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Abstract. It is known that Metric Temporal Logic (MTL) is strictly
less expressive than the Monadic First-Order Logic of Order and Met-
ric (FO[<,+1]) in the pointwise semantics over bounded time domains
(i.e., timed words of bounded duration) [15]. In this paper, we present
an extension of MTL which has the same expressive power as FO[<,+1]
in both the pointwise and continuous semantics over bounded time do-
mains.

1 Introduction

One of the most prominent specification formalisms used in verification is Lin-
ear Temporal Logic (LTL), which is typically interpreted over the non-negative
integers or reals. A celebrated result of Kamp [9] states that, in either case, LTL
has precisely the same expressive power as the Monadic First-Order Logic of Or-
der (FO[<]). These logics, however, are inadequate to express specifications for
systems whose correct behaviour depends on quantitative timing requirements.
Over the last three decades, much work has therefore gone into lifting classi-
cal verification formalisms and results to the real-time setting. Metric Temporal
Logic (MTL), which extends LTL by constraining the temporal operators by time
intervals, was introduced by Koymans [10] in 1990 and has emerged as a central
real-time specification formalism.

MTL enjoys two main semantics, depending intuitively on whether atomic
formulas are interpreted as state predicates or as (instantaneous) events. In the
former, the system is assumed to be under observation at every instant in time,
leading to a ‘continuous’ semantics based on flows or signals, whereas in the
latter, observations of the system are taken to be (finite or infinite) sequences of
timestamped snapshots, leading to a ‘pointwise’ semantics based on timed words.
Timed words are the leading interpretation, for example, for systems modelled
as timed automata [1]. In both cases, the time domain is usually taken to be the
non-negative real numbers. Both semantics have been extensively studied; see,
e.g., [12] for a historical account.

Alongside these developments, researchers proposed the Monadic First-Order
Logic of Order and Metric (FO[<,+1]) as a natural quantitative extension of
� More extensive technical details as well as all proofs can be found in the full version
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FO[<]. Unfortunately, Hirshfeld and Rabinovich [4] showed that no ‘finitary’
extension of MTL—and a fortiori MTL itself—could have the same expressive
power as FO[<,+1] over the reals.1 Still, in the continuous semantics, MTL can
be made expressively complete for FO[<,+1] by extending the logic with an
infinite family of ‘counting modalities ’ [7] or considering only bounded time do-
mains [11,13]. Nonetheless, and rather surprisingly, MTL with counting modali-
ties remains strictly less expressive than FO[<,+1] over bounded time domains
in the pointwise semantics, i.e., over timed words of bounded duration, as we
will see in Section 3.

The main result of this paper is to show that MTL, equipped with both the
forwards and backwards temporal modalities ‘generalised Until’ (U) and ‘gen-
eralised Since’ (S), has precisely the same expressive power as FO[<,+1] over
bounded time domains in the pointwise semantics (and also, trivially, in the
continuous semantics). This extended version of Metric Temporal Logic, written
MTL[U,S], therefore yields a definitive real-time analogue of Kamp’s theorem
over bounded domains.

It is worth noting that MTL[U,S] satisfiability and model checking (against
timed automata) are decidable over bounded time domains, thanks to the decid-
ability of FO[<,+1] over such domains as established in [11,13]. Unfortunately,
FO[<,+1] has non-elementary complexity, whereas the time-bounded satisfia-
bility and model-checking problems for MTL are EXPSPACE-complete [11, 13].
However, it can easily be seen by inspecting the relevant constructions that the
complexity bounds for MTL carry over to our new logic MTL[U,S].

2 Preliminaries

2.1 Timed Words

A time sequence τ = τ1τ2 . . . τn is a non-empty finite sequence over non-negative
reals (called timestamps) that satisfies the requirements below (we denote the
length of τ by |τ |):
– Initialisation2: τ1 = 0
– Strict monotonicity: For all i, 1 ≤ i < |τ |, we have τi < τi+1.

