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Abstract. We show the NP-hardness of the reachability and mortality
problems for a three dimensional variant of Piecewise Constant Deriva-
tive (PCD) system called a bounded 3-dimensional RestrictedHierarchical
PCD (3-RHPCD). Both problems are shown to be in PSPACE, even for n-
dimensional RHPCD. This is a restricted model with similarities to other
models in the literature suchas stopwatchautomata, rectangular automata
and PCDs.We also show that for an unbounded 3-RHPCD, both problems
become undecidable via a simulation of a Minsky machine.

1 Introduction

The model of Piecewise Constant Derivative (PCD) system is a natural and
intuitive hybrid system model. An n-dimensional PCD is a finite set of non-
overlapping bounded or unbounded convex n-dimensional regions, for which each
region is assigned a constant derivative. This derivative defines the direction
of flow of points within that region, with the derivative changing when the
trajectory passes from one region to the next. See Section 2 for formal definitions.

Among the possible problems one may consider for PCDs is the reachability
problem. The reachability problem asks, given a PCD and two points x and
y, does the trajectory starting at point x ever reach point y after some finite
amount of time? It was shown in [11] that the reachability problem for 2-PCDs is
decidable. In contrast, it was shown in [2] that reachability for 3-PCDs is actually
undecidable.

In [4], a related model, called a Hierarchical Piecewise Constant Derivative
(HPCD) system was introduced. An HPCD is a two-dimensional hybrid automa-
ton where the dynamics in each discrete location is given by a 2-PCD (formal
details are given in Section 2). Certain edges in the HPCD are called (transition)
guards and cause the HPCD to change location if ever the trajectory reaches
such an edge. When transitioning between locations, an affine reset rule may
be applied. If all regions of the underlying PCDs are bounded, then the HPCD
is called bounded. This model can thus be seen as an extension of a 2-PCD.
Indeed, the reachability problem for a one-dimensional Piecewise Affine Map
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(1-PAM), which is a longstanding open problem, was shown to be equivalent to
that of reachability for a bounded HPCD with either: i) comparative guards,
identity resets and elementary flows in Proposition 3.20 of [3] or else ii) affine
resets, non-comparative guards and elementary flows in Lemma 3.4 of [3] (See
Section 2 for definitions).

Further results for HPCDs were shown in [5]. The model of Restricted HPCD
(RHPCD) was defined, which is an HPCD with restricted components. We aimed
to study which restrictions of an HPCD lead to decidable reachability results.
Essentially, the HPCD must have identity resets, elementary flows (derivatives
of all continuous variables come from {0,±1}) and non-comparative guards (all
guards aligned with the x and y axes). These restrictions on the resets, deriva-
tives and guards seem natural ones to consider. For example, restricting to iden-
tity resets means the trajectory will not have discontinuities in the continuous
component, which is similar to a PCD trajectory. Restricting the derivatives to
elementary flows ({0,±1}) has similarities to a stopwatch automaton, for which
all derivatives are from {0, 1}. Restricting the guards to be non-comparative
gives strong similarities to the guards of a rectangular automaton [9], as well as
the diagonal-free clock constraints of an updatable timed automaton [7].

Reachability for 2-RHPCDs was shown to be decidable. Together with the
results in [3] mentioned above, the reachability problem for HPCDs was shown
to be equivalent to that of 1-PAMs when the HPCD only has one of the following:
comparative guards, linear resets or arbitrary constant flows. Furthermore, if the
model is endowed with a non-deterministic transition function between locations,
then the reachability problem becomes NP-hard.

Related to the reachability problem is the mortality problem. The mortality
problem is the problem of determining if all valid initial points eventually reach
some particular fixed point configuration (the mortal configuration). There is
potentially more than one way to define the mortality problem for HPCDs.
In this paper, we define the mortality problem to mean that from any valid
initial configuration, the trajectory will reach some fixed point (0, 0, 0) in a finite
amount of time, after which the point never changes. Thus the trajectory can
be said to halt at this stage.

