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Abstract. Constraint-based causal discovery algorithms use conditional
independence tests to identify the skeleton and invariant orientations of
a causal network. Two major disadvantages of constraint-based methods
are that (a) they are sensitive to error propagation and (b) the results of
the conditional independence tests are binarized by being compared to a
hard threshold; thus, the resulting networks are not easily evaluated in
terms of reliability. We present PROPeR, a method for estimating poste-
rior probabilities of pairwise relations (adjacencies and non-adjacencies)
of a network skeleton as a function of the corresponding p-values. This
novel approach has no significant computational overhead and can scale
up to the same number of variables as the constraint-based algorithm of
choice. We also present BiND, an algorithm that identifies neighborhoods
of high structural confidence on causal networks learnt with constraint-
based algorithms. The algorithm uses PROPeR to estimate the confi-
dence of all pairwise relations. Maximal neighborhoods of the skeleton
with minimum confidence above a user-defined threshold are then identi-
fied using the Bron-Kerbosch algorithm for identifying maximal cliques.
In our empirical evaluation, we demonstrate that (a) the posterior prob-
ability estimates for pairwise relations are reasonable and comparable
with estimates obtained using more expensive Bayesian methods and
(b) BiND identifies sub-networks with higher structural precision and
recall than the output of the constraint-based algorithm.

Keywords: Posterior probabilities, causal networks, constraint-based
causal discovery.

1 Introduction

Constraint-based algorithms are a popular choice for learning causal models;
they are fast, scalable, and usually guarantee soundness and completeness in the
sample limit. However, for smaller sample sizes, identification of false constraints
poses a challenge: An erroneous identification of a conditional independence can
propagate through the network and lead to erroneous edge identifications or con-
flicting orientations even in seemingly unrelated parts of the network. Particu-
larly for networks with many variables and small sample sizes, error propagation
can result in unreliable networks.
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Constraint-based algorithms query the data for conditional independencies
and then use the results to constrain the search space of possible causal models.
Failure to identify which parts of the output of a constraint-based algorithm are
reliable is partly due to the nature of conditional independence tests: The test
returns a p-value, which stands for the probability of getting a test statistic at
least as extreme as the the one actually observed in the data, given that the null
hypothesis (conditional independence) is true. If this probability is lower than a
chosen significance threshold (typically 5-10%), the null hypothesis is rejected,
and the alternative hypothesis is implicitly accepted. While lower p-values indi-
cate higher confidence conditional dependencies, the p-value can not be inter-
preted as the probability of a conditional independence, and it therefore cannot
be used to compare a conditional dependence to a conditional independence
in terms of belief. Thus, the decisions made by the constraint-based algorithm
(accept or reject a conditional independence) cannot be evaluated in terms of
confidence.

We propose Posterior RatiO PRobability (PROPeR), a method for identifying
posterior probabilities for all (non) adjacencies of a causal network learnt with
a constraint-based algorithm. We use the term pairwise relations to denote
adjacencies and non-adjacencies in a causal graph (ignoring orientations).

For each pair of variables, a constraint-based algorithm tries a number of con-
ditional tests of independence. We use the maximum p-value obtained for every
pair of variables as a representative of the corresponding pairwise relation. Poste-
rior probabilities are then estimated as a function of these representative p-values.
Themethod has no significant computational overhead, and can therefore scale up
to the same number of variables as the algorithm of choice. Moreover, it does not
depend on any additional assumptions (e.g. acyclicity, causal sufficiency, paramet-
ric assumptions) and can therefore be used with any constraint-based algorithm
equipped with an appropriate test of conditional independence.

Notice that PROPeR is not used to improve the algorithm per se, but to
produce confidence estimates for pairwise relations learnt from the algorithm.
Identifying which parts of the learnt network are reliable is of great importance
for practitioners who use causal discovery methods, and are often interested in
high-confidence pairwise connections among variables or in avoiding a specific
type of error (e.g. false positive or false negative edges). It can also be useful
for selecting subsequent experiments for a system under study, by pointing out
relationships that are uncertain.

