime library and the data transfer time to and
from the target region along with execution time. SGEMM-DSP(+Overheads)
and DGEMM-DSP(+Overheads) denote GFLOPS calculated using time mea-
sured from the host. clock gettime() was also used to measure time for
ATLAS Pthread CBLAS SGEMM and DGEMM on ARM. SGEMM-ARM and
DGEMM-ARM denote GFLOPS for these measurements. Each time measure-
ment was averaged over a 100 iterations with a standard deviation of 0.5 mi-
croseconds. GFLOPS values calculated using these time measurements are
reported in figure 7.

The figures 7(a)-7(f) report strong scaling performance for a fixed total prob-
lem size each by varying the number of DSP threads used. Each DSP core runs
a single thread. Near linear performance scaling is observed in all cases varying
from 1-8 threads. The single DSP core performance peaks at 14.1 GFLOPS for
SGEMM for the square 4096×4096 case and 3.66 GFLOPS for DGEMM for the
square 2048× 2048 case. The 4096× 2048 rectangular matrix case provides the
peak performance of 110.11 GFLOPS (with overheads) for SGEMM across all
eight DSP cores while the square 2048× 2048 case provides the peak DGEMM
performance of 29.15 GFLOPS. For the smallest 512 × 512 matrices, the over-
heads recorded are significant in comparison to the rest of the cases. This is
because an extra five buffers are mapped to the target region every time and
the DSP execution times for smaller cases do not outweigh the cost of creating
these buffers. The peak performance of ATLAS across four ARM cores is 8.45
GFLOPS for SGEMM in the largest case and 5.45 GFLOPS for DGEMM in
the 2048 × 2048 case. In comparison a single DSP core is always faster than
four ARM cores and eight DSP cores are at least 12× faster in all cases. With
respect to the peak performance of the DSP cluster, using the accelerator model
on 66AK2H achieves 70.05% for SGEMM and 74.18% efficiency for DGEMM in-
cluding all overheads. The original implementation for C6678 achieved 62% for
SGEMM and 65% for DGEMM [1]. The increase in efficiency can be attributed
to larger L2 and MSMC SRAM available in 66AK2H.

5.2 Power Efficiency

The exact power consumed by the DSP cores during computation of GEMM ker-
nels is unavailable at this time and therefore energy or power efficiency using the
TDP rating of the 66AK2H SoC, which is between 9-14 Watts, is reported. The
GEMM execution on the ARM cores is not counted. The efficiency is reported
as a range with the lower bracket calculated using 9 Watt TDP and the higher
with 14 Watt TDP. Taking the peak performance numbers with offload over-
heads, power efficiency between 7.865 to 12.23 single precision GFLOPS/Watt
and 2.08 to 3.23 double precision GFLOPS/Watt was achieved.

Implementation and Optimization of the OpenMP Accelerator Model 211

0

20

40

60

80

1
2
.5

9

2
5
.9

7

4
6
.2

8

5
8
.5

3

7
0
.1

8

1
3
.8

9

2
7
.4

2

5
0
.8

6
5
.9

1

8
0
.9

8

3
.4

7 7
.0

6

1
3
.6

1

1
8
.6

7 2
4
.2

9

3
.6

3 7
.2

5

1
4
.2

6 1
9
.9

3 2
6
.4

6

3
.9

8
3
.9

8
3
.9

8
3
.9

8
3
.9

8

2
.6

7
2
.6

7
2
.6

7
2
.6

7
2
.6

7

G
F
L
O
P
S

SGEMM-DSP(+Overheads) SGEMM-DSP

DGEMM-DSP(+Overheads) DGEMM-DSP

SGEMM-ARM DGEMM-ARM

(a) 512x512

0

20

40

60

80

100

120

1
3
.7

3

2
7
.7

5
4
.3

2

7
5
.6

3

9
6
.4

4

1
4
.0

5

2
8
.0

1

5
5
.5

4

7
8
.0

8

1
0
0
.3

8

3
.6

3

7
.2

8 1
4
.4

8

2
0
.7

7 2
8
.4

6

3
.6

5

7
.3

1 1
4
.5

7

2
0
.9

6 2
8
.8

1

7
.2

9
7
.2

9
7
.2

9
7
.2

9
7
.2

9

4
.2

4
.2

4
.2

4
.2

4
.2

(b) 1024x1024

0

20

40

60

80

100

120

1
3
.8

9

2
7
.9

3

5
5
.1

3

7
7
.0

9

1
0
0
.7

1
4
.0

6

2
8
.0

8

5
5
.7

6

7
8
.3

1

1
0
2
.8

2

3
.6

4

7
.3

1
4
.5

5

2
0
.9

2 2
8
.7

9

3
.6

6

7
.3

1 1
4
.5

9

2
1
.0

2 2
8
.9

6

7
.6

4
7
.6

4
7
.6

4
7
.6

4
7
.6

4

4
.4

7
4
.4

7
4
.4

7
4
.4

7
4
.4

7

G
F
L
O
P
S

(c) 1024x2048

0

20

40

60

80

100

120

1
4
.0

4

2
8
.0

6

5
5
.9

3

7
8
.3

1
0
8
.8

9

1
4
.0

8

2
8
.0

9

5
6
.0

6

7
8
.5

6

1
0
9
.4

4

3
.6

6

7
.3

2 1
4
.6

2

2
1
.4

2
9
.1

1

3
.6

6

7
.3

2 1
4
.6

3

2
1
.4

2 2
9
.1

5

8
.1

8
.1

8
.1

8
.1

8
.1

5
.4

5
5
.4

5
5
.4

5
5
.4

5
5
.4

5

(d) 2048x2048

1-thread 2-threads 4-threads 6-threads 8-threads
0

20

40

60

80

100

120

1
4
.1

2
8
.1

8

5
6
.1

8

8
1
.2

1

1
1
0
.0

1

1
4
.1

2
8
.1

8

5
6
.1

9

8
1
.2

5

1
1
0
.1

1

3
.6

5

7
.3

1 1
4
.6

1

2
1
.5

1 2
9
.1

3
.6

5

7
.3

1 1
4
.6

1

2
1
.5

2 2
9
.1

2

8
.3

6
8
.3

6
8
.3

6
8
.3

6
8
.3

6

5
.3

1
5
.3

1
5
.3

1
5
.3

1
5
.3

1

G
F
L
O
P
S

(e) 4096x2048

1-thread 2-threads 4-threads 6-threads 8-threads
0

20

40

60

80

100

120

1
4
.1

2
8
.1

9

5
6
.2

8
1
.0

9

1
0
9
.6

5

1
4
.1

2
8
.1

8

5
6
.1

8

8
1
.0

8

1
0
9
.6

6

3
.4

3

6
.8

6 1
3
.6

6

1
9
.9

5

2
7
.1

2

3
.4

3

6
.8

6 1
3
.6

7

1
9
.9

5

2
7
.1

3

8
.4

5
8
.4

5
8
.4

5
8
.4

5
8
.4

5

5
.3

1
5
.3

1
5
.3

1
5
.3

1
5
.3

1

(f) 4096x4096

Fig. 7. SGEMM and DGEMM Performance

212 G. Mitra et al.

6 Related Work

OpenACC [11] provides an alternate specification for programming accelerators
using compiler directives. The PGI accelerator model [12] and hiCUDA [13]
have also been use to similar effect. Embedded TI C66x DSPs have also previ-
ously been shown to be effective building blocks for HPC platforms in [14,15].
Similar to our malloc ddr() method of allocating buffers in shared memory
space NVIDIA CUDA 6[16] provides the concept of unified memory which allows
creation of buffers in a shared memory space using cudaMallocManaged().
For the new NVIDIA Tegra K1[17] SoC which provides four ARM Cortex-
A15 cores and a Tegra GPU on-chip, unified memory translates to physically
shared memory similar to TI Keystone II. But for other discrete host CPU
and PCiE connected NVIDIA GPUs unified memory goes across separate phys-
ical memory spaces. HOMP [18], an early implementation of the accelerator
model for NVIDIA GPUs generated CUDA kernels similar to how we gener-
ate OpenCL kernels. The Intel Xeon Phi co-processor is another emerging HPC
platform for which OpenMP was one of the first programming models to be
ported [19,20,21,22]. Implementation of compiler directive based accelerator pro-
gramming for it was also recently demonstrated by [23]. [24] measured the iso-
lated power efficiency of running DGEMM provided in the SHOC benchmark on
the Intel Xeon Phi co-processor. A maximum efficiency of 2.2 GFLOPS/Watt
was reported.