In this paper, we consider an n-dimensional analogue of RHPCDs, which we
denote n-RHPCD. In an analogous way to [3], our aim is to study the following
question: “What is the simplest class of hybrid systems for which reachability
is intractable or undecidable?” We show a lower bound that the reachability
and mortality problems for bounded 3-RHPCDs are NP-hard by an encoding
of the simultaneous incongruences problem. We then show that the reachability
problem for unbounded 3-RHPCDs is actually undecidable by an encoding of a
Minsky machine. Note that the reachability problem for a 3-dimensional HPCD
is undecidable, even with only one location, since HPCDs are a superclass of
3-dimensional PCDs for which reachability is undecidable [2]. Finally, we give
an upper bound by showing that the reachability and mortality problems for
bounded n-RHPCD are in PSPACE.
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Note that the systems we construct in this paper deal with trajectories of
‘tubes’ instead of single lines, which means tiny perturbations will not affect our
results. This seems to coincide with the definition of tube languages introduced
in [10] and implies that our models are robust in the properties considered in
this paper, but we do not give full details in this conference version of the paper.

2 Preliminaries

Intervals of the form (s, t), [s, t), (s, t], [s, t] are called open, half-open or closed
bounded rational intervals (respectively), where s, t ∈ Q. Let S ∈ Rn be a set
in the n-dimensional Euclidean space. We define the closure of S to be the
smallest closed set containing S, denoted S. We use similar definitions as [3] for
the following.

Definition 1. (HA) An n-dimensional Hybrid Automaton (HA) [1] is a tuple
H = (X , Q, f , l0, Inv, δ) consisting of the following components:

(1) A continuous state space X ⊆ Rn. Each x ∈ X can be written x = (x1, . . . ,
xn), and we use variables x1, . . . , xn to denote components of the state vec-
tor.

(2) A finite set of discrete locations Q.

(3) A function f : Q → (X → Rn), which assigns a continuous vector field on X
to each location. In location l ∈ Q, the evolution of the continuous variables
is governed by the differential equation ẋ = fl(x). The differential equation
is called the dynamics of location l.

(4) An initial condition I0 : Q → 2X assigning initial values to variables in each
location.

(5) An invariant Inv: Q → 2X . For each l ∈ Q, the continuous variables must
satisfy the condition Inv(l) in order to remain in location l, otherwise it
must make a discrete transition.

(6) A set of transitions δ. Every tr ∈ δ is of the form tr = (l, g, γ, l′), where
l, l′ ∈ Q, g ⊂ X is called the guard, defining when the discrete transition
can occur, γ ⊂ X ×X is called the reset relation applied after the transition
from l to l′.

An HA is deterministic if it has exactly one solution for its differential equation
in each location and the guards for the outgoing edges of locations are mutually
exclusive. A configuration of an HA is a pair from Q × X . A trajectory of a
hybrid automaton H starting from configuration (l0,x0) where l0 ∈ Q,x0 ∈ X
is a pair of functions πl0,x0 = (λl0,x0(t), ξl0,x0(t)) such that

(1) λl0,x0(t) : [0,+∞) → Q is a piecewise function constant on every interval
[ti, ti+1).

(2) ξl0,x0(t) : [0,+∞) → Rn is a piecewise differentiable function and in each
piece ξl0,x0 is càdlàg (right continuous with left limits everywhere).
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(3) On any interval [ti, ti+1) where λl0,x0 is constant and ξl0,x0 is continuous,

ξl0,x0(t) = ξl0,x0(ti) +

∫ t

ti

fλl0,x0
(ti)(ξl0,x0(τ))dτ

for all τ ∈ [ti, ti+1).
(4) For any ti, there exists a transition (l, g, γ, l′) ∈ δ such that

(i) λl0,x0(ti) = l and λl0,x0(ti+1) = l′;
(ii) ξ−l0,x0

(ti+1) ∈ g(l, l′) where ξ−l0,x0
(t) means the left limit of ξl0,x0 at t;

(iii) (ξ−l0,x0
(ti+1), ξl0,x0(ti+1)) ∈ γ.

Definition 2. (n-PCD) An n-dimensional Piecewise Constant Derivative (n-
PCD) system [2] is a pair H = (P,F) such that:

(1) P = {Ps}1≤s≤k is a finite family in Rn, where Ps ⊆ Rn are non-overlapping
convex polygonal sets.

(2) F = {cs}1≤s≤k is a family of vectors in R.
(3) The dynamics are given by ẋ = cs for x ∈ Ps.