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ =
σ1σ2 . . . σn is a non-empty finite word over Σ and τ is a time sequence of the
same length. We refer to each (σi, τi) as an event. In this sense, a timed word

1 Hirshfeld and Rabinovich’s result was only stated and proved for the continuous se-
mantics, but we believe that their approach would also carry through for the point-
wise semantics. In any case, using different techniques Prabhakar and D’Souza [15]
and Pandya and Shah [14] independently showed that MTL is strictly weaker than
FO[<,+1] in the pointwise semantics.

2 This requirement is natural in the present context as all the logics we consider in this
paper are translation invariant: two timed words are indistinguishable by formulas
(of these logics) if they only differ by a fixed delay.



140 H.-M. Ho

can be regarded as a sequence of events. We denote by |ρ| the number of events
in ρ. A position in ρ is a number i such that 1 ≤ i ≤ |ρ|. The duration of ρ is
defined as τ|ρ|. A T-timed word is a timed word all of whose timestamps are in
T, where T is either [0, N), for some N ∈ N, or R≥0.

Note that we are focussing on finite timed words. Our results carry over to
the case of (Zeno) infinite timed words as well, with some modifications.

2.2 Metric Logics

We first define a metric predicate logic FO[<,+1] and its pointwise interpreta-
tion. This logic will serve as a ‘yardstick’ of expressiveness. In the sequel, we
write ΣP = 2P for a set of monadic predicates P.

Definition 1. Given a set of monadic predicates P, the set of FO[<,+1] for-
mulas is generated by the grammar

ϑ ::= P (x) | x < x′ | d(x, x′) ∼ c | true | ϑ1 ∧ ϑ2 | ¬ϑ | ∃xϑ ,

where P ∈ P, x, x′ are variables, ∼ ∈ {=, �=, <,>,≤,≥} and c ∈ N.3

With each T-timed word ρ = (σ, τ) over ΣP we associate a structure Mρ. Its
universe Uρ is the finite subset {τi | 1 ≤ i ≤ |ρ|} of T. The order relation <
and monadic predicates in P are interpreted in the expected way. For example,
P (τi) holds in Mρ iff P ∈ σi. The binary distance predicate d(x, x′) ∼ c holds iff
|x − x′| ∼ c. The satisfaction relation is defined inductively as usual. We write
Mρ, t1, . . . , tn |= ϑ(x1, . . . , xn) (or ρ, t1, . . . , tn |= ϑ(x1, . . . , xn)) if t1, . . . , tn ∈ Uρ

and ϑ(t1, . . . , tn) holds in Mρ. We say that FO[<,+1] formulas ϑ1(x) and ϑ2(x)
are equivalent over T-timed words if for all T-timed words ρ and t ∈ Uρ,

ρ, t |= ϑ1(x) ⇐⇒ ρ, t |= ϑ2(x) .

Formulas of metric temporal logics are built from monadic predicates us-
ing Boolean connectives and modalities. A k-ary modality is defined by an
FO[<,+1] formula ϕ(x,X1, . . . , Xk) with a single free first-order variable x and
k free monadic predicates X1, . . . , Xk. For example, the MTL modality U(0,5) is
defined by

U(0,5)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) < 5 ∧X2(x

′)

∧ ∀x′′ (x < x′′ ∧ x′′ < x′ =⇒ X1(x
′′)
))

.

The MTL formula ϕ1 U(0,5) ϕ2 (using infix notation) is obtained by substituting
MTL formulas ϕ1, ϕ2 for X1, X2, respectively.

