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Abstract. Mean-payoff games are important quantitative models for
open reactive systems. They have been widely studied as games of per-
fect information. In this paper we investigate the algorithmic properties
of several subclasses of mean-payoff games where the players have asym-
metric information about the state of the game. These games are in gen-
eral undecidable and not determined according to the classical definition.
We show that such games are determined under a more general notion
of winning strategy. We also consider mean-payoff games where the win-
ner can be determined by the winner of a finite cycle-forming game.
This yields several decidable classes of mean-payoff games of asymmet-
ric information that require only finite-memory strategies, including a
generalization of perfect information games where positional strategies
are sufficient. We give an exponential time algorithm for determining the
winner of the latter.

1 Introduction

Mean-payoff games (MPGs) are two-player, infinite duration, turn-based games
played on finite edge-weighted graphs. The two players alternately move a token
around the graph; and one of the players (Eve) tries to maximize the (limit)
average weight of the edges traversed, whilst the other player (Adam) attempts
to minimize the average weight. Such games are particularly useful in the field of
verification of models of reactive systems, and the perfect information versions
of these games have been extensively studied [4,7,8,10]. One of the major open
questions in the field of verification is whether the following decision problem,
known to be in the intersection of the classes NP and coNP [10]1, can be solved
in polynomial time: Given a threshold ν, does Eve have a strategy to ensure a
mean-payoff value of at least ν?

In game theory the concepts of imperfect, partial and limited information
indicate situations where players have asymmetric knowledge about the state of
the game. In the context of verification games this partial knowledge is reflected
in one or both players being unable to determine the precise location of the token
amongst several equivalent vertices, and such games have also been extensively
� This work was supported by the ERC inVEST (279499) project.
1 From results in [17] and [12] it follows that the problem is also in UP ∩ coUP.
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studied [2, 3, 9, 13, 16]. Adding partial-observation to verification games results
in an enormous increase in complexity, both algorithmically and in terms of
strategy synthesis. For example, it was shown in [9] that for MPGs with partial-
observation, when the mean payoff value is defined using lim sup, the analogue
of the above decision problem is undecidable; and whilst memoryless strategies
suffice for MPGs with perfect information, infinite memory may be required. The
first result of this paper is to show that this is also the case when the mean payoff
value is defined using the stronger lim inf operator, closing two open questions
posed in [9]. As a consequence, we generalize a result from [6] which uses the
undecidability result from [9] to show several classical problems for mean-payoff
automata are also undecidable.

To simplify our definitions and algorithmic results we initially consider a re-
striction on the set of observations which we term limited-observation. In games
of limited-observation the current observation contains only those vertices con-
sistent with the observable history, that is the observations are the belief set of
Eve (see, e.g. [5]). This is not too restrictive as any MPG with partial-observation
can be realized as a game of limited-observation via a subset construction. In
Section 9 we consider the extension of our definitions to MPGs with partial-
observation via this construction.

Our focus for the paper will be on games at the observation level, in par-
ticular we are interested in observation-based strategies for both players. Whilst
observation-based strategies for Eve are usual in the literature, observation-based
strategies for Adam have not, to the best of our knowledge, been considered.
Such strategies are more advantageous for Adam as they encompass several si-
multaneous concrete strategies. Further, in games of limited-observation there is
guaranteed to be at least one concrete strategy consistent with an observation-
based strategy. Our second result is to show that although MPGs with partial-
observation are not determined under the usual definition of strategy, they are
determined when Adam can use an observation-based strategy.

In games of perfect information one aspect of MPGs that leads to simple (but
not quite efficient) decision procedures is their equivalence to finite cycle-forming
games. Such games are played as their infinite counterparts, however when the
token revisits a vertex the game is stopped. The winner is determined by a finite
analogue of the mean-payoff condition on the cycle now formed. Ehrenfeucht and
Mycielski [10] and Björklund et al. [4]2 used this equivalence to show that posi-
tional strategies are sufficient to win MPGs with perfect information. Critically,
a winning strategy in the finite game translates directly to a winning strategy
in the MPG, so such games are especially useful for strategy synthesis.

