
Synthesising Succinct Strategies in Safety

and Reachability Games�

Gilles Geeraerts, Joël Goossens, and Amélie Stainer

Université libre de Bruxelles, Département d’Informatique, Brussels, Belgium

Abstract. We introduce general techniques to compute, efficiently, suc-
cinct representations of winning strategies in safety and reachability
games. Our techniques adapt the antichain framework to the setting
of games, and rely on the notion of turn-based alternating simulation,
which is used to formalise natural relations that exist between the states
of those games in many applications. In particular, our techniques ap-
ply to the realisability problem of LTL [8], to the synthesis of real-time
schedulers for multiprocessor platforms [4], and to the determinisation of
timed automata [3] — three applications where the size of the game one
needs to solve is at least exponential in the size of the problem descrip-
tion, and where succinct strategies are particularly crucial in practice.

1 Introduction

Finite, turn-based, games are a very simple, yet relevant, class of games. They
are played by two players (S and R) on a finite graph (called the arena), whose
set of vertices is partitioned into Player S and Player R vertices. A play is an
infinite path in this graph, obtained by letting the players move a token on the
vertices. Initially, the token is on a designated initial vertex. At each round of
the game, the player who owns the vertex marked by the token decides on which
successor node to move it next. A play is winning for R if the token eventually
touches some designated ‘bad’ nodes (the objective for R is thus a reachability
objective), otherwise it is winning for S (for whom the objective is a safety
objective), hence the names of the players.

Such games are a natural model to describe the interaction of a potential
controller with a given environment, where the aim of the controller (modeled
by player S) is to avoid the bad states that model system failures. They have
also been used as a tool to solve other problems such as LTL realisability [8],
real-time scheduler synthesis [4] or timed automata determinisation [3].

We consider, throughout the paper, a running example which is a variation
of the well-known Nim game [5]. Initially, a heap of N balls is shared by the

� This research has been supported by the Belgian F.R.S./FNRS FORESt grant, num-
ber 14621993.
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n◦601148
(CASSTING).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 98–111, 2014.
c© Springer International Publishing Switzerland 2014

Synthesising Succinct Strategies in Safety and Reachability Games 99

0 2 3 4 5 6 7

1 2 3 4 5 6 7 8

(a) Winning strategy (b) �0-Winning �-strategy
node succ. node succ. node succ. node succ.

0 1 3 4 5 7 7 8

2 4 4 5 6 7

node succ.

5 7

6 7

Fig. 1. Urn-filling Nim game with N = 8, and three winning strategies

players, and the urn is empty. The players play by turn and pick either 1 or 2
balls from the heap and put them into the urn. A player looses the game if he is
the last to play (i.e., the heap is empty after he has played). An arena modeling
this game (for N = 8) is given in Fig. 1 (top), where S-states are circles, R-
states are squares, and the numbers labelling the states represent the number
of balls inside the urn. The arena obtained from Fig. 1 without the dotted edges
faithfully models the description of the game we have sketched above (assuming
Player S plays first). From the point of view of player S, the set of states that
he wants to avoid (and that player R wants to reach) is Bad =

{
7 , 8

}
, and we

call winning all the states from which S can avoid Bad whatever R does. It is
well-known [5] that a simple characterisation of the set of winning states1 can
be given. For each state v, let λ(v) denote its label. Then, the winning states (in
white in Fig 1) are all the S-states v s.t. λ(v) mod 3 �= 1 plus all the R-states
v′ s.t. λ(v′) mod 3 = 1.

It is well-known that memory-less winning strategies (i.e., that depend only
on the current state) are sufficient for both players in those games. Memory-less
strategies are often regarded as simple and straightforward to implement (remem-
ber that the winning strategy is very often the actual control policy that we want
to implement in, say, an embedded controller). Yet, this belief falls short in many
practical applications such as the three mentioned above because the arena is not
given explicitly, and its size is at least exponential in the size of the original prob-
lem instance. Hence, the computation of winning strategies might be intractable
in practice because it could request to traverse the whole arena. Moreover, a naive
implementation of awinning strategyσ bymeans of a tablemapping eachS-state v
to its safe successor σ(v) (like in Fig. 1 (a) for our running example), is not realistic
because this table would have the size of the arena.

1 In order to make our example more interesting (this will become clear in the sequel),
we have added the three dotted edges from 7 to 6 and 5 respectively, and from
6 to 5 although those actions are not permitted in the original game. However,
observe that those extra edges do not modify the set of winning states.

