
Joël Ouaknine Igor Potapov
James Worrell (Eds.)

 123

LN
CS

 8
76

2

8th International Workshop, RP 2014
Oxford, UK, September 22–24, 2014
Proceedings

Reachability Problems

Lecture Notes in Computer Science 8762
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Joël Ouaknine Igor Potapov
James Worrell (Eds.)

Reachability Problems

8th International Workshop, RP 2014
Oxford, UK, September 22-24, 2014
Proceedings

13

Volume Editors

Joël Ouaknine
University of Oxford
Department of Computer Science
Oxford, UK
E-mail: joel@cs.ox.ac.uk

Igor Potapov
University of Liverpool
Department of Computer Science
Liverpool, UK
E-mail: potapov@liverpool.ac.uk

James Worrell
University of Oxford
Department of Computer Science
Oxford, UK
E-mail: jbw@cs.ox.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-11438-5 e-ISBN 978-3-319-11439-2
DOI 10.1007/978-3-319-11439-2
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014948071

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 8th International Workshop
on Reachability Problems (RP 2014) held during September 22–24, 2014, at the
Department of Computer Science, University of Oxford, UK.

RP 2014 was the eighth in the series of workshops, following successful meet-
ings at the Uppsala University, Sweden, in 2013, University of Bordeaux, France,
in 2012, the University of Genoa, Italy, in 2011, Masaryk University of Brno,
Czech Republic, in 2010, Ecole Polytechnique, France, in 2009, at the University
of Liverpool, UK, in 2008, and at Turku University, Finland, in 2007.

The aim of the workshop is to bring together scholars from diverse fields
with a shared interested in reachability problems. Reachability is a fundamen-
tal computational problem that appears in many different contexts: concurrent
systems, computational models such as cellular automata and Petri nets, de-
cision procedures for logical theories, program analysis, discrete and continu-
ous systems, time-critical systems, hybrid systems, rewriting systems, algebraic
structures (groups, semigroups and rings), deterministic or non-deterministic it-
erative maps, probabilistic and parametric systems, and open systems modelled
as games.

Typically, for a fixed system description given in some form (rewriting rules,
transformations by computable functions, systems of equations, logical formulas,
etc.) a reachability problem consists in checking whether a given set of target
states can be reached starting from a fixed set of initial states. The set of target
states can be represented explicitly or via some implicit representation (e.g., a
system of equations, a set of minimal elements with respect to some ordering
on the states). Sophisticated quantitative and qualitative properties can often
be reduced to basic reachability questions. Decidability and complexity bound-
aries, algorithmic solutions, and efficient heuristics are all important aspects to
be considered in this context. Algorithmic solutions are often based on differ-
ent combinations of exploration strategies, symbolic manipulations of sets of
states, decomposition properties, reduction to optimisation problems and logical
decision procedures. Such algorithms also benefit from approximations, abstrac-
tions, accelerations, and extrapolation heuristics. Ad hoc solutions as well as
solutions based on general-purpose constraint solvers and deduction engines are
often combined in order to balance efficiency and flexibility.

The purpose of the conference is to promote the exploration of new ap-
proaches for the modelling and analysis of computational processes by combin-
ing mathematical, algorithmic, and computational techniques. Topics of interest
include (but are not limited to): reachability for infinite state systems; rewrit-
ing systems; reachability analysis in counter/timed/cellular/communicating au-
tomata; Petri- nets; computational aspects of semigroups, groups, and rings;
reachability in dynamical and hybrid systems; frontiers between decidable and

VI Preface

undecidable reachability problems; complexity and decidability aspects; pre-
dictability in iterative maps and new computational paradigms. All these aspects
were discussed in the presentations of the eighth edition of the RP workshop.
The proceedings of the previous editions of the workshop appeared in the fol-
lowing volumes:

Mika Hirvensalo, Vesa Halava, Igor Potapov, Jarkko Kari (Eds.): Proceedings of
the Satellite Workshops of DLT 2007. TUCS General Publication No 45, June
2007. ISBN: 978-952-12-1921-4.

Vesa Halava and Igor Potapov (Eds.): Proceedings of the Second Workshop on
Reachability Problems in Computational Models (RP 2008). Electronic Notes in
Theoretical Computer Science. Volume 223, Pages 1-264 (26 December 2008).

Olivier Bournez and Igor Potapov (Eds.): Reachability Problems, Third Interna-
tional Workshop, RP 2009, Palaiseau, France, September 23–25, 2009, Lecture
Notes in Computer Science, 5797, Springer 2009.

Antonin Kucera and Igor Potapov (Eds.): Reachability Problems, 4th Interna-
tional Workshop, RP 2010, Brno, Czech Republic, August 28–29, 2010, Lecture
Notes in Computer Science, 6227, Springer 2010.

Giorgio Delzanno, Igor Potapov (Eds.): Reachability Problems, 5th International
Workshop, RP 2011, Genoa, Italy, September 28–30, 2011, Lecture Notes in
Computer Science, 6945, Springer 2011.

Alain Finkel, Jerome Leroux, Igor Potapov (Eds.): Reachability Problems, 6th
International Workshop, RP 2012, Bordeaux, France, September 17-19, 2012.
Lecture Notes in Computer Science 7550, Springer 2012.

Parosh Aziz Abdulla, Igor Potapov (Eds.): Reachability Problems, 7th Interna-
tional Workshop, RP 2013, Uppsala, Sweden, September 24-26, 2013. Lecture
Notes in Computer Science 8169, Springer 2013.

The four keynote speakers at the 2014 conference were:

– Byron Cook, UCL and Microsoft Research, UK.
– Kousha Etessami, University of Edinburgh, UK.
– Anca Muscholl, LaBRI, University of Bordeaux, France.
– Sylvain Schmitz, LSV and ENS-Cachan, France.

There were 25 submissions. Each submission was reviewed by at least three
Program Committee members. The full list of the members of the Program
Committee and the list of external reviewers can be found on the next two pages.
The Program Committee is grateful for the highly appreciated and high-quality
work produced by these external reviewers. Based on these reviews, the Program

Preface VII

Committee decided to accept 17 papers, in addition to the four invited talks.
The workshop also provided the opportunity to researchers to give informal
presentations that are prepared very shortly before the event and inform the
participants about current research and work in progress.

We gratefully acknowledge the organization team for their help. In particular
we wish to thank Andrea Pilot, Renate Henison, Jordan Summers-Young and
Elizabeth Walsh.

It is also a great pleasure to acknowledge the team of the EasyChair system,
and the fine cooperation with the Lecture Notes in Computer Science team
of Springer, which made the production of this volume possible in time for the
conference. Finally, we thank all the authors for their high-quality contributions,
and the participants for making this edition of RP 2014 a success.

September 2014 Joël Ouaknine
Igor Potapov

James Worrell

Organization

Program Committee

Marius Bozga Verimag/CNRS, France
Thomas Brihaye University of Mons, Belgium
Véronique Bruyère University of Mons, Belgium
Laurent Doyen LSV, ENS Cachan and CNRS, France
John Fearnley University of Liverpool, UK
Gilles Geeraerts Université Libre de Bruxelles, Belgium
Kim Guldstrand Larsen Aalborg University, Denmark
Stefan Göller University of Bremen, Germany
Martin Lange University of Kassel, Germany
Ranko Lazic University of Warwick, UK
Rupak Majumdar MPI-SWS, Germany
Nicolas Markey LSV, CNRS and ENS Cachan, France
Madhavan Mukund Chennai Mathematical Institute, India
Andrzej Murawski University of Warwick, UK
Joel Ouaknine Oxford University, UK
Paritosh Pandya TIFR, India
Igor Potapov The University of Liverpool, UK
Alexander Rabinovich Tel Aviv University, Israel
Tayssir Touili LIAFA, CNRS and University Paris Diderot,

France
Thomas Wahl Northeastern University, USA
James Worrell Oxford University, UK
Lijun Zhang DTU, Denmark

Additional Reviewers

André, Étienne
Bertrand, Nathalie
Blondin, Michael
Boigelot, Bernard
Bonnet, Remi
Chistikov, Dmitry
Devillers, Raymond
Donze, Alexandre
Forejt, Vojtech

Fribourg, Laurent
Hofman, Piotr
Praveen, M.
Reichert, Julien
Rezine, Ahmed
Song, Lei
Steffen, Martin
Turrini, Andrea
Velner, Yaron

Abstracts of Invited Talks

Algorithms for

Branching Markov Decision Processes

Kousha Etessami

School of Informatics
University of Edinburgh

kousha@inf.ed.ac.uk

Multi-type branching processes (BPs) are classic stochastic processes with appli-
cations in many areas, including biology and physics. A BP models the stochastic
evolution of a population of entities of distinct types. In each generation, every
entity of each type, t, produces a set of entities of various types in the next gen-
eration according to a given probability distribution on offsprings for the type
t. In a Branching Markov Decision Process (BMDP), there is also a controller
who can take actions that affect the probability distribution of the offsprings for
each entity of each type. For both BPs and BMDPs, the state space consists of
all possible populations, given by the number of entities of each type, so there
are infinitely many states.

In recent years there has been a body of research aimed at studying the com-
putational complexity of key analysis problems associated with MDP extensions
(and, more generally stochastic game extensions) of important classes of finitely-
presented but (countably) infinite-state stochastic processes, including BMDPs,
and closely related models, such as stochastic context-free grammars extended
with a controller. A central analysis problem for all of these models, which forms
the key to a number of other analyses, is the problem of computing their op-
timal termination (extinction) probability. In the setting of BMDPs, these are
the maximum (minimum) probabilities, over all control strategies (or policies),
starting from a single entity of a given type, that the process will eventually
reach extinction (i.e., the state where no entities have survived). From these
quantities, one can compute the optimum probability for any initial population,
as well as other quantities of interest.

One can write Bellman optimality equations for the optimal extinction prob-
abilities of BMDPs, and for a number of related important infinite-state MDP
models. These Bellman equations are multivariate systems of monotone proba-
bilistic max (or min) polynomial equations, which we call max/minPPSs. They
have the form xi = Pi(x1, . . . , xn), i = 1, . . . , n, where each Pi(x) ≡ maxj qi,j(x)
(respectively Pi(x) ≡ minj qi,j(x)) is the max (min) over a finite number of prob-
abilistic polynomials, qi,j(x). A probabilistic polynomial, q(x), is a multi-variate
polynomial where the monomial coefficients and constant term of q(x) are all
non-negative and sum to ≤ 1. The least fixed point (LFP) solution of such Bell-
man equations, corresponding to a given BMDP, captures its vector of optimal
extinction probabilities, starting with one object of each type.

This talk will survey algorithms for, and discuss the complexity of, some key
analysis problems for BMDPs. In particular, I will discuss recent joint work with

XIV K. Etessami

Alistair Stewart and Mihalis Yannakakis ([2, 1]), which forms part of Alistair
Stewart’s Ph.D. thesis, in which we have obtained polynomial time algorithms
for computing, to within arbitrary desired precision, the (optimal) extinction
probability values for BPs and BMDPs, by computing the LFP solution of the
corresponding max/min polynomial Bellman equations. Our algorithms com-
bine generalizations of Newton’s method with other techniques, including linear
programming.

References

1. Etessami, K., Stewart, A., Yannakakis, M.: Polynomial time algorithms for branch-
ing Markov decision processes and probabilistic Min(Max) polynomial Bellman
equations. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 314–326. Springer, Heidelberg (2012)

2. Etessami, K., Stewart, A., Yannakakis, M.: Polynomial-time algorithms for multi-
type branching processes and stochastic context-free grammars. In: Proc. 44th ACM
Symposium on Theory of Computing (STOC), pp. 579–588 (2012), Full version
available at ArXiv:1201.2374

Walking with Data - Where Does it Stop?

Anca Muscholl

LaBRI, University of Bordeaux, France

Data formalisms apply to numerous settings where the reasoning involves explicit
comparisons of object identities. Such formalisms are usually based on automata
or logics that have the ability to compare data from an unbounded domain. In the
realm of databases, data may take the meaning of attribute values. In program
verification, data may represent identities of processes, communication channels,
pointers or any other resource that can be of interest in the analysis of programs
with dynamic objects.

This talk will survey several models of logics and automata with data and
analyse their limits in decidability regarding fundamental questions such as non-
emptiness (satisfiability) and inclusion (containment). We will focuss on recently
considered data formalisms such as data-walking automata and Datalog, that
are promising models regarding the above problems.

References

1. Abiteboul, S., Bourhis, P., Muscholl, A., Wu, Z.: Recursive queries on trees and
data trees. In: Proc. of ICDT 2013, pp. 93–104. ACM (2013)

2. Alur, R., Cerný, P., Weinstein, S.: Algorithmic analysis of array-accessing pro-
grams. ACM Trans. Comput. Log. 13(3), 27 (2012)

3. Björklund, H., Schwentick, T.: On notions of regularity for data languages. Theor.
Comput. Sci. 411(4-5), 702–715 (2010)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)

5. Bojańczyk, M., Lasota, S.: An extension of data automata that captures XPath.
Logical Methods in Computer Science 8(1) (2012)

6. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3) (2009)

7. David, C., Gheerbrant, A., Libkin, L., Martens, W.: Containment of pattern-based
queries over data trees. In: Proc. of ICDT 2013, pp. 210–212. ACM (2013)

8. Figueira, D.: Alternating register automata on finite words and trees. Logical Meth-
ods in Computer Science 8(1) (2012)

9. Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath.
In: Proc. of STACS 2011. LIPIcs, pp. 93–104. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2011)

10. Grumberg, O., Kupferman, O., Sheinvald, S.: An automata-theoretic approach
to reasoning about parameterized systems and specifications. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 397–411. Springer, Heidelberg
(2013)

11. Kaminski, M., Francez, N.: Finite memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

XVI A. Muscholl

12. Kara, A., Schwentick, T., Tan, T.: Feasible automata for two-variable logic with
successor on data words. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 351–362. Springer, Heidelberg (2012)

13. Manuel, A., Muscholl, A., Puppis, G.: Walking on data words. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 64–75. Springer, Heidelberg
(2013)

14. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 15(3), 403–435 (2004)

15. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

16. Tan, T.: Extending two-variable logic on data trees with order on data values and
its automata. ACM Trans. Comput. Log. 15(1), 39 (2014)

17. Tzevelekos, N.: Fresh-register automata. In: Proc. of ACM SIGPLAN-SIGACT
Symp. on Principles of Programming Languages (POPL), pp. 295–306 (2011)

Complexity Bounds for Ordinal-Based

Termination�

Sylvain Schmitz

LSV, ENS Cachan & CNRS & INRIA, France

Abstract. ‘What more than its truth do we know if we have a proof
of a theorem in a given formal system?’ We examine Kreisel’s question
in the particular context of program termination proofs, with an eye to
deriving complexity bounds on program running times.

Our main tool for this are length function theorems, which provide
complexity bounds on the use of well quasi orders. We illustrate how
to prove such theorems in the simple yet until now untreated case of
ordinals. We show how to apply this new theorem to derive complex-
ity bounds on programs when they are proven to terminate thanks to a
ranking function into some ordinal.

* Work funded in part by the ANR grant 11-BS02-001-01 REACHARD.

On the Subtle Interaction Between Reachability

and Liveness

Byron Cook

Microsoft Research, Cambridge, UK

Abstract. One of the key difficulties of proving program termination
and liveness of systems is managing the subtle interplay between the
finding of a termination argument and the finding of the arguments sup-
porting invariant. In this talk I will discuss some mechanisms that we
have used to facilitate better cooperation between these two types of
reasoning in tools, both for software as well as biological models.

Table of Contents

Complexity Bounds for Ordinal-Based Termination (Invited Talk) 1
Sylvain Schmitz

On The Complexity of Bounded Time Reachability for Piecewise Affine
Systems . 20

Hugo Bazille, Olivier Bournez, Walid Gomaa, and Amaury Pouly

Reachability and Mortality Problems for Restricted Hierarchical
Piecewise Constant Derivatives . 32

Paul C. Bell, Shang Chen, and Lisa Jackson

Parameterized Verification of Communicating Automata under Context
Bounds . 45

Benedikt Bollig, Paul Gastin, and Jana Schubert

Regular Strategies in Pushdown Reachability Games 58
Arnaud Carayol and Matthew Hague

Parameterized Verification of Graph Transformation Systems with
Whole Neighbourhood Operations . 72

Giorgio Delzanno and Jan Stückrath

Equivalence Between Model-Checking Flat Counter Systems and
Presburger Arithmetic . 85

Stéphane Demri, Amit Kumar Dhar, and Arnaud Sangnier

Synthesising Succinct Strategies in Safety and Reachability Games 98
Gilles Geeraerts, Joël Goossens, and Amélie Stainer

Integer Vector Addition Systems with States . 112
Christoph Haase and Simon Halfon

Reachability in MDPs: Refining Convergence of Value Iteration 125
Serge Haddad and Benjamin Monmege

On the Expressiveness of Metric Temporal Logic over Bounded Timed
Words . 138

Hsi-Ming Ho

Trace Inclusion for One-Counter Nets Revisited . 151
Piotr Hofman and Patrick Totzke

XX Table of Contents

Mean-Payoff Games with Partial-Observation (Extended Abstract) 163
Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin

Parameter Synthesis for Probabilistic Timed Automata Using
Stochastic Game Abstractions . 176

Aleksandra Jovanović and Marta Kwiatkowska

On Functions Weakly Computable by Petri Nets and Vector Addition
Systems . 190

Jerome Leroux and Philippe Schnoebelen

Generalized Craig Interpolation for Stochastic Satisfiability Modulo
Theory Problems . 203

Ahmed Mahdi and Martin Fränzle

Transformations for Compositional Verification of
Assumption-Commitment Properties . 216

Ahmed Mahdi, Bernd Westphal, and Martin Fränzle

Compositional Reachability in Petri Nets . 230
Julian Rathke, Pawe�l Sobociński, and Owen Stephens

Author Index . 245

Complexity Bounds

for Ordinal-Based Termination�

(Invited Talk)

Sylvain Schmitz

LSV, ENS Cachan & CNRS & INRIA, France

Abstract. ‘What more than its truth do we know if we have a proof
of a theorem in a given formal system?’ We examine Kreisel’s question
in the particular context of program termination proofs, with an eye to
deriving complexity bounds on program running times.

Our main tool for this are length function theorems, which provide
complexity bounds on the use of well quasi orders. We illustrate how
to prove such theorems in the simple yet until now untreated case of
ordinals. We show how to apply this new theorem to derive complexity
bounds on programs when they are proven to terminate thanks to a
ranking function into some ordinal.

1998 ACM Subject Classification. F.2.0 Analysis of Algorithms and
Problem Complexity; F.3.1 Logics and Meanings of Programs

Keywords: Fast-growing complexity, length function theorem, Ramsey-
based termination, ranking function, well quasi order.

1 Introduction

Whenever we prove the termination of a program, we might also expect to gain
some information on its complexity. The jump from termination to complexity
analysis is however often involved. The question has already been studied for
many termination techniques, e.g. termination orderings [21, 38, 39, 9, 25], poly-
nomial interpretations [7], dependency pairs [20], size-change abstractions [5, 13],
abstract interpretation [19], or ranking functions [2] to cite a few.

The purpose of this paper is to present the complexity bounds one can sim-
ilarly derive from termination proofs relying on well quasi orders (wqo). There
are already some accessible introductions to the subject [33, 34], with applica-
tions to algorithms for so-called ‘well-structured systems.’ Our emphasis here
is however on the particular case of well orders, i.e. of ranking functions into
ordinal numbers. Although this is arguably the oldest and best-understood ter-
mination proof technique, which can be tracked back for instance to works by
Turing [36] or Floyd [18], deriving complexity bounds for well orders has only
been considered in restricted cases in the wqo literature [1]. As we shall see, by

� Work funded in part by the ANR grant 11-BS02-001-01 ReacHard.

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 1–19, 2014.
c© Springer International Publishing Switzerland 2014

2 S. Schmitz

revisiting ideas by Buchholz, Cichoń, and Weiermann [10, 8] and the framework
of [32], the case of well orders turns out to be fairly simple, and provides an
introduction to the definitions and techniques employed for more complex wqos.

Contents. After setting the stage in Sec. 2 by recalling the definitions of well quasi
orders, ranking functions, and order types, we work out the details of the proof
of a length function theorem for ordinals below ε0 in Sec. 3. Such combinatorial
statements provide bounds on the length of so-called bad sequences of elements
taken from a wqo—i.e. of descending sequences in the case of a well-order—, and
thus on the running time of programs proved to terminate using the same wqos.

More precisely, we first recall in Sec. 3.1 the main notions employed in the
proofs of such theorems in [32, 33], and apply them to the ordinal case in Sec. 3.3.
This yields a new length function theorem, this time for ordinals (Thm. 3.3). As
far as we know, this is an original contribution, which relies on ideas developed
by Cichoń and others in the 1990’s [10, 8] on the use of ordinal norms for sub-
structural hierarchies (recalled in Sec. 3.2). Unlike the length function theorems
for other wqos found in the literature [28, 12, 38, 11, 17, 32, 33, 1], Thm. 3.3
does not just provide an upper bound on the maximal length of bad sequences,
but offers instead an exact explicit formulation for such lengths using Cichoń’s
hierarchy of functions.

Those bounds are often more precise than actually needed, and we show in
Sec. 4 how to classify them into suitable fast-growing complexity classes [31]. We
also zoom in on the bounds for lexicographic ranking functions in Sec. 5, and
relate them to the bounds obtained in [17] for the Ramsey-based termination
technique of Podelski and Rybalchenko [30].

2 Well Quasi Orders and Termination

In terms of operational semantics, a termination proof establishes that the re-
lation between successive program configurations is well founded. Rather than
proving well foundedness from first principles, it is much easier to rely on exist-
ing well founded relations, whether we are attempting to prove termination with
pen and paper or using an automatic tool. Well quasi orders and well orders
are in this regard very well studied and well behaved classes of well founded
relations.

2.1 Well Quasi Orders

A quasi order (qo) 〈A,≤〉 consists of a support set A along with a transitive
reflexive relation ≤ ⊆ A× A. We call a finite or infinite sequence x0, x1, x2, . . .
over A good if there exist two indices i < j such that xi ≤ xj , and bad otherwise.

Definition 2.1. A well quasi order (wqo) is a qo 〈A,≤〉 such that any infinite
sequence x0, x1, x2, . . . of elements over A is good. Equivalently, any bad sequence
over A is finite.

Complexity Bounds for Ordinal-Based Termination 3

There are many equivalent definitions for wqos [see e.g. 33, Chap. 1]. Notably,
〈A,≤〉 is a wqo if and only if

1. ≤ is well-founded, i.e. there does not exist any infinite decreasing sequence

x0 > x1 > x2 > · · · of elements in A, where <
def
= ≤ \ ≥, and

2. there are no infinite antichains over A, i.e. infinite sets of mutually incom-
parable elements for ≤.

Well (Partial) Orders. A wqo where ≤ is antisymmetric is called a well partial

order (wpo). Note that quotienting a wqo by the equivalence ≡ def
= ≤ ∩ ≥, i.e.

equating elements x and y whenever x ≤ y and y ≤ x, yields a wpo.
A wpo 〈A,≤〉 where ≤ is linear (aka total), is a well order (wo). Because a

wo has antichains of cardinal at most 1, this coincides with the usual definition
as a well-founded linear order. Finally, any linearisation of a wpo 〈A,≤〉, i.e.
any linear order 	 ⊇ ≤ defines a wo 〈A,	〉. One can think of the linearisation
process as one of ‘orienting’ pairs of incomparable elements; such a linearisation
always exists thanks to the order-extension principle.

Examples. For a basic example, consider any finite set Q along with the equality
relation, which is a wqo 〈Q,=〉 (even a wpo) by the pigeonhole principle. As
explained above, any wo is a wqo, which provides us with another basic example:
the set of natural numbers along with its natural ordering 〈N,≤〉.

Many more examples can be constructed using algebraic operations: for in-
stance, if 〈A,≤A〉 and 〈B,≤B〉 are wqos (resp. wpos), then so is their Cartesian
product 〈A×B,≤×〉, where (x, y) ≤× (x′, y′) if and only if x ≤A x′ and y ≤B y′

is the product ordering; in the case of 〈Nd,≤×〉 this result is also known as Dick-
son’s Lemma. Some further popular examples of operations that preserve wqos
include the set of finite sequences over A with subword embedding 〈A∗,≤∗〉 (a
result better known as Higman’s Lemma), finite trees labelled by A with the
homeomorphic embedding 〈T (A),≤T 〉 (aka Kruskal’s Tree Theorem), and finite
graphs labelled by A with the minor ordering 〈G(A),≤minor〉 (aka Robertson
and Seymour’s Graph Minor Theorem).

Turning to well orders, an operation that preserves wos is the lexicographic
product 〈A ×B,≤lex〉 where (x, y) ≤lex (x′, y′) if and only if x <A x′, or x = x′

and y ≤B y′. This is typically employed in d-tuples of natural numbers ordered
lexicographically 〈Nd,≤lex〉: observe that this is a linearisation of 〈Nd,≤×〉. An-
other classical well order employed in termination proofs is the multiset order
〈M(A),≤mset〉 of Dershowitz and Manna [15]. There, M(A) denotes the set of
finite multisets over the wo 〈A,≤〉, i.e. of functions m:A → N with finitely many
x in A such that m(x) > 0, and m ≤mset m′ if and only if for all x in A, if
m(x) > m′(x), then there exists y >A x such that m(y) < m′(y) [see also 23].

2.2 Termination

We illustrate the main ideas in this paper using a very simple program, given in
pseudo-code in Fig. 1a. Formally, we see the operational semantics of a program

4 S. Schmitz

�0 : while x >= 0 and y > 0 do
i f x > 0 then

a : x := x−1; n := 2n ;
else

b : x := n ; y := y−1; n := 2n ;
done

(a) A program over integer variables

�0

a:
assume(x>0);
assume(y>0);
x := x−1;
n := 2n;

b:
assume(x=0);
assume(y>0);
x := n;
y := y−1;
n := 2n;

(b)The associated control-flow graph

Fig. 1. A simple terminating program

as the one in Fig. 1a as a transition system S = 〈Conf ,→S〉 where Conf denotes
the set of program configurations and →S ⊆ Conf ×Conf a transition relation.
In such a simple non-recursive program, the set of configurations is a variable
valuation, including a program counter pc ranging over the finite set of program
locations. For our simple program a single location suffices and we set

Conf = {�0} × Z× Z× Z , (1)

where the last three components provide the values of x, y, and n, and the first
component the value of pc. The corresponding transition relation contains for
instance

(�0, 3, 1, 4) →S (�0, 2, 1, 8) (2)

using transition a in Fig. 1b.

Proving Termination. We say that a transition system S = 〈Conf ,→S〉 ter-
minates if every execution c0 →S c1 →S · · · is finite. For instance, in order
to prove the termination of the program of Fig. 1 by a wqo argument, consider
some (possibly infinite) execution

(�0, x0, y0, n0) →S (�0, x1, y1, n1) →S (�0, x2, y2, n2) →S · · · (3)

over Conf . Because a negative value for x or y would lead to immediate termi-
nation, the associated sequence of pairs

(x0, y0), (x1, y1), (x2, y2), . . . (4)

is actually over N2. Consider now two indices i < j:

– either b is never fired throughout the execution between steps i and j, and
then yi = · · · = yj and xi > xj ,

– or b is fired at least once, and yi > yj .

In both cases (xi, yi) �≤× (xj , yj), i.e. the sequence (4) is bad for the product
ordering. Since 〈N2,≤×〉 is a wqo, this sequence is necessarily finite, and so is
the original sequence (3): the program of Fig. 1 terminates on all inputs.

Complexity Bounds for Ordinal-Based Termination 5

Quasi-Ranking Functions. The above termination argument for our example
program easily generalises:

Definition 2.2. Given a transition system S = 〈Conf ,→S〉, a quasi-ranking
function is a map f :Conf → A into a wqo 〈A,≤〉 such that, whenever c →+

S c′

is a non-empty sequence of transitions of S, f(c) �≤ f(c′).

In our treatment of the program of Fig. 1 above, we picked f(�0, x, y, z) = (x, y)
and 〈A,≤〉 = 〈N2,≤×〉. The existence of a quasi-ranking function always yields
termination:

Proposition 2.3. Given a transition system S = 〈Conf ,→S〉, if there exists a
quasi-ranking function for S, then S terminates.

Proof. Let f be a quasi-ranking function of S into a wqo 〈A,≤〉. Any sequence
of configurations c0 →S c1 →S · · · of S is associated by f to a bad sequence
f(c0), f(c1), . . . over A and is therefore finite.

Note that the converse statement also holds; see Remark 2.4 below.

Ranking Functions. The most typical method in order to prove that a program
terminates for all inputs is to exhibit a ranking function f into some well-order,
such that →S-related configurations have decreasing rank [36, 18]. Note that
this is a particular instance of quasi-ranking functions: a ranking function can
be seen as a quasi-ranking function into a wo 〈A,≤〉. Indeed, if c →S c′, then
the condition f(c) �≤ f(c′) of Def. 2.2 over a wo is equivalent to requiring f(c) >
f(c′), and then implies by transitivity f(c) > f(c′) whenever c →+

S c′.
The program of Fig. 1 can easily be given a ranking function: define for this

f(�0, x, y, n) = (y, x) ranging over the wo 〈N2,≤lex〉. Cook, See, and Zuleger [14]
and Ben-Amram and Genaim [4] consider for instance the automatic synthesis
of such lexicographic linear ranking functions for integer loops like Fig. 1a. Such
ranking functions into 〈Nd,≤lex〉 are described there by d functions f1, f2, . . . , fd :
Conf → N such that, whenever c →S c′, then (f1(c), f2(c), . . . , fd(c)) >lex

(f1(c
′), f2(c

′), . . . , fd(c
′)); in our example f1(c) = y and f2(c) = x. Linearity

means that each function fi is a linear affine function of the values of the pro-
gram variables.

Remark 2.4. Observe that any deterministic terminating program can be associ-
ated to a (quasi-)ranking function into N, which maps each configuration to the
number of steps before termination. We leave it as an exercise to the reader to
figure out such a ranking function for Fig. 1—the answer can be found in Sec. 3.
There are at least two motivations for considering other wqos:

– Programs can be nondeterministic, for instance due to interactions with
an environment. Then the supremum of the number of steps along all the
possible paths can be used as the range for a ranking function; this is a
countable well-order.

6 S. Schmitz

– Whether by automated means or by manual means, such monolithic rank-
ing functions are often too hard to synthesise and to check once found or
guessed—note that the canonical ‘number of steps’ function is not recursive
in general. This motivates employing more complex well (quasi-)orders in
exchange for simpler ranking functions.

2.3 Ordinals

Write 〈[d],≤〉 for the initial segment of the naturals [d] = {0, . . . , d − 1}; this is
a finite linear order for each d. We can then replace our previous lexicographic
ranking function for Fig. 1 with a multiset ranking function into 〈M([2]),≤mset〉:
f(�0, x, y,m) = {1y, 0x} is a ranking function that associates a multiset contain-
ing y copies of the element ‘1’ and x copies of ‘0’ to the configuration (�0, x, y, n).

This might seem like a rather artificial example of a multiset ranking function,
and indeed more generally 〈Nd,≤lex〉 and 〈M([d]),≤mset〉 are order-isomorphic
for every dimension d: indeed, r(n1, . . . , nd) = {(d − 1)n1 , . . . , 0nd} is a bijec-
tion satisfying (n1, . . . , nd) ≤lex (n′

1, . . . , n
′
d) if and only if r(n1, . . . , nd) ≤mset

r(n′
1, . . . , n

′
d).

In order to pick a unique representative for each isomorphism class of (simple
enough) well orders, we are going to employ their order types, presented as
ordinal terms in Cantor normal form. For instance ωd is the order type of both
〈Nd,≤lex〉 and 〈M([d]),≤mset〉.

Ordinals in ε0 can be canonically represented as ordinal terms α in Cantor
normal form

α = ωα1 + · · ·+ ωαp (CNF)

with exponents α > α1 ≥ · · · ≥ αp. We write as usual 1 for the term ω0 and ω
for the term ω1. Grouping equal exponents yields the strict form

α = ωα1 · c1 + · · ·+ ωαp · cp

with α > α1 > · · · > αp and coefficients 0 < c1, . . . , cp < ω. The ordinal ε0, i.e.
the least solution of ωx = x, is the supremum of the ordinals presentable in this
manner.

Computing Order Types. The order types o(A,≤A) of the well orders 〈A,≤A〉
we already mentioned in this paper are well-known: o([d],≤) = d, o(N,≤) = ω,
o(A × B,≤lex) = o(A,≤A) · o(B,≤B), and o(M(A),≤mset) = ωo(A,≤A). The
ranking function for the program in Fig. 1 can now be written as f(�0, x, y, n) =
ω · y + x and ranges over the set of ordinal terms below ω2. Note that we will
identify the latter set with ω2 itself as in the usual set-theoretic definition of
ordinals; thus β < α if and only if β ∈ α.

By extension, we also write o(x) for the ordinal term in o(A) associated to an
element x in A; for instance in 〈Nd,≤lex〉, o(n1, . . . , nd) = ωd−1 · n1 + · · ·+ nd.

Complexity Bounds for Ordinal-Based Termination 7

3 Complexity Bounds

We aim to provide complexity upper bounds for programs proven to terminate
thanks to some (quasi-)ranking function. There are several results of this kind
in the literature [28, 12, 38, 11, 17, 32, 1], which are well-suited for algorithms
manipulating complex data structures—for which we can employ the rich wqo
toolkit.

A major drawback of all these complexity bounds is that they are very high—
i.e., non-elementary except in trivial cases—, whereas practitioners are mostly in-
terested in polynomial bounds. Such high complexities are however unavoidable,
because the class of programs terminating thanks to a quasi-ranking function
encompasses programs with matching complexities. For instance, even integer
loops can be deceivingly simple: recall that the program of Fig. 1 terminated us-
ing a straightforward ranking function into ω2. Although this is just one notch
above a ranking function into ω, we can already witness fairly complex com-
putations. Observe indeed that the following are some execution steps of our
program:

(�0, x, y, 1)
axb−−→S (�0, 2

x, y − 1, 2x+1)

a2x b−−−→S (�0, 2
2x+x+1, y − 2, 22

x+x+2)

a22
x+x+1

b−−−−−−−→S (�0, 2
22

x+x+1+2x+x+2, y − 3, 22
2x+x+1+2x+x+3) .

Continuing this execution, we see that our simple program exhibits executions
of length greater than a tower of exponentials in y, i.e. it is non elementary.

3.1 Controlled Ranking Functions

By Def. 2.1, bad sequences in a wqo are always finite—which in turn yields the
termination of programs with quasi-ranking functions—, but no statement is
made regarding how long they can be. This is for a very good reason: they can
be arbitrarily long.

For instance, over the wo 〈N,≤〉,

n, n− 1, . . . , 1, 0 (5)

is a bad sequence of length n + 1 for every n. Arguably, this is not so much of
an issue, since what we are really interested in is the length as a function of the
initial configuration—which includes the inputs to the program. Thus (5) is the
maximal bad sequence over 〈N,≤〉 with initial element of ‘size n.’

However, as soon as we move to more complex wqos, we can exhibit arbitrary
bad sequence lengths even with fixed initial configurations. For instance, over
〈N2,≤lex〉,

(1, 0), (0, n), (0, n− 1), . . . , (0, 1), (0, 0) (6)

is a bad sequence of length n + 2 for every n starting from the fixed (1, 0).
Nonetheless, the behaviour of a program exhibiting such a sequence of ranks is

8 S. Schmitz

rather unusual: such a sudden ‘jump’ from (1, 0) to an arbitrary (0, n) is not
possible in a deterministic program once the user inputs have been provided.

Controlled Sequences. In the following, we will assume that no such arbitrary
jump can occur. This comes at the price of some loss of generality in the context
of termination analysis, where nondeterministic assignments of arbitrary values
are typically employed to model values provided by the environment—for in-
stance interactive user inputs or concurrently running programs—, or because
of abstracted operations. Thankfully, in most cases it is easy to control how large
the program variables can grow during the course of an execution.

Formally, given a wqo 〈A,≤A〉, we posit a norm function |.|A:A → N on the
elements of A. In order to be able to derive combinatorial statements, we require

A≤n
def
= {x ∈ A | |x|A ≤ n} (7)

to be finite for every n. We will use the following norms on the wqos defined
earlier: in a finite Q, all the elements have the same norm 0; in N or [d], n has
norm |n|N = n; for Cartesian or lexicographic products with support A × B,
(x, y) has the infinite norm max(|x|A, |y|B); finally, for multisets M(A), m has
norm maxx∈A,m(x)>0(m(x), |x|A).

Let g:N → N be a monotone and expansive function: for all x, x′, x ≤ x′

implies g(x) ≤ g(x′) and x ≤ g(x). We say that a sequence x0, x1, x2, . . . of
elements in A is (g, n0)-controlled for some n0 in N if

|xi|A ≤ gi(n0) (8)

for all i, where gi denotes the ith iterate of g. In particular |x0|A ≤ g0(n0) = n0,
which prompts the name of initial norm for n0, and amortised steps cannot grow
faster than g the control function.

By extension, a quasi-ranking function f :Conf → A for a transition system
S = 〈Conf ,→S〉 and a normed wqo 〈A,≤A, |.|A〉 is g-controlled if, whenever
c →S c′ is a transition in S,

|f(c′)|A ≤ g(|f(c)|A) . (9)

This ensures that any sequence f(c0), f(c1), . . . of ranks associated to an execu-
tion c0 →S c1 →S · · · of S is (g, |f(c0)|A)-controlled. For instance, our ranking
function f(�0, x, y, n) = (y, x) for the program of Fig. 1 into 〈N2,≤lex〉 is g-
controlled for g(x) = 2x.

Length Functions. The motivation for controlled sequences is that their length
can be bounded. Consider for this the tree one obtains by sharing common pre-
fixes of all the (g, n0)-controlled bad sequences over a normed wqo (A,≤A, |.|A).
This tree has

– finite branching by (7) and (8), more precisely branching degree bounded by
the cardinal of A≤gi(n0) for a node at depth i, and

– no infinite branches thanks to the wqo property.

Complexity Bounds for Ordinal-Based Termination 9

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height
Lg,n0,A representing the length of the maximal (g, n0)-controlled bad sequence(s)
overA. In the following, since we are mostly interested in this length as a function
of the initial norm n0, we will see this as a length function Lg,A(n0).

Length Function Theorems. Observe that Lg,A also bounds the asymptotic exe-
cution length in a program endowed with a g-controlled quasi-ranking function
into 〈A,≤A, |.|A〉. Our purpose will thus be to obtain explicit complexity bounds
on Lg,A depending on g and A. We call such combinatorial statements length
function theorems ; see [28, 12, 38, 11, 17, 32, 1] for some examples.

For applications to termination analysis, we are especially interested in the
case of well orders. Somewhat oddly, this particular case has seldom been con-
sidered; to our knowledge the only instance is due to Abriola, Figueira, and
Senno [1] who derive upper bounds for multisets of tuples of naturals ordered
lexicographically, i.e. for Lg,M(Nd) (beware that their notion of control is defined
slightly differently).

3.2 Hardy and Cichoń Hierarchies

As we saw with the example of Fig. 1, even simple terminating programs can
have a very high complexity. In order to express such high bounds, a convenient
tool is found in subrecursive hierarchies, which employ recursion over ordinal
indices to define faster and faster growing functions. We define in this section
two such hierarchies.

Fundamental Sequences and Predecessors. Let us first introduce some additional
notions on ordinal terms. Consider an ordinal term α in Cantor normal form
ωα1 + · · · + ωαp . In this representation, α = 0 if and only if p = 0. An ordinal
α of the form α′ + 1 (i.e. with p > 0 and αp = 0) is called a successor ordinal,
and otherwise if α > 0 it is called a limit ordinal, and can be written as γ + ωβ

by setting γ = ωα1 + · · · + ωαp−1 and β = αp. We usually write ‘λ’ to denote a
limit ordinal.

A fundamental sequence for a limit ordinal λ is a sequence (λ(x))x<ω of or-
dinal terms with supremum λ. We use the standard assignment of fundamental
sequences to limit ordinals defined inductively by

(γ + ωβ+1)(x)
def
= γ + ωβ · (x + 1) , (γ + ωλ)(x)

def
= γ + ωλ(x) . (10)

This particular assignment satisfies e.g. 0 < λ(x) < λ(y) for all x < y. For

instance, ω(x) = x+ 1, (ωω4

+ ωω3+ω2

)(x) = ωω4

+ ωω3+ω·(x+1).
The predecessor Px(α) of an ordinal term α > 0 at a value x in N is defined

inductively by

Px(α + 1)
def
= α , Px(λ)

def
= Px(λ(x)) . (11)

In essence, the predecessor of an ordinal is obtained by repeatedly taking the
xth element in the fundamental sequence of limit ordinals, until we finally reach
a successor ordinal and remove 1. For instance, Px(ω

2) = Px(ω · (x + 1)) =
Px(ω · x+ x+ 1) = ω · x+ x.

10 S. Schmitz

Subrecursive Hierarchies. In the context of controlled sequences, the hierarchies
of Hardy and Cichoń turn out to be especially well-suited [11]. Let h:N → N be
a function. The Hardy hierarchy (hα)α∈ε0 is defined for all 0 < α < ε0 by1

h0(x)
def
= x , hα(x)

def
= hPx(α)(h(x)) , (12)

and the Cichoń hierarchy (hα)α∈ε0 is similarly defined for all 0 < α < ε0 by

h0(x)
def
= 0 , hα(x)

def
= 1 + hPx(α)(h(x)) . (13)

Observe that hk for some finite k is the kth iterate of h. This intuition carries
over: hα is a transfinite iteration of the function h, using diagonalisation in the
fundamental sequences to handle limit ordinals.

For instance, starting with the successor function H(x)
def
= x+1, we see that a

first diagonalisation yields Hω(x) = Hx(x+1) = 2x+1. The next diagonalisation
occurs at Hω·2(x) = Hω+x(x+1) = Hω(2x+1) = 4x+3. Fast-forwarding a bit,

we get for instance a function of exponential growth Hω2

(x) = 2x+1(x+ 1)− 1,

and later a non-elementary function Hω3

, an ‘Ackermannian’ non primitive-
recursive function Hωω

, and a ‘hyper-Ackermannian’ non multiply recursive-

function Hωωω

. Regarding the Cichoń functions, an easy induction on α shows
that Hα(x) = Hα(x) + x.

On the one hand, Hardy functions are well-suited for expressing large iterates
of a control function, and therefore for bounding the norms of elements in a
controlled sequence. For instance, the program in Fig. 1 computes gω·y+x(n) for
the function g(x) = 2x when run on non-negative inputs x, y, n. On the other
hand, Cichoń functions are well-suited for expressing the length of controlled
sequences. For instance, gω·y+x(n) is the length of the execution of the program.
This relation is a general one: we can compute how many times we should iterate
h in order to compute hα(x) using the corresponding Cichoń function:

hα(x) = hhα(x)(x) . (14)

Monotonicity Properties. Assume h is monotone and expansive. Then both hα

and hα are monotone and expansive [see 11, 33, 35]. However, those hierarchies
are not monotone in the ordinal indices: for instance, Hω(x) = 2x+1 < 2x+2 =
Hx+2(x) although ω > x+ 2.

Some refinement of the ordinal ordering is needed in order to obtain mono-
tonicity of the hierarchies. Define for this the pointwise ordering ≺x at some x
in N as the smallest transitive relation such that

α ≺x α + 1 , λ(x) ≺x λ . (15)

The relation ‘β ≺x α’ is also noted ‘β ∈ α[x]’ in [35, pp. 158–163]. The ≺x

relations form a strict hierarchy of refinements of the ordinal ordering <:

≺0 � ≺1 � · · · � ≺x � · · · � < . (16)

1 Note that this is equivalent to defining hα+1(x)
def
= hα(h(x)) and hλ(x)

def
= hλ(x)(x).

Complexity Bounds for Ordinal-Based Termination 11

As desired, our hierarchies are monotone for the pointwise ordering [11, 33, 35]:

β ≺x α implies hβ(x) ≤ hα(x) . (17)

Ordinal Norms. As a first application of the pointwise ordering, define the norm
of an ordinal as the maximal coefficient that appears in its associated CNF: if
α = ωα1 · c1 + · · ·+ ωαp · cp with α1 > · · · > αp and c1, . . . , cp > 0, then

Nα
def
= max{c1, . . . , cp, Nα1, . . . , Nαp} . (18)

Observe that this definition essentially matches the previously defined norms
over multisets and tuples of vectors: e.g. in 〈Nd,≤lex〉, the ordinal norm satis-
fies No(n1, . . . , nd) = max(d, |(n1, . . . , nd)|Nd), and in 〈M(Nd),≤mset〉, No(m) =
max(d, |m|M(Nd)). The relation between ordinal norms and the pointwise ordering
is that [33, 35, p. 158]

β < α implies β ≺Nβ α . (19)

Together with (16) and (17), this entails that for all x ≥ Nβ, hβ(x) ≤ hα(x).

3.3 A Length Function Theorem for ε0

We are now equipped to prove a length function theorem for all ordinals α below
ε0, i.e. an explicit expression for Lg,α for the wo 〈α,≤, N〉. This proof relies
on two main ingredients: a descent equation established in [32] for all normed
wqos, and an alternative characterisation of the Cichoń hierarchy in terms of
maximisations inspired by [10, 8].

Residuals and a Descent Equation. Let 〈A,≤, |.|〉 be a normed wqo and x be an
element of A. We write

A/x
def
= {y ∈ A | x �≤ y} (20)

for the residual of A in x. Observe that by the wqo property, there cannot be
infinite sequences of residuations A/x0/x1/x2/ · · · since xi �≤ xj for all i < j.

Consider now a (g, n0)-controlled bad sequence x0, x1, x2, . . . over 〈A,≤, |.|A〉.
Assuming the sequence is not empty, then because this is a bad sequence we see
that for all i > 0, x0 �≤ xi, i.e. that the suffix x1, x2, . . . is actually a bad sequence
over A/x0. This suffix is now (g(n), n0)-controlled, and thus of length bounded
by Lg,A/x0

(g(n0)). This yields the following descent equation when considering
all the possible (g, n)-controlled bad sequences:

Lg,A(n) = max
x∈A≤n

1 + Lg,A/x(g(n)) . (21)

In the case of a wo 〈α,≤, N〉, residuals can be expressed more simply for β ∈ α
as

α/β = {γ ∈ α | β > γ} = β . (22)

Thus the descent equation simplifies into

Lg,α(n) = max
β<α,Nβ≤n

1 + Lg,β(g(n)) . (23)

12 S. Schmitz

Norm Maximisation. The reader might have noticed a slight resemblance be-
tween the ordinal descent equation (23) and the definition of the Cichoń hierar-
chy (13). It turns out that they are essentially the same functions: indeed, we are
going to show in Prop. 3.2 that if Nα ≤ x, then choosing β = Px(α) maximises
hβ(h(x)) among those β < α with Nβ ≤ x; we follow in this [10, 8]. This is a
somewhat technical proof, so the reader might want to skip the details and jump
directly to Thm. 3.3.

Lemma 3.1. Let α < ε0 and x ≥ Nα. Then Px(α) = maxβ<α,Nβ≤x β.

Proof. We prove the lemma through a sequence of claims.

Claim 3.1.1. Px(α) < α.

We show for this first claim that, by transfinite induction over α > 0, for all x

Px(α) ≺x α (24)

Indeed, Px(α+1) = α ≺x α+1 for the successor case, and Px(λ) = Px(λ(x)) ≺x

λ(x) ≺x by induction hypothesis on λ(x) < λ for the limit case. Then (16) allows
to conclude.

Let us introduce a variant of the ordinal norm. Let α = ωα1 · c1+ · · ·+ωαp · cp
be an ordinal in CNF with α > α1 > · · · > αp and ω > c1, . . . , cp > 0. We say
that α is almost x-lean if either (i) cp = x + 1 and both N

∑
i<p ωαi ≤ x and

Nαp ≤ x, or (ii) cp ≤ x, N
∑

i<m ωαi ≤ x, and αp is almost x-lean. Note that
an almost x-lean ordinal α has not norm x; it has however norm x+1. Here are
several properties of note for almost x-lean ordinals:

Claim 3.1.2. If Nλ ≤ x, then λ(x) is almost x-lean.

We prove this claim by induction on λ, letting λ = ωλ1 · c1 + · · · + ωλp · cp as
above, where necessarily Nλp ≤ x. If λp is a successor ordinal β + 1 (and thus
Nβ ≤ x), λ(x) = ωλ1 · c1 + · · ·+ ωλp · (cp − 1) + ωβ · (x+ 1) is almost x-lean by
case (i). If λp is a limit ordinal, λ(x) = ωλ1 · c1 + · · ·+ ωλp · (cp − 1) + ωλp(x) is
x-lean by case (ii) and the induction hypothesis on λp < λ.

Claim 3.1.3. If α + 1 is almost x-lean, then Nα ≤ x.

Let α+1 = ωα1 ·c1+· · ·+ωαp ·cp with αp = 0. We must be in case (i) since αp = 0
cannot be x-lean, thus cp = x+1 and Nα = Nωα1 · c1 + · · ·+ωαp · (cp − 1) ≤ x.

Claim 3.1.4. If λ is almost x-lean, then λ(x) is almost x-lean.

We prove the claim by induction on λ, letting λ = ωλ1 · c1 + · · ·+ ωλp · cp:

If λp is a successor ordinal β + 1, λ(x) = ωλ1 · c1 + · · · + ωλp · (cp − 1) +
ωβ · (x + 1), and either (i) cp = x + 1 and Nλp ≤ x, and then λ(x) also
verifies (i), or (ii) cp ≤ x and β + 1 is almost x-lean and thus Nβ ≤ x by
Claim 3.1.3, and λ(x) is again almost x-lean verifying condition (i).

Complexity Bounds for Ordinal-Based Termination 13

If λp is a limit ordinal, then λ(x) = ωλ1 · c1 + · · · + ωλp · (cp − 1) + ωλp(x).
Either (i) cp = x + 1 and Nλp ≤ x, and by Claim 3.1.2 λp(x) is almost
x-lean and thus λ(x) is almost x-lean by condition (ii), or (ii) cp ≤ x and
λp is almost x-lean, and by induction hypothesis λp(x) is almost x-lean, and
therefore λ(x) is again almost x-lean by condition (ii).

Claim 3.1.5. If α is almost x-lean, then NPx(α) ≤ x.

By induction over α > 0: we see for the successor case that NPx(α+1) = Nα ≤ x
by Claim 3.1.3, and for the limit case that λ(x) is almost x-lean by Claim 3.1.4
and thus Px(λ(x)) ≤ x by induction hypothesis.

Claim 3.1.6. If Nα ≤ x, then NPx(α) ≤ x.

Indeed, either α is a successor and this is immediate, or it is a limit λ and then
λ(x) is almost x-lean by Claim 3.1.2 and therefore NPx(λ) = NPx(λ(x)) ≤ x
by Claim 3.1.5.

Claim 3.1.7. If β < α and Nβ ≤ x, then β 	x Px(α).

Because the hypotheses entail β ≺x α by (19), we can consider a sequence of
atomic steps according to (15) for the pointwise ordering: β = βn ≺x · · · ≺x

β1 ≺x α. If α is a successor, then β 	x β1 = Px(α). Otherwise β1 is almost x-
lean by Claim 3.1.2. Because Nβ ≤ x, β is not almost x-lean, and by Claim 3.1.3
and Claim 3.1.4 there must be a greatest index 1 ≤ i < n such that all the βj ’s
for 1 ≤ j < i are almost x-lean limit ordinals and βi is a successor almost x-lean
ordinal. Thus β 	x βi+1 = Px(α).

To conclude the proof, Px(α) < α by Claim 3.1.1, NPx(α) ≤ x by Claim 3.1.6,
and if β < α is such that Nβ ≤ x, then β ≤ Px(α) by Claim 3.1.7 and (16),
which together prove the lemma.

Proposition 3.2. Let α < ε0 and x ≥ Nα. Then hα(x) = maxβ<α,Nβ≤x 1 +
hβ(h(x)).

Proof. If α = 0 then there are no β < α and maxβ<α,Nβ≤x 1 + hβ(h(x)) = 0 =
h0(x).

Otherwise by Lem. 3.1, since Px(α) < α and NPx(α) ≤ x, hα(x) = 1 +
hPx(α)(h(x)) ≤ maxβ<α,Nβ≤x 1 + hβ(h(x)). Conversely, let β < α with Nβ ≤ x
be such that maxβ<α,Nβ≤x 1+hβ(h(x)) = 1+hβ(h(x)). By Lem. 3.1, β ≤ Px(α)
and therefore by (19) β 	x Px(α). Since h is expansive, by (16), β 	h(x) Px(α).
Therefore by (17), 1 + hβ(h(x)) ≤ 1 + hPx(α)(h(x)) = hα(x).

Theorem 3.3 (Length Function Theorem for Ordinals). Let α < ε0 and
x ≥ Nα. Then Lg,α(x) = gα(x).

Proof. We use the ordinal descent equation (23) and Prop. 3.2.

As an immediate corollary, we can bound the asymptotic complexity of programs
proven to terminate through a g-controlled ranking function:

14 S. Schmitz

Elementary

F3 = Tower

Primitive Recursive Fω = Ack

Multiply Recursive

Fωω = HAck

· · ·

Fig. 2. Some complexity classes beyond Elementary

Corollary 3.4. Given a transition system S = 〈Conf ,→S〉, if there exists a
g-controlled ranking function into α < ε0, then S runs in time O(gα(n)).

As an illustration, a program proven to terminate thanks to a g-controlled
ranking function into 〈Nd,≤lex, |.|Nd〉 has therefore an O(gωd(n)) bound on its
worst-case asymptotic complexity. In the case of the program of Fig. 1, this yields

an upper bound of gω2(m) = 1 + gω·m+m(m) on its complexity for g(x)
def
= 2x

and m
def
= max(x, y, n). This matches its actual complexity.

4 Complexity Classification

As already mentioned, the complexity bounds provided by Thm. 3.3 are so high
that they are only of interest for algorithms of very high complexity. Rather than
obtaining precise complexity statements as in Thm. 3.3, the purpose is then to
classify the complexity in rather broad terms: e.g., is the algorithm elementary?
primitive-recursive? multiply-recursive?

4.1 Fast-Growing Classes

In order to tackle the complexities derived from Thm. 3.3, we need to employ
complexity classes for very high complexity problems. For α > 2, we define
respectively the fast-growing function classes (Fα)α of Löb and Wainer [27] and
the fast-growing complexity classes (Fα)α of [31] by

F<α
def
=

⋃
β<ωα

FDTime

(
Hβ(n)

)
, Fα

def
=

⋃
p∈F<α

DTime

(
Hωα

(p(n))
)
. (25)

Recall that Hα denotes the αth function in the Hardy hierarchy with generative

function H(x)
def
= x + 1, and that FDTime(t(n)) (resp. DTime(t(n))) denotes

Complexity Bounds for Ordinal-Based Termination 15

the set of functions computable (resp. problems decidable) in deterministic time
O(t(n)).

Some important complexity milestones can be characterised through these
classes. Regarding the function classes, F<3 is the class of elementary func-
tions, F<ω the class of primitive-recursive functions, F<ωω the class of multiply-
recursive functions, and F<ε0 the class of ordinal-recursive functions. Turning
to the complexity classes, F3 = Tower is the class of problems with complexity
bounded by a tower of exponentials of height bounded by an elementary func-
tion of the input, Fω = Ack the class of problems with complexity bounded by
the Ackermann function of some primitive-recursive function of the input, and
Fω
ω = HAck of problems with complexity bounded by the hyper-Ackermann

function Hωωω

composed with some multiply-recursive function. In other words,
F3 (resp. Fω and Fωω) is the smallest complexity class Fα which contains non
elementary problems (resp. non primitive recursive and non multiply recursive
problems); see Fig. 2.

4.2 Classification

The explicit formulation for the length function provided by Thm. 3.3 yields
upper bounds in the (Fα)α complexity classes. Assume that g belongs to the
function class F<γ for some γ. Then, by [31, Thm.4.2], an algorithm with a gωα

complexity yields an upper bound in Fγ+α. In particular, a decision procedure
terminating thanks to a lexicographic ranking function into 〈Nd,≤lex, |.|Nd〉 with
a linear control yields an Fd+1 complexity upper bound. At greater complexities,
if g is primitive recursive—i.e. is in F<ω—and α ≥ ω, then we obtain an upper
bound in Fα [31, Cor. 4.3].

5 Product vs. Lexicographic Orderings

Although we focus in this paper on ranking functions, automated termination
provers employ many different techniques. While lexicographic ranking functions
are fairly common [e.g. 14, 4, 37, for recent references], disjunctive termination
arguments (aka Ramsey-based termination proofs) [30] are also a popular alter-
native.

5.1 Disjunctive Termination Arguments

In order to prove a program transition relation →S to be well-founded, Podelski
and Rybalchenko [30] show that it suffices to exhibit a finite set of well-founded
relations T1, . . . , Td ⊆ Conf ×Conf and prove that the transitive closure →+

S is
included in the union T1 ∪ · · ·∪Td. In practice, we can assume each of the Tj for
1 ≤ j ≤ d to be proved well-founded through a quasi-ranking function fj into a
wqo 〈Aj ,≤j〉. In the case of the program in Fig. 1, choosing

T1 = {((�0, x, y, n), (�0, x′, y′, n′)) | x > 0 ∧ x′ < x} (26)

T2 = {((�0, x, y, n), (�0, x′, y′, n′)) | y > 0 ∧ y′ < y} (27)

16 S. Schmitz

yields such a disjunctive termination argument, with A1 = A2 = N.
Another way of understanding disjunctive termination arguments is that they

define a quasi-ranking function f into the product wqo 〈A1×· · ·×Ad,≤×〉, which
maps a configuration c to the tuple 〈f1(c), . . . , fd(c)〉, c.f. [17, Sec. 7.1].

5.2 A Comparison

Let us consider disjunctive termination arguments where each of the d relations
Tj has a ranking function into N, i.e. defining a quasi-ranking function into
〈Nd,≤×〉. A natural question at this point is how does it compare with a ranking
function into 〈Nd,≤lex〉, which seems fairly similar? Which programs can be
shown to terminate with either method?

We might attempt to differentiate them through theirmaximal order types [22,
6]. In general, this is the supremum of the order types of all the linearisations of
a wqo:

o(A,≤)
def
= sup{o(A,) | 	 is a linearisation of ≤} . (28)

However, in the case of 〈Nd,≤×〉, this maximal order type is ωd, matching the
order type of 〈Nd,≤lex〉.

We can consider instead the maximal length of their controlled bad sequences.
Those are different: the following example taken from [17, Remark 6.2] is a
(g, 1)-controlled bad sequence over 〈N2,≤×〉, which is good for 〈N2,≤lex〉, where
g(x)

def
= x+ 2:

(1, 1), (3, 0), (2, 0), (1, 0), (0, 9), (0, 8), . . . , (0, 1), (0, 0) (29)

This sequence has length 14 whereas the maximal (g, 1)-controlled bad sequence
for 〈N2,≤lex〉 is of length gω2(1) = 8:

(1, 1), (1, 0), (0, 5), (0, 4), . . . , (0, 1), (0, 0) . (30)

5.3 Length Functions for the Product Ordering

More generally, the length function theorems for 〈Nd,≤×〉 provide larger upper
bounds than the gωd bound provided by Thm. 3.3 [28, 12, 17, 33, 1]. The following
version from [33, Chap. 2] is easy to compare with Thm. 3.3:

Fact 5.1 ([33]). Let d ≥ 0 and h(x)
def
= d · g(x). Then Lg,Nd(x) ≤ hωd(dx).

Fact 5.1 allows to bound the running time of programs proven to termi-
nate with d transition invariants Tj , each shown well-founded through some
g-controlled ranking function into N. In particular, for linearly controlled rank-
ing functions, d-dimensional transition invariants entail again upper bounds in
Fd+1, just like linearly controlled ranking functions into 〈Nd,≤lex〉 do. Thus, at
the coarse-grained level of the fast-growing complexity classes, the differences
between Thm. 3.3 and Fact. 5.1 disappear.

Complexity Bounds for Ordinal-Based Termination 17

5.4 Controlling Abstractions

The previous classifications into primitive recursive complexity classes Fd+1

might be taken to imply that non-primitive recursive programs are beyond the
reach of the current automated termination methods, which usually rely on the
synthesis of affine ranking functions. This is not the case, as we can better see
with the example of size-change termination proofs: Lee, Jones, and Ben-Amram
[24] consider as their Example 3 the two-arguments Ackermann function:

a (m, n) = i f m = 0 then n + 1 else
i f n = 0 then a (m−1, 1)

else a (m−1, a (m, n−1))

They construct a size-change graph on two variables to prove its termination.
The longest decreasing sequence in such a graph is of length O(n2).2 Here we
witness an even larger gap between the actual program complexity and the
complexity derived from its termination argument: the Ackermann function vs.
an O(n2) bound.

The source of this apparent paradox is abstraction: the size-change graph for
a(m, n) terminates if and only if the original program does, but its complexity
is ‘lost’ during this abstraction. In the example of the Ackermann function, the
call stack is abstracted away, whereas we should include it for Thm. 3.3 to apply.
This is done by Dershowitz and Manna [15, Example 3], who prove the termina-
tion of the Ackermann function by exhibiting a H-controlled ranking function
into 〈M(N2),≤mset〉, for which Thm. 3.3 yields an O(Hωω2 (n)) complexity upper
bound—this is pretty much optimal.

The question at this point is how to deal with abstractions. For size-change
abstractions, Ben-Amram [3] shows for instance that the programs provable to
terminate are always multiply recursive, but this type of analysis is missing for
other abstraction techniques, e.g. for abstract interpretation ones [37].

6 Concluding Remarks

Length function theorems often seem to relate the length function Lg,A for (g, n)-
controlled bad sequences over a wqo 〈A,≤〉 with a Cichoń function ho(A,≤) in-
dexed by the maximal order type o(A,≤) (recall Eq. (28)) for some ‘reason-
able’ generative function h. This is certainly the case of e.g. Thm. 3.3, where
h(x) = g(x), but also of Fact. 5.1 where h(x) = d · g(x), and of the correspond-
ing theorem in [32] for Higman’s Lemma, where h(x) = x · g(x).

This is a relaxation of Cichoń’s Principle [10], who observed that rewriting
systems with a termination ordering of order type α [16] often had a complexity

bounded by the slow-growing function Gα (defined by choosing G(x)
def
= x as

generative function in Cichoń’s hierarchy). A counter-example to the principle
was given by Lepper [26] using the Knuth-Bendix order; however it did not

2 Colcombet, Daviaud, and Zuleger [13] recently showed that the asymptotic worst-
case complexity of a size-change graph is Θ(nr) for a computable rational r.

18 S. Schmitz

disprove the relaxed version of Cichoń’s Principle, where the generative function
h can be chosen more freely. A recent analysis of generalised Knuth-Bendix
orders by Moser [29] exhibits a counter-example to the relaxed version. An open
question at the moment is therefore to find general conditions which ensure that
this relaxed Cichoń Principle holds.

Acknowledgements. The author thanks Christoph Haase, Georg Moser, and
Philippe Schnoebelen for helpful discussions.

References

1. Abriola, S., Figueira, S., Senno, G.: Linearizing bad sequences: Upper bounds for
the product and majoring well quasi-orders. In: Ong, L., de Queiroz, R. (eds.)
WoLLIC 2012. LNCS, vol. 7456, pp. 110–126. Springer, Heidelberg (2012)

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010)

3. Ben-Amram, A.M.: General size-change termination and lexicographic descent.
The Essence of Computation, pp. 3–17. Springer (2002)

4. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops
(2013), http://arxiv.org/abs/1208.4041

5. Ben-Amram, A.M., Vainer, M.: Bounded termination of monotonicity-constraint
transition systems (preprint, 2014), http://arxiv.org/abs/1202.4281

6. Blass, A., Gurevich, Y.: Program termination and well partial orderings. ACM
Trans. Comput. Logic 9(3) (2008)

7. Bonfante, G., Cichoń, A.E., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. J. Funct. Programming 11, 33–53 (2001)

8. Buchholz, W., Cichoń, E.A., Weiermann, A.: A uniform approach to fundamental
sequences and hierarchies. Math. Logic Quart. 40(2), 273–286 (1994)

9. Bucholz, W.: Proof-theoretic analysis of termination proofs. Ann. Pure App.
Logic 75(1–2), 57–65 (1995)

10. Cichoń, E.A.: Termination orderings and complexity characterisations. Proof The-
ory, pp. 171–194. Cambridge University Press (1993)

11. Cichoń, E.A., Tahhan Bittar, E.: Ordinal recursive bounds for Higman’s Theorem.
Theor. Comput. Sci. 201(1-2), 63–84 (1998)

12. Clote, P.: On the finite containment problem for Petri nets. Theor. Comput. Sci. 43,
99–105 (1986)

13. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014,
Part I. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014)

14. Cook, B., See, A., Zuleger, F.: Ramsey vs. Lexicographic termination proving. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795,
pp. 47–61. Springer, Heidelberg (2013)

15. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979)

16. Dershowitz, N., Okada, M.: Proof-theoretic techniques for term rewriting theory.
In: LICS 1988, pp. 104–111 (1988)

17. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with Dickson’s Lemma. In: LICS 2011., pp. 269–278.
IEEE (2011)

http://arxiv.org/abs/1208.4041
http://arxiv.org/abs/1202.4281

Complexity Bounds for Ordinal-Based Termination 19

18. Floyd, R.W.: Assigning meaning to programs. Mathematical Aspects of Computer
Science. In: Proceedings of Symposia in Applied Mathematics, vol. 19, pp. 19–32.
AMS (1967)

19. Gulwani, S.: SPEED: Symbolic complexity bound analysis. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 51–62. Springer, Heidelberg
(2009)

20. Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency
pair method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008.
LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

21. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. Theor. Comput. Sci. 105(1), 129–140 (1992)

22. de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Indag.
Math. 39(3), 195–207 (1977)

23. Jouannaud, J.P., Lescanne, P.: On multiset orderings. Inf. Process. Lett. 15(2),
57–63 (1982)

24. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL 2001, pp. 81–92. ACM (2001)

25. Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. Theor.
Comput. Sci. 269(1-2), 433–450 (2001)

26. Lepper, I.: Simply terminating rewrite systems with long derivations. Arch. Math.
Logic 43(1), 1–18 (2004)

27. Löb, M.H., Wainer, S.S.: Hierarchies of number theoretic functions, I. Arch. Math.
Logic 13, 39–51 (1970)

28. McAloon, K.: Petri nets and large finite sets. Theor. Comput. Sci. 32(1-2), 173–183
(1984)

29. Moser, G.: KBOs, ordinals, subrecursive hierarchies and all that. J. Logic Comput.
(to appear, 2014)

30. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004. pp. 32–41.
IEEE (2004)

31. Schmitz, S.: Complexity hierarchies beyond Elementary (2013),
http://arxiv.org/abs/1312.5686 (preprint)

32. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

33. Schmitz, S., Schnoebelen, P.: Algorithmic aspects of wqo theory. Lecture notes
(2012), http://cel.archives-ouvertes.fr/cel-00727025

34. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: D’Argenio,
P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS, vol. 8052,
pp. 5–24. Springer, Heidelberg (2013), http://arxiv.org/abs/1402.2908

35. Schwichtenberg, H., Wainer, S.S.: Proofs and Computation. Perspectives in Logic.
Cambridge University Press (2012)

36. Turing, A.M.: Checking a large routine. In: EDSAC 1949, pp. 67–69 (1949)
37. Urban, C., Miné, A.: An abstract domain to infer ordinal-valued ranking functions.

In: Shao, Z. (ed.) ESOP 2014 (ETAPS). LNCS, vol. 8410, pp. 412–431. Springer,
Heidelberg (2014)

38. Weiermann, A.: Complexity bounds for some finite forms of Kruskal’s Theorem.
J. Symb. Comput. 18(5), 463–488 (1994)

39. Weiermann, A.: Termination proofs for term rewriting systems by lexicographic
path orderings imply multiply recursive derivation lengths. Theor. Comput.
Sci. 139(1-2), 355–362 (1995)

http://arxiv.org/abs/1312.5686
http://cel.archives-ouvertes.fr/cel-00727025
http://arxiv.org/abs/1402.2908

On The Complexity of Bounded Time

Reachability for Piecewise Affine Systems�

Hugo Bazille3, Olivier Bournez1, Walid Gomaa2,4, and Amaury Pouly1

1 École Polytechnique, LIX, 91128 Palaiseau Cedex, France
2 Egypt Japan University of Science and Technology, CSE, Alexandria, Egypt

3 ENS Cachan/Bretagne et Université Rennes 1, France
4 Faculty of Engineering, Alexandria University, Alexandria, Egypt

Abstract. Reachability for piecewise affine systems is known to be un-
decidable, starting from dimension 2. In this paper we investigate the
exact complexity of several decidable variants of reachability and con-
trol questions for piecewise affine systems. We show in particular that
the region to region bounded time versions leads to NP -complete or
co-NP -complete problems, starting from dimension 2.

1 Introduction

A (discrete time) dynamical system H is given by some space X and a func-
tion f : X → X . A trajectory of the system starting from x0 is a sequence
x0, x1, x2, . . . etc., with xi+1 = f(xi) = f [i+1](x0) where f [i] stands for ith iter-
ate of f . A crucial problem in such systems is the reachability question: given a
system H and R0, R ⊆ X , determine if there is a trajectory starting from a point
of R0 that falls in R. Reachabilty is known to be undecidable for very simple
functions f . Indeed, it is well-known that various types of dynamical systems,
such as hybrid systems, piecewise affine systems, or saturated linear systems,
can simulate Turing machines, see e.g., [1,2,3,4].

This question is at the heart of verification of systems. Indeed, a safety prop-
erty corresponds to the determination if there is a trajectory starting from some
set R0 of possible initial states to the set R of bad states. The industrial and
economical impact of having efficient computer tools, that are able to guaran-
tee that a given system does satisfy its specification, have indeed generated very
important literature. Particularly, many undecidability and complexity-theoretic
results about the hardness of verification of safety properties have been obtained
in the model checking community. However, as far as we know, the exact com-
plexity of natural restrictions of the reachability question for systems as simple
as piecewise affine maps are not known, despite their practical interest.

Indeed, existing results mainly focus on the frontier between decidability and
undecidability. For example, it is known that reachability is undecidable for
piecewise constant derivative systems of dimension 3, whereas it is decidable
for dimension 2 [5]. It is known that piecewise affine maps of dimension 2 can

� This work was partially supported by DGA Project CALCULS.

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 20–31, 2014.
c© Springer International Publishing Switzerland 2014

On The Complexity of Bounded Time Reachability 21

simulate Turing machines [6], whereas the question for dimension 1 is still open
and can be related to other natural problems [7,8,9]. Variations of such problems
over the integers have recently been investigated [10].

Some complexity facts follow immediately from these (un)computability re-
sults: for example, point to point bounded time reachability for piecewise affine
maps is P -complete as it corresponds to configuration to configuration reacha-
bility for Turing machines.

However, their remain many natural variants of reachability questions which
complexity have not yet been established.

For example, in the context of verification, point to point reachability is often
not sufficient. On the contrary, region to region reachability is a more general
question, which complexity do not follow from existing results.

In this paper we choose to restrict to the case of piecewise affine maps and
we consider the following natural variant of the problem.

Continuous Bounded Time. we want to know if region R is reached in less
than some prescribed time T , with f assumed to be continuous

Remark 1. We consider piecewise affine maps over the domain [0, 1]d, that is to
say we do not restrict to the integers as in [10]. That would make the problem
rather different. We also assume f to be continuous which makes the hardness
result more natural.

In an orthogonal way, control of systems or constructions of controllers for
systems often yield to dual questions. Instead of asking if some trajectory reaches
region R, one wants to know if all trajectories reach R. The questions of stability,
mortality, or nilpotence for piecewise affine maps and saturated linear systems
have been established in [11]. Still in this context, the complexity of the problem
when restricting to bounded time or fixed precision is not known.

This paper provides an exact characterization of the algorithmic complexity of
those two types of reachability for discrete time dynamical systems. Let PAFd

denote the set of piecewise-affine continuous functions over [0, 1]d. At the end
we get the following picture.

Problem: REACH-REGION
Inputs: a continuous PAFd f and two regions R0 and R in dom(f)
Question: ∃x0 ∈ R0, t ∈ N, f [t](x0) ∈ R?

Theorem 2 ([6]). Problem REACH-REGION is undecidable (and recursively
enumerable-complete).

Problem: CONTROL-REGION
Inputs: a continuous PAFd f and two regions R0 and R in dom(f)
Question: ∀x0 ∈ R0, ∃t ∈ N, f [t](x0) ∈ R?

Theorem 3 ([11]). Problem CONTROL-REGION is undecidable (and co-recursively
enumerable complete) for d � 2.

22 H. Bazille et al.

Problem: REACH-REGION-TIME
Inputs: a time T ∈ N in unary, a continuous PAFd f and two regions R0 and
R in dom(f)
Question: ∃x0 ∈ R0, ∃t � T, f [t](x0) ∈ R?

Theorem 4. Problem REACH-REGION-TIME is NP -complete for d � 2.

Problem: CONTROL-REGION-TIME
Inputs: a time T ∈ N in unary, a continuous PAFd f and two regions R0 and
R in dom(f)
Question: ∀x0 ∈ R0, ∃t � T, f [t](x0) ∈ R?

Theorem 5. Problem CONTROL-REGION-TIME is coNP -complete for d � 2.

All our problems are region to region reachability questions, which requires
new proof techniques.

Indeed, classical tricks to simulate a Turing machine using a piecewise affine
maps encode a Turing machine configuration by a point, and assume that all
the points of the trajectories encode (possibly ultimately) valid Turing machines
configurations.

This is not a problem in the context of point to point reachability, but this can
not be extended to region to region reachability. Indeed, a (non-trivial) region
consists mostly in invalid points: mostly all points do not correspond to encoding
of Turing machines for all the considered encodings in above references.

In order to establish hardness results, the trajectories of all (valid and invalid)
points must be carefully controlled. This turns out not to be easily possible using
the classical encodings.

Let us insist on the fact that we restrict to continuous dynamics. In this
context, this is an additional source of difficulties. Indeed, such a system must
necessarily have a sub-region which dynamics cannot be easily interpreted in
terms of configurations.

In other words, the difficulty is in dealing with points and trajectories not
corresponding to valid configurations or evolutions.

2 Preliminaries

2.1 Notations

The set of non-negative integers is denoted N and the set of the first n naturals
is denoted Nn = {0, 1, . . . , n − 1}. For any finite set Σ, let Σ∗ denote the set of
finite words over Σ. For any word w ∈ Σ∗, let |w| denote the length of w. Finally,
let λ denote the empty word. If w is a word, let w1 denote its first character,
w2 the second one and so on. For any i, j ∈ N, let wi...j denote the subword
wiwi+1 . . . wj . For any σ ∈ Σ, and k ∈ N, let σk denote the word of length k
where all symbols are σ. For any function f , let f � E denote the restriction of
f to E and let dom(f) denote the domain of definition of f . For any set S ∈ Rd,
S̊ denotes the interior of S.

On The Complexity of Bounded Time Reachability 23

2.2 Piecewise Affine Functions

Let I denote the unit interval [0, 1]. Let d ∈ N. A convex closed polyhedron in
the space Id is the solution set of some linear system of inequalities:

Ax ≤ b (1)

with coefficient matrix A and offset vector b. Let PAFd denote the set of
piecewise-affine continuous functions over Id. For any f : Id → Id in PAFd,
f satisfies:

• f is continuous,

• there exists a sequence (Pi)1≤i≤p of convex closed polyhedron with nonempty

interior such that fi = f � Pi is affine, Id =
⋃p

i=1 Pi and P̊i ∩ P̊j = ∅ for
i �= j.

In the following discussion we will always assume that any polyhedron P can
be defined by a finite set of linear inequalities, where all the elements of A and
b in (1) are all rationals. A polyhedron over which f is affine we also be called
a region.

2.3 Decision Problems

In this paper, we will show hardness results by reduction to known hard prob-
lems. We give the statement of these latter problems in the following.

Problem: SUBSET-SUM
Inputs: a goal B ∈ N and integers A1, . . . , An ∈ N.
Question: ∃I ⊆ {1, . . . , n},

∑
i∈I Ai = B?

Theorem 6 ([12]). SUBSET-SUM is NP-complete.

Problem: NOSUBSET-SUM
Inputs: a witness B ∈ N and integers A1, . . . , An ∈ N.
Question: ∀I ⊆ {1, . . . , n},

∑
i∈I Ai �= B?

Theorem 7. NOSUBSET-SUM is coNP-complete.

Proof. Basically the same proof as Theorem 6

3 Hardness of Bounded Time Reachability

In this section, we will show that REACH-REGION-TIME is an NP -hard problem
by reducing it to SUBSET-SUM.

24 H. Bazille et al.

3.1 Solving SUBSET-SUM by Iteration

We will now show how to solve the SUBSET-SUM problem with a simple iterated
function. Consider an instance I = (B,A1, . . . , An) of SUBSET-SUM. We will
need to introduce some notions before defining our piecewise affine function.
Our first notion is that of configurations, which represent partial summation of
the number for a given choice of I.

Remark 8. Without loss of generality, we will only consider instances where Ai �
B, for all i. Indeed, if Ai > B, it will never be part of a subset sum and so we
can simply remove this variable from the problem. This ensures that Ai < B+1
in everything that follows.

Definition 9 (Configuration). A configuration of I is a tuple (i, σ, εi, . . . , εn)
where i ∈ {1, . . . , n + 1}, σ ∈ {0, . . . , B + 1}, εi ∈ {0, 1} for all i. Let CI be the
set of all configurations of I.

The intuitive understanding of a configuration, made formal in the next defi-
nition, is the following: (i, σ, εi, . . . , εn) represents a situation where after having
summed a subset of {A1, . . . , Ai−1}, we got a sum σ and εj is 1 if and only if we
are to pick Aj in the future.

Definition 10 (Transition function). The transition function TI : CI → CI,
is defined as follows:

TI(i, σ, εi, . . . , εn) =

{
(i, σ) if i = n+ 1

(i + 1,min (B + 1, σ + εiAi) , εi+1, . . . , εn) otherwise

It should be clear, by definition of a subset sum that we have the following
simulation result.

Lemma 11. For any configuration c = (i, σ, εi, . . . , εn) and k ∈ {0, . . . , n+ 1−
i},

T
[k]
I (c) = (i + k,min

(
B + 1, σ +Σi+k−1

j=i εjAj

)
, εi+k, . . . , εn)

Proof. By induction.

A consequence of this simulation by iterated function, is that we can refor-
mulate satisfiability in terms of reachability.

Lemma 12. I is a satisfiable instance (i.e., admits a subset sum) if and only

if there exists a configuration c = (1, 0, ε1, . . . , εn) ∈ CI such that T
[n]
I (c) =

(n+ 1, B).

3.2 Solving a SUBSET-SUM Problem with a Piecewise Affine Function

In this section, we explain how to simulate the function TI using a piece-
wise affine function and some encoding of the configurations for a given I =
(B,A1, . . . , An).

On The Complexity of Bounded Time Reachability 25

Definition 13 (Encoding). Define p = �log2(n + 2)�, ω = �log2(B + 2)�,
q = p + ω + 1 and β = 5. Also define 0� = 1 and 1� = 4. For any configuration
c = (i, σ, εi, . . . , εn), define the encoding of c as follows:

〈c〉 =

⎛⎝i2−p + σ2−q, 0�β−n−1 +

n∑
j=i

ε�i β
−i

⎞⎠
Also define the following regions for any i ∈ {1, . . . , n+1} and α ∈ {0, . . . , β−1}:

R0 = [0, 2−p−1]× [0, 1] Ri = [i2−p, i2−p + 2−p−1]× [0, β−i+1] (i � 1)

Ri,α =
[
i2−p, i2−p + 2−p−1

]
×
[
αβ−i, (α + 1)β−i

]
Ri = ∪α∈Nβ

Ri,α

Rlin
i,1� =

[
i2−p, i2−p + (B + 1−Ai)2

−q
]
×
[
1�β−i, 5β−i

]
Rsat

i,1� = Ri,1� \Rlin
i,1�

The rationale behind this encoding is the following. On the first coordinate we
put the current number i, “shifted” by as many bits as necessary to be between 0
and 1. Following i, we put σ, also shifted by as many bits as necessary. Notice that
there is one padding bit between i and σ; this is necessary to make the regions
Ri disjoint from each other. On the second component, we put the description
of the variables εj, written in basis β to get some “space” between consecutive
encodings. The choice of the value 1 and 4 for the encoding of 0 and 1, although
not crucial, has been made to simplify the proof as much as possible.

The region R0 is for initialization purposes and is defined differently for the
other Ri. The regions Ri correspond to the different values of i in the config-
uration (the current number). Each Ri is further divided into the Ri,α which
correspond to all the possible values of the next ε variable (recall that it is en-
coded in basis β). In the special case of ε = 1, we cut the region Ri,1� into a linear
part and a saturated part. This is needed to emulate the max(σ +Ai, B + 1) in
Definition 10: the linear part corresponds to σ + Ai and the saturated part to
B + 1.

Figure 1 and Figure 2 give a graphical representation of the regions.

Lemma 14. For any configuration c = (i, σ, εi, . . . , εn), if i = n + 1 then 〈c〉 ∈
Rn+1,0� , otherwise 〈c〉 ∈ Ri,ε�i

. Furthermore if εi = 1 and σ +Ai � B + 1, then

〈c〉 ∈ Rlin
i,1� , otherwise 〈c〉 ∈ Rsat

i,1� .

We can now define a piecewise affine function which will mimic the behavior
of TI . The region R0 is here to ensure that we start from a “clean” value on the
first coordinate.

Definition 15 (Piecewise affine simulation).

fI(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(2−p, b) if (a, b) ∈ R0

(a, b) if (a, b) ∈ Rn+1

(a + 2−p, b− 0�β−i) if (a, b) ∈ Ri,0�

(a + 2−p +Ai2
−q, b− 1�β−i) if (a, b) ∈ Rlin

i,1�

((i + 1)2−p + (B + 1)2−q, b− 1�β−i) if (a, b) ∈ Rsat
i,1�

26 H. Bazille et al.

0 1

1

0

R0

Rn+1

R1

R2

B = 2 n = 2 p = 2 ω = 2 β = 5

Fig. 1. Graphical representation of the regions

Lemma 16 (Simulation is correct). For any configuration c ∈ CI, 〈TI(c)〉 =
fI(〈c〉).