3 Note that whilst we still refer to the logic as FO[<,+1], we adopt here an equivalent
definition using a binary distance predicate d(x, x′) (as in [16]) in place of the usual
+1 function symbol.
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Definition 2. Given a set of monadic predicates P, the set of MTL formulas
is generated by the grammar

ϕ ::= P | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where P ∈ P and I ⊆ (0,∞) is an interval with endpoints in N ∪ {∞}.
The (future-only) fragment MTLfut is obtained by banning subformulas of the
form ϕ1 SI ϕ2. If I is not present as a subscript to a given modality then it
is assumed to be (0,∞). We sometimes use pseudo-arithmetic expressions to
denote intervals, e.g., ‘≥ 1’ denotes [1,∞) and ‘= 1’ denotes the singleton {1}.
We also employ the usual syntactic sugar, e.g., false ≡ ¬true, FIϕ ≡ true UI ϕ,
←
F Iϕ ≡ true SI ϕ, GIϕ ≡ ¬FI¬ϕ and XIϕ ≡ false UI ϕ, etc. For the sake
of completeness, we give a traditional inductive definition of the satisfaction
relation of MTL below.

Definition 3. The satisfaction relation (ρ, i) |= ϕ for an MTL formula ϕ, a
timed word ρ = (σ, τ) and a position i in ρ is defined as follows:

– (ρ, i) |= P iff P (τi) holds in Mρ

– (ρ, i) |= true
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ¬ϕ iff (ρ, i) �|= ϕ
– (ρ, i) |= ϕ1UIϕ2 iff there exists j, i < j ≤ |ρ| such that (ρ, j) |= ϕ2, τj−τi ∈ I,

and (ρ, k) |= ϕ1 for all k with i < k < j
– (ρ, i) |= ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that (ρ, j) |= ϕ2, τi−τj ∈ I

and (ρ, k) |= ϕ1 for all k with j < k < i.

Note that we adopt strict versions of temporal modalities, e.g., ϕ2 holds at i
does not imply that ϕ1 U ϕ2 holds at i. We write ρ |= ϕ if (ρ, 1) |= ϕ.

2.3 Relative Expressiveness

Let L,L′ be two metric logics. We say that L′ is expressively complete for L
over T-timed words if for any formula ϑ(x) ∈ L, there is an equivalent formula
ϕ(x) ∈ L′ over T-timed words.

3 Expressiveness

In this section, we present a sequence of successively more expressive extensions
of MTLfut over bounded timed words. Along the way we highlight the key fea-
tures that give rise to the differences in expressiveness. The necessity of a ‘new’
extension (such as the one in the next section) is justified by the fact that no
known extension can lead to expressive completeness.
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3.1 Definability of Time 0

Recall that MTLfut and FO[<,+1] have the same expressiveness over continuous
domains of the form [0, N) [11,13], a result that fails over [0, N)-timed words. To
account for this difference between the two semantics, observe that a distinctive
feature of the continuous interpretation of MTLfut is exploited in [11,13]: in any
[0, N)-flow, the formula F=(N−1)true holds in [0, 1) and nowhere else. One can
make use of conjunctions of similar formulas to determine which unit interval
the current instant is in. Unfortunately, this trick does not work for MTLfut
in the pointwise semantics. However, it can be achieved in MTL by using past
modalities. Let

ϕi,i+1 =
←
F [i,i+1)(¬

←
Ftrue)

and Φunit = {ϕi,i+1 | i ∈ N}. It is clear that ϕi,i+1 holds only in [i, i + 1) and
nowhere else. Denote by MTLfut[Φunit] the extension of MTLfut obtained by al-
lowing these formulas as subformulas. This very restrictive use of past modalities
strictly increases the expressiveness of MTLfut. Indeed, our main result depends
crucially on the use of these formulas.

Proposition 1. MTLfut[Φunit] is strictly more expressive than MTLfut over
[0, N)-timed words.

3.2 Past Modalities

The following proposition says that the conservative extension in the last sub-
section is not sufficient for obtaining expressive completeness: non-trivial nesting
of future modalities and past modalities provides more expressiveness.

Proposition 2. MTL is strictly more expressive than MTLfut[Φunit] over [0, N)-
timed words.