100 G. Geeraerts, J. Goossens, and A. Stainer

In this work, we consider the problem of computing winning strategies that
can be succinctly represented. We call ‘�-strategy’ those succinct representations,
and they can be regarded as an abstract representation of a family of (plain)
strategies, that we call concretisations of the �-strategies. In order to keep the
description of winning �-strategies succinct, and to obtain efficient algorithms to
compute them, we propose heuristics inspired from the antichain line of research
[7]. These heuristics have been developed mainly in the verification setting, to
deal with automata-based models. Roughly speaking, they rely on a simulation
partial order on the states of the system, which is exploited to prune the state
space that the algorithms need to explore, and to obtain efficient data structures
to store the set of states that the algorithms need to maintain. They have been
applied to several problems, such as LTL model-checking [7] or multi-processor
schedulability [9] with remarkable performance improvements of several orders
of magnitude.

In this paper, we introduce general antichain-based techniques for solving
reachability and safety games, and computing efficiently succinct representations
of winning strategies. We propose a general and elegant theory which is built on
top of the notion of turn-based alternating simulation (tba-simulation for short,
a notion adapted from [2]), instead of simulation. In our running example, a
tba-simulation �0 exists and is given by: v�0 v

′ iff v and v′ belong to the same
player, λ(v) ≥ λ(v′) and λ(v) mod 3 = λ(v′) mod 3. Then, it is easy to see
that the winning strategy of Fig. 1 (a) exhibits some kind of monotonicity wrt
�0: 5 �0 2 , and the winning strategy asks to put two balls in the urn in both
cases. Hence, we can represent the winning strategy as in Fig. 1 (b). Observe
that not all concretisations of this strategy are winning. For instance, playing
3 from 2 is a losing move, but it is not compatible with �0 because 3 is
not �0-covered by 7 . Moreover, this succinct description of the strategy can be
implemented straightforwardly: only the table in Fig. 1 (b) needs to be stored
in the controller, as �0 can be directly computed from the description of the
states.

These intuitions are formalised in Section 4, where we show that, in general,
it is sufficient to store the strategy on the maximal antichain of the reachable
winning states. In Section 5, we present an efficient on-the-fly algorithm to com-
pute such succinct �-strategies (adapted from the classical OTFUR algorithm to
solve reachability games [6]). Our algorithm generalises the algorithm of Filiot
et al. [8], with several improvements: 1. it applies to a general class of games
whose arena is equipped with a tba-simulation (not only those generated from an
instance of the LTL realisability problem) ; 2. it contains an additional heuris-
tic that was not present in [8] ; 3. its proof of correctness is straightforward,
and stems directly from the definition of tba-simulation. Finally, in Section 6,
we show that our approach can be straightforwardly applied to the games one
obtains in the three applications introduced above (LTL realisability, real-time
feasibility and determinisation of timed automata) which demonstrates the wide
applicability of our approach.

Synthesising Succinct Strategies in Safety and Reachability Games 101

Note that, owing to lack of space, all proofs are to be found in the companion
technical report [10]

2 Preliminaries

Turn-based finite games. A finite turn-based game arena is a tuple A = (VS , VR,
E, I), where VS and VR are the finite sets of states controlled by Players S and
R respectively; E ⊆ (VS × VR) ∪ (VR × VS) is the set of edges; and I ∈ VS is
the initial state. We let V = VS ∪ VR. For a finite arena A = (VS , VR, E, I) and
a state v ∈ V , we let Succ (A, v) = {v′ | (v, v′) ∈ E} and Reach (A, v) = {v′ |
(v, v′) ∈ E∗}, where E∗ is the reflexive and transitive closure of E. We write
Reach (A) instead of Reach (A, I), and lift the definitions of Reach and Succ to
sets of states in the usual way.

The aim of Player R is to reach some designated set of states Bad, while the
aim of S is to avoid it. Throughout this paper, we focus on the objective of player
S, and regard our finite games as safety games because they correspond to the
applications we target in Section 6. However, those games are symmetrical and
determined, so, our results can easily be adapted to cope with reachability games.
Formally, A finite turn-based (safety) game is a tuple G = (VS , VR, E, I,Bad)
where (VS , VR, E, I) is a finite turn-based game arena, and Bad ⊆ V is the set
of bad states that S wants to avoid. The definitions of Reach and Succ carry
on to games: for a game G = (A,Bad), we let Reach (G, v) = Reach (A, v),
Reach (G) = Reach (A) and Succ (G, v) = Succ (A, v). When the game is clear
from the context, we often omit it.

Plays and strategies. During the game, players interact to produce a play, which
is a finite or infinite path in the graph (V,E). Players play turn by turn, by
moving a token on the game’s states. Initially, the token is on state I. At each
turn, the player who controls the state marked by the token gets to choose
the next state. A strategy for S is a function σ : VS → VR such that for all
v ∈ VS , (v, σ(v)) ∈ E. We extend strategies to set of states S in the usual way:
σ(S) = {σ(v) | v ∈ S}. A strategy σ for S is winning for a state v ∈ V iff no
bad states are reachable from v in the graph Gσ obtained from G by removing
all the moves of S which are not chosen by σ, i.e. Reach (Gσ, v)∩Bad = ∅, where
Gσ = (VS , VR, Eσ, I,Bad) and Eσ = {(v, v′) | (v, v′) ∈ E ∧ v ∈ VS =⇒ v′ =
σ(v)}. We say that a strategy σ is winning in a game G = (VS , VR, E, I,Bad) iff
it is winning in G for I.