We extend this idea to games of partial-observation by introducing a finite,
perfect information, cycle-forming game played at the observation level. That
is, the game finishes when an observation is revisited (though not necessarily
the first time). In this reachability game winning strategies can be translated
to finite-memory winning strategies in the MPG. This leads to a large, natural
subclass of MPGs with partial-observation, forcibly terminating games, where

2 A recent result of Aminof and Rubin [1] corrects some errors in [4].
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Table 1. Summary of results for the classes of games studied.

Forcibly Forcibly FAC FAC
Terminating limited-obs. partial-obs. limited-obs. partial-obs.

Memory Finite Exponential 2-Exponential Positional Exponential
Class
membership

Undecidable PSPACE-
complete

NEXP-hard,
in EXPSPACE

coNP-
complete

coNEXP-
complete

Winner
determination

R-complete PSPACE-
complete

EXP-complete NP ∩ coNP EXP-
complete

determining the winner is decidable and finite memory observation-based strate-
gies suffice.

Unfortunately, recognizing if an MPG is a member of this class is undecidable,
and although determining the winner is decidable, we show that this problem
is complete (under polynomial-time reductions) for the class of all decidable
problems. Motivated by these negative algorithmic results, we investigate two
natural refinements of this class for which winner determination and class mem-
bership are decidable. The first, forcibly first abstract cycle games (forcibly FAC
games, for short), is the natural class of games obtained when our cycle-forming
game is restricted to simple cycles. Unlike the perfect information case, we show
that winning strategies in this finite simple cycle-forming game may still require
memory, though this memory is at most exponential in the size of the game.
The second refinement, first abstract cycle (FAC) games, is a further structural
refinement that guarantees a winner in the simple cycle-forming game. We show
that in this class of games positional observation-based strategies suffice.

Table 1 summarizes the results of this paper. For space reasons the full details
of all proofs can be found in the technical report [11].

2 Preliminaries

Mean-payoff games. A mean-payoff game (MPG) with partial-observation is a
tuple G = 〈Q, qI , Σ,Δ,w,Obs〉, where Q is a finite set of states, qI ∈ Q is
the initial state, Σ is a finite set of actions, Δ ⊆ Q × Σ × Q is the transition
relation, w : Δ → Z is the weight function, and Obs ∈ Partition(Q) is a
set of observations. We assume Δ is total. We say that G is a mean-payoff
game with limited-observation if additionally, (1) {qI} ∈ Obs, and (2) for each
(o, σ) ∈ Obs× Σ the set {q′ | ∃q ∈ o and (q, σ, q′) ∈ Δ} is a union of elements
of Obs. If every element of Obs is a singleton, then we say G is a mean-payoff
game with perfect information. For simplicity, we denote by postσ(s) = {q′ ∈
Q | ∃q ∈ s : (q, σ, q′) ∈ Δ} the set of σ-successors of a set of states s ⊆ Q.

In this work, unless explicitly stated otherwise, we depict states from an MPG
with partial-observation as circles and transitions as arrows labelled by an action-
weight pair: σ,w. Observations are represented by dashed boxes.
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Abstract and concrete paths. A concrete path in an MPG with partial-observation
is a sequence q0σ0q1σ1 . . . where for all i ≥ 0 we have qi ∈ Q, σi ∈ Σ and
(qi, σi, qi+1) ∈ Δ. An abstract path is a sequence o0σ0o1σ1 . . . where oi ∈ Obs,
σi ∈ Σ and for all i there exists qi ∈ oi and qi+1 ∈ oi+1 with (qi, σi, qi+1) ∈ Δ.
Given an abstract path ψ, let γ(ψ) be the (possibly empty) set of concrete paths
that agree with the observation and action sequence. Note that in games of
limited-observation this set is never empty. Also, given abstract (respectively
concrete) path ρ, let ρ[..n] represent the prefix of ρ up to the (n+1)-th observa-
tion (state), which we express as ρ[n]; similarly, we denote by ρ[l..] the suffix of
ρ starting from the l-th observation (state) and by ρ[l..n] the finite subsequence
starting and ending in the aforementioned locations. An abstract (respectively
concrete) cycle is an abstract (concrete) path χ = o0σ0 . . . on where o0 = on. We
say χ is simple if oj 	= oi for 0 ≤ i < j < n. Given k ∈ N define χk to be the
abstract (concrete) cycle obtained by traversing χ k times. A cyclic permutation
of χ is an abstract (concrete) cycle o′0σ