3.3 Counting Modalities

The modalityCn(x,X) asserts thatX holds at least atn points in the open interval
(x, x + 1). The modalities Cn for n ≥ 2 are called counting modalities. It is well-
known that these modalities are inexpressible in MTL over R≥0-flows [3]. For this
reason, they (or variants thereof) are often used to separate the expressiveness of
various metric logics (cf., e.g., [2, 14, 15]). For example, the FO[<,+1] formula

ϑpqr(x) = ∃y
(
x < y ∧ P (y) ∧ ∃y′

(
y < y′ ∧ d(y, y′) > 1 ∧ d(y, y′) < 2 ∧Q(y′)

∧ ∃y′′ (y′ < y′′ ∧ d(y, y′′) > 1 ∧ d(y, y′′) < 2 ∧R(y′′)
)))

has no equivalent in MTL over R≥0-timed words [14]. Indeed, it was shown re-
cently that in the continuous semantics, MTL with counting modalities and their
past versions (which we denote by MTL[{Cn,

←
Cn}∞n=2]) is expressively complete
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for FO[<,+1] [7]. However, counting modalities add no expressiveness to MTL
in the time-bounded setting. To see this, observe that the following formula is
equivalent to ϑpqr over [0, N)-timed words (we make use of formulas in Φunit

defined in Section 3.1)

F

( ∨
i∈[0,N−1]

(
P ∧ ϕi,i+1 ∧

(
F>1

(
Q ∧ F(R ∧ ϕi+1,i+2)

)

∨ F<2

(
R ∧ ϕi+2,i+3 ∧

←
F (Q ∧ ϕi+2,i+3)

)

∨ (
F>1(Q ∧ ϕi+1,i+2) ∧ F<2(R ∧ ϕi+2,i+3)

)))
)
.

The same idea can be generalised to handle counting modalities and their past
counterparts.

Proposition 3. MTL is expressively complete for MTL[{Cn,
←
Cn}∞n=2] over

[0, N)-timed words.

3.4 Non-Local Properties: One Reference Point

Proposition 3 shows that part of the expressiveness hierarchy over R≥0-timed
words collapses in the time-bounded setting. Nonetheless, MTL is still not ex-
pressive enough to capture all of FO[<,+1]. Recall that another feature of the
continuous interpretation of MTLfut used in the proof in [11, 13] is that F=kϕ
holds at t iff ϕ holds at t + k. Suppose that we want to specify the following
property over P = {P,Q} at the current time t1 for some integer constant a > 0:

– There is an event at time t2 > t1 + a where Q holds
– P holds at all events in (t1 + a, t2).

In the continuous semantics, by introducing a special monadic predicate Pε that
holds at all ‘no-event’ points in the flow, the property can easily be expressed as

ϕcont1 = F=a

(
(P ∨ Pε) UQ

)
.

See Figure 1 for an illustration. Filled boxes denote events at which ¬P ∧ Q
holds whereas hollow boxes denote events at which P ∧ ¬Q holds. The formula
ϕcont1 holds at t1 in the continuous semantics.

t1 t′ t1 + c t′ + c t1 + a t′ + a

d1 d2

Fig. 1. ϕcont1 holds at t1 in the continuous semantics
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In essence, when the current time is t1, the continuous interpretation of MTL
allows one to speak of properties ‘around’ t1+a regardless of whether there is an
event at t1+a. The same is not readily possible with the pointwise interpretation
of MTL if there is no event at t1 + a. To handle this issue within the pointwise
semantic framework, we introduce a relatively simple family of modalities B→

I

(‘Beginning’) and their past versions B←
I . They can be used to specify the first

events in given intervals. For example, the following modality asserts that X
holds at the first event in (a, b):

B→
(a,b)(x,X) = ∃x′

(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X(x′)

∧ �x′′ (x < x′′ ∧ x′′ < x′ ∧ d(x, x′′) > a
))

.

Now the property above can be defined as B→
(a,∞)

(
Q∨ (P UQ)

)
. We refer to the

extension of MTL with B→
I ,B←

I as MTL[B�].
The following proposition states that this extension is indeed non-trivial.