Winning states and attractors. A state v ∈ V in G is winning (for Player S) iff
there exists a strategy σ that is winning in G for v. We denote by Win the set
of winning states (for Player S). By definition, any strategy such that σ(Win) ⊆
Win is thus winning. Moreover, it is well-known that Win can be computed in
polynomial time (in the size of the arena), by computing the so-called attractor
(for Player R) of the unsafe states. In a game G = (VS , VR, E, I,Bad), the
sequence (Attri)i≥0 of attractors (of the Bad states) is defined as follows. Attr0 =

102 G. Geeraerts, J. Goossens, and A. Stainer

Bad and for all i ∈ N, Attri+1 = Attri∪{v ∈ VR | Succ (v)∩Attri �= ∅}∪{v ∈ VS |
Succ (v) ⊆ Attri}. For finite games, the sequence stabilises after a finite number
of steps on a set of states that we denote AttrBad. Then, v belongs to AttrBad iff
PlayerR can force the game to reach Bad from v. Thus, the set of winning states
for Player S is Win = V \AttrBad. Then, the strategy σ s.t. for all v ∈ VS ∩Win,
σ(v) = v′ with v′ ∈ Win is winning.

Partial orders, closed sets and antichains. Fix a finite set S. A relation� ∈ S×S
is a partial order iff � is reflexive, transitive and antisymmetric, i.e. for all s ∈ S:
(s, s) ∈ � (reflexivity); for all s, s′, s′′ ∈ S, (s, s′) ∈ � and (s′, s′′) ∈ � implies
(s, s′′) ∈ � (transitivity); and for all s, s′ ∈ S: (s, s′) ∈ � and (s′, s) ∈ � implies
s = s′ (antisymmetry). As usual, we often write s� s′ and s �� s′ instead of
(s, s′) ∈ � and (s, s′) �∈ �, respectively. The �-downward closure ↓� (S′) of a set
S′ ⊆ S is defined as ↓� (S′) = {s | ∃s′ ∈ S′, s′ � s}. Symmetrically, the upward
closure ↑� (S′) of S′ is defined as: ↑� (S′) = {s | ∃s′ ∈ S′ : s� s′}. Then, a set
S′ is downward closed (resp. upward closed) iff S′ =↓� (S′) (resp. S′ =↑� (S′)).
When the partial order is clear from the context, we often write ↓(S) and ↑(S)
instead of ↓� (S) and ↑� (S) respectively. Finally, a subset α of some set S′ ⊆ S
is an antichain on S′ with respect to � if for all s, s′ ∈ α: s �= s′ implies s �� s′.
An antichain α on S′ is said to be a set of maximal elements of S′ (or, simply a
maximal antichain of S′) iff for all s1 ∈ S′ there is s2 ∈ α: s2 � s1. Symmetrically,
an antichain α on S′ is a set of minimal elements of S′ (or a minimal antichain
of S′) iff for all s1 ∈ S′ there is s2 ∈ α: s1 � s2. It is easy to check that if α and
β are maximal and minimal antichains of S′ respectively, then ↓(α) =↓(S′) and
↑ (β) =↑ (S′). Intuitively, α (β) can be regarded as a symbolic representation of
↓ (S′) (↑ (S′)), which is of minimal size in the sense that it contains no pair of
�-comparable elements. Moreover, since � is a partial order, each subset S′ of
the finite set S admits a unique minimal and a unique maximal antichain, that
we denote by �S′� and �S′� respectively. Observe that one can always effectively
build a �S′� and �S′�, simply by iteratively removing from S′, all the elements
that are strictly �-dominated by (for �S′�) or that strictly dominate (for �S′�)
another one.

Simulation relations. Fix an arena G = (VS , VR, E, I,Bad). A relation � ⊆
VS × VS ∪ VR × VR is a simulation relation compatible2 with Bad (or simply a
simulation) iff it is a partial order3 and for all (v1, v2) ∈ �: either v1 ∈ Bad or:
(i) for all v′2 ∈ Succ (v2), there is v′1 ∈ Succ (v1) s.t. v′1 � v′2 and (ii) v2 ∈ Bad
implies that v1 ∈ Bad. On our example, the relation �0 = {(v, v′) ∈ VS ×
VS ∪ VR × VR | λ(v) ≥ λ(v′) and λ(v) mod 3 = λ(v′) mod 3} is a simulation
relation compatible with Bad =

{
7 , 8

}
. Moreover, Win = {v ∈ VS | λ(v)

mod 3 �= 1} ∪ {v ∈ VR | λ(v) mod 3 = 1} is downward closed for �0 and its

2 See [8] for an earlier definition of a simulation relation compatible with a set of
states.

3 Observe that our results can be extended to the case where the relations are pre-
orders, i.e. transitive and reflexive relations.