7 Conclusion and Future Work

We demonstrated the effective use of the OpenMP accelerator model to offload
SGEMM and DGEMM kernels from host ARM cores to the eight DSP cores on
the TI 66AK2H Keystone II SoC. The acceleration of the GEMM kernels running
on the eight DSPs vs. the four ARM cores was at least 12×. Further, we achieved
slightly better performance (up to 74.18% efficiency) than the GEMM kernels
that run on the TI C6678 Keystone I SoC with only 8 C66x DSP cores (up to 65%
efficiency), demonstrating that performance can be maintained when offloading
from the ARM Cores to the DSP cores. The slight performance improvement
was due to extra L2 and MSMC scratch memory on Keystone II.

In the OpenMP accelerator model variables are mapped from a host device to
a target device. The model supports systems that require copying the variables
and those where a copy is not required. In our implementation of the accelerator
model, we had to support both types of mapping. A copy is required for variables
that have been allocated in the Linux processes’ non-contiguous virtual memory,
and a copy is not required when a variable is allocated from a special shared
contiguous physical memory range. The runtime makes the decision to copy
based on the address of the mapped variable. We extended the model to provide
new API functions malloc ddr() and malloc msmc() to dynamically
allocate memory from the host such that it is in contiguous physical memory,
therefore avoiding any copies when mapping the memory to the target device.

Implementation and Optimization of the OpenMP Accelerator Model 213

The L1 and L2 memories on the TI C66x DSP core can be configured as both
scratch, cache or both. We added a new local map-type to allocate a variable
to L2 scratch memory. Optimal performance can be achieved when using the L1
and L2 as scratch memories, however, DMA co-processors are used to move data
in and out of the scratch memories. Today programmers are required to use TI
specific API functions to program the DMA co-processors. Our future work is
to explore how to implement the DMA operations in portable OpenMP style
pragmas.

In summary, with its combination of ARM Cortex-A15 and TI C66x DSP
cores integrated on a single SoC with shared memory among all the cores, the
TI Keystone II architecture is a good fit for the OpenMP accelerator model.
The few extensions we have added for performance are general enough to be
considered for future versions of the OpenMP accelerator model.

Acknowledgment. GM and APR acknowledge the support of Australian Re-
search Council Discovery Project DP0987773.

References

1. Ali, M., Stotzer, E., Igual, F.D., van de Geijn, R.A.: Level-3 BLAS on the TI
C6678 multi-core DSP. In: IEEE 24th International Symposium on Computer Ar-
chitecture and High Performance Computing (SBAC-PAD), pp. 179–186. IEEE
(2012)

2. Igual, F.D., Ali, M., Friedmann, A., Stotzer, E., Wentz, T., van de Geijn, R.A.:
Unleashing the high-performance and low-power of multi-core DSPs for general-
purpose HPC. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, p. 26. IEEE Computer
Society Press (2012)

3. HP: HP moonshot system (2014),
http://h17007.www1.hp.com/us/en/enterprise/servers/
products/moonshot/index.aspx

4. nCore HPC: ncore browndwarf y-class supercomputer (2014),
http://ncorehpc.com/browndwarf/

5. Stotzer, E., Jayaraj, A., Ali, M., Friedmann, A., Mitra, G., Rendell, A.P., Lintault,
I.: OpenMP on the Low-Power TI Keystone II ARM/DSP System-on-Chip. In:
Rendell, A.P., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122,
pp. 114–127. Springer, Heidelberg (2013)

6. OpenMP ARB: OpenMP Application Program Interface, v.4.0 (2013),
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

7. Texas Instruments Literature: SPRS866: 66AK2H12/06 Multicore DSP+ARM
Keystone II System-on-Chip (SoC)

8. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: mak-
ing the case for an ARM-based HPC system (2013)

9. Mitra, G., Johnston, B., Rendell, A.P., McCreath, E., Zhou, J.: Use of SIMD vector
operations to accelerate application code performance on low-powered ARM and
Intel platforms. In: Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW). IEEE (2013)

http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/index.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/index.aspx
http://ncorehpc.com/browndwarf/
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

214 G. Mitra et al.

10. Khronos: OpenCL: The open standard for parallel programming of heterogeneous
systems (2011), http://www.khronos.org/opencl

11. Reyes, R., Lopez, I., Fumero, J.J., de Sande, F.: Directive-based programming
for gpus: A comparative study. In: IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Con-
ference on Embedded Software and Systems (HPCC-ICESS), pp. 410–417. IEEE
(2012)

12. Wolfe, M.: Implementing the PGI accelerator model. In: Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units, pp.
43–50. ACM (2010)

13. Han, T.D., Abdelrahman, T.S.: hi CUDA: A high-level directive-based language
for GPU programming. In: Proceedings of 2nd Workshop on General Purpose Pro-
cessing on Graphics Processing Units, pp. 52–61. ACM (2009)

14. Ahmad, A., Ali, M., South, F., Monroy, G.L., Adie, S.G., Shemonski, N., Carney,
P.S., Boppart, S.A.: Interferometric synthetic aperture microscopy implementation
on a floating point multi-core digital signal processer. In: SPIE BiOS, International
Society for Optics and Photonics, pp. 857134–857134 (2013)

15. Note, F.W., Van Zee, F.G., Smith, T., Igual, F.D., Smelyanskiy, M., Zhang, X.,
Kistler, M., Austel, V., Gunnels, J., Low, T.M., et al.: Implementing level-3 blas
with blis: Early experience (2013)

16. NVIDIA: Unified Memory in CUDA 6 (2014),
http://devblogs.nvidia.com/parallelforall/
unified-memory-in-cuda-6/

17. NVIDIA: NVIDIA Tegra K1 Processor (2014),
http://www.nvidia.com/object/tegra-k1-processor.html

18. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early Experi-
ences With The OpenMP Accelerator Model. In: Rendell, A.P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg
(2013)

19. Schmidl, D., Cramer, T., Wienke, S., Terboven, C., Müller, M.S.: Assessing the
performance of OpenMP programs on the Intel Xeon Phi. In: Wolf, F., Mohr,
B., an Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 547–558. Springer,
Heidelberg (2013)

20. Barker, J., Bowden, J.: Manycore Parallelism through OpenMP. In: Rendell, A.P.,
Chapman, B.M., Müller, M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 45–57.
Springer, Heidelberg (2013)

21. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: OpenMP Programming on Intel
Xeon Phi Coprocessors: An Early Performance Comparison, pp. 38–44 (2012)

22. Leang, S.S., Rendell, A.P., Gordon, M.S.: Quantum chemical calculations using
accelerators: Migrating matrix operations to the nvidia kepler gpu and the intel
xeon phi. Journal of Chemical Theory and Computation 10(3), 908–912 (2014)

23. Newburn, C., Dmitriev, S., Narayanaswamy, R., Wiegert, J., Murty, R., Chinchilla,
F., Deodhar, R., McGuire, R.: Offload Compiler Runtime for the Intel Xeon Phi
Coprocessor. In: 2013 IEEE 27th International on Parallel and Distributed Pro-
cessing Symposium Workshops PhD Forum (IPDPSW), pp. 1213–1225 (May 2013)