Proposition 4. MTL[B�] is strictly more expressive than MTL over [0, N)-
timed words.

3.5 Non-local Properties: Two Reference Points

Adding modalities B→
I ,B←

I to MTL allows one to specify properties with respect
to a distant time point even when there is no event at that point. However, the
following proposition shows that this is still not enough for expressive complete-
ness.

Proposition 5. FO[<,+1] is strictly more expressive than MTL[B�] over
[0, N)-timed words.

Proof. This is similar to a proof in [15, Section 7]. Given m ∈ N, we construct
two models as follows. Let

Gm = (∅, 0)(∅, 0.5

2m+ 3
)(∅, 1.5

2m+ 3
) . . . (∅, 1− 0.5

2m+ 3
)

(∅, 1 + 0.5

2m+ 2
)(∅, 1 + 1.5

2m+ 2
) . . . . . . (∅, 2− 0.5

2m+ 2
) .

Hm is constructed as Gm except that the event at time m+1.5
2m+3 is missing.

Figure 2 illustrates the models for the casem = 2 where hollow boxes represent
events at which no monadic predicate holds. It can be proved that no MTL[B�]
formula of modal depth ≤ m distinguishes Gm and Hm while the FO[<,+1]
formula

∃x
(
�y (y < x) ∧ ∃x′

(
d(x, x′) > 1 ∧ d(x, x′) < 2

∧ ∃x′′
(
x′ < x′′ ∧ �y′ (x′ < y′ ∧ y′ < x′′)

∧ �y′′
(
d(x′, y′′) < 1 ∧ d(x′′, y′′) > 1

)))
)
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Gm

Hm

0 1 2

Fig. 2. Models Gm and Hm for m = 2

distinguishes Gm and Hm for any m ∈ N. ��

One way to understand this phenomenon is to consider the arity of MTL
operators. Let the current time be t1. Suppose that we want to specify the
following property (a > c > 0):

– There is an event at t2 > t1 + a where Q holds
– P holds at all events in

(
t1 + c, t1 + c+ (t2 − t1 − a)

)
.

In the continuous semantics one can simply write

ϕcont2 =
(
F=c(P ∨ Pε)

)
U (F=aQ) .

Observe how this formula (effectively) talks about properties around two points:
t1 + c and t1 + a. In the same vein, the following formula distinguishes Gm and
Hm in the continuous semantics:

ϕcont3 = F(1,2)

(¬Pε ∧ (
←
F=1Pε) U (¬Pε)

)
.

In the next section, we propose new modalities that add this ability to MTL in
the pointwise semantics. We show later that this ability is exactly the missing
piece of expressiveness.

4 New Modalities

4.1 Generalised ‘Until’ and ‘Since’

We introduce a family of modalities which can be understood as generalisations
of the usual ‘Until’ and ‘Since’ modalities. Let I ⊆ (0,∞) be an interval with
endpoints in N ∪ {∞} and c ∈ N. The formula ϕ1 U

c
I ϕ2 (using infix notation),

when imposed at t1, asserts that

– There is an event at t2 where ϕ2 holds and t2 − t1 ∈ I

– ϕ1 holds at all events in
(
c, c+

(
t2 −

(
t1 + inf(I)

)))
.
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Formally, for I = (a, b) and a ≥ c ≥ 0, we define the generalised ‘Until’ modality
Uc
(a,b) by the following FO[<,+1] formula:

Uc
(a,b)(x,X1, X2) = ∃x′

(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x

′)

∧ ∀x′′ (x < x′′ ∧ d(x, x′′) > c ∧ x′′ < x′

∧ d(x′, x′′) > (a− c) =⇒ X1(x
′′)
))

.

Symmetrically, we define the generalised ‘Since’ modality Sc
(a,b) for I = (a, b)

and a ≥ c ≥ 0:

Sc
(a,b)(x,X1, X2) = ∃x′

(
x′ < x ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x

′)

∧ ∀x′′ (x′′ < x ∧ d(x, x′′) > c ∧ x′ < x′′

∧ d(x′, x′′) > (a− c) =⇒ X1(x
′′)
))

.