Synthesising Succinct Strategies in Safety and Reachability Games 103

complement (the set of losing states), is upward closed. Finally, Win admits a
single maximal antichain for �0: MaxWin =

{
7 , 6 , 5

}
.

3 Succinct Strategies

Let us first formalise our notion of succinct strategy (observe that other works
propose different notions of ‘small strategies’, see for instance [11]). As explained
in the introduction, a naive way to implement a memory-less strategy σ is to
store, in an appropriate data structure, the set of pairs {(v, σ(v)) | v ∈ VS}, and
implement a controller that traverses the whole table to find action to perform
each time the system state is updated. While the definition of strategy asks that
σ(v) be defined for all S-states v, this information is sometimes indifferent, for
instance, when v is not reachable in Gσ. Thus, we want to reduce the number
of states v s.t. σ(v) is crucial to keep the system safe.

�-strategies. We introduce the notion of �-strategy to formalise this idea: a �-
strategy is a function σ̂ : VS �→ VR ∪ {�}, where � stands for a ‘don’t care’
information. We denote by Supp(σ̂) the support σ̂−1(VR) of σ̂, i.e. the set of
nodes v s.t. σ̂(v) �= �. Such �-strategies can be regarded as a representation of
a family of concrete strategies. A concretisation of a �-strategy σ̂ is a strategy
σ s.t. for all v ∈ VS , σ̂(v) �= � implies σ̂(v) = σ(v). A �-strategy σ̂ is winning if
every concretisation of σ̂ is winning (intuitively, σ̂ is winning if S always wins
when he plays according to σ̂, whatever choices he makes when σ̂ returns �).
The size of a �-strategy σ̂(v) is the size of Supp(σ̂).

Computing succinct �-strategies. Our goal is to compute succinct �-strategies,
defined as �-strategies of minimal size. To characterise the hardness of this task,
we consider the following decision problem, and prove that it is NP-complete:

Problem 1 (MinSizeStrat). Given a finite turn-based game G and an integer
k ∈ N (in binary), decide whether there is a winning �-strategy of size smaller
than k in G.

Theorem 1. MinSizeStrat is NP-complete.

Thus, unless P=NP, there is no polynomial-time algorithm to compute a
winning �-strategy of minimal size. In most practical cases we are aware of, the
situation is even worse, since the arena is not given explicitly. This is the case
with the three problems we consider as applications (see Section 6), because they
can be reduced to safety games whose sizes are at least exponential in the size
of the original problem instance.

4 Structured Games and Monotonic Strategies

To mitigate the strong complexity identified in the previous section, we propose
to follow the successful antichain approach [12,7,8]. In this line of research, the

104 G. Geeraerts, J. Goossens, and A. Stainer

authors point out that, in practical applications (like those we identify in Sec-
tion 6), system states exhibit some inherent structure, which is formalised by a
simulation relation and can be exploited to improve the practical running time
of the algorithms. In the present paper, we rely on the notion of turn-based al-
ternating simulation, to define heuristics to (i) improve the running time of the
algorithms to solve finite turn-based games and (ii) obtain succinct representa-
tions of strategies. This notion is adapted from [2].

Turn-based alternating simulations. LetG = (VS , VR, E, I,Bad) be a finite safety
game. A partial order � ⊆ VS × VS ∪ VR × VR is a turn-based alternating
simulation relation for G [2] (tba-simulation for short) iff for all v1, v2 s.t. v1 � v2,
either v1 ∈ Bad or the three following conditions hold: (i) If v1 ∈ VS , then, for
all v′1 ∈ Succ (v1), there is v′2 ∈ Succ (v2) s.t. v′1 � v′2; (ii) If v1 ∈ VR, then, for
all v′2 ∈ Succ (v2), there is v′1 ∈ Succ (v1) s.t. v

′
1 � v′2; and (iii) v2 ∈ Bad implies

v1 ∈ Bad.
On the running example (Fig. 1), �0 is a tba-simulation relation. Indeed, as

we are going to see in Section 6, a simulation relation in a game where player S
has always the opportunity to perform the same moves is necessarily alternating.

Monotonic concretisations of �-strategies. Let us exploit the notion of tba-
simulation to introduce a finer notion of concretisation of �-strategies. Let σ̂
be a �-strategy. Then, a strategy σ is a �-concretisation of σ̂ iff for all v ∈ VS :
(i) v ∈ Supp(σ̂) implies σ(v) = σ̂(v); and (ii)

(
v �∈ Supp(σ̂) ∧ v ∈↓� (Supp(σ̂))

)

implies ∃v ∈ Supp(σ̂) s.t. v� v and σ(v)� σ(v). Intuitively, when σ̂(v) = �,
but there is v′ � v s.t. σ̂(v′) �= �, then, σ(v) must mimic the strategy σ(v) from
some state v that covers v and s.t. σ̂(v) �= �. Then, we say that a �-strategy is
�-winning if all its �-concretisations are winning.