24. Li, B., Chang, H.C., Leon Song, S., Su, C.Y., Meyer, T., Mooring, J., Cameron,
K.W.: The Power-Performance Tradeoffs of the Intel Xeon Phi on HPC Appli-
cations. In: Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW). IEEE (2014)

http://www.khronos.org/opencl
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://www.nvidia.com/object/tegra-k1-processor.html

On the Roles of the Programmer, the Compiler

and the Runtime System When Programming
Accelerators in OpenMP

Guray Ozen, Eduard Ayguadé, and Jesús Labarta

Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
Universitat Politècnica de Catalunya (UPC–BarcelonaTECH)

Abstract. OpenMP includes in its latest 4.0 specification the accelera-
tor model. In this paper we present a partial implementation of this spec-
ification in the OmpSs programming model developed at the Barcelona
Supercomputing Center with the aim of identifying which should be the
roles of the programmer, the compiler and the runtime system in or-
der to facilitate the asynchronous execution of tasks in architectures
with multiple accelerator devices and processors. The design of OmpSs
is highly biassed to delegate most of the decisions to the runtime sys-
tem, which based on the task graph built at runtime (depend clauses)
is able to schedule tasks in a data flow way to the available processors
and accelerator devices and orchestrate data transfers and reuse among
multiple address spaces. For this reason our implementation is partial,
just considering from 4.0 those directives that enable the compiler the
generation of the so called “kernels” to be executed on the target device.
Several extensions to the current specification are also presented, such
as the specification of tasks in “native” CUDA and OpenCL or how to
specify the device and data privatization in the target construct. Finally,
the paper also discusses some challenges found in code generation and a
preliminary performance evaluation with some kernel applications.

Keywords: OpenMP accelerator model, OmpSs, OpenCL, CUDA.

1 Introduction

The use of accelerators has been gaining popularity in the last years due to their
higher peak performance and performance per Watt ratio when compared to ho-
mogeneous architectures based on multicores. However, the heterogeneity they
introduce (in terms of computing devices and address spaces) makes program-
ming a difficult task even for expert programmers.

Some alternatives have been proposed to address the programmability of these
accelerator–based systems. CUDA [1] and OpenCL [2] provide low-level API’s
that allow computation to be offloaded to accelerators. the management of their
memory hierarchy and the data transfers between address spaces. Other al-
ternatives, such as OpenACC [3], have appeared with the aim of providing a
higher–level directive–based approach to program accelerator devices. OpenMP

L. DeRose (Eds.): IWOMP 2014, LNCS 8766, pp. 215–229, 2014.
c© Springer International Publishing Switzerland 2014

216 G. Ozen, E. Ayguadé, and J. Labarta

[4] also includes in its latest 4.0 specification the accelerator model with the same
objective. These solutions based on directives still rely on the programmer for
the specification of data regions, transfers between address spaces and for the
specification of the computation to be offloaded in the devices; these solutions
also put a lot of pressure on the compiler–side that has the responsibility of
generating efficient code based on the information provided by the programmer.

The OmpSs [5] proposal has been evolving during the last decade to lower the
programmability wall raised by multi–/many–cores, demonstrating a task–based
data flow approach in which offloading tasks to different number and kinds of
devices, as well as managing the coherence of data in multiple address spaces,
is delegated to the runtime system. Multiple implementations were investigated
for the IBM Cell (CellSs [6]), NVIDIA GPU (GPUSs [7]) and homogeneous
multicores (SMPSs [8]) before arriving to the current unified OmpSs specification
and implementation. Initially OmpSs relied on the use of CUDA and OpenCL to
specify the computational kernels. This paper presents the latest implementation
of OmpSs which includes partial support for the accelerator model in OpenMP
4.0 specification. We just adopted those functionalities that are necessary to
specify computational kernels in a more productive way. The paper analyzes the
roles of the programmer, the compiler and the runtime from this new OmpSs
perspective.

2 “Pure” Accelerator-Specific Programming

“Pure” accelerator-specific programming initially put all responsibility in the
programmer, who should take case of transforming computational intensive pieces
of code into kernels to be executed on the accelerator devices and write the host
code to orchestrate data allocations, data transfers and kernel invocations with
the appropriate allocation of GPU resources. Nvidia CUDA [1] and OpenCL [2]
are the two APIs commonly used today.

In favor of programmability, the latest releases of the Nvidia CUDA archi-
tecture improved programming productivity by moving some of the burden to
the CUDA runtime, including Unified Virtual Addressing (CUDA 4) to provide
a single virtual memory address space for all memory in the system (enabling
pointers to be accessed from GPU) no matter where in the system they reside)
and Unified Memory (CUDA 6) to automatically migrate data at the level of in-
dividual pages between host and devices, freeing programmers from the need of
allocating and copying device memory. Although these additions may be seen as
a need for beginners, they make it possible to share complex data structures and
eliminate the need to handle ”deep copies” in the presence of pointed data inside
structured data. Carefully tuned CUDA codes may still use streams and asyn-
chronous transfers to efficiently overlap computation with data movement when
the CUDA runtime is unable to do it appropriately due to lack of lookahead.

On the Roles of the Programmer, the Compiler and the Runtime System 217

3 Directive-Based Approaches in OpenMP and
OpenACC

With the aim of providing a smooth and portable path to program accelerator-
based architectures, OpenACC [3] and OpenMP 4.0 [4] provide a directive-
centric programming interface. Directives allow the programmer to specify code
regions to be offloaded to accelerators, how to map loops inside those regions
onto the resources available in the device architecture, the data mapping in
their memory and data copying between address spaces. This directive–based
approach imposes a high responsibility on the compiler that needs to be able
to generate optimized device–specific kernels (considering architectural aspects
such as the memory hierarchy or the amount of resources available) as well as
taking care of accelerator startup and shutdown, code offloading and implement-
ing data allocations/transfers between the host and accelerator1.

The directive–based approach frees the programmer from the need to write
accelerator-specific code for the target device (e.g. CUDA or OpenCL kernels).
We think this is important in terms of programming productivity, but we also
believe that the directive–based approach should allow a migration path for
existing CUDA applications by reusing device–specific OpenCL or CUDA kernels
already optimized by experienced programmers.

In the following subsections we briefly summarize OpenMP 4.0 and OpenACC
constructs with the aim of splitting responsibilities between the compiler and the
runtime system, with the overall objective of lowering the programmability wall.

3.1 Offloading, Kernel Configuration and Loop Execution

OpenMP 4.0 offers the target directive to start parallel execution on the accel-
erator device. Similarly, OpenACC offers the parallel directive with the same
purpose. In OpenACC these regions can be declared asynchronous removing the
implicit barrier at the end of the accelerator parallel region, allowing the host
to continue with the code following the region.

Inside these accelerator regions in the OpenMP 4.0, the programmer can
specify teams, representing a hierarchy of resources in the accelerator: a league
of num teams teams, each with thread limit threads. The execution in the teams
region initially starts in the master thread of each team. Later, the distribute and
parallel for directives can be used to specify the mapping of iterations in different
loops to the resources available on the accelerator. On the other hand, OpenACC
offers kernels, i.e. regions that the compiler should translate into a sequence of
kernels for execution on the accelerator device. Typically, each loop nest will
be a distinct kernel. OpenACC also includes the loop directive to describe what
type of parallelism to use to execute a loop and declare loop-private variables and
arrays and reduction operations. Inside kernels and loops resources are organized
in gangs, workers and vectors (indicated with the num gangs, num workers and

1 If the accelerator can access the host memory directly, the implementation may avoid
this data allocation/movement and simply use the host memory.