The modalities for I being a half-open interval or a closed interval can be defined
similarly. We will refer to the logic obtained by adding these modalities to MTL
as MTL[U,S]. Note that the usual ‘Until’ and ‘Since’ modalities can be written
in terms of generalised modalities. For instance,

ϕ1 U(a,b) ϕ2 = ϕ1 U
a
(a,b) ϕ2 ∧ ¬

(
true U0

(0,a] (¬ϕ1)
)
.

4.2 More Liberal Bounds

In the definition of modalities Uc
I and Sc

I in the last subsection, we stressed that
I ⊆ (0,∞) and inf(I) ≥ c ≥ 0. This is because more liberal usage of bounds are
indeed merely syntactic sugar. For instance, one may define

U10
(2,5)(x,X1, X2) = ∃x′

(
x < x′ ∧ d(x, x′) > 2 ∧ d(x, x′) < 5 ∧X2(x

′)

∧ ∀x′′ (x < x′′ ∧ d(x, x′′) > 10

∧ d(x′, x′′) < 8 =⇒ X1(x
′′)
))

,

but this is indeed equivalent to

F(2,5)ϕ2 ∧ ¬
(
(¬ϕ2) U

2
(10,13)

(¬ϕ1 ∧ ¬(
←
F=8ϕ2)

))

over [0, N)-timed words. In fact, we can even use c ∈ Z and I ⊆ (−∞,∞) for
free. For example, over [0, N)-timed words, ϕ1 U

−7
(5,10) ϕ2 is equivalent to

F(5,10)

(
ϕ2∧(ϕ1S

12
(5,10)true)

)∧
(
(falseU0

(5,10)ϕ2)∨
(
ϕ′U

(
(falseU0

(5,10)ϕ2)∧ϕ′))
)

where ϕ′ = ϕ1 S7
(0,5)

(
true ∧ ¬(

←
F=7¬ϕ1)

)
. Other cases can be handled with

similar ideas.
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We can now give an MTL[U,S] formula that distinguishes, in the pointwise
semantics, the models Gm and Hm in Section 3.5:

F(1,2)

(
true ∧ (false U−1

(0,∞) true)
)
.

Compare this with the formula ϕcont3 defined in Section 3.5, which distinguishes
Gm and Hm in the continuous semantics.

5 The Translation

We give a translation from an arbitrary FO[<,+1] formula with one free vari-
able into an equivalent MTL[U,S] formula (over [0, N)-timed words). Our proof
strategy is similar to that in [11]: we eliminate the metric by introducing ex-
tra predicates, convert to LTL, and then replace the new predicates by their
equivalent MTL[U,S] formulas.

5.1 Eliminating the Metric

We introduce fresh monadic predicates P = {Pi | P ∈ P, 0 ≤ i ≤ N − 1}
as in [11] and, additionally, Q = {Qi | 0 ≤ i ≤ N − 1}. Intuitively, Pi(x)
holds (for x ∈ [0, 1)) iff P ∈ P holds at time i + x in the corresponding [0, N)-
timed word, and Qi(x) holds iff there is an event at time i + x in the cor-
responding [0, N)-timed word, regardless of whether any P ∈ P holds there.
Let ϕevent = ∀x

(∨
i∈[0,N−1] Qi(x)

)
∧ ∀x

(∧
i∈[0,N−1]

(
Pi(x) =⇒ Qi(x)

))
and

ϕinit = ∃x (�x′ (x′ < x) ∧Q0(x)
)
. There is an obvious ‘stacking’ bijection (indi-

cated by overlining) between [0, N)-timed words over ΣP and [0, 1)-timed words
over ΣP∪Q satisfying ϕevent ∧ ϕinit.