Because equality is a tba-simulation, the proof of Theorem 1 can be used
to show that computing a �-winning �-strategy of size less than k is an NP-
complete problem too. Nevertheless, �-winning �-strategies can be even more
compact than winning �-strategy. For instance, on the running example, the
smallest winning �-strategy σ is of size 5: it is given in Fig. 1 (b) and highlighted
by bold arrows in Fig. 1 (thus, σ(4) = σ(7) = �). Yet, one can define a �0-
winning �-strategy σ̂ of size 2 because states 5 and 6 simulate all the winning
states of S. This �-strategy4 σ̂ is the one given in Fig. 1 (b) and represented by
the boldest arrows in Fig. 1. Observe that, while all �-concretisations of σ̂ are
winning, not all concretisations of σ̂ are. For instance, all concretisations σ of σ̂
s.t. σ(0) = 2 are not �0-monotonic and losing.

Obtaining �-winning �-strategies. The previous example clearly shows the kind
of �-winning �-strategies we want to achieve: �-strategies σ̂ s.t. Supp(σ̂) is the
maximal antichain of the winning states. In Section 5, we introduce an efficient
on-the-fly algorithm to compute such a �-strategy. Its correctness is based on
the fact that we can extract a �-winning �-strategy from any winning (plain)

4 Actually, this strategy is winning for all initial number n of balls s.t. n mod 3 �= 1.

Synthesising Succinct Strategies in Safety and Reachability Games 105

strategy, as shown by Proposition 1 hereunder. For all strategies σ, and all
V ⊆ VS , we let σ|V denote the �-strategy σ̂ s.t. σ̂(v) = σ(v) for all v ∈ V and
σ̂(v) = � for all v �∈ V . Then:

Proposition 1. Let G = (VS , VR, E, I,Bad) be a finite turn-based game and
� be a tba-simulation relation for G. Let σ be a strategy in G, and let S ⊆
VS be a set of S-states s.t.: (i) (S ∪ σ(S)) ∩ Bad = ∅; (ii) I ∈↓� (S); and
(iii) succ(σ(S)) ⊆↓� (S). Then, σ|S is a �-winning �-strategy.

This proposition allows us to identify families of sets of states on which �-
strategies can be defined. One of the sets that satisfies the conditions of Propo-
sition 1 is the maximal antichain of reachable S-states, for a given winning
strategy σ:

Theorem 2. Let G = (VS , VR, E, I,Bad) be a finite turn-based game, � be a
tba-simulation relation for G. Let σ be a winning strategy and WRσ be a maximal
�-antichain on Reach(Gσ) ∩ VS , then the �-strategy σ|WRσ is �-winning.

5 Efficient Computation of Succinct Winning Strategies

The original OTFUR algorithm. The On-The-Fly algorithm for Untimed Reach-
ability games (OTFUR) algorithm [6] is an efficient, on-the-fly algorithm to
compute a winning strategy for Player R , i.e., when considering a reachability
objective. It is easy to adapt it to compute winning strategies for Player S in-
stead. We sketch the main ideas behind this algorithm, and refer the reader to [6]
for a comprehensive description. The intuition of the approach is to combine a
forward exploration from the initial state with a backward propagation of the
information when a losing state is found. During the forward exploration, newly
discovered states are assumed winning until they are declared losing for sure.
Whenever a losing state is identified (either because it is Bad, or because Bad is
unavoidable from it), the information is back propagated to predecessors whose
status could be affected by this information. A bookkeeping function Depend is
used for that purpose: it associates, to each state v, a list Depend(v) of edges
that need to be re-evaluated should v be declared losing. The main interest of
this algorithm is that it works on-the-fly (thus, the arena does not need to be
fully constructed before the analysis), and avoids, if possible, the entire traver-
sal of the arena. In this section, we propose an optimized version of OTFUR for
games equipped with tba-simulations. Before this, we prove that, when a finite
turn-based game is equipped with a tba-simulation �, then its set of winning
states is �-downward closed. This property will be important for the correctness
of our algorithm.

Proposition 2. Let G be a finite turn-based game, and let � be a tba-simulation
for G. Then the set Win of winning states in G is downward closed for �.