′
0 . . . o

′
n such that o′j = oj+k (mod n) and

σ′
j = σj+k (mod n) for some k. If χ′ = o′0σ′

0 . . . o
′
m is a cycle with o′0 = oi for some

i, the interleaving of χ and χ′ is the cycle o0σ0 . . . oiσ
′
0 . . . o

′
mσi . . . on.

Given a concrete path π = q0σ0q1σ1 . . ., the payoff up to the (n+1)-th element
is given by

w(π[..n]) =
n−1∑

i=0

w(qi, σi, qi+1).

If π is infinite, we define two mean-payoff values MP and MP as:

MP (π) = lim inf
n→∞

1

n
w(π[..n]) MP (π) = lim sup

n→∞
1

n
w(π[..n])

Plays and strategies. A play in an MPG with partial-observation G is an infinite
abstract path starting at oI ∈ Obs where qI ∈ oI . Denote by Plays(G) the set
of all plays and by Prefs(G) the set of all finite prefixes of such plays ending in
an observation. Let γ(Plays(G)) be the set of concrete paths of all plays in the
game, and γ(Prefs(G)) be the set of all finite prefixes of all concrete paths.

An observation-based strategy for Eve is a function from finite prefixes of
plays to actions, i.e. λ∃ : Prefs(G) → Σ. A play ψ = o0σ0o1σ1 . . . is consistent
with λ∃ if σi = λ∃(ψ[..i]) for all i. An observation-based strategy for Adam is a
function λ∀ : Prefs(G) × Σ → Obs such that for any prefix π = o0σ0 . . . on ∈
Prefs(G) and action σ, λ∀(π, σ) ∩ postσ(π[n]) 	= ∅. A play ψ = o0σ0o1σ1 . . .
is consistent with λ∀ if λ∀(ψ[..i], σi) = oi+1 for all i. A concrete strategy for
Adam is a function μ∀ : γ(Prefs(G))×Σ → Q such that for any concrete prefix
π = q0σ0 . . . qn ∈ γ(Prefs(G)) and action σ, μ∀(π, σ) ∈ postσ({π[n]}). A play
ψ = o0σ0o1σ1 . . . is consistent with μ∀ if there exists a concrete path π ∈ γ(ψ)
such that μ∀(π[..i], σi) = π[i+ 1] for all i.

We say an observation-based strategy for Eve λ∃ has memory m if there is a
set M with |M | = m, an element m0 ∈ M , and functions αu : M × Obs → M
and αo : M × Obs → Σ such that for any play prefix ρ = o0σ0 . . . on we have
λ∃(ρ) = αo(mn, on), where mn is defined inductively by mi+1 = αu(mi, oi) for
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i ≥ 0. An observation-based strategy for Adam λ∀ has memory m if there is a set
M with |M | = m, an element m0 ∈ M , and functions αu : M × Obs× Σ → M
and αo : M × Obs × Σ → Obs such that for any play prefix ending in an
action ρ = o0σ0 . . . onσn, we have λ∀(ρ) = αo(mn, on, σn), where mn is defined
inductively by mi+1 = αu(mi, oi, σi). An observation-based strategy (for either
player) with memory 1 is positional.

Note that for any concrete strategy μ of Adam there is a unique observation-
based strategy λμ such that all plays consistent with μ are consistent with λμ.
Conversely there may be several, but possibly no, concrete strategies that cor-
respond to a single observation-based strategy. In games of limited-observation
there is guaranteed to be at least one concrete strategy for every observation-
based strategy.