Let ϑ(x) be an FO[<,+1] formula with one free variable and in which each
quantifier uses a fresh new variable. Without loss of generality, we assume that
ϑ(x) contains only existential quantifiers (this can be achieved by syntactic
rewriting). Replace the formula by
(
Q0(x) ∧ ϑ[x/x]

) ∨ (
Q1(x) ∧ ϑ[x+ 1/x]

) ∨ . . . ∨ (
QN−1(x) ∧ ϑ[x+ (N − 1)/x]

)

where ϑ[e/x] denotes the formula obtained by substituting all free occurrences of
x in ϑ by (an expression) e. Then, similarly, recursively replace every subformula
∃x′ θ by

∃x′
((

Q0(x
′) ∧ θ[x′/x′]

) ∨ . . . ∨ (
QN−1(x

′) ∧ θ[x′ + (N − 1)/x′]
))

.

Note that we do not actually have the +1 function in our structures; it only
serves as annotation here and will be removed later, e.g., x′ + k means that
Qk(x

′) holds. We then carry out the following syntactic substitutions:

– For each inequality of the form x1 + k1 < x2 + k2, replace it with
• x1 < x2 if k1 = k2
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• true if k1 < k2
• ¬true if k1 > k2

– For each distance formula, e.g., d(x1 + k1, x2 + k2) ≤ 2, replace it with
• true if |k1 − k2| ≤ 1
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x2 < x1) if k2 − k1 = 2
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x1 < x2) if k1 − k2 = 2
• ¬true if |k1 − k2| > 2

– Replace terms of the form P (x1 + k) with Pk(x1).

This gives a non-metric first-order formula ϑ(x) over P∪Q. Denote by frac(t)
the fractional part of a non-negative real t. It is not hard to see that for each
[0, N)-timed word ρ = (σ, τ) over ΣP and its stacked counterpart ρ, the following
holds:

– ρ, t |= ϑ(x) implies ρ, t |= ϑ(x) where t = frac(t)
– ρ, t |= ϑ(x) implies there exists t ∈ Uρ with frac(t) = t s.t. ρ, t |= ϑ(x).

Moreover, if ρ, t |= ϑ(x), then the integral part of t indicates which clause in
ϑ(x) is satisfied when x is substituted with t = frac(t), and vice versa.

By Kamp’s theorem [9], ϑ(x) is equivalent to an LTL[U, S] formula ϕ of the
following form:

(Q0 ∧ ϕ0) ∨ (Q1 ∧ ϕ1) ∨ . . . ∨ (QN−1 ∧ ϕN−1) .

5.2 From Non-Metric to Metric

We now construct an MTL[U,S] formula that is equivalent to ϑ(x) over [0, N)-
timed words. Note that we make heavy use of the formulas in Φunit defined in
Section 3.1.

Proposition 6. Let ψ be a subformula of ϕi for some i ∈ [0, N − 1]. There
is an MTL[U,S] formula ψ such that for any [0, N)-timed word ρ, t ∈ ρ and
frac(t) = t ∈ ρ, we have

ρ, t |= ψ ⇐⇒ ρ, t |= ψ .

Proof. The MTL[U,S] formula ψ is constructed inductively as follows:

– Base step. Consider the following cases:
• ψ = Pj : Let

ψ = (ϕ0,1 ∧ F=jP )∨ . . .∨ (ϕj,j+1 ∧P )∨ . . .∨ (ϕN−1,N ∧
←
F=((N−1)−j)P ) .

• ψ = Qj : Similarly we let

ψ = (ϕ0,1∧F=jtrue)∨. . .∨(ϕj,j+1∧true)∨. . .∨(ϕN−1,N ∧
←
F=((N−1)−j)true) .
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– Induction step. The case for boolean operations is trivial and hence omitted.
• ψ = ψ1 U ψ2: By IH we have ψ1 and ψ2. Let

ψj,k,l = ψ1 U
k
(j,j+1) (ψ2 ∧ ϕl,l+1) .