Notice that we have defined f over a subset of the entire space and it is clear
that this subspace is not stable in any way1. In order to match the definition of
a piecewise affine function, we need to define f over the entire space or a stable
subspace (which contains the initial region). We follow this second approach
and extend the definition of f on some more regions. More precisely, we need to
define f over Ri = Ri,0∪Ri,1∪Ri,2∪Ri,3∪Ri,3 and at the moment we have only
defined f over Ri,1 = Ri,0� and Ri,4 = Ri,1� . Also note that Ri,4 = Rlin

i,4 ∪Rsat
i,4

and we define f separately on those two subregions.
In order to correctly and continuously extend f , we will need to further split

the region Ri,3 into linear and saturated parts Rslo
i,3 and Rshi

i,3 : see Figure 2.

Definition 17 (Extended region splitting). For i ∈ {1, . . . , n} and α ∈
{0, . . . , β − 1}, define:

Rlin
i,3 = Ri,3 ∩

{
(a, b)

∣∣ bβi − 3 � 2−p−1 + i2−p − a

2−p−1 − (B + 1− Ai)2−q

}
Rsat

i,3 = Ri,3 \ Rlin
i,3

It should be clear by definition that Rsat
i,3 = Rslo

i,3 ∪ Rshi
i,3 and that the two

subregions are disjoint except on the border.

1 For example R1,1 ⊆ f(R0) but f is not defined over R1,1.

On The Complexity of Bounded Time Reachability 27

i2−p i2−p + 2−p−1

β−i+1

0

i2−p + (B + 1−Ai)2
−q

Ri,0 : (a+ 2−p, 0)

Ri,0� : (a+ 2−p, b− 0�β−i)

Ri,2 : (a+ 2−p, 3β−i − b)

Rlin
i,3 : (a+ 2−p +Ai2

−q(bβi − 3), 0)
Rsat

i,3 : (�)

Rlin
i,1� : (a+ 2−p +Ai2

−q, b− 1�β−i) Rsat
i,1� :

((i+ 1)2−p + (B + 1)2−q,
b− 1�β−i)

β−i

2β−i

3β−i

4β−i

(�) : ((i+ 1)2−p + 2−p−1 − (bβi − 3)(2−p−1 − (B + 1)2−q), 0)

Fig. 2. Zoom on one Ri with the subregions and formulas

Definition 18 (Extended piecewise affine simulation).

fI(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a+ 2−p, 0) if (a, b) ∈ Ri,0

(a+ 2−p, 3β−i − b) if (a, b) ∈ Ri,2

(a+ 2−p +Ai2
−q(bβi − 3), 0) if (a, b) ∈ Rlin

i,3

((i+ 3
2)2

−p − (bβi − 3)(2−p−1 − (B + 1)2−q), 0) if (a, b) ∈ Rsat
i,3

This extension was carefully chosen for its properties. In particular, we will see
that f is still continuous, which is a requirement of the piecewise affine functions
we consider. Also, the domain of definition of f is f -stable (i.e. f(dom f) ⊆
dom f). And finally, we will see that f is somehow “reversible”.

Lemma 19 (Simulation is continuous). For any i ∈ {1, . . . , n}, fI(Ri) is
well-defined and continuous over Ri.

Lemma 20 (Simulation is stable). For any i ∈ {1, . . . , n}, fI(Ri) ⊆ Ri+1.
Furthermore, f(R0) ⊆ R1 and f(Rn+1) ⊆ Rn+1.

We now get to the core lemma of the simulation. Up to this point, we were
only interested in forward simulation: that is given a point, what are the iterates
of x. In order to prove the NP -hardness result, we need a backward result: given
a point, what are the possible preimages of it. To this end, we introduce new
subregions of the Ri which we call unsaturated. Intuitively, Runsat

i corresponds
to the encodings where σ � B, that is the sum did not saturate at B + 1. We
also introduce the Rfin region which will be the region to reach. We will be
interested in the preimages of Rfin.

28 H. Bazille et al.

Definition 21 (Unsaturated regions). For i ∈ {1, . . . , n+ 1}, define

Runsat
i = [i2−p, i2−p +B2−q]× [β−n−1, β−i+1 − β−n−1]

Rfin = [(n + 1)2−p +B2−q − 2−q−1, (n+ 1)2−p +B2−q]× [β−n−1, 2β−n−1]

Lemma 22 (Simulation is reversible). Let i ∈ {2, . . . , n} and (a, b) ∈ Runsat
i

Then the only points x such that fI(x) = (a′, b′) are:

– x = (a − 2−p, b′ + 0�β−i+1) ∈ Ri−1,0� ∩Runsat
i−1

– x = (a − 2−p, βi − b′ + 0�β−i+1) ∈ Ri−1,2 ∩Runsat
i−1

– x = (a − 2−p − Ai2
−q, b′ + 1�β−i+1) ∈ Rlin

i−1,1� ∩ Runsat
i−1 (only if a � 2−p +

Ai2
−q)

The goal of those results in to show if there is a point in Rfin which is
reachable from R0 then we can extract, from its trajectory, a configuration which
also reaches Rfin. Furthermore, we arranged so that Rfin contains the encoding
of only one configuration:(n+ 1, B) (see Lemma 12).

Lemma 23 (Backward-forward identity). For any point x ∈ Rfin, if there

exists a point y ∈ R0 and an integer k such that f
[k]
I (y) = x then there exists a

configuration c = (1, 0, ε1, . . . , εn) such that f
[k]
I (〈c〉) ∈ Rfin.

Lemma 24 (Final region is accepting). For any configuration c, if 〈c〉 ∈
Rfin then c = (n + 1, B).

3.3 Complexity Result

We now have all the tools to show that REACH-REGION-TIME is an NP -hard
problem.

Theorem 25. REACH-REGION-TIME is NP -hard for d � 2.

Proof. Let I = (B,A1, . . . , An) be a instance of SUBSET-SUM. We consider the
instance J of REACH-REGION-TIME defined in the previous section with maxi-
mum number of iterations set to n (the number of Ai), the initial region set
to R0 and the final region set to Rfin. One easily checks that this instance has
polynomial size in the size of I. The two directions of the proofs are:

– If I is satisfiable then use Lemma 11 and Lemma 16 to conclude that there
is a point x ∈ R0 in the initial region such that f

[n]
I (x) ∈ Rfin so J is

satisfiable.
– If J is satisfiable then there exists x ∈ R0 and k � n such that f

[k]
I (x) ∈

Rfin. Use Lemma 23 and Lemma 16 to conclude that there exists a config-

uration c = (1, 0, ε1, . . . , εn) such that 〈T [k]
I (c)〉 = f

[k]
I (〈c〉) ∈ Rfin. Ap-

ply Lemma 24 and use the injectivity of the encoding to conclude that

T
[k]
I (c) = (n+ 1, B) and Lemma 12 to get that I is satisfiable.

On The Complexity of Bounded Time Reachability 29

4 Solving of Bounded Time Reachability

In the previous section we focused on what we can do with a reachability problem,
and specifically how to solve a NP-hard problem with it. In this section, we take
any such reachability problem and focus on how to actually solve it. More precisely
we are interested in the complexity of solving the REACH-REGION-TIME problem.

4.1 Notations and Definitions

For any i = 1, . . . , d, let πd
i : Id → I denote the ith projection function, that

is, π(x1, . . . , xd) = xi. Let gd : Id+1 → Id be defined by gd(x1, . . . , xd+1) =
(x1, . . . , xd). For a square matrix A of size (d+ 1)× (d+ 1) define the following
pair of projection functions. The first function h1,d takes as input a square matrix
A of size (d+ 1)× (d+1) and returns a square matrix of size d× d which is the
upper-left block of A. The second function h2,d takes as input a square matrix A
of size (d+1)×(d+1) and returns the vector of size d given by [a1,d+1 · · ·ad,d+1]

T

(the last column of A minus the last element).
Let s denote the size function, its domain of objects will be overloaded and

understood from the context. For x ∈ Z, s(x) is the length of the encoding of x
in base 2. For x ∈ Q with x = p

q we have s(x) = max(s(p), s(q)). For an affine

function f we define the size of f(x) = Ax + b (where all entries of A and b
are rationals) as: s(f) = max(maxi,j(s(ai,j)),max(s(bi))). We define the size of
a polyhedron r defined by Ax � b as: s(r) = max(s(A), s(b)).

We define the size of a piecewise affine function f as: s(f) = maxi(s(fi), s(ri))
where fi denotes the restriction of f to ri the ith region.

We define the signature of a point x as the sequence of indices of the regions
traversed by the iterates of f on x (that is, the region trajectory).

4.2 Results

In order to solve a reachability problem, we will formulate it with linear algebra.
However a crucial issue here is that of the size of the numbers, especially when
computing powers of matrices. Indeed, if taking the nth power of A yields a
representation of exponential size, no matter how fast our algorithm is, it will
run on exponentially large instances and thus be slow.

First off, we show how to move to homogenous coordinates so that f becomes
piecewise linear instead of piecewise affine.

Lemma 26. Assume that f(x) = Ax + b with A = (ai,j)1�i,j�d and let y =

A′(x, 1)T where A′ is the block matrix

(
A b
0 1

)
. Then f(x) = gd(A

′(x, 1)T).

Remark 27. Notice that this lemma extends nicely to the composition of affine
functions: if f(x) = Ax+b and h(x) = Cx+d then h(f(x)) = gd(C

′A′(x, 1)T).

We can now state the main lemma, namely that the size of the iterates of f
vary linearly in the number of iterates, assuming that f is piecewise affine.

30 H. Bazille et al.

Lemma 28. Let d � 2 and f ∈ PAFd. Assume that all the coefficients of f
on all regions are rationals. Then for all t ∈ N, s(f [t]) � (d + 1)2s(f)pt + (t −
1)�log2(d+1)� where p is the number of regions of f . This inequality holds even
if all rationals are taken to have the same denominator.

Finally, we need some result about the size of solutions to systems of linear
inequalities. Indeed, if we are going to quantify over the existence of a solution
of polynomial size, we must ensure that the size constraints does not change the
satisfiability of the system.

Lemma 29 ([13]). Let A be a N × d integer matrix and b an integer vector.
If the Ax � b system admits a solution, then there exists a rational solution xs

such that s(xs) � (d+ 1)L+ (2d + 1) log2(2d+ 1) where L = max(s(A), s(b)).

Proof. See Theorem 5 of [13]: s(xs) � s
(
(2d+ 1)!2L(2d+1)

)
.

Putting everything together, we obtain a fast nondeterministic algorithm to
solve REACH-REGION-TIME. The nondeterministism allows use to choose a sig-
nature for the solution. Once the signature is fixed, we can write it as a linear
program of reasonable size using Lemma 28 and solve it. The remaining issue is
the one of the size of solution but fortunately Lemma 29 ensures us that there
is a small solution which can be found quickly.

Theorem 30. REACH-REGION-TIME is in NP .

5 Other Results

In this section, we give succint proofs of the other result mentioned in the intro-
duction about CONTROL-REGION-TIME. The proof is based on the same arguments
as before.

Theorem 31. Problem CONTROL-REGION-TIME is coNP -hard for d � 2.

Proof. The proof is exactly the same except for two details:

– we modify f over Rn+1 as follows: divide Rn+1 in three regions: Rlow which
is below Rfin, Rfin and Rhigh which is above Rfin. Then build f such that
f(Rlow) ⊆ Rlow, f(Rfin) ⊆ Rfin and f(Rhigh) ⊆ Rlow.

– we choose a new final region R′
fin = Rlow.

Let I = (B,A1, . . . , An) be an instance of NOSUBSET-SUM, let J be the corre-
sponding instance of CONTROL-REGION-TIMEwe just built. We have to show
thatI has no subset sum if and only ifJ is “controlled”.This is the same as showing
that I has a subset sum if and only if J has points never reachingR′

fin.
Now assume for a moment that the instance is in SUBSET-SUM (as opposed

to NOSUBSET-SUM), then by the same reasoning as the previous proof, there
will be a point which reaches the old Rfin region (which is disjoint from R′

fin).
And since Rfin is a f -stable region, this point will never reach R′

fin.

On The Complexity of Bounded Time Reachability 31

And conversely, if the control problem is not satisfied, necessarily there is
a point which trajectory went through the old Rfin (otherwise if would have
reached either Rlow = R′

fin or Rhigh but f(Rhigh) ⊆ Rlow). Now we proceed as
in the proof of Theorem 25 to conclude that there is a subset which sums to B,
and thus I is satisfiable.

Theorem 32. Problem CONTROL-REGION-TIME is in coNP .

Proof. Again the proof is very similar to that of Theorem 30: we have to build
a non-deterministic machine which accepts the “no” instances. The algorithm
is exactly the same except that we only choose signatures which avoid the final
region (as opposed to end by the final region) and are of maximum length (that
is t = T as opposed to t � T). Indeed, if there is a such a trajectory, the
problem is not satisfied. And for the same reasons as Theorem 30, it runs in
non-deterministic polynomial time.

References

1. Koiran, P., Cosnard, M., Garzon, M.: Computability with low-dimensional dynam-
ical systems. Theoretical Computer Science 132, 113–128 (1994)

2. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? Journal of Computer and System Sciences 57, 94–124 (1998)

3. Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity 4, 199–230 (1991)

4. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. Jour-
nal of Computer and System Sciences 50, 132–150 (1995)

5. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

6. Koiran, P., Cosnard, M., Garzon, M.: Computability with Low-Dimensional Dy-
namical Systems. Theoretical Computer Science 132, 113–128 (1994)

7. Asarin, E., Schneider, G.: Widening the boundary between decidable and unde-
cidable hybrid systems. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002)

8. Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reachability
problem for planar differential inclusions. In: Di Benedetto, M.D., Sangiovanni-
Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Hei-
delberg (2001)

9. Bell, P., Chen, S.: Reachability problems for hierarchical piecewise constant deriva-
tive systems. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
46–58. Springer, Heidelberg (2013)

10. Ben-Amram, A.M.: Mortality of iterated piecewise affine functions over the inte-
gers: Decidability and complexity. In: STACS, pp. 514–525 (2013)

11. Blondel, V.D., Bournez, O., Koiran, P., Tsitsiklis, J.: The stability of saturated lin-
ear dynamical systems is undecidable. Journal of Computer and System Science 62,
442–462 (2001)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Co. (1979)

13. Koiran, P.: Computing over the reals with addition and order. Theor. Comput.
Sci. 133, 35–47 (1994)

Reachability and Mortality Problems

for Restricted Hierarchical Piecewise Constant
Derivatives

Paul C. Bell1, Shang Chen1, and Lisa Jackson2

1 Department of Computer Science, Loughborough University
2 Department of Aeronautical and Automotive Engineering,

Loughborough University
{P.Bell,S.Chen3,L.M.Jackson}@lboro.ac.uk

Abstract. We show the NP-hardness of the reachability and mortality
problems for a three dimensional variant of Piecewise Constant Deriva-
tive (PCD) system called a bounded 3-dimensional RestrictedHierarchical
PCD (3-RHPCD). Both problems are shown to be in PSPACE, even for n-
dimensional RHPCD. This is a restricted model with similarities to other
models in the literature suchas stopwatchautomata, rectangular automata
and PCDs.We also show that for an unbounded 3-RHPCD, both problems
become undecidable via a simulation of a Minsky machine.

1 Introduction

The model of Piecewise Constant Derivative (PCD) system is a natural and
intuitive hybrid system model. An n-dimensional PCD is a finite set of non-
overlapping bounded or unbounded convex n-dimensional regions, for which each
region is assigned a constant derivative. This derivative defines the direction
of flow of points within that region, with the derivative changing when the
trajectory passes from one region to the next. See Section 2 for formal definitions.

Among the possible problems one may consider for PCDs is the reachability
problem. The reachability problem asks, given a PCD and two points x and
y, does the trajectory starting at point x ever reach point y after some finite
amount of time? It was shown in [11] that the reachability problem for 2-PCDs is
decidable. In contrast, it was shown in [2] that reachability for 3-PCDs is actually
undecidable.

In [4], a related model, called a Hierarchical Piecewise Constant Derivative
(HPCD) system was introduced. An HPCD is a two-dimensional hybrid automa-
ton where the dynamics in each discrete location is given by a 2-PCD (formal
details are given in Section 2). Certain edges in the HPCD are called (transition)
guards and cause the HPCD to change location if ever the trajectory reaches
such an edge. When transitioning between locations, an affine reset rule may
be applied. If all regions of the underlying PCDs are bounded, then the HPCD
is called bounded. This model can thus be seen as an extension of a 2-PCD.
Indeed, the reachability problem for a one-dimensional Piecewise Affine Map

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 32–44, 2014.
c© Springer International Publishing Switzerland 2014

Reachability and Mortality Problems for Hierarchical PCDs 33

(1-PAM), which is a longstanding open problem, was shown to be equivalent to
that of reachability for a bounded HPCD with either: i) comparative guards,
identity resets and elementary flows in Proposition 3.20 of [3] or else ii) affine
resets, non-comparative guards and elementary flows in Lemma 3.4 of [3] (See
Section 2 for definitions).

Further results for HPCDs were shown in [5]. The model of Restricted HPCD
(RHPCD) was defined, which is an HPCD with restricted components. We aimed
to study which restrictions of an HPCD lead to decidable reachability results.
Essentially, the HPCD must have identity resets, elementary flows (derivatives
of all continuous variables come from {0,±1}) and non-comparative guards (all
guards aligned with the x and y axes). These restrictions on the resets, deriva-
tives and guards seem natural ones to consider. For example, restricting to iden-
tity resets means the trajectory will not have discontinuities in the continuous
component, which is similar to a PCD trajectory. Restricting the derivatives to
elementary flows ({0,±1}) has similarities to a stopwatch automaton, for which
all derivatives are from {0, 1}. Restricting the guards to be non-comparative
gives strong similarities to the guards of a rectangular automaton [9], as well as
the diagonal-free clock constraints of an updatable timed automaton [7].

Reachability for 2-RHPCDs was shown to be decidable. Together with the
results in [3] mentioned above, the reachability problem for HPCDs was shown
to be equivalent to that of 1-PAMs when the HPCD only has one of the following:
comparative guards, linear resets or arbitrary constant flows. Furthermore, if the
model is endowed with a non-deterministic transition function between locations,
then the reachability problem becomes NP-hard.

Related to the reachability problem is the mortality problem. The mortality
problem is the problem of determining if all valid initial points eventually reach
some particular fixed point configuration (the mortal configuration). There is
potentially more than one way to define the mortality problem for HPCDs.
In this paper, we define the mortality problem to mean that from any valid
initial configuration, the trajectory will reach some fixed point (0, 0, 0) in a finite
amount of time, after which the point never changes. Thus the trajectory can
be said to halt at this stage.

In this paper, we consider an n-dimensional analogue of RHPCDs, which we
denote n-RHPCD. In an analogous way to [3], our aim is to study the following
question: “What is the simplest class of hybrid systems for which reachability
is intractable or undecidable?” We show a lower bound that the reachability
and mortality problems for bounded 3-RHPCDs are NP-hard by an encoding
of the simultaneous incongruences problem. We then show that the reachability
problem for unbounded 3-RHPCDs is actually undecidable by an encoding of a
Minsky machine. Note that the reachability problem for a 3-dimensional HPCD
is undecidable, even with only one location, since HPCDs are a superclass of
3-dimensional PCDs for which reachability is undecidable [2]. Finally, we give
an upper bound by showing that the reachability and mortality problems for
bounded n-RHPCD are in PSPACE.

34 P.C. Bell, S. Chen, and L. Jackson

Note that the systems we construct in this paper deal with trajectories of
‘tubes’ instead of single lines, which means tiny perturbations will not affect our
results. This seems to coincide with the definition of tube languages introduced
in [10] and implies that our models are robust in the properties considered in
this paper, but we do not give full details in this conference version of the paper.

2 Preliminaries

Intervals of the form (s, t), [s, t), (s, t], [s, t] are called open, half-open or closed
bounded rational intervals (respectively), where s, t ∈ Q. Let S ∈ Rn be a set
in the n-dimensional Euclidean space. We define the closure of S to be the
smallest closed set containing S, denoted S. We use similar definitions as [3] for
the following.

Definition 1. (HA) An n-dimensional Hybrid Automaton (HA) [1] is a tuple
H = (X , Q, f , l0, Inv, δ) consisting of the following components:

(1) A continuous state space X ⊆ Rn. Each x ∈ X can be written x = (x1, . . . ,
xn), and we use variables x1, . . . , xn to denote components of the state vec-
tor.

(2) A finite set of discrete locations Q.

(3) A function f : Q → (X → Rn), which assigns a continuous vector field on X
to each location. In location l ∈ Q, the evolution of the continuous variables
is governed by the differential equation ẋ = fl(x). The differential equation
is called the dynamics of location l.

(4) An initial condition I0 : Q → 2X assigning initial values to variables in each
location.

(5) An invariant Inv: Q → 2X . For each l ∈ Q, the continuous variables must
satisfy the condition Inv(l) in order to remain in location l, otherwise it
must make a discrete transition.

(6) A set of transitions δ. Every tr ∈ δ is of the form tr = (l, g, γ, l′), where
l, l′ ∈ Q, g ⊂ X is called the guard, defining when the discrete transition
can occur, γ ⊂ X ×X is called the reset relation applied after the transition
from l to l′.

An HA is deterministic if it has exactly one solution for its differential equation
in each location and the guards for the outgoing edges of locations are mutually
exclusive. A configuration of an HA is a pair from Q × X . A trajectory of a
hybrid automaton H starting from configuration (l0,x0) where l0 ∈ Q,x0 ∈ X
is a pair of functions πl0,x0 = (λl0,x0(t), ξl0,x0(t)) such that

(1) λl0,x0(t) : [0,+∞) → Q is a piecewise function constant on every interval
[ti, ti+1).

(2) ξl0,x0(t) : [0,+∞) → Rn is a piecewise differentiable function and in each
piece ξl0,x0 is càdlàg (right continuous with left limits everywhere).

Reachability and Mortality Problems for Hierarchical PCDs 35

(3) On any interval [ti, ti+1) where λl0,x0 is constant and ξl0,x0 is continuous,

ξl0,x0(t) = ξl0,x0(ti) +

∫ t

ti

fλl0,x0
(ti)(ξl0,x0(τ))dτ

for all τ ∈ [ti, ti+1).
(4) For any ti, there exists a transition (l, g, γ, l′) ∈ δ such that

(i) λl0,x0(ti) = l and λl0,x0(ti+1) = l′;
(ii) ξ−l0,x0

(ti+1) ∈ g(l, l′) where ξ−l0,x0
(t) means the left limit of ξl0,x0 at t;

(iii) (ξ−l0,x0
(ti+1), ξl0,x0(ti+1)) ∈ γ.

Definition 2. (n-PCD) An n-dimensional Piecewise Constant Derivative (n-
PCD) system [2] is a pair H = (P,F) such that:

(1) P = {Ps}1≤s≤k is a finite family in Rn, where Ps ⊆ Rn are non-overlapping
convex polygonal sets.

(2) F = {cs}1≤s≤k is a family of vectors in R.
(3) The dynamics are given by ẋ = cs for x ∈ Ps.

An n-PCD is called bounded if for its regions P = {Ps}1≤s≤k, there exists
r ∈ Q+, such that for all Ps, we have that Ps ⊆ B0(r), where B0(r) is an
origin-centered open ball of radius r and appropriate dimension. We define the
support set of a PCD H as SuppPCD(H) =

⋃
1≤s≤k Ps.

For full definitions of Hybrid Automata and their trajectories, see [5]. In
the following we slightly modify the definition of HPCD [3] to allow different
dimensions to be studied.

Definition 3. (n-HPCD) A n-dimensional Hierarchical Piecewise Constant
Derivative (n-HPCD) system is a hybrid automaton H = (X , Q, f , l0, Inv, δ)
such that Q and l0 are defined as in Definition 1, with the dynamics at each
l ∈ Q given by an n-PCD and each transition tr = (l, g, γ, l′) is such that: (1)
Its guard g is a convex region such that g ⊆ Rn−1; and (2) The reset relation
γ is an affine function of the form: x′ = γ(x) = Ax + b, where A ∈ Rn×n

and b ∈ Rn. We denote the internal guards of an HPCD location to be the
guards of the underlying PCD regions which cause a change of region when they
are reached. The transition guards are the guards used in transitions between
locations. The Invariant (Inv) for a location l is defined to be SuppPCD(H) \ Gl,
where SuppPCD(H) is the support set of the underlying PCDs of the HPCD and
Gl is the set of transition guards in location l. If all the PCDs are bounded, then
the n-HPCD is said to be bounded.

In this paper, we are interested in a restricted form of n-HPCD.

(I) Under the HPCD model, when transitioning between locations, we may
apply an affine reset to non-continuously modify the current point. An
n-HPCD has identity (or no) resets if for every transition tr = (l, g, γ, l′),
γ(x) = x for all points x ∈ Rn. This means that starting from any initial
configuration (l0,x0), for the trajectory πl0,x0 = (λl0,x0(t), ξl0,x0(t)) we
have that ξl0,x0(t) is a continuous function of t. Note that the trajectory for
a PCD is also continuous, and thus this seems to be a natural restriction.

36 P.C. Bell, S. Chen, and L. Jackson

(II) An n-HPCD system has elementary flows if the derivatives of all variables
in each location are from {0,±1}, otherwise it has arbitrary constant flows.

(III) Guards are used to change the derivative being applied within a loca-
tion (internal guards), or to change which location we are in (transition
guards). They can be described by Boolean combinations of atomic formu-
lae (linear inequalities). If each atomic formula contains only one variable,
then the guard is called non-comparative (meaning the guard is aligned
with ones of the axes). An n-HPCD has non-comparative guards if all
guards (both internal and transition) are non-comparative, e.g., for a 3-
RHPCD, 3

2 ≤ x ≤ 7 ∧ y = −1 ∧ 2 ≤ z ≤ 7 is a non-comparative guard,
but 0 ≤ x ≤ 1 ∧ 0 ≤ y ≤ 1

2 ∧ z = 5 ∧ x = 2y is a comparative guard (due
to the term x = 2y).

Definition 4. (n-RHPCD) An n-dimensional Restricted Hierarchical Con-
stant Derivative System (RHPCD) is a bounded n-HPCD with identity resets,
non-comparative guards, elementary flows and a finite number of PCD regions.
See Fig. 2a and Fig. 2b for an example of a 3-RHPCD.

Finally, we will also require the following simultaneous incongruences problem,
which is known to be NP-complete [8].

Problem 1. (Simultaneous incongruences) Given a set {(a1, b1), . . . , (an,
bn)} of ordered pairs of positive integers with ai ≤ bi for 1 ≤ i ≤ n. Does there
exist an integer k such that k �≡ ai (mod bi) for every 1 ≤ i ≤ n?

3 Reachability and Mortality for n-RHPCDs

The following lemma shows that if an instance of the simultaneous incongruences
problem has a solution, then there must be a solution less than a particular
bound.

Lemma 1. There exist solutions for the simultaneous incongruences problem
with a collection {(a1, b1), . . . , (an, bn)} if and only if there exists a solution k
such that 0 < k ≤ ρ, where

ρ = lcm(b1, . . . , bn)

and lcm(b1, . . . , bn) is the least common multiple of b1, . . . , bn.

Proof. The sufficient part is trivial. We show the necessary part. Given an in-
stance {(a1, b1), . . . , (an, bn)}, let ρ = lcm(b1, . . . , bn). Then for every 1 ≤ i ≤ n,
ρ ≡ 0 (mod bi).

For every integer k > ρ, we can rewrite k as k = k0+mρ, where 0 < k0 ≤ ρ and
m ∈ N. Suppose there exists a solution ks > ρ. According to the simultaneous
incongruences problem, we know that ks �≡ ai (mod bi) for all i, where 1 ≤ i ≤ n.
So we can find a k0, where 0 < k0 ≤ ρ, and a positive integer m such that

ks ≡ k0 +mρ �≡ ai (mod bi),

Reachability and Mortality Problems for Hierarchical PCDs 37

for every i, where 1 ≤ i ≤ n. But ρ ≡ 0 (mod bi) for all 1 ≤ i ≤ n, which implies
that

k0 �≡ ai (mod bi)

for all 1 ≤ i ≤ n, thus k0 is the solution we want. �

Theorem 1. The reachability problem for bounded 3-RHPCD systems is NP-
hard.

Proof. Consider an instance of the simultaneous incongruences problem with n
pairs. We will encode the instance into a reachability problem for a 3-RHPCD.
Starting from k = 1, we test whether k mod bi �= ai holds for each pair (ai, bi).
If it does hold for every i, then the current value of k is the solution. If for some
i we find k mod bi = ai, then the current value of k is not a potential solution.
We increase the value of k by 1 and start the testing all over again. By Lemma 1
there are at most ρ integers to test.

Simulation of modulo operations

P QI

k := k+1

k is not
a solution

Fig. 1. Reachability problem for 3-RHPCD (Location I actually represents 3 locations
I1, I2 and I3)

We construct the corresponding 3-RHPCD in the following way. We define 5
locations P,Q, I1, I2 and I3. Locations P andQ together can simulate the modulo
operation test for a certain value of k and every pair of (ai, bi). Locations I1, I2
and I3 can increase the value of k by 1 when we find the current k is not a
potential solution. See Fig. 1. Define regions Ai and Bi in locations P and Q :

Ai = (si−1, si)× (0, ρ)× (0, ρ);
Bi = (si−1, si)× (0, ρ)× (−ρ, 0),

where i ∈ {1, 2, ..., n}, s0 = 0, si =
∑i

1 bi for 1 ≤ i ≤ n, and ρ = lcm(b1, . . . , bn).
We call a region odd (resp. even) Ai or Bi if i is odd (resp. even). We also define
surface O :

O = [0, sn]× [0, ρ]× {0}.

To simulate the modulo operation for a certain pair (ai, bi), we use the regions
odd Ai and even Bi in both locations P and Q. Define the derivative to be
(1, 1,−1) in odd Ai in P ((1, 1, 1) in even Bi in P) and (−1, 0, 0) in both odd
Ai and even Bi in Q. See Fig. 2. Intuitively, we arrange the regions alternately

38 P.C. Bell, S. Chen, and L. Jackson

(x)

(y)

(z)

0 s1 s2 s3

G1

(1,1,-1)

(0,-1,-1)

(1,1,1)

(0,-1,1)

G2

X1+

X2-

F1-

F2+

G3 G4

X3+

F3-

F4+

(a) Location P

(z)

0 (x)

(y)
(-1,0,0)

(1,0,0)

s1 s2 s3

X0+

X1-

X2+

X3-

(b) Location Q

Fig. 2. 3-RHPCD simulating simultaneous incongruences problem (only location P
and location Q are shown)

above and below the O surface instead of stacking them together. This is to
avoid them sharing a common surface, which may cause nondeterminism when
we define a (transition) guard on that surface.

For a point (x, y, z), we use the z coordinate to represent the current value
of k and the y coordinate as a memory. Assuming i is odd (see Table. 1 for full
details of both odd and even cases), we start at point x0 = (si−1, 0, k) in P
and move according to the flow ẋ = (1, 1,−1). While |z| > 0, every time when
x = bi + si−1 = si, we jump to Q. In Q we keep variables y and z unchanged,
simply reset x to 0 by the flow ẋ = (−1, 0, 0) and jump back to P. Each time
the trajectory goes from P to Q and jumps back to P, the absolute value of
variable z will be subtracted by bi. So when the trajectory hits the O surface
(i.e., z = 0), the value of x will be equal to si−1 + (k mod bi). Since y and z in
P change at the same rate, when the absolute value of z drops from k to 0, the
value of y will increase from 0 to k.

If k mod bi �= ai, we reset y to 0 and |z| to k by switching the value of these
two variables, and enter region B(i+1) to test whether k mod bi+1 �= ai+1. To do

this, we use the regions odd Bi and even Ai in both locations P and Q. Define
the derivative to be (0,−1,−1) in odd Bi in P ((0,−1, 1) in even Ai in P) and
(1, 0, 0) in both odd Bi and even Ai in Q. By the flows in P the value of y and
|z| are switched. When y = 0 we jump to Q and reset x to si, and then jump
back to P to start testing the case of pair (ai+1, bi+1).

If k mod bi = ai, which means that the current value of k is not a potential
solution, we jump to locations I1, and then I2 and I3, (defined in Table 1) which
moves the trajectory to point (0, 0, k + 1) and ‘restarts’ in location P to test

Reachability and Mortality Problems for Hierarchical PCDs 39

whether the new value k + 1 is a correct solution 1. A correct solution k should
satisfy that the trajectory starts from point (0, 0, k) in location P and can finally
reach some point (in location P) on the surface (sn−1, sn) × (0, ρ) × {0} with
x �∈ (sn−1 + an − ε

2 , sn−1 + an + ε
2).

Table 1. Reachability problem for 3-RHPCD

Location Region Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi (i is odd): (0,−1,−1)

F i+ (i = 2, 4, ..., n),

A ∪B

Bi (i is even): (1, 1, 1)

F i− (i = 1, 3, ..., n− 1) :
jump to Q

Gi :
jump to I1

Q (A ∪B) \ C

Ai (i is odd): (−1, 0, 0)

Ai (i is even): (1, 0, 0)
Xi+ (i = 0, 2, ..., n− 2),

Bi (i is odd): (1, 0, 0)
Xi− (i = 1, 3, ..., n− 1) :

Bi (i is even): (−1, 0, 0)
jump to P

I1 A (−1, 0, 0)
x = 0

jump to I2

I2 A (0, 0, 1)
z = 1

jump to I3

I3 A (0,−1, 1)
y = 0

jump to P

We now give the formal details of this construction. Without loss of generality,
we assume n is even. Define 2 regions A and B :

A = ∪n
1Ai;

B = ∪n
1Bi.

Also define four types of surfaces Fi+, Fi−, Xi+ and Xi− :

Fi+ = (si−1, si)× {0} × (0, ρ), i = 1, 2, ..., n;
Fi− = (si−1, si)× {0} × (−ρ, 0), i = 1, 2, ..., n;
Xi+ = {si} × (0, ρ)× (0, ρ), i = 0, 1, 2, ..., n;
Xi− = {si} × (0, ρ)× (−ρ, 0), i = 0, 1, 2, ..., n.

1 Note that here in the guards we do not require exactly x = ai+si−1, but allow some
error ε, so tiny perturbations will not affect our result. The same analysis can be
applied to Theorem 2. This seems to imply that our system has robust reachability
and mortality problems, but we do not expand on the details in this paper. See more
details about robustness in [10]

40 P.C. Bell, S. Chen, and L. Jackson

Finally, we define a set of ε-width strips Gi and a set of ε-width cubes C :

Gi = (si−1 + ai − ε
2 , si−1 + ai +

ε
2)× [0, ρ]× {0}, i = 1, 2, ..., n;

C = ∪n−1
1 Ci,

where

Ci =

{
(si, si + ε)× (0, ρ)× (0, ρ), if i = 1, 3, ..., n− 1;
(si, si + ε)× (0, ρ)× (−ρ, 0), if i = 2, 4, ..., n− 2.

The set C is to prevent nondeterminism in location Q. With the help of these
notations, we construct the 3-RHPCD in Table. 1.

The number of regions and guards in the constructed 3-RHPCD is clearly
polynomial in the number of pairs of the simultaneous incongruences problem.
Furthermore, the points defining each such region can be represented in bi-
nary and are therefore polynomial in the description size of the simultaneous
incongruences problem. Therefore the constructed 3-RHPCD has a polynomial
description size. �

Theorem 2. The mortality problem for a bounded 3-RHPCD system is NP-
hard.

Proof. We simulate a simultaneous incongruences problem by a bounded 3-
RPHCD. The mortality problem asks whether for a certain system, starting
from every initial configuration, the trajectory will eventually reach some fixed-
point configuration, which we call the mortal configuration (in this case, the
system is called mortal). Once we reach the mortal configuration, since it is a
fixed point of the system, we assume the simulation halts since the point itself
never changes. We construct our 3-RHPCD in such a way that the system is
mortal if and only if there is no solution for the corresponding simultaneous in-
congruences problem, otherwise the system is immortal (i.e., starting from some
configurations the system never reaches the mortal configuration).

For a pair (ai, bi) in the simultaneous incongruences problem, the derivatives
of the associated regions Ai and Bi in locations P and Q are defined the same as
in the proof of Theorem 1. In contrast to Theorem 1, in the mortality problem,
we are not only concerned about some trajectories starting from certain points
(0, 0, k), 0 < k ≤ ρ, but want to know whether all the trajectories reach the
mortal configuration.

In the following part we assume i is odd, similar analysis can be applied to
the case when i is even. According to the flow ẋ = (1, 1,−1) of an odd region
Ai in location P, there are 2 boundaries the trajectories will eventually reach:
the O surface and the y = ρ surface (some trajectories may also reach the
Xi+ or Xi− surface, but they will jump to location Q and jump back, then
reach either one of the above two surfaces at the end). In odd Ai in P, all the
trajectories which reach the y = ρ surface or reach the strip Gi on the O surface
are considered as mortal trajectories and will jump to location M1, in which all
the trajectories will eventually reach the mortal configuration of point (0, 0, 0)
in locations {M1,M2,M3}. The trajectories which reach the O surfaces but do

Reachability and Mortality Problems for Hierarchical PCDs 41

not reach the strip Gi are considered as the potential solution trajectories and
move on by following the flows for a further check.

In contrast to the proof of Theorem 1, in region An (or Bn depending on if
i is odd or even) if any trajectory reaches the surface O but does not reach the
strip Gn, we do not conclude that we find a solution k. Instead, we keep moving
in P until we hit the guard, jump to location T, reset the trajectory to the point
(0, 0, k) and go to location P to start the test again. If k indeed is a correct
solution to the corresponding simultaneous incongruences problem, the system
will loop forever; otherwise the trajectory will go to location M1 at some region
odd Ai or even Bi in location P. Full details are shown in Table. 2. �

Table 2. Mortality problem for 3RHPCD

Location Region Flows Guards

P

Ai (i is odd): (1, 1,−1)

Xi+ (i = 1, 3, ..., n− 1),

Ai (i is even): (0,−1, 1)

Xi− (i = 2, 4, ...n),

Bi (i is odd): (0,−1,−1)

F i+ (i = 2, 4, ..., n),

A ∪B

Bi (i is even): (1, 1, 1)

F i− (i = 1, 3, ..., n− 1) :
jump to Q
(y = ρ),Gi :
jump to M1

Q (A ∪B) \ C

Ai (i is odd): (−1, 0, 0)
Xi+ (i = 0, 2, ..., n− 2),

Ai (i is even): (1, 0, 0)
Xi− (i = 1, 3, ..., n− 1) :

Bi (i is odd): (1, 0, 0)
jump to P

Bi (i is even): (−1, 0, 0)
Xn+ :

jump to T

T A ∪B (−1, 0, 0)
x = 0 :

jump to P

M1 A ∪B
A : (0, 0,−1) z=0:

B : (0, 0, 1) jump to M2

M2 A ∪B (−1, 0, 0)
x=0:

jump to M3

M3 A ∪B (0,−1, 0)
y=0:

jump to M1

Theorem 3. Reachability and mortality are undecidable for unbounded
3-RHPCD systems.

Proof. Both problems can be shown to be undecidable via a simulation of a two
counter (Minsky) machine which represents a universal model of computation
[12]. However we omit the details here due to page limit. �

The following proposition gives an upper bound of the complexity for both
the reachability and mortality problems for bounded n-RHPCDs.

Proposition 1. The reachability and mortality problems for bounded n-RHPCDs
are in PSPACE.

42 P.C. Bell, S. Chen, and L. Jackson

Proof. The proof is similar to that used to show that reachability for a 2-RHPCD
is decidable, as was shown in [5]. Given an n-RHPCD H, an initial configuration
(q0,x0) and a target configuration (qf ,xf), we show that starting from (q0,x0),
the trajectory will hit the internal and transition guards finitely many times
before either reaching (qf ,xf), or detecting a cycle, or hitting some endpoints
(at which the calculation halts), thus ‘convergence’ to a point is possible.

By the definition of n-RHPCD, the guards of H are of the form⎛⎝ ∧
1≤i≤n∧ i�=j

(ai ≺ xi ≺′ bi)

⎞⎠ ∧ (xj = cj)

where j ∈ {1, . . . , n}, xi, xj , ai, bi, ci ∈ Q, and ≺,≺′∈ {<,≤}.
By definition, the components of x0 = (x01 , . . . , x0n) and xf = (xf1 , . . . , xfn)

are rational numbers, i.e., x0,xf ∈ Qn. Define

γ = lcd(a1, . . . , an, b1, . . . , bn, cj , x01 , . . . , x0n , xf1 , . . . , xfn),

where lcd denotes the least common denominator, and define

Ai = γai, Bi = γbi, Cj = γcj , X0 = γx0, Xf = γxf .

Thus, Ai, Bi, Cj ∈ Z and X0,Xf ∈ Zn. Define a new n-RHPCD H′ with initial
configuration (q0,X0) and target configuration (qf ,Xf) by replacing ai, bi, cj ,
x0,xf by Ai, Bi, Cj ,X0,Xf . Clearly, H reaches xf iff H′ reaches Xf .

Because all the flows of H′ are chosen from the set {0, 1,−1}, when one
variable xi changes its value from one integer to another integer, any other
variable xj remains an integer. As the trajectory starts at integer point X0, and
the guards of H′ are defined by integers, every time the trajectory hits a guard,
it will have integer components.

We now prove that the problem can be solved in PSPACE. Note that the
representation size of γ is clearly polynomial in the representation size of H, thus
so is the size of H′. We now show that the representation size of the number
of possible transition configurations (the configuration when the trajectory hits
the guard and takes transition) of H′ is also polynomial in the size of H.

Let k > 0 be the number of locations of H′. Since H is bounded, we can
calculate τ ∈ N to be the maximal absolute value of the endpoint of any in-
variant of H over all locations. Thus the range of variables of H′ is contained
within [−γτ, γτ]. Since we have n variables, the maximal number of transition
configurations of H′, starting at initial configuration (q0,X0) is thus k(2γτ)n,
which can be represented in size polynomial in the size of H, since it requires at
least k log(γτ)n = nk log(γτ) space to store H and

log(k(2γτ)n)

nk log(γτ)
=

log(k) + n log(2γτ)

nk log(γτ)
< c

for some computable constant c > 0. We can use a counter to keep track of
the number of transitions the trajectory of H′ makes, starting from (q0,X0). As

Reachability and Mortality Problems for Hierarchical PCDs 43

each transition is taken, we can determine if the final configuration was reached
since the last transition. Otherwise, we increment the counter and proceed. If
the counter reaches k(2γτ)n, then the configurations must be periodic and we
can halt. Using a similar approach, we can also show that the mortality problem
for n-RHPCDs is also in PSPACE, however we omit the details here. �

4 Conclusions

We showed that for bounded three-dimensional Restricted Hierarchical Piece-
wise Constant Derivative systems (3-RHPCDs), the reachability and mortality
problems are NP-hard (using the simultaneous incongruences problem) but also
in PSPACE, even in the n-dimensional case. For unbounded 3-RHPCDs, we
showed that both problems are undecidable by an encoding of a Minsky ma-
chine. Clearly there is still a gap left for the complexity of the reachability and
mortality problems for bounded n-RHPCDs. To close the gap we need to answer
some interesting open problems:

- Is there a large n for which both problems for n-RHPCD are PSPACE-hard?
- Can both problems be solved in NP in dimension three?
- Can both problems be solved in P in dimension two?

The model of RHPCD restricts various components of the hybrid automaton
in ways which have parallels to other models, such as stopwatch automata, rect-
angular automata and PCDs. RHPCDs have decidable reachability problems for
them but endowing them with small additional powers renders them much more
powerful. Therefore they seem a useful tool in studying the frontier of undecid-
ability and tractability, in a similar way to the model of HPCD which inspired
them.

Acknowledgements: We would like to thank the anonymous referees for their
very useful suggestions and comments.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

2. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

3. Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems
- decidable, undecidable, don’t know. Information and Computation 211, 138–159
(2012)

4. Asarin, E., Schneider, G.: Widening the boundary between decidable and unde-
cidable hybrid systems. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 193–208. Springer, Heidelberg (2002)

5. Bell, P.C., Chen, S.: Reachability problems for hierarchical piecewise constant
derivative systems. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169,
pp. 46–58. Springer, Heidelberg (2013)

44 P.C. Bell, S. Chen, and L. Jackson

6. Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C., Tsitsiklis, J.N.: De-
ciding stability and mortality of piecewise affine dynamical systems. Theoretical
Computer Science 255(1-2), 687–696 (2001)

7. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theo-
retical Computer Science 321(2), 291–345 (2004)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., New York (1979)

9. Henzinger, T., Kopka, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: 27th ACM STOC, pp. 373–382. ACM Press (1995)

10. Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159.
Springer, Heidelberg (2000)

11. Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 194–209. Springer, Heidel-
berg (1993)

12. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall Interna-
tional, Englewood Cliffs (1967)

Parameterized Verification of Communicating

Automata under Context Bounds

Benedikt Bollig1, Paul Gastin1, and Jana Schubert2

1 LSV, ENS Cachan & CNRS
{bollig,gastin}@lsv.ens-cachan.fr
2 Fakultät für Informatik, TU Dresden

jana.schubert@tu-dresden.de

Abstract. We study the verification problem for parameterized commu-
nicating automata (PCA), in which processes synchronize via message
passing. A given PCA can be run on any topology of bounded degree
(such as pipelines, rings, or ranked trees), and communication may take
place between any two processes that are adjacent in the topology. Pa-
rameterized verification asks if there is a topology from a given topology
class that allows for an accepting run of the given PCA. In general,
this problem is undecidable even for synchronous communication and
simple pipeline topologies. We therefore consider context-bounded ver-
ification, which restricts the behavior of each single process. For sev-
eral variants of context bounds, we show that parameterized verification
over pipelines, rings, and ranked trees is decidable. More precisely, it
is PSPACE-complete for pipelines and rings, and EXPTIME-complete for
ranked trees. Our approach is automata-theoretic. We build a finite (tree,
respectively) automaton that identifies those topologies that allow for an
accepting run of the given PCA. The verification problem then reduces
to checking nonemptiness of that automaton.

1 Introduction

Communicating automata (CA) are a fundamental and well-studied model of
parallel systems [7]. They consist of finite-state machines that exchange messages
over channels determined by a fixed and known communication topology. CA are
known to be Turing equivalent so that even basic problems of formal verification
such as reachability are undecidable. Therefore, modifications and restrictions
have been considered which bring back decidability. Reachability is decidable,
for example, when the analysis is restricted to executions with a fixed maximum
number of pending messages, or when channels are lossy [2].

In some contexts such as ad-hoc networks, multi-core programming, or com-
munication-protocol verification, assuming a fixed and known communication
topology is not appropriate. Lately, there has been a lot of (ongoing) research
in the area of parameterized verification [1, 3, 9, 13, 14], which aims to validate a
given system independently of the number of processes and the communication
topology. A lot of different models of such systems have been proposed (cf. [12]

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 45–57, 2014.
c© Springer International Publishing Switzerland 2014

46 B. Bollig, P. Gastin, and J. Schubert

for a recent survey). In this paper, we investigate the reachability problem for
parameterized communicating automata (PCAs). A PCA is a collection of finite
automata that can be plugged into any communication topology of bounded
degree. PCAs have recently been introduced to initiate a logical study of pa-
rameterized systems [5]. Their verification problem has not been considered.
Roughly, it can be stated as follows: Given a PCA A and a regular set T of
pipeline, ring, or tree topologies, is there a topology T ∈ T such that A has
an accepting run on T ? Here, “regular” means given by some finite automaton
(for pipelines and rings) or tree automaton (for tree topologies), which is part
of the input. Note that there is also a universal variant of that problem, and our
decision procedures will take care of that case as well.

We actually consider a restriction of PCAs with rendez-vous synchronization,
albeit distinguishing between send and receive events. This considerably simpli-
fies the presentation, but the overall approach can be extended to systems with
asynchronous bounded channels. Note that rendez-vous communication can also
be seen as an underapproximation of the latter.

While bounding the channel capacity or imposing rendez-vous communication
bring back decidability of reachability for CA with fixed communication topol-
ogy, this is no longer true in the case of PCAs. For various other (undecidable)
models of concurrent systems, decidability is achieved by introducing a context
(or “phase”) bound, limiting the part of the model simulating synchronization
or communication of concurrent processes [6,15,16,18,19]. We adopt the general
approach, but introduce new natural definitions of contexts that are suitable for
our setting. An interface-context restricts communication of a process to one
neighbor in the topology (e.g., the left neighbor in the pipeline). Another con-
text type separates send from receive events while restricting reception to one
interface. Imposing such bounds is justified, as many distributed algorithms use
a bounded number of contexts, such as certain leader-election protocols, P2P
protocols, etc.

We show that context-bounded parameterized verification is decidable: it is
PSPACE-complete for pipelines and rings, and EXPTIME-complete for ranked
trees. Our decidability proof is automata-theoretic and uniform. We transform
a given PCA A, in several steps, into a topology acceptor (a finite automaton
or a tree automaton) that recognizes the set of pipeline and, respectively, tree
topologies allowing for an accepting run ofA. For rings, an additional adjustment
is needed, which rules out cyclic behaviors that the topology acceptor is not able
to detect on its own.

Related Work. Parameterized verification can be classified into verification
of multithreaded programs running on a single core, and protocol verification.
Context-bounded verification for systems consisting of an unbounded number
of threads has already been considered [4, 17]. In [4], a model with process cre-
ation is presented, in which a context switch is observed whenever an active
thread is interrupted and resumed. In [17], an unbounded number of threads are
scheduled in several rounds. In both cases, the context bound does not impose
a bound on the number of threads. However, every thread will be resumed and

Parameterized Verification of Communicating Automata 47

become active a bounded number of times. For protocol verification, which is
based on the concept of independent (finite-state) processes communicating over
a network-like structure, this does not seem to be suitable. For example, take
four processes, P1, . . . , P4. Suppose P1 synchronizes unboundedly often with P2,
and P3 synchronizes unboundedly often with P4. In particular, no communica-
tion takes place between {P1, P2} and {P3, P4}. Due to the absence of a global
scheduler, there should be no bound on the number of switches between P2 and
P3 (or P1 and P3, etc.). This issue is particularly important when a system is
compared to a partial global specification that is not necessarily closed under
permutation of independent events. Our local context definition does not impose
any a priori bound on the number of switches between independent processes.

A versatile framework for parameterized verification, capturing rendez-vous
communication in pipelines, rings, and trees, is presented in [1]. The verifica-
tion problem is phrased in terms of minimal bad configurations, which does not
necessitate context bounds. Motivated by ad-hoc networks, [9] considers sys-
tems modeled by finite automata that communicate in a broadcast or unicast
manner. In the case of unicast communication, the recipient is chosen nondeter-
ministically from the set of neighbors, which is incomparable with the unicast
communication of PCAs. Direction-aware token-passing systems [3, 10, 11] can
be modeled in our framework as far as bounded-degree structures such as rings
are concerned. To the best of our knowledge, neither context bounds nor the
PCA model have been considered yet for protocol verification.

Outline. Section 2 recapitulates basic notions such as words and finite (tree)
automata. In Section 3, we introduce topologies, PCAs, and several context-
bounded verification problems. Section 4 presents our main results and illustrates
the crucial proof ideas. Missing details can be found in the full version of the
paper: http://hal.archives-ouvertes.fr/hal-00984421/

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. Let A be an alphabet, i.e., a nonempty finite
set. The set of finite words over A is denoted by A∗, which includes the empty
word ε. The concatenation of words w1, w2 ∈ A∗ is denoted by w1 ·w2 or w1.w2.
Given an index set I and a tuple a = (ai)i∈I ∈ AI , we write a|i to denote ai.

A finite automaton over A is a tuple B = (S,=⇒, ι, F) where S is the finite
set of states, ι ∈ S is the initial state, F ⊆ S is the set of final states, and =⇒ ⊆
S ×A×S is the transition relation. We write s

a
=⇒ s′ instead of (s, a, s′) ∈ =⇒.

A run of B on a word w = a1 . . . an ∈ A∗ is a sequence s0s1 . . . sn ∈ S∗ of states
such that s0 = ι and si−1

ai=⇒ si for all i ∈ [n]. The run is accepting if sn ∈ F .
Finally, the language of B is defined as L(B) := {w ∈ A∗ | there is an accepting
run of B on w}.

For trees, we fix a (maximal) rank r ∈ N with r ≥ 2. An r-tree over A is a
pair (V, π) where V is a nonempty finite prefix-closed subset of {1, . . . , r}∗, and
π : V → A is a labeling function. The set V is the set of nodes of the tree, and
ε is its root. For u ∈ V and l ∈ [r] with u.l ∈ V , we say that u.l is the l-th child

48 B. Bollig, P. Gastin, and J. Schubert

p q p qright left right left right left

Fig. 1. Pipeline

p

q

q

q

q

left

right
left

right

left

right

left
right

left

right

Fig. 2. Ring

p

p q

p p

q q

p

child1

father

child2

father

child1

father

child2

father

child1

father

child2

father

child1

father

Fig. 3. Tree

of u. An r-tree automaton over A is a tuple B = (S,Δ, F) where S is the finite
set of states, F ⊆ S is the set of final states, and Δ ⊆ S ×A× (S � {⊥})r is the
transition relation. A run of B on an r-tree (V, π) is a mapping ρ : V → S such
that, for all u ∈ V , (ρ(u), π(u), (sl)l∈[r]) ∈ Δ where sl = ρ(u.l) if u.l ∈ V , and
sl = ⊥ if u.l �∈ V . The run is accepting if ρ(ε) ∈ F . By L(B), we denote the set
of r-trees accepted by B.

3 Parameterized Communicating Automata

In this section, we introduce our model of a communicating system that can be
run on arbitrary topologies of bounded degree.

Topologies. A topology is a graph, whose nodes are connected via interfaces.
The idea is that each node runs a finite-state process (of type p, q, . . .). Some
topologies are depicted in Figures 1–3. In Figure 1, for example, nodes are ar-
ranged in a pipeline, which allows a process to communicate with a left and a
right neighbor (if they exist). When a node u emits a message m via its interface
right, then m can be received by the neighbor on the right of u, using interface
left. Let N = {a, b, c, . . .} and P = {p, q, . . .} be nonempty finite sets of interface
names (or, simply, interfaces) and process types, respectively.

Definition 1. A topology over N and P is a tuple T = (V, ν, π) where V is
the nonempty finite set of nodes (or processes), π : V → P associates with
every node a process type, and ν : V ×N ⇀ V is a partial mapping. Intuitively,
ν(u, a) = v means that the interface a of u points to v. We suppose that, for
all u ∈ V , there is at last one a ∈ N such that ν(u, a) is defined. Moreover, we
require that ν(u, a) = v implies

– u �= v (there are no self-loops),

– ν(v, b) = u for some b ∈ N (adjacent processes are mutually connected), and

– ν(u, a′) = v′ implies [a = a′ iff v = v′], for all a′ ∈ N and v′ ∈ V (an
interface points to at most one process, and two distinct interfaces point to
distinct processes).

We write u a b v if ν(u, a) = v and ν(v, b) = u, and we write u v if
u a b v for some a, b ∈ N . This paper will focus on three topology classes:

Parameterized Verification of Communicating Automata 49

Pipelines. A pipeline over a nonempty finite set P of process types is a topology
over N = {left, right} and P . It is of the form T = ({1, . . . , n}, ν, π), with
n ≥ 2, such that ν(i, right) = i + 1 and ν(i + 1, left) = i for all i ∈ [n − 1],
and ν(1, left) and ν(n, right) are both undefined. A finite automaton B over P
can be seen as a pipeline recognizer. Indeed, a pipeline is uniquely given by
the sequence π(1) . . . π(n) ∈ P∗. So, we let Lpipe(B) denote the set of pipelines
({1, . . . , n}, ν, π) over P such that π(1) . . . π(n) ∈ L(B). Instead of B, we may
use a classical regular expression. An example pipeline is depicted in Figure 1.
It is uniquely given by the word pqpq.

Rings. A ring over P is a topology over N = {left, right} and P of the form
T = ({1, . . . , n}, ν, π), with n ≥ 3, where ν(i, right) = (i mod n) + 1 and
ν((i mod n) + 1, left) = i for all i ∈ [n]. Similarly to pipelines, a finite au-
tomaton B over P can be used as a ring recognizer: we let Lring(B) denote
the set of rings ({1, . . . , n}, ν, π) over P such that there is i ∈ [n] satisfying
π(i) . . . π(n)π(1) . . . π(i− 1) ∈ L(B). This takes into account that, a priori, rings
do not have an “initial” node. Figure 2 depicts a ring with five nodes.

Trees. For r ≥ 2, an r-tree topology over P is a topology T = (V, ν, π) over
{father, child1, . . . , childr} and P such that (V, π) is an r-tree over P , ν(ε, father) is
undefined, and for all u ∈ V and l ∈ [r], we have (1) u.l ∈ V implies ν(u, childl) =
u.l and ν(u.l, father) = u, and (2) u.l �∈ V implies that ν(u, childl) is undefined.
An r-tree automaton B over P can be seen as a recognizer for tree topologies: we
write Ltree(B) for the set of r-tree topologies (V, ν, π) such that (V, π) ∈ L(B).
A sample 2-tree topology is depicted in Figure 3.

The Automata Model. Next, we introduce our system model. As suggested
above, a parameterized communicating automaton is a collection of finite-state
processes whose actions refer to an interface. Unless stated otherwise, we assume
that N is a fixed nonempty finite set of interface names.

Definition 2. A parameterized communicating automaton (PCA) over N is a
tuple A = (P ,Msg, (Ap)p∈P) where
– P is a nonempty finite set of process types,
– Msg is a nonempty finite set of messages, and
– Ap is a finite automaton over ΣA := {a!m, a?m | a ∈ N and m ∈ Msg}, for

every p ∈ P.
We call the elements of ΣA actions.

A pipeline PCA or ring PCA is a PCA over {left, right}. Moreover, for r ≥ 2,
an r-tree PCA is a PCA over {father, child1, . . . , childr}.

The idea is the following: When A is run on a topology (V, ν, π) with adjacent
processes u a b v, then u runs a copy of Aπ(u) and can emit a message m
through interface a by executing a!m. Process v receives the message if it is
ready to execute b?m. We assume that communication is by rendez-vous, i.e.,
messages are received instantaneously.

For convenience, we write Σ instead of ΣA. Sometimes, we will even mention
Σ without any reference to A. However, notice that the alphabet depends on a

50 B. Bollig, P. Gastin, and J. Schubert

PCA (more precisely, on N and a set of messages). Let Σ! := {a!m | a ∈ N and
m ∈ Msg} and let Σ? be defined accordingly. These sets are further refined to
Σa! and Σa?, containing only those actions that refer to interface a ∈ N .

Semantics of PCAs. Let A = (P ,Msg , (Ap)p∈P) be a PCA over N , with
Ap = (Sp,=⇒p, ιp, Fp) for all p ∈ P . The PCA A can be run on any topology
T = (V, ν, π) over N and P . Its semantics wrt. T is a finite automaton [[A]]T =
(S,=⇒, ι, F) over ΣT ⊆ (Σ∪{ε})V . The alphabet ΣT contains, for all v a b v′

and m ∈ Msg , the tuple 〈v,m, v′〉 := (σu)u∈V where σv = a!m, σv′ = b?m, and
σu = ε for all u ∈ V \ {v, v′}. For W = γ1 . . . γn ∈ (ΣT)∗ and u ∈ V , we define
the projection of W to u as W |u := (γ1|u) · . . . · (γn|u) ∈ Σ∗.

Given a process u ∈ V , we write Au, Su,=⇒u, ιu, Fu as abbreviations for
Aπ(u), Sπ(u),=⇒π(u), ιπ(u), Fπ(u), respectively. The set of states of [[A]]T is S =∏

u∈V Su, keeping track of the local state of every process in the topology.
Accordingly, the initial state is ι = (ιu)u∈V , and the set of final states is
F =

∏
u∈V Fu. The transition relation =⇒ ⊆ S × ΣT × S is defined as fol-

lows. Let s = (su)u∈V ∈ S, s′ = (s′u)u∈V ∈ S, and σ = (σu)u∈V ∈ ΣT . Then,

s
σ

=⇒ s′ if, for all u ∈ V , we have that σu �= ε implies su
σu==⇒u s′u, and σu = ε

implies su = s′u. The language of A wrt. T is defined as L(A, T) := L([[A]]T).

Example 1. We consider a simplified version of the IEEE 802.5 token-ring pro-
tocol, in which a binary token (carrying a value in {0, 1}) circulates in a ring.
At any time of an execution, there is exactly one process that has the token.
When a process executes an action of the form right!m, it sets the token value
to m ∈ {0, 1} and passes it to its right neighbor. The latter executes left?m to
receive the token. Since we discard actions of the form left!m and right?m, we
actually deal with a unidirectional ring.

In our protocol, a process of type p emits a message, which will circulate on
the given ring until it is received. The fact that the message is currently in transit
is indicated by token value 1 (the concrete message contents is abstracted away).
Processes of type q will just pass on the token without changing its value. When
the token reaches a process of type p̄, the message is received. The receiving
process sets the token to 0 and passes it to its right neighbor. From there, it
is again forwarded by processes of type q until it reaches the “initial” process,
which thus gets the confirmation that its message has been received.

Our protocol is modeled by the ring PCA A = (P ,Msg, (Ap,Ap̄,Aq)), over
the set of interfaces N = {left, right}, where P = {p, p̄, q}, Msg = {0, 1}, and the
local languages are given as follows:

– L(Ap) = {(right!1)(left?0)}
– L(Ap̄) = {(left?1)(right!0)}
– L(Aq) = {(left?1)(right!1), (left?0)(right!0)}

Note that L(A, T) = ∅ for all T ∈ Lring (q
∗). Even though two successive pro-

cesses qq match locally, in the sense that the letter right!m in the execution of
the first q matches the letter left?m in the second occurrence of q, closing a se-
quence qn towards a ring is not possible due to the causal dependencies that are

Parameterized Verification of Communicating Automata 51

Table 1. Context-bounded nonemptiness problems and summary of results

Pipeline-Nonemptiness(t)

I: pipeline PCA A = (P ,Msg , (Ap)p∈P)
k ≥ 1; finite automaton B over P

Q: L(k,t)(A, T) �= ∅ for some T ∈ Lpipe(B) ?

Ring-Nonemptiness(t)

I: ring PCA A = (P ,Msg , (Ap)p∈P)
k ≥ 1; finite automaton B over P

Q: L(k,t)(A, T) �= ∅ for some T ∈ Lring(B) ?

Treer-Nonemptiness(t)

I: r-tree PCA A = (P ,Msg , (Ap)p∈P)
k ≥ 1; r-tree automaton B over P

Q: L(k,t)(A, T) �= ∅ for some T ∈ Ltree(B) ?

s⊕r1 intf

pipelines PSPACE-c PSPACE-c
rings PSPACE-c PSPACE-c
trees EXPTIME-c EXPTIME-c

created. The receive that remains open on the first q is always scheduled before
the remaining open send in the last q. Thus, matching both will create a cyclic
dependency and not lead to a valid run of A. We actually have, for all rings T
over P , that L(A, T) �= ∅ iff T ∈ Lring((pq

∗p̄q∗)∗). Detecting cyclic dependencies
will be one challenge when we tackle the verification problem for rings.

As we aim at modeling a token-ring protocol, we shall only consider rings that
contain exactly one process of type p (only one process can have the token). In our
decision problems, the input will contain a finite (tree, respectively) automaton
that may serve as a corresponding filter. ♦

Note that reachability in token-ring protocols is undecidable when the token
is binary [11]. Our approach to get decidability is orthogonal to that from [3,11].
Though the latter assume that a process knows whether it has the token or not,
the token itself is unary and does not carry extra information. In our setting,
simulating a unary token corresponds to letting Msg be a singleton set. In this
paper, we do not restrict the amount of (finite) information that a token can
carry (i.e., Msg can be an arbitrary nonempty finite set), but the local process
behavior. This allows us to verify protocols like in Example 1.

Context-Bounded Parameterized Nonemptiness. Next, we define several
natural variants of contexts, which restrict the behavior of each process of a PCA.
A word w ∈ Σ∗ is called an

– (s⊕r)-context if w ∈ Σ∗
! ∪Σ∗

? ,

– (s1+r1)-context if w ∈ (Σa! ∪Σb?)
∗ for some a, b ∈ N ,

– (s⊕r1)-context if w ∈ Σ∗
! ∪Σ∗

a? for some a ∈ N , and

– intf-context if w ∈ (Σa! ∪Σa?)
∗ for some a ∈ N .

The case s1⊕r (w ∈ Σ∗
a!∪Σ∗

? for some a ∈ N) is symmetric to s⊕r1, and we only
consider the latter. All results hold verbatim when we replace s⊕r1 with s1⊕r.

Let k ≥ 1 and t ∈ {s⊕r, s1+r1, s⊕r1, intf} be a context type. We say that
w ∈ Σ∗ is (k, t)-bounded if there are w1, . . . , wk ∈ Σ∗ such that w = w1 · . . . ·wk

and wi is a t-context, for all i ∈ [k]. The set of all (k, t)-bounded words (over

52 B. Bollig, P. Gastin, and J. Schubert

right left right left right left right left

Fig. 4. Undecidability for s1+r1

right left right left right left right left

Fig. 5. Undecidability for s⊕r

a fixed Σ) is denoted by W(k,t). For a PCA A = (P ,Msg , (Ap)p∈P) and a
topology T = (V, ν, π), we define L(k,t)(A, T) := {W ∈ L(A, T) | W |u ∈ W(k,t)

for all u ∈ V }. Note that W(k,t) is a regular word language that is recognized
by a finite automaton B(k,t) whose number of states is linear in k and at most
quadratic in |N | (but linear for the decidable cases of t). Let A′ be the PCA
(P ,Msg , (Ap×B(k,t))p∈P) where Ap×B(k,t) is the classical product of two finite
automata. It is easy to see that L(k,t)(A, T) = L(A′, T). This means that the
context-bound restriction can be built into the PCA.

Applying the definitions to the PCA A from Example 1, we have L(A, T) =
L(2,s⊕r1)(A, T) = L(2,intf)(A, T) for all topologies over {left, right} and {p, p̄, q}.

Note that many distributed algorithms use a bounded number of contexts (or
even a bounded number of actions) per process. Prominent examples are some
leader-election protocols and P2P protocols. Even when the number of contexts
is unbounded, there is often an exponential trade-off between the number of
contexts and the (larger) number of processes (e.g., for leader election). Thus,
context-bounded verification may sometimes be more appropriate than cut-off
techniques, which bound the number of processes.

For t ∈ {s⊕r, s1+r1, s⊕r1, intf}, we consider the problems listed in Table 1.
Note that the context bound k is part of the input. We assume that k is encoded
in unary. Table 1 also contains a summary of the positive results of the paper.
For some context types, however, all problems are undecidable.

Theorem 1. All problems listed in Table 1 are undecidable for t ∈ {s⊕r, s1+r1},
even when we restrict to one context for each process.

Proof (sketch). Figures 4 and 5 demonstrate how to generate grid-like structures
of arbitrary height i and width j, using only one context on each single process.
Figure 4, for example, visualizes an execution of the form

(〈1,m(1,1), 2〉〈2,m(1,2), 3〉 . . . 〈j,m(1,j), j + 1〉) . . . (〈1,m(i,1), 2〉〈2,m(i,2), 3〉 . . . 〈j,m(i,j), j + 1〉) .

The idea is now to simulate a Turing machine, using the (unbounded) vertical
dimension to encode its tape, which changes along the (unbounded) horizon-
tal line. More precisely, the leftmost process generates a sequence of messages
(m(1,1), . . . ,m(i,1)) that corresponds to the initial configuration with arbitrarily
many cells. Each further process may locally change that configuration while
passing it to its right neighbor, and so on. In the case of s⊕r, the transfer of

Parameterized Verification of Communicating Automata 53

1 2 3 4 5

S1

S2

S3

S4

S5

S6

p p p q qright left right left right left right left

...

...

...

......
...

...
...

Fig. 6. Cell transitions wrt. s⊕r1

1 2 3 4 5

S1

S2

S3

S4

S5

S6

p p p q qright left right left right left right left

right {left, right} left

right {left, right} left

right {left}

right {left}

{right} left right {left, right} left

Fig. 7. Run of finite automaton

a configuration is sometimes accomplished by a receive context. Obviously, the
encoding also works for rings and for trees. ��

4 Context-Bounded Parameterized Verification

We now present our main results: decidability of all our context-bounded param-
eterized verification problems, as far as context types s⊕r1 and intf are concerned.

Theorem 2. For all t ∈ {s⊕r1, intf}, the following hold:

– Pipeline-Nonemptiness(t) is PSPACE-complete,

– Ring-Nonemptiness(t) is PSPACE-complete, and

– Treer-Nonemptiness(t) is EXPTIME-complete, for all r ≥ 2.

In the remainder of this section, we develop the main proof ideas.

General Proof Idea for Upper Bounds. We illustrate the proof by means
of pipelines and context type s⊕r1, which is slightly more difficult than the
case of intf. Given a pipeline PCA A = (P ,Msg , (Ap)p∈P) and k ≥ 1, we will
construct a finite automaton BA that recognizes exactly those pipelines T such
that L(k,s⊕r1)(A, T) �= ∅. While reading a pipeline (i.e., a word over P), the
finite automaton will guess an accepting run of A. When every local language
L(Ap) is finite, this can be done as follows: A state of BA is a string from some
local language. When reading p, the automaton guesses an element of L(Ap)
and checks if its projection to left-actions matches the current state. A state is
final if it does not communicate through interface right. However, though we can
restrict to (k, s⊕r1)-bounded words, the local language L(Ap) of a process type
p is in general infinite so that the naive construction is not applicable.

The trick is to find a bounded abstraction of the infinitely many (local) runs.
This is illustrated in Figure 6, which depicts a (3, s⊕r1)-bounded execution (in
fact, a set of “order“-equivalent executions). Processes 1, 2, and 3 use three

54 B. Bollig, P. Gastin, and J. Schubert

contexts, while 4 and 5 can do with a single one. The dotted areas on a process
line suggest that we actually consider an arbitrary number of actions. Our aim is
to aggregate these unboundedly many actions in a bounded number of summaries
Si so that a finite automaton can read the pipeline (i.e., the word pppqq) from
left to right, while verifying that the summaries can be glued together towards
an accepting run of the given PCA.

As process 4 alternates between sending to 3 and sending to 5, its summaries
have to include the behavior of processes 3 and 5. A summary is then given by
a cell transition of the form s

pqq−−→ s′. Here, cell refers to pqq, which represents
an isomorphism type of a pipeline of length three. Moreover, s, s′ ∈ Sp ×Sq ×Sq

denote how states evolve in that particular fragment within a bigger pipeline,
for example when executing all actions gathered in S5. Cells have bounded size
so that the set of cell transitions can be effectively computed and represented.

Now, the behavior of process 4 can only be captured when we use at least two
cell transitions (for S5 and S6). The reason is that receives of process 3 from
4 are interrupted by receives from process 2. Similarly, the receive context in
the middle of process 3 will belong to two different summaries, as it is inter-
rupted by a context switch on process 2. The splitting is not unique, as we could
have merged S3 and S4. However, the total number of splits can be bounded:
a send (receive) context is split whenever the complementary receives (sends,
respectively) belong to distinct contexts. Thus, it is divided into at most k · |N |
summaries. Using this, one can show that any (k, s⊕r1)-bounded execution of
a PCA is captured by a sequence of cell transitions such that each process is
involved at most k · (|N |2+2|N |+1) times. This gives us a bounded abstraction
of a priori unbounded behaviors so that we can build a finite automaton that
guesses such an abstraction and, simultaneously, checks if it corresponds to an
accepting run of the PCA. A run of the finite automaton is depicted in Figure 7
(where we omit local states). On a process, we only keep “blocks” indicating
both the interfaces that are employed and whether we deal with a sending phase
(set of interfaces) or a receiving phase (single interface).

Note that the size of BA is exponential in k. However, nonemptiness can
be checked “on-the-fly”, which takes only polynomial space. The construction
works similarly for trees; we then come up with a tree automaton, which gives
us an EXPTIME procedure. However, the idea is not directly applicable to rings.
Consider the PCA from Example 1. Figure 8 illustrates a possible run of the
finite automaton BA over qqqq. Since the final state and the state taken after
reading the first position match locally, we are tempted to say that BA should
accept the ring T induced by qqqq. However, we have L(A, T) = ∅. The trick
is now to retrieve cyclic dependencies that violate the run conditions of PCAs.
In the example, we have to record that the gray-shaded left-block (which arose
from a receive action) is scheduled before the gray-shaded {right}-block (which
arose from a send action). Those blocks cannot be matched, i.e., the run of the
finite automaton BA does not reflect a run of A. We will, therefore, enrich the
previous construction to obtain a decision procedure for rings.

Parameterized Verification of Communicating Automata 55

1 2 3 4

q q q qright left right left right leftleft right

︸ ︷︷ ︸

Dqq

︸ ︷︷ ︸

Dqq

︸ ︷︷ ︸

Dqq

︸ ︷︷ ︸

Dqq ◦Dqq ◦Dqq = Dqq ◦Dqq

left?1

right!1

left?1

right!1

left

{right} left

{right} left

{right} left

{right}

Fig. 8. Finite automaton on a ring

Dqq = Dp̄q

�1

�2

�1

�2

Dqq ◦Dqq = (Dqq)
4

�1

�2

�1

�2

Dqp

�1

�2

�1

�2

join((Dqq)
4)

�1

�2

�1

�2

Dqq ◦Dqp

�1

�2

�1

�2

Dpp̄

�1

�2

�1

�2

D := Dqq ◦Dqp ◦Dpp̄ (◦Dp̄q)

�1

�2

�1

�2

join(D)

�1

�2

�1

�2

Fig. 9. Dependence graphs

Dependence Graphs. The idea is to add dependence graphs, which keep track
of the causal dependencies between cell transitions. They arise naturally when
we combine the behavior of two processes in terms of states of BA. For pro-
cesses 1 and 2 in Figure 8, we obtain the dependence graph Dqq depicted in
Figure 9. There are two kinds of constraints, an undirected (i.e., symmetric) one
representing synchronizations (the thick gray lines), and a directed one for strict
causality (depicted by arrows →). In Dqq, for example, the nodes �1 and �2 on
the left represent the two strictly causally ordered blocks of the first process,
while the nodes �1 and �2 on the right represent the two blocks of the second
process. Moreover, �2 and �1 are synchronized, i.e., they happen instantaneously.

The effect of appending a further process of type q can be computed as a
composition Dqq ◦Dqq, which we obtain as follows:

1. Merge every node �i of the first graph with the corresponding node �i of the
second graph.

2. A path containing at least one →-constraint and synchronization constraints
in either direction becomes a new →-constraint.

3. The new synchronization constraints are given by the transitive closure of
the (union of the) old ones.

4. Remove the merge nodes.

Note that, in the figure, we represent the composition by a minimal set of
constraints.

Now, “closing” the pipeline qqqq towards a ring corresponds to joining the
left and right hand side of (Dqq)

4 = (Dqq)
2. Technically, we add synchronization

constraints between �i and �i. The result is depicted as join((Dqq)
4) in Figure 9.

However, the join contains a cycle using at least one constraint of type → (recall
that synchronization edges can be taken in either direction), which has to be
interpreted as a violation of the run condition of PCAs.

56 B. Bollig, P. Gastin, and J. Schubert

Consider, on the other hand, the “pipeline” qqpp̄. It induces the graph Dqq ◦
Dqp ◦ Dpp̄ (depicted at the bottom left of the figure), which resolves any de-
pendency between the leftmost and the rightmost process. To check whether
the pipeline can be closed towards a ring, we apply the join operation to Dqq ◦
Dqp ◦Dpp̄ ◦Dp̄q. The result is depicted at the bottom right of Figure 9. The join
is harmless, since it does not create any cycle containing at least one →-edge.
Thus, the ring given by qqpp̄ allows for an accepting run of the given PCA.

Note that, in the ring case (and for context type s⊕r1), summaries are defined
in a slightly different way to make sure that dependencies are reflected correctly.
A summary then either involves only two processes, or it has at least two alter-
nations between sending to the left and sending to the right. This guarantees
that the induced synchronization constraints in dependence graphs are indeed
symmetric. The new definition of summaries results in a linear blow up of the
number of blocks on each process.

Lower Bounds. To illustrate the lower-bound proofs, we consider trees. For t ∈
{s⊕r1, intf} and r ≥ 2, EXPTIME-hardness of Treer-Nonemptiness(t) is es-
tablished by a reduction from the intersection problem for binary-tree automata,
which is EXPTIME-complete [20] (similarly, the lower bounds for pipelines and
rings use the intersection problem for finite automata). Without loss of generality,
we assume here that (1) tree automata accept only trees where the root and every
internal node have exactly two children and (2) the node labeling tells us whether
we deal with the root, a leaf, or an internal node. Given k ≥ 1 and binary-tree
automata B1, . . . ,Bk, we can construct, in polynomial time, a PCA A such that,
for all 2-tree topologies T , we have L(2k,s⊕r1)(A, T) �= ∅ iff L(3k,intf)(A, T) �= ∅
iff T ∈ Ltree(B1) ∩ . . . ∩ Ltree(Bk). The idea is that each process u with two chil-
dren chooses transitions δ1, . . . , δk of B1, . . . ,Bk, respectively, that are applied at
u. These transitions are sent to the children u.1 and u.2 of u. When u.1 (or u.2)
receives a transition δi, it immediately sends a corresponding transition δ′i to its
own children. This is why the PCA works with 2k and 3k contexts.

5 Conclusion

We showed that verification of PCAs running on pipelines, rings, and trees is
decidableunder certain contextbounds.Using automata complementation,wealso
obtain decidability of the universal variants of our verification problem: Do all
topologies accepted by a finite (tree) automaton allow for an accepting run of the
given PCA?

It would be worthwhile to study if there are other natural, maybe more general
classes of graphs that come with a decidable context-bounded nonemptiness
problem. Moreover, one may consider model checking against temporal logics,
and automata models that run over topologies of unbounded degree such as star
topologies and unranked trees. These models may include registers so that a
process can remember some of its neighbors [8].

Acknowledgment. We thank the anonymous reviewers for comments that
helped to improve the presentation of the paper.

Parameterized Verification of Communicating Automata 57

References
1. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,

Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013)

2. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: LICS
1993, pp. 160–170 (1993)

3. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of
token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 262–281. Springer, Heidelberg (2014)

4. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. Log. Methods Comput. Sci. 7(4) (2011)

5. Bollig, B.: Logic for communicating automata with parameterized topology. In:
CSL-LICS 2014. ACM (2014)

6. Bouajjani, A., Emmi, M.: Bounded phase analysis of message-passing programs.
In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 451–465.
Springer, Heidelberg (2012)

7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2) (1983)

8. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast
networks of register automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013.
LNCS, vol. 8169, pp. 109–121. Springer, Heidelberg (2013)

9. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the param-
eterized verification of ad hoc networks. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 441–455. Springer, Heidelberg (2011)

10. Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based mes-
sage passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS,
vol. 3210, pp. 325–339. Springer, Heidelberg (2004)

11. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

12. Esparza, J.: Keeping a crowd safe: On the complexity of parameterized verification.
In: STACS 2014. LIPIcs, vol. 25, pp. 1–10 (2014)

13. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS 1999, pp. 352–359. IEEE Computer Society Press (1999)

14. Esparza, J., Ganty, P., Majumdar, R.: Parameterized Verification of Asynchronous
Shared-Memory Systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 124–140. Springer, Heidelberg (2013)

15. Heußner, A., Leroux, J., Muscholl, A., Sutre, G.: Reachability analysis of commu-
nicating pushdown systems. Log. Methods Comput. Sci. 8(3:23), 1–20 (2012)

16. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent
queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 299–314. Springer, Heidelberg (2008)

17. La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 629–644. Springer, Heidelberg (2010)

18. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: POPL 2011,
pp. 283–294. ACM (2011)

19. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

20. Seidl, H.: Haskell overloading is DEXPTIME-complete. Information Processing
Letters 52(2), 57–60 (1994)

Regular Strategies in Pushdown Reachability

Games

A. Carayol and M. Hague

LIGM, Université Paris-Est & CNRS and Royal Holloway University of London

Abstract. We show that positional winning strategies in pushdown
reachability games can be implemented by deterministic finite state au-
tomata of exponential size. Such automata read the stack and control
state of a given pushdown configuration and output the set of winning
moves playable from that position.

This result can originally be attributed to Kupferman, Piterman and
Vardi using an approach based on two-way tree automata. We present a
more direct approach that builds upon the popular saturation technique.
Saturation for analysing pushdown systems has been successfully imple-
mented by Moped and WALi. Thus, our approach has the potential for
practical applications to controller-synthesis problems.

1 Introduction

Pushdown systems are well-studied in the software verification community. Their
stack mirrors the call stack of a first-order recursive program, and, as such, the
control flow of such programs (for instance C and Java programs) can be ac-
curately modelled [10]. These models have been a major part of the automata-
theoretic approach to software model checking and considerable progress has
been made in the implementation of scalable model checkers of pushdown sys-
tems. These tools (e.g. Bebop [2] and Moped [7,13,17,18,16]) are an essential
back-end components of high-profile model checkers such as SLAM [1].

Verification instances are often simple reachability properties. That is, is there
a path in the system leading to some designated “error” state? A richer model
is that of games where two players (Éloise and Abelard) compete to meet a
certain goal. Often these players model the system (Éloise) running in an antag-
onistic environment (Abelard). In a reachability game, one might ask whether
it’s possible for the system to eventually reach a desired state, regardless of the
environmental input. More complex winning conditions, such as Büchi or parity
conditions, allow games equivalent to verification against expressive temporal
logics such as μLTL or the modal μ-calculus (e.g. [6]).