We use the estimates obtained by PROPeR, to identify neighborhoods of high
structural confidence in causal networks. The proposed method, called BiND
(β-NeighborhooDs), takes as input a causal graph G along with representative
p-values for every pairwise relation in G and a desired threshold of confidence
β. The algorithm outputs all neighborhoods in G for which all pairwise relations
have confidence estimates above β. Internally, BiND uses PROPeR to obtain
probability estimates for each pairwise relation, creates a graph Hβ where edges
correspond to pairwise relations with confidence above β, and then uses the
Bron-Kerbosch algorithm to identify all maximal cliques in graph Hβ.
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In our empirical evaluation, we use simulated data to test the calibration of
PROPeR’ s probability estimates, and compare against two Bayesian methods
that can be used to obtain similar estimates [1][2]. Results indicate that PROPeR
produces reasonable probability estimates, while being significantly faster than
other approaches. The behavior of BiND was also examined using simulated
data sets. Results indicate that BiND identifies neighborhoods that include a
smaller proportion of false positive and false negative edges, compared to the
original induced network.

2 Background

We use V to denote random variables (interchangeably nodes of a causal graph),
and bold upper-case letters to denote sets of variables. We use the notation
X⊥⊥Y |Z to denote the independence of variables X and Y given the set of
variables Z. We use G=(V,E) to denote a graph over variables V with edges E .
For the scope of this work, we only deal with undirected edges, thus, members
of E are unordered tuples of V.

Bayesian networks consist of a Directed Acyclic Graph (DAG) G over a set
of variables V and a joint probability distribution P over the same variables. A
directed edge in G denotes a direct causal relation (in the context of measured
variables). The DAG G and the distribution P are connected by the Causal
Markov condition (CMC): Every variable is independent of its non-descendants
given its parents. The graph in conjunction with the CMC entails a set of condi-
tional independencies that hold in P . The faithfulness condition (FC) states that
all the conditional independencies that hold in P stem from G and the CMC,
instead of being accidental parametric properties of the distribution.

Under CMC and FC, the conditional (in)dependencies that hold in P can
be identified from the graph G according to a graphical criterion, namely d-
separation. For graphs and distributions that are faithful to each other, we say
that P satisfies the global Markov property with respect to G: X ⊥⊥Y |Z in P
if and only if X and Y are d-separated given Z in G. Constraint-based methods
for learning Bayesian Networks use independence relations present in the data
to constrain the search space of possible underlying causal graphs. The following
theorem is the cornerstone of constraint-based causal learning:

Theorem 1. [3] If 〈G,P〉 is a Bayesian network over V and G is faithful to P,
then the following holds: For every pair of variables X,Y ∈ V: X and Y are not
adjacent in G ↔ ∃Z ⊆ V \ {X,Y } s.t. X ⊥⊥ Y |Z.

The theorem states that every missing edge in G corresponds to a conditional
independence in P . This is also known as the pairwise Markov property. Es-
sentially, the theorem matches the skeleton of the causal graph to a kernel of
conditional independencies (one for every missing edge). Thus, to identify the
network skeleton, constraint-based algorithms use a search strategy to iterate
over all pairs of variables in V. For each such pair (X , Y ), the algorithm tries
to identify a set of variables Z that renders X and Y independent. If no such
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set exists, X and Y are adjacent in the resulting causal graph G, otherwise the
edge between them is removed and Z is reported as the separating set of X and
Y . The set of all conditional independencies that hold in a probability distribu-
tion is called the independence model J of the distribution P . Under CMC
and FC, the minimal set of independencies identified by a (sound and complete)
constraint-based algorithm are sufficient to entail all conditional independencies
in J .

Apart from CMC and FC, Bayesian networks rely on the assumption of causal
sufficiency: Pairs of variables in a Bayesian network cannot be confounded, i.e.
they cannot be effects of the same unmeasured common cause. This assump-
tion is very restrictive and likely to be violated in many applications. Maximal
Ancestral Graphs (MAGs) are extensions of Bayesian networks that can handle
possible hidden confounders. In faithful MAGs, the graph G and the distribu-
tion P are connected through a graphical criterion similar to d-separation, called
m-separation. MAGs also satisfy the pairwise Markov property: a missing edge
in G corresponds to a conditional independence in P . Edges and orientations
in MAGs, however, have slightly different causal semantics than in Bayesian
networks.