An n-PCD is called bounded if for its regions P = {Ps}1≤s≤k, there exists
r ∈ Q+, such that for all Ps, we have that Ps ⊆ B0(r), where B0(r) is an
origin-centered open ball of radius r and appropriate dimension. We define the
support set of a PCD H as SuppPCD(H) =

⋃
1≤s≤k Ps.

For full definitions of Hybrid Automata and their trajectories, see [5]. In
the following we slightly modify the definition of HPCD [3] to allow different
dimensions to be studied.

Definition 3. (n-HPCD) A n-dimensional Hierarchical Piecewise Constant
Derivative (n-HPCD) system is a hybrid automaton H = (X , Q, f , l0, Inv, δ)
such that Q and l0 are defined as in Definition 1, with the dynamics at each
l ∈ Q given by an n-PCD and each transition tr = (l, g, γ, l′) is such that: (1)
Its guard g is a convex region such that g ⊆ Rn−1; and (2) The reset relation
γ is an affine function of the form: x′ = γ(x) = Ax + b, where A ∈ Rn×n

and b ∈ Rn. We denote the internal guards of an HPCD location to be the
guards of the underlying PCD regions which cause a change of region when they
are reached. The transition guards are the guards used in transitions between
locations. The Invariant (Inv) for a location l is defined to be SuppPCD(H) \ Gl,
where SuppPCD(H) is the support set of the underlying PCDs of the HPCD and
Gl is the set of transition guards in location l. If all the PCDs are bounded, then
the n-HPCD is said to be bounded.

In this paper, we are interested in a restricted form of n-HPCD.

(I) Under the HPCD model, when transitioning between locations, we may
apply an affine reset to non-continuously modify the current point. An
n-HPCD has identity (or no) resets if for every transition tr = (l, g, γ, l′),
γ(x) = x for all points x ∈ Rn. This means that starting from any initial
configuration (l0,x0), for the trajectory πl0,x0 = (λl0,x0(t), ξl0,x0(t)) we
have that ξl0,x0(t) is a continuous function of t. Note that the trajectory for
a PCD is also continuous, and thus this seems to be a natural restriction.
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(II) An n-HPCD system has elementary flows if the derivatives of all variables
in each location are from {0,±1}, otherwise it has arbitrary constant flows.

(III) Guards are used to change the derivative being applied within a loca-
tion (internal guards), or to change which location we are in (transition
guards). They can be described by Boolean combinations of atomic formu-
lae (linear inequalities). If each atomic formula contains only one variable,
then the guard is called non-comparative (meaning the guard is aligned
with ones of the axes). An n-HPCD has non-comparative guards if all
guards (both internal and transition) are non-comparative, e.g., for a 3-
RHPCD, 3

2 ≤ x ≤ 7 ∧ y = −1 ∧ 2 ≤ z ≤ 7 is a non-comparative guard,
but 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1

2 ∧ z = 5 ∧ x = 2y is a comparative guard (due
to the term x = 2y).

Definition 4. (n-RHPCD) An n-dimensional Restricted Hierarchical Con-
stant Derivative System (RHPCD) is a bounded n-HPCD with identity resets,
non-comparative guards, elementary flows and a finite number of PCD regions.
See Fig. 2a and Fig. 2b for an example of a 3-RHPCD.

Finally, we will also require the following simultaneous incongruences problem,
which is known to be NP-complete [8].

Problem 1. (Simultaneous incongruences) Given a set {(a1, b1), . . . , (an,
bn)} of ordered pairs of positive integers with ai ≤ bi for 1 ≤ i ≤ n. Does there
exist an integer k such that k 	≡ ai (mod bi) for every 1 ≤ i ≤ n?

3 Reachability and Mortality for n-RHPCDs

The following lemma shows that if an instance of the simultaneous incongruences
problem has a solution, then there must be a solution less than a particular
bound.

Lemma 1. There exist solutions for the simultaneous incongruences problem
with a collection {(a1, b1), . . . , (an, bn)} if and only if there exists a solution k
such that 0 < k ≤ ρ, where

ρ = lcm(b1, . . . , bn)

and lcm(b1, . . . , bn) is the least common multiple of b1, . . . , bn.