In a seminal paper [20], Walukiewicz showed that determining the winner
of a pushdown parity game is EXPTIME-complete. Cachat [5] and Serre [14]
have independently generalised Walukiewicz’s algorithm to compute the winning
regions of these games. That is, the set of all positions in the game where a
given player can force a win. They use Walukiewicz’s algorithm as an oracle

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 58–71, 2014.
c© Springer International Publishing Switzerland 2014

Regular Strategies in Pushdown Reachability Games 59

to guide the construction of a finite-state automaton recognising the winning
region. Another approach, introduced by Piterman and Vardi [12], uses two-way
alternating tree automata to navigate a tree representing all possible stacks:
after several reductions, including the complementation of Büchi automata, an
automaton accepting the winning region can be constructed.

An alternative approach, saturation, was popularised as a model-checking al-
gorithm for pushdown systems by Bouajjani et al. [3] and independently by
Finkel et al. [8]. The algorithm was extended to constructing the winning re-
gions of pushdown reachability games by Bouajjani et al. [3], Büchi games by
Cachat [4], and parity games by Hague and Ong [9].

As well as constructing the winning region, one may also wish to construct a
representation of a player’s winning strategy. A winning strategy monitors the
progression of the play of a game and, when a state is in the player’s winning
region, advises which of a range of possible moves should be played in order to
win the game. When the players are the system and the environment, a winning
strategy describes how to control the system to ensure correctness. This is the
controller-synthesis problem: given a system and a specification, construct a
controller of the system that behaves according to the specification.

In the case of pushdown reachability, Büchi, or parity games, it is known that
the players have positional winning strategies. That is, in order to prescribe the
next winning move, a strategy needs only to have access to the current state of
the game (as opposed to the entire history of play) [21].

Cachat has given two realisations of Éloise’s winning strategy in a pushdown
reachability game [4]. The first is a positional strategy, constructed via the sat-
uration technique, that requires space linear in the size of the stack to compute
the possible next moves. Alternatively, Cachat presents a strategy implemented
by a pushdown automaton that tracks the moves of Abelard and recommends
moves to Éloise. Since the automaton tracks the game, the strategy is not posi-
tional. However, prescribing the next move requires only constant time. Cachat
also argues that similar strategies can be computed for Abelard for positions in
his winning region [5].

In the case of Büchi games Cachat also showed that it is possible to construct
a linear space positional strategy and a constant time (though not positional)
pushdown strategy for Éloise. However, Cachat also observes that adopting his
techniques for computing strategies for Abelard is not clear [5]. However, it is
known that, even for the full case of parity games, a pushdown strategy exists
using different techniques due to Walukiewicz [20] and Serre [15].

The above results use relatively complex systems to define winning strategies.
One of the simplest representations of a positional winning strategy over a push-
down game is a regular strategy. In this case, the stack and control state of the
current position in the game are read by a finite-state automaton which then
outputs the next possible winning moves.

It can be shown that a positional strategy for pushdown parity games can
be defined as a regular automaton, exponential in size. Kupferman et al. [11]
obtain this result from Piterman and Vardi [12]. Essentially, the two-way tree

60 A. Carayol and M. Hague

automaton can be reduced to a one-way tree automaton of exponential size, and
from this a deterministic automaton reading each branch of the tree (where each
branch represents a stack) and recommending next moves can be derived.

However, as mentioned above, this tree automaton approach requires several
involved reductions and it is unclear how such a technique may be implemented
in practice. The saturation algorithm, however, lends itself readily to implemen-
tations computing the winning regions (e.g. Moped [7,13,17] and WALi [19] for
single-player and Moped for two-player [18] reachability games).

In this work we show how regular positional strategies can be constructed
for Éloise in a pushdown reachability game. In Cachat’s technique, weights are
assigned to runs of the winning region automaton. Éloise’s strategy is to take the
minimal accepting run of the current configuration and play the move associated
to its first transition. Following this strategy the reachability goal will eventually
be satisfied. However, this does not provide a regular positional strategy because
the weights require space linear in the size of the run to compute. We show that
a more subtle method of assigning weights allows different runs to be compared
with constant space requirements. Thus, we construct a deterministic regular
automaton implementing a positional winning strategy.

Like Piterman and Vardi’s technique, our automaton is also exponential in
size. However, we believe our construction to be more direct and more likely to
be practicable. Indeed, the first step of the algorithm (the construction of the
winning region) has already been successfully implemented, whereas Piterman
and Vardi’s has not.

2 Preliminaries

2.1 Pushdown Games

A pushdown reachability game G is a given by a tuple (P , Σ,R, CF) where P =
PA�PE is a finite set of control states partitioned into Abelard and Éloise states
respectively, Σ is the finite stack alphabet, R ⊆ (P ×Σ)×

(
P ×Σ≤2

)
is the set

of transitions and CF is a set of target configurations, where a configuration is a
tuple (p, w) with p being a control state in P and w a stack in Σ∗.

We write (p, a) ↪→ (p′, w) for the transition ((p, a) , (p′, w)). In the configura-
tion α = (p, aw), the pushdown system can apply the transition (p, a) ↪→ (p′, u)
to go to the configuration α′ = (p′, uw).

In the following, for technical convenience, we will assume for each p ∈ P
and a ∈ Σ there exists some (p, a) ↪→ (p′, w) ∈ R. Furthermore, we will assume
a bottom-of-stack symbol ⊥ that is neither pushed onto nor popped from the
stack. These two conditions together ensure that from a configuration (p, w⊥)
it is not possible for the system to become stuck; that is, reach a configuration
with no successor.

A play of a pushdown game is a sequence (p0, w0) , (p1, w1) , . . . where (p0, w0)
is some starting configuration and (pi+1, wi+1) is obtained from (pi, wi) via some
(pi, a) ↪→ (pi+1, w) ∈ R. In the case where pi ∈ PE it is Éloise who chooses the
transition to apply, otherwise Abelard chooses the transition.

Regular Strategies in Pushdown Reachability Games 61

The winner of a play (p0, w0) , (p1, w1) , . . . is Éloise if there exists some i such
that (pi, wi) ∈ CF ; otherwise, Abelard wins the play. The winning region W of
a pushdown game is the set of all configurations from which Éloise can always
win all plays, regardless of the transitions chosen by Abelard.

2.2 Alternating P-Automata

To recognise sets of configurations, we use alternating P-automata. These were
first used by Bouajjani et al. [3].

An alternating P automaton is a tuple A = (Q, Σ,F , δ) where Q is a finite set
of states such that P ⊆ Q, Σ is a finite alphabet, F ⊆ Q is the set of accepting
states, and δ ⊆ Q × Σ × 2Q is a transition relation. We denote a transition
(q, a,Q) as q

a−→ Q.
A run over a word a1 . . . an ∈ Σ∗ from a state q0 is a sequence

Q1
a1−→ · · · an−−→ Qn+1

where each Qi is a set of states such that Q1 = {q0}, and for each 1 ≤ i ≤ n we
have

Qi = {q1, . . . , qm} and Qi+1 =
⋃

1≤j≤m

Pj

where for each 1 ≤ j ≤ m we have qj
w−→ Pj . The run is accepting if Qn+1 ⊆ F .

Thus, for a given state q, we define Lq(A) to be the set of words over which
there is an accepting run of A from {q}. Finally, we define

L(A) = {(p, w) | p ∈ P and w ∈ Lp(A)} .

When Qi is a singleton set, we will often omit the set notation. For example,
the run above could be written q0

a1−→ · · · an−−→ Qn+1. Furthermore, when w =

a1 . . . an we will write q
w−→ Q as shorthand for a run from q to Q. In particular,

we always have q
ε−→ q for any q ∈ Q.

2.3 Constructing the Winning Region

We recall the saturation technique for computing Éloise’s winning region of a
pushdown reachability game. The algorithm was introduced by Bouajjani et
al. [3] and is essentially an accelerated backwards fixpoint computation begin-
ning with the target set of configurations and then computing all configurations
that may reach it. We adapt the algorithm slightly by annotating each added
transition with the number of iterations of the algorithm required to add the
transition to the automaton. A similar, though more complex annotation scheme
was used by Cachat to give a positional (though non-regular) winning strategy
for Éloise [4].

Fix a pushdown reachability game G = (P , Σ,R, CF) such that CF is repre-
sented by an alternating P-automata A with L(A) = CF . We will show how to

62 A. Carayol and M. Hague

construct an automaton B such that L(B) = W , where W is Éloise’s winning
region of G.

Without loss of generality, we assume that there are no incoming transitions to
any state p ∈ P of A. The saturation algorithm constructs the automaton B that
is the least fixed point of the sequence of automata A0,A1, . . . defined below. We
simultaneously construct the sequence A0,A1, . . . and two annotation functions
I and R that annotate each transition t ∈ Q × Σ × 2Q. The I function assigns
to each rule its birthdate : a natural number which is intuitively the number of
iterations of the saturation algorithm required to add the transition to B. Since
the algorithm is a backwards reachability algorithm, the birthdate broadly gives
the number of transitions required to either remove the corresponding stack
character or rewrite it to part of a stack in the set of target configurations.
The R partial function assigns to each transition starting with a state of Éloise
and whose birthdate is not 0 the rule of the pushdown game responsible for the
addition of the transition to the automaton. All transitions in A0 will have the
birthdate 0 assigned by I.

Initially, let I(t) = 0 for each t ∈ δ0 and define A0 = A = (Q, Σ, δ0,F). Then
we define Ai+1 = (Q, Σ, δi+1,F) where δi+1 is the smallest set of transitions
such that

1. δi ⊆ δi+1, and
2. for each p ∈ PE , if r = (p, a) ↪→ (p′, w) ∈ R and p′

w−→ Q is a run of Ai, then

t = p
a−→ Q ∈ δi+1

and if t /∈ δi then set I(t) = i+ 1 and R(t) = r, and
3. for each p ∈ PA and a ∈ Σ we have

t = p
a−→ Q ∈ δi+1

where, letting

{(p1, w1) , . . . , (pm, wm)} = {(p′, w) | (p, a) ↪→ (p′, w) ∈ R}

we have Q =
⋃

1≤j≤m

Qj where for each 1 ≤ j ≤ m, pj
wj−−→ Qj is a run of Ai.

Furthermore, if t /∈ δi then set I(t) = i+ 1.

One can prove that L(B) = W . Since the maximum number of transitions of
an alternating automaton is exponential in the number of states (and we do not
add any new states), we have that B is constructible in exponential time.

Theorem 1 ([3]). The winning region of a pushdown reachability game is reg-
ular and constructible in exponential time.

Before proceeding with the construction of the strategy, we briefly discuss why
L(B) = W . It is well known that the winning region for Éloise is the smallest set
W such that L(A0) ⊆ W andW = Pre(W) where for any set of configuration C,

Pre(C) = {c′ of Éloise | ∃c ∈ C, c′ → c}
∪ {c′ of Abelard | ∀c ∈ C, c′ → c ⇒ c ∈ C}

Regular Strategies in Pushdown Reachability Games 63

The key property of the algorithm is that it ensures that L(B) is closed under
the Pre operation (i.e., Pre(L(B)) = L(B)). More precisely, it ensures that for all
i ≥ 0, Pre(L(Ai)) ⊆ L(Ai+1). Hence as B is by definition equal to AN = AN+1,
we have that Pre(L(B)) = L(B). As L(B) contains L(A0), it follows that L(B)
contains the winning region of Éloise.

For the converse inclusion, it is necessary to show that every configuration
accepted by B belongs to the winning region of Éloise. For this we need to fix a
strategy for Éloise that is winning from every configuration in L(B).

The strategies of Éloise considered in this article consist of associating to every
run ρ a weight Ω(ρ) and a well-founded ordering < on weights. The strategy
consists in picking the successor of a configuration of Éloise in L(B)\A0 accepted
by a run of B with the smallest possible weight. The weight is defined such that
along any play following this strategy the weight of the smallest accepting run
strictly decreases. As the ordering is assumed to be well-founded this ensures
that a configuration in L(A) is eventually reached.

The key property here is that the algorithm ensures that for every configura-
tion c of Éloise accepted by a run ρ of B which does not belong to L(A0), there
exists a configuration c′ accepted by a run ρ′ of B such that c → c′ . Moreover ρ′

is obtained by replacing the topmost transition of ρ by several transitions which
are younger. Similarly for a configuration c of Abelard accepted by some run ρ
of B, we have that any configuration c′ such that c → c′ is accepted by a run
ρ′ of B which is obtained by replacing the topmost transition of ρ by several
transitions which are younger.

A possible weight for a run ρ is hence a tuple (nN , . . . , n0) ∈ N where N is
the maximum birthdate of a transition appearing in the automaton B and, for
all i ≥ 0, ni is the number of transitions of birthdate i. The ordering is here
the lexicographic ordering. Sadly this notion of weight cannot be handled by a
finite state automaton which is the goal of this article. In the following section,
we define a notion of weight that is compatible with finite state automata.

3 Regular Strategies

3.1 Runs as Trees

A run of B over a word a1 . . . an ∈ Σ∗ from a state q0 can be represented by an
unordered, unranked tree of depth n such that,

1. the root node is labelled q0.
2. for each node η at depth 0 ≤ i < n of the tree labelled q there is a transition

t = q
t−→ {q1, . . . , qm} such that η has children η1, . . . , ηm labelled q1, . . . , qm

respectively and each edge (η, ηj) for all 1 ≤ j ≤ m is labelled by t.

A run, represented as a tree, gives rise to a set of sequences of transitions
t1, . . . , tn that are the labellings of the edges of each complete branch of the
tree (that is, running from the root node to some leaf node). Given a run ρ, let
Branches(ρ) be the set of sequences of labels on the branches of ρ.

64 A. Carayol and M. Hague

3.2 Ordering on Runs

To define strategies, we first introduce an ordering between runs of the saturated
automaton. To do so, we assign to each branch of the run a weight and take the
weight of the run to be the maximum weight of all of its branches. The runs are
then (pre-)ordered by comparing their weights.

Weights. Let N be the number of iterations required for the saturation to reach
a fixed point. That is N is the smallest number such that for all t we have
I(t) ≤ N . Note that N is fixed for a given B. The weights are tuples in NN+1

where N denotes the set of natural numbers. The weights are compared using
the reverse lexicographic-ordering

(i0, . . . , iN) ≺ (i′0, . . . , i
′
N)

whenever there exists N ≥ j ≥ 0 such that ij < i′j and for all N ≥ k > j we
have ik = i′k. Similarly, we write 	 to denote ≺ ∪ =. Moreover we write

(i0, . . . , iN) ≺j (i
′
0, . . . , i

′
N)

whenever ij < i′j and for all N ≥ k > j we have ik = i′k.

Weight of a branch. Fix a branch β = tn, . . . , t1 of the run which reads the stack
from top to bottom (thus tn reads the topmost character and t1 the bottommost
character). For all 0 ≤ j ≤ N , we take lftj to be the position from the bottom of
stack of the left-most transition of birthdate j and 0 if no such transition exists,
i.e. lftj = max {i | I(ti) = j } (with max ∅ = 0). Intuitively we first take into
account the position (from the bottom) of the transition of birthdate N that is
the furthest from the bottom. The greater this position is the greater the weight.
Then we look at the position of the transition of age N − 1 that is the furthest
from the bottom. We only take it into account if it is after the previous position.
This restriction is only here to ensure that the order can be implemented by an
automaton with an exponential number of states. And so on. . . .

The weight of the branch β is defined to be

Ω(β) := (i0, . . . , iN)

where ij = lftj if lftj > max{lftj+1, . . . , lftN} and 0 otherwise.
For example, consider a branch t1, t2, t3, t4, t5, t6 with a corresponding se-

quence of birthdates 1, 4, 2, 2, 5, 1 and assume that N = 5. We have lft5 = 2,
lft4 = 5, lft3 = 0, lft2 = 4,lft1 = 6 and lft0 = 0. The weight of this branch is
hence (0, 6, 0, 0, 5, 2).

Weight of a run and of a configuration. The weight of a run ρ is the maximum
weight (for ≺) of one of its branches.

Ω(ρ) := max {Ω(β) | β ∈ Branches(ρ)}

Regular Strategies in Pushdown Reachability Games 65

Finally we assign to any configuration (p, w) accepted by the automaton B the
weight Ω((p, w)) = min {Ω(ρ) | ρ accepts (p, w)} of its smallest accepting run.

The ordering ≺ is naturally extended to a total pre-ordering on runs by taking
for any two runs ρ and ρ′, ρ ≺ ρ′ if Ω(ρ) ≺ Ω(ρ′). Similarly ≺ is extended to
configurations accepted by B.

3.3 Éloise’s Winning Strategy

Given the ordering defined above, we can define a winning strategy for Éloise. Her
strategy is a simple one. At any configuration (p, aw) in her winning region, let ρ

be a smallest accepting run of B with respect to ≺. Furthermore, let t = p
a−→ Q

be the first transition of ρ. To win the game, Éloise can play the rule R(t). For
any configuration (p, w) with p ∈ PE , let PlayE((p, w)) be the set of rules r
that annotate the first transition of a ≺-smallest run of B over (p, w) whenever
(p, w) ∈ W \ CF . Otherwise, let PlayE((p, w)) = ∅.
Lemma 1. For a given pushdown reachability game G = (P , Σ,R, CF) with W,
B and ≺ being Éloise’s winning region, the automaton constructed by saturation
and its associated ordering respectively, it is the case that, for all configurations
(p, aw) ∈ W, we have either

1. (p, aw) ∈ CF , or
2. p ∈ PE and for all (p, a) ↪→ (p′, u) ∈ PlayE((p, w)) we have

(p′, uw) ≺ (p, aw) with (p′, uw) ∈ W ,

3. p ∈ PA and for all (p, a) ↪→ (p′, u) ∈ R we have

(p′, uw) ≺ (p, aw) with (p′, uw) ∈ W .

Proof. We only consider Éloise’s case as Abelard’s case is similar. Let (p, aw) ∈
W be a configuration of Éloise. Let ρ be a minimal run accepting for (p, aw) and

let t = p
a−→ Q be the first transition of ρ. Furthermore for all q ∈ Q, let ρq be

the subrun of ρ accepting w from q Finally assume that R(t) = (p, a) ↪→ (p′, u).
By definition of the saturation algorithm, there exists a run ρu of the form

p′
u−→ Q where every transition t′ labelling ρu is such that I(t′) < I(t). Let ρ′ be

the run obtained by plugging into ρu the run ρq at each leaf labelled by q ∈ Q .
This runs accepts (p′, uw) and hence (p′, uw) belongs to W .

Furthermore every branch β′ of ρ′ is obtained from some branch β of ρ by
replacing the first transition t by a sequence of transitions t1, . . . , t|u| where for
all 1 ≤ j ≤ |u|, I(tj) < I(t). By definition of the order ≺, Ω(β′) ≺I(t) Ω(β).
Hence Ω((p′, uw)) 	 Ω(ρ′) ≺ Ω(ρ) = Ω((p, aw)). ��
Theorem 2. The positional strategy PlayE is winning for Éloise from every
configuration of her winning region.

Proof. Assume towards a contradiction that there exists an infinite play c0, c1 . . .
which starts in the winning region of Éloise and that does not reach a configu-
ration in CF . From Lemma 1, we immediately obtain that Ω(c0) � Ω(c1) � · · · .
Being a (reverse) lexicographic ordering built upon well-founded orderings, ≺ is
a well-founded total ordering on weights which brings the contradiction. ��

66 A. Carayol and M. Hague

3.4 Regular Winning Strategies

We show that the above strategy can be implemented by a regular automaton.
That is, we define a finite deterministic automaton which processes a configu-
ration (p, w) and outputs the set of rules PlayE((p, w)) whenever p ∈ PE and
(p, w) ∈ W \ CF , and ∅ otherwise. The automaton reads the stack content w
from the bottom of the stack and reaches some state s. The output is obtained
by applying a mapping Outp to s. We first formally define strategy automata.

Definition 1. Given a pushdown game (P , Σ,R, CF), a strategy automaton S
is a tuple (S,Σ, s0, δ, (Outp)p∈PE) where S is a finite set of states, Σ is an input
alphabet, s0 is an initial state and δ : S × Σ → S is a transition function and
for all p ∈ PE, Outp : S → 2R is an output mapping for the control state p.

As usual, we extend the transition function δ to words over the input alphabet
Σ. Writing w̃ to denote the mirror of the word w, the output PlayS((p, w)) of a
strategy automaton S over a given configuration (p, w) is defined to be

PlayS((p, w)) := Outp(δ(s0, w̃))

Given a pushdown game G = (P , Σ,R, CF) as well as an automaton B =
(Q, Σ, δ,F) representing Éloise’s winning region, obtained by saturation, along
with its associated ordering ≺. We define a strategy automaton SB such that for
all (p, w) we have

PlaySB((p, w)) = PlayE((p, w)) .

3.5 The Automaton SB

The State-Set. The automaton SB will run B in reverse, starting from the
bottom of the stack. Assuming that the automaton has read the word w̃, the
state of SB will have as a component a mapping Movesw : PE → 2R such that
for all state p ∈ PE , Movesw(p) = PlayE((p, w)). Note that this mapping is
only defined for states belonging to Éloise as those are the only states for which
she is required to make a decision. Clearly if the automaton can maintain this
information, we have constructed a strategy automaton. In order to update this
component while keeping the state set at most exponential, the automaton will
maintain two additional pieces of information.

– the set of states Accw ∈ 2Q from which B admits an accepting run on w,
– a partial mapping in fw : Q × Q → {≺ι,EQ,�ι | 0 ≤ ι ≤ N } which when

applied to two states q1 and q2 ∈ Accw compares the minimal runs of B
starting in state q1 and q2 respectively.

Intuitively, for the automaton to update Moveswa, it is only necessary to know
the transitions that can start a minimal accepting run for any state of Éloise. We
will see below that this information can be computed only using the comparison
provided by fw.

Regular Strategies in Pushdown Reachability Games 67

More formally, let w be a stack content. The set Accw ⊆ Q is the set of states
B from which B has an accepting run, that is

Accw :=
{
q ∈ Q

∣∣∣ q
w−→ F ⊆ F

}
.

The partial mapping fw : Q × Q → {≺ι,EQ,�ι | 0 ≤ ι ≤ N } is defined for
all states q1 and q2 ∈ Accw by taking

fw(q1, q2) :=

⎧⎨⎩
≺ι if Ω(ρ1) ≺ι Ω(ρ2)
�ι if Ω(ρ1) �ι Ω(ρ2)
EQ if Ω(ρ1) = Ω(ρ2)

where ρ1 and ρ2 are ≺-minimal runs accepting w from q1 and q2 respectively.

The Transition Function. To define the transition function of the strategy
automaton, it remains to show how to compute Accaw, faw and Movesaw using
only a, Accw and fw. To do this we will define three functions UpAcc, Upf , and
UpMoves that perform the updates for their respective components.

We define UpAcc following the standard membership algorithm for alternating
automata, and obtain the following lemma.

Definition 2 (UpAcc). We define

UpAcc(a,Accw) :=
{
q
∣∣∣ q

a−→ Q ∈ δ ∧Q ⊆ Accw

}
.

Lemma 2. For all w ∈ Σ∗ and all a ∈ Σ we have Accaw = UpAcc(a,Accw).

Computing faw is more involved and requires some preliminary notations.
First observe that the mapping fw induces a total pre-ordering on the set

Accw. For all subsets Q ⊆ Accw, we denote by max(Q) the set of all maximal el-
ements for this ordering. We write fw(max(Q1),max(Q2)) for the value fw(q, q

′)
for any q ∈ max(Q1) and q′ ∈ max(Q1). As all the elements of max(Q1) (resp.
max(Q2)) are equal for the ordering, the choice of q and q′ is irrelevant.

As a first step, we use the information of fw to compare the weights of minimal
runs on aw starting with two given transitions t1 and t2. Take any two transitions
t1 = q1

a−→ Q1 and t2 = q2
a−→ Q2 with Q1 ⊆ Accw and Q2 ⊆ Accw and I(t1) = γ1

and I(t2) = γ2. There are two cases to comparing runs starting with t1 and t2. In
the first case, the minimal runs from Q1 and Q2 differ on some weight ι > γ1, γ2.
In this case the ordering is dominated by ι and remains unchanged. If, however,
γ1 ≥ ι or γ2 ≥ ι, then the relative ordering of the runs is decided by t1 and t2. More
formally, we write

t1 ≺ι t2

if either

1. the ordering between the minimal runs is not decided by t1 and t2, that is
(a) fw(max(Q1),max(Q2)) =≺ι, and
(b) ι > γ1, γ2.

68 A. Carayol and M. Hague

2. the ordering is decided by t1 and t2, that is
(a) γ1 < γ2 and ι = γ2 and
(b) fw(max(Q1),max(Q2)) �∈ {≺ι′ ,�ι′ | γ2 < ι′ ≤ N }, or

In addition, we write t1 �ι t2 when t2 ≺ι t1. We also write t1 EQ t2 when

1. γ1 = γ2, and
2. fw(max(Q1),max(Q2)) belongs to {EQ,≺ι,�ι | 0 ≤ ι ≤ γ1 = γ2 }.

Lemma 3. For any two transitions t1 = q1
a−→ Q1 and t2 = q2

a−→ Q2 with
Q1 ⊆ Accw and Q2 ⊆ Accw, t1 ≺ι t2 (resp. t1 �ι t2, resp. t1 EQ t2) if and only
if Ω(ρ1) ≺ι Ω(ρ2) (resp. Ω(ρ1) �ι Ω(ρ2), resp. Ω(ρ1) = Ω(ρ2)) where ρ1 and
ρ2 are the minimal runs accepting aw and starting with t1 and t2 respectively.

Proof. Let I(t1) = γ1 and I(t2) = γ2. We first argue that a minimal run begin-
ning with t1 (resp. t2) can be constructed from t1 and a minimal run from Q1

(resp. Q2). Let ρ′1 be a minimal run from Q1. Let ρ1 = t1ρ
′′
1 ≺ι t1ρ

′
1. If γ1 ≥ ι,

then Ω(t1ρ
′′
1) = Ω(t1ρ

′
1) and thus t1ρ

′
1 is also a minimal run. Otherwise γ1 < ι

and ρ1 = t1ρ
′′
1 ≺ι t1ρ

′
1 implies ρ′′1 ≺ι ρ′1, contradicting the minimality of ρ′1.

Now, let ρ1 = t1ρ
′
1 and ρ2 = t2ρ

′
2. Suppose t1 ≺ι t2. There are two cases.

When fw(max(Q1),max(Q2)) =≺ι (implying ρ′1 ≺ι ρ′2) and ι > γ1, γ2 then we
conclude t1ρ

′
1 ≺ι t2ρ

′
2. Otherwise γ1 < γ2 = ι and fw(max(Q1),max(Q2)) is not

≺ι′ or �ι′ for some ι′ > γ2. From the last condition, we know ρ′1 and ρ′2 are
equal or differ only on some weight ι′ ≤ γ2. Thus we know t1ρ

′
1 ≺γ2=ι t2ρ

′
2.

In the other direction, suppose t1ρ
′
1 ≺ι t2ρ

′
2. If ι > γ1, γ2, then we have ρ′1 ≺ι

ρ′2 and thus fw(max(Q1),max(Q2)) =≺ι. We then have t1 ≺ι t2 as required. If
γ1 ≥ ι or γ2 ≥ ι, then for t1ρ

′
1 to be smaller than t2ρ

′
2 we must have γ1 < γ2 = ι

and moreover ρ′1 and ρ′2 must have the same weight, or differ on some ι′ ≤ ι.
Thus, fw(max(Q1),max(Q2)) �∈ {≺ι′ ,�ι′ | γ2 < ι′ ≤ N } and t1 ≺ι t2.

The case for �ι is symmetric, hence it only remains to consider EQ. We
have t1 EQ t2 if and only if γ1 = γ2 and fw(max(Q1),max(Q2)) belongs to
{EQ,≺ι,�ι | 0 ≤ ι ≤ γ1 = γ2 }. We have this iff ρ′1 and ρ′2 have equal weights
or differ only on some ι ≤ γ1, γ2 and, thus, iff Ω(t1ρ

′
1) = Ω(t2ρ

′
2). ��

As a consequence of the above lemma, we have defined a total pre-order on
the set of a-transitions. For any set of a-transitions T , we denote by min(T) the
set of minimal elements for this order. We are now ready to define Upf .

Definition 3 (Upf). We define Upf (a,Accw, fw) as the mapping g defined for
all states q1 and q2 ∈ Accaw by

g(q1, q2) := fw(min(Tq1),min(Tq2))

where Tq1 = {q1 a−→ Q1 | Q1 ⊆ Accw} and Tq2 = {q2 a−→ Q2 | Q2 ⊆ Accw}.

It directly follows from Lemma 3 that:

Lemma 4. For all w ∈ Σ∗ and all a ∈ Σ, we have faw = Upf (a,Accw, fw).

Finally, we define UpMoves.

Regular Strategies in Pushdown Reachability Games 69

Definition 4 (UpMoves). We define UpMoves(a,Accw, fw) to be the mapping
associating to any control state p ∈ PE the set {R(t) | t ∈ min(Tp)} where

Tp =
{
p

a−→ Q | Q ⊆ Accw

}
.

Lemma 5. For all w ∈ Σ∗ and all a ∈ Σ, we have

Movesaw = UpMoves(a,Accw, fw) .

The Definition of SB We bring together the above discussion and define SB.

Definition 5. Given a pushdown game G = (P , Σ,R, CF) as well as an anno-
tated automaton B = (Q, Σ, δ,F) constructed by saturation in N steps, we define
SB to be the strategy automaton (S,Σ, s0, δ, (Outp)p∈PE) where

S = 2Q × (Q×Q → {≺ι,EQ,�ι | 0 ≤ ι ≤ N })×
(
PE → 2R

)
and s0 = (F , f0,Moves0) where we have f0(q1, q2) = EQ for all q1, q2 ∈ F and
Moves0(p) = ∅ for all p ∈ PE, and

δ(a, (Acc, f,Moves)) =
(
UpAcc(a,Acc),Upf (a,Acc, f),UpMoves(a,Acc, f)

)
and finally, for all p ∈ PE, Outp(Acc, f,Moves) = Moves(p).

The size of the automaton SB is exponential in the size of pushdown game.

Theorem 3. Given a P-automaton B = (Q, Σ, δ,F) constructed by saturation
and a strategy automaton SB constructed as above, we have

PlaySB((p, w)) = PlayE((p, w)) .

Proof. Take a configuration (p, w). By induction on the length of w, we show
that upon reading w̃ the automaton SB reaches the state (Accw, fw,Movesw).

In the base case, the initial state s0 is by definition (Accε, fε,Movesε). The
induction step immediately follows from Lemma 2, 4 and 5. The output is there-
fore Movesw(p) which is by definition equal to PlayE((p, w)). ��

4 Conclusion

We gave the construction of a regular postional strategy for Éloise in a push-
down reachability game. The strategy automaton is a deterministic automaton
of exponential size in the size of the pushdown game.

To define a similar strategy for Abelard, observe that any strategy of Abelard
consisting in picking a move that stays outside of the winning region of Éloise is
winning. A deterministic strategy automaton implementing such a strategy has
states in Σ × 2Q. After reading a stack content ãw, the automaton reaches the
state (a,Accw). For all p ∈ PA, the output mapping Outp associates to a state

70 A. Carayol and M. Hague

(a,Accw) the set of rules (p, a) ↪→ (p′, u) ∈ R such there are no runs of B of the

form p′
u−→ Q′ ⊆ Accw.

If we consider pushdown Büchi reachability games, computing a regular po-
sitional strategy for Éloise can be reduced to the reachability case. Let W be
the winning region of Éloise in the Büchi game and CF be a regular set of final
configurations. Consider the positional strategy consisting of playing any move
that stays in W for configurations in W ∩ CF and for configurations in W \ CF
plays the regular positional strategy for the reachability game to W∩CF . As W
is regular, the resulting strategy is regular and can be implemented by strategy
automaton of exponential size.

Abelard’s strategy is more complex and leads to the open problem of extending
our approach to pushdown parity games. The saturation method underlying our
approach was extended to these settings in [9]. The challenge is to define an
ordering on runs of the saturated automaton that can be implemented by a finite
state automaton of size at most exponential in that of the pushdown game.

Acknowledgments. This work was supported by the Engineering and Physical
Sciences Research Council [EP/K009907/1] and the Labex Bézout as part of the
program “Investissements d’Avenir” (ANR-10-LABX-58).

References

1. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
slam. Commun. ACM 54(7), 68–76 (2011)

2. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: SPIN, pp. 113–130 (2000)

3. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

4. Cachat, T.: Symbolic strategy synthesis for games on pushdown graphs. In: Wid-
mayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.)
ICALP 2002. LNCS, vol. 2380, pp. 704–715. Springer, Heidelberg (2002)

5. Cachat, T.: Games on Pushdown Graphs and Extensions. PhD thesis, RWTH
Aachen (2003)

6. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (ex-
tended abstract). In: FOCS, pp. 368–377 (1991)

7. Esparza, J., Schwoon, S.: A BDD-based model checker for recursive programs. In:
Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 324–336.
Springer, Heidelberg (2001)

8. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. In: INFINITY, vol. 9, pp. 27–37 (1997)

9. Hague, M., Ong, C.-H.L.: Winning regions of pushdown parity games: A saturation
method. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 384–398. Springer, Heidelberg (2009)

10. Jones, N.D., Muchnick, S.S.: Even simple programs are hard to analyze. J. ACM 24,
338–350 (1977)

Regular Strategies in Pushdown Reachability Games 71

11. Kupferman, O., Piterman, N., Vardi, M.Y.: An automata-theoretic approach to
infinite-state systems. In: Manna, Z., Peled, D.A. (eds.) Time for Verification.
LNCS, vol. 6200, pp. 202–259. Springer, Heidelberg (2010)

12. Piterman, N., Vardi, M.Y.: Global model-checking of infinite-state systems. In:
Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 387–400. Springer,
Heidelberg (2004)

13. Schwoon, S.: Model-checking Pushdown Systems. PhD thesis, Technical University
of Munich (2002)

14. Serre, O.: Note on winning positions on pushdown games with [omega]-regular
conditions. Inf. Process. Lett. 85(6), 285–291 (2003)

15. Serre, O.: Contribution à létude des jeux sur des graphes de processus á pile. PhD
thesis, Université Paris 7 – Denis Diderot, UFR dinformatique (2004)

16. Suwimonteerabuth, D., Berger, F., Schwoon, S., Esparza, J.: jMoped: A test envi-
ronment for java programs. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 164–167. Springer, Heidelberg (2007)

17. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: jMoped: A java bytecode checker
based on moped. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,
vol. 3440, pp. 541–545. Springer, Heidelberg (2005)

18. Suwimonteerabuth, D., Schwoon, S., Esparza, J.: Efficient algorithms for alternat-
ing pushdown systems with an application to the computation of certificate chains.
In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 141–153. Springer,
Heidelberg (2006)

19. WALi, https://research.cs.wisc.edu/wpis/wpds/download.php
20. Walukiewicz, I.: Pushdown processes: Games and model-checking. Inf. Com-

put. 164(2), 234–263 (2001)
21. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. Theor. Comput. Sci. 200(1-2), 135–183 (1998)

https://research.cs.wisc.edu/wpis/wpds/download.php

Parameterized Verification of Graph Transformation
Systems with Whole Neighbourhood Operations�

Giorgio Delzanno1 and Jan Stückrath2

1 Università di Genova, Italy
giorgio.delzanno@unige.it

2 Universität Duisburg-Essen, Germany
jan.stueckrath@uni-due.de

Abstract. We introduce a new class of graph transformation systems in which
rewrite rules can be guarded by universally quantified conditions on the neigh-
bourhood of nodes. These conditions are defined via special graph patterns which
may be transformed by the rule as well. For the new class for graph rewrite rules,
we provide a symbolic procedure working on minimal representations of upward
closed sets of configurations. We prove correctness and effectiveness of the pro-
cedure by a categorical presentation of rewrite rules as well as the involved order,
and using results for well-structured transition systems. We apply the resulting
procedure to the analysis of the Distributed Dining Philosophers protocol on an
arbitrary network structure.

1 Introduction

Parameterized verification of distributed algorithms is a very challenging task. Dis-
tributed algorithms are often sensible to the network topology and they are based on
communication patterns like broadcast messages and conditions on channels that can
easily generate undecidable verification instances or finite-state problems of high com-
binatorial complexity. In order to naturally model interaction rules of topology-sensitive
protocols it seems natural to consider languages based on graph rewriting and transfor-
mations as proposed in [21]. However, in this formalism rules can only match fixed
subgraph in the graph they are applied to. Since we need to specify rules where the en-
tire neighbourhood of a node is matched by the rule, we extend the standard approach
by universally quantified patterns attached to nodes. With these patterns the matching of
a left side of a rule can be increased until the entire neighbourhood of a node is covered.
If the matching cannot be extended in this way the rule is not applicable, e.g. we could
formalize a rule which only matches a node when every incident edge is incoming. Ad-
ditionally the matched occurrences of the patterns can also be changed by the rule. A
similar approach are adaptive star grammars [20], the difference being that we do not
restrict our left rule sides to be stars.

The resulting formal language can be applied to specify distributed versions of con-
current algorithms like Dining Philosophers in which neighbour processes use channels
to request and grant access to a given shared resource. The protocol we use has been

� Research partially supported by DFG project GaReV.

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 72–84, 2014.
c© Springer International Publishing Switzerland 2014

Parameterized Verification of Graph Transformation Systems 73

proposed by Namjoshi and Trefler in [25]. There requests are specified using process
identifiers attached to edges representing point-to-point communication channels. Uni-
versally quantified guards are used to ensure mutual exclusive access to a resource. In
this paper we formulate the protocol without need of introducing identifiers. We in-
stead use our extended notion of graph transformation systems to specify ownership
of a given communication link. Universally quantified patterns attached to a request-
ing node are used then as guards to ensure exclusive access. Erroneous or undesirable
configurations in the algorithm can be presented by a set of minimal error configura-
tions. We then use a backward procedure to check if a configuration containing one of
the error configurations is reachable. If none is reachable, the algorithm is proven to be
correct.

Following the approach proposed in [7,24], we use basic ingredients of graph trans-
formation and category theory (e.g. pushouts) to formally specify the operational se-
mantics of our model. Parameterized verification for the resulting model is undecidable
in general, even without universally quantified patterns [7]. To overcome this prob-
lem, we provide an approximated symbolic backward procedure using result for well-
structured transition systems [6,22] to guarantee correctness and termination.

L RX

C

G

X

C

GG

r

Although the over-approximation is based
on the monotonic abstraction approach
proposed in [3,5], its application to the
considered class of infinite-state systems
is highly non trivial. In fact, our universal
quantification approach is not restricted
to process states only, but it can specify
complex graph patterns as shown on the
right. There the node marked with the X-
edge represents a group where every node
attached with a G-edge is a member of.
The rule can be applied if every edge attached to the two solid nodes is matched and
has the form of the dashed part (the quantification). Effectively the rule adds a node to
a group if all other connected nodes (via a C-edge) are already members of the group.

We have implemented a prototype version of the algorithms in the tool UNCOVER

and tested on some case-studies. For instance, our prototype can verify the Distributed
Dining Philosophers example without need of additional invariants as in [25]. Due to
space limitations, the proofs can be found in an extended version of this paper [17].

2 Preliminaries

In this paper we use hypergraphs, a generalization of directed graphs, where an edge can
connect an arbitrary large but finite set of nodes. Furthermore we use graph morphisms
to define rewriting rules.

Hypergraph Let Λ be a finite sets of edge labels and ar : Λ → N a function that assigns
an arity to each label (including the arity zero). A (Λ-)hypergraph (or simply graph) is
a tuple (VG, EG, cG, lG) where VG is a finite set of nodes, EG is a finite set of edges,

74 G. Delzanno and J. Stückrath

cG : EG → V ∗
G is a connection function and lG : EG → Λ is an edge labelling function.

We require that |cG(e)| = ar(lG(e)) for each edge e ∈ EG. An edge e is called incident
to a node v if v occurs in cG(e). An undirected path of length n in a hypergraph is an
alternating sequence v0, e1, v1, . . . , vn−1, en, vn of nodes and edges such that for every
index 1 ≤ i ≤ n both nodes vi−1 and vi are incident to ei and the undirected path
contains all nodes and edges at most once.

Let G, G′ be (Λ-)hypergraphs. A partial hypergraph morphism (or simply mor-
phism) ϕ : G ⇀ G′ consists of a pair of partial functions (ϕV : VG ⇀ VG′ , ϕE :
EG ⇀ EG′) such that for every e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and
ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is defined. Furthermore if a morphism is
defined on an edge, it must be defined on all nodes incident to it. We denote total mor-
phisms by an arrow of the form → and write if the total morphism is known to be
injective.

Pushout Our rewriting formalism is the so-called single-pushout approach (SPO) based
on the categorical notion of pushouts in the category of graphs and partial graph mor-
phisms [21]. Given two morphisms ϕ : G0 ⇀ G1 and ψ : G0 ⇀ G2, the pushout of ϕ,
ψ consists of the graph G3 and two morphisms ϕ′ : G2 ⇀ G3 and ψ′ : G1 ⇀ G3. It
corresponds to a merge of G1 and G2 along a common interface G0 while at the same
time deleting every element of one of the graphs if it has a preimage in G0 which is not
mapped to an element in the other graph. It is known that in our category the pushout
of two morphisms always exists and is unique (up to isomorphism). It can be computed
in the following way.

Let ≡V and ≡E be the smallest equivalences on VG1∪VG2 and EG1∪EG2 satisfying
ϕ(v) ≡V ψ(v) for all v ∈ VG0 and ϕ(e) ≡E ψ(e) for all e ∈ EG0 . The nodes and
edges of the pushout object G3 are then all valid equivalence classes of ≡V and ≡E .
An equivalence class is valid if it does not contain the image of some x ∈ G0 for which
ϕ(x) or ψ(x) is undefined. The equivalence class of an edge is also considered invalid if
it is incident to a node with an invalid equivalence class. The morphisms ϕ′ and ψ′ map
each element to its equivalence class if this class is valid and are undefined otherwise.

For a backward step in our procedure we also need the notion of a pushout comple-
ment which is, given ϕ : G0 ⇀ G1 and ψ′ : G1 ⇀ G3, a graph G2 and morphisms
ψ : G0 ⇀ G2, ϕ′ : G2 ⇀ G3 such that G3 is the pushout of ϕ, ψ. For graphs pushout
complements not necessarily exist and if they exist there may be infinitely many. See
[23] for a detailed description on how pushout complements can be computed.

L R

G H

r

m m′

GTS A rewriting rule is a partial morphism r : L ⇀ R, where
L is called left-hand and R right-hand side. A match (of r) is
a total and injective morphism m : L G. Given a rule and a
match, a rewriting step or rule application is given by a pushout
diagram as shown on the right, resulting in the graph H . Note
that injective matchings are not a restriction since non-injective
matchings can be simulated, but are necessary for universally
the quantified rules defined later.

A graph transformation system (GTS) is a finite set of rules
R. Given a fixed set of graphs G, a graph transition system on G generated by a graph

Parameterized Verification of Graph Transformation Systems 75

transformation system R is represented by a tuple (G,⇒) where G is the set of states
and G ⇒ G′ if and only if G,G′ ∈ G and G can be rewritten to G′ using a rule of R.

A computation is a sequence of graphs G0, G1, . . . s.t. Gi ⇒ Gi+1 for i ≥ 0. G0

can reach G1 if there exists a computation from G0 to G1.

3 Graph Transformations with Universally Quantified Conditions

To clarify the ideas and illustrate the usefulness of universally quantified conditions on
the neighbourhood of nodes, let us consider the following example.

F

H

⇒ OF

H

(a) Acquire a fork

F

H

⇒ OF

H

(b) Acquire a fork

OF

H

⇒ F

H

(c) Release a fork

OF

H

⇒ OF

E

(d) Start eating

T

⇒

H

(e) Get hungry

OF

E

⇒ F

T

(f) Release all forks

Fig. 1. Modelling of the dining philosophers problem on an arbitrary net

Example 1. Figure 1 shows a set of rules describing the Dining Philosophers Problem
on an arbitrary graph structure. Each node represents a philosopher who can be in one
of three different states: hungry (H), eating (E) or thinking (T). Each state is indicated
by a unary edge attached to the philosopher. Between two philosophers there may be a
free fork (an F -edge) or a fork owned by one of the philosophers (an OF -edge pointing
to its owner). Note that our directed edges are in fact hyperedges of arity two, where
the first node is the source and the second node is the target.

Philosophers can take unowned forks (Figure 1a and 1b) and also release control
(Figure 1c). If a philosopher owns all connected forks, he can start to eat (Figure 1d).
The dashed part of the rule indicates a universal quantification, meaning that the rule
can only be applied if all edges attached to the philosopher are part of the matching and
in fact forks owned by him. At some point the philosopher finished eating, releasing all
forks (Figure 1f) and may become hungry in the future (Figure 1e). When releasing all
forks, all forks owned by the philosopher are converted to unowned forks.

Rules matching the entire neighbourhood of a node (in the following called quanti-
fied node), such as the rules in Figure 1d and 1f cannot be described by normal rewriting
rules. Therefore we extend normal rules to so-called universally quantified rules con-
sisting of a normal rule and a set of universal quantifications. The idea is to first find a

76 G. Delzanno and J. Stückrath

matching for the rule and then extend the rule as well as the matching until the entire
neighbourhood of quantified nodes is part of the matching.

We apply the rule in Figure 1f to the graph G shown in Figure 2. There exists a match
m : L G where r : L ⇀ R is the rule without any use of the quantification. However,
this matching does not match the entire neighbourhood of the quantified node (marked
grey). Before applying the rule we have to add multiple copies of the quantification to
r generating a so-called instantiation η where the extended match m contains the entire
neighbourhood of the quantified node.

L R

G

E T

E
OF

OF

T
F

F

H

E

H
OF

OF
F

r

η

m

m

Fig. 2. A match of a universally quantified rule has to be extended until the entire neighbourhood
of each quantified node is matched

In the following we formalize the notion of universally quantified rules as an exten-
sion of normal rules and introduce instantiations via a sequence of recursive instantia-
tion steps.

Definition 1 (Universally quantified rules). A universally quantified rule is a pair
ρ = (r, U), where r : L ⇀ R is a partial morphism and U is a finite set of uni-
versal quantifications. A universal quantification is a pair (pu, qu) = u ∈ U where
pu : L Lu is a total injective morphism and qu : Lu ⇀ Ru is a partial morphism
satisfying the restriction that qu(pu(x)) is defined and has exactly one preimage in Lu

for every x ∈ L.
With qn(u) we denote the set of quantified nodes of u, which is the set of all v ∈ VL

such that there is an edge incident to pu(v) which has no preimage in L. We denote
the quantified nodes of a rule the same way, i.e. qn(ρ) =

⋃
u∈U qn(u). We require that

qn(u) �= ∅ for all u ∈ U .

In the rest of the paper we will use UGTS to denote the extension of GTS with
universally quantified rules.

Definition 2 (Instantiation of a universally quantified rule). An instantiation of a
universally quantified rule ρ = (r, U) consists of a total injective morphism π : L L
and a partial morphism γ : L ⇀ R and is recursively defined as follows:

Parameterized Verification of Graph Transformation Systems 77

– The pair (idL : L L, r), where idL is the identity
on L, is an instantiation of ρ.

– Let (π : L L, γ : L ⇀ R) be an instantiation of
ρ and let (pu : L Lu, qu : Lu ⇀ Ru) = u ∈ U .
Furthermore, let Lu be the pushout of π, pu and let
Ru be the pushout of γ ◦ π, qu ◦ pu, as shown in the
diagram to the right. Then p′u ◦ π and the (unique)
mediating morphism η are also an instantiation of ρ.
We write (p′u ◦ π, η) = (π, γ) ! u to indicate that the
instantiation (π, γ) was extended by u.

L L R

Lu Lu

Ru Ru

π γ

pu p′u
π′

qu
η

We say that the length of an instantiation is the number of steps performed to generate
the instantiation, where (idL, r) has a length of 0.

Example 2. Figure 3 shows a possible instantiation of the rule in Figure 1f. There is
only one universal quantification u and this quantification is used once to generate the
instantiation (p′u ◦ idL, η). Any further instantiation will add an additional node and
OF -edge to Lu and an additional node and F -edge to Ru. The universally quantified
node (i.e. qn(u)) is marked grey. This means that η is only applicable if the grey node
is matched to a node with degree (exactly) two. The rule application is performed by
calculating the pushout of η (not r) and a valid matching m. The matching is only valid
if all edges incident to the grey node have a preimage in Lu, such that an application
will always result in all incident OF -edges to be replaced by F -edges. Although the
number of affected edges can be arbitrary large, the quantification it bounded to the
neighbourhood of the grey node and therefore the change is still local.

The order in which universal quantifications are used to generate instantiations can
be neglected, since different sequences will still yield the same instantiation (up to
isomorphism). Therefore we can uniquely specify instantiations by the number each
universal quantification in its sequence.

L L R

Lu Lu

Ru Ru

E E T

OF

E

OF

E

F

E

F

T

idL r

pu p′u

id ′
L

qu
η

Fig. 3. A possible instantiation of the rule in Figure 1f

78 G. Delzanno and J. Stückrath

Definition 3 (Rule application). Let ρ be a universally quantified rule. We say that ρ
is applicable to a graph G, if there is an instantiation (π, γ) of ρ and a total injective
match m : L G, such that for every x ∈ qn(ρ), there is no e ∈ EG incident to
m(π(x)) without a preimage in L. The application of ρ to G via m results in the graph
H , the pushout of m and γ.

We reuse the notation G ⇒ G′ to denote a rewriting step from G to G′. The previ-
ous definition introduces a restricted form of negative application condition since the
existence of an edge, which cannot be mapped by a quantification, may block the ap-
plication of a rule.

4 A Procedure for Coverability in UGTS

In this paper we focus our attention on verification problems that can be formulated
as reachability and coverability decision problems. Given an initial configuration G0

and a target configuration G1 reachability consists in checking whether there exists a
computation from G0 to G1. The coverability problem is similar to the reachability
problem, but additionally relies on an ordering. In this paper we use the subgraph or-
dering, but there are other suitable orders such as the minor ordering or the induced
subgraph ordering [24].

Definition 4 (Subgraph Ordering). A graph G1 is a subgraph of G2, written G1 ⊆
G2, if there exists a partial, injective and surjective morphism from G2 to G1, written
μ : G2 G1. Such morphisms are called subgraph morphisms.

Given a G, a subgraph can always be obtained by a sequence of node and edge
deletions. Note that due to the morphism property every edge attached to a deleted
node must be deleted as well. Using the subgraph ordering we can represent sets of
configurations by minimal graphs and define two variants of the coverability problem.

Definition 5 (Upward Closure). The upward closure of a set S of graphs is defined as
↑S = {G′ | G ⊆ G′, G ∈ S}. A set S is upward-closed if it satisfies S = ↑S. A basis
of an upward-closed set S is a set B such that S = ↑B.

Definition 6 (Coverability). Let G0, G1 be two graphs. The general coverability prob-
lem is to decide whether from G0 we can reach a graph G2 such that G1 ⊆ G2.

Let G a set of graphs and let G0, G1 ∈ G. The restricted coverability problem is to
decide whether from G0 we can reach a graph G2 ∈ G such that G1 ⊆ G2 and every
graph on the sequence from G0 to G2 is an element of G.

In other words, a configuration is coverable from some initial configuration if we can
reach a configuration containing (as subgraph) a given pattern. Although general and
restricted coverability are both undecidable, we can obtain decidability results by using
a backward search introduced for well-structured transition systems [6,22] as already
shown in [7]. These systems rely on a well-quasi-order (wqo), which is a transitive
reflexive order ≤ such that there is no infinite, strictly decreasing sequence of elements
and no infinite antichain, a sequence of pairwise incomparable elements, wrt. ≤. A

Parameterized Verification of Graph Transformation Systems 79

direct consequence of this property is that every upward-closed set wrt. some wqo has
a finite basis. It has been shown that the subgraph ordering is a well-quasi-order on Gk,
the class of graphs in which every undirected path has at most the length k [19]. We
remark that the property does not hold if only directed paths are restricted.

The backward search presented in this paper is a version of the general backward
search presented in [24] adapted to be compatible with UGTS. We denote the set of
predecessors for a set of graphs S by Pred(S) = {G′ | ∃G ∈ S : G′ ⇒ G}. Further-
more we denote the predecessors reachable within multiple step by Pred∗(S) and the
restricted predecessors by PredG(S) = Pred(S) ∩ G. We will present a procedure for
UGTS to compute so-called effective pred-basis and effective Gk-pred-basis. An effec-
tive pred-basis for a graph G is a finite basis pb(G) of ↑Pred(↑{G}) and an effective
Gk-pred-basis is a finite basis pbk(G) of ↑PredGk

(↑{G}). Using the effective Gk-pred-
basis the backward search will terminate and compute a finite basis B. If G ∈ ↑B, then
G covers a configuration of S in ⇒ (general coverability). If G /∈ ↑B, then G does not
cover a configuration of S in ⇒Gk

(no restricted coverability), where ⇒Gk
is the restric-

tion ⇒ ∩ (Gk ×Gk). By using the effective pred-basis the backward search computes a
finite basis for Pred∗(S), but is not guaranteed to terminate.

The computation of a Gk-pred-basis is performed by Procedure 1. We assume that for
a graph G and a rule ρ there is an upper bound on the length of instantiations necessary
to compute a backward step and write boundρ(G) to denote such an upper bound.
The existence of this upper bound is shown later on in Proposition 1. The result of a
backward step is a finite set S of graphs such that Pred(↑{G}) ⊆ ↑S.

Procedure 1 (Backward Step).
Input: A rule ρ and a graph G.
Procedure:
1. First compute all instantiations (π : L L, γ : L ⇀ R) of ρ up to the length

boundρ(G).
2. For each γ compute all subgraph morphisms μ : R R′. Note that it is sufficient

to take a representative R′ for each of the finitely many isomorphism classes.
3. For each μ ◦ γ compute all total injective morphisms m′ : R′ → G (co-matches of

R′ in G).
4. For each such morphism m′ calculate all minimal pushout complements G′, m :

L G′ of m′ and μ ◦ γ where m is injective and G′ is an element of Gk. Drop all
G′ where m does not satisfy the application condition of Definition 3, i.e. there is
an edge incident to a quantified node which is not in the matching.

Result: The set of all graphs not dropped in Step 4, written pbk(G).

The motivation behind Step 2 is that G represents not just itself but also its upward
closure. Therefore, the rule must also be applied to every graph larger than G. Instead
of using partial co-matches we concatenate with subgraph morphisms to simulate this
behaviour.

The procedure for a single backward step can be used to define a backward search
procedure for the coverability problem for UGTS. The procedure exploits the property
that, even if compatibility is not satisfied, Pred(↑S) ⊆ ↑Pred(↑S) still holds for every
set of graphs S. We can iteratively compute backward steps for all minimal graphs G
of ↑S and check that no initial state is reached backwards.

80 G. Delzanno and J. Stückrath

Procedure 2 (Backward Search).
Input: A natural number k, a set R of graph transformation rules and a finite set of final
graphs F . Start with the working set W = F .
Backward Step: For each G ∈ W add all graphs of pbk(G) to W and minimize W
by removing all graphs H ′ for which there is a graph H ′′ ∈ W with H ′ �= H ′′ and
H ′′ ⊆ H ′. Repeat this backward steps until the sequence of working sets W becomes
stationary, i.e. for every G ∈ W the computation of the backward step using G results
in no change of W .
Result: The resulting set W contains minimal representatives of graphs from which a
final state is coverable. This set may be an over-approximation, even without quantified
rules.

To show the termination of Procedure 1 and 2 it is important to show the existence
of a bounding function boundρ(). By the following proposition this function exists for
every rule ρ, but as we will show later this bound can be tightened in most cases.

Proposition 1. Let ι be an instantiation of length k of some rule ρ. If k is larger than
the number of nodes and edges of G, then every graph computed by the backward
application of ι is already represented by the backward application of an instantiation
of lower length.

The following two lemmas prove that Procedure 1 computes a finite basis of an over-
approximation of the restricted predecessors.

Lemma 1. The set pbk(G) is a finite subset of Pred(↑{G}) and pbk(G) ⊆ Gk.

Lemma 2. It holds that ↑pbk(G) ⊇ ↑PredGk
(↑{G}).

We recapitulate our main result in the following proposition.

Proposition 2. For each graph G, pbk(G) is an effective Gk-pred-basis. Furthermore,
Procedure 2 terminates and computes an over-approximation of all configurations in
Gk from which a final configuration is coverable.

Proof. By Lemma 1 and 2 we know that ↑pbk(G) = ↑PredGk
(↑{G}) and thus pbk(G)

is a Gk-pred-basis. According to Proposition 1 for every ρ ∈ R the number of necessary
instantiation steps is bounded by boundρ(G), thus, the number of instantiations is fine.
For each instantiation the minimal pushout complements restricted to Gk are finite and
computable. Since the subgraph ordering is decidable the minimization is computable
and pbk(G) is effective.

Since the subgraph ordering is a wqo on Gk, every infinite increasing sequence of
upward-closed set becomes stationary. The upward-closures of the working sets W
form such an infinite increasing sequence, thus the termination criteria of Procedure 2
will be satisfied at some point. ��

A Variant of pbk() Without Path Bound

In Step 4 of Procedure 1 every graph which is not an element of Gk is dropped. This
is needed to guarantee that the working set of Procedure 2 becomes stationary and the

Parameterized Verification of Graph Transformation Systems 81

search terminates. However, this restriction can be dropped to obtain a backward search
which solves the general coverability problem. Termination is not guaranteed, but cor-
rectness can be proven analogously to the restricted variant, as already shown in [24].
Let pb() be Procedure 1 without the restriction to Gk. We summarize the decidability
of this second variant in the following proposition.

Proposition 3. For each graph G, pb(G) is an effective pred-basis. Furthermore, when
using pb() instead of pbk(), Procedure 2 computes an over-approximation of all con-
figurations from which a final configuration is coverable.

Experimental Results

We added support for universally quantified rules to the UNCOVER tool. This tool
can perform the backward search for the subgraph ordering and the minor ordering (a
coarser order compared to subgraphs). Both variants of the backward search are imple-
mented, but a timeout might occur when using the unresticted variant. However, given
the rules in Figure 1 and the error graphs in Figure 4 the unrestricted variant terminates
after 12 seconds and results in a set of 12 minimal graphs. Two of these graphs are the
initial error graphs and two other computed graphs are shown in Figure 5. Every min-
imal graph contains a node in the state E. Since initially no philosopher is eating, the
initial configuration is not represented and none of the initial error graphs is reachable.
This proves that two adjacent philosophers cannot be eating at the same time.

E E

F

E E

OF

Fig. 4. Two error configurations in the Din-
ing Philosophers Problem

H E

F

E T

OF

Fig. 5. Two other error graphs computed by
the backward search

5 Optimizations

In this section we discuss and formalize some optimizations that can be applied to the
basic backward procedure described in the previous section.

Lifting the Application Condition to a Post Conditions. In Procedure 1 the applica-
tion condition is checked in Step 4 for each pushout complement. However, by lifting
the application condition over the instantiation we can check beforehand whether the
backward step yields new graphs. We show the lifting in the following lemma.

Lemma 3. Let ρ be a rule, (π : L L, γ : L ⇀ R) an instantiation of ρ and m :
R G a co-match of the instantiation to some graph G. If there is a node x ∈ qn(ρ)
where m(γ(π(x)) is defined and attached to an edge e without preimage in R, then
there is no pushout complement H of γ, m satisfying the condition of Definition 3.

82 G. Delzanno and J. Stückrath

Tightening the Upper Bound of Instantiations. The bound on the length of instan-
tiations proven to exist in Proposition 1 can be improved depending on the rule used.
Let ρ = (r : L ⇀ R,U) be a rule. Obviously boundρ(G) = 0 if U = ∅. The same
holds if instantiations only increase the left side of the rule, i.e. for every u ∈ U given
the instantiation (idL, r) ! u = (π : L Lu, γ : Lu ⇀ Ru), the graphs Ru and R are
isomorphic.

A more common situation is that quantifications do not add edges to the right side of
the instantiations which are solely incident to nodes of the original rule r. This is case
for all rules used in Example 1. The bound can be reduced as shown below.

Lemma 4. Let ρ = (r : L ⇀ R,U) and let (idL, r) ! u = (π : L Lu, γ : Lu ⇀
Ru). If for every u ∈ U every edge e ∈ Ru without preimage in R is connected to a
node v ∈ Ru without preimage in R, then boundρ(G) = |VG|.

Optimization by Preparation. The general framework in [24] uses a preparation step
in the backward search to compute the concatenation of rules and subgraph morphisms
performed in Step 2 of Procedure 1. This is not fully possible with universally quan-
tified rules since the instantiations are generated within the backward steps. However,
the preparation step can be performed for rules without universal quantifications. For
rules with quantification the inner rule morphism can be concatenated with subgraph
morphisms to partially prepare the rule. It can also be show that any concatenation of
an instantiation and a subgraph morphism which is also a subgraph morphism, will not
yield new graph in the backward step and thus can be dropped. This also holds for rules
with universal quantification if all possible instantiations are also subgraph morphisms.

6 Conclusions and Related Work

In this paper we introduced a categorical formalization for an extension of graph trans-
formation systems with universally quantified rules built on the single pushout ap-
proach. These rules are powerful enough to model distributed algorithms which use
broadcast communication. A similar concept are adaptive star grammars [20] where the
left-hand side of a rule is a star, i.e. a designated center node connected to a set of other
nodes. Arbitrary large graphs can be matched by cloning parts of the star, which is –
apart of the restriction to stars – one of the main differences to our approach. Techni-
cally our instantiations are a special form of amalgamated graph transformations [9], a
technique to merge rules.

The backward search procedure presented in this paper is an extension of [24] with
universally quantified rules and can be used for the verification of distributed algo-
rithms, similar to [14]. There the induced subgraph ordering was used, which was also
shown to be compatible with the framework in [24]. However, our quantifications differ
as we have a stronger negative application condition such that the induced subgraph
ordering is not enough to cause our UGTS to satisfy the compatibility condition. This
also causes the approached to differ in expressiveness. In general our approach should
be compatible with the induced subgraph ordering and the minor ordering, but we did
not yet investigated this.

Parameterized Verification of Graph Transformation Systems 83

Parameterized verification of combinations of automata- and graph-based models of
distributed systems has been studied, e.g. in [10,4,15,16,13,12]. In [5] we applied graph-
based transformations to model intermediate evaluations of non-atomic mutual exclu-
sion protocols with universally quantified conditions. The conditions are not defined
however in terms of graph rewrite rules. Semi-decision procedures can be defined by
resorting to upward closed abstractions during backward search (monotonic abstraction
as in [11]). In [10] we studied decidability of reachability and coverability for a graph-
based specification used to model biological systems. Among other results, we proved
undecidability for coverability for graph rewrite systems that can only increase the size
of a configuration. Reachability problems for graph-based representations of protocols
have also been considered in [4] where symbolic representations combining a special
graph ordering and constraint-based representation of relations between local data of
different nodes have been used to verify parameterized consistency protocols. Cover-
ability for GTS is studied in [8] where it was proved that it is decidable for bounded path
graphs ordered via subgraph inclusion. A model with topologies represented as acyclic
directed graphs has been presented in [1]. Coverability for automata-based models of
broadcast communication has recently been studied in [15,16,13,18,12]. In the context
of program analysis approximated backward search working on graphs representing
data structures with pointers have been considered in [2]. In this setting approximations
are defined via edges or node deletion.

References

1. Abdulla, P.A., Atig, M.F., Rezine, O.: Verification of directed acyclic ad hoc networks. In:
Beyer, D., Boreale, M. (eds.) FORTE 2013 and FMOODS 2013. LNCS, vol. 7892, pp. 193–
208. Springer, Heidelberg (2013)

2. Abdulla, P.A., Cederberg, J., Vojnar, T.: Monotonic abstraction for programs with multiply-
linked structures. Int. J. Found. Comput. Sci. 24(2), 187–210 (2013)

3. Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated parameterized verification of
infinite-state processes with global conditions. Formal Methods in System Design 34(2),
126–156 (2009)

4. Abdulla, P.A., Delzanno, G., Rezine, A.: Automatic verification of directory-based consis-
tency protocols with graph constraints. Int. J. Found. Comput. Sci. 22(4) (2011)

5. Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling parameterized systems
with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

6. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.: General decidability theorems for infinite-
state systems. In: Proc. of LICS 1996, pp. 313–321. IEEE (1996)

7. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability sta-
tus of reachability and coverability in graph transformation systems. In: RTA 2012. LIPIcs,
vol. 15, pp. 101–116. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

8. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability sta-
tus of reachability and coverability in graph transformation systems. In: RTA, pp. 101–116
(2012)

9. Boehm, P., Fonio, H., Habel, A.: Amalgamation of graph transformations: A synchronization
mechanism. Journal of Computer and System Sciences 34, 377–408 (1987)

84 G. Delzanno and J. Stückrath

10. Delzanno, G., Di Giusto, C., Gabbrielli, M., Laneve, C., Zavattaro, G.: The κ-lattice: Decid-
ability boundaries for qualitative analysis in biological languages. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 158–172. Springer, Heidelberg (2009)

11. Delzanno, G., Rezine, A.: A lightweight regular model checking approach for parameterized
systems. STTT 14(2), 207–222 (2012)

12. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verification of broadcast networks
of register automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp.
109–121. Springer, Heidelberg (2013)

13. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of parameterized
reachability in reconfigurable broadcast networks. In: FSTTCS 2012. LIPIcs, vol. 18, pp.
289–300. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

14. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer,
Heidelberg (2010)

15. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc networks. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 313–327. Springer,
Heidelberg (2010)

16. Delzanno, G., Sangnier, A., Zavattaro, G.: On the power of cliques in the parameterized
verification of ad hoc networks. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604,
pp. 441–455. Springer, Heidelberg (2011)

17. Delzanno, G., Stückrath, J.: Parameterized verification of graph transformation systems with
whole neighbourhood operations, arXiv:1407.4394 (2014)

18. Delzanno, G., Traverso, R.: Decidability and complexity results for verification of asyn-
chronous broadcast networks. In: Dediu, A.-H., Martı́n-Vide, C., Truthe, B. (eds.) LATA
2013. LNCS, vol. 7810, pp. 238–249. Springer, Heidelberg (2013)

19. Ding, G.: Subgraphs and well-quasi-ordering. Jornal of Graph Theory 16, 489–502 (1992)
20. Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive star gram-

mars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 77–91. Springer, Heidelberg (2006)

21. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Alge-
braic approaches to graph transformation—part II: Single pushout approach and comparison
with double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and
Computing by Graph Transformation: Foundations. ch. 4, vol. 1, World Scientific (1997)

22. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere? Theoretical
Computer Science 256(1-2), 63–92 (2001)

23. Heumüller, M., Joshi, S., König, B., Stückrath, J.: Construction of pushout complements
in the category of hypergraphs. In: Proc. of GCM 2010 (Workshop on Graph Computation
Models) (2010)

24. König, B., Stückrath, J.: A general framework for well-structured graph transformation sys-
tems. In: Baldan, P. (ed.) CONCUR 2014. LNCS, vol. 8704, pp. 467–481. Springer, Heidel-
berg (2014)

25. Namjoshi, K.S., Trefler, R.J.: Uncovering symmetries in irregular process networks. In: Gi-
acobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 496–514.
Springer, Heidelberg (2013)

Equivalence Between Model-Checking Flat
Counter Systems and Presburger Arithmetic�

Stéphane Demri2, Amit Kumar Dhar1, and Arnaud Sangnier1

1 LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France
2 NYU – CNRS

Abstract. We show that model-checking flat counter systems over CTL*
(with arithmetical constraints on counter values) has the same complex-
ity as the satisfiability problem for Presburger arithmetic. The lower
bound already holds with the temporal operator EF only, no arithmeti-
cal constraints in the logical language and with guards on transitions
made of simple linear constraints. This complements our understanding
of model-checking flat counter systems with linear-time temporal log-
ics, such as LTL for which the problem is already known to be (only)
NP-complete with guards restricted to the linear fragment.

1 Introduction

Branching-time temporal logics for counter systems. At first glance, model-
checking counter systems with temporal logics seems a hopeless enterprise since
control-state reachability problem for Minsky machines is already known to be
undecidable [23]. Fortunately, many subclasses of counter systems admit a de-
cidable reachability problem and more importantly, sometime the reachability
sets are even definable in Presburger arithmetic (PA) [24]. That is why, model-
checking problems with temporal logics for one-counter automata [15,16], Petri
nets [17], reversal-bounded counter systems [2], flat counter systems [14] have
been considered. The previous list is certainly not exhaustive and a general ques-
tion is how to take advantage of the decidability of the reachability problem to
conclude the decidability of model-checking problems with temporal logics. This
can lead to endless studies, since the variety of subclasses of counter systems
and temporal logics is extremely rich. By way of example, reachability sets of
flat counter systems are known to be definable in (PA), see e.g. [3,6,14,4], but it
is unclear how this can be extended to model-checking problems with temporal
logics, which indeed, is done in [10] for flat counter systems. A complexity char-
acterization for model-checking linear-time properties is provided in [9]. In the
present paper, we study flat counter systems and branching-time temporal log-
ics, more specifically with a variant of CTL∗ [12], already known to be difficult
to mechanize in the propositional case with labelled transition systems.

� Work partially supported by the EU Seventh Framework Programme under grant
agreement No. PIOF-GA-2011-301166 (DATAVERIF).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 85–97, 2014.
c© Springer International Publishing Switzerland 2014

86 S. Demri, A.K. Dhar, and A. Sangnier

Our motivations We have seen that reachability problems and the verification
of linear-time properties for flat counter systems are nowadays well-studied (see
e.g. [9,4]) and in this paper we wish to understand the computational complex-
ity for branching-time temporal logics such as CTL or CTL∗ (see e.g. [12]).
Branching-time extensions often lead to undecidability, see e.g. the case with
Petri nets for which CTL is undecidable (with propositional variables only)
whereas the reachability problem and model-checking for several LTL variants
are known to be decidable [17]. For flat counter systems, we are on the safe
side since decidability of model-checking CTL∗ formulae is established in [10]
but no lower bound is provided in [10] and the translation into (PA) gives an
exponential size formula, which is rather unsatisfactory. Our main motivation is
therefore to understand the complexity of model-checking flat counter systems
with branching-time logics so that optimal algorithms for model-checking can
be eventually designed.

Our contribution. We show that the model-checking problem for flat counter
systems over a version of CTL∗ with arithmetical constraints on counter values
is equivalent to satisfiability for (PA), modulo logarithmic-space reductions.

– For the complexity lower bound, we show that the satisfiability problem for
(PA) can be reduced to the model-checking problem but there is no need for
arithmetical constraints and for temporal operators other than EF.

– For the complexity upper bound, we reduce the model-checking problem to
satisfiability problem in (PA) by using the fact that runs in flat counter sys-
tems can be encoded by tuples of natural numbers and then the semantics
for CTL∗ can be internalized in (PA). This very fact has been already ob-
served in [10] but herein, we provide a logarithmic-space reduction which
makes a substantial difference with [10]. Indeed, we are also able to quantify
over path schemas (symbolic representation of potential infinite sets of runs),
but concisely. This witnesses once more, that verification problems can be
encoded efficiently to (PA), see e.g. [5].

– As a consequence, we are able to get the equivalence with (PA) to known
branching-time temporal logics stronger than CTLEF (such as CTL) and our
proof technique can be applied to extensions with past-time operators with
a minimal amount of change.

As far as proofs are concerned, for the lower bound, we take advantage of the
observation that a quantification in (PA) over a variable z can be simulated by
a loop that increments a corresponding counter and there is a correspondence
between first-order quantifier ∃ [resp. ∀] and temporal connective EF [resp. AG].
For the upper bound, quantification over path schemas is done, directly followed
by a quantification over the number of times loops are visited. However, we
provide a new way to encode runs in flat counter systems, which is rewarding
complexity-wise. Not only we provide a much better complexity characterization
than [10] but also our reduction into (PA) is much simpler, and therefore this
leaves some hope to use then some solvers for (PA), see e.g. [7,20].
Due to lack of space, omitted proofs can be found in [11].

Equivalence Between Model-Checking Flat Counter Systems 87

2 Branching-Time Temporal Logics on Flat Counter
Systems

Presburger arithmetic. (PA), i.e. the first-order theory of natural numbers with
addition, is introduced by M. Presburger who has shown decidability by quan-
tifier elimination. Let VAR = {z1, z2, z3, . . .} be a countably infinite set of
variables. Terms are expressions of the form a1z1 + · · · + anzn + k where a1,
. . . , an, k are in N. A valuation f is a map VAR → N and it can be ex-
tended to the set of all terms as follows: f(k) = k, f(az) = a × f(z) and
f(t + t′) = f(t) + f(t′) for all terms t and t′. Formulae are defined by the
grammar φ ::= t ≤ t′ | ¬φ | φ ∧ φ | ∃ z φ where t and t′ are terms and
z ∈ VAR. A formula φ is in the linear fragment def⇔ φ is a Boolean combination of
atomic formulae of the form t ≤ t′. The semantics for formulae in (PA) is defined
with the satisfaction relation |=: for instance f |= t ≤ t′

def⇔ f(t) ≤ f(t′) and
f |= ∃ z φ

def⇔ there is n ∈ N such that f [z → n] |= φ. Any formula φ(z1, . . . , zn)
whose free variables are among z1, . . . , zn, with n ≥ 1, defines a set of n-tuples
�φ(z1, . . . , zn)�

def
= {〈f(z1), . . . , f(zn)〉 ∈ Nn : f |= φ}, in that case for a vector

v ∈ Nn, we will also write v |= φ for v ∈ �φ(z1, . . . , zn)�. For a given PA formula
φ, the set of free variables of φ is denoted by free(φ). The satisfiability problem
for (PA) is a decision problem that takes as input a formula φ and asks whether
there is a valuation f such that f |= φ. If such a valuation exists, we say that φ
is satisfiable. Decidability of Presburger arithmetic has been shown in [24]. An
exact complexity characterization is provided in [1].

Counter systems. Let C = {x1, x2, . . .} be a countably infinite set of counters
with the finite subset {x1, . . . , xn} denoted as Cn and AT = {p1, p2, . . .} be a
countably infinite set of atomic propositional variables. A counter system is
a tuple 〈Q, Cn, Δ, �〉 where Q is a finite set of control states, � : Q → 2AT is
a labelling function, Δ ⊆ Q × Gn × Zn × Q is a finite set of edges labelled
by guards and updates of the counter values (transitions) where Gn is a finite
set of Presburger formulae φ with free(φ) ⊆ {x1, . . . , xn}. Guards are quite
general and we basically only need them in the linear fragment. However, since
we provide a translation into (PA), we can be a bit more general, as in Presburger
counter machines [10,19].

For each transition δ = 〈q, g,u, q′〉 in Δ, we use the following notations:
source(δ) = q, target(δ) = q′, guard(δ) = g and update(δ) = u. As usual, to
a counter system S = 〈Q, Cn, Δ, �〉, we associate a labelled transition system
T(S) = 〈C,→〉 where C = Q×Nn is the set of configurations and →⊆ C ×Δ×C
is the transition relation defined by: 〈〈q,v〉, δ, 〈q′,v′〉〉 ∈→ (also written 〈q,v〉 δ−→
〈q′,v′〉) iff q = source(δ), q′ = target(δ), v |= guard(δ) and v′ = v+ update(δ).
We write c → c′ iff there exists some edge δ, such that c

δ−→ c′.
Given c0 ∈ Q×Nn, a run ρ starting from c0 in S is a (possibly infinite) path in

the associated transition system T(S) denoted as ρ := c0
δ0−→ · · · δm−1−−−→ cm

δm−−→
· · · , where ci ∈ Q× Nn and δi ∈ Δ, for all i ∈ N.

88 S. Demri, A.K. Dhar, and A. Sangnier

Let trans(ρ) be the ω-word δ0δ1 . . . of the sequence of transitions appearing

in the run ρ. For every i ≥ 0, we define ρ(i) = ci and ρ≤i = c0
δ0−→ c1 · · ·

δi−1−−−→ ci.
Also, we say c →∗ c′ iff there exist a run ρ and i ∈ N such that ρ(0) = c and
ρ(i) = c′. Note that a run in a counter system S is either finite or infinite. A
run ρ is maximal iff either it is infinite, or it is finite and the last configuration
is a deadlock (i.e. with no successor configurations). For a finite maximal run

ρ := c0
δ0−→ · · · δm−1−−−→ cm

δm−−→ cm+1, we write |ρ| = m, otherwise for an infinite
maximal run ρ, |ρ| = ω.

A counter system is flat if every node in the underlying graph belongs to at
most one simple cycle (a cycle being simple if no edge is repeated twice in it)
[6,22]. In a flat counter system, simple cycles can be organized as a DAG where
two simple cycles are in the relation whenever there is path between a node of
the first cycle and a node of the second cycle. We denote by FlatCS the class of
flat counter systems.

Logical specifications. The formulae for CTL∗ are defined as follows: φ ::= p |
ψ(x1, . . . , xn) | φ ∧ φ | ¬φ | Xφ | φUφ | Eφ where p ∈ AT and ψ(x1, . . . , xn)
is a Presburger formula. We write CTLEF to denote the fragment of CTL∗ in
which the only (unary) temporal operator is EF (EFφ def

= E ($ U φ) and $ def
=

(x1 = x1)). Our version of CTL∗ is defined as the standard version, see e.g. [12],
except that the Kripke structures are replaced by transition systems from counter
systems and at the atomic level, arithmetical constraints are allowed. Let S =
〈Q, Cn, Δ, �〉 be a counter system with transition system T(S) = 〈C,→〉. The
satisfaction relation |= is defined as follows (CTL∗ formula φ, maximal run ρ in
T(S), position i < |ρ|):

ρ, i |= p
def⇔ p ∈ �(q), where ρ(i) = 〈q,v〉

ρ, i |= ψ(x1, . . . , xn)
def⇔ v |= ψ(x1, . . . , xn), where ρ(i) = 〈q,v〉

ρ, i |= Xψ
def⇔ ρ, i+ 1 |= ψ and i+ 1 < |ρ|

ρ, i |= ψ1Uψ2
def⇔ ρ, j |= ψ2 for some i ≤ j

such that j < |ρ| and ρ, k |= ψ1 for all i ≤ k < j

ρ, i |= Eφ
def⇔ there is a maximal run ρ′ s.t. ρ′(0) = ρ(i) and ρ′, 0 |= φ

Given a CTL∗ formula φ, a counter system S and a configuration c from S, we
say that S, c |= φ iff there exists a maximal run ρ in the configuration graph
T(S) with ρ(0) = c such that ρ, 0 |= φ (note that there is an overload for |= in
S, c |= φ). A flat counter system S is called non-blocking if every maximal run ρ
in S is infinite. Otherwise it is called a blocking flat counter system.

Lemma 1. Let L be either CTL∗ or CTLEF. Given a flat counter system S,
a configuration c and a formula φ in L, there exist a non-blocking flat counter
system S′, a configuration c′ and a formula φ′ in L such that S, c |= φ iff S′, c′ |=
φ′. Such a reduction can be performed in logarithmic space.

It is easy to see that we can add some dummy state to a blocking flat counter
system to obtain a non-blocking one preserving the satisfiability of formulae.

Equivalence Between Model-Checking Flat Counter Systems 89

The formula is also transformed by using a standard relativization method (a
new propositional variable is introduced that holds true only on configurations
that were not reachable in the original counter system). Due to Lemma 1, hence-
forth we consider only non-blocking flat counter systems. Since the reachability
relation is definable in (PA) for flat counter systems [10], it is even possible to
decide whether all maximal runs from a given configuration are infinite.

The model-checking problem for flat counter systems over CTL∗ is defined
as follows (let us call it MC(CTL∗, FlatCS)): given a flat counter system S, a
configuration c and a formula φ in CTL∗, determine whether S, c |= φ. We know
that MC(CTL∗, FlatCS) is decidable [10] but its exact complexity is not fully
characterized (actually, this is the purpose of the present paper). The restriction
to LTL formulae is known to be NP-complete [8] when guards are restricted
to the linear fragment. In Section 3, we show that the satisfiability problem
for (PA) can be reduced to MC(CTL∗, FlatCS) restricted to CTLEF without
arithmetical constraints and to flat counter systems such that the guards are
restricted to simple linear constraints. By contrast, model-checking flat finite
Kripke structures over CTL∗ is ΔP

2 -complete [13,18].

3 Reducing (PA) to a Subproblem of MC(CTL∗, FlatCS)

In a flat counter system with n counters, the guards on transitions are Pres-
burger formulae with free variables in {x1, . . . , xn}. That is why, it is easy to
show that the satisfiability problem for (PA) can be reduced (in logarithmic
space) to MC(CTL∗, FlatCS). Clearly, this is not interesting and the generality
of the guards in the paper is only considered because, when establishing the
complexity upper bound, we can be quite liberal with the set of guards. How-
ever, a more reasonable set of guards is the linear fragment (i.e., without any
first-order quantification). Below, we show that a very restricted fragment of
MC(CTL∗, FlatCS), simply called MC−(CTL∗, FlatCS), is already as hard as
the satisfiability problem for (PA) and our reduction is based on a simple and
nice correspondence between quantifiers in (PA) and the temporal operators EF
and AG in CTL∗. First, let us define MC−(CTL∗, FlatCS) as the subproblem
of MC(CTL∗, FlatCS) with the following restrictions: (a) atomic formulae are
restricted to propositional variables and the only temporal connective is EF (and
its dual AG, by closure under negation) and (b) the guards on the transitions are
linear constraints t ≤ t′ or their negations.

Theorem 2. There is a logarithmic-space reduction from the satisfiability prob-
lem for (PA) to MC−(CTL∗, FlatCS).

Proof. (sketch) Let φ be a formula in (PA). Without any loss of generality, we
can assume that φ has the form Q1 z1 Q2 z2 · · · Qn zn φ′(z1, z2, . . . , zn) with
Q1,Q2, . . . ,Qn ∈ {∃, ∀} and φ′ is a quantifier-free formula. Note that given any
formula in (PA), we can reduce it to an equisatisfiable formula of that form
in logarithmic space (which is then fine for our main result since logarithmic-
space reductions are closed under composition). This is essentially based on the
construction of formulae in prenex normal form in first-order logic.