106 G. Geeraerts, J. Goossens, and A. Stainer

Algorithm 1. The OTFUR optimized for games with a tba-simulation
Data: A finite turn-based game G = (VS , VR, E, I,Bad)

1 if I ∈ Bad then return false;
2 Passed := {I} ; Depend(I) := ∅ ;
3 AntiMaybe := {I} ; AntiLosing := {} ;

4 Waiting := {(I, v′) | v′ ∈ �Succ (I)�} ;
5 while Waiting 	= ∅ ∧ I /∈↑ AntiLosing do
6 e = (v, v′) := pop(Waiting) ;
7 if v /∈↑ AntiLosing then
8 if v ∈↓ AntiMaybe \ AntiMaybe then
9 choose vm ∈ AntiMaybe s.t. vm � v ;

10 Depend[vm] := Depend[vm] ∪ {e} ;

11 else
12 if v′ ∈↓ AntiMaybe then
13 if v′ /∈ AntiMaybe then
14 choose vm ∈ AntiMaybe s.t. vm � v′ ;
15 Depend[vm] := Depend[vm] ∪ {e} ;

16 else
17 if v′ 	∈ Passed then
18 Passed := Passed ∪ {v′} ;

19 if v′ /∈↑ AntiLosing then
20 if (v′ ∈ Bad) then
21 AntiLosing := �AntiLosing ∪ {v′}� ;
22 Waiting := Waiting ∪ {e} ; // reevaluation of e

23 else
24 Depend[v′] := {(v, v′)} ;

25 AntiMaybe := �AntiMaybe ∪ {v′}� ;
26 if v ∈ VS then

27 Waiting := Waiting ∪ {(v′, v′′) | v′ ∈
⌊
Succ

(
v′)⌋} ;

28 else

29 Waiting := Waiting ∪ {(v′, v′′) | v′ ∈
⌈
Succ

(
v′)⌉} ;

30 else // reevaluation of e
31 Waiting := Waiting ∪ {e} ;

32 else // reevaluation

33 Losing∗ := v ∈ VS ∧
∧

v′′∈min(Succ(v))
(v′′ ∈↑ AntiLosing)

∨ v ∈ VR ∧
∨

v′′∈max(Succ(v))
(v′′ ∈↑ AntiLosing)

;

34 if Losing∗ then
35 AntiLosing := �AntiLosing ∪ {v}� ;
36 AntiMaybe := �Passed\ ↑ (AntiLosing)� ;

// back propagation
37 Waiting := Waiting ∪ Depend[v] ;

38 else
39 if ¬Losing[v′] then Depend[v′] := Depend[v′] ∪ {e} ;

40 return I /∈↑ AntiLosing

Synthesising Succinct Strategies in Safety and Reachability Games 107

Optimised OTFUR. Let us discuss Algorithm 1, our optimised version of OT-
FUR for the construction of �-winning �-strategies. Its high-level principle is the
same as in the original OTFUR, i.e. forward exploration and backward propaga-
tion. At all times, it maintains several sets: (i) Waiting that stores edges waiting
to be explored; (ii) Passed that stores nodes that have already been explored;
and (iii) AntiLosing and AntiMaybe which represent, by means of antichains (see
discussion below) a set of surely losing states and a set of possibly winning states
respectively5. The main while loop runs until either no more edges are waiting,
or the initial state I is surely losing. An iteration of the loop first picks an edge
e = (v, v′) from Waiting, and checks whether exploring this edge can be post-
poned (line 7–15, see hereunder). Then, if v′ has not been explored before (line
16), cannot be declared surely losing (line 18), and does not belong to Bad (line
19), it is explored (lines 23–28). When v′ is found to be losing, e is put back in
Waiting for back propagation (lines 21 or 30). The actual back-propagation is
performed at lines 32–38 and triggered by an edge (v, v′) s.t. v′ ∈ Passed. Let us
highlight the three optimisations that rely on a tba-simulation �:

1. By the properties of �, we explore only the �-minimal (respectively �-
maximal) successors of each S (R) state (see lines 3, 26 and 28). We consider
maximal and minimal elements only when evaluating a node in line 32.

2. By Proposition 2, the set of winning states in the game is downward-closed,
hence the set of losing states is upward-closed, and we store the set of states
that are losing for sure as an antichain AntiLosing of minimal losing states.

3. Symmetrically, the set of possibly winning states is stored as an antichain
AntiMaybe of maximal states. This set allows to postpone, and potentially
avoid, the exploration of some states: assume some edge (v, v′) has been
popped fromWaiting. Before exploring it, we first check whether either v or v′

belongs to ↓(AntiMaybe) (see lines 7 and 11). If yes, there is vm ∈ AntiMaybe
s.t. vm � v (resp. vm � v′), and the exploration of v (v′) can be postponed. We
store the edge (v, v′) that we were about to explore in Depend[vm], so that,
if vm is eventually declared losing (see line 36), (v, v′) will be re-scheduled
for exploration. Thus, the algorithm stops when all maximal S states have
a successor that is covered by a non-losing one.