Given a threshold ν ∈ R, we say a play ψ is winning for Eve if MP (π) ≥ ν
for all concrete paths π ∈ γ(ψ), otherwise it is winning for Adam. Given ν, one
can construct an equivalent game in which Eve wins if and only if MP (π) ≥ 0
if and only if she wins the original game, so without loss of generality we will
assume ν = 0. A strategy λ is winning for a player if all plays consistent with λ
are winning for that player. We say that a player wins G if (s)he has a winning
strategy.

It was shown in [9] that in MPGs with partial-observation where finite memory
strategies suffice Eve wins the MP version of the game if and only if she wins
the MP version. As the majority of games considered in this paper only require
finite memory, we can take either definition. For simplicity and consistency with
Section 3 we will use MP .

Reachability games. A reachability game G = 〈Q, qI , Σ,Δ, T∃, T∀〉 is a tuple
where Q is a (not necessarily finite) set of states; Σ is a finite set of actions;
Δ ⊆ Q × Σ × Q is a finitary transition function; qI ∈ Q is the initial state;
and T∃, T∀ ⊆ Q are the terminating states. Notions of plays and strategies in
the reachability game follow from the definitions for MPGs, however we extend
plays to include finite paths that end in T∃ or in T∀. In the first case we declare
Eve as the winner whereas the latter corresponds to Adam winning the game. In
general, the game might not terminate. In this case we say neither player wins.

3 Undecidability of Liminf Games

Mean-payoff games with partial-observation were extensively studied in [9]. In
that paper the authors show that, with the mean payoff condition defined using
MP and >, determining whether Eve has a winning strategy is undecidable
and when defined using MP and ≥, strategies with infinite memory may be
necessary. The analogous, and more general, questions using MP and ≥ were
left open. In this section we answer these questions, showing that both results
still hold.

Proposition 1. There exist MPGs with partial-observation for which Eve re-
quires infinite memory observation-based strategies to ensure MP ≥ 0.
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Consider the game in Figure 2 and consider the strategy of Eve that plays
(regardless of location) aba2ba3ba4b . . . As b is played infinitely often in this strat-
egy, the only concrete paths consistent with this strategy are π = q0q

ω
1 and π =

q0q
k
1q

l
2q

ω
3 for non-negative integers k, l. In both cases MP ≥ 0, so the strategy

is winning.
Against a finite memory strategy of Eve, Adam plays to ensure the game

remains in {q1, q2}. As Eve’s strategy has finite memory, her choice of actions
must be ultimately periodic. Now there are two cases, if she plays a finite number
of b’s then Adam has a concrete winning strategy which consists in guessing
when she will play the last b and moving to q2. If, on the other hand, she plays
b infinitely often then Adam can choose to stay in q1 and again win the game.

Theorem 1. Let G be an MPG with partial-observation. Determining whether
Eve has an observation-based strategy to ensure MP ≥ 0 is undecidable.

In [6], the authors present a reduction from blind MPGs to mean-payoff au-
tomata. This reduction, together with the undecidability result from [9], imply
several classical automata-theoretical problems for mean-payoff automata are
also undecidable. In [6], the authors study the non-strict ≥ relation between
quantitative languages. It follows from the undecidability result presented above,
that even when one considers the strict order, >, these problems remain unde-
cidable.

Corollary 1. The strict quantitative universality, and strict quantitative lan-
guage inclusion problems are undecidable for non-deterministic and alternating
mean-payoff automata.