90 S. Demri, A.K. Dhar, and A. Sangnier

Let us consider Sφ defined below where ei ∈ Nn is the ith unit vector.

q0 q1 qn−1 qn qn+1

$, e1 $, e2 $, en

φ′(x1, x2, . . . , xn),0

$,0

Observe that φ′(x1, x2, . . . , xn) may contain Boolean connectives but we explain
below how to get rid of them in Sφ. Below, we define ψ in CTLEF whose atomic
formulae are among q1, . . . , qn+1 (also abusively understood as control states)
such that (†) Sφ, 〈q0,0〉 |= ψ iff φ is satisfiable in (PA). Intuitively, the possible
value associated to each variable zi from φ is taken care of by the ith loop
(that can only increment the ith counter). This is not enough, and additionally,
the quantifications from φ are simulated in the formula ψ by using EF or AG,
depending whether the first-order quantification is either existential or universal.
Let us define below the formulae ψi with i ∈ [1, n+ 1] so that ψ

def
= ψ1, ψn+1

def
=

EF qn+1, and for every i ∈ [1, n], if Qi = ∃ then ψi
def
= EF(qi ∧ ψi+1), otherwise

ψi
def
= AG(qi ⇒ ψi+1). In order to establish (†) it is sufficient to show the property

(††) below. Given a valuation f : VAR → N, we write vf ∈ Nn to denote
the vector such that vf [i]

def
= f(zi) for every i ∈ [1, n]. One can show that

(††) for all f , we have f |= φ′(z1, z2, . . . , zn) iff 〈qn,vf 〉 |= ψn+1 and for all
i ∈ [1, n] and for all valuations f such that f(zi) = · · · = f(zn) = 0, we have
f |= Qi zi · · · Qn zn φ′(z1, z2, . . . , zn) iff 〈qi−1,vf 〉 |= ψi. We get the property
(†) by applying (††) with i = 1.

To eliminate the Boolean connectives in the guard of the transition between
qn and qn+1, we follow two simple rules, while preserving flatness (easy to check
since that transition does not belong to a loop). W.l.o.g., we can assume that
negations are only in front of linear constraints. A transition q

ψ1∧ψ2,0−−−−→ q′ is
replaced by q

ψ1,0−−→ q′′
ψ2,0−−→ q′ where q′′ is new. Similarly, a transition q

ψ1∨ψ2,0−−−−→ q′

is replaced by q
ψ1,0−−→ q′ and q

ψ2,0−−→ q′, assuming that q does not belong to a loop.
It is easy to show that Sφ can be transformed into a flat counter system S′

φ

by applying the two rules above as much as possible so that eventually, S′
φ is a

proper counter system for MC−(CTL∗, FlatCS). ��

4 From MC(CTL∗, FlatCS) to (PA)

In this section, we present a logarithmic-space reduction from MC(CTL∗, FlatCS)
to the satisfiability problem for (PA). In [10], a reduction is already presented
to get decidability of MC(CTL∗, FlatCS). Unfortunately, it requires exponential
space and is quite difficult to parse. Following a similar idea, we propose here a
simpler reduction that has the great advantage to be optimal complexity-wise.
The idea of this reduction is based on the two following points:

1. encoding the runs in flat counter systems by tuples of natural numbers
thanks to a symbolic representation for potential infinite sets of runs, see
path schemas in [8],

Equivalence Between Model-Checking Flat Counter Systems 91

2. internalizing CTL∗ semantics into (PA) by using the encoding of runs.

Below, we consider a fixed flat counter system S = 〈Q, Cn, Δ, �〉 and w.l.o.g, Q =
{1, . . . , α} for some α ≥ 1 and Δ = {δ1, . . . , δβ}. Since Q ⊆ N, configurations of
S are vectors in Nn+1 where the first component represents the control state.

4.1 Minimal Path Schemas

In [8], following an idea from [21], minimal path schemas are introduced as a
mean to symbolically represent all runs in flat counter systems. Path schemas
can be defined as finite sequences made of transitions or simple loops (condi-
tions apply). Formal definition is recalled below. A simple loop l of S is a non-
empty finite sequence of transitions δ1, . . . , δm such that source(δ1) = target(δm),
source(δj) = target(δj+1) for all j ∈ [1,m− 1], and, for all j, k ∈ [1,m], if j �= k
then δj �= δk. The length of l, written length(l), is the value m and we denote by
source(l) = target(l) the control state source(δ1). The number of simple loops is
necessarily finite and we assume that the set of loops of S is L = {l1, l2, . . . , lγ}.
Since S is flat, we have γ ≤ α. A minimal path schema P is a non-empty se-
quence u1, . . . , uN s.t. each ui ∈ Δ∪L and the following conditions are verified.

1. uN is a loop,
2. i �= j implies ui �= uj,
3. for all i ∈ [1, N − 1], we have target(ui) = source(ui+1).

The second condition guarantees minimality whereas the third condition ensures
that P respects the control graph of S. The size of P , denoted by size(P), is
equal to N . For all j ∈ [1, N], we write P [j] to denote uj. Here is an obvious
result.

Lemma 3. The size of a minimal path schema is bounded by β + γ ≤ β + α.

In order to obtain concrete paths from a path schema P , we augment P with
a vector specifying how many times each internal loop is visited. By definition,
a loop in P is internal if it is not the last one. An iterated path schema is a
pair 〈P,m〉 where P is a minimal path schema and m ∈ Nsize(P) such that
m[1] = size(P) and for all i ∈ [1, size(P)− 1], m[i+1] > 0 and if P [i] ∈ Δ, then
m[i + 1] = 1. From 〈P,m〉, we define the ω-word

trans(P,m)
def
= P [1]m[2] . . . P [j]m[j+1] . . . P [size(P)− 1]m[size(P)]P [size(P)]ω

Lemma 4 below states that iterated path schemas encode all runs from flat
counter systems by noting that infinite runs necessarily end by a simple loop
(repeated infinitely) and the visit of loops is strictly ordered.

Lemma 4. [8] Given an infinite run ρ in a flat counter system S , there exists
an iterated path schema 〈P,m〉 such that trans(ρ) = trans(P,m).

92 S. Demri, A.K. Dhar, and A. Sangnier

Encoding iterated path schemas. Thanks to Lemma 3, we show that it is possible
to encode path schemas by vectors in NK with K = 1 + β + γ. Intuitively, we
encode a path schema P by two vectors vp and vt in NK where the first element
of each vector is equal to size(P) and for all i ∈ [2, size(P)+1], we have vt[i] = 1
if P [i] is a loop and vt[i] = 0 otherwise. So, vt encodes the type of each element
(transition vs. loop) in the sequence defining P . Similarly, vp[i] represents the
number of the associated transition or loop; for instance, vp[i] = 2 and vt[i] = 1
encodes that P [i] is the second loop, say l2. Furthermore, we encode the vector
m by a vector vit ∈ NK . Let us formalize this. First, we define the function
τ : (({0}× [1, β])∪ ({1}× [1, γ])) → Δ∪L such that τ(0, i)

def
= δi and τ(1, i)

def
= li.

Now, we provide a set of conditions C on the vectors vt,vp,vit ∈ NK which have
to be respected so that, we can build from them an iterated path schema.

C.1 vp[1] = vt[1] = vit[1] with vp[1] ∈ [1,K − 1]; for all i ∈ [vit[1] + 2,K],
vp[i] = vt[i] = vit[i] = 0,

C.2 vt[i] ∈ {0, 1} for all i ∈ [2,K],
C.3 if vt[i] = 0 then vp[i] ∈ [1, β], for all i ∈ [2,vp[1] + 1],
C.4 if vt[i] = 1 then vp[i] ∈ [1, γ], for all i ∈ [2,vp[1] + 1],
C.5 vt[vp[1] + 1] = 1,
C.6 there are no i, j ∈ [2,vp[1]+1] such that i �= j, vt[i] = vt[j] and vp[i] = vp[j],
C.7 target(τ(vt[i],vp[i])) = source(τ(vt[i+ 1],vp[i+ 1])) for all i ∈ [2,vp[1]],
C.8 for all i ∈ [2,vp[1]], vit[i] > 0 and if vt[i] = 0 then vit[i] = 1.

The first four conditions ensure that the vectorial representation is coherent.
The three next conditions guarantee that the encoding respects the structure of
a minimal path schema, i.e. that the last element is a loop (C.5), that there are
no two identical transitions or loops in the schema (C.6) and that the succession
of elements effectively represents a path in the counter system (C.7). The last
condition ensures that vit matches the definition of the vector in an iterated
path schema. It follows that given vectors vp, vt and vit in NK that satisfy all
the conditions (C.i), we can build a minimal path schema Pvt,vp equal to

τ(vt[2],vp[2]) · · · τ(vt[vp[1] + 1],vp[vp[1] + 1])

From the vector vit, we can define the vector mvit
∈ Nvit[1] such that for all

i ∈ [1,vit[1]], mvit
[i]

def
= vit[i]. We will see that there exists a Presburger for-

mula Schema(Zt,Zp,Zit) over the sets of variables Zp = {z1p, . . . , zKp }, Zt =

{z1t , . . . , zKt } and Zit = {z1it, . . . , zKit } to express the conditions (C.i)i∈[1,8].

Lemma 5.

1. Let P be a finite non-empty sequence of length N ≤ β + γ over the alphabet
Δ ∪ L and m ∈ NN . Then, 〈P,m〉 is an iterated path schema iff there are
vt, vp and vit in NK respecting C and such that P = Pvt,vp and m = mvit .

2. One can build a (PA) formula Schema(Zt,Zp,Zit) of polynomial size in the
size of the counter system S such that for all vt, vp, vit ∈ NK , we have
vt, vp, vit |= Schema(Zt,Zp,Zit) iff vt, vp and vit satisfy C.

Equivalence Between Model-Checking Flat Counter Systems 93

Let us consider the following flat counter system.

q1

q2

q5 q6

q7

q8

δ1

δ2

δ3
δ4

δ5

δ6

δ7

δ8

δ9

δ10

l1

l2

l3

There are 10 transitions and 3 simple loops. The enumeration of edges and
loops is done as shown above. Let 〈P,m〉 be such that P = δ3 · δ6 · l2 · δ8 · l3
and m = (5, 1, 1, 146, 1). So, we get the resulting ω-word as δ3 · δ6 · (l2)146 ·
δ8 · (l3)ω . From the previous encoding, the ω-word is encoded by vectors vp =
(5, 3, 6, 2, 8, 3, 0, 0, 0, 0, 0, 0, 0, 0), vt = (5, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) and vit =
(5, 1, 1, 146, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0).

4.2 Encoding Runs Using Vectors

Lemma 4 states that any infinite run can be encoded by an iterated path schema.
However, not every iterated path schema corresponds to a run in due form. We
will see now how to check that an iterated path schema indeed represents a run
starting from a given configuration c. First, we need to introduce a notion of
pseudo-run in which only the updates are precise. Given c ∈ Q × Zn, a pseudo-
run ρ starting from c in S is an infinite sequence ρ := c0

δ1� · · · δm−1� cm
δm� · · ·

where c0 = c, ci = 〈qi,vi〉 ∈ Q×Zn for all i ≥ 0 and for all transitions δ ∈ Δ we
have 〈q,v〉 δ� 〈q′,v′〉 def⇔ q = source(δ), q′ = target(δ) and v′ = v + update(δ).

So, a pseudo-run ρ = 〈q0,v0〉
δ1� · · · δm−1� 〈qm,vm〉 · · · is a run iff for all i ∈ N,

vi |= guard(δi) and vi ∈ Nn. Note also that for all configurations 〈q,v〉, if
〈P,m〉 is an iterated path schema such that source(P [1]) = q then there exists
a pseudo-run starting from c such that trans(ρ) = trans(〈P,m〉).

From these observations, we conclude that an iterated path schema 〈P,m〉
augmented with c0 = 〈q0,v0〉 verifying source(P [1]) = q0, defines a unique
pseudo-run that is denoted by ρ(P,m, c0). Given a configuration c0 = 〈q0,v0〉, we
say that ρ(P,m, c0) is well-defined if source(P [1]) = q0. For every i ∈ [0, size(P)−
1] let pi

def
=
∑j=i

j=1 m[j]∗ length(P [j]) with limit case p0 = 0. The value pi is called
the position of the ith witness configuration ρ(P,m, c0)(pi). Intuitively, we reach
the ith witness configuration after going through the first i elements of the path
schema P in ρ(P,m, c0). We say that ρ(P,m, c0) is positive if for all the witness
configurations 〈q,v〉, we have v ∈ Nn. Note that since for all path schemas P , we
have size(P) ≤ β+γ, the number of witness configurations for such a pseudo-run
is bounded by β + γ.

Now, we show how to build a (PA) formula whose set of solutions corresponds
to the witness configurations of a pseudo-run associated to an iterated path
schema equipped with an initial configuration. Before defining the formula, we
explain some further notions. In the sequel, we use the sets of variables X0 =
{x10, . . . , xn+1

0 } and X = {x1, . . . , xn+1} to represent configurations and Wi =

94 S. Demri, A.K. Dhar, and A. Sangnier

{w1
i , . . . ,w

n+1
i } for every i ∈ [0, β + γ − 1] to represent pseudo-configurations

and the variables p0, . . . , pβ+γ−1 and y to represent positions in (pseudo)-runs.
Furthermore, given sets of variables X,W representing (pseudo)-configurations,
a variable x and a vector u ∈ Nn, we use the shortcut X = W + x.u to denote
the formula

∧n+1
i=2 xi = wi + x.u[i − 1]. Let us define the formula Witness that

states whether a given set of configurations and natural numbers represent the
witness configurations and their respective positions in a pseudo-run associated
to an iterated path schema. The main idea of the formula is to check at each step
whether the control states of the witness configurations match with the states of
the taken transitions or loops in the path schema and then to compute the effect
of the corresponding element of the iterated path schema taking into account
the number of iterations.

Witness(W0, . . . ,Wβ+γ−1, p0, . . . , pβ+γ−1,Zt,Zp,Zit,X0)
def
=

(p0 = 0 ∧ X0 = W0 ∧
1∨

t=0

max(β,γ)∨
j=1

z2p = j ∧ z2t = t ∧ x10 = source(τ (t, j)))∧

β+γ−1∧
i=1

(i < z1t ⇒
1∨

t=0

max(β,γ)∨
j=1

(zi+1
p = j ∧ zi+1

t = t ∧ pi = pi−1 + zi+1
it ∗ length(τ (t, j))∧

w1
i = target(τ (t, j)) ∧Wi = Wi−1 + zi+1

it ∗ update(τ (t, i)))

Lemma 6 below characterizes the formula Witness.

Lemma 6. Let w0, . . . ,wβ+γ−1, c0 ∈ Nn+1 and p0, . . . , pβ+γ−1 ∈ N and vt,
vp, vit in NK such that vt, vp, vit |= Schema(Zt,Zp,Zit). We have w0, . . . ,
wβ+γ−1, p0, . . . , pβ+γ−1, vt, vp, vit, c0 |= Witness iff ρ(Pvt,vp ,mvit

, c0) is well-
defined and positive and for all j ∈ [0, β + γ − 1], if j < size(Pvt,vp), then wj

represents the jth witness configuration of ρ(Pvt,vp ,mvit
, c0) and pj its position.

Using Witness, one can build in logarithmic space a formula to check whether a
vector c is the ith configuration 〈qi,vi〉 of a pseudo-run ρ(Pvt,vp ,mvit

, c0) with
the property that vi |= guard(trans(〈Pvt,vp ,mvit

〉)[i + 1]) and vi ∈ Nn (here i
is the number of transitions to reach that configuration) and then to construct
a formula to check whether a pseudo-run is a run. In fact, as observed earlier, it
is enough to check whether at each step the ith configuration satisfies the guard
of the (i + 1)th transition.

Lemma 7. One can build in logarithmic-space in the size of flat counter system
S two PA formulae Conf (Zt,Zp,Zit,X0, y,X) and Run(Zt,Zp,Zit,X0) such that
for all c0, c ∈ Nn+1, for all i ∈ N and for all vt, vp, vit ∈ Nβ+γ+1, we have the
two following properties:

1. vt, vp, vit, c0, i, c |= Conf iff vt, vp, vit |= Schema and ρ(Pvt,vp ,mvit , c0) is
well defined and c = ρ(Pvt,vp ,mvit , c0)(i) and c[2], · · · , c[n + 1] |= guard(
trans(〈Pvt,vp ,mvit〉)[i + 1])

2. vt, vp, vit, c0 |= Run iff vt, vp, vit |= Schema and ρ(Pvt,vp ,mvit
, c0) is well-

defined and is a run.

Equivalence Between Model-Checking Flat Counter Systems 95

4.3 Encoding CTL∗ Formulae Using (PA)

We can encode path schemas and runs using vectors and check their validity using
Presburger arithmetic formula, our next aim is to encode a given CTL∗ formula
using a formula in (PA). The forthcoming encoding internalizes CTL∗ semantics
and a similar idea has been already used in [10]. For each CTL∗ formula φ, we
build a (PA) formula Checkφ(Zt,Zp,Zit,X0, y) where the variables Zt,Zp,Zit and
X0 represent a run as in the formula Run and, y represents a position such that
the formula checks whether the CTL∗ formula is satisfied at the current position.
Formula Checkφ is defined recursively (Boolean clauses are omitted):

Check p
def
= ∃ X (Conf (Zt,Zp,Zit,X0, y,X) ∧

∨
{j | p ∈ �(j)}

x1 = j)

Checkψ(x1,...,xn)
def
= ∃ X (Conf (Zt,Zp,Zit,X0, y,X) ∧ ψ(X))

Check Xφ
def
= ∃ y′ (y′ = y + 1 ∧ Checkφ(Zt,Zp,Zit,X0, y

′))

CheckφUφ′
def
= ∃ y′′ (y ≤ y′′ ∧ Checkφ′(Zt,Zp,Zit,X0, y

′′)∧
∀ y′ (y ≤ y′ < y′′ ⇒ Checkφ(Zt,Zp,Zit,X0, y

′)))

Check Eφ
def
= ∃ Z′

t ∃ Z′
p ∃ Z′

it ∃ X (Conf (Zt,Zp,Zit,X0, y,X)∧
Run(Z′

t,Z
′
p,Z

′
it,X) ∧ ∃ y′ (y′ = 0 ∧ Checkφ(Z

′
t,Z

′
p,Z

′
it,X, y′)))

Now, we can state the main property concerning the formulae Checkφ based on
Lemmas 4, 5 and 7.

Lemma 8. Let c0 ∈ Nn+1, i ∈ N and vt, vp, vit ∈ NK be such that vt, vp, vit
, c0 |= Run. We have ρ(Pvt,vp ,mvit

, c0), i |= φ iff vt, vp, vit, c0, i |= Checkφ(Zt,Zp,
Zit,X0, y).

This allows us to conclude the main result of this section.

Theorem 9. There is a logarithmic-space reduction from MC(CTL∗, FlatCS)
to the satisfiability problem for (PA).

It is possible to extend the reduction by admitting linear past-time operators
to the temporal language since we have seen that we can easily quantify over
runs. However, in that case, finite prefixes in runs should not be reset.

5 Conclusion

We have been able to characterize the computational complexity for MC(CTL∗,
FlatCS) by showing that the problem is equivalent to the satisfiability prob-
lem for Presburger arithmetic (modulo logarithmic-space reductions). The lower
bound is obtained by considering a quite strong restriction (no arithmetical con-
straints in formulae, the only temporal operator is EF, guards on transitions are
simple linear constraints). By contrast, the restriction of the problem to LTL
formulae is known to be NP-complete [8] when guards are in the linear fragment
and the restriction of the problem to formulae in CTLEF is also equivalent to
(PA). We have proposed a new way for encoding runs in flat counter systems us-
ing Presburger arithmetic formulae, but without any exponential blow up, which

96 S. Demri, A.K. Dhar, and A. Sangnier

allows us to get a precise complexity characterization. It remains open to deter-
mine which extensions of CTL∗ on flat counter systems preserve decidability, if
not an efficient translation into (PA).

References

1. Berman, L.: The complexity of logical theories. TCS 11, 71–78 (1980)
2. Bersani, M., Demri, S.: The complexity of reversal-bounded model-checking. In:

Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp.
71–86. Springer, Heidelberg (2011)

3. Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis,
Université de Liège (1998)

4. Bozga, M., Iosif, R., Konečný, F.: Safety problems are NP-complete for flat integer
programs with octagonal loops. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014.
LNCS, vol. 8318, pp. 242–261. Springer, Heidelberg (2014)

5. Bruyère, V., Dall’Olio, E., Raskin, J.: Durations, parametric model-checking in
timed automata with presburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS
2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)

6. Comon, H., Jurski, Y.: Multiple counter automata, safety analysis and Pres-
burger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

7. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Demri, S., Dhar, A.K., Sangnier, A.: Taming past LTL and flat counter systems.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
179–193. Springer, Heidelberg (2012)

9. Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular prop-
erties on flat counter systems, In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 162–173. Springer,
Heidelberg (2013)

10. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL∗ over
flat Presburger counter systems. JANCL 20(4), 313–344 (2010)

11. Dhar, A.K.: Applying Satisfiability Modulo Theories Techniques to the Verification
of Infinite-State Systems. PhD thesis, Université Paris VII-Denis Diderot (2014)

12. Emerson, A., Halpern, J.: ‘sometimes‘ and ’not never’ revisited: on branching versus
linear time temporal logic. JACM 33, 151–178 (1986)

13. Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time logic
strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)

14. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

15. Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Branching-time model checking of
parametric one-counter automata. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS,
vol. 7213, pp. 406–420. Springer, Heidelberg (2012)

16. Göller, S., Lohrey, M.: Branching-time model checking of one-counter processes
and timed automata. SIAM J. Comput. 42(3), 884–923 (2013)

17. Habermehl, P.: On the complexity of the linear-time mu-calculus for Petri nets.
In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116.
Springer, Heidelberg (1997)

Equivalence Between Model-Checking Flat Counter Systems 97

18. Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking CTL+ and FCTL
is hard. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp.
318–331. Springer, Heidelberg (2001)

19. Leroux, J.: Presburger counter machines. Habilitation thesis, U. of Bordeaux (2012)
20. Leroux, J., Point, G.: TaPAS: The talence presburger arithmetic suite. In:

Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 182–185.
Springer, Heidelberg (2009)

21. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
402–416. Springer, Heidelberg (2004)

22. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled, D.A.,
Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg
(2005)

23. Minsky, M.: Computation, Finite and Infinite Machines. Prentice Hall (1967)
24. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arith-

metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
In: Comptes Rendus du premier congrès de mathématiciens des Pays Slaves,
Warszawa, pp. 92–101 (1929)

Synthesising Succinct Strategies in Safety

and Reachability Games�

Gilles Geeraerts, Joël Goossens, and Amélie Stainer

Université libre de Bruxelles, Département d’Informatique, Brussels, Belgium

Abstract. We introduce general techniques to compute, efficiently, suc-
cinct representations of winning strategies in safety and reachability
games. Our techniques adapt the antichain framework to the setting
of games, and rely on the notion of turn-based alternating simulation,
which is used to formalise natural relations that exist between the states
of those games in many applications. In particular, our techniques ap-
ply to the realisability problem of LTL [8], to the synthesis of real-time
schedulers for multiprocessor platforms [4], and to the determinisation of
timed automata [3] — three applications where the size of the game one
needs to solve is at least exponential in the size of the problem descrip-
tion, and where succinct strategies are particularly crucial in practice.

1 Introduction

Finite, turn-based, games are a very simple, yet relevant, class of games. They
are played by two players (S and R) on a finite graph (called the arena), whose
set of vertices is partitioned into Player S and Player R vertices. A play is an
infinite path in this graph, obtained by letting the players move a token on the
vertices. Initially, the token is on a designated initial vertex. At each round of
the game, the player who owns the vertex marked by the token decides on which
successor node to move it next. A play is winning for R if the token eventually
touches some designated ‘bad’ nodes (the objective for R is thus a reachability
objective), otherwise it is winning for S (for whom the objective is a safety
objective), hence the names of the players.

Such games are a natural model to describe the interaction of a potential
controller with a given environment, where the aim of the controller (modeled
by player S) is to avoid the bad states that model system failures. They have
also been used as a tool to solve other problems such as LTL realisability [8],
real-time scheduler synthesis [4] or timed automata determinisation [3].

We consider, throughout the paper, a running example which is a variation
of the well-known Nim game [5]. Initially, a heap of N balls is shared by the

� This research has been supported by the Belgian F.R.S./FNRS FORESt grant, num-
ber 14621993.
The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n◦601148
(CASSTING).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 98–111, 2014.
c© Springer International Publishing Switzerland 2014

Synthesising Succinct Strategies in Safety and Reachability Games 99

0 2 3 4 5 6 7

1 2 3 4 5 6 7 8

(a) Winning strategy (b) �0-Winning �-strategy
node succ. node succ. node succ. node succ.

0 1 3 4 5 7 7 8

2 4 4 5 6 7

node succ.

5 7

6 7

Fig. 1. Urn-filling Nim game with N = 8, and three winning strategies

players, and the urn is empty. The players play by turn and pick either 1 or 2
balls from the heap and put them into the urn. A player looses the game if he is
the last to play (i.e., the heap is empty after he has played). An arena modeling
this game (for N = 8) is given in Fig. 1 (top), where S-states are circles, R-
states are squares, and the numbers labelling the states represent the number
of balls inside the urn. The arena obtained from Fig. 1 without the dotted edges
faithfully models the description of the game we have sketched above (assuming
Player S plays first). From the point of view of player S, the set of states that
he wants to avoid (and that player R wants to reach) is Bad =

{
7 , 8

}
, and we

call winning all the states from which S can avoid Bad whatever R does. It is
well-known [5] that a simple characterisation of the set of winning states1 can
be given. For each state v, let λ(v) denote its label. Then, the winning states (in
white in Fig 1) are all the S-states v s.t. λ(v) mod 3 �= 1 plus all the R-states
v′ s.t. λ(v′) mod 3 = 1.

It is well-known that memory-less winning strategies (i.e., that depend only
on the current state) are sufficient for both players in those games. Memory-less
strategies are often regarded as simple and straightforward to implement (remem-
ber that the winning strategy is very often the actual control policy that we want
to implement in, say, an embedded controller). Yet, this belief falls short in many
practical applications such as the three mentioned above because the arena is not
given explicitly, and its size is at least exponential in the size of the original prob-
lem instance. Hence, the computation of winning strategies might be intractable
in practice because it could request to traverse the whole arena. Moreover, a naive
implementation of awinning strategyσ bymeans of a tablemapping eachS-state v
to its safe successor σ(v) (like in Fig. 1 (a) for our running example), is not realistic
because this table would have the size of the arena.

1 In order to make our example more interesting (this will become clear in the sequel),
we have added the three dotted edges from 7 to 6 and 5 respectively, and from
6 to 5 although those actions are not permitted in the original game. However,
observe that those extra edges do not modify the set of winning states.

100 G. Geeraerts, J. Goossens, and A. Stainer

In this work, we consider the problem of computing winning strategies that
can be succinctly represented. We call ‘�-strategy’ those succinct representations,
and they can be regarded as an abstract representation of a family of (plain)
strategies, that we call concretisations of the �-strategies. In order to keep the
description of winning �-strategies succinct, and to obtain efficient algorithms to
compute them, we propose heuristics inspired from the antichain line of research
[7]. These heuristics have been developed mainly in the verification setting, to
deal with automata-based models. Roughly speaking, they rely on a simulation
partial order on the states of the system, which is exploited to prune the state
space that the algorithms need to explore, and to obtain efficient data structures
to store the set of states that the algorithms need to maintain. They have been
applied to several problems, such as LTL model-checking [7] or multi-processor
schedulability [9] with remarkable performance improvements of several orders
of magnitude.

In this paper, we introduce general antichain-based techniques for solving
reachability and safety games, and computing efficiently succinct representations
of winning strategies. We propose a general and elegant theory which is built on
top of the notion of turn-based alternating simulation (tba-simulation for short,
a notion adapted from [2]), instead of simulation. In our running example, a
tba-simulation �0 exists and is given by: v�0 v′ iff v and v′ belong to the same
player, λ(v) ≥ λ(v′) and λ(v) mod 3 = λ(v′) mod 3. Then, it is easy to see
that the winning strategy of Fig. 1 (a) exhibits some kind of monotonicity wrt
�0: 5 �0 2 , and the winning strategy asks to put two balls in the urn in both
cases. Hence, we can represent the winning strategy as in Fig. 1 (b). Observe
that not all concretisations of this strategy are winning. For instance, playing
3 from 2 is a losing move, but it is not compatible with �0 because 3 is
not �0-covered by 7 . Moreover, this succinct description of the strategy can be
implemented straightforwardly: only the table in Fig. 1 (b) needs to be stored
in the controller, as �0 can be directly computed from the description of the
states.

These intuitions are formalised in Section 4, where we show that, in general,
it is sufficient to store the strategy on the maximal antichain of the reachable
winning states. In Section 5, we present an efficient on-the-fly algorithm to com-
pute such succinct �-strategies (adapted from the classical OTFUR algorithm to
solve reachability games [6]). Our algorithm generalises the algorithm of Filiot
et al. [8], with several improvements: 1. it applies to a general class of games
whose arena is equipped with a tba-simulation (not only those generated from an
instance of the LTL realisability problem) ; 2. it contains an additional heuris-
tic that was not present in [8] ; 3. its proof of correctness is straightforward,
and stems directly from the definition of tba-simulation. Finally, in Section 6,
we show that our approach can be straightforwardly applied to the games one
obtains in the three applications introduced above (LTL realisability, real-time
feasibility and determinisation of timed automata) which demonstrates the wide
applicability of our approach.

Synthesising Succinct Strategies in Safety and Reachability Games 101

Note that, owing to lack of space, all proofs are to be found in the companion
technical report [10]

2 Preliminaries

Turn-based finite games. A finite turn-based game arena is a tuple A = (VS , VR,
E, I), where VS and VR are the finite sets of states controlled by Players S and
R respectively; E ⊆ (VS × VR) ∪ (VR × VS) is the set of edges; and I ∈ VS is
the initial state. We let V = VS ∪ VR. For a finite arena A = (VS , VR, E, I) and
a state v ∈ V , we let Succ (A, v) = {v′ | (v, v′) ∈ E} and Reach (A, v) = {v′ |
(v, v′) ∈ E∗}, where E∗ is the reflexive and transitive closure of E. We write
Reach (A) instead of Reach (A, I), and lift the definitions of Reach and Succ to
sets of states in the usual way.

The aim of Player R is to reach some designated set of states Bad, while the
aim of S is to avoid it. Throughout this paper, we focus on the objective of player
S, and regard our finite games as safety games because they correspond to the
applications we target in Section 6. However, those games are symmetrical and
determined, so, our results can easily be adapted to cope with reachability games.
Formally, A finite turn-based (safety) game is a tuple G = (VS , VR, E, I,Bad)
where (VS , VR, E, I) is a finite turn-based game arena, and Bad ⊆ V is the set
of bad states that S wants to avoid. The definitions of Reach and Succ carry
on to games: for a game G = (A,Bad), we let Reach (G, v) = Reach (A, v),
Reach (G) = Reach (A) and Succ (G, v) = Succ (A, v). When the game is clear
from the context, we often omit it.

Plays and strategies. During the game, players interact to produce a play, which
is a finite or infinite path in the graph (V,E). Players play turn by turn, by
moving a token on the game’s states. Initially, the token is on state I. At each
turn, the player who controls the state marked by the token gets to choose
the next state. A strategy for S is a function σ : VS → VR such that for all
v ∈ VS , (v, σ(v)) ∈ E. We extend strategies to set of states S in the usual way:
σ(S) = {σ(v) | v ∈ S}. A strategy σ for S is winning for a state v ∈ V iff no
bad states are reachable from v in the graph Gσ obtained from G by removing
all the moves of S which are not chosen by σ, i.e. Reach (Gσ, v)∩Bad = ∅, where
Gσ = (VS , VR, Eσ, I,Bad) and Eσ = {(v, v′) | (v, v′) ∈ E ∧ v ∈ VS =⇒ v′ =
σ(v)}. We say that a strategy σ is winning in a game G = (VS , VR, E, I,Bad) iff
it is winning in G for I.

Winning states and attractors. A state v ∈ V in G is winning (for Player S) iff
there exists a strategy σ that is winning in G for v. We denote by Win the set
of winning states (for Player S). By definition, any strategy such that σ(Win) ⊆
Win is thus winning. Moreover, it is well-known that Win can be computed in
polynomial time (in the size of the arena), by computing the so-called attractor
(for Player R) of the unsafe states. In a game G = (VS , VR, E, I,Bad), the
sequence (Attri)i≥0 of attractors (of the Bad states) is defined as follows. Attr0 =

102 G. Geeraerts, J. Goossens, and A. Stainer

Bad and for all i ∈ N, Attri+1 = Attri∪{v ∈ VR | Succ (v)∩Attri �= ∅}∪{v ∈ VS |
Succ (v) ⊆ Attri}. For finite games, the sequence stabilises after a finite number
of steps on a set of states that we denote AttrBad. Then, v belongs to AttrBad iff
PlayerR can force the game to reach Bad from v. Thus, the set of winning states
for Player S is Win = V \AttrBad. Then, the strategy σ s.t. for all v ∈ VS ∩Win,
σ(v) = v′ with v′ ∈ Win is winning.

Partial orders, closed sets and antichains. Fix a finite set S. A relation� ∈ S×S
is a partial order iff � is reflexive, transitive and antisymmetric, i.e. for all s ∈ S:
(s, s) ∈ � (reflexivity); for all s, s′, s′′ ∈ S, (s, s′) ∈ � and (s′, s′′) ∈ � implies
(s, s′′) ∈ � (transitivity); and for all s, s′ ∈ S: (s, s′) ∈ � and (s′, s) ∈ � implies
s = s′ (antisymmetry). As usual, we often write s� s′ and s �� s′ instead of
(s, s′) ∈ � and (s, s′) �∈ �, respectively. The �-downward closure ↓� (S′) of a set
S′ ⊆ S is defined as ↓� (S′) = {s | ∃s′ ∈ S′, s′ � s}. Symmetrically, the upward
closure ↑� (S′) of S′ is defined as: ↑� (S′) = {s | ∃s′ ∈ S′ : s� s′}. Then, a set
S′ is downward closed (resp. upward closed) iff S′ =↓� (S′) (resp. S′ =↑� (S′)).
When the partial order is clear from the context, we often write ↓(S) and ↑(S)
instead of ↓� (S) and ↑� (S) respectively. Finally, a subset α of some set S′ ⊆ S
is an antichain on S′ with respect to � if for all s, s′ ∈ α: s �= s′ implies s �� s′.
An antichain α on S′ is said to be a set of maximal elements of S′ (or, simply a
maximal antichain of S′) iff for all s1 ∈ S′ there is s2 ∈ α: s2 � s1. Symmetrically,
an antichain α on S′ is a set of minimal elements of S′ (or a minimal antichain
of S′) iff for all s1 ∈ S′ there is s2 ∈ α: s1 � s2. It is easy to check that if α and
β are maximal and minimal antichains of S′ respectively, then ↓(α) =↓(S′) and
↑ (β) =↑ (S′). Intuitively, α (β) can be regarded as a symbolic representation of
↓ (S′) (↑ (S′)), which is of minimal size in the sense that it contains no pair of
�-comparable elements. Moreover, since � is a partial order, each subset S′ of
the finite set S admits a unique minimal and a unique maximal antichain, that
we denote by 'S′(and �S′� respectively. Observe that one can always effectively
build a �S′� and 'S′(, simply by iteratively removing from S′, all the elements
that are strictly �-dominated by (for �S′�) or that strictly dominate (for 'S′()
another one.

Simulation relations. Fix an arena G = (VS , VR, E, I,Bad). A relation � ⊆
VS × VS ∪ VR × VR is a simulation relation compatible2 with Bad (or simply a
simulation) iff it is a partial order3 and for all (v1, v2) ∈ �: either v1 ∈ Bad or:
(i) for all v′2 ∈ Succ (v2), there is v′1 ∈ Succ (v1) s.t. v′1 � v′2 and (ii) v2 ∈ Bad
implies that v1 ∈ Bad. On our example, the relation �0 = {(v, v′) ∈ VS ×
VS ∪ VR × VR | λ(v) ≥ λ(v′) and λ(v) mod 3 = λ(v′) mod 3} is a simulation
relation compatible with Bad =

{
7 , 8

}
. Moreover, Win = {v ∈ VS | λ(v)

mod 3 �= 1} ∪ {v ∈ VR | λ(v) mod 3 = 1} is downward closed for �0 and its

2 See [8] for an earlier definition of a simulation relation compatible with a set of
states.

3 Observe that our results can be extended to the case where the relations are pre-
orders, i.e. transitive and reflexive relations.

Synthesising Succinct Strategies in Safety and Reachability Games 103

complement (the set of losing states), is upward closed. Finally, Win admits a
single maximal antichain for �0: MaxWin =

{
7 , 6 , 5

}
.

3 Succinct Strategies

Let us first formalise our notion of succinct strategy (observe that other works
propose different notions of ‘small strategies’, see for instance [11]). As explained
in the introduction, a naive way to implement a memory-less strategy σ is to
store, in an appropriate data structure, the set of pairs {(v, σ(v)) | v ∈ VS}, and
implement a controller that traverses the whole table to find action to perform
each time the system state is updated. While the definition of strategy asks that
σ(v) be defined for all S-states v, this information is sometimes indifferent, for
instance, when v is not reachable in Gσ. Thus, we want to reduce the number
of states v s.t. σ(v) is crucial to keep the system safe.

�-strategies. We introduce the notion of �-strategy to formalise this idea: a �-
strategy is a function σ̂ : VS → VR ∪ {�}, where � stands for a ‘don’t care’
information. We denote by Supp(σ̂) the support σ̂−1(VR) of σ̂, i.e. the set of
nodes v s.t. σ̂(v) �= �. Such �-strategies can be regarded as a representation of
a family of concrete strategies. A concretisation of a �-strategy σ̂ is a strategy
σ s.t. for all v ∈ VS , σ̂(v) �= � implies σ̂(v) = σ(v). A �-strategy σ̂ is winning if
every concretisation of σ̂ is winning (intuitively, σ̂ is winning if S always wins
when he plays according to σ̂, whatever choices he makes when σ̂ returns �).
The size of a �-strategy σ̂(v) is the size of Supp(σ̂).

Computing succinct �-strategies. Our goal is to compute succinct �-strategies,
defined as �-strategies of minimal size. To characterise the hardness of this task,
we consider the following decision problem, and prove that it is NP-complete:

Problem 1 (MinSizeStrat). Given a finite turn-based game G and an integer
k ∈ N (in binary), decide whether there is a winning �-strategy of size smaller
than k in G.

Theorem 1. MinSizeStrat is NP-complete.

Thus, unless P=NP, there is no polynomial-time algorithm to compute a
winning �-strategy of minimal size. In most practical cases we are aware of, the
situation is even worse, since the arena is not given explicitly. This is the case
with the three problems we consider as applications (see Section 6), because they
can be reduced to safety games whose sizes are at least exponential in the size
of the original problem instance.

4 Structured Games and Monotonic Strategies

To mitigate the strong complexity identified in the previous section, we propose
to follow the successful antichain approach [12,7,8]. In this line of research, the

104 G. Geeraerts, J. Goossens, and A. Stainer

authors point out that, in practical applications (like those we identify in Sec-
tion 6), system states exhibit some inherent structure, which is formalised by a
simulation relation and can be exploited to improve the practical running time
of the algorithms. In the present paper, we rely on the notion of turn-based al-
ternating simulation, to define heuristics to (i) improve the running time of the
algorithms to solve finite turn-based games and (ii) obtain succinct representa-
tions of strategies. This notion is adapted from [2].

Turn-based alternating simulations. Let G = (VS , VR, E, I,Bad) be a finite safety
game. A partial order � ⊆ VS × VS ∪ VR × VR is a turn-based alternating
simulation relation for G [2] (tba-simulation for short) iff for all v1, v2 s.t. v1 � v2,
either v1 ∈ Bad or the three following conditions hold: (i) If v1 ∈ VS , then, for
all v′1 ∈ Succ (v1), there is v′2 ∈ Succ (v2) s.t. v′1 � v′2; (ii) If v1 ∈ VR, then, for
all v′2 ∈ Succ (v2), there is v′1 ∈ Succ (v1) s.t. v′1 � v′2; and (iii) v2 ∈ Bad implies
v1 ∈ Bad.

On the running example (Fig. 1), �0 is a tba-simulation relation. Indeed, as
we are going to see in Section 6, a simulation relation in a game where player S
has always the opportunity to perform the same moves is necessarily alternating.

Monotonic concretisations of �-strategies. Let us exploit the notion of tba-
simulation to introduce a finer notion of concretisation of �-strategies. Let σ̂
be a �-strategy. Then, a strategy σ is a �-concretisation of σ̂ iff for all v ∈ VS :
(i) v ∈ Supp(σ̂) implies σ(v) = σ̂(v); and (ii)

(
v �∈ Supp(σ̂) ∧ v ∈↓� (Supp(σ̂))

)
implies ∃v ∈ Supp(σ̂) s.t. v� v and σ(v)� σ(v). Intuitively, when σ̂(v) = �,
but there is v′ � v s.t. σ̂(v′) �= �, then, σ(v) must mimic the strategy σ(v) from
some state v that covers v and s.t. σ̂(v) �= �. Then, we say that a �-strategy is
�-winning if all its �-concretisations are winning.

Because equality is a tba-simulation, the proof of Theorem 1 can be used
to show that computing a �-winning �-strategy of size less than k is an NP-
complete problem too. Nevertheless, �-winning �-strategies can be even more
compact than winning �-strategy. For instance, on the running example, the
smallest winning �-strategy σ is of size 5: it is given in Fig. 1 (b) and highlighted
by bold arrows in Fig. 1 (thus, σ(4) = σ(7) = �). Yet, one can define a �0-
winning �-strategy σ̂ of size 2 because states 5 and 6 simulate all the winning
states of S. This �-strategy4 σ̂ is the one given in Fig. 1 (b) and represented by
the boldest arrows in Fig. 1. Observe that, while all �-concretisations of σ̂ are
winning, not all concretisations of σ̂ are. For instance, all concretisations σ of σ̂
s.t. σ(0) = 2 are not �0-monotonic and losing.

Obtaining �-winning �-strategies. The previous example clearly shows the kind
of �-winning �-strategies we want to achieve: �-strategies σ̂ s.t. Supp(σ̂) is the
maximal antichain of the winning states. In Section 5, we introduce an efficient
on-the-fly algorithm to compute such a �-strategy. Its correctness is based on
the fact that we can extract a �-winning �-strategy from any winning (plain)

4 Actually, this strategy is winning for all initial number n of balls s.t. n mod 3 �= 1.

Synthesising Succinct Strategies in Safety and Reachability Games 105

strategy, as shown by Proposition 1 hereunder. For all strategies σ, and all
V ⊆ VS , we let σ|V denote the �-strategy σ̂ s.t. σ̂(v) = σ(v) for all v ∈ V and
σ̂(v) = � for all v �∈ V . Then:

Proposition 1. Let G = (VS , VR, E, I,Bad) be a finite turn-based game and
� be a tba-simulation relation for G. Let σ be a strategy in G, and let S ⊆
VS be a set of S-states s.t.: (i) (S ∪ σ(S)) ∩ Bad = ∅; (ii) I ∈↓� (S); and
(iii) succ(σ(S)) ⊆↓� (S). Then, σ|S is a �-winning �-strategy.

This proposition allows us to identify families of sets of states on which �-
strategies can be defined. One of the sets that satisfies the conditions of Propo-
sition 1 is the maximal antichain of reachable S-states, for a given winning
strategy σ:

Theorem 2. Let G = (VS , VR, E, I,Bad) be a finite turn-based game, � be a
tba-simulation relation for G. Let σ be a winning strategy and WRσ be a maximal
�-antichain on Reach(Gσ) ∩ VS , then the �-strategy σ|WRσ is �-winning.

5 Efficient Computation of Succinct Winning Strategies

The original OTFUR algorithm. The On-The-Fly algorithm for Untimed Reach-
ability games (OTFUR) algorithm [6] is an efficient, on-the-fly algorithm to
compute a winning strategy for Player R , i.e., when considering a reachability
objective. It is easy to adapt it to compute winning strategies for Player S in-
stead. We sketch the main ideas behind this algorithm, and refer the reader to [6]
for a comprehensive description. The intuition of the approach is to combine a
forward exploration from the initial state with a backward propagation of the
information when a losing state is found. During the forward exploration, newly
discovered states are assumed winning until they are declared losing for sure.
Whenever a losing state is identified (either because it is Bad, or because Bad is
unavoidable from it), the information is back propagated to predecessors whose
status could be affected by this information. A bookkeeping function Depend is
used for that purpose: it associates, to each state v, a list Depend(v) of edges
that need to be re-evaluated should v be declared losing. The main interest of
this algorithm is that it works on-the-fly (thus, the arena does not need to be
fully constructed before the analysis), and avoids, if possible, the entire traver-
sal of the arena. In this section, we propose an optimized version of OTFUR for
games equipped with tba-simulations. Before this, we prove that, when a finite
turn-based game is equipped with a tba-simulation �, then its set of winning
states is �-downward closed. This property will be important for the correctness
of our algorithm.

Proposition 2. Let G be a finite turn-based game, and let � be a tba-simulation
for G. Then the set Win of winning states in G is downward closed for �.

106 G. Geeraerts, J. Goossens, and A. Stainer

Algorithm 1. The OTFUR optimized for games with a tba-simulation
Data: A finite turn-based game G = (VS , VR, E, I,Bad)

1 if I ∈ Bad then return false;
2 Passed := {I} ; Depend(I) := ∅ ;
3 AntiMaybe := {I} ; AntiLosing := {} ;

4 Waiting := {(I, v′) | v′ ∈ �Succ (I)
} ;
5 while Waiting �= ∅ ∧ I /∈↑ AntiLosing do
6 e = (v, v′) := pop(Waiting) ;
7 if v /∈↑ AntiLosing then
8 if v ∈↓ AntiMaybe \ AntiMaybe then
9 choose vm ∈ AntiMaybe s.t. vm � v ;

10 Depend[vm] := Depend[vm] ∪ {e} ;

11 else
12 if v′ ∈↓ AntiMaybe then
13 if v′ /∈ AntiMaybe then
14 choose vm ∈ AntiMaybe s.t. vm � v′ ;
15 Depend[vm] := Depend[vm] ∪ {e} ;

16 else
17 if v′ �∈ Passed then
18 Passed := Passed ∪ {v′} ;

19 if v′ /∈↑ AntiLosing then
20 if (v′ ∈ Bad) then
21 AntiLosing := �AntiLosing ∪ {v′}
 ;
22 Waiting := Waiting ∪ {e} ; // reevaluation of e

23 else
24 Depend[v′] := {(v, v′)} ;

25 AntiMaybe := �AntiMaybe ∪ {v′}� ;
26 if v ∈ VS then

27 Waiting := Waiting ∪ {(v′, v′′) | v′ ∈
⌊
Succ

(
v′)⌋} ;

28 else

29 Waiting := Waiting ∪ {(v′, v′′) | v′ ∈
⌈
Succ

(
v′)⌉} ;

30 else // reevaluation of e
31 Waiting := Waiting ∪ {e} ;

32 else // reevaluation

33 Losing∗ := v ∈ VS ∧
∧

v′′∈min(Succ(v))
(v′′ ∈↑ AntiLosing)

∨ v ∈ VR ∧
∨

v′′∈max(Succ(v))
(v′′ ∈↑ AntiLosing)

;

34 if Losing∗ then
35 AntiLosing := �AntiLosing ∪ {v}
 ;
36 AntiMaybe := �Passed\ ↑ (AntiLosing)� ;

// back propagation
37 Waiting := Waiting ∪ Depend[v] ;

38 else
39 if ¬Losing[v′] then Depend[v′] := Depend[v′] ∪ {e} ;

40 return I /∈↑ AntiLosing

Synthesising Succinct Strategies in Safety and Reachability Games 107

Optimised OTFUR. Let us discuss Algorithm 1, our optimised version of OT-
FUR for the construction of �-winning �-strategies. Its high-level principle is the
same as in the original OTFUR, i.e. forward exploration and backward propaga-
tion. At all times, it maintains several sets: (i) Waiting that stores edges waiting
to be explored; (ii) Passed that stores nodes that have already been explored;
and (iii) AntiLosing and AntiMaybe which represent, by means of antichains (see
discussion below) a set of surely losing states and a set of possibly winning states
respectively5. The main while loop runs until either no more edges are waiting,
or the initial state I is surely losing. An iteration of the loop first picks an edge
e = (v, v′) from Waiting, and checks whether exploring this edge can be post-
poned (line 7–15, see hereunder). Then, if v′ has not been explored before (line
16), cannot be declared surely losing (line 18), and does not belong to Bad (line
19), it is explored (lines 23–28). When v′ is found to be losing, e is put back in
Waiting for back propagation (lines 21 or 30). The actual back-propagation is
performed at lines 32–38 and triggered by an edge (v, v′) s.t. v′ ∈ Passed. Let us
highlight the three optimisations that rely on a tba-simulation �:

1. By the properties of �, we explore only the �-minimal (respectively �-
maximal) successors of each S (R) state (see lines 3, 26 and 28). We consider
maximal and minimal elements only when evaluating a node in line 32.

2. By Proposition 2, the set of winning states in the game is downward-closed,
hence the set of losing states is upward-closed, and we store the set of states
that are losing for sure as an antichain AntiLosing of minimal losing states.

3. Symmetrically, the set of possibly winning states is stored as an antichain
AntiMaybe of maximal states. This set allows to postpone, and potentially
avoid, the exploration of some states: assume some edge (v, v′) has been
popped fromWaiting. Before exploring it, we first check whether either v or v′

belongs to ↓(AntiMaybe) (see lines 7 and 11). If yes, there is vm ∈ AntiMaybe
s.t. vm � v (resp. vm � v′), and the exploration of v (v′) can be postponed. We
store the edge (v, v′) that we were about to explore in Depend[vm], so that,
if vm is eventually declared losing (see line 36), (v, v′) will be re-scheduled
for exploration. Thus, the algorithm stops when all maximal S states have
a successor that is covered by a non-losing one.

Observe that optimisations 1 and 2 rely on the upward closure of the losing states
only, and were present in the antichain algorithm of [8]. Optimisation 3 is original
and exploits more aggressively the notion of tba-simulation. It allows to keep at
all times an antichain of potentially winning states, which is crucial to compute
efficiently a winning �-strategy. If, at the end of the execution, I �∈↑(AntiLosing),
we can extract from AntiMaybe a winning �-strategy σ̂G as follows. For all v ∈
AntiMaybe ∩ VS , we let σ̂G(v) = v′ such that v′ ∈ Succ (v)∩ ↓ (AntiMaybe). For
all v ∈ VS \ AntiMaybe, we let σ̂G(v) = �. Symmetrically, if I ∈↑ (AntiLosing),
there is no winning strategy for S.

5 We could initialise AntiLosing to Bad, but this is not always practical. In particular,
when the arena is not given explicitly, we want to avoid pre-computing Bad.

108 G. Geeraerts, J. Goossens, and A. Stainer

v1 v′′1

v2

v′1

v′2

v0

blabla
v′′v v′

b1 b2

Fig. 2. A simulation and the downward closure are not sufficient to apply Algorithm 1

Theorem 3. When called on game G, Algorithm 1 always terminates. Upon
termination, either I ∈↑ (AntiLosing) and there is no winning strategy for S in
G, or σ̂G is a �-winning �-strategy.

Why simulations are not sufficient. Let us exhibit two examples of games
equipped with a simulation) which is not a tba-simulation, to show why tba-
simulations are crucial for our optimisations. In Fig. 2 (left), Bad = {v′1, v′2},
and the set of winning states is not)-downward closed (gray states are losing).
In the game of Fig. 2 (right), Bad = {b1, b2} and Algorithm 1 does not develop
the successors of v′ (because v) v′, and v ∈ AntiMaybe when first reaching
v′). Instead, it computes a purportedly winning �-strategy σ̂G s.t. σ̂G(v) = v′′

and σ̂G(v
′) = �. Clearly this �-strategy is not)-winning (actually, there is no

winning strategy).

6 Applications

To apply our techniques, the game arena must be equipped with a tba-simulation.
In many cases (see the three practical cases below), a simulation relation on the
states of the game is already known, or can be easily defined. In general, not
all simulation relations are tba-simulations, yet we can identify properties of
the arena that yield this useful property. Intuitively, this occurs when Player S
can always choose to play the same set of actions from all its states, and when
playing the same action a in two states v1 � v2 yields two states v′1 and v′2 with
v′1 � v′2

6. Formally, let G = (VS , VR, E, I,Bad) be a finite turn-based game and
Σ a finite alphabet. A labeling of G is a function lab : E → Σ. For all states
v ∈ VS ∪ VR, and all a ∈ Σ, we let Succa (v) = {v′ | (v, v′) ∈ E ∧ lab(v, v′) = a}.
Then, (G, lab) is S-deterministic iff there is a set of actions ΣS ⊆ Σ s.t. for all
v ∈ VS : (i) |Succa (v) | = 1 for all a ∈ ΣS and (ii) |Succa (v) | = 0 for all a �∈ ΣS .
Moreover, a labeling lab is �-monotonic (where � is a simulation relation on
the states of G) iff for all v1, v2 ∈ VS ∪ VR such that v1 � v2, for all a ∈ Σ, for
all v′2 ∈ Succa (v2): there is v′1 ∈ Succa (v1) s.t. v

′
1 � v′2. Then:

6 For example, in the urn-filling game (Fig. 1), Player S can always choose between
taking 1 or 2 balls, from all states where at least 2 balls are left.

Synthesising Succinct Strategies in Safety and Reachability Games 109

Theorem 4. Let G = (VS , VR, E, I,Bad) be a finite turn-based game, let � be a
simulation relation on G and let lab be a �-monotonic labeling of G. If (G, lab)
is S-deterministic, then � is a tba-simulation relation.

Thus, when a game G is labeled, S-deterministic, equipped with a simulation
relation � that can be computed directly from the description of the states7 and
�-monotonic, our approach can be applied out-of-the-box. In this case, Algo-
rithm 1 yields, if it exists, a winning �-strategy σ̂G. We describe σ̂G by means of
the set of pairs (v, lab(v, σ̂G(v))) s.t. v is in the support of σ̂G. That is, we store,
for all v in the maximal antichain of winning reachable states, the action to be
played from v instead of the successor σ̂G(v)). Then, a controller implementing
σ̂G works as follows: when the current state is v, the controller looks for a pair
(v, a) with v� v, and executes a. Such a pair exists by S-determinism (and re-
spects �-concretisation by �-monotonicity). The time needed to find v depends
only on the size of the antichain, that we expect to be small in practice.

Three potential applications. Let us now describe very briefly three concrete
problems to which our approach can be applied. They share the following charac-
teristics, that make our technique particularly appealing: (i) they have practical
applications where an efficient implementation of the winning strategy is crucial;
(ii) the arena of the game is not given explicitly and is at least exponential in the
size of the problem instance; and (iii) they admit a natural tba-simulation �,
that can be computed directly from the descriptions of the states. The empirical
evaluation of our approach is future work, except for the first application which
has already been (partially) implemented in [8] with excellent performances.

LTL realisability: roughly speaking, the realisability problem of LTL asks
to compute a controller that enforces a specification given as an LTL formula.
As already explained, Filiot, Jin and Raskin reduce [8] this problem to a safety
game whose states are vectors of (bounded) natural numbers. They show that
the partial order) where v) v′ iff v[i] ≥ v′[i] for all coordinates i is a simulation
relation and rely on it to define an efficient antichain algorithm (based on the
OTFUR algorithm). Our technique generalises these results: Theorem 4 can be
invoked to show that) is a tba-simulation and Algorithm 1 is the same as the
antichain algorithm of [8], except for the third optimisation (see Section 5) which
is not present in [8]. Thus, our results provide a general theory to explain the
excellent performance reported in [8], and have the potential to improve it.

Multiprocessor real-time scheduler synthesis: this problem asks to com-
pute a correct scheduler for a set of sporadic tasks running on a platform of m
identical CPUs. A sporadic task (C, T,D) is a process that repeatedly creates
jobs, s.t. each job creation (also called request) occurs at least T time units
after the previous one. Each job models a computational payload. It needs at
most C units of CPU time to complete, and must obtain them within a certain
time frame of length D starting from the request (otherwise the job misses its

7 This means that one can decide whether v� v′ from the encoding of v and v′ and
the set of pairs {(v, v′) | v� v′} does not need to be stored explicitly.

110 G. Geeraerts, J. Goossens, and A. Stainer

deadline). A scheduler is a function that assigns, at all times, jobs to available
CPUs. It is correct iff it ensures that no job ever misses a deadline.

This problem can be reduced to a safety game [4] where the two players
are the scheduler and the coalition of the tasks respectively. In this setting, a
winning strategy for Player S is a correct scheduler. One can rely on Theorem 4
to show that the simulation relation) introduced in [9] (to solve a related real-
time scheduling problem using antichain techniques) is a tba-simulation. An
S-deterministic and)-monotonic labeling is obtained if we label moves of the
environment by the set of tasks producing a request, and the scheduler moves
by a total order on all the tasks, which is used as a priority function determining
which tasks are scheduled for running.

Determinisation of timed automata: timed automata extend finite au-
tomata with a finite set of real-valued variables that are called clocks, whose
value evolves with time elapsing, and that can be tested and reset when firing
transitions [1]. They are a popular model for real-time systems. One of the draw-
backs of timed automata is that they cannot be made deterministic in general.
Hence, only partial algorithms exist for determinisation. So far, the most general
of those techniques has been introduced in [3] and consists in turning a TA A
into a safety game GA,(Y,M) (parametrised by a set of clocks Y and a maximal
constant M). Then, a deterministic TA over-approximatingA (with set of clocks
Y and maximal constant M), can be extracted from any strategy for Player S.
If the strategy is winning, then the approximation is an exact determinisation.
Using Theorem 4, we can define a tba-simulation �det on the states of this game.

References

1. Alur, R., Dill, D.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement

relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998)

3. Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize
timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp.
245–259. Springer, Heidelberg (2011)

4. Bonifaci, V., Marchetti-Spaccamela, A.: Feasibility analysis of sporadic real-time
multiprocessor task systems. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II.
LNCS, vol. 6347, pp. 230–241. Springer, Heidelberg (2010)

5. Bouton, C.: Nim, a game with a complete mathematical theory. Ann. Math. 3,
35–39 (1902)

6. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

7. Doyen, L., Raskin, J.-F.: Antichain algorithms for finite automata. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg
(2010)

8. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. FMSD 39(3), 261–296 (2011)

Synthesising Succinct Strategies in Safety and Reachability Games 111

9. Geeraerts, G., Goossens, J., Lindström, M.: Multiprocessor schedulability of
arbitrary-deadline sporadic tasks: complexity and antichain algorithm. RTS 49(2),
171–218 (2013)

10. Geeraerts, G., Goossens, J., Stainer, A.: Computing succinct strategies in safety
games. CoRR abs/1404.6228, http://arxiv.org/abs/1404.6228

11. Neider, D.: Small Strategies for Safety Games. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 306–320. Springer, Heidelberg (2011)

12. De Wulf, M., Doyen, L., Maquet, N., Raskin, J.-F.: Antichains: Alternative algo-
rithms for LTL satisfiability and model-checking. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 63–77. Springer, Heidelberg (2008)

http://arxiv.org/abs/1404.6228

Integer Vector Addition Systems with States

Christoph Haase� and Simon Halfon

Laboratoire Spécification et Vérification (LSV), CNRS
École Normale Supérieure (ENS) de Cachan, France

Abstract. This paper studies reachability, coverability and inclusion
problems for Integer Vector Addition Systems with States (Z-VASS) and
extensions and restrictions thereof. A Z-VASS comprises a finite-state
controller with a finite number of counters ranging over the integers. Al-
though it is folklore that reachability in Z-VASS is NP-complete, it turns
out that despite their naturalness, from a complexity point of view this
class has received little attention in the literature. We fill this gap by
providing an in-depth analysis of the computational complexity of the
aforementioned decision problems. Most interestingly, it turns out that
while the addition of reset operations to ordinary VASS leads to undecid-
ability and Ackermann-hardness of reachability and coverability, respec-
tively, they can be added to Z-VASS while retaining NP-completeness of
both coverability and reachability.

1 Introduction

Vector Addition Systems with States (VASS) are a prominent class of infinite-
state systems. They comprise a finite-state controller with a finite number of
counters ranging over the natural numbers. When taking a transition, an integer
can be added to a counter, provided that the resulting counter value is non-
negative. A configuration of a VASS is a tuple q(v) consisting of a control state
q and a vector v ∈ Nd, where d > 0 is the number of counters or, equivalently,
the dimension of the VASS. The central decision problems for VASS are reacha-
bility, coverability and inclusion. Given configurations q(v), q′(v′) of a VASS A,
reachability is to decide whether there is a path connecting the two configura-
tions in the transition system induced by A. Coverability on the other hand asks
whether there is a path from q(v) to a configuration that is “above” q′(v′), i.e.,
a path to some q′(w) such that w ≥ v′, where ≥ is interpreted component-wise.
Finally, given VASS A and B, inclusion asks whether the set of counter values
reachable in the transition system induced by A is contained in those reachable
by B. All of the aforementioned problems have extensively been studied over
the course of the last forty years. One of the earliest results was obtained by
Lipton, who showed that reachability and coverability are EXPSPACE-hard [20].
Later, Rackoff established a matching upper bound for coverability [23], and
Mayr showed that reachability is decidable [21]. For inclusion, it is known that

� Supported by the French ANR, ReacHard (grant ANR-11-BS02-001).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 112–124, 2014.
c© Springer International Publishing Switzerland 2014

Integer Vector Addition Systems with States 113

this problem is in general undecidable [14] and Ackermann (Fω)-complete [18]
when restricting to VASS with a finite reachability set. Moreover, various exten-
sions of VASS with, for instance, resets or polynomial updates on counter values
have been studied in the literature. Resets allow for setting a counter to zero
along a transition, and polynomial updates allow for updating a counter with
an arbitrary polynomial. In general, reachability in the presence of any such ex-
tension becomes undecidable [4,6], while the complexity of coverability increases
significantly to Fω-completeness in the presence of resets [25].

What makes VASS hard to deal with, both in the computational and in the
mathematical sense, is the restriction of the counters to non-negative integers.
This restriction allows for enforcing an order in which transitions can be taken,
which is at the heart of many hardness proofs. In this paper, we relax this restric-
tion and study Z-VASS which are VASS whose counters can take values from
the integers, and extensions thereof. Thus, the effect of transitions can commute
along a run of a Z-VASS, which makes deciding reachability substantially easier,
and it is in fact folklore that reachability in Z-VASS is NP-complete. It appears,
however, that many aspects of the computational complexity of standard de-
cision problems for Z-VASS and extensions and restrictions thereof have not
received much attention in the literature.

Our Contribution. The main focus of this paper1 is to study the computa-
tional complexity of reachability, coverability and inclusion for Z-VASS equipped
with resets (Z-VASSR). Unlike in the case of VASS, we can show that reacha-
bility and coverability are naturally logarithmic-space inter-reducible. By gen-
eralizing a technique introduced by Seidl et al. [26] for defining Parikh images
of finite-state automata in existential Presburger arithmetic, we can show that
a given instance of reachability (and a fortiori coverability) in Z-VASSR can
be reduced in logarithmic-space to an equivalent sentence in existential Pres-
burger arithmetic, and henceforth both problems are NP-complete. Moreover,
by exploiting a recent result on the complexity of Presburger arithmetic with
a fixed number of quantifier alternations [12], this reduction immediately yields
coNEXP-membership of the inclusion problem for Z-VASSR. We also show that
a matching lower bound can be established via a reduction from validity in
Π2-Presburger arithmetic. This lower bound does not require resets and thus
already holds for Z-VASS. Along the way, wherever possible we sharpen known
lower bounds and propose some further open problems.

Related Work. The results obtained in this paper are closely related to decision
problems for commutative grammars, i.e. Parikh images of, for instance, finite-
state automata or context-free grammars. A generic tool that is quite powerful in
this setting is to define Parikh images as the set of solutions to certain systems
of linear Diophantine equations. This approach has, for instance, been taken

1 A full version containing all proofs omitted due to space constraints can be obtained
from http://arxiv.org/abs/1406.2590.

http://arxiv.org/abs/1406.2590

114 C. Haase and S. Halfon

in [5,22,26,13,15]. As stated above, we generalize the technique of Seidl et al.,
which has also been the starting point in [15] in order to show decidability
and complexity results for pushdown systems equipped with reversal-bounded
counters.

Furthermore, results related to ours have also been established by Kopczyński
& To. In [19], they consider inclusion problems for regular and context-free
commutative grammars, and show that for a fixed alphabet those problems are
coNP- and ΠP

2 -complete, respectively. As a matter of fact, the proof of the ΠP
2 -

upper bound is established for context-free commutative grammars in which,
informally speaking, letters can be erased, which can be seen as a generalization
of Z-VASS. In general, inclusion for context-free commutative grammars is in
coNEXP [16], but it is not known whether this bound is tight. Also related is the
work by Reichert [24], who studies the computational complexity of reachability
games on various classes of Z-VASS. Finally, Z-VASS are an instance of valence
automata, which have recently, for instance, been studied by Buckheister &
Zetzsche [3]. However, their work is more concerned with language-theoretic
properties of valence automata rather than aspects of computational complexity.
Language-theoretic aspects of Z-VASS have also been studied by Greibach [11].

As discussed above, Z-VASS achieve a lower complexity for standard decision
problems in comparison to VASS by relaxing counters to range over the integers.
Another approach going into a similar direction is to allow counters to range over
the positive reals. It has been shown in recent work by Fraca & Haddad [7] that
the decision problems we consider in this paper become substantially easier for
such continuous VASS, with reachability even being decidable in P.

2 Preliminaries

In this section, we provide most of the definitions that we rely on in this paper.
We first introduce some general notation and subsequently an abstract model of
register machines from which we derive Z-VASS as a special subclass. We then
recall and tighten some known complexity bounds for Z-VASS and conclude this
section with a brief account on Presburger arithmetic.

General Notation. In the following, Z and N are the sets of integers and
natural numbers, respectively, and Nd and Zd are the set of dimension d vectors
in N and Z, respectively. We denote by [d] the set of positive integers up to d, i.e.
[d] = {1, . . . , d}. By Nd×d and Zd×d we denote the set of d × d square matrices
over N and Z, respectively. The identity matrix in dimension d is denoted by
Id and ei denotes the i-th unit vector in any dimension d provided i ∈ [d].
For any d and i, j ∈ [d], Eij denotes the d × d-matrix whose i-th row and j-th
column intersection is equal to one and all of its other components are zero, and
we use Ei to abbreviate Eii. For v ∈ Zd we write v(i) for the i-th component
of v for i ∈ [d]. Given two vectors v1,v2 ∈ Zd, we write v1 ≥ v2 iff for all
i ∈ [d], v1(i) ≥ v2(i). Given a vector v ∈ Zd and a set S ⊆ [d], by v|S we
denote the vector w derived from v with components from S reset, i.e, for all

Integer Vector Addition Systems with States 115

j ∈ [d], w(j) = v(j) when j /∈ S, and w(j) = 0 otherwise. Given i ∈ [d], v|i
abbreviates v|{i}. If not stated otherwise, all numbers in this paper are assumed
to be encoded in binary.

Presburger Arithmetic. Recall that Presburger arithmetic (PA) is the first-
order theory of the structure 〈N, 0, 1,+,≥〉, i.e., quantified linear arithmetic over
natural numbers. The size |Φ| of a PA formula is the number of symbols required
to write it down, where we assume unary encoding of numbers2. For technical
convenience, we may assume with no loss of generality that terms of PA formulas
are of the form z ·x ≥ b, where x is an n-tuple of first-order variables, z ∈ Zn and
b ∈ Z. It is well-known that the existential (Σ1-)fragment of PA is NP-complete,
see e.g. [2]. Moreover, validity for the Π2-fragment of PA, i.e. its restriction to
a ∀∗∃∗-quantifier prefix, is coNEXP-complete [10,12].

Given a PA formula Φ(x1, . . . , xd) in d free variables, we define

�Φ(x1, . . . , xd)� = {(n1, . . . , nd) ∈ Nd : Φ(n1/x1, . . . , nd/xd) is valid}.

Moreover, a setM ⊆ Nd is PA-definable if there exists a PA formula Φ(x1, . . . , xd)
such that M = �Φ(x1, . . . , xd)�. Recall that a result due to Ginsburg & Spanier
states that PA-definable sets coincide with the so-called semi-linear sets [9].

Integer Vector Addition Systems. The main objects studied in this paper
can be derived from a general class of integer register machines which we define
below.

Definition 1. Let A ⊆ Zd×d, a dimension d-integer register machine over A
(Z-RM(A)) is a tuple A = (Q,Σ, d,Δ, τ) where

– Q is a finite set of control states,
– Σ is a finite alphabet,
– d > 0 is the dimension or the number of counters,
– Δ ⊆ Q×Σ ×Q is a finite set of transitions,
– τ : Σ → (Zd → Zd) maps each a ∈ Σ to an affine transformation such that

τ(a) = v → Av + b for some A ∈ A and b ∈ Zd.

We will often consider τ as a morphism from Σ∗ to the set of affine trans-
formations such that τ(ε) = Id and for any w ∈ Σ∗ and a ∈ Σ, τ(wa)(v) =
τ(a)(τ(w)(v)). The set C(A) = Q × Zd is called the set of configurations of
A. For readability, we write configurations as q(v) instead of (q,v). Given con-

figurations q(v), q′(v′) ∈ C, we write q(v)
a→A q(v′) if there is a transition

(q, a, q′) ∈ Δ such that v′ = τ(a)(v), and q(v) →A q′(v′) if q(v)
a→A q(v′) for

some a ∈ Σ. A run on a word γ = a1 · · · an ∈ Σ∗ is a finite sequence of config-

urations ! : c0c1 · · · cn such that ci
ai+1→ A ci+1 for all 0 ≤ i < n, and we write

2 This is with no loss of generality since binary encoding can be simulated at the cost
of a logarithmic blowup of the formula size. Note that in particular all complexity
lower bounds given in this paper still hold assuming unary encoding of numbers.

116 C. Haase and S. Halfon

c0
γ→A cn in this case. Moreover, we write c →∗

A c′ if there is a run ! on some
word γ such that c = c0 and c′ = cn. Given q(v) ∈ C(A), the reachability set
starting from q(v) is defined as

reach(A, q(v)) = {v′ ∈ Zd : q(v) →∗
A q′(v′) for some q′ ∈ Q}.

In this paper, we study the complexity of deciding reachability, coverability
and inclusion.

Z-RM(A) Reachability/Coverability/Inclusion

INPUT: Z-RM(A)A, B, configurations q(v), q′(v′) ∈ C(A), p(w) ∈ C(B).
QUESTION: Reachability: Is there a run q(v) →∗

A q′(v′)?
Coverability: Is there a z ∈ Zd s.t. q(v) →∗

A q′(z) and z ≥ v′?
Inclusion: Does reach(A, q(v)) ⊆ reach(B, p(w)) hold?

If we allow an arbitrary number of control states, whenever it is convenient
we may assume v,v′ and w in the definition above to be equal to 0. Of course,
Z-RM are very general, and all of the aforementioned decision problems are
already known to be undecidable, we will further elaborate on this topic below.
We therefore consider subclasses of Z-RM(A) in this paper which restrict the
transformation mappings or the number of control states: A is called

– integer vector addition system with states and resets (Z-VASSR) if A =
{λ1E1 + · · ·+ λdEd : λi ∈ {0, 1}, i ∈ [d]};

– integer vector addition system with states (Z-VASS) if A = Id;
– integer vector addition system (Z-VAS) if A is a Z-VASS and |Q| = 1.

Classical vector addition systems with states (VASS) can be recovered from the
definition of Z-VASS by defining the set of configurations as Q×Nd and adjusting
the definition of →A appropriately. It is folklore that coverability in VASS is
logarithmic-space reducible to reachability in VASS. Our first observation is
that unlike in the case of VASS, reachability can be reduced to coverability in
Z-VASS, this even holds for Z-VASSR. Thanks to this observation, all lower and
upper bounds for reachability carry over to coverability, and vice versa.

Lemma 2. Reachability and coverability are logarithmic-space inter-reducible in
each of the classes Z-VASSR, Z-VASS and Z-VAS. The reduction doubles the
dimension.

Proof. The standard folklore construction to reduce coverability in VASS to
reachability in VASS also works for all classes of Z-VASSR. For brevity, we
therefore only give the reduction in the converse direction.

Let A be from any class of Z-VASS in dimension d and let q(v), q′(v′) ∈ C(A).
We construct a Z-VASS B in dimension 2d with the property q(v) →∗

A q′(v′)
iff q(v,−v) →∗

B q′(v′,−v′) as follows: any affine transformation v → Av + b is
replaced by v → A′v + b′, where

A′ =

[
A 0
0 A

]
b′ =

∣∣∣∣ b−b

∣∣∣∣ .

Integer Vector Addition Systems with States 117

Any run ! : q0(v0) · · · qn(vn) in B such that q0(v0) = q(v,−v) and qn(vn) =
q′(v′,−v′) corresponds in the first d components to a run in A. Moreover, ! has
the property that for any 0 ≤ i ≤ n and qi(vi), vi(j) = −vi(j+d) for all j ∈ [d].
Therefore, q(v,−v) →∗

B q′(w,−w) for some q′(w,−w) that covers q′(v′,−v′) if,
and only if, w ≥ v′ and −w ≥ −v′, i.e., w = v′ and thus in particular whenever
A reaches q′(v′) from q(v). ��

Known Complexity Results for Z-VASS. It is folklore that reachability
in Z-VASS is NP-hard. Most commonly, this is shown via a reduction from
Subset Sum, so this hardness result in particular relies on binary encoding of
numbers and the presence of control states. Here, we wish to remark the following
observation.

Lemma 3. Reachability in Z-VAS is NP-hard even when numbers are encoded
in unary.

The proof is given in the appendix of the full version of this paper and follows
straight-forwardly via a reduction from feasibility of a system of linear Diophan-
tine equations Ax = b,x ≥ 0, which is known to be NP-complete even when
unary encoding of numbers is assumed [8]. Apart from that, it is folklore that
reachability in Z-VASS is in NP. To the best of the authors’ knowledge, no up-
per bounds for reachability, coverability or inclusion for Z-VASSR have been
established so far.

Next, we recall that slightly more general transformation matrices lead to
undecidability of reachability: when allowing for arbitrary diagonal matrices,
i.e. affine transformations along transitions, reachability becomes undecidable
already in dimension two [6]. Consequently, by a straight forward adaption of
Lemma 2 we obtain the following.

Lemma 4. Let Dd be the set of all diagonal matrices in dimension d. Cover-
ability in Z-RM(Dd) is undecidable already for d = 4.

Of course, undecidability results for reachability in matrix semi-groups obtained
in [1] can be applied in order to obtain undecidability results for more general
classes of matrices, and those undecidability results do not even require the
presence of control states.

3 Reachability in Z-VASSR is in NP

One main idea for showing that reachability for Z-VASSR is in NP is that since
there are no constraints on the counter values along a run, a reset on a particular
counter allows to forget any information about the value of this counter up to
this point, i.e., a reset cuts the run. Hence, in order to determine the value of a
particular counter at the end of a run, we only need to sum up the effect of the
operations on this counter since the last occurrence of a reset on this counter.
This in turn requires us to guess and remember the last occurrence of a reset on
each counter.

118 C. Haase and S. Halfon

Subsequently, we introduce monitored alphabets and generalized Parikh im-
ages in order to formalize our intuition behind resets. A monitored alphabet is
an alphabet Σ � R with R = {r1, . . . , rk} being the monitored letters. Given
S ⊆ [k], we denote by ΣS = Σ ∪ {ri : i ∈ S} the alphabet containing only
monitored letters indexed from S. Any word γ ∈ (Σ ∪ R)∗ over a monitored
alphabet admits a unique decomposition into partial words

γ = γ0ri1γ1ri2 · · · ri�γ�

for some � ≤ k such that all ij are pairwise distinct and for all j ∈ [�], γj ∈
Σ∗

{rij+1
,...,ri�}

. Such a decomposition simply keeps track of the last occurrence

of each monitored letter. For instance for k = 4 and Σ = {a, b}, the word
γ = aabr1br3abr3ar1 can uniquely be decomposed as (aabr1br3ab)r3(a)r1.

In this paper, the Parikh image πΣ(w) of a word w ∈ (Σ�R)∗ restricted to the
alphabet Σ = {a1, . . . , an} is the vector πΣ(w) ∈ Nn such that π(w)(i) = |w|ai

is the number of occurrences of ai in w. Moreover, Sk denotes the permutation
group on k symbols.

Definition 5. Let Σ�R be a monitored alphabet such that |Σ| = n and |R| = k.
A tuple (α, σ) = (α0,α1, . . . ,αk, σ) ∈ (Nn)k+1 × Sk is a generalized Parikh
image of γ ∈ (Σ � R)∗ if there exist 0 ≤ p ≤ k and a decomposition γ =
γprσ(p+1)γp+1rσ(p+2) · · · rσ(k)γk such that:

(a) for all p ≤ i ≤ k, γi ∈ Σ∗
Ri
, where Ri = {rσ(i+1), . . . , rσ(k)}; and

(b) for all 0 ≤ i < p, αi = 0 and for all p ≤ i ≤ k, αi = πΣ(γi), the Parikh
image of γi restricted to Σ, i.e. monitored alphabet symbols are ignored.

The generalized Parikh image of a language L ⊆ (Σ � R)∗ is the set Π(L) ⊆
(Nn)k+1 ×Sk of all generalized Parikh images of all words γ ∈ L.

This definition formalizes the intuition given by the decomposition described
above with some additional padding of dummy vectors for monitored letters not
occurring in γ in order to obtain canonical objects of uniform size. Even though
generalized Parikh images are not unique, two generalized Parikh images of the
same word only differ in the order of dummy monitored letters. For instance for
k = 4, the word γ = aabr1br3abr3ar1 has two generalized Parikh images: they
coincide on α0 = α1 = α2 = (0, 0), α3 = (3, 3), α4 = (1, 0) and σ(3) = 3,
σ(4) = 1, and only differ on σ(1) and σ(2) that can be 2 and 4, or 4 and 2,
respectively.

Generalized Parikh images can now be applied to reachability in Z-VASSR as
follows. Without loss of generality, we may assume that a Z-VASSR in dimension
d is given as A = (Q,Σ�R, d,Δ, τ) for some alphabet Σ = {a1, . . . , an} and R =
{r1, . . . , rd} such that τ(ri) = v → v|i for any i ∈ [d] and for any ai ∈ Σ, τ(ai) =

v → v + bi for some bi ∈ Zd. This assumption allows for isolating transitions
performing a reset and enables us to apply monitored alphabets by monitoring
when a reset occurs in each dimension the last time. Consequently, the counter
value realized by some γ ∈ (Σ � R)∗ starting from 0 is fully determined by a
generalized Parikh image of γ.

Integer Vector Addition Systems with States 119

Lemma 6. Let A be a Z-VASSR, γ ∈ (Σ � R)∗, (α0,α1, . . . ,αd, σ) ∈ Π(γ)
and B ∈ Zd×n the matrix whose columns are the vectors bi. Then the following
holds:

τ(γ)(0) =
∑

1≤i≤d
(Bαi−1)|{σ(i),...,σ(d)} +Bαd.

It thus remains to find a suitable way to define the generalized Parikh image
of the language of the non-deterministic finite state automaton (NFA) underly-
ing a Z-VASSR. In [26], it is shown how to construct in linear time an existential
Presburger formula representing the Parikh image of the language of an NFA.
We generalize this construction to generalized Parikh images of NFA over a mon-
itored alphabet, the original result being recovered in the absence of monitored
alphabet symbols, i.e. when k = 0. To this end, we introduce below some defini-
tions and two lemmas from the construction provided in [26] which we employ
for our generalization. First, a flow in an NFA B = (Q,Σ,Δ, q0, F) is a triple
(f, s, t) where s, t ∈ Q are states, and f : Δ → N maps transitions (p, a, q) ∈ Δ
to natural numbers. Let us introduce the following abbreviations:

inf (q) =
∑

(p,a,q)∈Δ

f(p, a, q) and outf (p) =
∑

(p,a,q)∈Δ

f(p, a, q).

A flow (f, s, t) is called consistent if for each p ∈ Q, inf (p) = outf (p) + h(p),
where h(s) = −1, h(t) = 1, and h(p) = 0 otherwise. A flow is connected if
the undirected graph obtained from the graph underlying the automaton when
removing edges with zero flow is connected. A consistent and connected flow
simply enforces Eulerian path conditions on the directed graph underlying B so
that any path starting in s and ending in t yields a unique such flow.

Lemma 7 ([26]). A vector α ∈ Nn is in the Parikh image of L(B) if, and only
if, there is a consistent and connected flow (f, s, t) such that

– s = q0, t ∈ F , and
– for each ai ∈ Σ, α(i) =

∑
(p,ai,q)∈Δ f(p, ai, q)

Subsequently, in order to conveniently deal with states and alphabet symbols
in Presburger arithmetic, we write Q = {1̃, . . . , m̃}, Σ = {1̇, . . . , ṅ} and R =

{ ˙(n+ 1), . . . , ˙(n + k)}. This enables us to write within the logic terms like p = q
for p̃, q̃ ∈ Q. Moreover, it is easy to construct a formula ϕΔ(p, a, q) such that
ϕΔ(p, a, q) holds if, and only if, (p̃, ȧ, q̃) ∈ Δ. In particular, ϕΔ can be constructed
in linear time, independently of the encoding of the NFA and its graph structure.
With this encoding, it is not difficult to see how the conditions from Lemma 7
can be checked by an existential Presburger formula.

Lemma 8 ([26]). There exists a linear-time computable existential Presburger
formula ϕB(f , s, t) with the following properties:

– f represents a flow, i.e., is a tuple of variables x(p,a,q) for each (p, a, q) ∈ Δ;
– s and t are free variables constrained to represent states of Q; and

120 C. Haase and S. Halfon

– (mδ1 , . . . ,mδg ,ms,mt) ∈ �ϕB(f , s, t)� if, and only if, the flow (fm, m̃s, m̃t)
defined by fm(δi) = mδi is connected and consistent in B.

We can now show how to generalize the construction from [26] to monitored al-
phabets and generalized Parikh images. Subsequently, recall that k is the number
of monitored letters.

Theorem 9. Given an NFA B = (Q,Σ�R,Δ, q̃0, F) over a monitored alphabet
Σ�R, an existential Presburger formula ΨB(α,σ) defining the generalized Parikh
image of the language L(B) of B can be constructed in time O(k2|B|).