218 G. Ozen, E. Ayguadé, and J. Labarta

vector length clauses, respectively), similar to the teams, threads and SIMD in
OpenMP 4.0.

Figure 1 shows the use of the above mentioned directives and clauses in
OpenMP 4.0. Lines 7 and 11 in the code on the left specify the mapping of
iterations of the i and j loops among 16 teams and 512 threads inside each
team, respectively as declared in lines 5–6. Similarly, line 6 in the code on the
right informs the compiler to map iterations of the i loop to both teams and
threads inside each team; lines 8 and 13 also map iterations of the j loop to
threads, probably using the multidimensional organization available in current
accelerator devices.

1#define n 128
2#define m 10240
3
4#pragma omp target device (0)
5#pragma omp teams
6 num teams(16) thread limit (512)
7#pragma omp distribute
8 for (i = 0 ; i < n ; i++)
9 {

10
11 #pragma omp para l le l for
12 for (j = 0 ; j < m ; j++)
13 // l o o p b o dy
14
15 }

1#define nX 4
2#define nelem 12000
3
4#pragma omp target device (0)
5#pragma omp teams thread limit (64)
6#pragma omp distribute para l l e l for
7 for (i =0; i < nelem ; i++) {
8 #pragma omp para l le l for private (k)
9 for (j =0; j < nX∗nX; j++)

10 for (k=0; k < nX; k++)
11 // l o o p b od y
12 #pragma omp para l le l for
13 for (j =0; j < nX∗nX; j++)
14 // l o o p b o d y
15 }

Fig. 1. Two simple examples using OpenMP 4.0 directives for offloading

Figure 2 shows another OpenMP 4.0 code where the programmer defines the
thread hierarchy (line 9) and maps to it the execution of the loop in line 10.
The target region is inside a task, so in this case the execution in the device is
asynchronous to the execution of the master thread in the processor.

1 for (begin=0 ; begin < n ; begin+=s t r i d e)
2 {
3 int end = begin + s t r i d e − 1 ;
4 int dev id = (begin / s t r i d e) % omp get num devices () ;
5
6 #pragma omp task
7 #pragma omp target device (dev id) \
8 map(to : y [begin : end] , x [begin : end]) map(from : z [begin : end])
9 #pragma omp teams num teams(16) thread limit (32)

10 #pragma omp distribute para l l e l for
11 for (i = 0 ; i < s t r i d e ; ++i)
12 z [i] = a ∗ x [i] + y [i] ;
13 }

Fig. 2. Code in OpenMP 4.0 asynchronously offloading to multiple accelerator devices

The target directive in OpenMP 4.0 includes the device clause, which offloads
the execution of the region kernel to a given physical device (indicated by the
integer value in the clause). This direct mapping makes it difficult to write
applications that dynamically offload work to accelerators in order to achieve
load balancing or adapt to device variability, since it forces the programmer to
embed in the application logic code to manage resources.

For example the code in Figure 2 shows how the programmer could stati-
cally map consecutive target regions to the accelerators available in the target
architecture (line 4 to compute the device identifier and device clause in line 7),

On the Roles of the Programmer, the Compiler and the Runtime System 219

allowing in this case to use two devices. Observe that the iteration range for the
for loop at Line 11 goes from 0 to stride, so the program is not ”sequentially
equivalent” since it should iterate from begin to end. This is how OpenMP 4.0
forces the specification of the work to be offloaded; we assume that this has to
be done in this way in order to ease code generation by the compiler although at
the expenses of reducing code portability and reusability, in addition to potential
programming errors.

3.2 Data Motion

Data copying clauses may appear on the target construct in OpenMP 4.0 and
parallel and kernels constructs in OpenACC. With these clauses the programmer
specifies the data motion needed to bring in and out the data for the execution
of the region in the accelerator.

For the data items (including array regions) that appear in an OpenMP 4.0
map clause, corresponding new data items are created in the device data envi-
ronment associated with the construct. Each data item has an associated map
type which specifies the data copying on entry and exit (to, from or tofrom)
or just allocation (alloc). OpenACC offers similar clauses (copyin, copyout, copy
and create). With all this information, the compiler schedules the associated
data allocations and transfers accordingly.

The example in Figure 2 shows the use of the map clause in Line 8. It is
important to notice that map(to: ...) forces the movement of data when the
target region is found; similarly for map(from: ...) which copies from device to
host when the target region finishes.

Both OpenMP 4.0 and OpenACC offer the possibility of defining data envi-
ronments in the accelerator for the extent of the region: target data and data,
respectively. Inside these regions, multiple kernel offloading actions may occur
without data copying between them, unless explicitly specified. An executable
directive (target update in OpenMP 4.0 and update in OpenACC) is offered to
the programmer to update, inside the scope of a data region, the data from the
host to the device or vice-versa. The use of multiple accelerators within a target
data region is not clear since at most one device clause can appear in the target
data directive. The Jacobi code in Figure 6 shows the use of data regions and
update in an OpenACC example.

3.3 Memory Hierarchy in the Accelerator Device

Private, firstprivate and reduction clauses in distribute and parallel for direc-
tives give the compiler hints about the use of the memory hierarchy inside the
accelerator. Again, OpenMP 4.0 and OpenACC rely on the programmer and the
compiler for the management of the memory hierarchy, having a direct impact
in the quality of the kernel codes to be executed on the accelerator device.

220 G. Ozen, E. Ayguadé, and J. Labarta

4 Accelerator Support in OmpSs

The accelerator support in the OmpSs programming model [5] leverages the
tasking model with data directionality annotations already available in the model
(that influenced the new depend clause in OpenMP 4.0). These annotations are
used by the OmpSs runtime system to dynamically compute task dependences
and build a dependence task graph. This graph is used to dynamically schedule
tasks in a data–flow way conscious of the resources available at any time.

The OmpSs programming model offers target directive with the following
syntax:
#pragma omp target [clauses]

task construct | function definition | function header

where clauses specify:

– copy in, copy out and copy inout - shared data that needs to be available
in the device before the construct can be executed or available after the
construct is executed.

– copydeps - copy semantics for the directionality clauses in the associated
task construct.

– device - kind of devices that can execute the construct (smp, cuda, opencl
or acc).

– implements - an alternative implementation of the function whose name
specified in the clause for a specific kind of device.

In order to make hybrid with native CUDA and/or OpenCL kernels, the directive
includes two additional clauses:

– ndrange - specification of the dimensionality, iteration space and blocking
size to replicate the execution of the CUDA or OpenCL kernel.

– shmem - arguments (and their size) to be mapped into team shared–memory.

The copy in, copy out and copy inout clauses, together with the lookahead
provided by the availability of the task graph, are used by the runtime system
to schedule data copying actions between address spaces (movements between
host and accelerator or between two accelerator devices if needed). Copydeps is
a simple shorthand to reuse the directionality annotations in the task directive.

Figure 3 shows a simple example based on SAXPY. In this example, the task
computing saxpy is written as a CUDA kernel and offloaded to a device with
CUDA architecture; task check results is defined to be executed in the host.
Observe that the output of CUDA task instances are inputs of the host task
instances. The dependences computed at runtime will honor these dependences
and the runtime system will take care of doing the data copying operations
based on the information contained in the task graph (dynamically generated
at runtime). The ndrange clause is used to replicate the execution of the CUDA
kernel in the device block/thread hierarchy (one dimension with na*na iterations
in total to distribute among teams of na iterations in this example).