4 Observable Determinacy

One of the key features of MPGs with perfect information is that they are
determined, that is, it is always the case that one player has a winning strategy.
This is not true in games of partial or limited-observation as can be seen in
Figure 1. Any concrete strategy of Adam reveals to Eve the successor of q0 and

q0

q1

q2

q3

a,-1

b,-1

Σ,-1

Σ,-1

b,-1

a,-1

Σ,+1

Fig. 1. A non-determined MPG with
limited-observation (Σ = {a, b}).

q0

q1

q2

q3

a,0
b,-1

a,-1

Σ,0

Σ,0

b,-1
b,0

Σ,+1

Fig. 2. An MPG with limited-
observation which Eve requires infinite
memory to win.
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she can use this information to play to q3. Conversely Adam can defeat any
strategy of Eve by playing to whichever of q1 or q2 means the play returns to q0
on Eve’s next choice (recall Eve cannot distinguish q1 and q2 and must therefore
choose an action to apply to the observation {q1, q2}). This strategy of Adam
can be encoded as an observation-based strategy: “from {q1, q2} with action a or
b, play to {q0}”. It transpires that, under an assumption about large cardinals3,
any such counter-play by Adam is always encodable as an observable strategy.

Theorem 2 (Observable determinacy). Assuming the existence of a mea-
surable cardinal, one player always has a winning observation-based strategy in
an MPG with limited-observation.

The existence of a measurable cardinal implies Σ1
1-Determinacy [14] – a weak

form of the “Axiom of Determinacy”. The observable determinacy of MPGs with
limited-observation then follows from the following result:

Lemma 1. The set of plays that are winning for Eve in an MPG with limited-
observation is co-Suslin.

5 Strategy Transfer

In this section we will construct a reachability game from an MPG with limited-
observation in which winning strategies for either player are sufficient (but not
necessary) for winning strategies in the original MPG.

Let us fix a mean-payoff game with limited-observation G = 〈Q, qI , Σ,Δ,
Obs, w〉. We will define a reachability game on the weighted unfolding of G.

Let F be the set of functions f : Q → Z ∪ {+∞,⊥}. Our intention is to
use functions in F to keep track of the minimum weight of all concrete paths
ending in the given vertex. A function value of ⊥ indicates that the given vertex
is not in the current observation, and intuitively a function value of +∞ is
used to indicate to Eve that the token is not located at such a vertex. The
added complication permits our winning condition to include games where Adam
wins by ignoring paths going through the given vertex. The support of f is
supp(f) = {q ∈ Q | f(q) 	= ⊥}. We say that f ′ ∈ F is a σ-successor of f ∈ F if:

– supp(f ′) ∈ Obs ∧ supp(f ′) ⊆ postσ(supp(f)); and
– for all q ∈ supp(f ′), f ′(q) is either min{f(q′) + w(q′, σ, q) | q′ ∈ supp(f) ∧

(q′, σ, q) ∈ Δ} or +∞.

We define a family of partial orders, �k (k ∈ N), on F by setting f �k f ′ if
supp(f) = supp(f ′) and f(q) + k ≤ f ′(q) for all q ∈ supp(f) (where +∞+ k =
+∞).

Denote by FG the set of all sequences f0σ0f1 . . . σn−1fn ∈ (F ·Σ)∗F such that
for all 0 ≤ i < n, fi+1 is a σi-successor of fi. Observe that for each function-
action sequence ρ = f0σ0 . . . fn ∈ FG there is a unique abstract path supp(ρ) =

3 This assumption is independent of the theory of ZFC.
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o0σ0 . . . on such that oi = supp(fi) for all i. Conversely for each abstract path
ψ = o0σ0 . . . on there may be many corresponding function-action sequences in
supp−1(ψ).

The reachability game associated with G, i.e. ΓG = 〈ΠG, Σ, fI , δ, T∃, T∀〉, is
formally defined as follows: fI ∈ F is the function for which f(q) �→ 0 if q = qI
and f(q) �→ ⊥ otherwise. ΠG is the subset of FG where for all f0σ0f1 . . . σn−1fn ∈
ΠG we have f0 = fI and for all 0 ≤ i < j < n we have fi 	�0 fj and fj 	�1 fi; δ is
the natural transition function, that is, if x and x ·σ · f are elements of ΠG then
(x, σ, x ·σ · f) ∈ δ; T∃ is the set of all f0σ0f1 . . . σn−1fn ∈ ΠG such that for some
0 ≤ i < n we have fi �0 fn; and T∀ is the set of all f0σ0f1 . . . σn−1fn ∈ ΠG such
that for some 0 ≤ i < n we have fn �1 fi and fi(q) 	= +∞ for some q ∈ supp(fi).