Proof. The formula we construct has free variables α1
0, . . . , α

n
0 , α

1
1, . . . , α

n
k rep-

resenting the k + 1 vectors α0, . . . ,αk and free variables σ = (σ1, . . . , σk) to
represent the permutation σ. First, we construct a formula ϕperm expressing
that σ is a permutation from [k] to [k]:

ϕperm(σ) =
∧
i∈[k]

(
1 ≤ σi ≤ k ∧

∧
j∈[k]

i �= j → σi �= σj

)
.

This formula has already size O(k2). Now we have to compute the flow for each
of the k +1 parts of the runs corresponding to the k + 1 partial words, but first
we have to “guess” the starting and ending states of each of these partial runs, in
order to use the formula from Lemma 8. Let s = (s0, . . . , sk) and t = (t0, . . . , tk),
we define

ϕstates(σ, p, s, t) = s0 = q0 ∧
∨

q̃∈F
tk = q∧∧

i∈[k]

[i ≤ p → si−1 = ti−1 ∧ ti−1 = si] ∧ [p < i → ϕΔ(ti−1, n+ σi, si)].

Here, p is used as in Definition 5. We can now express the k + 1 flows: we need
one variable per transition for each partial run.

ϕflows(σ, p,f , s, t) =
∧

0≤i≤k

i < p →
∑

(p,a,q)∈Δ

xi
(p,a,q) = 0∧

∧
∧

0≤i≤k

p ≤ i →

⎛⎝ϕB(f i, si, ti,) ∧
∧

1≤j<i

∧
(p,ȧ,q)∈Δ

a = n + σj → xi
(p,ȧ,q) = 0

⎞⎠ ,

where f = (f0, . . . ,fk) and f i is the tuple of free variables of the form xi
(p,a,q)

for all (p, a, q) ∈ Δ. This formula essentially enforces the constraints from Def-
inition 5. The first line enforces that the “dummy flows” f0, . . . ,fp−1 have
zero flow. The second line ensures that the flows fp, . . . ,fk actually corre-
spond to partial words γi in the decomposition described in Definition 5, and
that monitored letters that, informally speaking, have expired receive zero flow.

Integer Vector Addition Systems with States 121

Now putting everything together yields:

ΨB(α,σ) = ∃p,f0, . . .fk, s, t. 0 ≤ p ≤ k ∧ ϕperm(σ)∧

∧ ϕstates(σ, p, s, t) ∧ ϕflows(σ, p,f , s, t) ∧
∧

0≤i≤k

∧
a∈[n]

αa
i =

∑
(p,ȧ,q)∈Δ

xi
(p,ȧ,q).

The size of ΨB(α,σ) is dominated by the size of ϕflows(σ, p,f , s, t) which is
O(k2|B|). ��

Note that it is easy to modify ΨB in order to have q0 as a free variable. By
combining ΨB with Lemma 6, we obtain the following corollary.

Corollary 10. Let A be a Z-VASSR and p, q ∈ Q. There exists a logarithmic-
space computable existential Presburger formula3 ΦA(p, q,v,w,α,σ) such that

(p, q,v,w,α,σ) ∈ �ΦA� if, and only if, there is γ ∈ (Σ �R)∗ such that p̃(v)
γ→A

q̃(w) and (α, σ) ∈ Π(γ), where σ(i) = σ(i).

In particular, this implies that the reachability set of Z-VASSR is semi-linear,
and that reachability in Z-VASSR is NP-complete.

4 Inclusion for Z-VASS

In this section, we show the following theorem.

Theorem 11. Inclusion for Z-VAS is NP-hard and in ΠP
2 , and coNEXP-complete

for Z-VASS and Z-VASSR.

The upper bounds follow immediately from the literature. For Z-VAS we
observe that we are asking for inclusion between linear sets. Huynh [17] shows
that inclusion for semi-linear sets is ΠP

2 -complete, which yields the desired upper
bound. Regarding inclusion for Z-VASSR, from Corollary 10 we have that the
reachability set of a Z-VASSR is Σ1-PA definable. Let A,B be Z-VASSR in
dimension d, q(v) ∈ C(A), p(w) ∈ C(B), and let φA,q(v)(x) and φB,p(w)(x) be
appropriate Σ1-PA formulas from Corollary 10 with x = (x1, . . . , xd). We have

reach(A, q(v)) ⊆ reach(B, p(w)) ⇔ ¬(∃x.φA,q(v)(x) ∧ ¬(φB,p(w)(x))) is valid.

Bringing the above formula into prenex normal form yields a Π2-PA sentence
for which validity can be decided in coNEXP [12]. For that reason we focus on
the lower bounds in the remainder of this section.

For Z-VAS, an NP-lower bound follows straight-forwardly via a reduction from
the feasibility problem of a system of linear Diophantine equations Ax = b,x ≥
0. Despite some serious efforts, we could not establish a stronger lower bound.
Even though it is known that inclusion for semi-linear sets is ΠP

2 -hard [16], this
lower bound does not seem to carry over to inclusion for Z-VAS.
3 Here, we allow v and w to be interpreted over Z, which can easily be achieved by
representing an integer as the difference of two natural numbers.

122 C. Haase and S. Halfon

q .A : z

�1

�j

�m

pB :

.

.

.

.

.

pf

r1

rj

rn

−e2

−e1

−(e3 + e4)

−e5

e1

ej

ek

Fig. 1. Illustration of the approach to reduce validity of a Π2-PA formula Φ =
∀x.∃y.(t1 ∨ t2) ∧ ((t3 ∧ t4) ∨ v5) to inclusion for Z-VASS

Lemma 12. Inclusion for Z-VASS is coNEXP-hard even when numbers are en-
coded in unary.

Proof. We reduce from validity in Π2-PA, which is coNEXP-hard already when
numbers are encoded in unary [10,12]. To this end, let Φ = ∀x.∃y.ϕ(x,y) be
a formula in this fragment such that x and y are m- and n-tuples of first-
order variables, respectively. As discussed in the introduction, with no loss of
generality we may assume that ϕ(x,y) is a positive Boolean combination of k
terms t1, . . . , tk of the form ti = ai · x + zi ≥ bi · y with ai ∈ Zm, bi ∈ Zn and
zi ∈ Z. In our reduction, we show how to construct in logarithmic space Z-VASS
A,B with designated control states q, p such that Φ is valid iff reach(A, q(0)) ⊆
reach(B, p(0)). Figure 1 illustrates the structure of the Z-VASS A and B. A key
point behind our reduction is that the counters of A and B are used to represent
evaluations of left-hand and right-hand-sides of the terms of ϕ(x,y).

In Figure 1, we have that z ∈ Zk is such that z(i) = zi. For j ∈ [m], �j ∈ Zk is
such that �j(i) = ai(j). Likewise, for j ∈ [n], rj ∈ Zk is such that rj(i) = bi(j).
When moving away from state q, A adds the absolute term of each ti to the
respective counters. It can then choose any valuation of the x and thus stores the
corresponding values of the left-hand sides of each ti in the counters. Now B has
to match the choice of A. To this end, it can first loop in state p in order to guess
a valuation of the y and update the values of the counters accordingly, which now
correspond to the right-hand sides of the ti. Along a path from p to pf , B may,
if necessary, simulate the Boolean structure of ϕ: conjunction is simulated by
sequential composition and disjunction by branching. For every conjunct of ϕ, B
can non-deterministically decrement all but one term of every disjunct. Finally,
once B reaches pf , it may non-deterministically increase the value corresponding
to the right-hand sides of every term in order to precisely match any value
reached by A. From this example, it is now clear how to construct A and B from
Φ in general in logarithmic space such that Φ is valid if, and only if, B has a
run beginning in p(0) that matches the counter values reached by any run of A
beginning in q(0). Obviously, the the converse direction holds as well. ��

5 Concluding Remarks

We studied reachability, coverability and inclusion problems for various classes
of Z-VASS, i.e., VASS whose counter values range over Z. Unsurprisingly, the

Integer Vector Addition Systems with States 123

complexity of those decision problems is lower for Z-VASS when compared to
VASS. However, the extend to which the complexity drops reveals an element of
surprise: coverability and reachability for VASS in the presence of resets are Fω-
complete and undecidable, respectively, but both problems are only NP-complete
for Z-VASSR. For the upper bound, we provided a generalization of Parikh im-
ages which we believe is a technical construction of independent interest.

Throughout this paper, the dimension of the Z-VASS has been part of the
input. A natural line of future research could be to investigate the complexity
of the problems we considered in fixed dimensions.

Acknowledgments. We would like to thank the anonymous referees, Sylvain
Schmitz and Philippe Schnoebelen for their helpful comments and suggestions
on an earlier version of this paper.

References

1. Bell, P., Potapov, I.: On undecidability bounds for matrix decision problems. Theor.
Comput. Sci. 391(1-2), 3–13 (2008)

2. Borosh, I., Treybing, L.B.: Bounds on positive integral solutions of linear Diophan-
tine equations. Proc. AMS 55, 299–304 (1976)

3. Buckheister, P., Zetzsche, G.: Semilinearity and context-freeness of languages ac-
cepted by valence automata. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS,
vol. 8087, pp. 231–242. Springer, Heidelberg (2013)

4. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and un-
decidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 103–115. Springer, Heidelberg (1998)

5. Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel
processes. Fundam. Inform. 31(1), 13–25 (1997)

6. Finkel, A., Göller, S., Haase, C.: Reachability in register machines with polynomial
updates. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 409–
420. Springer, Heidelberg (2013)

7. Fraca, E., Haddad, S.: Complexity analysis of continuous petri nets. In: Colom, J.-
M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 170–189. Springer,
Heidelberg (2013)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

9. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas and languages. Pac.
J. Math. 16(2), 285–296 (1966)

10. Grädel, E.: Dominoes and the complexity of subclasses of logical theories. Ann.
Pure Appl. Logic 43(1), 1–30 (1989)

11. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theor. Comput. Sci. 7(3), 311–324 (1978)

12. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In:
Proc. CSL-LICS (to appear, 2014)

13. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009)

124 C. Haase and S. Halfon

14. Hack, M.: The equality problem for vector addition systems is undecidable. Theor.
Comput. Sci. 2(1), 77–95 (1976)

15. Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759.
Springer, Heidelberg (2011)

16. Huynh, D.T.: The complexity of equivalence problems for commutative grammars.
Inform. Control 66(1-2), 103–121 (1985)

17. Huynh, D.T.: A simple proof for the Σp
2 upper bound of the inequivalence problem

for semilinear sets. Elektron. Inform. Kybernet. 22(4), 147–156 (1986)
18. Jančar, P.: Nonprimitive recursive complexity and undecidability for Petri net

equivalences. Theor. Comput. Sci. 256(1-2), 23–30 (2001)
19. Kopczyński, E., To, A.W.: Parikh images of grammars: Complexity and applica-

tions. In: Proc. LICS, pp. 80–89 (2010)
20. Lipton, R.: The reachability problem is exponential-space-hard. Technical report,

Yale University, New Haven, CT (1976)
21. Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proc.

STOC, pp. 238–246. ACM, New York (1981)
22. Plandowski, W., Rytter, W.: Complexity of language recognition problems for com-

pressed words. In: Karhumäki, J., Maurer, H.A., Păun, G., Rozenberg, G. (eds.)
Jewels are Forever, pp. 262–272 (1999)

23. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6(2), 223–231 (1978)

24. Reichert, J.: On the complexity of counter reachability games. In: Abdulla, P.A.,
Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 196–208. Springer, Heidelberg
(2013)

25. Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and
reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

26. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004)

Reachability in MDPs:

Refining Convergence of Value Iteration�

Serge Haddad1 and Benjamin Monmege2

1 LSV, ENS Cachan, CNRS & Inria, France
serge.haddad@lsv.ens-cachan.fr

2 Université libre de Bruxelles, Belgium
benjamin.monmege@ulb.ac.be

Abstract. Markov Decision Processes (MDP) are a widely used model
including both non-deterministic and probabilistic choices. Minimal and
maximal probabilities to reach a target set of states, with respect to a
policy resolving non-determinism, may be computed by several methods
including value iteration. This algorithm, easy to implement and efficient
in terms of space complexity, consists in iteratively finding the probabil-
ities of paths of increasing length. However, it raises three issues: (1)
defining a stopping criterion ensuring a bound on the approximation,
(2) analyzing the rate of convergence, and (3) specifying an additional
procedure to obtain the exact values once a sufficient number of iter-
ations has been performed. The first two issues are still open and for
the third one a “crude” upper bound on the number of iterations has
been proposed. Based on a graph analysis and transformation of MDPs,
we address these problems. First we introduce an interval iteration al-
gorithm, for which the stopping criterion is straightforward. Then we
exhibit convergence rate. Finally we significantly improve the bound on
the number of iterations required to get the exact values.

1 Introduction

Markov Decision Processes (MDP) are a commonly used formalism for mod-
elling systems that use both probabilistic and non-deterministic behaviors. These
are generalizations of discrete-time Markov chains for which non-determinism is
forbidden. MDPs have acquired an even greater gain of interest since the de-
velopment of quantitative verification of systems, which in particular may take
into account probabilistic aspects (see [1] for a deep study of model checking
techniques, in particular for probabilistic systems). Automated verification tech-
niques have been extensively studied to handle such probabilistic models, leading
to various tools like the PRISM probabilistic model checker [9].

Value Iteration for Reachability Problems. In the tutorial paper [5], the au-
thors cover some of the algorithms for the model-checking of MDPs and Markov

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n601148
(CASSTING).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 125–137, 2014.
� Springer International Publishing Switzerland 2014

126 S. Haddad and B. Monmege

chains. The first simple, yet intriguing, problem lies in the computation of mini-
mum and maximum probabilities to reach a target set of states of an MDP. Exact
polynomial time methods, like linear programming, exist to compute those prob-
abilities, but they seem unable to scale on large systems. Nonetheless, they are
based on the fact that these probabilities are indeed fixpoints of some operators.
Usually, numerical approximate methods are rather used in practice, the most
used one being value iteration. The algorithm consists in asymptotically reaching
the previous fixpoints by iterating the operators. However, it raises three issues.
Since the algorithm must terminates after a finite number of iterations one has
to define a stopping criterion ensuring a bound on the difference between the
computed and the exact values. From a theoretical point of view, establishing
the rate of convergence with respect to the parameters of the MDP (number of
states, smallest positive transition probability, etc.) helps to estimate the com-
plexity of value iteration. Sometimes for further application the exact values
and/or the optimal policy are required. This is generally done by performing an
additional rounding procedure once a sufficient number of iterations has been
performed. The first two issues are still open and for the third one a “crude”
upper bound on the number of iterations has been proposed [3, Sec 3.5].

Our Contributions. Generally the numerical computations of optimal reach-
ability probabilities are preceded by a qualitative analysis that computes the
sets of states for which this probability is 0 or 1 and performs an appropri-
ate transformation of the MDP. We adopt here an alternative approach based
on the maximal end component (MEC) decomposition of an MDP (that can
be computed in polynomial time [4]). We show that for an MDP featuring a
particular MEC decomposition, some safety probability is null with an addi-
tional convergence rate with respect to the length of the run. Then we design
a min- (respectively, max-) reduction that ensures this feature while preserving
the minimal (respectively, maximal) reachability probabilities. In both cases,
we establish that the reachability probabilities are unique fixed points of some
operator.

So we iterate these operators starting from the maximal and the minimal pos-
sible vectors. These iterations naturally yield an interval iteration algorithm for
which the stopping criterion is straightforward since, at any step, the two current
vectors constitute a framing of the reachability probabilities. Similar computa-
tions of parallel under- and over-approximations have been used in [7], in order to
detect steady-state on-the-fly during the transient analysis of continuous-time
Markov chains. In [8], under- and over-approximations of reachability proba-
bilities in MDPs are obtained by substituting to the MDP a stochastic game.
Combining it with a CEGAR-based procedure leads to an iterative procedure
with approximations converging to the exact values. However the speed of con-
vergence is only studied from an experimental point of view. Afterwards, we
provide probabilistic interpretations for the adjacent sequences of the interval
iteration algorithm. Combining such an interpretation with the safety conver-
gence rate of the reduced MDP allows us to exhibit a convergence rate for inter-
val iteration algorithm. At last, exploiting this convergence rate, we significantly

Reachability in MDPs: Refining Convergence of Value Iteration 127

improve the bound on the number of iterations required to get the exact values
by a rounding procedure.

Related Work. Interestingly, our approach has been realized in parallel of
Brázdil et al [2] that solves a different problem with similar ideas. There, authors
use some machine learning algorithm, namely real-time dynamic programming,
in order to avoid to apply the full operator at each step of the value iteration,
but rather to partially apply it based on some statistical test. Using the same
idea of lower and upper approximations, they prove that their algorithm almost
surely converges towards the optimal probability, in case of MDPs without non-
trivial end components. In the presence of non-trivial end components, rather
than computing in advance a simplified equivalent MDP as we do, they rather
compute the simplification on-the-fly. It allows them to also obtain results in the
case where the MDP is not explicitly given. However, no analysis of the speed
of convergence of their algorithm is provided, nor are given explicit stopping
criteria enabling an exact computation of values.

Outline. Section 2 introduces MDPs and the reachability/safety problems. It
also includes MEC decomposition, dedicated MDP transformations and char-
acterization of minimal and maximal reachability probabilities as unique fixed
points of operators. Section 3 presents our main contributions: the interval iter-
ation algorithm, the analysis of the convergence rate and a better bound for the
number of iterations required for obtaining the exact values by rounding. Due
to space constraints, a complete version, with full proofs, can be found in [6].

2 Reachability Problems for Markov Decision Processes

2.1 Problem Specification

We mainly follow the notations of [5]. We denote by Dist(S) the set of distribu-
tions over a finite set S, i.e., every mapping p : S → [0, 1] from S to the set [0, 1]
such that

∑
s∈S p(s) = 1. The support of a distribution p, denoted by Supp(p),

is the subset of S defined by Supp(p) = {s ∈ S | p(s) > 0}.
A Markov Decision Process (MDP) is a tuple M = (S, αM, δM) where S is a

finite set of states; αM =
⋃

s∈S A(s) where every A(s) is a non empty finite set
of actions with A(s) ∩A(s′) = ∅ for all s �= s′; and δM : S × αM → Dist(S) is a
partial probabilistic transition function defined for (s, a) if and only if a ∈ A(s).

The dynamic of the system is defined as follows. Given a current state s, an
action a ∈ A(s) is chosen non deterministically. The next state is then randomly
selected, using the corresponding distribution δM(s, a), i.e., the probability that
a transition to s′ occurs equals δM(s, a)(s′). In a more suggestive way, one de-
notes δM(s, a)(s′) by δM(s′|s, a) and

∑
s′∈S′ δM(s′|s, a) by δM(S′|s, a).

More formally, an infinite path through an MDP is a sequence π = s0
a0−→

s1
a1−→ · · · where si ∈ S, ai ∈ A(si) and δM(si+1|si, ai) > 0 for all i ∈ N: in the

following, state si is denoted by π(i). For every i ∈ N, π↑i denotes the suffix of π

starting in si, i.e., π↑i = si
ai−→ si+1 · · · . A finite path ρ = s0

a0−→ s1
a1−→ · · · an−1−−−→

sn is a prefix of an infinite path ending in a state sn, denoted by last(ρ). We

128 S. Haddad and B. Monmege

denote by PathM,s (respectively, FPathM,s) the set of infinite paths (respectively,
finite paths) starting in state s, whereas PathM (respectively, FPathM) denotes
the set of all infinite paths (respectively, finite paths).

To associate a probability space with an MDP, we need to eliminate the non-
determinism of the behaviour. This is done by introducing policies (also called
schedulers or strategies). A policy of an MDP M = (S, αM, δM) is a function
σ : FPathM → Dist(αM) such that σ(ρ)(a) > 0 only if a ∈ A(last(ρ)). One
denotes σ(ρ)(a) by σ(a|ρ). We denote by PolM the set of all policies of M. A
policy σ is deterministic when σ(ρ) is a Dirac distribution for every ρ ∈ FPathM
(in that case, σ(ρ) denotes the action a ∈ A(last(ρ)) associated to probability
one); it is stationary (also called memoryless) if σ(ρ) only depends on last(ρ).

A policy σ and an initial state s ∈ S yields a discrete-time Markov chain
Mσ

s (see [5, Definition 10]), whose states are the finite paths of FPathM,s. The
probability measure PrMσ ,s over paths of the Markov chain starting in s (with
basic cylinders being generated by finite paths) defines a probability measure
PrσM,s over PathM,s, capturing the behavior of M from state s under policy σ.

Let ρn = s0
a0−→ s1

a1−→ · · · an−1−−−→ sn and ρn+1 = s0
a0−→ s1

a1−→ · · · sn
an−−→ sn+1,

the probability measure is inductively defined by

PrσM,s0(ρn+1) = PrσM,s0(ρn)
∑

a∈A(sn)

σ(a|ρn) δM(sn+1|sn, a) .

One specifies properties on infinite paths as follows. Given a subset S′ ⊆ S
of states and π = s0

a0−→ s1
a1−→ · · · ∈ PathM, π |= S′ iff s0 ∈ S′. The atomic

proposition {s} is more concisely denoted by s. One also uses Boolean operators
¬, ∧ and ∨ for building formulas. We finally use temporal operators F (for
Finally) and G (for Globally). For a property ϕ, we let π |= Fϕ if there exists
i ∈ N such that the suffix π↑i of π verifies π↑i |= ϕ. The dual operator G is
defined by Gϕ ≡ ¬F¬ϕ. One also considers restricted scopes of these operators:
π |= F�n ϕ if there exists 0 � i � n such that π↑i |= ϕ, and G�n ϕ ≡ ¬F�n ¬ϕ.
Given a property ϕ on infinite paths one denotes PrσM,s({π ∈ PathM,s | π |= ϕ})
more concisely by PrσM,s(ϕ).

Given a subset of target states T , reachability properties are specified by
FT and safety properties by G¬T . Our main goal is to compute the infimum
and supremum reachability and safety probabilities, with respect to the policies,
i.e., for ϕ ∈ {FT,G¬T }: Prmin

M,s(ϕ) = infσ∈PolM PrσM,s(ϕ) and Prmax
M,s(ϕ) =

supσ∈PolM PrσM,s(ϕ). Since PrσM,s(G¬T) = 1 − PrσM,s(F T), one immediately

gets: Prmax
M,s(G¬T) = 1− Prmin

M,s(FT) , and Prmin
M,s(G¬T) = 1− Prmax

M,s(FT) .
Thus we focus on reachability problems and without loss of generality, all the

states of T may be merged in a single state called s+ with A(s+) = {loop+}
such that δM(s+|s+, loop+) = 1. In the sequel, the vector (PrσM,s(ϕ))s∈S (re-

spectively, (Prmin
M,s(ϕ))s∈S and (Prmax

M,s(ϕ))s∈S) of probabilities will be denoted

by PrσM(ϕ) (respectively, Prmin
M (ϕ) and Prmax

M (ϕ)).

Reachability in MDPs: Refining Convergence of Value Iteration 129

2.2 MEC Decomposition and Transient Behaviour

In our approach, we first reduce an MDP by a qualitative analysis based on end
components. We adopt here a slightly different definition of the usual one by
allowing trivial end components (see later on). Preliminarily, the graph of an
MDP M is defined as follows: the set of its vertices is S and there is an edge
from s to s′ if there is some a ∈ A(s) with δM(s′|s, a) > 0.

Definition 1 (end component). Let M = (S, αM, δM). Then (S′, α′) with
∅ �= S′ ⊆ S and α′ ⊆

⋃
s∈S′ A(s) is an end component if (i) for all s ∈ S′ and a ∈

A(s) ∩ α′, Supp(δM(s, a)) ⊆ S′; (ii) the graph of (S′, α′) is strongly connected.

Given two end components, one says that (S′, α′) is smaller than (S′′, α′′),
denoted by (S′, α′) 	 (S′′, α′′), if S′ ⊆ S′′ and α′ ⊆ α′′. Given some state s, there
is a minimal end component containing s namely ({s}, ∅). Such end components
are called trivial end components. The union of two end components that share
a state is also an end component. Hence, maximal end components (MEC) do
not share states and cover all states of S. Furthermore, we consider bottom
MEC (BMEC): a MEC (S′, α′) is a BMEC if α′ =

⋃
s∈S′ A(s). For instance

({s+}, {loop+}) is a BMEC. Every MDP contains at least one BMEC.
Fig. 1-(a) shows the decomposition in MEC of an MDP. There are two BMECs

({s+}, {loop+}) and ({b, b′}, {d, e}), one trivial MEC ({t}, ∅) and another MEC
({s, s′}, {a, c}).

The set of MECs of an MDP can be computed in polynomial time (see for

instance [4]). It defines a partition of S =
⊎K

i=k Sk �
⊎L

�=1{t�}�
⊎M

m=0 Bm where
{t�} is the set of states of a trivial MEC, Bm is the set of states a BMEC and
Sk’s are the set of states of the other MECs. By convention, B0 = {s+}. The
next proposition is the key ingredient of our approach.

Proposition 2. Let M be an MDP such that its MEC decomposition only con-
tains trivial MECs and BMECs, i.e., S =

⊎L
�=1{t�} �

⊎M
m=0 Bm. Then:

1. There is a partition S =
⊎

0�i�I Gi such that G0 =
⊎M

m=0 Bm and for all 1 �
i � I, s ∈ Gi and a ∈ A(s), there is s′ ∈

⋃
j<i Gj such that δM(s′|s, a) > 0.

2. Let η be the smallest positive probability occurring in the distributions of M.
Then for all n ∈ N, and for all s ∈ S, Prmax

M,s(G
�nI ¬G0) � (1− ηI)n.

3. For all s ∈ S, Prmax
M,s(G¬G0) = 0.

Proof. (Sketch) 1. One builds the partition of S by induction. We first let G0 =⊎M
m=0 Bm. Then, assuming that G0, . . . , Gi have been defined, we let Gi+1 =

{s ∈ S \
⋃

j�i Gj | ∀a ∈ A(s) ∃s′ ∈
⋃

j�i Gj δM(s′|s, a) > 0}. The construction
stops when some Gi is empty. If GI is the last non-empty set, it can easily be
checked that S =

⋃
i�I Gi.

2. One observes that the path property G�n ¬G0 only depends on the prefix of
length n. So there is only a finite number of policies up to n and we denote
σn the policy that achieves Prmax

M,s(G
�n ¬G0). Observe also that after a path of

length k < n leading to state s /∈ G0, policy σn may behave as policy σn−k

starting in s. The property may then be shown by using the fact that for all

130 S. Haddad and B. Monmege

s s′

s+

t

b b′

a

c

g, 0.5

g, 0.5

f, 0.5

f, 0.2

f, 0.3

loop+

d

e

→←t

s+

s−

f, 0.2

f, 0.8

loop+

loop−

s1 t

s+

s−

g, 0.5

g, 0.5

f, 0.2

f, 0.5

f, 0.3

loop+

loop−

(a)(b) (c)

Fig. 1. (a) An MDP and its MEC decomposition, (b) its min-reduction, and (c) its
max-reduction

state s and policy σ, there is a path of length at most I in Mσ from s to ρ with
last(ρ) ∈ G0, showing that PrσM,s(G

�I ¬G0) � (1− ηI).
3. The last assertion is a straightforward consequence of the previous one. ��

This proposition shows the interest of eliminating MECs that are neither triv-
ial ones nor BMECs. In the following, we consider the partition S =

⊎K
i=k Sk �⊎L

�=1{t�} �
⊎M

m=0 Bm where {t�}’s are trivial MECs, Bm’s are BMECs and Sk’s
are all the other MECs. A quotienting of an MDP has been introduced in [4, Algo-
rithm 3.3] in order to decrease the complexity of the computation for reachability
properties. We now introduce two variants of reductions for MDPs depending
on the kind of probabilities we want to compute.

2.3 Characterization of Minimal Reachability Probabilities

The reduction in the case of minimal reachability probabilities consists in merg-
ing all non-trivial MECs different from ({s+}, {loop+}) into a fresh state s−: all
these states merged into s− will have a zero minimal reachability probability.

Definition 3 (min-reduction). Let M be an MDP with the partition of S =⊎K
i=k Sk �

⊎L
�=1{t�} �

⊎M
m=0 Bm. We define M• = (S•, αM• , δM•) by:

– S• = {s−, s+, t1, . . . , tL}, and for all s ∈ S, s• is defined by: (1) s• = tl if
s = t�, (2) s• = s+ if s = s+, and (3) s• = s− otherwise.

– A•(s−) = {loop−}, A•(s+) = {loop+} and for all 1 � � � L, A•(t�) = A(t�).
– For all 1 � �, �′ � L, a ∈ A•(t�),

δM•(s−|t�, a) = δM(
⊎K

i=kSk �
⊎M

m=1Bm|t�, a),
δM•(s+|t�, a) = δM(s+|t�, a), δM•(t�′ |t�, a) = δM(t�′ |t�, a),

δM•(s+|s+, loop+) = δM(s−|s−, loop−) = 1 .

An MDP M is called min-reduced if M = N • for some MDP N . The min-
reduction of an MDP is illustrated in Fig. 1-(b). The single trivial MEC ({t}, ∅)
is preserved while MECs ({b, b′}, {d, e}) and ({s, s′}, {a, c}) are merged in s−.

Reachability in MDPs: Refining Convergence of Value Iteration 131

Proposition 4. Let M be an MDP and M• be its min-reduced MDP. Then for
all s ∈ S, Prmin

M,s(F s+) = Prmin
M•,s•(F s+).

We now establish another property of the min-reduced MDP that allows us
to use Proposition 2.

Lemma 5. Let M• be the min-reduced MDP of an MDP M. Then every state
s ∈ S• \ {s−, s+} is a trivial MEC.

In order to characterize PrσM(F s+) with a fixpoint equation, we define the
set of S-vectors as V = {x = (xs)s∈S | ∀s ∈ S \ {s−, s+} 0 � xs � 1 ∧ xs+ =
1 ∧ xs− = 0}. We also introduce the operator fmin : V → V by letting for all
x ∈ V : fmin(x)s = mina∈A(s)

∑
s′∈S δM(s′|s, a)xs′ for every s ∈ S \ {s−, s+},

fmin(x)s− = 0 and fmin(x)s+ = 1.
We claim that there is a single fixed point of fmin. In order to establish that

claim, given a stationary deterministic strategy σ, we introduce the operator
fσ : V → V defined for all x ∈ V by: fσ(x)s =

∑
s′∈S δM(s′|s, σ(s))xs′ for every

s ∈ S \ {s−, s+}, fσ(x)s− = 0 and fσ(x)s+ = 1.

Proposition 6. Let M be a min-reduced MDP. PrσM(F s+) is the unique fixed
point of fσ. Prmin

M (F s+) is the unique fixed point of fmin and it is obtained by a
stationary deterministic policy.

2.4 Characterization of Maximal Reachability Probabilities

The reduction for maximal reachability probabilities is more complex. Indeed,
we cannot merge any non-trivial MEC different from ({s+}, {loop+}) into the
state s− anymore, since some of these states may have a non-zero maximal
reachability probability. Hence, we consider a fresh state sk for each MEC Sk

and simply merge all BMECs Bm’s different from ({s+}, {loop+}) into state s−.

Definition 7 (max-reduction). Let M be a MDP with the partition of S =⊎K
i=k Sk �

⊎L
�=1{t�} �

⊎M
m=0 Bm. Then the max-reduced M• = (S•, αM• , δM•)

is defined by:
– S• = {s−, s+, t1, . . . , tL, s1, . . . , sK}. For all s ∈ S, one defines s• by: (1)

s• = tl if s = tl, (2) s• = s+ if s = s+, (3) s• = sk if s ∈ SK , and (4)
s• = s− otherwise.

– A•(s−) = {loop−}, A•(s+) = {loop+} for all 1 � � � L, A•(t�) = A(t�), and
for all 1 � k � K, A•(sk) = {a | ∃s ∈ Sk a ∈ A(s) ∧ Supp(δM(s, a)) � Sk}.

– For all 1 � �, �′ � L, a ∈ A•(t�), 1 � k, k′ � K, b ∈ A•(sk)∩As with s ∈ Sk,

δM•(s−|t�, a) = δM(
⊎M

m=1Bm|t�, a), δM•(s+|t�, a) = δM(s+|t�, a),
δM•(t�′ |t�, a) = δM(t�′ |t�, a), δM•(sk|t�, a) = δM(Sk|t�, a),
δM•(s−|sk, b) = δM(

⊎M
m=1Bm|s, b), δM•(s+|sk, b) = δM(s+|s, b),

δM•(t�|sk, b) = δM(t�|s, b), δM•(sk′ |sk, b) = δM(Sk′ |s, b),
δM•(s+|s+, loop+) = δM(s−|s−, loop−) = 1 .

132 S. Haddad and B. Monmege

Observe that M• is indeed an MDP since A•(sk) cannot be empty (otherwise
Sk would be BMEC). Fig. 1-(c) illustrates the max-reduction of an MDP. The
single trivial MEC ({t}, ∅) is preserved while MEC ({b, b′}, {d, e}) is merged in
s−. The MEC ({s, s′}, {a, c}) is now merged into s1 with only action g preserved.

The following propositions are similar to Proposition 4 and Lemma 5 for the
min-reductions.

Proposition 8 ([4, Thm. 3.8]). Let M be an MDP and M• be its max-reduced
MDP. Then for all s ∈ S, Prmax

M,s(F s+) = Prmax
M•,s•(F s+).

Lemma 9. Let M• be the max-reduced MDP of an MDP M. Then every state
s ∈ S• \ {s−, s+} is a trivial MEC.

As for minimal reachability probabilities, we introduce operator fmax : V → V
by letting for all x ∈ V : fmax(x)s = maxa∈A(s)

∑
s′∈S δM(s, a)(s′)xs′ for all

s ∈ S \ {s−, s+}, fmax(x)s− = 0 and fmax(x)s+ = 1.
We observe that Lemma 9 combined with Proposition 2 ensures that in a

max-reduced MDP M, for any policy σ, S \ {s−, s+} is a set of transient states
ofMσ. This helps to prove that Proposition 6 also holds for max-reduced MDPs:

Proposition 10. Let M be a max-reduced MDP. PrσM(F s+) is the unique fixed
point of fσ. Prmax

M (F s+) is the unique fixed point of fmax and it is obtained by
a stationary deterministic policy.

Discussion. Usually, algorithms that compute maximal and minimal reacha-
bility probabilities first determine the set of states for which those probabilities
are 0 or 1, and merge them in states s− and s+ respectively (see for instance [5,
Algorithms 1-4]). For the case of minimal reachability probabilities, the MDP
obtained after this transformation—which is a quotient of our M•—fulfills the
hypotheses of Proposition 2 and our further development is still valid.

Unfortunately, it does not hold in the maximal case: for the MDP on the left
of Fig. 1-(a), the obtained MDP, that we call M′, simply merges {b, b′} into s−,
without merging {s, s′} (since the maximal probability to reach s+ from s or
s′ is equal to 0.5, when choosing action b in s′). Moreover, Proposition 10 does
not hold either in M′ for maximal probabilities1. In fact, the vector of maximal
probabilities inM′ is only the smallest fixed point of fmax. Indeed, the reader can
check that the vector which is equal to 0 for s−, 0.7 for t, and 1 for all the other
states is also a fixed point of fmax, whereas the maximal reachability probability
to reach s+ from s or s′ is equal to 0.5. Notice that in the max-reduction M• of
this MDP, the MEC ({s, s′}, {a, c}) is merged into a single state, hence removing
this non-unicity problem, as shown in Proposition 10.

While this issue does not preclude the standard computation of the probabil-
ities, the approach we have followed enables us to solve the convergence issues
of the previous methods. This is the subject of the next section.

1 This is already observed in [5], but a wrong statement is made in [1, Thm. 10.100].

Reachability in MDPs: Refining Convergence of Value Iteration 133

3 Value Iteration for Reachability Objectives

This section presents the value iteration algorithm used, for example in the
PRISM model-checker [9], to compute optimal reachability probabilities of an
MDP. After stating convergence issues of this method, we give a new algorithm,
called interval iteration algorithm, and the strong guarantees that it gives.

3.1 Convergence Issues

The idea of the value iteration algorithm is to compute the fixed points of fmin

and fmax (more precisely, the smallest fixed points of fmin and fmax) by iterating
them on a given initial vector, until a certain convergence criterion is met. More

precisely, as recalled in [5], we let x(0) defined by x
(0)
s+ = 1 and x

(0)
s = 0 for s �= s+

(observe that x(0) is the minimal vector of V for the pointwise order), and we
then build one of the two sequences x = (x(n))n∈N or x = (x(n))n∈N defined by
– x(0) = x(0) and for all n ∈ N, x(n+1) = fmin(x

(n));
– x(0) = x(0) and for all n ∈ N, x(n+1) = fmax(x

(n)).
Since fmin and fmax are monotonous operators and due to the choice of the initial
vector, x and x are non-decreasing bounded sequences, hence convergent. Let
x(∞) and x(∞) be their respective limits. By continuity of fmin and fmax, x(∞)

(respectively, x(∞)) is a fixed point of fmin (respectively, fmax). Due to Proposi-
tions 6 and 10, x(∞) (respectively, x(∞)) is the vector Prmin

M (F s+) (respectively,
Prmax

M (F s+)) of minimal (respectively, maximal) reachability probabilities.
In practice, several stopping criteria can be chosen. In the model-checker

PRISM [9], two criteria are implemented. For a vector x ∈ V , we let ‖x‖ =
maxs∈S |xs|. For x ∈ {x, x} and a given threshold ε > 0, the absolute crite-
rion consists in stopping once ‖x(n+1) − x(n)‖ � ε, whereas the relative crite-

rion considers maxs∈S(x
(n+1)
s − x

(n)
s)/x

(n)
s � ε. However, as noticed in [5], no

guarantees are obtained when using such value iteration algorithms, whatever
the stopping criterion. As an example, consider the MDP (indeed the Markov
chain) of Fig. 2. It is easy to check that (minimal and maximal) reachability
probability of s+ = 0 in state n is 1/2. However, if ε is chosen as 1/2n (or
any value above), the sequence of vectors computed by the value iteration al-
gorithm will be x(0) = (1, 0, 0, . . . , 0, 0, . . . , 0), x(1) = (1, 1/2, 0, . . . , 0, 0, . . . , 0),
x(2) = (1, 1/2, 1/4, . . . , 0, 0, . . . , 0), . . . , x(n) = (1, 1/2, 1/4, . . . , 1/2n, 0, . . . , 0), at
which point the absolute stopping criterion is met. Hence, the algorithm outputs

x
(n)
n = 1/2n as the reachability probability of s+ = {0} in state n.

Example 11. The use of PRISM confirms this phenomenon. On this MDP, choos-
ing n = 10 and threshold ε = 10−3 < 1/210, the absolute stopping criterion leads
to the probability 9.77 × 10−4 ≈ 1/210, whereas the relative stopping criterion
leads to the probability 0.198. It has to be noticed that the tool indicates that
the value iteration has converged, and does not warn the user that a possible
problem may have arisen.

134 S. Haddad and B. Monmege

n

n−1

n+1

n−2

n+2

. . .

. . .

1

2n−1

0

2n

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

Fig. 2. A Markov chain with problems of convergence in value iteration

Algorithm 1. Interval iteration algorithm for minimum reachability

Input: Min-reduced MDP M = (S, αM, δM), convergence threshold ε
1 xs+ := 1; xs− := 0; ys+ := 1; ys− := 0
2 foreach s ∈ S \ {s+, s−} do xs := 0; ys := 1
3 repeat
4 foreach s ∈ S \ {s+, s−} do
5 x′

s := mina∈A(s)

∑
s′∈S δM(s, a)(s′) xs′

6 y′
s := mina∈A(s)

∑
s′∈S δM(s, a)(s′) ys′

7 δ := maxs∈S(y
′
s − x′

s)
8 foreach s ∈ S \ {s+, s−} do x′

s := xs; y
′
s := ys

9 until δ � ε
10 return (xs)s∈S, (ys)s∈S

We consider a modification of the algorithm in order to obtain a convergence
guarantee when stopping the value iteration algorithm. We provide (1) stopping
criteria for approximation and exact computations and, (2) rate of convergence.

3.2 Stopping Criterion for ε-Approximation

Here, we introduce two other sequences. For that, let vector y(0) be the maximal

vector of V , defined by y
(0)
s− = 0 and y

(0)
s = 1 for s �= s−. We then define

inductively the two sequences y and y of vectors by

– y(0) = y(0) and for all n ∈ N, y(n+1) = fmin(y
(n));

– y(0) = y(0) and for all n ∈ N, y(n+1) = fmax(y
(n)).

Because of the new choice for the initial vector, notice that y and y are non-
increasing sequences. Hence, with the same reasoning as above, we know that
these sequences converge, and that their limit, denoted by y(∞) and y(∞) re-
spectively, are the minimal (respectively, maximal) reachability probabilities. In
particular, notice that x and y, as well as x and y, are adjacent sequences, and

that x(∞) = y(∞) = Prmin
M (F s+) and x(∞) = y(∞) = Prmax

M (F s+) .
Let us first consider a min-reduced MDP M. Then, our new value iteration

algorithm computes both in the same time sequences x and y and stops as soon

as ‖y(n) − x(n)‖ � ε. In case this criterion is satisfied, which will happen after

Reachability in MDPs: Refining Convergence of Value Iteration 135

n n−1 n−2 . . . 1 s+

s−

1
3

1
3

1
3

0.5 0.5 0.5
1
2n

0.5
0.5

1
2n

1− 1
n

1

1

Fig. 3. A Markov chain with less iterations for the initial state

a finite (yet possibly large and not bounded a priori) number of iterations, we
can guarantee that we obtained over- and underapproximations of Prmin

M (F s+)
with precision at least ε on every component. Because of the simultaneous com-
putation of lower and upper bounds, we call this algorithm interval iteration
algorithm, and specify it in Algorithm 1. A similar algorithm can be designed
for maximum reachability probabilities, by considering max-reduced MDPs and
replacing min operations of lines 5 and 6 by max operations.

Theorem 12. For every min-reduced (respectively, max-reduced) MDP M, and
threshold ε, if the interval iteration algorithm returns the vectors x and y on
those inputs, then for all s ∈ S, Prmin

M,s(F s+) (respectively, Prmax
M,s(F s+)) is in

the interval [xs, ys] of length at most ε.

Example 13. For the same example as the one in Example 11, our algorithm
converges after 10548 steps, and outputs, for the initial state s = n, xn = 0.4995
and yn = 0.5005, given a good confidence to the user.

Notice that it is possible to speed up the convergence if we are only interested
in the optimal reachability probability of a given state s0. Indeed, we can simply

replace the stopping criterion ‖y(n) − x(n)‖ � ε by y
(n)
s0 − x

(n)
s0 � ε.

Example 14. Let us look at the MDP (in fact a Markov chain) of Fig. 3 with
initial state s0 = n. Assume that we select threshold ε = 2−(n−1). For state s0,
the algorithm stops after n−1 iterations with interval

[
1
3 ,

1
3 (1 + 2−(n−2))

]
for the

reachability probability. However, for the reaching probability of state 1, the in-

terval after k iterations is
[

1
2n

∑
0�i<k(1− 1

n)
i, 1

2n

∑
0�i<k(1 − 1

n)
i + (1− 1

n)
k
]
.

So it will stop when (1− 1
n)

k � 2−(n−1), i.e., k � − (n−1)

log2(1− 1
n)

implying k = Θ(n2).

3.3 Rate of Convergence

We now establish guarantees on the rate of convergence of the interval iteration
algorithm. Notice that the results also apply to the usual value iteration algo-
rithm, even though the proof relies on the introduction of adjacent sequences. In
the sequel, we assume that there is at least one transition probability 0 < δ < 1
(otherwise the problems are trivial).

136 S. Haddad and B. Monmege

Theorem 15. For a min- or max-reduced MDP M, and a convergence thresh-
old ε, the interval iteration algorithm converges in at most I� log ε

log(1−ηI)� steps,

where I and η are introduced in Proposition 2.

Proof. Let σ be the policy corresponding to the minimal probability of satisfying
G�n ¬s− and σ′ be the policy corresponding to the minimal probability of satis-
fying F�n s+. In particular, notice that PrσM,s(G

�nI ¬s−) � Prσ
′

M,s(G
�nI ¬s−).

Since G�n ¬s− ≡ G�n ¬(s− ∨ s+)∨ F�n s+, with the disjunction being exclu-
sive, we have for all s ∈ S,

Prmin
M,s(G

�nI ¬s−)− Prmin
M,s(F

�nI s+)) = PrσM,s(G
�nI ¬s−)− Prσ

′
M,s(F

�nI s+)

� Prσ
′

M,s(G
�nI ¬s−)− Prσ

′
M,s(F

�nI s+) = Prσ
′

M,s(G
�nI ¬(s− ∨ s+) � (1− ηI)n

due to Proposition 2. It is easy to show by induction that x(n) = Prmin
M (F�n s+)

and y(n) = Prmin
M (G�n ¬s−). Then, we have ‖y(nI) − x(nI)‖ � (1 − ηI)n. In

conclusion, the stopping criterion is met when (1 − ηI)n � ε, i.e., after at most
I� I log ε

log(1−ηI)� steps. A similar proof can be made for maximal probabilities. ��

It may also be noticed, from similar arguments, that for all n, ‖y((n+1)I) −
x((n+1)I)‖ � (1 − ηI)‖y(nI) − x(nI)‖ (and similarly for the maximum case),
implying that the value iteration algorithm has a linear rate of convergence.

Remark 16. One may use this convergence rate to delay the computation of one
of the two adjacent sequences of Algorithm 1. Indeed assume that only x(n) is
computed until step n. To use the stopping criterion provided by the adjacent

sequences, one sets the upper sequence with y
(n)
s = min(x

(n)
s + (1 − ηI)�

n
I
, 1)

for all s /∈ {s−, s+}, y
(n)
s+ = 1, and y

(n)
s− = 0 and then applies the algorithm. In

the favorable cases, this could divide by almost 2 the computation time.

3.4 Stopping Criterion for Exact Computation

In [3], a convergence guarantee was given for MDPs with rational transition
probabilities. For such an MDP M, let d be the largest denominator of transition
probabilities (expressed as irreducible fractions), N the number |S| of states, and
M the number of transitions with non-zero probabilities. A bound γ = d4M was
announced so that, after γ2 iterations, the obtained probabilities lie in intervals
that could only contain one possible probability value for the system, permitting
to claim for the convergence of the algorithm. So after γ2 iterations, the actual
probability might me computed by considering the rational of the form α/γ
closest to the current estimate. However, no proof of this result is given in [3].

Using our simultaneous computation of under- and over-approximations of
the probabilities, we provide an alternative stopping criterion for exact compu-
tation that moreover exhibits an optimal policy. Its proof is based on the fact
that optimal probabilities are rational for which we can control the size of the
denominator, and strongly relies on the existence of stationary optimal policies.

Reachability in MDPs: Refining Convergence of Value Iteration 137

Theorem 17. Let M be a reduced MDP with rational transition probabilities.
Optimal reachability probabilities and optimal policies can be computed by the
interval iteration algorithm in at most O((1/η)NN3 log d).

The theorem also holds for the value iteration algorithm. Observe that our
stopping criterion is significantly better than the bound d8M claimed in [3] since
N � M and 1/η � d. Furthermore M may be in Ω(N2) even with a single
action per state and 1/η may be significantly smaller than d as for instance in
the extreme case η = 1

2 − 1
10n and d = 10n for some large n.

4 Conclusion

We have provided a framework allowing to guarantee good properties when
value iteration algorithm is used to compute optimal reachability probabilities
of Markov decision processes. Our study pointed out some difficulties related to
non-trivial end components in MDPs, that was not clearly described previously.
Moreover, we gave results over the convergence speed, as well as criteria for
obtaining exact convergence. As future works, it seems particularly interesting to
test this algorithm on real instances, as it is done in [2], where authors moreover
apply machine learning techniques.

Acknowledgments. We thank the reviewer that pointed out the similarities
between our approach and [2] (to be presented at the next ATVA, in Nov. 2014).

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
2. Brázdil, T., Chatterjee, K., Chmeĺık, M., Forejt, V., Křet́ınský, J., Kwiatkowska,

M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. Research Report arXiv:1402.2967 (2014)

3. Chatterjee, K., Henzinger, T.A.: Value iteration. In: Grumberg, O., Veith, H. (eds.)
25 Years of Model Checking. LNCS, vol. 5000, pp. 107–138. Springer, Heidelberg
(2008)

4. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

5. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

6. Haddad, S., Monmege, B.: Reachability in MDPs: Refining convergence of
value iteration. Technical Report LSV-14-07, LSV, ENS Cachan (2014), http://
www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/PDF/rr-lsv-2014-07.pdf

7. Katoen, J.-P., Zapreev, I.S.: Safe on-the-fly steady-state detection for time-bounded
reachability. In: QEST 2006, pp. 301–310 (2006)

8. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design 36(3), 246–280 (2010)

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2014-07.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/rr-lsv-2014-07.pdf

On the Expressiveness of Metric Temporal Logic
over Bounded Timed Words�

Hsi-Ming Ho

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

Abstract. It is known that Metric Temporal Logic (MTL) is strictly
less expressive than the Monadic First-Order Logic of Order and Met-
ric (FO[<,+1]) in the pointwise semantics over bounded time domains
(i.e., timed words of bounded duration) [15]. In this paper, we present
an extension of MTL which has the same expressive power as FO[<,+1]
in both the pointwise and continuous semantics over bounded time do-
mains.

1 Introduction

One of the most prominent specification formalisms used in verification is Lin-
ear Temporal Logic (LTL), which is typically interpreted over the non-negative
integers or reals. A celebrated result of Kamp [9] states that, in either case, LTL
has precisely the same expressive power as the Monadic First-Order Logic of Or-
der (FO[<]). These logics, however, are inadequate to express specifications for
systems whose correct behaviour depends on quantitative timing requirements.
Over the last three decades, much work has therefore gone into lifting classi-
cal verification formalisms and results to the real-time setting. Metric Temporal
Logic (MTL), which extends LTL by constraining the temporal operators by time
intervals, was introduced by Koymans [10] in 1990 and has emerged as a central
real-time specification formalism.

MTL enjoys two main semantics, depending intuitively on whether atomic
formulas are interpreted as state predicates or as (instantaneous) events. In the
former, the system is assumed to be under observation at every instant in time,
leading to a ‘continuous’ semantics based on flows or signals, whereas in the
latter, observations of the system are taken to be (finite or infinite) sequences of
timestamped snapshots, leading to a ‘pointwise’ semantics based on timed words.
Timed words are the leading interpretation, for example, for systems modelled
as timed automata [1]. In both cases, the time domain is usually taken to be the
non-negative real numbers. Both semantics have been extensively studied; see,
e.g., [12] for a historical account.

Alongside these developments, researchers proposed the Monadic First-Order
Logic of Order and Metric (FO[<,+1]) as a natural quantitative extension of
� More extensive technical details as well as all proofs can be found in the full version

of this paper [5].

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 138–150, 2014.
c© Springer International Publishing Switzerland 2014

Expressiveness of Metric Temporal Logic over Bounded Timed Words 139

FO[<]. Unfortunately, Hirshfeld and Rabinovich [4] showed that no ‘finitary’
extension of MTL—and a fortiori MTL itself—could have the same expressive
power as FO[<,+1] over the reals.1 Still, in the continuous semantics, MTL can
be made expressively complete for FO[<,+1] by extending the logic with an
infinite family of ‘counting modalities ’ [7] or considering only bounded time do-
mains [11,13]. Nonetheless, and rather surprisingly, MTL with counting modali-
ties remains strictly less expressive than FO[<,+1] over bounded time domains
in the pointwise semantics, i.e., over timed words of bounded duration, as we
will see in Section 3.

The main result of this paper is to show that MTL, equipped with both the
forwards and backwards temporal modalities ‘generalised Until’ (U) and ‘gen-
eralised Since’ (S), has precisely the same expressive power as FO[<,+1] over
bounded time domains in the pointwise semantics (and also, trivially, in the
continuous semantics). This extended version of Metric Temporal Logic, written
MTL[U,S], therefore yields a definitive real-time analogue of Kamp’s theorem
over bounded domains.

It is worth noting that MTL[U,S] satisfiability and model checking (against
timed automata) are decidable over bounded time domains, thanks to the decid-
ability of FO[<,+1] over such domains as established in [11,13]. Unfortunately,
FO[<,+1] has non-elementary complexity, whereas the time-bounded satisfia-
bility and model-checking problems for MTL are EXPSPACE-complete [11, 13].
However, it can easily be seen by inspecting the relevant constructions that the
complexity bounds for MTL carry over to our new logic MTL[U,S].

2 Preliminaries

2.1 Timed Words

A time sequence τ = τ1τ2 . . . τn is a non-empty finite sequence over non-negative
reals (called timestamps) that satisfies the requirements below (we denote the
length of τ by |τ |):

– Initialisation2: τ1 = 0
– Strict monotonicity: For all i, 1 ≤ i < |τ |, we have τi < τi+1.

A timed word over finite alphabet Σ is a pair ρ = (σ, τ), where σ =
σ1σ2 . . . σn is a non-empty finite word over Σ and τ is a time sequence of the
same length. We refer to each (σi, τi) as an event. In this sense, a timed word

1 Hirshfeld and Rabinovich’s result was only stated and proved for the continuous se-
mantics, but we believe that their approach would also carry through for the point-
wise semantics. In any case, using different techniques Prabhakar and D’Souza [15]
and Pandya and Shah [14] independently showed that MTL is strictly weaker than
FO[<,+1] in the pointwise semantics.

2 This requirement is natural in the present context as all the logics we consider in this
paper are translation invariant: two timed words are indistinguishable by formulas
(of these logics) if they only differ by a fixed delay.

140 H.-M. Ho

can be regarded as a sequence of events. We denote by |ρ| the number of events
in ρ. A position in ρ is a number i such that 1 ≤ i ≤ |ρ|. The duration of ρ is
defined as τ|ρ|. A T-timed word is a timed word all of whose timestamps are in
T, where T is either [0, N), for some N ∈ N, or R≥0.

Note that we are focussing on finite timed words. Our results carry over to
the case of (Zeno) infinite timed words as well, with some modifications.

2.2 Metric Logics

We first define a metric predicate logic FO[<,+1] and its pointwise interpreta-
tion. This logic will serve as a ‘yardstick’ of expressiveness. In the sequel, we
write ΣP = 2P for a set of monadic predicates P.

Definition 1. Given a set of monadic predicates P, the set of FO[<,+1] for-
mulas is generated by the grammar

ϑ ::= P (x) | x < x′ | d(x, x′) ∼ c | true | ϑ1 ∧ ϑ2 | ¬ϑ | ∃xϑ ,

where P ∈ P, x, x′ are variables, ∼ ∈ {=, �=, <,>,≤,≥} and c ∈ N.3

With each T-timed word ρ = (σ, τ) over ΣP we associate a structure Mρ. Its
universe Uρ is the finite subset {τi | 1 ≤ i ≤ |ρ|} of T. The order relation <
and monadic predicates in P are interpreted in the expected way. For example,
P (τi) holds in Mρ iff P ∈ σi. The binary distance predicate d(x, x′) ∼ c holds iff
|x − x′| ∼ c. The satisfaction relation is defined inductively as usual. We write
Mρ, t1, . . . , tn |= ϑ(x1, . . . , xn) (or ρ, t1, . . . , tn |= ϑ(x1, . . . , xn)) if t1, . . . , tn ∈ Uρ

and ϑ(t1, . . . , tn) holds in Mρ. We say that FO[<,+1] formulas ϑ1(x) and ϑ2(x)
are equivalent over T-timed words if for all T-timed words ρ and t ∈ Uρ,

ρ, t |= ϑ1(x) ⇐⇒ ρ, t |= ϑ2(x) .

Formulas of metric temporal logics are built from monadic predicates us-
ing Boolean connectives and modalities. A k-ary modality is defined by an
FO[<,+1] formula ϕ(x,X1, . . . , Xk) with a single free first-order variable x and
k free monadic predicates X1, . . . , Xk. For example, the MTL modality U(0,5) is
defined by

U(0,5)(x,X1, X2) = ∃x′
(
x < x′ ∧ d(x, x′) < 5 ∧X2(x

′)

∧ ∀x′′ (x < x′′ ∧ x′′ < x′ =⇒ X1(x
′′)
))

.

The MTL formula ϕ1 U(0,5) ϕ2 (using infix notation) is obtained by substituting
MTL formulas ϕ1, ϕ2 for X1, X2, respectively.

3 Note that whilst we still refer to the logic as FO[<,+1], we adopt here an equivalent
definition using a binary distance predicate d(x, x′) (as in [16]) in place of the usual
+1 function symbol.

Expressiveness of Metric Temporal Logic over Bounded Timed Words 141

Definition 2. Given a set of monadic predicates P, the set of MTL formulas
is generated by the grammar

ϕ ::= P | true | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 ,

where P ∈ P and I ⊆ (0,∞) is an interval with endpoints in N ∪ {∞}.

The (future-only) fragment MTLfut is obtained by banning subformulas of the
form ϕ1 SI ϕ2. If I is not present as a subscript to a given modality then it
is assumed to be (0,∞). We sometimes use pseudo-arithmetic expressions to
denote intervals, e.g., ‘≥ 1’ denotes [1,∞) and ‘= 1’ denotes the singleton {1}.
We also employ the usual syntactic sugar, e.g., false ≡ ¬true, FIϕ ≡ true UI ϕ,
←
F Iϕ ≡ true SI ϕ, GIϕ ≡ ¬FI¬ϕ and XIϕ ≡ false UI ϕ, etc. For the sake
of completeness, we give a traditional inductive definition of the satisfaction
relation of MTL below.

Definition 3. The satisfaction relation (ρ, i) |= ϕ for an MTL formula ϕ, a
timed word ρ = (σ, τ) and a position i in ρ is defined as follows:

– (ρ, i) |= P iff P (τi) holds in Mρ

– (ρ, i) |= true
– (ρ, i) |= ϕ1 ∧ ϕ2 iff (ρ, i) |= ϕ1 and (ρ, i) |= ϕ2

– (ρ, i) |= ¬ϕ iff (ρ, i) �|= ϕ
– (ρ, i) |= ϕ1UIϕ2 iff there exists j, i < j ≤ |ρ| such that (ρ, j) |= ϕ2, τj−τi ∈ I,

and (ρ, k) |= ϕ1 for all k with i < k < j
– (ρ, i) |= ϕ1 SI ϕ2 iff there exists j, 1 ≤ j < i such that (ρ, j) |= ϕ2, τi−τj ∈ I

and (ρ, k) |= ϕ1 for all k with j < k < i.

Note that we adopt strict versions of temporal modalities, e.g., ϕ2 holds at i
does not imply that ϕ1 U ϕ2 holds at i. We write ρ |= ϕ if (ρ, 1) |= ϕ.

2.3 Relative Expressiveness

Let L,L′ be two metric logics. We say that L′ is expressively complete for L
over T-timed words if for any formula ϑ(x) ∈ L, there is an equivalent formula
ϕ(x) ∈ L′ over T-timed words.

3 Expressiveness

In this section, we present a sequence of successively more expressive extensions
of MTLfut over bounded timed words. Along the way we highlight the key fea-
tures that give rise to the differences in expressiveness. The necessity of a ‘new’
extension (such as the one in the next section) is justified by the fact that no
known extension can lead to expressive completeness.

142 H.-M. Ho

3.1 Definability of Time 0

Recall that MTLfut and FO[<,+1] have the same expressiveness over continuous
domains of the form [0, N) [11,13], a result that fails over [0, N)-timed words. To
account for this difference between the two semantics, observe that a distinctive
feature of the continuous interpretation of MTLfut is exploited in [11,13]: in any
[0, N)-flow, the formula F=(N−1)true holds in [0, 1) and nowhere else. One can
make use of conjunctions of similar formulas to determine which unit interval
the current instant is in. Unfortunately, this trick does not work for MTLfut
in the pointwise semantics. However, it can be achieved in MTL by using past
modalities. Let

ϕi,i+1 =
←
F [i,i+1)(¬

←
Ftrue)

and Φunit = {ϕi,i+1 | i ∈ N}. It is clear that ϕi,i+1 holds only in [i, i + 1) and
nowhere else. Denote by MTLfut[Φunit] the extension of MTLfut obtained by al-
lowing these formulas as subformulas. This very restrictive use of past modalities
strictly increases the expressiveness of MTLfut. Indeed, our main result depends
crucially on the use of these formulas.

Proposition 1. MTLfut[Φunit] is strictly more expressive than MTLfut over
[0, N)-timed words.

3.2 Past Modalities

The following proposition says that the conservative extension in the last sub-
section is not sufficient for obtaining expressive completeness: non-trivial nesting
of future modalities and past modalities provides more expressiveness.

Proposition 2. MTL is strictly more expressive than MTLfut[Φunit] over [0, N)-
timed words.

3.3 Counting Modalities

The modalityCn(x,X) asserts thatX holds at least atn points in the open interval
(x, x + 1). The modalities Cn for n ≥ 2 are called counting modalities. It is well-
known that these modalities are inexpressible in MTL over R≥0-flows [3]. For this
reason, they (or variants thereof) are often used to separate the expressiveness of
various metric logics (cf., e.g., [2, 14, 15]). For example, the FO[<,+1] formula

ϑpqr(x) = ∃y
(
x < y ∧ P (y) ∧ ∃y′

(
y < y′ ∧ d(y, y′) > 1 ∧ d(y, y′) < 2 ∧Q(y′)

∧ ∃y′′
(
y′ < y′′ ∧ d(y, y′′) > 1 ∧ d(y, y′′) < 2 ∧R(y′′)

)))
has no equivalent in MTL over R≥0-timed words [14]. Indeed, it was shown re-
cently that in the continuous semantics, MTL with counting modalities and their
past versions (which we denote by MTL[{Cn,

←
Cn}∞n=2]) is expressively complete

Expressiveness of Metric Temporal Logic over Bounded Timed Words 143

for FO[<,+1] [7]. However, counting modalities add no expressiveness to MTL
in the time-bounded setting. To see this, observe that the following formula is
equivalent to ϑpqr over [0, N)-timed words (we make use of formulas in Φunit

defined in Section 3.1)

F

(∨
i∈[0,N−1]

(
P ∧ ϕi,i+1 ∧

(
F>1

(
Q ∧ F(R ∧ ϕi+1,i+2)

)
∨ F<2

(
R ∧ ϕi+2,i+3 ∧

←
F (Q ∧ ϕi+2,i+3)

)
∨
(
F>1(Q ∧ ϕi+1,i+2) ∧ F<2(R ∧ ϕi+2,i+3)

))))
.

The same idea can be generalised to handle counting modalities and their past
counterparts.

Proposition 3. MTL is expressively complete for MTL[{Cn,
←
Cn}∞n=2] over

[0, N)-timed words.

3.4 Non-Local Properties: One Reference Point

Proposition 3 shows that part of the expressiveness hierarchy over R≥0-timed
words collapses in the time-bounded setting. Nonetheless, MTL is still not ex-
pressive enough to capture all of FO[<,+1]. Recall that another feature of the
continuous interpretation of MTLfut used in the proof in [11, 13] is that F=kϕ
holds at t iff ϕ holds at t + k. Suppose that we want to specify the following
property over P = {P,Q} at the current time t1 for some integer constant a > 0:

– There is an event at time t2 > t1 + a where Q holds
– P holds at all events in (t1 + a, t2).

In the continuous semantics, by introducing a special monadic predicate Pε that
holds at all ‘no-event’ points in the flow, the property can easily be expressed as

ϕcont1 = F=a

(
(P ∨ Pε) U Q

)
.

See Figure 1 for an illustration. Filled boxes denote events at which ¬P ∧ Q
holds whereas hollow boxes denote events at which P ∧ ¬Q holds. The formula
ϕcont1 holds at t1 in the continuous semantics.

t1 t′ t1 + c t′ + c t1 + a t′ + a

d1 d2

Fig. 1. ϕcont1 holds at t1 in the continuous semantics

144 H.-M. Ho

In essence, when the current time is t1, the continuous interpretation of MTL
allows one to speak of properties ‘around’ t1+a regardless of whether there is an
event at t1+a. The same is not readily possible with the pointwise interpretation
of MTL if there is no event at t1 + a. To handle this issue within the pointwise
semantic framework, we introduce a relatively simple family of modalities B→

I

(‘Beginning’) and their past versions B←
I . They can be used to specify the first

events in given intervals. For example, the following modality asserts that X
holds at the first event in (a, b):

B→
(a,b)(x,X) = ∃x′

(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X(x′)

∧ �x′′ (x < x′′ ∧ x′′ < x′ ∧ d(x, x′′) > a
))

.

Now the property above can be defined as B→
(a,∞)

(
Q∨ (P UQ)

)
. We refer to the

extension of MTL with B→
I ,B←

I as MTL[B�].
The following proposition states that this extension is indeed non-trivial.

Proposition 4. MTL[B�] is strictly more expressive than MTL over [0, N)-
timed words.

3.5 Non-local Properties: Two Reference Points

Adding modalities B→
I ,B←

I to MTL allows one to specify properties with respect
to a distant time point even when there is no event at that point. However, the
following proposition shows that this is still not enough for expressive complete-
ness.

Proposition 5. FO[<,+1] is strictly more expressive than MTL[B�] over
[0, N)-timed words.

Proof. This is similar to a proof in [15, Section 7]. Given m ∈ N, we construct
two models as follows. Let

Gm = (∅, 0)(∅, 0.5

2m+ 3
)(∅, 1.5

2m+ 3
) . . . (∅, 1− 0.5

2m+ 3
)

(∅, 1 + 0.5

2m+ 2
)(∅, 1 + 1.5

2m+ 2
) (∅, 2− 0.5

2m+ 2
) .

Hm is constructed as Gm except that the event at time m+1.5
2m+3 is missing.

Figure 2 illustrates the models for the case m = 2 where hollow boxes represent
events at which no monadic predicate holds. It can be proved that no MTL[B�]
formula of modal depth ≤ m distinguishes Gm and Hm while the FO[<,+1]
formula

∃x
(
�y (y < x) ∧ ∃x′

(
d(x, x′) > 1 ∧ d(x, x′) < 2

∧ ∃x′′
(
x′ < x′′ ∧ �y′ (x′ < y′ ∧ y′ < x′′)

∧ �y′′
(
d(x′, y′′) < 1 ∧ d(x′′, y′′) > 1

))))

Expressiveness of Metric Temporal Logic over Bounded Timed Words 145

Gm

Hm

0 1 2

Fig. 2. Models Gm and Hm for m = 2

distinguishes Gm and Hm for any m ∈ N. ��

One way to understand this phenomenon is to consider the arity of MTL
operators. Let the current time be t1. Suppose that we want to specify the
following property (a > c > 0):

– There is an event at t2 > t1 + a where Q holds
– P holds at all events in

(
t1 + c, t1 + c + (t2 − t1 − a)

)
.

In the continuous semantics one can simply write

ϕcont2 =
(
F=c(P ∨ Pε)

)
U (F=aQ) .

Observe how this formula (effectively) talks about properties around two points:
t1 + c and t1 + a. In the same vein, the following formula distinguishes Gm and
Hm in the continuous semantics:

ϕcont3 = F(1,2)

(
¬Pε ∧ (

←
F=1Pε) U (¬Pε)

)
.

In the next section, we propose new modalities that add this ability to MTL in
the pointwise semantics. We show later that this ability is exactly the missing
piece of expressiveness.

4 New Modalities

4.1 Generalised ‘Until’ and ‘Since’

We introduce a family of modalities which can be understood as generalisations
of the usual ‘Until’ and ‘Since’ modalities. Let I ⊆ (0,∞) be an interval with
endpoints in N ∪ {∞} and c ∈ N. The formula ϕ1 U

c
I ϕ2 (using infix notation),

when imposed at t1, asserts that

– There is an event at t2 where ϕ2 holds and t2 − t1 ∈ I

– ϕ1 holds at all events in
(
c, c+

(
t2 −

(
t1 + inf(I)

)))
.

146 H.-M. Ho

Formally, for I = (a, b) and a ≥ c ≥ 0, we define the generalised ‘Until’ modality
Uc
(a,b) by the following FO[<,+1] formula:

Uc
(a,b)(x,X1, X2) = ∃x′

(
x < x′ ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x

′)

∧ ∀x′′ (x < x′′ ∧ d(x, x′′) > c ∧ x′′ < x′

∧ d(x′, x′′) > (a − c) =⇒ X1(x
′′)
))

.

Symmetrically, we define the generalised ‘Since’ modality Sc
(a,b) for I = (a, b)

and a ≥ c ≥ 0:

Sc
(a,b)(x,X1, X2) = ∃x′

(
x′ < x ∧ d(x, x′) > a ∧ d(x, x′) < b ∧X2(x

′)

∧ ∀x′′ (x′′ < x ∧ d(x, x′′) > c ∧ x′ < x′′

∧ d(x′, x′′) > (a− c) =⇒ X1(x
′′)
))

.

The modalities for I being a half-open interval or a closed interval can be defined
similarly. We will refer to the logic obtained by adding these modalities to MTL
as MTL[U,S]. Note that the usual ‘Until’ and ‘Since’ modalities can be written
in terms of generalised modalities. For instance,

ϕ1 U(a,b) ϕ2 = ϕ1 U
a
(a,b) ϕ2 ∧ ¬

(
true U0

(0,a] (¬ϕ1)
)
.

4.2 More Liberal Bounds

In the definition of modalities Uc
I and Sc

I in the last subsection, we stressed that
I ⊆ (0,∞) and inf(I) ≥ c ≥ 0. This is because more liberal usage of bounds are
indeed merely syntactic sugar. For instance, one may define

U10
(2,5)(x,X1, X2) = ∃x′

(
x < x′ ∧ d(x, x′) > 2 ∧ d(x, x′) < 5 ∧X2(x

′)

∧ ∀x′′ (x < x′′ ∧ d(x, x′′) > 10

∧ d(x′, x′′) < 8 =⇒ X1(x
′′)
))

,

but this is indeed equivalent to

F(2,5)ϕ2 ∧ ¬
(
(¬ϕ2) U

2
(10,13)

(
¬ϕ1 ∧ ¬(

←
F=8ϕ2)

))
over [0, N)-timed words. In fact, we can even use c ∈ Z and I ⊆ (−∞,∞) for
free. For example, over [0, N)-timed words, ϕ1 U

−7
(5,10) ϕ2 is equivalent to

F(5,10)

(
ϕ2∧(ϕ1S

12
(5,10)true)

)
∧
(
(falseU0

(5,10)ϕ2)∨
(
ϕ′U

(
(falseU0

(5,10)ϕ2)∧ϕ′)))
where ϕ′ = ϕ1 S7

(0,5)

(
true ∧ ¬(

←
F=7¬ϕ1)

)
. Other cases can be handled with

similar ideas.

Expressiveness of Metric Temporal Logic over Bounded Timed Words 147

We can now give an MTL[U,S] formula that distinguishes, in the pointwise
semantics, the models Gm and Hm in Section 3.5:

F(1,2)

(
true ∧ (false U−1

(0,∞) true)
)
.

Compare this with the formula ϕcont3 defined in Section 3.5, which distinguishes
Gm and Hm in the continuous semantics.

5 The Translation

We give a translation from an arbitrary FO[<,+1] formula with one free vari-
able into an equivalent MTL[U,S] formula (over [0, N)-timed words). Our proof
strategy is similar to that in [11]: we eliminate the metric by introducing ex-
tra predicates, convert to LTL, and then replace the new predicates by their
equivalent MTL[U,S] formulas.

5.1 Eliminating the Metric

We introduce fresh monadic predicates P = {Pi | P ∈ P, 0 ≤ i ≤ N − 1}
as in [11] and, additionally, Q = {Qi | 0 ≤ i ≤ N − 1}. Intuitively, Pi(x)
holds (for x ∈ [0, 1)) iff P ∈ P holds at time i + x in the corresponding [0, N)-
timed word, and Qi(x) holds iff there is an event at time i + x in the cor-
responding [0, N)-timed word, regardless of whether any P ∈ P holds there.
Let ϕevent = ∀x

(∨
i∈[0,N−1] Qi(x)

)
∧ ∀x

(∧
i∈[0,N−1]

(
Pi(x) =⇒ Qi(x)

))
and

ϕinit = ∃x
(
�x′ (x′ < x) ∧Q0(x)

)
. There is an obvious ‘stacking’ bijection (indi-

cated by overlining) between [0, N)-timed words over ΣP and [0, 1)-timed words
over ΣP∪Q satisfying ϕevent ∧ ϕinit.

Let ϑ(x) be an FO[<,+1] formula with one free variable and in which each
quantifier uses a fresh new variable. Without loss of generality, we assume that
ϑ(x) contains only existential quantifiers (this can be achieved by syntactic
rewriting). Replace the formula by(
Q0(x) ∧ ϑ[x/x]

)
∨
(
Q1(x) ∧ ϑ[x+ 1/x]

)
∨ . . . ∨

(
QN−1(x) ∧ ϑ[x+ (N − 1)/x]

)
where ϑ[e/x] denotes the formula obtained by substituting all free occurrences of
x in ϑ by (an expression) e. Then, similarly, recursively replace every subformula
∃x′ θ by

∃x′
((

Q0(x
′) ∧ θ[x′/x′]

)
∨ . . . ∨

(
QN−1(x

′) ∧ θ[x′ + (N − 1)/x′]
))

.

Note that we do not actually have the +1 function in our structures; it only
serves as annotation here and will be removed later, e.g., x′ + k means that
Qk(x

′) holds. We then carry out the following syntactic substitutions:

– For each inequality of the form x1 + k1 < x2 + k2, replace it with
• x1 < x2 if k1 = k2

148 H.-M. Ho

• true if k1 < k2
• ¬true if k1 > k2

– For each distance formula, e.g., d(x1 + k1, x2 + k2) ≤ 2, replace it with
• true if |k1 − k2| ≤ 1
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x2 < x1) if k2 − k1 = 2
• (¬(x1 < x2) ∧ ¬(x2 < x1)) ∨ (x1 < x2) if k1 − k2 = 2
• ¬true if |k1 − k2| > 2

– Replace terms of the form P (x1 + k) with Pk(x1).

This gives a non-metric first-order formula ϑ(x) over P∪Q. Denote by frac(t)
the fractional part of a non-negative real t. It is not hard to see that for each
[0, N)-timed word ρ = (σ, τ) over ΣP and its stacked counterpart ρ, the following
holds:

– ρ, t |= ϑ(x) implies ρ, t |= ϑ(x) where t = frac(t)
– ρ, t |= ϑ(x) implies there exists t ∈ Uρ with frac(t) = t s.t. ρ, t |= ϑ(x).

Moreover, if ρ, t |= ϑ(x), then the integral part of t indicates which clause in
ϑ(x) is satisfied when x is substituted with t = frac(t), and vice versa.

By Kamp’s theorem [9], ϑ(x) is equivalent to an LTL[U, S] formula ϕ of the
following form:

(Q0 ∧ ϕ0) ∨ (Q1 ∧ ϕ1) ∨ . . . ∨ (QN−1 ∧ ϕN−1) .

5.2 From Non-Metric to Metric

We now construct an MTL[U,S] formula that is equivalent to ϑ(x) over [0, N)-
timed words. Note that we make heavy use of the formulas in Φunit defined in
Section 3.1.

Proposition 6. Let ψ be a subformula of ϕi for some i ∈ [0, N − 1]. There
is an MTL[U,S] formula ψ such that for any [0, N)-timed word ρ, t ∈ ρ and
frac(t) = t ∈ ρ, we have

ρ, t |= ψ ⇐⇒ ρ, t |= ψ .

Proof. The MTL[U,S] formula ψ is constructed inductively as follows:

– Base step. Consider the following cases:
• ψ = Pj : Let

ψ = (ϕ0,1 ∧ F=jP)∨ . . .∨ (ϕj,j+1 ∧P)∨ . . .∨ (ϕN−1,N ∧
←
F=((N−1)−j)P) .

• ψ = Qj : Similarly we let

ψ = (ϕ0,1∧F=jtrue)∨. . .∨(ϕj,j+1∧true)∨. . .∨(ϕN−1,N ∧
←
F=((N−1)−j)true) .

Expressiveness of Metric Temporal Logic over Bounded Timed Words 149

– Induction step. The case for boolean operations is trivial and hence omitted.
• ψ = ψ1 U ψ2: By IH we have ψ1 and ψ2. Let

ψj,k,l = ψ1 U
k
(j,j+1) (ψ2 ∧ ϕl,l+1) .

The desired formula is

ψ =
∨

i∈[0,N−1]

⎛⎜⎜⎝ϕi,i+1 ∧
∨

j∈[−i,...,(N−1)−i]
l=i+j

⎛⎝ ∧
k∈[−i,...,(N−1)−i]

ψj,k,l

⎞⎠
⎞⎟⎟⎠ .

• ψ = ψ1 S ψ2: This is symmetric to the case for ψ1 U ψ2.

The claim holds by a straightforward induction on the structure of ψ and ψ.
��

Construct corresponding formulas ϕi for each ϕi using the proposition above.
Substitute them into ϕ and replace all Qi by ϕi,i+1 to obtain our final formula
ϕ. We claim that it is equivalent to ϑ(x) over [0, N)-timed words.

Proposition 7. For any [0, N)-timed words ρ and t ∈ Uρ, we have

ρ, t |= ϕ(x) ⇐⇒ ρ, t |= ϑ(x) .

Proof. Follows directly from Section 5.1 and Proposition 6. ��

We are now ready to state our main result.

Theorem 1. MTL[U,S] is expressively complete for FO[<,+1] over
[0, N)-timed words.

6 Conclusion

Our main result is that over bounded timed words, MTL extended with our new
modalities ‘generalised until’ and ‘generalised since’ is expressively complete for
FO[<,+1]. Along the way we obtain a strict hierarchy of metric temporal logics,
based on their expressiveness over bounded timed words:

MTLfut � MTLfut[Φunit] � MTL � MTL[B�] � MTL[U,S] = FO[<,+1].

We are currently working on adapting the result to the case of R≥0-timed words.
This might require a separation theorem (in the style of [8]) that works in the
pointwise semantics [6].

150 H.-M. Ho

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In:
Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer,
Heidelberg (2005)

3. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967,
pp. 211–220. Springer, Heidelberg (2006)

4. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. Logical Methods in Computer Science 3(1) (2007)

5. Ho, H.M., Ouaknine, J., Worrell, J.: On the expressiveness of metric temporal logic
over bounded timed words (2014),
http://www.cs.ox.ac.uk/people/hsi-ming.ho/exp-full.pdf, full version

6. Ho, H.M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic.
In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192.
Springer, Heidelberg (2014),
http://www.cs.ox.ac.uk/people/hsi-ming.ho/monitoring-rv.pdf

7. Hunter, P.: When is metric temporal logic expressively complete? In: Proceedings
of CSL 2013. LIPIcs, vol. 23, pp. 380–394. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2013)

8. Hunter, P., Ouaknine, J., Worrell, J.: Expressive completeness of metric temporal
logic. In: Proceedings of LICS 2013, pp. 349–357. IEEE Computer Society Press
(2013)

9. Kamp, J.: Tense logic and the theory of linear order. Ph.D. thesis, University of
California, Los Angeles (1968)

10. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

11. Ouaknine, J., Rabinovich, A., Worrell, J.: Time-bounded verification. In: Bravetti,
M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 496–510. Springer,
Heidelberg (2009)

12. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008)

13. Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 22–37. Springer, Heidelberg (2010)

14. Pandya, P.K., Shah, S.S.: On expressive powers of timed logics: Comparing bound-
edness, non-punctuality, and deterministic freezing. In: Katoen, J.-P., König, B.
(eds.) CONCUR 2011. LNCS, vol. 6901, pp. 60–75. Springer, Heidelberg (2011)

15. Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators.
In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336.
Springer, Heidelberg (2006)

16. Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed
automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994
and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)

http://www.cs.ox.ac.uk/people/hsi-ming.ho/exp-full.pdf
http://www.cs.ox.ac.uk/people/hsi-ming.ho/monitoring-rv.pdf

Trace Inclusion for One-Counter Nets Revisited

Piotr Hofman1 and Patrick Totzke2

1 University of Bayreuth, Germany
2 LaBRI, Univ. Bordeaux & CNRS, France

Abstract. One-counter nets (OCN) consist of a nondeterministic finite
control and a single integer counter that cannot be fully tested for zero.
They form a natural subclass of both One-Counter Automata, which
allow zero-tests and Petri Nets/VASS, which allow multiple such weak
counters. The trace inclusion problem has recently been shown to be
undecidable for OCN. In this paper, we contrast the complexity of two
natural restrictions which imply decidability.

We show that trace inclusion between a OCN and a deterministic
OCN is NL-complete, even with arbitrary binary-encoded initial counter-
values as part of the input. Secondly, we show that the the trace
universality problem of nondeterministic OCN, which is equivalent to
checking trace inclusion between a finite and a OCN-process, is
Ackermann-complete.

1 Introduction

A fundamental question in formal verification is if the behaviour of one process
can be reproduced by – or equals that of – another given process. These inclu-
sion and equivalence problems, respectively have been studied for various notions
of behavioural preorders and equivalences and for many computational models.
Trace inclusion/equivalence asks if the set of traces, all emittable sequences of
actions, of one process is contained in/equal to that of another. Other than for
instance Simulation preorder, trace inclusion lacks a strong locality of failures,
which makes this problem intractable or even undecidable already for very lim-
ited models of computation.

We consider one-counter nets, which consist of a finite control and a single
integer counter that cannot be fully tested for zero, in the sense that an empty
counter can only restrict possible moves. They are subsumed by One-counter
automata (OCA) and thus Pushdown Systems, which allow explicit zero-tests
by reading a bottom marker on the stack. At the same time, OCN are a subclass
of Petri Nets or Vector Addition Systems with states (VASS): they are exactly
the one-dimensional VASS and thus equivalent to Petri Nets with at most one
unbounded place.

Related work. Valiant and Paterson [17] show the decidability of the trace
equivalence problem for deterministic one-counter automata (DOCA). This prob-
lem has recently been shown to be NL-complete by Böhm, Göller, and Jančar

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 151–162, 2014.
c© Springer International Publishing Switzerland 2014

152 P. Hofman and P. Totzke

[2], assuming fixed initial counter-values. The equivalence of deterministic push-
down automata is known to be decidable [13] and primitive recursive [14, 9], but
the exact complexity is still open.