On the Roles of the Programmer, the Compiler and the Runtime System 221

1#pragma omp target device (cuda) ndrange (1 , na∗na , na) copy deps
2#pragma omp task in (a [0 : s t r i d e] , b [0 : s t r i d e]) out (c [0 : s t r i d e])
3 g l o b a l void saxpy (double ∗ a , double ∗ b , double ∗ c , int s t r i d e) {
4 // CUDA k e r n e l c o d e
5 }
6#pragma omp target device (smp) copy deps implements(saxpy)
7#pragma omp task in (a [0 : s t r i d e] , b [0 : s t r i d e]) out (c [0 : s t r i d e])
8 void saxpy smp (double ∗ a , double ∗ b , double ∗ c , int s t r i d e) {
9 // CPU co d e w i t h OpenMP d i r e c t i v e s

10 }
11#pragma omp target device (smp) copy deps
12#pragma omp task in (s t a t i c c o r r e c t r e s u l t [0 : s t r i d e] , c [0 : s t r i d e])
13 void c he c k r e s u l t s (double ∗ p r e c a l c r e s u l t , double ∗ c , int s t r i d e) {
14 // CPU c o d e s w i t h OpenMP d i r e c t i v e s
15 }
16 int main (int argc , char ∗∗ argv) {
17 double a [SIZE] , b [SIZE] , c [SIZE] ;
18
19 for (begin=0 ; begin < nX ; begin+=s t r i d e)
20 saxpy(&a [begin] , &b [begin] , &c [begin] , s t r i d e) ;
21
22 for (begin=0 ; begin < nX ; begin+=s t r i d e)
23 c h e c k r e s u l t s (& p r e c a l c r e s u l t [begin] , &c [begin] , SIZE) ;
24 }

Fig. 3. Heterogeneous task example with OmpSs

With the device clause the programmer informs the compiler and runtime
system about the kind of device that can execute the task, not an integer number
that explicitly maps the offloading to a certain device as done in OpenMP 4.0.
This is a big difference that improves programming productivity when targeting
systems with different number and type of accelerators and regular cores. The
code in Figure 3 could be executed on any number of devices without changes.

The acc device type is used to specify that the task will make use of OpenMP
4.0 directives to specify what to execute on the accelerator device, relying on
the compiler to generate the kernel code to be executed on the device. We will
describe in more detail the current compiler implementation in Section 5.

Multiple implementations tailored to different accelerators/cores can be spec-
ified for the same task (currently only available for tasks that are specified at the
function declaration/definition). In this case, the programmer is delegating to the
runtime system the responsibility of dynamically selecting the most appropriate
device/core to execute each task instance, for example based on the availability
of resources or the availability of the data needed to execute the task in the de-
vice (locality–aware scheduling).With the implements clause the programmer can
indicate alternative implementations for a task function tailored to different de-
vices (accelerator or host). Figure 3 shows the use of the implements clause: the
saxpy smp function in Line 6 is defined as an alternative implementation to the
CUDA implementation of saxpy at Line 3. Observe that the programmer simply
invokes saxpy in Line 20, delegating in the runtime the selection of the most ap-
propriate implementation for each task instance.

5 MACC Compiler

A new compilation phase (MACC2) has been included in the Mercurium [9] com-
piler supporting the OpenMP 4.0 accelerator model with the OmpSs runtime.
MACC takes care of kernel configuration, loop scheduling and appropriate use

2 MACC is abbreviation for ”Mercurium Accelerator Compiler”.

222 G. Ozen, E. Ayguadé, and J. Labarta

of the memory hierarchy for those tasks whose device is set to acc in the target
clause. Some of the OpenMP 4.0 directives for accelerators (target data target
update directives and map clause) are simply ignored because we delegate their
functionality to the runtime system. Others have been extended to better map
with the OmpSs model or to provide additional functionalities.

OpenMP 4.0 MACC OpenMP 4.0 MACC

target extended (implements, device(int) extended
ndrange for CUDA and
OpenCL kernels)

map(to/from/tofrom) implemented but different distribute new clauses
names (copy in/out/inout) dist private

map(alloc) ignored teams implemented

target data currently ignored parallel for implemented

target update ignored distribute parallel for implemented

Fig. 4. MACC vs OpenMP 4.0

5.1 Kernel Configuration, Loop Scheduling and Thread Mapping

When generating kernel code MACC needs to decide: 1) the dimensionality of
the resources hierarchy (one-, two- or three-dimension teams and threads) and
2) the size in each dimension (number of teams and threads). In order to support
the organization of the threads in multiple dimensions MACC allows the nesting
of parallel for directives inside a target region (dimensionality equals the nesting
degree). Other proposals considered the use of collapse which includes an integer
to specify the number of nested loops with the same purpose [17].

MACC takes into account the restrictions of the device (for example maximum
number of blocks and threads warp size in the CUDA computing capability) and
the information provided by the programmer in the num teams or max threads
clauses; if not specified, MACC simply assigns one iteration per block and one
iteration per thread. MACC currently generates one dimensional teams (the cur-
rent implementation does not support nesting of distribute directives). Thread
dimensions are initially assigned in loop nesting order. As we will see in the
experimental section3, this ordering (for example outer loop for second thread
dimension and inner loop for first thread dimension) may have a noticeable im-
pact in performance; for now this is the responsibility of the compiler with no
hints from the programmer in the current OpenMP 4.0 specification.

5.2 Coalesced Accesses and Use of Shared Memory

MACC code generation makes use of coalesced accesses to access global mem-
ory in warps. To that end MACC performs a cyclic mapping of loop iterations

3 opt3 in the experimental evaluation of DG-kernel in Section 6.

On the Roles of the Programmer, the Compiler and the Runtime System 223

and tries to eliminate redundant ”one–iteration” loops and simplifies increment
expressions for induction variables in order to improve kernel execution time4.

MACC also makes use of shared memory for threads in a team based on
the specification of private and firstprivate data structures in the distribute di-
rective, so that each team allocates a private copy in its own shared memory.
MACC analyzes the size of the data structure to be privatized and generates
code for its allocation and copying from global memory to shared memory in
each team. However, for very large private arrays this is not possible to apply.
For these cases we have implemented 3 new clauses (dist private, dist firstprivate
and dist lastprivate); with these clauses and the chunk size provided in the
dist schedule(static,chunk size) clause in the distribute directive or near by ar-
ray variable the compiler just allocates a portion of the arrays to each team
and performs the necessary copies according to the firstprivate and lastprivate
semantics5.

– dist private(list) : shared memory is only allocated up to indicated chunk size.
– dist firstprivate(list) : shared memory is allocated up to indicated chunk size

and it is filled with own part of array at global memory.
– dist lastprivate(list) : shared memory is allocated up to indicated chunk size.

End of the distribute scope, allocated area from shared memory is recopied
to own location at the global memory.

– dist first lastprivate(list) : it is a short-cut for specifying dist firstprivate(list)
and dist lastprivate(list) at the same time.

Figure 5 shows the use of shared variables with distribute and team direc-
tives for the DG kernel application (which is used later in the evaluation sec-
tion). In this example, delta, der and grad are small arrays which are privatized
with private and firstprivate at line 13. However, flx and fly are specified as
dist first lastprivate with a chunk size of CHUNK at line 14.

6 Preliminary Performance Evaluation

The objective of the performance evaluation in this section is to show how the
OmpSs proposal to program accelerators behaves, which just integrates those
directives from OpenMP 4.0 accelerator model that are used to specify the kernel
computations. For the evaluation we use three codes: Jacobi, DG-kernel [11] from
NCAR and CG from NAS Parallel Benchmark [12].

For the experimental evaluation we have used a node with 2 Intel Xeon E5649
sockets (6 cores each) running at 2.53 GHz and with 24 GB of main memory,
and two Nvidia Tesla M2090 GPU devices (512 CUDA cores each, compute
capability 2.0) running at 1.3GHZ and with 6GB of memory per device. For
the compilation of OpenACC codes we have used the HMPP (version 3.2.3)
compiler from CAPS [13]. For the compilation of OmpSs codes we have used the

4 opt2 in the experimental evaluation of DG-kernel in Section 6.
5 opt1 in the experimental evaluation of DG-kernel in Section 6.