Note that the directed graph defined by ΠG and δ is a tree, but not necessarily
finite. To gain an intuition about ΓG, let us say an abstract cycle ρ is good if
there exists f0σ0 . . . fn ∈ supp−1(ρ) such that fi(q) 	= +∞ for all q and all i
and f0 �0 fn. Let us say ρ is bad if there exists f0σ0 . . . fn ∈ supp−1(ρ) such
that f0(q) 	= +∞ for some q ∈ supp(f0) and fn �1 f0. Then it is not difficult
to see that ΓG is essentially an abstract cycle-forming game played on G which
is winning for Eve if a good abstract cycle is formed and winning for Adam if a
bad abstract cycle is formed.

Theorem 3. Let G be an MPG with limited-observation and let ΓG be the asso-
ciated reachability game. If Adam (Eve) has a winning strategy in ΓG then (s)he
has a finite-memory observation-based winning strategy in G.

The idea behind the strategy for the mean-payoff game is straightforward.
If Eve wins the reachability game then she can transform her strategy into
one that plays indefinitely by returning, whenever the play reaches T∃, to the
natural previous position – namely the position that witnesses the membership
of T∃. By continually playing her winning strategy in this way Eve perpetually
completes good abstract cycles and this ensures that all concrete paths consistent
with the play have non-negative mean-payoff value. Likewise if Adam has a
winning strategy in the reachability game, he can continually play his strategy
by returning to the natural position whenever the play reaches T∀. By doing
this he perpetually completes bad abstract cycles and this ensures that there is
a concrete path consistent with the play that has strictly negative mean-payoff
value. The finiteness of the size of the memory required for this strategy follows
from the following result.

Lemma 2. If λ is a winning strategy for Adam or Eve in ΓG, then there exists
N ∈ N such that for all plays π consistent with λ, |π| ≤ N .

Although the following results are not used until Section 7, they give an
intuition toward the correctness of the strategies described above.

Lemma 3. Let ρ be an abstract cycle.

(i) If ρ is good (bad) then an interleaving of ρ with another good (bad) cycle
is also good (bad).
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(ii) If ρ is good then for all k and all concrete cycles π ∈ γ(ρk), w(π) ≥ 0.
(iii) If ρ is bad then ∃k ≥ 0, π ∈ γ(ρk) such that w(π) < 0.

Corollary 2. No cyclic permutation of a good abstract cycle is bad.

6 Forcibly Terminating Games

The reachability game defined in the previous section gives a sufficient condition
for determining the winner in an MPG with limited-observation. However, as
there may be plays where no player wins, such games are not necessarily deter-
mined. The first subclass of MPGs with limited-observation we investigate is the
class of games where the associated reachability game is determined.

Definition 1. An MPG with limited-observation is forcibly terminating if in
the corresponding reachability game ΓG either Adam has a winning strategy to
reach locations in T∀ or Eve has a winning strategy to reach locations in T∃.

It follows immediately from Theorem 3 that finite memory strategies suffice
for both players in forcibly terminating games. Note that an upper bound on the
memory required is the number of vertices in the reachability game restricted to
a winning strategy, and this is exponential in N , the bound obtained in Lemma 2.

Theorem 4 (Finite-memory determinacy). One player always has a win-
ning observation-based strategy with finite memory in a forcibly terminating
MPG.

We now consider the complexity of two natural decision problems associated
with forcibly terminating games: the problem of recognizing if an MPG is forcibly
terminating and the problem of determining the winner of a forcibly terminating
game. Both results follow directly from the fact that we can accurately simulate
a Turing Machine with an MPG with limited-observation.