Valiant [16] proves the undecidability of both trace inclusion for DOCA and
universality for nondeterministic OCA. Jančar, Esparza, and Moller [11] consider
trace inclusion between Petri Nets and finite systems and prove decidability in
both directions. Jančar [10] showed that trace inclusion becomes undecidable if
one compares processes of Petri Nets with at least two unbounded places. In [7],
the authors show that trace inclusion is undecidable already for (nondetermin-
istic) one-counter nets. Simulation preorder however, is known to be decidable
and PSPACE-complete for this model [1, 12, 6], which implies a PSPACE upper
bound for trace inclusion on DOCN as trace inclusion and simulation coincide
for deterministic systems.

Higuchi, Wakatsuki, and Tomita [5] compare the classes of languages defined
by DOCN with various acceptance modes and consider the respective inclusion
problems. They derive procedures that exhaustively search for a bounded witness
that work in time and space polynomial in the size of the automata if the initial
counter-values are fixed. We show that for monotone relations like trace inclusion
or the inclusion of languages defined by acceptance with final states, it suffices
to search for witnesses in a particular compact representation.

Our contribution. We fix the complexity of two well-known decidable decision
problems regarding the traces of one-counter processes. We show that trace
inclusion between deterministic OCNs is NL-complete. Our upper bound holds
even if only the supposedly larger process is deterministic and if (binary encoded)
initial counter-values are part of the input. We use short certificates for the
existence of (possibly long) distinguishing traces. The sizes of certificates are
polynomial in the number of states of the finite control and they can be verified
in space logarithmic in the binary representation of the initial counter-values.

Our second result is that trace universality of nondeterministic OCN is
Ackermann-complete. This problem is (logspace) inter-reducible with checking
trace inclusion between a finite process and a process of a OCN.

2 Background

We write N for the set of non-negative integers. For any set A, let A∗ denote the
set of finite strings over A and ε ∈ A∗ the empty string.

Definition 1 (One-Counter Nets). A one-counter net (OCN) is given as
triple N = (Q,Act , δ) where Q is a finite set of control states, Act is a finite set
of action labels and δ ⊆ Q × Act × {−1, 0, 1} × Q is a set of transitions, each

written as p
a,d−→p′. A process of N consists of a state p ∈ Q and a counter-value

m ∈ N. We will simply write pm for such a pair. Processes can evolve according
to the transition rules of the net: For any a ∈ Act, p, q ∈ Q and m,n ∈ N there

is a step pm
a−→qn iff there exists (p

a,d−→q) ∈ δ such that

n = m+ d ≥ 0. (1)

Trace Inclusion for One-Counter Nets Revisited 153

The net N is deterministic (a DOCN) if for every p ∈ Q and a ∈ Act, there
is at most one transition (p, a, d, q) ∈ δ. It is complete if for every p ∈ Q and
a ∈ Act at least one transition (p, a, d, q) ∈ δ exists.

Definition 2 (Traces). Let pm be a process of the OCN N . The traces of pm
are the elements of the set

TN (pm) = {a1a2 . . . ak ∈ Act∗ | ∃qn pm
a0−→ ◦ a1−→ ◦ · · · ◦ ak−→qn}.

We will omit the index N if it is clear from the context. Trace inclusion is the
decision problem that asks if TA(pm) ⊆ TB(p

′m′) holds for given processes pm
and p′m′ of nets A and B, respectively. Trace universality asks if Act∗ ⊆ T (pm)
holds for a given process pm.

An important property of one-counter nets is that the step relation and there-
fore also trace inclusion is monotone with respect to the counter:

Lemma 1 (Monotonicity). If pm
a−→p′m′ then p(m+1)

a−→p′(m′ +1). This
in particular means that T (pm) ⊆ T (p(m+ 1)) holds for any OCN-process pm.

Remark 1. In this paper we consider what are called realtime automata, in which
no silent (ε-labelled) transitions are present. For deterministic OCN, this is no
restriction: the usual syntactic requirement for DPDA, that no state with out-
going ε-transition may have outgoing transitions labelled by a �= ε, together
with the monotonicity of steps in OCN, implies that all states on ε-cycles are
essentially deadlocks. One can thus eliminate ε-labelled transitions in logspace.

We will w.l.o.g. assume input nets in a certain form, justified by the next
lemma. A pair A,B of OCNs is in normal form if A is deterministic and B is
complete. The proof is a simple construction and can be found in [8].

Lemma 2 (Normal Form). Given OCNs A and B with state sets N and M ,
one can in logarithmic space construct nets A′,B′ in normal form, with states
N and M ′ ⊇ M , respectively, such that for all (p, n, q,m) ∈ N × N×M × N

TA(pm) ⊆ TB(qn) ⇐⇒ TA′(pm) ⊆ TB′(qn). (2)

Moreover, the constructed net B′ is deterministic if the original net B is.

Due to the undecidability of trace inclusion for OCN [7], a direct consequence
of Lemma 2 is that TA(pm) ⊆ TB(qn) is already undecidable if we allow the net
B to be nondeterministic. Unless otherwise stated, we will from now on assume
a DOCN A = (QA,Act , δA) and a complete DOCN B = (QB,Act , δB).

3 Trace Inclusion for Deterministic One-Counter Nets

We characterize witnesses for non-inclusion TA(pm) �⊆ TB(qn), starting with
some notation to express paths and their effects.

154 P. Hofman and P. Totzke

Definition 3 (OCN Paths). Let N = (Q,Act , δ) be a OCN and t = (p, a, d, p′)
∈ δ. We write source(t) = p, target(t) = p′ and Δ(t) = d for its source and
target states and effect, respectively. A path in N is a sequence π = t0t1 . . . tk ∈
δ∗ of transitions where target(ti) = source(ti+1) for every i < k. Let iπ denote
its prefix of length i. The effect Δ(π) and guard Γ(π) of π are

Δ(π) =

k∑
i=0

Δ(ti) and Γ(π) = −min{Δ(iπ) | 0 ≤ i ≤ k}.

The path π is enabled in process pm (write pm
π−→) if Γ(π) ≤ m. We write

pm
π−→p′m′ if π takes pm to p′m′, i.e., if pm

π−→, target(π) = p′ and m′ =
m+Δ(π).

The guard Γ(π) is the minimal counter-value that is sufficient to traverse the
path π while maintaining a non-negative counter-value along the way. This value
is always non-negative. Notice that the absolute values of the effect and guard
of a path are bounded by its length. We consider the synchronous product of
the control graphs of two given deterministic one-counter nets.

Definition 4 (Products). The product of nets A and B is the finite graph
with nodes V = QA × QB and (Act × {−1, 0, 1} × {−1, 0, 1})-labelled edges E,
where

(p, q)
a,dA,dB−−−−−→ (p′, q′) ∈ E iff p

a,dA−−−→ p′ ∈ δA and q
a,dB−−−→ q′ ∈ δB.

A path in the product is a sequence π = T0T1 · · ·Tk ∈ E∗ and defines paths πA
and πB in nets A and B, respectively. It is enabled in (pm, qn) if πA and πB are

enabled in pm and qn, respectively. In this case we write (pm, qn)
π−→(p′m′, q′n′)

to mean that pm
πA−→p′m′ and qn

πB−→q′n′. We lift the definitions of source and
target nodes to paths in the product: source(π) = (source(πA), source(πB)) ∈
V , target(π) = (target(πA), target(πB)) ∈ V . Moreover, write ΔA(π), ΔB(π),
ΓA(π) and ΓB(π) for the effects and guards of π in nets A and B, respectively.

Since both A and B are deterministic and B is complete, Due to our normal
form assumption, a trace w ∈ TA(pm) uniquely determines a path from state
(p, q) in their product. We therefore identify witnesses for non-inclusion with the
paths they induce in the product.

Definition 5 (Witnesses). Assume TA(pm) �⊆ TB(qn) for processes pm and
qn of A and B. A witness for (pm, qn) is a path π in the product of A and B
such that (pm, qn)

π−→(p′m′, q′n′) and for some a ∈ Act, p′m′ a−→ but q′n′ � a−→ .

Every witness π for (pm, qn) completely exhausts the counter in the process of

B: (pm, qn)
π−→(p′m′, q′0). This is because a process of a complete net can only

not make an a-step in case the counter is empty.

Example 1. Consider two nets given by self-loops p
a,0−→p and q

a,−1−→q, respec-

tively. Their product is the cycle L = (p, q)
a,0,−1−−−−→ (p, q) with effects ΔA(L) = 0

Trace Inclusion for One-Counter Nets Revisited 155

and ΔB(L) = −1. The only witness for (pm, qn) for initial counter-values m,n ∈
N is Ln, which has length polynomial in the sizes of the nets and the initial
counter-values, but not in the sizes of the nets alone.

The previous example shows that if binary-encoded initial counter-values are
part of the input, we can only bound the length of shortest witnesses exponen-
tially. However, we will see that it suffices to consider witnesses of a certain
regular form only. This leads to small certificates for non-inclusion, which can
be stepwise guessed and verified in space logarithmic in the size of the nets.

A crucial ingredient for our characterization is the monotonicity of witnesses,
a direct consequence of the monotonicity of the steps in OCNs (Lemma 1):

Lemma 3. If π is a witness for (pm, qn) then for all m′ ≥ m and n′ ≤ n some
prefix of π is a witness for (pm′, qn′).

The intuition behind the further characterization of witnesses is that in order
to show non-inclusion, one looks for a path that is enabled in the process of A
and moreover exhausts the counter in the process of B. Since any sufficiently long
path will revisit control states in the product, we can compare such paths with
respect to their effect on the counters and see that some are “better” than others.
For instance, a cycle that only increments the counter in B and decrements the
one in A is surely suboptimal considering our goal to find a (shortest) witness.
The characterization Theorem 1 essentially states that if a witness exists, then
also one that, apart from short paths, combines only the most productive cycles.

Definition 6 (Loops). A non-empty path π in the product is called a cycle if
source(π) = target(π). Such a cycle is a loop if none of its proper subpaths is
a cycle. The slope of loop π is the ratio S(π) = ΔA(π)/ΔB(π), where for n > 0
and k ∈ Z we let n/0 = ∞ > k, 0/0 = 0 and −n/0 = −∞ < k. Based on
the effect of a loop we distinguish four types of loops: (<,<), (>,≥), (≤,≥), and
(≥, <). The type of π is Type(π) = (�,) iff ΔA(π) � 0 and ΔB(π) 	 0.

Note that no loop is longer than |V | because it visits exactly one node twice.

Example 2. Consider two DOCN such that their product is the graph depicted
below, where we identify transitions with their action labels for simplicity and

v0

v1 v2

v3

t0, 1, 1

t1, 1, 0

t2, 1, 0

t3, 1, 1t4, 1, 0

v4
t5, 0, 0

t6,−1,−1

let v0 = (p, p′) ∈ V . The paths t0t1t2, t3t4
and t6 are loops with slopes 3/1, 2/1 and
1/1 and types (>,≥), (>,≥) and (<,<), re-
spectively. The path (t0t1t2)(t3t4)

9t5(t6)
20

is a witness for (p0, p′10) of length 42. By
replacing 8 occurrences of the loop (t3t4)
with (t0t1t2)

8 we derive the longer witness
(t0t1t2)

9(t3t4)t5(t6)
20, which has essentially

the same structure but is more efficient in
the sense that for the same effect on B it achieves a higher counter-effect on A.

156 P. Hofman and P. Totzke

Theorem 1. Fix a DOCN A, a complete DOCN B, and let K ∈ N be the num-
ber of nodes in their product. There is a bound c ∈ N that depends polynomially
on K, such that the following holds for any two processes pm and qn of A and B.
If T (pm) �⊆ T (qn), then there is a witness for (pm, qn) that is either no longer
than c or has one of the following forms:

1. π0L
l0
0 π1, where L0 is a loop of type (≥, <) and π0, π1 are no longer than c,

2. π0L
l0
0 π1L

l1
1 π2, where L0 and L1 are loops of type (>,≥) and (<,<) with

S(L0) > S(L1) and π0, π1, π2 are no longer than c,

3. π0L
l0
0 π1, where L0 is a loop of type (<,<) and π0, π1 are no longer than c,

where in all cases, the number of iterations l0, l1 ∈ N are polynomial in K and
the initial counter-values m and n of the given processes.

Proof (sketch). The overall idea of the proof is to explicitly rewrite witnesses
into one of the canonical forms of Theorem 1. More specifically, we introduce a
system of path-rewriting rules which simplify witnesses by removing, reducing or
changing some loops as in Example 2. We show that the rules preserve witnesses
and any sequence of successive rule applications must eventually terminate with
a normalized path, to which none of the rules is applicable. Such a witness can
be decomposed as

π = π0L
l0
0 π1L

l1
1 . . . πkL

lk
k πk+1 (3)

where the Li are (pairwise different) loops and the πi are short, i.e. polynomially
bounded in K. Moreover the rules are designed in such a way that almost all li
are polynomially bounded. By almost all we mean except one in the first and
third form of the witness or two in the witness of the second form. This means
that unravelling of those loops with polynomially bounded li and glueing them
with surrounding πi to get paths π0, π1, π2 does not blow up of the length of
π0, π1, π2 above polynomial bound c. ��

Notice that the bound c in the claim of Theorem 1 depends only on the
number of states. We now derive a decision procedure for trace inclusion that
works in logarithmic space. The NL lower bound already holds for the trace
inclusion problem of DFA, which can be shown by a streightforward reduction
from s-t-connectivity.

Theorem 2. Let pm and qn be processes of OCN A and DOCN B, respectively,
where m,n are given in binary. There is a nondeterministic algorithm that de-
cides T (pm) ⊆ T (qn) in logarithmic space.

Proof. Let A = (QA,Act , δA) and B = (QB,Act , δB), and let K ∈ N be the
number of states in their product. By Lemma 2, we can assume w.l.o.g. that A
is deterministic and B is complete and deterministic and so Theorem 1 applies.

If the initial counter-values are m = n = 0, Theorem 1 implies a polynomial
bound on the length of shortest witnesses. In that case, one can simply stepwise
guess and verify a witness, explicitly storing the intermediate processes with

Trace Inclusion for One-Counter Nets Revisited 157

binary encoded counter-values in logarithmic space. Such a procedure is impos-
sible with arbitrary initial counter-values as part of the input, because one does
not even have the space to memorize them.

For the general case, we argue that one can nondeterministically guess a tem-
plate (consisting of short paths) and verify in logspace that there is indeed some
witness that fits this template. Theorem 1 allows us to either guess a short
(≤ c ∈ poly(K)) witness or one of forms 1,2 or 3, together with matching short
paths πi, Li. The effect and guard of these paths are bounded by their lengths
and hence by c. This means O(logK) space suffices to stepwise compute the
binary representation of these values and verify that the conditions the form
imposes on the types and slopes of the loops are met. It remains to check if
exponents l0, l1 ∈ N exist, that complete the description of a witness π. To see
why these checks can be implemented in logarithmic space, first recall that one
can verify inequalities of the form

m · A+B ≥ n · C +D (4)

in O(log(A + B + C + D)) space, if m,n ∈ N are given in binary (see [8] for
details).

For templates of the first two forms, it suffices to check if m ≥ ΓA(π0L0),
because the type of L0 implies that ΓA(π0L

l
0) ≤ ΓA(π0L0) for all 1 < l ∈ N.

This means that the process pm ofA can go to, and repeat the loop L0 arbitrarily
often. In case its effect in B is negative (in templates of form 1), this immediately
implies the existence of a suitable l0. For templates of form 2) the existence of
l0, l1 ∈ N completing the description of a witness is guaranteed because the slope
of the first loop is bigger than that of the second.

For templates of the third kind recall that, because B is complete, a path
π = π0L

l0
0 π1 is a witness iff there is some edge T in the product such that

ΔB(T) = −1 and both m ≥ ΓA(πT) and n + ΔB(πT) = −1. Equivalently, we
can write this as

m+ΔA(π0L
l0
0) = m +ΔA(π0) +ΔA(L0) · l0 ≥ ΓA(π1T) and (5)

n+ 1 = −ΔB(πT) = −ΔB(π0)−ΔB(L0) · l0 −ΔB(π1T). (6)

Eliminating l0, we see that this is true iff

m+ΔA(π0) +ΔA(L0) ·
ΔB(π0) +ΔB(π1) + n

−ΔB(L0)
≥ ΓA(π1). (7)

Simplifying further we can bring this into the form m · A − n · B ≥ C where
A,B,C are polynomial in c. The condition can be checked in O(logK) space. ��

4 Universality of Nondeterministic One-Counter Nets

To contrast the result of the previous section we now turn to the problem of
checking trace inclusion between a finite process and a nondeterministic OCN.

158 P. Hofman and P. Totzke

This problem is known to be decidable, even for general Petri nets [11] and it
can be easily seen to be (logspace) inter-reducible with the trace universality
problem, because OCNs are closed under products with finite systems.

For OCN, trace universality can be decided using a simple well-quasi-order
based saturation method that determinizes the net on the fly. We will see that
this procedure is optimal: The problem is Ackermannian, i.e. it is non-primitive
recursive and lies exactly at level ω of the Fast Growing Hierarchy [4].

Let N⊥ be the set of non-negative integers plus a special least element ⊥ and
let max be the total function that returns the maximal element of any nonempty
finite subset and ⊥ otherwise. Consider a set S ⊆ Q× N of processes of a OCN
N = (Q,Act , δ). We lift the definition of traces to sets of processes in the natural
way: the traces of S are T (S) =

⋃
qn∈S T (qn). By the monotonicity of trace

inclusion (Lemma 1), the traces of a finite set of processes are determined only
by the traces of its maximal elements.

Definition 7. Let Q = {q1, q2, . . . , qk} be the states-set of some OCN. For a
finite set S ⊆ Q × N define the macrostate as the vector MS ∈ Nk

⊥ where
for each 0 < i ≤ k, MS(i) = MS(qi) = max{n | qin ∈ S}. In particular,
the macrostate for a singleton set S = {qin} is the vector with value n at the
i-th coordinate and ⊥ on all others. The norm of a macrostate M ∈ Nk

⊥ is

|M |∞ = max{M(i) | 0 < i ≤ k}. We define a step relation
a

=⇒ for all a ∈ Act
on the set of macrostates as follows:

(n1, n2, . . . , nk)
a

=⇒(m1,m2, . . . ,mk) (8)

iff mi = max{n | ∃nj �= ⊥. qjnj
a−→qin} for all 0 < i ≤ k. The traces of

macrostate M are T (M) =
⋃

0<i≤k T (qiM(i)), where T (q⊥) = ∅. For two
macrostates M,N we say M is covered by N and write M 0 N , if it is point-
wise smaller, i.e., M(i) ≤ N(i) for all 0 < i ≤ k. For convenience, we will
write {q1 = n1, q2 = n2, . . . , ql = nl} for the macrostate with value M(i) = ni

whenever qi = ni is listed and ⊥ otherwise.

Steps on macrostates correspond to the classical powerset construction and
each macrostate represents the finite set of possible processes the OCN can be
in, where all non-maximal ones (w.r.t. their counter-value) are pruned out.

The next lemma directly follows from these definitions and monotonicity
(Lemma 1).

Lemma 4.

1. The covering-order 0 is a well-quasi-order on Nk
⊥, the set of all macrostates.

Moreover, M 0 N implies T (M) ⊆ T (N).

2. If M
a

=⇒N then |N |∞ ≤ |M |∞ + 1.
3. For any finite set S ⊆ Q× N it holds that T (S) = T (MS).

Dealing with macrostates allows us to treat universality as a reachability
problem: By point 3 of Lemma 4 we see that a process qn is not trace universal,

Trace Inclusion for One-Counter Nets Revisited 159

Act∗ �= T (qn), if and only if M{qn} =⇒∗ (⊥,⊥, . . . ,⊥). We take the perspective

of a pathfinder, whose goal it is to reach (⊥)k.
We can decide universality by stepwise guessing a shortest terminating path

from the initial macrostate, and thus a witness for non-universality. Whenever
we see a macrostate that covers one of its predecessors, we can safely discard
this candidate, because omitting the intermediate path would result in a shorter
witness by Lemma 4.1.

We show non-primitive recursiveness by reduction from the control state
reachability problem for incrementing counter machines [3, 4].

Definition 8 (Counter machines). A (Minsky)-counter machine (CM) is an
automaton with a finite set of states Q, finitely many counters C1, C2, . . . , Ck,
and transitions are of the form Q × Act × Q where Act is {inc, dec, ifz} ×
{1, 2, . . . , k}. A configuration of such a CM consists of a state and a valuation
of the counters. Performing a transition (p, (op, i), q) changes a configuration
precisely: the state changes from p to q and we make operation op on the counter
ci, where inc, dec and ifz mean increment, decrement and zero-test, respectively.
Such a step is forbidden if the requested operation is dec and the value of ci is
0, or if ci > 0 and the operation is ifz.

An incrementing counter machine (ICM) is a CM in which counters can spon-
taneously increment without performing any transitions. Such increments we call
incrementing errors. Control state reachability is the decision problem that asks
if there is a run of a given CM from an initial configuration to some given state
qf ∈ Q.

Our reduction is based on the following simple observation. Consider a OCN

N = (Q,Act , δ) that contains a universal state u: it has self-loops u
a,0−→u ∈ δ

for every action a ∈ Act . A Pathfinder who wants to prove non-universality
must avoid macrostates with M(u) �= ⊥, because no continuation of a path
leading to such a macrostate can be a witness. We can use this idea to construct
macrostates that prevent Pathfinder from making certain actions.

Definition 9 (Obstacles). Let S ⊆ Act be a set of actions in a OCN that

contains a universal state u. A state q ∈ Q is called an S-obstacle if q
a,0−→u ∈ δ

for all actions a ∈ S. We say q ignores S, if q
a,0−→q ∈ δ for all a ∈ S.

Note that if a macrostate contains an S-obstacle, then Pathfinder must avoid
all actions of S. In order to remove an obstacle, Pathfinder must play an action
that is not the label of any of its incoming transitions.

Theorem 3. Trace universality for OCN is not primitive recursive.

Proof. By reduction (using logspace) from the control state reachability problem
for ICM, which has non-primitive recursive complexity [3]. We construct a OCN-
process Init(0) that is not universal iff a given ICM reaches a final state from its
initial configuration. The idea is to enforce a faithful simulation of the ICM by
pathfinder, who wants to show non-universality of the OCN by stepwise rewriting
the initial macrostate {Init = 0} to the all-bottom-macrostate ⊥l.

160 P. Hofman and P. Totzke

We construct a OCN N which has a unique action for every transition of the
ICM, as well as actions τi that indicate incrementing errors for every counter ci,
and actions ' and $ to mark the beginning and end of a run, respectively. This
way we make sure there is a strict correspondence between words and ICM-runs.
The states of N are

– a new initial state Init and a universal state u,

– a state qi for every state qi of the ICM,

– a state Ci for every counter ci of the ICM,

– a state z, which ignores every action but the end marker $. State z will be
used to access the constant 0.

A configuration q(c1, c2, . . . , ck) of the ICM is represented by a macrostate
{q = 0, z = 0, C1 = c1, C2 = c2, . . . , Ck = ck}. We will define the transitions of
N such that the only way for Pathfinder to reach ⊥l is by rewriting the initial
macrostate {Init = 0} to the one representing the initial ICM configuration and
then to stepwise announce the transitions of an accepting run of the ICM. Using
the idea of obstacles, we define the rules of the net N so that the only way
Pathfinder can avoid the universal state u and reach the macrostate ⊥l is by
first transforming the initial macrostate {Init = 0} to the one that represents
the initial ICM configuration and then announcing transitions (as well as actions
demanding increment errors) of a valid and accepting run of the ICM.

Initialization. To set up M0 = {q0 = 0, z = 0, C0 = 0, C1 = 0, . . . , Ck = 0},
representing the initial ICM configuration, we add '-labelled transitions with
effect 0 from Init to q0, z and Ci for all 0 ≤ i ≤ k. Moreover, we make Init an
obstacle for every action but '. This way, Pathfinder has to play ' as the first
move (and set up M0) in order to avoid a universal macrostate.

Finite control. For any transition t = q
(a,i)−→q′ of the ICM, we add a transition

q
t,0−→q′ to N that, in a macrostate-step, will replace the value 0 in dimension

q by ⊥ and introduce value 0 in dimension q′. Moreover, we make every state
q an obstacle for all actions announcing ICM-transitions not originating in q.
This prevents Pathfinder from announcing transitions from q unless the current
macrostate has M(q) = 0 and M(qi) = ⊥ for all qi �= q.

Simulation of the Counters. Every transition operates on one of the counters
ci for 0 ≤ i ≤ k. Below we list the corresponding transitions in the OCN N
for this counter. Every state of N not explicitly mentioned ignores the action in
question. In the macrostate, the values of these states are therefore unchanged.

Increments For ICM-transitions t that increase the ith counter, N contains a
t-labelled transition from state Ci to Ci with effect +1. Additionally, to deal
with spontaneous increment errors, there is a τi-labelled increasing self-loop
in state Ci. All other states ignore the τi.

Trace Inclusion for One-Counter Nets Revisited 161

Decrements For ICM-transitions t that decrease the ith counter, N contains
a t-labelled transition from state Ci to Ci with effect −1.
This means that the next macrostate M could lose the value for this counter
and have M(Ci) = ⊥ if previously, the value was 0. In that case, the decre-
menting step from value 0 to value 0 is valid in the ICM because it can
first (silently) increment and then do the (visible) decrement step. In order
to avoid losing the state Ci in the macrostate, the OCN contains a tran-

sition z
t,0−→Ci from the constant-zero state z to state Ci. Recall that z is

present in the macrostate because z ignores every action except end marker
$. Consequently, no correctly set up macrostate will set M(Ci) = ⊥.

Zero-tests For ICM-transitions t that test the ith counter for 0, we add a t-

labelled transition Ci
t,−1−→u from state Ci to the universal state. This prevents

Pathfinder from using these actions if the current macrostate has M(Ci) > 0
because it would make the next macrostate universal. If however M(Ci) = 0,
such a step is safe because the punishing transition is not enabled in the
OCN-process Ci0.

Lastly, we only add transitions to N so that the final state qf is the only
original ICM-state which is not an obstacle for $. This prevents Pathfinder from
playing the end-marker $ unless the simulation has reached the final state. ��

In order to estimate an upper bound, we recall a recent result of Figueira,
Figueira, Schmitz, and Schnoebelen [4], that allows us to provide the exact com-
plexity of the OCN trace universality problem in terms of its level in the Fast-
Growing Hierarchy. The main idea is to estimate the maximal length of a path
in the well quasi order based algorithm using bounds on the difference of sizes
of consecutive configurations. A full proof can be found in [8].

Theorem 4. Trace universality of OCN is Ackermannian (Complete for Fω).

5 Conclusion

We have shown NL-completeness of the trace inclusion problem for deterministic
one-counter nets, where initial counter-values are part of the input. Our proof is
based on a characterization of the shape of possible witnesses in terms of a small
number of polynomially-sized templates. Realizability of such templates can be
verified in space logarithmic only in the size of the underlying state space. To prove
the characterization theorem we use witness rewriting rules, the correctness of
which crucially depends on themonotonicity of trace inclusionw.r.t. counter-values.
In fact, we only make use of this property in the net on the left but similarly one
can define rules that exploit only themonotonicity in the process on the right.With
someadditional effort one canextend this argumentalso for trace inclusionbetween
DOCN and DOCA or vice versa (see [15]).

The second part of the paper explores the complexity of the universality problem
for nondeterministic OCN, and trace inclusion between finite systems and OCN
that easily reduces to OCN universality. Here we show that the simplest known
algorithm which uses a well-quasi-order based saturation technique has already
optimal complexity: The problem is Ackermannian, i.e., not primitive recursive.

162 P. Hofman and P. Totzke

Acknowledgement. We thankMaryCryan,DiegoFigueira and Sylvain Schmitz
for helpful discussions and the anonymous reviewers of an earlier draft for their
constructive feedback. Piotr Hofman acknowledges a partial support by the Polish
NCN grant 2013/09/B/ST6/01575.

References

[1] Abdulla, P.A., Cerans, K.: Simulation Is Decidable for One-Counter Nets. In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 253–268.
Springer, Heidelberg (1998)

[2] Böhm, S., Göller, S., Jančar, P.: Equivalence of Deterministic One-Counter Au-
tomata is NL-complete. In: STOC, pp. 131–140 (2013)

[3] Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Logic 10(3), 16:1–16:30 (2009)

[4] Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
Primitive-Recursive Bounds with Dickson’s Lemma. In: LICS, pp. 269–278 (2011)

[5] Higuchi, K., Wakatsuki, M., Tomita, E.: Some Properties of Deterministic Re-
stricted One-Counter Automata. In: IEICE E79-D.8, pp. 914–924 (July 1996)

[6] Hofman, P., Lasota, S., Mayr, R., Totzke, P.: Simulation Over Onecounter Nets is
PSPACE-Complete. In: FSTTCS, pp. 515–526 (2013)

[7] Hofman, P., Mayr, R., Totzke, P.: Decidability of Weak Simulation on One-Counter
Nets. In: LICS, pp. 203–212 (2013)

[8] Hofman, P., Totzke, P.: Trace Inclusion for One-Counter Nets Revisited. In: CoRR
abs/1404.5157 (2014) (full version of this paper)

[9] Jančar, P.: Equivalences of Pushdown Systems Are Hard. In: Muscholl, A. (ed.)
FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 1–28. Springer, Heidelberg (2014)

[10] Jančar, P.: Undecidability of Bisimilarity for Petri Nets and Some Related Prob-
lems. TCS 148(2), 281–301 (1995)

[11] Jančar, P., Esparza, J., Moller, F.: Petri Nets and Regular Processes. J. Comput.
Syst. Sci. 59(3), 476–503 (1999)

[12] Jančar, P., Kučera, A., Moller, F.: Simulation and Bisimulation over One-Counter
Processes. In: STACS, pp. 334–345 (2000)

[13] Sénizergues, G.: L(A) = L(B)? ENTCS 9, 43 (1997)
[14] Stirling, C.: Deciding DPDA Equivalence Is Primitive Recursive. In: ICALP, pp.

821–832 (2002)
[15] Totzke, P.: Inclusion Problems for One-Counter Systems. PhD thesis. LFCS,

University of Edinburgh (2014)
[16] Valiant, L.: Decision Procedures for Families of Deterministic PushdownAutomata.

PhD thesis. University of Warwick (1973)
[17] Valiant, L., Paterson, M.S.: Deterministic One-Counter Automata. JCSS 10(3),

340–350 (1975)

Mean-Payoff Games with Partial-Observation�

(Extended Abstract)

Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin

Départament d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium
{paul.hunter,guillermo.perez,jraskin}@ulb.ac.be

Abstract. Mean-payoff games are important quantitative models for
open reactive systems. They have been widely studied as games of per-
fect information. In this paper we investigate the algorithmic properties
of several subclasses of mean-payoff games where the players have asym-
metric information about the state of the game. These games are in gen-
eral undecidable and not determined according to the classical definition.
We show that such games are determined under a more general notion
of winning strategy. We also consider mean-payoff games where the win-
ner can be determined by the winner of a finite cycle-forming game.
This yields several decidable classes of mean-payoff games of asymmet-
ric information that require only finite-memory strategies, including a
generalization of perfect information games where positional strategies
are sufficient. We give an exponential time algorithm for determining the
winner of the latter.

1 Introduction

Mean-payoff games (MPGs) are two-player, infinite duration, turn-based games
played on finite edge-weighted graphs. The two players alternately move a token
around the graph; and one of the players (Eve) tries to maximize the (limit)
average weight of the edges traversed, whilst the other player (Adam) attempts
to minimize the average weight. Such games are particularly useful in the field of
verification of models of reactive systems, and the perfect information versions
of these games have been extensively studied [4,7,8,10]. One of the major open
questions in the field of verification is whether the following decision problem,
known to be in the intersection of the classes NP and coNP [10]1, can be solved
in polynomial time: Given a threshold ν, does Eve have a strategy to ensure a
mean-payoff value of at least ν?

In game theory the concepts of imperfect, partial and limited information
indicate situations where players have asymmetric knowledge about the state of
the game. In the context of verification games this partial knowledge is reflected
in one or both players being unable to determine the precise location of the token
amongst several equivalent vertices, and such games have also been extensively
� This work was supported by the ERC inVEST (279499) project.
1 From results in [17] and [12] it follows that the problem is also in UP ∩ coUP.

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 163–175, 2014.
c© Springer International Publishing Switzerland 2014

164 P. Hunter, G.A. Pérez, and J.-F. Raskin

studied [2, 3, 9, 13, 16]. Adding partial-observation to verification games results
in an enormous increase in complexity, both algorithmically and in terms of
strategy synthesis. For example, it was shown in [9] that for MPGs with partial-
observation, when the mean payoff value is defined using lim sup, the analogue
of the above decision problem is undecidable; and whilst memoryless strategies
suffice for MPGs with perfect information, infinite memory may be required. The
first result of this paper is to show that this is also the case when the mean payoff
value is defined using the stronger lim inf operator, closing two open questions
posed in [9]. As a consequence, we generalize a result from [6] which uses the
undecidability result from [9] to show several classical problems for mean-payoff
automata are also undecidable.

To simplify our definitions and algorithmic results we initially consider a re-
striction on the set of observations which we term limited-observation. In games
of limited-observation the current observation contains only those vertices con-
sistent with the observable history, that is the observations are the belief set of
Eve (see, e.g. [5]). This is not too restrictive as any MPG with partial-observation
can be realized as a game of limited-observation via a subset construction. In
Section 9 we consider the extension of our definitions to MPGs with partial-
observation via this construction.

Our focus for the paper will be on games at the observation level, in par-
ticular we are interested in observation-based strategies for both players. Whilst
observation-based strategies for Eve are usual in the literature, observation-based
strategies for Adam have not, to the best of our knowledge, been considered.
Such strategies are more advantageous for Adam as they encompass several si-
multaneous concrete strategies. Further, in games of limited-observation there is
guaranteed to be at least one concrete strategy consistent with an observation-
based strategy. Our second result is to show that although MPGs with partial-
observation are not determined under the usual definition of strategy, they are
determined when Adam can use an observation-based strategy.

In games of perfect information one aspect of MPGs that leads to simple (but
not quite efficient) decision procedures is their equivalence to finite cycle-forming
games. Such games are played as their infinite counterparts, however when the
token revisits a vertex the game is stopped. The winner is determined by a finite
analogue of the mean-payoff condition on the cycle now formed. Ehrenfeucht and
Mycielski [10] and Björklund et al. [4]2 used this equivalence to show that posi-
tional strategies are sufficient to win MPGs with perfect information. Critically,
a winning strategy in the finite game translates directly to a winning strategy
in the MPG, so such games are especially useful for strategy synthesis.

We extend this idea to games of partial-observation by introducing a finite,
perfect information, cycle-forming game played at the observation level. That
is, the game finishes when an observation is revisited (though not necessarily
the first time). In this reachability game winning strategies can be translated
to finite-memory winning strategies in the MPG. This leads to a large, natural
subclass of MPGs with partial-observation, forcibly terminating games, where

2 A recent result of Aminof and Rubin [1] corrects some errors in [4].

Mean-Payoff Games with Partial-Observation 165

Table 1. Summary of results for the classes of games studied.

Forcibly Forcibly FAC FAC
Terminating limited-obs. partial-obs. limited-obs. partial-obs.

Memory Finite Exponential 2-Exponential Positional Exponential
Class
membership

Undecidable PSPACE-
complete

NEXP-hard,
in EXPSPACE

coNP-
complete

coNEXP-
complete

Winner
determination

R-complete PSPACE-
complete

EXP-complete NP ∩ coNP EXP-
complete

determining the winner is decidable and finite memory observation-based strate-
gies suffice.

Unfortunately, recognizing if an MPG is a member of this class is undecidable,
and although determining the winner is decidable, we show that this problem
is complete (under polynomial-time reductions) for the class of all decidable
problems. Motivated by these negative algorithmic results, we investigate two
natural refinements of this class for which winner determination and class mem-
bership are decidable. The first, forcibly first abstract cycle games (forcibly FAC
games, for short), is the natural class of games obtained when our cycle-forming
game is restricted to simple cycles. Unlike the perfect information case, we show
that winning strategies in this finite simple cycle-forming game may still require
memory, though this memory is at most exponential in the size of the game.
The second refinement, first abstract cycle (FAC) games, is a further structural
refinement that guarantees a winner in the simple cycle-forming game. We show
that in this class of games positional observation-based strategies suffice.

Table 1 summarizes the results of this paper. For space reasons the full details
of all proofs can be found in the technical report [11].

2 Preliminaries

Mean-payoff games. A mean-payoff game (MPG) with partial-observation is a
tuple G = 〈Q, qI , Σ,Δ,w,Obs〉, where Q is a finite set of states, qI ∈ Q is
the initial state, Σ is a finite set of actions, Δ ⊆ Q × Σ × Q is the transition
relation, w : Δ → Z is the weight function, and Obs ∈ Partition(Q) is a
set of observations. We assume Δ is total. We say that G is a mean-payoff
game with limited-observation if additionally, (1) {qI} ∈ Obs, and (2) for each
(o, σ) ∈ Obs × Σ the set {q′ | ∃q ∈ o and (q, σ, q′) ∈ Δ} is a union of elements
of Obs. If every element of Obs is a singleton, then we say G is a mean-payoff
game with perfect information. For simplicity, we denote by postσ(s) = {q′ ∈
Q | ∃q ∈ s : (q, σ, q′) ∈ Δ} the set of σ-successors of a set of states s ⊆ Q.

In this work, unless explicitly stated otherwise, we depict states from an MPG
with partial-observation as circles and transitions as arrows labelled by an action-
weight pair: σ,w. Observations are represented by dashed boxes.

166 P. Hunter, G.A. Pérez, and J.-F. Raskin

Abstract and concrete paths. A concrete path in an MPG with partial-observation
is a sequence q0σ0q1σ1 . . . where for all i ≥ 0 we have qi ∈ Q, σi ∈ Σ and
(qi, σi, qi+1) ∈ Δ. An abstract path is a sequence o0σ0o1σ1 . . . where oi ∈ Obs,
σi ∈ Σ and for all i there exists qi ∈ oi and qi+1 ∈ oi+1 with (qi, σi, qi+1) ∈ Δ.
Given an abstract path ψ, let γ(ψ) be the (possibly empty) set of concrete paths
that agree with the observation and action sequence. Note that in games of
limited-observation this set is never empty. Also, given abstract (respectively
concrete) path ρ, let ρ[..n] represent the prefix of ρ up to the (n+1)-th observa-
tion (state), which we express as ρ[n]; similarly, we denote by ρ[l..] the suffix of
ρ starting from the l-th observation (state) and by ρ[l..n] the finite subsequence
starting and ending in the aforementioned locations. An abstract (respectively
concrete) cycle is an abstract (concrete) path χ = o0σ0 . . . on where o0 = on. We
say χ is simple if oj �= oi for 0 ≤ i < j < n. Given k ∈ N define χk to be the
abstract (concrete) cycle obtained by traversing χ k times. A cyclic permutation
of χ is an abstract (concrete) cycle o′0σ

′
0 . . . o′n such that o′j = oj+k (mod n) and

σ′
j = σj+k (mod n) for some k. If χ′ = o′0σ

′
0 . . . o′m is a cycle with o′0 = oi for some

i, the interleaving of χ and χ′ is the cycle o0σ0 . . . oiσ
′
0 . . . o′mσi . . . on.

Given a concrete path π = q0σ0q1σ1 . . ., the payoff up to the (n+1)-th element
is given by

w(π[..n]) =
n−1∑
i=0

w(qi, σi, qi+1).

If π is infinite, we define two mean-payoff values MP and MP as:

MP (π) = lim inf
n→∞

1

n
w(π[..n]) MP (π) = lim sup

n→∞

1

n
w(π[..n])

Plays and strategies. A play in an MPG with partial-observation G is an infinite
abstract path starting at oI ∈ Obs where qI ∈ oI . Denote by Plays(G) the set
of all plays and by Prefs(G) the set of all finite prefixes of such plays ending in
an observation. Let γ(Plays(G)) be the set of concrete paths of all plays in the
game, and γ(Prefs(G)) be the set of all finite prefixes of all concrete paths.

An observation-based strategy for Eve is a function from finite prefixes of
plays to actions, i.e. λ∃ : Prefs(G) → Σ. A play ψ = o0σ0o1σ1 . . . is consistent
with λ∃ if σi = λ∃(ψ[..i]) for all i. An observation-based strategy for Adam is a
function λ∀ : Prefs(G) × Σ → Obs such that for any prefix π = o0σ0 . . . on ∈
Prefs(G) and action σ, λ∀(π, σ) ∩ postσ(π[n]) �= ∅. A play ψ = o0σ0o1σ1 . . .
is consistent with λ∀ if λ∀(ψ[..i], σi) = oi+1 for all i. A concrete strategy for
Adam is a function μ∀ : γ(Prefs(G))×Σ → Q such that for any concrete prefix
π = q0σ0 . . . qn ∈ γ(Prefs(G)) and action σ, μ∀(π, σ) ∈ postσ({π[n]}). A play
ψ = o0σ0o1σ1 . . . is consistent with μ∀ if there exists a concrete path π ∈ γ(ψ)
such that μ∀(π[..i], σi) = π[i+ 1] for all i.

We say an observation-based strategy for Eve λ∃ has memory m if there is a
set M with |M | = m, an element m0 ∈ M , and functions αu : M × Obs → M
and αo : M × Obs → Σ such that for any play prefix ρ = o0σ0 . . . on we have
λ∃(ρ) = αo(mn, on), where mn is defined inductively by mi+1 = αu(mi, oi) for

Mean-Payoff Games with Partial-Observation 167

i ≥ 0. An observation-based strategy for Adam λ∀ has memory m if there is a set
M with |M | = m, an element m0 ∈ M , and functions αu : M × Obs × Σ → M
and αo : M × Obs × Σ → Obs such that for any play prefix ending in an
action ρ = o0σ0 . . . onσn, we have λ∀(ρ) = αo(mn, on, σn), where mn is defined
inductively by mi+1 = αu(mi, oi, σi). An observation-based strategy (for either
player) with memory 1 is positional.

Note that for any concrete strategy μ of Adam there is a unique observation-
based strategy λμ such that all plays consistent with μ are consistent with λμ.
Conversely there may be several, but possibly no, concrete strategies that cor-
respond to a single observation-based strategy. In games of limited-observation
there is guaranteed to be at least one concrete strategy for every observation-
based strategy.

Given a threshold ν ∈ R, we say a play ψ is winning for Eve if MP (π) ≥ ν
for all concrete paths π ∈ γ(ψ), otherwise it is winning for Adam. Given ν, one
can construct an equivalent game in which Eve wins if and only if MP (π) ≥ 0
if and only if she wins the original game, so without loss of generality we will
assume ν = 0. A strategy λ is winning for a player if all plays consistent with λ
are winning for that player. We say that a player wins G if (s)he has a winning
strategy.

It was shown in [9] that in MPGs with partial-observation where finite memory
strategies suffice Eve wins the MP version of the game if and only if she wins
the MP version. As the majority of games considered in this paper only require
finite memory, we can take either definition. For simplicity and consistency with
Section 3 we will use MP .

Reachability games. A reachability game G = 〈Q, qI , Σ,Δ, T∃, T∀〉 is a tuple
where Q is a (not necessarily finite) set of states; Σ is a finite set of actions;
Δ ⊆ Q × Σ × Q is a finitary transition function; qI ∈ Q is the initial state;
and T∃, T∀ ⊆ Q are the terminating states. Notions of plays and strategies in
the reachability game follow from the definitions for MPGs, however we extend
plays to include finite paths that end in T∃ or in T∀. In the first case we declare
Eve as the winner whereas the latter corresponds to Adam winning the game. In
general, the game might not terminate. In this case we say neither player wins.

3 Undecidability of Liminf Games

Mean-payoff games with partial-observation were extensively studied in [9]. In
that paper the authors show that, with the mean payoff condition defined using
MP and >, determining whether Eve has a winning strategy is undecidable
and when defined using MP and ≥, strategies with infinite memory may be
necessary. The analogous, and more general, questions using MP and ≥ were
left open. In this section we answer these questions, showing that both results
still hold.

Proposition 1. There exist MPGs with partial-observation for which Eve re-
quires infinite memory observation-based strategies to ensure MP ≥ 0.

168 P. Hunter, G.A. Pérez, and J.-F. Raskin

Consider the game in Figure 2 and consider the strategy of Eve that plays
(regardless of location) aba2ba3ba4b . . . As b is played infinitely often in this strat-
egy, the only concrete paths consistent with this strategy are π = q0q

ω
1 and π =

q0q
k
1q

l
2q

ω
3 for non-negative integers k, l. In both cases MP ≥ 0, so the strategy

is winning.
Against a finite memory strategy of Eve, Adam plays to ensure the game

remains in {q1, q2}. As Eve’s strategy has finite memory, her choice of actions
must be ultimately periodic. Now there are two cases, if she plays a finite number
of b’s then Adam has a concrete winning strategy which consists in guessing
when she will play the last b and moving to q2. If, on the other hand, she plays
b infinitely often then Adam can choose to stay in q1 and again win the game.

Theorem 1. Let G be an MPG with partial-observation. Determining whether
Eve has an observation-based strategy to ensure MP ≥ 0 is undecidable.

In [6], the authors present a reduction from blind MPGs to mean-payoff au-
tomata. This reduction, together with the undecidability result from [9], imply
several classical automata-theoretical problems for mean-payoff automata are
also undecidable. In [6], the authors study the non-strict ≥ relation between
quantitative languages. It follows from the undecidability result presented above,
that even when one considers the strict order, >, these problems remain unde-
cidable.

Corollary 1. The strict quantitative universality, and strict quantitative lan-
guage inclusion problems are undecidable for non-deterministic and alternating
mean-payoff automata.

4 Observable Determinacy

One of the key features of MPGs with perfect information is that they are
determined, that is, it is always the case that one player has a winning strategy.
This is not true in games of partial or limited-observation as can be seen in
Figure 1. Any concrete strategy of Adam reveals to Eve the successor of q0 and

q0

q1

q2

q3

a,-1

b,-1

Σ,-1

Σ,-1

b,-1

a,-1

Σ,+1

Fig. 1. A non-determined MPG with
limited-observation (Σ = {a, b}).

q0

q1

q2

q3

a,0
b,-1

a,-1

Σ,0

Σ,0

b,-1
b,0

Σ,+1

Fig. 2. An MPG with limited-
observation which Eve requires infinite
memory to win.

Mean-Payoff Games with Partial-Observation 169

she can use this information to play to q3. Conversely Adam can defeat any
strategy of Eve by playing to whichever of q1 or q2 means the play returns to q0
on Eve’s next choice (recall Eve cannot distinguish q1 and q2 and must therefore
choose an action to apply to the observation {q1, q2}). This strategy of Adam
can be encoded as an observation-based strategy: “from {q1, q2} with action a or
b, play to {q0}”. It transpires that, under an assumption about large cardinals3,
any such counter-play by Adam is always encodable as an observable strategy.

Theorem 2 (Observable determinacy). Assuming the existence of a mea-
surable cardinal, one player always has a winning observation-based strategy in
an MPG with limited-observation.

The existence of a measurable cardinal implies Σ1
1-Determinacy [14] – a weak

form of the “Axiom of Determinacy”. The observable determinacy of MPGs with
limited-observation then follows from the following result:

Lemma 1. The set of plays that are winning for Eve in an MPG with limited-
observation is co-Suslin.

5 Strategy Transfer

In this section we will construct a reachability game from an MPG with limited-
observation in which winning strategies for either player are sufficient (but not
necessary) for winning strategies in the original MPG.

Let us fix a mean-payoff game with limited-observation G = 〈Q, qI , Σ,Δ,
Obs, w〉. We will define a reachability game on the weighted unfolding of G.

Let F be the set of functions f : Q → Z ∪ {+∞,⊥}. Our intention is to
use functions in F to keep track of the minimum weight of all concrete paths
ending in the given vertex. A function value of ⊥ indicates that the given vertex
is not in the current observation, and intuitively a function value of +∞ is
used to indicate to Eve that the token is not located at such a vertex. The
added complication permits our winning condition to include games where Adam
wins by ignoring paths going through the given vertex. The support of f is
supp(f) = {q ∈ Q | f(q) �= ⊥}. We say that f ′ ∈ F is a σ-successor of f ∈ F if:

– supp(f ′) ∈ Obs ∧ supp(f ′) ⊆ postσ(supp(f)); and
– for all q ∈ supp(f ′), f ′(q) is either min{f(q′) + w(q′, σ, q) | q′ ∈ supp(f) ∧

(q′, σ, q) ∈ Δ} or +∞.

We define a family of partial orders, 	k (k ∈ N), on F by setting f 	k f ′ if
supp(f) = supp(f ′) and f(q) + k ≤ f ′(q) for all q ∈ supp(f) (where +∞+ k =
+∞).

Denote by FG the set of all sequences f0σ0f1 . . . σn−1fn ∈ (F ·Σ)∗F such that
for all 0 ≤ i < n, fi+1 is a σi-successor of fi. Observe that for each function-
action sequence ρ = f0σ0 . . . fn ∈ FG there is a unique abstract path supp(ρ) =

3 This assumption is independent of the theory of ZFC.

170 P. Hunter, G.A. Pérez, and J.-F. Raskin

o0σ0 . . . on such that oi = supp(fi) for all i. Conversely for each abstract path
ψ = o0σ0 . . . on there may be many corresponding function-action sequences in
supp−1(ψ).

The reachability game associated with G, i.e. ΓG = 〈ΠG, Σ, fI , δ, T∃, T∀〉, is
formally defined as follows: fI ∈ F is the function for which f(q) → 0 if q = qI
and f(q) → ⊥ otherwise. ΠG is the subset of FG where for all f0σ0f1 . . . σn−1fn ∈
ΠG we have f0 = fI and for all 0 ≤ i < j < n we have fi �	0 fj and fj �	1 fi; δ is
the natural transition function, that is, if x and x ·σ · f are elements of ΠG then
(x, σ, x ·σ · f) ∈ δ; T∃ is the set of all f0σ0f1 . . . σn−1fn ∈ ΠG such that for some
0 ≤ i < n we have fi 	0 fn; and T∀ is the set of all f0σ0f1 . . . σn−1fn ∈ ΠG such
that for some 0 ≤ i < n we have fn 	1 fi and fi(q) �= +∞ for some q ∈ supp(fi).

Note that the directed graph defined by ΠG and δ is a tree, but not necessarily
finite. To gain an intuition about ΓG, let us say an abstract cycle ρ is good if
there exists f0σ0 . . . fn ∈ supp−1(ρ) such that fi(q) �= +∞ for all q and all i
and f0 	0 fn. Let us say ρ is bad if there exists f0σ0 . . . fn ∈ supp−1(ρ) such
that f0(q) �= +∞ for some q ∈ supp(f0) and fn 	1 f0. Then it is not difficult
to see that ΓG is essentially an abstract cycle-forming game played on G which
is winning for Eve if a good abstract cycle is formed and winning for Adam if a
bad abstract cycle is formed.

Theorem 3. Let G be an MPG with limited-observation and let ΓG be the asso-
ciated reachability game. If Adam (Eve) has a winning strategy in ΓG then (s)he
has a finite-memory observation-based winning strategy in G.

The idea behind the strategy for the mean-payoff game is straightforward.
If Eve wins the reachability game then she can transform her strategy into
one that plays indefinitely by returning, whenever the play reaches T∃, to the
natural previous position – namely the position that witnesses the membership
of T∃. By continually playing her winning strategy in this way Eve perpetually
completes good abstract cycles and this ensures that all concrete paths consistent
with the play have non-negative mean-payoff value. Likewise if Adam has a
winning strategy in the reachability game, he can continually play his strategy
by returning to the natural position whenever the play reaches T∀. By doing
this he perpetually completes bad abstract cycles and this ensures that there is
a concrete path consistent with the play that has strictly negative mean-payoff
value. The finiteness of the size of the memory required for this strategy follows
from the following result.

Lemma 2. If λ is a winning strategy for Adam or Eve in ΓG, then there exists
N ∈ N such that for all plays π consistent with λ, |π| ≤ N .

Although the following results are not used until Section 7, they give an
intuition toward the correctness of the strategies described above.

Lemma 3. Let ρ be an abstract cycle.

(i) If ρ is good (bad) then an interleaving of ρ with another good (bad) cycle
is also good (bad).

Mean-Payoff Games with Partial-Observation 171

(ii) If ρ is good then for all k and all concrete cycles π ∈ γ(ρk), w(π) ≥ 0.
(iii) If ρ is bad then ∃k ≥ 0, π ∈ γ(ρk) such that w(π) < 0.

Corollary 2. No cyclic permutation of a good abstract cycle is bad.

6 Forcibly Terminating Games

The reachability game defined in the previous section gives a sufficient condition
for determining the winner in an MPG with limited-observation. However, as
there may be plays where no player wins, such games are not necessarily deter-
mined. The first subclass of MPGs with limited-observation we investigate is the
class of games where the associated reachability game is determined.

Definition 1. An MPG with limited-observation is forcibly terminating if in
the corresponding reachability game ΓG either Adam has a winning strategy to
reach locations in T∀ or Eve has a winning strategy to reach locations in T∃.

It follows immediately from Theorem 3 that finite memory strategies suffice
for both players in forcibly terminating games. Note that an upper bound on the
memory required is the number of vertices in the reachability game restricted to
a winning strategy, and this is exponential in N , the bound obtained in Lemma 2.

Theorem 4 (Finite-memory determinacy). One player always has a win-
ning observation-based strategy with finite memory in a forcibly terminating
MPG.

We now consider the complexity of two natural decision problems associated
with forcibly terminating games: the problem of recognizing if an MPG is forcibly
terminating and the problem of determining the winner of a forcibly terminating
game. Both results follow directly from the fact that we can accurately simulate
a Turing Machine with an MPG with limited-observation.

Theorem 5. Let M be a Deterministic Turing Machine. Then there exists an
MPG with limited-observation G, constructible in polynomial time, such that Eve
wins ΓG if and only if M halts in the accept state and Adam wins ΓG if and only
if M halts in the reject state.

Corollary 3 (Class membership). LetG be an MPG with limited-observation.
Determining if G is forcibly terminating is undecidable.

Corollary 4 (Winner determination). Let G be a forcibly terminating MPG.
Determining if Eve wins G is R-complete.

Proof. R-hardness follows from Theorem 5. For decidability, Lemma 2 implies
that an alternating Turing Machine simulating a play on ΓG will terminate.

172 P. Hunter, G.A. Pérez, and J.-F. Raskin

7 Forcibly First Abstract Cycle Games

In this section and the next we consider restrictions of forcibly terminating games
in order to find subclasses with more efficient algorithmic bounds. The negative
algorithmic results from the previous section largely arise from the fact that
the abstract cycles required to determine the winner are not necessarily simple
cycles. Our first restriction of forcibly terminating games is the restriction of the
abstract cycle-forming game to simple cycles.

More precisely, let G be an MPG with limited-observation and ΓG be the
associated reachability game. Define Π ′

G ⊆ ΠG as the set of all sequences x =
f0σ0f1σ1 . . . fn ∈ ΠG such that supp(fi) �= supp(fj) for all 0 ≤ i < j < n and
denote by Γ ′

G the reachability game 〈Π ′
G, Σ, fI , δ

′, T ′
∃ , T ′

∀〉 where δ′ is δ restricted
to Π ′

G, T ′
∃ = T∃ ∩Π ′

G and T ′
∀ = T∀ ∩Π ′

G.

Definition 2. An MPG with limited-observation is forcibly first abstract cycle
(or forcibly FAC) if in the associated reachability game Γ ′

G either Adam has a
winning strategy to reach locations in T ′

∀ or Eve has a winning strategy to reach
locations in T ′

∃.

One immediate consequence of the restriction to simple abstract cycles is
that the bound in Lemma 2 is at most |Obs|. In particular an alternating Turing
Machine can, in linear time, simulate a play of the reachability game and decide
which player, if any, has a winning strategy. Hence the problems of deciding if a
given MPG with partial-observation is forcibly FAC and deciding the winner of
a forcibly FAC game are both solvable in PSPACE. The next results show that
there is a matching lower bound for both these problems.

Theorem 6 (Class membership). LetG be an MPG with limited-observation.
Determining if G is forcibly FAC is PSPACE-complete.

PSPACE-hardness follows from a reduction from the satisfiability of quanti-
fied boolean formulas. The construction is similar to the construction used to
prove PSPACE-hardness for Generalized Geography in [15]. That is, the game
proceeds through diamond gadgets – the choice of each player on which side to
go through corresponds to the selection of the value for the quantified variable.
The (abstract) play then passes through a gadget for the formula in the obvious
way (Adam choosing for ∧ and Eve choosing for ∨), returning to a diamond
gadget when a variable is reached. If the variable has been seen before the cycle
is closed and the game ends, otherwise the play proceeds to the bottom of the
diamond gadget which has been seen before, thus ending the game one step later.
We set up the concrete paths within the observations in such a way that if the
cycle closes at the variable then it is good (and thus Eve wins) and if it closes at
the bottom of the gadget then it is not good. Corollary 2 implies that the cycle
closed is never bad, so either Eve wins and the game is forcibly FAC, or neither
player wins and it is not forcibly FAC.

We can slightly modify the above construction in such a way that if the game
does not finish when the play returns to a variable then Adam can close a bad

Mean-Payoff Games with Partial-Observation 173

cycle. This results in a forcibly FAC game that Eve wins if and only if the formula
is satisfied. Hence,

Theorem 7 (Winner determination). Let G be a forcibly FAC MPG. De-
termining if Eve wins G is PSPACE-complete.

It also follows from the |Obs| upper bound on plays in Γ ′
G that there is an ex-

ponential upper bound on the memory required for a winning strategy for either
player. Furthermore, we can show this bound is tight – the games constructed in
the proof of Theorem 7 can be used to show that there are forcibly FAC games
that require exponential memory for winning strategies.

Theorem 8 (Exponential memory determinacy). One player always has
a winning observation-based strategy with exponential memory in a forcibly FAC
MPG. Further, for any n ∈ N there exists a forcibly FAC MPG, of size polyno-
mial in n, such that any winning strategy has memory at least 2n.

8 First Abstract Cycle Games

We now consider a structural restriction that guarantees Γ ′
G is determined.

Definition 3. An MPG with limited-observation is a first abstract cycle game
(FAC) if in the associated reachability game Γ ′

G all leaves are in T ′
∀ ∪ T ′

∃.

Intuitively, in an FAC game all simple abstract cycles (that can be formed)
are either good or bad. It follows then from Corollary 2 that any cyclic permu-
tation of a good cycle is also good and any cyclic permutation of a bad cycle
is also bad. Together with Lemma 3, this implies the abstract cycle-forming
games associated with FAC games can be seen to satisfy the following three
assumptions: (1) A play stops as soon as an abstract cycle is formed, (2) The
winning condition and its complement are preserved under cyclic permutations,
and (3) The winning condition and its complement are preserved under inter-
leavings. These assumptions correspond to the assumptions required in [1] for
positional strategies to be sufficient for both players4. That is,

Theorem 9 (Positional determinacy). One player always has a positional
winning observation-based strategy in an FAC MPG.

As we can check in polynomial time if a positional strategy is winning in an
FAC MPG, we immediately have:

Corollary 5 (Winner determination). Let G be an FAC MPG. Determining
if Eve wins G is in NP ∩ coNP.

A path in Γ ′
G to a leaf not in T ′

∀ ∪T ′
∃ provides a short certificate to show that

an MPG with limited-observation is not FAC. Thus deciding if an MPG is FAC
is in coNP. A matching lower bound can be obtained using a reduction from the
complement of the Hamiltonian Cycle problem.
4 These conditions supercede those of [4] which were shown in [1] to be insufficient for

positional strategies.

174 P. Hunter, G.A. Pérez, and J.-F. Raskin

Theorem 10 (Class membership). LetG beanMPGwith limited-observation.
Determining if G is FAC is coNP-complete.

9 MPGs with Partial-Observation

The translation from partial-observation to limited-observation games allows us
to extend the notions of FAC and forcibly FAC games to the larger class of
MPGs with partial-observation. In this section we will investigate the resulting
algorithmic effect of this translation on the decision problems we have been
considering.

We say an MPG with partial-observation is (forcibly) first belief cycle, or FBC,
if the corresponding MPG with limited-observation is (forcibly) FAC.

9.1 FBC and Forcibly FBC MPGs

Our first observation is that FBC MPGs generalize the class of visible weight
games studied in [9]. An MPG with partial-observation is considered a visible
weights game if its weight function satisfies the condition that all σ-transitions
between any pair of observations have the same weight. We base some of our re-
sults for FBC and forcibly FBC games on lower bounds established for problems
on visible weights games.

Lemma 4. Let G be a visible weights MPG with partial-observation. Then G is
FBC.

We now turn to the decision problems we have been investigating throughout
the paper. Given the exponential blow-up in the construction of the game of
limited-observation, it is not surprising that there is a corresponding exponential
increase in the complexity of the class membership problem.

Theorem 11 (Class membership). LetG beanMPGwithpartial-observation.
Determining if G is FBC is coNEXP-complete and determining if G is forcibly FBC
is in EXPSPACE and NEXP-hard.

Somewhat surprisingly, for the winner determination problem we have an
EXP-time algorithm to match the EXP-hardness lower bound from visible weights
games. This is in contrast to the class membership problem in which an ex-
ponential increase in complexity occurs when moving from limited to partial-
observation.

Theorem 12 (Winner determination). Let G be a forcibly FBC MPG.
Determining if Eve wins G is EXP-complete.

Corollary 6. Let G be an FBC MPG. Determining if Eve wins G is EXP-
complete.

Mean-Payoff Games with Partial-Observation 175

References

1. Aminof, B., Rubin, S.: First cycle games. In: Mogavero, F., Murano, A., Vardi,
M.Y. (eds.) SR. EPTCS, vol. 146, pp. 91–96 (2014)

2. Berwanger, D., Chatterjee, K., Doyen, L., Henzinger, T.A., Raje, S.: Strategy con-
struction for parity games with imperfect information. In: van Breugel, F., Chechik,
M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 325–339. Springer, Heidelberg
(2008)

3. Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS,
pp. 73–82 (2008)

4. Björklund, H., Sandberg, S., Vorobyov, S.: Memoryless determinacy of parity and
mean payoff games: a simple proof. TCS 310(1), 365–378 (2004)

5. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: How to win when
belief fails. In: LICS, pp. 175–184. IEEE (2012)

6. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-
payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010.
LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)

7. Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. In: Kaminski,
M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg
(2008)

8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff
and energy games. In: FSTTCS, pp. 505–516 (2010)

9. Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and
mean-payoff games with imperfect information. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)

10. Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Inter-
national Journal of Game Theory 8, 109–113 (1979)

11. Hunter, P., Pérez, G.A., Raskin, J.-F.: Mean-payoff games with partial-observation
(extended abstract). CoRR (2014)

12. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ coUP. IPL 68(3),
119–124 (1998)

13. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. Advances in
Temporal Logic 16, 109–127 (2000)

14. Martin, D.A., Steel, J.R.: Projective determinacy. Proceedings of the National
Academy of Sciences of the United States of America 85(18), 6582 (1988)

15. Papadimitriou, C.H.: Computational complexity. John Wiley and Sons Ltd. (2003)
16. Reif, J.H.: The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences 29(2), 274–301 (1984)
17. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs.

TCS 158(1), 343–359 (1996)

Parameter Synthesis for Probabilistic Timed

Automata Using Stochastic Game Abstractions

Aleksandra Jovanović and Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK

Abstract. We propose a method to synthesise optimal values of timing
parameters for probabilistic timed automata, in the sense that the prob-
ability of reaching some set of states is either maximised or minimised.
Our first algorithm, based on forward exploration of the symbolic states,
can only guarantee parameter values that correspond to upper (resp.
lower) bounds on maximum (resp. minimum) reachability probability.
To ensure precise reachability probabilities, we adapt the game-based
abstraction refinement method. In the parametric setting, our method
is able to determine all the possible maximum (or minimum) reachabil-
ity probabilities that arise for different values of timing parameters, and
yields optimal valuations represented as a set of symbolic constraints
between parameters.

1 Introduction

Stochastic aspect is very important for modelling numerous classes of systems,
such as communication and security protocols, due to component failures, unre-
liable channels or randomisation. The correctness of such systems can be guar-
anteed only with some probability. Many of them also operate under timing
constraints. In such cases, the probability of a property being true depends on
those timing aspects in the system: for example, increasing a certain delay might
increase the maximum or minimum probability of reaching an error state.

Automatic synthesis of timing constraints to ensure the satisfaction of a given
property has received a lot of attention lately. Its aim is to overcome the dis-
advantage of model checking, which requires complete knowledge of the system.
This is often difficult to obtain, especially in the early design stages, when the
whole environment is not yet known. The use of parameters instead of concrete
values gives more freedom to the designers. A parametric timed model can spec-
ify that a transition is enabled for a time units, where a is a parameter. The goal
is then to automatically synthesize the values of model’s parameters such that
the specification is guaranteed. Parameterisation, however, makes verification
more difficult, as most problems become undecidable.

In this paper, we are dealing with the synthesis of timing parameters for
probabilistic real-time systems modelled as probabilistic timed automata (PTA)
[18]. PTA have been introduced as an extension of timed automata (TA) [1] for
modelling and analysing systems which exhibit real-time, nondeterministic and
probabilistic behaviour. They are finite-state automata extended with clocks,

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 176–189, 2014.
c© Springer International Publishing Switzerland 2014

Parameter Synthesis for Probabilistic Timed Automata 177

real-valued variables which increase at the same, constant rate. A fundamental
property of PTA is the maximum/minimum probability of reaching a certain
set of states in the model (i.e. the reachability probabilities). These probabil-
ities allow one to express a broad range of properties, from quality of service
to reliability, for example, deadline properties: “the maximum probability of an
airbag failing to deploy within 0.02 seconds”. PTA have been successfully used
to analyse protocols such as FireWire, Bluetooth, IEEE 802.11, etc. These are
embedded in a networked environment and their properties are almost always
expressed parametrically, as concrete values make sense only when the network
environment is known. It is thus desirable to provide a tool to automatically
derive the constraints on parameters for probabilistic systems, so that their cor-
rectness is ensured with optimal probability.

Contributions. We propose an algorithm for parameter synthesis for PTA
based on the symbolic state-space exploration. As the forward approach gives
only upper (resp. lower) bounds on max. (resp. min.) reachability probability,
we adapt the game-based abstraction refinement method. This method has been
introduced in [13] for Markov decision processes, and extended in [15] for PTA,
for the computation of exact max/min reachability probabilities. As we consider
parametric models, these probabilities are not unique and depend on particular
parameter valuations. Our algorithm allows us to choose the valuations for which
these probabilities are either maximised or minimised, and to synthesise them
as a finite set of symbolic constraints on parameters. To the best of our knowl-
edge, this is the first paper dealing with optimal timing parameter synthesis for
probabilistic timed automata. A full version of this paper is available as [10].

Related Work. An orthogonal line of work on parameter synthesis for untimed
probabilistic models is that of [7], where the authors consider Markov chains
and transition probabilities as parameters. Regarding timed systems, parametric
timed automata have been introduced in [2] as a means to specify parametric tim-
ing constraints. The reachability-emptiness problem, which asks whether there
exists a parameter valuation such that the automaton has an accepting run, is
undecidable. Subsequent research has thus concentrated on finding subclasses for
which certain problems would be decidable by restricting the use of parameters
[9] or by restricting the parameter domain [11]. In [6], the authors consider fully
deterministic networks of timed automata with priorities and parametric guards,
and extended MTL with counting formulas. They develop an algorithm based
on constraint solving and Monte Carlo sampling to synthesise timing delays.
There is little work, however, on timing parameter synthesis for probabilistic
real-time systems. In [8], a technique is proposed to approximate parametric
rate values for continuous-time Markov chains for bounded reachability proba-
bilities. In [3], the authors apply their Inverse method for parameter synthesis
for TA to PTA. The method starts from reference parameter values of a TA,
and derives the constraints on parameters such that the obtained models are
time-abstract equivalent. Time-abstract equivalence preserves untimed proper-
ties, and thus the parameter values derived on the non-probabilistic version of

178 A. Jovanović and M. Kwiatkowska

the model preserve reachability probabilities. Termination is not guaranteed and
the derived constraints are not weakest in general. In [4], the authors consider
a fully deterministic parametric model, where the remaining time in a node is
unique and given as a parameter, and provide a method to compute the expected
time to reach some node as a function of model’s parameters.

2 Preliminaries

A discrete probability distribution over a set S is a function μ : S �� �0, 1�, such
that

�
s�S μ�s� � 1 and the set �s 	 s
 S � μ�s� � 0
 is finite. By Dist�S� we

denote the set of such distributions. μp is a point distribution if μp�s� � 1 for
some s
 S. We now define Markov decision processes, a formalism for modelling
systems which exhibit both nondeterministic and probabilistic behaviour.

Definition 1 (Markov decision processes). An MDP is a tuple M � �S, s0,
Σ, StepsM�, where S is a set of states, s0 is a set of initial states, Σ is a set of
actions and StepsM : S �Σ �� Dist�S� is a probabilistic transition function.

A transition in M from state s is first made by nondeterministically selecting
an action δ
 Σ and then the successor state s� is chosen randomly according to
the probability distribution StepsM�s, δ�. A path is a sequence of such transitions
and represents a particular resolution of both nondeterminism and probability.
A state s is reachable in M if there exists a path from the initial state of M to
s. A strategy A is a function from finite paths to distributions which resolves
nondeterminism in an MDP. For a fixed strategy A, the behaviour of an MDP
is purely probabilistic, and we can define the probability pAs �F � of reaching a
target set F � S from s under A. By quantifying over all strategies in M, we
can define the minimum and maximum probability of reaching F :

pmin
M �F � � infs�s0 infA pAs �F � and pmax

M �F � � sups�s0supA pAs �F �
These values can be computed efficiently together with the corresponding strate-
gies using, e.g., value iteration, which approximates the probability value.

Stochastic 2-player games [5] are turn-based games involving two players and
probability. They generalise MDPs by allowing two types of nondeterministic
choice, each controlled by a separate player.

Definition 2 (Stochastic games). A stochastic game is a tuple G � �S, �S1,
S2�,
s0, Σ, StepsG�, where S is a set of states partitioned into sets S1 and S2, s0 is a

set of initial states, Σ is a set of actions and StepsG : S1 �Σ � S2 �� 2Dist�S� is
a probabilistic transition function.

S1 and S2 represent the sets of states controlled by player 1 and player 2, respec-
tively. The behaviour of a game is as follows: first player 1, in state s
 S1, selects
an available action δ
 Σ, which takes the game into a state s�
 S2. Player 2
then selects a probability distribution μ from the set StepsG�s, δ, s

��. Finally, the
successor state s� is chosen according to μ. A resolution of nondeterminism in G
is a pair of strategies σ1, σ2 for player 1 and player 2, respectively, under which
we can define the probability pσ1,σ2

s �F � of reaching a subset F � S from state s.

Parameter Synthesis for Probabilistic Timed Automata 179

Clocks and parameters. Let R, R�0 and Z be the sets of reals, non-negative
reals and integers, respectively. Let X be a finite set. A linear expression on X
is an expression of the form λ :� k 	 k � x 	 λ� λ, where k
 Z and x
 X .

Now let X � �x1, ..., xn
 be a finite set of clock variables. A clock valuation
u : X �� R�0 is a function assigning a non-negative real number to each x
 X .
Let 0 be a valuation that assigns 0 to all clocks in X . For any R � X and any
valuation u on X , we write u�R� for the valuation on X such that u�R��x� � 0
if x
 R and u�R��x� � u�x� otherwise. For t � 0, u � t denotes the valuation
which assigns �u� t��x� � u�x� � t to all x
 X . Let P � �p1, ..., pm
 be a finite
set of parameters. A (linear parametric) constraint on X � P is an expression
of the form γ :� xi � c 	 xi � xj � c 	 γ � γ where 1 � i � j � n, xi, xj
 X ,
�
 ��,�
 and c is a linear expression on P . By C�X,P � we denote the set of
such parametric constraints and by C��X,P � we denote the set of (non-diagonal)
constraints of the form: γ� :� xi � c 	 γ� � γ�. For any valuation v on P and
any linear constraint γ on X � P , v�γ� is the linear constraint on X obtained
by replacing each parameter p
 P by the (concrete) value v�p�. Given some
arbitrary order on X�P , a valuation can be viewed as a real-valued vector of size
	X�P 	. The set of valuations satisfying some linear constraints is then a convex
polyhedron of R�X�P �. A zone is a polyhedron defined only by conjunctions of
the constraints of the form x � y � c or x � c with x, y
 X , c
 Z and
�
 ��,�
. If v is a valuation on both clocks and parameters X � P (as v is
used throughout the paper, unless specified otherwise) then by v�P (resp. v�X)
we denote the projection of v onto P (resp. X). We now give a formal definition
of Parametric Probabilistic Timed Automata (PPTA), which are PTA extended
with timing parameters.

Definition 3 (PPTA). A PPTA is a tuple P � �L, l0, X, P,Σ, prob, Inv� where:
L is a finite set of locations; l0
 L is the initial location; X is a finite set
of clocks; P is a finite set of parameters; Σ is a finite set of actions; prob :
L � Σ � C�X,P � �� Dist�2X � L� is a probabilistic transition function; and
Inv : L �� C��X,P � is a function that assigns an invariant to each location.

For any rational valuation v on P , the structure v�P� obtained from P by
replacing every constraint γ by v�γ� is a PTA. The behaviour of a PPTA P is
described by the behaviour of all PTA v�P� obtained by considering all possible
parameter valuations. A (concrete) state of v�P� is a pair �l, u�
 L�RX

�0 such
that the clock valuation u satisfies the invariant (notation u 	� v�Inv�l��). A
transition in the semantics of v�P� is a timed-action pair �t, δ�. In each state
certain amount of time t
 R�0 can elapse, as long as u � t 	� v�Inv�l��. Time
elapse is followed by the choice of an action δ
 Σ, for which the set of clocks
R to reset and successor locations l� are selected randomly according to the
probability distribution prob�l, δ, γ�. The action δ can only be taken once its
constraint v�γ� (called guard) is satisfied by the current clock valuation. Each
element �R, l��
 2X � L, such that prob�l, δ, γ��R, l�� � 0, is called an edge and
the set of all such edges, denoted edges�l, δ, γ�, is assumed to be an ordered list
�e1, ..., en�. We now formally define the semantics of a PPTA under a parameter
valuation v.

180 A. Jovanović and M. Kwiatkowska

Definition 4 (Semantics of a PPTA). Let P � �L, l0, X, P,Σ, prob, Inv� be
a PPTA and v be a R-valuation on P (v : P �� R) . The semantics of v�P� is
given by the infinite-state MDP Mv�P� � �Q, q0,R�0 �Σ, StepsMv�P�

� where:

- Q � ��l, u�
 L�X �� R�0 	 u 	� v�Inv�l��
, q0 � �l0,0�
- StepsMv�P�

��l, u�, �t, δ�� � μ iff ��R, l��
 edges�l, δ, γ� such that u � t 	�

v�γ� � u� t� 	� Inv�l� for all 0 � t� � t, and for any �l�, u��
 Q:
μ�l�, u�� �

�
�	 prob�l, δ, γ��R, l�� 	R
 2X � u� � �u� t��R� 	

Note that the definition of μ involves summation over the cases in which multiple
clock resets result in the same target state �l�, u��, expressed as a multiset, since
some of the probabilities might be the same.

We study the optimal timing parameter synthesis problem for PPTA, i.e., au-
tomatically finding values of parameters such that the probability (either max-
imum or minimum) of reaching a certain set of locations is optimised. For ex-
ample, in the case of property “the maximum probability of an airbag failing
to deploy”, we would want to choose the timing parameters that minimise this
probability value. On the other hand, we would want to maximise “the maximum
probability that the protocol successfully terminates”.

3 Synthesis with Forward Reachability

A naive approach to parameter synthesis for PTA is to restrict parameter values
to bounded intervals of integers (or rationals that can be scaled to integers) and
perform verification for each such (non-parametric) model using a probabilistic
model checker, e.g. Prism [16]. However, this approach is shown to be inefficient
for (non-probabilistic) TA compared to symbolic techniques, especially when the
sets of possible parameter values are large [11]. This is why we aim to formulate
a symbolic algorithm for deriving constraints on parameters that ensure the
optimisation of some reachability probability in the model. For the symbolic
exploration of the state-space, we use the notion of parametric symbolic state
and forward symbolic operations on valuation sets given below, defined in [11].

Definition 5 (Parametric symbolic state). A (parametric) symbolic state
of a PPTA P, with set of clocks X and set of parameters P , is a pair S � �l, ζ�
where l is a location of P and ζ is a set of valuations v on X � P .

- future (time successors): ζ	 � �v� 	 v
 ζ � v��x� � v�x� � d, d � 0 if x

X ; v��x� � v�x� if x
 P

- reset of clocks in R � X : ζ�R� � �v�R� 	 v
 ζ

- successor by edge e � �R, l�� in the distribution prob�l, δ, γ�: Succ��l, ζ�, e� �
�l�, �ζ � γ��R�	 � Inv�l���
- initial symbolic state: Init�P� � �l0, �v
 RX�P 	 v�X
 �0X

	 � v�Inv�l0��
�.
The sets of valuations of all reachable symbolic states of a PPTA are convex

polyhedra [9], since the set of valuations of the initial symbolic state is a convex
polyhedron and all the operations preserve convexity.

Parameter Synthesis for Probabilistic Timed Automata 181

Forward Reachability Exploration. The forward exploration, which builds
an MDP-based abstraction of a given PTA [18], is an extension of the well-
known zone-based forward reachability algorithm, ubiquitous for model-checking
TA. This algorithm performs the exploration of the state-space by successively
computing symbolic states using Succ, starting from the initial state. For proba-
bilistic models, on-the-fly techniques are not used, as the goal is to compute the
probability of reaching a state, instead of just checking the existence of a path.

In Fig. 1 we present our extension of the forward reachability algorithm
from [18] to parametric probabilistic timed automata. It takes a PPTA P and
some subset of its locations F as input, and returns the reachability graph
�Sym,Trans�. Sym is the set of all reachable parametric symbolic states S of the
model and Trans is the set of symbolic transitions. Waiting is the set of those
symbolic states which have not yet been explored. As long as there are sym-
bolic states unexplored (Waiting � ∅), successor states are computed for each
possible edge using Succ operator. Each symbolic transition T
 Trans is of the
form T � ��l, ζ�, δ, ��l1, ζ1�, ..., �ln, ζn���, where n � 	edges�l, δ, γ�	. A symbolic
transition T induces probability distribution μT over symbolic states Sym . For
any �l�, ζ ��
 Sym: μT �l

�, ζ �� �
�
�	 prob�l, δ, γ�ei 	 ei
 edges�l, δ, γ� � ζi � ζ � 	
.

Using these distributions, the algorithm BuildMDP�Sym,Trans� constructs
an MDP similarly to that of [18] for PTA, which can then be analysed to compute
the reachability probabilities. For PTA, and therefore for PPTA, this approach
only gives upper (resp. lower) bounds on maximum (resp. minimum) reachability
probability in the model. This is because the reachability graph is too coarse to
preserve precise time the actions can be taken, and thus constructs an over-
approximation of the possible strategies.

Let us highlight the differences between our algorithm and its non-parametric
counterpart from [18]. In the non-parametric case, all the symbolic states �l, ζ�
containing some location l
 F are collected into a set Reached . Then, in the
constructed MDP, the max. (or min.) probability of ending up in Reached is
calculated. In our setting, we are interested in finding the optimal parameter
valuations (that maximise or minimise some reachability probability). We thus
need to keep separate those symbolic states containing different parameter val-
uations and calculate the max/min reachability probability for each one. We
divide the set Reached into subsets Reached i, each of which contains the sym-
bolic states �li, ζi� with equivalent parameter values (obtained by projection onto
parameters ζi�P). Another difference arises when building symbolic transitions
Trans . This follows from the property of TA (and therefore PTA) proven in
[9], which states that weakening (resp. strengthening) the guards in any TA T ,
e.g decreasing lower and increasing upper (resp. increasing lower and decreasing
upper) bounds on clocks, yields an automaton whose reachable states include
(resp. are subset of) those of T . We therefore add, for any two symbolic states
�li, ζi�, �lj , ζj�
 Sym which satisfy ζi�X � ζj �X � ζi�P � ζj �P � li � lj , a tran-

sition (point distribution) from �lj , ζj� to �li, ζi�, in order to obtain the correct
probabilities in the MDP. By �Reached i
�P in Fig. 1, we denote the parameter
values contained in Reached i.

182 A. Jovanović and M. Kwiatkowska

// ParReach(P , F)

Sym :� ∅; Trans :� ∅; Reached :� ∅; Waiting :� �Init�P��; n :� 0; Reached0 :� ∅
while Waiting � ∅

choose and remove �l, ζ� from Waiting
Sym :� Sym � ��l, ζ��
for δ � Σ such that edges�l, δ, γ� � ∅

for each ei � edges�l, δ, γ� � 	e1, ..., en

�l�i, ζ

�
i� :� Succ��l, ζ�, ei�

if �l�i, ζ
�
i� � Sym � ζ �

i � ∅� l�i � F then Waiting :� Waiting ���l�i, ζ
�
i��

else if �l�i, ζ
�
i� � Sym � ζ �

i � ∅ then Reached :� Reached � ��l�i, ζ
�
i��

Trans :� Trans � ���l, ζ�, δ, 	�l1, ζ1�, ..., �ln, ζn��
�
//Additional transitions from a state to its subsets
for each �l, ζ� � Sym

if
�l�, ζ �� � Sym such that l � l� � ζ�X � ζ �
�X � ζ�P � ζ �

�P then
Trans :� Trans � ��l�, ζ ��,∅, 	�l, ζ�
�

//Divide Reached into subsets Reached i according to different parameter valuations
for each �l, ζ� � Reached

if (ζ�P � �Reached i��P for some Reached i where i � �0..n�) then
Reached i :� Reached i � ��l, ζ��

else Reachedn :� Reachedn � ��l, ζ��; n��;
return �Sym,Trans�
// BuildParMDP�Sym,Trans�
sym0 � ��l, ζ� � Sym � l � l0�
for �l, ζ� � Sym and T � Trans�l, ζ�

StepsM��l, ζ�, T � :� μT

return M � �Sym, sym0,Trans , StepsM�

Fig. 1. Parametric forward reachability and construction of the corresponding MDP

Example 1. Let us consider a PPTA shown in Fig. 2. We are interested in
the values of the parameter b which maximise the probability of the medium
successfully send-ing the data (reaching location l2). The MDP constructed
from the reachability graph is shown in Fig. 3. There are three symbolic states
holding l2 with different parameter valuations, Reached1 � ��l2, x � y � b �
1�
,Reached2 � ��l2, x � y�b � 3�
 and Reached3 � ��l2, x � y�b � 5�
. Using
Prism, we calculated maximal probabilities of reaching those states in the MDP:
pmax �♦Reached1� � 0.65, pmax �♦Reached2� � 0.8775, and pmax �♦Reached3� �
0.957125, where ♦φ means that φ must hold eventually. If we want to maximise
the probability of reaching l2, it is clear that we should choose b � 1.