Methods presented in this work do not depend on the assumption of causal
sufficiency, and can therefore work for both DAGs and MAGs. They do require,
however, that the causal graph and the distribution satisfy the pairwise Markov
property: every missing edge must correspond to a conditional independence.
This holds for DAGs and MAGs, but is not true for all graphical models.

Typically, for a joint probability distribution P over a set of variables V,
there exists a class (instead of a single) of causal graphs (DAGs or MAGs) that
entail all and only the conditional independencies that hold in P . Causal graphs
that belong to the same class, and cannot be distinguished based on conditional
independencies alone, are called Markov Equivalent. For both DAGs and MAGs,
Markov Equivalent graphs share the same skeleton, and vary in some of the
orientations.

For the scope of this work, we only attempt to quantify our belief to the
adjacency or non-adjacency of each pair of variables, regardless of orientations.
Thus, we only need to take into account the output of the skeleton identification
step of a constraint-based algorithm. In the remainder of this paper, we use G
=(V, E) to denote the output such an algorithm, thus, the skeleton of a BN or
a MAG without orientations.

3 Posterior Probabilities for Pairwise Relations

In this section, we present the PROPeR algorithm for estimating posterior prob-
abilities of pairwise relations in causal networks. PROPeR takes as input the
causal skeleton G returned by a constraint-based algorithm and a set of rep-
resentative p-values and outputs a posterior probability estimate for every ad-
jacency and non-adjacency in G. We use P (X—Y ) and P (¬X—Y ) to denote
the posterior probability of the adjacency and non-adjacency of X and Y in G,
respectively.
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N = 20, α = 0.05, sample size = 100
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Fig. 1. Representative p-values for adjacencies and non-adjacencies. Normal-
ized histograms of 190 representative p-values identified by the PC skeleton algorithm
for a random network of 20 variables. p-values corresponding to adjacencies in the
data-generating network (left) follow a distribution with decreasing density. p-values
corresponding to non-adjacencies in the data-generating network (right) follow a uni-
form distribution in the interval [α, 1]. A smaller number of predictions fall in the [0, α]
interval. This bias is introduced due to constraint-base search strategy: while the repre-
sentative p-value is below the threshold, the algorithm performs more tests. Naturally,
in real scenarios, we do not know which p-values come from which distribution.

According to the pairwise Markov condition, a non-adjacency in a causal
graph G over variables V corresponds to a conditional independence given a
subset of V. In contrast, an adjacency in G corresponds to the lack of such
a subset: If X and Y are adjacent in G, there exists no subset Z of observed
variables such that X⊥⊥Y |Z. Thus, edge X—Y will be present in P if the data
support the null hypothesis

H0 : ∃Z ⊂ V : X ⊥⊥ Y |Z less than the alternative H1 : ∀Z ⊂ V : X �⊥⊥ Y |Z (1)

For a network with N variables, this complex set of hypotheses involves |2N−2|
conditional independencies. To simplify Equation 1, we use a surrogate condi-
tioning set. For each pair of variables, during the skeleton search, a constraint-
based algorithm performs a number of tests, each for a different conditioning set.
To avoid performing all possible tests, most algorithms avoid conditioning sets
that are theoretically not likely to be d-separating the variables, and also use
a threshold on the cardinality of attempted conditioning sets. Let pXY be the
maximum p-value of any attempted test of conditional independence between
X and Y , and let ZXY be the corresponding conditioning set. pXY is used in
constraint-based algorithms to determine whether X and Y are adjacent. If pXY

is lower than the threshold α, the edge is present in G. Otherwise, the edge is
absent in G. We approximate Equation 1 with the following set of hypotheses:

H0 : Ind(X,Y |ZXY ) against the alternative H1 : ¬Ind(X,Y |ZXY ), (2)