Theorem 5. Let M be a Deterministic Turing Machine. Then there exists an
MPG with limited-observation G, constructible in polynomial time, such that Eve
wins ΓG if and only if M halts in the accept state and Adam wins ΓG if and only
if M halts in the reject state.

Corollary 3 (Class membership). LetG be an MPG with limited-observation.
Determining if G is forcibly terminating is undecidable.

Corollary 4 (Winner determination). Let G be a forcibly terminating MPG.
Determining if Eve wins G is R-complete.

Proof. R-hardness follows from Theorem 5. For decidability, Lemma 2 implies
that an alternating Turing Machine simulating a play on ΓG will terminate.
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7 Forcibly First Abstract Cycle Games

In this section and the next we consider restrictions of forcibly terminating games
in order to find subclasses with more efficient algorithmic bounds. The negative
algorithmic results from the previous section largely arise from the fact that
the abstract cycles required to determine the winner are not necessarily simple
cycles. Our first restriction of forcibly terminating games is the restriction of the
abstract cycle-forming game to simple cycles.

More precisely, let G be an MPG with limited-observation and ΓG be the
associated reachability game. Define Π ′

G ⊆ ΠG as the set of all sequences x =
f0σ0f1σ1 . . . fn ∈ ΠG such that supp(fi) 	= supp(fj) for all 0 ≤ i < j < n and
denote by Γ ′

G the reachability game 〈Π ′
G, Σ, fI , δ

′, T ′
∃ , T ′

∀〉 where δ′ is δ restricted
to Π ′

G, T ′
∃ = T∃ ∩Π ′

G and T ′
∀ = T∀ ∩Π ′

G.

Definition 2. An MPG with limited-observation is forcibly first abstract cycle
(or forcibly FAC) if in the associated reachability game Γ ′

G either Adam has a
winning strategy to reach locations in T ′

∀ or Eve has a winning strategy to reach
locations in T ′

∃.

One immediate consequence of the restriction to simple abstract cycles is
that the bound in Lemma 2 is at most |Obs|. In particular an alternating Turing
Machine can, in linear time, simulate a play of the reachability game and decide
which player, if any, has a winning strategy. Hence the problems of deciding if a
given MPG with partial-observation is forcibly FAC and deciding the winner of
a forcibly FAC game are both solvable in PSPACE. The next results show that
there is a matching lower bound for both these problems.

Theorem 6 (Class membership). LetG be an MPG with limited-observation.
Determining if G is forcibly FAC is PSPACE-complete.

PSPACE-hardness follows from a reduction from the satisfiability of quanti-
fied boolean formulas. The construction is similar to the construction used to
prove PSPACE-hardness for Generalized Geography in [15]. That is, the game
proceeds through diamond gadgets – the choice of each player on which side to
go through corresponds to the selection of the value for the quantified variable.
The (abstract) play then passes through a gadget for the formula in the obvious
way (Adam choosing for ∧ and Eve choosing for ∨), returning to a diamond
gadget when a variable is reached. If the variable has been seen before the cycle
is closed and the game ends, otherwise the play proceeds to the bottom of the
diamond gadget which has been seen before, thus ending the game one step later.
We set up the concrete paths within the observations in such a way that if the
cycle closes at the variable then it is good (and thus Eve wins) and if it closes at
the bottom of the gadget then it is not good. Corollary 2 implies that the cycle
closed is never bad, so either Eve wins and the game is forcibly FAC, or neither
player wins and it is not forcibly FAC.

We can slightly modify the above construction in such a way that if the game
does not finish when the play returns to a variable then Adam can close a bad
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cycle. This results in a forcibly FAC game that Eve wins if and only if the formula
is satisfied. Hence,

Theorem 7 (Winner determination). Let G be a forcibly FAC MPG. De-
termining if Eve wins G is PSPACE-complete.

It also follows from the |Obs| upper bound on plays in Γ ′
G that there is an ex-

ponential upper bound on the memory required for a winning strategy for either
player. Furthermore, we can show this bound is tight – the games constructed in
the proof of Theorem 7 can be used to show that there are forcibly FAC games
that require exponential memory for winning strategies.