The forward reachability algorithm provides only upper (resp. lower) bound
on the max. (resp. min.) reachability probability. In Example 1, this method
actually gives the correct values, but consider now the automaton of Fig. 4,
inspired by [18]. The probability of reaching l3 obtained using forward approach
(the resulting MDP is shown in Fig. 5) is 1, regardless of the value of a. By
careful inspection, we observe that the max. probability is 1 only if a � 0 (when
the transition from l0 is taken at x � y � 0), and otherwise it is at most 0.5.

Theorem 1. For a PPTA P and a subset of its locations F , if �Sym,Trans� �
ParReach�P , F � and M � BuildMDP�Sym ,Trans�, then:

Parameter Synthesis for Probabilistic Timed Automata 183

l0 l1

x � 3� y � 7

l2 l3

send

release x � b

�x :� 0�

�x
, y

:�

0�

0.
65

x � 2 �x :� 0�

0.35

�x :� 0�

�y :� 0�

y � 7

abort

Fig. 2. PPTA

l1, x � 3� b� x �
y � 7 � b � 7

l0, x � y

l1, x � 3�b�x�2 �
y � 7 � b � 5

l2, x �
y � b � 5

l3, x �
y � b � 7

l1, x � 3�b�x�4 �
y � 7 � b � 3

l2, x �
y � b � 3

l3, x �
y � b � 5

l1, x � 3�b�x�6 �
y � 7 � b � 1

l2, x �
y � b � 1

l3, x �
y � b � 3

l3, x �
y � b � 1

0.35

0.35

0.35

0.65

0.65

0.65

Fig. 3. MDP for PPTA of Fig. 2

l0

l3

l2l1 0.5

�x :� 0�

0.5

x � 0� y � 0
�y :� 0�

x � 0� y � a

Fig. 4. PPTA

l0, x � y

l3, x � y

l2, x � yl1, x � y
0.50.5

Fig. 5. MDP for PPTA of Fig. 4

- pmin
M �Reached � � pmin

P �F � and pmax
M �Reached� � pmax

P �F �;
- if M gives the precise reachability probabilities in P and if some �lk, ζk�

Reached has the optimum (max. or min.) reachability probability, among all
�lj , ζj�
 Reached, then �ζk �P ��

�

j�k,lj�F

ζj�P �
 is the solution to the optimal
parameter synthesis problem.

The reachability-emptiness problem for parametric timed automata is unde-
cidable [2], and the algorithm for forward reachability exploration for this model
might not terminate [11,9]. Since our algorithm for PPTA can be viewed as its
extension, termination cannot be guaranteed either.

To resolve the limitation of the forward approach, namely, that it can only
compute bounds on the reachability probabilities, in the next section we adapt
the game-based abstraction refinement method from [15] to synthesise the op-
timal timing parameter values for PPTA. We choose this approach as it can
compute precise min. and max. probabilities and is shown to perform better
then the alternative model checking technique for PTA, digital clocks [17].

4 Synthesis with Game-Based Abstraction Refinement

In [14], stochastic two-player games are used as abstractions for MDPs. In such
a game, the two players represent nondeterminism introduced by the abstraction

184 A. Jovanović and M. Kwiatkowska

(player 1) and nondeterminism from the original model (player 2). By quanti-
fying over all possible strategies for players 1 and 2, we can obtain both the
lower bound (lb) and upper bound (ub) on either the max. or min. reachability
probability in the original MDP. If a game G is constructed from an MDP M
using the approach from [14], where F is a subset of states of M, we have:

plb,min
G �F � � pmin

M �F � � pub,min
G �F � and plb,max

G �F � � pmax
M �F � � pub,max

G �F �.

In case ofmaximumprobabilitywehave: plb,max
G �F �

def
� sups�s0 infσ1supσ2

pσ1,σ2
s �F �

and pub,max
G �F �

def
� sups�s0 supσ1

supσ2
pσ1,σ2
s �F �. Using similar techniques to value

iteration for MDPs [5], these probabilities can be efficiently approximated, to-
gether with the corresponding strategy pairs which achieve them.

In [15], the concept of gamed-based abstractions is used for PTA in order
to compute the maximum and minimum reachability probabilities. The method
starts from the MDP obtained via forward reachability algorithm, and subse-
quently builds and refines the stochastic game abstraction. In this section, we
generalise this method by taking into account timing parameters.

Game-Based Abstraction for PPTA. The game-based abstraction is con-
structed by analysing transitions outgoing from each location in a PPTA. The
transitions are divided into subsets according to the common part of the symbolic
state in which they are enabled. This analysis is based on the validity opera-
tor [15]. In the non-parametric case, this operator takes the symbolic transition
T � ��l, ζ�, δ, ��l1, ζ1�, ..., �ln, ζn��� and returns false if the part of ζ from which
it is possible to let time pass and then perform action δ, such that taking the
ith edge �Ri, li� gives some state �li, v�
 �li, ζi�, is empty. Such analysis requires
several backward operators, defined for the parametric domain in [12]:

- past (time predecessors): ζ� � �v� 	 v
 ζ � v��x� � 0, v��x� � d � v�x�, d �
0 if x
 X ; v��x� � v�x� if x
 P

- inverse reset of clocks in set R � X : ζ�R�
1 � �v� 	 �v
 ζ s.t. v��x� �
0 if x
 R� v��x� � v�x� otherwise

We extend the validity operator to parametric domain and replace Boolean
operations with the corresponding set-theoretic operations, in order to obtain
the valuations on X � P from which it is possible to perform such a transition:
valid�T � � ζ � ��γ � ��n

i�1�ζi�R�

1�����. The transition T is therefore valid

if the set of valuations (polyhedron) valid �T � is non-empty. The projection of
these valuations onto parameters gives the corresponding values of parameters.
In order to construct a stochastic game, the notion of validity is extended to sets
of symbolic transitions with the same source. Again, we replace Boolean with
set-theoretic operators: valid�T� � ��T�Tvalid�T �����T�Trans�l,ζ��T�valid�T ��.
valid�T� defines the set of valuations v 	� ζ on X � P , such that from �l, v� it
is possible to perform any symbolic transition T
 T, but it is not possible
to perform any other transition of Trans�l, ζ�. In a symbolic state �l, ζ� of a
stochastic game abstraction of a PPTA, player 1 first picks a subset T of symbolic
transitions (in other words, part of the symbolic state in which these transitions
are valid), and player 2 then picks a transition T
 T. Fig. 6 shows the algorithm
for the construction of a stochastic game from a given reachability graph, which

Parameter Synthesis for Probabilistic Timed Automata 185

yields (by quantifying over all possible strategies for player 1 and player 2) upper
and lower bounds on the max/min reachability probabilities in a PPTA.

//BuildGame�Sym,Trans�
sym0 � ��l, ζ� � S � l � l0�
for �l, ζ� � S

for T � Trans�l, ζ� s.t. T � ∅ and valid�T� � ∅
StepsG��l, ζ�,T� :� �μT � T � T�

return G � �Sym, sym0, 2
Trans ,StepsG�

Fig. 6. Algorithm for stochastic game abstraction

// Refine�Sym,Trans , �l, ζ�,Tlb ,Tub�
ζlb :� valid�Tlb�; ζub :� valid�Tub�
Symnew :� ��l, ζlb�, �l, ζub�, �l, ζ ���ζlb � ζub�����∅�
Symref :� �Sym���l, ζ��� � Snew ; Transref :� ∅
for each T � �S0, δ, 	S1, ..., Sn
� � Trans

if �l, ζ� � �S0, S1, ..., Sn� then
Transref :� Transref � �T �

else Tnew :� ��S�
0, δ, 	S

�
1, ..., S

�
n
� � S

�
i � Symnew if Si � �l, ζ� � S�

i � Si otherwise�
for T new � Tnew such that valid�T new � � ∅

Transref :� Transref � �T new�
return �Symref ,Transref �

Fig. 7. Algorithm for parametric abstraction refinement

Theorem 2. If �Sym ,Trans� � ParReach�P , F �, G � BuildGame�Sym ,

Trans� and �
 �min,max
 then: plb,�G �Reached� � p�P�F � � pub,�G �Reached �.

Example 2. A game constructed from the forward reachability graph of a PPTA
in Fig. 2 is shown in Fig. 8. We represent player 1 states by ellipses containing
symbolic states �l, ζ�, and player 2 states by a black dot. In two of its states
(containing l1 and l2), player 1 can choose between the part of the state where
both transitions are valid and the part where only one transition is valid (a
self-loop). The analysis of this game, however, gives values 0 and 1 for lower
and upper bound, respectively, on the maximum probability of reaching l3. We
address this issue below by applying a method to refine the abstraction.

Parametric Abstraction Refinement. Stochastic game abstractions might
be too imprecise for reachability probabilities, as shown in Example 2. The
abstraction refinement method proceeds by iteratively computing refined ab-
stractions until suitable precision is obtained. The game-based abstraction re-
finement for MDPs from [13] uses the difference between lower and upper bounds
on max/min reachability probability computed thus far as the quantitative mea-
sure of precision. This method has been subsequently used in [15] for the ab-
straction refinement for PTA. We now explain our extension for the parametric

186 A. Jovanović and M. Kwiatkowska

l0, x � y

l3, x � y

l2, x � yl1, x � y 0.50.5

Fig. 8. Game-based abstraction

l0, x � y

l3, x � y

l2, x � y

l1, x � 0 �
y � x � a l1, x � 0� y � a

0.5
0.5

0.5 0.5

Fig. 9. Refinement of a symbolic state

case, which leads to parameter values corresponding to precise probabilities in
the model.

After the construction and analysis of a stochastic game, the refinement algo-
rithm, presented in Fig. 7, takes the reachability graph �Sym,Trans�, splits one
symbolic state per iteration and modifies symbolic transitions accordingly. The
split of a symbolic state �l, ζ� is done with respect to player 1 strategy choices,
Tub and Tlb , in �l, ζ�, which achieve lower and upper bounds (such choices
must exist in a state where these bounds differ, [14]). The symbolic state �l, ζ�
is therefore split into �l, valid�Tlb��, �l, valid�Tub��, and �l, ζ � ��valid�Tlb�
valid�Tub���. By construction, both valid �Tlb� and valid�Tub� are non-empty
and valid�Tlb� � valid �Tub�, and thus the split produces strict refinement. The
MDP of Fig. 5, after a refinement of one symbolic state, is shown in Fig. 9.

The complete game-based abstraction refinement scheme, shown in Fig. 10,
provides a means to compute the precise values for max/min reachability prob-
ability, each corresponding to a particular parameter valuation. We can then
choose those valuations that optimise (either maximise or minimise) these prob-
abilities. Algorithm Synth uses function AnalyzeGame of [5] to compute
bounds on max/min probability of reaching some set of locations in a stochas-
tic game and the corresponding strategies. The choice Ti of player 1, in some
�l, ζ�, is a set of symbolic transitions T , and also represents the part of ζ in
which these transitions are valid. To find the optimal parameter valuations,
we first need to take the projection onto the parameters for each valid�Ti�
in the optimal strategy of player 1 (the strategy for reaching some Reachedk

which gives the optimal probability), and take their intersection. Then, for some
�lk, ζk�
 Reachedk (all of them have the equivalent ζk�P), we obtain the solution
as �
�

i valid�Ti��P � �ζk �P ��
�

j�k,lj�F

ζj�P ��
.

Theorem 3. For a PPTA P, a subset of its location F and �
 �min,max
, let
�Sym,Trans� � ParReach�P , F �. If �Symref ,Transref � is the result returned
by applying Refine to �Sym,Trans�, G by BuildGame�Sym ,Trans� and Gref

by BuildGame�Symref ,Transref � then:
- �Symref ,Transref � is a reachability graph for �P , F �;

- plb,�G �Reached � � plb,�Gref �Reached� and pub,�G �Reached� � pub,�Gref �Reached�;

Parameter Synthesis for Probabilistic Timed Automata 187

- If p� � plb,�Gref �lk, ζk� � pub,�Gref �lk, ζk�, for some �lk, ζk�
 Reached, is the opti-
mum � reachability probability, among all �lj , ζj�
 Reached, then the solution to
the optimal parameter synthesis can be extracted from the strategy σ1 of Player
1 (which achieves p�) and ζk.

// Synth�P , F,�, ε, Æ�
�Sym,Trans� � ParReach�P , F �; G � BuildGame�Sym,Trans�; p� :� 0; σp� :� ∅
for each Reached i � Reached

�plb,�G , pub,�G , σlb
1 , σub

1 � :� AnalyseGame�G,Reached i,��

while pub,�G � plb,�G � ε
choose �l, ζ� � Sym

�Symref ,Transref � � Refine�Sym,Trans , �l, ζ�, σlb
1 �l, ζ�, σ

ub
1 �l, ζ��

G � BuildGame�Symref ,Transref �
�plb,�G , pub,�G , σlb

1 , σ
ub
1 � :� AnalyseGame�G,Reached i,��

if p� � plb,�G then // put � (resp. �) instead of � when Æ is maximisation

p� :� plb,�G ; σp� :� σlb
1 (resp. minimisation)

return �p�, σp� �

Fig. 10. Parameter synthesis using game-based abstraction refinement loop

The algorithm is designed to terminate when the difference between the up-
per and lower bound falls below some threshold ε for reasons of computational
efficiency. We show that this is, however, not necessary. If the initial forward
reachability exploration terminates (ParReach), then our algorithm, similarly
to its non-parametric counterpart from [15], is guaranteed to terminate in a finite
number of steps with a precise answer.

Theorem 4 (Termination). Let �
 �min,max
. If forward reachability al-
gorithm (ParReach) terminates, then the algorithm for parameter synthesis
Synth terminates after a finite number of steps and returns p� � plb,� � pub,�.

Example 3. We return to the PPTA in Fig. 4. The final stochastic game, after
two refinement iterations, contains six symbolic states. The validity of each new
symbolic transition Ti, obtained in the refinement process, gives the following
parameter valuations:
-T1 � ��l0, x � y�,∅, ��l1, x � 0� y � a�, �l2, x � y � 0��� � ∅ if a � 0
-T2 � ��l0, x � y�,∅, ��l1, x � 0� y � a�, �l2, x � y � 0��� � ∅ if a � 0
-T3 � ��l0, x � y�,∅, ��l1, x � 0� y � a�, �l2, x � y � 0��� � ∅ if a � 0
-T4 � ��l0, x � y�,∅, ��l1, x � 0 � y � a�, �l2, x � y � 0��� � ∅ for a
 R�0.
The set of transitions T1 � �T2, T3, T4
 is valid if a � 0, in which case the max.
probability of reaching l3 is 0.5, and T2 � �T1, T4
, is valid if a � 0, in which case
the max. probability of reaching l3 is 1. If we wish to maximise this probability,
the algorithm obtains the constraint a � 0.

5 Conclusion

We presented a technique for PPTA which derives symbolic constraints on pa-
rameters of the model, such that the max/min probability of reaching some set

188 A. Jovanović and M. Kwiatkowska

of locations is optimised. We focused on probabilistic reachability, but can easily
consider more expressive target sets that refer to locations and clocks by syntac-
tically modifying the model as in [18]. Computing expected time properties using
game abstractions is still open for PTA. Termination of our algorithm depends
on whether the forward reachability exploration terminates. Unlike for TA/PTA,
where the extrapolation operator on zones can be used, in the parametric case
we need to impose certain restrictions to ensure termination. One possibility is
to restrict the parameter domain to bounded integers as in [11]. We are currently
implementing the algorithm in Prism.

Acknowledgments. This research is supported by ERC AdG VERIWARE.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC

1993, pp. 592–601. ACM Press (1993)
3. André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to prob-

abilistic timed automata. FMSD 42, 119–145 (2013)

4. Chamseddine, N., Duflot, M., Fribourg, L., Picaronny, C., Sproston, J.: Comput-
ing expected absorption times for parametric determinate probabilistic timed au-
tomata. In: QEST 2008, pp. 254–263. IEEE CS Press (2008)

5. Condon, A.: The complexity of stochastic games. Information and Computation 96,
203–224 (1992)

6. Diciolla, M., Kim, C.H.P., Kwiatkowska, M., Mereacre, A.: Synthesising optimal
timing delays for timed i/o automata. In: EMSOFT 2014, ACM (2014)

7. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
markov models. In: SPIN, pp. 88–106 (2009)

8. Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter synthesis for proba-
bilistic time-bounded reachability. In: RTSS, pp. 173–182. IEEE Computer Society
(2008)

9. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming 53-53,
183–220 (2002)

10. Jovanović, A., Kwiatkowska, M.: Parameter synthesis for probabilistic timed au-
tomata using stochastic game abstractions. Technical Report CS-RR-14-06, Oxford
University (June 2014)

11. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 401–415. Springer, Heidelberg (2013)

12. Jovanović, A., Lime, D., Roux, O.H.: Synthesis of bounded integer parameters for
parametric timed reachability games. In: Van Hung, D., Ogawa, M. (eds.) ATVA
2013. LNCS, vol. 8172, pp. 87–101. Springer, Heidelberg (2013)

13. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. FMSD 36(3),
246–280 (2010)

14. Kwiatkowska, M., Norman, G., Parker, D.: Game-based abstraction for Markov
decision processes. In: QEST 2006, pp. 157–166. IEEE CS Press (2006)

Parameter Synthesis for Probabilistic Timed Automata 189

15. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FOR-
MATS 2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

17. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. FMSD 29, 33–78 (2006)

18. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of
real-time systems with discrete probability distributions. TCS 282, 101–150 (2002)

On Functions Weakly Computable by Petri Nets
and Vector Addition Systems�

J. Leroux1 and Ph. Schnoebelen2

1 LaBRI, Univ. Bordeaux & CNRS, France
2 LSV, ENS Cachan & CNRS, France

Abstract. We show that any unbounded function weakly computable by a Petri
net or a VASS cannot be sublinear. This answers a long-standing folklore conjec-
ture about weakly computing the inverses of some fast-growing functions. The
proof relies on a pumping lemma for sets of runs in Petri nets or VASSes.

1 Introduction

Petri nets (PN), Vector Addition Systems (VAS) and Vector Addition Systems with
States (VASS) are essentially equivalent computational models based on simple oper-
ations on positive integer counters: decrements and increments. Such systems can be
used to compute number-theoretical functions, exactly like with Minsky machines or
Turing machines. However, they cannot compute all recursive functions since they are
less expressive than Minsky machines. In particular they lack zero-tests, or, more pre-
cisely, they cannot initiate a given action on the condition that a counter’s value is zero,
only on the condition that it is not zero.

The standard definition for a function computed by a Petri net or a VASS is due
to Rabin and is called “functions weakly computable by a Petri net”, or just “WCPN
functions” (all definitions will be found in the following sections). This notion has been
used since the early days of Petri nets and has proved very useful in hardness or impos-
sibility proofs: The undecidability of equivalence problems for nets and VASSes, and
the Ackermann-hardness of the same problems for bounded systems, have been proved
using the fact that multivariate polynomials with positive integer coefficients —aka pos-
itive Diophantine polynomials— and, respectively, the fast-growing functions (Fi)i∈N

in the Grzegorczyk hierarchy, are all WCPN [13,25,17].
The above results rely on showing how some useful functions are WCPN. But not

much is known about exactly which functions are WCPN or not. It is known that all
WCPN functions are monotonic. They are all primitive-recursive. The class of WCPN
functions is closed under composition. A folklore conjecture states that the inverses
of the fast-growing functions are not WCPN. It is stated as fact in [30, p.252] but no
reference is given. In this paper, we settle the issue by proving that if f : N → N is
WCPN and unbounded then it is in Ω(x), i.e., f(x) eventually dominates c ·x for some
constant c > 0. Thus any function that is sublinear, like x → '

√
x(, or x → 'log x(, are

not WCPN. In particular, this applies to the inverse F−1
i of any fast-growing function

with i ≥ 2. The proof technique is interesting in its own right: it relies on a pumping
lemma on sets of runs in VASSes or Petri nets.
� Work supported by the ReacHard project, ANR grant 11-BS02-001-01.

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 190–202, 2014.
c© Springer International Publishing Switzerland 2014

On Functions Weakly Computable by Petri Nets and Vector Addition Systems 191

Beyond Petri nets and VASSes. Petri nets and VASSes are a classic example of well-
structured systems [1,10]. In recent years, weakly computing numerical functions has
proved to be a fundamental tool for understanding the expressive power and the com-
plexity of some families of well-structured systems that are more powerful than Petri
nets and VASSes [31,14,11]. For such systems, the hardness proofs rely on weakly com-
puting fast-growing functions (Fα)α∈Ord that extend Grzegorczyk’s hierarchy. These
hardness proofs also crucially rely on weakly computing the inverses of the Fα’s.

There are several extensions of Petri nets for which reachability (or coverability or
termination) remains decidable: pushdown VASSes [23], nets with nested zero-tests [27],
recursive VASSes [4] and Branching VASSes [6], VASSes with pointers to counters [5],
etc. In many cases, it is not known how these extensions compare in expressive power
and in complexity. We believe that weakly computable functions can be a useful tool
when addressing theses questions.

Outline of the paper. Section 2 recalls the standard definitions for VASSes and fixes
some notations. Section 3 recalls the definitions for WCPN functions and the classic
results about them. Our main result is proved in Section 4.

2 Vector Addition Systems with States

Following Hopcroft and Pansiot [15], we adopt Vector Addition Systems with States
(VASS) as our mathematical setting (rather than Petri nets or plain VASes) because they
offers a good compromise between ease of description for specific systems, and conve-
nient mathematical notation for reasoning about them. Nevertheless, all these models
are essentially equivalent for our purposes.

Vectors of integers. Z andN denote the sets of integers and, resp., non-negative integers.
For d ∈ N, a d-dimensional vector is a tuplea = 〈a1, . . . , ad〉 in Zd. We use 0 to denote
〈0, . . . , 0〉 when the dimension is understood. Vectors can be concatenated: for a ∈ Zd

and b ∈ Zd′
we may write 〈a, b〉 for the vector 〈a1, . . . , ad, b1, . . . , bd′〉 ∈ Nd+d′

.
Vectors in Zd are ordered with a = 〈a1, . . . , ad〉 0 b = 〈b1, . . . , bd〉 def⇔ a1 ≤

b1 ∧ · · · ∧ ad ≤ bd, and can be added with (a+ b)
def
= 〈a1 + b1, . . . , ad + bd〉. Note that

(Zd,+,0) is a commutative monoid, having (Nd,+,0) as submonoid. Clearly, a ∈ Nd

iff 0 0 a. By Dickson’s Lemma, (Nd,0) is a well-ordering (more details in Section 4).
In the following, we reserve x,y,u, . . . for vectors in Nd and write ‖x‖, . . . , for their
norms, defined by ‖〈x1, . . . , xd〉‖ def

= x1 + · · ·+ xd.

VASSes and their operational semantics. A VASS is a triple A = 〈d,Q, T 〉 where
d ∈ N is a dimension (i.e., a number of counters), Q is a non-empty finite set of (control)
locations, and T ⊆ Q × Zd × Q is a finite set of (transition) rules. We usually write
q, q′, . . . for locations, and t, . . . for rules.

Fix some VASS A = 〈d,Q, T 〉. The operational semantics of A is given in the form
of a transition system (Conf ,−→). Formally, Conf

def
= Q × Nd is the set of configura-

tions, with typical elements c, c′, . . . The labeled transition relation −→⊆ Conf ×Zd×
Conf is a set of triples (c,a, c′) called steps. As is standard, we write c

a−→ c′ rather than

192 J. Leroux and Ph. Schnoebelen

(c,a, c′) ∈−→. Steps are defined by (q,x)
a−→ (q′,y)

def⇔ (q,a, q′) ∈ T ∧ y = x+ a.
The vector a in a rule (q,a, q′) is called a translation.

Graphical description. It is convenient to present VASSes in graphic form. See an
example in Fig. 1. Here the locations and rules are depicted as a directed graph, as is
standard with such automata-theoretical notions. Indeed, we see a d-dim VASS as being
an automaton acting on d registers, or counters, capable of storing a natural number.
These counters are named in our graphical depictions (see x and z in Fig. 1) so that
we may use programming languages notations for the translation a in a rule (q,a, q′).
For example, in Fig. 1, the loop labeled with “x--;x--;z++” is a rule (q2,a, q2) with
a = 〈−2, 1〉, the other rule being (q1,0, q2).

q1 q2

x--;x--;z++

0z

4x

Fig. 1. A VASS depicted as an automaton acting on counters

Runs and reachability. For k ∈ N, a length-k run from c to c′ is a sequence ρ of the
form c0 a1 c1 · · ·ak ck that alternates between configurations and vectors and such that
c0 = c, ck = c′, and ci−1

ai−→ ci for all i = 1, . . . , k. For a run ρ as above, we let src(ρ)
and tgt(ρ) denote c0 and, respectively, ck. We write c

∗−→ c′ when there is a run ρ from
c to c′, in which case we say that c′ is reachable from c.

Continuing our previous example, the reachability relation for the VASS from Fig. 1
can be captured1 with the following:

(qi, x, z)
∗−→ (qj , x

′, z′) iff

{
0 ≤ x− x′ = 2(z′ − z) if j = 2, or

x = x′ ∧ z = z′ if i = j = 1.
(1)

Lifting steps and runs. It is well known and easy to see that steps can be lifted up by
vectors z ∈ Nd. For a configuration c = (q,x), we write c + z for the configuration
(q,x+ z). The following properties will be useful in later sections:

Lemma 2.1 (Lifting steps and runs). For all c, c′ ∈ Conf , a ∈ Zd, and u,v ∈ Nd:

c
a−→ c′ implies c + u

a−→ c′ + u , (2)

c
∗−→ c′ implies c + u

∗−→ c′ + u , (3)

c + u
∗−→ c + v implies ∀x ∈ N : c + x · u ∗−→ c+ x · v . (4)

Proof of (4). With c + u
∗−→ c + v and Eq. (3) one obtains c + u + i · u + j · v ∗−→

c+ i · u+ v + j · v for any i, j ∈ N. Chaining such runs yields

c+ x · u ∗−→ c + (x− 1) · u+ v
∗−→ c+ (x− 2) · u+ 2 · v ∗−→ · · · ∗−→ c+ x · v .

1 The “⇒” direction is proved by induction on the length of the run, where every additional step
respects the invariant stated by Eq. 1. The “⇐” direction is obvious when j = 1, and proved
by concatenating steps of the form (q2, x, z) −→ (q2, x− 2, z + 1) when j = 2.

On Functions Weakly Computable by Petri Nets and Vector Addition Systems 193

3 Weakly Computable Functions

In this section we recall the classic notion of weak PN computers and weakly com-
putable functions. We recall the main known results, most of them from the 70’s or early
80’s, when the applications were limited to a few hardness or impossibility proofs. This
material is classic but has been partly forgotten.

As we argued in the introduction, the notion of weakly computable functions has
recently gained new relevance with the development of well-structured systems that go
beyond Petri nets and VASSes in expressive power, while sharing some of their charac-
teristics. In particular, we expect that it will help understanding the expressive power of
extensions like VASSes with nested zero-tests [27] or with a pushdown stack [23].

3.1 Weak PN Computers and Weakly Computable Functions

The expected way for a finite-state register machine A to compute a numerical function
f : N → N is to start in some initial location with some input value n stored in a des-
ignated input counter and from that configuration eventually reach a final or accepting
location with f(n) in a designated output counter. In order for A to be correct, it should
be impossible that it reaches its accepting location with a value differing from f(n)
in the output counter. In that case, we say that A strongly computes f . This notion of
correctness is fine with Minsky machines but it is too strong for VASSes and does not
lead to an interesting family of computable functions. In fact, Petri nets and VASSes are
essentially nondeterministic devices, and the above notion of strongly computing some
function does not accommodate nondeterminism nicely.

With this in mind, Rabin defined a notion of “weakly computing f” that combines
the following two principles:

Completeness: For any n ∈ N, there is a computation with input n and output f(n);
Safety: Any computation from input n to some output r satisfies r ≤ f(n).

This leads to our first definition:

Definition 3.1 (Weak PN computers). Let f : Nn → Nm be a total function. A weak
PN computer for f is a d-dimensional VASS A, with d ≥ n + m and two designated
locations qinit and qfinal, that satisfies the following two properties. Here we write � for
d − n − m, and we decompose vectors w ∈ Nd as concatenations w = x,y, z where
x ∈ Nn, y ∈ N� and z ∈ Nm.

∀x : ∃x′,y′ : (qinit,x,0,0)
∗−→ (qfinal,x

′,y′, f(x)) , (CO)

∀x,x′,y′, z′ : (qinit,x,0,0)
∗−→ (qfinal,x

′,y′, z′) implies z′ 0 f(x) . (SA)

We say that f is weakly computable, or WCPN, if there is a weak PN computer for it.

For convenience, Definition 3.1 assumes that the (n-dimensional) input is given in
the first n counters of A, and that the m-dimensional result is found in its last m coun-
ters. Note that A may use its � extra counters for auxiliary calculations.

194 J. Leroux and Ph. Schnoebelen

Example 3.2 (A weak computer for halving). The VASS from Fig. 1 is a weak computer
for f : x → 'x

2 (. We just have to designate q1 and q2 as the required qinit and, resp.,
qfinal. To show that (CO) and (SA) hold, one sets z = 0 in Eq. (1). This gives

(q1, x, 0)
∗−→ (q2, x

′, z′) iff z′ =
x− x′

2
,

entailing both (CO) —pick x′ = (x mod 2)— and (SA) —since z′, x′ ∈ N—.

Only monotonic functions can be weakly computed in the above sense. This is an
immediate consequence of the monotonicity of steps in VASSes (see Lemma 2.1).

Proposition 3.3 (Monotonicity of WCPN functions). If f : Nn → Nm is WCPN then
x 0 x′ implies f(x) 0 f(x′).

Proof. Assume that x 0 x′ and pick any weak PN computer for f . By (CO), there is a
run (qinit,x,0,0)

∗−→ (qfinal,v,y, f(x)). By Eq. (3), there is also a run (qinit,x
′,0,0)

∗−→
(qfinal,v + x′ − x,y, f(x)). Thus f(x) 0 f(x′) by (SA).

3.2 More Weakly Computable Functions

Example 3.4 (A weak computer for multiplication, from [26]). Fig. 2 describes A×, a
weak computer for f : x1, x2 → x1 × x2. To show that (SA) holds, we associate with

qinit q1

q2

qfinal

x2--

y--;x1++;z++

x1--;y++

0 z4x1

3x2 0 y

Fig. 2. A×, a VASS weakly computing x1, x2 �→ x1 × x2

any configuration c of A× a value M(c) ∈ N given by

M(q, x1, x2, y, z)
def
=

{
z + (x1 + y) · x2 + y if q = q2,

z + (x1 + y) · x2 otherwise.
(5)

By considering all rules of A× in turn, one checks that c −→ c′ implies M(c) ≥ M(c′).
Thus given an arbitrary run from c0 = (qinit, x1, x2, 0, 0) to ck = (qfinal, x

′
1, x

′
2, y

′, z′) it
holds that M(c0) ≥ M(ck), i.e., x1 ·x2 ≥ z′+x′

1 ·x′
2+y′ ·x′

2. This entails z′ ≤ x1 ·x2

as required by (SA).
We let the reader check that (CO) holds. [Hint: steps c −→ c′ that only use the rule

from q1 to q2 when x1 = 0, and from q2 to q1 when y = 0, satisfy M(c) = M(c′).]

On Functions Weakly Computable by Petri Nets and Vector Addition Systems 195

Weakly computing functions has mainly been used in hardness or impossibility
proofs. For example, weakly computing multiplication can be used to show that reach-
ability sets are not always semilinear: it is easy to adapt the construction underly-
ing A× and design a VASS that, starting from a fixed c0, generates the set of triples
{〈y1, y2, y〉 ∈ N3 | 0 ≤ y ≤ y1 · y2} in some designated counters. The reachability set
of this VASS cannot be semilinear.

Proposition 3.5. The class of WCPN functions is closed by composition.

Proof (Idea). The obvious way of gluing a weak PN computer for g after a weak PN
computer for f produces a weak PN computer for g ◦ f . To prove that the resulting
VASS satisfies (SA), one observes that any run can be reordered by firing all rules in
the f part before the rules in the g part.

Since the class of WCPN functions contains addition, multiplication, projections,
and tuplings, one deduces that all positive Diophantine polynomials (multivariate poly-
nomials with coefficients in N) are weakly computable. This was used by Rabin in his
reduction of Hilbert’s 10th Problem to the inclusion problem for VASS reachability
sets [3,13]. Hack strengthened this reduction to show that already the equality problem
was undecidable [13]. (Later, Jančar showed that all behavioural equivalences are un-
decidable for VASSes —already for dimension d = 5—, using a simpler reduction with
some notion of weak computer that is not numerical [18].)

3.3 Iterable Weak PN Computers

There are other easy and useful examples of WCPN functions that are not positive
Diophantine polynomials, like min and max, or even half seen previously. In order
to show the weak computability of more functions, in particular functions that are not
polynomially or exponentially bounded, Mayr [24] introduced the following notion:

Definition 3.6 (Iterable Weak PN Computers). Let f : N → N be a weakly com-
putable unary function. A weak PN computer A for f is iterable if it satisfies

∀w,w′ :(qinit,w)
∗−→ (qfinal,w

′) implies ‖w′‖ ≤ f(‖w‖) . (IT)

A unary function is iterably weakly computable, or IWCPN, if there exists an iterable
weak PN computer for it.

In Definition 3.6, ‖w‖ counts all the tokens (using Petri net terminology) in the
starting configuration. The property stated by Eq. (IT) is useful in constructions that
include A and where one cannot guarantee that all computations by A will start from
clean configurations with zeroes in y and z.

Example 3.7 (Halving). The weak PN computer for halving (Fig. 1) is not iterable
since, by Eq. (1), it has runs like (qinit, 0, 1)

∗−→ (qfinal, 0, 1) and (qinit, 1, 0)
∗−→ (qfinal, 1, 0)

that have ‖w‖ = ‖w′‖ = 1, hence ‖w′‖ �≤ f(‖w‖) = ' 1
2(= 0.

In fact, it is impossible to design an iterable weak PN computer for halving, as a
consequence of the following proposition.

196 J. Leroux and Ph. Schnoebelen

Proposition 3.8 (Strict Monotonicity of IWCPN functions). If f : N → N is IWCPN
then f(x) < f(x+ 1) for all x ∈ N.

Proof. Assume a given iterable weak PN computer for f and let x ∈ N. From (CO),
we derive (qinit, x,0, 0)

∗−→ (qfinal, x
′,y′, f(x)). By lifting, we get (qinit, x + 1,0, 0)

∗−→
(qfinal, x

′+1,y′, f(x)). Now (IT) gives x′+1+‖y′‖+f(x) ≤ f(x+1), which entails
f(x) < f(x+ 1).

Example 3.9 (Doubling is IWCPN). One may design an iterable weak computer for

qinit qfinal

x--;z++;z++

0z

4x

Fig. 3. Adbl , a VASS weakly computing x �→ 2 · x

x → 2 · x (doubling) by a slight modification of Fig. 1. The resulting VASS, called
Adbl , is depicted in Fig. 3. It satisfies

(qinit, x, z)
∗−→ (qfinal, x

′, z′) iff 0 ≤ 2(x− x′) = z′ − z .

These runs have thus ‖w′‖ = x′ + z′ = 2x − x′ + z. On the other hand f(‖w‖) =
f(x+ z) = 2x+ 2z. Hence ‖w′‖ ≤ f(‖w′‖) as required by (IT).

As expected, the functions weakly computed by iterable weak PN computers are
iterable. Given a unary f and some n ∈ N, we write fn(x) for the n-fold application
f(f(f(· · · (x) · · ·))) of f . In particular f0(x) = x. One can then show the following:

Proposition 3.10 ([24,26]). If f is IWCPN, then iter(f) : x, y → fx(y) is IWCPN.

Indeed, the whole point of (IT) is to entail the correctness of the obvious construction
for iterating a weak PN computer.

With Proposition 3.10, and since doubling is IWCPN, we deduce that iter(dbl) :

x, y → dblx(y) = 2xy is IWCPN. From that we deduce that tower : x → 22
···2

}
x times

is IWCPN. Continuing, all the fast-growing functions (Fi)i∈N in the Grzegorczyk hi-
erarchy are IWCPN. This was used by Mayr to show that the inclusion problem for
finite reachability sets is not primitive recursive [24,25]. The problem is in fact Fω-
complete in the recent classification of Schmitz [28]. Using the same IWCPN functions,
Jančar showed that all behavioural equivalences are Ackermann-hard between bounded
VASSes [17].

While the fast-growing hierarchy extends beyond the (Fi)i∈N, the functions at the
higher levels —starting with Fω which is one possible form for Ackermann’s function—
are not WCPN. The following Proposition is folklore, but we could not find it explicitly
stated in the literature:

Proposition 3.11. Any weakly computable function f is primitive recursive.

On Functions Weakly Computable by Petri Nets and Vector Addition Systems 197

Proof. For a VASS A and a starting configuration c0 ∈ Conf , let SA(c0) ∈ N be the
maximum norm of a configuration occurring in the Karp-Miller tree TKM(c0) rooted
in c0. (We assume familiarity with Karp-Miller trees, otherwise see [19, Section 4A].
Note that these trees really contain “extended configurations” in Q × (N ∪ {ω})d but
one only uses the finite values for their norm, as in, e.g., ‖(q, 7, ω, 2)‖ = 7 + 2 = 9.)

For k ∈ N, let now SA(k)
def
= max {SA(c) | ‖c‖ ≤ k}, i.e., SA(k) is the size of the

largest configuration in a Karp-Miller tree for A starting in some initial configuration
of size at most k. It is shown in [9, Section 7C] that SA : N → N is primitive recursive
(using a different norm for vectors, but this is of no consequence here). If now A is
a weak PN computer for some f : Nn → Nm, then by (CO) and for any x ∈ Nn,
the tree TKM((qinit,x,0,0)) contains an extended configuration cx = (qfinal,x

′,y′, z′)
that covers (qfinal,0,0, f(x)) since every reachable configuration is covered in TKM.
Furthermore, by (SA), no configuration reachable in qfinal can have values above f(x)
in the last m counters. Hence the z′ part of cx has no ω’s and z′ = f(x).

Finally, one can compute f(x) by building a Karp-Miller tree of size that is primitive
recursive in ‖x‖ and by reading f(x) on one of its leaves.

3.4 Alternative Definitions

The literature contains other proposals for a notion of weakly computable functions, all
of them based on Rabin’s seminal idea. One may define the function weakly computed
by A as the maximum number of times a given transition [13], or all transitions [12],
can be fired between (qinit,x,0) and qfinal. While this does not give a larger class of
weakly computable functions, other proposals are richer as we now show.

Weakly Computing Eagerly. An interesting notion is that of “eagerly” weakly com-
putable functions. For this, we modify the Correctness and Safety requirement in Defi-
nition 3.1, replacing them with

∀x : (qinit,x,0,0)
∗−→ (qfinal,0,0, f(x)) , (CO’)

∀x, z′ : (qinit,x,0,0)
∗−→ (qfinal,0,0, z

′) implies z′ 0 f(x) , (SA’)

and we then say that f is EWCPN.
The idea here is that A must have consumed inputs and auxiliary counters at the end

of the computation. This is meaningful in some reductions —e.g., reducing reachability
in VASSes to some problem on some weakly computable function—. To the best of our
knowledge, it has never been considered in the literature on VASSes and Petri nets. The
fact is that it does not behave as nicely as the classical definition (see below). However,
it is a natural option with some extensions like VASSes extended with resets as in [2,8],
or with nested zero-tests as in [27].

Fact 3.12. The class of EWCPN functions strictly extends the WCPN functions.

Proof. Obviously, any WCPN function can be computed eagerly: a weak PN computer
for f is made eager by adding decrementing rules that can empty the input and auxiliary
counters. To see that the extension is strict, note that EWCPN functions are not always
monotonic. For example, parity : x → x mod 2 is easily seen to be EWCPN.

198 J. Leroux and Ph. Schnoebelen

Since EWCPN functions are not necessarily monotonic, it is not clear whether the
composition of two EWCPN functions is EWCPN itself. We introduced this notion
because our main result (Theorem 4.7) holds for the larger class of EWCPN functions.

Families of Weak PN Computers. Very often, reductions showing hardness do not
need a fixed weak PN computer for some f . They can accommodate a family (Ai)i∈N

such that each Ai weakly computes f(i), or f(x) for all x = 0, . . . , i. The family
needs to be simple in computational terms —typically “polynomial-time uniform”— so
that it can be used in reductions. Since the Ai’s that weakly compute the fast-growing
Fi’s are uniformly generated, they provide a family weakly computing the function Fω

(equivalently, Ackermann’s function) defined by Fω(x) = Fx(x).
For slow-growing functions, one often needs a family that is polynomial-time uni-

form in the size of f(x). A recent example is Lazić’s polynomial-time uniform family
of pushdown VASSes (VASSes extended with a stack) that weakly computes the inverse

of tower : x → 22
···2

}
x times [21].

4 Well-Quasi-ordering Runs in VASSes

Recall that a quasi-order (qo) on a set S is a binary relation 	 on S that is reflexive and
transitive. A partial order is an antisymmetric quasi-order. A well-quasi-order (wqo)
on S is a quasi-order 	 such that every infinite sequence s0, s1, s2, . . . in S contains an
increasing pair si 	 sj for some i < j. See [20] or [29] for more on wqos.

Example 4.1. It is well-known that (N,≤) is a wqo, while (Z,≤) or (Q≥0,≤) are not.
As another example, the pigeonhole principle shows that the partial order (S,=) is a
wqo if, and only if, S is finite.

In practice, many wqos are defined by applying well-known constructions on stan-
dard, already known, wqos.

Definition 4.2 (Products of wqos and Dickson’s Lemma). Let (S1,	1), . . . , (Sn,	n)

be qos. Their product is the qo (S×,	×) with S×
def
= S1 × · · · × Sn and 	× given by

(s1, . . . , sn) 	× (s′1, . . . , s
′
n)

def⇔ s1 	1 s′1 ∧ . . . ∧ sn 	n s′n .

It is well-known that (S×,	×) is a wqo if all (Si,	i) are.

This last result is standardly called Dickson’s Lemma, after Dickson’s proof of his
“Lemma A” in [7], showing in essence that any subset of Nd has finitely many minimal
elements. For our purpose, Dickson’s Lemma shows that (Nd,0) is a wqo.

Definition 4.3 (Sequence extensions of wqos and Higman’s Lemma). The sequence
extension (S∗,	∗) of a qo (S,) has for its support the set S∗ of all finite sequences
s1 · · · sk over S, and these sequences are ordered by

s1 · · · sk 	∗ s′1 · · · s′�
def⇔
{

there are indexes 1 ≤ n1 < · · · < nk ≤ �
such that s1 	 s′n1

∧ · · · ∧ sk 	 s′nk
.

It is well-known that (S∗,	∗) is a wqo if (S,) is.

On Functions Weakly Computable by Petri Nets and Vector Addition Systems 199

(q1, 3, 3) (q1, 2, 1) (q2, 3, 2) (q3, 2, 0) (q2, 2, 2) (q3, 0, 2)

(q1, 1, 0) (q2, 2, 1) (q3, 0, 1)

ρ′:

ρ:

ρ0 ρ1 ρ2

a1 a2

b a1 b′ b′′ a2

� � � � ��

Fig. 4. Example for Def. 4.4: A factorization of ρ′ = ρ0a1ρ1a2ρ2 witnessing ρ� ρ′

This last result is called Higman’s Lemma.

In the rest of this section, we assume a fixed VASS A = (d,Q, T). We now define
three orderings, respectively between the configurations of A, between its steps, and
between its runs, in the following way:

(q1,x1) 0 (q2,x2)
def⇔ q1 = q2 ∧ x1 0 x2 , (6)

(c1
a1−→ c′1)
 (c2

a2−→ c′2)
def⇔ c1 0 c2 ∧ a1 = a2 ∧ c′1 0 c′2 . (7)

Since Q and T are finite, (Q,=) and (T,=) are wqos, hence (Conf ,0) and (Conf ×
T × Conf ,
) are wqos by Dickson’s Lemma.

Definition 4.4 (Ordering runs, see Fig. 4). For two runs ρ, ρ′ of A, we write ρ� ρ′ if
ρ = c0a1c1 . . .akck and ρ′ can be factored as some ρ′ = ρ0a1ρ1 . . .akρk where, for
all j = 0, . . . , k, the ρj factor is a run such that cj 0 src(ρj) and cj 0 tgt(ρj).

Lemma 4.5. The relation � is a wqo over the runs of A.

Proof. This is essentially [22, Lemma 4.1] or [16, Theorem 6.5]. A more direct proof
is by observing that

ρ� ρ′ iff

{
src(ρ) 0 src(ρ′) ∧ tgt(ρ) 0 tgt(ρ′) ∧
(c0

a1−→c1)(c1
a2−→c2) · · · (ck−1

ak−→ck)
∗ (c′0
a′

1−→c′1) · · · (c′�−1

a′
�−→c′�) ,

where
∗ is the sequence extension of the ordering of steps defined with Eq. (7). Since

 (over steps) and 0 (over configurations) are wqos, � is a wqo over the runs of A.

The ordering on runs comes with the following Pumping Lemma:

Lemma 4.6 (Pumping Lemma). Let ρ � ρ′ and let u,v ∈ Nd such that src(ρ′) =
src(ρ) + u and tgt(ρ′) = tgt(ρ) + v. Then

∀x ∈ N :
(
src(ρ) + x · u

) ∗−→
(
tgt(ρ) + x · v

)
.

Proof. Assume that ρ is some c0
a1−→ c1 · · ·

ak−→ ck and that ρ � ρ′ is witnessed by
factoring ρ′ under the form ρ0a1ρ1 . . .akρk. For j = 0, . . . , k, write uj and vj for

200 J. Leroux and Ph. Schnoebelen

the vectors in Nd such that src(ρj) = cj + uj and tgt(ρj) = cj + vj . Observe that

uj = vj−1 for any j > 0 since there are steps cj−1
aj−→ cj and cj−1 + vj−1 =

tgt(ρj−1)
aj−→ src(ρj) = cj + uj .

Since there is a run ρj of the form cj + uj
∗−→ cj + vj , by Lemma 2.1 there is also

cj + x · uj
∗−→ cj + x · vj for any x ∈ N. We may now insert these runs between steps

cj−1 + x · vj−1
aj−→ cj + x · vj−1 = cj + x ·uj , obtained by lifting up cj−1

aj−→ cj , see
Eq. (2). This gives c0 + x · u ∗−→ ck + x · v as required.

(Alternatively, it is shown in [16, Lemma 6.7] that if ρ� ρ′ � ρx for some run ρx, then
there exists a run ρx+1 such that ρx�ρx+1, src(ρx+1) = src(ρx)+u, and tgt(ρx+1) =
tgt(ρx) + v. Using induction over x ∈ N, and starting with ρ0 = ρ and ρ1 = ρ′, one
can provide for any x a run ρx witnessing src(ρ) + x · u ∗−→ tgt(ρ) + x · v.)

Theorem 4.7. Let f : N → N be an unbounded unary EWCPN function. Then there
exist r, s ∈ N with s > 0 and such that f(r + s · x) is in Ω(x).

Proof. Fix an eager weak PN computer A for f . For every r ∈ N, A has a run ρr
of the form (qinit, r,0, 0)

∗−→ (qfinal, 0,0, f(r)). Since f is unbounded, there exists an
infinite subset R ⊆ N such that (f(r))r∈R is strictly increasing. Since the runs are
well-ordered by � (Lemma 4.5) there exists two indexes r < r′ in R such that ρr�ρr′ .
By introducing s = r′ − r, Lemma 4.6 shows that for every x ∈ N, we have(

qinit, r + s · x,0, 0
) ∗−→

(
qfinal, 0,0, f(r) + x ·

[
f(r′)− f(r)

])
.

With (SA’), we deduce that f(r + s · x) ≥ f(r) + x · [f(r′) − f(r)] for every x ∈ N.
The lemma follows from f(r′)− f(r) > 0.

Corollary 4.8. Let f : N → N be an unbounded unary WCPN function. Then f(x) is
in Ω(x).

Proof. Direct from Theorem 4.7 since, by Proposition 3.3, f is non-decreasing.

Thus any sublinear function like x → �
√

x� or x → �log x� is not weakly com-
putable even in the eager sense. (We note that any monotonic bounded function is
WCPN, e.g., as a max of finitely many threshold functions of the form “x → if u 0
x then vhi else vlo” with vlo 0 vhi.)

Corollary 4.8 can be extended beyond unary functions as follows. A function f :
Nn → N is said to be unbounded on a component i, with 1 ≤ i ≤ n, if, for some natural
numbers r1, . . . , ri−1, ri+1, . . . , rn ∈ N, the following unary function is unbounded:

x → f(r1, . . . , ri−1, x, ri+1, . . . , rn).

For example, (x1, x2) → x1 is a WCPN function that is unbounded on the first com-
ponent. From Corollary 4.8, and the monotonicity property given by Proposition 3.3, it
follows that every WCPN function f : Nn → N has f(x1, . . . , xn) in Ω(max i∈I xi),
where I is the set of unbounded components for f .

On Functions Weakly Computable by Petri Nets and Vector Addition Systems 201

5 Concluding Remarks

We proved that Petri nets and VASSes cannot weakly compute numerical functions that
are sublinear. This was a folklore conjecture that, to the best of our knowledge, had not
yet been settled.

Traditionally, weakly computable functions have been used to prove hardness re-
sults. Recent hardness proofs for well-structured systems crucially rely on the ability
to weakly compute both fast-growing and slow-growing functions. For Petri nets and
VASSes, a weak computer for some slow-growing function could perhaps have been
used (depending on its structure) to improve the currently best lower bound for the
reachability problem. It was thus important to check whether such weak commputer
exist.

Our negative result raises the question of whether more functions can be weakly
computed in extensions of VASSes like the pushdown VASSes of [23] or the nets with
nested zero-tests of [27].

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with
well quasi-ordered domains. Information & Computation 160(1-2), 109–127 (2000)

2. Araki, T., Kasami, T.: Some decision problems related to the reachability problem for Petri
nets. Theoretical Computer Science 3(1), 85–104 (1976)

3. Baker Jr., H.G.: Rabin’s proof of the undecidability of the reachability set inclusion problem
of vector addition systems. Memo 79, Computation Structures Group, Project MAC, M.I.T.
(July 1973)

4. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: POPL 2012, pp.
203–214. ACM (2012)

5. Demri, S., Figueira, D., Praveen, M.: Reasoning about data repetitions with counter systems.
In: LICS 2013, pp. 33–42. IEEE (2013)

6. Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness problems
for branching vector addition systems. Journal of Computer and System Sciences 79(1), 23–
38 (2013)

7. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. Amer. Journal Math. 35, 413–422 (1913)

8. Dufourd, C., Finkel, A., Schnoebelen, Ph.: Reset nets between decidability and undecid-
ability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
103–115. Springer, Heidelberg (1998)

9. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, Ph.: Ackermannian and primitive-
recursive bounds with Dickson’s Lemma. In: LICS 2011, pp. 269–278. IEEE (2011)

10. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere! Theoretical
Computer Science 256(1–2), 63–92 (2001)

11. Haase, C., Schmitz, S., Schnoebelen, Ph.: The power of priority channel systems. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory. LNCS,
vol. 8052, pp. 319–333. Springer, Heidelberg (2013)

12. Hack, M.: Decidability Questions for Petri Nets. PhD thesis, Massachusetts Institute of Tech-
nology, Available as report MIT/LCS/TR-161 (June 1976)

13. Hack, M.: The equality problem for vector addition systems is undecidable. Theoretical
Computer Science 2(1), 77–95 (1976)

202 J. Leroux and Ph. Schnoebelen

14. Haddad, S., Schmitz, S., Schnoebelen, Ph.: The ordinal-recursive complexity of timed-arc
Petri nets, data nets, and other enriched nets. In: LICS 2012, pp. 355–364. IEEE (2012)

15. Hopcroft, J., Pansiot, J.-J.: On the reachability problem for 5-dimensional vector addition
systems. Theoretical Computer Science 8(2), 135–159 (1979)

16. Jančar, P.: Decidability of a temporal logic problem for Petri nets. Theoretical Computer
Science 74(1), 71–93 (1990)

17. Jančar, P.: Nonprimitive recursive complexity and undecidability for Petri net equivalences.
Theoretical Computer Science 256(1-2), 23–30 (2001)

18. Jančar, P.: Undecidability of bisimilarity for Petri nets and some related problems. Theoreti-
cal Computer Science 148(2), 281–301 (1995)

19. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sci-
ences 3(2), 147–195 (1969)

20. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept. Journal
of Combinatorial Theory, Series A 13(3), 297–305 (1972)

21. Lazić, R.: The reachability problem for vector addition systems with a stack is not elemen-
tary. CoRR, abs/1310.1767 (2013)

22. Leroux, J.: Vector addition systems reachability problem (a simpler solution). In: The Alan
Turing Centenary Conference (Turing-100). EasyChair Proceedings in Computing, vol. 10,
pp. 214–228. EasyChair (2012)

23. Leroux, J., Praveen, M., Sutre, G.: Hyper-Ackermannian bounds for pushdown vector addi-
tion systems. In: CSL-LICS 2014. ACM (2014)

24. Mayr, E.W.: The complexity of the finite containment problem for Petri nets. Master’s thesis,
Massachusetts Institute of Technology, Available as report MIT/LCS/TR-181 (June 1977)

25. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for Petri nets.
Journal of the ACM 28(3), 561–576 (1981)

26. Müller, H.: Weak Petri net computers for Ackermann functions. Elektronische Informa-
tionsverarbeitung und Kybernetik 21(4-5), 236–246 (1985)

27. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. Electr. Notes Theor. Comput.
Sci. 223, 239–264 (2008)

28. Schmitz, S.: Complexity hierarchies beyond elementary. Research Report 1312.5686
[cs.CC], Computing Research Repository (December 2013)

29. Schmitz, S., Schnoebelen, Ph.: Algorithmic aspects of WQO theory. Lecture notes (2012)
30. Schnoebelen, Ph.: Verifying lossy channel systems has nonprimitive recursive complexity.

Information Processing Letters 83(5), 251–261 (2002)
31. Schnoebelen, Ph.: Revisiting Ackermann-hardness for lossy counter machines and reset Petri

nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer,
Heidelberg (2010)

Generalized Craig Interpolation for Stochastic

Satisfiability Modulo Theory Problems�

Ahmed Mahdi and Martin Fränzle

Carl von Ossietzky Universität,
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

{mahdi,fraenzle}@informatik.uni-oldenburg.de

Abstract. Craig interpolation is widely used in solving reachability and
model-checking problems by SAT or SMT techniques, as it permits the
computation of invariants as well as discovery of meaningful predicates
in CEGAR loops based on predicate abstraction. Extending such algo-
rithms from the qualitative to the quantitative setting of probabilistic
models seems desirable. In 2012, Teige et al. [1] succeeded to define an
adequate notion of generalized, stochastic interpolants and to expose an
algorithm for efficiently computing them for stochastic Boolean satisfia-
bility problems, i.e., SSAT. In this work we present a notion of General-
ized Craig Interpolant for the stochastic SATmodulo theories framework,
i.e., SSMT, and introduce a mechanism to compute such stochastic inter-
polants for non-polynomial SSMT problems based on a sound and, w.r.t.
the arithmetic reasoner, relatively complete resolution calculus. The algo-
rithm computes interpolants in SAT, SMT, SSAT, and SSMT problems.
As this extends the scope of SSMT-based model-checking of probabilistic
hybrid automata from the bounded to the unbounded case, we demon-
strate our interpolation principle on an unbounded probabilistic reacha-
bility problem in a probabilistic hybrid automaton.

1 Introduction

Stochastic satisfiability modulo theories (SSMT) was proposed in
2008 [2] in order to extend SMT-based bounded model-checking to probabilistic
hybrid systems. SSMT extends the satisfiability modulo theories (SMT) problem
by randomized quantification or, equivalently, generalizes the stochastic boolean
satisfiability problem (SSAT) [3] to background theories. An SSMT formula
consists of a quantifier prefix and an SMT formula. The quantifier prefix is
an alternating sequence of existentially quantified variables and variables bound
by randomized quantifiers. All the quantified variables have discrete (finite) do-
mains. Due to the presence of probabilistic assignments due to randomized quan-
tification, the semantics of an SSMT formula Φ is no longer qualitative in the
sense that Φ is satisfiable or unsatisfiable, as for propositional or predicate logic,

� Research supported by the German Research Council (DFG) as part of the Transre-
gional Collaborative Research Center SFB/TR 14 AVACS (http://www.avacs.org).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 203–215, 2014.
c© Springer International Publishing Switzerland 2014

http://www.avacs.org

204 A. Mahdi and M. Fränzle

but rather quantitative [2,4]. For an SSMT formula Φ, we ask for the maxi-
mum probability of satisfaction or, if formulated as a decision problem, whether
this probability of satisfaction exceeds a threshold. Intuitively, a solution of Φ
is a strategy in form of a tree suggesting optimal assignments to the existential
variables depending on the probabilistically determined values of preceding ran-
domized variables, in order to maximize the probability of satisfying the SMT
formula. SSMT as proposed by Fränzle et al. [2] can encode bounded probabilis-
tic reachability problems of probabilistic hybrid automaton (PHA) over discrete
time. That means many practical problems exhibiting uncertainty can be de-
scribed as SSMT problems or sometimes even its propositional subset SSAT,
in particular probabilistic planning problems [5,6], belief networks [7], trust
management [8], or depth-bounded PHA reachability [2,9] and stability prob-
lems [4]. Probabilistic bounded model-checking (PBMC) problems, for example,
ask whether the probability of reaching bad states from the PHA’s initial states
stays below a given threshold, irrespective of how non-determinism in the PHA
is resolved. Solving a PBMC problem can be achieved by taking its equivalent
SSMT encoding and solving it with an SSMT solver, like Teige’s SiSAT tool [4].

Non-polynomial SSMT problems, i.e., SSMT formulae involving transcenden-
tal arithmetic, are generally undecidable due to the undecidable underlying arith-
metic theory. There are some decidable classes of SSMT however; e.g., SSMT
formulae without free variables due to the finite domains of bound variables, or
SSMT formulae over decidable background theories, like linear order [10]. Un-
decidability implies that the Craig interpolation problem also cannot be solved
exactly in general. In this paper, we propose a Craig interpolation procedure for
SSMT that is sound and complete when the theory is linear order, and we extend
it to non-polynomial SSMT by using interval constraint propagation (ICP) [11],
then obviously sacrificing completeness, yet maintaining soundness.

Essentially, we first use ICP for reducing the general, non-polynomial SSMT
problem to an SSMT problem of linear order over the reals. As an unsatisfied
SSMT problem may well have satisfying assignments —just not sufficiently many
to exceed the target probability threshold—, we then have to compute a gener-
alized interpolant, which is a Craig interpolant for A∧ (B ∧¬SA,B), where SA,B

represents the satisfying assignments of the formula A∧B. We do so by extending
Púdlak’s rules [12] to compute that generalized Craig interpolant. Instrumental
to that adaptation of Púdlak’s rules is the observation that the theory of linear
order, with simple bounds as its atoms, admits a resolution rule akin to the
propositional counterpart.

Related Work: Teige in [1] proposed generalized Craig interpolation for
stochastic boolean satisfiability (SSAT) problems. Our work extends this to
SSMT involving non-polynomial arithmetic constraints. Kupferschmid in [13]
was the first to suggest Craig interpolation for non-polynomial and thus unde-
cidable SMT problems by means of ICP and resolution in SMT of linear order.
Our approach employs the same mechanism for dealing with arithmetic con-
straints, but extends the approach to SSMT problems, thus necessitating com-
putation of generalized rather than traditional Craig interpolants. Numerous

Generalized Craig Interpolation 205

authors proposed different mechanisms to compute Craig interpolants for SAT
and decidable SMT problems, e.g., [14,15,16,17,18,19,20]. A recent approach for
computing small CNF interpolants [21] could be integrated with our work, then
replacing Púdlak’s rules.

This paper is structured as follows. In Section 2 we define the syntax and
semantics of stochastic satisfiability modulo theories. Section 3 presents the
SSMT-resolution calculus. In Section 4 we define generalized Craig interpolants
for SSMT and expose a computation procedure. Section 5 demonstrates use
of SSMT interpolation in probabilistic model-checking, with full details given
in [22]. Finally, Section 6 presents the conclusion.

2 Stochastic Satisfiability Modulo Theory (SSMT)

In this section, we introduce the syntax and semantics of stochastic satisfiability
modulo theories (SSMT) formulae, as originally proposed in [2].

Definition 1 (Syntax of SSMT). A stochastic satisfiability modulo theories
(SSMT) formula Φ is of the form Q : ϕ where

1. ϕ is an arbitrary SMT formula with respect to the theory of non-polynomial
arithmetic over the reals and integers, called the matrix of the formula, and

2. Q = Q1x1 ∈ Dx1 2 2 Qnxn ∈ Dxn is a quantifier prefix binding some
variables xi ∈ Var(ϕ) over finite domains Dxi by a sequence of existential
and randomized quantifiers Qi; i.e., ∃ and

R

respectively.

Free, i.e., unbound by quantifiers, variables are permitted in SSMT formulae.
For simplicity, we assume that the matrix ϕ of an SSMT formula Q : ϕ is in
CNF form, as one can convert any formula to a CNF of linear size by introducing
auxiliary variables [23].

Definition 2 (Semantics of SSMT). The semantics of an SSMT formula Φ
is given by its maximum probability of satisfaction Pr(Φ) defined as follows:

Pr(ε : ϕ) =

{
0 if ϕ is unsatisfiable,
1 if ϕ is satisfiable,

Pr(∃x ∈ Dx 2Q : ϕ) = maxv∈DxPr(Q : ϕ[v/x]),

P r(

Rdxx ∈ Dx 2Q : ϕ) =
∑
v∈Dx

dx(v) · Pr(Q : ϕ[v/x]).

The semantics of an SSMT formula is a 1 1
2 player game shown in Fig. 1. In näıve

SSMT solving, the quantifier tree would be fully unravelled and all resulting
instances of the matrix passed to an SMT solver. Pruning rules also shown in
Fig. 1 yet permit to skip investigating a major portion of the instances in general.

3 Resolution for SSMT

The existing SSMT solving algorithms of Teige [4] are tightly integrated with the
CDCL(ICP)1 proof search of the iSAT tool [24] and do, in principle, traverse the

1 CDCL = conflict-driven clause learning, ICP = interval constraint propagation.

206 A. Mahdi and M. Fränzle

Φ = ∃x ∈ {2, 3, 4}, R

[1�→ 0.2,2�→ 0.4,3 �→ 0.4]y ∈ {1, 2, 3} : (x+ y > 3 ∨ 2 · y − x > 3) ∧ (x < 4)

x

y y y

x = 2 x = 3 x = 4

unsat sat sat sat sat sat unsat unsat unsat

y = 1 y = 2 y = 3 y = 1 y = 2 y = 3 y = 1 y = 2 y = 3

Pr = 0 Pr = 1 Pr = 1 Pr = 1 Pr = 1 Pr = 1 Pr = 0 Pr = 0 Pr = 0

Pr = 0.8 Pr = 1.0 Pr = 0.0

Pr(Φ) = max(0.8, 1.0) = 1.0

�

Fig. 1. 1 1
2
player game semantics of an SSMT formula. In recursive solvers, traversal

of the dashed part of the quantifier tree will be skipped due to pruning [4].

quantifier tree of the formula as in Fig. 1 to recursively compute the maximum
satisfaction probability bottom-up. Note that this does by no means imply that
they are bound to traverse the whole, exponentially sized quantifier tree, as Teige
proposed various mechanisms to drastically prune that tree and thus accelerate
the actual computation. In the contrast to the CDCL(ICP) approach, the SSMT
resolution calculus, as proposed by the authors of this paper in [10] based on
Teige’s SSAT resolution [25], solves SSMT problems by a resolution mechanism.
SSMT-resolution works by deriving attributed clauses cp, where c is a clause and
p a probability. When such a clause cp is derived during resolution, it expresses
that the maximum probability of violation of c is p. If the probabilistic variant
∅p of a conflict clause happens to be derived at the end of resolution, then the
maximum probability that the formula holds is p. The related SSAT-resolution
calculus proposed by Teige [25,1] is sound and complete. The same applies for
SSMT resolution if the theory is confined to linear order over the reals, yet if (e.g.,
non-polynomial) arithmetic is involved, the resolution calculus of SSMT is sound
but only relatively complete with interval constraint propagation (ICP) [26] being
its “oracle” for resolving arithmetic [10].

All derived clauses cp are forced to have a tight bound p in the sense that
under each assignment which falsifies c, the satisfaction probability of the re-
maining subproblem is exactly p.2 Before illustrating the resolution rules, we
define the symbolic falsifying assignment falsifyc that captures variable assign-
ments falsifying a clause c. A simple bound x ∼ a ∈ SB means that a variable x
is restricted by comparison operator, i.e., ∼∈ {>,≥, <,≤}, relative to value a,
where the latter value is a real number. Also, we assign to each variable a domain
which is a bounded interval. Let c be a non-tautological disjunction of simple
bounds. We define the falsification function falsifyc that falsifies c as following:

2 In [10] we relaxed the condition to a probability of less than or equal to p. The
stronger form used here makes interpolation simpler.

Generalized Craig Interpolation 207

Definition 3 (Falsification function). Let C be a set of all non-tautological
clauses with a typical element c such that c consists of a disjunction of simple
bounds, i.e., sb1 ∨ ... ∨ sbn. The falsification function falsifyc : C → C is defined
as follows:

– falisfyc(c) :=
∨n

i=1 ffs(sbi),
– ffs : SB → SB s.t. ffs(x ∼ a) := x ∼′ a where ∼′ is the converse relation to

∼, e.g., ≤′ is >.

where x ∈ X, a ∈ R, ∼,∼′∈ {≤, <,≥, >} and x has a well-defined domain.

In order to extend the SSAT resolution rules to SSMT formulae, we assume
w.l.o.g. that any clause c where resolution is applied consists of disjunctions of
simple bounds only, as ICP yields a reduction to simple bounds by propagating
arithemtic constraints into simple bounds [4,10]. We will introduce four reso-
lution rules that define the resolution calculus for SSMT problems. Rule RR.1
derives a clause c0 from an original clause c ∈ ϕ such that c is not a tautological
clause. One can consider RR.1 correspond to the quantifier-free base case where
ϕ is false under any assignment that falsifies c (cf. [10] for details).(

c ∈ ϕ
)

c0
(RR.1)

Rule RR.2 reflects the quantifier-free base case in which ϕ is true under any
assignment that is conform to the partial assignment τ , since |= ϕ[τ(x1)/x1]...[τ
(xi) /xi]. The constructed c1 represents the negation of the satisfiable partial
assignment τ of ϕ.⎛⎝ c ⊆ {x ∼ a | x ∈ Var(c)}, �|= c,Q(c) = Q1x1...Qixi,

for each τ : Var(ϕ) ↓i→ SB with ∀x ∈ Var(ϕ) : τ(x) in ffs(x ∼ a) :
|= ϕ[τ(x1)/x1]...[τ(xi)/xi]

⎞⎠
c1

(RR.2)
Rule RR.3 computes the actual probability of a resolvent depending on the
type of the quantifier governing the pivot variable, where a bound on the pivot
variable is used as the resolution literal. Definition 2 enforces that the domain
of any quantified variable is discrete, which implies that we can evaluate the
probability by simply summing up or selecting the maximum of the probabilities
of satisfying assignments for

R

- or ∃-quantified variable x, resp.⎛⎜⎜⎝
(x ∼ a ∨ c1)

p1 , (x ∼′ b ∨ c2)
p2 , (x ∈ Dx ∧ x ∼ a ∧ x ∼′ b 3 False)

Qx ∈ Q, �|= (c1 ∨ c2)

p =

{
max(p1, p2) if Qx = ∃x ∈ Dx

p1 · Pr(x ∼′ b) + p2 · Pr(x ∼ a) if Qx =

RPrx ∈ Dx

⎞⎟⎟⎠
(c1 ∨ c2)p

(RR.3)

Rule RR.3e is a counterpart of RR.3 for free variables in SSMT formulae. All
free variables are implicitly existentially quantified at innermost level, yet —in

208 A. Mahdi and M. Fränzle

contrast to explicit quantification— to continuous domains in general.⎛⎝(x ∼ a ∨ c1)
p1 , (x ∼′ b ∨ c2)

p2 ,Qx /∈ Q, x has domain Dx

(x ∈ Dx ∧ x ∼ a ∧ x ∼′ b) 3 False, �|= (c1 ∨ c2)
p = max(p1, p2)

⎞⎠
(c1 ∨ c2)p

(RR.3e)

Note that the SSMT-resolution calculus is sound and relatively complete w.r.t.
to its underlying arithmetic reasoner ICP. On SSMT problems over the theory
of linear order, SSMT resolution is complete (cf. [10,22] for more details). An
example of SSMT resolution is shown together with interpolation in Sect. 4.

4 Interpolation for SSMT

Craig interpolation is a logical concept suggested by Craig in 1957 [27] that has
been widely used in model theory and automatic verification. In its classical, non-
probabilistic form, a Craig interpolant provides a reason for mutual inconsistency
between two formulae. Formally, it is defined as follows:

Definition 4 (Craig Interpolation). Given two propositional logic formulae
A and B in a logics L such that |=L A → ¬B, a Craig interpolant for (A,B) is
a quantifier-free L-formula I such that |=L A → I, |=L I → ¬B, and the (nec-
essarily free) variables of I form a subset of the shared (and thus free) variables
between A and B, i.e., Var(I) ⊆ V ar(A) ∩ V ar(B).

Depending on the logics L, such Craig interpolants, which provide a reason why
A is not satisfiable together with B, can be computed by various mechanisms. If
L admits quantifier-elimination, then this can in principle be used; various more
efficient schemes have been devised for propositional logic and for SAT-modulo-
theory by exploiting the connection between resolution and variable elimina-
tion [12,28]. Following the latter line, Teige et al. [1] succeeded to generalize
the Púdlak rules [12] from the propositional SAT case to stochastic SAT, where
a more general definition of interpolant is needed, based on S-resolution [25]
for SSAT. In the sequel of this paper, we will do the same for SSMT, thereby
exploiting SSMT resolution [10].

4.1 Generalized Craig Interpolants

Traditional interpolation requires that A∧B is unsatisfiable for the formulae A
and B to interpolate. The precondition A∧B |= False, which would translated
to Pr(A ∧ B) = 0 in a stochastic setting, however is too restrictive for use in
probabilistic model-checking, as a residual chance of failure — which amounts to
satisfying a path condition A ∧B in that context — is well acceptable in many
engineering problems [4,1]. As an example consider the quantitative safety target
“The probability that a plane will crash is at most 10−9 per year”. For a violation
of this quantitative safety goal, we cannot find a classical interpolant in general.

Teige proposed a general concept which can be used to form an adequate
lattice of interpolants for stochastic problems.

Generalized Craig Interpolation 209

Definition 5 (Generalized Craig Interpolant [1]). Let A and B be some
SMT formulae where VA := V ar(A) \ V ar(B) = {a1, ..., aα}, VB := V ar(B) \
V ar(A) = {b1, ..., bβ}, VA,B := V ar(A) ∩ V ar(B), A∃ = ∃a1, ..., aα : A, and

B
∀
= ¬∃b1, ..., bβ : B. An SMT formula I is called a generalized Craig inter-

polant for (A,B) if and only if the following properties are satisfied: V ar(I) ⊆
VA,B, |=L (A∃ ∧B

∀
) → I, and |=L I → (A∃ ∨B

∀
)

For SMT calculi admitting quantifier elimination, like the linear fragments of in-
teger [29] and rational [30] as well as the polynomial fragment of real arithmetic

[31,32], the four quantifier-free SMT formulae equivalent to A∃∧B
∀
, toA∃, to B

∀
,

and to A∃∨B
∀
can serve as generalized Craig interpolants for (A,B). These frag-

ments of arithmetic are, however, very confined. A —necessarily incomplete—
interpolation procedure can, however, be obtained for the non-polynomial case
based on ICP, which reduces arithmetic reasoning to bound reasoning, i.e., to
the decidable case of the theory of linear order over the reals and integers.

An interpolation procedure for SMT involving transcendental functions based
on the latter principle has been pioneered by Kupferschmid et al. [13] without,
however, addressing the stochastic case of generalized Craig interpolants (GCI).
GCI for the propositional case of SSAT, on the other hand, have been explored
by Teige et al. [1]. We will here reconcile these lines in order to compute GCI
for SSMT.

4.2 Computation of Generalized Craig Interpolants

In this subsection, we present a formal way of computing the Craig interpolants
for SSMT formulae by defining certain rules based on the SSMT resolution
calculus. In order to compute systemically the Craig interpolants, one can use
Púdlak’s technique [12] (symmetric) or McMillan’s technique [14] (asymmetric)
which are both built on top of the resolution calculus for propositional logic.

We use SSMT resolution for computing generalized Craig interpolants. For
this purpose, the rules of SSMT resolution are extended to deal with pairs (cp, I)
of annotated clauses cp and an SMT formulae I, where I represents a partial
generalized interpolant [1,13]. Whenever a pair (∅p, I) denoting the empty clause
is derived, a generalized Craig interpolant for the given SSMT formula has been
computed. We compute the interpolant according to the three rules GR.1, GR.2,
and GR.3 given below. The first Rule GR.1 represents a base case assigning initial
interpolants to each clause of A and B.

c 3RR.1 c0,

I =

{
False, c ∈ A
True, c ∈ B

.

(c0, I)

(GR.1)

Rule GR.2 does not exist in non-stochastic interpolation, as it refers to rule
RR.2 of SSMT resolution, where the partial assignment satisfies A ∧ B, which

210 A. Mahdi and M. Fränzle

R

[1 �→0.2,3 �→0.35,5 �→0.45]x, ∃y ∈ {2, 4}, R

[−1 �→0.5,0 �→0.5]z,

R

[0 �→0.15,1 �→0.15,2 �→0.7]w :

(z < −0.5)0, F(x > 2.5 ∨ y > 2.8)0, F (y < 3)0, T (z ≥ 0 ∨ w ≤ 1.7)0, T

GR.1GR.1 GR.1 GR.1

(x ≤ 1 ∨ y > 2 ∨ z ≥ 0 ∨ w ≥ 2)1.0, DC

GR.2

(x ≤ 1 ∨ y > 2 ∨ z ≥ 0)0.3, DC

(x ≤ 1 ∨ y > 2)0.15, DC ∧ z < −0.5

(x ≤ 1)0.15, (DC ∧ z < −0.5) ∨ y > 2

(x > 2.5)0, y > 2.8

∅0.12, (DC ∧ z < −0.5) ∨ y > 2

GR.3

GR.3

GR.3

GR.3

GR.3

Fig. 2. Generalized Craig interpolant for Example 1. The green part is A and the blue
one is B. The red part represents ¬SA,B with a don’t-care interpolant.

is impossible in the traditional setting. If we take the negation of the satisfying
assignments of A ∧B; i.e., ¬SA,B , then A ∧ ¬SA,B, and ¬SA,B ∧B are unsat-
isfiable. Therefore, we can choose the interpolant freely over the shared variable
between A and B, i.e., VA,B .

3RR.2 c1

I is any formula over VA,B

(c1, I)
(GR.2)

The third rule extends Púdlak’s rule for resolution in the direction of SMT simple
bounds. Whenever we have two disjoint simple bounds in different clauses, we
can apply SSMT resolution, i.e., one of rules RR.3 or RR.3e.

((x ∼ a ∨ c1)
p1 , I1), ((x ∼′ b ∨ c2)

p2 , I2),
(x ∼ a ∨ c1)

p1 , (x ∼′ b ∨ c2)
p2 3RR.3(e) (c1 ∨ c2)

p,

I =

⎧⎨⎩
I1 ∨ I2 if x ∈ VA

I1 ∧ I2 if x ∈ VB

(x ∼ a ∨ I1) ∧ (x ∼′ b ∨ I2) if x ∈ VA,B

((c1 ∨ c2)p, I)

(GR.3)

Lemma 1. Let Φ = Q : (A∧B) with Q = Q1x1...Qnxn be some SSMT formula,
and the pair (cp, I) be derivable from Φ by interpolating SSMT-resolution, where
Q(c) = Q1x1...Qixi. Then, for each τ : Var(ϕ) ↓i:= {x1, ..., xi} for i ≤ n with
∀x ∈ V ar(c) : τ(x) = ffs(x ∼ a), where x ∼ a ∈ c, it holds that:

1. Var(I) ⊆ VA,B ,

Generalized Craig Interpolation 211

2. Pr(Qi+1xi+1...Qnxn : (A ∧ ¬SA,B ∧ ¬I)[τ(x1)/x1]...[τ(xi)/xi]) = 0, and
3. Pr(Qi+1xi+1...Qnxn : (I ∧B ∧ ¬SA,B)[τ(x1)/x1]...[τ(xi)/xi]) = 0.

The proof of this Lemma is stated in [22]. By using the previous lemma with the
relatively complete SSMT resolution calculus, we get the following corollary:

Corollary 1 (Generating generalized SSMT interpolants). If interpolat-
ing SSMT resolution derives (∅p, I) from an SSMT formula Φ = Q : (A ∧ B),
then I is a generalized Craig interpolant for (A,B) witnessing Pr(Φ) = p.

The previous corollary follows directly due to Def. 5.

Corollary 2 (Controlling strength of SSMT interpolants). If I = true

is used within each application of Rule GR.2, then Pr(Q : (A∧¬I)) = 0. If I =
false is used within each application of Rule GR.2, then Pr(Q : (B ∧ I)) = 0.

Proof. The proof of this corollary follows the previous lemma. The complete
proof is stated for the SSAT case in [1] and adapts easily to SSMT.

Example 1. In order to get the idea of computing the Craig interpolants for
SSMT problems, let us consider the following formula:

R

[1�→0.2,3�→0.35,5�→0.45]

x, ∃y ∈ {2, 4} R

[−1�→0.5, 0�→0.5], z

R

[0�→0.15,1�→0.15,2�→0.7]w : A ∧ B where A =
(z < −0.5) ∧ (x > 2.5 ∨ y > 2.8) and B = (y < 3) ∧ (z ≥ 0 ∨ w ≤ 1.7). Fig. 2
shows formally how the generalized Craig interpolant is computed. DC stands
for a don’t care formula which can replaced by true or false, a.o. If we replace
DC with true, then the interpolant becomes z < −0.5 ∨ y > 2 which is implied
by A. Likewise, if it is replaced by false, then the resulting interpolant y > 2
implies the negation of B as in Corollary 2.

5 Interpolation-Based Probabilistic Model Checking

In this section we demonstrate an application of generalized Craig interpolation
to quantitative model-checking of probabilistic hybrid automata. Probabilistic
hybrid automata (PHA) are Markov decision processes (MDPs) over infinite
state space, with arithmetic-logical transition guards and actions. These permit
a straightforward encoding by SSMT formulae as proposed in [2,1]. Let us con-
sider that we are given some set T of target states in the PHA model, and we try
to maximize the probability of reaching these states over all policies resolving
the non-determinism in the PHA model. Applications would be that T repre-
sents bad (or good) states and that we are asked to assure that the maximum
probability of reaching bad (good, resp.) states in the model does not violate a
certain safety target (exceeds a desired service level, resp.).

The encoding of PHA into SSMT formulae pioneered in [2] directly applies to
PHA capturing continuous dynamics by pre-post relations. For PHA containing
ordinary differential equations, one has to add ICP for ODE, as suggested in [33]
and integrated into SSMT solving in [9], or one has to resort to abstraction of
ODE into pre-post relations by tools like PHAVer, as pursued in ProHVer [34,35].
For the thermostat case study presented in Fig. 3a, we use the latter approach,
obtaining the abstraction depicted in Fig. 3b and taken from [34].

212 A. Mahdi and M. Fränzle

Heat
Ṫ = 2
t ≤ 3

T ≤ 10

Cool
Ṫ = −T
T ≥ 5

Error
Ṫ = 0

Check
Ṫ = −T/2

t ≤ 1

T ≥ 9

T ≤ 6 →
t′ := 0

t ≥ 2 →
t′ = 0

t ≥ 0.5 →

0.95 : t′ = 0

0.05

t = 0 ∧ x = 0

9 ≤ T ≤ 10

Initial config

Pr(Error and x ≤ 5) ≤? 0.2

Safety requirement

(a) PHA model of a thermostat involving
ordinary differential equations

A
t ≥ 0, t ≥ 0

t = x
T ≤ 10

B
t ≥ 2, x ≥ 0
t = x − 2,
T ≤ 10

C
x ≤ 5

F
t ≥ 0, x ≥ 0
t = x − 5
T ≤ 10

E
t ≥ 2, x ≥ 0
t = x − 4.5

T ≤ 10

D
t ≥ 0, x ≥ 0
t = x − 2.5

T ≤ 10

0.05

0.95 0.05

0.95

Heat

Heat

Check

Check Heat

Error

C
x ≤ 5

Error

B
t ≥ 2, x ≥ 0
t = x − 2,
T ≤ 10

E
t ≥ 2, x ≥ 0
t = x − 4.5

T ≤ 10

0.05

Check

Check

A
t ≥ 0, t ≥ 0

t = x
T ≤ 10

D
t ≥ 0, x ≥ 0
t = x − 2.5

T ≤ 10

0.95

Heat

Heat

B0

I1I2 B1B2

I3 B3

(b) Abstraction of the thermostat model
using pre-post relations instead [34]

Fig. 3. Thermostat case-study discussed in [34,35]

5.1 Probabilistic Bounded Model-Checking (PBMC)

The idea of interpolation-based bounded model checking is to encode the step-
bounded reachability problem as an SSMT formula. In each step, the transition
relation, the non-deterministic choices, and the probabilistic choices are encoded,
where the first one is achieved by an SMT formula, while the latter two require
existential and randomized quantification respectively. Furthermore, the initial
states and target states are encoded by predicates.