224 G. Ozen, E. Ayguadé, and J. Labarta

1#define nX 4
2#define NELEM 90000
3#define SIZE (NELEM∗nX∗nX)
4#define CHUNK 256
5#define NUM TEAMS 5625
6
7 double de l t a [nX∗nX] , der [nX∗nX] , grad [nX∗nX] , f l x [SIZE] , f l y [SIZE] ;
8
9 for (i t =0; i t<n i t ; i t++)

10 {
11 #pragma omp target device (acc) copy deps
12 #pragma omp task inout (f l x [0 : SIZE] , f l y [0 : SIZE])
13 #pragma omp teams num teams(NUM TEAMS) private (grad) f i r s tpr ivate (de lta , der)
14 #pragma omp distribute para l le l for d i s t f i r s t l a s tpr iva te (f l x [CHUNK] , f l y [CHUNK])
15 for (i e =0; i e < NELEM; i e++)
16 {
17 #pragma omp para l le l for private (j , i)
18 for (i i =0; i i < nX∗nX; i i ++) {
19
20 // < . . c om p u t a t i o n .. >
21
22 for (j =0; j < nX; j++)
23 {
24 // < . . c om p u t a t i o n .. >
25
26 for (int i =0; i < nX; i++)
27 // < . . c om p u t a t i o n .. >
28
29 // < . . c om p u t a t i o n .. >
30 }
31
32 // < . . c om p u t a t i o n .. >
33 }
34
35 #pragma omp para l le l for
36 for (j =0; j < nX∗nX; j++)
37 // < . . c om p u t a t i o n .. >
38 }
39 }

Fig. 5. Example to explain MACC implementation of shared memory - DG Kernel

Mercurium/Nanos environment [9],[10]. GCC 4.6.1 has been used as back-end
compiler for CPU code generation and the CUDA 5.0 toolkit for device code
generation. Performance is reported in terms of execution time for the kernels
generated and speed–up, with respect to sequential execution on a single core,
for the complete application.

6.1 Jacobi

Jacobi is a simple iterative program to get an approximate solution of a lin-
ear system A*x=b. In each iteration of an outer while loop two nested loops
are executed, the second one performing the main computation and including
a reduction operation on a scalar variable used to control convergence in the
while loop. The structure of the code is shown in Figure 6, with three different
annotations that correspond to three different versions6:

– ”OpenACC baseline” – each loop is a kernels region with the individual
specification of data copying.

– ”OpenACC optimized” – a data region is defined, which includes the two
kernels regions mentioned in the previous version.

– ”MACC/OmpSs” – equivalent to ”OpenACC baseline” in terms of target
regions but written in OpenMP 4.0. In this version the programmer relies

6 The OpenACC versions could have equivalent versions in OpenMP 4.0.

On the Roles of the Programmer, the Compiler and the Runtime System 225

on the runtime system to do all data allocations and copying when neces-
sary. Observe that all target regions are tasks. This is because the current
OmpSs implementation just supports asynchronous target regions (not yet
in OpenMP 4.0 specification); in this code this does not have any influence
due to the serialization caused by data dependences.

The left plot in Figure 7 shows the total execution time of the kernels gener-
ated by HMPP and MACC compilers for a data size of 2048 elements. For this
code there are no significant differences in the quality of the CUDA kernels gen-
erated. The right plot in the same figure shows the speed–up that is obtained
for the three versions mentioned above for three different problem sizes: 512,
1024 and 2048. First of all, observe that in OpenACC (and in OpenMP 4.0) the
programmer needs to define an external data region to minimize data copying
between consecutive kernels regions, while taking care of updating the scalar
error variable in the device and host. This achieves a relative speed–up of 25
between the OpenACC optimized and baseline versions. And second, the per-
formance plot also shows that the runtime system in OmpSs is able to achieve a
slightly better performance even with the overheads incurred by keeping track
of memory allocations, data copying and orchestration of kernel execution.

OpenACC baseline

1 while ((k <= mits) && (e r r o r > t o l)) {
2 e r r o r = 0 . 0 ;
3
4 #pragma acc kernels copyin (u)
5 copyout (uold)
6 #pragma acc loop
7 for (i = 0 ; i < n ; i++)
8 // < . . c om p u t a t i o n .. >
9

10 #pragma acc kernels copyin (uold)
11 copyin (u) copy (e r r o r)
12 #pragma acc loop reduction (+: e r r o r)
13 for (i = 1 ; i < (n − 1) ; i++)
14 // < . . c om p u t a t i o n .. >
15
16 e r r o r = sqr t (e r r o r) / (n ∗ m) ;
17 k++;
18 }

OpenACC optimized

1#pragma acc data copy (u) copyout (error)
2 create (uold , e r r o r)
3 while ((k <= mits) && (e r r o r > t o l)) {
4 e r r o r = 0 . 0 ;
5
6 #pragma acc kernels loop
7 for (i = 0 ; i < n ; i++)
8 // < . . c om p u t a t i o n .. >
9

10 #pragma acc update device (e r r o r)
11 #pragma acc kernels loop reduction (+: e r r o r)
12 for (i = 1 ; i < (n − 1) ; i++)
13 // < . . c om p u t a t i o n .. >
14
15 #pragma acc update host (e r r o r)
16 e r r o r = sqr t (e r r o r) / (n ∗ m) ;
17 k++;
18 }

MACC/OmpSs

1 while ((k <= mits) && (e r r o r > t o l)) {
2 e r r o r = 0 . 0 ;
3
4 #pragma omp target device (acc) copy deps
5 #pragma omp task in (u) out (uold)
6 #pragma omp teams distribute para l le l for
7 for (i = 0 ; i < n ; i++)
8 // < . . c om p u t a t i o n .. >
9

10 #pragma omp target device (acc) copy deps
11 #pragma omp task in (uold) out (u) inout (e r r o r)
12 #pragma omp teams distribute para l le l for reduction (+: e r r o r)
13 for (i = 1 ; i < (n − 1) ; i++)
14 // < . . c om p u t a t i o n .. >
15
16 #pragma omp taskwait
17 e r r o r = sqr t (e r r o r) / (n ∗ m) ;
18 k++;
19 }

Fig. 6. Annotated codes for Jacobi application

226 G. Ozen, E. Ayguadé, and J. Labarta

Fig. 7. Performance evaluation of Jacobi application

6.2 DG Kernel

DG is a kernel version of a climate benchmark developed by National Center for
Atmospheric Research [11]. The structure of the code has been omitted in this
submission version but will be included if the paper is accepted for publication.
The code consists of a single target region that is executed inside an iterative time
step loop that is repeated for a fixed number of iterations. Inside the target region
the iterations of two nested loops are mapped to the teams/thread hierarchy as
specified by the programmer.

Fig. 8. Performance evaluation of for DG kernel

Figure 8 plots the performance that is achieved by different versions of the
code, described in the following bullet points:

– CUDA: hand–optimized CUDA version of the application (with host and
kernel code written in CUDA) available from NCAR.

– OmpSs/CUDA: OmpSs version of the application leveraging (only) the com-
putational kernels written in CUDA.

On the Roles of the Programmer, the Compiler and the Runtime System 227

– HMPP: OpenACC version available from NCAR.
– MACC: different versions of our OpenMP 4.0 implementation in the MACC

compiler, including additional clauses to influence kernel code generation by
the compiler.

Comparing bars labelled CUDA and OmpSs/CUDA in Figure 8 one can ex-
tract a first conclusion: OmpSs is able to leverage existing CUDA kernels with
similar performance as full host/device CUDA codes. In this case we observe
a small performance degradation probably due to overheads of the runtime in
generating tasks in each iteration of the time step loop.