Theorem 8 (Exponential memory determinacy). One player always has
a winning observation-based strategy with exponential memory in a forcibly FAC
MPG. Further, for any n ∈ N there exists a forcibly FAC MPG, of size polyno-
mial in n, such that any winning strategy has memory at least 2n.

8 First Abstract Cycle Games

We now consider a structural restriction that guarantees Γ ′
G is determined.

Definition 3. An MPG with limited-observation is a first abstract cycle game
(FAC) if in the associated reachability game Γ ′

G all leaves are in T ′
∀ ∪ T ′

∃.

Intuitively, in an FAC game all simple abstract cycles (that can be formed)
are either good or bad. It follows then from Corollary 2 that any cyclic permu-
tation of a good cycle is also good and any cyclic permutation of a bad cycle
is also bad. Together with Lemma 3, this implies the abstract cycle-forming
games associated with FAC games can be seen to satisfy the following three
assumptions: (1) A play stops as soon as an abstract cycle is formed, (2) The
winning condition and its complement are preserved under cyclic permutations,
and (3) The winning condition and its complement are preserved under inter-
leavings. These assumptions correspond to the assumptions required in [1] for
positional strategies to be sufficient for both players4. That is,

Theorem 9 (Positional determinacy). One player always has a positional
winning observation-based strategy in an FAC MPG.

As we can check in polynomial time if a positional strategy is winning in an
FAC MPG, we immediately have:

Corollary 5 (Winner determination). Let G be an FAC MPG. Determining
if Eve wins G is in NP ∩ coNP.

A path in Γ ′
G to a leaf not in T ′

∀ ∪T ′
∃ provides a short certificate to show that

an MPG with limited-observation is not FAC. Thus deciding if an MPG is FAC
is in coNP. A matching lower bound can be obtained using a reduction from the
complement of the Hamiltonian Cycle problem.
4 These conditions supercede those of [4] which were shown in [1] to be insufficient for

positional strategies.
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Theorem 10 (Class membership). LetG beanMPGwith limited-observation.
Determining if G is FAC is coNP-complete.

9 MPGs with Partial-Observation

The translation from partial-observation to limited-observation games allows us
to extend the notions of FAC and forcibly FAC games to the larger class of
MPGs with partial-observation. In this section we will investigate the resulting
algorithmic effect of this translation on the decision problems we have been
considering.

We say an MPG with partial-observation is (forcibly) first belief cycle, or FBC,
if the corresponding MPG with limited-observation is (forcibly) FAC.

9.1 FBC and Forcibly FBC MPGs

Our first observation is that FBC MPGs generalize the class of visible weight
games studied in [9]. An MPG with partial-observation is considered a visible
weights game if its weight function satisfies the condition that all σ-transitions
between any pair of observations have the same weight. We base some of our re-
sults for FBC and forcibly FBC games on lower bounds established for problems
on visible weights games.

Lemma 4. Let G be a visible weights MPG with partial-observation. Then G is
FBC.

We now turn to the decision problems we have been investigating throughout
the paper. Given the exponential blow-up in the construction of the game of
limited-observation, it is not surprising that there is a corresponding exponential
increase in the complexity of the class membership problem.

Theorem 11 (Class membership). LetG beanMPGwithpartial-observation.
Determining ifG is FBC is coNEXP-complete and determining ifG is forcibly FBC
is in EXPSPACE and NEXP-hard.

Somewhat surprisingly, for the winner determination problem we have an
EXP-time algorithm to match the EXP-hardness lower bound from visible weights
games. This is in contrast to the class membership problem in which an ex-
ponential increase in complexity occurs when moving from limited to partial-
observation.

Theorem 12 (Winner determination). Let G be a forcibly FBC MPG.
Determining if Eve wins G is EXP-complete.

Corollary 6. Let G be an FBC MPG. Determining if Eve wins G is EXP-
complete.
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