Proof. The sufficient part is trivial. We show the necessary part. Given an in-
stance {(a1, b1), . . . , (an, bn)}, let ρ = lcm(b1, . . . , bn). Then for every 1 ≤ i ≤ n,
ρ ≡ 0 (mod bi).

For every integer k > ρ, we can rewrite k as k = k0+mρ, where 0 < k0 ≤ ρ and
m ∈ N. Suppose there exists a solution ks > ρ. According to the simultaneous
incongruences problem, we know that ks 	≡ ai (mod bi) for all i, where 1 ≤ i ≤ n.
So we can find a k0, where 0 < k0 ≤ ρ, and a positive integer m such that

ks ≡ k0 +mρ 	≡ ai (mod bi),
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for every i, where 1 ≤ i ≤ n. But ρ ≡ 0 (mod bi) for all 1 ≤ i ≤ n, which implies
that

k0 	≡ ai (mod bi)

for all 1 ≤ i ≤ n, thus k0 is the solution we want. �

Theorem 1. The reachability problem for bounded 3-RHPCD systems is NP-
hard.

Proof. Consider an instance of the simultaneous incongruences problem with n
pairs. We will encode the instance into a reachability problem for a 3-RHPCD.
Starting from k = 1, we test whether k mod bi 	= ai holds for each pair (ai, bi).
If it does hold for every i, then the current value of k is the solution. If for some
i we find k mod bi = ai, then the current value of k is not a potential solution.
We increase the value of k by 1 and start the testing all over again. By Lemma 1
there are at most ρ integers to test.

Simulation of modulo operations

P QI

k := k+1

k is not 
a solution

Fig. 1. Reachability problem for 3-RHPCD (Location I actually represents 3 locations
I1, I2 and I3)

We construct the corresponding 3-RHPCD in the following way. We define 5
locations P,Q, I1, I2 and I3. Locations P andQ together can simulate the modulo
operation test for a certain value of k and every pair of (ai, bi). Locations I1, I2
and I3 can increase the value of k by 1 when we find the current k is not a
potential solution. See Fig. 1. Define regions Ai and Bi in locations P and Q :

Ai = (si−1, si)× (0, ρ)× (0, ρ);
Bi = (si−1, si)× (0, ρ)× (−ρ, 0),

where i ∈ {1, 2, ..., n}, s0 = 0, si =
∑i

1 bi for 1 ≤ i ≤ n, and ρ = lcm(b1, . . . , bn).
We call a region odd (resp. even) Ai or Bi if i is odd (resp. even). We also define
surface O :

O = [0, sn]× [0, ρ]× {0}.
To simulate the modulo operation for a certain pair (ai, bi), we use the regions
odd Ai and even Bi in both locations P and Q. Define the derivative to be
(1, 1,−1) in odd Ai in P ((1, 1, 1) in even Bi in P ) and (−1, 0, 0) in both odd
Ai and even Bi in Q. See Fig. 2. Intuitively, we arrange the regions alternately
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(x)

(y)

(z)

0 s1 s2 s3

G1

(1,1,-1)

(0,-1,-1)

(1,1,1)

(0,-1,1)

G2

X1+

X2-

F1-

F2+

G3 G4

X3+

F3-

F4+

(a) Location P

(z)

0 (x)

(y)
(-1,0,0)

(1,0,0)

s1 s2 s3

X0+

X1-

X2+

X3-

(b) Location Q

Fig. 2. 3-RHPCD simulating simultaneous incongruences problem (only location P
and location Q are shown)

above and below the O surface instead of stacking them together. This is to
avoid them sharing a common surface, which may cause nondeterminism when
we define a (transition) guard on that surface.

For a point (x, y, z), we use the z coordinate to represent the current value
of k and the y coordinate as a memory. Assuming i is odd (see Table. 1 for full
details of both odd and even cases), we start at point x0 = (si−1, 0, k) in P
and move according to the flow ẋ = (1, 1,−1). While |z| > 0, every time when
x = bi + si−1 = si, we jump to Q. In Q we keep variables y and z unchanged,
simply reset x to 0 by the flow ẋ = (−1, 0, 0) and jump back to P. Each time
the trajectory goes from P to Q and jumps back to P, the absolute value of
variable z will be subtracted by bi. So when the trajectory hits the O surface
(i.e., z = 0), the value of x will be equal to si−1 + (k mod bi). Since y and z in
P change at the same rate, when the absolute value of z drops from k to 0, the
value of y will increase from 0 to k.