Under H0, the p-values follow a uniform distribution. Under H1, the p-values
follow a distribution with decreasing density. Sellke et al. [4] propose using Beta
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alternatives to model the distribution of the p-values under the null and the al-
ternative hypotheses, respectively: Beta(1, 1) is the uniform distribution and de-
scribes the distribution of the p-values under the null hypothesis.Beta(ξ, 1), 0 <
ξ < 1 is a distribution defined in (0, 1) with density decreasing in p. It is therefore
suitable to model the distribution of p-values under the alternative hypothesis.
Figure 1 shows an example of the distributions of representative p-values under
H0 and H1, identified using the PC skeleton on data simulated from a known
network. Equation 2 can be re-formulated on the basis of the representative
p-value:

H0 : pXY ∼ Beta(1, 1) against H1 : pXY ∼ Beta(ξ, 1) for some ξ ∈ (0, 1). (3)

We can now estimate whether adjacency is more probable than non-adjacency for
a given representative p-value p, by estimating which of the Beta alternatives it is
most likely to follow. We use V2 = {(X,Y ), X,Y ∈ V, X �= Y } to denote the set
of unordered pairs of V, i.e. the set of pairwise relations in a causal skeleton G.
Let p = {pXY : (X,Y ) ∈ V2} be the set of the representative p-values for each
pairwise relation. We assume that this population of p-values follows a mixture
of Beta(ξ, 1) and Beta(1, 1) distributions. If π0 is the proportion of p-values
following Beta(1, 1), then the corresponding probability density function is:

f(p|ξ, π0) = π0 + (1 − π0)ξp
ξ−1

For given estimates π̂0 and ξ̂, the posterior odds of H0 against H1 for variables
X , Y is

PO(pXY ) =
P (pXY |H0)P (H0)

P (pXY |H1)P (H1)
=

P (pXY |pXY ∼ Beta(1, 1))P (pXY ∼ Beta(1, 1))

P (pXY |pXY ∼ Beta(ξ̂, 1))P (pXY ∼ Beta(ξ̂, 1))
=

π̂0

ξ̂pξ̂−1
XY (1− π̂0)

.
(4)

Obviously, if PO(pXY ) > 1, non-adjacency is more probable than adjacency for

the pair of variables X , Y . Notice that for some ξ̂ and π̂0, it is possible that
PO(pXY ) > 1, while X and Y are adjacent in G.

Based on the ratios in Equation 4, we can obtain the probability estimates:

P (X—Y ) =
1

1 + PO(pXY )
, P (¬X—Y ) =

PO(pXY )

1 + PO(pXY )
(5)

To estimate the probabilities in Equation 5, we need to obtain estimates for π̂0

and ξ̂. To estimate π0, we use the method described in [5]. The authors propose
fitting a natural cubic spline to the distribution of the p-values to estimate the
proportion of p-values that come from the null hypothesis.

The method requires that the p-values are i.i.d., an assumption that is clearly
violated for the sample of p-values obtained during a skeleton identification
algorithm: Typically, the tests of independence attempted by constraint-based
network learning algorithms depend on the results of previously attempted tests.
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Algorithm 1. PROPeR

input : causal network G over V, representative p-values {pXY }
output: Probability estimates P (X—Y ), P (¬X—Y )

1 Estimate π̂0 from {pXY } using the method described in [5];

2 Find ξ̂ that minimizes −∑
(X,Y )∈V2 log(π̂0 + (1− π̂0)ξp

ξ−1
XY );

3 foreach (X,Y ) ∈ V2 with representative p-value pXY do

4 PO(pXY )← π̂0

ξ̂p
ξ̂−1
XY

(1−π̂0)
;

5 P (X—Y )← 1
PO(pXY )+1

, P (¬X—Y )← PO(pXY )
PO(pXY )+1

;

6 end

Moreover, each pXY is the maximum among many attempted tests. Finally, the
p-values coming from the null hypothesis are not uniform, since independence is
only accepted if p > α. Thus, the obtained estimate π̂0 may be biased. Never-
theless, we believe that the estimates produced using this method are reasonable
approximations. An example of the distribution of representative p-values com-
ing from H0 and H1 is illustrated in Figure 1.