Fig. 9. Performance evaluation of CUDA Kernel for DG kernel

The second conclusion from this evaluation is the important role of the com-
piler in generating efficient kernel codes for the target device. The first 3 bars
at Figure 9 show the execution time for the original CUDA kernel, the kernel
generated by the HMPP compiler and the initial kernel generated by the MACC
compiler. As one can observe, the manually programmed CUDA kernel clearly
outperforms the kernels generated by the two compilers, which directly trans-
late into significant performance degradation in terms of speed–up for the whole
application (first, third and fourth bar, in Figure 8).

Thanks to the previous observation and to the study of the kernels avail-
able and generated by the compilers, we have been investigating alternative
code generation schemes and proposed a new clause for the distribute directive
(dist private, as explained in Section 5). The impact of these optimizations is
shown in the performance plot at Figure 9. Observe that there is plenty of room
for improvement by using and combining these optimizations which result in a
clear impact in the overall speed–up of the application (last bar in the left plot).

228 G. Ozen, E. Ayguadé, and J. Labarta

6.3 CG from NAS Parallel Benchmarks

The last code we have selected for the experimental evaluation in this paper is
NAS CG [12]. The main computational part of the application contains several
loops that can be made tasks and offloaded to a device or executed on the host.
The loop that contributes the most to the execution time performs a sparse
matrix vector operation. To execute this loop we want to use the two GPUs
available in the node.

The performance plot in Figure 10 shows the speed–up of the GPU accelerated
version of NAS CG (bars HMPP, MACC and MACC/2 GPU) and the speed–
up using 8 processors in the host, for three different classes of NAS CG. The
speed–up with 2 GPU is significant although we only refined one of the loops.
Note that data transfers between GPUs will take place, automatically handled
by the runtime.

Fig. 10. Performance evaluation for NAS CG

7 Conclusions

In this paper we presented the main design considerations that are embedded in
our current implementation of the OpenMP 4.0 [4] accelerator model in OmpSs,
making emphasizing on the roles of the programmer, compiler and runtime sys-
tem in the whole picture. The compiler plays a key role and for this reason pre-
vious efforts have been devoted to the automatic generation of device–specific
programs from high-level programs annotations such as OpenMP and OpenACC
[3], including both research efforts at academia [15–17] as well as commercial im-
plementations [13, 14]. Our compiler implementation in Mercurium [9] has been
useful to experiment with different code generation strategies, trying to fore-
see the need for new clauses in current OpenMP 4.0 specification. OmpSs [5] is
strongly rooted on the assumption that the runtime system should play a key

On the Roles of the Programmer, the Compiler and the Runtime System 229

role, making appropriate use of the information that can be gathered at exe-
cution time. In this paper we tried to emphasize this aspect supported by an
experimental evaluation on three application kernels.

Acknowledgments. This work is partially supported by the Spanish TIN2012-
34557 project and the IBM/BSC Technology Center for Supercomputing col-
laboration agreement. Thanks to John Dennis from NCAR for providing the
OpenACC and CUDA versions of the DG kernel as part of the G8 ECS project.

References

1. Nvidia CUDA parallel computing and programming,
http://www.nvidia.com/cuda

2. OpenCL Open Computing Language, http://www.khronos.org/opencl/
3. OpenACC: Directives for Accelerators, http://www.openacc-standard.org
4. The OpenMP API Specification for Parallel programming,

http://www.openmp.org

5. Barcelona Supercomputing Center. The OmpSs programming model,
http://pm.bsc.es/ompss

6. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: CellSs: A programming model
for the Cell/B.E. architecture. In: ACM/IEEE Supercomputing (November 2006)

7. Bueno, J., Planas, J., Duran, A., Badia, R.M., Martorell, X., Ayguade, E., Labarta,
J.: Productive programming of GPU clusters with OmpSs. In: IEEE 26th Interna-
tional on Parallel Distributed Processing Symposium (IPDPS) (May 2012)

8. Perez, J.M., Badia, R.M., Labarta, J.: A dependency-aware task-based program-
ming environment for multi-core architectures. In: IEEE International Conference
on Cluster Computing (September 2008)

9. Barcelona Supercomputing Center. Mercurium source-to-source compiler,
http://pm.bsc.es/mcxx

10. Barcelona Supercomputing Center. Nanos++ runtime library,
http://pm.bsc.es/nanos

11. Vadlamani, S., Kim, Y., Dennis, J.: DG-kernel: A climate benchmark on accelerated
and conventional architectures. In: Extreme Scaling Workshop (XSW) (August
2013)

12. NAS Division. NAS parallel benchmarks,
http://www.nas.nasa.gov/resources/software/npb.html

13. CAPS Entreprise, CAPS Compiler, http://www.caps-entreprise.com
14. PGI Accelerator Compilers, http://www.pgroup.com/resources/accel.htm
15. Han, T.D., Abdelrahman, T.S.: Hicuda: A high-level directive-based language for

gpu programming. In: 2nd Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU) (March 2009)

16. Lee, S., Min, S.-J., Eigenmann, R.: OpenMp to GPGPU: A compiler framework
for automatic translation and optimization. In: 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP) (February 2009)

17. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early experiences
with the openMP accelerator model. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg (2013)

http://www.nvidia.com/cuda
http://www.khronos.org/opencl/
http://www.openacc-standard.org
http://www.openmp.org
http://pm.bsc.es/ompss
http://pm.bsc.es/mcxx
http://pm.bsc.es/nanos
http://www.nas.nasa.gov/resources/software/npb.html
http://www.caps-entreprise.com
http://www.pgroup.com/resources/accel.htm

Author Index

an Mey, Dieter 103
Araujo, Guido 87
Aumage, Olivier 16
Ayguadé, Eduard 1, 130, 215

Badia, Rosa M. 1
Bae, Hansang 173
Barthou, Denis 73
Beltran, Vicenç 1
Bihari, Barna L. 115, 130
Brock-Nannestad, Laust 187
Broquedis, François 16
Brorsson, Mats 45
Brunet, Pierrick 16

Carribault, Patrick 73
Chen, Xiaohui 30
Ciesko, Jan 1
Cownie, James 173
Cramer, Tim 103

de Supinski, Bronis R. 115, 130
Diachin, Lori 115
Dietrich, Robert 161

Furmento, Nathalie 16

Gautier, Thierry 16
Gottschlich, Justin 130

Hilbrich, Tobias 58
Huck, Kevin A. 146

Jacobsen, Doug W. 146
Jayaraj, Ajay 202

Karlsson, Sven 187
Klemm, Michael 173

Labarta, Jesús 1, 215
Lorenz, Daniel 161
Luchangco, Victor 130

Malony, Allen D. 146
Martorell, Xavier 1
Mateo, Sergi 1
Mattos, Luis 87
Maza, Marc Moreno 30
Mitra, Gaurav 202
Müller, Matthias S. 58, 103
Münchhalfen, Jan Felix 58

Ozen, Guray 215

Podobas, Artur 45
Protze, Joachim 58

Rendell, Alistair P. 202

Saillard, Emmanuelle 73
Salamanca, Juan 87
Schmidl, Dirk 103
Shekar, Sushek 30
Shende, Sameer 146
Stotzer, Eric 202

Terboven, Christian 58, 103, 173
Teruel, Xavier 1
Thibault, Samuel 16
Tschüter, Ronny 161

Unnikrishnan, Priya 30

Virouleau, Philippe 16
Vlassov, Vladimir 45

Wolf, Felix 161
Wong, Michael 115, 130

	Preface
	Organization
	Table of Contents
	Tasking Models and Their Optimization
	Task-Parallel Reductions in OpenMP and OmpSs
	1 Introduction
	2 Task-Parallel Reductions with OpenMP
	2.1 Definition
	2.2 Reductions on Taskwait
	2.3 Support in Taskgroups
	2.4 Reductions on Data Dependencies
	2.5 Nesting Support