If k mod bi 	= ai, we reset y to 0 and |z| to k by switching the value of these
two variables, and enter region B(i+1) to test whether k mod bi+1 	= ai+1. To do

this, we use the regions odd Bi and even Ai in both locations P and Q. Define
the derivative to be (0,−1,−1) in odd Bi in P ((0,−1, 1) in even Ai in P ) and
(1, 0, 0) in both odd Bi and even Ai in Q. By the flows in P the value of y and
|z| are switched. When y = 0 we jump to Q and reset x to si, and then jump
back to P to start testing the case of pair (ai+1, bi+1).

If k mod bi = ai, which means that the current value of k is not a potential
solution, we jump to locations I1, and then I2 and I3, (defined in Table 1) which
moves the trajectory to point (0, 0, k + 1) and ‘restarts’ in location P to test
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whether the new value k + 1 is a correct solution 1. A correct solution k should
satisfy that the trajectory starts from point (0, 0, k) in location P and can finally
reach some point (in location P ) on the surface (sn−1, sn) × (0, ρ) × {0} with
x 	∈ (sn−1 + an − ε

2 , sn−1 + an + ε
2 ).

Table 1. Reachability problem for 3-RHPCD

Location Region Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi (i is odd): (0,−1,−1)

F i+ (i = 2, 4, ..., n),

A ∪B

Bi (i is even): (1, 1, 1)

F i− (i = 1, 3, ..., n− 1) :
jump to Q

Gi :
jump to I1

Q (A ∪B) \ C
Ai (i is odd): (−1, 0, 0)

Ai (i is even): (1, 0, 0)
Xi+ (i = 0, 2, ..., n− 2),

Bi (i is odd): (1, 0, 0)
Xi− (i = 1, 3, ..., n− 1) :

Bi (i is even): (−1, 0, 0)
jump to P

I1 A (−1, 0, 0)
x = 0

jump to I2

I2 A (0, 0, 1)
z = 1

jump to I3

I3 A (0,−1, 1)
y = 0

jump to P

We now give the formal details of this construction. Without loss of generality,
we assume n is even. Define 2 regions A and B :

A = ∪n
1Ai;

B = ∪n
1Bi.

Also define four types of surfaces Fi+, Fi−, Xi+ and Xi− :

Fi+ = (si−1, si)× {0} × (0, ρ), i = 1, 2, ..., n;
Fi− = (si−1, si)× {0} × (−ρ, 0), i = 1, 2, ..., n;
Xi+ = {si} × (0, ρ)× (0, ρ), i = 0, 1, 2, ..., n;
Xi− = {si} × (0, ρ)× (−ρ, 0), i = 0, 1, 2, ..., n.

1 Note that here in the guards we do not require exactly x = ai+si−1, but allow some
error ε, so tiny perturbations will not affect our result. The same analysis can be
applied to Theorem 2. This seems to imply that our system has robust reachability
and mortality problems, but we do not expand on the details in this paper. See more
details about robustness in [10]
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Finally, we define a set of ε-width strips Gi and a set of ε-width cubes C :

Gi = (si−1 + ai − ε
2 , si−1 + ai +

ε
2 )× [0, ρ]× {0}, i = 1, 2, ..., n;

C = ∪n−1
1 Ci,

where

Ci =

{
(si, si + ε)× (0, ρ)× (0, ρ), if i = 1, 3, ..., n− 1;
(si, si + ε)× (0, ρ)× (−ρ, 0), if i = 2, 4, ..., n− 2.

The set C is to prevent nondeterminism in location Q. With the help of these
notations, we construct the 3-RHPCD in Table. 1.

The number of regions and guards in the constructed 3-RHPCD is clearly
polynomial in the number of pairs of the simultaneous incongruences problem.
Furthermore, the points defining each such region can be represented in bi-
nary and are therefore polynomial in the description size of the simultaneous
incongruences problem. Therefore the constructed 3-RHPCD has a polynomial
description size. �

Theorem 2. The mortality problem for a bounded 3-RHPCD system is NP-
hard.