Observe that optimisations 1 and 2 rely on the upward closure of the losing states
only, and were present in the antichain algorithm of [8]. Optimisation 3 is original
and exploits more aggressively the notion of tba-simulation. It allows to keep at
all times an antichain of potentially winning states, which is crucial to compute
efficiently a winning �-strategy. If, at the end of the execution, I �∈↑(AntiLosing),
we can extract from AntiMaybe a winning �-strategy σ̂G as follows. For all v ∈
AntiMaybe ∩ VS , we let σ̂G(v) = v′ such that v′ ∈ Succ (v)∩ ↓ (AntiMaybe). For
all v ∈ VS \ AntiMaybe, we let σ̂G(v) = �. Symmetrically, if I ∈↑ (AntiLosing),
there is no winning strategy for S.

5 We could initialise AntiLosing to Bad, but this is not always practical. In particular,
when the arena is not given explicitly, we want to avoid pre-computing Bad.

108 G. Geeraerts, J. Goossens, and A. Stainer

v1 v′′1

v2

v′1

v′2

v0

�

�

blabla
v′′v v′

b1 b2
�

Fig. 2. A simulation and the downward closure are not sufficient to apply Algorithm 1

Theorem 3. When called on game G, Algorithm 1 always terminates. Upon
termination, either I ∈↑ (AntiLosing) and there is no winning strategy for S in
G, or σ̂G is a �-winning �-strategy.

Why simulations are not sufficient. Let us exhibit two examples of games
equipped with a simulation � which is not a tba-simulation, to show why tba-
simulations are crucial for our optimisations. In Fig. 2 (left), Bad = {v′1, v′2},
and the set of winning states is not �-downward closed (gray states are losing).
In the game of Fig. 2 (right), Bad = {b1, b2} and Algorithm 1 does not develop
the successors of v′ (because v � v′, and v ∈ AntiMaybe when first reaching
v′). Instead, it computes a purportedly winning �-strategy σ̂G s.t. σ̂G(v) = v′′

and σ̂G(v
′) = �. Clearly this �-strategy is not �-winning (actually, there is no

winning strategy).

6 Applications

To apply our techniques, the game arena must be equipped with a tba-simulation.
In many cases (see the three practical cases below), a simulation relation on the
states of the game is already known, or can be easily defined. In general, not
all simulation relations are tba-simulations, yet we can identify properties of
the arena that yield this useful property. Intuitively, this occurs when Player S
can always choose to play the same set of actions from all its states, and when
playing the same action a in two states v1 � v2 yields two states v′1 and v′2 with
v′1 � v′2

6. Formally, let G = (VS , VR, E, I,Bad) be a finite turn-based game and
Σ a finite alphabet. A labeling of G is a function lab : E → Σ. For all states
v ∈ VS ∪ VR, and all a ∈ Σ, we let Succa (v) = {v′ | (v, v′) ∈ E ∧ lab(v, v′) = a}.
Then, (G, lab) is S-deterministic iff there is a set of actions ΣS ⊆ Σ s.t. for all
v ∈ VS : (i) |Succa (v) | = 1 for all a ∈ ΣS and (ii) |Succa (v) | = 0 for all a �∈ ΣS .
Moreover, a labeling lab is �-monotonic (where � is a simulation relation on
the states of G) iff for all v1, v2 ∈ VS ∪ VR such that v1 � v2, for all a ∈ Σ, for
all v′2 ∈ Succa (v2): there is v′1 ∈ Succa (v1) s.t. v

′
1 � v′2. Then:

6 For example, in the urn-filling game (Fig. 1), Player S can always choose between
taking 1 or 2 balls, from all states where at least 2 balls are left.

Synthesising Succinct Strategies in Safety and Reachability Games 109

Theorem 4. Let G = (VS , VR, E, I,Bad) be a finite turn-based game, let � be a
simulation relation on G and let lab be a �-monotonic labeling of G. If (G, lab)
is S-deterministic, then � is a tba-simulation relation.

Thus, when a game G is labeled, S-deterministic, equipped with a simulation
relation � that can be computed directly from the description of the states7 and
�-monotonic, our approach can be applied out-of-the-box. In this case, Algo-
rithm 1 yields, if it exists, a winning �-strategy σ̂G. We describe σ̂G by means of
the set of pairs (v, lab(v, σ̂G(v))) s.t. v is in the support of σ̂G. That is, we store,
for all v in the maximal antichain of winning reachable states, the action to be
played from v instead of the successor σ̂G(v)). Then, a controller implementing
σ̂G works as follows: when the current state is v, the controller looks for a pair
(v, a) with v� v, and executes a. Such a pair exists by S-determinism (and re-
spects �-concretisation by �-monotonicity). The time needed to find v depends
only on the size of the antichain, that we expect to be small in practice.