For a given π̂0, the likelihood for a set of representative p-values {pXY } is

L(ξ) =
∏

(X,Y )∈V2

(π̂0 + (1− π̂0)ξp
ξ−1
XY ).

The respective negative log likelihood is

−LL(ξ) = −
∑

(X,Y )∈V2

log(π̂0 + (1− π̂0)ξp
ξ−1
XY ). (6)

Equation 6 can easily be optimized for ξ. Algorithm 1 describes how to obtain
probability estimates for all pairwise relations given their representative p-values.

4 Identifying Neighborhoods of High Structural
Confidence

Algorithm 2 takes as input a causal skeleton G, confidence estimates on G’s
pairwise relations and a confidence threshold β and outputs the set of all β-
neighborhoods in G. In the previous section we presented a method for obtaining
posterior probability estimates for all pairwise relations in a causal skeleton. In
this section, we will use these estimates to identify neighborhoods of high struc-
tural confidence on the same skeleton. We define a neighborhood of structural
confidence β as follows:

Definition 1 (β-neighborhood). Let G = (V, E) be a causal skeleton, and
{PXY , (X,Y ) ∈ V2} the set of probability estimates:

PXY =

{
P (X—Y ), if (X,Y ) adjacent in G

P (¬X—Y ), if (X,Y ) not adjacent in G
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Fig. 2. An example maximum 0.8-neighborhood identified using Algorithm
2. We used the DAG of the Alarm network coupled with random parameters to simulate
100 samples. PC-skeleton was used to obtain the network skeleton G, consisting of 34
edges: 31 true positive edges (solid lines in the figure) and 3 false positive edges (− ·−
lines). 15 edges were not identified by the algorithm, even though they are present
in the data-generating graph (false negative edges, depicted as lines). Algorithm 2
was used to identify the maximum 0.8-neighborhoods of G. One of the maximum 0.8-
neighborhoods, consisting of 24 variables that share 17 adjacencies, is noted: elliptical
blue nodes denote variables in the neighborhood, while the remaining variables are
shown as rectangular grey nodes (the neighborhood is also separated from the rest of
the network with a dashed grey line). The proportion of false inferences within the
clique is far lower than the overall proportion of false inferences: The clique includes
only two false negative edges and only one false positive. Most of the false inferences
are pairwise relations between members and non-members of the neighborhood.

A subgraph G′ = (V′, E ′) of G is a β-neighborhood iff: ∀X,Y ∈ V′ : PXY > β
The size of a β-neighborhood G′ = (V′, E ′) is |V′|.
Thus, a neighborhood of confidence β is a subgraph of the causal network in
which the posterior probability of every pairwise relation is above a given thresh-
old β. For a causal skeleton and a set of confidence estimates on all pairwise
relations, finding a β - neighborhood can be reformulated as a graph theoretical
problem: Let H = (V, Eβ) be an undirected graph with edges defined as follows:

(X,Y ) ∈ Eβ if PXY ≥ β, (X,Y ) �∈ Eβ if PXY < β (7)

Variables X and Y are adjacent in Hβ only if the probability of their re-
spective pairwise relation in G is above the confidence threshold β. Finding
β-neighborhoods in G is equivalent to identifying cliques in Hβ .

Naturally, a causal skeleton can have many β-neighborhoods. Moreover, if a
subgraph G′ = (V′, E ′) of G is a β-neighborhood, then every subgraph of G′ is
a β-neighborhood. More interesting inferences may be made by identifying all
maximal β-neighborhoods on a graph:

Definition 2. Let G=(V, E) be a causal skeleton and G′ = (V′, E ′) be a β-
neighborhood. G is a maximal β-neighborhood if �V′′ ⊃ V′ such that the sub-
graph G′′ = (V′′, E ′′) is a β-neighborhood.
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Algorithm 2. BiND

input : causal network G over V, pairwise confidence estimates PXY ,
confidence threshold β

output: β-neighborhoods {G′}
1 Hβ ← empty graph;
2 foreach (X,Y ), X, Y ∈ V do
3 if PXY ≥ β then add (X, Y ) to Hβ

4 end
5 {V′} ← Bron-Kerbosch(Hβ);
6 {G′} ← subgraphs of G over {V′};

Thus, a maximal β-neighborhood is a β-neighborhood that is not part of a
larger neighborhood. Identifying all maximal β-neighborhoods in G can be solved
by finding all maximal cliques in the corresponding Hβ . Identifying maximal
cliques is NP-hard [6], but algorithms that run in exponential time or identify
approximate solutions are available. We use the Bron-Kerbosch algorithm [7].