Proof. We simulate a simultaneous incongruences problem by a bounded 3-
RPHCD. The mortality problem asks whether for a certain system, starting
from every initial configuration, the trajectory will eventually reach some fixed-
point configuration, which we call the mortal configuration (in this case, the
system is called mortal). Once we reach the mortal configuration, since it is a
fixed point of the system, we assume the simulation halts since the point itself
never changes. We construct our 3-RHPCD in such a way that the system is
mortal if and only if there is no solution for the corresponding simultaneous in-
congruences problem, otherwise the system is immortal (i.e., starting from some
configurations the system never reaches the mortal configuration).

For a pair (ai, bi) in the simultaneous incongruences problem, the derivatives
of the associated regions Ai and Bi in locations P and Q are defined the same as
in the proof of Theorem 1. In contrast to Theorem 1, in the mortality problem,
we are not only concerned about some trajectories starting from certain points
(0, 0, k), 0 < k ≤ ρ, but want to know whether all the trajectories reach the
mortal configuration.

In the following part we assume i is odd, similar analysis can be applied to
the case when i is even. According to the flow ẋ = (1, 1,−1) of an odd region
Ai in location P, there are 2 boundaries the trajectories will eventually reach:
the O surface and the y = ρ surface (some trajectories may also reach the
Xi+ or Xi− surface, but they will jump to location Q and jump back, then
reach either one of the above two surfaces at the end). In odd Ai in P, all the
trajectories which reach the y = ρ surface or reach the strip Gi on the O surface
are considered as mortal trajectories and will jump to location M1, in which all
the trajectories will eventually reach the mortal configuration of point (0, 0, 0)
in locations {M1,M2,M3}. The trajectories which reach the O surfaces but do
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not reach the strip Gi are considered as the potential solution trajectories and
move on by following the flows for a further check.

In contrast to the proof of Theorem 1, in region An (or Bn depending on if
i is odd or even) if any trajectory reaches the surface O but does not reach the
strip Gn, we do not conclude that we find a solution k. Instead, we keep moving
in P until we hit the guard, jump to location T, reset the trajectory to the point
(0, 0, k) and go to location P to start the test again. If k indeed is a correct
solution to the corresponding simultaneous incongruences problem, the system
will loop forever; otherwise the trajectory will go to location M1 at some region
odd Ai or even Bi in location P. Full details are shown in Table. 2. �

Table 2. Mortality problem for 3RHPCD

Location Region Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi (i is odd): (0,−1,−1)

F i+ (i = 2, 4, ..., n),

A ∪B

Bi (i is even): (1, 1, 1)

F i− (i = 1, 3, ..., n− 1) :
jump to Q
(y = ρ),Gi :
jump to M1

Q (A ∪B) \ C
Ai (i is odd): (−1, 0, 0)

Xi+ (i = 0, 2, ..., n− 2),

Ai (i is even): (1, 0, 0)
Xi− (i = 1, 3, ..., n− 1) :

Bi (i is odd): (1, 0, 0)
jump to P

Bi (i is even): (−1, 0, 0)
Xn+ :

jump to T

T A ∪B (−1, 0, 0)
x = 0 :

jump to P

M1 A ∪B
A : (0, 0,−1) z=0:

B : (0, 0, 1) jump to M2

M2 A ∪B (−1, 0, 0)
x=0:

jump to M3

M3 A ∪B (0,−1, 0)
y=0:

jump to M1

Theorem 3. Reachability and mortality are undecidable for unbounded
3-RHPCD systems.

Proof. Both problems can be shown to be undecidable via a simulation of a two
counter (Minsky) machine which represents a universal model of computation
[12]. However we omit the details here due to page limit. �

The following proposition gives an upper bound of the complexity for both
the reachability and mortality problems for bounded n-RHPCDs.

Proposition 1. The reachability and mortality problems for bounded n-RHPCDs
are in PSPACE.
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Proof. The proof is similar to that used to show that reachability for a 2-RHPCD
is decidable, as was shown in [5]. Given an n-RHPCD H, an initial configuration
(q0,x0) and a target configuration (qf ,xf ), we show that starting from (q0,x0),
the trajectory will hit the internal and transition guards finitely many times
before either reaching (qf ,xf ), or detecting a cycle, or hitting some endpoints
(at which the calculation halts), thus ‘convergence’ to a point is possible.