	3 Implementation in OmpSs
	3.1 Runtime Support
	3.2 Compiler Support

	4 Evaluation
	4.1 Environment

	5 Related Work
	6 Conclusions and Future Work
	References

	Evaluation of OpenMP Dependent Tasks with the KASTORS Benchmark Suite
	1 Introduction
	2 The Way OpenMP Specifies Dependencies between Tasks
	2.1 Task Dependencies by the Example
	2.2 Maturity of Compiler Support

	3 The KASTORS Suite Overview
	4 Performance Evaluation
	5 Extending OpenMP Dependency Expressiveness
	5.1 Enabling Reductions for OpenMP Tasking: The Cumulative-Write Mode
	5.2 Expressing Dependencies on Non-contiguous Memory Areas

	6 Related Work
	7 Conclusion
	References

	MetaFork: A Framework for Concurrency
Platforms Targeting Multicores

	1 Introduction
	2 Parallel Constructs and Execution Model of MetaFork

	3 Variable Attribute Rules
	4 Semantics of the Parallel Constructs in MetaFork

	5 Translation
	6 Experimentation
	7 Concluding Remarks
	References

	TurboBLYSK: Scheduling for Improved
Data-Driven Task Performance with Fast

Dependency Resolution
	1 Introduction
	2 Motivation
	3 TurboBLYSK: A Framework for Fast-Dependency Resolution

	3.1 Automatic Dependency Resolution
	3.2 Dependency Pattern

	4 Evaluation Methodology
	5 Results
	5.1 Resilience to Fine-Grained Parallelism
	5.2 Experimental Results

	6 Related Work
	7 Conclusions
	References

	Understanding and Verifying Correctness of OpenMP Programs

	Classification of Common Errors in OpenMP Applications
	1 Introduction
	2 Related Work
	3 Overview of OpenMP 4.0
	4 Error Classification
	4.1 Syntactic Defects
	4.2 Semantic Defects
	4.3 Performance Issues

	5 Summary
	6 Conclusion
	References

	Static Validation of Barriers and Worksharing
Constructs in OpenMP Applications

	1 Introduction
	2 Related Work
	3 Checking OpenMP Directives and Control Flow
	3.1 Intermediate Representation: OMPCFG
	3.2 Intra-procedural Analysis
	3.3 Inter-procedural Analysis

	4 Experimental Results
	5 Conclusion and Future Work
	References

	Loop-Carried Dependence Verification
in OpenMP

	1 Introduction
	2 Related Work
	2.1 Pairwise Method
	2.2 Stride-Based Method

	3 Check Construct in OpenMP

	3.1 Overview of the Algorithm
	3.2 Parallelization of the Algorithm

	4 Implementation
	4.1 Basic Structure
	4.2 GCC/Pin
	4.3 LLVM

	5 Experimental Results
	6 Conclusions and Future Work
	References

	OpenMP Memory Extensions
	An OpenMP Extension Library for Memory Affinity
	1 Introduction
	2 Related Work
	3 The RWTH OpenMP Extension Library
	4 Overhead Analysis
	5 Evaluation
	5.1 STREAM
	5.2 Conjugate Gradient Method

	6 Possible Integration into OpenMP
	6.1 Consideration of OpenMP Tasks

	7 Conclusion
	References

	On the Algorithmic Aspects of Using OpenMP Synchronization Mechanisms: The Effects of Transactional Memory
	1 Introduction
	2 Why High-Level TM Support Is Needed
	3 Transactional Memory for Scientific Computing
	4 The Laplacian Mesh Smoother
	4.1 The Algorithm
	4.2 The Role of Transactional Memory

	4.3 The Test Mesh

	5 Experimental Results
	5.1 Convergence
	5.2 Transactional Memory Statistics

	5.3 A New Measure of Performance

	6 Conclusions and Future Work
	References

	Towards Transactional Memory for OpenMP
	1 Introduction
	2 Limitations of OpenMP Concurrency Techniques
	3 Motivation for Transactional Memory in OpenMP
	3.1 Background
	3.2 Transactional Language Constructs and C++

	4 A Proposal for an OpenMP Transactional Memory Technical Report
	4.1 Atomic Blocks
	4.2 Synchronized Blocks
	4.3 Nesting of OpenMP Parallel Regions and Transaction Blocks
	4.4 Interaction between OpenMP Worksharing/Tasking Constructs and Transaction Blocks
	4.5 Memory Model and Race Free Semantics

	5 Future OpenMP Recommendation
	References

	Extensions for Tools and Locks

	Integrated Measurement for Cross-Platform
OpenMP Performance Analysis

	1 Introduction
	2 Background
	3 Approach
	3.1 POMP and Opari
	3.2 OpenMP Runtime API (Collector API)
	3.3 GOMP Wrapper
	3.4 OpenMP Tools API
	3.5 Comparison of Measurement Support

	4 Experiments
	4.1 Benchmark Measurements
	4.2 MPAS-Ocean

	5 Conclusion and Future Work
	References

	A Comparison between OPARI2 and the OpenMP Tools Interface in the Context of Score-P
	1 Introduction
	2 Related Work
	3 Instrumentation Approaches
	3.1 OPARI2
	3.2 OMPT
	3.3 Comparison

	4 Score-P Implementation
	5 Evaluation
	5.1 Profiling Overhead
	5.2 Tracing Overhead
	5.3 Structural Differences in Performance Content

	6 Conclusion
	References

	A User-Guided Locking API for the OpenMP* Application Program Interface
	1 Introduction
	2 Related Work
	3 Intel TSX

	4 Design Choices
	5 The API for User-Guided Locks
	5.1 User-Guided Lock Routines
	5.2 User-Guided critical Sections

	6 Implementation
	6.1 Implementation Strategies
	6.2 Decoding the Dynamic Lock Type

	7 Performance Evaluation
	7.1 Microbenchmarks and Lock Overhead Timing
	7.2 Application Performance with User-Guided Locks

	8 Conclusion
	References

	Experiences with OpenMP Device Constructs

	Library Support for Resource Constrained
Accelerators

	1 Introduction
	2 Architecture
	3 Experimental Setup
	3.1 Accelerator Side
	3.2 Host Side

	4 Evaluation
	4.1 Execution Time Analysis
	4.2 Memory Foot Print Analysis

	5 Related Work
	6 Conclusion
	References

	Implementation and Optimization
of the OpenMP Accelerator Model
for the TI Keystone II Architecture

	1 Introduction
	2 TI Keystone II

	3 The OpenMP Accelerator Model
	4 Accelerator Model Implementation
	4.1 Optimizing Data Synchronization
	4.2 Utilizing Target Scratchpad Memory

	5 Porting Matrix Multiplication for Keystone II
	5.1 Performance
	5.2 Power Efficiency

	6 Related Work
	7 Conclusion and Future Work
	References

	On the Roles of the Programmer, the Compiler
and the Runtime System When Programming
Accelerators in OpenMP

	1 Introduction
	2 “Pure” Accelerator-Specific Programming
	3 Directive-Based Approaches in OpenMP and OpenACC
	3.1 Offloading, Kernel Configuration and Loop Execution
	3.2 Data Motion
	3.3 Memory Hierarchy in the Accelerator Device

	4 Accelerator Support in OmpSs
	5 MACC Compiler
	5.1 Kernel Configuration, Loop Scheduling and Thread Mapping
	5.2 Coalesced Accesses and Use of Shared Memory

	6 Preliminary Performance Evaluation
	6.1 Jacobi
	6.2 DG Kernel
	6.3 CG from NAS Parallel Benchmarks

	7 Conclusions
	References

	Author Index