Maximal cliques can often be very small; for example, if no larger cliques ex-
ist, all adjacencies and all non-adjacencies with PXY > β are (trivial) maximal
cliques of size 2. Another interesting problem that could be solved using Algo-
rithm 2 is to identify the maximum β-neighborhoods of a causal skeleton, i.e.
the maximal β-neighborhoods with the maximum possible number of variables.
This is equivalent to identifying all maximum cliques in Hβ , and can be easily
obtained from the output of Algorithm 2. Figure 2 shows an example maximum
clique, identified using Algorithm 2 on simulated data. The neighborhood in-
cludes 24 out of 37 variables. While the neighborhood includes more than half of
the total variables and edges of G, the number of false positive and false negative
edges within the neighborhood is much lower than the corresponding number in
the entire skeleton.

5 Related Work

Friedman et al. [8] propose a method for estimating probabilities on features
of Bayesian networks. They use bootstrap to resample the data and learn a
Bayesian network from each sampled data set. The probability of a structural
feature is then estimated as the proportion of appearances of the feature in
the resulting networks. Friedman and Koller [9] present a Bayesian method for
estimating probabilities of features using MCMC samples over variable orderings.
The methods are evaluated in terms of the classification performance (i.e. how
accurately they accept or reject a feature), but not in terms of the calibration
of predicted probability estimates.

Koivisto and Sood [10] and Koivisto [11] present algorithms for identifying
exact posterior probabilities of edges in Bayesian networks. The methods use
a dynamic programming strategy and constrain the search space of candidate
causal models by bounding the number of possible parents per variable. The
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algorithms require a special type of non-uniform prior that does not respect
Markov equivalence. Thus, resulting probabilities may be biased. Subsequent
methods try to fix this problem by using MCMC simulations to compute network
priors [2] or exploiting special types of nodes [12]. All methods in this category
scale up to about 25 variables, since the minimum time and space requirement
of these algorithms is O(n2n).

Claasen and Heskes [1] propose a method for estimating Bayesian probabilities
of a feature as a normalized sum of the posterior probabilities of all networks that
entail this feature. The method requires exhaustive search of the space of possible
networks, and is therefore not applicable for networks with more than 5-6 vari-
ables. The authors propose using this method as a standalone test of conditional
independence, and also use it to decide on features inside a constraint-based
algorithm. Pena, Kocka and Nielsen [13] estimate the confidence of a feature as
the fraction of models containing the feature out of the different locally optimal
models.

6 Experimental Evaluation

We performed a series of experiments to characterize the behavior of the pro-
posed algorithms.

6.1 Calibration of Estimated Probabilities

We initially used simulated data to examine if the returned probability estimates
are calibrated. We generated random DAGs with 10 and 20 variables, where
each variable had 0 to 5 parents (randomly selected). The networks were then
coupled with random parameters to create linear gaussian networks (continuous
data) or discrete Bayesian networks (binary data). For continuous variables, a
minimum correlation coefficient of 0.2 was imposed on the parameters to avoid
weak interactions. We then simulated networks of various sample sizes, to test
the method’s behavior in different settings.