Three potential applications. Let us now describe very briefly three concrete
problems to which our approach can be applied. They share the following charac-
teristics, that make our technique particularly appealing: (i) they have practical
applications where an efficient implementation of the winning strategy is crucial;
(ii) the arena of the game is not given explicitly and is at least exponential in the
size of the problem instance; and (iii) they admit a natural tba-simulation �,
that can be computed directly from the descriptions of the states. The empirical
evaluation of our approach is future work, except for the first application which
has already been (partially) implemented in [8] with excellent performances.

LTL realisability: roughly speaking, the realisability problem of LTL asks
to compute a controller that enforces a specification given as an LTL formula.
As already explained, Filiot, Jin and Raskin reduce [8] this problem to a safety
game whose states are vectors of (bounded) natural numbers. They show that
the partial order � where v � v′ iff v[i] ≥ v′[i] for all coordinates i is a simulation
relation and rely on it to define an efficient antichain algorithm (based on the
OTFUR algorithm). Our technique generalises these results: Theorem 4 can be
invoked to show that � is a tba-simulation and Algorithm 1 is the same as the
antichain algorithm of [8], except for the third optimisation (see Section 5) which
is not present in [8]. Thus, our results provide a general theory to explain the
excellent performance reported in [8], and have the potential to improve it.

Multiprocessor real-time scheduler synthesis: this problem asks to com-
pute a correct scheduler for a set of sporadic tasks running on a platform of m
identical CPUs. A sporadic task (C, T,D) is a process that repeatedly creates
jobs, s.t. each job creation (also called request) occurs at least T time units
after the previous one. Each job models a computational payload. It needs at
most C units of CPU time to complete, and must obtain them within a certain
time frame of length D starting from the request (otherwise the job misses its

7 This means that one can decide whether v� v′ from the encoding of v and v′ and
the set of pairs {(v, v′) | v� v′} does not need to be stored explicitly.

110 G. Geeraerts, J. Goossens, and A. Stainer

deadline). A scheduler is a function that assigns, at all times, jobs to available
CPUs. It is correct iff it ensures that no job ever misses a deadline.

This problem can be reduced to a safety game [4] where the two players
are the scheduler and the coalition of the tasks respectively. In this setting, a
winning strategy for Player S is a correct scheduler. One can rely on Theorem 4
to show that the simulation relation � introduced in [9] (to solve a related real-
time scheduling problem using antichain techniques) is a tba-simulation. An
S-deterministic and �-monotonic labeling is obtained if we label moves of the
environment by the set of tasks producing a request, and the scheduler moves
by a total order on all the tasks, which is used as a priority function determining
which tasks are scheduled for running.

Determinisation of timed automata: timed automata extend finite au-
tomata with a finite set of real-valued variables that are called clocks, whose
value evolves with time elapsing, and that can be tested and reset when firing
transitions [1]. They are a popular model for real-time systems. One of the draw-
backs of timed automata is that they cannot be made deterministic in general.
Hence, only partial algorithms exist for determinisation. So far, the most general
of those techniques has been introduced in [3] and consists in turning a TA A
into a safety game GA,(Y,M) (parametrised by a set of clocks Y and a maximal
constant M). Then, a deterministic TA over-approximatingA (with set of clocks
Y and maximal constant M), can be extracted from any strategy for Player S.
If the strategy is winning, then the approximation is an exact determinisation.
Using Theorem 4, we can define a tba-simulation �det on the states of this game.

References

1. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement

relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

3. Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize
timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp.
245–259. Springer, Heidelberg (2011)

4. Bonifaci, V., Marchetti-Spaccamela, A.: Feasibility analysis of sporadic real-time
multiprocessor task systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II.
LNCS, vol. 6347, pp. 230–241. Springer, Heidelberg (2010)

5. Bouton, C.: Nim, a game with a complete mathematical theory. Ann. Math. 3,
35–39 (1902)

6. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

7. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010)

8. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. FMSD 39(3), 261–296 (2011)

Synthesising Succinct Strategies in Safety and Reachability Games 111

9. Geeraerts, G., Goossens, J., Lindström, M.: Multiprocessor schedulability of
arbitrary-deadline sporadic tasks: complexity and antichain algorithm. RTS 49(2),
171–218 (2013)

10. Geeraerts, G., Goossens, J., Stainer, A.: Computing succinct strategies in safety
games. CoRR abs/1404.6228, http://arxiv.org/abs/1404.6228

11. Neider, D.: Small Strategies for Safety Games. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 306–320. Springer, Heidelberg (2011)

12. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algo-
rithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)

http://arxiv.org/abs/1404.6228

	Synthesising Succinct Strategies in Safety
and Reachability Games

	1 Introduction
	2 Preliminaries
	3 Succinct Strategies
	4 Structured Games and Monotonic Strategies
	5 Efficient Computation of Succinct Winning Strategies
	6 Applications
	References