5.2 Interpolation-Based Unbounded Model-Checking

In order to use generalized interpolation in unbounded probabilistic model-
checking, first one needs to encode the model’s transiiton relation by a SMT
representation. Then one generates a probabilistic bounded model-checking prob-
lem (PBMC) in SSMT [2] and determines whether the targets are reachable with
probability exceeding the safety target within some step bound k. Should this
not be the case, one can use generalized Craig interpolation to compute an over-
approximation of the states backward reachable from the targets within that step
bound. Technically, we interpolate between the initial state predicate and the
k-fold iteration of the transition relation plus the target predicate, albeit under
quantification. PBMC is iterated for increasingly larger k until either the safety
property is falsified or the generalized Craig interpolant (CGI) stabilizes, i.e., a
superset of all states backward reachable from the target has been computed.

Let us consider the PHA of Fig. 3(a) modelling a thermostat system. Using its
safe abstraction Fig. 3(b), we want to verify whether the maximum probability to
reach the location Error within 5 time units is at most 1

5 . Note that the property
is expressed in terms of time units rather than computation steps. As there is
no immediate correspondence between time units and computation steps, this

Generalized Craig Interpolation 213

verification problem cannot be solved by PBMC, but rather requires unbounded
reachability computation by GCI.

In the abstract model, the probability to reach the error states within 5 time
units is 0.0975, which is less than 1

5 and thus acceptable. To determine this prob-
ability, we encode the abstraction of the thermostat as an SSMT formula and
then compute overapproximations of the backward reachable states incremen-
tally by GCI until it stabilizes. The target is C-Error which cannot be reached
from the initial A-Heat via a single transition. In the first interpolation, the
target C-Error together with a single transition relation represents the A part,
while the initial state predicate A-Heat constitutes B. The first computed in-
terpolant will thus equal all states except the initial one, providing a useless
upper bound of 1 on the probability of eventually hitting the target. Succes-
sive interpolations for larger step numbers yield tighter approximations. In this
model, the interpolant stabilizes after three iterations and yields a tight enough
overapproximation of the backward reachable state set (cf. [22] for details).

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12

LB

UB

Exact

Computed by
GCI

computed
by PBMC

k-step

 =0.0975

 Probability

Fig. 4. Probability of reaching Error state
within 5 time units with(out) interpolation

Fig. 4 represents three results:
the upper (red) curve represents
the upper bound on the step-
unbounded probability to reach lo-
cation Error within 5 time units,
as computed by GCI. The num-
bers on the horizontal axis here re-
fer to the iteration (the number
of steps), while the vertical axis
refers to the computed probabili-
ties. The middle (green) line repre-
sents the exact probability to reach
location Error within 5 time units.
The lower (blue) curve represents the lower bound on the probability to reach an
Error state within 5 time units, as computed by PBMC. One may observe that
upper and lower bounds almost coincide after step k = 4. In fact, interpolation
then tells us that the reachability probability is below 0.1, i.e., well below the
safety target. All details of this example are shown in [22].

6 Conclusion and Future Work

We have successfully extended the concept of generalized Craig interpolation
(CGI) from stochastic SAT to stochastic SAT modulo theory. We exposed a rule
set suitable for automatically computing CGIs in non-polynomial arithmetic
SSMT problems. An application of CGI on unbounded probabilistic model-
checking problems was demonstrated, where the step-bounded probabilistic
reachability of PHAs is encoded symbolically as an SSMT problem and inter-
polation serves as a means for generalizing the findings to the unbounded case.
This approach can straightforwardly be extended to probabilistic stability prob-
lems [1]. In future work we will integrate the interpolation procedure into the
SiSAT tool [4] for automatic quantitative analysis of PHA.

214 A. Mahdi and M. Fränzle

References

1. Teige, T., Fränzle, M.: Generalized Craig interpolation. Logical Methods in Com-
puter Science 8(2) (2012)

2. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg
(2008)

3. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301
(1985)

4. Teige, T.: Stochastic Satisfiability Modulo Theories: A Symbolic Technique for the
Analysis of Probabilistic Hybrid Systems. PhD thesis, Dpt. of Computing Science,
Carl von Ossietzky Universität, Oldenburg, Germany (August 2012)

5. Majercik, S.M., Littman, M.L.: Maxplan: A new approach to probabilistic plan-
ning. In: Simmons, R.G., Veloso, M.M., Smith, S.F. (eds.) AIPS, pp. 86–93. AAAI
(1998)

6. Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochas-
tic satisfiability. Artif. Intell. 147(1-2), 119–162 (2003)

7. Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with caching: A new algorithm for
#sat and Bayesian inference. Electronic Colloquium on Computational Complexity
(ECCC) 10(003) (2003)

8. Freudenthal, E., Karamcheti, V.: QTM: Trust management with quantified
stochastic attributes. Technical Report NYU Computer Science Technical Report
TR2003-848, Courant Institute of Mathematical Sciences, New York University
(2003)

9. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent proba-
bilistic hybrid systems: An application to networked automation systems. Nonlin-
ear Analysis: Hybrid Systems 5(2), 343–366 (2011)

10. Mahdi, A., Fränzle, M.: Resolution for stochastic SAT modulo theories. Technical
report, Dpt. of Computing Science, Carl von Ossietzky Universität Oldenburg,
Germany (December 2013)

11. Benhamou, F., Granvilliers, L.: Combining local consistency, symbolic rewriting
and interval methods. In: Pfalzgraf, J., Calmet, J., Campbell, J. (eds.) AISMC
1996. LNCS, vol. 1138, pp. 144–159. Springer, Heidelberg (1996)

12. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. J. Symb. Log. 62(3), 981–998 (1997)

13. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear con-
straints. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919,
pp. 240–255. Springer, Heidelberg (2011)

14. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

15. Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 124–138.
Springer, Heidelberg (2013)

16. Brillout, A., Kroening, D., Wahl, T.: Craig interpolation for quantifier-free Pres-
burger arithmetic. CoRR abs/0811.3521 (2008)

17. Griggio, A., Le, T.T.H., Sebastiani, R.: Efficient interpolant generation in satisfi-
ability modulo linear integer arithmetic. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 143–157. Springer, Heidelberg (2011)

Generalized Craig Interpolation 215

18. Goel, A., Krstić, S., Tinelli, C.: Ground interpolation for combined theories. In:
Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 183–198. Springer, Heidelberg
(2009)

19. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Log. 12(1), 7 (2010)

20. Lynch, C., Tang, Y.: Interpolants for linear arithmetic in SMT. In: Cha, S(S.), Choi,
J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp.
156–170. Springer, Heidelberg (2008)

21. Vizel, Y., Ryvchin, V., Nadel, A.: Efficient generation of small interpolants in
CNF. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 330–346.
Springer, Heidelberg (2013)

22. Mahdi, A., Fränzle, M.: Generalized Craig interpolation for SSMT. Technical re-
port, Dpt. of Comuting Sceince, Carl von Ossietzky Universität, Oldenburg, Ger-
many (2014)

23. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Siek-
mann, J., Wrightson, G. (eds.) Automation of Reasoning 2: Classical Papers on
Computational Logic 1967-1970, pp. 466–483. Springer, Heidelberg (1983)

24. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex Boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation – Special Issue on
SAT/CP Integration 1, 209–236 (2007)

25. Teige, T., Fränzle, M.: Resolution for stochastic boolean satisfiability. In: Fermüller,
C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 625–639. Springer, Hei-
delberg (2010)

26. Benhamou, F., McAllester, D.A., Van Hentenryck, P.: CLP(Intervals) revisited. In:
ILPS, pp. 124–138. MIT Press (1994)

27. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957)

28. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with craig interpolation
and symbolic pushdown systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 489–503. Springer, Heidelberg (2006)

29. Cooper, D.C.: Theorem proving in arithmetic without multiplication. Machine In-
telligence 7, 91–99 (1972)

30. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real
addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

31. Tarski, A.: A decision method for elementary algebra and geometry. RAND Cor-
poration, Santa Monica, Calif. (1948)

32. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symb. Comput. 5(1/2), 29–35 (1988)

33. Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach
to hybrid systems. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008)

34. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification
for probabilistic hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010)

35. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52. ACM
(2011)

Transformations for Compositional Verification

of Assumption-Commitment Properties�

Ahmed Mahdi1, Bernd Westphal2, and Martin Fränzle1

1 Carl von Ossietzky Universität,
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

2 Albert-Ludwigs-Universität Freiburg,
Georges-Köhler-Allee 52, 79110 Freiburg, Germany

Abstract. This paper presents a transformation-based compositional
verification approach for verifying assumption-commitment properties.
Our approach improves the verification process by pruning the state
space of the model where the assumption is violated. This exclusion
is performed by transformation functions which are defined based on
a new notion of edges supporting a property. Our approach applies to
all computational models where an automaton syntax with locations
and edges induces a transition system semantics in a consistent way
which is the case for hybrid, timed, Büchi, and finite automata. We have
successfully applied our approach to Fischer’s protocol.

1 Introduction

Many systems in real life are hybrid or real-time systems. Designing, developing,
and verifying properties of these systems are becoming more and more com-
plex. Hybrid and real-time systems are modelled by computational models such
as hybrid and timed automata, respectively. This enables us to verify desired
properties in these system models. The verification process is challenging be-
cause system models are increasingly complex and verification tools face the
well-known space explosion problem.

We propose a new technique to improve the memory usage and time con-
sumption of the verification process of assumption-commitment specifications.
An assumption-commitment specification consists of an assumption and a com-
mitment, which is required to hold if the assumption holds. For example, in the
industrial field, contracts [7,8,19] consisting of assumptions and guarantees are
used for component specifications. If the assumptions of a contract are fulfilled,
then the guarantees have to hold. Consider, e.g., the avionics brake system [18]:
if either the first or the second command units fail (no double failures), then the
system has to guarantee that the brake system is safe.

Our approach is based on the new notion of edges supporting a specification.
Intuitively, a specification is supported by an edge if there is a computation

� Partly supported by the German Research Council (DFG) as part of the Transre-
gional Collaborative Research Center SFB/TR 14 AVACS (http://www.avacs.org).

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 216–229, 2014.
c© Springer International Publishing Switzerland 2014

Transformation-Based Compositional Verification 217

path in the model’s semantics which satisfies the specification and uses that
edge. That is, if the edge is reachable by a computation path which satisfies the
specification. Instead of verifying an assumption-commitment property on the
model, we apply a source-to-source transformation to the model, where those
edges which do not support the assumption are effectively disabled. This trans-
formation excludes computation paths from the verification process which are
irrelevant for the overall property because they violate the assumption. Thereby,
our approach decreases complexity already before running a model checking tool.
Furthermore, our approach is independent from particular model checking tools
as we transform the model and leave the model checking procedure untouched.
We develop our approach for a generalized notion of automata consisting of
directed, action-labelled edges between locations in order to uniformly treat
computational models such as finite and Büchi automata, timed and hybrid au-
tomata, and even programs. A necessary assumption of our approach is that
the operational semantics by which an automaton induces a transition system
is consistent for the syntactical transformations. This consistency assumption
is typically satisfied by the standard semantics. Furthermore, our approach is
particularly well-suited for systems which provide many functions and operation
modes, e.g. a plane’s brake system may offer landing and taxiing modes. For
validation purposes, it is useful to have only a single system model including all
features but verification may practically be infeasible on such a model. Given an
assumption-commitment specification, where the assumption limits the focus to
only some features, our approach allows to mechanically create a smaller verifi-
cation model which is guaranteed to reflect the relevant behaviour of the original
model. Thereby, there is no more need to create specially tailored verification
models manually.

Related Work. There are many works [4,10,12,21] on excluding irrelevant com-
putation paths from the verification process by abstracting the original model.
Our work, in contrast, is a source-to-source transformation hence abstractions
can still be applied. The exclusion of model behaviour by a source-to-source
transformation proposed in [14] only considers networks of timed automata with
disjoint activities. Slicing of timed automata [11] removes locations and clock
and data variables on which a given property does not depend on, thus it also
keeps variables on which an assumption depends while our approach may remove
the corresponding behaviour. With partial model checking [2], verification prob-
lems are modularized by computing weakest context specifications through quo-
tienting, which allows to successively remove components completely from the
verification problem. We are instead trying to pragmatically reduce the size of
components before composition by exploiting the specification. Both approaches
could well go together. Static contract checking for functional programs [22] is
dealing with a very different class of computational objects and relies heavily on
assumptions local to the individual functions, while our approach is meant to
also “massage” the global specification into the components.

The paper is structured as follows. Firstly, we motivate the idea of our ap-
proach using Fischer’s protocol. Section 3 introduces generalized automata and

218 A. Mahdi, B. Westphal, and M. Fränzle

Wait
x<=k

R eques t
x<=k

Initial
x<=1

C ritic al_S ec tion

C S _broadcast? access_cs :=true

x>=1 x = 0

x>=k

x = 0,
lis t[pid]
 =true

x>=k
&&
Lock

x = 0,
lis t[pid]
 =false

x>=kC S [pid]?

access_cs :=true

release?
x=0

(a) Process.

F ault_B ehav

E nter_C SInitial

C S _broadcast!

F ault? Lock=false

release! Lock=false

i : id_t lis t[i]==true C S [i]!

lis t[i]=false, Lock=true

(b) Critical section management.

F ault_E xis tenc eNo_F ault
F ault! flag=true

(c) Fault detection.

Fig. 1. Uppaal model of the Fischer’s protocol with direct fault detection

Section 4 defines the transformations ‘edge removal’ and ‘edge redirection’. Sec-
tion 5 introduces the concept of supporting edges and Section 6 shows how our
approach is used in practice. Finally, we summarize the benefits of using our
approach.

2 Motivating Example: Fischer’s Protocol with Faults

Embedded systems are nowadays expected to provide increasingly many func-
tions and different modes. One example are modes for fault detection and han-
dling. In the real-world, faults cannot be avoided in general: wires may break,
radio frequencies may continuously be blocked, and physical sensors and actors
may fail. One way to deal with this situation is to detect and display faults in
order to, e.g., inform users to take countermeasures against the fault. A system
is then correct if and only if it delivers regular functionality unless a fault is
displayed. One requirement is then that under the assumption of the absence of
faults, the system functions properly.

As a simple example, consider a variant of the well-known Fischer’s proto-
col [5]. Figure 1 shows the Uppaal [3] demo model of the Fischer’s protocol which
we extended with fault detection. If no fault occurs, processes (cf. Figure 1a) pose
a request to enter their critical section by the shared variable list. The critical
section manager (cf. Figure 1b) grants access to the critical section by a synchro-
nisation on CS and expects notification of leaving the critical section on channel
release. Our extensions are indicated by thick edges: if a fault occurs, processes
may enter the critical section bypassing the manager and thereby violate the
mutual exclusion property. For simplicity, we merged the environment model
which triggers faults and fault detection in Figure 1c. Location Fault Existence
models the display of a fault occurrence. Table 1 shows results from attempts
to verify mutual exclusion given no faults occur, formally, (�p) → (�q) with
p = ¬Fault Existence and q = (∀ i �= j : Process • ¬(i.Crit Sec ∧ j.Crit Sec)).
Note that it is sufficient to check the Uppaal query A�(p → q) for the consid-
ered model due to the immediate detection. In the original model as shown in

Transformation-Based Compositional Verification 219

Table 1. Figures for verifying mutual exclusion1

original model non-supporting removed non-supporting redirected
query: A�(p → q) query: A�q query: A�(p → q)

seconds MB kStates seconds MB kStates seconds MB kStates

4 0.08 5.1 9.9 0.02 4.5 3.0 0.02 4.5 3.0

5 1.02 12.2 82.9 0.22 6.3 20.7 0.23 6.3 20.7

6 11.46 67.9 683.9 1.65 17.7 140.0 2.18 17.7 140.0

7 127.33 516.0 5,610.7 13.18 62.8 933.1 19.40 88.2 933.1

8 1,274.64 4,193.8 47,630.3 107.18 365.3 6,158.6 168.37 562.7 6,158.6

9 >2,000.00 − − 894.83 2,297.0 40,310.8 1359.34 3,659.0 40,310.8

x<=1 Fault_Existence

x<=1

No_Fault

Lock==false

x>=1

flag=true,
x=0

Fault!

x=0

(a) Delayed fault detection.

deadend

x<=1 Fault_Existence

x<=1

No_Fault

Lock==false

x>=1
flag=true,
x=0

Fault!

x=0

(b) Delayed fault detection redirected.

Fig. 2. Treating delayed detection

Figure 1, Uppaal does not succeed to verify a system with 9 processes in 2,000
seconds, a system with 8 processes takes about 20 min. to be successfully verified.

A clever verification engineer may observe that the verification is expensive
because also all fault scenarios are explored – and found to violate the assumption
that there are no faults. Faults are triggered by the edge in Figure 1c, thus if
this edge is removed, all fault scenarios are excluded from the model. Column
“non-supporting removed” of Table 1 shows results from the verification of the
mutual exclusion property in the modified model. We observe savings in time
and memory consumption of an order of magnitude for the larger instances and
verification even scales better in the number of processes.

Note that Figure 1 is a special case, because fault detection is immediate (no
delay between occurrence and detection) and persistent. For real-world systems,
fault detection often needs time so there may be small durations of time, where
the system cannot guarantee proper operation but where the fault is not yet
displayed. An Uppaal model of delayed fault detection for Fischer’s protocol is
shown in Figure 2a. Here, the query stated above does not hold. Instead, we
need to check the commitment “globally mutual exclusion” under the assump-
tion “globally no fault”. Still, we can effectively exclude fault scenarios from
the verification procedure by redirecting the right edge to a fresh sink location
deadend (cf. Figure 2b). Checking the overall property then reduces to checking
that violations of mutual exclusion are always finally followed by fault display
(results are provided in Section 6).

1 All results: Linux x64, 16 Quad-Core Opteron 8378, 132 GB, Uppaal 4.1.18.

220 A. Mahdi, B. Westphal, and M. Fränzle

In the following, we develop a theory of redirecting and removing edges in
order to prune the state space for assumption-commitment specifications. Our
approach provides a formal justification of the removal applied ad-hoc above:
if we prove that the edge in Figure 1c does not support the assumption, our
results guarantee that we can conclude from a positive verification result for the
transformed model to the original model. That is, we guarantee that no relevant
scenarios are missed – a guarantee which cannot be given for manual ad-hoc
transformations. We show that redirecting edges reflects all computation paths
which satisfy the assumption. The redirection transformation is semantically
optimal, if all edges which do not support the assumption, are redirected.

3 Compositional Verification of Assumption-Commitment
Specifications for Generalized Automata

In the following, we consider a generalized notion of automata which allows us
to treat, among others, timed and hybrid automata uniformly.

Definition 1 (Automaton). An automaton A = (Loc ,Act , E, Lini) consists
of a finite set of locations Loc, a finite set of actions Act, a set E ⊆ Loc ×
Act ×Loc of directed edges, and a set of initial locations Lini ⊆ Loc. Each edge
(�, α, �′) ∈ E has a source location �, an action α, and a destination location �′.

Finite, Büchi, timed [1], and hybrid automata [9] can be represented as au-
tomata in the sense of Definition 1. For example, for timed automata, we can
consider pairs of locations and invariants as locations, and triples consisting of
synchronization, guard, and update vector as action. Thereby, the alphabet of
a timed automaton is represented in the set of actions. Moreover, programs [15]
are automata as follows: the nodes in the control flow graph (CFG) become au-
tomaton locations and the edges in the CFG become automaton edges labelled
with statements.

In the following definition, we introduce an edge-centric notion of operational
semantics for generalized automata, i.e. there is one transition relation per edge
and one dedicated additional transition relation. This allows for a simple defini-
tion of support in Section 5. Later we will characterise those operational seman-
tics for which our approach applies as consistent (cf. Section 4).

Definition 2 (Operational Semantics). Let V be a set of states and Aut
a set of automata. An operational semantics of Aut (over V) is a function
T which assigns to each automaton A = (Loc ,Act , E, Lini) ∈ Aut a labelled
transition system T (A) = (Conf , Λ, { λ−→ | λ ∈ Λ}, Cini) where Conf ⊆ Loc × V
is the set of configurations, Λ = E ∪ {⊥}, where ⊥ /∈ E, is the set of labels,
λ−→ ⊆ Conf ×Conf are transition relations, and Cini ⊆ (Lini ×V)∩Conf is the
set of initial configurations.

The standard operational semantics of hybrid and timed automata induce an
operational semantics of the aforementioned generalized automata.

An operational semantics induces computation paths as usual. In addition,
we distinguish computation paths based on the occurring labels.

Transformation-Based Compositional Verification 221

Definition 3 (Computation Path). A computation path of automaton A ∈
Aut under operational semantics T (A) = (Conf , Λ, { λ−→ | λ ∈ Λ}, Cini) is an ini-
tial and consecutive, infinite or maximally finite sequence c0

λ1−→c1
λ2−→· · · where

c0 ∈ Cini (initiation) and for each i ∈ N0, (ci, ci+1) ∈
λi+1−−−→ (consecution).

Let E be the set of edges of A. We use ΞT (A, F) to denote the set of com-
putation paths of A where only label ⊥ and labels from F ⊆ E occur. ΞT (A) :=
ΞT (A, E) denotes the set of all computation paths of A (under T).

Our approach applies to so-called assumption-commitment specifications as
defined in the following. Note that we use a semantical characterisation of speci-
fications for simplicity. A specification is a set of sequences, i.e. we consider path
specifications. Specifications can syntactically be described by, e.g., LTL [17].

Definition 4 (Assumption-Commitment Specification). A specification
over alphabet Σ is a set S ⊆ Σ∗ ∪Σω of finite or infinite sequences over Σ.

A specification is called assumption-commitment specification if there are
specifications P and Q such that S = P ∪ Q, where P denotes the comple-
ment of P in Σ∗ ∪ Σω, i.e. the set (Σ∗ ∪Σω) \ P . We write P → Q to denote
the assumption-commitment specification P ∪ Q. A set p ⊆ Σ is called atomic
proposition, and the specification �p := p∗ ∪ pω is called an invariant.

We establish the satisfaction relation between automata and specifications
based on the observable behaviour of the automaton, i.e., the sequence of con-
figurations obtained by disregarding the labelled transitions.

Definition 5 (Satisfying a Specification). Let ξ = c0
λ1−→c1

λ2−→· · · ∈ ΞT (A)
be a computation path of automaton A under operational semantics T . The
observable behaviour of ξ is the sequence ↓ξ = c0, c1, . . . We use OT (A) to
denote the set of observable behaviours of the computation paths of A under T ,
i.e. OT (A) = {↓ξ | ξ ∈ ΞT (A)}. Automaton A is said to satisfy the specification
S (under T), denoted by A |=T S, if and only if the set of observable behaviours
of A (under T) is a subset of S, i.e. if OT (A) ⊆ S.

The following theorem states two observations for assumption-commitment
specifications S of the form P → Q. Firstly, whether an automaton satisfies
S depends exactly on the observable behaviours satisfying P . That is, in order
to check an automaton A1 against S, we may as well check A2 (even under
a different operational semantics) as long as A1 and A2 (under the considered
semantics) agree on the observable behaviours satisfying P . Secondly, it is pos-
sible to verify satisfaction of S by an automaton through checking only Q in an
overapproximation of the automaton’s observable behaviour.

Theorem 1 (Compositional Verification). Let A1 ∈ Aut1 and A2 ∈ Aut2
be automata and T1 and T2 operational semantics for Aut1 and Aut2, respec-
tively. Let P → Q be an assumption-commitment specification.

1. The common-P -rule: whenever the set of observable behaviours of A1 that
satisfy P is equal to the set of observable behaviours of A2 that satisfy P ,
then A1 satisfies P → Q if and only if A2 satisfies P → Q, i.e.,

222 A. Mahdi, B. Westphal, and M. Fränzle

OT1(A1) ∩ P = OT2(A2) ∩ P =⇒ (A1 |=T1 P → Q ⇐⇒ A2 |=T2 P → Q).

2. The over-approximating-P -rule: whenever the set of observable behaviours
of A1 that satisfy P is a subset of the set of observable behaviours of A2,
then A1 satisfies P → Q if A2 satisfies Q, i.e.,

OT1(A1) ∩ P ⊆ OT2(A2) =⇒ (A2 |=T2 Q =⇒ A1 |=T1 P → Q).

In general, the second implication does not hold in the other direction.

(Semi-)admissible transformation functions as introduced in the next section
entail the premises of the over-approximating-P - and the common-P -rule.

4 Automata Transformations

In this section, we define a general concept of transformations for automata. We
call transformations which preserve a specification admissible and those which
over-approximate a specification semi-admissible. After that, we introduce the
two transformations redirecting edges and removing edges.

Definition 6 (Transformation). Let Aut be a set of automata. A transfor-
mation is a function F : Aut → Aut which assigns to each original automaton
A ∈ Aut a transformed automaton F(A) ∈ Aut.

Definition 7 (Admissible Transformation). Let T be an operational seman-
tics of Aut and S a specification. Transformation F on Aut is called

1. admissible for S (under T) if and only if for each automaton A ∈ Aut, the
observable behaviours of A and F(A) under T coincide on S, i.e. if

∀A ∈ Aut • OT (F(A)) ∩ S = OT (A) ∩ S.

2. semi-admissible for S (under T) if and only if for each automaton A ∈ Aut,
the observable behaviour of F(A) under T over-approximates the observable
behaviour of A in S, i.e. if ∀A ∈ Aut • OT (A) ∩ S ⊆ OT (F(A)).

The following lemma states the benefit of transformations which are (semi-)
admissible for the assumption of assumption-commitment specifications: the
original and the transformed automaton obtained by an admissible transfor-
mation satisfy the premise of the common-P -rule, for a semi-admissible trans-
formation, the premise of the over-approximating-P -rule holds.

Lemma 1. Let T be an operational semantics of Aut, S = P → Q an assump-
tion-commitment specification, and F a transformation on Aut.

1. If F is admissible for P , then for A ∈ Aut, F(A) |= S if and only if A |= S.
2. If F is semi-admissible for P , then for A ∈ Aut, F(A) |= Q implies A |= S.

Proof. Definition 7 and Theorem 1. ��

Transformation-Based Compositional Verification 223

The first proposed transformation function redirects a set of edges in a given
automaton to a new location. It is defined as follows.

Definition 8 (Redirecting Edges). Let A = (Loc ,Act , E, Lini) be an au-
tomaton, F ⊆ E a set of edges, and 4 /∈ Loc a fresh location. We use A[F/4] to
denote the automaton (Loc ∪ {4},Act , E′, Lini) where

E′ = (E \ F) ∪ {(�, α,4) | (�, α, �′) ∈ F}.

We say A[F/4] is obtained from A by redirecting the edges in F (to 4).

A transformation is a syntactical operation, thus the observable behaviour of
a transformed automaton may in general, given a sufficiently pathological op-
erational semantics, not resemble the behaviour of the original automaton at
all. The following definition of consistency states minimal sanity requirements
on operational semantics which we need in order to effectively use the redirec-
tion transformation. These requirements are directly satisfied by the standard
semantics of, e.g., timed automata.

Definition 9 (Consistent for Redirection). An operational semantics T
for Aut over states V is called consistent (for redirection) if and only if for
each automaton A = (Loc ,Act , E, Lini) ∈ Aut, there is a location 4 such that
A[F/4] ∈ Aut and T (A[F/4]) = (Conf ′, Λ′, { λ−→′ | λ ∈ Λ′}, C′

ini) where

1. the set of configurations over the old locations, and the transition relations
for ⊥ and the unchanged edges do not change, i.e.

Conf ′ ∩ (Loc × V) = Conf , ∀ e ∈ E \ F • e−→ =
e−→′,

and
⊥−→′ ∩ (Conf × Conf) =

⊥−→,

2. T (A[F/4]) simulates transitions induced by edges from F and vice versa,
and the ⊥-transition relation does not leave 4, i.e.

(�,α,�)−−−−→′ = {(c, 〈4, v′〉) | ∃ e = (�, α, �′) ∈ F • (c, 〈�′, v′〉) ∈ e−→},
and ∀ v, v′ ∈ V, �′ ∈ Loc′ • ((4, v), (�′, v′)) ∈ ⊥−→′ =⇒ �′ = 4

3. the fresh location 4 is not initial, i.e. C′
ini = Cini .

The following lemma states that for consistent semantics, the redirection
transformation affects only behaviours where redirected edges are used.

Lemma 2. Let T be an operational semantics of Aut which is consistent for
redirection. Let A ∈ Aut be an automaton with edges E and F ⊆ E. Then there
is a location 4 such that ΞT (A[F/4], E \ F) = ΞT (A, E \ F).

The following second transformation removes edges from an automaton.

Definition 10 (Removing edges). Let A = (Loc ,Act , E, Lini) be an au-
tomaton and F ⊆ E a set of edges. We use A \ F to denote the automaton
(Loc,Act , E \ F,Lini). We say A \ F is obtained from A by removing F .

224 A. Mahdi, B. Westphal, and M. Fränzle

As for redirection, we want that all computation paths of the original automa-
ton that take only non-removed edges are preserved in the new automaton. A
sufficient criterion is the following notion of consistency for removal.

Definition 11 (Consistent Operational Semantics for Removal). An op-
erational semantics T for Aut is called consistent (for removal) if and only if
for each automaton A ∈ Aut, A \ F ∈ Aut and

T (A \ F) = (Conf , Λ \ F, { λ−→ | λ ∈ Λ \ F}, Cini),

given T (A) = (Conf , Λ, { λ−→ | λ ∈ Λ}, Cini). That is, if the operational semantics
of A \ F is obtained from the operational semantics of A by removing some
transition relations and leaving everything else unchanged.

Lemma 3. Let T be an operational semantics of Aut which is consistent for
removal. Let A = (Loc ,Act , E, Lini) ∈ Aut be an automaton and F ⊆ E a set
of edges. Then ΞT (A \ F,E \ F) = ΞT (A, E \ F).

5 Supporting Edges

In this section, we introduce the novel concept of supporting edges, based on edge
reachability. This concept identifies a relation between a specification and edges.
Informally, an edge supports a specification if and only if there is a computation
path which satisfies the specification and where that edge is taken.

Definition 12 (Supporting Edges). Let T be an operational semantics of
Aut and A ∈ Aut an automaton with edges E. An edge e ∈ E

1. supports specification S (under T) if and only if there is a computation path
where label e occurs and whose observable behaviour is in S, i.e. if

∃ ξ = c0
λ1−→c1

λ2−→· · · ∈ ΞT (A) ∃ i ∈ N • λi = e ∧ ↓ξ ∈ S.

2. supports atomic proposition p (under T) if and only if there is a computation
path where label e occurs between two configurations that are in p, i.e. if

∃ ξ = c0
λ1−→c1

λ2−→· · · ∈ ΞT (A) ∃ i ∈ N • λi = e ∧ {ci−1, ci} ⊆ p.

3. potentially supports atomic proposition p (under T) if and only if there are
two configurations of T (A) = (Conf , Λ, { λ−→ | λ ∈ Λ}, Cini) which are in p
and in

e−→-relation, i.e. if ∃ c, c′ ∈ Conf ∩ p • (c, c′) ∈ e−→.

x<=0x <= 0x <= 0
A:=1A := A+1

Fig. 3. Notions of support

Note that Definition 12.1 is the strongest
and 12.3 the weakest notion of support as
stated in the following lemma. For example,
consider the timed automaton in Figure 3
where A is initially 0. If delays with duration 0 are not allowed, the leftmost
edge supports the proposition A = 0, but not the specification �A = 0. The
middle edge potentially supports the proposition, but it does not support it.
The rightmost edge does not even potentially support the proposition A = 0.

Transformation-Based Compositional Verification 225

Lemma 4. Let A ∈ Aut be an automaton and p an atomic proposition.

1. If an edge e of A supports the invariant �p (under T), then e supports the
proposition p (under T), but in general not vice versa.

2. If e supports p, then e potentially supports p, but in general not vice versa.

Our main result shows that redirecting and removing edges which do not
support a specification S are admissible and semi-admissible for S, respectively.

Theorem 2 (Admissibility). Let T be an operational semantics of Aut with
states V and let S be a specification over Σ. Let F be a set of edges of automaton
A ∈ Aut which do not support S under T .

1. FF
rd : A → A[F/4] is admissible for S if T is consistent for redirection and

if S does not refer to the fresh location 4, i.e. if ({4} × V) ∩Σ = ∅.
2. FF

rm : A → A \ F is semi-admissible for S if T is consistent for removal.

To apply Theorem 2 we need a set of edges which do not support the given
specification. In general, detecting edges which do not support a specification is
as expensive as reachability checking. Though if the specification is an invariant,
the contrapositions of the implications in Lemma 4 are particularly useful: if
an edge does not potentially support a proposition, then it does not support
the proposition, and if an edge does not support a proposition p, then it does
not support the invariant �p. A sufficient criterion for an edge not (potentially)
supporting a proposition p is to be a cause or a witness. An edge e is a cause
of a violation of p if the p is always violated after taking this edge, e.g., if the
action of e causes p not to hold. Similarly, an edge is a witness of a violation of
p if p is necessarily violated when e is taken, e.g., if the guard of e implies ¬p.
Removal of witnesses is even admissible. There are sufficient syntactical criteria
to detect causes and witnesses. Furthermore, detection of potential support can
be reduced to an SMT problem for the formula given by Definition 12.3 and
attacked by SMT solvers like SMTInterpol [6]. For the special case of timed au-
tomata and bounded-integer propositions, a procedure based on the well-known
reaching definitions static analysis detects all edges which support an atomic
proposition [13]. Considering all edges which do not support a given specifica-
tion is optimal in the sense that removing or redirecting any more edges breaks
(semi-)admissibility. But it is not necessary to determine all non-supporting
edges in order to obtain an optimal reduction of behavior. It is sufficient to de-
termine all points of no return (PNR) for a given specification, i.e., edges which
are the first on a computation path which do not support the specification.
Causes and witnesses are often PNRs.

Networks of Automata. All previous discussions consider a single automaton.
However, most practical models are networks of automata. In the following, we
discuss briefly how our approach is applied to networks of automata and au-
tomata templates. For timed automata, each network has an equivalent timed

226 A. Mahdi, B. Westphal, and M. Fränzle

automaton, the parallel composition. Edges in the parallel composition are con-
structed from internal transitions of automata in the network, or (with broad-
cast) from synchronisation edges of one or more automata in the network over a
channel. An edge e in the network supports a specification if and only if there is
an edge in the parallel composition which supports the specification and which is
constructed from e. Edges not supporting a specification in this sense can safely
be disabled by applying redirection or removal to the automata in the network.
The same approach applies to hybrid automata and as neither redirection nor
removal changes the set of actions, the sets of labels are preserved and thus no
new computation paths emerge. In Uppaal, networks of automata are composed
of automaton template instances. An edge in a template supports a specification
if and only if there is an edge instance which supports the specification. That is,
an edge can only be safely redirected or removed in the template, if all instances
of this edge in the network do not support the specification.

Computation Paths vs. Runs The standard semantics of timed and hybrid au-
tomata distinguish between computation paths and runs, where the latter are
computation paths with the progress property [16]. Interestingly, for timed au-
tomata, removing and redirecting edges have the same semantical effect if only
runs are considered. However, in practice that will not give an obvious benefit,
because verification tools typically check computation paths, not only runs.

6 Compositional Verification

In the previous sections, we have introduced a concept of transformation by
either redirecting or removing edges and we introduced different notions of edges
supporting a specification or an atomic proposition. This section proposes an
approach to use the previous theory in practice with the Uppaal tool.

Input: automaton A with edges
E, specification S = P → Q,
F ⊆ E not supporting P

if A \ F |= Q return true ;
else return A[F/�] |= S;

Fig. 4. Verification procedure

To use redirection and removal, we pro-
pose to apply the procedure shown in Fig-
ure 4 to all assumption-commitment prop-
erties P → Q. The first step is to remove
edges which don’t support the assumption
and check whether the resulting model sat-
isfies the commitment Q. If Q is satisfied, we
deduce that the original model satisfies the property by the over-approximating-
P -rule from Theorem 1. Otherwise, we need to redirect the edges that do not
support P . Then checking whether the resulting model satisfies P → Q yields the
final verification result by the common-P -rule from Theorem 1. The reason for
using removal before redirection is that removing edges leads to a smaller state
space than redirecting, and consequently less time and memory consumption.
For an example, see Table 1, right-most and middle column.

Note that not all cases can be handled by removing, because we may remove
edges which make a violation of the assumption observable. This is, e.g., the
case for Fischer’s protocol with delayed detection (cf. Section 2). In such cases,

Transformation-Based Compositional Verification 227

one has to use redirection to obtain a definite positive or negative answer. In
order to alleviate state-space explosion, removing and redirecting is supposed to
be performed locally at component level first. A second sweep can be done after
the composition, but experiments show that the first, local one is the decisive.

Table 2. Fischer’s protocol with delayed fault detection

original model non-supporting redirected
query: ¬q � ¬p query: ¬q � ¬p

seconds MB kStates seconds MB kStates
3 0.10 3.9 6.0 0.07 3.9 2.7
4 5.90 29.7 109.6 0.87 5.1 37.0
5 788.20 130.1 2216.9 92.25 104.1 1250.0
6 >2,000.00 − − 1037.24 228.7 3853.4
7 >2,000.00 − − >2,000.00 − −

Recall Fischer’s
protocol with imme-
diate detection as
introduced in Fig-
ure 1. According to
our approach pro-
posed above, we pro-
ceed as follows: the
edges synchronizing
on channel Fault in
Figures 1c and 1b
do not support the
atomic proposition
¬Fault Existence. As
the automaton re-
sulting from removing these edges satisfies the mutual exclusion property, we
can conclude that the original model satisfies the assumption-commitment prop-
erty by using Theorem 1.2. The verification results are stated in Table 1. If the
fault detection is delayed as described in Section 2, then the automata model
obtained from edge removal does not satisfy the mutual exclusion property (the
commitment). So we can not conclude any beneficial results. Therefore we check
whether the resulting automata model after redirecting satisfies the assumption-
commitment property. Note that Tables 1 and 2 only report verification time. For
the case study, identifying non-supporting edges using an SMT-solver takes less
than one second and the time needed for the subsequent simple source-to-source
transformation is negligible. Interestingly, using non-supporting edges enables
us to reduce the LTL property (�p) → (�q), which is not directly supported by
the TCTL fragment of Uppaal, to the leads-to query ¬q � f where f is a fresh
observer for non-supporting edges.

7 Conclusion

We presented a new technique of verifying assumption-commitment specifica-
tions in a large class of computational models, e.g., hybrid, timed, finite, and
Büchi automata, and programs. The technique depends on transformations of
automata by either redirecting or removing edges which do not support the as-
sumption of the considered property. To this end, we introduced the new concept
of “an edge supports a specification” which identifies a relation between specifi-
cations and edges in the automaton based on edge reachability. We showed for
a model of Fischer’s protocol that removing and redirecting edges significantly
speeds up the verification process and improves the memory usage in comparison
to verifying the same property in the original model without transformation.

228 A. Mahdi, B. Westphal, and M. Fränzle

Further work consists of an investigation of further uses of the notion of sup-
porting edges, for example to indicate cut-points in a model where automata
which over-approximate certain features of a multi-feature model can be in-
serted. Furthermore, there are methods to detect the supporting edges such as
the reaching definitions-based approach in [13], but more powerful and efficient
methods are needed. To this end, we will investigate syntactic criteria and sig-
nificant extensions of the existing semantical methods.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Andersen, H.R.: Partial model checking (extended abstract). In: LICS,

pp. 398–407. IEEE Computer Society (1995)
3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,

Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delberg (2004)

4. Benedetto, M.D.D., Gennaro, S.D., D’Innocenzo, A.: Verification of hybrid au-
tomata diagnosability by abstraction. IEEE TAC 56(9), 2050–2061 (2011)

5. Budkowski, S., Cavalli, A.R., Najm, E. (eds.): Formal Description Techniques and
Protocol Specification, Testing and Verification, FORTE XI / PSTV XVIII 1998,
IFIP Conference Proceedings, vol, vol. 135. Kluwer (1998)

6. Christ, J., Hoenicke, J., Nutz, A.: SMTinterpol: An interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

7. Damm, W.: Contract-based analysis of automotive and avionics applications: The
SPEEDS approach. In: Cofer, D., Fantechi, A. (eds.) FMICS 2008. LNCS, vol. 5596,
pp. 3–3. Springer, Heidelberg (2009)

8. Damm, W., et al.: Using contract-based component specifications for virtual inte-
gration testing and architecture design. In: DATE, pp. 1023–1028. IEEE (2011)

9. Henzinger, T.A.: The theory of hybrid automata. In: LICS, pp. 278–292. IEEE
(1996)

10. Herbreteau, F., et al.: Lazy abstractions for timed automata. In: Sharygina et al.
[20], pp. 990–1005

11. Janowska, A., Janowski, P.: Slicing timed systems. FI 60(1-4), 187–210 (2004)
12. Laarman, A., Olesen, M.C., et al.: Multi-core emptiness checking of timed büchi

automata using inclusion abstraction. In: Sharygina et al. [20], pp. 968–983
13. Mahdi, A.: Compositional verification of computation path dependent real-time

system properties. Master’s thesis, University of Freiburg (April 2012)
14. Muñiz, M., Westphal, B., Podelski, A.: Timed automata with disjoint activity. In:

Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595, pp. 188–203.
Springer, Heidelberg (2012)

15. Nielson, F., et al.: Principles of program analysis (2. corr. print). Springer (2005)
16. Olderog, E.R., Dierks, H.: Real-time systems. Cambridge University Press (2008)
17. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)

Transformation-Based Compositional Verification 229

18. SAE Int.: ARP-4761. Tech. rep., Aerospace Recommended Practice (1996)
19. Sangiovanni-Vincentelli, A.L., Damm, W., et al.: Taming Dr. Frankenstein:

Contract-based design for cyber-physical systems. EJC 18(3), 217–238 (2012)
20. Sharygina, N., Veith, H. (eds.): CAV 2013. LNCS, vol. 8044. Springer, Heidelberg

(2013)
21. Sher, F., Katoen, J.P.: Compositional abstraction techniques for probabilistic au-

tomata. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS,
vol. 7604, pp. 325–341. Springer, Heidelberg (2012)

22. Xu, D.N., Jones, S.L.P., Claessen, K.: Static contract checking for Haskell. In: Shao,
Z., Pierce, B.C. (eds.) POPL, pp. 41–52. ACM (2009)

Compositional Reachability in Petri Nets

Julian Rathke, Pawe�l Sobociński, and Owen Stephens

ECS, University of Southampton, UK

Abstract. We introduce a divide-and-conquer algorithm for a modified
version of the reachability/coverability problem in 1-bounded Petri nets
that relies on the compositional algebra of nets with boundaries: we
consider the algebraic decomposition of the net of interest as part of the
input. We formally prove the correctness of the technique and contrast
the performance of our implementation with state-of-the-art tools that
exploit partial order reduction techniques on the global net.

Introduction

For finite-state Petri nets, the reachability problem—i.e. whether some target
marking is reachable from the initial marking— is PSPACE-complete [4]. While
compositional approaches to model checking were identified by the founders of
the discipline [5] as a way of combating state-explosion, the large majority of
model checkers work with the global statespace – which, in the case of Petri
nets, means computing the state graph: a transition system where the states
are markings and transitions reflect the firing of net-transitions. Of course, state
graphs of large nets are prohibitively large to build naively; much of the research
effort to date has focussed on taming the state explosion problem by exploiting
symmetries and partial order reduction techniques [9, 12, 16, 18, 25].

Most real-life concurrent systems, however, are regular in their structure: they
are naturally specified as a composition of relatively simple, often repeated, com-
ponents. We contend that by allowing model checkers access to this high level in-
formation, we can exploit divide and conquer techniques to improve performance.
The tool Penrose, described in this paper, exploits the high-level structure of
a net, which is provided as input, to perform reachability checking. Penrose
is written in Haskell and has not been optimised; despite this, it outperforms
mature, state-of-the-art tools in a number of well-known examples.

Let us consider how a divide and conquer approach can help in checking
reachability; consider a net, N , composed of two subnets, N1 and N2, with dis-
joint places. Any reachability question on N , stated as a desired marking, can be
restated as a pair of desired markings on N1 and N2. Checking this pair of reach-
ability questions independently is more efficient than directly checking reacha-
bility in N , since state graph size is exponential in the number of places of the
corresponding net. However, such a naive approach is unsound: N2’s behaviour
is constrained by its interactions with N1, and vice versa. What is required is a
representation of the behaviour of the subnet N2, say, in which its dependency

J. Ouaknine, I. Potapov, and J. Worrell (Eds.): RP 2014, LNCS 8762, pp. 230–243, 2014.
c© Springer International Publishing Switzerland 2014

Compositional Reachability in Petri Nets 231

and effect upon its environment (the rest of the system) is accounted for. The
notion of a Petri Net with Boundaries provides such a representation.

Roughly speaking, a Petri Net with Boundaries [2] (PNB) represents a sub-
net that is to be placed within a larger environment. The key feature of this
model is a representation of how a net’s transitions may connect with its en-
vironment, via “boundary ports”. The state graph of a PNB is an automaton
in which transition labels record interactions on these boundary ports. Using
PNBs, reachability checking of a composed net, N , formed of N1 and N2, can
be achieved by independently checking the pair of reachability problems on N1

and N2 using their labelled state graphs.
Once the state graph of a component PNB has been built, what remains

important, in terms of checking reachability of the larger system is only its
boundary interactions. This means that state graphs may be minimised with
respect to behaviour that does not interact on a boundary. Moreover, these
minimised graphs may be further minimised after composition. Our technique
exploits this fact to keep the size of state graphs as small as possible. This may
appear counter-intuitive as a means of obtaining efficiency, as minimisation is
known to be expensive. Judicious use of memoisation comes to the fore here: we
target our technique at a class of regular systems that feature many repeated
component nets. As such, we expect many repeated reachability checks on the
component nets and, crucially, many repeated compositions of such components.

Structure of the paper. In §1 we present the necessary background on Petri
Nets with Boundaries, followed in §2 with definitions of the automata encoding
reachability in PNBs. The details of our algorithm are given in §3 and in §4
we describe its implementation and detail our experimental results. Finally, we
present a proof of correctness of the technique §5 and conclude in §6.

1 Background

In this paper, all Petri nets are assumed to be 1-bounded (a.k.a. elementary net
systems): there is at most one token at each place. They are closely related to 1-
safe nets, indeed, any 1-safe net is 1-bounded. However, 1-bounded nets are not
necessarily 1-safe: the semantics of 1-bounded nets simply prohibits the firing of
a transition that would violate the restriction during any execution.

The compositional algebra of Petri nets with boundaries (PNB) is the theoret-
ical workhorse that enables our approach. Here we only give a cursory overview:
for formal details, the reader is referred to [2, 21].

A PNB is a Petri net with extra structure: two finite ordinals of boundary
ports, to which net transitions can connect. Intuitively, transitions connected
to a boundary port are not yet completely specified. The two sets of ports are
drawn, from top to bottom, on the left and right hand sides of an enclosing
box. An example is on the left in Fig. 1: here both boundaries consist of one
port. We write P : (1, 1) to mean that P is a PNB with both boundaries of size
1. Differently to [2, 21] we consider “vanilla” PNBs to be unmarked; in §2 we
introduce a marked variant that contains both an initial and a target marking.

232 J. Rathke, P. Sobociński, and O. Stephens

p

q

Fig. 1. An example PNB and marked PNB (1, 1)

There are two operations for composing PNBs: synchronisation on a common
boundary (;) and a non-commutative, parallel composition that we call tensor
(⊗). The most interesting operation is synchronisation: we refer to [2] for the
formalities, but the graphical intuition shown in Fig. 2 suffices for most exam-
ples. Note that the size of the right boundary of P agrees with the size of the
left boundary of Q—nets can be composed iff they agree on the size of their in-
termediate boundary. Given X : (k, l) and Y : (l,m), the composition is written
X ; Y : (k,m). Transitions of the composed net—called minimal synchronisa-
tions—are, in general, sets of transitions of the two components. In Fig. 2, the
transition {t, a} results from synchronising t and a. Transition t can synchronise
both with a and b; indeed, both choices are taken into account (b also synchro-
nises with u). Transition c has no complementary transition to synchronise with
and thus no composite transition results. Finally, v does not connect to any
places, only to the fourth boundary port, and is thus synchronised with d.

t

u

v

P : (0, 4)

a

b

c

d

Q : (4, 0)

{t, a}

{t, u, b}

{v, d}

P ; Q : (0, 0)

Fig. 2. Example synchronisation

The second PNB composition operation, tensor, is graphically represented by
“stacking” one net on another; intuitively, it is a non-communicating parallel
composition. Differently from synchronisation, any two nets can be tensored:
given nets X : (k, l) and Y : (m,n), we have X ⊗ Y : (k+m, l+n). Both ‘;’ and
‘⊗’ are associative up-to-isomorphism of PNBs, but neither is commutative.

Compositional Reachability in Petri Nets 233

2 From Marked Nets to Automata

A marked PNB consists of a PNB together with two subsets of net-places: the
initial and target marking. Graphically, the places belonging to an initial marking
are decorated with a token, whilst those belonging to the target marking are
shaded. A place can be in both, only one, or neither the initial and a target
marking. An example of a marked net is illustrated in the right part of Fig. 1.

Ordinary PNBs have a labelled transition system (LTS) semantics that cap-
tures the step semantics of the underlying net. The labels record the interactions
on the boundaries, as we explain below with the aid of an example. Consider the
LTS in the left part of Fig. 3 that corresponds to the left net in Fig. 1.

Let B = {0, 1} and consider a PNB P : (k, l). The states of its LTS correspond
to markings of P , the transitions to the firings of sets of independent, enabled
transitions. Transition labels come from the set Bk × Bl. Throughout the paper
we write α/β for (α, β) ∈ Bk × Bl. A transition labelled with α/β indicates the
firing of a set of transitions that is connected to ports on the left as indicated by
the 1s in α, and on the right by the 1s in β. For example, in the LTS of Fig. 3, the
rightmost transition firing in the PNB of Fig. 1 is represented by the transition
labelled 0/1 in the LTS.

{p} {q}

0/0 0/0

0/1

1/0

{p} {q}

0/0 0/0

0/1

1/0

Fig. 3. LTS/NFA semantics of the PNB and marked PNB of Fig. 1

Just as a PNB gives rise to an LTS, a marked PNB gives rise to a non-
deterministic finite automaton (NFA). The states and transitions are as de-
scribed above; the initial state is the state representing the initial marking, while
the final state is the state representing the target marking.

The NFAs that arise from PNBs can be composed using operations corre-
sponding to PNB compositions; a specialised nomenclature is therefore useful:

Definition 1. A non-deterministic finite automaton with boundaries (NFAB)
A : (k, l) is a non-deterministic finite automaton A with alphabet Bk × Bl. Let
L(A) ⊆ (Bk × Bl)∗ denote the language of A.

Given a PNB P : (k, l), we denote the resulting NFAB �P � : (k, l). Note
that any ordinary marked net, N , can be regarded as a PNB, N : (0, 0) with
no boundaries. The resulting NFAB �N� has the alphabet B0 × B0, which is
the singleton—this is precisely the state graph of N w.r.t. step semantics. The
following observation, which is central to our approach, is immediate.

Proposition 2. Supposed that N is a marked net. Then the final marking is
reachable from the initial marking iff L(�N�) �= ∅ ��

234 J. Rathke, P. Sobociński, and O. Stephens

Finally, we need to explain how NFABs are composed. If A : (k, l), B : (l,m)
and C : (n, o) are NFABs then both A ; B : (k,m) and A ⊗ C : (k+n, l+o) have
as states pairs (a, b) where a is a state of A and b is a state of B. Initial and final
states are simply the product of the initial and final states of the component
NFABs. The only difference is how the transition relations are defined:

a
α/γ−−→ a′ b

γ/β−−→ b′

(;)

(a, b)
α/β−−→ (a′, b′)

a
α/β−−→ a′ b

γ/δ−−→ b′

(⊗)

(a, b)
αγ/βδ−−−−→ (a′, b′)

The following is straightforward to show and builds on known compositionality
properties of PNBs [2].

Proposition 3 (Compositionality). Given PNBs P , Q, we have �P ; Q� ∼=
�P � ; �Q� and �P ⊗Q� ∼= �P � ⊗ �Q�, where ∼= is isomorphism of automata,
defined in the obvious way as bijective mappings on states and transitions.

Of particular interest to our approach are NFA transitions witnessing the
firing of net transitions that are not connected to any boundary ports. Thus we

let τk,l
def
= 0k/0l. We will refer to τk,l as a τ -move or silent move.

3 Compositional Reachability

In this section we explain our technique for compositional reachability checking
and present our algorithm. We will use the following running example, which
features a net that is particularly suitable for our approach.

B4 = � ; b1 ; b1 ; b1 ; b1 ; ⊥ � b1 ⊥

Fig. 4. The net B4 as a composition of nets �, b1 and ⊥.

Example 4. Consider the marked PNB, B4, shown in Fig. 4 that models a 4 place
buffer [9]. It enjoys a simple, regular structure, yet the number of transitions that
need to be fired in order to reach the target marking is quadratic in the size of
the buffer1. Using marked PNBs, we can express B4 as:

$; (b1 ; (b1 ; (b1 ; (b1 ; ⊥)))) (1)

1 Precisely, the length of the minimal firing sequence of Bi is the ith triangle number.

Compositional Reachability in Petri Nets 235

Our procedure takes a decomposition of a net as an input: roughly an expres-
sion akin to (1), expressing a net as a composition of simple components. We
represent decompositions using wiring expressions ; a wiring expression is the
abstract syntax tree, t, of a PNB expression, where internal nodes are labelled
with either ; or ⊗, and leaves are (possibly repeated) variables.

T ::= x | T ; T | T ⊗ T

Now, a wiring expression together with an assignment map, V , taking variables
to marked PNBs, can be evaluated recursively to obtain a marked PNB, �t�V :

�x�V
def
= V(x) �t1 ; t2�V

def
= �t1�V ; �t2�V �t1 ⊗ t2�V

def
= �t1�V ⊗ �t2�V

We assume that variable assignments are compatible with t, in the sense that
only nets with compatible boundaries are composed; in recent work, we used a
simple type system to ensure this [24]. Given a net N : (k, l), we say that (t,V)
is a wiring decomposition of N if �t�V ∼= N .

Example 5. The following are the wiring expression and variable assignment that
correspond to (1):

t = x1 ; (x2 ; (x2 ; (x2 ; (x2 ; x3)))) V = {x1 → $, x2 → b1, x3 → ⊥} (2)

observe that �t�V is B4, shown in the left side of Fig. 4; (t,V) is therefore a
wiring decomposition of B4.

Consider any net N , together with corresponding initial and target markings.
Given any ordinary PNB expression for N , notice that we can extend it into a
wiring decomposition: first by translating the expression into a wiring expression,
second by translating the initial and target markings of N component-wise into
marked PNBs, that we bind to the variables. The specification of the reachability
problem is thus naturally compositional.

The core idea of our algorithm is to convert a wiring decomposition (t,V)
of a net N to an—ideally small—NFAB that represents the “protocol” that N
must adhere to w.r.t. its context (i.e. the nets connected to its boundaries), in
order to reach its local target marking. The key property exploited by the algo-
rithm is that weak language equivalence is a congruence2 (Proposition 8): any
weak language-preserving modifications can be made to a PNB’s NFAB whilst
ensuring a faithful representation of all interactions the PNB must perform to
reach its target marking. Showing that weak language equivalence is a congru-
ence is thus the key technical ingredient needed to show the correctness of our
technique; this is the topic of §5.

Concretely, given an NFAB we perform (i) τ -closure, ignoring internal moves,
and (ii) NFA minimisation to prune the statespace, preserving language equiva-
lence. We leverage the structure of wiring decompositions by using memoisation
to prevent repeated computation. Our algorithm maintains two maps:

2 The adjective ‘weak’ refers to the forgetting of the τ -moves. See §5 for the formal
definition.

236 J. Rathke, P. Sobociński, and O. Stephens

1. knownNetNFAs, from component nets to their corresponding reduced NFABs,
2. knownNFAComps, from two NFABs and composition type, to reduced NFABs.

The second memoisation map is checked for membership up-to language-
equivalence: (n1, n2, Op) ∈ knownNFAComps is true if knownNFAComps contains
an entry (n′

1, n
′
2, Op) such that n1 ∼ n′

1 and n2 ∼ n′
2, where ∼ is language

equivalence. The essence of this optimisation is that if we perform a (potentially
expensive) composition and reduction on a pair of NFABs, we never repeat this
computation for any pair of NFABs that are pairwise language equivalent.

The core algorithm is given in Fig. 5, and we briefly outline its steps here.
The input wiring decomposition is traversed; each unique leaf (component net)
is converted to its NFAB, which is then τ -closed and reduced, with memoisation
(Line 3) preventing repeated performance of this conversion for equal compo-
nents. On composition nodes, the procedure recurses on both child branches, to
obtain a (reduced) NFAB for each; then, if the pair of NFABs is unique (up-
to language-equivalence) they are composed using the appropriate operation on
NFABs, before being τ -closed and reduced. Again, memoisation (Line 13) pre-
vents unnecessary repeated computation.

Require: knownNetNFAs, knownNFAComps initially empty
1: procedure wdToNFA(t)
2: if t is a PNB then
3: if t ∈ knownNetNFAs then
4: return knownNetNFAs[t]
5: else
6: n ← reduce(τ -close(netToNFA(t)))
7: knownNetNFAs[t] := n
8: return n
9: end if
10: else � t is (t1, t2, OP)
11: n1 ← wdToNFA(t1)
12: n2 ← wdToNFA(t2)
13: if (n1, n2, OP) ∈ knownNFAComps then � Up-to language equivalence
14: return knownNFAComps[(n1, n2, OP)]
15: else
16: n ← reduce(τ -close(n1 OP n2))
17: knownNFAComps[(n1, n2, OP)] := n
18: return n
19: end if
20: end if
21: end procedure

Fig. 5. Core Algorithm

Now since any ordinary net N can be considered as a PNB with no bound-
aries, running our algorithm on any wiring decomposition of N as input will
construct an NFAB with the singleton alphabet {τ0,0}. Up to weak language

Compositional Reachability in Petri Nets 237

equivalence there are only two such NFABs, both with one state that is either
accepting (indicating a reachable desired marking) or non-accepting (indicating
an unreachable desired marking). Therefore, running our core algorithm on a
wiring decomposition of N decides the classical reachability problem for N .

It should be highlighted that our algorithm decides a modified version of the
reachability problem: we take a wiring decomposition as input. When run on
the trivial decomposition, the performance would typically be unsatisfactory
since, for example, no partial order reduction techniques are employed when
generating the state graph. The scalability of our algorithm thus depends on
finding efficient decompositions. In our experience, finding suitable candidate
decompositions is not difficult: concurrent and distributed systems are typically
designed, and described, in a component-wise, rather than monolithic manner.

4 Implementation and Results

The core algorithm described in the previous section has been implemented in
Haskell, as part of the Penrose tool. In the implementation we use current
state-of-the-art algorithms for both: language-equivalence checking via bisimu-
lation up-to techniques due to Bonchi and Pous [1], and NFA minimisation using
forward and backwards variants of simulation of Clemente and Mayr [15].

Example 6. The running time of our implementation on the buffer nets of our
running example is linear w.r.t. the size of the input net. Indeed, each additional
component simply leads to another (successful) memoisation-map lookup, with
constant cost. Contrast this with the fact that the minimum firing sequence is
quadratic w.r.t. the size of the buffer, as described in Exm. 4. Checking reacha-
bility for buffer nets thus asymptotically outperforms approaches based on firing
transitions in the global net: see the first five rows in the results Table 1.

As we have explained in §3, Penrose takes as input a wiring decomposition;
Since problem descriptions in the literature are naturally described in terms of
their constituent components, it is little work to arrive at high-level descrip-
tions using the DSL recently introduced by the 2nd and 3rd authors [24]. The
DSL programs evaluate to a wiring expression, that we have used as inputs to
Penrose; alternatively, they can be evaluated to monolithic nets, which we have
used as input to other tools for performance comparisons. Indeed, using Penrose

it is possible to generate arbitrary instances of commonly used benchmarks.
The relative performance of Penrose was evaluated 3 by comparing it with

the current state-of-the-art tools, all of which use unfolding-based approaches:

3 All experiments were run on an Ubuntu Linux virtual machine (4-core 32-bit CPU,
8GB RAM) hosted on an Intel i7-2600 3.40GHz CPU, 16GB of RAM, running 64-
bit Ubuntu Linux4. Tool performance was recorded using the standard Unix time

command, measuring total (wall-clock) time and peak memory usage.
4 Some tools required a 32-bit platform, hence the virtual machine.

238 J. Rathke, P. Sobociński, and O. Stephens

1. LOLA [20], an established tool and winner of the reachability category of
2013 Petri Net model checking competition,

2. The PUNF5 unfolder, which uses parallelisation techniques from [10] and
CLP6 checker, which uses linear-programming techniques from [14],

3. CUNF [19] unfolder, a recently-introduced tool7, using the CNA checker.

In Table 1, T indicates a time-out (5 minutes), M denotes memory-exhaustion
(8GB) and / marks an incorrect result; the best performance of each problem
instance is highlighted.

As mentioned, Penrose directly computes using the particular wiring decom-
position, (t,V), that specifies each problem; all other tools were provided input
that was generated by first computing �t�V , and then converting into suitable
format8. The time taken for this conversion was not included in the performance
benchmarking—only the processing time of the individual tools was recorded.

t1

t2

Fig. 6. iter-choice net

The majority of problems in Table 1 are taken
from Corbett’s [6] benchmarks, except those
marked with a ∗, which we briefly discuss here:
counter is taken from [24], and models a dis-
tributed n-bit counter. It is an unsafe net, lead-
ing to incorrect results from CLP/CNA. repli-
cator is taken from [22], modelling a sequence
of components that can output an unbounded
number of tokens at their right boundary after
receiving a single token on their left boundary.
Again, it is an unsafe net. Taken from [12], iter-
choice models a sequence of transition choices. A
single component is illusrated in Fig. 6, the transition choice is between t1 and t2.
Due to an exponentially-sized unfolding, the results show that moderately-sized
instances9 of iter-choice cannot be handled by the tested tools. Penrose, on the
other hand, is able to handle very large instances quickly. Merged Processes [12]
were designed to avoid such exponential unfoldings.

The time-vs-problem size results for Penrose are plotted in Fig. 7. There is
a clear distinction between the scalable examples, and those that are (much)
less scalable. The causes of the poor performance include increase in (language
inequivalent) NFA sizes, as the wiring decomposition is traversed: each new
NFA grows the memoisation map, and larger NFAs take longer to check for
language (in)equivalence. The examples with good performance (e.g. Exm. 4)
quickly reach fixed-points w.r.t. composition, in that no new NFAs are ever
generated after a certain point; indeed, the buffer reaches a fixed point at n = 1.

Statespace growth is unavoidable in systems such as the counter; it is an
inherent problem with the compositional approach. In this case, avoiding the

5 http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
6 http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/clp/
7 http://code.google.com/p/cunf/
8 Either LL NET format or LOLA’s input format.
9 Checking for an alternating taken/not-taken marking.

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/clp/
http://code.google.com/p/cunf/

Compositional Reachability in Petri Nets 239

Table 1. Time and Memory results

Problem Time (s) Max Resident (MB)

name size LOLA CLP CNA Penrose LOLA CLP CNA Penrose

buffer 8 0.001 0.003 0.017 0.001 7.51 33.30 38.45 14.36
buffer 32 0.001 0.013 0.824 0.001 7.51 34.49 48.09 14.35
buffer 512 0.058 T M 0.001 83.44 T M 14.40
buffer 4096 T T M 0.002 T T M 14.70
buffer 32768 T T M 0.005 T T M 16.07
over 8 31.039 0.008 1.071 0.003 3812.00 37.63 141.85 16.53
over 32 M T M 0.003 M T M 16.52
over 512 M T M 0.003 M T M 16.52
over 4096 M T M 0.003 M T M 16.53
over 32768 M T M 0.004 M T M 17.85
dac 8 0.001 0.003 0.017 0.001 7.51 33.28 38.85 15.37
dac 32 0.001 0.005 0.028 0.001 7.50 34.50 49.45 15.34
dac 512 0.005 T 255.847 0.001 20.62 T 6012.00 15.36
dac 4096 2.462 T M 0.002 166.07 T M 15.62
dac 32768 T T M 0.009 T T M 16.91
philo 8 0.002 0.003 0.016 0.004 8.86 33.22 38.54 16.98
philo 32 M 0.003 0.017 0.004 M 33.53 40.87 16.97
philo 512 M 0.020 0.086 0.004 M 41.69 290.77 16.90
philo 4096 M 7.853 M 0.004 M 172.76 M 17.13
philo 32768 M T M 0.005 M T M 18.32

hartstone 8 0.000 0.002 / 0.002 7.51 33.05 / 15.48
hartstone 32 0.001 0.002 / 0.002 7.52 33.22 / 15.48
hartstone 512 0.002 0.005 / 0.001 17.82 36.38 / 15.49
hartstone 4096 0.044 0.029 / 0.002 96.27 58.15 / 15.74
hartstone 32768 56.050 3.008 M 0.003 727.63 278.23 M 17.10
iter-choice∗ 8 0.006 5.025 19.062 0.002 36.37 465.17 1570.64 15.34
iter-choice∗ 32 M T T 0.002 M T T 15.34
iter-choice∗ 512 M T T 0.002 M T T 15.38
iter-choice∗ 4096 M T T 0.002 M T T 15.56
iter-choice∗ 32768 M T T 0.003 M T T 16.95
replicator∗ 8 0.001 / 0.016 0.001 7.51 / 38.15 15.39
replicator∗ 32 0.001 / 0.017 0.001 7.51 / 39.41 15.40
replicator∗ 512 0.002 / 1.023 0.001 14.72 / 77.87 15.41
replicator∗ 4096 0.062 / 64.046 0.002 86.85 / 3256.00 15.56
replicator∗ 32768 91.646 / M 0.006 1524.50 / M 16.97
counter∗ 8 0.001 / / 0.050 7.51 / / 20.61
counter∗ 16 0.000 / / 4.056 7.51 / / 22.52
counter∗ 32 0.001 / / 46.027 7.51 / / 39.66
counter∗ 64 0.001 / / T 8.60 / / T
token-ring 8 0.001 0.007 0.071 1.024 7.51 39.96 89.81 20.74
token-ring 16 1.824 T T 12.034 318.08 T T 24.77
token-ring 32 M T T 133.636 M T T 39.65
token-ring 64 M T T T M T T T

240 J. Rathke, P. Sobociński, and O. Stephens

20 22 24 26 28 210 212 214 216

10−3

10−2

10−1

100

101

102

103

Problem Size

T
im

e
(s
)

token-ring
counter∗
philo
over

iterated-choice∗
replicator∗

dac

hartstone

buffer

Fig. 7. Time vs Problem size for Penrose

slowdown could be achieved by observing a monotone increase in state size and
abandoning the component-wise approach, falling back to other techniques.

It could be argued that the playing field is unfair: Penrose uses a formal
description of the decomposition of a problem at hand into smaller components
while other tools take a global, monolithic net as input. This is, however, pre-
cisely our point: there is no reason for model checkers not to take advantage of
compositional descriptions–it is how real systems are designed and described.

5 Proof of Correctness

In this section we outline a proof that the algorithm presented in Fig. 5 is correct.
Given NFABs A,B : (k, l), A and B are said to be (strong) language equivalent,
written A ∼ B, if L(A) = L(B). The following result is simple to show, using
the definitions of ; and ⊗ on NFABs.

Proposition 7 (Strong language equivalence is a congruence). Suppose
that A and A′ are NFABs and A ∼ A′. Then the following hold, where in each
point below, B ranges over those NFAB where the composition is defined.

Compositional Reachability in Petri Nets 241

(i) A ; B ∼ A′ ; B (ii) B ; A ∼ B ; A′

(iii) A ⊗ B ∼ A′ ⊗ B (iv) B ⊗ A ∼ B ⊗ A′ ��

Now let −̂ : (Bk × Bl)∗ → (Bk × Bl − {τk,l})∗ be the unique monoid homo-
morphism where, on elements x of Bk × Bl, x̂ = ε if x = τk,l and x otherwise.
Intuitively, x̂ results from stripping the silent moves from x. Given a NFAB

A : (k, l) we define Lτ (A)
def
= {x̂ | x ∈ L(A)}. NFABs A,B : (k, l) are said to be

weak language equivalent, written A ≈ B, when Lτ (A) = Lτ (B).

An NFAB A : (k, l) is said to be reflexive if for all states a ∈ A we have a

loop transition a
τk,l−−→ a. When we restrict our attention to reflexive NFABs, also

weak language equivalence is a congruence.

Proposition 8. Suppose that A and A′ are reflexive NFABs and A ≈ A′. Then
the following hold, where at each point below B ranges those over reflexive NFABs
where the composition is defined.

(i) A ; B ≈ A′ ; B (ii) B ; A ≈ B ; A′

(iii) A ⊗ B ≈ A′ ⊗ B (iv) B ⊗ A ≈ B ⊗ A′ ��

Any NFAB that results from a marked PNB is reflexive, since the empty set of
transitions can fire at any marking, yielding a τ -move in the underlying NFAB.
The reductions performed in Fig. 5 replace reflexive NFABs with smaller, weak
language equivalent automata. Correctness is a straightforward consequence.

Theorem 9. The algorithm in Fig. 5 is correct: the computed NFAB is weak
language equivalent to the semantics of the corresponding global net. ��

6 Related Work and Discussion

We introduced a technique for checking reachability that takes a decomposition
of a net as input and relies on the use of weak language equivalence to discard
local state. The compositional approach was briefly discussed in [22] and in the
technical report [23], where further examples are described in detail. Initial ef-
forts were based on determinisation, which was considerably more expensive than
our current use of NFA minimisation [15] and language equivalence checking [1].

The algebra of automata with boundaries used in this paper is an instance
of the algebra of Span(Graph) [11]. The goal of the more recent work [2, 3, 21]
was to lift this algebra to the level of nets in a compositional way and explore
connections with process algebra: our approach ignores local state and focusses
only on external interactions: here we were inspired by the ideas of Milner [17].

The tools that we have used in order to compare our performance are based on
the unfolding approach pioneered by McMillan [16]. The algorithm to compute
finite complete prefix was improved in [9,13]. Unfoldings carry more information
about the computations of nets than merely reachability, for instance, allowing
LTL model checking [7]. For an overview of the extensive field see [8].

242 J. Rathke, P. Sobociński, and O. Stephens

References

1. Bonchi, F., Pous, D.: Checking NFA Equivalence with Bisimulations up to Con-
gruence. In: PoPL (2013)

2. Bruni, R., Melgratti, H., Montanari, U., Sobociński, P.: Connector algebras for C/E
and P/T nets’ Interactions. Logical Methods in Computer Science 9(3) (2013)

3. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets in-
teractions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901,
pp. 312–326. Springer, Heidelberg (2011)

4. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. In: Shya-
masundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–337. Springer, Hei-
delberg (1993)

5. Clarke, E.M., Long, D., McMillan, K.: Compositional model checking. In: LiCS
1989, pp. 352–362 (1989)

6. Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Transactions on Software Engineering 22(3), 161–180 (1996)

7. Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings.
In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56. Springer, Heidelberg
(2001)

8. Esparza, J., Heljanko, K.: Unfoldings: a partial-order approach to model checking.
Springer (2008)

9. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Form Method Syst Des 30(3), 285–310 (2002)

10. Heljanko, K., Khomenko, V., Koutny, M.: Parallelisation of the Petri Net Unfolding
Algorithm. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280,
pp. 371–385. Springer, Heidelberg (2002)

11. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): A categorical algebra of
transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–
321. Springer, Heidelberg (1997)

12. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged Processes — A
New Condensed Representation of Petri Net Behaviour. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 338–352. Springer, Heidelberg (2005)

13. Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings.
Acta Inform. 40(2), 95–118 (2003)

14. Koutny, M., Khomenko, V.: Linear Programming Deadlock Checking Using Partial
Order Dependencies. Technical report, Newcastle University (2000)

15. Mayr, R., Clemente, L.: Advanced Automata Minimization. In: POPL (2013)
16. McMillan, K.: A technique of a state space search based on unfolding. Form.

Method Syst. Des. 6(1), 45–65 (1995)
17. Milner, R.: A Calculus of Communicating Systems. Prentice Hall (1989)
18. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains,

Part I. Theoretical Computer Science 13(1), 85–108 (1981)
19. Rodŕıguez, C., Schwoon, S.: Cunf: A Tool for Unfolding and Verifying Petri Nets

with Read Arcs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 492–495. Springer, Heidelberg (2013)

20. Schmidt, K.: LoLA A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)

21. Sobociński, P.: Representations of petri net interactions. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg
(2010)

Compositional Reachability in Petri Nets 243

22. Sobociński, P., Stephens, O.: Penrose: Putting Compositionality to Work for Petri
Net Reachability. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089,
pp. 346–352. Springer, Heidelberg (2013)

23. Sobociński, P., Stephens, O.: Reachability via compositionality in Petri nets.
arXiv:1303.1399v1 (2013)

24. Sobociński, P., Stephens, O.: A Programming Language for Spatial Distribution
of Net Systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS,
vol. 8489, pp. 150–169. Springer, Heidelberg (2014)

25. Starke, P.: Reachability analysis of Petri nets using symmetries. Systems Analysis
Modelling Simulation 5, 292–303 (1991)

Author Index

Bazille, Hugo 20
Bell, Paul C. 32
Bollig, Benedikt 45
Bournez, Olivier 20

Carayol, Arnaud 58
Chen, Shang 32

Delzanno, Giorgio 72
Demri, Stéphane 85
Dhar, Amit Kumar 85

Fränzle, Martin 203, 216

Gastin, Paul 45
Geeraerts, Gilles 98
Gomaa, Walid 20
Goossens, Joël 98

Haase, Christoph 112
Haddad, Serge 125
Hague, Matthew 58
Halfon, Simon 112
Ho, Hsi-Ming 138
Hofman, Piotr 151
Hunter, Paul 163

Jackson, Lisa 32
Jovanović, Aleksandra 176

Kwiatkowska, Marta 176

Leroux, Jerome 190

Mahdi, Ahmed 203, 216
Monmege, Benjamin 125

Pérez, Guillermo A. 163
Pouly, Amaury 20

Raskin, Jean-François 163
Rathke, Julian 230

Sangnier, Arnaud 85
Schmitz, Sylvain 1
Schnoebelen, Philippe 190
Schubert, Jana 45
Sobociński, Pawe�l 230
Stainer, Amélie 98
Stephens, Owen 230
Stückrath, Jan 72

Totzke, Patrick 151

Westphal, Bernd 216

	Preface
	Organization
	Algorithms for
Branching Markov Decision Processes

	References

	Walking with Data - Where Does it Stop?
	References

	Complexity Bounds for Ordinal-Based
Termination

	On the Subtle Interaction Between Reachability
and Liveness

	Table of Contents
	Complexity Bounds
for Ordinal-Based Termination

	1 Introduction
	2 Well Quasi Orders and Termination
	2.1 Well Quasi Orders
	2.2 Termination
	2.3 Ordinals

	3 Complexity Bounds
	3.1 Controlled Ranking Functions
	3.2 Hardy and Cichon ´Hierarchies
	3.3 A Length Function Theorem for ε0

	4 Complexity Classification
	4.1 Fast-Growing Classes
	4.2 Classification

	5 Product vs. Lexicographic Orderings
	5.1 Disjunctive Termination Arguments
	5.2 A Comparison
	5.3 Length Functions for the Product Ordering
	5.4 Controlling Abstractions

	6 Concluding Remarks
	References

	On The Complexity of Bounded Time
Reachability for Piecewise Affine Systems

	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Piecewise Affine Functions
	2.3 Decision Problems

	3 Hardness of Bounded Time Reachability
	3.1 Solving SUBSET-SUM by Iteration

	3.2 Solving a SUBSET-SUM Problem with a Piecewise Affine Function

	3.3 Complexity Result

	4 Solving of Bounded Time Reachability
	4.1 Notations and Definitions
	4.2 Results

	5 Other
Results
	References

	Reachability and Mortality Problems
for Restricted Hierarchical Piecewise Constant
Derivatives

	1 Introduction
	2 Preliminaries
	3 Reachability and Mortality for n-RHPCDs

	4 Conclusions
	References

	Parameterized Verification of Communicating
Automata under Context Bounds

	1 Introduction
	2 Preliminaries
	3 Parameterized Communicating Automata
	4 Context-Bounded Parameterized Verification
	5 Conclusion
	References

	Regular Strategies in Pushdown Reachability
Games

	1 Introduction
	2 Preliminaries
	2.1 Pushdown Games
	2.2 Alternating P-Automata

	2.3 Constructing the Winning Region

	3 Regular Strategies
	3.1 Runs as Trees
	3.2 Ordering on Runs
	3.3 ´Eloise’s Winning Strategy
	3.4 Regular Winning Strategies
	3.5 The Automaton SB

	4 Conclusion
	References

	Parameterized Verification of Graph Transformation Systems with
Whole Neighbourhood Operations
	1 Introduction
	2 Preliminaries
	3 Graph Transformations with Universally Quantified Conditions
	4 A Procedure for Coverability in UGTS
	5 Optimizations
	6 Conclusions and Related
Work
	References

	Equivalence Between Model-Checking Flat Counter Systems and Presburger Arithmetic
	1 Introduction
	2 Branching-Time Temporal Logics on Flat Counter Systems
	3 Reducing (PA) to a Subproblem of MC(CTL
	4 From MC(CTL∗, FlatCS) to (PA)

	4.1 Minimal Path Schemas
	4.2 Encoding Runs Using Vectors
	4.3 Encoding CTL Formulae Using (PA)

	5 Conclusion
	References

	Synthesising Succinct Strategies in Safety
and Reachability Games

	1 Introduction
	2 Preliminaries
	3 Succinct Strategies
	4 Structured Games and Monotonic Strategies
	5 Efficient Computation of Succinct Winning Strategies
	6 Applications
	References

	Integer Vector Addition Systems with States
	1 Introduction
	2 Preliminaries
	3 Reachability in Z-VASSR is in NP

	4 InclusionforZ-VASS
	5 Concluding Remarks
	References

	Reachability in MDPs:
Refining Convergence of Value Iteration

	1 Introduction
	2 Reachability Problems for Markov Decision Processes
	2.1 Problem Specification
	2.2 MEC Decomposition and Transient Behaviour
	2.3 Characterization of Minimal Reachability Probabilities
	2.4 Characterization of Maximal Reachability Probabilities

	3 Value Iteration for Reachability Objectives
	3.1 Convergence Issues
	3.2 Stopping Criterion for ε-Approximation

	3.3 Rate of Convergence
	3.4 Stopping Criterion for Exact Computation

	4 Conclusion
	References

	On the Expressiveness of Metric Temporal Logic over Bounded Timed Words
	1 Introduction
	2 Preliminaries
	2.1 Timed Words
	2.2 Metric Logics
	2.3 Relative Expressiveness

	3 Expressiveness
	3.1 Definability of Time 0
	3.2 Past Modalities
	3.3 Counting Modalities
	3.4 Non-Local Properties: One Reference Point
	3.5 Non-local Properties: Two Reference Points

	4 New Modalities
	4.1 Generalised ‘Until’ and ‘Since’
	4.2 More Liberal Bounds

	5 The Translation
	5.1 Eliminating the Metric
	5.2 From Non-Metric to Metric

	6 Conclusion
	References

	Trace Inclusion for One-Counter Nets Revisited
	1 Introduction
	2 Background
	3 Trace Inclusion for Deterministic One-Counter Nets
	4 Universality of Nondeterministic One-Counter Nets
	5 Conclusion
	References

	Mean-Payoff Games with Partial-Observation
	1 Introduction
	2 Preliminaries
	3 Undecidability of Liminf Games
	4 Observable Determinacy
	5 Strategy
Transfer
	6 Forcibly Terminating Games
	7 Forcibly First Abstract Cycle Games
	8 First Abstract Cycle Games
	9 MPGs with Partial-Observation
	9.1 FBC and Forcibly FBC MPGs

	References

	Parameter Synthesis for Probabilistic Timed
Automata Using Stochastic Game Abstractions

	1 Introduction
	2 Preliminaries
	3 Synthesis with Forward Reachability
	4 Synthesis with Game-Based Abstraction Refinement
	5 Conclusion
	References

	On Functions Weakly Computable by Petri Nets and Vector Addition Systems
	1 Introduction
	2 Vector Addition Systems with States
	3 Weakly Computable Functions
	3.1 Weak PN Computers and Weakly Computable Functions
	3.2 MoreWeakly Computable Functions
	3.3 IterableWeak PN Computers
	3.4 Alternative Definitions

	4 Well-Quasi-ordering Runs in VASSes
	5 Concluding Remarks
	References

	Generalized Craig Interpolation for Stochastic
Satisfiability Modulo Theory Problems

	1 Introduction
	2 Stochastic Satisfiability Modulo Theory (SSMT)
	3 Resolution for SSMT
	4 Interpolation for SSMT
	4.1 Generalized Craig Interpolants
	4.2 Computation of Generalized Craig Interpolants

	5 Interpolation-Based Probabilistic Model Checking
	5.1 Probabilistic Bounded Model-Checking (PBMC)
	5.2 Interpolation-Based Unbounded Model-Checking

	6 Conclusion and Future Work
	References

	Transformations for Compositional Verification
of Assumption-Commitment Properties

	1 Introduction
	2 Motivating Example: Fischer’s Protocol with Faults
	3 Compositional Verification of Assumption-Commitment Specifications for Generalized Automata
	4 Automata Transformations
	5 Supporting Edges
	6 Compositional Verification
	7 Conclusion
	References

	Compositional Reachability in Petri Nets
	Introduction
	1 Background
	2 From Marked Nets to Automata
	3 Compositional Reachability
	4 Implementation and Results
	5 Proof of Correctness
	6 Related Work and Discussion
	References

	Author Index