We used the PC skeleton identification step [3] with significance threshold
α = 0.05 and maximum conditioning set size 3 (explained below), modified to
additionally return the maximum p-value encountered for each pair of variables.
The set of maximum p-values was then used as input in Algorithm 1 to produce
probability estimates for all pairwise relations. We compared our method against
two alternative approaches:

1. BCCD-P: A method based on the BCCD algorithm presented in [1]. As
mentioned above, the method estimates the posterior probability of a feature
as a normalized sum of the posterior probabilities of DAGs that entail this
feature. The algorithm scores all possible DAGs, and the authors use it to
estimate probabilities for networks of at most 5 variables. To estimate the
probabilities of pairwise relations, we scored the DAGs over variables X ,
Y and ZXY , where ZXY is the conditioning set maximizing the p-value of



Learning Neighborhoods of High Confidence 497
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N =10, discrete variables
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Fig. 3. Probability calibration plots for PROPeR, BCCD-P and
MCMC+DP for networks of 10 variables. Bars indicate the quartiles. All meth-
ods tend to overestimate probabilities. Bayesian scoring methods are often very confi-
dent: For continuous variables, most of the probability estimates predicted by BCCD-P
or MCMC+DP lie in the interval [0.9, 1], while MCMC+DP exhibits similar behavior
for discrete variables also.

the tests X⊥⊥Y |Z performed by PC. This means that the cardinality of
ZXY cannot exceed 3. For a fair comparison, we used 3 as the maximum
conditioning set of PC in all experiments. The probability of an adjacency
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N =20, continuous variables
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N =20, discrete variables
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Fig. 4. Probability calibration plots for PROPeR, BCCD-P and
MCMC+DP for networks of 20 variables. Bars indicate the quartiles. Similar to
the results in Figure 3, Bayesian scoring methods tend to overestimate probabilities.
MCMC+DP produced memory errors and failed to complete in all iterations for the
BGE score, and is therefore not inlcuded in the corresponding plot.

was estimated as: P (X—Y ) =
∑

G�X—Y P (D|G)P (G). Consistent priors
described in [1] were pre-calculated and cached. To speed up the algorithm,
we only scored one DAG per Markov equivalence class. For both approaches,
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Fig. 5. Running times for PROPeR, BCCD-P and MCMC+DP

we used the BDe metric for discrete data and the BGe metric for gaussian
data. Both metrics are score-equivalent.

2. DP+ MCMC: The method presented in [2] for identifying exact proba-
bilities for edges in Bayesian networks. The method uses a combination of
the DP algorithm [11] and MCMC sampling to correct the bias from the
modular priors. We used the implementation provided by the authors in
the BDAGL package. Maximum parents was set to 5, and the default pa-
rameters suggested by the authors in the package documentation were used.
The method estimates probability estimates for directed edges, so we used
P (X—Y ) = P (X Y ) + P (Y X), P (¬X—Y ) = 1− P (X—Y ).

To produce the probability calibration plots, the resulting predicted probabil-
ities in [0.5, 1] were binned in 5 intervals. For every pair of variables, P (X—Y )
=1-P (¬X—Y ). Thus, to consider each estimate once, we only need to consider
half of the interval [0, 1]. If N pairwise relations have probability estimates

{P̂i}Ni=1 that lie in interval [γ, γ + 0.1], we expect that
¯̂
Pi × N of the corre-

sponding relations will be true. The actual probability Pγ for each interval is
the fraction of relations with probability estimates in the given interval that are
actually true in the data-generating graph. Figures 3 and 4 illustrate the mean
estimated versus the mean actual probability for each bin, as well as the fraction
of predictions in each bin for networks with 10 and 20 variables. Running times
for all methods are shown in Figure 5.

Overall, results indicate that:

– PROPeR produces reasonable probability estimates, particularly in com-
parison to the more expensive BCCD-P and MCMC+DP approaches.

– MCMC+DP tends to identify very high (resp. very low) probabilities for
the pairwise relations, even for small sample sizes for both metrics (BGE
and BDE). BCCD has similar behavior for the BGE score, but not for the
BDE score. This could explain the large deviations (and the seemingly un-
predictable behavior) observed for these algorithms in the first four bins ([0.5
0.9]), since the means are computed over very few data points.

– As far as running times are concerned, both BCCD-P and MCMC+DP al-
gorithms have (theoretically) exponential complexity with respect to the
number of variables. BCCD-P also increases exponentially with sample size,
but this is probably due to an increase in maximum conditioning set sizes
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reported by PC skeleton for larger sample sizes. i.e., BCCD-P iterates net-
works with many variables (4-5) for most pairwise relations. This also ex-
plains the poor performance of BCCD-P for the BDE metric and sample
size 100: estimates are obtained by scoring smaller networks. The employed
implementation of MCMC+DP failed to complete any iterations for N=20
and continuous variables.