By the definition of n-RHPCD, the guards of H are of the form
⎛
⎝ ∧

1≤i≤n∧ i�=j

(ai ≺ xi ≺′ bi)

⎞
⎠ ∧ (xj = cj)

where j ∈ {1, . . . , n}, xi, xj , ai, bi, ci ∈ Q, and ≺,≺′∈ {<,≤}.
By definition, the components of x0 = (x01 , . . . , x0n) and xf = (xf1 , . . . , xfn)

are rational numbers, i.e., x0,xf ∈ Qn. Define

γ = lcd(a1, . . . , an, b1, . . . , bn, cj , x01 , . . . , x0n , xf1 , . . . , xfn),

where lcd denotes the least common denominator, and define

Ai = γai, Bi = γbi, Cj = γcj , X0 = γx0, Xf = γxf .

Thus, Ai, Bi, Cj ∈ Z and X0,Xf ∈ Zn. Define a new n-RHPCD H′ with initial
configuration (q0,X0) and target configuration (qf ,Xf ) by replacing ai, bi, cj ,
x0,xf by Ai, Bi, Cj ,X0,Xf . Clearly, H reaches xf iff H′ reaches Xf .

Because all the flows of H′ are chosen from the set {0, 1,−1}, when one
variable xi changes its value from one integer to another integer, any other
variable xj remains an integer. As the trajectory starts at integer point X0, and
the guards of H′ are defined by integers, every time the trajectory hits a guard,
it will have integer components.

We now prove that the problem can be solved in PSPACE. Note that the
representation size of γ is clearly polynomial in the representation size of H, thus
so is the size of H′. We now show that the representation size of the number
of possible transition configurations (the configuration when the trajectory hits
the guard and takes transition) of H′ is also polynomial in the size of H.

Let k > 0 be the number of locations of H′. Since H is bounded, we can
calculate τ ∈ N to be the maximal absolute value of the endpoint of any in-
variant of H over all locations. Thus the range of variables of H′ is contained
within [−γτ, γτ ]. Since we have n variables, the maximal number of transition
configurations of H′, starting at initial configuration (q0,X0) is thus k(2γτ)n,
which can be represented in size polynomial in the size of H, since it requires at
least k log(γτ)n = nk log(γτ) space to store H and

log(k(2γτ)n)

nk log(γτ)
=

log(k) + n log(2γτ)

nk log(γτ)
< c

for some computable constant c > 0. We can use a counter to keep track of
the number of transitions the trajectory of H′ makes, starting from (q0,X0). As
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each transition is taken, we can determine if the final configuration was reached
since the last transition. Otherwise, we increment the counter and proceed. If
the counter reaches k(2γτ)n, then the configurations must be periodic and we
can halt. Using a similar approach, we can also show that the mortality problem
for n-RHPCDs is also in PSPACE, however we omit the details here. �

4 Conclusions

We showed that for bounded three-dimensional Restricted Hierarchical Piece-
wise Constant Derivative systems (3-RHPCDs), the reachability and mortality
problems are NP-hard (using the simultaneous incongruences problem) but also
in PSPACE, even in the n-dimensional case. For unbounded 3-RHPCDs, we
showed that both problems are undecidable by an encoding of a Minsky ma-
chine. Clearly there is still a gap left for the complexity of the reachability and
mortality problems for bounded n-RHPCDs. To close the gap we need to answer
some interesting open problems:

- Is there a large n for which both problems for n-RHPCD are PSPACE-hard?
- Can both problems be solved in NP in dimension three?
- Can both problems be solved in P in dimension two?

The model of RHPCD restricts various components of the hybrid automaton
in ways which have parallels to other models, such as stopwatch automata, rect-
angular automata and PCDs. RHPCDs have decidable reachability problems for
them but endowing them with small additional powers renders them much more
powerful. Therefore they seem a useful tool in studying the frontier of undecid-
ability and tractability, in a similar way to the model of HPCD which inspired
them.

Acknowledgements: We would like to thank the anonymous referees for their
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