The desired formula is

ψ =
∨

i∈[0,N−1]

⎛
⎜⎜⎝ϕi,i+1 ∧

∨
j∈[−i,...,(N−1)−i]

l=i+j

⎛
⎝ ∧

k∈[−i,...,(N−1)−i]

ψj,k,l

⎞
⎠

⎞
⎟⎟⎠ .

• ψ = ψ1 S ψ2: This is symmetric to the case for ψ1 U ψ2.

The claim holds by a straightforward induction on the structure of ψ and ψ.
��

Construct corresponding formulas ϕi for each ϕi using the proposition above.
Substitute them into ϕ and replace all Qi by ϕi,i+1 to obtain our final formula
ϕ. We claim that it is equivalent to ϑ(x) over [0, N)-timed words.

Proposition 7. For any [0, N)-timed words ρ and t ∈ Uρ, we have

ρ, t |= ϕ(x) ⇐⇒ ρ, t |= ϑ(x) .

Proof. Follows directly from Section 5.1 and Proposition 6. ��

We are now ready to state our main result.

Theorem 1. MTL[U,S] is expressively complete for FO[<,+1] over
[0, N)-timed words.

6 Conclusion

Our main result is that over bounded timed words, MTL extended with our new
modalities ‘generalised until’ and ‘generalised since’ is expressively complete for
FO[<,+1]. Along the way we obtain a strict hierarchy of metric temporal logics,
based on their expressiveness over bounded timed words:

MTLfut � MTLfut[Φunit] � MTL � MTL[B�] � MTL[U,S] = FO[<,+1].

We are currently working on adapting the result to the case of R≥0-timed words.
This might require a separation theorem (in the style of [8]) that works in the
pointwise semantics [6].



150 H.-M. Ho

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer,
Heidelberg (2005)

3. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967,
pp. 211–220. Springer, Heidelberg (2006)

4. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. Logical Methods in Computer Science 3(1) (2007)

5. Ho, H.M., Ouaknine, J., Worrell, J.: On the expressiveness of metric temporal logic
over bounded timed words (2014),
http://www.cs.ox.ac.uk/people/hsi-ming.ho/exp-full.pdf, full version

6. Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Heidelberg (2014),
http://www.cs.ox.ac.uk/people/hsi-ming.ho/monitoring-rv.pdf

7. Hunter, P.: When is metric temporal logic expressively complete? In: Proceedings
of CSL 2013. LIPIcs, vol. 23, pp. 380–394. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2013)

8. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness of metric temporal
logic. In: Proceedings of LICS 2013, pp. 349–357. IEEE Computer Society Press
(2013)

9. Kamp, J.: Tense logic and the theory of linear order. Ph.D. thesis, University of
California, Los Angeles (1968)

10. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

11. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009)

12. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008)

13. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)

14. Pandya, P.K., Shah, S.S.: On expressive powers of timed logics: Comparing bound-
edness, non-punctuality, and deterministic freezing. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011)

15. Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators.
In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336.
Springer, Heidelberg (2006)

16. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994
and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)

http://www.cs.ox.ac.uk/people/hsi-ming.ho/exp-full.pdf
http://www.cs.ox.ac.uk/people/hsi-ming.ho/monitoring-rv.pdf

	On the Expressiveness of Metric Temporal Logic over Bounded Timed Words
	1 Introduction
	2 Preliminaries
	2.1 Timed Words
	2.2 Metric Logics
	2.3 Relative Expressiveness

	3 Expressiveness
	3.1 Definability of Time 0
	3.2 Past Modalities
	3.3 Counting Modalities
	3.4 Non-Local Properties: One Reference Point
	3.5 Non-local Properties: Two Reference Points

	4 New Modalities
	4.1 Generalised ‘Until’ and ‘Since’
	4.2 More Liberal Bounds

	5 The Translation
	5.1 Eliminating the Metric
	5.2 From Non-Metric to Metric

	6 Conclusion
	References