We must point out that the calibration of the probability estimates is not neces-
sarily related to the predictive power of the respective approaches, which depends
more on the relative ranking of probabilities among pairwise relations, rather
than the actual estimates. For example, MCMC+DP has been shown to pro-
duce rankings of edges with very high AUC [2]. For the purposes of this work,
however, obtaining estimates that are calibrated is important for identifying
neighborhoods of a user-defined confidence. For example, using MCMC+DP es-
timates in Algorithm 2 would result in an almost fully connected H0.9 , since
most of the pairwise relations have probability estimates above this threshold.

6.2 Evaluation of Neighborhoods Identified with BiND

To demonstrate the value of BiND, we simulated data of 100 and 1000 samples
from random networks with 20 and 50 variables, as described above. For the
causal skeletons identified with the PC skeleton algorithm and the posterior
probability estimates produced by PROPeR, all maximal β-neighborhoods for
β=0.6, 0.7 and 0.9 were identified using Algorithm 2.

We examined the structural precision (# edges in G′ and the ground truth
# edges in G′ ) and re-

call (# edges in G′ and the ground truth
# edges in the ground truth ) of the resulting neighborhoods, compared to

the baseline precision and recall for G. As mentioned above,the maximal cliques
can be very small and uninformative, particularly for high confidence thresholds.
We are more interested in identifying large parts of the networks that we are
confident about, and therefore focused in the maximum β-neighborhoods. Fig-
ure 6 illustrates the precision, recall and size of maximum β-neighborhoods for
networks of 20 and 50 variables, for both discrete and continuous data. The algo-
rithm took 85.56 seconds on average to identify the maximum 0.6-neighborhoods
for 50 variables and 1000 samples (the most expensive case). Detailed time re-
sults are omitted due to space limitations.

Results indicate the following:

– The method identifies subgraphs with lower ratios of false inferences com-
pared to the entire skeleton.

– For high confidence thresholds and small sample sizes, the algorithm cannot
identify large neighborhoods.

– The algorithm is particularly useful in small sample sizes, where the overall
recall is very low.
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N =20, continuous variables
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N =50, continuous variables

0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

P
re
ci
si
on

ss:100
ss:1000

0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

R
ec
al
l

0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

β

n
ei
gh
b
or
h
oo
d
si
ze

Fig. 6. Precision, recall, number and size of maximum cliques identified
using BiND in networks of 20 continuous variables. Bars indicate quartiles.
Dashed horizontal lines show the mean baseline precision and recall (mean precision
and recall of the output of PC skeleton. BiND identifies neighborhoods of higher
structural precision and recall than the corresponding baseline, particularly for small
sample sizes.

7 Discussion

Equipping constraint-based causal discovery algorithms with a method that can
provide some measure of confidence on their output improves their usability.
Bayesian scoring and bootstrapping methods can be employed for this purpose,
but are computationally expensive and do not scale up to the number of variables
constraint-based algorithms can handle.

We have presented PROPeR, an algorithm for estimating posterior probabili-
ties of adjacencies and non-adjacencies in networks learnt using constraint-based
methods. The algorithm has no significant computational overhead and is scal-
able to practically any input size: increasing the number of variables processed
by the constraint-based algorithm merely increases the sample size of p-values
on which PROPeR fits a probability density function. PROPeR is shown to
produce calibrated probability estimates, while being significantly faster than
other state of the art algorithms. We have also presented BiND, an algorithm
that identifies the maximal (or maximum) neighborhoods of high confidence
on a causal network. In simulated scenarios, the algorithm is able to identify
neighborhoods that are indeed more reliable.

PROPeR and BiND can easily accompany any constraint-based algorithm
on any type of data, provided an appropriate test of conditional independence
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is available. Estimating posterior probabilities based on p-values can be of use
in several causal discovery tasks, including conflict resolution, improving orien-
tations, and experiment selection.
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